
TRANSKERNEL: AN EXECUTOR FOR COMMODITY KERNELS ON

PERIPHERAL CORES

A Thesis

Submitted to the Faculty

of

Purdue University

by

Shuang Zhai

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science

August 2019

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF THESIS APPROVAL

Dr. Felix Xiaozhu Lin, Chair

School of Electrical and Computer Engineering

Dr. Vijay Raghunathan

School of Electrical and Computer Engineering

Dr. T.N. Vijaykumar

School of Electrical and Computer Engineering

Approved by:

Dr. Dimitrios Peroulis

Head of the School Graduate Program

iii

ACKNOWLEDGMENTS

First, of all, I would like to show my sincere thanks to my advisor, Prof. Felix

Xiaozhu Lin, for his guidance and mentorship during my senior year and my master’s

study. He always encourages me to explore problems deeper while having a big picture

in mind.

I want to express my appreciation to my committee members, Prof. Vijay Raghu-

nathan and Prof. T.N. Vijaykumar, for their constructive feedbacks on my thesis.

For transkernel project, I would like to express thanks to Renju Liu, who was

engaged in the early stage of this project. I am grateful for the collaboration with

Liwei Guo and Yi Qiao. This project cannot be finished without you.

In addition, it is my pleasure to meet and work with other members in XSEL Lab,

including Hongyu Miao, Heejin Park and Tiantu Xu.

Last but not least, I want to thank my parents for their unconditional support.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

ABSTRACT . viii

1 INTRODUCTION . 1

2 BACKGROUND AND MOTIVATIONS . 5

2.1 Kernel execution in device suspend/resume 5

2.2 A peripheral core in heterogeneous SoC 8

2.3 Design space exploration . 9

2.4 Design objectives for software on a peripheral core 13

3 THE TRANSKERNEL MODEL . 14

4 A TRANSKERNEL IMPLEMENTATION 17

4.1 A Scheduler of DBT Context . 18

4.2 Interrupt and Exception Handling . 19

4.3 Deferred Work . 20

4.4 Locking . 21

4.5 Memory Allocation . 22

4.6 Delays & Timekeeping . 22

5 THE CROSS-ISA DBT ENGINE . 24

5.1 Exploiting Similar Instruction Semantics 25

5.2 Passthrough of CPU registers . 27

5.3 Control Transfer and Stack Manipulation 28

6 TRANSLATED-TO-NATIVE FALLBACK 30

7 EVALUATION . 31

7.1 Methodology . 31

v

Page

7.2 Analysis of engineering efforts . 33

7.3 Measured execution characteristics . 33

7.4 Energy benefits . 36

8 RELATED WORK . 41

9 CONCLUSIONS . 43

REFERENCES . 44

vi

LIST OF TABLES

Table Page

2.1 Linux kernel functions and data types referenced in device suspend/resume.
11

4.1 Top: Major kernel services supported by ARK. Bottom: Linux kernel ABI
(12 funcs+1 var) that ARK depends on . 19

5.1 The Linux kernel binary characterization. Column 3: the number of v7m
instructions emitted for one v7a instruction 25

5.2 Sample translation by ARK. By contrast, our baseline QEMU port trans-
lates G1–G3 to 27 v7m instructions . 26

7.1 I/O devices description and kernel services used 32

7.2 Source code . 32

7.3 Test platform and power models in use . 36

7.4 Battery life extension under different suspend/resume intervals and energy
ratio . 39

vii

LIST OF FIGURES

Figure Page

1.1 An overview of this work . 2

2.1 Alternative approaches for offloading kernel phases 10

3.1 The ARK structure on a peripheral core 16

7.1 Measured execution time and modeled energy in device suspend/resume.
ARK substantially reduces the energy. 34

7.2 Busy execution overhead for devices under test. Our DBT optimizations
reduce the overhead by up to one order of magnitude 34

7.3 System energy consumption of ARK relative to the native execution (100%),
under different DBT overheads (x-axis) and busy execution fractions (y-
axis). ARK’s low energy hinges on low DBT overhead. 38

viii

ABSTRACT

Zhai, Shuang MS, Purdue University, August 2019. Transkernel: An Executor for
Commodity Kernels on Peripheral Cores. Major Professor: Felix Xiaozhu Lin.

Modern mobile devices have numerous ephemeral tasks. These tasks are driven

by background activities, such as push notifications and sensor readings. In order

to execute these tasks, the whole platform has to periodically wake up beforehand,

and go to sleep afterwards. During this process, the OS kernel operates on power

state of various IO devices, which has been identified as the bottleneck for energy

efficiency. To this end, we want to offload this kernel phase to a more energy efficient,

microcontroller level core, named peripheral core.

To execute commodity OS on a peripheral core, existing approaches either re-

quire much engineering effort or incur high execution cost. Therefore, we proposed a

new OS model called transkernel. By utilizing cross-ISA dynamic binary translation

(DBT) technique, transkernel creates a virtualized environment on the peripheral

core. It relies on a small set of stable interfaces. It is specialized for frequently

executed kernel path. It exploits ISA similarities to reduce DBT overhead.

We implement a transkernel model on ARM platform. With novel design and

optimization, we demonstrate that a transkernel can gain energy efficiency. Moreover,

it provides a new OS design to harness heterogeneous SoCs.

1

1. INTRODUCTION

Modern mobile and embedded platforms observe a large number of ephemeral tasks.

These tasks are often driven by periodic or background activities. Such tasks include

acquiring sensor readings, smart watch display updates [1], push notification services

[2], and periodic data sync [3]. They drain up to 30% of battery life on smartphones [4,

5] and smart watches [6], and almost entire battery life on IoT devices for surveillance

[7]. In order to execute an ephemeral task, the platform has to be waken up from deep

sleep mode. After finishing such a task, it will go back to sleep again. This procedure,

called system suspend/resume, has been introduced into OS kernel mainline for two

decades and is intended for energy saving. Ironically, recent studies [2, 8] show that

this mechanism becomes a heavy burden for today’s mobile platforms. Sometimes

system suspend/resume can consume much more energy than ephemeral tasks.

Why is the system suspend/resume so inefficient? Recent studies [8–10] show

the energy bottlenecks are device suspend/resume, as shown in Figure 1.1. In this

process, the kernel operates a variety of IO devices (or simply devices in this thesis)

by calling device drivers suspend/resume callbacks. Those callbacks will drain all

pending tasks (either finish them or abort them), and make sure the IO devices go

to the target power states. The device suspend/resume is complex, incur numerous

CPU idle periods, and is proven difficult to optimize as shown in prior works [10–12].

In order to execute device suspend/resume more efficiently, we suggest that it

should be executed on a more energy efficient, microcontroller-level core. By design,

this type of cores has much simpler microarchitectures (e.g., fewer pipeline stages,

smaller cache size) and trimmed-down ISAs. Modern SoC designers already incor-

porate such cores (called peripheral cores) in their products [13–15], alongside with

the normal CPU. For workloads with heavy IO and low performance demands, a

peripheral core delivers much higher efficiency than the CPU [16–19].

2

CPU

Interconnect

Peripheral
Core

DRAM IO

Commodity
Kernel

Suspend
Resume

Translated
Code

DBT

Emulated
Services

IO Device
Resume

Thaw tasks

User tasks

Sync fs

Freeze tasks

IO Device
Suspend

IO Device
Resume

Thaw tasks

User tasks

Sync fs

Freeze tasks

IO Device
Suspend

CPU CPU Peripheral Core

TranskernelExisting

(a) The transkernel model (b) System execution workflow

A transkernel

Fig. 1.1. An overview of this work

In order to offload a commodity kernel’s phases to a peripheral core, we face the

following challenges:

• The kernel code is complex and fast-evolving.

• The peripheral core has different ISA and wimpy hardware.

To be more specific, diverse device drivers implement suspend/resume and invoke

multiple kernel layers, which makes code transplant to the peripheral core difficult.

The multikernel designs [20–22] are intended for maintaining a single OS image atop

the CPU and the peripheral core. They require to craft a wide interface for synchro-

nizing kernel state between two type of cores in different ISAs. Unfortunately, such

interface is fragile due to changes in the kernel’s build configurations, the kernel’s

compilation flags, and the kernel source code updates.

We want to enable the offloading to meet the following goals: i) Being able to reuse

most of the commodity kernel code with tractable engineering effort; ii) developing

3

and compiling the software for a peripheral core once that can work with many

builds of the kernel from different configurations and release versions; iii) low runtime

overhead to achieve energy efficiency gain.

We take an approach which seems to be infeasible, shown in Figure 1.1: By ap-

plying dynamic binary translation (DBT), we enable the peripheral core to execute

unmodified binary of a commodity kernel, although this technique is previously be-

lieved to be expensive [20].

Therefore, we propose a new executor model applied for a peripheral core, named

transkernel. A transkernel hosts a DBT engine. It is able to translate the original

kernel binary executed in the offloaded kernel phases. Underneath the translated

code, to bridge the ISA gap, the transkernel implements a small set of emulated

services. The role of those emulated services is to provide lightweight alternatives for

their counterparts in the commodity kernel. The transkernel follows four principles: i)

translating stateful code while emulating stateless kernel services; ii) choosing narrow

and stable interfaces for emulation; iii) specializing for frequently executed paths; iv)

exploiting similarities between heterogeneous ISAs to reduce DBT overhead.

By applying the model, we have built a transkernel prototype called ARK. Tar-

geting on an ARM-based heterogeneous SoC, ARK runs on a Cortex-M3 peripheral

core alongside Linux running on the Cortex-A9 CPU. ARK demonstrates that the

idea of transkernel is feasible. ARK transparently executes unmodified Linux kernel

drivers and libraries. It depends on a narrow, stable binary interface (ABI), including

only 12 kernel functions and one variable. ARK is able to execute kernel phases that

invoke multiple layers of kernel, including diverse drivers (e.g. USB host controller

and Bluetooth NIC) and sophisticated kernel services (e.g. deferred work and in-

terrupt handling). ARK only incurs 2.7× busy execution overhead as compared to

native kernel execution on the CPU. This is crucial to ARK’s benefit. It reduces

device suspend/resume energy consumption by 34%. This is a tangible battery life

extension in real world scenarios.

In this thesis, we make the following contributions on OS and DBT:

4

• We present a new OS model, the transkernel, that enables a peripheral core

to execute commodity kernel phases of the CPU. Targeting on heterogeneous

multiprocessors, the transkernel provides a new design point which combines

DBT for bridging ISA gaps and emulation for catering hardware heterogeneity.

• We contribute a new paradigm of cross-ISA DBT. It runs on a microcontroller-

like core, and is able to dynamically translate and execute unmodified kernel

binary of the CPU. We contribute new DBT optimizations that exploit ISA

similarities. We demonstrate that while traditional usage of cross-ISA DBT

trades in efficiency for compatibility, it can actually gain efficiency on existing

hardware.

• We implement a transkernel model, ARK, on top of a heterogeneous ARM SoC.

ARK contributes concrete designs of kernel service emulation. ARK meets our

goal of tractable engineering efforts and “build once run with many”. ARK

offers tangible benefits of energy efficiency.

5

2. BACKGROUND AND MOTIVATIONS

In this chapter, we will discuss device suspend/resume, which is the major kernel

bottleneck in ephemeral tasks. To alleviate its energy inefficiency, we argue that it

should be offloaded to a peripheral core. We will first discuss challenges in exiting

approaches, and then motivate our design objectives.

