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 Worldwide, as many as 1 billion people suffer from neurological disorders. Fundamentally, 

neurological disorders are caused by dysregulation of biochemical signaling within neurons, 

leading to deficits in learning and memory formation. To identify better preventative and 

therapeutic strategies for patients of neurological disorders, we require a better understanding of 

how biochemical signaling is regulated within neurons. 

 Biochemical signaling at the connections between neurons, called synapses, regulates 

dynamic shifts in a synapse’s size and connective strength. Called synaptic plasticity, these shifts 

are initiated by calcium ion (Ca2+) flux into message-receiving structures called dendritic spines. 

Within dendritic spines, Ca2+ binds sensor proteins such as calmodulin (CaM). Importantly, 

Ca2+/CaM may bind and activate a wide variety of proteins, which subsequently facilitate signaling 

pathways regulating the dendritic spine’s size and connective strength.  

In this thesis, I use computational models to characterize molecular mechanisms regulating 

Ca2+-dependent protein signaling within the dendritic spine. Specifically, I explore how Ca2+/CaM 

differentially activates binding partners and how these binding partners transduce signals 

downstream. For this, I present deterministic models of Ca2+, CaM, and CaM-dependent proteins, 

and in analyzing model output I demonstrate in-part that competition for CaM-binding alone may 

be sufficient to set the Ca2+ frequency-dependence of protein activation. Subsequently, I adapt my 

deterministic models into particle-based, spatial-stochastic frameworks to quantify how spatial 

effects influence model output, showing evidence that spatial gradients of Ca2+/CaM may set 

spatial gradients of activated proteins downstream. Additionally, I incorporate into my models the 

most detailed model to-date of Ca2+/CaM-dependent protein kinase II (CaMKII), a multi-subunit 

protein essential to synaptic plasticity. With this detailed model of CaMKII, my analysis suggests 

that the many subunits of CaMKII provide avidity effects that significantly increase the protein’s 

effective affinity for binding partners, particularly Ca2+/CaM. Altogether, this thesis provides a 
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detailed analysis of Ca2+-dependent signaling within dendritic spines, characterizing molecular 

mechanisms that may be useful for the development of novel therapeutics for patients of 

neurological disorders.  
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1. INTRODUCTION 

 Significance 

Neurological disorders such as Alzheimer’s Disease affect more than 15 million Americans 

and are currently neither preventable nor curable [1, 2]. Patients of neurological disorders 

experience deficits in learning and memory which arise from perturbations to biochemical 

signaling networks within neurons [3]. Developing therapeutics for neurological disorders requires 

a mechanistic understanding of these highly complex signaling networks. However, these 

signaling networks are highly dynamic, subject to biophysical noise, and occur within miniscule 

geometries [4]. Thus, experimental methods (e.g. protein knockout or fluorescent microscopy) 

currently lack the spatiotemporal resolution to fully describe how signaling pathways are regulated 

within neurons [5, 6]. To complement experimental methods, computational models can also 

identify and characterize mechanisms of molecular signaling. Therefore, in this work I use 

computational models to examine the molecular mechanisms regulating calcium ion (Ca2+)-

dependent signaling networks within neurons. With these models, I quantify how parameters 

related to protein binding kinetics, competitive binding, spatial effects, and protein multivalence 

contribute to signaling outputs. By quantifying how these parameters effect signaling output, I 

identify and characterize mechanisms that may be targeted or accounted for by future therapeutics.  

 Synapses in the hippocampus 

The human brain contains roughly 86 billion neurons [7]. Neurons may be classified as 

inhibitory neurons and excitatory neurons. Excitatory neurons are the most numerous and form 

large numbers of connections, or synapses, with neighboring neurons. Synapses facilitate 

electrochemical signaling from a presynaptic neuron’s axon, towards the postsynaptic neuron’s 

dendrite [3]. Dendrites compartmentalize individual synaptic connections at small, mushroom-

shaped protrusions called dendritic spines [8]. At rest, ion channels embedded in a dendritic spine’s 

plasma membrane move charged particles such as sodium and calcium (Ca2+) to the extracellular 

space, creating a charge concentration gradient [9]. Meanwhile, the presynaptic axon prepares 

intracellular vesicles filled with neurotransmitter (mainly glutamate, for excitatory neurons). In the 

presence of a depolarizing action potential (AP), vesicles merge with the plasma membrane, 
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releasing neurotransmitter such as glutamate into the extracellular synaptic cleft. 

Neurotransmitters diffuse across the synaptic cleft and bind to ligand-gated receptors on the post-

synaptic dendritic spine. Ligand-bound receptors allow ions to flux into the post-synapse, slightly 

depolarizing its membrane. Depending on the neurotransmitter, local depolarizations create 

excitatory or inhibitory postsynaptic potentials (EPSPs or IPSPs), which sum as they occur in 

succession [10]. Several repeated or concurrent EPSPs can lead to the postsynaptic neuron firing 

its own AP.   

 Synapses can be made more or less responsive to EPSPs via synaptic plasticity. Synaptic 

plasticity may elicit downward shifts in excitability called long-term depression (LTD) or upward 

shifts called long-term potentiation (LTP) [11]. LTP is characterized by an enduring increase in 

protein levels and structural remodeling within the postsynaptic density (PSD). The PSD, a 

cytoskeletal pseudo-organelle within the dendritic spine, has been observed to grow or shrink as a 

result of LTP or LTD. Together, LTP and LTD constitute the best-studied forms of synaptic 

plasticity in the hippocampus, which is essential to spatial learning and memory formation [10]. 

Although LTP and LTD yield distinct outcomes for a synapse, both depend on activation 

of the same type of postsynaptic glutamate receptor [12]. N-methyl-D-aspartate receptors 

(NMDARs) are coincidence detectors requiring two inputs: bound glutamate and a postsynaptic 

membrane depolarized by a back-propagating AP. Coincident input causes a conformational 

change and relieves a magnesium ion blocking the NMDAR pore, allowing Ca2+ influx to the 

dendritic spine. Importantly, Ca2+ influx at relatively high frequencies (10-100 Hz) often initiates 

LTP [5]. In contrast, lower frequencies (1-5 Hz) can initiate LTD. To distinguish between Ca2+ 

frequencies, Ca2+-dependent proteins within the dendritic spine interpret and dynamically regulate 

distinct signaling networks [13]. 

 Calcium-dependent signaling within dendritic spines 

Synaptic plasticity begins with NMDAR-dependent influx of Ca2+, which interacts with a 

range of protein buffers and sensors. Calmodulin (CaM) is the dominant Ca2+ sensor in the 

dendritic spine and has over 100 known binding partners. In hippocampal neurons, at least ten 

CaM binding partners (CBPs) are highly expressed [14, 15]. CaM is a dumbbell-shaped protein, 

with each of its two lobes cooperatively binding up to two Ca2+. Depending on the number of Ca2+ 

bound, Ca2+/CaM exhibits a distinct binding affinity for each of its downstream binding proteins. 
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A diagram of Ca2+/CaM-dependent signaling interactions during early synaptic plasticity is 

provided in Figure 1.1.  

 

 

Figure 1.1. Ca2+-dependent signaling in the dendritic spine. Ca2+ ions flux into 

the dendritic spine and bind to CaM (red arrows). Ca2+/CaM is competed for by a 

variety of CaM binding partners (orange arrows). Activated CaM binding partners 

may regulate protein signaling downstream (blue arrows). 

 

CBPs in the PSD include adenylate cyclase I and VIII (AC1, AC8), calcineurin (CaN), 

myosin light chain kinase (MLCK), nitric oxide synthase (NOS), phosphodiesterase 1 (PDE1), and 

neurogranin (Ng). AC1 and AC8 are membrane-associated enzymes that generate cyclic-AMP 

(cAMP) from ATP, following activation by CaM [16, 17]. CaM-activated CaN dephosphorylates 

proteins in the spine, lending CaN a putative role in LTD [18]. MLCK and NOS are under-

characterized in hippocampal neurons, though still relevant to studies of competition among CBPs 

for CaM binding [19, 20]. CaM-activated PDE1 binds and degrades cAMP into AMP [21]. Ng, 

which strongly binds apo-CaM in the absence of Ca2+, is thought to localize CaM to the dendritic 

spine’s cell membrane [22]. Depending on the frequency, magnitude, and location of Ca2+ flux, 

CaM differentially activates these proteins to eventually elicit either LTP or LTD [23, 24]. It is 

important to emphasize, however, that no single CBP can elicit LTP or LTD in isolation; rather, 

many enzymes must together contribute to the fate of a synapse.    
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 One essential CBP is Ca2+/CaM-dependent protein kinase II (CaMKII). The abundance and 

structural complexity of CaMKII have made it a popular yet challenging research subject [24-27]. 

Comprising about 2% of all protein in the hippocampus, CaMKII is highly enriched in the PSD 

and is essential for LTP, though it also participates in LTD, by under-characterized mechanisms 

[28]. As shown in Figure 1.2A, CaMKII holoenzymes feature 12 catalytic subunits organized 

around a central hub, forming two parallel, radially-symmetric rings. Individual CaMKII subunits 

(Figure 1.2B) feature a catalytic and regulatory domain connected by a linker region. Ca2+-bound 

CaM may bind the regulatory domain, holding it in an open conformation, exposing the catalytic 

domain. Critically, if a neighboring CaMKII subunit’s catalytic domain is also exposed, that 

subunit can phosphorylate the other subunit’s Thr-286 residue [29]. This so-called 

autophosphorylation causes prolonged subunit activation or “autonomy”, as it allows the 

regulatory domain to remain open even in the absence of CaM. Notably, point mutation of Thr-

286 to inert alanine prohibits LTP [5]. Understanding the timescales and patterns of CaMKII 

subunit activation may be essential for characterizing the regulation of synaptic plasticity induction. 

 

 

Figure 1.2. CaMKII holoenzyme and subunit structure. (A) Twelve CaMKII 

subunits (grey) arranged in two directly-apposed and radially symmetric rings. One 

subunit (colored) is illustrated in a possible extended conformation away from the 

holoenzyme central hub. (B) An individual CaMKII subunit in its closed 

conformation (PDB entry 3SOA). In both (A) and (B), the subunit’s hub domain 

(green), kinase domain (blue), and linker region (yellow) are shown. (A) and (B) 

are not on the same scale.  

 

CBPs regulate the downstream signaling events that adjust a synapse’s cation conductivity 

[30]. For example, CaM-bound AC generates cAMP, which liberates the catalytic subunits of 

protein kinase A (PKA), and catalytic PKA can phosphorylate GluA1 subunits of AMPARs [31]. 

Phosphorylated AMPARs exhibit heightened conductivity and are considered hallmarks of LTP. 



30 

 

Notably, AMPAR phosphorylation is regulated by a variety of mechanisms. For instance, CaM-

bound PDE1 will enzymatically convert cAMP into AMP, preventing PKA activation [32]. 

Similarly, cAMP is also degraded by phosphodiesterase 4 (PDE4), though PDE4 is not CaM-

dependent. Another regulator is CaN, which when activated de-phosphorylates AMPARs at Ser-

831, the site originally phosphorylated by PKA. However, the nearby Ser-845, which is 

phosphorylated by CaMKII, is not de-phosphorylated by CaN. Instead, Ser-845 is de-

phosphorylated by less specific phosphatases than CaN, such as protein phosphatase 1 (PP1). PP1 

binds and may de-phosphorylate a number of proteins, such as AMPARs at both Ser-831 and Ser-

845, as well as auto-phosphorylated CaMKII. I especially explore the regulation of PP1-CaMKII 

binding in Chapter 5. Clearly, CBPs coordinate downstream events in a highly complex manner 

[33].   

CBPs also regulate signaling events that determine a synapse’s size. Indeed, AMPAR 

phosphorylation is but one of two classical hallmarks of LTP; the other hallmark is insertion, or 

localization, of AMPARs to the synaptic membrane [34]. Initially, AMPARs are uniformly 

distributed about the spine’s plasma membrane or on intracellular vesicles. Following induction 

of LTP, AMPARs localize to the synaptic membrane, and it remains unclear how this localization 

is facilitated or preserved, or whether localization of AMPARs precedes or follows their 

phosphorylation. Simultaneously, the actin cytoskeleton is remodeled and other proteins become 

enriched in the PSD. Characterizing how these structural adjustments influence CBP-mediated 

signals will be essential to understanding early stages of synaptic plasticity. For instance, Ng is 

membrane-associated and strongly binds apo-CaM, meaning Ng could hypothetically pre-localize 

CaM to the PSD prior to Ca2+ influx [22, 35]. With CaM pre-localized to the PSD, subsequent 

Ca2+/CaM could rapidly activate local CBPs such as AC1, thus perpetuating AMPAR 

phosphorylation specifically at the synaptic membrane. Similarly, pre-localized CaM could 

support CaMKII enrichment to the PSD, and, importantly, CaMKII can bind NMDARs, AMPARs, 

actin, and a number of other proteins thought to be involved in structural remodeling.  

CaMKII has putative roles in both the enzymatic and structural aspects of synaptic 

plasticity. As previously stated, CaMKII phosphorylates AMPARs at Ser-845, one hallmark LTP. 

Additionally, CaMKII may provide a structural focal point in the intracellular actin scaffold [36, 

37]. Initially, inactive CaMKII is uniformly distributed about the spine, with its subunits bound to 

actin filaments. Activated CaMKII subunits lose affinity to actin, causing the CaMKII to mobilize 
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and aggregate at the PSD by unidentified mechanisms [38]. Hypothetically, active CaMKII 

aggregates at the PSD as a consequence of CaM pre-localization and NMDAR binding. 

Additionally, CaMKII localization may be dependent on the CaMKII quaternary structure, which 

localizes its twelve subunits into large holoenzymes. Because CaMKII holoenzymes may be highly 

multivalent, CaMKII aggregation could also be attributed to avidity effects, increasing its effective 

affinity for its binding partners [39, 40].  

Thus, the complexity of Ca2+-dependent signaling limits our ability to intuit its regulation. 

That is, its regulation is highly dynamic, with oscillatory Ca2+ influx and many transient protein 

states. Moreover, its regulation may be spatially dependent, noting the localization of proteins such 

as CaMKII within the dendritic spine. Also, a number of convergent signaling pathways, such as 

PKA-mediated and CaMKII-mediated AMPAR phosphorylation, may further confound analysis 

of Ca2+-dependent signaling in vitro and in vivo. Given this complexity within dendritic spines, it 

may be unsurprising that experimental methods such as genetic knockdown or fluorescent 

microscopy lack the spatiotemporal resolution needed to characterize the mechanisms regulating 

Ca2+-dependent signaling. 

 Mathematical models of calcium-dependent signaling 

Because experimental techniques lack sufficient spatiotemporal resolution, computational 

models are increasingly utilized to characterize molecular mechanisms regulating Ca2+-dependent 

signaling in the dendritic spine [33, 41]. Models vary dramatically in sophistication and scope. For 

example, simple models describe the time-course dynamics of small or generalized sets of 

Ca2+/CaM buffers. In contrast, complex models may explicitly describe many protein species, with 

each species exhibiting a variety of states, and with each state changing as a function of both time 

and space. While simplistic implementations can be valuable, complex models are increasingly 

utilized as practical and technical limitations are overcome.   

