
IMAGE AND VIDEO QUALITY ASSESSMENT WITH APPLICATIONS IN

FIRST-PERSON VIDEOS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Chen Bai

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2019

Purdue University

West Lafayette, Indiana



ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Amy R. Reibman, Chair

School of Electrical and Computer Engineering

Dr. Jan P. Allebach

School of Electrical and Computer Engineering

Dr. Charles A. Bouman

School of Electrical and Computer Engineering

Dr. Mary L. Comer

School of Electrical and Computer Engineering

Approved by:

Dr. Dimitrios Peroulis

Head of the School of Electrical and Computer Engineering



iii

To my parents with deepest gratitude.



iv

ACKNOWLEDGMENTS

First and foremost, I would like to express my sincere gratitude to my doctoral

advisor Professor Amy R. Reibman for her support of my research in image and video

processing area. Her innovative tutoring and rigorous research attitude helped me

to come up with new ideas and overcome difficulties in my works. She led the path

for me that how to find a new problem, define the problem, create new methods and

validate my work. I truly enjoyed our communication not only about projects but

also research attitude and life. I am very honored to be her student and a member

of the video analytics for daily living lab (VADL).

Second, I would like to thank my parents for their love and support, especially for

these years that I was away from home. Their valuable advice and deep care helped

a lot in pursuing my academic career. I also thank my parents for giving me life and

the opportunity to grow, learn and pursue dreams.

Third, I would like to say thank you to the rest of my committee members, Profes-

sor Jan P. Allebach, Professor Charles A. Bouman, and Professor Mary L. Comer for

their insightful advice, consistent encouragement and meaningful comments despite

their busy schedules.

I am also thankful to all my lab mates in VADL, Biao Ma, He Liu, Chengzhang

Zhong and Haoyu Chen, for their help of my work, communication in image and video

processing area, and memorable time we spent in the lab.

I would like to thank all my friends from Purdue University. Our friendship along

my journey to finish my PhD helped me to overcome difficulties, build confidence and

discard unhappiness.



v

TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 First-Person Video Quality Assessment . . . . . . . . . . . . . . . . . . 1

1.2 Validation of Proposed Quality Assessment Methods . . . . . . . . . . 8

1.3 Contributions and Outline . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 IMAGE QUALITY ASSESSMENT FOR FIRST-PERSON VIDEOS . . . . 15

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Image Quality Estimator . . . . . . . . . . . . . . . . . . . . . . 17

2.2.2 Subjective Test . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Mutual Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Local Visual Information . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.1 Basic Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.2 Reliability Check . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Framework of MR Quality Assessment of FPVs . . . . . . . . . . . . . 27

2.6 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6.1 Implementation Design Comparisons . . . . . . . . . . . . . . . 30

2.6.2 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . 34

2.7 Video Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.7.1 Distortion Classification . . . . . . . . . . . . . . . . . . . . . . 41

2.7.2 Classification Results . . . . . . . . . . . . . . . . . . . . . . . . 42



vi

Page

2.8 Subjective Test for Blur and Geometric Distortions . . . . . . . . . . . 45

2.8.1 Test Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.8.2 Test Method and Setup . . . . . . . . . . . . . . . . . . . . . . 46

2.8.3 Test Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.8.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . 51

2.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3 CONTROLLABLE ILLUMINATION ENHANCEMENT . . . . . . . . . . . 68

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.2.1 Over-exposure and Under-exposure . . . . . . . . . . . . . . . . 71

3.2.2 Existing Enhancement Methods . . . . . . . . . . . . . . . . . . 72

3.2.3 Existing Enhancement Evaluation Metrics . . . . . . . . . . . . 72

3.3 Controllable Illumination Enhancement . . . . . . . . . . . . . . . . . . 73

3.4 Over-enhancement Measure . . . . . . . . . . . . . . . . . . . . . . . . 75

3.5 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4 VISIBILITY-INSPIRED TEMPORAL POOLING WITH APPLICATION
TO VIDEO STABILIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2.1 The Window of Visibility . . . . . . . . . . . . . . . . . . . . . . 91

4.2.2 Temporal Pooling Methods . . . . . . . . . . . . . . . . . . . . . 92

4.2.3 Objective Quality Assessment . . . . . . . . . . . . . . . . . . . 94

4.2.4 Subjective Quality Assessment . . . . . . . . . . . . . . . . . . . 94

4.3 Visibility Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.4 Visibility-Inspired Temporal Pooling Modelling . . . . . . . . . . . . . . 97

4.4.1 Pooling Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.4.2 Estimating the Function λ(·) . . . . . . . . . . . . . . . . . . . . 97



vii

Page

4.4.3 Data Gathering Strategy . . . . . . . . . . . . . . . . . . . . . . 98

4.5 Subjective test for visibility-inspired temporal pooling . . . . . . . . . 100

4.5.1 Test Video Sets . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.5.2 Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.5.3 Subjective Test Results . . . . . . . . . . . . . . . . . . . . . . 102

4.5.4 Estimating λ(·) . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.5.5 Evaluating the Overall Method . . . . . . . . . . . . . . . . . 104

4.6 Measuring perceptual blurriness after video stabilization . . . . . . . 106

4.6.1 Test Motivation and Strategy . . . . . . . . . . . . . . . . . . 106

4.6.2 Synthetic creation of shaky videos . . . . . . . . . . . . . . . . 108

4.6.3 Test Description . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.6.4 Subjective Results . . . . . . . . . . . . . . . . . . . . . . . . 111

4.6.5 Method Validation . . . . . . . . . . . . . . . . . . . . . . . . 112

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5 CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . . . . . . . 119

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

PUBLICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135



viii

LIST OF TABLES

Table Page

2.1 PLCC(SROCC) of LVI and five NR QEs with subjective scores . . . . . . 39

2.2 SROCC of LVI and five FR QEs for the LIVE, CSIQ and TID2013 image
databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3 Comparison between FPVs and traditional videos . . . . . . . . . . . . . . 44

2.4 Test images in subjective test . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.5 Symmetric transformation method to create shear images . . . . . . . . . . 51

2.6 QE performance: motion blur - billiards . . . . . . . . . . . . . . . . . . . 53

2.7 QE performance: motion blur - eating . . . . . . . . . . . . . . . . . . . . 53

2.8 QE performance: motion blur - flight . . . . . . . . . . . . . . . . . . . . . 54

2.9 QE performances: rotation - winter Hovde Hall . . . . . . . . . . . . . . . 56

2.10 QE performances: rotation - bell tower . . . . . . . . . . . . . . . . . . . . 57

2.11 QE performances: shear - autumn Hovde Hall . . . . . . . . . . . . . . . . 59

2.12 QE performances: shear - parking lot . . . . . . . . . . . . . . . . . . . . . 60

3.1 Negative subjective quality (“0” indicates the best) and average processing
time of the 6 enhancement methods . . . . . . . . . . . . . . . . . . . . . . 81

4.1 PLCC (SROCC) between objective pooling scores and subjective scores. 117

4.2 SROCC and PLCC between objective video quality scores and subjective
scores. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118



ix

LIST OF FIGURES

Figure Page

1.1 (a) horizontal camera panning (b) vertical camera panning (c) horizontal
camera shaking (d) vertical camera shaking . . . . . . . . . . . . . . . . . 4

1.2 (a) motion blur (b) rolling shutter artifacts (c) tilt (d) fisheye (e)(f) expo-
sure distortions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Existing QE structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Generalized QE structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Block diagram of local visual information (LVI) quality estimator . . . . . 23

2.2 Left: Pseudo-reference. Right: Test image. LVI score = 0.771 . . . . . . . 25

2.3 Framework of quality assessment for First Person Video. . . . . . . . . . . 27

2.4 Sample test images: (0) basketball (1) run (2) walk (3) billiards (4) cat
(5) eat (6) ping pong (7) talk (8) car (9) flight . . . . . . . . . . . . . . . . 33

2.5 Sample partitioned near-set 1 . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.6 Sample partitioned near-set 2 . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.7 The performance of six temporal partitioning methods in 10 FPVs: (a)
criteria 1: the average length of near-sets (b) criteria 2: the percentage
of useless LVI (c) criteria 3: the average number of matching points be-
tween pseudo-references in temporally adjacent near-sets (d) criteria 3:
the average number of matching points between start frames in tempo-
rally adjacent near-sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.8 The distribution of MRFQAFPV-SIFT versus MRFQAFPV-ORB: (a)
outdoor content (b) indoor content . . . . . . . . . . . . . . . . . . . . . . 37

2.9 Blockdiagram of estimating video statistics . . . . . . . . . . . . . . . . . . 41

2.10 Line angle distributions: (a) image free from shear and rotation (b) image
with rotation only (c) image with shear only (d) image with both rotation
and shear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.11 Cumulative distributions: (a) shear (b) LVI . . . . . . . . . . . . . . . . . 44



x

Figure Page

2.12 Reference images for each content: (a) billiards (b) eating (c) flight (d)
bell tower (e) winter Hovde Hall (f) parking lot (g) autumn Hovde Hall
(h) apartment building (i) parking garage . . . . . . . . . . . . . . . . . . 46

2.13 Test images captured in FPVs to have different amounts of motion blur . . 49

2.14 Test images intentionally captured to have different amounts of rotation . . 64

2.15 Test images with different amounts of synthetic shear created from one
reference image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.16 Test images with different amounts of synthetic fisheye created from one
reference image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.17 Subjective test - rotation and blur: (a) winter Hovde Hall (b) bell tower . 66

2.18 Curve fitted with logistic function between subjective scores and rotation-
LVI: (a) winter Hovde Hall (p=4.53) (b) bell tower (p=1.13) . . . . . . . . 66

2.19 Subjective test - shear and blur: (a) autumn Hovde Hall (b) parking lot . . 66

2.20 Curve fitted with logistic function between subjective scores and general-
ized shear-LVI (g=4.07): (a) autumn Hovde Hall (b) parking lot . . . . . . 66

2.21 Subjective test - fisheye and blur: (a) parking garage (b) apartment building67

2.22 Parking garage: group 1 prefers non-fisheye, group 2 prefers fisheye . . . . 67

2.23 Apartment building: group 1 prefers non-fisheye, group 2 prefers fisheye . . 67

3.1 (a)(d) Motion induced lighting variation (b)(e) Bad environmental lighting
(c)(f) Combination of both . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.2 Illumination enhancement block diagram . . . . . . . . . . . . . . . . . . . 74

3.3 (a) p = 1000, β = 20 (b) p = 10, β = 50 (c) p = 0.1, β = 200 . . . . . . . . 76

3.4 (a) original image (b) under-exposed map Mu (c) over-exposed map Mo . . 77

3.5 (a) original image (b) β = 2 (c) β = 4 (d) β = 8 (e) β = 12 (f) β = 16 (g)
β = 20 (h) β = 24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.6 (a) LOM = 0.07 (b) LOM = 0.10 (c) LOM = 0.13 . . . . . . . . . . . . . 84

3.7 Test images: (1) Pu = 0.35 (2) Pu = 0.57 (3) Pu = 0.58 (4) Pu = 0.76 (5)
Pu = 0.76 (6) Pu = 0.82 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.8 Example enhanced images: (a) LDR (b) CVC (c) WAHE (d) SRIE (e)
LLCRM (f) ours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.9 9-level enhanced images: subjective quality with (a) LOM (b) SMO (c) LOE87



xi

Figure Page

3.10 Video enhancement example: left frames are original, right frames are
enhanced. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.1 Green: the window of visibility (u0, w0) boundary. Red: spatio-temporal
content of u in which the solid line is visible, and the dashed line is invisible93

4.2 Comparison between Blur profile B0, B
′
0 and visibility profile 1− P0 . . . 100

4.3 Subjective scores (0: best quality in each test set) . . . . . . . . . . . . . 103

4.4 Comparison between V and estimated λ(V̂ ) . . . . . . . . . . . . . . . . 104

4.5 Function λ(·) in Equation 4.1: x-axis is measured visibility Vi, y-axis is
λ(Vi). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.6 Diagram of creating test set: Λu and Λs . . . . . . . . . . . . . . . . . . 108

4.7 (a) Campus (b) Grocery (c) Apartments (blur level j refers to V j
s ). The

vertical bar is the corresponding confidence interval. . . . . . . . . . . . . 113

4.8 Objective scores versus subjective scores (circle points: stable videos Λs,
triangle points: shaky videos Λu, black line: fitting curve) . . . . . . . . 115



xii

ABBREVIATIONS

BRISQUE Blind Image Spatial Quality Evaluator

CSIQ Categorical Subjective Image Quality

CI Confidence Interval

DCT Discrete Cosine Transform

FMA Feature Matching Area

FPV First-Person Video

FR Full Reference

GSM Gradient Magnitude Similarity

HVS Human Visual System

IQE Image Quality Estimator

KROCC Kendall Rank-order Correlation Coefficient

LMV Large Motion Video

LOM Lightness Order Measure

LVI Local Visual Information

MOS Mean Opinion Score

MR Mutual Reference

MRFQAFPV Mutual Reference Frame Quality Assessment of FPVs

NFP Number of Feature Matching Points

NIQE Naturalness Image Quality Evaluator

NR No Reference

NSS Natural Scene Statistics

QE Quality Estimator

PLCC Pearson Linear Correlation Coefficient

PSNR Peak Signal to Noise Ratio



xiii

RR Reduced Reference

SROCC Spearman Correlation Coefficients

SR-SIM Spectral Residual based Similarity

SSIM Structural Similarity Index

TID Tampere Image Quality Database

VIF Visual Information Fidelity

VQE Video Quality Estimator

VSNR Visual Signal-to-Noise Ratio

VTP Visibility-inspired Temporal Pooling



xiv

ABSTRACT

Bai, Chen Ph.D, Purdue University, August 2019. Image and Video Quality Assess-
ment with Applications in First-Person Videos. Major Professor: Amy R. Reibman.

First-person videos (FPVs) captured by wearable cameras provide a huge amount

of visual data. FPVs have different characteristics compared to broadcast videos and

mobile videos. The video quality of FPVs are influenced by motion blur, tilt, rolling

shutter and exposure distortions. In this work, we design image and video assessment

methods applicable for FPVs.

Our video quality assessment mainly focuses on three quality problems. The first

problem is the video frame artifacts including motion blur, tilt, rolling shutter, that

are caused by the heavy and unstructured motion in FPVs. The second problem is

the exposure distortions. Videos suffer from exposure distortions when the camera

sensor is not exposed to the proper amount of light, which often caused by bad en-

vironmental lighting or capture angles. The third problem is the increased blurriness

after video stabilization. The stabilized video is perceptually more blurry than its

original because the masking effect of motion is no longer present.

To evaluate video frame artifacts, we introduce a new strategy for image quality

estimation, called mutual reference (MR), which uses the information provided by

overlapping content to estimate the image quality. The MR strategy is applied to

FPVs by partitioning temporally nearby frames with similar content into sets, and

estimating their visual quality using their mutual information. We propose one MR

quality estimator, Local Visual Information (LVI), that estimates the relative quality

between two images which overlap.

To alleviate exposure distortions, we propose a controllable illumination enhance-

ment method that adjusts the amount of enhancement with a single knob. The knob
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can be controlled by our proposed over-enhancement measure, Lightness Order Mea-

sure (LOM). Since the visual quality is an inverted U-shape function of the amount of

enhancement, our design is to control the amount of enhancement so that the image

is enhanced to the peak visual quality.

To estimate the increased blurriness after stabilization, we propose a visibility-

inspired temporal pooling (VTP) mechanism. VTP mechanism models the motion

masking effect on perceived video blurriness as the influence of the visibility of a frame

on the temporal pooling weight of the frame quality score. The measure for visibility

is estimated as the proportion of spatial details that is visible for human observers.
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1. INTRODUCTION

The measurement of image and video quality plays an important role in the process of

image and video capture, pre-processing, compression, transmission, post-processing

and displaying. Currently, new multimedia has emerged that one typical example

is First-Person videos (FPVs) that are captured by wearable cameras. First-person

videos (FPVs) are becoming a widely spread type of videos that can document activi-

ties, share experiences and record trips. Numerous applications of FPVs have emerged

using object tracking, activity recognition, video summarization and retrieval [1].

Quality assessment of FPVs is important because of three reasons. First, it can

identify whether frames have high enough quality for applications using object track-

ing and activity recognition. Second, it serves as an evaluation tool for improving

the viewing experience of FPVs [2]. Third, the visual quality of frames is a consider-

able factor for key frames or snap points detection [3], and can be incorporated into

frameworks for video summarization [4].

1.1 First-Person Video Quality Assessment

A First-person video itself has unique First-Person characteristics that is different

from any other videos or simulating environments, such virtual reality. First, it

provides an unconstrained egocentric perspective. The camera angle of view is not

restricted to specific location or direction, and sometimes faces against meaningless

or temporally unrelated scenes. One example is that the camera wearer makes an

unpredictable motion due to distracted events. Second, it often contains violent

First-Person motion. When we move our head or body, our brain has a compensation

mechanism that cancel out most self-motion influences. However, FPVs preserve the

self-motion that the wearer are not fully aware of.
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First-Person videos have significantly different attributes than typical broadcast

and mobile videos. Broadcast videos are often captured by stably-mounted cameras

with high-quality frames, and mobile videos are captured from hand-held mobile

devices. In both cases, a filmmaker captures scenes guided by real-time feedback from

a screen, so the camera can be intentionally controlled to be reasonably stable and

have the desired field of view. However, wearable cameras rarely are stably mounted

nor have real-time feedback. Video is often gathered passively, without attending to

composition. Even if there is an intention to record a high-quality video, the camera

may not capture a well-composed high-quality video. This occurs not only because

the wearer may be unaware of the field of view, but also because external factors may

temporarily influence body actions as well. As a result, FPVs as recorded from camera

rarely tell an effective story that is attractive from an aesthetic perspective, which

are two attributes of professional videos [5]. An experienced filmmaker can learn

to capture professional-quality video using a mobile camera. However, the passive

nature of FPVs, as well as their lack of organization and shot boundaries, limits their

ability to tell an effective story. Even with a high spatial resolution and high quality,

FPVs would rarely be considered professional.

From the comparisons with other types of videos above, we see that FPVs are

faced with more severe quality problems. There exist three questions that we want

to ask about FPVs: (1) what are the quality problems in FPVs? (2) what existing

methods or new proposed methods can we use to measure the quality of FPVs? (3)

How to quantify the newly generated artifacts if we improve FPVs?

First-Person Video Quality Problems

The quality problems in FPVs can be classified into two types, motion-induced

distortions and non-motion distortions. Motion-induced distortions come from cam-

era motions that record head or body movement of the camera wearer [6, 7]. The

motion-induced distortions of frames in FPVs can be mainly classified as blur and



3

the geometric distortions of rolling shutter artifacts and tilt. Blur could be caused

by any camera movement, and arises when motion is sufficiently large during the ex-

posure period [8]. See Figure 1.2(a) for an example. Rolling shutter artifacts mainly

arise from camera panning and tilt, and produce skew or wobble in an image. Skew

appears when the camera moves at a constant speed; wobble occurs when the fre-

quency of motion is greater than the frame rate of the recording video [9]. Figure

1.1 demonstrates the impact of rolling shutter. The arrows indicate the direction of

camera motion. Solid lines surround the captured image in a camera. Dashed lines

indicate the corresponding area in the real scene for that captured image. Motion

in (a) and (c) contribute to skew distortions, corresponding to shear in geometric

transformation. Motion in (b) and (d) result in vertical scaling, corresponding to the

scaling difference between horizontal and vertical direction. Finally, tilt is a combina-

tion of translational camera motion and roll. For example, when camera is mounted

on the hat of the wearer and the head tilts to left or right, the camera rotates around

an axis with some distance to the camera center. See Figure 1.2(b) for example im-

ages. In addition, camera motion introduces visually induced motion sickness (VIMS)

which occurs when there exists a sensory conflict. Since viewers is shown fast visual

motions while the actual body is static so that their visual and vestibular information

differ from the normal situations when they walk or run. The VIMS causes dizziness

so that the motion stabilization for FPVs is often necessary.

Another type of distortions in FPVs are non-motion distortions. Exposure distor-

tion [10] is introduced by the motion and captured environments. Since the wearer

is unaware of adjusting lighting direction for the camera, the captured video is often

badly exposed. FPVs always suffer from exposure distortions. Since the wearers are

often not fully aware of the lighting conditions during capture without real-time feed-

back, they have no intention to adjust the camera direction or location to the best

illumination condition. In addition, FPVs are recorded with random motion so that

the lighting condition changes violently. Therefore, there exists a large number of

frames that are badly exposed with spatially inconsistent exposure distortions. The
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Fig. 1.1.: (a) horizontal camera panning (b) vertical camera panning (c) horizontal

camera shaking (d) vertical camera shaking

example images are shown in Figure 1.2(e)(f). Fisheye is an internal property of many

wearable cameras with ultra wide-angle lens (i.e. Gopro, Looxie Camera, Mobius).

Instead of capturing a rectilinear image, the content appears to be convex. Fisheye

is one of the lens distortions, called barrel transformation. The transformation warps

the image to be bent; the magnification decreases from center to margins [11]. See

Figure 1.2(d) for example.

Available Objective Quality Assessment Methods

To evaluate the quality of FPVs, it is typical to apply quality estimators (QEs).

Existing QEs are normally classified into three types: full-reference (FR), reduced-

reference (RR) and no-reference (NR) methods.

FR methods assumes the existence of a pristine image or video as the reference.

FR methods interprets the image or video quality as the difference or the similarity

compared to the original. The simplest computational method is to compute pixel-

wise differences between the original image or video and the test image or video. The

typical method in FR image quality is a two-stage strategy that first compute a local

distortion or quality map by comparing test image with the reference image using

measures of similarity or difference. The local quality map is then spatially pooled to

an image score. The typical method of FR video quality metric is built on the image

quality metrics that by combining image-level scores into a video-level scores.



5

(a) (b)

(c) (d)

(e) (f)

Fig. 1.2.: (a) motion blur (b) rolling shutter artifacts (c) tilt (d) fisheye (e)(f) exposure

distortions

RR methods relax the constraints of FR methods by only comparing partial in-

formation between the reference and the test. A minimal set of extracted features

from the original image or video is used as side information for evaluating the quality

of the test image or video. RR still needs the existence of a pristine reference.
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One limitation for most FR and RR QEs [12–14] is that they cannot evaluate a test

image that is better than its reference image. Two exceptions are Visual Information

Fidelity (VIF) [15] and Visual Distortion Gauge [16]. Another related limitation is

that FR and RR methods assumes that the reference image is not degraded, otherwise

their results are not meaningful.