2.1 Kernel execution in device suspend/resume

The OS kernel will put the whole platform into a deep sleep state after a long

period of system idle. During suspend, the kernel synchronizes file systems with

persistent storage, and then freezes all user tasks. After that, the kernel puts each

individual IO devices to low power modes (i.e., device suspend). Finally, the CPU

is turned off. Resume follows a mirrored procedure. A detailed description on sus-

pend/resume can be found in Linux documentation [23]. To execute an ephemeral

task, usually more time is spent on the kernel execution (hundreds of milliseconds [24])

than user applications (tens of milliseconds [8]). And the kernel execution consumes

several times more energy compared to the user code [2].

Problem: device suspend/resume Recent work [10] profiles Linux suspend/resume

on various mobile devices, and demonstrates that device suspend/resume is the bot-

tleneck in kernel execution. These kernel phases (device suspend/resume) happen

right before powering off the CPU and right after powering on the CPU. During the

phases, the Linux kernel drains all pending IO tasks and puts the devices into target

power states. We will show a brief summarize of findings in prior work below.

1. Device suspend/resume is inefficient. It consumes 54% on average and up

to 66% of the total energy spent during the kernel execution. The transitions

6

of device power states take long. CPU idle periods are frequently observed.

They show up in the form of many short epochs, and each of them takes several

milliseconds.

2. Devices are diverse. For each platform, the kernel suspend/resume operates

on tens of different devices. And various devices incur long kernel execution

delay across different platforms, which makes optimizations on specific devices

impractical.

3. Optimization is difficult. Device power state transitions are limited by slow

hardware, low-speed buses (e.g., I2C bus), and physical factors (e.g., capacitor

voltage ramp-up). Devices have implicit power, voltage, and clock dependen-

cies, requiring certain power transitions to happen in a specific order. For

example, if the processor communicate with the voltage regulator through I2C

bus, it is impossible to shut down the I2C controller before turning off the

voltage regulator. Modern Linux already overlaps the transitions of different

devices with best efforts [11,12]. Yet, as shown in the prior work, CPU idle still

constitutes up to 68% of the duration of device suspend/resume.

Challenge: Widespread, complex code invoked Device suspend/resume in-

volves multiple kernel layers [25, 26], including callbacks in individual drivers (e.g.,

for the USB controller), driver libraries (e.g., for the generic clock framework), kernel

libraries (e.g., for manipulating queue in kernel), and kernel services (e.g., memory

allocator). The execution is control-heavy, with numerous branches and function

calls. In a recent Linux source tree (4.4), we find that suspend/resume callbacks are

implemented in over 1000 device drivers, which covers almost all driver classes. Those

callbacks invoke over 43K SLoC in driver libraries, 8K SLoC in kernel libraries, and

43K SLoC in kernel services.

Opportunities We identify the following kernel behaviors in device suspend/resume

as opportunities.

7

1. Beaten kernel paths Every successful attempt of suspend/resume phases

usually follows the same execution path (i.e., beaten paths [27]). Under this

scenario, the kernel is able to acquires all necessary resources without any errors.

When going off the beaten path, the kernel needs to handle rare cases, such

as races between IO events (e.g., improper use in drivers sharing the same

bus), resource shortage (e.g., low physical memory), and hardware failures.

These branches typically cease the current suspend/resume attempt, perform

diagnostics and fix-ups, and schedule a later retry. Compared to the beaten

paths, they invoke very different and complicate kernel services, e.g., syslog and

file systems.

2. Simple concurrency The kernel suspend/resume follows a simple concur-

rency model. There are very few contexts exist, including syscall path (which

initiates the platform suspend/resume), interrupt handlers, and deferred kernel

work. The purpose of concurrency is for leveraging hardware asynchrony and

kernel modularity rather than exploiting multicore parallelism.

3. Low sensitivity to execution delay On embedded platforms, most ephemeral

tasks are driven by background activities [2, 4, 28]. They are insensitive to

the execution latency. This contrasts to many servers for interactive user re-

quests [28, 29], which require fast response.

Summary: design implications To address the inefficiency in suspend/resume,

prior works and our observations suggest that we should systematically treating the

device phase. We face challenges that the invoked kernel code is diverse, complex,

and cross-layer; we see opportunities that allow focusing on beaten kernel paths, spe-

cializing for simple concurrency, and trading in execution delay for higher efficiency.

8

2.2 A peripheral core in heterogeneous SoC

We believe that the efficiency problem of device suspend/resume can be substan-

tially mitigated by introducing a peripheral core on a modern heterogeneous SoC,

which has the following characteristics.

Hardware model

1. Asymmetric processors : The CPU and the peripheral core provides different

trade-offs between performance and energy efficiency. The peripheral core does

not have MMU. It only has memory protection unit (MPU), which can map

at most tens memory regions without virtual address translation capability. It

cannot run commodity OSes.

2. Heterogeneous, yet similar ISAs : The two processors have different ISAs.

Many instructions from the two ISAs have similar semantics, as will be discussed

in detail below.

3. Loose coupling : The two processors are located in separate power domains.

One of them can be turned on while the other one is off.

4. Shared platform resources : Both processors share system DRAM and can

access to IO devices registers. IO interrupts are physically routed to both

processors.

Many SoC designers incorporate the peripheral core into their products (e.g. iPad

Pro and Azure Sphere), which fit this hardware model [30–33].

Promise of high efficiency Prior studies [16, 18, 19, 34, 35] have shown that a

peripheral core is an ideal place to execute IO-heavy workloads with low performance

demand efficiently. It benefits the kernel’s device suspend/resume in the following

ways:

1. The peripheral core can operate independently while leaving the CPU offline.

9

2. The idle power of a peripheral core is often significantly lower than CPU [17,36],

favoring device suspend/resume workloads with numerous CPU idle epochs.

3. Its simple microarchitecture suits kernel execution, whose irregular behaviors

often see very little benefits from higher power, advanced microarchitectures

(e.g., speculative execution) [37]. Note that a peripheral core offers much higher

energy efficiency than a LITTLE core in ARM big.LITTLE [38]. This is because

both big cores and LITTLE cores require an agreement on ISA and tight core

coupling. We will examine big.LITTLE in Chapter 7.

ISA similarity On an heterogeneous SoC we target, the CPU and the peripheral

core’s ISAs are often from the same family, e.g. ARM or MIPS. Compared to the CPU,

the peripheral core often implements a subset of instructions with same or similar

semantics, but in different encoding. The common examples are SoCs integrating

ARMv7-A ISA and ARMv7-M ISA [13, 14, 32, 39, 40]. Other ISA families offer their

ISA options that can be integrated on the same SoC, e.g. NanoMIPS and MIPS32,

IA-32 and x86-64. We believe the existence of ISA similarities are by choice. i) For

ISA designers, it is feasible to explore performance-efficiency trade-offs within one

ISA family, since the family choice is merely about instruction syntax rather than

semantics [41]. The designers likely start from common instruction semantics and

instantiate them differently to better cater for workloads of specific processor profiles.

ii) For SoC vendors, incorporating ISAs from the same family on one chip reduces

the efforts in building software tools and libraries [42] as well as facilitating silicon

design and ISA licensing.

2.3 Design space exploration

Next, we will explore OS designs that enable a peripheral core to execute a com-

modity kernel’s phases. Our challenges are listed as below:

• The kernel code is complex and fast-evolving.

10

CPU

Interconnect

Peripheral
Core

Kernel
State IO

Linux
Kernel

Suspend
Resume Suspend

Resume

Peripheral
kernel

(a) Code transplant

1

2

CPU Peripheral
Core

Kernel
State IO

Linux
Kernel

Suspend
Resume

Translated
Code

DBT4

3

Interconnect

(b) Full cross-ISA kernel DBT

Fig. 2.1. Alternative approaches for offloading kernel phases

• The peripheral core’s different ISA and wimpy hardware compare with the CPU.

Code transplant creates fragile interfaces Because a commodity kernel (e.g.,

Linux) cannot manage heterogeneous processors with different ISAs out-of-box [17,

20], one possible solution is to identify the boundary of device suspend/resume source

code from the Linux kernel, cross-compile and run it on top of a “peripheral kernel”

on the peripheral core. The peripheral kernel is vital to the offload kernel phases

autonomously. This approach results in a multikernel OS [22] shown in Figure 2.1(a).

However, it relies on two interfaces (shown as in the figure) which are difficult

to maintain stability.

1 The interface between the two kernels, needed for their data dependency. Before

and after offloading, the CPU’s kernel and peripheral kernel synchronize the Linux

kernel state through this interface. Examples of kernel state include device descrip-

11

Table 2.1.
Linux kernel functions and data types referenced in device suspend/resume.

(B) # of functions(A) # of functions & types with changed ABI across versions

848

55

721

159

828

173

v4.17

(Jul 2018)

1075

1111 1043

354

498

395

155

674

214

707661

v3.16 v4.4 v4.9 v4.17v2.6

213

1060

384

1015

155

378

196

385

194

384

848

216

780

214

797

163

v2.6

(Jan 2011)

v3.16

(Aug 2014)

v4.4

(Jan 2016)

v4.9

(Dec 2016)

640

855

606

717

500

816

938

8
5
8

2
1

7
8

4
5

3
5

9

0%

20%

40%

60%

80%

100%

kernel
services

driver
libraries

device
specific

types

funcs

kernel
library

From To

Columns: breakdown of funcs by layers. Exported symbols only. Build config:

omap2defconfig. ABI changes detected with ABI compliance checker [43]

tions and configurations, device request blocks, and pending IO tasks. Whether the

interface is based on message passing [21, 22] or software shared memory [17, 20, 44],

it is essentially based on an agreement on the definitions of shared Linux kernel data

types, including their semantics and/or memory layout. The kernel data types are

easily changed by choices of ISA, kernel configurations, and kernel releases. Therefore,

the agreement is highly fragile. Table 2.1(a) summarizes numerous changes to the

data types referenced in device suspend/resume across different versions. It shows

that the efforts in building this interface is not only tedious (for maintaining the

agreement on shared memory data types across heterogeneous ISAs) but repetitive:

any data type change would break the interface and require to revise and rebuild the

peripheral kernel [44, 45].

2 The interface between the transplant code and the peripheral kernel. The trans-

plant code has functional dependency which is resolved by the peripheral kernel’s

interface. The interface is determined by the choice of transplant boundary. Com-

12

mon transplant boundaries include the bottom of device-specific code [44–46], that of

driver classes [47,48], and that of driver libraries [17]. All these choices expose at least

hundreds of Linux kernel functions on this interface, as summarized in Table 2.1(b).

This is due to diverse drivers on embedded platforms and Linux’s sophisticated inter-

nals. Implementing such an interface on the peripheral core requires huge engineering

effort. As the Linux kernel is rapidly evolving, maintaining the interface is even dif-

ficult. As shown in Table 2.1(a), the ABI of these functions significantly changes as

Linux evolves [49]. The peripheral kernel has to be revised and rebuilt to comply to

the updated ABI for every kernel release.