Deterministic models are among the simplest mechanistic models used to describe protein 

kinetics. These models typically describe biochemical reactions using systems of time-dependent, 

ordinary differential equations (ODEs). Such systems of ODEs typically involve one equation per 

molecular state. To demonstrate, take the simple case of proteins A and B reversibly binding to 

form complex AB, 𝐴 + 𝐵 ↔ 𝐴𝐵, according to the following equations. In Equations 1-3, brackets 
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denote protein concentrations, kbind is the kinetic association rate for proteins A and B, and krev is 

the kinetic dissociation rate.   

(1)
𝑑[𝐴]

𝑑𝑡
= 𝑘𝑟𝑒𝑣[𝐴𝐵] − 𝑘𝑏𝑖𝑛𝑑[𝐴][𝐵]       (2) 

𝑑[𝐵]

𝑑𝑡
= 𝑘𝑟𝑒𝑣[𝐴𝐵] − 𝑘𝑏𝑖𝑛𝑑[𝐴][𝐵] 

(3)
𝑑[𝐴𝐵]

𝑑𝑡
= 𝑘𝑏𝑖𝑛𝑑[𝐴][𝐵] − 𝑘𝑟𝑒𝑣[𝐴𝐵] 

 Many deterministic models of synaptic plasticity have been developed. For example, 

Lisman and Zhabotinsky used deterministic models to investigate how CaMKII 

autophosphorylation, which is necessary for LTP, endures for long timescales despite the presence 

of phosphatases [4]. To investigate this, they created a model network containing Ca2+, CaM, 

monomeric CaMKII, and a small subset of other proteins within the PSD. Because their 

deterministic model system had low computational expense, they could rapidly compare output 

from a large parameter space. Sweeping through many Ca2+/CaM concentrations, their results 

suggested that CaMKII could differentially reside in one of two stable states: predominantly 

inactive/unphosphorylated, and active/phosphorylated. In other words, CaMKII was able to 

function as a bistable switch. Subsequently, Hayer and Bhalla built another set of models, 

describing CaM, CBPs, and a larger variety of downstream regulatory proteins, with results that 

ultimately reinforced the view of CaMKII as a bistable switch [33]. In part to enable future 

exploration of CaMKII bistability, work by Pepke et al. developed a thermodynamically complete 

model in which sub-saturated CaM, with less than 4 bound Ca2+, activates CBPs [42]. For this 

thesis, I began with an expansion of the model by Pepke et al., exploring how the conditions for 

CaMKII bistability may be more complicated than others have previously asserted. 

Although time-dependent deterministic models are useful, spatial effects also contribute to 

signaling in the dendritic spine. Systems of partial differential equations (PDEs) can account for 

both spatial effects and time-course dynamics. Although PDEs involve significantly greater 

computational expense, the added spatial component is essential to understanding the interplay 

between enzymatic and structural regulation of synaptic plasticity. Note that experimental studies 

show spatial localizations of proteins within the spine, suggesting that space may limit the ability 

of some proteins to interact [38]. Otherwise put, if some proteins are localized and therefore highly 

concentrated at regions such as the PSD, their activation may be significantly different from 

deterministic model predictions. Thus, to account for and quantify how spatial effects impact Ca2+-

dependent signaling outputs, in this thesis I often compare deterministic model output to its spatial-
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stochastic model equivalent. For this, I use the software platform MCell, which in-effect 

discretizes PDEs by describing individual molecules as particles diffusing about a model geometry 

of the dendritic spine [43]. As discussed in Chapter 4, aside from added spatial and stochastic 

components my MCell models are identical to my non-spatial deterministic models, accounting 

for Ca2+, CaM, multiple CBPs, and multiple CBP-mediated downstream interactions. Notably, it 

is computationally complex to account for so many protein states, posing an interesting 

engineering problem.  

Accounting for many protein states can cause conventional models to exhibit 

“combinatorial explosion”, a key obstacle to detailed models of synaptic plasticity. Even in simple 

deterministic models but especially in spatial models, conventional systems of ODEs describing 

large numbers of proteins can incur state spaces that are intractable to specify or evaluate. For 

example, rigorously and explicitly accounting for multiple CaMKII subunits on the same 

holoenzyme can produce prohibitively extensive state spaces. Indeed, a multi-state CaMKII 

dodecamer model would conventionally require approximately 539 quintillion equations (See the 

Supplement to Chapter 5).  

As described by Stefan et al., combinatorial explosion applies to models of CaMKII (and 

similar biomolecules) because the protein exhibits a large number of functionally significant and 

not necessarily inter-dependent states [24]. To avoid combinatorial explosion yet still account for 

all possible CaMKII states, a small number of options are available. First, Michalski and Loew 

have provided an infinite holoenzyme approximation (ISHA), that allows the holoenzyme to be 

described as independent subunits/monomers under specific conditions [44]. Unfortunately, 

because the ISHA model is valid only for CaMKII with fewer than 7 subunits per ring and requires 

exclusion of spatial information, it may not be adaptable into discretized, spatial-stochastic 

frameworks. Alternatively, Li and Holmes recently used the software Smoldyn to model multi-

state CaMKII with a rule-based approach [45]. Rules are conditions, based primarily on 

experimental observations, that prescribe when an implicitly-defined reaction may occur. At a 

given iteration, only states that matter for the execution of a particular rule are explicitly declared. 

Rule-based states that do not matter to a particular rule can be omitted, a principle that has been 

paraphrased as “don’t care, don’t write” [30, 31]. By applying a sufficient set of rules, which is 

possible using a specialized syntax in MCell, combinatorial explosion becomes manageable. In 

Chapter 5, I present a rule-based model of CaMKII, and in contrast to Li and Holmes I use my 
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model to explore mechanisms of CaM- and PP1-binding to CaMKII. Further, in Chapter 6 I adapt 

my rule-based model of CaMKII into a larger network of Ca2+ signaling, and for the first time I 

begin to quantify how CaMKII multivalence may regulate the spatiotemporal dynamics of protein 

states in the dendritic spine. 

 Overview of thesis 

My overall hypothesis for this thesis is that competition among Ca2+-dependent proteins; 

spatial gradients of signaling molecules; and structural complexities of CaMKII are required to set 

the physiological Ca2+-frequency dependence of activation for signaling pathways during early 

synaptic plasticity. Therefore, the major goals of thesis have been to create computational models 

of competition among CBPs for CaM-binding, protein diffusion within spatial models of the 

dendritic spine, and the mechanics of structurally complex proteins such as CaMKII. Using these 

models, I have addressed the following biophysical and physiological questions.  

1. Does competition for CaM-binding influence the activation of CaM-dependent 

enzymes? 

In Chapter 2, I present a deterministic, non-spatial model of Ca2+ flux, Ca2+/CaM-

binding, and competition for Ca2+/CaM among eight explicitly-defined CBPs. Unlike 

previously published computational models which generalize the pool of CBP 

competitors, my explicit definition of CBPs allows me to identify those which are most 

activated in response to particular Ca2+ stimuli. For this, I compare output from 

“isolated” models of Ca2+, CaM, and individual CBPs versus “competitive” models of 

Ca2+, CaM, and eight CBPs. My analysis reveals that competition alone may be 

sufficient to set in silico the Ca2+ frequency dependence of CBP activation observed in 

vivo. Moreover, I show that competition can explain counterintuitive effects of genetic 

knock-out of the CaM-buffer Ng. Specifically, I find that upon knock-out of Ng, 

competition mediates a shift in activation that results in reduced CaMKII activation, 

contrary to expectation but consistent with experimental results. Further, I find that 

when CaMKII activation is reduced, CaM activates increased AC1 and AC8, with 

implications that I explore in later chapters. Altogether, my results indicate that 

activation of CBPs is highly dependent on competition for CaM-binding. 
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2. Are effects of competition transduced to outputs relevant to synaptic plasticity? 

In Chapter 3, I present a more detailed deterministic, non-spatial model of Ca2+, CaM, 

CBPs, and a set of CBP-mediated downstream pathways. This detailed deterministic 

model builds on that presented in Chapter 2, introducing downstream signaling 

pathways regulated by CBPs. Specifically, I model two CBP-mediated pathways that 

both lead to AMPAR phosphorylation, which is a hallmark of synaptic plasticity. First, 

I describe AMPAR GluA1 subunit phosphorylation at Ser-845 by CaMKII. Second, I 

describe GluA1 subunit phosphorylation at Ser-831 by PKA, which is activated by AC1 

and AC8-Ct. With this expanded model, I perform a global sensitivity analysis to 

quantify the relative contributions of various parameters to model outputs. Also, I again 

simulate genetic knock-out of the CaM-buffer Ng. Here, I show that although Ng 

knock-down reduces CaMKII activity and its subsequent phosphorylation of AMPARs, 

the concomitant increase in AC activation is sufficient to compensate and provide 

robustness to overall AMPAR phosphorylation levels. Thus, I provide evidence that 

competition regulates outputs relevant to synaptic plasticity.  

3. Do spatial effects impact competitive tuning? 

In Chapter 4, I adapt the detailed deterministic model into a particle-based, spatial-

stochastic framework using the software MCell. With MCell, individual protein 

molecules randomly diffuse throughout a model dendritic spine geometry. In addition 

to more physiologically describing the dendritic spine, MCell allows me to quantify 

how spatial effects regulate CBP activation and downstream regulation. In Chapter 4, 

I show that the Ca2+ frequency-dependence of CBP activation provided by competition 

is mostly preserved in a spatial-stochastic environment. Interestingly, I also observe 

spatial dependence of CBP activation, which is sharpened and/or exaggerated in the 

presence of competition for CaM-binding. It appears that competition and spatial 

effects together are responsible for setting the location of activation for many CBPs. 

Notably, one CBP that does not exhibit spatial dependence in my models is AC8. While 

exploring AC8’s lack of apparent spatial dependence, I find that the AC8 N-terminus, 

a non-enzymatic CBP, could be a significant regulator of the spatiotemporal dynamics 

of Ca2+/CaM.  
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4. How are signaling outputs affected when CaMKII is modeled as a detailed, multi-

subunit holoenzyme? 

In Chapter 5, I note that to proceed with detailed models of Ca2+-dependent signaling 

in the spine, it may be necessary to account for the complex dodecameric structure of 

CaMKII. This is an important obstacle to address because conventional models using 

systems of differential equations must simultaneously monitor all possible protein 

states, and the number of states for CaMKII is prohibitively large. To bypass this 

obstacle, here I present a rule-based model of the CaMKII holoenzyme. With this rule-

based model, I explore mechanisms regulating the maintenance of CaMKII activation 

and its potential role as a hypothetical bistable switch required for molecular memory. 

Specifically, I identify a Ca2+/CaM stimulation threshold beyond which CaMKII 

activity is maintained on long timescales. While exploring this maintenance, I also 

identify a possible regulatory mechanism in which CaMKII-bound CaM may be 

sufficient to structurally exclude, or perhaps out-compete, the phosphatase PP1 for 

CaMKII-binding. In total, in Chapter 5 I show that rigorously describing multi-subunit, 

multi-state CaMKII can help provide insight into its regulation.  

5. How does CaMKII multivalence contribute to regulation of other Ca2+-dependent 

proteins? 

In Chapter 6, I combine modified versions of the models presented in Chapters 4 and 

5 to describe Ca2+-dependent signaling in the presence of a detailed CaMKII 

holoenzyme. Including the CaMKII holoenzyme allows me to quantify how CaMKII 

multivalence contributes to the spatiotemporal dynamics of protein activation in the 

spine. For example, I show that CaMKII multivalence may provide avidity effects that 

significantly increase its effective affinity for binding partners, especially influencing 

the spatiotemporal dynamics of Ca2+/CaM states. In addition to multivalence, this 

model reaction network also distinguishes between distinct CaMKII subunit isoform 

interactions with actin binding sites (a new model feature in this Chapter). With this, I 

show that CaMKII mobility within the spine is likely regulated by the CaMKII beta 

subunit, and CaMKII localization to the PSD is likely regulated by the CaMKII alpha 

subunit, both consistent with previous studies. Altogether, the work in Chapter 6 lays 

the groundwork for future, currently unavailable modeling platforms to analyze how 
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CaMKII multivalence, along with competition and spatial effects, regulates Ca2+/CaM-

dependent signaling outputs.   
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2. COMPETITIVE TUNING: COMPETITION’S ROLE IN SETTING 

THE FREQUENCY-DEPENDENCE OF Ca2+-DEPENDENT PROTEINS 

 Summary 

A number of neurological disorders arise from perturbations in biochemical signaling and 

protein complex formation within neurons. Normally, proteins form networks that when activated 

produce persistent changes in a synapse’s molecular composition. In hippocampal neurons, 

calcium ion (Ca2+) flux through N-methyl-D-aspartate (NMDA) receptors activates 

Ca2+/calmodulin signal transduction networks that either increase or decrease the strength of the 

neuronal synapse, phenomena known as long-term potentiation (LTP) or long-term depression 

(LTD), respectively. The calcium-sensor calmodulin (CaM) acts as a common activator of the 

networks responsible for both LTP and LTD. This is possible, in part, because CaM binding 

proteins are “tuned” to different Ca2+ flux signals by their unique binding and activation dynamics. 

Computational modeling is used to describe the binding and activation dynamics of Ca2+/CaM 

signal transduction and can be used to guide focused experimental studies. Although CaM binds 

over 100 proteins, practical limitations cause many models to include only one or two CaM-

activated proteins. In this work, I view Ca2+/CaM as a limiting resource in the signal transduction 

pathway owing to its low abundance relative to its binding partners. With this view, I investigate 

the effect of competitive binding on the dynamics of CaM binding partner activation. Using an 

explicit model of Ca2+, CaM, and seven highly-expressed hippocampal CaM binding proteins, I 

find that competition for CaM binding serves as a tuning mechanism: the presence of competitors 

shifts and sharpens the Ca2+ frequency-dependence of CaM binding proteins. Notably, I find that 

simulated competition may be sufficient to recreate the in vivo frequency dependence of the CaM-

dependent phosphatase calcineurin. Additionally, competition alone (without feedback 

mechanisms or spatial parameters) could replicate counter-intuitive experimental observations of 

decreased activation of Ca2+/CaM-dependent protein kinase II in knockout models of neurogranin. 

I conclude that competitive tuning could be an important dynamic process underlying synaptic 

plasticity. This work is published ([46]). Co-authors include two undergraduates who I supervised: 

Daniel Romano who developed the initial model and parameterization, and Neal Patel who helped 

with the analysis.  
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 Introduction 

Calcium (Ca2+) is well-recognized as an important second messenger in cellular signaling. 

One of the most widely expressed Ca2+ binding proteins, calmodulin (CaM), is a highly conserved 

protein in the EF-hand family [14] (Figure 2.1A). CaM has over 100 reported downstream binding 

proteins, including enzymes that regulate a variety of cellular functions, such as neurotransmitter 

release in presynaptic neuronal axons [47], insulin secretion in the pancreas [48], and contractility 

in muscle [49]. Ca2+-dependent signaling in postsynaptic dendrites of excitatory neurons has been 

the frequent subject of computational studies (see a recent review [29]). Indeed, it comprises an 

ideal system for mathematical modeling. Its parameters (molecular concentrations and kinetic rate 

constants) have been measured using controlled experiments, and experimental interest has 

produced an abundance of published values for model parameterization [49-65]. Two highly-

studied functions of synaptic Ca2+ signaling are the induction and maintenance of long-term 

potentiation (LTP) and long-term depression (LTD) [66], which are correlated to learning 

processes and memory storage in various brain regions [67-70]. Both LTP and LTD are 

accompanied by persistent changes in postsynaptic gene transcription [71], actin polymerization 

[72], and AMPA receptor trafficking [19] that adjust cellular excitability and, in turn, synaptic 

strength. Among the best-studied forms of LTP and LTD are those initiated by transient, localized 

increases in intracellular Ca2+ through postsynaptic N-methyl-D-aspartate receptors (NMDARs). 