NR methods assumes no other information except the image or video to be eval-

uated exists. It interprets the image or video quality as the perception of human

observers, since human observers do not use any reference to evaluate the quality

of an image or video. NR often uses implicit knowledge of the criteria for human

to quantify how ”good” is an image or video. One subset of NR QEs is blur met-

rics [17, 18]; another subset is natural scene statistics based QEs [19–21]. However,

most existing NR methods are content dependent so that it provides consistent mea-

sure to compare their quality scores mostly in cases that the two images or videos

have almost the same content.

Existing QE structures as discussed above can be summarized in Figure 1.3.

Specifically, FR QEs are used when the “pristine” reference image is available, RR

are used when only information from the “pristine” reference image is available, NR

are used when no reference information is used.

However, QE structure can be generalized as Figure 1.4 to be available for more

quality assessment scenarios. The distorted image and a collection of “similar enough”

images are the inputs, the outputs are relative QE scores and QE confidence. A

collection of “similar enough” images can provide each other with effective information

for quality assessment. “Similar enough” can be interpreted as a group of images

that share common content. One example is a group of images captured from nearby

locations. In the generalized QE structure, the reference image is replaced with

“similar enough” images that do not need to be unimpaired and pixel-aligned. The

output QE score can provide relative scores that do not constrain the upper bound

of quality scores. Another output, QE confidence, can help to avoid acting on an

inaccurate measure, once you know the weaknesses of the QE. For example, a QE
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Fig. 1.3.: Existing QE structure

Fig. 1.4.: Generalized QE structure

may be known to be more accurate for one type of distortion, compression, than

another, blur.

New Quality Problems after Enhancement

Because of the low-quality nature of FPVs, the enhancement of their video qual-

ity is necessary to provide a good viewing experience for human observer. However,

improving the quality of FPVs needs a quality monitoring mechanism to guarantee

the enhancement process will not destroy the quality by introducing new visible ar-

tifacts. Here, two enhancement quality issues, illumination enhancement and motion

stabilization, will be discussed.

Illumination enhancement often introduces contrast distortions, new exposure dis-

tortions and newly-generated artifacts into the image [22], the quality monitoring

during enhancement is necessary to avoid introducing new quality problems. Typical
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artifacts after enhancement include loss of edges, textures [23] or unnaturalness [24].

Illumination enhancement and image visual quality has a concave relationship. As-

sume we have a knob to control the amount of enhancement. If we continue to increase

the amount of enhancement starting from zero, the visual quality increases. Until a

certain amount of enhancement, the best achievable quality for the image is reached.

If we still continue to increase the amount of enhancement, the visual quality will de-

crease due to newly-generated artifacts. To avoid that the artifacts generated during

the enhancement process destroy the visual quality, a possible solution is to design

a metric to monitor the visual quality during enhancement. Then we can adjust the

knob to control the enhancement until the image reaches the best achievable quality.

Another issue is the increased blurriness after video stabilization. Since FPVs are

quite unstable, stabilization is often necessary for FPVs to them watchable. However,

motion stability is only one aspect of the stabilized video quality, the perceptual

blurriness should also be considered. The stabilized video is perceptually more blurry

than its original for two reasons. First, the stabilization process applies geometric

transformations into frames that introduce spatially-varying blur. The second more

important reason is that the motion masking effect on blurriness is reduced when

motion decreases. The amount of perceive blurriness becomes smaller as motion

increases has been studied and explained in [25–27]. Therefore, the quality assessment

of the increased visual blurriness is an important evaluation for a stabilized FPV.

1.2 Validation of Proposed Quality Assessment Methods

Subjective image or video assessment is the common gauge for measuring video

quality. The gathered subjective quality data can be used to validate newly proposed

QEs [28–30] or help design new QEs [7,31].

Subjective quality assessment is defined to measure the image or video quality

through the observation from human observer since human visual system (HVS) is

the receiver for any visual stimuli. To gather the subjective assessment data, the
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design and implementation of subjective test is critical. The test generally requires

the human observer to compare or rate the perceived quality of images or videos

according to specific criteria.

The validation of proposed image and video QEs uses systematically designed sub-

jective test to gather subjective quality assessment data. The design of a subjective

test has four steps:

1. Establish the test goal:

The subjective data can be successfully gathered and used for validation of effec-

tiveness of QEs in its design scenario.

2. Create test images or videos:

The creation process follows two design principles: (1) human observers should

be able to perceive the differences between images or videos, (2) extraneous qual-

ity factors that are not assessed should be equal. For example, assuming video

blurriness is to be assessed, the test videos should avoid content with exposure,

color or compression artifacts. Then, to obtain the test videos, we can either in-

tentionally record or synthetically create the video based on the type of artifact to

be evaluated, and then we can maintain those extraneous factors to have imper-

ceivable differences. Therefore, to validate a video blurriness metric, test videos

should have few motion differences to avoid the case that the observer judges the

blurriness from motion information.

Most existing subjective tests [32–34] explored quality degradations starting from

a reference that is considered to be distortion-free. By synthetically adding distor-

tions to the reference with different levels of severity, a series of distorted images or

videos of the same content but different amounts of degradations are created. Since

subjective data if distortions existed in FPVs have not been specifically gathered

in existing image and video subjective quality databases, we should design meth-

ods to synthetically create these distortions and gather desired subjective data for

the validation of any proposed FPV quality assessment method.
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The synthetic method of quality degradations in FPVs are not well developed.

Motion blur, tilt, rolling shutter, exposure distortions are not often considered in

existing image or video datasets. Besides, the motion differences between FPVs

and existing video datasets of broadcast videos are very large. The first step to

gather subjective data for FPV cases is to define the distortion type and design

the synthesis method to independently add the type of distortion.

FPVs contain geometric distortions and large motion that sometimes we are not

able independently add one type of distortions while keep all other influencing

factors to be zero. The construction of different amounts of geometric distortions

is to keep the same content in the image center to maintain a consistent focus of

attention. For motion influence, we need to systematically design the test that

avoid the comparison between motion while our goal is compare other distortions.

3. Gather subjective data:

The standard methods and procedures to gather subjective data are described in

ITU recommendations [35, 36]. Several representative methods for subjective test

are described:

(a) Single stimulus method: One test stimulus is shown to the observer each time.

The observer needs to rate the perceived quality of the test stimulus based

on the provided criteria which includes the attributes of the test stimulus to

be considered and the scale type (continuous or categorical).

(b) Double stimulus method: A reference stimulus and test stimulus are shown

to the observer at the same time or in sequence. The observer needs to rate

the test stimulus by comparing with the reference stimulus based on provided

criteria. The reference is typically considered to be the maximum quality in

the provided scale.

(c) Paired comparison method: A pair of test stimulus are shown to the observer

simultaneously or one after another. The observer needs to judge which

stimulus have better quality, sometimes a tie option is also provided.
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Note that Paired comparison method is our priority, since the data it gathered

avoids the internal variability between human observers when using absolute rating

values and the comparison is an easier question so that the results are more reliable.

4. Subjective Data analysis: The gathered subjective data needs to be transformed

into subjective quality, and then can be used to evaluate the performance of QEs.

The typical methods to for data analysis are as follows:

(a) Single Stimulus Method and Double Stimulus Method: the mean of the gath-

ered subjective image quality ratings from human observers are used as sub-

jective quality scores, called Mean Opinion Scores (MOS) or Differential Mean

Opinion Scores (DMOS). The DMOS refers to the differential subjective rat-

ings, computed as the difference between the reference stimulus and the test

stimulus. To deal with the potential variability between the absolute values

of human observers’ ratings, the typical way is to normalize the scales across

ratings from different observers by applying a transform under the assump-

tion that observers share the same mean and standard deviation during their

evaluation.

(b) Paired comparison method: The results of a paired comparison test is a

winning frequency matrix representing the frequencies that which is preferred

against another. The typical models to transform winning frequency matrix

into continuous quality scale are Thrustone and Bradley-Terry models [37].

In this thesis, we design target-specific subjective tests to evaluate individual

distortions including motion blur, tilt, rolling shutter artifacts, over-enhancement

distortions in images or videos. By gathering the target subjective data, our pro-

posed image or video quality estimators are demonstrated their effectiveness in their

application scenarios.
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1.3 Contributions and Outline

In order to solve the image and video quality problems discussed in Section 1.1,

we separately design three quality assessment framework to deal with the following

three quality problems.

1. To evaluate video frame artifacts, we introduce a new strategy for image quality

estimation, called mutual reference (MR), which uses the information provided

by overlapping content to estimate the image quality. The MR strategy is ap-

plied to FPVs by partitioning temporally nearby frames with similar content

into sets, and estimating their visual quality using their mutual information.

We then propose a mutual reference QE, Local Visual Information (LVI), that

primarily measures the relative blur between two images. LVI is effective for

comparing two images that have similar scales and are not too blurry. LVI is

designed with several properties. First, LVI primarily measures blur, and is

insensitive to shear and rotation. Second, LVI outperforms existing NR QEs

at measuring the quality of actual frames in FPVs. Third, LVI has acceptable

performance in measuring some additional distortions, such as contrast change.

Also, we propose a frame-quality assessment framework and demonstrate the

framework is very effective to estimate the quality of individual frames with sim-

ilar content in FPVs. In addition, we also compare the statistics of distortions

between FPVs and traditional videos, and implement a systematic subjective

test to study geometric distortions existed in frames of FPVs.

2. To alleviate exposure distortions, we propose a controllable illumination en-

hancement method that adjusts the amount of enhancement with a single pa-

rameter. Our single parameter has a concave relationship with image quality.

In our method, we model under-exposure and over-exposure differently to assign

under-exposed and over-exposed probabilities for each pixel. We then design a

system that applies logarithmic mapping in the identified under-exposed pixels

with boundary-artifact compensation. Our mapping uses the assigned under-
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exposed probabilities, the artifact compensation weights and the single adjust-

ment parameter together to calculate mapping coefficients. We also propose an

over-enhancement measure, Lightness Order Measure (LOM) to quantify the

unnaturalness in the enhanced image. We consider the unnaturalness to be re-

lated to the inversion of relative lightness order between neighboring pixels, and

which is influenced by both the proportion of inversions and the inversion mag-

nitude. Since the visual quality is an inverted U-shape function of the amount

of enhancement, our design is to control the amount of enhancement so that

the image is enhanced to the peak visual quality.

3. To estimate the increased blurriness after stabilization, we propose a visibility-

inspired temporal pooling (VTP) mechanism. The mechanism uses weighted

average pooling strategy to combine frame quality scores to a video quality

score, in which the pooling weight is computed as a function of visibility. We

propose a visibility measure that estimates the perceived content under any

magnitude of motion based on the window of visibility [25, 38]. The function

that transforms the estimated visibility into the pooling weight for each frame

is measured by a systematically designed subjective test that uses videos with

temporally shifted blur but temporally similar visibility. The VTP mechanism

can be effectively applied to measure the relative perceived blurriness between

the stabilized video and its original version. In the validation experiments, we

design a synthesis method for shaky videos that allows a controllable motion

being injected into the test videos.

The rest of this thesis is organized as follows. Chapter 2 discusses the frame

quality assessment solutions for FPVs including QE design, application framework in

FPVs and subjective test of blur and geometric distortions. Chapter 3 presents the

controllable illumination enhancement framework with an over-enhancement mea-

sure. Chapter 4 describes the visibility-inspired temporal pooling mechanism and

two validation subjective test, one for the mechanism, another for the application in
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video stabilization. Chapter 5 summarizes the work in this thesis and discusses future

works.
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2. IMAGE QUALITY ASSESSMENT FOR

FIRST-PERSON VIDEOS

2.1 Introduction

First-person videos (FPVs) captured by wearable cameras are becoming a widely

spread type of videos that can share experiences and document activities without

length limitation and specific structure. Numerous applications of FPVs have emerged

using object tracking, activity recognition, video summarization and retrieval [1]. Re-

cently, research topics related to the viewing experience and the visual quality of FPVs

have been also proposed, involving First-Person motion measuring and improving [39]

and visual quality assessment [6, 7].

Because of the capture process of FPVs, quality degradations are not limited

to transmission or post-processing, and the resulting distortions in frames have not

been subjectively evaluated. Motion blur and geometric distortions are two major

distortions in FPVs [6]. Motion blur mainly arises from fast motion of the camera.

While the camera keeps changing its positions in the scan time of one frame, the

scene captured is blurred. Geometric distortions can be classified into 3 categories:

rotation, shear and fisheye. Rotation results from head or body rotation. Wearers

regularly move their bodies and shake their heads, and rarely are aware whether or

not the camera is kept horizontal while recording videos. Shear is caused by camera

panning. When the camera changes its positions in the scan time of one frame, the

top rows of the frame are not vertically align with the bottom rows. For example,

architecture in a sheared image is visually skewed. Fisheye images are captured by

wearable cameras with ultra wide-angle lens (i.e. Gopro, Looxie Camera, Mobius).

Instead of capturing a rectilinear image, the content appears to be convex. Fisheye



16

is one of the lens distortions, called barrel transformation. The transformation warps

the image to be bent; the magnification decreases from center to margins [11].

To evaluate the quality of individual frames in FPVs, it is typical to apply image

quality estimators (IQEs). Existing IQEs are normally classified into three types:

full-reference (FR), reduced-reference (RR) and no-reference (NR) methods. FR and

RR methods [12, 13, 40, 41] need a high-quality corresponding reference image that

is the source of the distorted image to be evaluated. These types of IQEs are not

applicable for assessing frames in a FPV, because no reference image exists. Moreover,

since the image might already be degraded, the results of FR and RR methods will

not meaningfully reflect any additionally introduced degradations. In contrast, NR

methods estimate the quality of a single image without relying on any reference [42].

However, most existing NR methods are content dependent [19–21, 43]. As a result,

it is often difficult to interpret the output of a NR method [44]. For example, setting

a quality threshold in a system is challenging; all five NR QEs considered in [44] are

unable to consistently partition high-quality images from heavily degraded images.

In addition, these IQEs are rarely evaluated on the types of degradations present in

individual frames of an FPV [7].

In this work, we propose a new strategy of quality estimation, called mutual

reference (MR) [45,46], which does not fit into the previous categorization of FR, RR

or NR methods. A MR QE estimates the quality of a test image based on one or

more pseudo-reference image. Unlike FR and RR QEs, perfect pixel alignment is not

necessary; instead the pseudo-reference image and the test image are constrained only

to have sufficient overlapping content. For example, the pseudo-reference could be

a high-quality image captured by a stably-mounted camera from one viewpoint, and

test images can capture the same scene from different points of view using a moving

camera. Another example is a group of temporally-adjacent video frames, where one

or more frames can be a pseudo-reference for the remaining frames.

Section 2.2 describes prior works in FR QEs and NR QEs, and discusses related

works about subjective test. Section 2.3 presents a detailed description of the strat-
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egy for MR. Our proposed MR QE, LVI, is described with its basic principle and

reliability check in 2.4. Our MRFQAFPV is described in Section 2.5. The framework

has three steps: temporal partitioning, reference search and quality estimation. In

Section 2.6, we demonstrate our framework is effective at assessing quality of individ-

ual frames in FPVs, and outperforms existing NR QEs in this context. Our results

include demonstrating temporal partitioning methods, as well as two subjective tests

that include synthetic distortions and real frames captured from FPVs. Section 2.7

propose a distortion classification method to classify frames in FPVs, and compare

the distortion statistics between FPVs and traditional videos. Section 2.8 implements

a systematic subjective test for motion blur, tilt (rotation), rolling shutter artifacts

and fisheye. LVI and existing NR QEs can be generalized to measure images with

both blur and geometric distortions. Section 2.9 summarizes this paper and discusses

future work.

2.2 Related Works

2.2.1 Image Quality Estimator

Existing image quality estimators (QE) can be classified into full-reference (FR),

reduced-reference (RR) and no-reference (NR) methods. FR QEs and RR QEs esti-

mate a distorted image using its corresponding “pristine” reference image. “Pristine”

reference image is considered to be an unimpaired source image, and the distorted

image is pixel aligned with the reference. In comparison, FR QEs use the whole refer-

ence image itself, while RR QEs use some supporting information from the reference

image. NR QEs evaluate the distorted image without relying on any reference.

FR QEs and RR QEs have both the distortion image and the reference image

to be the inputs. These QEs often measure how the distorted image is similar to

the original image. The distorted image is considered to have better quality if it is

more similar to its reference. The Mean Square Error (MSE) is the most widely used

mathematical tool. By computing the value differences between every corresponding
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pixel from both images, the MSE can clearly show the pixel differences. Peak Signal

to Noise Ratio (PSNR) is derived from MSE value and PSNR is a commonly used

FR QE. However, MSE and PSNR do not accurately predict perceived image quality,

since they have not considered human visual system (HVS) [47].

Existing FR QEs and RR QEs can be categorized by whether they apply models

of the human visual system, image structure, or image statistics [48]. Two common

QEs are the Structural Similarity Index (SSIM) [12], which is based on structure, and

Visual Information Fidelity (VIF) [15], which is based on statistics. SSIM computes

means and variances of each image, applies a similarity measure to each,

S(x, y) =
2fxfy
f 2
x + f 2

y

, (2.1)

and combines these with a correlation term to quantify distortions in the luminance

and contrast. In Equation (2.1), x is the reference image and y is the test image, and

fx and fy are extracted features from x and y, respectively. The same quality score

will be unchanged if we swap the order and instead consider the distorted image

to be the reference x. This type of symmetry does not allow SSIM to be used to

determine which image has better quality. In addition to SSIM, Feature Similarity

(FSIM) [13], Gradient Magnitude Similarity (GSM) [49] and Spectral Residual based

Similarity (SR-SIM) [50] employ the same similarity measure in Equation (2.1) using

other features. Therefore, these QEs also are incapable of determining whether a

test image is better than its reference image. While, some other QEs, for example,

VSNR [14] and MAD [33], use a non-symmetric structure to compute quality scores,

reversing the order of the reference image and the test image still does not lead to a

meaningful comparison.

NR QEs use the distorted image itself as the only input. One specific subset

of NR QEs are NR blur metrics, which were summarized in [42, 51]. One uses the

histogram of DCT coefficients [52]. Edge-based blur QEs have also been proposed and

comprise the majority of blur QEs: [53, 54], JNBM [51], CPBD [18]. Non-edge blur

metrics using the discrimination between re-blurred versions of an image [17,55] and

local phase coherence [56] were also proposed. However, blur estimation developed
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from these strategies depends heavily on the image content. If we have two images

that share only a portion of their content, then because blur metrics may show very

different behaviors in their non-common areas, the overall blur scores of the two

images cannot accurately reflect their visual difference. NR QEs may also be based on

statistics. Specifically, BRISQUE [19], NIQE [20], and IL-NIQE [21] all use natural

scene statistics (NSS) to compute quality. These QEs are still content-dependent,

and do not often have bounded range of their quality scores. Moreover, they are less

effective when applied to images that differ in spatial resolution from the images that

were used to train them [44].

In [44], the question is considered of whether a QE can distinguish between badly

degraded images and relatively undistorted images. Their results indicate that it is

challenging for NR QEs. In particular, there exists a large overlap between the

histograms of the quality scores for undistorted and badly degraded images using

BRISQUE, NIQE and IL-NIQE. In addition, our results in Section 2.6 demonstrate

that the state-of-the-art NR QEs are source-dependent, and our proposed method in

Section 2.3 significantly reduces the source dependency when estimating the quality

of First-Person images.

Geometric distortions have not been received much attention, since traditional

videos rarely have issues regarding a large amount of tilt or rolling shutter artifacts.

Existing metrics that consider the influence of geometric distortions mainly employ

two approaches. The first approach is based on the measure of displacement field

[57,58]. An improvement of this approach was proposed in [59] by considering human

visual properties. Another approach can be described as the modified versions of SSIM

that is robust to minor geometric changes [60,61]. One example is the transformation-

aware metric [62]. It uses homography estimation to add the influence of geometric

transformation to SSIM.
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2.2.2 Subjective Test

Most existing subjective tests [32–34] explored quality degradations starting from

an undistorted image, which is considered to be the reference image. By synthetically

adding distortions (i.e. Gaussian blur, JPEG, JPEG 2000, noise) to the reference

image with different degradation levels, a series of distorted images of the same content

but different severity is created. To design a subjective test for FPVs, however,

applying each type of distortions separately fails to consider two issues:

1. Actual images captured by a camera may be subtly different than those created

synthetically using a model [63]. In our test, images with real, synthetic or real plus

synthetic distortions are evaluated. The real images are extracted from frames in

FPVs.

2. Many blurry images are subject to geometric distortions (i.e. rotation, shear

or fisheye) simultaneously in FPVs. The question is what the visual impact is on the

overall quality when one image has multiple distortions. Multiply-distorted images

have been evaluated in the subjective test, but only for blur, JPEG and noise [64].

However, these distortions all have pixel-to-pixel correspondence, whereas geometric

distortions do not. Therefore, when constructing images for the subjective test for

different amounts of geometric distortions, we keep the same content in the image

center to maintain a consistent focus of attention.

2.3 Mutual Reference

Mutual reference (MR) is a strategy of image quality estimation whose basic idea

is to use a collection of “similar enough” images that can provide each other with

effective information for quality assessment.

To define ”similar enough”, we introduce the concept of a near-set, which is a

group of images that share common content. One example is a group of images

captured from nearby locations. In addition, images in the near-set do not need to

have the same spatial resolution. For example, [65] considers the quality estimation
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for downsampled images, while [66] considers the quality of image super-resolution

techniques.

Within the MR strategy, there are two approaches: pairwise and group-based

measures. The pairwise approach uses a single pseudo-reference image to estimate

the quality of a test image. The pseudo-reference does not need to be pixel aligned

with the test image, but can be classified into the same near-set as the test image.

Typically, the pseudo-reference image needs to be the best image in an identified

near-set. One way of creating a MR QE using the pairwise measure is that the QE

is able to distinguish which of two images is better. Such a MR QE can identify the

pseudo-reference by pairwise comparison in a near-set. One example is the MR QE,

Local Visual Information (LVI), described in Section 3.

The group measure approach for MR QE estimates the quality of an image using

more than one pseudo-reference. One example is the quality assessment of image

fusion, for which the goal is to integrate complementary information from a group of

images into a new image, in order to obtain more complete and useful information

for image-processing tasks [67]. To evaluate the quality of a fused image, all source

images are used as references [68, 69]. The near-set consists of all source images and

the fused image.