Current cross-ISA DBT is unaffordable Alternatively, another solution is to

run DBT on the peripheral core for translating the Linux kernel for the entire of-

floaded phase, shown in Figure 2.1(b). DBT is a well-know technique to allow a host

processor (in this case, the peripheral core) to execution instructions in a guest ISA

(the CPU’s ISA). DBT does not have difficulties mentioned above, because the trans-

lated code follows the same behavior as the kernel’s binaries, and directly operates

the kernel state (3). The DBT only relies on a stable interface, the CPU’s ISA (4),

to interact with the Linux kernel. However, prior work [50] shows that existing cross-

ISA DBT incurs high overhead. The overhead is furthur magnified by our inverse

DBT paradigm. Whereas existing cross-ISA DBT is designed and optimized for a

powerful host (e.g., an x86 desktop) serving a weak guest (e.g., an emulated ARM

platform) [51, 52], our DBT host, a peripheral core with simpler architecture and

microarchitecture, emulates a fully-fledged CPU. A straightforward port of a popular

DBT engine exhibits up to 25× slowdown as will be shown in Chapter 7. The over-

head would kill the advantage of hardware efficiency and lead to overall efficiency loss.

Furthermore, whole Linux kernel cross-ISA DBT is complex and expensive [53]. A

peripheral core lacks necessary environment, e.g. multiple address spaces and POSIX

support, for developing and debugging such complex software.

13

2.4 Design objectives for software on a peripheral core

To overcome the difficulties, we set the following three objectives.

G1. Tractable engineering effort. To avoid tedious code transplant, we want

to reuse much of the commodity kernel source, in particular the rich, fast-evolving

drivers that are impractical to build anew. We target a simple structure for the

peripheral core’s software.

G2. Build once, work with many. Every build of peripheral core’s software

should work with a wide variety of configurations and releases of the commodity

kernel. This requires the peripheral core’s software to interact with the commodity

kernel through a narrow and stable ABI.

G3. Low overhead . The offloaded kernel phases should incur low execution

overhead in order to yield a tangible efficiency gain.

14

3. THE TRANSKERNEL MODEL

We propose a new executor model called transkernel. Running on a peripheral core,

a transkernel consists of two key components. It has a DBT engine to transparently

translate and execute unmodified commodity kernel binary, which includes device

drivers, device libraries, and stateful kernel services. There is a set of emulated

stateless kernel services to serve under the translated code. A concrete transkernel

implementation targets a specific commodity kernel, e.g. Linux. In order to achieve

the goals mentioned in Chapter 2, the transkernel follows four principles:

Translating stateful code; emulating stateless services By stateful code, we

refer to the offloaded code that must operate on the same kernel state shared with

the CPU. We believe that the stateful code include device drivers, driver libraries,

and a small set of kernel services. They cover the most diverse and widespread

code invoked in device suspend/resume (§2). Through translation, the transkernel

reuses commodity kernel code transparently without transplanting kernel source to a

peripheral core (G1); the translated code operates kernel state without relying on a

fragile ABI (G2).

We do not strictly preserve the semantics of all kernel services. Instead, we relax

the semantics of the emulated services to be stateless, so that the state of these

services only lives within one device suspend/resume phase. Because the emulated

services are stateless, they do not have to synchronize the kernel state with the CPU’s

kernel.

Choosing a narrow, stable interface for emulation We determine the trans-

lation/emulation boundary to be a small set of kernel functions and kernel variables.

We ensure that the ABI of the chosen kernel functions are unaffected by kernel config-

15

urations and has not changed since long in the kernel evolution history. (G2) It also

increases the chance that the build of transkernel to work with future kernel releases.

Specializing for the beaten path The transkernel only executes the beaten path

of device suspend/resume; in the rare events of the execution goes off the beaten

path, it has a mechanism to transparently falls back to CPU. Instead of strictly

following kernel’s behaviors, the emulated services seek functional equivalence; under

the same interfaces, they only implement features needed by the beaten path. This

is in the spirit of kernel specialization as in library OSes [54–56]. It entails tractable

implementation (G1).

Exploiting ISA similarities for DBT We do not follow generic cross-DBT design

principles which optimize for translation between arbitrary ISA pairs. Instead, we

exploit similarities in instructions semantics, register usage, and control flow transfer.

This reduces the overhead of DBT on peripheral core significantly and ultimately

makes transkernel practical. (G3)

Chapter 4 below describes how we apply the model and implement transkernel,

in particular our translation/emulation decisions for major kernel services, and our

choices of the emulation interface. Chapter 5 will describe our DBT design and

optimizations.

16

Linux kernel binary

DBT
Contexts

DBT Engine

Device drivers Driver libraries Kernel libraries

Generic IRQ
Handler

Deferred
Work

Mutex
Semaphore

Memory
Allocation

Early IRQ
Handler Scheduler Delay

Sleep Spinlock

Virtual
Address

Stable ABI

Translated Code
(stateful)

Private Library Fallback

Emulation
(stateless)

Fig. 3.1. The ARK structure on a peripheral core

17

4. A TRANSKERNEL IMPLEMENTATION

We implement ARK, a transkernel targeting on ARM SoC. The CPU has the ARMv7-

A ISA and the peripheral core has the ARMv7-M ISA. This is a popular combination

which fits our hardware model described in Section 2.2. The CPU runs Linux v4.4.

The offloading workflow ARK is packed as a standalone executable for the pe-

ripheral core, accompanied by a small Linux kernel module for the CPU to replace

the kernel entry points for device suspend/resume, allowing control transfer between

the peripheral core and the CPU. We refer to control transfer as handoff. Prior to

a device suspend phase, the kernel leaves only one core on and shuts down all other

cores, passes control to the peripheral core, and shuts down the last CPU core. Then,

the ARK executes the device phase to suspend the entire platform. Normally, device

resume is executed by the ARK on the peripheral core. However, in case of urgent

wakeup events which require immediate response (e.g. unlocking a smartphone screen

by a user), the ARK wakes up the CPU and the kernel resumes with native execution.

System structure The ARK consists of a DBT engine, a set of emulated kernel

services. Besides, the ARK also implements a small library to manage the peripheral

core’s private hardware resource, e.g., cache controller and interrupt controller.

As shown in Figure 3.1, ARK runs a DBT engine, a set of emulated kernel ser-

vices, and a small library for managing the peripheral core’s private hardware, e.g.

controllers of cache and interrupt. Upon booting, ARK replicates the linear mem-

ory mappings of the Linux kernel, so that it can address the Linux kernel’s memory

objects, which is similar to prior systems [17, 44]. To access I/O regions, ARK allo-

cates MPU entries for them and set the corresponding attributes; in case of limited

number of entries, ARK allocates entries for the regions on demand. ARK translates

18

all device-specific code, the libraries invoked by them, and a few kernel services that

we think must be stateful (related kernel services are summarized in Table 4.1 and

examined below). The translated code cooperate with the emulated services through

a narrow, stable ABI: the emulated services serves downcalls from the translated code

and makes upcalls into the translated code. The interface is illustrated as in

Figure 3.1 and summarized in Table 4.1.

To support concurrency in the kernel phases, ARK runs multiple DBT contexts.

Each context has its own DBT state (e.g., virtual CPU registers and a stack) and

is able to independently executes DBT and the emulated services. Switch among

DBT contexts is as cheap as updating the pointer of current DBT state to the next

runnable DBT context.

ARK is specialized for the beaten paths. If the execution reaches unbeaten

branches pre-defined by us, e.g. blacklisted kernel functions, ARK migrates all the

DBT contexts of translated code back to the CPU and continues as native execution

there (§6).

4.1 A Scheduler of DBT Context

Instead of translating Linux scheduler, ARK emulates a simple scheduler, which

does not share state with Linux scheduler. Because of simple concurrency model of

suspend/resume (§2), ARK does not preserve Linux’s preemptive multithreading but

instead cooperatively select the DBT context to execute: one primary context for

executing the syscall path of suspend/resume, one for executing IRQ handlers (§4.2),

and multiple for deferred work (§4.3). ARK uses a simple, round-robin scheduling

strategy to manage tens of contexts. It begins the execution in the syscall context;

when the syscall context blocks (e.g., by calling msleep()), ARK switches to the

next ready context to execute deferred functions until they finish or block. When a

hardware interrupt occurs, ARK saves the current DBT context state and switches

to the IRQ context to translate and execute the kernel interrupt handler (§4.2).

19

Table 4.1.
Top: Major kernel services supported by ARK. Bottom: Linux kernel
ABI (12 funcs+1 var) that ARK depends on

Kernel services Implementations & reasons

Scheduler (§4.1) Emulated. Reason: simple concurrency.

IRQ handler (§4.2) Early stage emulated; then translated

HW IRQ controller (§4.2) Emulated. Reason: core-specific

Deferred work (§4.3) Translated. Reason: stateful

Spinlocks (§4.4) Emulated. Reason: core-specific

Sleepable locks (§4.4) Fast path translated. Reason: stateful

Slab/Buddy allocator (§4.5) Fast path translated. Reason: stateful

Delay/wait/jiffies (§4.6) Emulated. Reason: core-specific

jiffies udelay() msleep() tasklet schedule() irq thread()

ktime get() queue work on() worker thread() run local timers()

generic handle irq() schedule() async schedule()* do softirq()*

*=ABI unchanged since 2014 (v3.16); all others unchanged since 2011 (v2.6).

4.2 Interrupt and Exception Handling

During the offloaded phase, all interrupts are redirected to the peripheral core and

handled by ARK. The CPU is relieved from interrupts and stays in deep sleep mode.

Kernel interrupt handlers ARK emulates the early stage of interrupt handling

while translating the later stage of kernel interrupt handler. This is because the early

stage behavior varies depending on ISA and hardware environment, e.g., stack layout

during interrupt and IRQ line number. Hence, the emulated services implement

a v7m-specific routine and install it as the hardware interrupt handler. Once an

interrupt happens, the routine is invoked to finish the v7m-specific task and make

an upcall to the kernel’s ISA-neutral interrupt handling routine (listed in Table 4.1),

from where the ARK translates the kernel to finish handling the interrupt.

20

Hardware interrupt controller ARK emulates the CPU’s hardware interrupt

controller. This is needed as the two cores have separate, heterogeneous interrupt

controllers. Since the CPU controller’s registers are private and not accessible from

the peripheral core by physical design, upon accessing them (e.g. for masking in-

terrupt sources) the translated code triggers faults. When identifying an access to

the controller register, ARK operates the peripheral core’s controller accordingly and

skips to the next instruction.

Exception: unsupported We don’t expect any exception in the offloaded kernel

phases. In case exception happens, ARK uses its fallback mechanism (§6) to migrate

back to CPU.

4.3 Deferred Work

In the device phase, device drivers frequently submit works which are expected to

be done in the future. ARK translates the Linux services that schedule the deferred

work; it also translates the actual execution of the deferred work. The reason to

translate them is that such services must be stateful : the peripheral core may need

to execute deferred work created on the CPU prior to the offloading, e.g. draining

unfinished USB requests; it may defer new work until after the completion of resume,

e.g., reclaiming memory for finished USB request blocks.

ARK maintains dedicated DBT contexts for executing the deferred work (Sec-

tion 4.1). While the Linux kernel often executes deferred work in kernel threads

(daemons), our insight is that deferred work is oblivious to its execution context

(e.g., a real Linux thread or a DBT context in ARK). Beyond this, ARK only has

to run the deferred work that may go to sleep with separate DBT contexts so that

if one of them go to sleep it will not block other deferred works. From these DBT

contexts, ARK translates the main functions of the aforementioned kernel daemons,

which retrieve and invoke the deferred work.