CaM translates Ca2+ signals into either LTP or LTD by forming Ca2+/CaM complexes that bind 

and thereby activate downstream proteins (Figure 2.1C) [73]. Upon activation, these CaM-

dependent proteins, which include a variety of enzymes—kinases, phosphatases, cyclases, and 

synthases—initiate protein signaling cascades that differentially modulate gene transcription, actin 

polymerization, and AMPA receptor trafficking. 
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Figure 2.1. Schematic of CaM-binding. (A) Structure of CaM (PDB 1CLL), 

shown in blue, with two Ca2+ ions (gold) at each terminus. (B) Structure of 

Ca2+/CaM (PDB 2JZI) bound to a calcineurin (CaN) peptide (red). (C) Schematic 

of CaM interactions with downstream binding partners. CaM may bind Ng in the 

absence of Ca2+. In the presence of Ca2+, CaM binds to CaN, CaMKII, NOS, MLCK, 

and AC1 and AC8 (AC1/8). 

 

The frequency [74], amplitude, duration, and location [75] of Ca2+ fluxes determine the 

pattern of activation of CaM-dependent enzymes and, in turn, the fate of the synapse. For example, 

1 Hz stimulation for 10-15 minutes both increases activation of the CaM-dependent phosphatase 

calcineurin (CaN, or PP3) [18] and induces NMDAR-dependent LTD [76]. On the other hand, 100 

Hz stimulation for 1 second increases Ca2+/CaM-dependent protein kinase II (CaMKII) activation 

and induces NMDAR-dependent LTP [77]. These and similar observations have led to the 

consensus that kinase cascades induce LTP, while phosphatase cascades induce LTD [78]. But 

more recent studies have found that CaN may also contribute to LTP induction [79], and that 

activated CaMKII can promote LTD [80]. These results suggest that normal initiation and 

maintenance of LTP and LTD do not simply depend on the Boolean activation of kinases or 

phosphatases in response to a given Ca2+ signal, but rather on the precise activation of a variety of 

often-counteracting proteins. Therefore, elucidation of the mechanisms that regulate NMDAR-

dependent long-term plasticity depends on a complete understanding of the endogenous tuning 

mechanisms that pair precise patterns of enzyme activation to certain Ca2+ signals. 

 Computational studies have demonstrated the role of binding dynamics [81], feedback 

loops [82], and spatial effects [83] in regulating enzyme activation during synaptic Ca2+ signaling. 
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In this work, I hypothesize that competition among CaM binding proteins for access to CaM may 

serve as an additional tuning mechanism. The concentration of CaM binding partners in the cell 

far exceeds that of CaM itself [84], and in vitro studies have demonstrated competitive inhibition 

among neuronal CaM binding partners [85-87]. But, despite the implicit presence of competition 

in many computational models of Ca2+/CaM signaling in neurons [4, 30, 83, 88-91] and cardiac 

myocytes [92-96], just one study [88] has had the explicit aim of investigating competition among 

CaM binding partners as a regulator of enzyme activation. Antunes et al. use such a model to 

investigate competitive binding as a potential facilitator of the frequency-dependence of CaM 

binding partners at low frequency Ca2+ fluxes (5 mHz to 5 Hz) for generalized sets of CaM binding 

partners. However, it is worth noting that both He et al. and Slavov et. al. both mention competition 

for CaM as a part of their broader studies on the frequency dependent behavior of networks of 

generalized CaM targets [30] and relative activation of kinase versus phosphatase signaling [91]. 

In this work I develop models of Ca2+ binding to CaM that explicitly include Ca2+-binding 

to each of the two termini (N- and C-termini, Figure 2.1). Previous experimental work has shown 

that CaM is able to activate downstream binding proteins at sub-saturating levels of Ca2+[97]. 

Moreover, a previous computational study explicitly including Ca2+-binding to each of the two 

binding sites (N- and C-termini) of CaM has shown that Ca2+ bound at the C-terminus likely 

significantly contributes to activation of downstream binding partners [81]. My models also 

include seven experimentally-characterized postsynaptic CaM binding proteins expressed in CA1 

hippocampal neurons. These mathematical models are used to investigate competition’s potential 

role as a regulator of Ca2+-dependent protein activation across a range of Ca2+ flux frequencies 

(0.1 Hz to 1000 Hz) that spans those found in vivo and oft employed experimentally in vitro. 

Specifically, I first develop a set of “isolated” models simulating CaM binding to Ca2+ and just 

one binding protein. I then combine the isolated models into a “competitive” model that simulates 

Ca2+ binding to CaM and CaM binding to its binding partners. The CaM binding proteins in this 

study have been chosen because they are known neuronal proteins with relatively well-

characterized CaM-binding kinetics: adenylyl cyclase type I (AC1), the adenylyl cyclase type VIII 

N-terminus (AC8-Nt), the adenylyl cyclase type VIII C2b domain (AC8-Ct), calcineurin (CaN, also 

known as PP2B and PP3), CaMKII, myosin light chain kinase (MLCK), neurogranin (Ng), and 

nitric oxide synthase (NOS) (Figure 2.1C). Because my model is devoid of feedback loops and 

spatial localization, the differences in CaM-binding between the competitive and isolated models 
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are solely due to competitive effects. I demonstrate the ability of competition to “tune” the binding 

and activation profiles of CaM-binding proteins at various Ca2+ flux frequencies and use the model 

to explain the counterintuitive role of neurogranin in CaMKII activation and LTP induction.  

 Results 

2.3.1 Model Development 

2.3.1.1 Model Structure 

The interactions of Ca2+, CaM, and CaM binding partners are quite complex. CaM binds a 

total of four Ca2+ ions, one pair at each of two EF-hand domains located at its N- and C-termini, 

respectively (Figure 2.1 and schematically in Figure 2.2A) [14]. Ca2+-binding at each terminus is 

highly cooperative [98], but the Ca2+-binding kinetics between these termini are distinct [65]. 

Moreover, the binding of Ca2+ to CaM changes its affinity for downstream binding partners. 

Similarly, the binding of CaM to its binding partners changes its affinity for Ca2+ (Figure 2.2B) 

[73]. I develop a mathematical model based on mass action kinetics that uses ordinary differential 

equations to simulate the dynamics of: Ca2+ ions binding reversibly to CaM, the dynamics of CaM 

binding reversibly to its binding partners, and the dynamics of Ca2+ ions binding reversibly to CaM 

when CaM is bound to a binding partner [81, 99] (Figure 2.2). 

 

Figure 2.2. Model of Ca2+-CaM binding. (A) Reversible binding of Ca2+ binding 

to CaM (blue). (B) Reversible binding of Ca2+ to CaM bound to a given binding 

partner, denoted with ‘B’ (green). (C) Reversible binding of a given binding partner 

to any state of Ca2+/CaM (yellow).  
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A previous study by Pepke et al. offers two models for describing Ca2+-CaM binding. First, 

they describe a four-state model in which it is assumed that binding of two Ca2+ at each CaM 

terminus can be treated as a single event due to the highly cooperative binding of Ca2+ at each 

terminus. Alternatively, a nine-state model is presented that explicitly accounts for each Ca2+ 

binding event, for which further details are discussed in the Supplement to Chapter 2. In the present 

study, I construct both model types and simulate CaM-binding of seven proteins implicated in 

hippocampal-dependent memory and long-term plasticity [77-79, 100-114]. I find that differences 

in the output of the four- and nine-state models are negligible for the purposes of this work (Figure 

7.1 and elsewhere in the Supplement to Chapter 2). To reduce computational complexity, all model 

results are based on a four-state model of Ca2+-CaM binding.  

2.3.1.2 Model Parameterization 

Initial concentrations of all proteins were either obtained directly from literature or 

calculated from published values. Equilibrium dissociation (KD) constants not available in the 

literature are calculated (see [81, 115]) using the thermodynamic principle of microscopic 

reversibility. From the dissociation constants, any unmeasured kinetic rates are calculated using 

the equality: KD = koff/kon, and a pair of experimentally-supported assumptions regarding Ca2+, 

CaM, and binding partner interactions.   

First, it is well known that the affinity of Ca2+ for CaM is increased when CaM is bound to 

a binding partner (CaM-B) [58, 73]. The change in affinity could be represented by either an 

increase in the association rate constant of Ca2+ for CaM-B or a decrease in the dissociation rate 

constant of Ca2+ for CaM-B. Experimental work by Peersen et al. showed that the increased 

affinity of Ca2+ to target peptide-bound CaM was best explained by a reduction in Ca2+ dissociation 

rate constant [58]. More recent work has shown in the case of Ng binding to CaM, that the change 

in affinity for Ca2+ results primarily from a change in the dissociation rate constant [116]. Thus, I 

assume that the increase in affinity of Ca2+ for CaM when CaM is bound to a binding partner 

comes from a change in the dissociation, but not association, rate constant of Ca2+ from CaM-B.    

Second, the binding of Ca2+ to CaM increases the affinity of CaM for most of its binding 

proteins [73, 117, 118], with the notable exception of Ng. Like others ([81, 83]), I note 

experimental observations showing that Ca2+ dissociation from CaM typically precedes CaM 
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dissociation from binding proteins [119], indicating that the increase in affinity of CaM for most 

of its binding proteins in the presence of Ca2+ may be due to an increase the association (and not 

the dissociation) rate constant of CaM binding to target proteins. Biophysically, Ca2+ binding to 

CaM induces a conformational change that exposes hydrophobic patches that then facilitate 

binding to hydrophobic residues on the target proteins [14, 120, 121]. These Ca2+-binding induced 

structural changes on CaM could be thought of as increasing the probability of successful binding 

to a target protein, which would translate to an increased association rate. Thus, I implement an 

assumption that Ca2+-binding changes the association, but not dissociation, rate of CaM to most of 

its binding partners (with the exception of Ng). It should be noted that it is likely that the increases 

in affinity discussed above come from changes in both the association and dissociation rate 

constant parameters. Current experimental techniques are unable to measure the kinetic rate 

constants of apo-CaM binding to target proteins (again, with the exception of Ng), and so the exact 

quantitative values or even relative changes in affinity and dissociate rate constants are 

unknowable at this time. The assumptions implemented here are my best-educated interpretation 

of current biophysical understanding of Ca2+, CaM and CaM-target binding.  

Published rate constant values that were obtained using full-length proteins are used 

preferentially over those for oligopeptides, but oligopeptide values are included in setting the 

physiological ranges for sensitivity analyses. Values for simulations are the geometric means of 

published values, or derived values (listed in Table 7.5). Geometric means were chosen as opposed 

to arithmetic means so that outlier values less significantly biased the parameter values in the 

simulations. 

2.3.1.3 Adenylyl Cyclase Type I and VIII  

AC1 and AC8 are 123 kDa and 135 kDa [122] membrane-spanning enzymes expressed in 

the CA1 pyramidal cells of mammalian hippocampus [123, 124]. The primary function of both 

AC1 and AC8 is the formation of the second messenger cyclic-AMP from ATP [125]. CaM 

activation of AC1 is dependent upon the binding of Ca2+/CaM [126] to a single site in its C1b 

domain [127]. Work by D. Cooper and colleagues has shown that CaM binding to the C1b domain 

on AC1 requires participation from both the N- and C-lobes of CaM [50, 128]. CaM activation of 

AC8 is also dependent upon Ca2+/CaM-binding [124], but unlike AC1, each AC8 enzyme contains 

binding sites at both its N-terminus and C2b domain [129]. C2b-binding is the major contributor to 
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CaM-dependent activation of AC8 and can be substantially activated by binding of the Ca2+-bound 

N-lobe of CaM [50, 128]. A peptide derived from AC8-C2b was able to pull down a CaM with 

mutations that prohibited Ca2+-binding at the C-lobe at similar levels to WT CaM [50]; indicating 

that the N-lobe of CaM mediates most of the binding interaction between CaM and the C-terminus 

of AC8 (AC8-Ct). In contrast, similar pulldown experiments indicate that CaM binding to the N-

terminus of AC8 (AC8-Nt) is mediated by the C-lobe of CaM [50]. CaM binding to AC8-Nt does 

not activate AC8’s enzymatic activity [50], but has been suggested but CaM-binding at the N-

terminus may support activation by increasing the local CaM concentration in a “CaM trapping” 

mechanism [129]. Each of these binding sites associates to Ca2+/CaM in a 1:1 stoichiometry [130]. 

Therefore, I model AC8 as a pair of distinct targets, AC8-Nt and AC8-Ct. The concentrations of 

AC1 and AC8 in CA1 pyramidal cells have been estimated at 42.2 and 41.9 μM, respectively [83]. 

For all simulations, a concentration of 42 μM is used for AC1, AC8-Nt, and AC8-Ct. All kinetic 

parameters are either obtained from literature [50, 83] or calculated using previously-described 

assumptions.  

2.3.1.4 Calcineurin 

CaN is a 78 kDa [51], PSD-associated [131] enzyme expressed in the CA1 pyramidal cells 

of mammalian hippocampus [132]. As a heterodimer [133], CaN activation is dependent upon both 

the association of the catalytic subunit CaNA to the regulatory subunit CaNB as well as the binding 

of CaNA to Ca2+/CaM [54] in a 1:1 stoichiometry [134]. Although CaNB is a Ca2+-binding protein, 

Ca2+ binding to CaNB does not affect the affinity of CaNA for either CaNB [133] or Ca2+/CaM 

[54]. For this reason, the binding of both CaNA and Ca2+ to CaNB are neglected in my model. 

CaN dephosphorylates the residues of many cellular proteins, including AMPA receptors, 

NMDARs, protein kinase A, and inhibitor-1 [135]. The concentration of CaN in the hippocampus 

is 36.4 mg of protein per kg of tissue [136]. Assuming an average protein concentration of 100 

mg/mL, or 10% by mass [81], the density of CaN in hippocampus was calculated at 36.4 μg/mL, 

corresponding to a concentration of 0.47 μM.  Here, a concentration of 0.5 μM is used. All kinetic 

parameters are either obtained from literature [51, 52, 54] or calculated based on previously-

described assumptions. 
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2.3.1.5 Ca2+/CaM-dependent Protein Kinase II 

CaMKII is a PSD-associated [137] enzyme expressed in CA1 pyramidal cells of the 

mammalian hippocampus [138]. As a 650 kDa dodecamer, CaMKII is composed of twelve 

catalytic subunits [139]. In the hippocampus, the alpha isoform of CaMKII comprises 

approximately two-thirds of these subunits, while the beta isoform constitutes the remaining one-

third [139]. The activation of each of these subunits is dependent upon the binding of Ca2+/CaM 

[140] in a 1:1 stoichiometry [141], such that the full dodecamer binds Ca2+/CaM in a 1:12 ratio 

[142]. CaMKII phosphorylates the residues of many cellular proteins, including synapsin I, 

pyruvate kinase, phenylalanine hydroxylase, tyrosine hydroxylase, phospholamban, MLCK, and 

MAP-2 [143]. CaMKII monomers can also phosphorylate intramolecular neighbors in an 

autophosphorylation process [144]. The resulting autophosphorylated CaMKII, termed 

autonomous CaMKII, remains partially active even after dissociating from Ca2+/CaM [145]. 

