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ABSTRACT

Almorshdy, Eslam M.Sc., Purdue University, August 2019. Evaluating Spatial Queries
over Declustered Spatial Data. Major Professor: Vernon Rego.

Due to the large volumes of spatial data, data is stored on clusters of machines

that inter-communicate to achieve a task. In such distributed environment; com-

municating intermediate results among computing nodes dominates execution time.

Communication overhead is even more dominant if processing is in memory. More-

over, the way spatial data is partitioned affects overall processing cost. Various par-

titioning strategies influence the size of the intermediate results. Spatial data poses

the following additional challenges: 1)Storage load balancing because of the skewed

distribution of spatial data over the underlying space, 2)Query load imbalance due to

skewed query workload and query hotspots over both time and space, and 3)Lack of

effective utilization of the computing resources. We introduce a new kNN query eval-

uation technique, termed BCDB, for evaluating nearest-neighbor queries (NN-queries,

for short). In contrast to clustered partitioning of spatial data, BCDB explores the

use of declustered partitioning of data to address data and query skew. BCDB uses

summaries of the underling data and a coarse-grained index to localize processing of

the NN-query on each local node as much as possible. The coarse-grained index is

locally traversed using a new uncertain version of classical distance browsing resulting

in minimal O(
√
k) elements to be communicated across all processing nodes.
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1 INTRODUCTION

In this thesis we answer spatial queries over large volumes of big spatial data. Specif-

ically we evaluate nearest neighbour queries (kNN) [1] queries over large volumes of

spatial data. kNN query, for a given focal point, reports k closes objects. The data we

consider are spatial (multidimensional). we consider real-life geographic data as well

as several data derived from uniform, gaussian, and joint (correlated) distributions.

Systems adding spatial awareness to big data processing [2–4] have considered spatial

and random partitioning strategies. In Spatial decomposition logical space partitions

are mapped to computing nodes. It has two drawbacks. First, under utilization of

resources since only partitions relevant to the query can contribute. Second, vulner-

ability to hot-spots if subjected to skewed query workload. In Random partitioning,

every computing node is assigned a random set of objects. While seemingly fully

occupied with processing, it is poorly utilized as many local solutions can be ruled as

non-contributing after necessary communication (reduction). To address these draw-

backs in the context of NN-Queries we propose BCDB (Balanced Coarse Distance

browsing); an in situ approach for processing NN-Queries over big spatial data. We

utilize declustering to achieve Load balancing. To minimize uncertainty of local so-

lutions and consequently communication overhead, a coarse grained index (over leaf

MBRs) is shared among computing nodes. The coarse grained index is locally tra-

versed using a new uncertain version of classical distance browsing [5] resulting in

minimal O(
√
k) elements to be communicated across all processing nodes.

Section 1.1 discusses properties for distributed evaluation of a database operator.

Section 1.2 formulates an abstraction for evaluating kNN and motivates for coarse

evaluation of kNN. Chapter 2 reviews R-trees, Nearest Neighbour Queries, Space

Filling Curves, and Big Spatial Data Processing. Chapter 3 introduces preliminaries
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and the details of the proposed coarse distance browsing. Chapter 4 analytically

and empirically estimates bounds on uncertainty in the output of coarse distance

browsing. Appendix A shows a visualized execution trace of an instance of coarse

distance browsing.

1.1 Operator Taxonomy

When considering distributed evaluation, distributiveness is the first examined

property of an operator. For operators that can be recursively expressed we differen-

tiate whether it is a generative or a structural expression.

1.1.1 Distributiveness

Distributive operators (those that can be realized as a select/filter), while inher-

ently parallel and show no need for communication, are sensitive to skewed query

workload if no careful partitioning strategy is adopted (load balancing challenge).

For example. spatially partitioning spatial data and subjecting it to a spatial query

workload will result in hot spots.

1.1.2 Structural vs Generative recursion

An expression is structurally recursive when the input’s structure is not altered

through the recursive step. For example, traversing a tree or searching a sorted array

doesn’t alter the tree’s hierarchical composition or the array’s sortedness. Generative

recursion happens when the structure of the input is altered ahead of the recursive

step. For example, ordering around the pivot of a recursively defined quick sort.