MR provides a relative quality estimation, which allows quality degradations to

be present in all images in the near-set. The best image in a near-set does not

necessarily need to be a high-quality image. Also, a new image can easily be added

into an existing near-set. If the added image has better quality than all other images

in the near-set, the new image can be set to be the pseudo-reference.

MR methods do not fit into the typical categorization of FR, RR or NR methods.

Specifically, MR uses the effective information from the overlapping regions between

different images. The overlapping area could differ in a geometric transformation or

distortions. As a comparison, FR and RR uses a high-quality reference image that is

also the source of the distorted image to provide information for quality assessment.

NR uses implicit knowledge of distorted image versus high-quality image.
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MR quality assessment has two major application areas. The first application is

quality assessment for image fusion, as discussed above [67–69], and including the

quality metric for exposure fusion techniques [70]. The second application is to assess

images captured either from, or of, nearby locations. For example, in this chapter, we

consider quality assessment of individual frames in a video using temporally nearby

frames. Another example would be to assess the quality of frames in two videos taken

in nearby locations on, say, two different days. The third example is to assess images

considered in [71], which implemented a subjective test using images captured of the

same scene by either different cameras or the same camera with different settings.

2.4 Local Visual Information

In this section, we describe our proposed MR QE, Local Visual Information (LVI)

[6], which primarily measures relative blur between two images.

2.4.1 Basic Principle

LVI is derived from the approach of VIF [15]. VIF quantifies the visual quality

of an image using the mutual information between the test image and its reference.

VIF uses natural scene statistics (NSS) [72] to model the reference image, and uses

the model obtained from the reference plus a distortion channel to model the test

image. First, it decomposes the two images into blocks and sub-bands. Second, it

computes the mutual information between the reference and the test image in each

block and subband using a NSS model. Third, the VIF score is pooled from all blocks

and subbands.

LVI has two major changes. First, instead of computing a global measure of

information in an image, LVI measures patch-based local information. Second, LVI

models the source field of the two input images separately, which enables LVI to

compare the quality of any two images in a near-set. One assumption behind LVI is

that the image has consistent spatial quality.
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Fig. 2.1.: Block diagram of local visual information (LVI) quality estimator

The quality measure LVI has three procedures, shown in Fig. 2.1. The input of

LVI is a pseudo-reference image A and a test image B, where A and B are in the

same near-set. In the first step, LVI computes the pixel relationship between A and B

using feature matching. All matching points are filtered by a ratio test, a symmetric

test and a RANSAC test to remove outliers. A matching patch is defined to be the

square block centered around a matching point in the image. The output of the first

procedure is the locations of all corresponding patches.

The second step measures the effective local visual information between A and

B for all corresponding patches. High-quality images can be described by Gaussian

scale mixtures (GSMs) in the wavelet domain based on natural statistics. LVI approx-

imately models either sharp or blurry images by GSMs, whose shapes are determined

by the statistics of the image content. The effective visual information is quantified

by the amount of mutual information between the input and output images in human

visual system (HVS).

Let the index for each matching image patch be l. Al and Bl are two matching

image patches from A and B, respectively. GSMs describe an image according to

its content, so Al and Bl have different shapes of GSMs in the wavelet domain. We

describe the GSMs of Al and Bl in the pth subband as

Alp = SAlp · UA
lp (2.2)

Blp = SBlp · UB
lp (2.3)

where Slp is a scalar random variable in the pth subband modeling the source field, and

Ulp is a zero mean Gaussian random vector. Alp and Blp are the wavelet coefficients

of the patch in the pth subband for image patch Al and Bl, respectively.
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The HVS model in [15] uses a Gaussian channel to model the uncertainty that

image information flows through it. The model can be expressed as

Clp = Alp + X (2.4)

Dlp = Blp + X ′ (2.5)

where Clp and Dlp are the outputs of Alp and Blp after flowing through the HVS

model, respectively. X and X ′ are Gaussian noise drawn from N (0, σ2
x) to model the

noise from HVS.

The amount of mutual information between input image signals and output image

signals of the HVS can be calculated as

I(Clp;Alp|SAlp) =
1

2

∑
m

log2(1 +
(sAlp)

2λAm
σ2
x

) (2.6)

I(Dlp;Blp|SBlp) =
1

2

∑
n

log2(1 +
(sBlp)

2λBn
σ2
x

) (2.7)

where λ are the eigenvalues of Ulp, and m and n is the indices of eigenvalues. sAlp and

sBlp are the realizations of SAlp and SBlp , respectively.

The third step is to pool the LVI score using the local visual information in all cor-

responding patches. By computing the sum of the information from all corresponding

local regions of A and B, LVI takes the ratio of the total amount of information from

the two images as the output.

QLV I =

∑
l

∑
p I(Dlp;Blp|S = SBlp)∑

l

∑
p I(Clp;Alp|S = SAlp)

(2.8)

The output score of Equation (2.8) represents the quality of B relative to the

pseudo-reference A. If B has worse quality than A, LVI varies from 0 to 1, which

indicates that B has less visual information pooled than A. Otherwise, the LVI score

is larger than 1, which indicates our selected pseudo-reference A is worse than B. The

value of LVI score between two images represents their relative quality, and provides

a quality comparison.



25

Fig. 2.2.: Left: Pseudo-reference. Right: Test image. LVI score = 0.771

Figure 2.2 shows an example of the LVI measure between a pseudo-reference image

and a test image, extracted from a captured FPV. The connected lines are the center of

matching patches. Two corresponding patches are enlarged to display the difference.

2.4.2 Reliability Check

LVI fails to provide an effective quality measure at all cases. To ensure we only

apply LVI in those situations when its score is meaningful, we design a reliability check

to verify that neither of the two known issues are present to reduce the accuracy of

the computed LVI score.

The first known limitation is that LVI cannot measure quality when there are

insufficient feature matching points between the pseudo-reference and the test im-

age. For example, when the test image is heavily blurred, there are very few feature

matching points between the two images.

The second known limitation is that LVI is sensitive to scaling, although it is

insensitive to other affine transformations [6]. This allows LVI to measure quality

degradations almost independently of geometric distortions when the image is sheared

or rotated relative to the pseudo-reference. However, when the two images have

similar quality but have objects in very different sizes or scales, their LVI scores often
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have a large difference. Our reliability check is designed to identify these unreliable

scores.

Within a near-set, we expect the geometric relationship between two images to be

approximately modeled by a homography. This homography can be estimated [62,73]

using matching feature points. Specifically, we apply point-based homography [73]

using the result of the feature matching step in Fig. 2.1. Then by decomposing

the homography matrix MH , as described below, we can independently extract scale

changes both horizontally and vertically.

First, MH is decomposed into the product of an affine transform MA and a pro-

jective transform MP , given by

MH = MAMP =


ua ub uc

va vb vc

0 0 1




1 0 0

0 1 0

wa wb 1

, (2.9)

where wa and wb are projective parameters in MP . The affine matrix MA has six

degrees of freedom corresponding to parameters, ua, ub, uc, va, vb, vc. When wa and

wb are very small, MH is approximated well by MA.

Further, MA is a combination of five independent transformations, translation,

shear, rotation, scaling and aspect ratio. In FPVs, shear and rotation artifacts often

occur in frames from a near-set. Focusing only on horizontal shear and rotation, MA

can be decomposed as

MA = MsMrMkMt =


sx 0 0

0 sy 0

0 0 1




1 ks 0

0 1 0

0 0 1




cos θ − sin θ 0

sin θ cos θ 0

0 0 1




1 0 tx

0 1 ty

0 0 1

,
(2.10)

where Ms, Mk, Mr and Mt are scale, shear, rotation and translation matrices, respec-

tively. sx and sy are scaling factors in horizontal and vertical directions, respectively,

and sx/sy is the aspect ratio. ks is the shear value, θ is the rotation angle, and tx and
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Fig. 2.3.: Framework of quality assessment for First Person Video.

ty are translation distances in horizontal and vertical directions, respectively. Using

the parameters estimated from MA, we can calculate Ms as

Ms =


sx 0 0

0 sy 0

0 0 1

 =


uavb−ubva√

v2a+v
2
b

0 0

0
√
v2a + v2b 0

0 0 1

 (2.11)

When either one of sx and sy exceeds the range bounded between [a, 1
a
], where a is the

threshold experimentally set to be 0.95, the LVI score is considered to be unreliable.

This reliability check ensures that an effective LVI score is calculated between two

images that are neither too blurry nor have significant scale differences. In the next

Section 2.5, we will describe how LVI can be incorporated into a quality assessment

framework for FPVs using the strategy of mutual reference.

2.5 Framework of MR Quality Assessment of FPVs

Our framework of mutual reference frame quality assessment of FPVs (MRFQAFPV)

can be separated into three steps: temporal partitioning, reference search and qual-

ity estimation. Fig. 2.3 shows the block diagram of MRFQAFPV. In the first step,

frames from the input FPV are temporally partitioned into different near-sets. In

the second step, the system searches for one pseudo-reference image in each near-set

using the pairwise approach of MR. In the third step, the LVI quality score of each

frame is calculated based on the identified pseudo-reference.

The temporal partitioning shown in the first block of Fig. 2.3 is designed to

temporally partition frames within different time intervals into near-sets, in which all

images have similar scale. Let k be a near-set index. An initial partitioned near-set
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k is represented as (Bk
1 , B

k
2 ), where Bk

1 is the start frame and Bk
2 is the end frame.

The basic procedure is: (1) Set k = 1, Bk
1 = 1. (2) Boundary Search for Bk

2 starting

from Bk
1 . (3) Set k = k + 1, Bk

1 = Bk
2 + 1, and then go to (2).

Method 1 NFP

1: get the start frame number Bk
1

2: Let n = 1, δ = 20, T = 50

3: do feature matching between Bk
1 and Bk

1 + 10

4: if the number of matching points < T then

5: set Bk
2 = Bk

1 , break

6: else

7: do feature matching between Bk
1 and Bk

1 +n ·δ, store the number of matching points

after RANSAC as N

8: if N < T and n = 1 then

9: do binary search from Bk
1 + 10 to Bk

1 + 20 using the same decision rule N < T ,

break when the search interval ≤ 1, and set Bk
2 to be start frame of the search interval

10: else if N < T and and n > 1 then

11: do binary search from Bk
1 + 10 to Bk

1 + 20 sing the same decision rule N < T

12: else

13: set T = max(N2 , T ) and n = n+ 1, goto 3

14: end if

15: end if

For Boundary Search in the basic procedure, we introduce two different methods,

as shown in Method 1 and Method 2. Method 1 is based on the number of feature

matching points between frames, denoted by NFP. Method 2 is based on the fea-

ture matching area between frames, denoted by FMA. Both methods rely on feature

matching, during which we incorporate the scale check detailed in Section 2.4.2 to

guarantee that we have reliable LVI measures in the following steps. Note that the

parameter δ is empirically set to be 20, since we often have near-sets from 20 to 40

frames. If we increase or decrease δ, the near-set length is similar. The threshold for
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Method 2 FMA

1: get the start frame number Bk
1

2: do feature matching between Bk
1 and Bk

1 + 10, and store the locations of all matching

points by a bounding box S10

3: Let n = 1, δ = 20

4: do feature matching between Bk
1 and Bk

1 + n · δ, get the bounding box Sn·δ

5: if |S10 ∩ Sn·δ| < 1
4 |S10| then

6: do binary search between Bk
1 +(n−1) · δ and Bk

1 +n · δ using the same decision rule,

break when the search interval ≤ 1 and set Bk
2 to be start frame of the search interval

7: else

8: set n = n+ 1, goto 4

9: if Bk
2 −Bk

1 < 10 then

10: set Bk
2 = Bk

1

11: end if

12: end if

the number of matching points T is set to be 50. If we increase T , it will introduce

more uncategorized frames. If we decrease T , the percentage of unreliable matching

points increases significantly. We empirically set the minimum length of a partitioned

near-set to be 10 frames. If the partitioning does not satisfy the length constraint,

the current Bk
1 is considered to be an uncategorized frame, and we repeat the basic

procedure with Bk
1 = Bk

1 + 1.

The reference search in the second block of Fig. 2.3 finds the pseudo-reference

image in each near-set iteratively. Let Rk be the pseudo-reference in the kth near-set.

Initially, let Rk = Bk
1 , and use it as the initial pseudo-reference in the kth near-set.

Then, we calculate the LVI scores from Bk
1 + 1 to Bk

2 using the current Rk. Those

frames with better quality than the current Rk have LVI scores larger than 1. We

reset the frame with the largest LVI score in the kth near-set to be our new Rk. A

typical output of the kth near-set is (Bk
1 , B

k
2 , Rk).
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The quality estimation in the third block of Fig. 2.3 calculates the frame quality

score. The input is the representation of the kth near-set, (Bk
1 , B

k
2 , R

k). Let k(n) be the

nth frame in the kth near-set. The quality estimation uses Rk as the pseudo-reference

to measure the quality of all remaining frames in the kth near-set, and stores the LVI

score as Qk(n)

LV I , the quality measure for frame k(n).

2.6 Experiments and Results

In this section, we present experimental results of applying our LVI and MR-

FQAFPV to First-Person Videos captured from a Pivothead camera at 1080p30.

Our experiments explore two aspects: design considerations, and evaluating the per-

formance for quality assessment. For the first, we explore six design choices for the

temporal partitioning step in MRFQAFPV shown in Figure 2.3, and two feature de-

tectors for the first step of LVI shown in Figure 2.1. For the second, we explore perfor-

mance of our methods using both synthetically injected distortions as well as images

taken from actual FPV containing real, so-called authentic, distortions. In addition,

we explore performance of quality assessment not only using objective comparisons,

but also using two subjective tests. The first demonstrates that MRFQAFPV pro-

vides an effective quality assessment for individual frames in FPVs, while the second

shows that not only does LVI outperform existing NR QEs, but both LVI and other

existing QEs that are insensitive to geometric distortions can be generalized to better

estimate overall frame quality in FPVs. Finally, by applying LVI to images from the

typical image quality databases [33,34,74], we demonstrate that LVI is also effective

to assess the quality for some distortions that are not typically present in FPVs.

2.6.1 Implementation Design Comparisons

In this section, we explore the performance of several design options for both LVI

and MRFQAFPV. Specifically, we compare and select the FMA method with affine

estimation as the scale check to be our temporal partitioning method in MRFQAFPV.
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Also, we show SIFT and ORB have similar performance in LVI and MRFQAFPV, so

ORB is a better design choice because it is less time-consuming.

Temporal partitioning: We compare six approaches to form near-sets for the tem-

poral partitioning step in Figure2.3. Section 2.5 presents two methods, NFP and

FMA. In addition, the scale check detailed in 2.4.2 incorporated in NFP or FMA can

be implemented using either affine or homography estimation. Thus, our experiments

compare four proposed methods: NFP+affine, NFP+homography, FMA+affine and

FMA+homography. In addition to these four methods, two baseline methods are

introduced. One baseline method uses a fixed time interval (30 frames) to separate

frames into each near-set. Another baseline method partitions using displacements

computed by optical flow as in [75], such that each partitioned interval has a cumu-

lative displacement of 10% of a frame width. Note that the shot boundary detection

method [76] is not effective to segment FPVs, because it typically classifies the entire

video into only one shot.

A good partitioning for a near-set has three criteria:

1. The length of the near-set is long enough so that most frames captured in the

same scene are included.

2. Frames with a useless LVI are rare in the entire FPV. Three types of frames

are considered to have useless LVI: uncategorized frames, frames that failed the

reliability check, and frames with LVI score greater than 1.

3. The shared content between two frames in different temporally adjacent near-

sets is small. We estimate the degree of overlap between any two frames by

counting the number of matching points.

Figure 2.7 presents the performance of the six methods using these three criteria.

The first and second criteria are demonstrated by the average length of the near-

set and the percentage of useless LVI, as shown in Figure 2.7(a) and Figure 2.7(b),

respectively. The third criterion is demonstrated with two values, the average number
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of matching points between pseudo-references and between start frames in temporally

adjacent near-sets, as shown in Figure 2.7(c) and Figure 2.7(d). The video indexes

represent videos with different content. Outdoor videos are indexed from 0 to 2,

indoor videos are indexed from 3 to 7, and 8, 9 are in-vehicle videos. Sample frames

for each video are shown in Figure 2.4, and frames in two partitioned near-sets are

shown in Figure 2.6. The test dataset is available at [77].

The first baseline method, fixed interval, has the shortest near-set length and

third least percentage of useless LVI. The second baseline method, optical flow, has

the longest average near-set length, but the highest percentage of useless LVI. Ac-

tually, compared to all methods, FMA+affine method shows the best performance

among the six methods; it has the second longest near-set length, the least percentage

of useless LVI, and the least or the second least number of matching points either for

pseudo-references or for start frames in all videos. The effectiveness of the other three

methods can be successively ordered as follows: NFP+affine, FMA+homography,

NFP+homography. According to the results, FMA creates a better partitioning than

NFP. Affine estimation outperforms homography estimation using the same partition-

ing method according to the percentage of useless LVI, so the former is more effective

at estimating scale change than the latter. Given the performance comparison, we

use the FMA+affine, the best among the six methods, as our temporal partitioning

method in MRFQAFPV in the following sections.

Feature detector: Next, we explore the performance of LVI using two different

feature detectors for step 1 of Figure 2.1. Specifically, we compare the quality scores

of LVI using SIFT [78] (SIFT-LVI) and using ORB [79] (ORB-LVI). Their results

are similar in most images, but there are large difference in a few pairs of images.

We apply MRFQAFPV as in Section 2.5 by incorporating either SIFT and ORB as

the feature matching detector. Figure Figure 2.8(a) and (b) shows scatter plots of

the LVI scores for MRFQAFPV-SIFT versus MRFQAFPV-ORB from outdoor and

indoor videos, with average mean square error (MSE) 0.03 and 0.05, respectively.
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(0) (1) (2)

(3) (4) (5)

(6) (7) (8)

(9)

Fig. 2.4.: Sample test images: (0) basketball (1) run (2) walk (3) billiards (4) cat (5)

eat (6) ping pong (7) talk (8) car (9) flight

Note that we do not consider those frames that have too few matching points using

either SIFT or ORB.

In addition, we also apply SIFT-LVI and ORB-LVI on three image-quality datasets:

LIVE image quality database [74], CSIQ [33], and TID2013 [34]. The MSE between

all calculated quality scores of SIFT-LVI and ORB-LVI are 0.156, 0.049 and 0.071,

respectively. The advantage of using ORB instead of SIFT is that ORB is computa-
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Fig. 2.5.: Sample partitioned near-set 1

tionally much faster than SIFT [79]. Given the small performance differences between

using SIFT and ORB, we choose ORB as a more computationally efficient feature

detector in LVI and MRFQAFPV.

2.6.2 Performance Evaluation

In this section, we explore performance of our methods using both synthetically in-

jected distortions as well as images taken from actual FPV containing real distortions.
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Fig. 2.6.: Sample partitioned near-set 2

We begin by with objective comparisons on images with synthetically-generated dis-

tortions to show that LVI is effective at measuring blur, but insensitive to geometric

distortions, including shear and rotation. Next, we present results of a subjective

test using images extracted from FPVs, which demonstrate that MRFQAFPV out-

performs existing NR QEs for quality assessment of individual frames with “similar

enough” content in FPVs. Finally, we apply LVI to subjective data with distortions
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Fig. 2.7.: The performance of six temporal partitioning methods in 10 FPVs: (a)

criteria 1: the average length of near-sets (b) criteria 2: the percentage of useless LVI

(c) criteria 3: the average number of matching points between pseudo-references in

temporally adjacent near-sets (d) criteria 3: the average number of matching points

between start frames in temporally adjacent near-sets

other than those in FPVs [33,34,74], to demonstrate that LVI is able to characterize

quality of some of these distortions as well.

Synthetic distortions: LVI is sensitive to motion blur, but insensitive to affine

transformation. To demonstrate this, we introduce synthetic distortions including

motion blur, shear and rotation into 13 manually-selected high-quality FPV frames

with different content [6]. We apply different 1-D box filters with lengths 1 to 30 to

simulate different amounts of motion blur. The LVI scores of all test images decreases

significantly, from 1 to an average of 0.461 as the blur increases. Synthetic shear

and rotation are also created using an affine transformation. For these geometric
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Fig. 2.8.: The distribution of MRFQAFPV-SIFT versus MRFQAFPV-ORB: (a) out-

door content (b) indoor content

distortions, LVI decreases to no less than 0.947 when the shear difference increases

from 0 to 0.4, and decreases to no less than 0.965 when the rotation increases from

0° to 90°.

Subjective test for MRFQAFPV: Next, we implemented a subjective test to

evaluate the performance of a quality measure within the MRFQAFPV framework.

The goal of this test is to evaluate the effectiveness of MRFQAFPV to characterize

frame quality within an identified near-set.

The test material are frames selected from the 10 videos tested in Section 2.6.1,

and all images are rescaled to 1280×720 both for computing in MRFQAFPV and for

presentation to viewers in the test. The selection procedure of frames from one FPV

has three steps, with the goal to find five images that have similar content but distinct

quality. First, we identify all near-sets that have frames with LVI scores located in

[0, 9, 1), [0, 8, 0.9), [0.7, 0.8), [0.6, 0.7), respectively. Second, we choose the near-set X

with the most frames among all near-sets found in the first step. Third, we choose

the pseudo-reference frame and four frames with LVI score closest to each of 0.95,

0.85, 0.75 and 0.65 in X . In total, we have 10 test groups, each with five test images.

The test methodology is paired comparison. In each of the 10 test groups, we

implement full paired comparisons for all five frames. The platform of this test

is Amazon Mechanical Turk. The number of participants is 30 with no record of
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gender. The instruction presented before each test is as follows: In the test, there

will be some pairs of images for you to compare, and please select the image with

better technical quality in each pair. The technical quality mainly refers to

blur, noise and compression artifacts, and does not include composition.

For each pair of images, you can view both images back and forth to a maximum of

five times and then make your decision anyway. Any accepted answer is not allowed

to have at more than one circular triad [80], defined as a situation that I1 > I2, I2 > I3

and I3 > I1, where I1, I2, I3 are three different images, and “>” means “better”.