Because my model is non-spatial and generally ignores catalytic processes, CaMKII is here 

modeled in its monomeric form (i.e., as separate, independent subunits). The local concentration 

of catalytic CaMKII subunits in the dendritic spines of CA1 pyramidal cells has been previously 

estimated at 74 μM [81]. All kinetic parameters are obtained from literature [81]. 

2.3.1.6 Myosin Light Chain Kinase 

MLCK is a 146 kDa [146] enzyme expressed in CA1 hippocampal dendrites [109]. Its 

activation is dependent upon the binding of Ca2+/CaM [147] in a 1:1 stoichiometry [148]. MLCK 

phosphorylates the regulatory light chain of the molecular motor myosin II [149]. The 

concentration of MLCK in the hippocampus has not been measured, but it has been observed to 

be much less than that in smooth muscle [150], where its concentration is about 50 μM [151]. 

Therefore, its concentration in CA1 pyramidal cells is estimated as one order-of-magnitude less, 

or 5 μM. Because the amino acid sequence of neuronal MLCK is almost identical to that of smooth 

muscle MLCK [150], I used the kinetic parameters of smooth muscle MLCK in my model. All 

kinetic parameters are either obtained from literature [49, 55, 57, 58] or calculated based on 

previously-described assumptions. 
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2.3.1.7 Neurogranin 

Ng is a 7.8 kDa [152], membrane-associated [153] protein expressed in high quantities in 

the dendritic spines of CA1 pyramidal cells in the mammalian hippocampus [154]. Ng binds apo-

CaM in a 1:1 stoichiometry [155]. It has no enzymatic function [156] but has been found to localize 

CaM to the cell membrane [22], theoretically resulting in the spatial coupling of CaM to both Ca2+ 

channels and CaM-dependent enzymes. The concentration of Ng in hippocampus has been 

estimated at 65 μM [113]. All kinetic parameters are obtained from literature [99]. 

2.3.1.8 Nitric Oxide Synthetase 

NOS is a 155 kDa [157], PSD-associated [158] enzyme expressed in CA1 pyramidal cells 

of the mammalian hippocampus [159]. Its activation is dependent upon the binding of Ca2+/CaM 

[160] in a 1:1 stoichiometry[63]. NOS catalyzes the formation of nitric oxide and citrulline from 

arginine [160]. The active form of NOS is a homodimeric complex [161]. However, because my 

model is non-spatial and generally ignores catalytic processes, NOS is modeled in its monomeric 

form. NOS is found in 100x diluted, homogenized rat striatum at a density of 0.7 μg/mL [162], 

corresponding to a concentration of 0.45 μM. Because the density of NOS is 1.5 times greater in 

the CA1 region of hippocampus than in striatum [163], and because NOS is localized to dendritic 

spines, a concentration of 1 μM is used. All kinetic parameters are either obtained from literature 

[59, 62], or calculated based on previously described assumptions. 

2.3.1.9 Calcium 

In response to a single presynaptic action potential, the transient opening of postsynaptic 

NMDARs in hippocampal dendritic spines generates a single spike in free Ca2+ concentration that 

peaks at 12 μM and, as Ca2+ is rapidly buffered, decays with a time constant of 12 milliseconds 

[164]. Therefore, free Ca2+ fluxes into the system by the equation, [Ca](t)=12e-t/0.012. In my model, 

this function is a fixed boundary condition, meaning that the total Ca2+ concentration in the system 

is not conserved over the course of the simulation. Free Ca2+ is introduced into simulations at 

frequencies ranging from 0.1 Hz to 1 kHz, which spans one order-of-magnitude past the range of 

frequencies used in LTD- and LTP-inducing experimental protocols [18, 76]. Before the 

introduction of free Ca2+ into the system, all simulations are run to steady state for 600 seconds to 

equilibrate Ca2+-independent binding events. 
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2.3.2 Model Analysis 

I use the total concentration of CaM-bound protein as a primary output parameter. This is 

contrary to most published computational models, which investigate the concentration of Ca2+-

saturated CaM (CaM4) bound to each protein. This approach is preferred for three main reasons. 

First, although most CaM-dependent enzymes are maximally activated by binding CaM4, sub-

saturated forms of CaM have also been found to activate these enzymes, albeit at a lower catalytic 

rate [97]. Therefore, the concentration of CaM4-bound enzyme does not represent the total 

concentration of active enzyme. Second, not all binding sites in my model increase in catalytic 

activity upon CaM binding. For these proteins (Ng and AC8-Nt) the CaM4-bound concentration is 

no more relevant than the concentration bound to apo-CaM or, for that matter, any other sub-

saturated form. Third, CaM-binding to non-catalytic sites has been found to influence CaM 

availability to CaM-dependent enzymes [22, 129], suggesting an important physiological role for 

minimally-active, yet still CaM-bound, enzymes. Therefore, although the total concentration of 

CaM bound to each binding site is not a direct measure of its activation, it provides important 

information about patterns of enzyme activation that cannot be inferred from the concentration 

bound to CaM4 alone. To obtain a representative measure of total CaM-binding during Ca2+ 

spiking at a particular frequency, the average value (henceforth designated the average bound 

concentration, Cb) is calculated by Equation 1:  

(1) Cb =
1

tf − t0
∫ ∑ ∑[TbCaMNiCj]

2

j=0

2

i=0

dt

tf

t=t0

 

Where the subscript b indexes the binding partners, so the average bound concentration for 

a given binding partner (Cb) is found by integrating the total concentration of that binding partner 

(Tb) bound to each CaM state (CaMNiCj, i and j = 0, 1, or 2) over the stimulation period (to until 

tf) and dividing by the stimulus duration (tf - to). To measure relative levels of CaM-binding across 

various proteins and experimental conditions, for each binding partner I normalize Cb by its peak 

value from among all the Ca2+ frequencies simulated. 

I observe that for competitive models, the frequency range at which Cb peaks may shift or 

narrow relative to the isolated case. To quantify this tuning, I define a metric of frequency 

specificity (Sb), where the subscript b indexes the binding partners. A binding partner with high 

frequency specificity is one that most significantly binds CaM over a narrow range of frequencies; 
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correspondingly, this binding partner’s frequency-dependence curve would have a tall, narrow 

peak. First, the frequency-dependence curve is integrated and then normalized by the maximum 

Cb (Equation 2). I also divide by the total simulated frequency range and subtract from 1 to report 

Sb as a metric that identifies the most strongly tuned binding partners. In Equation 2, f denotes 

Ca2+ frequency.  

(2) Sb = 1 −
1

(log(ff) − log(f0))  max [Cb]
 ∫ Cb(f) df

ff

f0

 

2.3.2.1 Sensitivity Analysis 

To determine which parameters most greatly impacted my models’ outputs and, therefore, 

which may benefit most from further characterization in future experiments, I conducted two sets 

of global sensitivity analyses using Latin Hypercube sampling (LHS) to efficiently sample the 

input parameter space and partial rank correlation coefficients (PRCC) to quantify the results 

[115]. In one set, I fixed the kinetic rate constants and investigated the impact of variations in 

initial concentrations on the average bound concentrations (Cb) of the eight CaM binding partners. 

In the second, I fixed the initial concentrations and investigated the impact of variations in kinetic 

rate constants. Each of these analyses was performed at low (1 Hz), moderate (10 Hz), and high 

(100 Hz) frequency Ca2+ oscillations, allowing me to observe how the impacts of parameter 

variations change with frequency (available at [165]). To control for total Ca2+ introduced, 

oscillations were limited to 10 concentration spikes, regardless of frequency. In Table 2.1 and 

Table 2.2, I present the results of my 10 Hz sensitivity analysis, listing the parameters that most 

strongly influence each Cb.  
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Table 2.1. Significant PRCCs for initial protein concentration parameters. 

Output 
[Varied Input Parameter] 

PRCC Value 

CAC1 [CaM] [AC1] [CaMKII]  
 0.9509 0.9204 -0.8177  

CAC8-Ct [CaM] [AC8-Ct] [Ng] [CaMKII] 
 0.9498 0.9209 -0.8752 -0.5186 

CAC8-Nt [CaM] [AC8-Nt] [Ng]  
 0.9567 0.9116 -0.7441  

CCaN [CaM] [CaN] [CaMKII]  
 0.9564 0.9442 -0.8999  

CCaMKII [CaM] [CaMKII] [AC8-Nt]  
 0.9766 0.9177 -0.6657  

CMLCK [CaM] [MLCK] [CaMKII] [Ng] 
 0.9381 0.934 -0.7392 -0.6167 

CNg [CaM] [Ng]   
 0.9759 0.8827   

CNOS [NOS] [CaM] [Ng]  
 0.996 0.8076 -0.7238  

Enumeration of Partial Rank Correlation Coefficient (PRCC) values for variations in initial protein 

concentrations that most strongly affect each average CaM-bound protein concentration, Cb, for 

simulations with Ca2+ frequency of 10 Hz. Only inputs with absolute PRCC values greater than 0.5 

are shown.   
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Table 2.2. Significant PRCCs for rate parameters. 

Output 
Varied Input Parameter 

PRCC Value 

CAC1 kon
AC1CaM4 kon

KCaM4 kon
1N koff

AC1CaM4  

 0.9243 -0.8964 0.5449 -0.5271  

CAC8-Ct kon
AC8ctCaM4 kon

KCaM4 kon
1N kon

AC8ctCaM2N kon
NgCaM2N 

 0.8295 -0.7473 0.6305 0.5914 -0.5065 

CAC8-Nt kon
AC8ntCaM2C koff

KCaM2C koff
K2N kon

1N kon
NgCaM2C 

 
0.8725 0.7294 0.703 -0.6864 -0.5816 

 koff
AC8ntCaM2C     

 -0.5663     

CCaN kon
PPCaM4 kon

KCaM4    

 0.9649 -0.8123    

CCaMKII koff
KCaM2C koff

K2N kon
KCaM4 kon

AC8ntCaM4 kon
1N 

 -0.8187 -0.7581 0.733 -0.5377 0.5002 

CMLCK kon
1N kon

KCaM4 kon
MKCaM4   

 0.642 -0.8983 0.9376   

CNg koff
NgCaM0 kon

Ng2C kon
Ng1C koff

Ng1C koff
Ng2C 

 
-0.6711 -0.6645 -0.6641 0.6444 0.6358 

 kon
2N koff

NgCaM2C kon
NgCaM2C kon

NgCaM0  

 
-0.6259 -0.6093 0.5302 0.5021 

 

CNOS kon
NOSCaM4 koff

NOSCaM0 
kon

KCaM4   

 
0.8964 -0.6958 -0.5681 

  

Enumeration of Partial Rank Correlation Coefficient (PRCC) values for variations in rate parameters 

that most strongly affect each average CaM-bound protein concentration, Cb, for simulations with 

Ca2+ frequency of 10 Hz. Only inputs with absolute PRCCs greater than 0.5 are shown.   

 

Although their experimental ranges span several orders of magnitude, the kinetic binding 

constants of CaM4 binding to CaN (kon
PPCaM4 and koff

PPCaM4), as well as CaM4 binding to NOS 

(kon
NOSCaM4 and koff

NOSCaM4
), only significantly affected the Cb of CaN and NOS, respectively. In 

contrast, the rate constant of CaM4 binding to CaMKII (kon
KCaM4), despite having an experimental 

range that varies only four-fold, significantly impacted almost all outputs of CaM binding partners 

at each of the three frequencies. Future competitive computational models may benefit from more 

accurate measurement of kon
KCaM4 than from the more accurate measurement of kon

PPCaM4, 

koff
PPCaM4, kon

NOSCaM4, or koff
NOSCaM4, despite the clear experimental uncertainty in measurements 

of the latter four.  
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2.3.3 Competition regulates CaM-binding dynamics 

To investigate how competition alters the CaM-binding dynamics of each of the eight 

binding partners, I plotted the normalized concentrations of individual partners bound to different 

CaM states: apo-CaM (CaM0), CaM bound to two Ca2+ ions at its N-terminus (CaM2N), CaM 

bound to two Ca2+ ions at its C-terminus (CaM2C), and CaM4 (Figure 2.3). In each simulation, 10 

Ca2+ fluxes (not plotted) were introduced at 10 Hz, corresponding to the logarithmic midpoint of 

my chosen frequency range. In Figure 2.3, the different colors of the plotted traces correspond to 

the concentration of binding partner bound to each of the four CaM states normalized to the total 

concentration of all CaM-bound binding partner (CaMtot). The time-course of CaM binding 

partners bound to various states of CaM in micromolar for 1 second of 10 Hz Ca2+ flux is plotted 

in Figure 7.3 in the Supplement to Chapter 2. 
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Figure 2.3. Competition for CaM alters binding dynamics.Time-course of CaM 

binding partners bound to various states of CaM for 1 second of 10 Hz Ca2+ flux: 

CaM0 (blue), CaM2N (red), CaM2C (green), CaM4 (purple), and CaMtot (orange). 

CaMtot is the sum of all CaM-bound states for a given protein. The concentration 

of each species is normalized against its maximum value of CaMtot. Solid lines 

denote the isolated model. Dotted lines denote the competitive model. The 

differences between isolated and competitive behavior are more significant for 

some CaM binding partners than others.  
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As expected, the presence of competitors decreases the concentration of CaM bound to 

each binding partner. Because the relative contributions of the various CaM states to each binding 

partner’s CaMtot in the competitive model were similar to those in the isolated model, competition 

did not appear to have a disproportionately large effect on the binding of any one CaM state. This 

suggests that CaM, and not Ca2+, is the major limiting factor in the activation of CaM-dependent 

enzymes in hippocampal dendritic spines. Furthermore, competition appears to change not just the 

concentration of CaM bound to each partner, but also the CaM-binding dynamics. To paraphrase, 

concentrations in the competitive model are not simply scaled versions of their counterparts in the 

isolated model. Instead, competition seems to change how each binding partner responds to rapid 

Ca2+ transients, including how CaM-binding changes with each subsequent Ca2+ flux. For 

example, after just three Ca2+ fluxes, the concentration of CaM-bound MLCK no longer changes 

in the isolated model, while it continues to increase in the competitive model. Conversely, while 

the CaM-binding of Ng decreases with each subsequent Ca2+ spike in the competitive model, it 

does not change in the isolated model. Therefore, the dynamic behavior of CaM targets in cellular 

environments cannot necessarily be inferred from computational studies that model them in 

isolation.  

