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ABSTRACT

Ravi, Radhika M.S.C.E., Purdue University, August 2019. Interactive Environment
For The Calibration And Visualization Of Multi-sensor Mobile Mapping Systems.
Major Professor: Ayman Habib.

LiDAR units onboard airborne and terrestrial platforms have been established

as a proven technology for the acquisition of dense point clouds for a wide range of

applications, such as digital building model generation, transportation corridor moni-

toring, precision agriculture, and infrastructure monitoring. Furthermore, integrating

such systems with one or more cameras would allow forward and backward projection

between imagery and LiDAR data, thus facilitating several high-level data processing

activities such as reliable feature extraction and colorization of point clouds. However,

the attainment of the full 3D point positioning potential of such systems is contingent

on an accurate calibration of the mobile mapping unit as a whole.

This research aims at proposing a calibration procedure for terrestrial multi-unit

LiDAR systems to directly estimate the mounting parameters relating several spin-

ning multi-beam laser scanners to the onboard GNSS/INS unit in order to derive

point clouds with high positional accuracy. To ensure the accuracy of the estimated

mounting parameters, an optimal configuration of target primitives and drive-runs is

determined by analyzing the potential impact of bias in mounting parameters of a

LiDAR unit on the resultant point cloud for different orientations of target primitives

and different drive-run scenarios. This impact is also verified experimentally by simu-

lating a bias in each mounting parameter separately. Next, the optimal configuration

is used within an experimental setup to evaluate the performance of the proposed cali-

bration procedure. Then, this proposed multi-unit LiDAR system calibration strategy

is extended for multi-LiDAR multi-camera systems in order to allow a simultaneous
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estimation of the mounting parameters relating the different laser scanners as well

as cameras to the onboard GNSS/INS unit. Such a calibration improves the regis-

tration accuracy of point clouds derived from LiDAR data and imagery, along with

their accuracy with respect to the ground truth. Finally, in order to qualitatively

evaluate the calibration results for a generic mobile mapping system and allow the vi-

sualization of point clouds, imagery data, and their registration quality, an interface

denoted as Image-LiDAR Interactive Visualization Environment (I-LIVE) is devel-

oped. Apart from its visualization functions (such as 3D point cloud manipulation

and image display/navigation), I-LIVE mainly serves as a tool for the quality control

of GNSS/INS-derived trajectory and LiDAR-camera system calibration.

The proposed multi-sensor system calibration procedures are experimentally eval-

uated by calibrating several mobile mapping platforms with varying number of LiDAR

units and cameras. For all cases, the system calibration is seen to attain accuracies

better than the ones expected based on the specifications of the involved hardware

components, i.e., the LiDAR units, cameras, and GNSS/INS units.
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1. INTRODUCTION

1.1 Problem Statement

Light Detection and Ranging (LiDAR) units use laser beams to measure ranges

and generate precise 3D information about the scanned area. Such units onboard

airborne platforms (UAVs) and terrestrial platforms (cars or trucks) have been es-

tablished as a proven technology for the acquisition of dense point clouds with high

positional accuracy. The main factors behind the widespread use of LiDAR systems

include the ever-continuous improvement in GNSS/INS direct georeferencing technol-

ogy as well as enhanced performance and reduced size and cost of laser scanning units.

Currently, there are commercially available LiDAR units that are capable of emitting

more than a quarter million pulses per second at a cost of less than U.S. $10k. Such

availability, together with the ever-increasing range of applications – such as digital

building model generation, transportation corridor monitoring, telecommunications,

precision agriculture, infrastructure monitoring, seamless outdoor-indoor mapping,

and power line clearance evaluation [23, 28, 36, 38] – have led to the development

of multi-unit mobile LiDAR systems onboard airborne and terrestrial platforms that

are either manned or unmanned. Furthermore, integrating such systems with one or

more cameras would allow forward and backward projection between imagery and

LiDAR data, thus facilitating several high-level data processing activities, such as

reliable feature extraction and colorization of point clouds. However, the attainment

of the full 3D point positioning potential of such systems is contingent on an accurate

calibration of the mobile mapping unit as a whole.

This research aims at proposing a multi-sensor system calibration procedure to

directly estimate the mounting parameters relating several spinning multi-beam laser

scanners and cameras to the GNSS/INS unit onboard a mobile terrestrial platform
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in order to derive point clouds with high positional accuracy. The proposed multi-

sensor system calibration strategy allows a simultaneous estimation of the mounting

parameters relating the different laser scanners as well as cameras to the onboard

GNSS/INS unit. Such a simultaneous calibration technique improves the registration

accuracy of point clouds derived from LiDAR data and imagery, along with their

accuracy with respect to the ground truth. In order to ensure a sufficiently high

accuracy of estimated mounting parameters using the proposed strategy, an optimal

configuration of target primitives and drive-runs needs to be determined by analyzing

the potential impact of bias in mounting parameters of a LiDAR unit on the resultant

point cloud for different orientations of target primitives and different drive-run sce-

narios. Finally, an interactive interface is developed in this research so as to provide

end-users the possibility to conduct a qualitative evaluation. The interface allows the

visualization of point clouds, imagery data, and their registration quality, thus facili-

tating the evaluation of calibration results for a generic mobile mapping system. The

primary purpose of the interface is to serve as a tool for qualitative quality control of

GNSS/INS-derived trajectory and LiDAR-camera system calibration.

1.2 Thesis Organization

Chapter 1 describes the motivation of the thesis and the problem statement ad-

dressed in this research.

Chapter 2 reviews the literature of past and ongoing research related to calibration

of mapping systems that utilize LiDAR units and cameras. Furthermore, it focuses

on highlighting the contributions of the current research work while comparing the

proposed approach to prior strategies adopted for calibration. Finally, this chapter

also introduces the basic mathematical equations involved in 3D point positioning for

points captured using generic mobile mapping systems consisting of LiDAR units and

cameras.
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Chapter 3 focuses on conducting a bias impact analysis for LiDAR-based map-

ping systems. In this chapter, we derive a mathematical formulation that shows the

deformations/shifts of points due to the presence of a bias in system mounting pa-

rameters for different target and drive-run configurations. This analysis leads to the

development of an optimal configuration of drive-runs and target primitives for con-

ducting an accurate calibration of wheel-based mobile mapping systems. Further, the

theoretical analysis is validated experimentally by simulating a bias in each mounting

parameter separately.

Chapter 4 aims at developing a calibration strategy - based on the use of conjugate

points and linear/planar features - to directly estimate the mounting parameters for

multiple sensors (LiDAR units and cameras) onboard a mobile platform. This chapter

further analyzes the experimental results from real datasets collected using different

mobile mapping systems. An in-depth qualitative as well as quantitative evaluation

indicates the efficiency of the proposed calibration strategy.

Chapter 5 discusses the development and functionalities of the Image-LiDAR In-

teractive Visualization Environment (I-LIVE) with regard to serving as a user-friendly

tool for the visualization of acquired 3D point clouds and images as well as the quality

control of GNSS/INS-derived trajectory and multi-sensor system calibration.

Chapter 6 summarizes the key contributions of this research and provides recom-

mendations for future work related to this field.

Parts of this work have been recreated from:
Ravi et al. [30] and Ravi et al. [31]
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2. LITERATURE REVIEW

This chapter discusses the evolution of mobile mapping systems over the past few

years and their applications. The review of existing literature is conducted in three

parts – first, focusing on the literature related to the calibration of mapping systems

using laser scanners, second related to various approaches used for the calibration of

camera-based mapping systems, and the last targeted at the past research conducted

for the calibration of systems integrating LiDAR units as well as cameras.

2.1 LiDAR System Calibration

Over the past few years, extensive research has been conducted for the calibration

of mobile mapping systems utilizing laser scanners. The cost-effective Velodyne laser

scanner can rapidly capture a high volume of data and has been used in many mobile

mapping systems and robotics applications [5, 33, 34]. A great deal of research has

been devoted to modeling the inherent systematic errors in Velodyne laser scanners

as well as the calibration of LiDAR systems [1, 12]. Muhammad and Lacroix [25]

performed calibration of a spinning multi-beam LiDAR with the objective to align

the scan data as close as possible to a ground truth environment. He et al. [20] used

pairwise multi-type 3D geometric features (i.e., points, lines, and planes) to derive

the extrinsic parameters between a 2D LiDAR and an integrated global positioning

system (GPS)/inertial measurement unit (IMU). First, the points are segmented into

different features (such as points, lines, and planes) and their quality is evaluated to

compute weights to be used in the minimization of normal distance between conjugate

features. However, when the initial parameters are highly inaccurate, the segments

and derived weights may not be reliable. Chan et al. [4] introduced an intrinsic pa-

rameters calibration using vertical cylindrical features for Velodyne HDL32E based
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on static stations and also analyzed the temporal stability of range measurements,

thus indicating an approximate warm-up time of 2000 s for most laser beams. Glennie

et al. [13] performed a geometric calibration using planar features scanned by station-

ary VLP16 to marginally improve the accuracy of the point clouds by approximately

20%. Moreover, the range accuracy of VLP16 was also investigated, which was quoted

to have a root mean square error (RMSE) value between 22 to 27 mm in the factory

supplied calibration certificate. It was observed that some of the laser beams have

worse range accuracy than the others. Habib et al. [19] studied the impact of airborne

LiDAR system calibration on the relative and absolute accuracy of the derived point

clouds, both qualitatively and quantitatively. The relative accuracy was evaluated

by quantifying the degree of coalignment of overlapping strips before and after cal-

ibration, whereas the absolute accuracy was evaluated by quantifying the degree of

compatibility between LiDAR and control surfaces before and after calibration.

2.2 Camera System Calibration

Over the years, several techniques have been developed to accurately calibrate

different types of cameras in order to obtain accurate estimates of their intrinsic and

extrinsic parameters. Duane [8] suggested the widely-used mathematical model for

removing radial lens distortion for close-range photogrammetry. Conrady [6] proposed

a generic model for eliminating decentering distortion. Weng et al. [37] proposed a

two-step stereo camera calibration procedure to obtain the intrinsic parameters and

the exterior orientation parameters of the involved cameras. The first step aimed to

obtain the exterior orientation parameters using a closed-form solution by assuming

a distortion-free camera model. Then, the parameters obtained in the first step were

improved iteratively through a nonlinear optimization, taking into account camera

distortions. Zhang [41] proposed a technique for camera calibration using a pla-

nar pattern captured by a camera from different orientations. This approach used

a closed-form solution, followed by a nonlinear refinement based on the maximum
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likelihood criterion. The models proposed by [6, 8] for radial and decentering lens

distortion are used for intrinsic calibration of the cameras in this research.

2.3 LiDAR-Camera System Calibration

Although many procedures have been developed for LiDAR system calibration

and camera system calibration separately, the simultaneous calibration of a mapping

system consisting of both LiDAR units and cameras is an area of research that is still

under exploration. Delara et al. [7], Furukawa and Ponce [10] suggested the incor-

poration of LiDAR data as control points within the bundle adjustment for camera

calibration. Zhang and Pless [40] performed an extrinsic calibration of a camera and

a 2D laser range finder by observing a planar checkerboard pattern and solving for

constraints between the views from both of these devices. This was done by first

determining the pose of the camera with respect to the calibration plane, which was

further used to estimate the normal direction for the planar pattern in the camera

coordinate system. Then, the extrinsic parameters, i.e., the rigid transformation from

the camera coordinate system to the laser coordinate system, were obtained by con-

straining the points (belonging to the planar pattern) captured by the laser scanner

to lie on the planar pattern estimated from the camera image. Habib et al. [16] sug-

gested alternative approaches for the registration of data captured by LiDAR and

photogrammetric systems using a set of linear features by applying a bundle adjust-

ment followed by a similarity transformation. Fremont et al. [9] proposed an approach

for extrinsic calibration of a camera and a 3D laser range finder using a circle-based

calibration object. First, an initial estimate of the rigid transformation between the

camera and laser unit coordinate systems was obtained through parametrizing the

calibration target by the 3D coordinates of the circle center and the normal vector of

its plane. Then, a nonlinear 3D minimization was carried out in order to refine the

estimated extrinsic parameters. Castorena et al. [3] devised a method for automatic

extrinsic calibration and sensor fusion for a system comprised of a LiDAR and an



7

optical camera by exploiting the natural alignment of depth map and intensity edges.

However, this approach demands the availability of depth maps and intensity images

for accurate calibration and cannot be applied in case of an unavailability of either of

the information. Le and Ng [21] proposed an approach for calibrating multiple sensors

(cameras, laser unit, and robot arm) by grouping them such that each group outputs

3D data. Their approach uses geometric constraints (distance preservation, collinear-

ity, and coplanarity constraints) applied to 3D data in order to estimate the extrinsic

parameters relating the different sensors of a robotic system. However, their calibra-

tion approach was designed for stationary systems, and moreover, their framework

was built upon 3D systems, i.e., the 3D data output from a combination of sensors

was used for their framework. For instance, two cameras onboard a system were

grouped to form a stereo vision system that outputs 3D data. On the other hand, the

calibration approach proposed in this thesis deals with directly georeferenced mobile

systems and it can estimate the extrinsic parameters for single or multiple cameras

without having a need to group them to create 3D systems. Levinson and Thrun [22]

devised an approach for real-time miscalibration detection and correction of sensor

mounting parameters. Any sudden miscalibration was detected using a probabilistic

background monitoring algorithm and any gradual drift in sensor parameters was

tracked and adjusted by observing the change in the objective function over past few

frames of data capture. Although their approach can accurately detect small incre-

mental values to attain accurate calibration, they have not addressed the issue of

accurate calibration starting with highly inaccurate initial estimates for the parame-

ters. However, this problem is mitigated by the calibration approach proposed in this

thesis where we demonstrate that it can attain accurate calibration results even on

starting with inaccurate estimates. Mirzaei et al. [24] proposed an approach to jointly

estimate the intrinsic parameters of a 3D LiDAR along with the LiDAR-camera trans-

formation parameters. Their approach used planar calibration boards with fiducial

markers to establish geometric constraints between the measurements from LiDAR

(3D) and camera (2D), their extrinsic parameters, and the LiDARs intrinsic param-
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eters. They used 2D-3D exact point-to-point correspondences for calibration. They

used a two-step approach where they first obtained precise initial estimates for the

unknown parameters by dividing the problem into two least-squares sub-problems

and solving each of them analytically. Then, the accuracy of these parameters was

increased by iteratively minimizing a batch non-linear least-squares cost function.

Garćıa-Moreno et al. [11] proposed an extrinsic calibration technique using a planar

target for a mobile mapping system consisting of a LiDAR sensor, video camera,

GPS, and Inertial Measurement Unit (IMU). This approach used a pattern which

facilitates the extraction of the same point in camera and LiDAR data. This pat-

tern was composed of white rhombus and rhombus holes for which image points can

be easily measured and this pattern can be extracted using RANSAC to determine

planar surface in a LiDAR point cloud. Pandey et al. [26] proposed an automatic

targetless extrinsic calibration strategy of a 3D laser scanner and camera system.

They used a mutual information (MI) framework based on the registration of the

laser reflectivity of a 3D LiDAR point and the corresponding grayscale value of the

image pixel to which this 3D point is projected. This approach does not rely on any

calibration target and thus, it is capable of in-situ calibration. Since their method

relies on intensity and reflectivity information, it works under several assumptions.

One of the assumptions is that the 3D LiDAR unit that is used provides meaningful

surface reflectivity values, which is not always the case and hence, in order to use

this approach, the LiDAR unit needs to be first calibrated for its reflectivity values.

Also, their work assumes a high correlation for the reflectivity and intensity values

obtained from the images and LiDAR scans. However, this might not always be true

since in case of images, the ambient light plays a critical role in determining the

intensity levels of the image pixels and hence, there can be a presence of shadows.

But, the corresponding reflectivity values in the laser scans are not affected because

it uses an active lighting principle. Thus, in such scenarios, the data between the two

sensors might not show a strong correlation and hence, will produce a weak input for

their proposed calibration algorithm. Also, their approach assumes the availability
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of high quality approximate estimates of the calibration parameters and only focuses

on their refinement. Guo and Roumeliotis [15] proposed a calibration technique to

estimate the extrinsic parameters between a 2D LiDAR and a camera using a white

rectangular calibration board with a black line in the middle as a calibration target.

The straight line was detected in the camera image using edge detection followed by

a line fitting algorithm. On the other hand, the line scan LiDAR can detect the edge

ending points of the calibration board based on depth discontinuity, which were then

averaged to find the point on the middle line. They formulated the problem as a

nonlinear least squares minimization and solved the problem analytically to find the

global minimum. However, they assume that the calibration board would be oriented

with respect to the LiDAR such that a scenario where all the LiDAR measurements

over the scanned board are parallel to the black line would not occur. Vel’as et al.

[35] dealt with an automatic calibration to estimate the extrinsic parameters relating

an RGB camera to a Velodyne LiDAR. They used special 3D markers for calibration,

which were planar markers with circular holes. An edge detection algorithm based

on depth discontinuities was used for detecting the circular edge from 3D LiDAR.

For the camera images, the circle edges were detected by an edge detection using

Sobel operator followed by a Hough transform. They proposed a two-step approach:

first, they performed an approximate coarse calibration where they assumed that the

translation between the laser scanner and the camera is much more significant than

the rotation. Then, a fine calibration was done to estimate the translation as well

as rotation using edges detected in laser scans and images. Pusztai and Hajder [29]

utilized cardboard box of known dimensions as a target to calibrate the extrinsic

parameters of LiDAR-camera system. First, the planes of the box were identified in

the LiDAR point cloud and the corners of the box were derived according to the in-

tersection of the plane. Then, the corresponding corners in the images were selected.

The problem to find the extrinsic parameters was then equal to a PnP problem as

2D-3D point-to-point correspondences were known. With this method, the extrinsic

parameters of arbitrary number of cameras and LiDAR sensors can be calibrated. [2]
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introduced a fully automatic technique to calibrate a geometric mapping between Li-

DAR and video feeds on a mobile ground-based platform without user intervention or

calibration targets. The technique estimated the intrinsic camera parameters and the

extrinsic parameters relating the LiDAR and video camera. The author proposed a

three-step approach wherein first, the radial distortion parameters were estimated by

extracting image contours that correspond to straight real-world objects. Then, the

focal length and the rotation relating the LiDAR and camera were derived by using a

technique similar to bundle adjustment by either minimizing the reprojection error of

identified points on the images or by minimizing the error in the reconstruction in the

LiDAR. In this step, it was assumed that the camera and LiDAR are co-located, i.e.,

there was no significant translation between them. Finally, the previously estimated

parameters were refined and the translation between the LiDAR and camera was es-

timated. This was achieved by extracting 2D contours from images and 3D contours

from LiDAR followed by an association between the projected LiDAR contour point

and the nearest image contour point. [14] proposed a technique for LiDAR/camera

extrinsic calibration for both indoor and outdoor mobile mapping platforms using ar-

bitrary trihedral objects consisting of two adjacent walls of a building together with

the ground plane. It is a three-step calibration procedure. First, the LiDAR was

calibrated by applying the geometric constraints associated with a trihedral object.

