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ABSTRACT

Bari, Sumra Ph.D., Purdue University, August 2019. Advancements in Neuroimaging
for mild Traumatic Brain Injury and Multi-site Reliability. Major Professor: Thomas
M. Talavage.

Head injuries in collision sports have been linked to long-term neurological disor-

ders. High school collision sport athletes, a population vulnerable to head injuries,

are at a greater risk of chronic damage. Various studies have indicated significant

deviations in brain function due to the accumulation of repetitive low-level subcon-

cussive impacts to the head without externally observable cognitive symptoms. The

aim of this study was to investigate metabolic changes in asymptomatic collision sport

athletes across time within their competition season and as a function of mechani-

cal force to their head. For this purpose, Proton Magnetic Resonance Spectroscopy

(MRS) was used as a tool to detect altered brain metabolism in high school collision

sport athletes (football and soccer) without diagnosed concussion. Also, sensors were

attached to each athletes head to collect the count and magnitude of head impacts

during their games and practices. Transient neurometabolic alterations along with

prolonged recovery were observed in collision sport athletes.

Multi-site studies are becoming important to increase statistical power, enhance

generalizability, and to improve the likelihood of pooling relevant subgroups together,

activities which are otherwise limited by the availability of patients or funds at a sin-

gle site. Even with harmonized imaging sequences, site-dependent variability can

mask the advantages of these multi-site studies. The aim of this study was to assess

multi-site reproducibility in resting-state functional connectivity fingerprints, and to

improve identifiability of obtained functional connectomes. We evaluated individ-

ual fingerprints in test- retest visit pairs within and across two sites and present a
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generalized framework based on principal component analysis (PCA) to improve iden-

tifiability. The optimally reconstructed functional connectomes using PCA showed a

substantial improvement in individual fingerprinting of the subjects within and across

the two sites and test-retest visit pairs relative to the original data. Results demon-

strate that the data-driven method presented in the study can improve identifiability

in resting-state functional connectomes in multi-site studies.
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1. DEPENDENCE OF BRAIN METABOLISM ON

SUBCONCUSSIVE IMPACTS IN COLLISION SPORT

ATHLETES: AN MR SPECTROSCOPIC STUDY

The material presented in this chapter is published in [1].

1.1 Introduction

Recent interest in the diagnosis and prognosis of mild traumatic brain injury

(mTBI) and concussion in collision sports has grown, driven by a number of disturb-

ing trends related to the short- and long-term health of participating athletes [2, 3].

Until recently, the standard of clinical care for a diagnosis of concussion would al-

low athletes to return to play as soon as they became symptom free [4]. Athletes

with a history of diagnosed concussions often continued participation in practices

and games, leading to greater risk of accumulating structural and functional brain

alterations [5,6]. Long term neurological impairments associated with mTBI include

early on- set of Alzheimers disease, dementia, depression, and even chronic traumatic

encephalopathy [4,7,8]. Among male athletes American Football has the highest an-

nual rate of reported concussions, a position held by soccer in female athletes [9,10].

Extra care and systematic evaluation is required in case of high school athletes before

they return to play, because they are more neurologically vulnerable than a collegiate

population [11].

Critically, a growing body of research has now demonstrated that asymptomatic

athletes are also at the risk of functional and structural brain damage [12–17]. Such

findings have raised concerns regarding the many subconcussive impacts experienced

by collision-sport athletes. A subconcussive event involves a direct blow to the head

or an indirect acceleration or whiplash movement due to an impact elsewhere on the
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body, but does not result in clinical symptoms [18] -hereafter referred to as a head

acceleration event (HAE).

Repetitive exposure to HAEs is linked to later life-long cognitive and functional

impairment [7, 19–21]. Athletes experience hundreds of HAEs during each competi-

tion season [22], but these events largely go uninvestigated as they produce no overt

symptoms. Continued participation by these seemingly uninjured athletes is hypothe-

sized to increase susceptibility to meaningful brain injury [23,24], with animal models

suggesting the increased likelihood of development of neurodegenerative disease [25].

Detection and intervention to reduce the potential long-term consequences of ex-

posure to HAEs is, therefore, a critical direction for the research community [26]. Con-

ventional structural imaging techniques (computed tomography or T1/T2 weighted

MRI) may not always detect the subtle physiologic changes or cellular injury caused

by the accumulation of these events. Functional neuroimaging techniques like func-

tional MRI (FMRI) and diffusion weighted imaging (DWI), however, play a signifi-

cant role in elucidating the structural and physiologic changes caused by repetitive

head trauma in the absence of overt cognitive symptoms. Several studies using these

modalities have demonstrated changes in functional connectivity, working memory,

cerebrovascular reactivity and white matter in asymptomatic collision sport athletes

due to repeated HAE exposure [12,13,15–17,27–31]. Another important non-invasive

tool that provides assessment of metabolite profiles and helps in elucidating altered

neurometabolism is proton (1H) magnetic resonance spectroscopy (MRS). MRS has

been used as a diagnostic tool to investigate changes in physiology in common neu-

ropathologies like multiple sclerosis, dementia, Parkinsons disease, and Alzheimers

disease [32–36]. MRS also serves as an ideal biomarker for identifying early brain

changes in mTBI, including concussion [37–39,39–46]. We have previously used MRS

to determine alterations in neurometabolite concentrations occur during periods of

exposure to HAEs [47,48].

This study of high school-aged male football and female soccer collision sport

athlete (CSA) and non-collision athlete (NCA) control populations seeks to evaluate
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whether MRS-detected changes exist and are associated with particular HAE char-

acteristics. Observation in asymptomatic athletes of alterations in neurometabolism

that are found to be associated with particular HAE mechanical loading profiles would

be suggestive of preventable cellular injury. Such a finding would have broad impli-

cations for mitigation of the effects of subconcussive events, through which collision-

based sports could be made safer for all participants.

1.2 Methods

Purdue Institutional Review Board approved all research methods prior to ini-

tiation of the study. Participants of 18 years and above provided written informed

consent and participants under the age of 18 provided parental consent and partici-

pant assent.

1.2.1 Participants

Ninety (90) high school athletes participated in this study. Two pools comprise

this sample, 63 athletes participating in collision sports (CSA) and 27 athletes par-

ticipating in non-collision sports (NCA).

CSA: 40 male football athletes (ages: 15-18 years, mean=16.4) and 23 female

soccer athletes (ages: 14-17 years, mean=15.9), each a member of a high school

junior varsity or varsity team, were recruited from two local high schools over two

seasons of play (seven football and six soccer players participated in both the seasons,

yielding a total of 76 observations for CSA).

NCA: 14 male athletes (ages: 15-18 years, mean=16.21) and 13 female athletes

(ages: 14-18 years, mean=16.07), each participating only in non-collision high school

sports (e.g. cross-country, swimming, track and field, tennis, basketball, softball) at

the junior varsity or varsity level, were recruited (from the same high schools as the

CSA participants) to serve as a control for the stability of the measurement process.
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Note that participants were not excluded due to history of concussion. Self-reports

of prior history of concussion (and associated counts) were 16 of 40 male CSA (1 prior

concussion: n = 9; 2 prior concussions: n = 4; 3 prior concussions: n = 3), 6 of 27

female CSA (1: n = 3; 2: n = 1; 3: n = 2), 5 of 14 male NCA (1: n = 3; 2: n = 1;

4: n = 1), and 4 of 13 female NCA (1: n = 3; 3: n = 1).

None of the athletes were diagnosed with a concussion by their athletic trainer or

team physician during the period of study.

1.2.2 Imaging Schedule

The CSA pool underwent five imaging sessions: one prior to participation in

collision activities (Pre), one each during the first (In1 ) and second (In2 ) halves

of the competition season, and two following the cessation of collision activities at

intervals of 4-8 weeks (Post1 ) and 20-24 weeks (Post2 ). Athletes were physically

active during the period prior to collision activities (i.e., Pre) and the transition to

In1 was marked by the onset of practices involving collisions (i.e., tackling for football,

heading for soccer). Note that data from Post2 were not used in statistical analyses

for our female CSA (soccer) cohort, because a simple survey of activity (conducted

prior to each imaging session) revealed most of these athletes had been participating

for at least the preceding month in club soccer without associated monitoring of HAE

exposure.

NCA participants underwent two MRI scanning sessions (Test, Re-Test), 5 to 18

weeks apart within their training/competition seasons, maintaining comparable levels

of physical activity at both sessions.

1.2.3 Head Acceleration Event (HAE) Monitoring

Soccer : For all 23 participants, HAEs were monitored during all practices and

games using the xPatch (X2 Biosystems; Seattle, WA). The xPatch sensor was at-

tached to each athletes head, behind the right ear, using an adhesive patch applied
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subsequent to cleaning of the area with rubbing alcohol. On an as-needed basis, a

spray adhesive (CavilonTM) was applied. Data from the sensors were downloaded

after each practice and game, using the Head Impact Monitoring System software

(X2 Biosystems; Seattle, WA). Sensors recorded HAEs having Peak Translational

Accelerations (PTA) greater than 10 g as separate events. The software provided

Peak Translational Acceleration (PTA) and Peak Angular Acceleration (PAA) for

each recorded event. Low-acceleration eventsthose having PTA ≤ 20 g [49] – and

events outside the valid time window of a practice or a game were discarded. Moni-

toring was conducted over two seasons of play, yielding 29 observations (six players

participating in both seasons).

Football : For one of the two seasons included in this analysis, 24 football athletes

had HAEs monitored during all practices and games using the xPatch. During the

other season, the commercially-available Vector mouthguard-based telemetry system

(i1 Biometrics) was used to monitor HAEs; however, this device failed to reliably

capture video-documented impacts, so no HAE data from this season were included

in subsequent analyses.

Non-Collision Athletes : Due to substantial anticipated difference in exposure to

subconcussive trauma relative to CSA, NCA participants were not monitored for

HAEs during training or competition.

1.2.4 MRS Data Acquisition

All imaging sessions were conducted at the Purdue University MRI Facility (West

Lafayette, IN), using a 3T General Electric Signa HDx (Waukesha, WI) with a 16-

channel brain array (Nova Medical; Wilmington, MA). Single-voxel MR spectra were

acquired using the PRESS (Point RESolved Spectroscopy) pulse sequence (TR/TE

= 1,500/30 ms, 128 averages, 2.0 x 2.0 x 2.0 cm3). A high-resolution T1-weighted

anatomical scan was acquired for registration and tissue segmentation purposes using
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3D spoiled gradient recalled echo (SPGR) sequence (TR/TE = 5.7/1.976 ms, flip

angle = 73, 1 mm isotropic resolution).

Spectra were obtained specifically from the left dorsolateral prefrontal cortex

(DLPFC) and dominant primary motor cortex (M1), with voxels placed as shown

in Fig. 1.1 – see also [47]. DLPFC was monitored due to its role in working mem-

ory [50] and our previous findings of altered functional activity [15, 20, 51] and cere-

brovascular reactivity [31] in this region for asymptomatic collision sport athletes. M1

has been documented to exhibit neurometabolic alterations subsequent to traumatic

brain injury [43,52].

Fig. 1.1.: Three planar views of MRS voxel placement in (A) DLPFC and (B) M1.

1.2.5 Data Processing

Evaluation of HAEs

HAE metrics were determined for the 53 monitored CSA up to the date of

each imaging session (In1, In2 and Post1 ). First, the (to-date) cumulative PTA
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(cPTA(Th,j,i)) for i-th athlete at the j-th session (In1-2, Post1 ) was obtained by

summing the PTA of each of those Nj HAEs which exceeded the threshold (Th) ex-

perienced by the corresponding athlete from the beginning of the season until either

the day of assessment (for In1 and In2 ) or through the end of the season (Post1 ):

cPTATh,j,i =

Nj∑
k=1

PTAk,i · u(PTAk,i − Th)

where

u(x) =

 1 : x > 0

0 : x ≤ 0

While a similar procedure was used to compute cumulative PAA (cPAA), only cPTA

was considered for further analysis. This decision was made given that cPTA and

cPAA were found to be highly correlated (95% CI of sample correlation [0.995; 0.998]),

and prior work has demonstrated that measurement of PTA is more accurate [53].

Next, the (to-date) cumulative number of head acceleration events cHAETh,j,i

was obtained by counting each of the Nj head acceleration events exceeding the

targeted threshold (Th), as above:

cHAETh,j,i =

Nj∑
k=1

u(PTAk,i − Th)

Finally, the average PTA aPTATh,j,i as experienced by the i-th athlete from the

beginning of the season until the date of the j-th imaging session for a given threshold

level Th was calculated as

aPTATh,j,i =
cPTATh,j,i
aHAETh,j,i

To assess whether a clear threshold existed below which HAEs did not meaningfully

contribute to changes in metabolite concentrations, the cPTA and aPTA were com-

puted for three threshold levels: 20g, 50g and 70g (approximately corresponding to

20th, 75th and 90th percentile of all impacts recorded that exceeded 10g).
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MRS Data Processing

Tissue water reference concentrations as reported by TARQUIN [54] were used.

Since the spectroscopic voxels contained fractions of CSF, grey matter and white

matter, the values from TARQUIN were corrected for partial volume effects and for

metabolite and water T1 and T2 relaxation effects-using AFNI [55] and FSL [56]

and [57] – following the procedure described in [47]. Our metabolites of inter-

est include myo-inositol (Ins), an osmolyte involved in glial cell growth; total N-

acetyl aspartate and N-acetylaspartylglutamate containing compounds (tNAA), a

biomarker of neuronal integrity; total creatine-containing compounds (tCr), key in

energy metabolism; total choline-containing compounds (tCho), a measure of in-

flammation, demyelination and membrane turnover or repair; and glutamate and

glutamine (Glx), a neurotransmitter and its precursor that reflect synaptic activ-

ity [36,47,58,59]. A typical MRS spectrum of the metabolites of interest is shown in

Fig. 1.2.

The placement of spectroscopic voxels in follow-up scans was accomplished by

attempting to match the reconstructed voxel location from Pre/Test sessions. Since

multiple operators were conducting the MRI sessions, any imaging session with in-

consistent voxel placement resulting into voxel overlap of less than 30% with the

Pre/Test session (within same subject) was discarded. The metabolite values from

the surviving imaging sessions, with Cramer-Rao lower bounds less than 25% stan-

dard deviation as reported by TARQUIN, were included into the statistical analysis.

Data from one female NCA were discarded for poor spectra, as detected by visual

inspection. The percentage of data points excluded for each population due to these

criteria is summarized in Table A.1.

Statistical Analysis

Analyses were conducted in R. To account for missing values (e.g., lost after quality

checks or athletes absent from an imaging session) the means of 50 imputations from
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Fig. 1.2.: Raw Spectrum of metabolites of interest (myo-inositol (Ins), N-acetyl aspar-

tate and N-acetylaspartylglutamate (tNAA), creatine-containing compounds (tCr),

choline-containing compounds (tCho) and glutamate and glutamine (Glx)).

Amelia II [60] were used to complete the dataset. Because some groups did not

satisfy normality (Shapiro-Wilk test; p < 0.05) and sphericity (Mauchlys Test; p <

0.05) conditions, non-parametric tests were conducted in lieu of ANOVA.

First, the stability of MRS measures across sessions was evaluated on the Test

and Re-Test sessions from the NCA, using a Wilcoxon signed rank test followed by

false discovery rate (FDR; [61]) correction. Any pairwise comparison was considered

significant if pFDR < 0.05. All metabolite concentrations were found to be stable

across the two sessions in NCA. In contrast with [47], the total concentrations of

tCr were also found to be stable across sessions in both NCA and CSA. Therefore,

metabolite concentrations and metabolite ratios to [tCr] from the NCA Test and

Re-Test sessions were pooled for subsequent comparison to the CSA.
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Neurometabolite concentrations and ratios for the CSA pool were evaluated for

dependence on session by a Friedman Test (the non-parametric version of a one-way

repeated measures ANOVA), conducted separately for each metabolite concentration

and ratio. Those metabolites and ratios that exhibited significant changes (p < 0.05)

were further analyzed by pairwise comparisons among all sessions using the Wilcoxon

signed rank test, followed by FDR correction.