 Finally, although competition attenuates the CaM-binding of all binding partners, the 

magnitude of their attenuation varies considerably in my model. For example, while NOS 

experiences virtually no change in CaM-binding in the presence of competitors, CaN experiences 

a more than 20-fold reduction in CaM-binding in the competitive model. Therefore, the binding 

partners are unequally competitive under the simulated conditions. From these observations, I 

hypothesize that the competitiveness of each binding partner (i.e., the ability of a binding partner 

to bind CaM in the presence of other binding partners) might not be absolute and, instead, that the 

competitiveness of each protein may change across environmental conditions. In this case, 

competition for CaM is well-positioned to serve as a tuning mechanism, suppressing the CaM-

binding of each binding partner for all but a small range of internal conditions and external stimuli 

and allowing for the tight control of enzyme activation needed for the precise regulation of LTP, 

LTD, and other neurological processes. Therefore, I investigate how competition may tune the 

CaM-binding of each neuronal protein to certain Ca2+ frequencies. 
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2.3.4 Competition tunes CaM-binding to certain Ca2+ frequencies 

To investigate my hypothesis that competition affects the frequency-dependence of CaM-

binding, I construct frequency-dependence curves for all eight CaM binding sites (distinguishing 

between each AC8 terminus) using both the isolated and competitive models (Figure 7.2 in the 

Supplement to Chapter 2). The frequency dependence of Cb is then projected onto heat maps 

(Figure 2.4 A and B). For all simulations, Ca2+ oscillations consisted of 100 concentration spikes 

ranging from 0.1 Hz to 1 kHz.  

 

Figure 2.4. Competition tunes activation frequencies. (A) and (B) show 

normalized activation of CaM as a function of frequency for the isolated and 

competitive models, respectively. Red denotes peak activation; blue denotes 

minimal activation. Frequency windows of peak activation tend to narrow and shift 

for many of the binding partners in the competitive case. Indeed, (C) indicates a 

sharpening of activation frequency windows as an increase in specificity in the 

competitive model, at least for most proteins. Specificity is Sb multiplied by 100 

percent.  

 

The introduction of competition shifts the frequency-dependence curves of almost all 

binding partners. For some, such as AC1, AC8-Ct, CaMKII, and MLCK, this shift is slight, but 

apparent. For other partners, such as AC8-Nt and CaN, this shift is dramatic. In the competitive 

model, maximal CaM-binding occurs at frequencies almost one order of magnitude lower for AC8-

Nt (10 Hz in the competitive model, as compared to 60 Hz in the isolated model). For CaN, 

maximal CaM-binding occurs at frequencies over two orders of magnitude lower (0.3 Hz in the 

competitive model, as compared to 80 Hz in the isolated model). For NOS, a frequency shift is 

present but not visible in Figure 2.4B. 

 Although, as stated earlier, total CaM-binding and enzymatic activation are not the same 

(particularly for CaN, which is subject to dual regulation by Ca2+/CaM and CaNB), it is worth 
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noting that CaN is activated by low, but not high, frequency stimulation in vivo [18]. Therefore, it 

would be expected that maximal CaM-binding of CaN occurs at a similarly low frequency. The 

fact that this held true in the competitive, but not in the isolated, model suggests that the in vivo 

frequency-dependence of CaN may be reliant upon the presence of cellular competitors. Because 

of both the established role of CaN in LTD induction [78, 104] and the demonstrated ability of low 

frequency stimulation to induce LTD [18], my results further suggest that competition for CaM 

may be essential to normal LTD induction. Furthermore, because activated CaN downregulates 

LTP induction [103], competitive suppression of CaM-binding to CaN at high frequencies may be 

equally essential to normal LTP induction. 

 To investigate the effects of competition on each CaM binding partner’s level of preference 

for a certain frequency range, I used the frequency-dependence curves to calculate the frequency 

specificity of each binding partner in both the isolated and competitive models as defined in 

Equation 2. If a binding partner were only active at one frequency, it would have a frequency 

specificity of 100 percent. 

 The introduction of competitors sharpens the frequency-dependence curves of almost all 

binding partners, as also indicated by increased frequency specificity values in the competitive 

models relative to the isolated models (Figure 2.4C); frequency specificities increased for AC1 

(42.80%, as compared to 38.73%), AC8-Nt (58.55%, as compared to 24.79%), CaN (39.13%, as 

compared to 27.19%), CaMKII (54.17%, as compared to 37.89%), MLCK (27.45%, as compared 

to 5.70%), Ng (58.23%, as compared to 16.64%), and NOS (1.77%, as compared to 0.08%). The 

sole decrease, AC8-Ct, was small (37.86%, as compared to 39.50%). Therefore, competition for 

CaM not only regulates CaM-binding by changing the frequencies of maximal CaM binding, but 

also by narrowing the range over which appreciable CaM binding occurs. 

2.3.5 Competition for CaM mediates Ng/CaMKII crosstalk 

Two studies have reported decreased CaMKII autophosphorylation and CaMKII activity 

in CA1 hippocampal slices harvested from Ng genetic knockout (Ng-/-) mice [166, 167]. Although 

both studies reported about a 30% decrease in CaMKII autophosphorylation and CaMKII activity, 

they were in disagreement concerning the effect of the genetic knockout (Ng-/-) on LTP induction. 

Pak et al. (2000) found that wild type (Ng+/+) mice required a single tetanus to achieve potentiation, 

while Ng-/- mice required multiple tetanic stimulations [166]. In direct contrast, Krucker et al. 
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(2002) found that Ng-/- mice required only a single tetanus to induce LTP [167]. Despite these 

inconsistent results, both sets of authors suggested that this phenomenon may be caused by 

abnormal regulation of local Ca2+ and CaM concentrations, a proposal that has since been 

supported by several studies. 

 For example, Huang et al. (2004) attributed diminished LTP in Ng-/- mice to lower levels 

of free Ca2+ following high frequency stimulation [113]. And using two sets of Ng mutants which, 

respectively cannot bind, and constitutively bind, CaM, Zhong et al. (2009) provided evidence that 

abnormal regulation of local CaM concentrations may also be responsible. Using a model of the 

interactions of Ca2+, CaM, CaMKII, CaN, and AMPARs, Zhabotinsky et al. (2006) reproduced 

the effects of Ng knockout on LTP induction reported by Huang et al., but did not address the 

diminished CaMKII activity reported by both Pak et al. and Krucker et al. To date, no 

mathematical model has replicated the paradoxical effect of Ng genetic knockout on autonomous 

CaMKII activity. 

 I hypothesize that these phenomena could be explained by competitive tuning. I simulate 

autonomous CaMKII activation by extending my model according to a previously-published 

model of CaMKII autophosphorylation by Pepke et al. (see Fig 6 in [81]). In that work, two CaM-

bound (active) CaMKII monomers form a complex that enzymatically catalyzes the 

phosphorylation of one of the monomers. I stimulate this extended model according to an LTP 

induction protocol followed by Krucker et al., in which hippocampal slices were subjected to two 

tetanic stimuli of 100 pulses at 100 Hz, 20 seconds apart. Using this protocol, I assess my isolated 

(Figure 2.5A) and competitive (Figure 2.5B) models’ responses to simulated Ng knockout at 600 

seconds after the last stimulus. Normalized results from the same experimental stimulation 

protocol by Krucker et al. are shown in Figure 2.5C (see activity data in Fig 1F in [167]). 
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Figure 2.5. Competitive tuning explains intermolecular crosstalk. (A) 

Simulations of CaMKII phosphorylation in my isolated model with and without 

inclusion of Ng. (B) Simulations of CaMKII phosphorylation in my competitive 

model with and without Ng. (C) CaMKII activity in WT and Ng-/- knockout mice 

from Krucker et al. Simulations were performed to replicate the experimental 

method of Krucker et al. as closely as possible. (D) The average bound 

concentration (Cb) of each CaM binding protein in semi-isolated models as a 

function of Ng concentration. AC8-Ct and AC8-Nt exhibit the greatest relative 

change in CaM-binding (Cb, Eqn 1) as Ng concentration decreases. (E) The average 

bound concentration (Cb) of each CaM binding protein in the competitive model as 

a function of Ng concentration. For a decreasing Ng concentration, AC8-Ct and 

AC8-Nt again exhibit the greatest relative change in CaM-binding. (F) Comparing 

the semi-isolated (dotted traces) to the competitive (solid traces) model shows that 

only in the competitive model does summed AC8 (AC8-Nt + AC8-Ct, dark red) 

mirror the loss in CaM-CaMKII binding as Ng concentration decreases.   

 

In the absence of other competitors, the isolated model elicits similar levels of CaMKII 

autophosphorylation (pCaMKII) whether in the presence or absence of Ng. That is, the complete 

removal of Ng, which competes with CaMKII for CaM, results in only a slight increase in 

pCaMKII (Figure 2.5A). In contrast, in the presence of competitors for CaM, simulated Ng 

knockout decreases pCaMKII levels by 44% compared to WT (Figure 2.5C). Notably, this 

decrease in pCaMKII is quantitatively similar to the roughly 33% loss of Ca2+-independent 

CaMKII activity indicated by Krucker et al. [167]. Further, my competitive model results are also 
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consistent with Pak et al., who report a 40% decrease in pCaMKII in KO Ng-/- mice compared to 

WT (Ng+/+) mice [166].  

  Because my model does not allow for either spatial effects or variations in free Ca2+ 

concentration, these results suggest that competition for CaM alone could explain the paradoxical 

effect of Ng genetic knockout on CaMKII autophosphorylation and activity. pCaMKII levels seem 

to be regulated, at least in-part, by the competition for CaM established by Ng. With Ng, an 

abundance of the CaM not bound to Ng preferentially binds CaMKII (at moderate Ca2+ levels) 

because CaMKII can out-compete the other candidate binding partners. Without Ng, as in Ng-/- 

knockout mice, this competitive advantage of CaMKII to bind CaM is reduced, likely because the 

CaM that would normally bind Ng instead binds other proteins that do not dissociate as readily 

when high levels of Ca2+ are introduced.  

 This interpretation predicts that the decreased CaMKII autophosphorylation and activity 

seen in the Ng-/- knockouts occurs as a result of increased CaM-binding to other partners. To 

identify which other partners most preferentially bind CaM upon decreasing Ng, I first employ 

“semi-isolated” models containing only Ng and one of the seven other CaM binding partners 

(Figure 2.5D). Semi-isolated models are utilized in Figure 2.5D to help ensure that shifts in binding 

partner activation with decreasing Ng are in fact due to decreasing Ng. The partners that experience 

the greatest relative increase in CaM-binding as Ng concentration is decreased are AC8-Ct and 

AC8-Nt (calculated according the average CaM bound concentration, Cb, in Eqn 1). A more 

pronounced increase in the average bound concentration of AC8-Ct and AC8-Nt is seen in full 

competitive model simulations at decreasing Ng concentrations (Figure 2.5E). This could indicate 

that the decrease in CaMKII autophosphorylation and activity in Ng-/- mice is due to the shift in 

availability of (that is, the competition for) CaM due to its increased binding to AC8 during high 

frequency stimulation. To investigate this, the average bound concentrations of AC8-Ct and AC8-

Nt are summed together into AC8 in Figure 2.5E and plotted along with the average bound 

concentration of CaMKII as a function of initial Ng concentration for both isolated and competitive 

model simulations. CaM-binding to AC8 appears sufficient to explain these changes, with the 

amount of increase in the average bound AC8 concentration at decreasing Ng concentration closely 

mirroring the decrease in the average bound CaMKII concentration.  
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 Discussion 

In the present study, I use a system of ordinary differential equations to model the dynamic 

interactions of Ca2+, CaM, and seven CaM target proteins implicated in LTP and LTD of 

hippocampal synapses. By developing both “isolated” and “competitive” models of this system, I 

observe competition among these target proteins for CaM-binding and investigate competition’s 

role in regulating the frequency-dependent activation of downstream CaM binding proteins. The 

dynamic behavior of my model is largely determined by kinetic rate constants that describe the 

binding of CaM to Ca2+ and CaM binding to downstream binding to CaM binding proteins. My 

models are parameterized using published values where available and are calculated by applying 

experimentally supported assumptions and the thermodynamic principle of microscopic 

reversibility. Global sensitivity analyses are performed to determine the impact of these 

assumptions on my conclusions, and I find that very few of the parameters that significantly 

impacted my results are derived from these assumptions. 

 One of the major results of this work is that competitive binding could be among the 

mechanisms by which protein activation is dynamically tuned and regulated. I find that the 

presence of competitors affects not only the concentration of all respective CaM-bound proteins, 

but also the CaM-binding dynamics of these targets. Based on the results of the present work, I 

recommend at least the inclusion of Ng into models simulating the activation of CaM-dependent 

proteins in response to low frequency Ca2+ transients and the inclusion of CaMKII into models 

simulating the activation of CaM-dependent proteins in response to high frequency Ca2+ transients. 

Based on the results of my global sensitivity analyses, these two proteins appear to have the most 

significant impact on the CaM-binding of other CaM targets at these frequency ranges. 

Another major result of this work is that competitive tuning may be able to explain the 

counter-intuitive results from studies of Ng knockouts in mice (Ng-/-) in which CaMKII 

autophosphorylation and activity levels were seen to decrease in the Ng-/- compared to WT. My 

results suggest that under tetanic stimulation and normal initial Ng concentration, Ng buffers CaM 

from AC8 but not CaMKII. At low concentrations or in the absence of Ng, AC and particularly 

AC-Ct, is able to bind more CaM, while CaMKII binds less CaM (Figure 2.5F). Although the KD 

value of CaM4 binding to CaMKII and AC-Ct are only within 2-fold of each other (1.7 μM and 

0.8 μM, respectively), they exhibit very different binding dynamics based on their binding of sub-

saturated CaM (CaM2C and CaM2N). This is best seen in Figure 2.3. For AC-Ct, the dominant 
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species of CaM that binds is CaM2N, making up greater than 50% of the total CaM species bound 

to AC-Ct. In contrast, for CaMKII there is no dominant species of CaM that binds; CaM2N and 

CaM4 are major contributors to the total CaMKII-CaM bound species.  The binding dynamics of 

CaM-CaMKII interactions that are seen in the competitive model suggest, as previous work has 

suggested [81], that CaMKII binds to CaM2C and this CaM2C is then converted to CaM4 while still 

bound to CaMKII, as noted by the coincident decline in CaMKII-CaM2 and increase in CaMKII-

CaM4 in Figure 2.3 and Figure 7.3 in the Supplement to Chapter 2. The binding dynamics of AC8-

Ct seem to indicate that AC8-Ct binds CaM2N and stays bound until the next Ca2+ spike. Thus, I 

hypothesize that AC8-Nt is able to out compete CaMKII for CaM binding in absence of Ng 

because of its relatively high affinity for CaM2N. Since the dynamic behavior that I see in the 

competitive model is so dependent on the rate parameters it would be ideal if more of them could 

be experimentally determined in the future. To test the hypothesis that AC8 activity would be 

increased in a Ng-/- model, I suggest an experiment in which cAMP production is measured in CA1 

hippocampal slices from Ng+/+ and Ng-/- mice while employing forskolin and specific AC1 

blockers to control for cAMP production by AC1 and G protein activation, respectively. If my 

proposed model is accurate, then increased cAMP production will be observed in Ng-/- mice.  

 Protein networks for which the initiating ligand is a limiting resource, such as the 

Ca2+/CaM network studied here, are common in biology. As in vivo ligand concentrations often 

approach the dissociation constants of their binding partners, the concentration of bound ligand 

could exceed that of free ligand, resulting in the phenomenon of ligand depletion [168]. Ligand 

depletion, as described by Edelstein et al., reduces cooperative interactions and broadens the range 

of signals to which the ligand is most responsive. It may be that I observe ligand depletion 

phenomena in my isolated models (Figure 2.4A), given the broad range of Ca2+ frequencies at 

which many binding partners are activated, especially for AC8 and MLCK. However, if ligand 

depletion really were the predominant regulatory phenomenon, I would expect that by introducing 

more binding partners (Figure 2.4B), the broadening effect of ligand depletion would become more 

conspicuous. Instead, I see a shift and narrowing of the Ca2+ frequencies over which the binding 

partners are activated. Thus, I am confident that it is competition among the CaM-binding proteins 

that is the mechanism underlying this tuning behavior.   