Operators that can be expressed using structural recursion [6] are distributive by def-

inition. Operators that can only be expressed using generative recursion (i.e., input to

recursive calls is different from original input’s structure or order) are non distributive

and incur communication overhead (communication & load balancing challenge).
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Genera&vely**
Recursive*

Non2Distribu&ve*

Distribu&ve*

Structurally*Recursive*

Figure 1.1.: Distributiveness and kind of recursion

1.2 Intuition

We chose kNN as the most common non-distributive spatial operator, so it is

representative of generatively recursive operators (communication challenge). Similar

to distributive operators kNN have a load balancing challenge. Further, kNN is a

building block for other NN operations. For a point space X = ∪ni=1(xi) where

|xi| = |X|
n

; a distributed implementation of kNNselect can be expressed as

kNN(∪(xi)) = kNN︸ ︷︷ ︸
reduce

(∪(kNN(xi)︸ ︷︷ ︸
map

)) (1.1)

In the above expression, reapplication of kNN over intermediate results (k from each

partition) is necessary for correctness as we have no assertion on the quality of any

of the intermediate results.

1.2.1 Communication cost

Despite advances in secondary storage and growing capacities of main memory,

communication dominates total execution time [7]. Communication is orders of mag-

nitude slower than main memory. Such slowness warrants investigating enhancing

intermediate results and deferring communication as much as possible. Below we

discuss cost for different partitioning strategies for kNN operation as expressed in the

generatively recursive equation (1.1).
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Communication cost is sensitive to data partitioning strategy. For a kNN oper-

ation under random partitioning intermediate results from all processing nodes are

to be further processed. kNN under spatial Partitioning only intermediate results

of nodes near focal point is processed while other nodes are idle w.r.t to that single

query.

Example: For in memory kNN over a point set of size X, k = 0.0001X, Number

of partitions M=1000, node capacity = X/M . Communication cost of random

partitioning MK = 0.1X > node capacity. This can degrade to actual sorting

of the whole data set.

Uncertainty(
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M(Par00ons(

√K/M( √K/M(
√K/M(

√K(

(3) This Work

Figure 1.2.: Size of intermediate results and number of active nodes for spatial and

random partitioning strategies

1.2.2 Modeling Uncertainty for a single operator

In a generatively recursive decomposition, intermediate solutions, as-is, posses un-

certainty. Communication to a reduce phase resolves such uncertainty. For example,

in the case of kNN, an abstraction over uncertainty of intermediate solutions can be

expressed as 3 totally ordered classes of partially ordered elements:
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• Contributing set of size 0 to k (partially ordered)

• Uncertain set of size 0 to k (partially ordered)

• Pruned set of size ≤ |xi| [−k] (partially ordered) T
ot

al
ly

or
d
er

ed

Contributing

Pruned

?

Figure 1.3.: Totally ordered classes of intermediate results in absence of communica-

tion

1.2.3 Enhancing intermediate results

Below we discuss an approach to enhancing the quality of the intermediate results.

Consider figure 1.4 points divided in 2 partitions red and blue. When evaluating kNN

locally, points can be sorted (w.r.t. proximity to a focal point). If we further share a

statistic across partitions (e.g., for a point we have a count of proximate points that

exist in whole point space, not just the partition), this will allow giving weight to

local solutions and will decrease uncertainty. See figure 1.4
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 Backward View:
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Reca
ll
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gh
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Figure 1.4.: Enhancing intermediate results across 2 partitions. Enhanced with a

statistic (count), red and blue partitions produce better intermediate results for kNN

evaluation: For k = 2 red partition reports {b} as certain, blue partition reports {a}

as certain. For k = 3 red partition reports {b} as certain and {c} as uncertain; blue

partition can report {a} as certain and {d} as uncertain. For k = 4 red partition

reports {b, c} as certain and none as uncertain, blue partition reports {a, d} as certain

and none as uncertain.

1.2.4 Output Sortedness and Early reporting

In order based operation similar to kNN; order among elements of the result is

not part of the contract. E.g., for kNN, the resulting k elements needn’t be sorted.