Those metabolites/sessions in the male and female CSA pools found to be signifi-

cantly different from the corresponding Pre session were further analyzed with linear

regression models to examine the association between metabolite concentrations and

aPTA, at multiple threshold levels. Regressions were performed iteratively by remov-

ing each data point, and at each iteration the goodness-of-fit (R2) was computed and

an F-test was used to compare the fit to a constant model. We report here the mean

R2 and p-value associated with the mean F-statistic of all iterations.

While not necessarily expected to differ at the group levelnot all CSA experienced

equivalent histories of HAE exposurethe NCA and (asymptomatic) CSA pools were

compared at each session, using a Wilcoxon rank sum test followed by FDR correction.

Note that only within-gender comparisons were made between NCA and CSA.

1.3 Results

1.3.1 HAE Monitoring

Summary HAE statistics are reported in Appendix A Tables A.2-A.4 for male and

female CSA. Table A.2 reports the 25th, 50th, 75th and 90th percentiles of PTA of all

HAEs experienced by male and female CSA pools. Table A.3 and Table A.4 reports

the median cPTATh,j,i and aHAETh,j,i for male and female CSA pools at Th =

20g, 50g and 70g and In1-2, Post1 sessions respectively. Female CSA experienced

statistically significant lower cPTA50g,In2,i than male CSA (Fig. 1.3) as observed by

Wilcoxon sign rank test (p = 0.002).
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Fig. 1.3.: Boxplots comparing the and experienced by female CSA (Soccer) and male

CSA (Football) pools at a threshold of 50g at In2.

1.3.2 MR Spectroscopy

Summary statistics documenting stability of the assessed metabolites across ses-

sions in the male and female NCA pools are listed in Tables A.5 and A.6. Comparable

measures for session-dependence in male and female CSA pools are presented in Ta-

bles A.7 and A.8.

Male and female CSA pools exhibited alterations in metabolite concentration

and/or metabolite ratio across sessions. In M1, the female CSA (i.e., soccer) pool

exhibited a statistically significant (Friedman χ2 = 11.36, p = 0.009) increase in ab-

solute concentration of M1 Glx at Post1 relative to Pre. (Fig. 1.4A). This change in

absolute concentration was accompanied by a statistically significant (Friedman χ2

= 10.99, p = 0.012) increase in the ratio [Glx]:[tCr] at In2 and Post1 relative to Pre.

(Fig. 1.4B). In DLPFC, the male CSA (i.e., football) pool exhibited a statistically
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significant (Friedman χ2 = 9.6, p = 0.047) decrease in DLPFC [Glx] at In2, relative

to each of Pre, In1 and Post2 (Fig. 1.5A). This group also exhibited a statistically

significant (Friedman χ2 = 15.013, p = 0.005) increase in the ratio of DLPFC [tCho]

to DLPFC [tCr] (i.e., [tCho]:[tCr]) at In2 relative to each of Pre, In1 and Post2 (Fig.

1.5B).

Fig. 1.4.: Box-and-whisker plots of (A) M1 [Glx] and (B) M1 [Glx]:[tCr] for total

cohort of soccer athletes (n=29). Session-specific distributions found to be signifi-

cantly deviant (pFDR < 0.05, Wilcoxon signed rank test) by pairwise comparisons are

marked by an asterisk.

1.3.3 Regression Analysis

Changes across session within CSA that did not result in group-level differences

with the NCA stability measurements motivated assessment whether the across-

session changes for CSA were primarily confined to a sub-population of athletes who

had experienced greater levels of mechanical loading. Statistical results of the regres-

sion analyses are presented in Table 9. Nearly all conducted regressions evidenced

their best goodness-of-fit (R2) with aPTA when optimized for Th = 50 g (Figure 6A).

At this threshold, the regression for male CSA athletes at In2 of DLPFC [tCho]:[tCr]
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Fig. 1.5.: Box-and-whisker plots of (A) DLPFC [Glx] and (B) DLPFC [tCho]:[tCr] for

total cohort of football athletes (n=47). Session-specific distributions found to be sig-

nificantly deviant (pFDR < 0.05, Wilcoxon signed rank test) by pairwise comparisons

are marked by an asterisk.

against HAE measures achieved a mean F-statistic across iterations corresponding

to an uncorrected significance level of p < 0.05 (Figure 6B). No other regressions

resulted in a mean F-statistic having p < 0.05.

1.4 Discussion

We have investigated metabolic changes in two CSA pools (male football, female

soccer) both (1 ) across time, within individual competition seasons; and (2 ) as a func-

tion of HAE exposure. Our main findings indicate the presence of session-dependent

metabolic alterations in both groups of CSA, suggesting that CSA are combating

cellular dysfunction in the absence of observable external symptoms. Further, there

is evidence that the time-dependent changes in male football athletes are a function

of exposure to the history of mechanical loading. The significantly lesser cumulative

exposure to HAEs for female CSA cohort as compared to their male counterparts
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(see Fig. 1.3 and Table A.2) presents a likely explanation for the lesser number of

metabolic changes for the soccer athletes. These findings suggest that metabolic

disturbance is most likely to occur after accumulation of some as-yet-undetermined

threshold of mechanical loading to the head.

Evidence for metabolic disturbance

Two versions of metabolic disturbance were observed in this study. Male CSA

exhibited changes in DLPFC associated with glutamate+glutamine (Glx) and with

total choline containing compounds (tCho), whereas female CSA exhibited changes

in M1 associated only with glutamate+glutamine (Glx). These findings are in con-

trast with stable measurements observed for all metabolites across Test and Re-Test

sessions in male and female NCA.

Football athletes (i.e., male CSA) exhibited changes in DLPFC with the onset of,

and sustained exposure to, collision events, with changes disappearing once exposure

to collision events ceased. For both [Glx] and [tCho]:[tCr], Fig. 1.5 illustrates clear

deviation during the second half of the season (In2 ) relative to Pre, with the deviation

lessening at Post1 and returning to baseline levels at Post2. Altered metabolite

measures trended toward Pre-season levels 1-2 months after the season, with return

to baseline occurring after approximately five months of reduced (e.g., in the case

of wrestling) or non-existent exposure to HAEs. These findings suggest that the

sustained exposure to repetitive trauma, caused by subconcussive blows to the head,

can trigger transient metabolic disturbance, with gradual return to baseline levels

(plausibly reflecting healing of cellular damage) once exposure ends. In particular,

the decrease observed in DLPFC [Glx] at In2 assessment could be associated with

the alteration in excitatory synaptic activity, and increased Glx catabolism resulting

from hypoglycemia [62]. This decreasing trend has been previously observed in both

animal models [62] and studies of concussed and mild TBI patients [39,42,43,45,47].

Elevation of DLPFC [tCho]:[tCr] suggests ongoing processes of membrane turnover

for potential repair of cells and inflammation [37,38,40,41,46,63].
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Soccer athletes (i.e., female CSA) exhibited changes only in primary motor cortex

(M1). The increases in M1 [Glx] and M1 [Glx]:[tCr] at In2 and Post1 could be linked

to alterations in excitatory synaptic activity in motor area and motor dys-function.

The increase in [Glx] could further be associated with a secondary response to injury

[64, 65] which can cause excitotoxic accumulation. This last has been previously

observed or postulated in patients with mild TBI or concussion [45, 47, 66]. Two

possible factors that could have led to this increase in Glx in female CSA include a

gender effect associated with the menstrual cycle, and a sport-related effect arising

from the significantly lesser cumulative exposure to HAEs for the females, relative to

their male counterparts. (See below for further discussion of these matters.) Note

from Fig. 1.4 that the altered metabolite measures trended toward Pre-season levels

approximately five months after the season, even with known (but uncharacterized)

recent HAE exposure for many of the athletes.

In general, the neurochemical deviations observed in both groups of clinically

asymptomatic CSA during and subsequent to accumulation of HAEs indicate the pres-

ence of an altered metabolic state. The combination of impaired neuro-transmission

and hypermetabolism (associated with [Glx]) with evidence of inflammation and in-

creased membrane turnover (associated with [tCho]:[tCr]) arising from HAE exposure

strongly argue for cellular injury to the brain preceding the overt cognitive symptoms

typically observed in clinically-diagnosed concussion.

Prolonged neurometabolic recovery period supported by other biomarkers

These findings of neurometabolic alterations in the presence of HAEs are con-

sistent with previous biomarker findings suggesting that repetitive head trauma can

produce disturbances in brain physiology in the absence of diagnosable cognitive

symptoms. The timeline of metabolic deviations in this study are similar to aber-

rations observed in cerebrovascular reactivity (CVR) in asymptomatic female soc-

cer athletes [31], and all of resting-state fMRI [27, 67], working memory task-based

fMRI [29], and diffusion weighted imaging [28] in asymptomatic football athletes. In
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all cases, deviations from pre-participation measurements (i.e., Pre) persisted for at

least two months following the end of the season, sometimes being observed as late as

five months after cessation of HAE exposure. This suggests that the asymptomatic

CSA in this study are likely to have a transient injury from which it takes several

months for natural repair processes to return physiologic health to baseline levels.

The presence of a mismatch between injury accumulation and repair raises concerns

for the neural health of all adolescent collision-sport athletes.

Dependence of metabolic disturbance on HAE exposure

Alterations in cellular signaling and inflammation observed in football athletes

were correlated with the average acceleration per HAE. The deviant metabolite dis-

tributions of DLPFC [Glx] and [tCho]:[tCr] at In2 exhibited negative and positive

correlations, respectively, with the aPTA experienced by the football athletes during

the second half of their competition season. These relationships with HAEs imply that

greater mechanical stress may induce impaired neuro-transmission, an acute state of

hypermetabolism and increased membrane turnover and inflammation [62, 68]. Of

particular interest, the best modeling prediction was associated with an HAE thresh-

old of 50 g, and is comparable to findings in the study of cerebrovascular reactivity

in female soccer athletes [69]. These results support the hypothesis that with accu-

mulation of HAEs there is continual increment in neurometabolic alterations, which

could ultimately exceed a threshold beyond which the metabolic disturbances never

return to baseline levels.

Metabolic disturbances causing state of brain vulnerability

Considering a longer perspective, the absence of immediate symptoms could pre-

dispose athletes to alterations in brain physiology that appear later in life, or under

particular circumstances [23, 24]. The neural health of young athletes suffering from

transient metabolic disturbances in the absence of diagnosable cognitive symptoms is

therefore of concern, as these athletes are more likely to continue participation with
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associated accumulation of strain at the cellular level. The subsequent neurometabolic

cascade of mild TBI follows a sequence of initial ionic fluxes, impaired neurotransmis-

sion and changes in glucose metabolism resulting in high energy demands and a period

of metabolic crisis [70,71]. The critical mismatch between supply and demand of en-

ergy during repeated exposure to HAEs could result in a positive feedback loop with

negative consequences. In particular, increasing energy demands due to metabolic

crisis could be exacerbated by progressively more impaired metabolite delivery, as

suggested by changes in CVR [31]. Such an escalation of the energy crisis could

readily result in a prolonged recovery period from transient metabolic disturbances,

similar to those observed in this study. Further, it would be expected that during

the condition of energy crisis caused by repetitive head trauma, cellular metabolism

would be stretched to its limits and cells could become more vulnerable. Overstimu-

lation of the adolescent brain in this condition could cause long lasting effects on the

complex sequence of neurochemical and anatomical events occurring during normal

development [72, 73]. It is further feasible that young athletes suffering multiple in-

stances of transient metabolic injury might never return to baseline levels, potentially

leading to learning, memory, or cognition deficits. In addition, transient metabolic

disturbances that lead to dysfunctional neurotransmission could increase the risk of

diminished attention and cognitive performance, making adolescent collision-sport

athletes susceptible to greater numbers and magnitudes of HAE, exacerbating the

problem.

Reflections on the present study and future directions

The primary methodological limitation of this study was the imperfect voxel place-

ment in longitudinal scans of the same athlete. Manual voxel placement by multi-

ple MRI operators resulted in variable locations from measurement to measurement,

leading to changes in the relative proportion of gray matter, white matter, and cere-

brospinal fluid in the assessed voxel. Such errors would be expected to increase the

variance across the measurements, but should not produce systematic biases in any
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specific metabolite concentration as a function of time. Future work will seek to

eliminate this issue through use of automatic repositioning of MRS voxel e.g., [74,75].

Another limitation of the present study is derived from the focus on specific

anatomic locations, leaving a large portion of the brain unexamined. Incorporation

of newer MR spectroscopic imaging (MRSI) techniques would permit investigation of

changes over a larger region of the brain, providing spatial indifference [76,77], while

also permitting separate examination of disturbances in white and gray matter [78,79].

Additional factors potentially contributing to the differences observed between

male (football) and female (soccer) CSA include the relatively modest sample sizes

in this work, a possible gender effect given there was no control for the menstrual

cycle stage at the time of imaging of female CSA, and a sport-related effect due to

the significantly lesser cumulative exposure to HAEs for the females, relative to their

male counterparts.

The modest population for which both MRS and HAE measurements were avail-

able was potentially exacerbated by the small number of teams from which athletes

were recruited. Both football and soccer athletes were recruited from two local high

school teams, wherein each team had different playing style [80], skill and athletic

level of competition. A study involving more teams could sample a greater range of

playing styles, and thus could better quantify dose-response thresholds between HAE

exposure and neurometabolic changes. Such a dose-response model will be critical in

instituting exposure regulations that may best protect adolescent athletes from the

long-term risks associated with repetitive head trauma. Further, an increase in the

number of athletes studied would increase the chances of having participants who are

diagnosed with a concussion, eventually enabling relative assessment of the severity

of metabolic injury for asymptomatic athletes.

Some changes (or the absence thereof) in the female CSA neurometabolic concen-

trations could be affected by alterations occurring throughout the menstrual cycle.

Previous studies have shown significant differences in metabolite concentrations in

males and females [81, 82]. These neurometabolic differences are not structural but
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are due to sex hormones between the two genders. In females the ovarian steroid hor-

mones like estrogens and progesterone are widespread in brain and have modulating

effect on the brain physiology, producing metabolite concentrations variations with

the phase of the menstrual cycle. Significant changes in ratios of [tNAA], [tCho],

[Ins] and [Glx] to [tCr] have been observed from the follicular to the luteal phase of

menstrual cycle [83, 84]. Such changes could have affected the concentrations and

ratios observed in this study, particularly given the modest sample sizes, and should

be accounted for in future longitudinal studies.

The lesser cumulative HAE exposure for the female CSAa consequence of ap-

preciably fewer and lesser cumulative magnitude of HAEs per practice/game – does

not necessarily guarantee safety or neural health. Rather, this lesser daily exposure

has likely only put the female CSA at a reduced risk of physiologic changes and

delayed crossing of the head impact exposure thresholds proposed to exist for cogni-

tive and behavioral impairment [21], and white matter microstructural and cognitive

abnormalities [19]. While both of these studies found that athletes did not exhibit

significant changes in brain physiology while exposure remained below the identified

thresholds, a constant base- line risk existed. Even a small number of additional HAE

exposures could push an athlete above these thresholds, rapidly increasing the risk

for later cognitive and behavioral impairment.