Because competition seems to be important in my neuron-based model, I sought to 

compare my results to a different biological system with Ca2+/CaM-dependent signaling. The 2008 
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publication by Saucerman and Bers examines activation of CaMKII and CaN in a 

compartmentalized model of cardiomyocytes, stimulated at Ca2+ frequencies ranging from 0-4 Hz 

[92, 93]. Although this frequency range is much narrower than that used in my competitive model, 

I can still compare trends of frequency-dependent protein activation. For example, CaMKII 

activation increases with frequency for both models. Additionally, my isolated model agrees with 

the Saucerman-Bers model without CaM buffers, in which CaN activation dramatically increases 

over 0-4Hz. In my competitive model CaN activation is attenuated, in agreement with the 

Saucerman-Bers model with CaM buffers. This agreement lends further confidence to my model, 

as the Saucerman-Bers results were subsequently verified experimentally [169]. It appears my 

model using explicitly-defined CaM buffers (binding proteins) is consistent with the Saucerman-

Bers implementation of generalized, unidentified CaM buffers. 

 The 2008 model by Saucerman and Bers, though not explicitly spatial, highlights how 

protein localization may affect model output. In Saucerman’s model, Ca2+ frequency-dependent 

activation levels are different for the cytosolic and membrane-localized (dyadic) CaN sub-

populations. My current model excludes spatial effects in order to scrutinize competitive binding 

in the absence of confounding factors. However, I acknowledge that spatial effects likely alter 

competition for CaM, especially in the PSD. Future work would investigate the effect of spatial 

localization on competition for CaM binding; in particular instantiating membrane-localized 

proteins such as AC1, AC8, NOS and especially Ng at or near the membrane.  Sub-populations of 

CaN may also be localized to the PSD through binding with scaffolding proteins such as AKAP79 

[170-172]. Indeed, because I describe Ng as freely diffusing, it is possible my model exaggerates 

the ability of Ng to compete for CaM relative to other proteins in my model. Therefore, it would 

be interesting to assess whether a competitive model accounting for membrane localization can 

still explain the paradoxical effect of Ng-/- on CaMKII autophosphorylation.  

Together, my results suggest that the frequency-dependence of CaM targets observed in 

vivo is not an inherent property of these proteins, but rather may be an emergent property of their 

competitive environment. This competitive tuning may provide a mechanism by which otherwise-

independent protein pathways can engage in crosstalk through the limited availability of CaM. I 

propose that competitive tuning, alongside binding dynamics, feedback loops, and spatial 

localization, may serve as a major regulator of CaM target protein activation. Furthermore, I have 

attempted to explain the paradoxical decrease in CaMKII activity seen in Ng-/- mice as a result of 
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the dysregulation of this competitive tuning mechanism. In the absence of spatial effects or 

aperiodic variations in free Ca2+ concentration, competitive tuning is able to offer an explanation 

for this phenomenon. It is important to note that other proteins, mechanisms, or pathways not 

included in this model likely lend robustness and further regulatory mechanisms of this 

phenomenon. Further, it is unlikely that seven CaM-target proteins studied here are the only CaM 

target proteins that engage in this type of crosstalk through limiting CaM. If competitive tuning 

facilitates crosstalk among CaM binding proteins, then genetic disorders, neurological diseases, 

normal aging processes, and therapeutics that disrupt any one CaM target protein may have non-

intuitive effects that extend into other signaling pathways. Computational modeling and analysis 

will continue to play a large role deciphering these oft counter-intuitive regulatory mechanisms 

that when disrupted, give rise to complex neurological disorders and other important diseases.   

 Methods 

All numerical integration and data manipulation were performed in Mathematica as 

described in Model Analysis. Reaction equations were implemented using Mathematica [173] with 

the XCellerator package [174]. XCellerator uses the Law of Mass Action to create ordinary 

differential equations describing the time rate of change in concentration for each binding partner 

and their respective CaM-bound states. In Equation 3 I monitor the concentration of a generalized 

Ca2+/CaM state complexed with an arbitrary binding partner, Tb: 

(3) 
d[TbCaMNiCj]

dt

= kon

TbCaMNiCj[Tb][CaMNiCj] −  k
off

TbCaMNiCj[TbCaMNiCj]

+ kon
TbjC[Ca2+][TbCaMNiCj−1] + kon

TbiN[Ca2+][TbCaMNi−1Cj]

+ koff
Tb(i+1)N

[TbCaMNi+1Cj] + koff
Tb(i+1)C

[TbCaMNiCj+1]

− [TbCaMNiCj] (koff
TbiN

+ koff
TbjC

+ kon
Tb(i+1)N[Ca2+] + kon

Tb(j+1)C[Ca2+]) 

where i and j = 0, 1, or 2. 

 For simulations involving autophosphorylation of CaMKII, I extend the system of 

differential equations generalized in Equation 3 to describe formation of a complex between two 
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active (CaM-bound) CaMKII monomers (Equation 4). Finally, complexes of CaMKII monomers 

react such that one monomer behaves as an enzyme and the other becomes the phosphorylated 

substrate (Equation 5). As stated, I refer directly to the previously-published model of CaMKII 

autophosphorylation by Pepke et al. (see Fig 6 in [81]). 

(4) 
d[DimerCaMKIIN1,iN2,mC1,jC2,n]

dt

= kon
Dimer[CaMKIICaMN1,iC1,j][CaMKIICaMN2,mC2,n]

− koff
Dimer[DimerCaMKIIN1,iN2,mC1,jC2,n] 

(5)
d[pCaMKIICaMNiCj]

dt
= kp

CaMNiCj[DimerCaMKIIN1,iN2,mC1,jC2,n] 

Where i, j, m, and n = 0, 1, or 2. Phosphorylated CaMKII monomers may also be one of the two 

participating species in Equation 4.  

 All the equations for this model can be found in S3 Appendix. Mathematica files for the 

complete models can be found on the Purdue PURR database:  Romano, D.; Pharris, M. C.; 

Patel, N.; Kinzer-Ursem, T. L. (2017), "Mathematica Files: Competitive tuning: competition’s 

role in setting the frequency-dependence of Ca2+-dependent proteins." (DOI: 

10.4231/R7154F7Q). My model code is also being uploaded to the BioModels Database [175-

177]. 

 Despite my best efforts to constrain my models’ parameter values to those that have been 

experimentally-measured or those which can be calculated by the principle of thermodynamic 

equilibrium, it was still a valuable exercise to investigate the effects of the previously-described 

calculations and assumptions on model conclusions. Therefore, a global sensitivity analysis was 

used to investigate how uncertainty in parameter values impacted model outputs. Latin hypercube 

sampling (LHS) was used to simultaneously sample input parameter spaces, and partial rank 

correlation coefficients (PRCC) were calculated to measure the correlation between variation in 

parameter values and variation in model outputs. These methods have been previously described 

(see [81, 115]). In short, for each CaM target, a uniform probability distribution of input parameter 

values was assumed to either span the experimental range specified in Table 7.5 (a more detailed 

version of this table is available at [46]) or, if a range of experimental values is not present, 50-

200% of experimental, calculated, or assumed values. A perfect positive correlation gave a PRCC 
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of 1, whereas a perfect negative correlation gives a PRCC of -1. A threshold of 0.5 was used to 

select for only the parameters that significantly impacted (either positively or negatively) the 

average bound concentration of each binding partner, and parameters were then ranked by the 

absolute value of their PRCCs. For the sake of completeness, the sensitivity analysis was done for 

the nine-state model of Ca2+-CaM binding.  
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3. COMPETITIVE TUNING AMONG CA2+/CALMODULIN-

DEPENDENT PROTEINS: ANALYSIS OF IN SILICO MODEL 

ROBUSTNESS AND PARAMETER VARIABILITY 

 Summary 

Calcium/calmodulin-dependent (Ca2+/CaM-dependent) regulation of protein signaling has 

long been recognized for its importance in a number of physiological contexts. Found in almost 

all eukaryotic cells, Ca2+/CaM-dependent signaling participates in muscle development, immune 

responses, cardiac myocyte function and regulation of neuronal connectivity. In excitatory neurons, 

dynamic changes in the strength of synaptic connections, known as synaptic plasticity, occur when 

calcium ions (Ca2+) flux through NMDA receptors and bind the Ca2+-sensor calmodulin (CaM). 

Ca2+/CaM, in turn, regulates downstream protein signaling in actin polymerization, receptor 

trafficking, and transcription factor activation.  

The activation of downstream Ca2+/CaM-dependent binding proteins (CBPs) is a function 

of the frequency of Ca2+ flux, such that each CBP is preferentially “tuned” to different Ca2+ input 

signals. I have recently reported that competition among CBPs for CaM binding is alone sufficient 

to recreate in silico the observed in vivo frequency-dependence of several CBPs. However, CBP 

activation may strongly depend on the identity and concentration of proteins that constitute the 

competitive pool; with important implications in the regulation of CBPs in both normal and disease 

states.   

 Here, I extend my previous deterministic model of competition among CBPs to include 

phosphodiesterases, AMPAR receptors that are important in synaptic plasticity, and enzymatic 

function of CBPs: cAMP regulation, kinase activity, and phosphatase activity. After rigorous 

parameterization and validation by global sensitivity analysis using Latin Hypercube Sampling 

(LHS) and Partial Rank Correlation Coefficients (PRCC), I explore how perturbing the 

competitive pool of CBPs influences downstream signaling events. In particular, I hypothesize that 

although perturbations may decrease activation of one CBP, increased activation of a separate, but 

enzymatically-related CBP could compensate for this loss, providing a homeostatic effect.  

 First I compare dynamic model output of two models: a two-state model of Ca2+/CaM 

binding and a four-state model of Ca2+/CaM binding. I find that a four-state model of Ca2+/CaM 

binding best captures the dynamic nature of the rapid response of CaM and CBPs to Ca2+ flux in 
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the system. Using global sensitivity analysis, I find that model output is robust to parameter 

variability. Indeed, although variations in the expression of the CaM buffer neurogranin (Ng) may 

cause a decrease in Ca2+/CaM-dependent kinase II (CaMKII) activation, overall AMPA receptor 

phosphorylation is preserved; ostensibly by a concomitant increase in adenylyl cyclase 8 (AC8)-

mediated activation of protein kinase A (PKA). Indeed phosphorylation of AMPAR receptors by 

CaMKII and PKA is robust across a wide range of Ng concentrations, though increases in AMPAR 

phosphorylation is seen in at low Ng levels approaching zero. My results may explain recent 

counter-intuitive results in neurogranin knockout mice and provide further evidence that 

competitive tuning is an important mechanism in synaptic plasticity. These results may be readily 

translated to other Ca2+/CaM-dependent signaling systems in other cell types and can be used to 

suggest targeted experimental investigation to explain counter-intuitive or unexpected downstream 

signaling outcomes. This work is published ([165]). 

 Introduction 

Worldwide, as many as 1 billion people suffer from neurological disorders [178]. In the 

US alone, neurological disorders affect more than 1 in 7 households [179]. At the most basic level, 

these neurological disorders arise from perturbations in protein signaling networks within neuronal 

synapses. Normal synaptic function requires dynamic, short-timescale regulation of the connective 

strength of the synapse. This regulation is initiated within the post-synapse by the influx of calcium 

ions (Ca2+) through NMDA receptors [27]. Intracellular Ca2+ binds the Ca2+ sensor protein 

calmodulin (CaM), which subsequently activates a variety of Ca2+/CaM-dependent protein 

signaling pathways. Ca2+/CaM-dependent pathways may either potentiate synaptic connective 

strength via AMPA receptor (AMPAR) phosphorylation and trafficking to the synapse, or they 

may depress synaptic strength by regulating AMPAR de-phosphorylation and removal from the 

synapse (recently reviewed in Huganir and Nicoll [180]). Although many of the proteins that are 

involved in Ca2+/CaM-dependent AMPAR regulation are well known, the dynamics of the 

pathway(s) are far from understood. With computer-guided studies, I begin to characterize the 

dynamics and cross-talk inherent to the protein interactions in these pathways, possibly enabling 

the identification of new therapeutic targets for treating neurological disorders.  

Calmodulin (CaM) regulates synaptic plasticity by selectively activating a number of 

downstream proteins, termed calmodulin binding proteins (CBPs), within the signaling networks 
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responsible for either the dynamic strengthening or weakening of synaptic connections. The 

binding of CaM to its many downstream binding partners [20, 181-183] depends on the kinetic 

rates with which different CaM species bind CBPs, such that each CBP is preferentially activated 

by, or “tuned” to, different input Ca2+ signals. Aside from binding dynamics, other mechanisms 

that regulate this tuning include feedback loops, spatial localization, and a recently described 

phenomenon called competitive tuning [92, 184, 185]. I have recently reported that competitive 

tuning is sufficient to recreate, in silico, the in vivo Ca2+ frequency-dependence of several CBPs 

[184]. One prediction from competitive tuning is that, in the absence of other mechanisms, 

signaling outcomes may strongly depend on the abundance and binding dynamics of individual 

CBPs; parameters susceptible to perturbation either by genetic regulation or by post-translational 

modification. It follows then that signaling outcomes may lack robustness if competitive tuning 

occurs in isolation of other regulatory mechanisms.  

Indeed, modulating just one parameter (e.g. a protein’s concentration) could cause a shift 

in competition that influences the signaling outcomes of other proteins in the system, perhaps 

leading to non-intuitive effects. I have previously shown that simulated knockout of the CaM 

buffer neurogranin (Ng) shifts the competition for CaM, non-intuitively decreasing Ca2+/CaM-

dependent kinase II (CaMKII) activation and concomitantly increasing adenylyl cyclase (AC) 

activation [184]. My previous results may explain a surprising experimental observation by 

Krucker et al. (2002) in which Ng knockout (Ng KO) mice retain the ability to acquire long-term 

potentiation (LTP), despite a considerable reduction in CaMKII activity [186]. In this present work 

I further explore how competitive tuning regulates LTP, hypothesizing that although reduced 

CaMKII activation in the Ng KO should reduce the phosphorylation of AMPA receptor GluA1 

subunits at residue S831, a coincident increase in AC activation may cause an increase in GluA1 

subunit phosphorylation at residue S845. This would lead to robustness in the overall level of 

GluA1 phosphorylation. Although there is still some debate about the precise roles of 

phosphorylation at S831 and S845, it is well accepted that phosphorylation of these sites is 

involved in the function and location of AMPARs and in synaptic plasticity (recently reviewed in 

[31, 180]). Thus, competitive tuning alone could provide the mechanism by which overall GluA1 

phosphorylation levels are maintained and provide a homeostatic effect on synaptic plasticity.  

Here, I compare two models of Ca2+/CaM-dependent activation of CBPs; a 2-state 

Ca2+/CaM binding model and a four-state Ca2+/CaM-binding model. I include well documented 



69 

 

CBPs that are highly expressed in neurons, and also include signaling events downstream of 

Ca2+/CaM binding, including CaM-dependent enzymatic activity, PKA kinase activation, 

phosphatase regulation, and AMPAR receptor phosphorylation. After validating the model, I use 

a global sensitivity analysis to quantify the effect of parameter perturbations on model outcomes. 