This characterization is beneficial as it allows early reporting of solutions. In other

words, the certain set in figure 1.3 can remain in partial order.
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Figure 1.5.: Early reporting: Blue and Red are 2 partitions. Evaluating kNN For

k=3 blue partition reports {a} as certain , and red partition reports {b} as certain,

without the need to determine/resolve order among a and b
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2 LITERATURE REVIEW

2.1 R-trees

R-tree [8] is a hierarchical data structure based on B+ tree [9]. R-Tree is used as

a spatial access method (indices to store/retrieve geometric objects). An object of d

dimensions is represented by a d-dimensional Minimum Bounding Rectangle (MBR).

Every internal node is an MBR for its underlying MBR(s). leaf and internal MBRs

can overlap. A lot of variations have been developed. R+trees [10] avoids overlapping

MBR(s) thus allowing for faster point containment queries. R*trees [11] optimizes for

minimum overlap, area covered, margins, and storage. Hilbert-R-trees [12] are B+

trees over the hilbert value of the object’s centroid. Hilbert space filling curve (as we

discuss later) is a proximity preserving linearization for d-dimensional space. Bulk

loading variations were introduced: Packed R-Tree [13], Hilbert Packed R-tree [14],

Sort-Tile-Recursive R-Tree [15]. For a comprehensive survey or R-Trees and it’s

applications, see [16].

2.2 Nearest Neighbour Queries

k nearest neighbours (kNN) were first introduced by [1]. Given a focal point kNN

finds the k nearest objects to the focal point. [1] developed pessimistic and optimistic

distance metrics for object containment in an MBR. [1] devised a branch and bound

algorithm to minimize number of visited nodes in an R-tree. [5] Introduced distance

browsing: an incremental algorithm to evaluate kNN. Distance browsing is essential

when adding a relational predicate to the kNN query. For example, what is the

nearest 6 cities with population > 1 million? Without an incremental algorithm,

alternatives would be to either repeatedly evaluate for values of k>6 until 6 millionic
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cities are reported. Another alternative is to scan for millionic cities, rendering the

access method (an R-tree) useless, and then build an index and evaluate kNN for

k=6. Both are inefficient. Many variations of kNN has since been developed. Visible

kNN [17] handles the case where obstacles exist. Reverse-kNN [18] answers the query:

find objects where the given point is among the k neighbours of such objects. E.g.,

find all homes that a proposed gas station location is among the closest 3 gas station

to such homes? All nearest neighbours (Ann) [19] is a form of join operation: for all

objects get kNN?

2.3 Space Filling Curves

Space Filling curves (SFCs) are a linearization of d-dimensional spaces that gives

every point in space a scalar value. SFCs, similar to fractals, are recursively de-

fined. Initially the curve is defined over unit space and touches ever point, then, it

is recursively applied until it reaches the lowest resolution of the space. Peano [20],

Hilbert [21], and Morton (Z-Order) [22] are common SFCs. Since SFC is a dimen-

sionality reduction, loss of distribution properties happens. Hilbert curve preserves

spatial locality (that is if 2 points are close in the un-mapped space; they are found

to have Hilbert values that are close on the linear mapping). [23] studied clustering

properties of Hilbert curve. [24], [25], [26],and [27] studied further properties of SFCs.

2.4 Big Data processing

Implementations of MapReduce [28] [4] proved to be important for processing

massive data. A plethora of supporting tools [29] [30] lead to greater adoption.

While originally targeted for processing of static data, extensions for updatable key-

value stores like Bigtable [31], and iterative processing like Spark [32] emerged. [7]

Characterizes that disk locality in data-center computing will no longer be relevant

as local RAM will be large enough to host data for processing and is a few orders of

magnitude faster than disk and network.
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2.5 Big Spatial Data

Several systems targeted adding spatial/multidimensional awareness to big data

processing. MD-HBASE [3] utilized Z-Ordering for it’s locality preserving properties

along with region encoding properties to index multidimensional data in HBASE.