1.5 Conclusion

Asymptomatic male (football) and female (soccer) CSA, were found to exhibit

statistically significant, albeit transient, neurometabolic disturbances in (male) dorso-

lateral prefrontal cortex and (female) motor cortex during a period of appreciable ex-

posure to head acceleration events. Extending previous work [47,48], neurometabolic

alterations observed in football athletes during the second half of the season were

found to be significantly associated with the average acceleration per HAE, being

best predicted by the accumulation of events exceeding 50 g. While a smaller sample
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of female CSA (soccer) also exhibited significant changes in metabolite concentra-

tions, these changes were not found to be well-linked to their significantly lesser HAE

exposure. Marked deviations in neurometabolism, in the absence of overt symptoms,

raise concern about the neural health of adolescent collision-sport athletes. These

findings suggest that limiting HAE exposure and allowing adequate rest following the

competition season are likely to be beneficial for the neural health of these athletes,

and may help to ameliorate the risk of subsequent cognitive impairment.
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A

B

Fig. 1.6.: Evaluation of regressions in male and female CSA groups plots for neu-

rometabolite concentrations and ratios against aPTA across HAE thresholds. (A)

Mean R2 as a function of evaluated threshold value (Th = 20, 50 and 70 g) for all

sessions found to significantly differ from their corresponding Pre measurement in

Figures 1.4 and 1.5. (B) The regression fit in male CSA (football) athletes for In2

DLPFC [tCho]:[tCr] vs. aPTA at Th = 50 g – the maximal point in (A) – was the

only fit to achieve a mean F-statistic that was associated with a p-value of less than

0.05 (p = 0.033; uncorrected).
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2. UNCOVERING MULTI-SITE IDENTIFIABILITY

BASED ON RESTING-STATE FUNCTIONAL

CONNECTOMES

The material presented in this chapter is available online at [85] and is under review

in NeuroImage, Special Issue ’Reproducibility in Neuroimaging’.

2.1 Introduction

Multi-site functional magnetic resonance imaging (fMRI) studies are increasingly

important for understanding the structure and function of a healthy brain and also

subsequent to neuropathology. Recent examples of multi-site imaging initiatives in-

clude The Human Connectome Project [86, 87], the 1,000 Functional Connectomes

Project (http://fcon_1000.projects.nitrc.org), and disease-oriented initiatives

such as the Functional Biomedical Informatics Research Network for schizophre-

nia [88] and the Alzheimer’s Disease Neuroimaging Initiative [89], among others [90].

Multi-site studies achieve larger sample sizes by including cohorts recruited at the

different sites. On one hand this allows for higher statistical power and better gen-

eralization of the results than may be achieved with potentially limited availability

of patients or funds at a single site. On the other hand proper assessment of these

data requires principled methodologies, including multivariate analyses coupled with

cross-validation designs [89–93]. Known challenges in multi-site acquisitions and their

subsequent analyses include the scanner-dependent variability that can mask true un-

derlying changes in brain structure and function. Even when using identical (let alone

“comparable”) imaging sequences and parameters, potential site-dependent differ-

ences might arise due to a range of physical variables, including field inhomogeneities,

transmit and receive coil configurations, system stability, system maintenance, scan-

http://fcon_1000.projects.nitrc.org
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ner drift over time and many others [90, 91, 94]. Determining and minimizing these

unwanted site-dependent variations have become critical elements in the design of

multi-site fMRI studies.

Many studies have investigated the variation and stability of simple behavioral,

motor or memory tasks in multiple sites using fMRI. Such studies have typically

used ANOVA models or variance component analysis to examine the variability and

extent of overlap of activation maps in task-based fMRI scans acquired across multiple

sites [93–100]. In contrast, only a few studies have assessed the variations in resting-

state fMRI across sites [101]. These studies used variance component analysis, intra

class correlation (ICC) coefficient and/or coefficient of variance to evaluate inter-site

and inter-subject variability in connectivity scores, cluster size and temporal signal-

to-noise ratio in regions of interest for default mode networks derived from seed-based

or independent component analysis [101–109].

Resting-state fMRI (rs-fMRI) measures the spontaneous neural activity in the

brain and determines the default functional connectivity between brain regions. rs-

fMRI has gained wide-spread attention and is used to investigate brain functional

connectivity in the normal healthy brain [110–114] as well as in many clinical popula-

tions [115–117]. In recent years, the research areas of network neuroscience and brain

connectomics have become central to the understanding of the human brain as a net-

work. In consequence, graph theory and network science methods have been widely

used to investigate functional connectivity [118–124]. A functional connectome (FC)

is a symmetric square matrix that estimates the level of functional coupling between

pairs of brain regions. Each entry is the correlation between the blood oxygena-

tion level dependent (BOLD) signals observed in two different brain regions. Various

graph theoretical measures may be used to investigate FC networks [122].

One important avenue of investigation is to explore differences in FC profiles at an

individual, rather than group, level [125]. Group averages represent robust connectiv-

ity patterns, but inherently mask subject-specific features. Differences in FC profiles

in individuals, relative to the group level, have been demonstrated [126–138] and may
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help in developing robust neuroimaging-based biomarkers, or even for making subject-

level inferences. Robust individual differences in functional connectivity have been

termed “fingerprints”, and may be demonstrated by the self-identification of subjects

by correlating test and retest visits over a body of subjects [127, 136, 139–142]. Fin-

gerprinting relies on the fact that subjects are expected to exhibit an inter-session

variability that is less than the inter-subject variability (i.e., they resemble themselves

across visits more strongly than they resemble other subjects). The ability to pair

the FCs coming from the same subject reflects the inherent level of identifiability of

the connectivity dataset.

This study explores the question of variability in the identifiability of subjects in a

multi-site scenario, providing a framework to minimize the unwanted site-dependent

variations and enhance identifiability on functional connectomes. To do so, we evalu-

ated two independent multi-site resting-state fMRI datasets. To date, identifiability

has been studied where test and retest rs-fMRI scans have been conducted in the

strictly controlled scenario involving the same scanner, the same imaging sequences,

same-day image acquisitions, and constant processing over all data [127, 136, 141].

For example, Amico et al., [136] determined the identifiability of subjects based on

test-retest visits on one site. Herein we extend the investigation of identifiability by

relaxing a number of these conditions. In particular, one dataset (Purdue) used two

different scanners and varied in the number of days between visits, whereas the sec-

ond dataset (Yale) involved two identically configured imaging-sites. For all cases,

the impact of global signal regression as part of the data processing pipeline was also

assessed. We optimally reconstructed the FCs using those principal components that

maximized multi-site identifiability across all visits, thereby and serving as an orthog-

onal basis for the functional connectivity. This was performed both with and without

global signal regression. For each of these cases, we then compared the multi-site iden-

tifiability obtained from the original and optimal reconstructed FCs. In all cases, the

reconstruction process produced significantly enhanced identifiability across imaging
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systems, providing strong motivation for application of this approach to increase the

statistical power and generalizability of results for multi-site fMRI studies.

2.2 Methods

2.2.1 Participants

Purdue dataset

A cohort consisting of 23 undergraduate and graduate students (12 male and 11

female; ages 18-28 years) participated in a total of four imaging sessions (0-21 days

apart) at two sites. None of the participants reported any history of neurological

disorders. At site1 two imaging sessions were conducted using a 3T General Electric

Signa HDx and a 16-channel brain array (Nova Medical). At site2 two imaging

sessions were conducted using a 3T GE Discovery MR750 and a 32-channel brain

array (Nova Medical). The two imaging sessions at a given site were conducted on

the same day (i.e., 0 days apart).

Yale dataset

An open source dataset available at http://fcon_1000.projects.nitrc.org/

indi/retro/yale_trt.html consisting of 12 (six male and six female; ages 27-56

years) participants was used in the study. The subjects participated in a total of four

imaging sessions at two sites approximately one week apart. Data were acquired on

two identically configured Siemens 3T Tim Trio scanners at Yale University using a

32-channel head coil [103].

 http://fcon_1000.projects.nitrc.org/indi/retro/yale_trt.html
 http://fcon_1000.projects.nitrc.org/indi/retro/yale_trt.html
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2.2.2 MRI Data Acquisition

Purdue dataset

Each imaging session (independent of site) consisted of a structural T1 weighted

scan and two rs-fMRI scans (test and retest, eyes open and 9 min and 48 sec). The

high-resolution T1 scan used for registration and segmentation purposes consisted

of 3D fast spoiled gradient recalled echo sequence: TR/TE = 5.7/1.976 msec; flip

angle = 73◦; 1 mm isotropic resolution and the rs-fMRI scans with common imaging

parameters across sites consisted of blipped echo-planar imaging: TR/TE = 2,000/26

msec; flip angle = 35◦; 34 slices; acceleration factor = 2; Field of View = 20 cm; voxel

size = 3.125 x 3.125 x 3.80 mm and 294 volumes.

Note that eight rs-fMRI scans were conducted in total on each subject (184 total

scans; see Figure 2.1) and divided into a training and a validation sets. The two runs

acquired in the first session at each of the two sites (four total) were incorporated

into the training set. Similarly the remaining four rs-fMRI scans, those correspond-

ing to the two runs acquired in the second imaging session at that each site, were

incorporated into the validation set.

Yale dataset

Each imaging session (independent of site) consisted of a structural T1 weighted

scan and six rs-fMRI scans (eyes open and 6 min). T1-weighted 3D anatomical

scans were acquired using a magnetization prepared rapid gradient echo (MPRAGE)

sequence: TR/TE = 2400/1.18 msec; flip angle = 8◦; 1 mm isotropic resolution and

the rs-fMRI scans with multiband echo-planar imaging: TR/TE = 1000/30 msec; flip

angle=55◦; 75 slices; acceleration factor = 5; Field of View = 22 cm; voxel size = 2

x 2 x 2 mm and 360 volumes [103].
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Two of the six rs-fMRI scans from each imaging session were used as the test and

retest. The imaging sessions were divided in to training and validation sets in the

same way as Figure 2.1.

2.2.3 Data Processing

Both Purdue and Yale datasets were processed with the same processing pipeline,

as described below.

rs-fMRI data were processed using functions from AFNI [55] and FSL [56,57] us-

ing in-house MATLAB code following steps from [143]. Structural T1 images were

first denoised using the filters described in [144–146] (using FSL fsl anat) to improve

signal-to-noise ratio and effect bias-correction. Images also underwent intensity nor-

malization (AFNI 3dUnifize). Structural images were then segmented (FSL FAST)

into gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF) tissue

masks.

rs-fMRI BOLD timeseries were processed in the subject’s native space. The first

four volumes were discarded to remove spin history effects, leaving 290 volumes for

processing. The 4D BOLD timeseries was then passed through outlier detection

(AFNI 3dToutcount), despiking (AFNI 3dDespike), slice timing correction (AFNI

3dTshift), and subsequently underwent volume registration (AFNI 3dvolreg) to the

minimized bounding volume. The rs-fMRI BOLD timeseries were then aligned to

the T1 structural scan (AFNI align epi anat.py). Voxel-wise spatial smoothing was

applied independently within each of the GM, WM and CSF masks, using a 4mm

full-width-at-half-maximum isotropic Gaussian Kernel (AFNI 3dBlurinMask). The

resulting BOLD timeseries were then scaled to a maximum (absolute value) of 200,

and data were censored to remove outlier timepoints. Censoring of individual rs-

fMRI volumes occurred if the motion derivatives had a Euclidean norm [147] above

0.4. Censoring involved removal not only of the volume at which this high norm

was observed, but also the immediately preceding and following volumes, given that
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effects of motion may be carried across timepoints. Entire rs-fMRI timeseries were

discarded if more than 100 volumes (34% of the volumes) were censored. Only the

subjects for which all eight rs-fMRI scans survived motion censoring were included

in the analysis.

Purdue dataset: Out of 23 subjects, a final pool of 18 subjects (144 rs-fMRI

scans) was retained for analysis. Three of the original 184 rs-fMRI scans—and their

associated three subjects—were rejected due to excessive motion. An additional two

subjects were rejected due to poor registration to the template of at least one of the

sessions. Yale dataset: 11 out of 12 subjects were included. One subject was dropped

after failure in the NIFTI reconstruction of the raw DICOM images.

To assess the impact of global signal regression on the reconstruction procedure

and subsequently identifiability, all included fMRI runs were evaluated both after

being detrended with (GSR) and without (NoGSR) global signal regression. Each

detrending (AFNI 3dDeconvolve) approach incorporated the following common re-

gressors: (1) very low frequency fluctuations as derived from a bandpass [0.002-

0.01Hz] filter (AFNI 1dBport); (2) the 12 motion parameters, consisting of three

linear translations [x,y,z], three rotations [pitch, yaw, roll] and the corresponding

set of first derivatives [148, 149]; and (3) the voxel-wise local neighborhood (40mm)

mean WM timeseries (AFNI 3dTproject) [150]. The data at this point represent the

NoGSR dataset. Incorporation of a fourth regressor source—the whole-brain mean

GM timeseries—in the detrending stage results in the GSR dataset.

For connectivity analysis on a regional basis, the grey matter brain atlas from [151]

was warped to each subject’s native space by linear and non-linear registration (AFNI

auto warp.py and 3dAllineate). This brain parcellation consists of 278 regions of

interest (ROIs). Note that data from the cerebellum (including a total of 30 ROIs)

were discarded, because the acquired data did not completely cover this structure for

all subjects. This resulted in a final GM partition of 248 ROIs.

A functional connectivity matrix (namely the functional connectome; FC) was

computed for each rs-fMRI scan through correlation of the mean time series from
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each of the 248 ROIs (MATLAB command corr). The resulting square, symmetric FC

matrices were not thresholded or binarized. Each FC matrix was ordered into seven

cortical sub-networks, as proposed by Yeo et al. [152], and an additional eighth sub-

network comprising sub-cortical regions was added [143]. For each dataset (Purdue

and Yale), this resulted in eight functional connectomes per subject (four from each

site; two training and two validation).

2.2.4 Differential Identifiability extended for Multi-Site studies

The upper triangular of each FC (test and retest) for the training data was vector-

ized and added to a matrix where the columns were runs and the rows represent the

functional connectivity patterns. Hence, this matrix had
(
248
2

)
rows and N ∗4 columns

(4 runs per subject; N subjects). Principal component analysis (PCA) was used to

extract M = N ∗ 4 principal components (i.e., functional connectivity eigenmodes)

from the vectorized training dataset (MATLAB command pca). The principal com-

ponents (PCs) were arranged in descending order of their explained variance. These

PCs were then projected back into each subject’s FC space to obtain individual re-

constructed functional connectomes as analogously done by Amico et al. [136]. Below

we extend this approach for multi-site acquisitions.

For individual fingerprints of subjects within and across sites, the identifiability

matrix (I) was created by correlating the subjects test and retest FCs within and

across the two sites. This gave rise to a multi-site identifiability matrix, I which

consisted of Pearson’s correlation coefficients. For the particular case of two imaging

sites, the test-retest combinations created four blocks (Iij) in the identifiability matrix

I,

I =

I11 I12

I21 I22


where Iij contained Pearson’s correlation coefficient obtained by correlating FCs from

the sitei test session with the FCs from the sitej retest session. I11 and I22 represent
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the fingerprinting of the subjects within the two sites and I12 and I21 represent the

fingerprinting of the subjects across the two sites.

For each test-retest [sitei, sitej ] pair, differential identifiability (< I ijdiff >) was

calculated from the block Iij following the procedure from [136]

< I ijdiff > = < I ijself > − < I ijothers >

where

< I ijself > =
1

N

N∑
k=1

I ijself (k)

I ijself (k) = I ijkk , ∀ k = 1, 2, . . . , N

where N is the number of subjects (N=18 for Purdue dataset; N=11 for Yale dataset).

Iijself , defined as self identifiability, is a vector of length N and contains the main

diagonal elements I ijself (k) of the block Iij, and denotes the correlation between the

repeat visits of the same subject. The average of the main diagonal elements for the

block Iij, < I ijself >, represents the overall self correlation for the [sitei, sitej ] pair.