The subjective score of each image is calculated based on the Bradley-Terry Model

[37]. We apply LVI and five NR QEs, NIQE [20], IL-NIQE [21], a perceptual blur

metric (Blurriness) [55], JNBM [51] and CPBD [18] to all test images. Table 2.1

shows the PLCC and SROCC between subjective scores with LVI and the five NR

QEs. LVI shows the best performance in five near-sets, “basketball”, “walk”, “eat”,

“ping pong”, and “flight”, with PLCC greater than 0.9. The PLCC is relatively low

in four near-sets, “run”, “billiards”, “talk” and “car” with PLCC less than 0.8. In

terms of the overall performance of the five NR QEs, the best is outdoor videos, next

is indoor videos, the worst is in-vehicle videos. Among the five NR QEs, blurriness

and JNBM show better performance than the other three QEs. LVI outperforms the

five NR QEs in six near-sets, and shows intermediate performance in the other four

near-sets.

Discussion: Content influences all tested QEs; however, LVI is less influenced by

content than the other five QEs. All QEs have somewhat inconsistent performance

across different contents. This content dependency is apparent from the fact that the

PLCC has large variations when evaluating the ten near-sets. Compared to the five

NR QEs, LVI shows more consistent performance indicating a reduction in content-

dependency.

In addition, there are three challenging contents for all the QEs: “talk”, “car” and

“run” . First, the set of “talk” is captured in a small room with apparent geometric

distortions. LVI shows the best performance among all QEs with PLCC 0.72. Second,
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Table 2.1.: PLCC(SROCC) of LVI and five NR QEs with subjective scores

video

type

video

name

LVI NIQE IL-NIQE Blurriness JNBM CPBD

outdoor basketball 0.9936(1.0) 0.9351(1.0) 0.8846(0.7) 0.9862(1.0) 0.9814(1.0) 0.9385(1.0)

run 0.7096(0.5) 0.4899(0.2) 0.4392(0.1) 0.9933(1.0) 0.9739(1.0) 0.9430(0.9)

walk 0.9052(0.9) 0.7547(0.7) 0.1326(0.3) 0.9398(1.0) 0.9721(0.9) 0.8881(0.7)

indoor billiards 0.7468(0.7) 0.5513(0.7) 0.5523(0.1) 0.7834(0.7) 0.8377(0.7) 0.7063(0.7)

cat 0.8823(0.9) 0.8142(0.8) 0.8150(0.6) 0.8396(0.9) 0.8202(0.7) 0.5610(0.4)

eat 0.9265(0.9) 0.9911(0.9) 0.9253(0.9) 0.9732(0.9) 0.8162(0.9) 0.8242(0.8)

ping pong 0.9735(1.0) 0.7010(0.7) 0.6255(0.6) 0.9014(0.8) 0.9095(1.0) 0.8331(0.8)

talk 0.7247(0.7) 0.6045(0.6) 0.6408(0.6) 0.3901(0.6) 0.5937(0.7) 0.5023(0.7)

in-vehicle car 0.6765(0.7) 0.2105(0.3) 0.2865(0.1) 0.5501(0.4) 0.4644(0.4) 0.1801(0.3)

flight 0.9527(0.9) 0.7019(0.7) 0.2869(0.3) 0.7718(0.9) 0.9449(0.9) 0.7263(0.9)

the set of “car” is difficult for most participants to distinguish quality variations in

the subjective test. Third, there exists spatially inconsistent motion blur in the set

of “run” that significantly influences the LVI measure.

Scenarios other than FPVs: LVI is effective at measuring distortions other than

blur in FPVs; however, LVI cannot be used to measure distortions caused by any

type of noise. We apply LVI to three image databases designed for evaluating IQEs,

LIVE [74], CSIQ [33] and TID2013 [34]. Note that the images in these databases

only contain synthetically created distortions, and are in perfect pixel alignment. We

use Spearman correlation coefficients (SROCC) to compare the performance of LVI

with 5 FR methods: SSIM [12], VIF [15], FSIM [13], VSNR [14] and SR-SIM [50].

Table 2.2 lists some distortions that LVI can measure in the three image databases.

The results indicate that LVI demonstrates acceptable performance in the scenarios

shown in Table 2.2, despite the fact that it has not been designed for those cases.

Note that LVI works much better for JPEG2000 than JPEG. The reason is that JPEG
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Table 2.2.: SROCC of LVI and five FR QEs for the LIVE, CSIQ and TID2013 image

databases

database name distortion type LVI SSIM VIF FSIM VSNR SR-SIM

Gaussian blur 0.9651 0.9516 0.9728 0.9707 0.9413 0.9660

LIVE JPEG 0.8291 0.9764 0.9849 0.9834 0.9656 0.9822

JPEG2000 0.9427 0.9614 0.9716 0.9716 0.9551 0.9701

Fastfading 0.9176 0.9556 0.9650 0.9499 0.9027 0.9467

Gaussian blur 0.9630 0.9609 0.9745 0.9729 0.9446 0.9768

CSIQ JPEG 0.7466 0.9553 0.9705 0.9654 0.9174 0.9668

JPEG2000 0.9371 0.9605 0.9672 0.9686 0.9486 0.9774

Contrast 0.9404 0.7924 0.9347 0.9421 0.8720 0.9530

Gaussian blur 0.9430 0.9633 0.9649 0.9569 0.9526 0.9619

JPEG 0.8211 0.9111 0.9191 0.9303 0.9037 0.9377

TID2013 JPEG2000 0.9265 0.9010 0.9516 0.9584 0.9270 0.9675

Image denoising 0.8727 0.9101 0.8912 0.9313 0.9116 0.9401

Contrast change 0.8519 0.4551 0.8386 0.4718 0.3514 0.4704

introduces block boundary effects in the matching patches used in the LVI measure.

The block boundaries have the potential to increase the information measure in a

single patch. In addition, in [15], the results also show that VIF performs better in

JPEG2000 than JPEG.

2.7 Video Statistics

In this section, we classify different distortions in FPVs. It separates distortion

classification into blur measurement and geometric measurement. Blur measurement

applies LVI to measure motion blur. Geometric measurement considers rolling shut-
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Fig. 2.9.: Blockdiagram of estimating video statistics

ter artifacts and rotation. Homography estimation method in Section 2.4.2 and line

angle histogram [81] are two basic methods. The line angle histogram detects the ro-

tation and shear, and the homography estimation measures geometric transformation

parameters between two images. We then apply the distortion classification method

to compare the differences between traditional videos and FPVs.

2.7.1 Distortion Classification

Our distortion classification method has three components: the LVI algorithm, the

homography estimation and the line angle histogram. The overall framework is shown

in figure 2.9. Both the LVI and homography estimation are based on feature matching

between two images. They measure the geometric relationship between two nearly

adjacent frames, which are separated by a small time interval. Affine estimation is

used to approximate the homography estimation and its measuring method has been

described in Section 2.4.2.

In the first step, the input video is classified into static frames, non-static frames

and useless frames. This preliminary classification is based on an affine estimation

using consecutive frames. We classify those frames captured when the camera had

very little motion to be static frames. The remaining frames with large motion are

classified as non-static frames. All static frames are potentially free from distortions.

A few frames in the video may fail during affine estimation due to heavy motion blur
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or meaningless content. These frames that have few edges or corners are classified to

be useless frames.

After the preliminary classification, static frames and non-static frames are evalu-

ated by our proposed blur measurement and geometric measurement. Blur measure-

ment is based on the LVI algorithm, which uses potential distortion-free images as

reference to evaluate blur degradations in non-static frames. As such, the LVI val-

ues indicate the relative blur. Geometric measurement uses the line angle histogram

and affine estimation. The line angle histogram detects whether the image is rotated

or sheared. Frames without rotation and shear are used as references for the affine

estimation, which quantifies geometric transformation of rotation and shear.

The Line angle histogram [81] is used to detect shear and rotation. The line angle

distributions of different images are shown in figure 2.10. Horizontal is at 90°, and

vertical is at 0° and 180°. The peaks closest to horizontal and vertical are denoted the

horizontal peak and the vertical peak, respectively. The deviation of the horizontal

peak from 90° indicates the rotation during capture. The difference between the

horizontal and vertical peaks should be close to 90°. When the two peaks deviate

from orthogonality, the image are sheared.

2.7.2 Classification Results

We present statistics of distortions for the two types of videos in Table 2.3. We se-

lected six traditional videos from LIVE Video Quality Database [82,83], and recorded

six types of FPVs using the Pivothead. In Table 2.3, the “talking”,“ping pong”

and “eating” videos are recorded indoors, while other three FPVs are recorded out-

side. The comparison indicates a few frames are subject to distortions in the LIVE

database, while most frames in FPVs are distorted images. Our results demonstrate

FPVs have dramatically different distortions immediately after capture compared to

traditional videos.
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Fig. 2.10.: Line angle distributions: (a) image free from shear and rotation (b) image

with rotation only (c) image with shear only (d) image with both rotation and shear

The six FPVs share common properties. First, all of them have more than 69% of

frames with rotation, indicating that camera wearers keep their heads rotated most

of the time. Second, the percentage of blurry images is in the range from 55% to 83%.

Third, shear is less likely to exist in FPVs compared to rotation and blur. However,

each FPV also shows some differences. The three indoor videos have more than 75%

of their frames with blur, while the percentages of the other three outdoor videos are

no more than 65%. So indoor videos have worse quality compared to outdoor videos.

Figure 2.11 shows two cumulative distributions of frames in the “running” video.

We extract two groups of frames: small motion and large motion. To partition them,

we use the translation parameter from the affine estimation, and declare those with

translation greater than 50 to be large motion, and those with translation smaller

than 10 to be small motion. In frames with small motion, 89% have shear change

smaller than 0.02 and 68% have LVI greater than 0.95; but for frames with large

motion, only 60% have shear smaller than 0.02 and 23% have LVI larger than 0.95.
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Table 2.3.: Comparison between FPVs and traditional videos

content some blur heavy blur rotation shear

LIVE 3.94% 0.33% 17.25% 4.36%

running 53.61% 7.08% 69.76% 13.67%

walking 50.01% 4.98% 76.19% 16.26%

basketball 50.00% 14.27% 69.55% 22.37%

talking 58.52% 22.37% 87.66% 6.07%

ping pong 52.86% 30.76% 75.61% 38.32%

eating 62.76% 13.19% 91.73% 51.84%
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Fig. 2.11.: Cumulative distributions: (a) shear (b) LVI

We also applied our LVI algorithm on the image quality database TID2013 [34],

for two distortions; Gaussian blur and contrast change. The Pearson correlation

coefficients for Gaussian blur and contrast change are 0.9320 and 0.9018, respectively.

The correlations of Gaussian blur for other image quality metrics, SSIM, FSIM [13]

and VIF, are 0.9191, 0.8905 and 0.9530, and the correlations of contrast change are

0.6385, 0.6924 and 0.8730, respectively. This demonstrates that LVI is useful to

measure more distortions than motion blur; and the performance of LVI can compete

with other image quality metrics.
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2.8 Subjective Test for Blur and Geometric Distortions

In this section, we implement a subjective test that demonstrates LVI and ex-

isting NR QEs can be generalized to measure images with both blur and geometric

distortions including rotation and shear simultaneously.

We design a subjective test to evaluate motion blur and geometric distortions in

FPVs. Our subjective test evaluates actual captured images with real distortions,

synthetic distortions or a combination of both using the paired comparison method.

The types of distortions include motion blur, rotation, shear and fisheye. We then

propose two mapping functions for rotation and shear to compute the overall quality

of images with blur and geometric distortions. Personal preferences and content

dependence in fisheye are also discussed.

2.8.1 Test Overview

Our subjective test evaluates actual captured images with real distortions, syn-

thetic distortions or a combination of both using the paired comparison method. The

types of distortions include motion blur, rotation (tilt), shear and fisheye. In ad-

dition, we proposed two mapping functions for rotation and shear to compute the

overall quality of images with blur and geometric distortions. Personal preferences

and content dependence in fisheye are discussed.

Our test employs the paired comparison method for still images containing both

actual and synthetic distortions that are typical of images extracted from FPVs.

Each pair of test images are simultaneously displayed on two monitors side by side.

Viewing distance is kept to be around 3 times the height of test images. 9 videos

have been recorded by a Pivothead camera (frame rate: 30fps, resolution: 1920×1080)

including “billiards”, “eating”, “flight”, “bell tower”,“winter Hovde Hall”, “parking

lot”, “autumn Hovde Hall”, “apartment building” and “parking garage”. 4 distortions

including motion blur, rotation, shear and fisheye, are evaluated. Test images are

either real frames from the 9 videos or created by adding synthetic distortions to
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Fig. 2.12.: Reference images for each content: (a) billiards (b) eating (c) flight (d)

bell tower (e) winter Hovde Hall (f) parking lot (g) autumn Hovde Hall (h) apartment

building (i) parking garage

selected frames. Because synthetic shear and fisheye change the image size compared

to the original image, all test images are cropped to be 1600×900 to remove marginal

regions with little content.

2.8.2 Test Method and Setup

In a paired comparison subjective test, the subject needs to indicate his or her

preference among the two images according to their visual quality. 50 subjects includ-

ing 43 males and 7 females participated in the test. All pairs of images are displayed

in random order. To improve the efficiency of paired comparison, we use the “square

design” in [84]. Given that we have n stimulus, a full comparison needs 0.5n(n− 1)
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Table 2.4.: Test images in subjective test

video

content

real distortions synthetic

distortions

number of

images

SI

(a) blur (5 levels) - 5 6.58

(b) blur (5 levels) - 5 8.57

(c) blur (5 levels) - 5 9.40

(d) rotation (4 angles) blur (4 levels) 16 9.69

(e) rotation (4 angles) blur (4 levels) 16 15.75

(f) - blur (4 levels) +

shear (4 levels)

16 13.30

(g) - blur (4 levels) +

shear (4 levels)

16 16.78

(h) - blur (4 levels) +

fisheye (3 levels)

12 13.91

(i) - blur (4 levels) +

fisheye (3 levels)

12 18.50

pairs. By using the “square design”, the comparison number can be decreased to

n(
√
n− 1).

A pair of test images are presented on the two monitors (Dell U2415) side by

side with time synchronization. The two monitors are calibrated (calibration tool:

Spyder5ELITE) to have ignorable visual difference. The brightness after calibra-

tion is 120 cd/m2. The monitor resolution is 1920×1200, and the test image size is

1600×900. The test image is displayed in the center of the monitor with a surrounding

background that is uniformly gray 128.

The environment fixes the viewing conditions for each subject to minimize the in-

fluence from external stimuli other than the test images. For each pair of images, the
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subject needs to indicate which image has better viewing quality according to his or

her visual evaluation by keyboard (“1” for choosing left image, “0” for choosing right

image). The maximum time for the comparison of one pair of images is 10 seconds.

Whenever the subject fails to make a choice after 10 seconds, he or she must randomly

choose one of the two test images as the better one. The time interval between each

comparison is 1.5 seconds. The interface for this test is built on PsychoPy [85]. We

also conducted informal post-test feedback discussions with some participants who

were willing to share their opinions.

2.8.3 Test Sources

Figure 2.12 shows source images (actual captured frames) of each content and

Table 2.4 lists all test images of different categories in our test. The index of each

content is the same as in Figure 2.12. We take 3 distinct approaches to create test

images for motion blur, rotation plus blur, shear plus blur and fisheye plus blur. First,

for “billiards”, “eating”, “flight”, 5 nearby frames of each content that have different

amounts of blur are selected. Next, “Winter Hovde Hall” and “bell tower” are inten-

tionally created by continuous head rotation in front of a scene. 4 sharp frames with

different amounts of rotation are then selected from these two sequences and different

amounts of synthetic motion blur are added. Finally, one frame is chosen to be the

reference respectively from “Autumn Hovde Hall”, “parking lot”, “parking garage”

and “apartment building”: distortions are applied to the reference with controllable

amount. We also measure and report in Table 2.4 the spatial information (SI) [86]

of each source image. SI is calculated as the mean of the gray-scale image filtered

with both vertical and horizontal Sobel kernels. We experimentally find that the 3

geometric distortions, rotation, shear and fisheye, have very small influence on the SI

of images in the same blur level.
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Fig. 2.13.: Test images captured in FPVs to have different amounts of motion blur

Motion Blur: Our test of motion blur uses both nearby frames from FPVs and

synthetic distorted images. These nearby frames are chosen to share at least half of

their content and have minor difference in rotation and shear, but they differ in the

amount of blur. Figure 2.13 shows chosen frames with the most and the least motion

blur for each content. Synthetic motion blur are created by the motion model in [87].

The model can be used to create nonlinear motion blur kernels by controlling motion

trajectory and motion kernel size. In our test, the motion trajectory is clockwise 45°
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diagonally up to the right in a straight line. The motion kernels are created with size

2×2, 4×4, 8×8 to apply 3 levels of motion blur.

Rotation: Synthetic generation of rotation would require a significant area of the

rotated image to be cropped to maintain a rectangular image. Therefore, we uses

real images selected out of videos which were purposely created to contain rotated

frames. The center of each image from the same video is selected to be almost the

same location of the scene. This is intended to avoid a change in the location of focus

of attention. Figure 2.14 shows sample test images of different amounts of rotation.

Shear: In geometric transformation, shear between two images can be modeled asx′
y′

 =

1 k

0 1

x
y

, (2.12)

where [x y]T are points in the reference image, and [x′ y′]T are corresponding points

in the sheared image. k is the shear parameter and atan(k) indicates the angle of

shear.

Shear transformation is a spatially varying filter. To create synthetic images

with different levels of shear but almost the same amount of blur, we introduces a

“symmetric transformation method” to add shear to the reference image as is shown

in Table 2.5. Let i be image index, ki is shear parameter for each image. The initial

shear is 0. In each step of the process, we add the same amount of shear to each

test image. The sign in front of shear amount is angle direction (i.e. “+” indicates

shear to the right, “-” indicates shear to the left). At the conclusion of all steps, each

test image has nearly similar blur but a distinct amount of shear. Figure 2.15 shows

sample test images with different amounts of synthetic shear.

Fisheye: Fisheye distortion is a barrel transformation, which can be modeled as [88]

r′ = a ∗ r + b ∗ r2 + c ∗ r3 + d ∗ r4 +O(r5), (2.13)

where r and r′ are the distances of pixels to the image center in non-fisheye and fisheye

images, respectively. O(r5) are the higher order terms of r, which can be ignored. a,

b, c, d are coefficients depending on the camera lens.
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Table 2.5.: Symmetric transformation method to create shear images

initial shear k1 = 0.00 k2 = 0.00 k3 = 0.00 k4 = 0.00

incremental shear 1 +0.105 +0.105 +0.105 +0.105

incremental shear 2 −0.035 −0.035 +0.035 +0.035

incremental shear 3 −0.035 +0.035 −0.035 +0.035

incremental shear 4 −0.035 −0.035 +0.035 +0.035

final shear k1 = 0.00 k2 = 0.07 k3 = 0.14 k4 = 0.21

Barrel transformation introduces spatially varying blur to images. Therefore, we

again use the “symmetric transformation method” shown in Table 2.5 to create image

pairs with different amounts of fisheye. We set a = 1, b = d = 0, ignoreO(r5) and vary

c only to get different amount of fisheye distortions. Fisheye images have decreasing

scale factors from center to the image edges; our synthetically distorted images have

the same scale in the image center compared to the original image. Figure 2.16 shows

sample test images with different amounts of synthetic fisheye.

2.8.4 Results and Discussion

Our subjective test evaluates 4 distortions: motion blur, rotation, shear and fish-

eye. The test of motion blur uses nearby frames extracted from FPVs. Rotation,

shear and fisheye are evaluated simultaneously with synthetic motion blur. By ap-

plying the Bradley-Terry model with maximum likelihood estimation [37], paired

comparison results can be converted to relative subjective scores. Note that we use a

logarithmic scale for the final subjective scores and set the score of the best image in

each test to be 0. We also calculate the 95 percent confidence interval (CI) of each

subjective score using the method presented in [37]. Each subjective score is repre-

sented as qs ± qr, where qs is the estimated subjective score, qr is half the range of
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the 95 percent CI of qs. If the CIs of two image scores overlap each other, the quality

difference of the two images is not significant, or namely, their quality is similar.

The test results indicate (1) LVI is effective at measuring blur when two images

are not perfectly aligned, in the absence of rotation and shear. (2) Rotation and shear

degrade quality. With the amount of degradation, shear is less sensitive to different

contents than rotation. (3) The preference of fisheye versus non-fisheye differs from

person to person, and this preference is influenced by content.

Motion Blur: The test of motion blur uses all actual captured frames from 3 FPVs

with different content. In each content, the 5 test frames are selected to be temporally

nearby and have different amounts of blur as measured by LVI.

In particular, the results show that LVI is an effective metric to estimate blur

among misaligned images with minor rotation or shear difference. Seven existing NR

QEs (JNBM [51], BIQI [89] , CPBD [90], BRISQUE [19], CORNIA [91], IL-NIQE [21]

and NIQE [20]) and LVI are evaluated by subjective scores, as is shown in Tables 2.6,

2.7 and 2.8. The Spearman rank-order correlation coefficient (SROCC), the Kendall

rank-order correlation coefficient (KROCC) and the Pearson linear correlation coef-

ficient (PLCC) are employed to measure the performance of these QEs. Note that

the images with the most severe blur, in “billiards” and “eating” respectively, cannot

be measured by LVI because they have too few matching feature points. The LVI

scores of these two images are considered to be zero. Note that LVI is the only QE

we evaluated that correctly rank-orders the subjective quality for these image sets.

Rotation: Test images with different amounts of rotation are captured in front of the

same scene with minor differences of viewpoint. The images with different rotation

are selected to have tiny differences as measured by LVI. Motion blur degradations are

synthetically added to images with different rotation. Figure 2.17 shows the subjective

scores of content “winter Hovde Hall” and “bell tower”, in which the average range

of CIs is 0.22 for each content.