I also find that at short timescales, competitive tuning provides robustness in overall GluA1 

phosphorylation levels via upregulation in the activation of PKA-mediated phosphorylation of 

GluA1 in conditions that simulate the Ng KO. My results provide further evidence that competitive 

tuning could be an important mechanism in the regulation and maintenance of synaptic plasticity. 

 Results and Discussion 

3.3.1 Model Development 

3.3.1.1 Model Structure 

Similar to my previous work [184], I constructed models of CaM binding to a number of 

downstream CBPs and allowed the CBPs to compete for the various states of Ca2+/CaM. CaM has 

four binding sites for Ca2+ ions, two in EF-hand domains in the amino (N) terminus, and two in 

EF-hand domains in the carboxy (C) terminus. The binding of Ca2+ within each terminus is highly 

cooperative, for example upon binding of the first Ca2+ ion at the N-terminus, a second Ca2+ ion 

binds rapidly to the N-terminus. But binding between the termini is independent (i.e. Ca2+-binding 

at the N-terminus does not change the binding of Ca2+ at the C-terminus). Many models of Ca2+ 

signaling cascades in neurons and cardiomyocytes have employed a simplified, yet still relevant 

model of Ca2+ ions binding to CaM where all four Ca2+ ions are assumed to bind simultaneously 

(outlined in Figure 1A). These models have been used extensively and are thought to be quite 

accurate, at least for scenarios in which the overall magnitude of Ca2+ flux is large, such as in Ca2+-

dependent Ca2+ release phenomena or high frequency Ca2+ flux. However, more detailed 

descriptions of CaM that account for its intermediate, sub-saturated states (outlined in Figure 1B) 

may be more appropriate for situations in which Ca2+ flux occurs at moderate to low frequencies, 

or in conditions of limiting Ca2+ [187]. It has been shown that several CBPs (MLCK, CaMKII, 

AC1 and AC8) produce CaM-dependent activity even with small increases in Ca2+ concentration 

[97, 188, 189]. Additionally, CaMKII has been shown to be enzymatically active with only two 

Ca2+ ions bound to CaM [190], and AC8 has been shown to bind CaM with only two Ca2+ ions 
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bound to CaM [189]. These observations and the fact that binding of Ca2+ to CaM is highly 

cooperative within each terminus, but not between termini, together have led some to develop 

models that include more intermediate states of Ca2+ binding to CaM [42, 92, 184]. 

 

Figure 3.1. Schematic representations of binding models. (A-B) Binding models 

of Ca2+-binding to calmodulin. Four Ca2+ ions (yellow circles) bind to CaM at 

binding sites in the amino (N) and carboxyl (C) termini. A) 2-state model of Ca2+ 

binding to CaM. CaM with no Ca2+ ions bound (CaM0) is assumed to 

simultaneously bind four Ca2+ ions forming a fully saturated Ca2+ bound CaM 

(CaM4). B) 4-state model of Ca2+ binding to CaM where two Ca2+ ions bind 

simultaneously to either the N- or C- termini of CaM (CaM2N or CaM2C, 

respectively). In a subsequent reaction two Ca2+ ions bind to either termini to form 

fully saturated Ca2+-bound CaM (CaM4). (C-D) Models of Ca2+ binding to CaM 

and CaM binding to downstream binding partners. C) 2-state binding model where 

CaM0 with no Ca2+ ions bound binds to downstream binding partners (represented 

by CaM0-B). CaM4 can also bind to downstream binding partners (CaM4-B). D) 

4-state binding model where all states of CaM (CaM0, CaM2N, CaM2C, and CaM4) 

may bind downstream binding partners (CaM0-B, CaM2N-B, CaM2C-B, and 

CaM4-B).  

 

I compare a 2-state CaM model to a 4-state CaM model (Figure 3.1 A and B). For both 

models I view CaM as a limiting resource. There are many more CBPs than CaM itself. Thus CBPs 

compete simultaneously for binding to CaM in its different states (overview in Figure 3.1C-D and 

Figure 3.2). Listed below, the CBPs that are included in this work are highly expressed in neurons 

and widely reported to interact with CaM (see [20] for a review). The reactions that describe these 
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interactions are listed in Table 7.1, given in the Supplement to Chapter 3. To study downstream 

events in Ca2+/CaM-dependent signaling I additionally include enzymatic activation of CBPs and 

the relevant proteins and nucleotides that are downstream of CaM-binding. These include the 

generation of cAMP by AC1 and AC8, hydrolysis of cAMP by PDE1 and PDE4, activation of 

PKA by cAMP, phosphorylation of GluA1 by PKA and CaMKII, and de-phosphorylation of 

GluA1 by CaN and PP1 (summarized in Table 7.2; reactions listed in Table 7.1). The interactions 

among Ca2+ ions, proteins, and nucleotides described above and shown schematically in Figure 

3.2 and the corresponding differential equations are found in the Supplement to Chapter 3. In total 

there are 91 equations and 225 parameters for the 2-state model and 151 equations and 447 

parameters for the 4-state model.  
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Figure 3.2. Schematic of the CaM-dependent protein signaling network. Ca2+ 

ions flux through the NMDA receptor, initiating a cascade of signaling that results 

in phosphorylation of the AMPA receptors. CaM-binding proteins (neurogranin 

(Ng), muscle light chain kinase (MLCK), neuronal nitric oxide synthetase (NOS), 

calcineurin (CaN, also known as protein phosphatase 3), Ca2+/calmodulin-

dependent kinase II (CaMKII), phosphodiesterase 1 (PDE1), adenylyl cyclase 1 

(AC1) and adenylyl cyclase 8 (AC8)) simultaneously compete for CaM binding. 

CaM binding activates the catalytic activity of CaMKII, which phosphorylates the 

AMPA receptor GluA1 subunit at site S831. Generation of cAMP by CaM-bound 

adenylyl cyclases activates the catalytic activity of protein kinase A (PKA, also 

known as cAMP-dependent kinase), which phosphorylates Inh-1 as well as GluA1 

at site S845. Phosphodiesterases (both CaM-dependent PDE1 and constitutively 

active PDE4) regulate intracellular levels of cAMP by hydrolysis, thereby 

regulating PKA activity. PP1 may additionally de-phosphorylate CaMKII or GluA1. 

PP1 may become sequestered by Inh-1, until Inh-1 is de-phosphorylated by CaN.  
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Table 3.1. Calmodulin binding proteins. 

Protein Description and Chemical Reactions 

Adenylyl Cyclase 1 (AC1) A prominent adenylyl cyclase isoform in hippocampal neurons. Binds CaM at its C1b 

domain and, when activated, converts ATP to cAMP [16, 17, 191, 192].  

Adenylyl Cyclase 8 (AC8) A prominent adenylyl cyclase isoform in hippocampal neurons. Binds Ca2+/CaM at both its 

N- and C-termini, which are explicitly accounted for in this work [189, 193]. Ca2+/CaM-

AC8ct (C-terminus-bound AC8) may bind ATP for conversion to cAMP [16]. 

Ca2+/CaM-dependent kinase II 

(CaMKII) 

Ca2+/CaM-dependent kinase. Highly expressed in brain, and especially hippocampal tissue 

[194]. In this work, CaMKII is modeled as monomers which, when active, may dimerize 

and subsequently become Ca2+/CaM-independent via autophosphorylation [195]. Active 

CaMKII phosphorylates many downstream proteins such as the GluA1 subunit of AMPA 

receptors [196].  

Calcineurin (CaN) A Ca2+/CaM-dependent serine/threonine phosphatase [197, 198].  CaN dephosphorylates 

GluA1 at S845 [199]. 

Myosin Light Chain Kinase 

(MLCK) 

A putatively abundant CBP in dendritic spines, which we model using kinetic parameters 

derived from studies on smooth muscle [200-202]. 

Neurogranin (Ng) A membrane-associated protein, and one of the few proteins that strongly binds CaM in 

absence of Ca2+ [35, 155, 203, 204]. 

Nitric Oxide Synthetase (NOS) Typically a membrane-associated protein that binds tightly to CaM and generates Nitric 

Oxide from citrulline and arginine [159, 161, 205].   

Phosphodiesterase 1 (PDE1) A Ca2+/CaM dependent phosphodiesterase that cleaves cAMP into AMP [21]. 

 

7
3
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Table 3.2. Non-calmodulin binding proteins in this model. 

GluA1 One of four subunits of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor 

(AMPA receptor). Is phosphorylated at amino acid residue S831 by CaMKII and residue 

S845 by PKA [32, 33]. Increase AMPA phosphorylation is implicated in synaptic plasticity, 

and GluA1-p845 may be necessary for exocytosis of AMPARs to the synaptic membrane 

[33]. 

Inhibitor 1 (Inh-1) When phosphorylated by active PKAc, Inh-1 may bind PP1, inhibiting the ability of PP1 to 

de-phosphorylate GluA1. Inh-1 is de-phosphorylated by CaM-activated CaN [33]. 

Phosphodiesterase 4 (PDE4) PDE4 is not Ca2+/CaM dependent but plays a significant role in regulating the levels of 

cAMP in cells by cleaving cAMP into AMP. Phosphorylation by active PKAc increases the 

enzymatic activity of PDE4 [206].  

PKA Inhibitor A generic model species representative of many unspecified off-target binding partners for 

PKA. These binding partners sequester PKA, preventing its phosphorylation of GluA1, and 

they additionally participate in the pathway restoring PKAc to the original four-subunit, 

auto-regulated PKA heteromer [207].   

Protein kinase A (PKA, also 

known as cAMP-dependent 

kinase) 

Binds up to four cAMP, liberating catalytic subunits that bind and phosphorylate a number 

of downstream targets such as PDE4, Inh-1, and GluA1 [21, 32].  

Protein Phosphatase 1 (PP1) PP1 de-phosphorylates GluA1 subunits at both S831 and S845, in addition to CaMKII T286 

[33]. In this model, PP1 may only bind CaMKII when CaMKII is un-bound to Ca2+/CaM.   
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3.3.1.2 Model Parameterization 

Model parameters are either obtained directly from literature or are calculated from 

published values using the principle of microscopic reversibility and implementing the assumption 

that Ca2+ binding does not affect the rate of protein dissociation from CaM koff, but rather the 

association rate (kon) such that the general equation  𝐾𝐷 =
𝑘𝑜𝑓𝑓

𝑘𝑜𝑛
  can be used to calculate rate 

constants. These assumptions have been used regularly in the modeling literature by myself and 

others [42, 184, 208, 209] and have been shown to be experimentally validated [58]. For the 

Ca2+/CaM-dependent enzymes AC, PDE1, and CaN the catalytic activity is assumed to scale with 

the amount of Ca2+ bound to CaM, similar to what has been shown with CaMKII [97]. Thus I 

calculate scaled values for the catalytic activity of sub-saturated Ca2+-bound CaM-CBPs similar 

to my previous model of CaMKII auto-phosphorylation [184]. For example, the catalytic activity 

of Ca2+/CaM2C-CaN is slower than that of Ca2+/CaM4-CaN. In the absence of experimental 

measurement of catalytic rate constants for AC, PDE1, and CaN activity when bound to sub-

saturated CaM, I calculated these scaled catalytic rate constants such that the rate of activity of the 

CaM2C-bound state relative to that CaM4-bound state was decreased by a similar proportion to that 

of the phosphorylation rate CaM2C-CaMKII to CaM4-CaMKII which has been previously 

measured [97]. Catalytic rate constants for CaM2N-bound state of AC, PDE1, and CaN was 

similarly scaled relative to the ratio of phosphorylation rate constants of CaM2N-CaMKII to CaM4-

CaMKII. The values of all parameters are provided in Table 7.5 in the Supplement to Chapter 3.  

Prior to executing Ca2+ flux, each simulation was run for a time course of 30 seconds 

at a basal level of 5 nM Ca2+ to allow for steady state binding of CaM to CBPs [34, 210]. The 

concentrations of all species at the end of this preliminary simulation were used as the input 

for simulations in which Ca2+ flux was initiated at varying frequencies.  

3.3.2 2-State vs 4-State CaM Binding Models 

In previous work I have shown that a thermodynamically complete, 9-state model of Ca2+ 

binding to CaM did not significantly change model output relative to a 4-state binding model [184]. 

In this work my first task was to compare a 2-state binding model to that of a 4-state binding model 

(Figure 3.1C and D) to validate the hypothesis that the dynamics of CBP binding by CaM are 

optimally represented by a 4-state binding model. For this, I analyzed model output when 
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stimulated at a frequency of 10 Hz (see Methods). In Figure 3.3 I used two metrics to show how 

the 2-state model (Figure 3.3 A and C) and 4-state model (Figure 3.3 B and D) each responded to 

10 Hz Ca2+ stimulation. The first metric (Figure 3.3 A and B) monitored CBP binding only to 

fully-saturated CaM4 over time. The second metric (Figure 3.3 C and D) monitored the total CBP 

binding to all Ca2+/CaM states. The only difference between metrics for the 2-state model is that 

the second metric additionally accounts for each CBP bound to apo-CaM (CaM0), if any. Similarly, 

using the second metric for the 4-state model involves summing the concentrations of each CBP 

bound to each Ca2+/CaM state: CaM0, CaM2N, CaM2C, and CaM4.  

 

Figure 3.3. Time-course comparison of Ca2+/CaM binding models. (A,B) 

Response of binding models to 10Hz Ca2+ frequency stimulation, monitoring each 

CBP bound to Ca2+-saturated CaM4. (C, D) Response of binding models to 10 Hz 

Ca2+ frequency stimulation, monitoring the cumulative concentration of each CBP 

bound to any Ca2+/CaM state. Similar data for models stimulated at 50 Hz Ca2+ is 

provided in the Supplement to Chapter 3.  

 

By monitoring either CaM4-bound or all CaM-bound CBP, I assessed the added value of a 

relatively detailed 4-state model to the simpler 2-state model of Ca2+/CaM. In Figure 3.3A, each 

CBP-CaM4 trace exhibited wavelets implying a frequency detection inherent to CBP activation. 

For most CBPs such as CaN (blue) and AC8ct (black), relative activation by CaM4 generally 

increased over time, which was consistent with expectation for CBPs exposed to a continuous, 
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frequency-based stimulus. In contrast, Ng (cyan) rapidly decreased in relative CaM4 binding over 

time though this was also expected due to the high affinity of Ng for CaM0 compared to CaM4. In 

Figure 3.3C, the 2-state model elicited similar time-course trends for each CBP compared to Figure 

3.3A, and because the traces lack frequency-associated wavelets, it appears that CaM0 was 

significantly bound to CBPs, particularly during inter-spike intervals of Ca2+. The differences 

between monitoring solely CaM4- versus all CaM-bound CBPs were further evidenced by Figure 

7.4 in the Supplement to Chapter 3, which shows equivalent output but for a model stimulated at 

50 Hz.  

For the 4-state model, the Ca2+ frequency-associated waveforms were much more 

prominent than in the 2-state model (compare Figure 3.3B and D to Figure 3.3A and C), indicating 

that the 4-state model is much more responsive to Ca2+ than the 2-state model (some data obscured 

by the highly dynamic traces). See also results from 50 Hz stimulation in Figure 7.4. Of note, there 

is a significant difference in the dynamics of binding of CaM to AC8nt and NOS between the 2-

state and 4-state models (compare Figure 3.3A and C to Figure 3.3B and C) at 10 Hz. Additionally, 

the 4-state model is altogether more responsive to rapid changes in Ca2+ concentration, even when 

all the CaM-bound CBPs are summed (Figure 3.3D). Taken together this data provides a strong 

motivation to move forward with the 4-state model as the best model to simulate the frequency-

dependent response of CBPs.   