Spatial Hadoop [2] utilizes Hilbert curve to build a histogram over a sample of the

data and then spatially partitions the data set. CG Hadoop [33] defines several

computational geometry operations on Spatial Hadoop.
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3 BALANCED COARSE DISTANCE BROWSING

3.1 Preliminaries

3.1.1 Distance metrics

[1] Introduced Nearest neighbor queries along with an efficient branch and bound

algorithm for evaluation of such queries on R Trees. Reducing objects to their mini-

mum bounding rectangles (MBRs). [1] defined the below metrics between an object

and a focal point of a kNN query.
Preliminaries(

Focal(Point(

Figure 3.1.: Distance metrics employed by NN search

Minimum distance (MINDIST) is zero if the focal point lies inside the object’s

MBR otherwise it’s the euclidean distance to the nearest edge of the MBR. This

is an optimistic metric of containment of an actual object. At this distance an

actual object (compared to the bounding geometry) may not exist.

Minimax (MINMAXDIST) To establish a tight lower bound that would guar-

antee partial containment of an actual object (not just an empty region of it’s
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minimum bounding geometry) [1] defines MINMAXDIST as the euclidean dis-

tance to the farthest point on the nearest face of a bounding geometry.

3.1.2 Distance browsing

[5] introduced Distance browsing to incrementally answer kNN queries. This is

useful for kNN queries that have an additional relational attribute. For example:

what are the 5 nearest cities with population of 5 million? Without incremental

evaluation, an approach is to repeatedly evaluate kNN for values ≥ 5 and then test

for population. Another approach is to scan for millionic cities (deeming existing

R-tree useless) then index the result then apply kNN. Both are inefficient.

3.2 Coarse Distance Browsing

3.2.1 Input Prepossessing

We assume input data is declustered and we have a shared coarse index (R-

tree). Declustering can be done Similar to spatial partitioning [2], but instead of

bucketing proximal point they are scattered (declusterred) over the partitions. Leaves

of the index represent minimum bounding rectangles that are enhanced with count

representing how many points in the whole point space reside in such MBR. The

index is identical across all partitions.

3.2.2 Evaluating kNN over declustered spatial data

We incrementally consume the coarse index in 2 phases.

phase1 Based on MINDIST metric, we consume the index until k is passed. Until k

is reached any uncertain minimum bounding rectangle with MAXDIST smaller

than MINDIST of another uncertain MBR is considered certain. This phase
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maximizes the certain set. After reaching k, for correctness, we add MBRs that

overlap with MAXDIST of the uncertain set.

phase2 Based on MAXDIST metric we re-consume the index until k is passed. this

is a tighter bound on the uncertain set. After reaching k, for correctness, we

add any rooted (of MINDIST smaller than MAXDIST of the uncertain set) to

the uncertain set.

An implementation of distance browsing that incrementally reports next proximal

Minimum Bounding Rectangle is shown in algorithm 1. Algorithm 2 uses algorithm 1

to get a set of MBRs that are equidistant to the focal point. Algorithm 3 shows phase

1 and 2.
Algorithm 1: ExtractMinLeaf Retrieves most proximal leaf MBR.

Input: Query focal point

Output: The next leaf MBR of smallest min-dist to query point

1 Assumption non leaf nodes precedes leaf nodes of similar distance.

2 Assumption internalQ← newPriorityQeue()

3 element← internalQ.extractMin()

4 labelalgo:first if element is non-LEAF tree-node then

5 for ChildNode ∈ element do

6 internalQ.Enqueue(ChildNode,Distance(ChildNode,QueryPoint))

7 return ExtractMinLeaf()

8 else if element is LEAF MBR then

9 return element

Algorithm 2: ExtractMinSet Retrieves next proximal set of equidistant leaf MBRs.

Input: Query point

Output: The next set of leaf MBRs of smallest min-dist to query point

1 crustMinSet.add(ExtractMinLeaf())

2 while PeekMinLeaf() and crustMinSet are equidistant do

3 crustMinSet.add(ExtractMinLeaf())

4 return crustMinSet
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Algorithm 3: Insitu-NN Accurate reporting of contributing & uncertain elements of knn in declus-

tered setting.