First, we explore the intra-relationship of both motion blur and rotation. For

a fixed rotation angle, subjective scores monotonically decrease when the blur filter
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Table 2.6.: QE performance: motion blur - billiards

QE name SROCC KROCC PLCC

JNBM 0.9000 0.8000 0.8248

BIQI 0.6000 0.4000 0.2342

CPBD 0.3000 0.2000 0.1905

BRISQUE 0.1000 0.0000 0.1130

CORNIA 0.6000 0.4000 0.7446

IL-NIQE 0.9000 0.8000 0.8599

NIQE 0.9000 0.8000 0.8514

LVI 1.0000 1.0000 0.8752

Table 2.7.: QE performance: motion blur - eating

QE name SROCC KROCC PLCC

JNBM 0.4000 0.4000 0.5701

BIQI 0.8000 0.6000 0.7137

CPBD 0.2000 0.2000 0.2732

BRISQUE 0.5000 0.2000 0.5467

CORNIA 0.3000 0.2000 0.1610

IL-NIQE 0.9000 0.8000 0.9597

NIQE 0.8000 0.6000 0.8167

LVI 1.0000 1.0000 0.8719

size increases. Only when the blur filter size increases from 0 to 2, the CIs for the

respective subjective scores have overlap. For a fixed blur level, rotation introduces

quality degradations, and the influence becomes larger as the blur level increases. The

rotated images of the lowest and the second lowest blur levels have closer subjective
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Table 2.8.: QE performance: motion blur - flight

QE name SROCC KROCC PLCC

JNBM 0.9000 0.8000 0.8914

BIQI 0.9000 0.8000 0.9637

CPBD 0.6000 0.4000 0.6068

BRISQUE 0.3000 0.2000 0.5452

CORNIA 0.7000 0.6000 0.6342

IL-NIQE 0.9000 0.8000 0.9028

NIQE 0.2000 0.2000 0.2052

LVI 1.0000 1.0000 0.9958

scores than rotated images of higher blur levels, which is reflected as the overlap

between the confidence regions in the first two blur levels compared to the non-

overlapping of the other two higher blur levels.

To elaborate, let the score of a test image be (r, b), where r is the rotation level,

b is the blur level, and r, b = 1, 2, 3, 4. For content “winter Hovde Hall”, (3,1) and

(4,1) are −1.55 ± 0.29 and −1.98 ± 0.23, respectively. The overlap between their

confidence regions indicates their quality is similar. As a comparison, (3,3) and (4,3)

are −4.57± 0.20, and −5.12± 0.24, respectively. The non-overlapping indicates that

they have significant quality difference.

Second, we explore the inter-relationship between motion blur and rotation. In

both contents, the quality differences of images are not statistically significant when

blur is small. One example is in content “bell tower”, (2,2) and (3,1) are similar,

with scores −0.69 ± 0.27 and −0.78 ± 0.30, respectively. As a comparison, (4,3) is

−4.96± 0.22, while (1,4) is −5.99± 0.23 worse than the former. As an addition, the

content “winter Hovde Hall” has higher spatial information (SI) than “bell tower”,

and its subjective quality is more sensitive to rotation.
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To model the overall quality measure of an image with blur plus rotation, we

propose a mapping function to combine LVI and rotation. The mapping function is

given by

Q(θ, qLV I) = qLV I · (1− p · exp (qLV I − 1) · θ2), (2.14)

where the rotation angle θ (radian) is estimated relative to the reference image by

affine estimation as described in [6]. qLV I is the LVI score of the distorted image,

and p is a constant parameter which needs to be optimized. equation (2.14) is called

rotation-LVI.

From discussion with the participants in the subjective test, preference regarding

rotation is content dependent. The same rotation angle for different content gives

rise to different viewing quality. We optimize p for each content to maximize SROCC

and KROCC. The optimized p is 4.53 for “winter Hovde Hall” and 1.13 for “bell

tower”. Figure 2.18 shows the nonlinear mapping curve between subjective scores

and rotation-LVI with optimized p. The logistic function used for curve fitting is

f(x) = (t0 − t1)/(1 + exp (−(x− t2)/|t3|)) + t1 (2.15)

where t0, t1, t2 and t3 are 4 unknown parameters for fitting.

For extension to other quality metrics, the term qLV I can be replaced with any

other quality measure q, given by

Q(θ, q) = q · (1− p · exp (− |q − qbest|
|qbest − qworst|

) · θ2). (2.16)

The term exp (qLV I − 1) is replaced with exp (− |q−qbest|
|qbest−qworst|), where qbest and qworst

indicate the quality scores for the best- and the worst-quality images based on the

corresponding quality measure q, respectively.

Table 2.9 and 2.10 show the performances of 7 NR QEs and LVI. “rotation-”

indicates the QE is mapped by equation (2.14) with corresponding optimized p. Note

that we use the self-reported best and worst QE values when available, otherwise the

observed best and worst QE values in [44] are used. One exception is that JNBM

has maximum value at infinity, so we set its best score as the QE score of the best
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Table 2.9.: QE performances: rotation - winter Hovde Hall

QE name p SROCC KROCC PLCC

JNBM - 0.8441 0.6833 0.8920

BIQI - 0.6941 0.5167 0.7140

CPBD - 0.8205 0.5833 0.8412

BRISQUE - 0.6441 0.4500 0.7361

CORNIA - 0.5059 0.3833 0.4201

IL-NIQE - 0.9176 0.7500 0.9429

NIQE - 0.8941 0.7667 0.8561

LVI - 0.8529 0.7000 0.9042

rotation-JNBM 6.06 0.9706 0.8833 0.9102

rotation-CPBD 8.48 0.9559 0.8333 0.8955

rotation-IL-NIQE -1.60 0.9529 0.8500 0.9574

rotation-NIQE -5.14 0.9382 0.8333 0.9050

rotation-LVI 4.53 0.9853 0.9333 0.9480

image for each content. The comparison shows that LVI, JNBM, CPBD, IL-NIQE

and NIQE all improve their performance after including rotation mapping. To get

a generalized model, we fix p to be 1.16; the resulting SROCC of rotation-LVI are

0.9588 and 0.9529 for “winter Hovde Hall” and “bell tower”, respectively. However,

since two scenes are not enough to allow generalization of the model, more subjective

data needs to be collected.

Shear: Test images distorted with shear and motion blur are synthetically created

from one reference image. Figure 2.19 shows the subjective scores of content from

two sequences “autumn Hovde Hall” and “parking lot”, with average range of CIs

to be 0.28 and 0.75, respectively. The difference of their CI range results from con-

tent difference. The content “parking lot” has lower SI than information “autumn
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Table 2.10.: QE performances: rotation - bell tower

QE name p SROCC KROCC PLCC

JNBM - 0.9117 0.7333 0.9109

BIQI - 0.6471 0.4333 0.6413

CPBD - 0.9441 0.8167 0.9009

BRISQUE - 0.3088 0.1833 0.5503

CORNIA - 0.3853 0.2833 0.2539

IL-NIQE - 0.7411 0.5667 0.8557

NIQE - 0.9558 0.8500 0.9269

LVI - 0.8764 0.6500 0.9256

rotation-JNBM 0.47 0.9618 0.8500 0.9180

rotation-CPBD 1.1 0.9705 0.9000 0.9052

rotation-IL-NIQE -1.64 0.8882 0.7667 0.9210

rotation-NIQE -0.4 0.9794 0.9333 0.9406

rotation-LVI 1.13 0.9618 0.8833 0.9221

Hovde Hall”, and many of its edges are highly curved or within texture. Since local

orientation structure is visually more sensitive to straight edges than curved edges or

textures [92], shear is visually less sensitive in “parking lot” than in “autumn Hovde

Hall”.

First, we explore the intra-relationship of both motion blur and shear. In both

contents, subjective scores monotonically decreases as the blur level increases for any

fixed shear level. Within each blur level, the image with the greater shear often has

worse visual quality. Note that while in “parking lot”, the CI of image scores from

the same blur level has significant overlap, the score of the image with the least shear

has no overlapping CI with that of the most shear.
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Second, we explore the inter-relationship between motion blur and shear. Let

the score of a test image be (s, b), where s is the shear level, b is the blur level,

and s, b = 1, 2, 3, 4. We find that (s, b) often has similar value with (s − 1, b + 1).

For instance, in content “autumn Hovde Hall”, (2,1) and (1,2) has respective scores

−0.89 ± 0.31 and −0.59 ± 0.42 with no significant difference. (4,2) is a little better

than (3,3), with scores −3.36± 0.34 and −4.49± 0.34, respectively.

To model the overall quality measure of an image with blur plus shear, we propose

a mapping function to combine LVI and shear. The overall quality is modeled as:

Q(k, qLV I) = qLV I · (1− g · exp(qLV I − 1) · k2) (2.17)

where k is the shear in equation (2.12), qLV I is the LVI score of the distorted image;

g is a constant parameter. The mapping by equation (2.17) is called shear-LVI.

To find the optimized value of g, we also maximize SROCC between shear-LVI

scores and subjective scores. The optimized values of g are 5.34 and 2.59 for “autumn

Hovde Hall” and “parking lot”, respectively. To generalize equation (2.17) for all con-

tent without dramatic influence on SROCC and KROCC, g is experimentally chosen

to be 4.07. Figure 2.20 shows the nonlinear mapping curve between the generalized

shear-LVI and subjective scores. The fitted logistic function used is equation (2.15).

By using the same replacement as equation (2.16), we can extend equation (2.17)

to to other quality metrics. The performances of 7 NR QEs and LVI are compared

in Table 2.11 and 2.12. “shear-” indicates that the QE score is mapped by equation

(2.17) with corresponding optimized g. JNBM, CPBD, IL-NIQE, NIQE and LVI

improve their performances after mapping by equation (2.17). The generalized shear-

LVI (g=4.07) shows competitive performance compared to other 7 QEs after mapping.

Fisheye:

Test images distorted with fisheye and motion blur are synthetically created from

one reference image. Figure 2.21 shows the subjective scores from two content “park-

ing garage” and “apartment building”, with average range of CIs to be 0.30 and

0.31.
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Table 2.11.: QE performances: shear - autumn Hovde Hall

QE name g SROCC KROCC PLCC

JNBM - 0.9235 0.8000 0.8853

BIQI - 0.5706 0.3166 0.7395

CPBD - 0.7529 0.5166 0.7787

BRISQUE - 0.6441 0.5500 0.7011

CORNIA - 0.2235 0.1333 0.2270

IL-NIQE - 0.9294 0.8167 0.9283

NIQE - 0.9382 0.8333 0.8734

LVI - 0.7108 0.4602 0.8456

shear-JNBM 5.88 0.9735 0.9000 0.9470

shear-CPBD 23.38 0.9471 0.8333 0.9016

shear-IL-NIQE -6.78 0.9735 0.9000 0.9601

shear-NIQE -10.09 0.9647 0.8667 0.9528

shear-LVI 5.34 0.9912 0.9500 0.9672

shear-LVI 4.07 0.9853 0.9333 0.9694

Variations in quality due to different blur levels are stronger than those due to

differences in the degree of fisheye. Specifically in Figure 2.21(a), the variances of

subjective scores for 4 levels of blur with same fisheye are 5.56, 6.29 and 5.48, while

the variances for 3 levels of fisheye with the same blur are 0.09, 0.11, 0.08 and 0.062.

In Figure 2.21(b), the variances of subjective scores for 4 levels of blur with the same

fisheye distortion are 7.40, 5.00 and 5.85, while the variances for 3 levels of fisheye with

the same blur are 0.00, 0.06, 0.04 and 0.27. We can also draw the same conclusion

from the CI of scores. For example, in content “parking garage”, the scores of the

3 levels of fisheye in blur level 3 are −2.98 ± 0.43, −3.61 ± 0.16 and −3.56 ± 0.05,

which have overlapping regions. In content “apartment building”, the scores of the
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Table 2.12.: QE performances: shear - parking lot

QE name g SROCC KROCC PLCC

JNBM - 0.8353 0.6333 0.8885

BIQI - 0.6411 0.4000 0.6547

CPBD - 0.8147 0.6167 0.8473

BRISQUE - 0.8353 0.7000 0.8710

CORNIA - 0.1529 0.1000 0.1963

IL-NIQE - 0.9088 0.7667 0.9580

NIQE - 0.9706 0.8667 0.9669

LVI - 0.8992 0.7113 0.9481

shear-JNBM 2.46 0.9765 0.8833 0.9779

shear-CPBD 11.53 0.9735 0.9000 0.9189

shear-IL-NIQE -1.7 0.9500 0.8333 0.9686

shear-NIQE -0.37 0.9735 0.8833 0.9697

shear-LVI 2.59 0.9853 0.9333 0.9858

shear-LVI 4.07 0.9794 0.9000 0.9750

3 levels of fisheye in blur level 3 are −3.12 ± 0.38, −3.08 ± 0.12 and −3.48 ± 0.19

with no significant difference. As a comparison, in both contents, the lowest score

in blur level s is statistically greater than the highest score in blur level s+ 1, when

s = 2, 3, 4.

Not apparent from Figure 2.21, however, a personal preference exists for fisheye,

and that preference is content dependent. The preference is extracted based on the

percentage of times that the participant chose images with smaller fisheye levels in

the same blur level. For content “parking garage”, Figure 2.22 shows a comparison of

subjective scores between two group of subjects: 35 people prefer non-fisheye while

the remaining 15 prefer fisheye. Figure 2.23 shows that 33 people prefer non-fisheye
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while another 17 prefer fisheye images for content “apartment building”. Among all

subjects in the test, 23 prefer non-fisheye and 5 prefer fisheye for both contents, and

22 people show different preferences for the two scenes.

“Apartment building” has a relatively close view and higher spatial information

(SI) compared to “parking garage”. From post-test feedback, the bend of the scene

around the edges in the former is not as obvious as in the latter. This feedback

indicates the field of view of the content influences the viewing quality of a fisheye

image. Some participants also indicate that the broad view of fisheye images could

convey more information about the scene compared to non-fisheye images, especially

for “apartment building”.

we implemented a subjective test using paired comparison in [7] to validate the

performance of LVI and to evaluate the overall quality of images with both blur and

geometric distortions. The test mainly has three components: motion blur, motion

blur with shear, motion blur with rotation. Recall these are the dominant types of

distortions in FPV frames. The subjective scores are calculated by Bradley-Terry

Model [37]. The motion blur test uses temporally nearby captured frames of three

contents. Each content contains test images of five levels, which is partitioned based

on their LVI scores. Compared with seven NR QEs, JNBM [51], BIQI [89], CPBD [18],

BRISQUE [19], CORNIA [91], IL-NIQE [21] and NIQE [20], only LVI correctly ranks

all test images. In the motion blur with shear test, we evaluate images with multiple

distortions using four levels of synthetic motion blur and four levels of synthetic shear.

We use the same number of distortion levels in motion blur as in the rotation test; the

difference here is the four different levels of rotation are captured using real images.

The results indicate that both shear and rotation introduce quality degradations to

images, and the overall quality of an image is a combined effect of blur and geometric

distortions. We proposed a form of quality mapping function, Equation(2.18), to map

LVI or existing NR QEs that are insensitive to geometric distortions with estimated

shear and rotation value to the overall quality. Equation(2.18) is the mapping function
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to calculate the overall quality of an image with motion blur and geometric distortions

simultaneously.

Q(D, q) = q · (1− p · exp (− |q − qbest|
|qbest − qworst|

) · D2). (2.18)

where D is the measured value of shear or rotation (ks or θ in Equation 2.10). q is the

QE score of the image, qbest and qworst indicate the quality scores for the best- and the

worst-quality images based on the corresponding quality measure q, respectively. p is

a constant parameter. In terms of the optimized p values based on SROCC between

subjective and objective quality scores, both shear and rotation are highly dependent

on content. Specifically, shear is less sensitive to content variations than rotation.

Overall, LVI outperforms existing NR QEs in evaluating actual captured frames

in FPVs. Also, both LVI and NR QEs that are insensitive to geometric changes can

be generalized to incorporate measurements of geometric quality degradations.

2.9 Conclusions

We introduce a new image quality assessment strategy, mutual reference, that uses

effective information provided by the overlap between images, without relying on pixel

alignment. This mutual reference strategy does not fit into the typical categorization

of FR, RR or NR methods. We then propose a mutual reference QE, Local Visual

Information (LVI), that primarily measures the relative blur between two images.

LVI is effective for comparing two images that have similar scales and are not too

blurry. To apply the MR strategy to assess the quality of frames within a First-Person

Video, we propose a framework, MRFQAFPV, which uses a pairwise measure and

incorporate LVI as the quality estimator.

MRFQAFPV provides several effective tools for assessing lifelogs. First, the tem-

poral partitioning in MRFQAFPV partitions FPVs into different segments such that

each segment contains different content. The pseudo-references in each segment pro-

vide information for video summarization using shots. Second, the quality estimation

in MRFQAFPV is an effective assessment tool for video fast-forward. It can help to
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avoid using frames with heavy quality degradations. Third, from the perspective of

analysis, the quality score of each frame provides an indication of useful and useless

frames for applications such as object detection and activity recognition.

We experimentally explore and validate several properties of LVI. First, LVI pri-

marily measures blur, and is insensitive to shear and rotation. Second, LVI outper-

forms existing NR QEs at measuring the quality of actual frames in FPVs. Third, LVI

has acceptable performance in measuring some additional distortions, such as contrast

change. Also, we implement a subjective test to demonstrate that MRFQAFPV is an

effective framework to estimate the quality of individual frames with similar content

in FPVs.
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Fig. 2.14.: Test images intentionally captured to have different amounts of rotation

Fig. 2.15.: Test images with different amounts of synthetic shear created from one

reference image
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Fig. 2.16.: Test images with different amounts of synthetic fisheye created from one

reference image
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Fig. 2.17.: Subjective test - rotation and blur: (a) winter Hovde Hall (b) bell tower
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Fig. 2.18.: Curve fitted with logistic function between subjective scores and rotation-

LVI: (a) winter Hovde Hall (p=4.53) (b) bell tower (p=1.13)
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Fig. 2.19.: Subjective test - shear and blur: (a) autumn Hovde Hall (b) parking lot
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Fig. 2.20.: Curve fitted with logistic function between subjective scores and general-

ized shear-LVI (g=4.07): (a) autumn Hovde Hall (b) parking lot
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Fig. 2.21.: Subjective test - fisheye and blur: (a) parking garage (b) apartment

building
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Fig. 2.22.: Parking garage: group 1 prefers non-fisheye, group 2 prefers fisheye
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Fig. 2.23.: Apartment building: group 1 prefers non-fisheye, group 2 prefers fisheye



68

3. CONTROLLABLE ILLUMINATION ENHANCEMENT

3.1 Introduction

Exposure distortions refers to that when the camera sensor is not exposed to

proper amount of light so that the luminance histogram of the image fails to spread

over the desired range [10]. The image is called well-exposed when there is no exposure

distortions. The image is called over-exposed when the camera receives more light

than its well-exposed version, otherwise the image is called under-exposed. Possibly,

under-exposure and over-exposure occurs in specific regions of an image.

First-Person videos (FPVs) are often badly-exposed. Because FPVs are recorded

under conditions that the wearer is not fully aware of the lighting condition for the

camera, so the wearer has no intention to adjust the camera location so that the

images or videos are often captured with exposure distortions.

The causes of exposure distortions in FPVs can be classified into motion-induced

lighting variations, bad environmental lighting or a combination of both. Motion-

induced lighting variations are caused by the change of lighting directions and motion

itself. Since the wearer often has violent motion, the camera angle and location

changes frequently during capture so that lighting conditions are very unstable. Bad

environmental lighting refers to that the scene in front of the camera suffer from bad

lighting condition during capture. Typical cases are blocked sunshine, dark indoor

environment, nightfall, shadows, glare of the sun. In addition, the combination of

both will introduce more temporal exposure change into the video. For example, the

camera wearer moves his or her body from sunshine into a shadow, and then back to

sunshine. Figure 3.1 shows the exposure distortions in the three cases.

The quality of FPVs can be improved by alleviating exposure distortions. One

type of method is illumination enhancement. Illumination enhancement is to either
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(a) (b) (c)

(d) (e) (f)

Fig. 3.1.: (a)(d) Motion induced lighting variation (b)(e) Bad environmental lighting

(c)(f) Combination of both

increase or decrease the illumination locally or globally, so that the image has better

perceived illumination. Some enhancement works do not use exposure, illumination,

lighting, brightness or lightness consistently [24,93,94], we illustrate their definitions

to clarify the concept of illumination enhancement. Exposure is the total amount of

light received by the camera, affecting the whole image in most cases. Synthetic expo-

sure change should be a replication of actual captured image with different exposures.

Illumination or lighting refers to the use of light to achieve better practical effect in

images. The modification of illumination can focus on specific regions of the image

and often cannot be reproduced during actual capture. Brightness and lightness are

terminology of perception.

This relationship between enhancement and image visual quality can be described

as a concave function with a peak point. We consider the peak point as the optimal

degree of enhancement, defined as the optimal point (OP). The concave relationship

is produced by three aspects, contrast, exposure level and newly generated artifacts

introduced by enhancement operations. First, image quality is a concave function of
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contrast. According to the results from image quality database TID2013 [34], when

the synthetic contrast manipulation is applied to an image, there exists a peak point

of quality corresponding to its best contrast. Second, the exposure level change also

has a concave relationship with image quality [10], and its best point corresponds to

the exposure level at which the image is well-exposed, not either under-exposed or

over-exposed. Third, enhancement operations often generate new artifacts, such as

color shift or loss, noise amplification, structure modification or unnaturalness [95].

The combined visual effect of newly generated artifacts and contrast change can

also be described as a concave function of image quality. The concave function of

enhancement is content dependent, in that the OP varies for different content. One

unsolved problem is how to define the OP for different images and characterize the

concave function. Our solution is to enhance the image into different levels, and

then characterize the concave curve including the OP using a content-independent

over-enhancement measure.

We propose an controllable illumination enhancement method for which the degree

of enhancement can be adjusted using a single parameter [22]. Many existing enhance-

ment methods including histogram equalization [96,97], retinex methods [98,99] and

others [100–103] have no clear relationship between their parameters and image qual-

ity. However, our single parameter has a concave relationship with image quality. In

our method, we model under-exposure and over-exposure differently to assign under-

exposed and over-exposed probabilities for each pixel. We then design a system that

applies logarithmic mapping in the identified under-exposed pixels with boundary-

artifact compensation. Our mapping uses the assigned under-exposed probabilities,

the artifact compensation weights and the single adjustment parameter together to

calculate mapping coefficients. We also propose an over-enhancement measure, Light-

ness Order Measure (LOM) to quantify the unnaturalness in the enhanced image. We

consider the unnaturalness to be related to the inversion of relative lightness order be-

tween neighboring pixels, and which is influenced by both the proportion of inversions

and the inversion magnitude.
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In Section 3.3, we describe and illustrate the three major parts in our system of

controllable illumination enhancement: under-exposed map and over-exposed map,

boundary penalization, logarithmic mapping. We then illustrate our proposed over-

enhancement measure, LOM, in Section 3.4. Section 3.5 implements a subjective test

to explore the relationship between LOM and image subjective quality after enhance-

ment, and demonstrates the effectiveness of LOM and our illumination enhancement

method.