Then, a camera calibration was done using SIFT matching between different captured

images that have common trihedral planes observed in both LiDAR point cloud and

camera images. Finally, a LiDAR-camera extrinsic calibration task was formulated as

a non-linear least squares problem using parameters derived in the individual camera

and LiDAR calibration steps. [27] improved the calibration accuracy between a cam-

era and a 3D LiDAR. The LiDAR-camera calibration depended on using polygonal

boards with known dimensions. By estimating the 3D locations of board vertices

from the scanned laser data and their corresponding corners in the 2D image, the

calibration approach worked to find point-to-point correspondences between the 2D

image and the 3D point clouds. Since this approach was based on 2D-3D exact point-
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to-point correspondences, the projection matrix was estimated without separating

the intrinsic and extrinsic parameters. [39] performed a LiDAR-camera calibration

using specially designed boxes with known dimensions as calibration targets to exploit

2D-2D correspondences. These calibration targets were oriented on a surface parallel

to the measurement plane of the LiDAR scanner and camera such that the vertical

box-edges appeared as vertical lines in the recorded camera images. [42] proposed

an extrinsic calibration algorithm using planar checkerboard of known dimensions to

obtain the relative orientation and translation between a camera and a LiDAR. They

proposed a two-step approach where they first estimated the rotation by assigning

a weight to each pose of the checkerboard based on the corresponding uncertainty

of plane normal and minimizing the difference between the normal vectors derived

from the LiDAR and camera modalities. Then, the translation was estimated using

a closed-form solution.

The characteristics and limitations of the papers discussed above are summarized

as follows:

1. The calibration approaches suggested in [9, 11, 15, 24, 27, 29, 35, 39, 40, 42]

rely on the usage of specifically designed targets of known dimensions in order

to attain accurate results. However, [2, 14, 26] propose a targetless calibration

strategy exploiting the features available in the surrounding environment.

2. Most of the proposed calibration techniques use exact point-to-point correspon-

dences. For instance, in [9], 3D-3D point correspondences are used; in [2, 11,

24, 26, 27, 29, 42], 2D-3D point correspondences are used, and in [15, 39, 40],

2D-2D point correspondences are used. However, [14] do not rely on exact

point-to-point correspondences for calibration.

3. The LiDAR-camera calibration techniques in [9, 11, 15, 24, 26, 27, 35, 39, 40]

are developed only for systems consisting of a single LiDAR and a single camera.

But, the techniques of [2, 42] are applicable for systems with a single LiDAR and
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multiple cameras. The approaches proposed in [14, 29] are capable of calibrating

systems with multiple LiDAR units and multiple cameras.

4. Several calibration approaches, such as the ones proposed in [15, 27, 40] only tar-

get the calibration of systems with 2D LiDAR units, whereas other approaches

[2, 9, 11, 14, 24, 26, 27, 28, 35, 42] are developed for 3D LiDAR units.

5. The approaches in [9, 15, 24, 27, 29, 35, 39, 40, 42] are indoor calibration ap-

proaches, whereas in [2, 11, 26] are outdoor calibration approaches. However,

[14] present an approach that can be used for indoor as well as outdoor calibra-

tion.

6. Most of the papers [9, 14, 15, 24, 27, 29, 35, 39, 40, 42] propose calibration tech-

niques for stationary systems, which do not have a GNSS/INS unit onboard.

On the other hand, [2, 11, 26] use mobile mapping systems with an onboard

GNSS/INS unit but they do not address the calibration of the sensors to es-

timate their mounting parameters with respect to the GNSS/INS unit, thus

resulting in a partial calibration of the system.

7. In [11, 15, 26, 27, 39, 40], single-step calibration techniques are proposed,

whereas in [2, 9, 14, 24, 29, 35, 42], multi-step calibration approaches are pro-

posed.

8. The approaches proposed in [9, 11, 14, 15, 26, 29, 35, 40] deal with the estimation

of only the mounting parameters relating the LiDAR units and cameras to the

onboard GNSS/INS unit. Only [24] accounts for intrinsic LiDAR parameters

along with the LiDAR and camera mounting parameters calibration. In [2, 27,

39, 42], the intrinsic camera parameters as well as the extrinsic LiDAR-camera

parameters are estimated.

9. The research in [2, 9, 14, 15, 24, 26, 27, 29, 35, 39, 40, 42] include a built-

in quality control strategy to estimate the accuracy of the proposed calibration
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approaches, whereas [11] lacks any information about the quality of the obtained

calibration results.

2.4 Comparison of Current Research with Prior Work

The previous discussion indicates that although many LiDAR system calibra-

tion procedures have been developed in the past, outdoor calibration of integrated

GNSS/INS and multi-unit 3D laser scanners and cameras is still an active area of

research. One of the objectives of this thesis is to develop a calibration technique

for mapping systems with several spinning multi-beam laser scanners and cameras

onboard terrestrial mobile mapping vehicles. The system calibration is realized by si-

multaneously estimating the statistically optimal solution to the mounting parameters

relating the different system components. The estimation minimizes the discrepancy

(in a weighted least squares sense) between conjugate points and linear and/or planar

features in overlapping point clouds derived from different drive runs. More specifi-

cally, the lever arm and boresight angles relating the individual laser scanners and the

onboard GNSS/INS unit are derived using an iterative modified weight matrix-based

calibration procedure. The proposed approach helps in overcoming several limitations

of previously developed LiDAR system calibration procedures. First, the calibration

procedures suggested by Chan et al. [4] and Glennie et al. [13] only estimate the

intrinsic parameters of a single laser scanner and deal with point clouds captured

from stationary scanners. On the contrary, the calibration approach proposed in this

thesis deals with mobile mapping systems and is capable of estimating the mount-

ing parameters of multiple laser scanners simultaneously, thus facilitating an accurate

alignment between point clouds captured by different sensors. Moreover, this research

deals with directly georeferenced point clouds, which would also ensure the alignment

between point clouds captured from different survey missions. While Chan et al. [4]

use only vertical cylindrical features and Glennie et al. [13] use only planar features

for calibration, the approach proposed in this thesis incorporates both linear and
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planar features found in outdoor environments to generate more accurate calibration

results. Furthermore, unlike the calibration strategy proposed by Muhammad and

Lacroix [25], the research conducted in this thesis eliminates the need for ground

truth by proposing a calibration approach that aims at minimizing the discrepancy

between geometric tie features (lines and planes) scanned in different drive-runs. An-

other point of emphasis is that the proposed approach deals with a model considering

a reference sensor and slave sensors, which provides the flexibility to conduct an in-

door calibration of the mobile mapping system to derive the mounting parameters

relating the slave sensors to the reference sensor, followed by an outdoor calibration

to estimate the mounting parameters relating the reference scanner to the onboard

GNSS/INS unit, which in turn, would relate all the laser scanners to the GNSS/INS

unit.

Before proceeding with the calibration strategy, an optimal configuration of target

primitives setup and drive-runs needs to be determined to maximize the impact of

the systematic errors in question which would lead to a more accurate calibration.

So, a pre-analysis needs to be conducted to deduce the impact of bias in each of the

mounting parameters of a LiDAR unit on the resultant point cloud. Here, the term

“bias” is used to denote the deterministic deviation of the mounting parameters from

their true values. Habib et al. [17] discussed the bias impact analysis in detail for

airborne linear scanners while describing the simplified and quasi-rigorous calibration

strategies, whereas in this thesis, the bias impact analysis is conducted for a spinning

multi-beam laser scanner starting from the 3D point positioning equation. The opti-

mal configuration of target primitives for calibration is then established by studying

the impact of biases on planes oriented in different directions. Similarly, the optimal

drive-run configuration is determined according to the effect of biases on the derived

planes from drive-runs in different directions and with varying separation. The con-

clusions drawn based on the results are then validated by simulating a bias in each of

the mounting parameters one by one and studying the difference between the resul-

tant and original point clouds. These results are quantified in terms of the RMSE of
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normal distances between the derived point clouds and best-fitting plane for various

planar features oriented in different directions for different drive-run configurations.

Although RMSE does not account for the sign of the effect of a bias, it is still used

as a measure to describe the bias impact since the only point of interest is whether a

bias introduces a significant discrepancy, irrespective of the signs, in order to be able

to accurately estimate the bias by exploiting the nature of its impact.

2.5 Introduction to 3D Point Positioning for a Multi-LiDAR Multi-Camera

Mobile Mapping Platform

This section introduces the basic mathematical equations involved in 3D point

positioning for points captured using generic mobile mapping systems consisting of

LiDAR units and cameras. These point positioning equations form the bases of the

research conducted in this thesis. The vector and matrix notations used in this thesis

are as follows:

1. rba denotes the coordinates of point “a” relative to point “b” in the coordinate

system associated with point “b”, as shown in Figure 2.1(a).

2. rcab denotes the vector “ab” in the coordinate system “c”, as shown in Figure

2.1(b).

3. Rb
a denotes the rotation matrix that transforms a vector defined relative to the

coordinate system “a” into a vector defined relative to the coordinate system

“b”, as shown in Figure 2.1(c).

For instance, using the above notations, any point, A, can be transformed from

coordinate system “a” to “b” as: rbA = rbab +Rb
a r

a
A.
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(a) Point ‘a’ observed in coordi-

nate frame ‘b’

(b) Vector joining two points, ‘a’ and ‘b’, in co-

ordinate frame ‘c’

(c) Rotation from coordinate system ‘a’ to coordinate sys-

tem ‘b’

Fig. 2.1.: Notations for translation and rotation used in this research

2.5.1 Point Positioning for a GNSS/INS-assisted Multi-unit LiDAR Sys-

tem

A typical LiDAR system consisting of spinning multi-beam laser scanners could

involve three coordinate systems, i.e., the mapping frame, the IMU body frame, and

the laser unit frame. In case of a mobile mapping system with a single LiDAR

unit, a given object point, named I, acquired from the onboard laser scanner can

be reconstructed in the mapping coordinate system using (2.1), which is graphically

illustrated in Figure 2.2. For the laser unit frame, the origin is defined at the laser

beams firing point and the Z-axis is along the axis of rotation of the laser unit. For

a spinning multi-beam laser unit, each laser beam is fired at a fixed vertical angle,

β, denoting the angle between the laser beam and the XY-plane of the laser unit;

the horizontal angle (or, the angle between the projection of the laser beam onto the
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XY-plane and the X-axis), α, is determined based on the rotation of the unit; and

the range, ρ, is defined by the distance between firing point and its footprint (or,

the scanned object point), as shown in Figure 2.3 for Velodyne VLP16 and HDL32E

units. So, the coordinates of a 3D point, I, relative to the laser unit coordinate

system (Lu), rLuI (t), are defined by (2.2). The laser unit frame (Lu) is related to

the IMU body frame (b) by a rigidly defined lever-arm, rbLu, and boresight matrix,

Rb
Lu. The GNSS/INS integration provides the time-dependent position, rmb (t), and

rotation, Rm
b (t), relating the mapping frame (m) and IMU body frame (b) coordinate

systems, according to the optimized solution from the available GNSS and inertial

measurements.

rmI = rmb (t) + rmb-Lu(t) + rmLu-I(t)

= rmb (t) +Rm
b (t) rbLu +Rm

b (t) Rb
Lu r

Lu
I (t)

(2.1)

Fig. 2.2.: Illustration of point positioning for a single-unit LiDAR system
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(a) Velodyne VLP16

(b) Velodyne HDL32E

Fig. 2.3.: Illustration of spinning multi-beam laser scanners

rLuI (t) =


x(t)

y(t)

z(t)


Lu

I

=


ρ(t) cos β cosα(t)

ρ(t) cos β sinα(t)

ρ(t) sin β


Lu

I

(2.2)

In the case of a multi-unit LiDAR system, which is graphically illustrated in Figure

2.4, the point positioning equation for a given point, I, captured by the jth onboard
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laser scanner is given by (2.3). Here, one of the laser scanners is set as reference and

the rest are considered to be slave sensors. The reference sensor (Lur) is related to

the IMU body frame by a rigidly defined lever-arm, rbLur , and boresight matrix, Rb
Lur

.

Similarly, each slave sensor (Luj) is related to the reference one (Lur) by a rigidly

defined lever-arm, rLurLuj
, and boresight matrix, RLur

Luj
. One should note that such a

LiDAR system can also be modeled by directly relating each of the laser scanners

to the IMU body frame but the current model is preferred due to the fact that it

allows for the derivation of the mounting parameters relating the slave sensors to the

reference one without the need for GNSS/INS position and orientation information.

rmI = rmb (t) + rmb-Lur(t) + rmLur-Luj(t) + rmLuj-I(t)

= rmb (t) +Rm
b (t) rbLur +Rm

b (t) Rb
Lur r

Lur
Luj

+Rm
b (t) Rb

Lur R
Lur
Luj

r
Luj
I (t)

(2.3)

Fig. 2.4.: Illustration of point positioning for a multi-unit LiDAR system
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2.5.2 Point Positioning for a GNSS/INS-assisted Multi-camera System

A typical GNSS/INS-assisted multi-camera system involves three coordinate sys-

tems (i.e., mapping frame, IMU body frame, and camera coordinate frame). A given

point, I, captured in an image as point, i, from a mobile mapping system comprising

multiple cameras can be reconstructed in the mapping coordinate system using (2.4),

which is graphically illustrated in Figure 2.5.

rmI = rmb (t) + rmb-Cr
(t) + rmCr-Cj

(t) + rmCj-i
(t)

= rmb (t) +Rm
b (t) rbCr

+Rm
b (t) Rb

Cr
rCr
Cj

+ λ(i, Cj, t) R
m
b (t) Rb

Cr
RCr

Cj
r
Cj

i (t)
(2.4)

For the camera coordinate frame, the origin is defined at the perspective center

and its x, y-axes are defined along the direction of the rows and columns of the image,

respectively. So, the coordinates of a point, i, in an image captured by camera, Cj,

relative to the camera coordinate system, r
Cj

i (t) are defined by (2.5). Here, xpj and

ypj denote the location of the principal point, fj denotes the principal distance, and

distxij
and distyij denote the distortion in image coordinate measurements for point,

i in the jth camera. These intrinsic parameters (xpj, ypj, fj), along with the distortion

parameters for Cj, are known a priori for a calibrated camera. For a multi-camera

system, one of the cameras is set as reference and the rest are considered to be slave

cameras. The reference camera (Cr) is related to the IMU body frame by a rigidly

defined lever-arm, rbCr
, and boresight matrix, Rb

Cr
. Similarly, each slave camera (Cj)

is related to the reference one (Cr) by a rigidly defined lever-arm, rCr
Cj

, and boresight

matrix, RCr
Cj

. Finally, each point, i, in an image captured by camera Cj at time t has

a scaling factor associated with it, which is denoted by λ(i, Cj, t).

r
Cj

I (t) =


xij − xpj − distxij

yij − ypj − distyij

−fj


Cj

I

(2.5)

The forthcoming chapters focus on the novel multi-sensor calibration strategy

proposed in this thesis and its experimental validation.
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Fig. 2.5.: Illustration of point positioning for a multi-camera system
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3. THEORETICAL BIAS IMPACT ANALYSIS FOR

TERRESTRIAL MOBILE LIDAR SYSTEM WITH

SEVERAL SPINNING MULTI-BEAM LASER SCANNERS

Before proceeding with devising a calibration strategy for mobile mapping systems,

first an optimal configuration of target primitives setup and drive-runs needs to be

determined to maximize the impact of the systematic errors in question, which would

lead to a more accurate calibration. The objective of bias impact analysis is to derive

a mathematical formulation that shows the deformations/shifts of points along planar

patches (with different orientations and scanned from different drive-runs) due to the

presence of bias in the system mounting parameters. This analysis is carried out for

a single unit LiDAR system, which implies that all the points are acquired by the

reference laser unit and hence, (2.1) will be used for conducting further theoretical

analysis. It is to be noted that this analysis for single unit LiDAR systems would

also be valid for multi-unit LiDAR systems as the latter can be considered as an

integration of several single unit LiDAR systems together.

Planar features are specifically used for conducting this analysis because they

facilitate the observation of positional deformations in one direction at a time, i.e.,

the effect in the direction normal to the plane. Ideally, the IMU is assumed to be

perfectly vertical, i.e., the Z -axis of the IMU body frame is assumed to be perfectly

aligned with the vertical direction of the mapping frame. However, this assumption

might not always hold. So, in this thesis, we first conduct a bias impact analysis for

the ideal scenario where the IMU is perfectly vertical and then, extend the analysis for

a nearly vertical system, i.e., the potential tilt of the IMU body frame is incorporated

in the analysis. The mathematical impact for the latter case is verified through a

numerical analysis of LiDAR data captured by a spinning multi-beam laser scanner

(for instance, Velodyne HDL32E).
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3.1 Bias Impact Analysis: Perfectly Vertical System

For mobile mapping systems, the IMU is usually set up on the vehicle such that its

X-, Y-, and Z-axes are aligned along the starboard, drive-run, and vertical directions,

respectively. In other words, the IMU body frame is parallel to the vehicle coordinate

system. In order to generalize the bias impact analysis regardless of the orientation

of the LiDAR unit relative to the IMU/vehicle coordinate system, the LiDAR point

positioning equation given by (2.1) is slightly modified by introducing a virtual LiDAR

unit frame, Lu′, which is almost aligned with the IMU body frame (or, the vehicle

coordinate system). Here, two coordinate systems are said to be “aligned” if the

rotation between them is approximately zero, but this does not necessarily mean

that they share the same origin. This modification facilitates determining whether

the impact is along/across the drive-run and vertical directions. Moreover, the use

of a virtual LiDAR unit frame also prevents gimbal lock in the mounting parameter

estimation. This modification is implemented by expressing the term, Rb
Lu in (2.1) as:

Rb
Lu = Rb

Lu′ R
Lu′

Lu , where RLu′

Lu is defined according to the laser scanner unit alignment

relative to the IMU. The modified LiDAR point positioning is given by (3.1). One

should note that there is no shift between the virtual and actual LiDAR unit frames,

i.e., the origins of these two coordinate systems are assumed to be coinciding.

rmI = rmb (t) +Rm
b (t) rbLu +Rm

b (t) Rb
Lu′ R

Lu′

Lu rLuI (t) (3.1)

Since the virtual LiDAR unit frame is almost aligned with the IMU body frame, it

results in small values for the differential angular boresight parameters (∆ω, ∆φ, ∆κ)

relating the two frames. So, for such an incremental rotation, the matrix Rb
Lu can

be approximated as shown in (3.2), using the small angle approximations. Here,

∆ω, ∆φ, and ∆κ denote the rotation around the X-, Y-, and Z-axes of the IMU

body frame (i.e., across drive-run, along drive-run, and vertical directions), respec-

tively. Hence, these parameters denote the boresight pitch, roll, and heading angles,

respectively. The point coordinates relative to the virtual LiDAR unit frame are
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given by (3.3). These coordinates (x′, y′, and z′) also denote the location of a point

with respect to the vehicle because the virtual LiDAR unit frame is almost parallel

to the IMU body frame, which is parallel to the vehicle coordinate system. Thus,

x′, y′ and z′ denote the distance of a point from the laser beam firing point across

the drive-run direction, along the drive-run direction, and in the vertical direction,

respectively. Substituting (3.2) and (3.3) in (3.1), we get the revised form of the

LiDAR point positioning equation, as given in (3.4), where ∆X, ∆Y, and ∆Z are

the lever-arm offset components of the LiDAR unit frame relative to the IMU body

frame.