Input: Aligned R-tree, Query point: p, Required nearest neighbors:k

Output: accurate classification of local elements: Contributing, Pruned, and Uncertain

1 uncertainSet, contributingSet← newSet()

2 spaceMinQ, uncertainMaxDistMinQ← newMinPriorityQeue()

3 spaceMinQ.enqueue(R− tree.Root(), 0)

4 crustMinSet← φ

// Contributing enlargement phase

5 while spaceMinQ.isNotEmpty() and size(uncertainMaxDistMinQ ∪ contributingSet) < k do

6 crustMinSet← spaceMinQ.modifiedExtractMin()

7 while crustMinSet.minValue > uncertainMaxDistMinQ.peek().maxValue do

8 contributingSet.append(uncertainMaxDistMinQ.extractMin())

9 uncertainMaxDistMinQ.insert(crustMinSet)

10 contributigLimit←MaxDist(contributingSet, p)

// Uncertain shrinking phase

11 while spaceMinQ.peek().minV alue ≤ uncertainMaxDistMinQ.peek().maxV alue do

12 uncertainMaxDistMinQ.enqueue(spaceMinQ.modifiedExtractMin())

13 while uncertainMaxDistMinQ..isNotEmpty() and size(uncertainSet ∪ contributingSet) ≤ k do

14 uncertainSet.append(uncertainMaxDistMinQ.extractMin())

15 uncertainLimit←MaxDist(uncertainSet, p)

// Adding rooted MBRs( have lower mindist) despite reaching k

16 while uncertainMaxDistMinQ.isNotEmpty() do

17 if uncertainMaxDistMinQ.peek().minV alue < uncertainLimit then

18 uncertainSet.append(uncertainMaxDistMinQ.extractMin())

19 Scan Uncertain MBRs marking all belonging local objects that are farther than (uncertainLimit)

as Non-Contributing.

20 Scan Uncertain MBRs marking their local objects that are Nearer than (contributigLimit) as

Contributing.

21 Report Contributing & Uncertain concrete objects, and Non-Contributing

boundary(Farthest(lastUncertainUncertain))
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4 ANALYSIS

Section 4.1 derives an analytic estimate for uncertainty. Section 4.2 empirically mea-

sures uncertainty for various data sets. Section 4.3 makes concluding remarks.

4.1 Analytic Estimate of Uncertainty for a uniform data set

4.1.1 Sources of uncertainty

A representative source of uncertainty is when 2 minimum bounding rectangles

have only partial (not total) ordering between them w.r.t proximity to the focal point,

i.e., neither is wholly more proximate than the other to the focal point (see figure 4.1).Preliminaries

Pruned

Uncertain ( Partially Contributing )

Certain 
( Wholly Contributing )

Knn border

Focal point

Figure 4.1.: Sources of Uncertainty: For a kNN operation over a uniform point space:

The perimeter of the k nearest neighbouring points is a circle around the focal point

(the kNN border). If the kNN operation were to be done in a coarse fashion (i.e.,

over leaf level MBR, not the points) uncertainty would arise as some MBR (in grey)

can only have partial ordering w.r.t each other. I.e., neither is wholly closer to the

focal point. Black represents a pruned MBR.
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4.1.2 Proof Sketch

We assume 1) a uniform point space, 2) the granularity of calculating kNN is

restricted to leaf level minimum bounding rectangles. We relax point count to areas

and compare areas of an exact kNN to area of uncertain sets then derive a relation

ship in terms of k.

R1

R3

R2

Figure 4.2.: Areas of pruned, certain, and uncertain sets: Circle of R2 represents the

exact kNN border. Circle of R1 represents the outer bound of leaf MBRs that are

wholly closer to the focal point and ≤ k. Circle of R3 represents outer bound of leaf

MBRs that are are uncertain.

Areauncertain
Areaknn

=
π(r23 − r21)

πr22
<
r23 − r21
r21

(4.1)

r3 = r1 + 2 ∗ lengthmbr (4.2)

Areauncertain
Areaknn

<
(r1 + 2 ∗ lengthmbr)

2 − r21
r21

(4.3)

Areauncertain
Areaknn

< ��r
2
1 + (4 ∗ r1 − lengthmbr) ∗ lengthmbr − ��r

2
1

r21
(4.4)
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Avg(AreaMBR) = m/d where


m is the R-tree branching factor

d is point space’s density

m&d are both constants

(4.5)

lengthmbr < m/d | assuming unit or fixed widthmbr. (4.6)

Areauncertain
Areaknn

<
1

r1
(4.7)

r1 ∝
√
k (4.8)

Areauncertain
Areaknn

<
1√
k

(4.9)

4.2 Empirical Analysis

4.2.1 Data Sets

We used 4 point data sets as shown in figure 4.3. Visualization of corresponding

leaf level minimum bounding rectangles is shown in figure 4.4.