3.2 Related Works

In this section, two types of exposure distortions, over-exposure and under-exposure

are are introduced. The assessment of over-exposure and under-exposure are re-

lated to two factors: pixel intensity and saturation. Second, there exists spatially-

inconsistent exposure distortions within a FPV frame. Third, the over-enhancement

should be measured and avoided.

3.2.1 Over-exposure and Under-exposure

Over-exposure and under-exposure are both highly correlated with pixel intensity.

Over-exposure introduces a loss of details in bright areas. It occurs when the received

light of the camera go out of its dynamic range. The resulting output over-exposed

pixels clip at their maximum value. Under-exposure introduces a loss of details in

dark areas. In low intensity regions, the threshold of just-noticeable-difference is

larger than medium intensity region. Hence many details in dark regions are unable

to be perceived because the contrast is not enough.

Another influence due to over-exposure and under-exposure is pixel saturation.

When mid-tone colors are exposed as bright or dark colors, they often lose saturation.

In [104], either low intensity or saturation would cause the perceived pixel color to

be close to gray that are indistinguishable, otherwise the pixel can be considered as
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a “true color” pixel. A well-exposed pixel should be a “true color” pixel that can be

correctly perceived.

FPVs often contain spatially-varying exposure distortions within a frame. Because

the lighting condition across the whole image is not consistent while the camera

exposure length are consistent, one image contains different regions with different

degree of over-exposure or under-exposure. [100, 101] both proposed over-exposure

detection models that segment the image into over-exposed and under-exposed areas.

3.2.2 Existing Enhancement Methods

Existing video enhancement methods can be classified into self-enhancement and

mutual-enhancement, that is called context-based fusion video enhancement in [105].

Self-enhancement methods mainly consists of three types: contrast-based [96, 98],

HDR-based [106], transform-based [107, 108]. Contrast-based methods are widely

used with computationally efficiency, usually using transformation function.

I ′(x, y) = T [I(x, y)], (3.1)

where (x, y) are pixel locations, I is the original image and I ′ is the enhanced image.

T (·) is transformation function. T (·) is normally applied to spatial domain includ-

ing histogram with certain constraints. Mutual-enhancement is to extract useful

information for enhancement from multiple images, proposed in [109]. In addition,

some works have been proposed to focus on specific cases: over-exposure correc-

tion [100,101], low-light enhancement [102,103], illumination editing [110].

3.2.3 Existing Enhancement Evaluation Metrics

The enhancement measures are proposed to evaluate the quality of enhanced image

compared to the original. Commonly used Existing measures are Absolute Mean

Brightness Error(AMBE) [111], Discrete Entropy (DE) [112], Image Enhancement

Metric (IEM) [113], Measure of Enhancement (EME) [114] and RIQMC [115].
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Over-enhancement refers to the artifacts introduced after enhancement. Typical

over-enhancement artifacts include loss of edges, textures or unnaturalness. The mea-

surement of over-enhancement is important in the design of enhancement algorithms

so that the amount of enhancement can be constrained to avoid newly generated

artifacts in enhanced images or videos. In [23], a Structure Measure Operator was

proposed to detect structure change after enhancement. In [24], a Lightness Order

Error was proposed to measure the unnaturalness of the enhanced image.

3.3 Controllable Illumination Enhancement

In this section, we propose a controllable illumination enhancement method that

allows a single parameter to adjust the degree of enhancement. Our enhancement

system has 3 major parts: under-exposure and over-exposure map, boundary penal-

ization and logarithmic mapping. We separately model the under-exposed and over-

exposed map based on an over-exposure model in [100]. Our logarithmic mapping

takes into account the under-exposed map values and boundary-artifact compensa-

tion weights, and the single adjustment parameter β to assign mapping coefficients

for each pixel.

Figure 3.2 shows the block diagram of our method. First, an under-exposed map

and an over-exposed map are calculated for the input image. Then, the image is

partitioned into either under-exposed or over-exposed regions. Third, a logarithmic

mapping is applied to the under-exposed regions with penalization to compensate

for the boundary artifacts. Finally, our proposed Lightness Order Measure (LOM)

quantifies the unnaturalness of the output image, illustrated in Section 3. Details for

each step are explained next.

Under-exposed map and Over-exposed map: We create an under-exposed map

and an over-exposed map separately for an image considering both pixel saturation

and intensity. Pixel saturation is affected similarly by both under-exposure and over-

exposure, in that low saturation pixels are perceived to be close to gray, and therefore
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Fig. 3.2.: Illumination enhancement block diagram

are indistinguishable from each other [104]. A well-exposed pixel, on the other hand,

has color that can be correctly perceived. However, pixel intensity is affected differ-

ently. Over-exposed pixels often have high intensity, while under-exposed pixels have

low intensity.

Based on the over-exposure detection model proposed in [100], we model both the

under-exposed map Mu and the over-exposed map Mo in L∗a∗b∗ space as

Mu = 0.5 tanh (δ(Lut − (
√
a2 + b2 +G(L))) + 0.5 (3.2)

Mo = 0.5 tanh (δ(Lot − (
√
a2 + b2 −G(L))) + 0.5 (3.3)

where L, a and b are rescaled pixel values (from 0 to 255) of L*, a* and b*. For a fixed

L, when saturation drops,
√
a2 + b2 will decrease. G(·) is a 15×15 Gaussian filter with

σ = 3. The range of Mu and Mo is from 0 to 1, corresponding to the probability of a

pixel to be under-exposed or over-exposed, respectively. We set Lut = 255 and Lot = 0

so that Mu and Mo are both 0.5 when the pixel has intensity and saturation that are

half of their entire range. δ controls how fast Mu and Mo increase or decrease with

L or
√
a2 + b2, and is experimentally set to be 1/60. Figure 3.4 shows an example

image with its under-exposed map and over-exposed map.

Boundary penalization: The image is partitioned into under-exposed regions Ru

(Mu > Mo) and over-exposed regions Ro (Mu < Mo). To eliminate the artifacts near
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the boundary of Ru and Ro after enhancement, we introduce a boundary penaliza-

tion weighting function ω(x, y), where (x, y) is pixel location. We first compute the

Euclidean distance between pixels to its closest partitioning edges between Ro and

Ru, and normalize it to get distance map D. Then ω(x, y) is calculated as

ω(x, y) =
log(D(x, y)(p− 1) + 1)

log (p)
, (3.4)

where p is a constant parameter. To set the the value p, we experimentally test with

p from 0.001 to 1000. When p decreases from 1000 to 10, the boundary artifacts is

reduced, after p drops below 10, there is no apparent boundary artifacts. When p

drops from 10 to 0.001, the boundary artifacts are eliminated, but we need to apply

higher β to compensate the drop in average enhancement.

Logarithmic mapping: To enhance the illumination of the under-exposed regions,

we use the logarithm mapping function

L′(x, y) =
log(L(x, y) ∗ (γ(x, y)− 1) + 1)

log(γ(x, y))
, (3.5)

where L′(x, y) and L(x, y) are luminance values in L∗a∗b∗ space for the enhanced im-

age and the original image, respectively. γ(x, y) is the mapping coefficient, calculated

as

γ(x, y) = 1 +Mu(x, y) ∗ ω(x, y) ∗ β, (3.6)

where β is the control parameter that can adjust the amount of enhancement. We

finally convert the image back to RGB space using the mapped luminance L′ and

original a∗, b∗. Figure 3.5 shows an example image, extracted from video “Alin,

Day1” in [116], enhanced to 7 levels by adjusting β.

3.4 Over-enhancement Measure

In this section, we propose an over-enhancement measure, the Lightness Order

Measure (LOM), to quantify the unnaturalness after enhancement, and we compare

it with two existing metrics, SMO [23] and LOE [24].
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(a)

(b)

(c)

Fig. 3.3.: (a) p = 1000, β = 20 (b) p = 10, β = 50 (c) p = 0.1, β = 200

The principle of our Lightness Order Measure (LOM) is to measure when the

relative lightness order of pixels in the image is reversed. Relative Lightness order [24]

refers to the pixel intensity order of the image, represented as I(x1, y1) > I(x2, y2),
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(a)

(b)

(c)

Fig. 3.4.: (a) original image (b) under-exposed map Mu (c) over-exposed map Mo

where (x1, y1) and (x2, y2) are two different pixel locations. The relative lightness

order of an image should be preserved to keep its naturalness.

There are two existing over-enhancement measures, SMO and LOE. SMO mea-

sures the image structure change; it quantifies the difference of gradients, standard
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deviation and entropy between the original image and the enhanced image. LOE

measures the change of lightness order globally in the image; it compares every two

pixels and calculates how many pairs are reversed. All three measures compare the

original image to the enhanced image.

LOM shows advantages compared to SMO and LOE. Compared to SMO, LOM

does not use content-dependent information, so it is subject to less influence from dif-

ferent contents. Compared to LOE, LOM considers the relative lightness order locally

and quantifies the magnitude of the inversion; hence it improves the computational

efficiency.

To compute LOM, let the original image be i1 and the enhanced image be i2

in luminance domain. First, the local mean filter is both applied to i1 and i2 with

window size 31 × 31, and the filtered luminance images are f1 and f2, respectively.

Second, we calculate the difference image d1 = f1 − i1 and d2 = f2 − i2. Third, we

quantify the LOM as

LOM =
1

H ·W
∑
x

∑
y

∣∣(d2(x, y)− d1(x, y)) · sign(d2(x, y))− sign(d1(x, y))

2

∣∣, (3.7)

where H and W are image height and width. Larger values for LOM indicate greater

unnaturalness. In Figure 3.6, three enhanced versions of the same image are shown

with different LOM .

Enhancement upper limit refers to the upper bound that the enhancement method

can achieve without introducing artifacts. In our case, the upper limit is the bound

of enhancement that the image does not suffer from over-enhancement artifacts.

3.5 Experiments and Results

In this section, we implement a subjective test with two phases. The first phase

explores subjective quality of enhanced images of different levels using our method.

It also assesses the performance LOM, SMO and LOE to characterize the OP of the

concave quality curve for different contents. The second phase evaluates the subjective
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quality of images enhanced by prior existing methods and ours. Both phases are used

to test the effectiveness of our enhancement method with over-enhancement measure,

LOM.

Test sources are 6 video frames captured by a wearable camera Pivothead (1080p30fps),

shown in Figure 3.7. The test images are ordered using the percentage of partitioned

under-exposed regions Pu. Each test image is enhanced by our proposed method to

9 different levels, and by five existing enhancement methods, LDR [117], CVC [118],

WAHE [97], SRIE [99], Low-light enhancement using camera response model (LL-

CRM) [119]. Examples of enhanced images using five methods and ours are shown

in Figure 3.8, where the original image is 6 in Figure 3.7.

The subjective test has two phases. The first phase evaluates 9 enhanced images

using our method by adjusting β, and find the best β for each content. The second

phase evaluates enhanced images using five existing methods and the best β image

version obtained in the first phase.

Our test method is paired comparison. Each pair of enhanced images of the same

content is presented side by side on a 4k monitor (DELL P2415Q), and the right-side

image is horizontally flipped. The monitor resolution is 3840×2160. The image is

symmetrically cropped to be 1900×1080. Each of the 20 subjects are asked to indicate

which image is perceptually better in terms of illumination, noise, naturalness, color

and incorrect textures. The subjective image quality is calculated from the paired

comparison results using the Bradley-Terry Model [37]. The calculated subjective

scores are all relative; the best quality score is set to be 0.

The results in Figure 3.9 show that each of LOM, SMO and LOE has a concave

relationship with subjective image quality, and the concave curve varies for different

contents. The comparison between Figure 3.9(a), 3.9(b) and 3.9(c) indicates that our

LOM reduces content-dependency compared to SMO and LOE. The overlap between

concave curves of different contents in Figure 3.9(a) is much greater than in Figure

3.9(b) and (c). For example in Figure 3.9(b), the best version of image 6 has an

SMO of 5.5, but this is larger than the SMO of all versions of the other 5 images,
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including their worst quality versions. In Figure 3.9(c), the comparisons between

the best version of image 5 with LOE 440 and images 2, 3, 4, 6, and between the

best version of image 6 with LOE 358 and images 2, 4 show the same situations

as mentioned for Figure 3.9(b). This means SMO and LOE are unsuited for use to

find the best degree of enhancement when applied to different contents. In contrast,

Figure 3.9(a) shows a better set of concave curves; the LOM of all versions of one

image are neither smaller or larger than the LOM value of the best version of another

image.

Visual quality of an enhanced image is influenced by both illumination and natu-

ralness. For example, image 6 has the highest Pu and its best version has the largest

LOM compared to the other 5. The reason is that image 6 is heavily under-exposed,

so the illumination improvement has a larger influence than unnaturalness.

Table 3.1 shows the results of subjective quality of images enhanced by the five

enhancement methods and ours, and indicates that our method shows more balanced

performance considering image quality and computational efficiency. The results of

subjective scores show that the overall performance of the 6 methods can be listed

from the best to the worst as SRIE, ours, WAHE, LDR, CVC, LLCRM. LLCRM

is applied for low-light image enhancement, so it performs much worse when Pu is

small for images 1 to 4 compared to other methods. LDR, CVC and WAHE focus on

contrast enhancement, they all have relatively unbalanced performance compared to

SRIE and ours. For example, their performance is worse for image 6 with Pu = 0.82

than images 1, 2, 3 with Pu < 0.6. SRIE and our method show the best or at least

the 3rd performance for different contents. However, the processing time for SRIE

is more than 50 times longer than the other five methods. Because SRIE uses an

iterative optimization strategy, and the optimization time significantly depends on

the content. Overall, the performance of our method is more balanced for contents

that cover a range of Pu from 0.35 to 0.82.

We also apply our enhancement method into videos. For each signle frame in the

video, we enhance it to the version with peak quality using LOM . In our experiment,
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Table 3.1.: Negative subjective quality (“0” indicates the best) and average processing

time of the 6 enhancement methods

image LDR CVC WAHE SRIE LLCRM ours

1 0.68 0.28 0.68 0 2.37 0.44

2 0.82 0.95 0 0.13 3.95 0.39

3 1.45 0.69 1.75 0 2.78 0.51

4 1.91 1.15 1.23 0.47 2.54 0

5 1.05 1.65 2.19 0 0.53 1.01

6 3.00 3.65 2.46 0.73 2.18 0

time(s) 0.42 4.88 0.41 89.84 1.74 1.81

the average LOM of the peak points in Figure 3.9, 0.127, is set to the threshold

value TLOM of LOM that corresponds to the optimal enhancement point. An image

that has LOM greater than TLOM is considered to be over-enhanced so that the

amount of enhancement should be decreased. Then, Bisection search is used to find

the enhancement parameter β that makes the image to have LOM to be TLOM . The

maximum β and the minimum β in the search process is defined to map the luminance

value of 1 to half of maximum luminance and to luminance value of 2, respectively.

The bisection range of β is then calculated to be [1.2, 127.5]. Figure 3.10 shows the

example of enhanced video frames. Through our observation of the enhanced videos,

the temporal consistency is well maintained despite the enhancement is individually

applied to each of the frame.

3.6 Conclusions

In this chapter, we propose a controllable enhancement illumination method that

allows the degree of enhancement to be adjusted using a single parameter. We then

propose an over-enhancement measure, LOM, to evaluate the unnaturalness of en-
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hanced images. Our results of subjective test indicates that our enhancement method

has a balanced performance in terms of image quality and running time compared

to existing enhancement methods. Our proposed over-enhancement measure, LOM,

also shows its effectiveness in the subjective test. It reduces the content dependency

and provides a score with interpretability compared to existing over-enhancement

detection methods.

For future work, one issue is how to improve the illumination within over-exposed

regions simultaneously. One difficulty is that over-exposed regions has a loss of details

so that the enhancement algorithm should consider how to recover some of details

based on the neighboring regions in one image or nearby frames. Another issue is

how to design an objective measure for image or video quality after enhancement

that provides a consistent evaluation for both different contents and enhancement

methods [95].
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 3.5.: (a) original image (b) β = 2 (c) β = 4 (d) β = 8 (e) β = 12 (f) β = 16 (g)

β = 20 (h) β = 24
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(a)

(b)

(c)

Fig. 3.6.: (a) LOM = 0.07 (b) LOM = 0.10 (c) LOM = 0.13
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image 1 image 2

image 3 image 4

image 5 image 6

Fig. 3.7.: Test images: (1) Pu = 0.35 (2) Pu = 0.57 (3) Pu = 0.58 (4) Pu = 0.76 (5)

Pu = 0.76 (6) Pu = 0.82
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(a) (b)

(c) (d)

(e) (f)

Fig. 3.8.: Example enhanced images: (a) LDR (b) CVC (c) WAHE (d) SRIE (e)

LLCRM (f) ours
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Fig. 3.9.: 9-level enhanced images: subjective quality with (a) LOM (b) SMO (c)

LOE
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Fig. 3.10.: Video enhancement example: left frames are original, right frames are

enhanced.
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4. VISIBILITY-INSPIRED TEMPORAL POOLING WITH

APPLICATION TO VIDEO STABILIZATION

4.1 Introduction

In the past decade, the development of capturing and recording devices has

brought many new types of multimedia. The popularity of recording and sharing

mobile videos [120], FPVs, and drone videos [121] has rapidly increased, and inter-

active live streaming [122] also arouses enormous interest from people. As capture of

our daily lives becomes easier, high video quality becomes more important. However,

those new types of videos often contain much larger motion than broadcast videos;

we refer to them as large motion videos (LMVs). Note in this chapter, we focus on

LMVs with FPVs to be a typical example.

LMVs are often low-quality due to camera motion during capture. Since LMVs can

be captured using hand-held phones or body-mounted cameras, they are often quite

shaky. In contrast, broadcast videos are recorded by stably-mounted cameras that are

static or contain low-speed motion. Therefore, motion-induced quality degradations

in LMVs are often much worse than broadcast videos [6].

Because of the low-quality nature of LMVs, the assessment of their video quality

is important. Our goal is to design a LMV quality estimator (QE) to specifically

consider the influence of motion on the perception of quality degradations, which

differentiates LMVs from broadcast videos. When an image moves quickly, many

details cannot be perceived so that the perceived amount of artifacts becomes smaller

than a similar static version [123].

As we will show below, existing video quality estimators (VQEs) are not effective

when applied to LMVs. Most VQEs [124] are proposed to measure multiple artifacts

including blur, compression artifacts, noise, and they often extract temporal features
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that do not measure the influence of large motion magnitude. In addition, most ex-

isting methods are only validated using videos that were captured by stably-mounted

cameras [83, 125]. On the other hand, the development of still image quality estima-

tors (IQEs) has matured, and they are effective for multiple type of distortions in

different contents [19,20,126,127].

To design a VQE, two strategies are commonly used. One strategy is to use an

IQE that estimates the quality scores for each individual frame, followed by a tempo-

ral pooling mechanism to aggregate frame-level scores into a single video-level score.

Another is to extract spatial features as IQEs do, and then combine them with tem-

poral features to be mapped into a video quality score. Temporal pooling strategies

are more suitable for the quality assessment of LMVs, because the incremental design

allows it to leverage different accurate IQEs, thus avoiding the cost of metric redesign

when the type of artifacts changes.

In this chapter, we propose a visibility-inspired temporal pooling (VTP) mecha-

nism [128] for the quality estimation of LMVs, The VTP mechanism combines frame-

based spatial quality scores into a video score by considering that the relative impor-

tance of an individual frame in the entire video depends on its visibility. We then

apply our VTP mechanism to measure the relative perceptual blurriness before and

after video stabilization. Existing methods to evaluate stabilized videos focus only on

the motion stability [129–131]; however, perceptual blurriness is another important

quality factor. The stabilized video is perceptually more blurry than its original for

two reasons. First, the stabilization process applies a geometric transformation into

each frame that adds spatially variant blur into the frame. The second more impor-

tant reason is that the blur that already exists within frames, which was caused by

camera motion, becomes more visible when there is less frame-to-frame motion. The

estimation of quality drop due to increased perceived blurriness can be an important

evaluation factor for stabilization algorithms.

Our major contributions in this chapter are:

(1) We propose a visibility measurement that estimates the perceivable proportion of
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a frame under a given motion to consider the motion influence on perception.

(2) We consider the pooling weight of each frame to be a function of its visibility,

which is measured by carefully constructed subjective experiments.

(3) We apply the VTP mechanism to the scenario of video stabilization, and demon-

strate that it effectively measures the relative perceptual blurriness before and after

stabilization.

(4) We design a method to synthesize shaky videos in a controlled manner, and we

apply this method to create test videos in subjective tests.

Section 4.2 reviews the studies on the window of visibility and discusses existing

temporal pooling methods and their weakness when applied to LMVs. Existing objec-

tive and subjective quality assessment strategies are also reviewed. In Section 4.3, we

describe our proposed visibility measurement for individual frames under a given mo-

tion. Then we introduce the visibility-inspired temporal pooling (VTP) mechanism

and a method to gather necessary subjective video quality data in Section 4.4. In

Section 4.5, we implement a subjective test to gather subjective video quality scores,

and validate our VTP mechanism by comparing it with existing temporal pooling

mechanisms. In Section 4.6, the VTP mechanism is applied to measure the relative

blurriness between videos before and after stabilization, and a systematically designed

subjective test is implemented to successfully demonstrate its effectiveness.

4.2 Related works

4.2.1 The Window of Visibility

The visibility of quality degradations during motion has been studied in [25, 38],

in which the theory of the window of visibility is proposed. The window represents

human visual spatio-temporal contrast sensitivity function (STCSF). The perceiv-

able contrast decides a boundary outside which the spatio-temporal content is not

perceivable.
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The window of visibility was derived based on the STCSF measured from [132]. [38]

approximated the window shape based on isosensitivity coutours of contrast thresh-

olds in STCSF, and indicated that the window of visibility is a simplified representa-

tion of spatial and temporal frequencies that are visible to human observers.