Rb
Lu ≈


1 −∆κ ∆φ

∆κ 1 −∆ω

−∆φ ∆ω 1

 (3.2)

rLu
′

I = RLu′

Lu rLuI (t) =


x′

y′

z′


Lu′

I

(3.3)

rmI ≈ rmb (t) +Rm
b (t)


∆X

∆Y

∆Z


b

Lu

+Rm
b (t)


1 −∆κ ∆φ

∆κ 1 −∆ω

−∆φ ∆ω 1



x′

y′

z′


Lu′

I

(3.4)

A perfectly vertical system implies that the Z -axis of the IMU body frame is

perfectly aligned with the vertical direction of the mapping frame. So, the angles ω

and φ relating the IMU body frame and the mapping frame will be zero. Moreover, we

assume that the drive-run directions are either from south-to-north (κ = 0◦) or from

north-to-south (κ = 180◦) directions. This assumption facilitates the decision as to

whether the impact is along/across the drive-run and vertical directions. As a result,

the rotation matrix Rm
b (t) would be given by (3.5), where the top sign is for S-N and

bottom sign is for N-S drive-run directions. These assumptions would simplify the

LiDAR point positioning equation to the form in (3.6). Now, the impact on mapping
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frame coordinates due to the presence of bias in the system mounting parameters can

be analyzed by differentiating (3.6) with respect to the system mounting parameters.

This impact is given by (3.7).

Rm
b (t) =


±1 0 0

0 ±1 0

0 0 1

 (3.5)

rmI ≈ rmb (t) +


±1 0 0

0 ±1 0

0 0 1




∆X

∆Y

∆Z

+


±1 0 0

0 ±1 0

0 0 1




1 −∆κ ∆φ

∆κ 1 −∆ω

−∆φ ∆ω 1



x′

y′

z′


(3.6)

δrmI (δ∆X, δ∆Y, δ∆Z, δ∆ω, δ∆φ, δ∆κ) ≈


± δ∆X

± δ∆Y

δ∆Z

+


∓ y′ δ∆κ± z′ δ∆φ

± x′ δ∆κ∓ z′ δ∆ω

− x′ δ∆φ+ y′ δ∆ω


(3.7)

Finally, the bias impact can be studied by isolating the terms in (3.7) correspond-

ing to the bias in one of the mounting parameters at a time, as given by Table 3.1.

Here, the terms δ∆X, δ∆Y, δ∆Z, δ∆ω, δ∆φ, and δ∆κ denote the biases in the

available values of the mounting parameters: ∆X, ∆Y, ∆Z, ∆ω, ∆φ, and ∆κ,

respectively. Also, δXm, δYm, and δZm denote the impact on the mapping coordi-

nates: X, Y, and Z, respectively. Now, Table 3.1 can be used to conduct a bias

impact analysis for planar surfaces in the three main orientations (vertical planes

parallel to drive-run direction, vertical planes perpendicular to drive-run direction,

and horizontal planes) in order to observe the impact of each bias on one direction at

a time, i.e., in the direction normal to the planes (across drive-run direction, along

drive-run direction, and vertical direction). In order to quantify the effect of biases on

planar surfaces, the RMSE of plane-fitting is computed separately for the planes gen-

erated in the absence of bias and those generated in the presence of bias in mounting
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parameters. Here, the RMSE of plane-fitting refers to the RMSE of normal distances

of the points belonging to a planar feature from the corresponding best-fitting plane

determined using LSA. The change in RMSE between the two cases for each of the

planes signifies the introduced deformations/discrepancies, which in turn enhances

our ability for bias detection and estimation of mounting parameters. One should

note that the 3D point cloud data will also have a noise associated with it, which

will be implicated in the computed RMSE of the planar features. Hence, the ability

to detect and estimate the bias in mounting parameters also depends on the sensor

noise, i.e., a higher noise level in the data will result in less accurate estimation of

biases in the mounting parameters. There are three different scenarios in terms of

the drive-run configuration to be considered while evaluating the RMSE:

1. planar points scanned in a single drive-run;

2. planar points scanned in two drive-runs in same direction;

3. planar points scanned in two drive-runs in opposite directions.

Table 3.1.: Impact of bias in each of the mounting parameters on 3D point

coordinates for perfectly vertical systems

δXm δYm δZm

δ∆X ± δ∆X 0 0

δ∆Y 0 ± δ∆Y 0

δ∆Z 0 0 δ∆Z

δ∆ω 0 ∓ z′ δ∆ω y′ δ∆ω

δ∆φ ± z′ δ∆φ 0 − x′ δ∆φ

δ∆κ ∓ y′ δ∆κ ± x′ δ∆κ 0

The assessment of the above impacts for different plane orientations and drive-run

configurations is discussed in more detail in Section 3.1.1. One should note that the
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drive-run directions are assumed to be either N-S or S-N, and the mapping frame

coordinate system is defined such that the X-, Y-, and Z-axes correspond to across

drive-run, along drive-run, and vertical directions, respectively. However, this is only

done to simplify the analysis of bias impact.

3.1.1 Perfectly Vertical System: Impact Assessment for Different Plane

Orientations and Drive-run Configurations

In this subsection, we assess each of the bias impact terms listed in Table 3.1

individually in order to draw conclusions about how a bias in each of the mounting

parameters would be manifested in the resultant point cloud. The hypotheses are

based on four criteria:

1. Planar orientation(s) affected by the bias: Analyze whether the bias impacts

the vertical planes parallel to the drive-run, vertical planes perpendicular to the

drive-run, and/or horizontal planes.

2. Type of impact on planar features: Analyze whether the bias results in a con-

stant shift of the plane, a tilt of the plane, or a varying shift of each planar

point resulting in an increased scattering of the plane.

3. Impact on RMSE of a planar feature captured in a single drive-run: Analyze

whether the bias results in an increase in the RMSE of feature fitting for a

planar feature that is captured within a single drive-run.

4. Impact on RMSE of a planar feature captured in two drive-runs: Analyze

whether the bias results in an increase in the feature-fitting RMSE computed

using the points along a planar feature captured by two drive-runs in same or

opposite direction. Also, check whether the impact is a function of the relative

drive-run direction, the lateral separation between the two drive-runs, and/or

the lateral distance of the planar feature from the drive-runs.
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Now, we proceed to analyze the impact of a bias in each of the six mounting

parameters one-by-one to make an inference regarding the impact with respect to

each of the above criteria based on the resultant bias impact terms listed in Table

3.1.

1. Impact of Bias in Lever-arm Component Across the Drive-run Direction (∆X):

A bias in this component (δ∆X) will introduce a constant shift (± δ∆X) across

the drive-run direction, as shown schematically in Figure 3.1. The introduced

shift is drive-run direction dependent the two signs in the impact term corre-

spond to opposite drive-run directions, as mentioned earlier in Section 3.1. The

different signs imply that the shift of planar feature will be in opposite direc-

tions for the points captured along the feature from two opposite drive-runs.

The resultant shift does not depend on the location of the point in question

relative to the laser beam firing point, i.e., the shift of the point is independent

of x′, y′, and z′. As a result, the RMSE for all the planes scanned from a single

drive-run or two drive-runs in same direction will remain the same whether or

not there is a bias in this parameter. On the other hand, in case of planes

scanned from two drive-runs in opposite directions, the RMSE of normal dis-

tance of the points from the corresponding best-fitting plane will maximally

increase for vertical planes parallel to the drive-run direction due to the points

captured from each drive-run shifted in opposite directions.

2. Impact of Bias in Lever-arm Component Along the Drive-run Direction (∆Y ):

A bias in this component (δ∆Y ) will introduce a constant shift (± δ∆Y ) along

the drive-run direction, as shown schematically in Figure 3.2. The introduced

shift is drive-run direction dependent. It does not depend on the location of the

point in question relative to the laser beam firing point. Again, the RMSE for all

the planes scanned from a single drive-run or two drive-runs in same direction

will remain the same whether or not there is a bias in this parameter. On the

other hand, in case of planes scanned from two drive-runs in opposite directions,
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Fig. 3.1.: Schematic impact of bias in ∆X on a vertical plane parallel to drive-run

direction

the RMSE will maximally increase for the vertical planes perpendicular to the

drive-run direction.

Fig. 3.2.: Schematic impact of bias in ∆Y on a vertical plane perpendicular to

drive-run direction

3. Impact of Bias in Lever-arm Component in the Vertical Direction (∆Z): A

bias in this component (δ∆Z) will introduce a constant shift (δ∆Z) in the

vertical direction. The introduced shift is drive-run direction independent. It

does not depend on the location of the point in question relative to the laser

beam firing point. As a result, the entire point cloud would be shifted in the

vertical direction by the same amount. So, this bias would not affect the RMSE

of planes in any of the orientations for any drive-run configuration.

4. Impact of Bias in Boresight Pitch (∆ω):
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Fig. 3.3.: Schematic impact of bias in ∆Z on a horizontal plane

(a) Shift along drive-run direction: The impact of boresight pitch bias along

the drive-run direction (± z′ δ∆ω) is drive-run direction dependent and

its magnitude depends on the height (z′) of the point in question relative

to the laser beam firing point. Whenever the height and boresight pitch

bias are small, this impact might be insignificant. In case of vertical planes

perpendicular to the drive-run direction scanned from a single track, all the

points lying at the same height will be shifted by the same amount along

the drive-run direction, thus resulting in a tilt in the plane, as shown

schematically in Figure 3.4. So, the RMSE will not be affected by this

term. Similarly, the RMSE will remain the same on combining two tracks

in the same direction. But, since this shift is drive-run direction dependent,

this would result in an increase in RMSE of the planes on combining two

tracks in opposite directions.

Fig. 3.4.: Schematic impact of bias in ∆ω on a vertical plane perpendicular to

drive-run direction
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(b) Shift in vertical direction: The impact of boresight pitch bias in the vertical

direction (y′ δ∆ω) depends on the y′-coordinate of the point in question,

i.e., the shift for each point is dependent on its distance along the drive-run

direction from the laser beam firing point. So, all the points belonging to a

planar patch will be shifted by different amounts as each point might have

a different y′ value depending on the instantaneous location of the vehicle

when the point was scanned. This would cause an increase in RMSE of

horizontal planes for a single track, which in turn will lead to a large RMSE

on combining tracks oriented in same or opposite directions.

5. Impact of Bias in Boresight Roll (∆φ):

(a) Shift across drive-run direction: The impact of this bias across the drive-

run direction (± z′ δ∆φ) is drive-run direction dependent and its magni-

tude depends on the height (z′) of the point in question relative to the

laser beam firing point. Whenever the height and boresight roll bias are

small, this impact might be insignificant. In case of vertical planes parallel

to the drive-run direction scanned from a single track, all the points lying

at the same height will be shifted by the same amount across the drive-run

direction, thus resulting in a tilt in the plane, as shown schematically in

Figure 3.5. So, the RMSE for a single track will not be affected by this

term. Similarly, the RMSE will remain the same on combining two tracks

in the same direction. But, since the shift is drive-run direction dependent,

this would result in an increase in RMSE of the planes on combining two

tracks in opposite directions.

(b) Shift in vertical direction: The impact of this bias in the vertical direction

(− x′ δ∆φ) is drive-run direction dependent and its magnitude depends

on the x′-coordinate of the point in question. In case of horizontal planes

scanned from a single track, all the points located at the same lateral

distance from the track will be shifted vertically by the same amount,
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Fig. 3.5.: Schematic impact of bias in ∆φ on a vertical plane parallel to drive-run

direction

thus resulting in a tilt in the plane, as shown schematically in Figure 3.6.

So, the RMSE for single tracks will not be affected by this term. Now,

using Figure 3.7 as reference, the discrepancies in the vertical direction on

combining two tracks in the same direction and in opposite directions are

given by (3.8) and (3.9), respectively. The term X in (3.9) denotes the

distance of the point from the line bisecting the lateral distance between

the two drive-runs, as can be seen in Figure 3.7. Hence, for two tracks

in the same direction, the RMSE will increase according to the lateral

distance between the tracks. On the other hand, for two tracks in opposite

directions, RMSE will increase depending on the lateral location of the

planar patch of interest relative to the bisecting direction between the

tracks.
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Fig. 3.6.: Schematic impact of bias in ∆φ on a horizontal plane

(a) Two drive-runs in same direc-

tion

(b) Two drive-runs in oppo-

site directions

Fig. 3.7.: Relationship between x′-coordinates for a point captured by two

drive-runs in same and opposite directions

Same Direction: δZmA
− δZmB

= (−x′A + x′B) δ∆φ = −DAB δ∆φ

(3.8)

Opposite Directions: δZmA
− δZmB

= (−x′A + x′B) δ∆φ = −2X δ∆φ

(3.9)
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6. Impact of Bias in Boresight Heading (∆κ):

(a) Shift across drive-run direction: The impact of this bias across the drive-

run direction (∓ y′ δ∆κ) is y′-coordinate dependent. So, this would cause

an increase in RMSE for the vertical planes parallel to the drive-run direc-

tion for a single track. Moreover, the RMSE on combining two tracks in

same or opposite directions would depend on the ∓ y′ variability within

the points comprising the planes.

(b) Shift along drive-run direction: The impact of this bias along the drive-

run direction (± x′ δ∆κ) is drive-run direction independent since the dual

signs will be nullified by x′, which will also have opposite signs for two

tracks in opposite directions. Also, the shift for each point is dependent

on its x′-coordinate. However, in case of vertical planes perpendicular to

the drive-run direction, the RMSE for a single track would not be affected

as the presence of this bias would only cause a tilt in the planar surface,

as shown schematically in Figure 3.8. Again, referring to Figure 3.7, the

discrepancies along the drive-run direction on combining two tracks in the

same direction and in opposite directions are given by (3.10) and (3.11),

respectively. So, it can be concluded that the RMSE on combining two

tracks in the same or opposite directions would increase according to the

lateral distance between the tracks.

Same Direction: δYmA
− δYmB

= (x′A − x′B) δ∆κ = DAB δ∆κ

(3.10)

Opposite Directions: δYmA
− δYmB

= (x′A + x′B) δ∆κ = DAB δ∆κ

(3.11)

Table 3.2 summarizes the above discussion by listing whether the RMSE of plane

fitting on introducing a bias in mounting parameters (RMSEBias) would potentially

increase or remain the same as compared to the RMSE from the original point cloud
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Fig. 3.8.: Schematic impact of bias in ∆κ on a vertical plane perpendicular to

drive-run direction

(RMSETrue) for different plane orientations and drive-run configurations in case of a

perfectly vertical system.

3.2 Bias Impact Analysis: Nearly Vertical System

A nearly vertical system implies that the Z-axis of the IMU body frame is not

perfectly aligned with the vertical direction of the mapping frame, i.e., the IMU unit

has a slight tilt along and/or across the drive-run direction. Let these tilt values be

denoted by Dω and Dφ, respectively. Again, under the assumption that the drive-run

directions are either in S-N or N-S directions, the rotation matrix Rm
b (t) for a nearly

vertical system would be given by (3.12) (using the small angle approximations for

the IMU tilt angles).

Rm
b (t) ≈


±1 0 ±Dφ

0 ±1 ∓Dω

−Dφ Dω 1

 (3.12)

Substituting the newly derived expression of the rotation matrix Rm
b (t) for a nearly

vertical system in (3.6), the revised form of the LiDAR point positioning equation is

obtained for nearly vertical systems, as given in (3.13). Now, the impact on mapping

frame coordinates due to the presence of bias in the system mounting parameters can
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Table 3.2.: Potential qualitative impact on RMSE of plane fitting based on the

theoretical bias impact analysis for perfectly vertical systems

Bias Type

Plane Orientation
Vertical & Parallel to

Drive-run Direction

Vertical &

Perpendicular to

Drive-run Direction

Horizontal Planes

Normal Direction
Across Drive-run

Direction

Along Drive-run

Direction
Vertical Direction

Drive-run Configuration

δ∆X

Single Track Same Same Same

Two Tracks (Same Direction) Same Same Same

Two Tracks (Opposite Directions) Increase Same Same

δ∆Y

Single Track Same Same Same

Two Tracks (Same Direction) Same Same Same

Two Tracks (Opposite Directions) Same Increase Same

δ∆Z

Single Track Same Same Same

Two Tracks (Same Direction) Same Same Same

Two Tracks (Opposite Directions) Same Same Same

δ∆ω

Single Track Same Same Increase

Two Tracks (Same Direction) Same Same Increase

Two Tracks (Opposite Directions) Same Increase Increase

δ∆φ

Single Track Same Same Same

Two Tracks (Same Direction) Same Same Increase

Two Tracks (Opposite Directions) Increase Same Increase

δ∆κ

Single Track Increase Same Same

Two Tracks (Same Direction) Increase Increase Same

Two Tracks (Opposite Directions) Increase Increase Same

be analyzed by differentiating (3.13) with respect to the system mounting parameters.