21

Threaded IRQ defers heavy-lifting IRQ work (bottom halves) to a kernel thread

which executes the work after the hardware IRQ is handled. A threaded IRQ handler

may go to sleep. Therefore, ARK maintains per-IRQ DBT contexts for executing

these handlers. Each context makes upcalls into irq thread() (the main function of

threaded irq daemon, listed in Table 4.1).

Tasklets, workitems, and timer callbacks The kernel code may dynamically

submit short, non-sleepable functions (tasklets) or long, sleepable functions (workitems)

for deferred execution. Kernel daemons (softirq and kworker) execute tasklets and

workitems, respectively.

ARK creates one dedicated context for executing all non-sleepable tasklets and

per-workqeueue contexts for executing workitems so that sleep in one workqueue will

not block others. These contexts make upcalls to the main functions of the kernel

daemons (do softirq(), worker thread(), and run local timers()), translating them

for retrieving and executing deferred work.

4.4 Locking

Spinlocks To protect short critical sections, spinlocks are implemented as dis-

abling interrupt of current core. ARK emulates spinlocks, because their implementa-

tion is core-specific and that ARK can safely assume all spinlocks are free at handoff

points: handoff happens between one CPU core and one peripheral core as described

in Chapter 4. They do not hold any spinlock. All other CPU cores are offline

and cannot hold spinlocks. Hence, ARK emulates spinlock acquire/release by en-

abling/disabling interrupt of the peripheral core. This is because ARK runs on one

peripheral core, and the only possible concurrent execution comes from hardware

interrupts.

Sleepable locks ARK translates sleepable locks (e.g., mutex, semaphore) because

these locks are stateful: for example, the kernel’s clock framework may hold a mu-

22

tex preventing suspend/resume from concurrently changing clock configuration [57].

Furthermore, mutex’s seemingly simple interface (i.e., compare and exchange in fast

path) has unstable ABI and therefore unsuitable for emulation: a mutex’s reference

count type changes from int to long (v4.10), breaking the ABI compatibility. The

translated operations on sleepable locks may invoke spinlocks or the scheduler, e.g.

when it fails to acquire the lock and therefore needs to update reference count and

puts the caller to sleep. for which the translated execution makes downcalls to the

emulated services.

4.5 Memory Allocation

The device driver frequently allocates memory dynamically. For example, USB

driver allocates memory to store the response of URB (USB Request Block). Such

requests are served by Linux kernel slab allocator. In the extreme cases when no

physical pages available, the kernel will swap out user pages or kill user processes.

ARK provides memory allocation as a stateful service. It translates the kernel

code for the fast path, including the slab allocator and the buddy system. In the rare

case that the allocation enters the slow path (e.g. due to low physical memory), ARK

aborts offloading. With a stateful allocator, the offloaded execution can free dynamic

memory allocated by during the kernel execution on CPU, and vice versa. Compare

to prior work that instantiates per-kernel allocators with split physical memory [17],

ARK reduces memory fragmentation and avoids tracking which processor should free

what dynamic memory pieces. Our experience in Chapter 7 show that ARK is able

to handle intensive memory allocation/free requests such as in loading firmware to a

WiFi NIC.

4.6 Delays & Timekeeping

Delays In the Linux kernel, udelay() and msleep() are used for busy waiting and idle

sleeping. ARK emulates them by converting wait time to hardware timer cycles on

23

the peripheral core. For msleep, ARK also marks the caller context as unschedulable.

After timer is fired, the corresponding context may continue execution.

jiffies Jiffies is a global integer to record the elapsed time since the system booted.

It is used as a normal precision timekeeper, and is updated periodically by the Linux

kernel. By properly configuring the hardware timer of the peripheral core, ARK

directly updates jiffies on behalf of CPU’s kernel. All timekeeping related functions

can be translated since they only depend on this variable. Also jiffies is the only

shared variable on the kernel ABI which ARK depends upon.

24

5. THE CROSS-ISA DBT ENGINE

A Cross-ISA DBT Primer DBT is a well known technique allowing host pro-

cessor to execute instructions in guest ISA. To do so, a special program, called DBT

engine, runs on host processor to emulate the hardware environment of guest pro-

cessor. The engine loads guest instructions and translates them to host instructions

based on pre-defined translation rules at run time. The translation is done in unit of

translation block, a sequence of instructions with one entry point and one or more exit

targets. To avoid the translation effort for the same translation block, the translated

instructions are stored in a dedicate piece of memory, called code cache. Therefore,

all substantial execution of the same translation block does not require translation.

A dispatcher manages all the translated blocks and decides the control flow.

Design overview We build ARK atop QEMU [53], a popular, opensource cross-

ISA DBT engine. ARK inherits QEMU’s infrastructure but departs from its generic

design which translates between arbitrary ISAs. ARK targets two well-known DBT

optimizations: i) to emit as few host instructions as possible; ii) to exit from the code

cache to the DBT engine as rarely as possible. We exploit the following similarities

between the CPU’s and the peripheral core’s ISAs (ARMv7a & ARMv7m):

1. Most v7a instructions have v7m counterparts with identical or similar semantics,

albeit in different encoding. This is confirmed by static analysis of v7a’s Linux

binary. (§5.1)

2. Both ISAs have the same number of general purpose registers. The condition

flags in both ISAs have the same semantics. (§5.2)

3. Both ISAs use program counter (PC), link register (LR), and stack pointer (SP)

in the same way. (§5.3)

25

Table 5.1.
The Linux kernel binary characterization. Column 3: the number of
v7m instructions emitted for one v7a instruction

Category Count v7m

w/ counterparts

Identity 741k 1

Side effect 42 3-5

Constraints on constant 3291 2-5

Shift modes 2395 2

w/o counterparts 2 2-5

Beyond the similarities, the two ISAs have important discrepancies. Below, we

describe our exploitation of the ISA similarities and our treatment for caveats.

5.1 Exploiting Similar Instruction Semantics

We build translation rules by carefully examine the semantics of instructions de-

scribed in ARM architecture reference manual [58,59]. Our overall guideline is to map

as many v7a instructions to single v7m instructions that have identical semantics as

possible. We call them counterpart instructions. For instructions without identical

counterparts, ARK emits a few “amendment” v7m instructions to make up for the

semantic gap. The resultant translation rules are based on individual guest instruc-

tions, different from building translation rules by looking for semantic equivalence

of a sequence of instructions in cross-ISA DBT [60]. This is because ISA similarity

allows identity translation for most guest instructions.

To verify the coverage and efficiency of such translation rules, we statically analyze

the Linux kernel binaries and categorize them. Note that we only take load/store and

data-processing instructions into consideration, since other instructions (e.g., cache

maintenance) are managed by ARK’s library as described in Chapter 4. Table 5.1

summarizes over 747k instructions from the Linux kernel which fall into our scope.

Among them, 99% can be translated with identity rules, for which ARK only needs

26

Table 5.2.
Sample translation by ARK. By contrast, our baseline QEMU port
translates G1–G3 to 27 v7m instructions

ARMv7a ARMv7m (by ARK)

G1: ldr r0, [r1],

r2, lsr #4

H1: ldr.w r0, [r1]

H2: lsr.w t0, r2, 0x4

H3: add.w r1, r1, t0

G2: adds r0, r1,

0x80000001

H4: mov.w t0, 0xc0

H5: ror.w t0, t0, 0x7

H6: adds.w r0, r1, t0

G3: sub r0, r1, r2 H7: sub.w r0, r1, r2

to convert instruction encoding at run time. Less than 1% of v7a instructions in the

Linux kernel have v7m counterparts but may require amendment instructions, which

fortunately fall into a few categories: i) Side effects. After load/store, some v7a

instructions support special addressing modes and may additionally update register

values (shown in Table 5.2, G1). ARK emits amendment instruction to emulate

the extra side effect (H3). ii) Constraints on constants. The range of immediate

value that can be encoded in a single v7m instruction is often narrower (Table 5.2,

G2). In such cases, the amendment instructions load the immediate to a scratch

register, perform shift/rotation, and emulate any side effects (e.g. index update) the

guest instruction may have. iii) Richer shift modes. v7a instructions support

richer shift modes and larger shift ranges than their v7m counterparts. This is shown

as Table 5.2 G1, where a v7m instruction cannot perform LSR (logic shift right)

within the instruction as its v7a counterpart. Similar to above, the amendment

instructions load the operand to a scratch register and perform shift on the register.

Beyond the above, only 2 instances of v7a instructions have no v7m counterparts,

for which we manually devise translation rules.

In summary, through systematic exploitation of similar instruction semantics,

ARK emits compact host code at run time. In the example shown in Table 5.2,

27

three v7a instructions are translated into seven v7m instructions by ARK, while to

27 instructions by our QEMU baseline.

5.2 Passthrough of CPU registers

General purpose registers Both the guest (v7a) and the host (v7m) have the

same set (13) of general-purpose registers. In emitting a host instruction, ARK

follows register allocation in the guest counterpart with best efforts (e.g., one-to-

one mapping in best case, as in Table 5.2, G1). The choice of register is decided

by the compiler generating the guest binary, which has the entire source code to

make optimal decision. ARK emits much fewer host instructions than QEMU, which

emulates all guest registers in memory.

Caveats fixed To bridge the gap between two ISAs, the amendment host instructions

may need extra scratch registers, as exemplified by t0 in Table 5.2, H2-H6. However,

since both the host and guest have same number of general purpose registers, the need

for scratch registers put a higher pressure on register allocation. QEMU allocates the

register at the scope of each translation block and do not maintain the same mapping,

which requires expensive register load/stores. To spill some registers to memory

while still reusing the guest’s register allocation, we make the following tradeoff: we

designate one host register as the dedicated scratch register, and emulates its guest

counterpart register in memory. We pick the least used one in the guest binary as the

dedicated scratch register; we experimentally determined it as R10 by analyzing the

ARM Linux kernel. We find that most amendment instructions are satisfied by one

scratch register; in rare cases when extra scratch registers are needed, ARK follows

a common register allocation design to firstly allocate dead registers, or spill unused

ones to memory if there is no dead register.

Condition flags Both the guest and the host ISAs involve five condition flags (e.g.

zero and carry) with identical semantics. QEMU emulates guest CPU condition flags

as individual variables in host memory. Therefore, to translate each instructions that

28

may affects the flags, QEMU emits as many as 7 host instructions to manipulate

emulated flags. To relieve expensive flags emulation, the host instructions emitted

by ARK directly set and test the host’s hardware condition flags. Fortunately, most

guest (v7a) instructions and their host (v7m) counterparts have identical behaviors

in testing/setting flags, verified by comparing instructions semantics from both ISAs.

Such flag passthrough hence incurs much lower overhead than QEMU. Such opti-

mization provides substantial benefit for the control-heavy suspend/resume, which

contains extensive conditional branches (§2).

Caveats fixed Amendment host instructions may affect the hardware condition flags

unexpectedly, e.g., checking address of memory access. For amendment instructions

(notably comparison and testing) that must update the flags as mandated by ISA,

ARK emits two host instructions to save/restore the flags in a scratch register around

the execution of these amendment instructions.

5.3 Control Transfer and Stack Manipulation

Function call/return Both guest (v7a) and host (v7m) use PC (program counter)

and LR (link register, storing function return address) to facilitate function call/return.