• Synthetic: Uniform, Correlated, Gaussian

• Twitter Data: U.S. 2013 tweets location
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(1) US-2013-Tweet locations (2) Uniform

(3) Gaussian (4) Correlated

Figure 4.3.: Point data sets
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(1) US-2013-Tweet locations (2) Uniform

(3) Gaussian (4) Correlated

Figure 4.4.: Leaf level minimum bounding rectangles of an R-tree populated with

various data sets
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4.2.2 Savings of phase 2

We measure how tight phase 2 of the algorithm is compared to phase 1 for various

values of k.

(1) US-2013-Tweet locations (2) Uniform

(3) Gaussian (4) Correlated

Figure 4.5.: Tight Uncertain set of phase 2 vs Uncertain set of phase 1 for various

values of k. More disparity is better
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4.2.3 Certain set vs Uncertain set

(1) US-2013-Tweet locations (2) Uniform

(3) Gaussian (4) Correlated

Figure 4.6.: Break down of the carried state: Certain vs Uncertain
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4.2.4 Empirical Estimate of Uncertainty
Coarse Distance Browsing (Leaf MBR level)

Fuzzy set size (%k)

Figure 4.7.: Empirical estimate of uncertainty: x-axis is various values of k, y-axis is

size of uncertain set in multiples of k

4.2.5 Certain set size vs kCoarse Distance Browsing (Leaf MBR level)
Contributing Set size (%k)

Figure 4.8.: Certain set size in terms of multiples of k for various values of k
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4.3 Summary

Below is a summary of findings

• Analytically, for uniform data set, uncertainty is O(
√
k)

• Empirically, all of the data sets showed higher uncertainty than analytically

derived. The worst is the Gaussian distribution (see figures 4.6 and 4.7).

• Empirically, for all distributions, uncertainty is smaller for larger values of k

(see figure 4.7).

• Empirically, size of certain set increases for larger values of k (see figure 4.8).

• Empirically, savings of phase 2 were most for real life data: US 2013 Tweets

(see figure 4.5).

4.4 Future work

• Exploring and deriving a bound on uncertainty of partial evaluation is useful

for query optimization. For example,Pushing of spatial selects over partially

evaluated kNN: if a select operator were to consume the output of a kNN query:

full evaluation of kNN is needed. If partial evaluation of kNN has non trivial

bounds on uncertainty (and certainty) it can evaluate a spatial select as it could

lie entirely in the pruned region or the certain region eliminating the need to

resolve the uncertainty.

• Studying more operators and deriving bounds on uncertainty in absence of

communication, then defining equivalence relations among possible operator

compositions that can be useful for a cost based query optimizer.
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A VISUALIZED EXECUTION TRACE OF COARSE DISTANCE BROWSING

Following, we graphically show a step by step execution trace of coarse distance

browsing to evaluate kNN instance over uniform data set. For this instance; k=100.

In each step, leaf level minimum bounding rectangles are highlighted into three groups:

Certain (wholly contributing), Uncertain (partially contributing), Pruned. Count of

enclosed points is written on top left of each leaf level MBR, and on top of perimeters

if any. The trace is shown in two phases: appendix A.1 for Certain set enlargement

phase, and appendix A.2 for Uncertain set minimization phase.

A.1 Certain set enlargement phase

In this phase we start with an empty uncertain and certain sets. We expand the

uncertain set based on MINDIST until sum of both sets exceeds k. While (uncertain

set + certain set < k) and the next proximal (based on MINDIST) MBR is fully

dominated by uncertain MBR(s) then those dominating MBRs are deemed certain.