This impact is given by (3.14).
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rmI = rmb (t) +


±1 0 ±Dφ

0 ±1 ∓Dω

−Dφ Dω 1




∆X

∆Y

∆Z



+


±1 0 ±Dφ

0 ±1 ∓Dω

−Dφ Dω 1




1 −∆κ ∆φ

∆κ 1 −∆ω

−∆φ ∆ω 1



x′

y′

z′


(3.13)

δrmI (δ∆X, δ∆Y, δ∆Z, δ∆ω, δ∆φ, δ∆κ) =


± δ∆X

± δ∆Y

δ∆Z



+


± y′ Dφ δ∆ω ± z′ δ∆φ ∓ x′ Dφ δ∆φ ∓ y′ δ∆κ

∓ z′ δ∆ω ∓ y′ Dω δ∆ω ± x′ Dω δ∆φ ± x′ δ∆κ

y′ δ∆ω − z′ Dω δ∆ω − x′ δ∆φ − z′ Dφ δ∆φ + x′ Dω δ∆κ + y′ Dφ δ∆κ


(3.14)

The bias impact analysis previously conducted for perfectly vertical systems con-

stitutes the first part of bias impact for nearly vertical systems and it can be extended

further to derive the total impact for such systems by focusing on the additional terms

that are introduced in (3.14) as compared to (3.7). Table 3.3 lists the impact for a

nearly vertical system corresponding to a bias in one of the mounting parameters at

a time. Here, the additional terms as compared to a perfectly vertical system are

highlighted in red.

3.2.1 Nearly Vertical System: Impact Assessment for Different Plane

Orientations and Drive-run Configurations

1. Impact of Bias in Boresight Pitch (∆ω):

(a) Shift across drive-run direction: The impact of boresight pitch bias across

the drive-run direction due to the additional term introduced for a nearly
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Table 3.3.: Impact of bias in each of the mounting parameters on 3D point

coordinates for nearly vertical systems

δXm δYm δZm

δ∆X ± δ∆X 0 0

δ∆Y 0 ± δ∆Y 0

δ∆Z 0 0 δ∆Z

δ∆ω ± y′ Dφ δ∆ω ∓ z′ δ∆ω ∓ y′ Dω δ∆ω y′ δ∆ω − z′ Dω δ∆ω

δ∆φ ± z′ δ∆φ ∓ x′ Dφ δ∆φ ± x′ Dω δ∆φ − x′ δ∆φ − z′ Dφ δ∆φ

δ∆κ ∓ y′ δ∆κ ± x′ δ∆κ x′ Dω δ∆κ + y′ Dφ δ∆κ

vertical systems (± y′ Dφ δ∆ω) is y′-coordinate dependent, i.e., the shift

for each point is dependent on its distance along the drive-run direction

from the laser beam firing point. This would cause an increase in RMSE

of vertical planes parallel to the drive-run direction for a single track.

However, this increase would be negligible as Dφ and δ∆ω are very small

and so, the shift y′ Dφ δ∆ω would be small unless the y′-coordinate for

the planar points is large enough. Furthermore, the RMSE on combining

two tracks in the same or opposite directions would depend on the ± y′

variability within the point comprising the planes.

(b) Shift along drive-run direction: The impact of boresight pitch bias along

the drive-run direction due to the additional term introduced for a nearly

vertical system (∓ y′ Dω δ∆ω) is y′-coordinate dependent. This would

cause an increase in RMSE of the planes perpendicular to the drive-run

direction for a single track. However, this increase would be negligible

as Dω and δ∆ω are very small and so, the shift y′ Dω δ∆ω would be

small unless the y′-coordinate for the planar points is large enough. Also,
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the RMSE on combining two tracks in same or opposite directions would

depend on the ± y′ variability within the point comprising the planes.

(c) Shift in vertical direction: The additional impact of boresight pitch bias

in the vertical direction (− z′ Dω δ∆ω) is drive-run direction independent

but depends on the height (z′) of the point in question relative to the laser

beam firing point. For a horizontal plane, z′-coordinate of all points will

be almost same. So, this term will not impact the RMSE of horizontal

planes for any of the three drive-run configurations.

2. Impact of Bias in Boresight Roll (∆φ):

(a) Shift across drive-run direction: The additional impact of this bias across

the drive-run direction for a nearly vertical system (∓ x′ Dφ δ∆φ) is drive-

run direction independent. Also, the shift for each point is dependent on

its distance across the drive-run direction from the laser scanner trajectory

(x′). However, in case of vertical planes parallel to the drive-run direction,

x′-coordinate of all the points will be almost the same. So, the RMSE of

such planes will not change for single tracks. However, on combining two

tracks (say, A and B) in the same direction (Figure 3.7(a)), the discrepancy

across the drive-run direction for a point scanned in the two tracks is given

by (3.15). Similarly, on combining two tracks in opposite directions (Figure

3.7(b)), the discrepancy across the drive-run direction is given by (3.16).

Here, DAB denotes the lateral distance between the two tracks. Hence, the

RMSE on combining two tracks in the same or opposite directions would

increase according to the lateral distance between the tracks.



40

Same Direction:
δXmA

− δXmB
= (−x′A + x′B) Dφ δ∆φ

= −DAB Dφ δ∆φ
(3.15)

Opposite Directions:
δXmA

− δXmB
= (−x′A − x′B) Dω δ∆φ

= −DAB Dω δ∆φ
(3.16)

(b) Shift along drive-run direction: The impact of this bias along the drive-

run direction for nearly vertical systems (± x′ Dω δ∆φ) is drive-run di-

rection independent. Also, the shift for each point is dependent on its

x′-coordinate. For a vertical plane perpendicular to the drive-run direc-

tion, all the points which have the same lateral distance will be shifted

by the same amount along the drive-run direction. This would only cause

a tilt in the planar surface and thus, it would not affect its RMSE when

dealing with a single drive-run. Furthermore, referring to Figure 3.7, the

discrepancies along the drive-run direction on combining two tracks in the

same direction and in opposite directions are given by (3.17) and (3.18),

respectively. So, it can be concluded that the RMSE on combining two

tracks in same or opposite directions would increase according to the lateral

distance between the tracks.

Same Direction:
δYmA

− δYmB
= (x′A − x′B) Dω δ∆φ

= DAB Dω δ∆φ
(3.17)

Opposite Directions:
δYmA

− δYmB
= (x′A + x′B) Dω δ∆φ

= DAB Dω δ∆φ
(3.18)

(c) Shift in vertical direction: The additional impact of this bias in the vertical

direction (− z′ Dφ δ∆φ) is drive-run direction independent. Also, the shift

for each point is dependent on its height (z′) relative to the laser beam firing

point. For a horizontal plane, z′-coordinate of all the points will be almost
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same. So, this term will not impact the RMSE of horizontal planes for any

of the three drive-run configurations.

3. Impact of Bias in Boresight Heading (∆κ):

(a) Shift in vertical direction: The additional impact of this bias in the vertical

direction that is introduced for a nearly vertical system consists of two

terms. The shift caused by the first term (x′ Dω δ∆κ) is drive-run direction

dependent and its magnitude depends on the x′-coordinate of the point in

question. In case of horizontal planes scanned from a single track, all

the points located at the same lateral distance from the track will be

shifted vertically by the same amount, thus resulting in a tilt in the plane.

So, the RMSE for single tracks will not be affected by this term. Now,

according to Figure 3.7, the discrepancies along the drive-run direction on

combining two tracks in the same direction and in opposite directions are

given by (3.19) and (3.20), respectively. Hence, for two tracks in the same

direction, the RMSE will increase according to the lateral distance between

the tracks. On the other hand, for two tracks in opposite directions, RMSE

will increase depending on the extent of the lateral distance variability of

the planar patch of interest relative to the bisecting direction between the

tracks.

Same Direction:
δZmA

− δZmB
= (x′A − x′B) Dω δ∆κ

= DAB Dω δ∆κ
(3.19)

Opposite Directions:
δZmA

− δZmB
= (x′A − x′B) Dω δ∆κ

= 2X Dω δ∆κ
(3.20)

Now, the shift caused by the second term (y′ Dφ δ∆κ) is y′-coordinate

dependent. So, this would cause an increase in RMSE of the horizontal

planes for a single track, which in turn will lead to an increase in RMSE
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on combining tracks oriented in the same or opposite directions. However,

this increase would be negligible as Dφ and δ∆κ are very small and so,

the shift y′ Dφ δ∆κ would be small unless the y′-coordinate for the planar

points is large enough.

Note that throughout the above discussion, we refer to the coordinates or bias

values being “small” or “large enough”. In this context, a coordinate or bias is con-

sidered “small” if its impact on the point cloud lies within the limits of the expected

accuracy in point positioning according to the specifications of the hardware com-

ponents included in the mobile mapping system, i.e., the LiDAR and GNSS/INS

units. Similarly, a coordinate or bias is considered “large enough” if the resultant

bias impact is beyond the expected accuracy in point positioning.

Table 3.4 summarizes whether the RMSE of plane fitting on introducing a bias in

mounting parameters (RMSEBias) would potentially increase or remain the same as

compared to the RMSE from the original point cloud (RMSETrue) for different plane

orientations and drive-run configurations by combining the additional bias impact

introduced in case of nearly vertical systems with the already existing bias impact

terms for perfectly vertical systems. One should note that Table 3.4 consists of

some cases where it is listed that the RMSE of plane fitting ”might increase” as a

result of the bias. This uncertainty arises because of second order bias impact terms,

which are dependent on the y′ coordinates of the points (as discussed previously),

thus indicating that the RMSE would increase only in cases with large y′-coordinate

values or large y′-variability of the planar feature points.

The above analysis can be used to draw conclusions about the target primitives

and drive-run configurations required to estimate each mounting parameter:

1. The lever-arm ∆X can be estimated using opposite drive-runs while scanning

vertical planar features parallel to the drive-run direction.

2. The lever-arm ∆Y can be estimated using opposite drive-runs while scanning

vertical planar features perpendicular to the drive-run direction.



43

Table 3.4.: Potential qualitative impact on RMSE of plane fitting based on the

theoretical bias impact analysis for nearly vertical systems

Bias Type

Plane Orientation
Vertical & Parallel to

Drive-run Direction

Vertical &

Perpendicular to

Drive-run Direction

Horizontal Planes

Normal Direction
Across Drive-run

Direction

Along Drive-run

Direction
Vertical Direction

Drive-run Configuration

δ∆X

Single Track Same Same Same

Two Tracks (Same Direction) Same Same Same

Two Tracks (Opposite Directions) Increase Same Same

δ∆Y

Single Track Same Same Same

Two Tracks (Same Direction) Same Same Same

Two Tracks (Opposite Directions) Same Increase Same

δ∆Z

Single Track Same Same Same

Two Tracks (Same Direction) Same Same Same

Two Tracks (Opposite Directions) Same Same Same

δ∆ω

Single Track Might increase Might increase Increase

Two Tracks (Same Direction) Might increase Might increase Increase

Two Tracks (Opposite Directions) Might increase Increase Increase

δ∆φ

Single Track Same Same Same

Two Tracks (Same Direction) Increase Increase Increase

Two Tracks (Opposite Directions) Increase Increase Increase

δ∆κ

Single Track Increase Same Same

Two Tracks (Same Direction) Increase Increase Increase

Two Tracks (Opposite Directions) Increase Increase Increase

3. The lever-arm ∆Z for a given spinning multi-beam laser scanner can be esti-

mated only using vertical control.

4. The boresight pitch (∆ω) can be estimated using horizontal planar features in

addition to using two opposite drive-runs while scanning vertical planar features

perpendicular to the drive-run direction. The height of the planar features is

critical to decouple this parameter from the lever-arm ∆Y .

5. The boresight roll (∆φ) can be estimated using two opposite drive-runs while

scanning vertical planar features parallel to the drive-run direction. The height
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of the planar features is critical to decouple this parameter from the lever-arm

∆X. The setup should also include horizontal planar features scanned from

opposite drive-runs at different lateral distances from the features and scanned

from drive-runs in the same direction but with different lateral separations.

6. The boresight heading (∆κ) can be estimated by scanning vertical planes from

two drive-runs in the same direction with a significant lateral separation between

them. This configuration would eliminate any discrepancies caused by lever-

arm components. This setup should also include horizontal planar features

scanned from opposite drive-runs at different lateral distances from the features

and scanned from drive-runs in the same direction but with different lateral

separations.

3.3 Experimental Results

3.3.1 System Integration and Synchronization Process

In order to experimentally validate the theoretical bias impact analysis, a car-

mount system (shown in Figure 3.9) is used to collect LiDAR data for 3D point cloud

reconstruction. In this regard, system integration is considered one of the factors

that have a significant effect on the ability to provide accurate geospatial informa-

tion. This system consists of a Velodyne HDL32E sensor and a direct georeferencing

unit based on an integrated INS and GNSS receiver boards (SPAN-CPT). All these

components are rigidly fixed within the car-mount system. According to manufac-

turer specifications, the range accuracy of Velodyne HDL32E is 2 cm. Also, for the

SPAN-CPT, the postprocessing accuracy in position can be less than 2 cm and the

achieved accuracy for the roll/pitch and heading can be 0.008◦ and 0.025◦, respec-

tively. Based on error propagation calculation using these specified accuracies of the

involved hardware, we should expect a point positioning accuracy of around 2 cm in

the derived 3D coordinates for points captured using this system.
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Fig. 3.9.: Car-mount MMS

In order to derive direct georeferencing data, the SPAN-CPT supplies sequentially

precise time pulses, known as pulse-per-second signals, which give the ability to gen-

erate a time-tagged point cloud. Furthermore, the SPAN-CPT provides a navigation

message, also known as GPRMC message (including information regarding position,

rotation, and GPS time), which is recorded over a dedicated RS-232 serial port and

received by the LiDAR unit via the interface box in the form of serial data. This

synchronization process is illustrated in Figure 3.10.

3.3.2 Experimental Verification of Bias Impact Analysis

The numerical verification of the theoretical impact for a nearly vertical system is

done by first, extracting vertical planes that are parallel or perpendicular to the drive-

run direction, and horizontal planes from a point cloud obtained using a pre-calibrated

system that is assumed to have no biases in the system mounting parameters. Then,
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Fig. 3.10.: Synchronization process and data storage for the car-mount MMS

for each of the planar features, the RMSE of normal distances of the points from the

best-fitting plane are determined to describe the quality of fit for these planes before

adding biases to the system mounting parameters. Next, a bias is introduced in the

system mounting parameters, one by one, and the point clouds are reconstructed for

each case. For this research, the bias introduced in the lever-arm components is 20

cm, and the bias introduced in the boresight angles is 120 arc-min. These values for

simulated bias are chosen to be large enough to amplify the numerical impact on the

RMSE of plane fitting in order to draw conclusions whether the impact of simulated

biases validate the theoretically determined bias impact for the different target and

drive-run configurations. Finally, the RMSE values for the planar features are es-

timated for the individual drive-runs as well as combined drive-runs with different

configurations. These values are compared with the original RMSE values to verify

the hypotheses about the impact of various biases in the system mounting parameters.

Four different drive-run configurations are used for this research: a pair of drive-runs
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in the same direction and opposite directions at two different lateral distances for

each case, schematically shown in Figure 3.11. The target primitives and the relative

location of the drive-runs that are used to observe the impact of biases are depicted

in Figure 3.12, along with the orientation of these calibration primitives relative to

the drive-runs. Here, G0∼G2 are ground patches, B0∼B4 are highly reflective sign

boards, and W1 is a wall patch. The orientation of mapping frame is also indicated

in the top left corner of Figure 3.12 as Xm and Ym.

Fig. 3.11.: Drive-run configurations for bias impact analysis

Fig. 3.12.: Target primitives and drive-runs used for bias impact analysis

Tables 3.5, 3.6, and 3.7 list the RMSE of plane fitting (in meters) for the tar-

get primitives in each of the three orientations (Y Z, XZ, and XY ), respectively,

for the four drive-run configurations. The RMSE is listed for each track separately

(where Track A denotes the first track and Track B denotes the second track in the
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corresponding configuration) as well as for the two tracks combined together. The

values in green denote the RMSE of plane fitting for the planar feature reconstructed

with no simulated bias in any of the mounting parameters. These RMSE values with

unbiased mounting parameters computed for each track separately and for combined

tracks in each configuration will be used as the reference to quantify the increase in

RMSE values for the different drive-run configurations when a bias is introduced in

the mounting parameters. The values highlighted in yellow denote the ones which

can be expected to have a potential increase in RMSE according to the theoretical

analysis. It is worth mentioning that all the nine target primitives which were used

for experimental validation upheld the theoretically derived hypotheses, i.e., each set

of planar features – (B1, B3, W1); (B0, B2, B4); and (G0, G1, G2) – oriented in

the same direction with respect to the drive-run direction are seen to exhibit similar

trends (in keeping with the expected impact based on their lateral separation from

the drive-runs). Table 3.5 indicates that vertical planes parallel to the drive-run di-

rection would aid in estimating ∆X, ∆φ, and ∆κ, along with a relatively weaker

contribution toward ∆ω. Table 3.6 indicates that vertical planes perpendicular to

the drive-run direction would facilitate the estimation of ∆Y, ∆ω, and, ∆κ, along

with a weaker contribution toward ∆φ. Also, Table 3.7 indicates that horizontal

planes would indeed help in estimating ∆ω and ∆φ, along with a lesser contribution

toward ∆κ. The values highlighted in red in Tables 3.5 and 3.7 indicate a significant

increase in the RMSE for Tracks 5 and 6. However, this is not expected theoreti-

cally. This is attributed to the points of the planar patch that are captured toward

the curved ends of the trajectories, thus leading to a significant change in their x′-

coordinates, which is otherwise assumed to be constant in case of straight tracks

capturing such patches. These results reveal that the numerical results validate the

theoretically drawn conclusions about bias impact. So, for proceeding with the cal-

ibration of a GNSS/INS-assisted multi-unit LiDAR unit system, the test field and

drive-run configurations are set up while taking these results of bias impact analysis

into consideration.
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Table 3.5.: Quantitative bias impact on vertical planes parallel to drive-run

direction (YZ-plane)

RMSE (m)

Sign Board

B1

Sign Board

B3

Wall Patch

W1

Same direction Opposite directions Same direction Opposite directions Same direction Opposite directions

C1 (1, 3) C3 (1, 5) C2 (2, 3) C4 (1, 6) C1 (1, 3) C3 (1, 5) C2 (2, 3) C4 (1, 6) C1 (1, 3) C3 (1, 5) C2 (2, 3) C4 (1, 6)

No Bias

Track A 0.0268 0.0268 0.0089 0.0268 0.0222 0.0222 0.0174 0.0222 0.0259 0.0259 0.0152 0.0259

Track B 0.0133 0.0246 0.0133 0.0205 0.0084 0.0169 0.0084 0.0160 0.0158 0.0154 0.0158 0.0379

Combined 0.0214 0.0288 0.0116 0.0231 0.0210 0.0247 0.0156 0.0202 0.0206 0.0176 0.0158 0.0351

δ∆X

Track A 0.0268 0.0268 0.0089 0.0268 0.0222 0.0222 0.0174 0.0222 0.0258 0.0258 0.0152 0.0258