QEMU emulates guest PC and LR in host memory. For each guest function calls, it

loads the emulated PC (return address) to emulated LR and pushes to stack. How-

ever, this is expensive since the return address, loaded from stack or the emulated LR,

points to a guest address. Each function return hence pops the return address from

stack, causes the DBT to jump back to dispatcher and look up the corresponding

code cache address. This overhead is magnified in the control-heavy device phase.

By contrast, ARK never emits host code to emulate the guest PC or LR. For

each guest function calls, the host code pushes the host PC (return-to addresses in

code cache) to stack and to LR; for each guest function returns, the host code loads

the hardware PC with the return address (which points to code cache) popped from

29

the stack or from the hardware LR. By doing so, ARK no longer seek for help from

dispatcher in all function returns. Our optimization is inspired by same-ISA DBT [61].

Stack and SP QEMU emulates the guest stack with an array and the guest SP in

the host memory. Each guest push/pop translates to multiple memory store/load and

emulated SP update.This is expensive, especially for device suspend/resume which

frequently makes function calls, read/write local variables and operates stack heavily.

The ARK avoids such expensive stack emulation by emitting host push/pop in-

structions to directly operate the guest stack in place. This is possible because ARK

emulates the Linux kernel’s virtual address space (§4). In addition, hostly translating

SP operations and preserving stack frames further makes the migration in abort (§6)

feasible.

Caveats fixed i) When there is a function call, the return address pointing to the

code cache is pushed to stack. However, the instructions in the code cache is not

executable for the guest CPU. Upon migrating from the peripheral core (host) to

the CPU (guest), the DBT rewrites all code cache addresses on stack with their

corresponding guest addresses. ii) guest push/pop instruction may involve emulated

registers (i.e., scratch register). If a push/pop instruction involve one of the emulated

registers, ARK must emit multiple host instructions to correctly synchronize the

emulated registers in memory.

30

6. TRANSLATED-TO-NATIVE FALLBACK

When ARK goes off the beaten paths, it migrates device suspend/resume back to the

CPU to continue execution, analogous to virtual-to-physical migration of VMs [62].

Migrating one DBT context is straightforward: it passes emulated CPU states (reg-

isters, condition flags) and stack contents with fixed return address (§5.3) to CPU,

flushes the cache, and wake up the CPU through IPI. However, because ARK imple-

ments multiple DBT contexts, there are more challenges to address.

Migrate DBT contexts for deferred work After fallback, all unfinished de-

ferred work should migrate to the CPU and continue execution. Since deferred work

is emulated as described in Section 4.3, the workitems are stored in ARK which

cannot migrate to CPU’s existing kernel structure directly. To address this issue,

upon fallback, ARK initiates kernel worker threads to receive and execute unfinished

workitems. Those worker threads are reclaimed once all workitems are drained.

Migrate DBT context for interrupt If fallback happens in the execution of

the ISA-neutral interrupt handler (translated), the remainder of the handler should

migrate to the CPU. The challenge is that the interrupt happens when the CPU is

off; there is no corresponding interrupt context on the CPU. ARK addresses this by

initiate an IPI from the peripheral core to the CPU by using hardware mailbox; the

Linux kernel uses the IPI context as the receiver for the migrated interrupt handler,

and starts executing from the fallback point in the interrupt handler. ARK gives up

complete transparency: if Linux checks the CPU’s interrupt controller, it will find

that the interrupt comes from IPI instead of an IO device. However, we do not see

an ISA-neutral interrupt handler check interrupt source in our evaluation.

31

7. EVALUATION

In this chapter, we seek to answer the following questions:

1. Can ARK be implemented and maintained with manageable engineering efforts?

(§7.2)

2. Can ARK achieve low execution overhead? (§7.3)

3. Can ARK yield energy efficiency benefit compared with alternatives? How does

major factors impact energy savings? (§7.4)

7.1 Methodology

Test Platform We evaluate ARK on Pandaboard-ES with TI OMAP4460 SoC [30].

As summarized in Table 7.3, it has dual ARM Cortex-A9 cores and dual Cortex-

M3 cores. The commodity Linux kernel manages dual A9, whereas the ARK runs

on one M3. For all platforms that satisfied our hardware requirement (§2.2), this

board has detailed documentation from vendor which ease our development. Also,

its community has long-time kernel support since 2011, which allows us to study

kernel ABI evolution. As Cortex-M3 on the platform is incapable of DVFS, for fair

comparison, we run both cores at their highest clock rates.

Test setup We test ARK with Linux kernel v4.4. We tune the kernel configuration

so that suspend/resume operates nine devices, as shown in Table 7.1. The corre-

sponding drivers exercise various kernel services to verify the functionality of ARK

design.

We measure device suspend/resume executed by ARK on Cortex-M3 and report

the results. We compare ARK to native Linux execution on Cortex-A9. We fur-

32

Table 7.1.
I/O devices description and kernel services used

Device Name Decription Interface Services*

SD Card SanDisk Ultra 16GB SDHC Class 10 SDIO 2,5

Flash drive Generic 256MB thumb drive USB 1-2,4

MMC controller OMAP HSMMC host controller On chip 1-2

USB controller OMAP HS multiport USB host controller On chip 1-2

Regulator TI TWL6030 PMIC I2C 5

Keyboard Dell KB212B keyboard USB 1-2,4

Camera Logitech C270 USB 1-2,4

Bluetooth Broadcom BCM20702 USB 1-2,4

WiFi TI WL1251 SDIO 2-6

*1. deferred work 2. memory allocator 3. softirq 4. DMA 5. threaded IRQ

6. firmware upload

Table 7.2.
Source code

Existing code (unchanged)
Translated 15K SLoC
Substituted
w/ emu

25K SLoC

New implementation
DBT 9K SLoC
Emulation 1K SLoC

ther compare to a baseline version, which inherits infrastructure from QEMU with

a straightforward implementation of translation rules from ARMv7-A to ARMv7-M.

The baseline version lacks the optimizations described in Chapter 5. We report mea-

surements taken with warm DBT code cache, as this reflects the real-world scenario

where device suspend/resume is frequently exercised.

33

7.2 Analysis of engineering efforts

ARK eliminates the tedious Linux kernel transplant (§2.3). In our evaluation,

ARK transparently translate and execute 15K SloC kernel code, mostly from drivers

and driver libraries, as shown in Table 7.2. In addition, ARK is able to execute other

drivers in ARMv7-A Linux kernel without engineering effort to porting them to the

peripheral core.

Table 7.2 also shows that ARK does not require too much engineering efforts in

developing new software for a microcontroller-like core. Compared to a commodity

DBT codebase (2M SLoC in QEMU), ARK’s 9K new SLoC for new translation rules

and optimizations is only a small fraction. By adding 1K new SLoC to implement

emulated services, ARK avoids make DBT support sophisticated Linux kernel services

(25K SLoC) which has been shown challenging in prior works [61, 63] The result

validates our principle of specializing these emulated services.

Our code analysis shows that ARK meets our goal of “build once, run with many”.

We verify that the ARK binary works with a variety of kernel configuration variants

(including omap2plus defconfig and yes-to-all) of Linux 4.4. We also verify that

ARK works with a wide range of Linux versions, from version 3.16 (2014) to 4.17

(most recent at the time of writing). This is because ARK only depends on a narrow

ABI shown in Table 4.1; the ABI has not changed since Linux 3.16.

7.3 Measured execution characteristics

Core activity We trace core activities during ARK execution and native execution

by instrumentation. Figure 7.1 (a) shows the breakdown of execution time. ARK

shows the same amount of idle time but consumes longer time on busy execution

compared with native execution. This is due to clock frequency ratio (M3’s clock fre-

quency is 1/6 of A9’s)and ARK’s execution overhead (both software and architecture

difference). Baseline design incurs longer busy execution time due to DBT overhead.

Although the extended busy time, ARK still demonstrate energy benefit.

34

0.7

4.7

22.7

0

5

10

15

20

25

Native ARK Baseline

A
cc

um
ul

at
ed

 T
im

e
(s

)

Busy Idle

205
133

682

0

100

200

300

400

500

600

700

800

Native ARK Baseline

E
ne

rg
y

(m
J)

IO DRAM Core busy Core idle

Fig. 7.1. Measured execution time and modeled energy in device
suspend/resume. ARK substantially reduces the energy.

0 10 20

SD Card

Flush Drive

MMC Controller

USB Controller

Regulator

Keyboard

Camera

Bluetooth

WiFi

Resume
ARK Baseline + register passthrough Baseline

01020304050

Suspend

Fig. 7.2. Busy execution overhead for devices under test. Our DBT
optimizations reduce the overhead by up to one order of magnitude

35

Memory activity We measure memory utilization by reading hardware counters of

LPDDR controller. It reports memory requests for both read and write from Cortex-

A9 or Cortex-M3 separately. By multiplying corresponding LLC size of two cores,

we are able to calculate average memory utilization. As shown in Table 7.3, ARK

on Cortex M3 surprisingly generates more memory traffic compared to the native

execution on A9, even with longer execution time. We attribute this phenomenon

to different LLC sizes of two cores. Throughout the experiment, the ARK emitted

over 230KB instructions, which is far more than LLC capacity of M3. Furthermore,

although touched kernel data and ARK emulated CPU structure are small, such

temporal locality with small memory footprint does not benefit from M3’s unified

cache design. On the contrary, Cortex A9’s larger LLC and split L1 cache absorbs

more memory access. As shown below, the difference in memory utilization has a

huge impact on energy consumption.

Busy execution overhead Our measurement shows that ARK incurs low over-

head in busy kernel execution, as the result of DBT optimization and kernel service

emulation. We calculate the overhead as the ratio between ARK’s cycle count on

Cortex-M3 to the Linux’s cycle count on A9. Due to clockrate difference, a cycle on

M3 is equivalent to 6 cycles on A9 in terms of time.

Overall, the execution overhead of ARK is 2.7× on average, with suspend over-

head as 2.9× and resume overhead as 2.6×. Figure 7.2 shows for individual drivers

the execution overhead, which ranges from 1.1× to 4.5×. Through comparing the

execution overhead of different version, our DBT optimizations described in Chap-

ter 5 demonstrate substantial performance improvement. For our baseline design, the

average execution overhead is 13.9×, 5.2× higher than ARK. The overhead is further

reduced by 2.5×, to 5.5× after applying register passthrough (§5.2) to the baseline.

The remaining optimizations (e.g. control transfer) collectively reduce the overhead

by additional 2×. We notice that our optimizations are less effective on drivers with

36

Table 7.3.
Test platform and power models in use

CPU Peripheral core

Processor

Core 2 * Cortex A9 @ 1.2GHz 2 * Cortex M3 @ 200MHz

Arch ARMv7-A ARMv7-M

Cache L1:64KB + L2:1MB L1:32KB

Power Pcpu busy/idle:630mW/80mW [64] Ppc busy/idle:17mW/1mW [65]

DRAM

Model Micron LPDDR2 [66]

Self Refresh Pmem sr:1.3mW

Utilization 8MB/s read, 4MB/s write 32MB/s read, 2MB/s write

Active Pmem:3.8mW P ′
mem8.4mW

IO Power Pio: 5mW [67]

very dense control transfer (e.g. USB host controller) due to high DBT cost. As we

will show below, the low overhead has a direct impact on energy saving.