< I ijothers > =
1

N

N∑
k=1

I ijothers(k)

I ijothers(k) =
1

2

(
1

N − 1

N∑
l=1

I ijkl +
1

N − 1

N∑
l=1

I ijlk

)
, ∀ l 6= k

For the k-th subject I ijothers(k) is an element of the vector Iijothers and is obtained

by the average of the k-th row and k-th column, excluding the main diagonal entry of

the block Iij, and defines the average correlation of the k-th subject’s FCs (test and

retest) with all other subjects. < I ijothers > is the average of all I ijothers(k) of the block

Iij, and defines an overall mean correlation between visits of different subjects for the

[sitei, sitej ] pair.
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For visits associated with the [sitei, sitej ] pair, < I ijdiff > characterizes the dif-

ference between the average within-subject FC similarity and the average between-

subject FC similarity. The higher the value of < I ijdiff >, the stronger is the overall

fingerprinting of the population for the [sitei, sitej ] pair.

To maximize the fingerprinting of the population across all the [sitei, sitej ] visit

pairs, the average of the four < I ijdiff > values was used, where

<< Idiff >> =
1

n

n∑
i=1

n∑
j=1

< I ijdiff >

Here, n=2 is the number of sites for both Purdue and Yale datasets.

Multi-site differential identifiability << Idiff >> is then maximized by the selec-

tion of subsets of m PCs from the total number (M = N ∗ 4) of PCs obtained from

the training set. For each subset of the first m PCs, the subjects test-retest FCs

were reconstructed, and << Idiff >> was calculated from these data. The optimal

number of PCs, m*, maximizes the value of << Idiff >>, namely << I∗diff >>, as

given by [136]:

<< I∗diff >> = argmaxm∈M << Idiff >> (m)

The m* PCs were used to reconstruct the individual FCs (for both visits—i.e., test

and retest) for the training and validation sets. The identifiability matrices computed

from the original and reconstructed data for each of the training and validation sets

were then compared.

Analogously, when focused on a particular [sitei, sitej ] visit pair, we may obtain

mij∗ as

< I ij ∗diff > = argmaxmij∈M < I ijdiff > (m)

2.2.5 Statistical Analysis

Differential Identifiability (Iijdiff ) was computed for each [sitei, sitej ] pair from Iij

as follows

Iijdiff = Iijself − Iijothers
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For the k-th subject the value of I ijdiff (k) was calculated as

I ijdiff (k) = I ijself (k)− I ijothers(k)

I ijdiff (k) characterizes the differential identifiability on a subject level and quantifies

the difference between the k-th subject’s FC self identifiability and its similarity with

other subjects’ functional connectomes. The higher the value of I ijdiff (k), the higher

is the identifiability of the k-th subject among the cohort.

Pairwise comparisons were done on the distributions of Iijdiff obtained from the

original and reconstructed data, for both the training and validation sets, using the

Wilcoxon signed rank test followed by a Bonferroni correction on each subset of

tests (e.g., four tests were conducted on the each of the NoGSR and GSR training

and validation sets, so a correction for four tests was performed). All such analyses

were conducted in R [153]. Any pairwise comparison was considered significant if

pBonferroni < 0.05. Similar comparisons were also made between the distributions

of Iijdiff as obtained from reconstructions for original data with (GSR) and without

(NoGSR) global signal regression.

The intraclass correlation coefficient (ICC) was used to assess the agreement of

an edge (functional connectivity value between two brain regions) between visits of

subjects on each [sitei, sitej ] pair. ICC [154, 155] is generally used to assess the

agreement between measurements for different groups. The stronger the resemblance

between the measurements, the higher is the ICC value. Furthermore, a bootstrap

procedure was applied when computing ICC to avoid biases induced by a small subset

of the population. In each of 100 iterations 75% of the population was selected at

random, and the ICC was calculated for each edge. The averages over all iterations

were used to compare the edgewise ICC values of the original and the reconstructed

data. ICC values for the resting-state functional networks of [156], for both the

original and reconstructed data, were computed by averaging over the ICC values

for the edges that belonged to each functional network. Using the aforementioned

bootstrap procedure, edgewise ICC was also computed from all 4 visits across the

two sites and these edgewise ICC were averaged over each brain region from [151] to
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Fig. 2.1.: Diagram of the resting-state fMRI acquisitions for both datasets. Subjects

underwent two imaging sessions (Training and Validation) at each of two MRI sites

(Site1 and Site2), wherein each session comprised two resting-state runs (test and

retest). After quality checks, the Purdue dataset included 18 subjects and the Yale

dataset included 11 subjects. This setup produced a total of eight runs and associated

functional connectomes (FC) per subject.

compare the reproducibility, between training and validation sets, of connectivity in

each brain region across the original and reconstructed data. This entire edgewise

ICC procedure was repeated for each of the GSR and NoGSR modalities.

2.3 Results

The Purdue dataset used for this study consisted of two fMRI sessions (each

session consisted of test and retest pair of rs-fMRI scans) per subject on two different

sites. After quality checks, 18 subjects with eight FCs per subject were used for

Purdue dataset (see Methods). Building upon [136], we here expanded the concept of
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identifiability for multiple acquisitions on multiple sites. We evaluated this method by

splitting our dataset (see Figure 2.1) into training and validation sets. The training

dataset consisted of four FCs per subject (test-retest at site1, test-retest at site2).

Analogously, the validation dataset consisted of another four FCs per subject (for the

same subjects as the training dataset; test-retest at site1, test-retest at site2).

When assessing the Purdue training dataset, FCs were decomposed and sub-

sequently reconstructed based on PCA by using each subset of first m number of

components out of the total (M = 72). For each number of PCA components m,

<< Idiff >> was computed from the reconstructed data (see Methods) and com-

pared to << Idiff >> obtained from original data. Figure 2.2 shows << Idiff >>

computed from the original and, iteratively, from the reconstructed data as a function

of (m), the number of PCs preserved. << Idiff >> peaked at m* = 21 for NoGSR

and m* = 22 for GSR datasets. These m* PCs extracted from the training set were

used as a fixed orthogonal connectivity basis (i.e. PCA loadings) to reconstruct the

functional connectomes (denoted by Recon) of the training and validation sets for

comparing identifiability obtained from the original FCs (Orig).

When looking at < I ijdiff > for different [sitei, sitej ] visit pairs for NoGSR and

GSR, we found different optimal numbers of components (mij). Within-site configu-

rations peaked at 29 and 31 components respectively (NoGSR) and at 35 components

(GSR). Between-sites configurations both peaked at 20 components (NoGSR) and at

21 components ((GSR)). Briefly, more components were included in the optimal re-

construction (and hence more variance was preserved) for within-site configurations

whereas less components were included for between-site configurations (and hence

less variance was preserved) for optimal identifiability. A summary of < I ijdiff > and

the corresponding mij∗ for all configurations is shown in Table 2.1.

Identifiability matrices (I) consisting of Pearsons correlation coefficient between

FCs of subjects’ test and retest visits across and within the two sites were com-

puted, expanding on [136]. The identifiability matrices obtained from reconstructed

FCs using m* PCs were compared to the ones obtained from original data. Figure
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2.3 illustrates that the identifiability matrices obtained from optimally reconstructed

functional connectomes outperformed the original FCs. The individual fingerprint of

the subjects (main diagonal of each block Iij) within and across the sites were always

higher at the optimal reconstruction for both NoGSR and GSR datasets.

Differential Identifiability (Iijdiff )) for each [sitei, sitej ] pair was computed from Iij

blocks (see Methods). The distributions of Iijdiff obtained from original and optimally

reconstructed data were compared. Figure 2.4 shows that the distributions of Iijdiff

for each [sitei, sitej ] pair was significantly higher (pBonferroni < 0.05, Wilcoxon signed

rank test) after optimal reconstruction of the data, indicating higher identifiability of

the subjects among the cohort. This result held for both the NoGSR and GSR cases.

The group averages of original and optimally reconstructed FCs using m* PCs

were computed. Figure 2.5 shows that the group average of original and reconstructed

functional connectomes were almost identical, indicating that the optimal PCA recon-

struction preserved the main group-level characteristics of the functional connectomes

for both NoGSR (Figure 2.5 A-B) and GSR (Figure 2.5 C-D) datasets.

ICC was used to assess the reproducibility of edges in functional connectomes

between visits of subjects within and across the two sites. The average ICC value, over

100 iterations obtained from the bootstrap procedure (see Methods for details), from

original and optimally reconstructed FCs were compared. ICC for each functional

network was computed by averaging over ICC values for all the edges that belonged

to a functional network. Figures 2.6,B.1 show the edgewise ICC averaged over 100

iterations for the original and the reconstructed data. The edgewise ICC largely

increased after optimal reconstruction for almost all edges (Tables 2.2, 2.3) for each

[sitei, sitej ] pair for NoGSR (Figures 2.6,B.1 A-B) and GSR (Figures 2.6,B.1 C-D)

datasets. Figure 2.7 shows that the average ICC for each functional network in the

reconstructed data was also higher than in the original data.

When integrating test-retest FC data from both imaging sites, we measured edge-

wise ICC, pooling all four visits per subject. Figure 2.8 shows the edgewise ICC

and histograms for average ICC for each brain region (using the atlas from [151])
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for the original and reconstructed data in the validation set. Figure 2.9 presents a

brain rendering overlaid with the averaged edgewise ICC values of each brain region

as computed from all four test-retest visits across the two sites using the validation

dataset. The edgewise ICC and value per brain region for optimally reconstructed

data indicated higher reproducibility of the functional connectomes. Both edgewise

and average brain region ICC values increased after optimal reconstruction from m*

PCs, indicating higher reproducibility and identifiability of the reconstructed func-

tional connectomes as compared to the original ones.

Notably, all these findings were replicated in the Yale dataset. The results obtained

for the Yale dataset are shown in Supplementary material (see Figures B.2, B.3, B.4

and B.5 and Table B.1). Specifically, Figure B.2 shows << Idiff >> as a function

of the number of PCs (m) and it peaks at m* = 12 for both NoGSR and GSR.

The identifiability matrices obtained from reconstructed FCs using these m* PCs as

compared to the original ones are shown in Figure B.3. Figures B.4, B.5 depicts the

edgewise ICC results when pooling all four visits together.

The effect of number of fMRI volumes on multi-site differential identifiability was

assessed. To that end, processed BOLD time-series were shortened (by dropping fMRI

volumes) to mimic different scan lengths. For each scan length evaluated, FCs were

estimated, decomposed and subsequently reconstructed based on m* PCs. Optimal

multi-site differential identifiability (<< I∗diff >>) was computed from optimally

reconstructed FCs and compared to that obtained from original FCs. Figure 2.10

shows that the method presented in this study improved << I∗diff >> for both

Purdue and Yale datasets for NoGSR and GSR for all scan lengths evaluated.

In order to assess the generalizability of the optimal orthogonal basis for each

dataset, a leave-one-out experiment was performed. Briefly, each subject’s FCs were

reconstructed using the m* PCs when all the sessions of that subject were excluded

from the PCA framework. For each dataset (Purdue and Yale), the optimally re-

constructed FCs of each subject were compared to the leave-one-out reconstructed

FCs. Histograms of the correlations of optimally reconstructed FCs from training vs
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Table 2.1.: Purdue dataset. Maximum percentage differential identifiability (<

I ij∗diff > ∗100), number of principal components for each [sitei, sitej ] pair (mij∗),

explained variance (R2), mean (µ) and standard deviation (σ) of edgewise ICC val-

ues for Original (Orig) and optimally reconstructed (Recon) for Training datasets

without global signal regression (NoGSR) and with global signal regression (GSR).

[sitei, sitej ] < Iij∗diff > mij∗ R2 ICC µOrig ICC σOrig ICC µRecon ICC σRecon

NoGSR

[site1, site1] 45.1 29 0.82 0.46 0.20 0.75 0.12

[site1, site2] 31.0 20 0.74 0.14 0.24 0.34 0.22

[site2, site1] 31.5 20 0.74 0.20 0.23 0.44 0.22

[site2, site2] 45.7 31 0.84 0.44 0.20 0.72 0.11

GSR

[site1, site1] 43.6 35 0.84 0.35 0.24 0.77 0.13

[site1, site2] 30.8 21 0.73 0.18 0.25 0.49 0.22

[site2, site1] 32.8 21 0.73 0.17 0.25 0.53 0.20

[site2, site2] 45.5 35 0.84 0.42 0.23 0.81 0.08

leave-one out for all subjects are shown for Purdue and Yale datasets in the Figure

2.11. Median values were 0.79 for Purdue NoGSR, 0.77 for Purdue GSR, 0.74 for

Yale NoGSR and 0.73 for Yale GSR.

2.4 Discussion

Recently the concepts of brain fingerprinting and identifiability [157] have been in-

vestigated based on repeated measures of individual whole-brain estimates of resting-

state functional connectivity [126,127] and between fMRI tasks [128,134,141]. More

recently, Amico et al. [136] introduced the concept of an identifiability matrix to as-

sess the fingerprinting of a dataset through a functional denominated identifiability

score (see Methods). Further they introduced a data-driven method to uncover iden-

tifiability in whole-brain functional connectomes (FCs) based on principal component

decomposition and subsequent reconstruction. Here, we extended this framework for

multi-site repeated measurements experiments and show how high identifiability on

an inter-scanner basis is achievable at the whole-brain level, as well as at the pairwise
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Fig. 2.2.: Purdue dataset. Multi-site differential identifiability (<< Idiff >> ∗100)

and differential identifiability of each [sitei, sitej ] pair, (< I ijdiff > ∗100) for training

data as a function of the number of principal components (PCs) used for reconstruc-

tion for resting-state data without global signal regression (NoGSR; (A) and (B));

and with global signal regression (GSR; (C) and (D)). In all figures solid lines denote

<< Idiff >> and < I ijdiff > as computed from the original FCs, whereas lines with

circles denote the differential identifiability for reconstructed FCs as a function of m,

the included number of components. In (A) and (C), the gray (shaded) area denotes

the 95% confidence interval for << Idiff >> over 100 random permutations of the

test-retest FC pairs at each value of m. It may be observed that the benefit of recon-

struction on differential identifiability was not dependent on the exclusion/inclusion

of global signal regression.
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Fig. 2.3.: Purdue dataset. Identifiability matrices (I) of the original (Orig) and recon-

structed (Recon) data for the Training, (A) and (C), and Validation, (B) and (D) sets

of resting-state functional connectomes without global signal regression (NoGSR; (A)

and (B)) and with global signal regression (GSR; (C) and (D)). The Identifiability

matrix (I) has a blockwise structure where each block is I ij, representing the identi-

fiability for the [sitei, sitej ] pair. Note that identifiability was meaningfully improved

across sites regardless of the exclusion/inclusion of global signal regression.
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Fig. 2.4.: Purdue dataset. Box plots of Differential Identifiability (Iijdiff ) computed

from each block of the Identifiability matrix (i.e., Iij) for the original (Orig) and

optimally reconstructed (Recon) data without global signal regression (NoGSR; (A)

and (B)) and with global signal regression (GSR; (C) and (D)). Values of Pearson’s

r that are significantly higher (pBonferroni ¡ 0.05, Wilcoxon signed rank) for Recon

relative to Orig are marked by double asterisks. Note that distributions of Iijdiff were

found to be unaffected by exclusion/inclusion of global signal regression.
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Fig. 2.5.: Purdue dataset. Evaluation of PCA reconstruction at the optimal number of

components (m* = 21) for resting-state functional connectomes (FCs) data without

global signal regression (NoGSR; (A) and (B)) and (m* = 22) with global signal

regression (GSR; (C) and (D)). Left-to-right in each of (A)-(D): the group averaged

FC of the original (Orig) data; the group averaged FC of the reconstructed (Recon)

data; the scatter plot (for all edges) of the Recon group-averaged FC (y-axis) vs.

the Orig group-averaged FC (x-axis). Again, exclusion/inclusion of global signal

regression did not alter the benefit of the reconstruction to enhance identifiability.
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Fig. 2.6.: Purdue dataset. Scatter plots of averaged (100 iterations) intra-class cor-

relation coefficient (ICC) values, computed over each FC edge, for the reconstructed

(Recon) data (y-axis) versus the edgewise ICC for the original (Orig) data (x-axis).