Track B 0.0134 0.0242 0.0134 0.0207 0.0084 0.0163 0.0084 0.0164 0.0158 0.0153 0.0158 0.0381

Combined 0.0214 0.0284 0.1827 0.1779 0.0209 0.0239 0.1821 0.1763 0.0206 0.0175 0.1451 0.1845

δ∆Y

Track A 0.0267 0.0267 0.0088 0.0267 0.0227 0.0227 0.0182 0.0227 0.0248 0.0248 0.0152 0.0248

Track B 0.0137 0.0217 0.0137 0.0237 0.0085 0.0091 0.0085 0.0224 0.0167 0.0148 0.0167 0.0426

Combined 0.0218 0.0297 0.0173 0.0304 0.0208 0.0211 0.0156 0.0290 0.0204 0.0178 0.0178 0.0388

δ∆Z

Track A 0.0271 0.0271 0.0089 0.0271 0.0225 0.0225 0.0176 0.0225 0.0254 0.0254 0.0151 0.0254

Track B 0.0133 0.0240 0.0133 0.0214 0.0083 0.0226 0.0083 0.0219 0.0168 0.0158 0.0168 0.0377

Combined 0.0216 0.0256 0.0116 0.0250 0.0212 0.0234 0.0156 0.0229 0.0208 0.0195 0.0166 0.0381

δ∆ω

Track A 0.0215 0.0215 0.0088 0.0215 0.0210 0.0210 0.0129 0.0210 0.0194 0.0194 0.0152 0.0194

Track B 0.0126 0.0155 0.0126 0.0328 0.0085 0.0158 0.0085 0.0257 0.0126 0.0255 0.0126 0.0709

Combined 0.0199 0.0210 0.0121 0.0325 0.0207 0.0246 0.0124 0.0266 0.0162 0.0248 0.0131 0.0620

δ∆φ

Track A 0.0078 0.0078 0.0157 0.0078 0.0100 0.0100 0.0146 0.0100 0.0300 0.0300 0.0408 0.0300

Track B 0.0166 0.0828 0.0166 0.0644 0.0189 0.0596 0.0189 0.0528 0.0452 0.0624 0.0452 0.0918

Combined 0.0179 0.0652 0.0571 0.0785 0.0239 0.0476 0.0533 0.0685 0.0399 0.0584 0.0532 0.0858

δ∆κ

Track A 0.1704 0.1704 0.0911 0.1704 0.1617 0.1617 0.1548 0.1617 0.3099 0.3099 0.1978 0.3099

Track B 0.1334 0.1837 0.1334 0.1869 0.0943 0.1837 0.0943 0.1843 0.3120 0.3109 0.3120 0.2969

Combined 0.1519 0.1838 0.1460 0.1860 0.1300 0.1814 0.1573 0.1827 0.3124 0.3108 0.3088 0.3008

3.4 Summary

In this chapter, a thorough bias impact analysis was conducted for perfectly ver-

tical as well as nearly vertical terrestrial mobile mapping systems utilizing spinning

multi-beam laser scanners. The analytically driven conclusions were further validated

by evaluating the results from an experimental setup. Based on this analysis, an op-

timal target primitive setup and drive-run configuration was devised for calibrating

a multi-sensor LiDAR system, which in turn would ensure a sufficiently accurate

calibration result.
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Table 3.6.: Quantitative bias impact on vertical planes perpendicular to drive-run

direction (XZ-plane)

RMSE (m)

Sign Board

B0

Sign Board

B2

Sign Board

B4

Same direction Opposite directions Same direction Opposite directions Same direction Opposite directions

C1 (1, 3) C3 (1, 5) C2 (2, 3) C4 (1, 6) C1 (1, 3) C3 (1, 5) C2 (2, 3) C4 (1, 6) C1 (1, 3) C3 (1, 5) C2 (2, 3) C4 (1, 6)

No Bias

Track A 0.0097 0.0097 0.0132 0.0097 0.0122 0.0122 0.0129 0.0122 0.0118 0.0118 0.0161 0.0118

Track B 0.0133 0.0076 0.0133 0.0134 0.0137 0.0150 0.0137 0.0134 0.0117 0.0144 0.0117 0.0064

Combined 0.0151 0.0098 0.0187 0.0120 0.0143 0.0140 0.0155 0.0160 0.0127 0.0121 0.0169 0.0181

δ∆X

Track A 0.0144 0.0144 0.0123 0.0144 0.0125 0.0125 0.0126 0.0125 0.0201 0.0201 0.0204 0.0201

Track B 0.0136 0.0087 0.0136 0.0172 0.0149 0.0250 0.0149 0.0165 0.0115 0.0182 0.0115 0.0076

Combined 0.0191 0.0140 0.0168 0.0158 0.0151 0.0170 0.0145 0.0150 0.0225 0.0211 0.0159 0.0191

δ∆Y

Track A 0.0095 0.0095 0.0131 0.0095 0.0122 0.0122 0.0129 0.0122 0.0129 0.0129 0.0161 0.0129

Track B 0.0133 0.0076 0.0133 0.0131 0.0137 0.0143 0.0137 0.0137 0.0117 0.0142 0.0117 0.0064

Combined 0.0150 0.0096 0.1765 0.1557 0.0142 0.0138 0.1904 0.1588 0.0128 0.0133 0.1821 0.1134

δ∆Z

Track A 0.0098 0.0098 0.0130 0.0098 0.0123 0.0123 0.0132 0.0123 0.0122 0.0122 0.0161 0.0122

Track B 0.0134 0.0075 0.0134 0.0169 0.0138 0.0152 0.0139 0.0137 0.0114 0.0164 0.0114 0.0066

Combined 0.0153 0.0099 0.0132 0.0133 0.0143 0.0137 0.0151 0.0134 0.0127 0.0128 0.0138 0.0128

δ∆ω

Track A 0.0168 0.0168 0.0229 0.0168 0.0123 0.0123 0.0141 0.0123 0.0132 0.0132 0.0166 0.0132

Track B 0.0164 0.0142 0.0164 0.0210 0.0123 0.0183 0.0123 0.0122 0.0123 0.0151 0.0123 0.0106

Combined 0.0195 0.0200 0.0640 0.0422 0.0139 0.0173 0.0703 0.0394 0.0134 0.0178 0.0630 0.0189

δ∆φ

Track A 0.0092 0.0092 0.0134 0.0092 0.0122 0.0122 0.0136 0.0122 0.0155 0.0155 0.0157 0.0155

Track B 0.0129 0.0107 0.0129 0.0135 0.0143 0.0152 0.0143 0.0165 0.0118 0.0183 0.0118 0.0074

Combined 0.0110 0.0160 0.0135 0.0388 0.0146 0.0279 0.0145 0.0463 0.0162 0.0217 0.0139 0.0484

δ∆κ

Track A 0.0145 0.0145 0.0185 0.0145 0.0121 0.0121 0.0126 0.0121 0.0121 0.0121 0.0179 0.0121

Track B 0.0189 0.0212 0.0189 0.0145 0.0116 0.0108 0.0116 0.0151 0.0124 0.0141 0.0124 0.0077

Combined 0.0966 0.1618 0.1022 0.1649 0.0888 0.1835 0.0952 0.1842 0.0868 0.1242 0.0954 0.1312
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Table 3.7.: Quantitative bias impact on horizontal planes (XY-plane)

RMSE (m)

Ground Patch

G0

Ground Patch

G1

Ground Patch

G2

Same direction Opposite directions Same direction Opposite directions Same direction Opposite directions

C1 (1, 3) C3 (1, 5) C2 (2, 3) C4 (1, 6) C1 (1, 3) C3 (1, 5) C2 (2, 3) C4 (1, 6) C1 (1, 3) C3 (1, 5) C2 (2, 3) C4 (1, 6)

No Bias

Track A 0.0094 0.0094 0.0102 0.0094 0.0094 0.0094 0.0102 0.0094 0.0156 0.0156 0.0166 0.0156

Track B 0.0116 0.0127 0.0116 0.0117 0.0116 0.0127 0.0116 0.0117 0.0160 0.0154 0.0160 0.0138

Combined 0.0106 0.0125 0.0125 0.0131 0.0106 0.0125 0.0125 0.0131 0.0160 0.0154 0.0176 0.0164

δ∆X

Track A 0.0094 0.0094 0.0101 0.0094 0.0094 0.0094 0.0101 0.0094 0.0153 0.0153 0.0170 0.0153

Track B 0.0124 0.0164 0.0124 0.0125 0.0124 0.0164 0.0124 0.0125 0.0161 0.0175 0.0161 0.0161

Combined 0.0109 0.0217 0.0120 0.0115 0.0109 0.0217 0.0120 0.0115 0.0160 0.0181 0.0194 0.0172

δ∆Y

Track A 0.0089 0.0089 0.0101 0.0089 0.0089 0.0089 0.0101 0.0089 0.0153 0.0153 0.0167 0.0153

Track B 0.0112 0.0144 0.0112 0.0135 0.0112 0.0144 0.0112 0.0135 0.0161 0.0157 0.0161 0.0141

Combined 0.0102 0.0132 0.0123 0.0139 0.0102 0.0132 0.0123 0.0139 0.0160 0.0156 0.0194 0.0187

δ∆Z

Track A 0.0093 0.0093 0.0102 0.0093 0.0093 0.0093 0.0102 0.0093 0.0155 0.0155 0.0166 0.0155

Track B 0.0116 0.0125 0.0116 0.0118 0.0116 0.0125 0.0116 0.0118 0.0160 0.0153 0.0160 0.0139

Combined 0.0106 0.0121 0.0125 0.0126 0.0106 0.0121 0.0125 0.0126 0.0160 0.0153 0.0177 0.0165

δ∆ω

Track A 0.2423 0.2423 0.2613 0.2423 0.2423 0.2423 0.2613 0.2423 0.0792 0.0792 0.1754 0.0792

Track B 0.2889 0.3733 0.2889 0.2970 0.2889 0.3733 0.2889 0.2970 0.2229 0.1240 0.2229 0.1240

Combined 0.2648 0.2883 0.2783 0.2632 0.2648 0.2883 0.2783 0.2632 0.2323 0.1177 0.3733 0.5391

δ∆φ

Track A 0.0153 0.0153 0.0146 0.0153 0.0153 0.0153 0.0146 0.0153 0.0353 0.0353 0.0227 0.0353

Track B 0.0121 0.0134 0.0121 0.0156 0.0121 0.0134 0.0121 0.0156 0.0187 0.0312 0.0187 0.0386

Combined 0.0815 0.2196 0.0519 0.0775 0.0815 0.2196 0.0519 0.0775 0.0548 0.1832 0.4916 0.3369

δ∆κ

Track A 0.0107 0.0107 0.0115 0.0107 0.0107 0.0107 0.0115 0.0107 0.0156 0.0156 0.0159 0.0156

Track B 0.0136 0.0297 0.0136 0.0480 0.0136 0.0297 0.0136 0.0480 0.0185 0.0304 0.0185 0.0368

Combined 0.0198 0.0372 0.0143 0.0326 0.0198 0.0372 0.0143 0.0326 0.0230 0.0600 0.0953 0.1032
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4. SIMULTANEOUS SYSTEM CALIBRATION OF A

MULTI-LIDAR MULTI-CAMERA MOBILE MAPPING

PLATFORM

In this chapter, we propose a strategy to calibrate the mounting parameters for a

multi-sensor system consisting of multiple spinning multi-beam laser scanners and

multiple cameras using points and geometric tie features (e.g., planar, and linear/cylindrical

features). The conceptual basis for multi-sensor system calibration is to minimize the

discrepancies among conjugate points, linear features, and/or planar features ob-

tained from different sensors and/or drive-runs. Owing to the irregular distribution

of LiDAR points, conjugate LiDAR point pairs cannot be used since there is no

accurate point-to-point correspondence. However, the same limitation does not ap-

ply to imagery data, where a conjugate-point-pairing-based bundle adjustment can

be adopted for calibration. This chapter starts by first discussing the conventional

photogrammetric bundle adjustment and then, analyzing its equivalency to a newly

proposed point-pairing-based bundle adjustment model. Apart from conjugate point

pairings, conjugate linear/cylindrical and planar features, such as building facades,

ground patches, light poles, and lane markers, are also used for multi-sensor calibra-

tion and these can be directly extracted from overlapping areas among the acquired

data from different drive-runs. The representation scheme and semi-automatic fea-

ture extraction procedure used in this study for such features is also discussed in

this chapter. Finally, an iterative multi-sensor system calibration with weight mod-

ification is proposed to derive the mounting parameters based on the minimization

of discrepancy between 3D coordinates of conjugate points and that of the normal

distance between conjugate features. Figure 4.1 shows a flowchart listing the steps

involved in multi-sensor system calibration. Each of these steps is discussed in more

detail in the forthcoming sections.
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Fig. 4.1.: Flowchart of the steps involved in the proposed multi-sensor system

calibration strategy

4.1 New Point-Pairing-Based Bundle Adjustment and Its Comparison to

the Conventional Model

In this section, first, we briefly discuss the conventional photogrammetric bundle

adjustment for single/multi-camera systems. Then, a new approach for bundle ad-

justment is proposed that uses point pairings between various image points. The new

model is compared to the conventional bundle adjustment to examine the equivalency

of the two models in terms of their parameter estimation ability.

In case of a conventional photogrammetric bundle adjustment for single/multi-

camera systems, (2.4) is modified in order to eliminate the scaling factor. The terms

in the equation are first rearranged to produce (4.1), which is further simplified to
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result in (4.2a) and (4.2b), where the scaling factor has been eliminated by reducing

three equations to two. In this model, the unknowns involved for an image point are

its 3D mapping frame coordinates rmI (assuming that the intrinsic camera parame-

ters, GNSS/INS position and orientation, and inter-sensor mounting parameters are

available). So, if a point I is observed in m different images, then based on this

model, there will be a total of 2m equations in three unknowns (rmI ), thus resulting

in a point definition redundancy of (2m− 3).

r
Cj

I (t) =
1

λ(i, Cj, t)

[
R

Cj

Cr
RCr

b Rb
m(t) [rmI − rmb (t)] −R

Cj

Cr
RCr

b rbCr
−R

Cj

Cr
rCr
Cj

]

=
1

λ(i, Cj, t)


Nx

Ny

D


(4.1)

xij = xpj − fj
Nx

D
+ distxij

(4.2a)

yij = ypj − fj
Ny

D
+ distyij (4.2b)

We propose a point-pairing-based bundle adjustment where (2.4) is retained in its

original form, i.e., the scaling factors are not eliminated by reducing the three equa-

tions to two. Rather, the scaling factors are treated as unknowns to be estimated.

This model aims to eliminate the 3D mapping frame coordinates of a point in order

to allow for the estimation of scaling factors for the corresponding image points along

with the calibration parameters. This is achieved by imposing an equality constraint

on the 3D mapping frame coordinates computed for different image points repre-

senting the same object point by pairing them together. For instance, for a point I

captured in two different images - one by camera Cj at time t1 and another by cam-

era Ck at time t2 - the difference between the mapping coordinates computed from

both images should be zero, (4.3). Here, the unknowns include the scaling factors

for the two image points, λ(i, Cj, t1) and λ(i′, Ck, t2). So, if a point I is observed

in m different images, then based on this model, there will be a total of (m − 1)
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independent pairings between the images, where each pairing would result in three

equations and each image point will have an associated scaling factor. Hence, there

will be a total of 3(m− 1) equations in m unknowns (scaling factors), thus resulting

in a point definition redundancy of (2m − 3). This is the same as that obtained for

the conventional model for bundle adjustment. The identical point definition redun-

dancy, in turn, indicates the equivalency of the traditional model and the proposed

point-pairing-based bundle adjustment. In this research, we use the latter model as

it facilitates having a direct expression of the 3D mapping frame coordinates for the

image points so that they can also be paired with the corresponding LiDAR points;

as will be discussed in the forthcoming sections.

rmI (i, Cj, t1) − rmI (i′, Ck, t2) = 0 (4.3)

4.2 Representation Scheme and Feature Extraction

In this section, we discuss the representation scheme used in this study for linear

and planar features in LiDAR data. Furthermore, we describe the semi-automatic

feature extraction procedure used to derive various features from LiDAR data.

4.2.1 Linear Features

A linear feature appearing in an image or a LiDAR scan is represented by a

sequence of pseudo-conjugate points lying along the feature. Here, the term “pseudo-

conjugate points” refers to points that are not distinctly identifiable in different Li-

DAR scans/images but are known to belong to the same feature. The representation

of linear features in images and LiDAR data is schematically illustrated in Figure

4.2(a) and depicted for a light pole in Figures 4.2(b) and 4.2(c). Note that points

along a linear feature are labeled the same, thus denoting that the points are indis-

tinct in nature, i.e., the only identification of a point is by the feature that it belongs
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to and there is no assumption about having conjugate points among different images

and LiDAR scans.

(a) Schematic illustration

(b) Image points along a

light pole

(c) LiDAR points along a

light pole

Fig. 4.2.: Representation of linear features in imagery and LiDAR data

In outdoor calibration, various linear features can be extracted and used, such

as flag poles, light poles, physical intersections of neighboring planar features, and

so on. Features like flag poles or light poles are extracted from LiDAR data by

specifying the two end points for each feature. A buffer radius (bf) is set to define a
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cylinder around the linear feature of interest. Then, a line-fitting is done for the points

lying within this cylindrical buffer, and finally, the points that lie within a normal

distance threshold (ndth) from the best-fitting line are extracted. On the contrary,

points belonging to intersections of neighboring planar features are extracted by first,

determining the best-fitting planes for each of the two planar surfaces. Then, their

intersection line is determined and all the points lying withing a normal distance

threshold (ndth) from this line are extracted. In the case of imagery data, linear

features are extracted by manually measuring image coordinates for pseudo-conjugate

points along corresponding features.

4.2.2 Planar Features

A planar feature appearing in a LiDAR scan is represented by a sequence of

pseudo-conjugate points lying along the feature. However, in the case of an image,

a planar feature is represented by distinct points, such as the corners, along the

feature, as shown schematically in Figure 4.3(a). For instance, the representation for

a checkerboard target in imagery and LiDAR data (used in this study) is depicted

in Figures 4.3(b) and 4.3(c), respectively. Note that LiDAR points belonging to

each planar feature will have the same labels (which are specific to the feature) but

the corresponding image points (here, corners of a board) will have distinct labels

(specific to the corresponding object point). The justification for this deviation in

the representation scheme followed for planar features from the one established for

linear features is discussed in detail in Section 4.3.

In outdoor environment, several planar features available in the surroundings can

be extracted and used for calibration. In this study, we use highly reflective boards,

ground patches, wall patches, and other surfaces as planar features for calibration.