Emulated services Our profiling shows that ARK’s emulated services incur low

overhead. Overall, the emulated services only contribute 1% of total busy execution.

We evaluate the overhead of individual emulated services and summarize as below. i)

The early, ISA-specific interrupt handling (§4.2) takes 3.9K Cortex-M3 cycles, only

1.5–2× more cycles than the native execution. ii) Emulated workqueues (§4.3) incurs

a delay of tens of thousands M3 cycles to manipulate queue structure. The delay is

longer than the native execution but does not break the deferred execution semantics.

iii) For migrating one DBT context to the CPU in fallback, ARK spends around 20

us on rewriting return addresses on stack to pointing to CPU kernel’s addresses(§5.3),

17 us to flush Cortex-M3’s cache, and 2 us to wake up the CPU through an IPI.

7.4 Energy benefits

Methodology We model the system power based on measured hardware activities

as summarized in Section 7.3. We choose modeling because i) our test platform is a

37

development board, which is not optimized for energy efficiency at production level; ii)

the board lacks separated power trace for DRAM [68]. We consider the platform power

consumption as a function of core activities, DRAM utilization, and IO. As shown in

Table 7.3, we use TI PET (power estimation tool) [64, 65] to model core power as a

function of core activities; we use Micron’s LPDDR2 power modeling spreadsheet [66]

to model DRAM power as a function of DRAM self refresh ratio and read/write

activities. These power tools are gathered from vendor’s official websites. Based on

prior work [67] we assume 5mW of average IO power over device suspend/resume,

which reasonably approximation during kernel device suspend/resume phases.

• The system energy with native execution is given by:

Ecpu = Tidle · (Pcpu idle + Pmem sr + Pio) + Tbusy · (Pcpu busy + Pmem + Pio)

• The system energy of ARK is given by:

EARK = Tidle · (Ppc idle + Pmem sr + Pio) + Tbusy · F · C · (Ppc busy + P ′
mem + Pio)

Here, all T s are elapsed time measured in native execution on CPU. P s are power

consumption for cores and DRAM in different power states. The DRAM’s active

power Pmem is derived from measured memory utilization and power modeling tool.

F captures the clockrate ratio between CPU and the peripheral core. C is the average

measured overhead in busy execution, obtained by ratio of cycle count between ARK

and native execution.

Energy saving ARK saves 34% of evergy compared with native execution on A9,

even at the cost of longer execution. The energy breakdown in Figure 7.1(b) shows

that the benefit comes from two portions. i) energy reduction in busy execution: due

to its low overhead (on average 2.7×), the ARK’s energy efficiency in busy execution is

23% higher than the native execution. ii) excellent idle energy efficiency of peripheral

core: ARK reduces the system idle energy to a negligible portion, since the peripheral

core’s idle power is 1.25% of the CPU’s (1mW vs 80mW). Figure 7.1 also shows that

our DBT optimizations are crucial to energy benefit. Although the baseline also

38

1x 3x 5x 7x 9x 11x 13x 15x

DBT Overhead

0%

20%

40%

60%

80%

100%

%
 o

f B
us

y
Ti

m
e

in
 N

at
iv

e
Ex

ec
ut

io
n

(2.69x,41%)
Our energy: 66%

(13.87x,41%)
Baseline energy: 333%

0%
50%
100%
150%
200%
250%
300%
350%
400%

Fig. 7.3. System energy consumption of ARK relative to the native
execution (100%), under different DBT overheads (x-axis) and busy
execution fractions (y-axis). ARK’s low energy hinges on low DBT
overhead.

benefits from lower idle power, its high execution overhead ultimately leads to 5.1×

energy compared to the native execution.

Another interesting fact that we find is ARK consumes more DRAM energy than

the native execution, due to Cortex-M3’s tiny LLC (32KB) as describe earlier. The

LLC size trades off between the core power and the DRAM power. Our result suggests

that the current size is suboptimal for the offloaded kernel execution. We recommend

future hardware designers to carefully increase the LLC size (to 64 KB or 128 KB). It

will significantly reduce DRAM power at the cost of moderate increase in core power.

What-if analysis We further study ARK’s energy benefit by tuning a few param-

eters in previous model:

• The fraction of busy execution time in native execution on CPU (denoted by

Tbusy/(Tidle + Tbusy)), which is determined by workload’s characteristic.

• The DBT overhead (denoted by C), which is affected by ARK.

39

Table 7.4.
Battery life extension under different suspend/resume intervals and energy ratio

1:9 1:3 1:1

5s 18 % 15.5% 11%

30s 8.75 % 8.1% 6.7%

We estimate energy consumption by using the above power model and plugging in

different values for the two factors. Our analysis results in in Figure 7.3 show two

findings. i) ARK’s energy benefit will be more noticeable when the kernel incurs

less CPU busy time (i.e. more CPU idle). This is because ARK’s energy efficiency

advantage compared to CPU is higher during idle periods than during busy execution.

ii) DBT’s overhead has a huge impact on ARK’s energy benefit. When the overhead

drops to below 3.5×, ARK saves energy even for 100% kernel execution; when the

overhead exceeds 5.2× which is the break-even point, ARK wastes energy even for

20% busy execution time. This is the lowest fraction observed on embedded platforms

in prior work [10].

Qualitative comparison with big.LITTLE We compare ARK’s energy saving

with executing device suspend/resume only on the LITTLE core in big.LITTLE archi-

tecture. For fair comparison, we study recent papers and model LITTLE core’s power

consumption and execution efficiency as follows: It provides 1.3× energy efficiency

at 70% of clock frequency compared with CPU [69]. The idle power consumption

is 40mW [70]. We assume that the LITTLE core has the same memory utilization

as CPU, considering LITTLE core’s smaller LLC but longer execution period. We

assume the same IO power. Under this model, we estimate that LITTLE core is only

capable of save 23% of energy, which is less than ARK with 34%. We attribute this

to huge idle power gap between LITTLE and the peripheral core (40mW vs 1mW).

The busy execution efficiency is similar.

40

Battery life extension Based on ARK’s energy savings in device suspend/resume,

we estimate the battery life extension for executing ephemeral tasks using the similar

settings as prior work [2]. As shown in Figure 7.4, ARK extends the battery life by up

to 18% when a ephemeral task is executed every 5 seconds and device suspend/resume

consumes 90 percent of total energy. The saving converts to extra 4.3 hours battery

life per day, which is tangle compared with other approaches [2, 67].

41

8. RELATED WORK

OS for heterogeneous processors To harness heterogeneous processors, some

multikernel OS designs [17,20,21,21,71] launch one kernel for each coherence domain,

and coordinate through IPC or shared memory. However, they rely on agreement on

kernel ABI which is fragile as described in Section 2.3. Unlike them, transkernel

bridges the heterogeneity gap by using DBT. Some systems offload CPU kernel func-

tionalities to accelerators [72,73]. But those accelerators cannot work while the CPU

is off, which is the prerequisite for ARK to save energy.

DBT DBT has been used for system emulation [53] and binary instrumentation [61,

63, 74, 75]; DeVuyst et al. [76] uses DBT to accelerate process migration across het-

erogeneous cores. Related to transkernel, prior systems run translated user programs

atop an emulated syscall interface [52,53,77]. Unlike them, transkernel translates ker-

nel code and emulates a narrow interface inside the kernel. Prior systems use DBT

to run binaries in commodity ISAs (e.g. x86) on specialized VLIW cores to exploit

instruction level parallelism, and hence gain efficiency [78–81]. transkernel demon-

strates that DBT can gain efficiency without introducing new hardware. Existing

DBT engines leverage ISA similarities, e.g. between aarch32 and aarch64 [51, 82].

They still fall into the classic DBT paradigm, where the host ISA is brawny and the

guest ISA is wimpy. With an inverse DBT paradigm, ARK addresses very different

challenges. Much work is done on optimizing cross-ISA DBT translation by build-

ing translation rules using automatic machine learning [83], or by applying compiler

techniques on resultant instructions, such as LLVM optimizer [84] and peephole op-

timization [85]. Compared to them, ARK leverages ISA similarities and therefore

reuses code optimization already present in the guest code by the guest compilers.

42

Kernel and drivers Prior kernel studies show rapid evolution of the Linux kernel

and the interfaces between kernel layers are unstable [25,86]. This observation moti-

vates transkernel. Extensive work transplants device drivers to a separate core [44],

user space [45], or a separate VM [87]. However, the transplant code cannot operate

independent of the kernel, whereas transkernel must execute autonomously.

Suspend/resume Energy inefficiency in suspend/resume raises attention for cloud

servers [28, 88] and mobile [2]. Drowsy [2] mitigates the problem by introducing a

new power state to minimize the number of devices involved during suspend/resume.

It requires recompilation of the Linux kernel. Xi et al. [88] propose to reorder the

resume sequence of devices. Our approach does not require changes to original kernel,

and is complementary to them. PowerNap [28] expedites suspend/resume by exploit-

ing hardware power state for servers. However, its model only operates on limited

number of devices, which contrast to embedded platform with diverse IO. A kernel

may put idle devices to low power modes at run time [67], which is complementary

to suspend/resume that ensures all devices are off.

43

9. CONCLUSIONS

In this thesis, we present transkernel, a new model to execute kernel device sus-

pend/resume on a peripheral core. It adopts cross-ISA DBT which creates a virtual-

ized environment on a microcontroller-like core. To overcome hardware heterogeneity

at an affordable cost, transkernel follows four principles: it translates stateful code

while emulating stateless services; it chooses a narrow and stable interface for em-

ulation; it specialized for frequently executed path; it exploits ISA similarities for

DBT overhead reduction. Through experiment and analysis, we demonstrate that

this approach is feasible and has tangible energy savings. Moreover, the transkernel

provides a new OS design for heterogeneous SoCs.

REFERENCES

44

REFERENCES

[1] R. Liu and F. X. Lin, “Understanding the characteristics of android wear os,”
in Proceedings of the 14th Annual International Conference on Mobile Systems,
Applications, and Services, ser. MobiSys ’16. New York, NY, USA: ACM, 2016,
pp. 151–164. [Online]. Available: http://doi.acm.org/10.1145/2906388.2906398

[2] M. Lentz, J. Litton, and B. Bhattacharjee, “Drowsy power management,”
in Proceedings of the 25th Symposium on Operating Systems Principles, ser.
SOSP ’15. New York, NY, USA: ACM, 2015, pp. 230–244. [Online]. Available:
http://doi.acm.org/10.1145/2815400.2815414

[3] F. Xu, Y. Liu, T. Moscibroda, R. Chandra, L. Jin, Y. Zhang, and Q. Li, “Opti-
mizing background email sync on smartphones,” in Proc. ACM Int. Conf. Mobile
Systems, Applications, & Services (MobiSys), 2013, pp. 55–68.

[4] X. Chen, A. Jindal, N. Ding, Y. C. Hu, M. Gupta, and R. Vannithamby,
“Smartphone background activities in the wild: Origin, energy drain, and
optimization,” in Proceedings of the 21st Annual International Conference
on Mobile Computing and Networking, ser. MobiCom ’15. New York, NY,
USA: ACM, 2015, pp. 40–52. [Online]. Available: http://doi.acm.org/10.1145/
2789168.2790107

[5] X. Chen, N. Ding, A. Jindal, Y. C. Hu, M. Gupta, and R. Vannithamby, “Smart-
phone energy drain in the wild: Analysis and implications,” ACM SIGMETRICS
Performance Evaluation Review, vol. 43, no. 1, pp. 151–164, 2015.