Plots are presented for data without global signal regression (NoGSR; (A) and (B))

and with global signal regression (GSR; (C) and (D)). In each plot, quadrants are col-

ored for clarity of the effect of reconstruction on ICC values. Blue represents positive

values in both Orig and Recon; green represents negative Orig and positive Recon;

black represents negative values for both Orig and Recon; and red represents positive

Orig and negative Recon. Note that the vast majority of ICC values have been made

more positive by the reconstruction process.



43

Network ICC Training Set

(A) Orig

Recon

[site1, site1] [site1, site2] [site2, site1] [site2, site2]

(B) Orig

Recon

Network ICC Validation Set

[site1, site1] [site1, site2] [site2, site1] [site2, site2]

(C) Orig (D) Orig

Recon Recon

N
oG

SR
G

SR

1

Fig. 2.7.: Purdue dataset. Intra-class correlation coefficient (ICC) values for each

functional network, computed as the average of edgewise ICC over each of Yeo’s

resting-state functional networks in the original (Orig) and reconstructed (Recon)

data for Training and Validation sets on resting-state functional connectomes without

global signal regression (NoGSR; (A) and (B)) and with global signal regression (GSR;

(C) and (D)). Yeo’s resting functional networks [156]: Visual (VIS), Somato-Motor

(SM), Dorsal Attention (DA), Ventral Attention (VA), Limbic system (L), Fronto-

Parietal (FP), Default Mode Network (DMN), and subcortical regions (SUBC). Once

again, no meaningful effect of exclusion/inclusion of global signal regression is ob-

served on the benefit from reconstruction to enhance identifiability.
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Fig. 2.8.: Purdue dataset. Averaged (100 iterations; see Methods for bootstrap de-

tails) intra-class correlation coefficient (ICC) values, computed for each FC edge from

four visits across two sites, for the Validation set original (Orig; (A) and (B)) and

reconstructed (Recon; (C) and (D)) data without global signal regression (NoGSR;

(A) and (C)) and with global signal regression (GSR; (B) and (D)). Note that the

benefit from reconstruction to enhance identifiability is, again, not dependent on

exclusion/inclusion of global signal regression.
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Fig. 2.9.: Purdue dataset. Brain rendering of intraclass correlation coefficient (ICC),

computed from all four visits across the two sites for the Validation set original

(Orig; (A) and (C)) and reconstructed (Recon; (B) and (D)) data without global

signal regression (NoGSR; (A) and (B)) and with global signal regression (GSR;

(C) and (D)). The strength per brain region—computed as the mean of edgewise

ICC values (ICC computed for each FC edge and averaged over 100 iterations; see

Methods for Bootstrap procedure)—provides an assessment of overall reproducibility

of the functional connections of each brain region. FC reproducibility was appreciably

improved, regardless of exclusion/inclusion of global signal regression.
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Fig. 2.10.: Optimal multi-site differential identifiability (<< I∗diff >> ∗100) as a

function of the number of fMRI volumes used for reconstruction for resting-state

Purdue and Yale datasets without global signal regression (NoGSR; (A) and (C))

and with global signal regression (GSR; (B) and (D)). It may be observed that the

benefit of reconstruction on differential identifiability was not dependent on the ex-

clusion/inclusion of global signal regression.
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Fig. 2.11.: Histograms of similarity between optimally reconstructed FCs (complete

dataset for PCA framework) and with leave-one-out (LOO) reconstructed FCs. (A) Purdue

without global signal regression (NoGSR), (B) Purdue with global signal regression (GSR),

(C) Yale NoGSR and (D) Yale GSR.
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Table 2.2.: Purdue dataset. Percentage of positive and negative edgewise intra-class

correlation coefficient (ICC) values (computed for each FC edge and averaged over

100 iterations; see Methods for Bootstrap procedure) of original (Orig) data that

were converted to positive or negative edgewise ICC in reconstructed (Recon) data

for resting-state functional connectomes without global signal regression (NoGSR).

[sitei, sitej ] Purdue Training Set Purdue Validation Set

[site1, site1]

Recon Recon

Orig Negative Positive Orig Negative Positive

Negative 0.28 99.72 Negative 0.00 100.00

Positive 0.0 100.00 Positive 0.00 100.0

[site1, site2]

Recon Recon

Orig Negative Positive Orig Negative Positive

Negative 20.56 79.44 Negative 7.72 92.28

Positive 1.85 98.15 Positive 0.65 99.34

[site2, site1]

Recon Recon

Orig Negative Positive Orig Negative Positive

Negative 9.75 90.25 Negative 10.50 89.50

Positive 0.47 99.53 Positive 0.72 99.28

[site2, site2]

Recon Recon

Orig Negative Positive Orig Negative Positive

Negative 0.00 100.00 Negative 0.61 99.39

Positive 0.00 100.00 Positive 0.02 99.98
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Table 2.3.: Purdue dataset. Percentage of positive and negative edgewise intra-class

correlation coefficient (ICC) values (computed for each FC edge and averaged over

100 iterations; see Methods for Bootstrap procedure) of original (Orig) data that

were converted to positive or negative edgewise ICC in reconstructed (Recon) data

for resting-state functional connectomes with global signal regression (GSR).

[sitei, sitej ] Purdue Training Set Purdue Validation Set

[site1, site1]

Recon Recon

Orig Negative Positive Orig Negative Positive

Negative 0.08 99.92 Negative 0.00 100.00

Positive 0.01 99.99 Positive 0.00 100.00

[site1, site2]

Recon Recon

Orig Negative Positive Orig Negative Positive

Negative 10.61 89.39 Negative 2.78 97.22

Positive 0.46 99.54 Positive 0.18 99.82

[site2, site1]

Recon Recon

Orig Negative Positive Orig Negative Positive

Negative 4.80 95.20 Negative 6.34 93.66

Positive 0.27 99.73 Positive 0.80 99.20

[site2, site2]

Recon Recon

Orig Negative Positive Orig Negative Positive

Negative 0.00 100.00 Negative 0.00 100.00

Positive 0.00 100.00 Positive 0.00 100.00
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level for functional edges. This approach to uncover identifiability was equally effec-

tive for rs-fMRI data processed with and without global signal regression. Results

indicate that the individual fingerprints obtained from optimally reconstructed FCs

were robust, and improved identifiability among the cohort. Further, the method

improved the reproducibility of the functional connectivity profiles across visits, both

on an edgewise and functional network basis. We discuss below all the results related

to the Purdue dataset.

Multi-site differential identifiability << Idiff >> was used as a quality function

to maximize the fingerprinting of individual subjects within a cohort by exploring

connectivity subspaces over a range of M principal components. The identifiability

of a connectivity profile of a subject relies on the fact that individual subjects are

expected to be most similar to themselves across visits or scanning sessions, relative

to others. We used a continuous identifiability score as defined by [136] for individual

fingerprinting of subjects in test-retest sessions for two sites. The continuous iden-

tifiability score, < I ijdiff >, quantified the difference between average within-subject

similarity and average between-subject similarity for a single [sitei, sitej ] visit pair.

<< Idiff >> quantified the overall fingerprinting of the population across all test-

retest visits. << Idiff >> was then maximized over subsets of M PCs to find the m*

PCs that maximized differential identifiability and provided the optimal orthogonal

basis to reconstruct the FCs. For both the NoGSR and GSR datasets, << Idiff >>

and < I ijdiff > (Figure 2.2) showed a significant improvement over the identifiabil-

ity score computed from the original FCs. The higher value of average differential

identifiability indicates stronger overall individual fingerprinting of the population.

When assessing < I ijdiff > and mij∗ (see Table 2.1), it can be seen that there

are differences in the proportion of the dimensionality of the data that are kept

for maximizing identifiability. In particular, visit pairs including different sites (i.e.,

[site1, site2] and [site2, site1]) had mij∗ values very close to the number of subjects

(i.e., 16) whereas visit pairs including just one site (i.e., [site1, site1] and [site2,

site2] were able to keep a larger number of components, indeed approximately the
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number visits within an imaging site (i.e., twice the number of subjects). These results

emphasize how important it is to formalize a data-driven framework for reconstruction

of FCs that is not based on fixing certain number of components or ultimately a

percentage of variance, since identifiability might peak at very different configurations

depending on multiple factors, including number of subjects, number of imaging sites,

baseline similarity between test-retest on the sites, etc.

Identifiability matrices (I) computed from optimally reconstructed data outper-

formed those computed from the original data. Identifiability matrices consisted of

Pearsons correlation coefficient between FCs corresponding to subjects’ test and retest

visits, within and across the two sites. The main diagonal of each of the four blocks

(Iij) consisted of correlations between visits of the same subject within and across

the two sites. These self correlations had higher values in I obtained from optimally

reconstructed data as compared to the ones obtained from original data (Figure 2.3).

One of the noteworthy facts about Figure 2.3 is the substantial increase in self cor-

relations for the challenging problem of test-retest visits between the two sites. This

indicates stronger individual fingerprints of subjects after optimal reconstruction of

the FCs, not only in repeated visits within the same site, but also among visits across

two sites.

Statistically higher values for the distributions of Iijdiff for all test-retest [sitei,

sitej ] pairs of the reconstructed data as compared to the original data illustrated

stronger fingerprinting of the population. Iijdiff quantified the differential identifia-

bility on a subject level for the test-retest [sitei, sitej ] pairs. Higher Iijdiff values

indicated improved identifiability of subjects. Differential identifiability increased for

all subjects within the same site visits, and also between the two sites after optimal

reconstruction of the FCs. No difference was found in the reconstructed data between

distributions for NoGSR and GSR Iijdiff , suggesting that both approaches benefit from

this framework, both within and between-sites in a similar way.

The group averages of the original and optimally reconstructed FCs were almost

identical, indicating that the main group level features of the functional connectivity
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profiles were preserved by the optimal reconstruction. The m* PCs that maximized

the << Idiff >> obtained from the training data, were used as an optimal orthogonal

basis to reconstruct the functional connectivity profiles for subjects’ test and retest

sessions in both the training and validation sets. In general PCA is used to transform

a set of correlated variables into a set of linearly uncorrelated variables, namely the

principal components. The principal components are arranged in descending order

of their explained variance and provide a new basis to represent the data. Keeping

the subset of the first m* PCs helps to provides a simpler representation of the data

through dimensionality reduction while still retaining critical information. Here we

rely on the fact, as pointed out by [136], that the highest variance principal com-

ponents carry cohort-level functional connectivity information, while lower variance

PCs carry finer subject-level functional connectivity information, and the lowest vari-

ance PCs carry information regarding noise and artifacts. By using the set of first

m* PCs, which maximized averaged differential identifiability, for reconstruction pro-

vided a denoised version of the original FCs by keeping the cohort and finer subject

level functional connectivity information.

To assess identifiability at a finer grain perspective, we considered the pairwise

intraclass correlation coefficient (ICC) at the level of functional edges. Optimally re-

constructed FCs systematically showed increased ICC values as compared to original

FCs. At the meso-scale of looking at resting-state networks and their interactions,

analogous ICC increases were found. In this study the groups were the test-retest vis-

its within a site or between the two sites, whereas the measurements were the values of

each functional connectivity edge from all subjects. The reconstructed FCs represent

a denoised version of the original data, having lower variance between measurements

on different groups. ICC values in Figures 2.6-2.9 and Tables 2.2-2.3 indicated higher

reproducibility of the functional connectivity profiles after optimal reconstruction.

The reproducibility of the edges also helped to distinguish subjects and augment

identifiability. In other words, higher ICC values led to higher identifiability of the

functional connectivity edges. There was a notable increase in ICC values of the
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reconstructed data for the challenging problem of between-site test-retest visit pairs.

Thus, the significant increase in ICC values for the reconstructed data denoted higher

identifiability in all test-retest visit pairs for both NoGSR and GSR datasets after

optimal reconstruction with m* PCs.

Notably, these findings were replicated in a second independent dataset, here

denominated the Yale dataset (see Figures B.2, B.3, B.4 and B.5 and Table B.1).

Indeed, << Idiff >> reached even higher values when compared to the Purdue

dataset. It is possible that this is because of the identically configured imaging sites

as well as because of the shorter TR. Both characteristics might facilitate higher

identifiability scores.

When assessing the effect of scan lengths on multi-site differential identifiability,

we noticed that the optimally reconstructed FCs systematically provided higher levels

of << I∗diff >> for both datasets, with and without GSR, and for all scan lengths

evaluated (see Figure 2.10). These multi-site results are in the line of those observed in

[136] for single-site evaluations and emphasize not only the importance of maximizing

identifiability but also the generalizability of this extended framework to different

imaging sites, TRs as well as scan lengths or number of fMRI volumes acquired.

The modest cohort-sizes of the two datasets assessed in this paper (Purdue N =

18, Yale N = 11) limited our ability to further explore the universality of the sets

of orthogonal basis obtained at the optimal reconstruction levels. A leave-one-out

procedure (Figure 2.11) showed that both sets of orthogonal basis had limited gener-

alizability, with Purdue (the largest cohort) having higher generalizability than Yale

(the smallest one). These results suggest that cohort-size could be critical for this

venue. Further work with large inter-scanner datasets should uncover the plausi-

bility of obtaining truly generalizable sets of orthogonal components for single- and

multi-scanner fMRI datasets that would optimally reconstruct unseen subjects while

preserving their connectivity fingerprints [158].

This work has several limitations. A limitation of the method is that this data-

driven method requires the availability of test-retest sessions on all subjects and each
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site, which is usually not available in cross-sectional clinical studies. A limitation of

the study is the modest sample size and small number of available sites. However,

several multi-site fMRI studies were performed with less than 10 subjects [95,96,100–

102]. A larger multi-site study involving more subjects and sites will help to generalize

the results. Further, better acquisition parameters for rs-fMRI may improve the

results of the study.

This study expanded on the emerging field of fingerprinting in resting-state func-

tional connectomes (FCs), by opening it to a less controlled scenario wherein repeated

measurements are obtained from different imaging sites. To do so, it extended a re-

cently proposed method to assess and ultimately improve identifiability in multi-site

studies. Future studies could use this method to examine the reproducibility of finger-

printing in resting-state functional networks and structural connectivity across more

than two sites. Another avenue of exploration would be to investigate the reliabil-

ity of graph theory measures (e.g., clustering coefficient, characteristic path length,

modularity, etc.) in the denoised FCs. Further use of this extended PCA method-

ology could be used to denoise T1 and T2 structural images at the voxel level by

reconstructing test-retest MNI registered volumes at the optimal level of differential

identifiability. Another important investigation would be to test the method pre-

sented in this study on scanners from different vendors, allowing combination of data

for larger multi-site studies.

2.5 Conclusion

Multi-site fMRI studies have great appeal as a means of generating larger datasets,

but the site-dependent variability can mask the advantages of such studies. Individual

fingerprinting is a critical and emerging field in resting-state functional connectivity.

Here we evaluated fingerprinting of the subjects in test-retest visit pairs, within and

across two sites. We presented a framework based on principal component analy-

sis to denoise the FCs and improve identifiability. We used principal components
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that maximized differential identifiability on the training data as an orthogonal basis

to reconstruct subjects’ individual FCs for training and validation datasets. These

optimally reconstructed FCs resulted in substantial improvement in individual finger-

printing within same-site visit pairs and also for the challenging problem of between-

site visits, relative to the original data. Optimally reconstructed FCs systematically

showed a notable increase in ICC values as compared to the original FCs, at the

levels of functional edges, resting-state networks, and network interactions. Results

showed that it is possible to use the data-driven method presented in this study to

improve identifiability in the functional connectivity domain for multi-site studies.

This would pave the way to pool subjects recruited at different sites, allowing for

better assessments of brain structure and function in the healthy and diseased brain.
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3. FUTURE WORK

The first part of this work demonstrated transient neurometabolic alterations in col-

lision sport athletes which were associated with the head acceleration events they

experienced during the season. Future work will seek to include larger sample sizes

for study population recruited from more teams to incorporate different playing

styles [80], skill and athletic level of competition. A study involving more teams could

sample a greater range of playing styles, and thus could better quantify dose-response

thresholds between HAE exposure and neurometabolic changes. Such a dose-response

model will be critical in instituting exposure regulations that may best protect ado-

lescent athletes from the long-term risks associated with repetitive head trauma.