The highly reflective sign boards can be easily identified from intensity data, as circled

in Figure 4.4, where the points belonging to these boards exhibit higher intensity

values than other LiDAR points. First, a predefined threshold (Ith) is set to extract
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(a) Schematic illustration

(b) Image points along a

checkerboard target

(c) LiDAR points along a

checkerboard target

Fig. 4.3.: Representation of planar features in imagery and LiDAR data

high-intensity points. To avoid the extraction of high-intensity points belonging to

objects other than these boards, an approximate preset region is set as seed points for

each board. Then, for each of the tracks, a distance-based region growing technique is

adopted to group the high-intensity points belonging to these boards starting from the

preset seed point. The distance threshold (dth) used for region growing is determined

based on the accuracy of initial estimates of the mounting parameters. Finally, a

plane-fitting is done for these points from each track, and the points lying within

a normal distance threshold (ndth) from the best-fitting plane are extracted. Other

planar features, such as ground patches, wall patches, and other planar surfaces, are
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extracted by defining two diagonally opposite corners. A bounding box is constructed

around the planar feature of interest by adding a buffer value (bf) in X-, Y -, and Z-

directions to the coordinates of diagonally opposite corners. Again, a plane-fitting

is done for the points contained inside the box, and the ones lying within a normal

distance threshold (ndth) from the best-fitting plane are extracted. In the case of

imagery data, the image coordinates of distinctly identifiable points along a planar

feature (corners or center) are manually measured.

Fig. 4.4.: Intensity data of a point cloud obtained from a single drive-run

4.3 Development of an Optimal Pairing Scheme for Multi-sensor System

Calibration

Now that the representation scheme has been established for the different types

of features used for calibration, we proceed to analyze their contributions toward

calibration. The mapping frame coordinates of a point I captured in a LiDAR scan

and an image can be derived using (2.3) and (2.4), respectively. Consequently, the

calibration objective function is to find the system parameters that minimize the
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discrepancies between the 3D coordinates of a point derived from different drive-

runs. In case of a multi-LiDAR multi-camera system, these discrepancies can arise

from three types of pairings - LiDAR-to-LiDAR pairing (4.4), image-to-image pairing

(4.5), and LiDAR-to-image pairing (4.6), where the term pairing refers to a point (say,

I) observed in two LiDAR scans, two images, or one LiDAR scan and one image.

LiDAR-to-LiDAR Pairing: rmI (Luj, t1) − rmI (Luk, t2) = 0 (4.4)

Image-to-Image Pairing: rmI (Cj, t1) − rmI (Ck, t2) = 0 (4.5)

LiDAR-to-Image Pairing: rmI (Luj, t1) − rmI (Ck, t2) = 0 (4.6)

Now, the contribution of each of the above-mentioned pairings toward calibration

is analyzed for points, linear features, and planar features. One should note that

each point pair serves two purposes – the first is the derivation of 3D mapping frame

coordinates of the involved point and second is the estimation of system calibration

parameters. So, in order to determine the contribution from a pairing toward system

calibration, we compute the point definition redundancy, i.e., the redundancy for

the derivation of the 3D mapping frame coordinates of LiDAR/image points, as a

result of LiDAR-to-LiDAR, image-to-image, and LiDAR-to-image pairings. The point

definition redundancy is chosen as a metric to deduce whether any type of pairing

will have a contribution towards the estimation of system mounting parameters. If

a pairing has a point definition redundancy greater than zero, then it indicates that

apart from the contribution of the pairing towards the derivation of the involved

3D point coordinates, the same pairing will also be able to contribute towards the

estimation of the system mounting parameters. One should note that in case of

a LiDAR point, there are no additional unknowns involved in computing its 3D

mapping frame coordinates apart from the system parameters. However, in case

of an image point, there is a unique scaling factor associated with it, which is an

additional unknown for computing its 3D mapping frame coordinates.
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4.3.1 Point-based pairings

Let us consider a point I captured in n different LiDAR scans and m different

images. Then, there can be a total of (n−1) independent LiDAR-to-LiDAR pairings,

(m − 1) independent image-to-image pairings, and one additional pairing between a

LiDAR scan and an image for this point. Each point pairing will result in a random

misclosure vector (~e), as given in (4.7).

rmI (LiDAR scan/image 1) − rmI (LiDAR scan/image 2) = ~e (4.7)

For a conjugate point pairing, the discrepancy (~e) is minimized along the X-, Y -,

and Z-directions of the mapping frame, thus resulting in three equations for each

point pair. So, a LiDAR-to-LiDAR point pairing will result in three equations with

no additional unknowns, and hence, the point definition redundancy is 3, as shown

in Figure 4.5(a). Now, an image-to-image point pairing would introduce a scaling

factor corresponding to each image, as shown in Figure 4.5(c). As a result, there

will be three equations and two unknowns, i.e., the point definition redundancy is 1.

Similarly, a LiDAR-to-image point pairing, as shown in Figure 4.5(b), will give rise to

three equations and one unknown (scaling factor corresponding to the image point),

and thus, the point definition redundancy is 2. However, owing to the irregular

distribution of LiDAR points, there is no accurate point-to-point correspondence

between the LiDAR point clouds and images obtained from different drive-runs, thus

ruling out the possibility of LiDAR-to-LiDAR and LiDAR-to-image conjugate point

pairing.

4.3.2 Linear-feature-based pairings

As discussed before, a linear feature is represented by a sequence of pseudo-

conjugate points along the feature. Each pseudo-conjugate point pairing will result

in a random misclosure vector (~e) along with a non-random misclosure vector ( ~D),

as shown in Figure 4.6(a) and expressed mathematically in (4.8).
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(a) LiDAR-to-LiDAR pairing (b) LiDAR-to-image pairing

(c) Image-to-image pairing

Fig. 4.5.: Point definition redundancy for point-based pairings

rmI (LiDAR scan/image 1) − rmI (LiDAR scan/image 2) = ~D + ~e (4.8)

In this case, the discrepancy of the resultant point pair should be minimized

only along the two directions that are normal to the axial direction of the linear

feature, thus resulting in two equations from each pseudo-conjugate point pair. This

is achieved by applying a modified weight matrix to the point pair, which nullifies the

component of their discrepancy along the axial direction of the linear feature. This

modified weight matrix is derived according to the estimated direction of the linear

feature using the points from a reference LiDAR scan encompassing this feature. The

scan with the largest number of points belonging to a feature is set as the reference

scan as it would result in the most reliable estimate of the feature direction. Note
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(a) Linear features (b) Planar features

Fig. 4.6.: Discrepancy vector between pseudo-conjugate points along corresponding

features

that an image can never be used as a reference since each feature point in an image

has a different unknown scaling factor and so, they cannot be used to derive a reliable

feature direction in object space. Hence, all the images and LiDAR scans are paired

to a reference LiDAR scan, i.e., there would be no image-to-image pairings in the case

of linear features. The computation of the above-mentioned modified weight matrix

will be discussed in more detail in Section 4.4.

In summary, if a linear feature is captured in n different LiDAR scans and m

different images, then there will be a total of (n− 1) independent LiDAR-to-LiDAR

pairings andm independent LiDAR-to-image pairings for each pseudo-conjugate point

along the feature. A pseudo-conjugate LiDAR-to-LiDAR point pairing will give two

equations and no unknowns, thus leading to a point definition redundancy of 2, as

shown in Figure 4.7(a). Each pseudo-conjugate LiDAR-to-image point pairing will

result in two equations and one unknown (scaling factor corresponding to the image

point), i.e., the point definition redundancy is 1, as shown in Figure 4.7(b).
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(a) LiDAR-to-LiDAR pairing (b) LiDAR-to-image pairing

Fig. 4.7.: Point definition redundancy for line-based pairings

4.3.3 Planar-feature-based pairings

A planar feature is represented by a sequence of pseudo-conjugate points along

the feature. Again, each pseudo-conjugate point pairing will result in a random

misclosure vector (~e) along with a non-random misclosure vector ( ~D), as shown in

Figure 4.6(b) and stated before in (4.8). So, the discrepancy of the resultant point

pair is minimized only along the direction normal to the planar surface, thus resulting

in only one equation from each pseudo-conjugate point pair. Again, this is achieved

by deriving a modified weight matrix using the normal direction of the planar surface

based on the points from the corresponding reference LiDAR scan that encompass this

feature (Section 4.4). This matrix would retain only the component of the discrepancy

along the normal direction of the planar feature and nullify the other two. Similar

to the discussion for linear features, an image cannot be used as reference for planar

features as well. So, all the images and LiDAR scans will be paired to a reference

LiDAR scan.

Let us consider a planar feature captured in n different LiDAR scans and m

different images. Again, there will be a total of (n−1) independent LiDAR-to-LiDAR

pairings andm independent LiDAR-to-image pairings for each pseudo-conjugate point
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along the feature. A pseudo-conjugate LiDAR-to-LiDAR point pairing will lead to

one equation and no unknowns, which implies a point definition redundancy of 1, as

shown in Figure 4.8(a). Each pseudo-conjugate LiDAR-to-image point pairing will

result in one equation and one unknown (scaling factor corresponding to the image

point), i.e., the point definition redundancy is 0, as shown in Figure 4.8(b). This

implies that such pairings will not make a contribution toward the estimation of the

system calibration parameters. This leads to the conclusion that pseudo-conjugate

image points from a planar feature should not be used for calibration (as mentioned in

Section 4.2). However, this model can be modified slightly by incorporating unique

points belonging to a planar feature (such as the corners or center of a board) in

different images. This would enable conjugate point pairings between different images

for a planar feature. So, an image-to-image pairing for a point I belonging to a planar

feature would result in three equations (and two unknowns) and a LiDAR-to-image

pairing between one of the image points and a pseudo-conjugate LiDAR point will give

an additional equation involving a scaling factor that has been already incorporated in

the image-to-image point pairing. Hence, the point definition redundancy is increased

to 2, as shown in Figure 4.8(c).

Based on this discussion, we can conclude that the following pairing scheme is

optimal in order to conduct multi-LiDAR multi-camera system calibration:

1. Image-to-image conjugate point pairing,

2. LiDAR-to-LiDAR and LiDAR-to-image pairings of pseudo-conjugate points be-

longing to corresponding linear features,

3. LiDAR-to-LiDAR pairings of pseudo-conjugate points along corresponding pla-

nar features, and

4. LiDAR-to-image pairings of pseudo-conjugate points belonging to correspond-

ing planar features (which have distinct points that can be identified in images)

along with image-to-image conjugate point pairs for the same feature.
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(a) LiDAR-to-LiDAR pairing (b) LiDAR-to-image pairing

(c) LiDAR-to-image and

image-to-image pairing

Fig. 4.8.: Point definition redundancy for plane-based pairings

4.4 Weight Modification for Pseudo-conjugate Point Pairings along Cor-

responding Features

In the proposed calibration method, conjugate features are extracted from the

point clouds of different sensors and several drive-runs. The mounting parameters

of each sensor are derived by minimizing the discrepancies among conjugate features

(points/lines/planes) in overlapping drive-runs. Each pairing between conjugate fea-

tures will result in a misclosure vector, which would be random (~e) in case of a

conjugate point pair, as given before by (4.7). However, a pairing between pseudo-
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conjugate points along corresponding planar or linear/cylindrical features would ad-

ditionally introduce a non-random component ( ~D) in the misclosure vector, as given

by (4.8). This component ( ~D) would lie along the planar surface or along the lin-

ear feature, respectively, as illustrated in Figure 4.6. Therefore, a modified weight

matrix, P ′, is introduced to eliminate the non-random component of the misclosure

vector, ~D, from the LSA cost function, as given by (4.9) [32]. To derive this matrix,

a local coordinate system (UVW ) is established first. For linear features, the U -axis

is aligned along the line and V - and W -axes are arbitrarily chosen to satisfy the

orthogonality of the UVW triad. For the planar features, W -axis is aligned along

the normal vector of the plane in question, and U - and V -axes are arbitrarily chosen

along the planar feature. An illustration of the local coordinate systems for the two

types of features is shown in Figure 4.9. Then, a rotation matrix, RUVW
XY Z , relating

the local and mapping coordinate systems is derived according to the components

of the vectors, U , V , and W relative to the mapping frame. The weight matrix,

PXY Z , in the mapping coordinate system is transformed to a weight matrix, PUVW ,

in the local coordinate system according to the law of error propagation ((4.10)). One

should note that PXY Z can be derived by applying the law of error propagation to

the LSA model using the variance-covariance matrix derived for the point-pairings

used for calibration. In this study, each point-pairing is weighed equally, i.e., PXY Z

is assumed to be identity matrix. The weight matrix, PUVW , is modified by assigning

a zero weight to the elements corresponding to the direction of ~D. More specifically,

the non-random component of the misclosure vector ( ~D) can be eliminated from the

LSA minimization target function by setting a zero weight in the corresponding di-

rection. The direction of ( ~D) for a linear feature is along the U -axis. Therefore, the

modified weight matrix, P ′UVW , has zero weight in all the elements pertaining to the

U -axis ((4.11)). Similarly, the direction of ( ~D) for a planar feature is along the U -

and V -axes. So, all the elements pertaining to the U - and V -axes are assigned a

zero weight ((4.12)). The modified weight matrix, P ′XY Z , in the mapping coordinate

system is derived using (4.13). Finally, the obtained modified weight matrix, P ′XY Z ,
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is applied to the condition in (4.8) to account for pseudo-conjugate points along the

corresponding features within overlapping drive-runs. The resultant target function

of LSA for calibration is to minimize the sum, S, which is given by (4.14).

P ′ ~D = P ′


dx

dy

dz

 = 0 (4.9)

(a) Planar features (b) Linear features

Fig. 4.9.: Discrepancy vector between pseudo-conjugate points along corresponding

features

PUVW = RUVW
XY Z PXY Z RUVW

XY Z

T
=


PUU PUV PUW

PV U PV V PVW

PWU PWV PWW

 (4.10)

Linear/Cylindrical Features: P ′UVW =


0 0 0

0 PV V PVW

0 PWV PWW

 (4.11)

Planar Features: P ′UVW =


0 0 0

0 0 0

0 0 PWW

 (4.12)
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P ′XY Z = RUVW
XY Z

T
P ′UVW RUVW

XY Z (4.13)

S =
∑((

P ′
(
~D + ~e

))T (
P ′
(
~D + ~e

)))
=
∑(

(P ′~e)
T

(P ′~e)
)

(4.14)

4.4.1 Iterative Calibration Strategy

In this section, we summarize the proposed strategy to simultaneously estimate

the mounting parameters of several spinning multi-beam laser scanners and cam-

eras onboard a mobile platform using tie points and tie features (e.g., planar and

linear features). After collecting data from several drive-runs, a LiDAR-based 3D

point cloud relative to a global reference frame will be derived using the GNSS/INS-

based position/orientation and initial estimates for the mounting parameters. Then,

conjugate features are identified and extracted from the reconstructed point cloud.

Similarly, images captured from different cameras and drive-runs are used to measure

the image coordinates of the points belonging to these conjugate features. The 3D

coordinates for the image points are computed using initial estimates of their scal-

ing factors and camera mounting parameters along with the GNSS/INS position and

orientation information.

The multi-LiDAR multi-camera system calibration is based on minimizing the

discrepancies among conjugate points, linear features, and/or planar features obtained

from different laser scanners, cameras, and/or drive-runs. An optimal configuration

should aim to maximize the impact of biases in calibration parameters so as to ensure

an accurate estimation of the bias. So, the configuration used in a calibration mission

is one where there are sufficient target primitives to establish a control in all three

directions (along drive-run, across drive-run, and vertical directions). Moreover, the

drive-run configuration should include tracks in the same as well as opposite directions

with different lateral separations between them. The target primitives and drive-runs
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should be configured such that they adhere to the optimal configuration suggested

according to the bias impact analysis conducted in Chapter 3.

When the initial estimate of the mounting parameters is inaccurate, the esti-

mated modified weight matrix used for minimizing the discrepancies between pseudo-

conjugate point pairings along corresponding features would be imprecise which would

affect the accuracy of the derived mounting parameters. Hence, this research proposes

an iterative calibration procedure. First, the discrepancy among extracted features

is minimized to derive mounting parameters through the weight modification pro-

cess. Then, the points along the extracted features are regenerated using the newly

estimated mounting parameters and the discrepancy among conjugate features is

minimized again using a newly defined modified weight matrix. The above steps are

repeated until the change in the estimates of the mounting parameters is below a

predefined threshold.

The parameters that need to be estimated using multi-sensor calibration are the

scaling factors for all the points measured in different images (λ(i, Cj, t)), the lever-

arm (∆X, ∆Y, ∆Z), and boresight angles (∆ω, ∆φ, ∆κ) for all the laser scanners

and cameras. However, the vertical lever arm component ∆Z of the reference laser

scanner is fixed during the calibration procedure as it cannot be estimated in the

calibration procedure since any change in ∆Z will not introduce discrepancies among

the different versions of the same feature captured from different laser scanners, cam-

eras, and/or drive-runs. It would only result in a shift of the point cloud in the

vertical direction as a whole. So, it is either manually measured or determined us-

ing vertical control (such as horizontal planar patches with known elevation). The

proposed methodology can incorporate ground control points, which can be paired to

the corresponding image points or pseudo-conjugate LiDAR points along the corre-

sponding feature. Moreover, ground control features can also be paired with LiDAR

or image points belonging to the corresponding feature. One should note that due

to the generic nature of the proposed calibration model, it is also capable of simul-

taneously estimating the intrinsic parameters of all the cameras as well as the laser
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scanners by using a sufficiently large number of conjugate point/feature pairs between

different images/LiDAR scans captured from different drive-runs. Now, we proceed

to the evaluation of the proposed calibration technique using experimental results for

different mobile mapping systems.

4.5 Experimental Results for Calibration of Multi-sensor Mobile Map-

ping Systems

In this research, two different mobile mapping platforms - a car-mount system and

a high clearance tractor (denoted henceforth as a PhenoRover-based system) - are

used to collect LiDAR and photogrammetric data for 3D point cloud reconstruction,

each of which is shown in Figures 4.10 and 4.11, respectively. The system specifica-

tions, dataset descriptions, and the calibration results for each of these systems are

discussed in more detail in the forthcoming sections.