Figure 4.1 shows the window of visibility with an example of spatio-temporal

content of a moving line, where the x-coordinate is spatial frequency (cycles/degree)

and the y-coordinate is temporal frequency (Hz). The positive frequency part of

the window is the triangle with three vertices, (0, 0), (u0, 0) and (0, w0), where u0

is spatial frequency limit and w0 is temporal frequency limit. Consider the motion

function of a line: m(x, t) = δ(x−rt), where x is the position, t is the time, and r is the

speed. The transformed moving line in the spatio-temporal domain is determined by

f(u,w) = δ(w+ ru), where u and w are spatial and temporal frequency, respectively.

f(u,w) is shown as the red line in Figure 4.1, in which the dashed part of the line is

the part of f(u,w) outside the window of visibility that cannot be perceived.

The window limits u0 and w0 are determined by the display luminance I according

to [38]. u0 is saturated at around 50 cycles/deg at I = 7cd/m2, and w0 has a

linear relationship with display luminance log10(I) that can be approximated as w0 =

15 · log10(I) + 35 Hz.

4.2.2 Temporal Pooling Methods

The process of temporal pooling maps frame-level quality to video-level quality.

Average pooling is the simplest strategy. It assumes every frame contributes the same

amount to the video quality, so the mean frame score is the video quality. However,

human evaluation of video is influenced by the severity of quality degradations, the

temporal variation of distortions [133], the temporal hysteresis effect [134], the motion

influence and many other factors, so average pooling is not an accurate strategy.
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Fig. 4.1.: Green: the window of visibility (u0, w0) boundary. Red: spatio-temporal

content of u in which the solid line is visible, and the dashed line is invisible

A typical method to assign unequal weights to frames based on the influence of

frame quality scores is weighted average pooling:

Q =

∑
i ωi · qi∑
i ωi

, (4.1)

where qi and ωi are the frame quality score and pooling weight for ith frame, respec-

tively, and Q is the video quality score. There are two basic strategies to choose

these weights; one considers only the value of frame quality scores, while the other

accounts for other quality factors. The first strategy applies a mapping function to

combine all frame scores. Typical methods are percentile pooling, Minkowski pool-

ing and LocalMinimum pooling [135]. The percentile pooling method considers only

the quality scores below a certain percentage threshold. Minkowski pooling empha-

sizes high quality frames, while LocalMinimum pooling emphasizes the worst part

of the video. Some other temporal pooling also uses parametric functions such as

SoftMax [136] or KMeans clustering algorithms [137]. The second strategy consid-

ers other quality influences, such as memory or motion. A hysteresis model in [134]

emphasizes the memory effects for a human observer. In [133], the temporal pooling

strategy measures the influence of the quality temporal variations.
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Most current temporal pooling metrics do not consider the influence of motion, so

they are not suitable for LMVs. The aforementioned second type of temporal pooling

can be extended to our case. By emphasizing the motion influence in the computation

of weights assigned to each frame, a temporal pooling mechanism can be applied to

LMVs. One example is the human visual speed model proposed in [138].

4.2.3 Objective Quality Assessment

Existing image or video quality estimators are mostly designed to measure the

perception of distortions and are built based on human visual system properties.

While challenges remain, they have become quite mature in their ability to accu-

rately estimate image quality. Typically, they can be classified into three types:

full-reference (FR), reduced-reference (RR) and no-reference (NR) methods. FR and

RR methods [12, 13, 40, 41] need a high-quality reference image or video, while NR

methods estimate the quality of a single image without relying on any reference [42].

A recently proposed new type of method, mutual reference (MR) [46], measures the

relative quality between images with overlapping but not necessarily pixel-aligned

content.

FR and RR methods are not appropriate to apply to realistic stabilization scenar-

ios. When evaluating a distorted video, FR and RR methods need a corresponding

reference that has pixel-aligned frames. Since stabilization operations introduce pixel-

misalignment in frames, the original video can not be a reference for its stabilized

version using either FR or RR methods.

4.2.4 Subjective Quality Assessment

Subjective quality assessment, in which human observers assess quality, is an ef-

fective tool to address two challenges. The first is the performance validation of newly

proposed QEs. Many subjective video quality databases have been published for the

evaluation of QEs in different applications involving compressed videos [28], camera
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videos [29] and high frame-rate videos [30]. The second is obtaining data that can

be used to help design QEs by using subjective data for parameter estimation in

fitting a mapping model. A subjective test for the latter case should be designed to

follow two principles: (1) human observers should be able to perceive the differences

between images or videos, (2) extraneous quality factors that are not assessed should

be equal. For example in [7], different amounts of rotation or shear have been syn-

thetically injected into images while other types of distortions are maintained to be

equal. [31] proposed a video stability estimator in which one parameter is estimated

using gathered subjective data. Their test videos are synthetically created to have

different motion but no other distortions.

4.3 Visibility Measurement

In this section, we propose a visibility measurement developed using the window

of visibility described in Section 4.2.1. We measure the visibility to be the proportion

of the overall power spectrum that is inside the window of visibility.

The visibility of frame i patch q, Viq, is considered to be the perceivable proportion

of its energy from all spatial frequencies. It is computed as the summation of the

fraction of energy over all spatial frequencies, weighted by their visible proportion

inside the window of visibility. Viq is then spatially averaged to compute the visibility

of frame i, Vi.

Specifically, given an image patch with speed v (where all bold font parameters

indicate a vector variable), we have a fixed window of visibility represented as (u0, w0).

Let u be one spatial frequency in the image patch. We consider only the part of u

parallel to v that influences the visibility. Then the temporal frequency w for u is

calculated as w = u · v. This is illustrated in Figure 4.1, where ‖u‖ cos θ, where ‖u‖

is the length of u and θ is the intersection angle between u and v. We compute the

fraction of energy, P (u) for spatial frequency component u, in the image patch to be

P (u) =
M(u)∫
u
M(u)

, (4.2)
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where M(u) is the magnitude of the spatial power spectrum at u in the spatial power

spectrum. Not all spatial frequencies u will be completely visible because some lie

out of the window of visibility. The energy fraction P (u) of spatio-temporal content

at u is weighted by its visible proportion ω(u), calculated as

ω(u) =
L(u,w)√
u2 + w2

. (4.3)

Here, L(u,w) is the length of the visible part shown in Figure 4.1, and
√
u2 + w2 is

the total length. The visibility of image patch q in frame i is then calculated as

Viq =

∫
u

ω(u)P (u). (4.4)

The visibility of frame i is spatially pooled from 31 × 31 patches overlapped by 15

pixels:

Vi =
1

Nq

∑
q

Viq , (4.5)

where q is the patch index, Nq is the total number of patches. The measured Vi is

not very sensitive to the chosen patch size and the spatial pooling method.

From another point of view, we can also interpret Equation (4.4) by considering

ω(u) to be the probability of spatial frequency content u and P (u) to be the probabil-

ity that u is perceivable given v, u0 and w0. Then the visibility Viq can be interpreted

as the probability that the image patch is perceived.

In our actual implementation, the speed v refers to the viewing angular velocity

vangular that depends on the viewing distance, and can be calculated using pixel speed

vpixel

vangular = fps · 2tan−1( vpixel
Dviewing

), (4.6)

where fps is the frame rate per second, and Dviewing is the viewing distance. In

addition, since the window limits u0 and w0 depend on the display luminance, we use

the gamma correction display model in [139] to transform pixel values into display

luminance with gamma value 2.2.
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4.4 Visibility-Inspired Temporal Pooling Modelling

In this section, we propose the visibility-inspired temporal pooling (VTP) method

that uses the weighted average pooling strategy of Equation (4.1) to combine frame

scores to create a video quality score. The pooling weight assigned to each frame

relies on the visibility estimated by the procedures described in Section 4.3. Then,

we introduce a data gathering strategy to collect subjective data for the modelling

and the validation of VTP.

4.4.1 Pooling Method

VTP employs the weighted average pooling strategy to combine frame spatial

quality into a video quality. It considers that each frame is not equally important for

the entire video, and their importance depends on the visibility. The pooling method

is expressed as

Q =

∑
i λ(Vi) · qi∑
i λ(Vi)

, (4.7)

where qi and Vi are the spatial quality and visibility of frame i, and Q is the video

quality score. λ(Vi) is the pooling weight, in which λ(·) is a function that can be

interpreted as the influence of the estimated visibility Vi on the relative importance

of qi.

4.4.2 Estimating the Function λ(·)

The function λ(·) in Equation (4.7) can be measured using D (for D > 1) test

video sequences that share the same visibility but have a different spatial quality in

the temporal domain. To see this, we write Equation (4.7) to be

Q′ = qTλ(V ), (4.8)

where the scaled video quality Q′ =
∑

i λ(Vi) · Q. Let K be the number of frames.

Then λ(V ) and q are both K × 1 vectors that represent spatial quality and the
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function λ(·) of the estimated visibility V , respectively. To get the solution of λ(V ),

we need to construct D different videos that all have the same visibility but different

quality Q′1, Q
′
2, . . . , Q

′
D. Then we can apply least squares to find the solution λ(V̂ )

for λ(V ) in Equation (4.8) to be

λ(V̂ )
T

=


q1

T

q2
T

...

qD
T



† 
Q′1

Q′2
...

Q′D

 , (4.9)

where † is the Moore-Penrose pseudo-inverse. The spatial quality values q1, q2, ..., qD

can be estimated using any existing IQE. After gathering the video qualityQ′1, Q
′
2, ..., Q

′
D,

we can estimate λ(·).

4.4.3 Data Gathering Strategy

To estimate the λ(·) using procedures described above, we need subjective and

objective measurements of the quality of D videos, all of which have same visibility

but different spatial quality. However, using a camera to capture D such videos is

challenging, because camera motion affects both the visibility and the spatial quality

of individual frames. To decouple these two quantities, we choose to create D videos

synthetically. Specifically, we take a large, high-quality still image to create a static

video. First, we inject synthetic motion blur into the video to create the desired

spatial quality. Then we crop the frame with a moving window to create a video with

the desired motion.

Two approaches are possible to form the collection of D videos. The first is to have

different levels of constant blur and adjust the motion to create equivalent visibility

for the collection of videos. However, this would require large differences between

the amounts of injected motion, which would create significant cognitive load during

the subjective test. Therefore, we choose the second approach, which is to add a

time-varying amount of blur to each video, and adjust the motion to achieve the
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desired equivalent visibility. The same sinusoidal amount of blur is added into each

video, but the blurs are temporally shifted from one video to the next. The resulting

videos have similar amounts of motion, making subjective testing a simpler task for

the subjects.

The objective quality of these D videos’ frames can be obtained using any IQE.

Clearly, the choice of IQE will affect the estimated λ(·). In this chapter, we use

LVI [46] to estimate frame quality to estimate λ(·). LVI has been demonstrated to

be effective at providing a consistent measure for blur [7].

Based on this strategy, the creation of a test video j needs the information of a

motion profile Aj, a blur profile Bj, and a visibility profile Pj. The profiles describe

the pixel shifts (Aj), the average filter kernel size (Bj) and the estimated visibility

(Pj) temporally for each frame in a video. Assume a blur profile B0 and a visibility

profile P0 where P0 ∝ −B0. If B0 is temporally shifted to a new blur profile B′0 while

P0 is maintained, there would be less masking effect for B′0. Figure 4.2 shows the

comparison between B0, B
′
0 and P0 in which 1− P0 = c · B0 with c to be a constant

parameter. When a temporal shift is introduced into B0 to blur profile B′0, the overlap

between B′0 and 1−P0 becomes smaller so that more blurry frames would have higher

visibility. The intuition here is that the motion has a masking effect, as measured by

the decreased visibility, on frame perceptual blurriness so that the perceived video

quality increases. To inject the temporal shift to the video in a controlled manner,

we shift the phase of the blur profile B0 in the frequency domain. By shifting phase

0.125π, 0.25π, 0.375π, 0.5π, B0 becomes new profiles B1, B2, B3 and B4, respectively.

The A0 is then edited to become Aj, for j = 0, 1, 2, 3, 4, in which the video visibility

profile is maintained to be constant, P0. A test set is then formed with videos created

by (Bj, Aj), for j = 0, 1, 2, 3, 4.
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Fig. 4.2.: Comparison between Blur profile B0, B
′
0 and visibility profile 1− P0

4.5 Subjective test for visibility-inspired temporal pooling

In this section, we describe our subjective test using synthetic shaky videos. The

test results from one source video are used to estimate the function λ(·) using method

described in Section 4.4.2. Then, our pooling strategy is applied to three other source

videos, and is demonstrated to perform the best when compared to different temporal

pooling methods across a range of existing image quality estimators.

4.5.1 Test Video Sets

To create synthetic videos, we start with 4 high-resolution images corresponding to

test sets Γj, where j = 0, 1, 2, 3. Videos are created by moving the cropping window in

the original image using the strategy described in Section 4.4.3. The injected pattern

of motion are extracted from one actual captured shaky video. Γ1 and Γ2 are created

with frequency range between 1 and 2 Hz, and the frequency range for Γ3 and Γ4 is

between 2 and 3 Hz. Each test set has five videos with blur phase shift 0, 0.125π,

0.25π, 0.375π, 0.5π. All test videos with their corresponding reference videos and the

video that is used to inject motion are available at [140].

To synthetically create videos in set Γj, we first obtain a motion profile Aj and

then compute the corresponding blur profile Bj and visibility profile Pj. Assume we
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want to have a motion profile Aj in the frequency range from a Hz to b Hz, where

a and b are constants, we introduce a method to inject motion by extracting an Aj

from a real shaky video:

1. Extract motion frequency spectrum FM from one actual captured shaky video.

2. From a Hz to b Hz in FM , find the peak frequency fpeak, and apply a Gaussian

filter centered around fpeak to create a frequency spectrum FM(a, b) from a Hz

to b Hz.

3. Transform FM(a, b) into motion in the time domain to create the motion profile

Aj. At time t, the motion vt can be

vt =
∑
f

ωf sin(2πft+ φ(f))−
∑
f

ωf sin(2πf(t− 1) + φ(f)) (4.10)

where ωf is motion magnitude corresponding to frequency component f in

FM(a, b). φ(f) is the corresponding phase in FM(a, b). Note vt can be either

horizontal motion xt or vertical motion yt.

Next we compute blur Bj based on the motion Aj in which the window length

of the average blur filter is proportional to the pixel displacement. Pj is computed

based on Bj and is then used to edit Aj to get A′j. Now, (Bj, A
′
j) is the motion and

blur information to synthetically create a video. Specifically,

1. Create motion profile Aj that at each time Aj(t) = [xt, yt]. Aj(t) refers to

angular velocity that requires the information of viewing distance and video

frame rate.

2. Create corresponding blur profile Bj with filter window length

Bj(t) = [max(1, xt),max(1, yt)]. (4.11)

3. Create visibility profile Pj so that

Pj(t) = max(0, 1− q ·
√
x2t + y2t ), (4.12)
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where q is a constant parameter. Note that Pj has the same temporal change

as Bj so that the larger the amount of blur, the lower the visibility.

4. For frame at t, we search for the motion A′j(t) = [x′t, y
′
t] so that the frame with

A′j(t) is measured to have visibility Pj(t). Let A′j(t) = α ·Aj(t), bisection search

is applied to find the value of α that satisfy the condition for A′j(t).

4.5.2 Test Setup

Our subjective test method is paired comparison. All pairs to be compared are

videos in the same set Γj. A pair of test videos is presented one after another on a

monitor (DELL U2718Q) that has resolution 3840×2160. The video is presented at

the center of the screen with resolution 1920×1080. The background is gray at 128.

Each test video is 5 seconds with frame rate 30 frames/second. Since the calculation

of the visibility relies on the viewing distance, it is fixed to be 3.2 height of the video.

Each of the 20 test participants are asked to choose in which video can you perceive

more spatial details.

4.5.3 Subjective Test Results

The relative subjective qualities are estimated using the Bradley-Terry Model [37].

The test results are shown in Figure 4.3 where the best quality is 0 for each test

content.

The subjective results indicate that a larger phase difference between visibility and

blur introduces more perceived quality degradations for a human observer in all four

test contents. This demonstrates that the window of visibility does have a masking

effect on the perception of blurriness; low quality frames have little influence when

they have low visibility.

One additional comment about content differences is that content 1 and 2 show

greater quality differences between videos with phase shift 0 and 0.5π than content
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3 and 4. One reason is that content 1 and 2 have lower-frequency motion than do

content 3 and 4. Content 1 has much greater quality difference between videos with

phase shift 0 and 0.5π than other contents, because it contains a higher proportion of

regions with high spatial frequencies that enable the differences to be more perceiv-

able.

4.5.4 Estimating λ(·)

We estimate the function λ(·) using the method illustrated in Section 4.4.2. We

apply the subjective results from the four contents to estimate λ(·), and choose the

estimated model using content 1 because it achieves the highest PLCC between V

and λ(V̂ ) among the four contents.

The temporal weighting vector λ(V̂ ) is calculated by Equation (4.9), where Q is

the subjective quality scores of the five test videos of content 1. Vector q is estimated

by LVI [46]. Figure 4.4 shows the comparison between V and the estimated weighting

vector λ(V̂ ). We fit function λ(·) using the logistic function.

f(x) = (t0 − t1)/(1 + exp (−(x− t2)/|t3|)) + t1 (4.13)

Then we normalize the values after mapping, where the maximum value and minimum

value for normalization is f(1) and f(0). The estimated λ(·) shown in Figure 4.5

maps measured visibility to pooling weight with fitted parameters t0 = 0.26, t1 =
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Fig. 4.4.: Comparison between V and estimated λ(V̂ )
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Fig. 4.5.: Function λ(·) in Equation 4.1: x-axis is measured visibility Vi, y-axis is

λ(Vi).

−1.25, t2 = 0.95, t3 = −0.05. Our measure for visibility is shown to have an nonlinear

relationship with the pooling weight in Figure 4.5.

4.5.5 Evaluating the Overall Method

The function λ(·) is estimated using one test video content, while our VTP strategy

is validated using the other three test video contents. We compare our method with

existing pooling strategies: average pooling, percentile pooling (70th), Minkowski

pooling (p=2), speed pooling [138], temporal variation pooling [133], and hysteresis
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pooling [134]. In our implementation, the relative speed is zero in speed pooling,

since all our test videos only contain global motion. In addition, we only consider

the global temporal pooling method in [133] and set the distortion value to be the

negative quality value plus the maximum quality value of the quality metric. To test

the generality for different IQEs, we estimate the frame quality using four FR IQEs

(SSIM [126], GSM [49], VSNR [127], VSI [141]), one mutual reference IQE, LVI [46],

and two NR IQEs (BRISQUE [19], NIQE [20]). All quality scores are normalized to

be between 0 to 1 using the minimum and maximum values in [44].

Table 4.1 shows the Pearson linear correlation coefficient (PLCC) and Spear-

man rank-order correlation coefficient (SROCC) between the subjective video quality

scores and the objective temporal pooling scores using different IQEs. For all three

test contents, our pooling method shows the best overall performance.

Our VTP mechanism can achieve high PLCC and SROCC for two reasons. First,

because of the limited number of test samples, PLCC and SROCC mainly measure

whether the method correctly ranks the video quality. Second, the subjective test

and our proposed method are both specifically designed for the masking effect on

perceived blurriness due to motion.

The results also show that our method can generalize across different contents.

Our method incorporates the influence of content since our estimation of visibility

computes spatio-temporal information in a single frame. In addition, we model the

relationship λ(·) between visibility and pooling weight based on gathered subjective

data that has better cross-content performance than considering λ(·) to be linear.

Our VTP mechanism is not successful when pooling either BRISQUE and NIQE

for content 2. BRISQUE and NIQE do not provide a consistent measure when the

same amount of blur is added into pixel-shifted content. The test videos in content

2 are produced with greater frame-to-frame pixel shifts than content 3 and 4, so the

BRISQUE and NIQE scores of content 2 are not as robust as in other contents.

Speed pooling has the second best performance among all. It computes temporal

weights based on motion, but their model parameters are only evaluated on videos
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with low-speed motion. The other 5 methods are not suitable for our situation of

LMV. They pool the video quality using only frame scores. However, our videos are

created to have similar frames scores with different visual qualities, so these methods

cannot capture all the relevant information.

4.6 Measuring perceptual blurriness after video stabilization

In this section, we demonstrate the effectiveness of applying the VTP mechanism

to measure the perceptual blurriness in stabilized videos using the gathered subjective

data. As motion decreases, the blurriness becomes more visible. Therefore, the

blurriness of a stabilized video is perceptually more severe than its original video.

Instead of only improving the motion stability, the video quality drop due to increased

blurriness should also be considered in the design of stabilization algorithms.

Section 4.6.1 illustrates the strategy of gathering subjective evaluation of shaky

videos and their stabilized versions. We synthetically create shaky videos by adding

synthetic motion and blur into high-quality stably-captured videos. Then, Section

4.6.2 introduces a motion-frequency method to inject real shaky motion to create test

videos. In Section 4.6.3, the test methodology and setup are described. Section 4.6.4

and Section 4.6.5 show the subjective test results and validate the performance of the

VTP mechanism, respectively.

4.6.1 Test Motivation and Strategy

To validate the effectiveness of our method in measuring the relative blurriness

before and after stabilization, we need to gather the subjective evaluation of percep-

tual blurriness of shaky videos and their stabilized versions. In order to have videos

independent of specific stabilization algorithms and their motion estimation strate-

gies, we synthetically create shaky videos by adding ideal motion to a high-quality

stable video instead of applying a stabilization algorithm to captured shaky videos.
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The test videos need to follow the principles for subjective testing, in that they

should have perceivable blur differences and equal quality factors that are not assessed.

In order to evaluate only the blurriness, our test individually compares two sets of

videos, where within each set the videos have the same motion. The first set Λu

contains unstable (shaky) videos with different amounts of motion blur, the second

set Λs contains stable videos that are stabilized versions of Λu. We gather the relative

subjective scores, independently from both sets. Then, with one estimate of the

relative quality between a single pair of videos in Λu and Λs, the relative quality

between any pair from both sets can be computed.

The creation process of Λu and Λs is shown in Figure 4.6. Stable high-quality

videos are our source videos. To create the Λu, we first add shaky motion into a source

video to create the synthetic shaky video V 0
u ; the motion transformation T is a set

of geometric transformations for each single frame. Then, different amounts of blur

are added into V 0
u to obtain shaky test videos V 0

u , V
1
u , V

2
u , V

3
u , V

4
u . The set Λu consists

of the shaky reference and the four shaky test videos, all with identical motion. To

create Λs, we apply T−1, the inverse transformation of T , to every video in Λu. Λs

consists of the stable reference V 0
s and the four stable test videos V 1

s , V
2
s , V

3
s , V

4
s . V j

s

and V j
u form a stabilization pair, where j = 0, 1, 2, 3, 4. Note that T−1 is considered to

be the stabilization process. By applying a known transformation T , our stabilization

using T−1 is well defined and identical for each video in Λs.