[6] X. Liu, T. Chen, F. Qian, Z. Guo, F. X. Lin, X. Wang, and K. Chen,
“Characterizing smartwatch usage in the wild,” in Proceedings of the 15th
Annual International Conference on Mobile Systems, Applications, and Services,
ser. MobiSys ’17. New York, NY, USA: ACM, 2017, pp. 385–398. [Online].
Available: http://doi.acm.org/10.1145/3081333.3081351

[7] D. Vasisht, Z. Kapetanovic, J. Won, X. Jin, R. Chandra, S. Sinha,
A. Kapoor, M. Sudarshan, and S. Stratman, “Farmbeats: An iot
platform for data-driven agriculture,” in 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 17). Boston, MA:
USENIX Association, 2017, pp. 515–529. [Online]. Available: https:
//www.usenix.org/conference/nsdi17/technical-sessions/presentation/vasisht

[8] R. Liu and F. X. Lin, “Understanding the characteristics of android wear os,”
in Proceedings of the 14th Annual International Conference on Mobile Systems,
Applications, and Services, ser. MobiSys ’16. New York, NY, USA: ACM, 2016,
pp. 151–164. [Online]. Available: http://doi.acm.org/10.1145/2906388.2906398

[9] U. Hansson, “Sdio power on/off time impacts system suspend/resume time!”
http://connect.linaro.org/resource/sfo17/sfo17-402/, 2017.

45

[10] S. Zhai, L. Guo, X. Li, and F. X. Lin, “Decelerating suspend and
resume in operating systems,” in Proceedings of the 18th International
Workshop on Mobile Computing Systems and Applications, ser. HotMobile
’17. New York, NY, USA: ACM, 2017, pp. 31–36. [Online]. Available:
http://doi.acm.org/10.1145/3032970.3032975

[11] LWN, “Redesigning asynchronous suspend/resume,” https://lwn.net/Articles/
366915/, 2009.

[12] LKML, “[git pull] pm updates for 2.6.33,” 2009.

[13] MediaTek, “Microsoft azure sphere mcu with extensive i/o peripheral sub-
system for diverse iot applications,” https://www.mediatek.com/products/
azureSphere/mt3620, 2018.

[14] NXP Semiconductors, “i.mx 7dual family of applications processors datasheet,”
https://www.nxp.com/docs/en/data-sheet/IMX7DCEC.pdf, 2017.

[15] Apple, “Apple motion coprocessor,” https://en.wikipedia.org/wiki/Apple
motion coprocessors.

[16] F. X. Lin, Z. Wang, R. LiKamWa, and L. Zhong, “Reflex: using low-power
processors in smartphones without knowing them,” in Proc. ACM Int.
Conf. Architectural Support for Programming Languages & Operating Systems
(ASPLOS). New York, NY, USA: ACM, 2012, pp. 13–24. [Online]. Available:
http://doi.acm.org/10.1145/2150976.2150979

[17] F. X. Lin, Z. Wang, and L. Zhong, “K2: A mobile operating system for het-
erogeneous coherence domains,” in Proc. ACM Int. Conf. Architectural Support
for Programming Languages & Operating Systems (ASPLOS). ACM, 2014, pp.
285–300.

[18] D. Meisner and T. F. Wenisch, “Dreamweaver: architectural support for deep
sleep,” in Proceedings of the 17th international conference on Architectural
Support for Programming Languages and Operating Systems, ser. ASPLOS
’12. New York, NY, USA: ACM, 2012, pp. 313–324. [Online]. Available:
http://doi.acm.org/10.1145/2150976.2151009

[19] Y. Agarwal, S. Hodges, R. Chandra, J. Scott, P. Bahl, and R. Gupta, “Som-
niloquy: Augmenting network interfaces to reduce PC energy usage.” in Proc.
USENIX Symp. Networked Systems Design and Implementation (NSDI). Berke-
ley, CA, USA: USENIX Association, 2009, pp. 365–380.

[20] A. Barbalace, M. Sadini, S. Ansary, C. Jelesnianski, A. Ravichandran, C. Kendir,
A. Murray, and B. Ravindran, “Popcorn: Bridging the programmability gap in
heterogeneous-isa platforms,” in Proceedings of the Tenth European Conference
on Computer Systems, ser. EuroSys ’15. New York, NY, USA: ACM, 2015, pp.
29:1–29:16. [Online]. Available: http://doi.acm.org/10.1145/2741948.2741962

[21] E. B. Nightingale, O. Hodson, R. McIlroy, C. Hawblitzel, and G. Hunt,
“Helios: heterogeneous multiprocessing with satellite kernels,” in Proc.
ACM Symp. Operating Systems Principles (SOSP), ser. SOSP ’09. New
York, NY, USA: ACM, 2009, pp. 221–234. [Online]. Available: http:
//doi.acm.org/10.1145/1629575.1629597

46

[22] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter, T. Roscoe,
A. Schüpbach, and A. Singhania, “The multikernel: a new OS architecture for
scalable multicore systems,” in Proc. ACM Symp. Operating Systems Principles
(SOSP). ACM, 2009, pp. 29–44.

[23] A. L. Brown and R. J. Wysocki, “Suspend-to-ram in linux,” in Ottawa Linux
Symposium, 2008, pp. 39–52.

[24] Intel, “Intel suspendresume project,” https://01.org/suspendresume, 2015.

[25] Y. Padioleau, J. L. Lawall, and G. Muller, “Understanding collateral evolution
in linux device drivers,” in ACM SIGOPS Operating Systems Review, vol. 40,
no. 4. ACM, 2006, pp. 59–71.

[26] A. Kadav and M. M. Swift, “Understanding modern device drivers,” in
Proceedings of the Seventeenth International Conference on Architectural
Support for Programming Languages and Operating Systems, ser. ASPLOS
XVII. New York, NY, USA: ACM, 2012, pp. 87–98. [Online]. Available:
http://doi.acm.org/10.1145/2150976.2150987

[27] Y. Li, B. Dolan-Gavitt, S. Weber, and J. Cappos, “Lock-in-pop: securing
privileged operating system kernels by keeping on the beaten path,” in 2017
{USENIX} Annual Technical Conference ({USENIX}{ATC} 17). USENIX
Association, 2017, pp. 1–13.

[28] D. Meisner, B. T. Gold, and T. F. Wenisch, “Powernap: Eliminating server idle
power,” in Proceedings of the 14th International Conference on Architectural
Support for Programming Languages and Operating Systems, ser. ASPLOS
XIV. New York, NY, USA: ACM, 2009, pp. 205–216. [Online]. Available:
http://doi.acm.org/10.1145/1508244.1508269

[29] Q. Zhu, M. Zhu, B. Wu, X. Shen, K. Shen, and Z. Wang, “Software
engagement with sleeping cpus,” in 15th Workshop on Hot Topics in Operating
Systems (HotOS XV). Kartause Ittingen, Switzerland: USENIX Association,
May 2015. [Online]. Available: https://www.usenix.org/conference/hotos15/
workshop-program/presentation/zhu

[30] Texas Instruments, “OMAP4460 technical reference manual,” http://
www.ti.com/lit/ug/swpu235ab/swpu235ab.pdf, 2014.

[31] ——, “OMAP572x: Technical reference manual,” http://www.ti.com/lit/ug/
spruhz6k/spruhz6k.pdf, 2018.

[32] NXP Semiconductors, “Vybrid vf6xx family,” https://www.nxp.com/docs/en/
fact-sheet/VYBRIDVF6FS.pdf, 2014.

[33] Samsung, “Exynos 4210 application processor,” http://www.samsung.com/
global/business/semiconductor/product/application/detail?productId=
7644&iaId=844, 2012.

[34] J. Sorber, N. Banerjee, M. D. Corner, and S. Rollins, “Turducken: hierarchical
power management for mobile devices,” in Proc. ACM Int. Conf. Mobile Systems,
Applications, & Services (MobiSys). ACM, 2005, pp. 261–274.

47

[35] H. Shen, A. Balasubramanian, A. LaMarca, and D. Wetherall, “Enhancing
mobile apps to use sensor hubs without programmer effort,” in Proceedings
of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous
Computing, ser. UbiComp ’15. New York, NY, USA: ACM, 2015, pp. 227–238.
[Online]. Available: http://doi.acm.org/10.1145/2750858.2804260

[36] NXP Semiconductors, “i.MX 7DS power consumption measurement,” https://
www.nxp.com/docs/en/application-note/AN5383.pdf, 2016.

[37] J. Mogul, J. Mudigonda, N. Binkert, P. Ranganathan, and V. Talwar, “Using
asymmetric single-isa cmps to save energy on operating systems,” Micro, IEEE,
vol. 28, no. 3, pp. 26–41, 2008.

[38] P. Greenhalgh, “Big.LITTLE processing with ARM Cortex-A15 and Cortex-A7,”
Tech. Rep., 2011.

[39] NXP Semiconductors, “i.mx 6dual/6quad applications processors for industrial
products,” https://www.nxp.com/docs/en/data-sheet/IMX7DCEC.pdf, 2017.

[40] Renesas, “R-car h3,” https://www.renesas.com/en-us/solutions/automotive/
products/rcar-h3.html, 2018.

[41] E. Blem, J. Menon, T. Vijayaraghavan, and K. Sankaralingam, “Isa wars: Under-
standing the relevance of isa being risc or cisc to performance, power, and energy
on modern architectures,” ACM Transactions on Computer Systems (TOCS),
vol. 33, no. 1, p. 3, 2015.

[42] T. Li, P. Brett, R. Knauerhase, D. Koufaty, D. Reddy, and S. Hahn, “Operat-
ing system support for overlapping-isa heterogeneous multi-core architectures,”
in High Performance Computer Architecture (HPCA), 2010 IEEE 16th Interna-
tional Symposium on. IEEE, 2010, pp. 1–12.

[43] A. Ponomarenko, “Abi compliance checker,” https://lvc.github.io/abi-
compliance-checker/, 2018.

[44] B. Gerofi, A. Santogidis, D. Martinet, and Y. Ishikawa, “Picodriver: Fast-path
device drivers for multi-kernel operating systems,” in Proceedings of the
27th International Symposium on High-Performance Parallel and Distributed
Computing, ser. HPDC ’18. New York, NY, USA: ACM, 2018, pp. 2–13.
[Online]. Available: http://doi.acm.org/10.1145/3208040.3208060

[45] V. Ganapathy, M. J. Renzelmann, A. Balakrishnan, M. M. Swift, and S. Jha,
“The design and implementation of microdrivers,” in Proceedings of the 13th
International Conference on Architectural Support for Programming Languages
and Operating Systems, ser. ASPLOS XIII. New York, NY, USA: ACM, 2008,
pp. 168–178. [Online]. Available: http://doi.acm.org/10.1145/1346281.1346303

[46] M. M. Swift, B. N. Bershad, and H. M. Levy, “Improving the Reliability of
Commodity Operating Systems,” in Proc. ACM SOSP, 2003.

[47] S. Boyd-Wickizer and N. Zeldovich, “Tolerating malicious device drivers in
linux.” in USENIX Annual Technical Conference. Boston, 2010.

[48] M. M. Swift, M. Annamalai, B. N. Bershad, and H. M. Levy, “Recovering Device
Drivers,” in Proc. USENIX OSDI, 2004.