Further, an increase in the number of athletes studied would increase the chances of

having participants who are diagnosed with a concussion, eventually enabling relative

assessment of the severity of metabolic injury for asymptomatic athletes.

Future work will seek to control for gender effect due to sex hormones between

the two genders. Previous studies have shown significant differences in metabolite

concentrations in males and females [81,82]. Such changes could affect the concentra-

tions and ratios observed in MRS studies, particularly for modest sample size studies,

and should be accounted for in future longitudinal studies.

Future studies should include the use of automatic repositioning of MRS voxel e.g.,

[74,75] which would eliminate variable locations of voxel placement from measurement

to measurement, leading to changes in the relative proportion of gray matter, white

matter, and cerebrospinal fluid in the assessed voxel. Automatic voxel placement can

reduce the variance for longitudinal measurements.

Also, future work will look to incorporate the newer MR spectroscopic imaging

(MRSI) techniques that would permit investigation of changes over a larger region of

the brain rather than focusing on specific anatomic locations and providing spatial
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indifference [76, 77], while also permitting separate examination of disturbances in

white and gray matter [78,79].

This second part of the study expanded on the emerging field of fingerprinting in

resting-state functional connectomes (FCs), by opening it to a less controlled scenario

wherein repeated measurements were obtained from different imaging sites. To do

so, it extended a recently proposed method to assess and ultimately improve identi-

fiability in multi-site studies. Future studies could use this method to examine the

reproducibility of fingerprinting in resting-state functional networks and structural

connectivity across more than two sites. Another avenue of exploration would be to

investigate the reliability of graph theory measures (e.g., clustering coefficient, char-

acteristic path length, modularity, etc.) in the denoised FCs. Further use of this

extended PCA methodology could be used to denoise T1 and T2 structural images

at the voxel level by reconstructing test-retest MNI registered volumes at the opti-

mal level of differential identifiability. Another important investigation would be to

test the method presented in this study on scanners from different vendors, allowing

combination of data for larger multi-site studies.
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Multi-Site Identifiability Based on Resting-State Functional Connectomes,” 9
2018. [Online]. Available: http://arxiv.org/abs/1809.08959

[86] D. C. Van Essen, K. Ugurbil, E. Auerbach, D. Barch, T. E. Behrens, R. Bucholz,
A. Chang, L. Chen, M. Corbetta, S. W. Curtiss, S. Della Penna, D. Feinberg,
M. F. Glasser, N. Harel, A. C. Heath, L. Larson-Prior, D. Marcus, G. Michalar-
eas, S. Moeller, R. Oostenveld, S. E. Petersen, F. Prior, B. L. Schlaggar, S. M.
Smith, A. Z. Snyder, J. Xu, and E. Yacoub, “The Human Connectome Project:
A data acquisition perspective,” NeuroImage, vol. 62, no. 4, pp. 2222–2231,
2012.

[87] D. C. Van Essen, S. M. Smith, D. M. Barch, T. E. Behrens, E. Yacoub, and
K. Ugurbil, “The WU-Minn Human Connectome Project: An overview,” Neu-
roImage, vol. 80, pp. 62–79, 2013.

[88] D. B. Keator, T. G. van Erp, J. A. Turner, G. H. Glover, B. A.
Mueller, T. T. Liu, J. T. Voyvodic, J. Rasmussen, V. D. Calhoun,
H. J. Lee, A. W. Toga, S. McEwen, J. M. Ford, D. H. Mathalon,
M. Diaz, D. S. O’Leary, H. Jeremy Bockholt, S. Gadde, A. Preda,
C. G. Wible, H. S. Stern, A. Belger, G. McCarthy, B. Ozyurt, and
S. G. Potkin, “The Function Biomedical Informatics Research Network Data
Repository,” NeuroImage, vol. 124, pp. 1074–1079, 2016. [Online]. Available:
http://dx.doi.org/10.1016/j.neuroimage.2015.09.003

[89] C. R. Jack, M. A. Bernstein, N. C. Fox, P. Thompson, G. Alexander,
D. Harvey, B. Borowski, P. J. Britson, J. L. Whitwell, C. Ward, A. M. Dale,
J. P. Felmlee, J. L. Gunter, D. L. Hill, R. Killiany, N. Schuff, S. Fox-Bosetti,
C. Lin, C. Studholme, C. S. DeCarli, G. Gunnar Krueger, H. A. Ward,
G. J. Metzger, K. T. Scott, R. Mallozzi, D. Blezek, J. Levy, J. P. Debbins,
A. S. Fleisher, M. Albert, R. Green, G. Bartzokis, G. Glover, J. Mugler,
and M. W. Weiner, “The Alzheimer’s disease neuroimaging initiative (ADNI):
MRI methods,” Journal of Magnetic Resonance Imaging, vol. 27, no. 4, pp.
685–691, 4 2008. [Online]. Available: http://doi.wiley.com/10.1002/jmri.21049

[90] J. D. Van Horn and A. W. Toga, “Multisite neuroimaging trials.”
Current opinion in neurology, vol. 22, no. 4, pp. 370–8, 8 2009.
[Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/19506479http://
www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2777976

[91] L. Friedman, G. H. Glover, and The FBIRN Consortium, “Reducing
interscanner variability of activation in a multicenter fMRI study: Controlling
for signal-to-fluctuation-noise-ratio (SFNR) differences,” NeuroImage, vol. 33,
no. 2, pp. 471–481, 11 2006. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S1053811906007944

[92] R. V. Mulkern, P. Forbes, K. Dewey, S. Osganian, M. Clark, S. Wong,
U. Ramamurthy, L. Kun, and T. Y. Poussaint, “Establishment and Results

http://arxiv.org/abs/1809.08959
http://dx.doi.org/10.1016/j.neuroimage.2015.09.003
http://doi.wiley.com/10.1002/jmri.21049
http://www.ncbi.nlm.nih.gov/pubmed/19506479 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2777976
http://www.ncbi.nlm.nih.gov/pubmed/19506479 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2777976
https://www.sciencedirect.com/science/article/pii/S1053811906007944
https://www.sciencedirect.com/science/article/pii/S1053811906007944


69

of a Magnetic Resonance Quality Assurance Program for the Pediatric Brain
Tumor Consortium,” Academic Radiology, vol. 15, no. 9, pp. 1099–1110, 9
2008. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1076633208002183

[93] G. G. Brown, D. H. Mathalon, H. Stern, J. Ford, B. Mueller, D. N.
Greve, G. McCarthy, J. Voyvodic, G. Glover, M. Diaz, E. Yetter,
I. B. Ozyurt, K. W. Jorgensen, C. G. Wible, J. A. Turner, W. K.
Thompson, and S. G. Potkin, “Multisite reliability of cognitive BOLD
data,” NeuroImage, vol. 54, no. 3, pp. 2163–2175, 2011. [Online]. Available:
http://dx.doi.org/10.1016/j.neuroimage.2010.09.076

[94] J. T. Voyvodic, “Activation mapping as a percentage of local excitation: fMRI
stability within scans, between scans and across field strengths,” Magnetic
Resonance Imaging, vol. 24, no. 9, pp. 1249–1261, 11 2006. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0730725X06002207

[95] L. Friedman, H. Stern, G. G. Brown, D. H. Mathalon, J. Turner, G. H. Glover,
R. L. Gollub, J. Lauriello, K. O. Lim, T. Cannon, D. N. Greve, H. J. Bock-
holt, A. Belger, B. Mueller, M. J. Doty, J. He, W. Wells, P. Smyth, S. Pieper,
S. Kim, M. Kubicki, M. Vangel, and S. G. Potkin, “Test-retest and between-site
reliability in a multicenter fMRI study,” Human Brain Mapping, vol. 29, no. 8,
pp. 958–972, 2008.

[96] B. J. Casey, J. D. Cohen, K. O’Craven, R. J. Davidson, W. Irwin, C. A. Nelson,
D. C. Noll, X. Hu, M. J. Lowe, B. R. Rosen, C. L. Truwitt, and P. A. Turski,
“Reproductibility of fMRI results across four institutions using a spatial working
memory task,” Neuroimage, vol. 8, no. 3, pp. 249–261, 1998.

[97] V.-E. Gountouna, D. E. Job, A. M. McIntosh, T. W. J. Moorhead,
G. K. L. Lymer, H. C. Whalley, J. Hall, G. D. Waiter, D. Brennan,
D. J. McGonigle, T. S. Ahearn, J. Cavanagh, B. Condon, D. M. Hadley,
I. Marshall, A. D. Murray, J. D. Steele, J. M. Wardlaw, and S. M.
Lawrie, “Functional Magnetic Resonance Imaging (fMRI) reproducibility and
variance components across visits and scanning sites with a finger tapping
task,” NeuroImage, vol. 49, no. 1, pp. 552–560, 1 2010. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1053811909007988

[98] J. Suckling, D. Ohlssen, C. Andrew, G. Johnson, S. C. Williams, M. Graves,
C.-H. Chen, D. Spiegelhalter, and E. Bullmore, “Components of variance in a
multicentre functional MRI study and implications for calculation of statistical
power,” Human Brain Mapping, vol. 29, no. 10, pp. 1111–1122, 10 2008.
[Online]. Available: http://doi.wiley.com/10.1002/hbm.20451

[99] A. Yendiki, D. N. Greve, S. Wallace, M. Vangel, J. Bockholt, B. A. Mueller,
V. Magnotta, N. Andreasen, D. S. Manoach, and R. L. Gollub, “Multi-site
characterization of an fMRI working memory paradigm: Reliability of activation
indices,” NeuroImage, vol. 53, no. 1, pp. 119–131, 10 2010. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1053811910006920

[100] K. H. Zou, D. N. Greve, M. Wang, S. D. Pieper, S. K. Warfield, N. S.
White, S. Manandhar, G. G. Brown, M. G. Vangel, R. Kikinis, and W. M.
Wells, “Reproducibility of Functional MR Imaging: Preliminary Results of
Prospective Multi-institutional Study Performed by Biomedical Informatics

https://www.sciencedirect.com/science/article/pii/S1076633208002183
https://www.sciencedirect.com/science/article/pii/S1076633208002183
http://dx.doi.org/10.1016/j.neuroimage.2010.09.076
https://www.sciencedirect.com/science/article/pii/S0730725X06002207
https://www.sciencedirect.com/science/article/pii/S1053811909007988
http://doi.wiley.com/10.1002/hbm.20451
https://www.sciencedirect.com/science/article/pii/S1053811910006920


70

Research Network,” Radiology, vol. 237, no. 3, pp. 781–789, 12 2005. [Online].
Available: http://pubs.rsna.org/doi/10.1148/radiol.2373041630

[101] S. Noble, D. Scheinost, E. S. Finn, X. Shen, X. Papademetris, S. C.
McEwen, C. E. Bearden, J. Addington, B. Goodyear, K. S. Cadenhead,
H. Mirzakhanian, B. A. Cornblatt, D. M. Olvet, D. H. Mathalon, T. H.
McGlashan, D. O. Perkins, A. Belger, L. J. Seidman, H. Thermenos, M. T.
Tsuang, T. G. van Erp, E. F. Walker, S. Hamann, S. W. Woods, T. D.
Cannon, and R. T. Constable, “Multisite reliability of MR-based functional
connectivity,” NeuroImage, vol. 146, pp. 959–970, 2 2017. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1053811916305742

[102] S. Deprez, M. B. de Ruiter, S. Bogaert, R. Peeters, J. Belderbos,
D. De Ruysscher, S. Schagen, S. Sunaert, P. Pullens, and E. Achten,
“Multi-center reproducibility of structural, diffusion tensor, and resting
state functional magnetic resonance imaging measures,” Neuroradiology,
vol. 60, no. 6, pp. 617–634, 6 2018. [Online]. Available: http:
//link.springer.com/10.1007/s00234-018-2017-1

[103] S. Noble, M. N. Spann, F. Tokoglu, X. Shen, R. T. Constable, and
D. Scheinost, “Influences on the TestRetest Reliability of Functional
Connectivity MRI and its Relationship with Behavioral Utility,” Cerebral
Cortex, vol. 27, no. 11, pp. 5415–5429, 11 2017. [Online]. Available:
https://academic.oup.com/cercor/article/27/11/5415/4139668

[104] J. Jovicich, L. Minati, M. Marizzoni, R. Marchitelli, R. Sala-Llonch,
D. Bartrés-Faz, J. Arnold, J. Benninghoff, U. Fiedler, L. Roccatagliata,
A. Picco, F. Nobili, O. Blin, S. Bombois, R. Lopes, R. Bordet, J. Sein,
J.-P. Ranjeva, M. Didic, H. Gros-Dagnac, P. Payoux, G. Zoccatelli,
F. Alessandrini, A. Beltramello, N. Bargalló, A. Ferretti, M. Caulo, M. Aiello,
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[136] E. Amico and J. Goñi, “The quest for identifiability in human functional
connectomes,” Scientific Reports, vol. 8, no. 1, p. 8254, 12 2018. [Online].
Available: http://www.nature.com/articles/s41598-018-25089-1

[137] V. Pallarés, A. Insabato, A. Sanjuán, S. Kühn, D. Mantini, G. Deco, and
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A. HAE AND MRS EVALUATION
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Table A.1.: Percentage of data points excluded for each of the two regions of interest

(ROIs) in the male and female CSA pools, based on CRLB criteria, insufficient voxel

overlap and missed imaging sessions.

CSA Group ROI Metabolite
Sessions

Pre In1 In2 Post1 Post2

Male

DLPFC

Ins 8.51 23.40 21.28 17.02 29.79

tNAA 6.38 21.28 17.02 14.89 29.79

tCho 6.38 19.15 17.02 14.89 27.66

tCr 6.38 19.15 17.02 14.89 27.66

Glx 6.38 19.15 17.02 14.89 27.66

M1

Ins 14.89 6.38 10.64 17.02 25.33

tNAA 14.89 6.38 10.64 19.15 21.28

tCho 14.89 6.38 10.64 12.77 23.40

tCr 14.89 6.38 10.64 12.77 21.28

Glx 14.89 6.38 10.64 12.77 21.28

Female

DLPFC

Ins 6.90 6.90 17.24 10.34 13.79

tNAA 6.90 6.90 17.24 10.34 13.79

tCho 6.90 6.90 13.79 10.34 10.34

tCr 6.90 6.90 13.79 10.34 13.79

Glx 6.90 6.90 13.79 10.34 13.79

M1

Ins 3.45 10.34 17.24 6.90 20.69

tNAA 3.45 10.34 10.34 6.90 17.24

tCho 0.00 6.90 6.90 6.90 17.24

tCr 3.45 6.90 6.90 6.90 17.24

Glx 3.45 6.90 10.34 6.90 17.24
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Table A.2.: The 25th, 50th, 75th and 90th percentiles of PTA (g) of all HAE that

exceeded 10g.

25th Percentile 50th Percentile 75th Percentile 90th Percentile

Male CSA (football) 25.1 33.0 47.0 67.0

Female CSA (Soccer) 23.9 30.0 43.3 62.2

Table A.3.: Median cPTATh,j,i for male and female CSA at Th = 20g, 50g and 70g

and j-th session = In1-2, Post1.

Session In1 In2 Post1

Th (g) 20 50 70 20 50 70 20 50 70

Male CSA 2639.0 939.9 561.6 7624.0 2929.0 1303.0 12770.0 5169.0 2262.0

Female CSA 1492.0 396.4 168.30 3273.0 1333.0 721.0 4137.0 1707.0 758.7

Table A.4.: Median aPTATh,j,i for male and female CSA at Th = 20g, 50g and 70g

and j-th session = In1-2, Post1.