After gathering the subjective quality of Λu and Λs separately, we need to know the

relative quality of an anchor stabilization pair to compute the quality differences of the

other four pairs. V 0
u and V 0

s is chosen to be the anchor pair because of the convenience

to compute their quality difference. Let the blurriness of V 0
u to be Q0

s = 1 and V 0
s have

blurriness Q0
b . Since the V 0

s has little motion after stabilization, the impact of motion

on visibility is negligible, so only its frame quality influences Q0
s −Q0

b . By applying a

specific IQE, we can measure the relative quality Q0
s −Q0

b . Then the relative quality

among all videos in Λu and Λs can be computed.
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Fig. 4.6.: Diagram of creating test set: Λu and Λs

4.6.2 Synthetic creation of shaky videos

To synthetically create a set of shaky videos, Λu, that simulates the actual cap-

tured motion, we introduce a frequency-based method that injects the pattern of mo-

tion that is present in an actual captured shaky video into a stably-captured source

video. Note this subsection only describes our method for injecting shaky motion into

the video, not for also adding blur.

First, we extract motion-frequency information of three rotational components,

yaw, pitch and raw, from a shaky video S that was captured using a real camera.

Because of the low-quality nature of S, it is often not possible to accurately and

directly estimate the three rotational components. Instead, we use 2D translation

xt and yt at time t to approximate yaw and pitch at a given viewing distance and

rotation θt to approximate roll. We estimate using the frame-to-frame homography

decomposition in [6]. xt and yt is transformed to angular yaw velocity vyaw and pitch

velocity vpitch by setting a standard viewing distance, 3.2 times the height of the

image, using Equation (4.6), and angular roll velocity vroll is directly computed as

fps · θt. Specifically, vyawt is the cumulative yaw rotation at time t. By applying

discrete Fourier transform into yaw rotation in S to get its temporal spectrum f yaw.
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Then, peak frequencies every 1Hz frequency range is picked in f yaw to compute vyawt

as

vyawt = d
N∑
i=1

wi(sinωit+ φi), (4.14)

where d is the magnitude scale factor in time domain, wi and φi are the magnitude

and phase of frequency range i in f yaw. vyawt represents the cumulative yaw rotation

between frame 0 and frame t, vpitcht and vrollt can be derived using the same way as

vyawt .

Then, we want to create a motion transformation T that transforms the stably-

captured source video with existing camera path Dt to have this estimated motion

from S. From the estimated angular motion velocities in S, we can obtain the desired

shaky camera path Ct. Let Et be the transformation that warps the stable video

frame to egocentric frame at time t, then we can compute Et as follows:

Ct = EtDt (4.15)

The relationship between frames in Ct and Dt can be modeled as

Ct = Gt−1Ct−1, (4.16)

Dt = Jt−1Dt−1, (4.17)

where Gt and Jt are frame-to-frame transformation for Ct and Dt. Then we can get

Ct = Gt−1Gt−2...G0C0 (4.18)

Dt = Jt−1Jt−2...J0D0 (4.19)

Et can be calculated based on the relationship that C0 = D0,

Et = CtDt
−1 = (Gt−1Gt−2...G0)(Ft−1Ft−2...F0)

−1. (4.20)

Gt can be decomposed as

Gt = KRt[I|Tt]K−1, (4.21)
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where K is the intrinsic matrix of the camera, Tt is kept as the same translation as

original in Dt, Rt has three rotational components, yaw, pitch and roll. Then, the

actual Rt is computed as

Rt = rtrt−1
−1, (4.22)

where rt is the 3D rotation matrix created by vyawt , vpitcht and vrollt . Et is applied to

each frame in the stable source video to create Λu. With this Et, the Λu will have

motion-frequency characteristics similar to the desired motion in S. The inverse of Et

is then applied to videos in Λu to simulate the stabilization process to create videos

in Λs.

It should be noted that Section 4.5.1 synthesizes the video using 2D motion for a

cropping window in an image, while here we use 3D motion transformation applied to

a video. Another difference is how motion-frequency information is extracted from an

actual captured shaky video, Section 4.5.1 extracts motion within a frequency range

such as 1 to 2 Hz, while here we extract from the full frequency range.

4.6.3 Test Description

Test video sources are high-quality stable videos captured using a GoPro6 (4k

resolution, wide field of view, 30fps) mounted on a tripod. By smoothly moving the

tripod, we can record stable videos with either forward or panning motion. Three

high-quality stable videos captured on the Purdue University campus, a grocery store,

and some apartment buildings are selected for creating test videos. For each of the

three contents, Λu and Λs are synthetically created using the methods described in

Sections 4.6.1 and 4.6.2, and all videos are cropped into resolution 1920 by 1080. It

should be noted that the synthetic motion blur is added into the video using the

method in Section 4.5.1. The test videos and the actual captured shaky videos that

are used for injecting motion are available at [142].

The Double Stimulus Impairment Scale (DSIS) method is chosen for the exper-

iment. Pairs of videos are displayed sequentially. 20 test participants are asked to
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rate the blurriness of the second video compared to the first video. The rating scale is

from 1 to 9 (9 is the best), and viewers are informed that the first video is a reference

video that has quality score 9. The test environment is the same as described in

Section 4.5.2. For the stabilized videos in Λs, V
0
s is the reference video and V j

s are

the videos to be rated, where j refers to the five blur levels. Note that we also include

the case where the reference videos appears as the test videos. We apply the same

strategy to gather subjective data for the shaky videos in Λu.

4.6.4 Subjective Results

To apply statistical analysis on the subjective data, we normalize subjective rat-

ings using the maximum and minimum scores of each participant. Then, an outlier

detection is applied to remove subjective ratings that deviate more than two standard

deviations from the mean (95% confidence interval). Two participants’ ratings are

considered to be invalid and removed. The Mean Opinion Score (MOS) is calculated

as the mean of the subjective ratings:

MOSij =
1

N

∑
k

sijk (4.23)

where i is the video index, j is the blur level index, k is the participant index, and

N is the number of valid participants. si0k is the reference video subjective score for

participant k. The 95% confidence interval of MOS is given by [MOSij − δij,MOSij +

δij], where δij is calculated as

δij = 1.96

√∑
k

MOSij − sijk
N(N − 1)

(4.24)

Figure 4.7 shows the MOS of the three contents, with the video of blur level j

defined to be V j
s . By comparing the slopes of the two sets, we see that the shaky

videos have smaller visual differences in adjacent blur levels than do the stable videos.

For example in Figure 4.7 (a), the difference between V 2
u and V 3

u is smaller than that

between V 2
s and V 3

s . It can be interpreted as when the same amount of blur is
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added, an unstabilized video has less visual blurriness increase than its stabilized

version. Therefore, it can be concluded that stabilized videos are perceived to be

more blurry than the unstabilized videos, when each have the same amount of blur.

This corresponds to our assumption that the visibility of blur decreases when the

video contains more motion. One exception is the blur level 3 and 4 in Figure 4.7(c);

the score of the stable video, V 4
s , is 0.027, which almost reaches the worst possible

quality of 0. The scale limitation restricts the slope.

The subjective differences between a reference and itself should always be zero.

However, we see from Figure 4.7 that the reference video in the Λs is rated as having

lower subjective quality than the reference video in the Λu. Therefore, we will elimi-

nate this difference in our analysis. As our goal is to evaluate the perceptual blurriness

between unstabilized and stabilized videos, we need to estimate the subjective differ-

ences between Λu and Λs. Our solution is to use objective quality measures. In actual

implementation, V 0
u is considered to be the reference video for both Λu and Λs, and

objective quality metrics are used to estimate the visual blur differences between V 0
u

and V 0
s . Therefore, the subjective scores in Λu are maintained, while scores in Λs are

adjusted using the estimated difference (Qobj(V
0
u ) − Qobj(V

0
s ))), where Qobj(·) is the

objective video quality score. Note that all scores from Qobj(·) should be normalized

to have the same scale as the subjective scores.

4.6.5 Method Validation

In this subsection, the effectiveness of the VTP mechanism in measuring the

relative perceptual blurriness before and after video stabilization is validated using

the subjective results from Section 4.6.4. We demonstrates that the VTP can estimate

the perceptual blurriness of the combination set of shaky and stable videos.

We apply our VTP to estimate the objective quality of test videos. Three NR

IQE, BRISQUE, OG [143] and NIQE, and one mutual reference IQE, LVI, are used

to estimate frame spatial quality in VTP. We also compare our method with two
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Fig. 4.7.: (a) Campus (b) Grocery (c) Apartments (blur level j refers to V j
s ). The

vertical bar is the corresponding confidence interval.

existing NR VQEs, V-BLIINDS [144] and VIIDEO [145]. Note that no FR meth-

ods are applied here since they cannot be used to compare videos before and after

stabilization.



114

Table 4.2 shows the SROCC and PLCC between the MOS and the objective video

quality scores. NIQE-VTP and LVI-VTP outperform all other video quality measures;

both show high SROCC and PLCC for the three contents. OG-VTP and BRISQUE-

VTP show good performance for contents Grocery and Apartment, however, neither

are effective for content Campus. The content Campus has larger viewing angle

change than the other two contents so that it contains larger frame-to-frame pixel

shifts within a single test video. Since OG and BRISQUE have less consistency when

measuring different contents, they do not perform as well on Campus.

NIQE-VTP and LVI-VTP demonstrate their ability to estimate the perceptual

blurriness between shaky videos, between stable videos, and between pairs of them.

Therefore, both VTP can be effectively applied to estimate the relative perceptual

blurriness between a shaky video and its stabilized version. The estimated increase

of blurriness after stabilization can be a quality evaluation factor in designing stabi-

lization algorithms.

The VTP also shows its generalization ability using different IQEs. Since its

pooling function is modelled by the IQE, LVI, that provides effective quality measure

of blur. If VTP employs an IQE that has consistent measure as LVI does, the VTP

is then shown to have similar and good performance, such as NIQE-VTP.

Two existing NR VQEs, V-BLIINDS and VIIDEO, are effective for assessing the

perceptual blurriness of the stable videos, but not of the shaky videos or between

a shaky video and its stabilized version, because the V-BLIINDS and VIIDEO are

designed and tested only on stably-captured videos. Figure 4.8 that shows the com-

parison between LVI-VTP and V-BLIINDS. V-BLIINDS correctly ranks the set of

stable videos Λs (circle points), while two pairs of videos are ranked falsely in the

set of shaky videos Λu (triangle points). Because the inaccuracy in measuring the

shaky videos, the difference between a shaky video and its stabilized version is not

effectively estimated by V-BLIINDS. In contrast, LVI-VTP shows good performance

in estimating the visual blur differences among shaky videos, and between a shaky

video and its stabilized version.
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Fig. 4.8.: Objective scores versus subjective scores (circle points: stable videos Λs,

triangle points: shaky videos Λu, black line: fitting curve)

4.7 Conclusions

In this chapter, we propose a visibility-inspired temporal pooling method (VTP)

built on a measurement of visibility that is more effective at estimating the quality of

LMVs than existing pooling strategies. The VTP is also demonstrated to be effective

for the application of measuring the relative perceptual blurriness between videos

both before and after stabilization.

The VTP method employs a weighted average pooling where the weight is calcu-

lated as a function of visibility. The measurement of visibility considers the fraction

of visible details within a single frame under a given motion based on the window of

visibility. A systematic subjective test is implemented to model the pooling function

using our proposed visibility measure. The test results also indicate that our pooling
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strategy is more suitable for LMVs and can be effectively applied to pool quality

scores estimated by different types of image quality metrics.

The measurement of perceptual blurriness before and after video stabilization is

validated by another subjective rating test, using synthetically created shaky and

stable videos. The subjective results demonstrate that shaky videos have smaller

visual blur differences than stable videos because the visibility increases as motion

decreases. By applying the VTP to existing image quality metrics and comparing with

existing VQEs, we demonstrate the effectiveness of measuring the blurriness among

stable videos, among shaky videos, and between a shaky video and its stabilized

version.

There also exists two additional potential applications for our VTP mechanism.

First, we can compare the perceptual quality of videos that are simultaneously cap-

tured by multiple shaky cameras [146]. Second, the perceptual quality of a LMV after

post-processing can be compared relatively to its original. One example is a LMV

after illumination enhancement. The newly generated artifacts [22, 95] in its frames

may be imperceivable due to the low visibility.

The future work is to investigate how to improve the design of the VTP mecha-

nism. One potential improvement is to locally pool the image quality measure using

the visibility as a spatial mask. Another potential improvement is to consider the

influence of the temporal quality variation. In addition, more video content with

different motion can be also be tested to further optimize our method.



117

Table 4.1.: PLCC (SROCC) between objective pooling scores and subjective scores.

Content 2

Pooling method SSIM GSM VSNR VSI LVI BRISQUE NIQE

average 0.75(0.7) 0.7(0.6) 0.86(0.7) 0.48(0.6) 0.74(0.7) 0.49(0.3) 0.84(0.6)

Minkowski 0.7(0.6) 0.69(0.6) 0.84(0.7) 0.46(0.6) 0.78(0.7) 0.66(0.7) 0.82(0.5)

percentile 0.83(0.6) 0.77(0.5) 0.99(0.9) 0.24(-0.2) 0.86(0.6) -0.91(-0.9) 0.71(0.4)

speed [138] 0.94(0.9) 0.92(0.9) 0.97(0.9) 0.90(0.9) 0.94(0.9) 0.76(0.8) 0.95(0.9)

hysteresis [134] 0.57(0.6) 0.55(0.6) 0.87(0.9) 0.70(0.6) 0.62(0.7) 0.86(0.9) 0.59(0.7)

variation [133] 0.76(0.6) 0.72(0.6) 0.86(0.7) 0.48(0.5) 0.74(0.7) 0.48(0.3) 0.86(0.6)

VTP 0.99(1.0) 0.98(1.0) 0.98(1.0) 0.99(1.0) 0.99(1.0) 0.64(0.6) 0.81(0.7)

Content 3

Pooling method SSIM GSM VSNR VSI LVI BRISQUE NIQE

average -0.46(0.1) -0.52(0.1) -0.74(-0.7) -0.03(0.1) 0.04(0.1) -0.58(-0.3) -0.2(0.0)

Minkowski -0.51(-0.4) -0.52(0.1) -0.96(-0.9) -0.06(0.1) 0.1(0.1) -0.55(-0.3) -0.2(0.0)

percentile -0.09(0.1) -0.36(0.1) 0.72(0.7) 0.36(0.4) -0.3(0.0) -0.77(-0.9) 0.05(0.3)

speed [138] 0.80(1.0) 0.77(1.0) 0.51(0.7) 0.84(1.0) 0.65(0.6) -0.27(-0.1) 0.41(0.2)

hysteresis [134] 0.82(0.7) 0.87(0.9) -0.38(-0.3) 0.87(0.9) 0.37(0.3) 0.36(0.5) 0.61(0.5)

variation [133] 0.76(0.6) 0.72(0.6) 0.86(0.7) 0.48(0.5) 0.74(0.7) 0.48(0.3) 0.86(0.6)

VTP 0.98(1.0) 0.98(1.0) 0.96(1.0) 0.98(1.0) 0.97(1.0) 0.99(1.0) 0.98(1.0)

Content 4

Pooling method SSIM GSM VSNR VSI LVI BRISQUE NIQE

average 0.22(0.0) 0.39(0.1) 0.29(0.0) 0.32(0.0) 0.69(0.5) -0.03(-0.3) -0.51(-0.4)

Minkowski 0.04(0.0) 0.38(0.0) 0.07(0.0) 0.28(0.0) 0.46(0.1) 0.09(-0.3) -0.46(-0.3)

percentile 0.55(0.3) 0.72(0.8) 0.87(0.8) 0.73(0.9) 0.78(0.7) -0.84(-0.9) -0.72(-0.9)

speed [138] 0.85(0.9) 0.88(0.9) 0.72(0.6) 0.86(0.9) 0.89(0.9) 0.44(0.3) 0.49(0.3)

hysteresis [134] 0.79(0.6) 0.76(0.6) 0.50(0.1) 0.72(0.6) 0.59(0.3) 0.39(0.1) 0.70(0.4)

variation [133] 0.17(0.0) 0.38(0.0) 0.29(0.0) 0.33(0.0) 0.71(0.7) -0.09(-0.4) -0.64(-0.4)

VTP 0.99(1.0) 0.99(1.0) 0.98(1.0) 0.99(1.0) 0.98(1.0) 0.97(0.9) 0.98(1.0)
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Table 4.2.: SROCC and PLCC between objective video quality scores and subjective

scores.

SROCC

VQE Campus Grocery Apartment

V-BLIINDS 0.951 0.806 0.648

VIIDEO 0.903 0.830 0.467

BRISQUE-VTP 0.794 0.951 0.976

OG-VTP 0.490 0.952 0.964

LVI-VTP 0.988 0.988 1.000

NIQE-VTP 0.964 1.000 0.976

PLCC

VQE Campus Grocery Apartment

V-BLIINDS 0.931 0.798 0.756

VIIDEO 0.834 0.796 0.540

BRISQUE-VTP 0.850 0.920 0.990

OG-VTP 0.667 0.954 0.960

LVI-VTP 0.978 0.961 0.983

NIQE-VTP 0.914 0.979 0.974
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5. CONCLUSIONS AND FUTURE WORK

5.1 Summary

1. We propose a new strategy of image quality assessment, called mutual reference,

which does not fit the typical categorization of FR, RR and NR methods. Then,

we propose a framework of mutual reference frame-quality assessment for FPVs

(MRFQAFPV), in which we estimate the frame quality by incorporating the

MR QE, LVI. To evaluate the performance of MRFQAFPV, we implement a

subjective test to validate its effectiveness by comparing with existing NR QEs

and frame-to-frame motion. We present different distortions in images of FPVs

including motion blur, rolling shutter artifacts and rotation. Then we propose

a measurement method for classification and quantification of these types of

distortions. Our proposed algorithm provides information about how to design

an image or video quality metric for FPVs.

2. We propose a controllable enhancement illumination method that allows the de-

gree of enhancement to be adjusted using a single parameter. We then propose

an over-enhancement measure, LOM, to evaluate the unnaturalness of enhanced

images. Our results of subjective test indicate the effectiveness of our enhance-

ment method and LOM. Remaining issues for future work are how to improve

the illumination within over-exposed regions simultaneously and how to de-

sign an objective measure for image quality after enhancement that provides a

consistent evaluation for both different contents and enhancement methods.

3. We propose a visibility-inspired temporal pooling method (VTP) built on a mea-

surement of visibility that is more effective at estimating the quality of LMVs

than existing pooling strategies. The VTP is also demonstrated to be effective
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in the application of video stabilization, because it can measure the perceptual

blurriness between videos before and after stabilization. VTP method employs

the weighted average pooling that the weight is calculated as a function of vis-

ibility. The measurement of visibility considers the fraction of visible details

within a single frame under a given motion based on the theory of the window

of visibility. A systematic subjective test is implemented to model the pooling

function using proposed visibility measure. The test results also indicate that

our pooling strategy is more suitable for LMVs and can be effectively applied

to pool quality scores estimated by different types of image quality metrics.

5.2 Future Work

Frame-quality Assessment: The first improvement is to remove the scaling con-

straint in our MR quality estimator so that the quality measure can be applied to

images with different scales. Since the images with similar content in many cases

have different scales, if our design can compare local corresponding patches in terms

of their scale differences, the quality estimator can be applied into more different

scenarios.

The second improvement is to develop a quality estimator between images that

have no overlapping content and incorporate it into our present framework. Even we

can partition the video into different near-sets and measure their quality differences,

the quality comparison between different near-sets is still a problem. If we can build

a NR quality estimator that can be combined with our MR quality estimator, we

can use the best of information provided either from similar enough images and our

knowledge of “good” images.

The third improvement is to incorporate measures of more varieties of quality

degradations, such as illumination in another part of work. The quality measures
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of different quality degradations can also be combined to a video-quality level score,

which needs further investigation and can refer to the design of VTP strategy.

Illumination enhancement: The visual quality of an enhanced FPV is influenced

by motion, video content and temporal illumination change. The illumination en-

hancement strategy can be further improved by considering these aforementioned

FPV characteristics.

First, the motion in FPVs influences the visual quality of illumination enhance-

ment. When the motion is small, the strategy to enhance a frame in a video is similar

to enhance a single image. However, when the motion is large, frame content details

cannot be perceived due to the masking effect of motion. In addition, motion-induced

blur within frames also affects the ”goodness” of enhancement.

Second, the content also influences the visual quality of illumination enhancement.

There exist different salient regions within a FPV across time. During a specific

time interval, a human observer may focus on a region that is originally well-exposed

instead of a badly-exposed area. The enhanced badly-exposed region would be ignored

so that the video quality is not enhanced as expected.

Third, the temporal illumination change across time influences how we design

our enhancement strategy. The illumination difference between an original frame

and its optimal enhanced version influences the amount of enhancement applied to

it. For example, a very dark frame can have greater illumination enhancement than

a frame that is close to well-exposedness. If we enhance all frames into its best

achievable quality, the original illumination change within the FPV will be discarded.

The remaining question is that whether the best enhanced strategy is to enhance

every frame to its optimal point or to enhance each frame considering its illumination

differences between neighboring frames.

VTP mechanism: One potential improvement for our VTP mechanism is to lo-

cally pool the image quality measure using the visibility as a spatial mask. Another

potential improvement is to consider the temporal quality variation frequency influ-
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ence after weighted average pooling. In addition, more video content with different

structure of motion can be also be tested to further optimize our method.

The measurement of blurriness after stabilization can be applied to the design

of stabilization algorithms. Since the motion stability is the key quality factor for

stabilization, the increased blurriness is another aspect. The quality of a video after

stabilization can expressed as the combination of the quality increase due to motion

stabilization and the quality decrease caused by increased perceived blurriness. The

question becomes how to design the quality metric that consider both quality factors

for a video, and how to gather the subjective data to validate the metric.

Potentially, the visual quality of a video has a concave relationship with the de-

gree of stability using a specific stabilization algorithm. Under this relationship, the

design of stabilization algorithm can refer to the framework design of our illumination

enhancement, which improve a video into the best achievable quality by controlling a

knob. The quality metric to be designed can be used to adjust the parameter setting.
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