4.5.1 Car-mount Mobile Mapping System

The first dataset used to experimentally evaluate the proposed multi-sensor sys-

tem calibration strategy is captured by a car-mount platform (as shown in Figure

4.10), which carries four LiDAR units (two Velodyne HDL32E sensors in the rear and

one each of Velodyne HDL32E and Velodyne VLP16-Puck-Hi-Res in the front) and

three cameras (two FLIR Grasshopper in the front and a FLIR Flea3 camera in the

rear). The FLIR Grasshopper camera captures images at a resolution of 9.1 MP and

the FLIR Flea3 camera has a resolution of 5 MP. These sensors are integrated with

an Applanix POSLV 220 as the GNSS/INS unit used for direct georeferencing. The

Velodyne HDL32E and VLP16-Puck-Hi-Res have typical range accuracies of 2 cm

and 3 cm, respectively. For the Applanix POSLV 220, the post-processing accuracy

in position can be less than 2 cm for X, Y and 5 cm for Z. The estimated accu-

racy for the roll/pitch and heading are 0.020◦ and 0.025◦, respectively. These values

were used to compute the expected achievable accuracy for the computed mapping



72

Fig. 4.10.: Car-mount MMS

frame coordinates using the LiDAR error propagation calculator developed by Habib

et al. [18]. The calculator suggests that we should expect an accuracy of around 5

cm for the derived point cloud coordinates at a range of 30 m. The block diagram

for this system, illustrating triggering signals, feedback signals, and communication

wires/ports between sensors and power connections are shown in Figure 4.12. The

setup for the car-mount system and the coordinate systems for the laser units, cam-

eras, and the IMU body frame are shown in Figure 4.13. Here, it should be noted

that the rotations between each front camera and the IMU body frame coordinate

systems (Rb
CL

and Rb
CR

) involve a secondary rotation of 90◦, which would cause a

gimbal lock problem. In order to avoid this gimbal lock problem, a virtual camera

frame is introduced corresponding to each camera (C ′L and C ′R) that is approximately

parallel to the IMU body frame. The introduction of virtual camera frame implies

that the true rotational parameters are determined indirectly by estimating the cor-
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Fig. 4.11.: PhenoRover-based Mobile Mapping System

rections to fixed approximate rotations. So, the mounting parameters relating the

virtual reference camera frame (here, C ′L) to the IMU body frame (rbC′
L

and Rb
C′

L
) and

those relating the two virtual camera frames (r
C′

R

C′
L

and R
C′

R

C′
L

) are estimated during

calibration. On the other hand, the virtual camera frame is related to the actual one

through fixed rotations (RCL

C′
L

and RCR

C′
R

).

The target primitives and drive-runs for this experiment are configured in ac-

cordance with the optimal configuration derived based on the bias impact analysis

conducted in Chapter 3. Five specially designed highly reflective boards are installed,

perpendicular to each other, in a sufficiently spacious area to drive around them. The

distance between adjacent sign boards was approximately 10 m along the driving di-

rection. We ensure that the separation between target primitives during calibration is

such that none of the target primitives are highly occluded by the others with respect

to the laser scanner. Six highly reflective checkerboards are placed on the ground to
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Fig. 4.12.: Integration scheme for the car-mount MMS

be used as horizontal planar features along with four ground patches. Four light poles

and eight lane markers are used as linear features for calibration. Five hut-shaped

targets are also deployed, with their ridges oriented perpendicular to each other. The

two surfaces corresponding to each of these huts are used as planar features for cali-

bration, and their ridges are used as conjugate linear features. One should note that

the two planar features of hut-shaped targets are indeed not independent of their

derived linear feature. However, since the aim of this research is to demonstrate the

accuracy of the proposed calibration strategy, the correlation between these features

is ignored and the planar as well as linear features of the hut-shaped targets can be

used for calibration with their RMSEs indicating the quality of calibration. In this

experiment, eight drive-runs having a length of approximately 60 m each, with differ-

ent directions and lateral distance between them, were made around the calibration
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Fig. 4.13.: Coordinate systems for the car-mount MMS

primitives at an approximate speed of 4 miles/h. The cameras were set to capture

images at an interval of 1 s. With eight drive-runs and four laser units, there will be a

total of 32 versions for each of the features used for the calibration procedure. A total

of 110 images from the three cameras were used to measure the image coordinates for

the different calibration primitives. The coordinate measurements from each image

are paired to a reference image in case of conjugate points or the reference version

from LiDAR (i.e., the one consisting of most points along that feature) in the case of

pseudo-conjugate points along a feature. Figure 4.14 shows the calibration test field

and Figure 4.15 shows the configuration of drive-runs and target primitives, where

PB denotes highly reflective planar boards, PV denotes the planar hut surfaces, PG

denotes ground patches, L denotes light poles, LM denotes lane markers, and LH

denotes linear hut ridges. For the car-mount, one of the laser scanners (here, rear-

right HDL32E sensor) is taken as reference and the others are considered slave units.

Similarly, one of the cameras (here, front-left Grasshopper camera) is set as reference
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and the other two cameras are treated as slaves. The proposed calibration procedure

is applied to obtain the mounting parameters for the four laser scanners and the three

cameras simultaneously, using the features extracted from LiDAR point clouds and

the distortion-free image coordinates.

Fig. 4.14.: Calibration test field for the car-mount MMS

A qualitative evaluation of the calibration results is done in two different ways:

1. checking the alignment in object space by computing the 3D mapping frame

coordinates for all the LiDAR and image points using the GNSS/INS position

and orientation information, estimated mounting parameters for the sensors,

and estimated scaling factors for the image points; and

2. checking the alignment in image space by evaluating the pixel coordinates for

all the LiDAR and image points based on their 3D mapping frame coordinates

after calibration.

The initial approximations (derived from manual measurements) and the final re-

sults (along with their standard deviations) of all the mounting parameters are listed

in Table 4.1, where the parameters fixed during calibration are highlighted in red. As
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Fig. 4.15.: Configuration of drive-runs and calibration primitives for the car-mount

MMS

a result of calibration, one should expect the estimated true sensor mounting parame-

ters to be close to the initial approximations derived from manual measurements. We

also report the square root of the a posteriori variance factor, denoted by σ̂0, which

represents the average compatibility between all the conjugate and pseudo-conjugate

point pairings. For the car-mount MMS, we obtained σ̂0 = 1.79 cm after calibra-

tion. One should note that according to the accuracies of the hardware involved, the
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expected accuracy of 3D point positioning is 3 cm. Using this information, we simu-

lated a set of points belonging to a planar surface and introduced a random normal

noise of 3 cm. On conducting a LSA-based planar fitting for the simulated dataset, it

indicates the accuracy of feature-fitting to be about 3 cm. The value of σ̂0 = 1.79 cm

obtained from the experimental results indicates that the calibration achieves a bet-

ter accuracy than the expected accuracy of around 3 cm according to the accuracies

of the hardware involved. Figure 4.16 shows the LiDAR and image points (in blue

and red, respectively) for the targets in the object space after calibration. From that

figure, one can see that the corners of the highly reflective boards measured in dif-

ferent images align well with the high intensity LiDAR points. Similarly, the image

points along the hut ridge are aligned in 3D with the corresponding LiDAR points.

Figure 4.17 shows the alignment of LiDAR and image-based object points in image

space by assigning blue color to the pixels corresponding to the object points derived

from image measurements and the estimated calibration parameters. For quantitative

evaluation, first, the object points derived from LiDAR unit and camera are consid-

ered together for computing the RMSE of normal distance for all the features. The

RMSE of normal distance of LiDAR and image-based object points from best-fitting

plane/line for extracted features before and after calibration for combined sensors are

listed in Table 4.2. Here, the RMSE of features before calibration is computed using

the 3D points reconstructed using the initial estimates of sensor mounting parameters

listed in Table 4.1. Similarly, the RMSE after calibration is computed using the 3D

points reconstructed using the final mounting parameters estimated from the pro-

posed system calibration strategy, as listed in Table 4.1. The points used to evaluate

the RMSE are actually the ones that were used to determine the mounting param-

eters. So, these RMSE values computed for the fitting residuals for all the features

indicate the internal accuracy of calibration. Note that the proposed calibration ap-

proach is dependent on the extracted features, so it is imperative to evaluate the

effect of feature extraction accuracy on the calibration results. The final RMSE of a

feature obtained after calibration would reflect the feature extraction accuracy along
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with the calibration accuracy. If the accuracy of feature extraction is low (i.e., the

final RMSE is high), then the reliability of calibration results would decrease and

it would be recommended to conduct a more accurate extraction of the feature and

recalibrate the system. Also, the buffer used for extraction of various features is set

according to the accuracy of initial estimates of calibration parameters.

(a) Checkerboard target

and its corners

(b) Stop sign and its cor-

ners

(c) Ridge of hut-shaped target (d) Lane marker

Fig. 4.16.: Qualitative evaluation of 3D alignment between LiDAR (blue) and

image-based object points (red) after calibration of car-mount MMS

4.5.2 PhenoRover-based Mobile Mapping System

The mobile mapping system onboard the PhenoRover consists of two Velodyne

HDL32E laser scanners and two FLIR Grasshopper cameras, which are directly geo-

referenced by an Applanix POSLV 125 unit. Both cameras capture images at a rate

of 1 frame per second, thus leading to a stereo pair of images every second. For the

POSLV 125, the postprocessing accuracy in position can be 2-5 cm and the estimated

accuracy for the roll/pitch and heading can be 0.025◦ and 0.060◦, respectively. These

values were used to evaluate the expected accuracy of the derived mapping frame
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Table 4.1.: Mounting parameters before and after calibration of the car-mount MMS

Reference Unit: HDL32E (Rear-Right) LiDAR Unit Mounting Parameters
(
rbLuRR

, Rb
LuRR

)
∆X (m) ∆Y (m) ∆Z (m) ∆ω (◦) ∆φ (◦) ∆κ (◦)

Initial -1.10 0.65 -0.44 180 -15 0

Final -1.0998 0.6551 -0.44 180.2602 -16.7813 -0.2114

Standard Deviation 0.0044 0.0047 Fixed 0.0136 0.0122 0.0116

HDL32E (Rear-Left) LiDAR Unit Mounting Parameters
(
rLuRR
LuRL

, RLuRR
LuRL

)
∆X (m) ∆Y (m) ∆Z (m) ∆ω (◦) ∆φ (◦) ∆κ (◦)

Initial 0 1.10 0 0 0 0

Final -0.0011 1.1012 0.0070 -0.1890 -1.9851 -0.1349

Standard Deviation 0.0055 0.0057 0.0047 0.0132 0.0116 0.0124

HDL32E (Front-Left) LiDAR Unit Mounting Parameters
(
rLuRR
LuFL

, RLuRR
LuFL

)
∆X (m) ∆Y (m) ∆Z (m) ∆ω (◦) ∆φ (◦) ∆κ (◦)

Initial 2.30 0.95 -0.65 0 20 180

Final 2.2929 0.9336 -0.6825 -0.4408 23.8006 -178.7085

Standard Deviation 0.0056 0.0057 0.0054 0.0139 0.0141 0.0123

VLP16 (Front-Right) LiDAR Unit Mounting Parameters
(
rLuRR
LuFR

, RLuRR
LuFR

)
∆X (m) ∆Y (m) ∆Z (m) ∆ω (◦) ∆φ (◦) ∆κ (◦)

Initial 2.30 0.20 -0.75 0 25 -90

Final 2.2610 0.2236 -0.7680 -0.3834 27.6216 -89.9047

Standard Deviation 0.0072 0.0075 0.0090 0.0168 0.0218 0.0151

Reference Camera: Grasshopper (Front-Left) Camera Mounting Parameters
(
rbC′

L
, Rb

C′
L

)
∆X (m) ∆Y (m) ∆Z (m) ∆ω (◦) ∆φ (◦) ∆κ (◦)

Initial 1.16 -0.46 -0.29 0 0 0

Final 1.1205 -0.4561 -0.3886 0.5398 -0.9069 1.9003

Standard Deviation 0.0425 0.0402 0.0452 0.0939 0.0988 0.0697

Grasshopper (Front-Right) Camera Mounting Parameters
(
rCL
CR
, RCL

CR

)
∆X (m) ∆Y (m) ∆Z (m) ∆ω (◦) ∆φ (◦) ∆κ (◦)

Initial 1.1009 0.0144 -0.0380 -0.5332 3.7838 0.6363

Final 1.1099 0.0198 -0.0292 -0.5465 3.7782 0.5777

Standard Deviation 0.0450 0.0445 0.0486 0.1012 0.1047 0.0733

Flea3 (Back) Camera Mounting Parameters
(
rCL
CB
, RCL

CB

)
∆X (m) ∆Y (m) ∆Z (m) ∆ω (◦) ∆φ (◦) ∆κ (◦)

Initial 0.95 0 2.00 90 0 90

Final 0.9582 -0.0262 2.0328 98.2048 2.5724 98.5418

Standard Deviation 0.0479 0.0416 0.0469 0.0972 0.0911 0.0646



81

(a) Left camera image

(b) Right camera image

Fig. 4.17.: Car-mount MMS: Backprojection of LiDAR (blue) and image-based

object points (red) onto stereo-pair images

coordinates using the LiDAR error propagation calculator developed by Habib et al.

[18]. The results from the error propagation calculator indicates that we should expect

an accuracy of around 5 cm at a range of 30 m. The setup for the PhenoRover-based

MMS and the coordinate systems for the laser units, cameras, and the IMU body

frame are shown in Figures 4.11 and 4.18, respectively. Here, it should be noted that
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Table 4.2.: RMSE of plane/line-fitting before and after calibration of the car-mount

MMS

Feature

ID

No. of

LiDAR Points

No. of

Image Points

RMSE (m)

Before Calibration After Calibration

Reflective Boards

PB0 6,816 56 0.018 0.021

PB1 117,351 60 0.021 0.021

PB2 5,507 93 0.010 0.014

PB3 5,258 83 0.015 0.018

PB4 156,237 - 0.022 0.022

PB5 4,822 72 0.008 0.008

PB6 123,261 156 0.023 0.022

PB7 5,338 74 0.020 0.023

PB8 135,046 - 0.020 0.020

PB9 4,150 65 0.013 0.009

PB10 103,737 81 0.020 0.019

Ground Patches

PG0 597,927 - 0.020 0.015

PG1 547,993 - 0.022 0.022

PG2 238,791 - 0.020 0.019

PG3 336,907 - 0.025 0.021

Hut Surfaces (PV)

PV0 94,263 - 0.018 0.019

PV1 96,511 - 0.018 0.020

PV2 92,944 - 0.017 0.017

PV3 93,362 - 0.020 0.021

PV4 93,095 - 0.020 0.021

PV5 87,464 - 0.019 0.019

PV6 95,575 - 0.019 0.019

PV7 102,781 - 0.019 0.019

PV8 83,271 - 0.020 0.020

PV9 85,401 - 0.019 0.020

Feature

ID

No. of

LiDAR Points

No. of

Image Points

RMSE (m)

Before Calibration After Calibration

Light Poles (L) and Hut Ridges (LH)

L0 64,836 138 0.354 0.022

L1 39,463 144 0.167 0.019

L2 62,511 118 0.207 0.023

L3 42,435 56 0.423 0.021

LH0 6,969 50 0.044 0.014

LH1 7,410 18 0.047 0.015

LH2 9,869 105 0.122 0.033

LH3 8,033 10 0.022 0.014

LH4 9,825 74 0.376 0.014

Lane Markers

LM0 1,131 48 0.164 0.016

LM1 1,562 57 0.310 0.016

LM2 7,618 93 0.132 0.014

LM3 5,960 67 0.106 0.012

LM4 8,082 56 0.113 0.015

LM5 5,674 76 0.095 0.015

LM6 3,128 66 0.165 0.020

LM7 3,177 50 0.184 0.018

the rotations between each laser unit and the IMU body frame coordinate systems

(Rb
LuL

and Rb
LuR

) involve a secondary rotation of 90◦, which would cause a gimbal lock

problem. In order to avoid this gimbal lock problem, a virtual LiDAR unit frame is

introduced corresponding to each laser unit (Lu′L and Lu′R) that is approximately

parallel to the IMU body frame. The introduction of virtual frame implies that the

true rotational parameters are determined indirectly by estimating the corrections

to fixed approximate rotations. So, the mounting parameters relating the virtual

reference LiDAR unit frame (here, Lu′L) to the IMU body frame (rbLu′L
and Rb

Lu′L
)

and those relating the two virtual LiDAR unit frames (r
Lu′R
Lu′L

and R
Lu′R
Lu′L

) are estimated
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during calibration. On the other hand, the virtual LiDAR unit frame is related to

the actual one through fixed rotations (RLuL
Lu′L

and RLuR
Lu′R

).

Fig. 4.18.: Coordinate Systems for PhenoRover-based MMS

The setup of calibration primitives is similar to the one used for the car-mount

system. In this experiment, ten drive-runs, with different directions and lateral dis-

tances between them, were made around the calibration primitives at an approximate

speed of 1.5 miles/h. A total of 126 images from both cameras were used to measure

the image coordinates for the different calibration targets. Figure 4.19 shows the cal-

ibration test field, and Figure 4.20 shows the configuration of drive-runs and boards,

where PB denotes highly reflective planar boards, PG denotes ground patches, L

denotes light poles, and LH denotes linear hut ridges. The proposed multi-sensor cal-

ibration procedure is applied to obtain the mounting parameters for the laser units

and cameras simultaneously.

The initial approximations and the final results (along with their standard devi-

ations) of all the mounting parameters are listed in Table 4.3, where the parameters

fixed during calibration are highlighted in red. The initial estimates of the mounting

parameters relating the reference and slave cameras are set to the values from indoor
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Fig. 4.19.: Calibration test field for the PhenoRover-based MMS

stereo-camera calibration and it should be noted that the parameters obtained from

the proposed calibration strategy closely match the results from indoor calibration.