48

[49] M. Larabel, “A stable linux kernel api/abi? ”the most insane pro-
posal” for linux development,” https://www.phoronix.com/scan.php?page=
news item&px=Linux-Kernel-Stable-API-ABI, 2016.

[50] A. Barbalace, R. Lyerly, C. Jelesnianski, A. Carno, H.-R. Chuang, V. Legout,
and B. Ravindran, “Breaking the boundaries in heterogeneous-isa datacenters,”
in Proceedings of the Twenty-Second International Conference on Architectural
Support for Programming Languages and Operating Systems. ACM, 2017, pp.
645–659.

[51] A. d’Antras, C. Gorgovan, J. Garside, and M. Luján, “Low overhead dynamic
binary translation on arm,” in Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation, ser. PLDI
2017. New York, NY, USA: ACM, 2017, pp. 333–346. [Online]. Available:
http://doi.acm.org/10.1145/3062341.3062371

[52] W. Wang, P.-C. Yew, A. Zhai, S. McCamant, Y. Wu, and J. Bobba, “Enabling
cross-isa offloading for cots binaries,” in Proceedings of the 15th Annual Interna-
tional Conference on Mobile Systems, Applications, and Services. ACM, 2017,
pp. 319–331.

[53] F. Bellard, “Qemu, a fast and portable dynamic translator.” in USENIX Annual
Technical Conference, FREENIX Track, 2005, pp. 41–46.

[54] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr., “Exokernel: An
operating system architecture for application-level resource management,”
in Proc. ACM Symp. Operating Systems Principles (SOSP), ser. SOSP
’95. New York, NY, USA: ACM, 1995, pp. 251–266. [Online]. Available:
http://doi.acm.org/10.1145/224056.224076

[55] D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olinsky, and G. C. Hunt,
“Rethinking the library OS from the top down,” in Proc. ACM Int.
Conf. Architectural Support for Programming Languages & Operating Systems
(ASPLOS), ser. ASPLOS XVI. New York, NY, USA: ACM, 2011, pp. 291–304.
[Online]. Available: http://doi.acm.org/10.1145/1950365.1950399

[56] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott, B. Singh, T. Gazagnaire,
S. Smith, S. Hand, and J. Crowcroft, “Unikernels: Library operating systems
for the cloud,” in Proc. ACM Int. Conf. Architectural Support for Programming
Languages & Operating Systems (ASPLOS). ACM, 2013, pp. 461–472.

[57] Mike Turquette, “The common clk framework,” https://www.kernel.org/doc/
Documentation/clk.txt.

[58] ARM, “ARM architecture reference manual: Armv7-a and armv7-r edi-
tion,” https://static.docs.arm.com/ddi0406/c/DDI0406C C arm architecture
reference manual.pdf, 2014.

[59] ——, “Armv7-m architecture reference manual,” https://static.docs.arm.com/
ddi0403/eb/DDI0403E B armv7m arm.pdf, 2014.

[60] W. Wang, S. McCamant, A. Zhai, and P.-C. Yew, “Enhancing cross-
isa dbt through automatically learned translation rules,” in Proceedings
of the Twenty-Third International Conference on Architectural Support

49

for Programming Languages and Operating Systems, ser. ASPLOS ’18.
New York, NY, USA: ACM, 2018, pp. 84–97. [Online]. Available:
http://doi.acm.org/10.1145/3173162.3177160

[61] P. Kedia and S. Bansal, “Fast dynamic binary translation for the kernel,”
in Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles, ser. SOSP ’13. New York, NY, USA: ACM, 2013, pp. 101–115.
[Online]. Available: http://doi.acm.org/10.1145/2517349.2522718

[62] VMWARE, “Virtual machine to physical machine migration,” https://
www.vmware.com/support/v2p/doc/V2P TechNote.pdf, 2004.

[63] P. Feiner, A. D. Brown, and A. Goel, “Comprehensive kernel instrumentation via
dynamic binary translation,” in ACM SIGARCH Computer Architecture News,
vol. 40, no. 1. ACM, 2012, pp. 135–146.

[64] Texas Instruments, “Am43xx power estimation tool,” http://www.ti.com/lit/
an/spraca3/spraca3.pdf, 2017.

[65] ——, “Am572x power estimation tool,” http://www.ti.com/lit/an/spraca0/
spraca0.pdf, 2018.

[66] Micron Technology, Inc., “Tn4201 lpddr2 system power calculator,” https://
www.micron.com/support/tools-and-utilities/power-calc, 2013.

[67] C. Xu, F. X. Lin, Y. Wang, and L. Zhong, “Automated os-level device power
management for socs,” in Proc. ACM Int. Conf. Architectural Support for Pro-
gramming Languages & Operating Systems (ASPLOS). New York, NY, USA:
ACM, 2015.

[68] eLinux.org, “PandaBoard Power Measurements,” http://elinux.org/
PandaBoard Power Measurements.

[69] D. Loghin, B. M. Tudor, H. Zhang, B. C. Ooi, and Y. M. Teo, “A performance
study of big data on small nodes,” Proc. VLDB Endow., vol. 8, no. 7, pp. 762–773,
Feb. 2015. [Online]. Available: http://dx.doi.org/10.14778/2752939.2752945

[70] N. Peters, S. Park, S. Chakraborty, B. Meurer, H. Payer, and D. Clifford, “Web
browser workload characterization for power management on hmp platforms,”
in 2016 International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS), Oct 2016, pp. 1–10.

[71] N. Asmussen, M. Völp, B. Nöthen, H. Härtig, and G. P. Fettweis, “M3:
A hardware/operating-system co-design to tame heterogeneous manycores,”
in Proceedings of the Twenty-First International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS ’16,
Atlanta, GA, USA, April 2-6, 2016, 2016, pp. 189–203. [Online]. Available:
http://doi.acm.org/10.1145/2872362.2872371

[72] C. Min, W. Kang, M. Kumar, S. Kashyap, S. Maass, H. Jo, and T. Kim, “Solros:
a data-centric operating system architecture for heterogeneous computing,” in
Proceedings of the Thirteenth EuroSys Conference. ACM, 2018, p. 36.

50

[73] M. Silberstein, B. Ford, I. Keidar, and E. Witchel, “Gpufs: Integrating
a file system with gpus,” in Proc. ACM Int. Conf. Architectural Support
for Programming Languages & Operating Systems (ASPLOS), ser. ASPLOS
’13. New York, NY, USA: ACM, 2013, pp. 485–498. [Online]. Available:
http://doi.acm.org/10.1145/2451116.2451169

[74] B. Hawkins, B. Demsky, D. Bruening, and Q. Zhao, “Optimizing binary
translation of dynamically generated code,” in Proceedings of the 13th Annual
IEEE/ACM International Symposium on Code Generation and Optimization,
ser. CGO ’15. Washington, DC, USA: IEEE Computer Society, 2015, pp.
68–78. [Online]. Available: http://dl.acm.org/citation.cfm?id=2738600.2738610

[75] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.
Reddi, and K. Hazelwood, “Pin: Building customized program analysis tools
with dynamic instrumentation,” in Proc. of the 2005 ACM SIGPLAN conference
on Programming Language Design and Implementation. New York, NY, USA:
ACM Press, 2005, pp. 190–200.

[76] M. DeVuyst, A. Venkat, and D. M. Tullsen, “Execution migration in a
heterogeneous-ISA chip multiprocessor,” in Proc. ACM Int. Conf. Architectural
Support for Programming Languages & Operating Systems (ASPLOS).
New York, NY, USA: ACM, 2012, pp. 261–272. [Online]. Available:
http://doi.acm.org/10.1145/2150976.2151004

[77] R. J. Hookway and M. A. Herdeg, “Digital fx! 32: Combining emulation and
binary translation,” Digital Technical Journal, vol. 9, pp. 3–12, 1997.

[78] D. Boggs, G. Brown, N. Tuck, and K. S. Venkatraman, “Denver: Nvidia’s first
64-bit ARM processor,” IEEE Micro, vol. 35, no. 2, pp. 46–55, 2015. [Online].
Available: https://doi.org/10.1109/MM.2015.12

[79] A. Klaiber, “The technology behind crusoe processors,” Transmeta Technical
Brief, 2000.

[80] S. Rokicki, E. Rohou, and S. Derrien, “Hardware-accelerated dynamic binary
translation,” in Design, Automation & Test in Europe Conference & Exhibition,
DATE 2017, Lausanne, Switzerland, March 27-31, 2017, 2017, pp. 1062–1067.
[Online]. Available: https://doi.org/10.23919/DATE.2017.7927147

[81] ——, “Supporting runtime reconfigurable vliws cores through dynamic binary
translation,” in 2018 Design, Automation & Test in Europe Conference &
Exhibition, DATE 2018, Dresden, Germany, March 19-23, 2018, 2018, pp.
1009–1014. [Online]. Available: https://doi.org/10.23919/DATE.2018.8342160

[82] A. d’Antras, C. Gorgovan, J. Garside, J. Goodacre, and M. Luján,
“Hypermambo-x64: Using virtualization to support high-performance transpar-
ent binary translation,” in Proceedings of the 13th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments, ser. VEE
’17. New York, NY, USA: ACM, 2017, pp. 228–241. [Online]. Available:
http://doi.acm.org/10.1145/3050748.3050756

[83] W. Wang, S. McCamant, A. Zhai, and P. Yew, “Enhancing cross-isa
DBT through automatically learned translation rules,” in Proceedings of
the Twenty-Third International Conference on Architectural Support for

51

Programming Languages and Operating Systems, ASPLOS 2018, Williamsburg,
VA, USA, March 24-28, 2018, 2018, pp. 84–97. [Online]. Available:
http://doi.acm.org/10.1145/3173162.3177160

[84] D.-Y. Hong, C.-C. Hsu, P.-C. Yew, J.-J. Wu, W.-C. Hsu, P. Liu, C.-M.
Wang, and Y.-C. Chung, “Hqemu: A multi-threaded and retargetable
dynamic binary translator on multicores,” in Proceedings of the Tenth
International Symposium on Code Generation and Optimization, ser. CGO
’12. New York, NY, USA: ACM, 2012, pp. 104–113. [Online]. Available:
http://doi.acm.org/10.1145/2259016.2259030

[85] S. Bansal and A. Aiken, “Binary translation using peephole superoptimizers,”
in Proceedings of the 8th USENIX conference on Operating systems design and
implementation. USENIX Association, 2008, pp. 177–192.

[86] Y. Padioleau, J. Lawall, R. R. Hansen, and G. Muller, “Documenting and au-
tomating collateral evolutions in linux device drivers,” in Acm sigops operating
systems review, vol. 42, no. 4. ACM, 2008, pp. 247–260.

[87] J. LeVasseur, V. Uhlig, J. Stoess, and S. Götz, “Unmodified Device Driver Reuse
and Improved System Dependability via Virtual Machines,” in Proc. USENIX
OSDI, 2004.

[88] S. L. Xi, M. Guevara, J. Nelson, P. Pensabene, and B. C. Lee, “Understanding
the critical path in power state transition latencies,” in Proceedings of the 2013
International Symposium on Low Power Electronics and Design, ser. ISLPED
’13. Piscataway, NJ, USA: IEEE Press, 2013, pp. 317–322. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2648668.2648746