MBR X dominates MBR Y when every point in X is closer to the focal point than

any point in Y, i.e., when MAXDIST of X is ≤ MINDIST of Y. This is demonstrated

graphically in figures A.1 to A.19.
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Figure A.1.: Certain set enlargement phase step 1: The focal point exists in an

MBR (i.e., of 0 MINDIST to the focal point) so that automatically adds the MBR to

the uncertain set (in grey). Uncertain set is now totaling 5 points.Since current total

points (certain+uncertain = 5) is below (k = 100), next proximal MBR, based

on MINDIST, will be added to the uncertain set.
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Figure A.2.: Certain set enlargement phase step 2: Since current total points

(certain + uncertain = 10) is below (k = 100), next proximal MBR, based

on MINDIST, will be added to the uncertain set.
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Figure A.3.: Certain set enlargement phase step 3: Since current total points

(certain + uncertain = 18) is below (k = 100), next proximal MBR, based

on MINDIST, will be added to the uncertain set.
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Figure A.4.: Certain set enlargement phase step 4: Since current total points

(certain + uncertain = 24) is below (k = 100), next proximal MBR, based

on MINDIST, will be added to the uncertain set.
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Figure A.5.: Certain set enlargement phase step 5: Since current total points

(certain + uncertain = 29) is below (k = 100), next proximal MBR, based

on MINDIST, will be added to the uncertain set.
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Figure A.6.: Certain set enlargement phase step 6: Since current total points

(certain + uncertain = 33) is below (k = 100), next proximal MBR, based

on MINDIST, will be added to the uncertain set.
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Figure A.7.: Certain set enlargement phase step 7: Since current total points

(certain + uncertain = 40) is below (k = 100), next proximal MBR, based

on MINDIST, will be added to the uncertain set. Additionally, since next proxi-

mal MBR is dominated by 2 uncertain MBRs and current total is under k, those

2 MBRs are marked as certain. MBR X dominates MBR Y when every point in

X is closer to the focal point than any point in Y. i.e. more conservatively, when

MAXDIST of X is ≤ MINDIST of Y.
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Figure A.8.: Certain set enlargement phase step 8: Since current total points

(certain + uncertain = 45) is below (k = 100), next proximal MBR, based

on MINDIST, will be added to the uncertain set.
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Figure A.9.: Certain set enlargement phase step 9: Since current total points

(certain + uncertain = 49) is below (k = 100), next proximal MBR, based

on MINDIST, will be added to the uncertain set.
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Figure A.10.: Certain set enlargement phase step 10: Since current total points

(certain + uncertain = 54) is below (k = 100), next proximal MBR, based on

MINDIST, will be added to the uncertain set. Additionally, since next proximal

MBR is dominated by an uncertain MBR (tiny with 4 points) and current

total is under k, this tiny MBR is marked as certain. MBR X dominates MBR Y

when every point in X is closer to the focal point than any point in Y. i.e. more

conservatively, when MAXDIST of X is ≤ MINDIST of Y.
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Figure A.11.: Certain set enlargement phase step 11: Since current total points

(certain + uncertain = 59) is below (k = 100), next proximal MBR, based on

MINDIST, will be added to the uncertain set. Additionally, since next proximal

MBR is dominated by an uncertain MBR and current total is under k, this MBR

is marked as certain. MBR X dominates MBR Y when every point in X is closer to

the focal point than any point in Y. i.e. more conservatively, when MAXDIST of X

is ≤ MINDIST of Y.
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Figure A.12.: Certain set enlargement phase step 12: Since current total points

(certain + uncertain = 65) is below (k = 100), next proximal MBR, based on

MINDIST, will be added to the uncertain set.
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Figure A.13.: Certain set enlargement phase step 13: Since current total points

(certain + uncertain = 71) is below (k = 100), next proximal MBR, based on

MINDIST, will be added to the uncertain set. Additionally, since next proximal

MBR is dominated by an uncertain MBR and current total is under k, this MBR

is marked as certain. MBR X dominates MBR Y when every point in X is closer to

the focal point than any point in Y. i.e. more conservatively, when MAXDIST of X

is ≤ MINDIST of Y.
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Figure A.14.: Certain set enlargement phase step 14: Since current total points

(certain + uncertain = 79) is below (k = 100), next proximal MBR, based on

MINDIST, will be added to the uncertain set.
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Figure A.15.: Certain set enlargement phase step 15: Since current total points

(certain + uncertain = 87) is below (k = 100), next proximal MBR, based on

MINDIST, will be added to the uncertain set.