Session In1 In2 Post1

Th 20 50 70 20 50 70 20 50 70

Male CSA 41.12 70.40 90.69 39.07 70.58 90.61 38.95 71.02 91.03

Female CSA 35.17 67.19 84.11 36.30 69.60 85.29 36.18 68.72 88.37

Table A.5.: Wilcoxon signed rank test statistic W and (pFDR) assessing the across-

session stability for each metabolite concentration, in each of two regions of interest

(ROIs) in the male and female NCA pools.

Population ROI
Metabolite-Concentration

Ins tNAA tCho tCr Glx

Male NCA
DLPFC 69 (0.447) 68 (0.447) 69 (0.447) 60 (0.670) 36 (0.447)

M1 58 (0.951) 80 (0.453) 54 (0.951) 46 (0.951) 45 (0.951)

Female NCA
DLPFC 52 (0.566) 39 (1.000) 34 (0.917) 54 (0.566) 57 (0.566)

M1 65 (0.106) 65 (0.106) 57 (0.220) 51 (0.380) 62 (0.129)
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Table A.6.: Wilcoxon signed rank test statistic W and (pFDR) assessing the across-

session stability for each metabolite concentration ratio to [tCr], in each of two regions

of interest (ROIs) in the male and female NCA pools.

Population ROI
[Metabolite]-Ratio of Concentration to [tCr]

Ins tNAA tCho Glx

Male NCA
DLPFC 58 (0.808) 57 (0.808) 46 (0.808) 37 (0.808)

M1 59 (0.903) 75 (0.690) 67 (0.782) 55 (0.903)

Female NCA
DLPFC 44 (0.733) 25 (0.602) 17 (0.369) 44 (0.733)

M1 55 (0.235) 59 (0.235) 45 (0.677) 69 (0.064)

Table A.7.: Friedman χ2 score (p-value) assessing the presence of a dependence on

session for each metabolite concentration, in each of two regions of interest (ROIs)

in the male and female CSA pools. Metabolites exhibiting significant dependence on

session within the given CSA pool and ROI are marked in bold.

Population ROI
Metabolite-Concentration

Ins tNAA tCho tCr Glx

Male CSA
DLPFC 5.23 (0.264) 4.10 (0.392) 4.15 (0.385) 9.14 (0.058) 9.6 (0.047)

M1 2.88 (0.578) 2.98 (0.561) 2.89 (0.576) 3.15 (0.533) 2.74 (0.602)

Female CSA
DLPFC 1.26 (0.738) 3.41 (0.332) 3.99 (0.262) 3.91 (0.271) 2.71 (0.439)

M1 4.24 (0.237) 0.02 (0.999) 2.54 (0.467) 3.00 (0.392) 11.03(0.009
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Table A.8.: Friedman χ2 score (p-value) assessing the presence of a dependence on

session for each metabolite concentration ratio to [tCr], in each of two regions of

interest (ROIs) in the male and female CSA pools. Metabolite ratios exhibiting

significant dependence on session within the given CSA pool and ROI are marked in

bold.

Population ROI
[Metabolite]-Ratio of Concentration to [tCr]

Ins tNAA tCho Glx

Male CSA
DLPFC 1.48 (0.83) 3.26 (0.54) 15.01 (0.0046) 4.39 (0.356)

M1 2.93 (0.57) 1.5 (0.827) 2.33 (0.675) 1.02 (0.91)

Female CSA
DLPFC 1.68 (0.642) 5.40 (0.145) 2.05 (0.562) 2.21 (0.529)

M1 2.34 (0.505) 1.26 (0.738) 1.10 (0.778) 10.99 (0.012)
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B. IDENTIFIABILITY RESULTS FOR YALE DATASET

Edgewise ICC Training Set

(A) Orig

Recon
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Fig. B.1.: Purdue dataset. Averaged (100 iterations) intra-class correlation co-

efficient (ICC) values, computed for each FC edge, for the original (Orig) and re-

constructed (Recon) on the Training and Validation sets, for resting-state functional

connectomes without global signal regression (NoGSR; (A) and (B)) and with global

signal regression (GSR; (C) and (D)). Edges are arranged by Yeo’s resting-state func-

tional networks [156]. As before, notable benefit is observed for the reconstruction to

enhance identifiability, independent of the exclusion/inclusion of global signal regres-

sion.
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Fig. B.2.: Yale dataset. Multi-site differential identifiability (<< Idiff >> ∗100) and

differential identifiability of each [sitei, sitej ] pair, (< I ijdiff > ∗100) for training data

as a function of the number of principal components (PCs) used for reconstruction

for resting-state data without global signal regression (NoGSR; (A) and (B)); and

with global signal regression (GSR; (C) and (D)). In all figures solid lines denote

<< Idiff >> and < I ijdiff > as computed from the original FCs, whereas lines with

circles denote the differential identifiability for reconstructed FCs as a function of m,

the included number of components. In (A) and (C), the gray (shaded) area denotes

the 95% confidence interval for << Idiff >> over 100 random permutations of the

test-retest FC pairs at each value of m. It may be observed that the benefit of recon-

struction on differential identifiability was not dependent on the exclusion/inclusion

of global signal regression.
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Table B.1.: Yale dataset. Maximum percentage differential identifiability (< I ij∗diff >

∗100), explained variance (R2) and number of principal components for each [sitei,

sitej ] pair (mij∗) for Training datasets without global signal regression (NoGSR) and

with global signal regression (GSR).

[sitei, sitej ] < I ij∗diff > mij∗ R2

NoGSR

[site1, site1] 45.1 18 0.75

[site1, site2] 35.3 11 0.63

[site2, site1] 39.1 12 0.65

[site2, site2] 44.4 16 0.72

GSR

[site1, site1] 47.1 19 0.76

[site1, site2] 40.9 11 0.64

[site2, site1] 42.6 12 0.66

[site2, site2] 47.5 19 0.76
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Fig. B.3.: Yale dataset. Identifiability matrices (I) of the original (Orig) and recon-

structed (Recon) data for the Training, (A) and (C), and Validation, (B) and (D) sets

of resting-state functional connectomes without global signal regression (NoGSR; (A)

and (B)) and with global signal regression (GSR; (C) and (D)). The Identifiability

matrix (I) has a blockwise structure where each block is I ij, representing the identi-

fiability for the [sitei, sitej ] pair. Note that identifiability was meaningfully improved

across sites regardless of the exclusion/inclusion of global signal regression.



88

Edgewise ICC Validation Set (four runs across two sites)
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Fig. B.4.: Yale dataset. Averaged (100 iterations; see Methods for bootstrap details)

intra-class correlation coefficient (ICC) values, computed for each FC edge from four

visits across two sites, for the Validation set original (Orig; (A) and (B)) and re-

constructed (Recon; (C) and (D)) data without global signal regression (NoGSR;

(A) and (C)) and with global signal regression (GSR; (B) and (D)). Note that the

benefit from reconstruction to enhance identifiability is, again, not dependent on

exclusion/inclusion of global signal regression.
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ICC Validation Set (four runs across two sites)
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Fig. B.5.: Yale dataset. Brain rendering of intraclass correlation coefficient (ICC),

computed from all four visits across the two sites for the Validation set original

(Orig; (A) and (C)) and reconstructed (Recon; (B) and (D)) data without global

signal regression (NoGSR; (A) and (B)) and with global signal regression (GSR;

(C) and (D)). The strength per brain region—computed as the mean of edgewise

ICC values (ICC computed for each FC edge and averaged over 100 iterations; see

Methods for Bootstrap procedure)—provides an assessment of overall reproducibility

of the functional connections of each brain region. FC reproducibility was appreciably

improved, regardless of exclusion/inclusion of global signal regression.
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C. THE IMPACTS OF REPRESENTATIONAL FLUENCY

ON COGNITIVE PROCESSING OF CRYPTOGRAPHY

CONCEPTS

The material presented in this chapter is published in [159].

C.1 Introduction

Cybersecurity is considered a top priority by the US government to defend its

virtual borders. A shortage of qualified IT security professionals has long been a

problem nationally and internationally [160–162]. Furthermore, the workforce short-

fall is widening. According to a 2015 workforce study, 62% of respondents stated that

their organizations have too few information security professionals compared to the

56% in 2013 [163].

Cybersecurity education has been and continues to be a primary focus for for-

tifying the workforce. The implications are many and include: the need for more

students to become aware of and interested in cybersecurity; the need for a higher

proportion of the students who are interested in cybersecurity to convert to a de-

clared cybersecurity major in college; and the need to retain students in that major

to boost graduation numbers so that more enter the workforce. However, quantity is

not the only challenge in cybersecurity workforce development. It is equally, if not

more, important that the work-force have the breadth and depth of skills needed to

perform in the workforce. Cybersecurity education needs breadth that covers both

technical and nontechnical skills spanning computer science, computer engineering,

information systems, psychology, business and management, and many other related

disciplines [164]. According to [165] we have a shortage of the highly technically

skilled people required to operate and support systems we have already deployed, we
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also face an even more desperate shortage of people who can design secure systems,

write safe computer code, and create the ever more sophisticated tools needed to pre-

vent, detect, mitigate, and reconstitute systems after an attack. [166] and [167] also

emphasize that cybersecurity experts need deep technical skills coupled with capabil-

ities to recognize and respond to complex and emergent behavior, mastery in using

abstractions and principles, assessing risk and handling uncertainty, problem-solving,

and reasoning; coupled with facility in adversarial thinking.

It is a challenge to educate cybersecruity graduates to assure that they: 1) have

broad and deep technical skills, 2) are facile in abstraction, problem-solving, reason-

ing, and adversarial thinking, and 3) able to learn and perform in this complex and

emergent domain. Teaching cyberscurity requires the educator to present the ab-

stract concept to students in a crystal clear way, and to extend the abstract concept

to practice to let the students learn the knowledge in context.

Given the newness of the field, cybersecuritys pedagogical best practices have not

yet been adequately investigated [168]. In the past 10-15 years, articles focused on

teaching practice have increased. For example, [169] discuss challenge based learning

methodology to improve learning via a multi-disciplinary approach which encourages

students to collaborate with their peers, ask questions, develop a deeper understand-

ing of the subject and take actions in solving real-world challenges. Wei et.al proposed

a multi-faceted hierarchical education framework to teach cybersecurity with the de-

sired level of breath and depth [170]. [171] present a unique teaching collaborative

among 13 universities that intends to teach students agile research and development

skills in cyberecurity. While there has been considerable growth in the investigation

and reporting on cybersecurity teaching, we find that there is little to no substantive

work on cybersecurity learning and thinking.

This work is grounded in cognitive theory and investigates students mental mod-

els in one knowledge area of cybersecurity, i.e., cryptography. We developed Model-

Eliciting Activities (MEAs), investigated students representational fluency and the

relationship of students development of schema and changes in their cognitive process-
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ing and control when encountering cryptography concepts. In this paper, we report on

studentsmental models using functional magnetic resonnance imaging (fMRI) anal-

ysis of students brain activities while solving complex security problems, as well as

learning data from classroom tests.

C.2 Literature Review

The Importance of Conceptual Understanding of Cryptography in Cy-

bersecurity

Cryptography is an important subject in cybersecurity. And while cryptography

is important for everyone in the field to understand, it can be an especially challeng-

ing subject to learn. The domain includes several key concepts, such as symmetric

key cryptography, asymmetric key cryptography, types of ciphers, cryptanalysis and

attacks, hashing, digital signatures, etc. Each of these concepts is comprised of sub

concepts, which build with other sub concepts to form conceptual understanding of a

key concept. Furthermore, the conceptual understanding of these concepts and sub

concepts requires mathematical, language, and analytic thinking. Both breadth and

depth of cryptography knowledge must be considered.

Conceptual understanding is defined as the abstract mental representation of given

phenomena. Conceptual understanding occurs in the mind and the mind continuously

(re)forms mental representations. The veracity of learners conceptual understanding

is the fidelity of the conceptual understanding to the external world. If conceptual

understanding matters, then conceptual learning is where we need to start.

Cognitive Theory, Conceptual Learning and Measurement Thereof

Cognitive theories of conceptual learning are grounded in Piagets work on logical

mental frameworks (also called schemas and mental models) as structures in the

brain that organize information and interactions among information. Interacting

with new information, according to Piaget, modifies these schema, which is learning

[172]. Conceptual learning is the acquisition of information about concepts and their
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interactions, and the ongoing modification about the body of conceptual knowledge

as new concepts and their interactions are encountered [173].

Correct categorization involves making links to prior knowledge and so may require

adjustment or correction of prior knowledge. Ausubels assimilation theory contrasts

rote learning (temporary acquisition of disorganized or poorly understood isolated

or arbitrarily related concepts) with meaningful learning (long-term acquisition of

organized, interrelated concepts into existing cognitive structures) [174]. Conceptual

learning is the process of identifying and correctly categorizing concepts such that

they can later be used to make predictions or decisions [175,176].

The study [173] have shown that providing learners with instruction in representa-

tional fluency can build conceptual understanding. Representations are the different

forms in which a concept, principle, or phenomenon can be expressed and communi-

cated. Common representations include graphic, pictorial, verbal, mathematical, and

concrete. Each representation presents the phenomenon it is in-tended to describe in

a different mode. Deep(er) under-standing of the given concept requires understand-

ing of and among various representations. Beyond comprehending representations,

even deeper understanding means being fluent in shifting back and forth among the

variety of relevant representations.

The concept of fluency is often associated with the ability to express oneself in

the spoken and written word, and to move effortlessly (automatically) between the

two representations. A person who is fluent in a language has this ability; they can

translate from English to Chinese and back, and from written to spoken word and

back (where written may be in English and spoken in Chinese).

The idea of fluency has been extended to other fields such as physics, chemistry, en-

gineering, and mathematics. For example, a study [177] on experts and novices found

that physics problem solvers who are fluent in their use of different representations

can easily translate between them, and can assess the usefulness of a particular rep-

resentation in different situations. Similarly, [178] found that when learners develop
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multiple representations they are better able to transfer knowledge to new domains

with increased cognitive flexibility.

Representational fluency in the STEM fields can include: a) visualizing and con-

ceptualizing transformation processes abstractly; b) understanding systems that do

not exhibit any physical manifestations of their functions; c) transforming physical

sensory data to symbolic representations and vice versa; d) quantifying qualitative

data, e) qualifying quantitative data; f) working with patterns; g) working with con-

tinuously changing qualities and trends; and h) transferring principles appropriately

from one situation to the next [179]. Regardless what the transformation, representa-

tional fluency connotes continuous adaptation and flexibility of the conceptual model,

and the ability to perform with facility, adeptness, and expertise. Representational

fluency is an important aspect of deep conceptual understanding that has been shown

to promote transfer of learning and the development of expertise.

The authors in [180] advocate for the role of neuroscience in the study of mental

models. The mental frameworks theorized by [172] would require activity in the

brain. As learners mental schema change to incorporate new information derived

from experiences, brain function in the learners brains changes. That is, learning

changes the structures of the brain.

Advances in neuroscience offer researchers new tools, such as fMRI, to measure

brain activity. To date, fMRI has been used in studies of cognitive processing of

mathematics. The study [181] sought to understand what areas of the brain are

involved in mathematical computation while [182] built on [181] by using fMRI to

measure changes in cognitive processing after instructing students in multiplication in

one and two digit numbers. These studies are examples of how neuroscience is being

used to understand cognitive processing, so that later it can be applied to evaluate

the impacts of instruction on learning.

Our study seeks to understand where cryptography is processed in the brain as a

basis for understanding what instructional methods maximize cryptography learning

in students.
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C.3 Methods

C.3.1 Research Questions

This exploratory study first investigated where in the brain cryptography is pro-

cessed. Second, we investigated the impact of representational form on cognitive

processing. More specifically, we investigated whether cognitive processing increased

when students were asked to translate cryptography concepts between representa-

tional forms (language to math, math to graphical, etc.) in comparison to cognitive

processing of concepts using the same representational form (language to language,

math to math, etc.). Third we investigated whether teaching cryptography using

multiple representations changed how and/or where cryptography concepts were pro-

cessed in the brain in comparison to instruction that was not focused on generating

representational fluency.