The square root of the a posteriori variance factor (σ̂0) after calibration is 1.75 cm

in this case. This is better than the expected accuracy (indicated by conducting

a feature-fitting on simulated points with the same noise level) of around 5 cm ac-

cording to the accuracies of the hardware involved. Figures 4.21 and 4.22 depict

the qualitative evaluation of the calibration by showing the alignment of LiDAR and

image-based object points belonging to different features in the mapping space (3D)

and image space (2D), respectively. The RMSE of normal distance of LiDAR and

image-based object points from best-fitting plane/line for extracted features before

and after calibration for combined sensors are listed in Table 4.4, which indicate a

significant improvement in the alignment of the features. Here, the RMSE of features

before calibration is computed using the 3D points reconstructed using the initial

estimates of sensor mounting parameters listed in Table 4.3. Similarly, the RMSE

after calibration is computed using the 3D points reconstructed using the final mount-

ing parameters estimated from the proposed system calibration strategy, as listed in

Table 4.3. One should note that there are no image points for some linear features

(such as light poles) since the cameras are both looking downward, and hence, these

features are not captured in any of the images.
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Fig. 4.20.: Configuration of drive-runs and calibration primitives for the

PhenoRover-based MMS

4.6 Summary

This chapter mainly focused on developing a point-pairing-based calibration strat-

egy for multi-LiDAR multi-camera mobile mapping systems, which can derive the
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Table 4.3.: Mounting parameters before and after calibration of the

PhenoRover-based MMS

Reference Unit: HDL32E (Left) LiDAR Unit Mounting Parameters
(
rbLu′

L
, Rb

Lu′
L

)
∆X (m) ∆Y (m) ∆Z (m) ∆ω (◦) ∆φ (◦) ∆κ (◦)

Initial 1.35 -1.30 -0.39 0 15 0

Final 1.3575 -1.3026 -0.39 1.9506 16.6891 -0.1754

Standard Deviation 0.0057 0.0039 Fixed 0.0098 0.0179 0.0155

HDL32E (Right) LiDAR Unit Mounting Parameters
(
r
Lu′

L

Lu′
R
, R

Lu′
L

Lu′
R

)
∆X (m) ∆Y (m) ∆Z (m) ∆ω (◦) ∆φ (◦) ∆κ (◦)

Initial 0 1.50 0 0 0 0

Final -0.0014 1.5293 -0.0273 -0.0180 -1.2501 -0.1841

Standard Deviation 0.0067 0.0049 0.0037 0.0118 0.0193 0.0159

Reference Camera: Grasshopper (Left) Camera Mounting Parameters
(
rbCL

, Rb
CL

)
∆X (m) ∆Y (m) ∆Z (m) ∆ω (◦) ∆φ (◦) ∆κ (◦)

Initial 1.36 -1.55 -0.39 180 0 -90

Final 1.3182 -1.5251 -0.2443 169.7510 -15.6958 -93.0163

Standard Deviation 0.0643 0.0633 0.0564 0.1945 0.2125 0.1371

Grasshopper (Right) Camera Mounting Parameters
(
rCL
CR
, RCL

CR

)
∆X (m) ∆Y (m) ∆Z (m) ∆ω (◦) ∆φ (◦) ∆κ (◦)

Initial 1.9353 -0.0002 -0.3331 -0.3101 20.2899 0.0668

Final 1.9517 0.0116 -0.3212 -0.4731 20.3930 0.1289

Standard Deviation 0.0677 0.0710 0.0512 0.2319 0.2086 0.1444

mounting parameters of multiple laser units and cameras simultaneously for terres-

trial mobile mapping systems. This avoids the need to perform a separate calibration

for each laser unit and each camera. The point-pairing-based bundle adjustment

was theoretically compared with the conventional bundle adjustment, which revealed

the equivalency of the two models in terms of their parameter estimation ability.

The proposed calibration procedure can utilize different types of conjugate features
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(a) Checkerboard tar-

get and its corners

(b) Stop sign and its

corners

(c) Ridge of hut-shaped target

Fig. 4.21.: Qualitative evaluation of 3D alignment between LiDAR (blue) and

image-based object points (red) after calibration of PhenoRover-based MMS

(a) Left camera image (b) Right camera image

Fig. 4.22.: PhenoRover-based MMS: Backprojection of LiDAR (blue) and

image-based object points (red) onto stereo-pair images

(i.e., planar, linear) from the LiDAR data, along with conjugate or pseudo-conjugate

points in images belonging to different calibration primitives. An optimal representa-

tion and pairing scheme between imagery and LiDAR data was developed for point,

linear features, and planar features by estimating the point definition redundancy that

quantifies the contribution of a point pair towards system calibration. The proposed
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Table 4.4.: RMSE of plane/line-fitting before and after calibration of

PhenoRover-based MMS

Feature

ID

No. of

LiDAR Points

No. of

Image Points

RMSE (m)

Before Calibration After Calibration

Reflective Boards

PB0 11,703 14 0.146 0.024

PB1 100,730 102 0.296 0.018

PB2 115,452 - 0.270 0.024

PB3 103,211 64 0.280 0.021

PB4 11,866 42 0.141 0.012

PB5 98,680 89 0.284 0.022

PB6 105,462 69 0.234 0.029

PB7 123,526 - 0.262 0.021

PB8 97,314 85 0.240 0.023

PB9 115,910 220 0.266 0.022

PB10 7,920 75 0.159 0.016

PB11 8,227 17 0.120 0.010

Ground Patches

PG0 1,396,577 - 0.724 0.022

PG1 2,795,671 - 0.738 0.024

PG2 137,547 - 0.985 0.026

PG3 43,530 - 0.736 0.020

PG4 1,391,031 - 0.542 0.021

Feature

ID

No. of

LiDAR Points

No. of

Image Points

RMSE (m)

Before Calibration After Calibration

Hut Surfaces and Wall Patches

PV0 459,993 - 0.731 0.027

PV1 25,820 - 1.019 0.058

PV2 41,477 - 0.151 0.030

PV4 134,877 - 0.229 0.016

PV5 134,554 - 0.246 0.030

PV6 93,092 - 0.160 0.016

PV7 93,523 - 0.158 0.014

PV8 152,161 - 0.216 0.018

PV9 149,134 - 0.216 0.032

PV10 90,380 - 0.157 0.019

PV11 92,589 - 0.160 0.014

PV12 163,378 - 0.236 0.019

PV13 165,611 - 0.310 0.017

Light Poles (L) and Hut Ridges (LH)

L0 39,417 14 0.047 0.013

L1 14,513 - 0.100 0.019

LH0 12,292 18 0.125 0.014

LH1 14,105 35 0.114 0.013

LH2 15,501 20 0.118 0.017

LH3 11,367 38 0.128 0.016

LH4 17,797 51 0.136 0.017

iterative calibration method is capable of deriving accurate estimates for the mount-

ing parameters, even if the initial estimates for the scaling factors of image points or

mounting parameters are considerably inaccurate. The proposed calibration strategy

is observed to reach an accuracy which is better than the expected accuracy based

on the accuracies of the hardware involved for each of the mobile mapping platforms.
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5. IMAGE-LIDAR INTERACTIVE VISUALIZATION

ENVIRONMENT (I-LIVE)

5.1 Introduction

This chapter presents the interface known as Image-LiDAR Interactive Visual-

ization Environment (I-LIVE) developed as a part of this research in order to allow

end-users to conduct a qualitative evaluation of data acquired from any mobile map-

ping system consisting of a variable number of LiDAR units and cameras. I-LIVE

enables the visualization of point clouds and imagery data, and evaluate their reg-

istration quality. The primary purpose of the interface is to serve as a tool for the

quality control of GNSS/INS-derived trajectory and LiDAR-camera system calibra-

tion. I-LIVE is based on the open-source software - CloudCompare v2.9 - that allows

the visualization of 3D point clouds. It is further extended to include functionalities

that integrate the 3D (point clouds) and 2D (imagery) modalities to facilitate infor-

mation extraction. An overview of the two windows (Point Cloud Viewer and Image

Viewer) is shown in Figure 5.1. The Point Cloud Viewer deals with the display and

manipulation of 3D point cloud data whereas the Image Viewer is used for displaying

the corresponding 2D imagery data.

5.2 I-LIVE Input Information

The following information is required in order to enable the integration of 2D and

3D information within I-LIVE:

1. 3D Point Cloud(s): The 3D point clouds are reconstructed from the raw LiDAR

data along with the estimated LiDAR mounting parameters and the GNSS/INS-



90

(a) Point Cloud Viewer

(b) Image Viewer

Fig. 5.1.: Visualization of 3D and 2D data in I-LIVE

derived trajectory information. These 3D point clouds can be loaded onto the

Point Cloud Viewer within I-LIVE.
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2. 2D RGB Imagery: The sequence of 2D RGB images captured during data collec-

tion are loaded into the Image Viewer along with the corresponding GNSS/INS-

derived trajectory information indicating the vehicle position and orientation

corresponding to the epoch of each image in the sequence.

3. Camera Parameters: In addition to the 2D and 3D data input to I-LIVE, the

integration of these different modalities requires information regarding the IOPs

and mounting parameters of the cameras used to capture the input sequence of

2D images.

5.3 I-LIVE Functionalities

1. Image Navigation: I-LIVE can be used to navigate/stream through stereo-

images captured during a data collection from multiple cameras. It can either be

done manually to jump to the images of interest or it can conduct an automatic

streaming of stereo-images at a user-defined time interval between consecutive

images.

2. Point Measurement:

(a) Measure Image Points: I-LIVE allows users to measure points of interest in

various images and store their raw image coordinates. This is particularly

helpful for conducting a multi-sensor system calibration, where the image

points belonging to various features need to be measured in several images.

One should note that I-LIVE facilitates image coordinate measurement

upto a sub-pixel accuracy by zooming into the images and displaying them

in super-resolution.

(b) Display Point Labels: The Image Viewer in I-LIVE can be used to display

the image points that were previously measured and recorded by overlaying

them onto the corresponding image along with the corresponding point

labels. This can be used to verify/correct prior measurements.
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(c) Display Epipolar Lines: The point measurement for a stereo-pair of images

is made easier by having an option to display the epipolar line when a

point in either the left or right camera is clicked. However, this function

is dependent on the availability of accurate interior orientation parameters

of the two cameras as well as the relative orientation parameters between

the two cameras.

3. Intersection: I-LIVE allows to derive object space (3D) coordinates of any

point observed in two or more images from the same/different cameras at

same/different epochs. The derived 3D object point is then displayed onto

the Point Cloud Viewer while placing it at the appropriate location with re-

spect to any already loaded and displayed point cloud in the window, as shown

in Figure 5.2. This feature is one of the tools that facilitates the qualitative

and quantitative evaluation of the registration accuracy between LiDAR and

imagery data. However, this functionality is contingent upon the availability of

accurate GNSS/INS-derived trajectory, i.e., the position and orientation of the

vehicle at the moment of image capture; accurate mounting parameters relating

the cameras to the onboard GNSS/INS unit; and the IOPs of the cameras.

4. Backprojection: While intersection allows the computation of 3D coordinates

from a set of observed 2D points, backprojection is a strategy that computed

the 2D projection of a 3D point onto an image. The base software of I-LIVE

- CloudCompare - has a “Point Picking Tool” that displays all information

related to a 3D point clicked by the user. This is further enhanced in I-LIVE

by adding a feature to automatically backproject the clicked 3D point onto the

stereo-pair which was captured closest to the clicked point, as shown in Figure

5.3. Moreover, the user is also provided with a list of all images where the

clicked point is visible in the images loaded onto Image Viewer. A 3D point is

considered to be visible in an image if its backprojected image coordinates lie

within the image bounds and if the distance of the 3D point from the camera
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Fig. 5.2.: I-LIVE: Intersection of a point visible in a stereo-pair to compute its 3D

mapping frame coordinates, as shown on the right

location at the instant of image capture is less than a user-defined threshold.

This distance threshold ensures the reduction in the cluttering of backprojected

image points that may arise as a result of 3D points that are far away from the

camera.

5.4 Summary

Equipped with the functionalities listed above, I-LIVE serves as a tool aimed for

end-users to conduct a qualitative and quantitative evaluation of data acquired from

an MMS developed over any platform consisting of sensors capturing 2D and/or 3D

data. The major contribution of I-LIVE is the integration of data acquired in the form

of point clouds (3D) and images (2D), in order to analyze the quality of GNSS/INS-

derived trajectory and LiDAR-camera system calibration. The Point Cloud Viewer

within I-LIVE can be used to display the 3D point cloud that is reconstructed from

the raw data acquired by the LiDAR units onboard an MMS. The 3D point cloud

visualization can be used to evaluate the LiDAR system calibration parameters. For
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Fig. 5.3.: I-LIVE: Backprojection of a 3D point from a point cloud onto the three

cameras onboard the car-mount system shown in Figure 4.10

instance, a misalignment in 3D point cloud acquired for the same area from differ-

ent drive-runs and/or different sensors would indicate an inaccuracy in the LiDAR

mounting parameters or the GNSS/INS-derived trajectory information that have been

used to reconstruct the point cloud. The integration of the 3D data along with 2D

imagery displayed in the Image Viewer can be used to detect any miscalibration of

the camera mounting parameters. Apart from the basic tools to integrate the 2D

and 3D modalities for qualitative and quantitative quality control of the acquired

data, I-LIVE also consists of tools to facilitate accurate image point measurement for

system calibration.
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6. CONCLUSIONS AND RECOMMENDATIONS FOR

FUTURE WORK

6.1 Overview

The goal of the research proposed in this thesis is to devise an accurate calibration

strategy for terrestrial mobile mapping systems and further, allow a qualitative and

quantitative evaluation of the calibration results for generic mobile mapping systems.

This research started off with a thorough bias impact analysis for terrestrial mobile

mapping systems consisting of a spinning multi-beam laser scanner, and validated the

analytically driven conclusions by evaluating the results from an experimental setup.

Based on this analysis, an optimal target primitive setup and drive-run configuration

was devised for calibrating a multi-LiDAR mobile mapping system. Finally, a point-

pairing-based iterative calibration strategy for multi-LiDAR multi-camera systems

is proposed, realized, and experimentally validated. The ability of the proposed

approach to simultaneously estimate the mounting parameters for multiple LiDAR

units and cameras avoids the need to perform a separate calibration for each laser

unit and each camera. The proposed calibration strategy is observed to reach an

accuracy that is better than the expected accuracy based on the accuracies of the

hardware involved for each of the mobile mapping platforms. This research concluded

by developing an Image-LiDAR Interactive Visualization Environment (or, I-LIVE)

that can integrate LiDAR and image data acquired by different platforms in order to

facilitate a quality check of the acquired data.
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6.2 Major Contributions

The major contributions of this thesis that significantly overcome the limitations

of the state-of-the-art techniques are as follows:

1. In the proposed approach, there is no requirement of any specially-designed

calibration targets with known properties (such as, known shapes, patterns, or

dimensions) in order to conduct an accurate calibration. Instead, the calibration

can be done using any planar/linear features and distinctly identifiable points

available in the surrounding environment, such as building facades, rooftops,

traffic sign boards, and light poles.

2. Since this thesis proposes a feature-based calibration technique, the approach

does not necessarily require exact point-to- point correspondences of any type

(2D-2D, 2D-3D, or 3D-3D). Instead, it uses pseudo-conjugate points belonging

to conjugate features that can be easily extracted from LiDAR and camera data.

3. The proposed calibration approach is capable of simultaneously estimating the

extrinsic parameters relating an arbitrary number of sensors (LiDAR units and

cameras), i.e., it has no such restriction that it would work only for single

LiDAR-single camera systems. Moreover, this approach is generic to be applied

to terrestrial and airborne mapping systems alike - an aspect that, to the best

of our knowledge, has not been addressed in any of the previous literature.

4. We propose a sensor-independent calibration model, i.e., it is independent of

whether the mapping system consists of a single-beam or a multi-beam LiDAR,

2D or 3D laser scanner, and whether a camera is a frame or a line camera. The

calibration for any combination of any type of these sensors can be achieved

using the proposed calibration technique without making any modification to

the model. While this thesis only presents results for multi-beam LiDAR units

and frame cameras, the applicability of the proposed calibration model to other

sensor types will be the focus of future work.
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5. The approach is flexible to the type of the mapping system being used, i.e., the

calibration approach can be applied to stationary as well as mobile mapping

systems alike. In case of mobile mapping systems, the proposed approach relies

on the availability of a GNSS/INS unit and we propose a single-step calibration

technique that can estimate the extrinsic calibration relating any combination

of the mentioned sensors, i.e., LiDAR-LiDAR, LiDAR-camera, camera-camera,

LiDAR-GNSS/INS, and/or camera-GNSS/INS, simultaneously.

6. Although this thesis only addresses the estimation of extrinsic parameters re-

lating the various onboard sensors, it is worth mentioning that our model is

realized with the ability to simultaneously estimate the intrinsic parameters of

the different sensors since the model deals directly with raw data obtained from

different sensor modalities for attaining an accurate calibration.

7. This thesis also validates the accuracy of the proposed strategy by conduct-

ing an extensive qualitative evaluation by studying the registration of the data

obtained from different modalities in the 3D object space as well as 2D image

space. Moreover, a thorough quantitative evaluation is also reported by listing

the standard deviations of the estimated parameters, the quality of fit for dif-

ferent calibration features, and the comparison of results to the expected error

derived using error propagation calculation.

8. This research concluded by developing an Image-LiDAR Interactive Visualiza-

tion Environment (or, I-LIVE) that can integrate LiDAR and image data ac-

quired by different mobile mapping platforms. With in-built functions for im-

age streaming, image measurement, backprojection, and light ray intersection,

I-LIVE is one of the first tools aimed at providing the end-users with the ability

to perform a quality check of the acquired data and to evaluate the quality of

registration of data from different sensor modalities.
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6.3 Limitations and Future Work

Apart from the above-mentioned characteristics, the assumptions and limitations

of our proposed calibration approach, which serve as the basis for future work, are

summarized as follows:

1. Although the calibration approach is capable of dealing with stationary as well

as mobile systems, in case of mobile mapping systems, the proposed approach

relies on the availability of sufficiently accurate GNSS/INS position and orien-

tation information. However, if the GNSS/INS-derived trajectory information

is not accurate, the proposed approach has the ability to detect this issue by

analyzing the fitting residuals for different features.

2. Since the previously developed calibration techniques mostly rely on specifically

designed calibration targets, these approaches facilitate the automatic extrac-

tion of such features. However, the limitation of this thesis is the manual effort

involved in certain steps, such as selection of seed points and bounding points

for various features during feature extraction from LiDAR data and the manual

image coordinate measurement for the various calibration features captured by

the cameras. This can be attributed to the flexibility provided in the choice of

features being used for calibration. Therefore, a method to identify such LiDAR

and camera-based features that are useful for calibration is necessary.

3. Although the proposed calibration model can be used to simultaneously esti-

mate the intrinsic parameters of the different sensors (LiDAR and camera) along

with the extrinsic parameters, this work still does not address the development

of an optimal/minimal track and target configuration in order to derive accu-

rate estimates of all these parameters. Hence, the experimental results included

in this paper only focus on the estimation of extrinsic parameters.
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4. The final goal of this research would be the development of an automatic cali-

bration module that can be used within a method for multi-modal simultaneous

localization and mapping.

5. Furthermore, the interface I-LIVE developed in this research will be further en-

hanced to incorporate application-specific functionalities pertaining to informa-

tion extraction and visualization for agricultural applications, transportation

engineering, infrastructure monitoring, and shoreline monitoring in order to

serve a larger group of end-users. In the future, we also hope to add support for

other sensor types, such as hyperspectral push-broom scanners, and introduce a

new component for orthophoto visualization and manipulation integrated with

the point cloud and image viewers.
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