.
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Figure A.16.: Certain set enlargement phase step 16: Since current total points

(certain + uncertain = 95) is below (k = 100), next proximal MBR, based on

MINDIST, will be added to the uncertain set.
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Figure A.17.: Certain set enlargement phase step 17: Next proximal MBR

will not be added to the uncertain set as total points (certain+uncertain = 102)

now exceeds (k = 100).
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Figure A.18.: Certain set enlargement phase step 18: Total points (certain +

uncertain = 102) now exceeds (k = 100). We now consider MAXDIST of the

uncertain set (outer most circle).
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Figure A.19.: Certain set enlargement phase step 19

For correctness, we add all MBRs (dotted) overlapping with MAXDIST of the un-

certain set. This expands the uncertain set to 169 points. The next phase minimizes

the uncertain set using the MAXDIST metric unlike MINDIST used in current phase



47

A.2 Uncertain set minimization phase

In this phase, we start with the already obtained certain set from phase 1. We

start with an empty uncertain set which we expand by distance browsing based on

MAXDIST metric. Once (certain+uncertain) exceeds k we stop. For correctness,

we add any MBR that is rooted inside the MAXDIST of the uncertain set. This is

demonstrated graphically in figures A.20 to A.34.

Figure A.20.: Uncertain set minimization phase step 1: Since current total points

(certain + uncertain = 25) is below (k = 100), We enlarge the uncertain set

,based on MAXDIST, for total points to be 29.
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Figure A.21.: Uncertain set minimization phase step 2: Since current total points

(certain + uncertain = 29) is below (k = 100), We enlarge the uncertain set

,based on MAXDIST, for total points to be 34.
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Figure A.22.: Uncertain set minimization phase step 3: Since current total points

(certain + uncertain = 34) is below (k = 100), We enlarge the uncertain set

,based on MAXDIST, for total points to be 41.



50

Figure A.23.: Uncertain set minimization phase step 4: Since current total points

(certain + uncertain = 41) is below (k = 100), We enlarge the uncertain set

,based on MAXDIST, for total points to be 47.
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Figure A.24.: Uncertain set minimization phase step 5: Since current total points

(certain + uncertain = 47) is below (k = 100), We enlarge the uncertain set

,based on MAXDIST, for total points to be 55.
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Figure A.25.: Uncertain set minimization phase step 6: Since current total points

(certain + uncertain = 55) is below (k = 100), We enlarge the uncertain set

,based on MAXDIST, for total points to be 62.
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Figure A.26.: Uncertain set minimization phase step 7: Since current total points

(certain + uncertain = 62) is below (k = 100), We enlarge the uncertain set

,based on MAXDIST, for total points to be 68.
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Figure A.27.: Uncertain set minimization phase step 8: Since current total points

(certain + uncertain = 68) is below (k = 100), We enlarge the uncertain set

,based on MAXDIST, for total points to be 76.
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Figure A.28.: Uncertain set minimization phase step 9: Since current total points

(certain + uncertain = 76) is below (k = 100), We enlarge the uncertain set

,based on MAXDIST, for total points to be 81.
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Figure A.29.: Uncertain set minimization phase step 10: Since current total points

(certain + uncertain = 81) is below (k = 100), We enlarge the uncertain set

,based on MAXDIST, for total points to be 86.
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Figure A.30.: Uncertain set minimization phase step 11: Since current total points

(certain + uncertain = 86) is below (k = 100), We enlarge the uncertain set

,based on MAXDIST, for total points to be 94.
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Figure A.31.: Uncertain set minimization phase step 12: Since current total points

(certain + uncertain = 94) is below (k = 100), We enlarge the uncertain set

,based on MAXDIST, for total points to be 97.
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Figure A.32.: Uncertain set minimization phase step 13: Since current total points

(certain + uncertain = 97) is below (k = 100), We enlarge the uncertain set

,based on MAXDIST, for total points to be 102.. Thus exceeding k.
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Figure A.33.: Uncertain set minimization phase step 14: Since current total points

(certain+uncertain = 102) exceeds (k = 100)), we stop expansion. For correctness,

see next step.
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Figure A.34.: Uncertain set minimization phase step 15: Once we reach (certain+

uncertain > k, and for correctness, we add all MBRs that are rooted inside the

uncertain MAXDIST circle of the uncertain set. Thus the uncertain count is ex-

panded from 77 to 131. 131 is less than what we had at end of phase 1 (169). The

saving (pruned MBRs) are highlighted in blue.
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