The research team used fMRI scans of students to answer the research questions.

In order to investigate impact of teaching using multiple representations, learners were

taught five cryptography topics using multiple representations, and four topics were

taught using single representations to convey concepts. Data gathered from learners

classroom performance were used in support of the fMRI analysis, as discussed below.

C.3.2 fMRI Component

Variables and Operationalization

Independent Variables

As a descriptive question, determining where cryptography concepts are processed

in the brain did not have an independent variable. When considering whether transla-

tion between representational forms in the context of cryptography impacted cognitive

processing, the research team defined a binary variable, Representational Translation.

Either the students had to make a translation be-tween representations, or they did

not. We implemented this variable as questions that the students were asked to an-
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swer while under fMRI scanning. Students were required to make a Representational

Translation when, as shown in Figure 1, Representation 1 and Representation 2 were

presented in different representational forms.

Questions asked of students during fMRI were generated from material that was

taught using both the representational fluency-focused instructional method, as well

as the method that did not focus on the use of multiple representations in instruction.

Instructional Method was defined as the independent variable in terms of our third

research question regarding the impact of instruction focused on representational

fluency on cognitive processing of cryptography concepts.

Dependent Variables

For our research questions, the dependent variable was Cognitive Processing of

Cryptography Concepts, which illustrates where in the brain and with what intensity

cryptography is processed. The variable was analyzed in different ways based on the

question asked, but was implemented by comparing different periods of activity in the

fMRI scan based on the question being considered against brain activity measured as

the subject observed the crosshair pattern following each question as shown in Figure

1.

Population and Sample

Nine out of the 12 students from a graduate-level, semester-long network security

course participated in fMRI scans.

MRI Acquisitions

Scans were administrated at the University MRI Facility using 3T GE Discovery

MR750 and a 32-channel brain array (Nova Medical). Scans consisted of a high-

resolution (1mm isotropic) T1 weighted anatomical scan for registration and tissue

segmentation purposes and six functional scans (TR/TE = 1500/28msec; flip angle

= 72◦; 35 slices at 3.5mm; field of view (FOV)= 24 cm and matrix = 64x64). Each

functional run focused on one topic and consisted of nine yes/no matching ques-

tions (nine blocks) using three different representational forms. The functional runs

were presented in random order. The subjects were able to see the questions inside
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the scanner through fiber optic goggles (NordicNeuroLab; Bergen, Norway) and re-

sponded with their answers through a four-button keypad. Subjects responses were

directly transmitted to a computer for storage. Each block began with 15 seconds of

crosshair display during which subjects were instructed to relax and focus on the dis-

play. The subjects were then presented with a question in one of the representational

form for nine seconds, the ISI was of 1.5 seconds and then they were presented with

another slide consisting of a question in the same or different representation form

for nine seconds. After the second representation subjects then had nine seconds to

decide if both the representations (R1 and R2) presented the same concept or not

and answered yes or no by pressing one of the designated buttons on the keypad.

Fig. C.1.: The protocol of a block.

fMRI data analysis

fMRI scans were processed with an in-house MATLAB code adapted from afni proc.py,

using AFNI and FSL. The pipeline consisted of brain extraction, outlier detection,

despiking, slice timing correction, motion correction, alignment to the T1-weighted

anatomical scan, tissue segmentation into gray matter, white matter and cerebral

spinal fluid (CSF), and spatial smoothing within each tissue type (isotropic Gaussian

filter with Full Width Half Maximum (FWHM) of 4mm). Anatomical and fMRI scans

of all subjects were aligned to a standard template (skull stripped 1 mm3 ICBM152)

so that brain activation patterns from different subjects could be grouped together

for analysis. Data were motion corrected using three motion parameters (three trans-

lational and three rotational for each x-y-z axes) and their derivatives as regressors

in General Linear Model (GLM). Block regressors were used for each of the nine

transitions and crosshairs in GLM.
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Brain activations obtained from crosshair slides were treated as Baseline acti-

vations. Brain activations for each representation were obtained by comparing the

βRepresentation versus βBaseline obtained from GLM of all subjects and all runs, using

paired voxel-wise 3D t-tests followed by voxel-wise False Discovery Rate (FDR) cor-

rection. Adjacent voxels with pFDR < 0.05 and cluster size greater than 100 voxels

were considered as significant brain activations against the baseline and are as shown

in the figures.

fMRI data gathered was analyzed differently for dependent variable, Cognitive

Processing of Cryptography Concepts, based on which question was being investi-

gated. When investigating where in the brain cryptography concepts are processed,

activation patterns were gathered during the presentation of the first representation

of each question. Activation present during the resting period following the question

(noted as the second crosshair pattern in Figure 1) was subtracted from activation

patterns noted during Representation 1. Data were separated based on the represen-

tation presented in Representation 1 in Figure 1, then the data were aggregated for

all student participants (n=9) by representation n=18 per student), for a total of 162

individual data points per representation.

Evaluating whether translation between representations within questions impacted

cognitive processing of cryptography, the period of time during the presentation of

Representation 2 and the Response Period (as shown in Figure 1) was used to gather

cognitive processing data and activation noted during the second crosshair pattern was

subtracted from the gathered cognitive processing data. Data were grouped by the

independent variable Representational Translation and aggregated for all students.

In this case, three questions per topic did not require Representational Translation.

So, the total number of data points for non-translation was n=18. Six per topic did

require translation for a total translation n=36. Each student answered questions on

the same six topics.

Finally, cognitive processing data were gathered and analyzed by the Instructional

Method independent variable. In this case, the same data gathering process was used
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as for analysis of Representational Translation, except that the data were grouped by

the instructional method in which the topic was taught. In terms of this comparison,

each student was given questions from three topics that were taught using the treat-

ment instructional method that focused on representational fluency and three topics

that were taught with the control instructional methodology. This analysis consisted

of nine questions over three topics aggregated for nine students, or n=243. However,

the research team delimited these comparisons by comparing only questions with the

same structure to each other. For example, the fMRI results for all questions on a

topic that required the subject to translate a concept from language to math (or vice

versa) were aggregated to determine cognitive processing of cryptography concepts

during that translation process. Therefore, the effective n=27 (three translations per

topic, nine subjects in total) treatment data points and n=54 control data points.

C.3.3 Classroom Component

Research Question

Classroom data were used only in support of analysis of the fMRI results produced

from this study; therefore, the research questions are the same as those discussed as

part of the fMRI component earlier.

Variables and Operationalization

Independent Variables

The independent variable in this experiment was the method of instruction. In-

structional methods were as-signed by the researchers to the following topics taught

in class: Zero-Knowledge Proof (ZKP), Pohlig-Hellman Ciphers (PH), Rivest Shamir

Adleman Cryp-tosystems (RSA), Digital Cash (DC), and Public Key Infrastructure

(PKI). All other content taught during the semester was taught using two represen-

tational forms not focused on representational fluency.

Dependent Variables
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The dependent variable was students pre to post-test learning gain. Learning gain

was determined by normalizing students points scored on the pre and post-tests into

a percentage interval variable, subtracting the pretest score from the post-test score,

and averaging the differences of the twelve students for each question. Pre to post-

test score differences were aggregated by instructional method and compared using a

t-test.

Populations and Samples

Twelve of twelve students from a graduate-level, advanced network security course

offered in the Spring 2017 semester at a large university in the Midwestern United

States consented to allow their pre and post-test exam scores to be used in this

research.

Setting

Data for this experiment were gathered in one section of a graduate-level advanced

networking course at a large public university in the Midwestern United States. The

course was not a required course. The control topics were taught using a combina-

tion of lectures delivered by projecting slides containing individual representational

forms (language, graphics, or math) to deliver concepts to learners. Instruction of

the treatment topics taught: Zero-Knowledge Proof (ZKP), Pohlig-Hellman Ciphers

(PH), Rivest Shamir Adleman Cryptosystems (RSA), Digital Cash (DC), and Public

Key Infrastructure (PKI) using activities consisting of multiple representations and

focused on representational fluency. No other aspects of the instruction or scored

evaluation of the students in the classroom differed between the control and treat-

ment groups. Student performance was evaluated using a pretest and post-test, which

also served as the students final exam.

Population

The population from which subjects were drawn for this experiment consisted of

all students enrolled in the Universitys graduate advanced network security course

offered by the college of Technology in the Spring of 2017. Enrolled students were

predominantly 18-24-year-old. Because the experiment required subjects to consent
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to the use of their scores on course homework, projects, and exams, those students

who gave their signed consent to release their scores to the research team comprised

the sample in each class section. All 12 students in the course consented to allow use

of their classroom scores in this study.

C.4 Results

C.4.1 Brain Location: Cognitive Processing of Cryptography

In order to answer the question, Where in the brain are cryptography concepts

processed?, the research team analyzed blood oxygen level data (BOLD) of partici-

pants, representing brain activity, taken during the fMRI while the participants were

processing cryptography questions. Measurement of blood flow to the bran, the mea-

surement on which fMRI is based, serves as a proxy for changes in brain activity.

Increased blood flow to an area of the brain indicates increased brain activity, cogni-

tive processing, where decreased activity is signaled by reduced blood flow to areas

of the brain. In this re-search, questions were presented using graphical, language,

and mathematics representations as shown in Figure C.1, which generated distinct

patterns of brain activation, so we address the research question by representation.

Fig. C.2.: Activation Comparisons by Representation.

This analysis used brain activation detected during the presentation of the first of

two slides in each question, and the resting cross hair pattern following the question

as illustrated in Figure C.2.

The research team aggregated the BOLD signal data for all questions by the

type of the first representation, that is math, graphical, or language, across the nine
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student participants. Cryptography concepts presented using mathematical, English

Language and graphical representation produced BOLD activation patterns shown in

Figure C.3.

Clusters of activation were noted at a significance level of α = 0.05. Corresponding

Broadmann Areas and usages are listed in Tables C.1, C.2 and C.3 below.

(A) Axial Sagittal Coronal

(B)

(C)

1

Fig. C.3.: Brain Activation of Cryptography Concepts presented using (A) Mathe-

matical (B) Language and (C) Graphical Representations.

C.4.2 Brain Activation in Cryptography Processing During Translation

of Representational Forms

The research team compared students cognitive processing on cryptography ques-

tions in which they were forced to make a translation between representational forms

in order to answer the question against cognitive processing activity on questions in
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Table C.1.: Math Processing Areas of Activation

Cluster Broadmann Area Gyrus Usage

1 Left 39 Left Middle Temporal Accessing word meaning

2 Right 39 Right Middle Temporal Accessing word meaning

3 Left 9 Left Inferior Frontal Representation of numbers

4 Right 44 Right Inferior Frontal Executive Processing

5 Left 9 Left Medial Frontal Executive Processing

Table C.2.: Language Processing Areas of Activation

Cluster Broadmann Area Gyrus Usage

1 Left 17 Left Inferior Occipital Visual Processing

2 Left 44 Left Inferior Frontal Executive Language Processing

3 Right 37 Right Lingual Gyrus Visual Processing

4 Left 3 Left Inferior Parietal Somatosensory Processing

5 Right 1,2 Right Superior Parietal Somatosensory Processing

Table C.3.: Graphics Processing Areas of Activation

Cluster Broadmann Area Gyrus Usage

1 Left 30 Left Middle Occipital Visual Processing

2 Right 7 Right Superior Parietal Facial Stimuli

3 Right 37 Right Lingual Visual and Letter Processing

which no such translation was necessary. We had hypothesized, based on [183], that

questions requiring such a translation would produce more intense cognitive activity

in similar brain regions than those that did not require representational translation.

Our comparison of brain activation in this study did not support this hypothesis.

Only brain activation patterns in the Language to Language questions, the Language
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to Math, and the Math to Graphical analyses showed significant activation beyond

baseline. Figure C.4 show the brain areas of significant activation in this comparison.

(A) Axial Sagittal Coronal

(B)

(C)

1

Fig. C.4.: Brain Activation for (A) Language to Language, (B) Language to Math

and (C) Math to Graph Comparisons of Cryptography Concepts.

C.4.3 Cryptography Learning by Instructional Method

In support of the fMRI brain activation data comparison between topics instructed

using MEA and focused on representational fluency and those taught using traditional

lecture-based instruction, the research team also compared learning gains using the

course pre-test and post-test. We hypothesized that teaching cryptography concepts

using representational fluency would produce different patterns of cognitive activation

compared against topics taught without a focus on representational fluency. For this
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comparison, pre and post-test scores were aggregated from the twelve students in

the class, and across all topics that were instructed using MEA and compared to

those that were instructed using the traditional method of instruction not focused

on representational fluency. This analysis showed an average learning gain of 10.83%

on topics instructed using MEA and 3.56% on topics instructed using methods not

focused on representational fluency. These learning gains are not significant at α =

0.05 (t=1.19, p=0.24). Comparing pre-test scores based on instructional method

indicated a similar level of knowledge, on average, of material that would be instructed

using MEA (µ = 0.57, σ = 0.23) versus topics that would be instructed using other

methods (µ = 0.57, σ = 0.25).

C.5 Discussion and Conclusion

The purpose of this work is to design and evaluate if and how representational flu-

encies are related to cognitive learning. The team specifically examined the following

research questions:

Where does the cryptography occur in the brain?

The fMRI scan analyses showed that cryptography concepts, if represented using

different formats, i.e. language, graph, and math notations, activate different parts

of the brain. The results were statistically significant, even when the sample size was

merely 9. The activation maps also echo similar distributions as the previous study

on math and physics concepts. This may suggest that from cognitive perspective,

cryptography is fundamentally not very different from math and physics. Or put it

differently, brain activations are directly related to the form of the representations

rather than the underlying complex cryptography concepts or algorithms.

Where do the transitions of different representations occur in the brain?

Among nine possible representation fluencies, the re-search team discovered that three

of them are statistically significant. They are from language to language, from lan-

guage to math, and from math to graph. This suggest for the group of students that
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participated fMRI scans, longer and stronger brain activities were recorded when stu-

dents were asked to translate the same concept from language to language, from lan-

guage to math, and from math to graph. Interestingly, the translation from math to

language and the translation from graph to math were not shown the same statistical

significance. If the research results are reliable, it can be inferred that representation

translations are uni-directional. That is the brain reacts differently when translating

language to math than translating math to language. If we further assume stronger

or longer brain activations are related to more difficult tasks, then it may suggest the

three transitions that showed statistically significance might be the ones that students

having trouble with.

How does representational fluency impact the class-room learning re-

sults? The classroom learning results showed an average of 10.38% gains between

pretests and post tests when the instructional methods were delivered using MEAs

that representational fluencies. In contrast, the gains were merely 3.56% when con-

ventional instructional methods were adopted in the classroom. However, the p value

of the paired t-test was 0.26: too large for the research team to declare the findings

are statistically significant. There were two major reasons accounted for this non-

significance. The first was due to small sample size of 12. They second was the very

high 57% average pretest scores. Students participated in this study were all gradu-

ate students and it would not be too surprising that they may possess strong prior

knowledge. The high pretest scores may also relate to how the grade was calculated

and normalized. Further study is needed with a bigger sample size, and preferably at

undergraduate level to fully understand the impact the representational fluencies on

the classroom learning results.

C.6 Future Work

The results of this study present several avenues for future research. Given the

limitations of this experiment, future work could validate our findings regarding where
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cryptography concepts are processed in the brain. Our failure to find significant

results relating to cognitive processing activation during representational translations

or cognitive processing related to representational fluency leave these areas open for

additional research. In particular, it is possible that different types of classroom

instruction or classroom measures of that instruction could also be performed in

order to evaluate the effects on cognitive processing and learning. With a cognitive

processing baseline set in this work for processing of cryptography, many aspects

of learning can be compared against these baselines toward the goal of increasing

cryptography learning in information security students.
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