3.3.3 Frequency Analysis 

Because my current 4-state model dramatically expands on previous work, I wanted to 

assess the frequency-dependence of CBP activation. I define two metrics in order to compare the 

frequency response of all CBPs. In the first metric, Normalized Cb1, the time-averaged integration 

of all CaM4-bound CBPs (Equation S1) is normalized to the highest Cb1 value of each CBP, 

respectively. In the second metric, Normalized Cb2, the time-averaged integration of all CaM 

species-bound CBPs (Equation S2) is normalized to the highest Cb2 value of each CBP, 

respectively. Normalized Cb1 and Cb2 values for each CBP are plotted at various Ca2+ flux 

frequencies (Figure 3.4).  
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Figure 3.4. Frequency-dependence of CBPs. (A,B) Relative time-averaged 

concentrations of CaM4-bound CBPs (Cb1) and all CaM-bound CBPs (Cb2), 

respectively, for the 4-state model. (C,D) Heatmap representations of data shown 

in A and B, where each row denotes the CaM4- and total CaM-binding to each CBP. 

Blue denotes minimal relative activation of CBP, and red denotes maximal relative 

activation of CBP. Note the shifts in the frequencies of peak CBP activation when 

accounting only for CaM4-binding (C) and all CaM-CBP binding (D).  

 

The frequency responses of the various CBPs, when accounting for all CaM-binding, are 

in good agreement with previously published results. For example, CaMKII (green trace) exhibited 

its highest CaM4-binding (and thus, activation) at high frequencies, peaking around 100 Hz (Figure 

3.4 A and B). High frequency activation of CaMKII coincides with the protein’s putative role in 

long-term potentiation, which is initiated under high-frequency (~100 Hz) Ca2+ flux. Interestingly, 

Ng, which has a higher affinity for CaM0 than CaM4, exhibited relatively little CaM4-binding 

across most frequencies, before spiking at about 80 Hz (Figure 3.4 A and C). This spike in average 

CaM4-bound Ng is explained by the full saturation of CaM4 at high frequencies. Indeed, when 

accounting for all CaM-binding (Figure 3.4B), Ng exhibits a peak activation at lower frequencies, 

which is more consistent with expectation [4]. Most notably, when analyzing Normalized Cb1 
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(Figure 3.4 A and C) many CBPs such as AC1, AC8, Ng, and NOS have highly similar peak 

activation frequencies. If distinct Ca2+ signals/frequencies elicit activation of distinct Ca2+/CaM-

dependent pathways and were in-part dependent on competitive tuning, then I would have 

expected each CBP to have a more distinguishable frequency of peak activation.  

 The frequency dependence of the CBPs is clearer when I analyze the data using the second 

metric, Normalized Cb2. As seen in Figure 3.4B and Figure 3.4D, this analysis revealed how CaM0 

and the intermediate Ca2+/CaM states can, in conjunction with saturated CaM4, contribute to the 

frequency-dependence of CBP activation. This is additional evidence that suggests that a 4-state 

model of Ca2+/CaM binding is able to capture the frequency dependent changes in CBP activation. 

These results also compare favorably with my previous work [184]. However, in my previous 

work the adenylyl cyclase CBPs (AC1, AC8nt, and AC8ct) generally exhibits activation that peaked 

at higher-frequencies (greater than 50 Hz). In Figure 3.4B and Figure 3.4D, it appears that 

incorporating the additional CPB (PDE1) caused a downward shift and sharpening in peak 

activation frequency for AC8nt.   

3.3.4 Sensitivity of GluA1 Phosphorylation to Variation in Key Input Parameters 

Global sensitivity analysis was performed to assess how variation in input parameters 

contributed to variation in the overall phosphorylation of GluA1. Latin Hypercube Sampling (LHS) 

was used to efficiently sample the input parameters over 4-fold range (2-fold increased and 

decreased). Partial Rank Correlation Coefficients (PRCC) was used to quantify how the variation 

in each input parameter contributed to overall phosphorylation of GluA1 (sum of all 

phosphorylated GluA1 species). To test the hypothesis that CaMKII significantly contributes to 

GluA1 phosphorylation under normal Ng concentrations, and PKA (via AC1/8 activation of cAMP) 

significantly contributes to GluA1 phosphorylation when Ng is knocked down, I performed 

LHS/PRCC analysis under a both wild-type Ng condition and a total Ng KO condition. For both 

conditions, the parameters with absolute PRCC’s greater than my threshold of 0.5 are shown in 

Table 3.3. 

  



80 

 

Table 3.3. Sensitivity analysis results for kinetic parameters at 100Hz Ca2+. 

Parameter PRCC 
 

Parameter 
PRCC 

[Ng]=0 

𝑘𝑝
𝐴𝐶1𝐶𝑎𝑀4  0.808  𝑘𝑝

𝑃𝐾𝐴𝑐𝐺𝑙𝑢𝐴1 0.785 

𝑘𝑜𝑛
𝐴𝐶1𝐶𝑎𝑀4  0.758  𝑘𝑝

𝐴𝐶1𝐶𝑎𝑀4 0.763 

𝑘𝑝
𝑃𝐾𝐴𝑐𝐺𝑙𝑢𝐴1  0.597  𝑘𝑜𝑛

𝑃𝐾𝐴𝑐𝐺𝑙𝑢𝐴1 0.636 

𝑘𝑝
𝐾𝐶𝑎𝑀4𝐺𝑙𝑢𝐴1  0.584  𝑘𝑝

𝐴𝐶8𝑐𝑡𝐶𝑎𝑀4 0.618 

𝑘𝑜𝑛
𝐶𝑎𝑀𝐾𝐼𝐼𝐺𝑙𝑢𝐴1  0.527  𝑘𝑝

𝑃𝐷𝐸4𝑐𝐴𝑀𝑃 -0.864 

𝑘𝑜𝑛
𝐾𝐶𝑎𝑀4  -0.732    

𝑘𝑝
𝑃𝐷𝐸4𝑐𝐴𝑀𝑃  -0.805    

 

In the WT Ng condition at 100 Hz Ca2+ flux, all association and catalytic rate parameters 

(kon
B or kp

B, where B represents the different CBPs) were varied simultaneously. As expected, I 

find that the phosphorylation rate constant of CaMKII-mediated phosphorylation of GluA1 

kp
KCaM4GluA1 is highly correlated with total GluA1 phosphorylation (Table 3.3).  Additionally, the 

catalytic rate constant for AC1-CaM4 production of cAMP (kon
AC1CaM4) and that of the downstream 

output of AC1 activation (PKA, kp
PKAcGluA1) were also highly correlated with phosphorylation of 

GluA1. This indicates that at 100 Hz and WT Ng conditions, increases in the rate of CaM4 binding 

to AC1 leads to increases in phosphorylation of GluA1.   

 For the second set of conditions the concentration of Ng was set to zero to simulate Ng KO. 

In comparison to the WT Ng case, it is first interesting to note that the phosphorylation rate 

constant kp
KCaM4GluA1 is no longer highly correlated with GluA1 phosphorylation (PRCC value = 

0.467, below my threshold of 0.5). Though admittedly this PRCC value for kp
KCaM4GluA1 is still 

somewhat high, its reduction in the Ng KO analysis suggests a diminished importance for CaMKII-

mediated phosphorylation of GluA1 subunits. In accordance with my over-arching hypothesis that 

competitive tuning mediates a shift in pathway activation, I refer again to Table 3.3 for clues as to 

the alternative proteins contributing to GluA1 phosphorylation. Indeed, both the association and 

catalytic rates of PKAc for GluA1 (kon
PKAcGluA1 and kp

PKAcGluA1, respectively) have significantly 

greater PRCC values in the Ng KO compared to the WT case. Furthermore, the catalytic rate of 

cAMP production by AC8ct-CaM4 (kp
ACtctCaM4) also exhibits a significant PRCC in the Ng KO case. 
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Altogether, the results of my sensitivity analysis indicate that, at least for 100 Hz Ca2+ and short 

timescales (<2 sec), competition for Ca2+/CaM-binding may support a shift in signaling in which 

Ng perturbation causes AC to overtake CaMKII as the primary activator of pathways leading to 

GluA1 subunit phosphorylation.  

3.3.5 Potential Robustness Provided by Competitive Tuning 

Having seen in the preceding sections that my expanded model exhibits similar frequency 

dependence to a previous result, and that perturbing Ng causes a shift in the parameters most 

strongly associated with GluA1 phosphorylation, I now explore the functional consequences of 

competitive tuning in this simplified model of synaptic plasticity. One hallmark of synaptic 

plasticity is the phosphorylation of AMPAR GluA1 subunits at two residues: S831 and S845. S831 

is phosphorylated by CaM-bound CaMKII or pCaMKII, and S845 is phosphorylated by catalytic 

PKA (PKAc).  

Previously I have shown that competitive tuning was able to explain counter-intuitive 

experimental results showing that Ng genetic knock-out (Ng KO) results in decreased CaMKII 

activation/autophosphorylation [184]. This same work also predicted that knocking out Ng 

concentration would cause a shift in CaM binding away from CaMKII in favor of AC8. Noting 

that activated AC1 and AC8ct generate cAMP, which in turn activates PKA, it seemed that 

competitive tuning could provide a mechanism for the system to account for perturbations in Ng 

expression. That is, because Ng KO reduces CaMKII-facilitated phosphorylation of GluA1 S831, 

competitive tuning could drive the alternative activation of more AC8ct, increasing PKA activation 

and in turn, phosphorylation of GluA1 S845.  

  In Figure 3.5, I explore this potential mechanism by simulating Ng knockdown, while 

monitoring the time-averaged concentration of phosphorylated AMPARs (pGluA1) under three 

different Ca2+ flux frequencies. Note that because the number of Ca2+ pulses is conserved with 

varying Ca2+ frequency, the scales in Figure 3.5 exaggerate the total GluA1 phosphorylation seen 

at 10 Hz compared to 100 Hz, due to differences in stimulation time. For all three stimulation 

frequencies in Figure 3.5, GluA1 subunits phosphorylated by CaMKII at S831 (p831, red) decrease 

with decreasing Ng concentration. As expected, GluA1 phosphorylation by PKAc at S845 (p845, 

blue) increases with decreasing Ng concentration. However, only for 10 Hz stimulation (Fig 5A) 

does the cumulative GluA1 phosphorylation remain relatively constant for all Ng concentrations. 
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Surprisingly, Ng KO caused phosphorylation at S845 to significantly increase at higher 

frequencies, whereas the decrease in S831 phosphorylation was relatively modest. It would appear 

that while competitive tuning could facilitate robustness to perturbations in Ng expression, the 

system tends to over-correct at early timescales in the absence of additional regulatory mechanisms.  

 

Figure 3.5. Phosphorylation of AMPAR GluA1 Subunits at S831 and S845. 

Time-averaged concentrations of total phosphorylation (pGluA1, purple), CaMKII-

mediated phosphorylation at S831 (p831, red), and PKA-mediated phosphorylation 

at S845 (p845, blue) against Ng concentration. For each panel, the 4-state 

Ca2+/CaM binding model was stimulated at either (A) 10 Hz, (B) 50 Hz, or (C) 100 

Hz Ca2+ stimulation. 

 

 These results imply that high frequency stimulation such as those that elicit LTP (100 Hz) 

should be more easily attainable upon Ng KO. This result is consistent with Krucker et al. (2002), 

who showed that even though CaMKII activation/phosphorylation is reduced upon Ng KO, long-

term potentiation can be achieved following stimulation by only a single 100Hz tetanus. Further, 

it is worth noting that for all Ca2+ frequencies presenting in Figure 3.5, shifts in overall pGluA1 

levels with decreasing Ng concentration were largely negligible until Ng expression was reduced 

by more than half. Thus, it appears that the system is robust to modest perturbations to Ng 

expression, such as what might be seen in Ng heterozygous animals.  

 Conclusions 

Competitive tuning is a recently-described phenomenon in which signaling molecules 

compete for binding of a common activator. Although others have either alluded to or invoked 

competition as being important in signal transduction [4, 24, 30, 211], my work shows that 

competition may play a larger role in informing signaling outcomes than previously thought. In 

this work I first compare a 2-state and 4-state model of competitive binding for Ca2+/CaM and 
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determined that a 4-state model is best-suited to accurately detect the frequency dependence of a 

competitive CaM-CBP reaction network under dynamic stimulation. I also verify that expanding 

my 4-state model network to include an additional CBPs and downstream species preserves the 

overall competitive tuning phenomenon. I explore the functional implications of competitive 

tuning by using sensitivity analysis to identify the parameters most strongly correlated with a 

hallmark of synaptic plasticity, AMPAR GluA1 subunit phosphorylation. I further explore the 

implications of competitive tuning by building on a previous result showing that Ng KO counter-

intuitively decreases CaMKII activation and autophosphorylation. Because competitive models 

indicate that Ng KO causes an increase in Ca2+/CaM binding to AC8, I hypothesize that 

competitive tuning could provide a mechanism that compensates for a loss in CaMKII-mediated 

phosphorylation of GluA1 by promoting (via AC) PKA-mediated phosphorylation of GluA1. 

Indeed, in Figure 3.5 I observe that for high Ca2+ flux frequencies, Ng knockdown results in a 

switch between CaMKII and PKA in cumulative kinase activity.  

Interestingly, stimulating at an LTP-inducing Ca2+ frequency of 100 Hz (Figure 3.5C) 

further causes an upregulation of GluA1 phosphorylation by PKA in the Ng KO case. This 

upregulation could explain results by Krucker et al. who observed that LTP could be elicited by 

just a single tetanus of stimulation at 100 Hz in brain slices of Ng KOs. Note that the current model 

includes both PP1- and CaN-dependent dephosphorylation of GluA1. Contrary to expectation, the 

combined action of PP1 and Ca2+/CaM-dependent dephosphorylation by CaN seemingly did not 

dramatically decrease GluA1 phosphorylation levels in the presence of compensation facilitated 

by competitive tuning. Of course, other regulatory mechanisms could additionally be affecting 

GluA1 phosphorylation levels. For example, spatial localizations of proteins such as Ng and PP1, 

or perhaps A-kinase-anchoring proteins (AKAPs), could be required to increase, through avidity 

effects, the local concentrations of CaMKII, AC, and/or CaN in the dendritic spine. Alternatively, 

it may be required to analyze the reaction network presented here on longer timescales in order to 

discern the complete downstream effects of competitive tuning. As it currently stands, my current 

results are focused on short-term effects of Ca2+-dependent signaling. Future work is needed to 

analyze longer term processes (e.g. receptor localization, other feedback mechanisms, receptor 

trafficking). It remains unclear whether increased GluA1 phosphorylation in Ng KO is an expected 

consequence of Ng perturbation and represents an example how competitive tuning can impart 

robustness to model outcomes across a wide range of Ng concentrations, or whether the 
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maintenance of GluA1 phosphorylation is a result of missing layers of model regulation. Future 

work will include these additional mechanisms of regulation and will explore other protein 

activation dynamics in GluA1 phosphorylation. A key prediction from my model that could be 

readily experimentally tested is that the relative level of phosphorylation of GluA1 at p845 would 

increase in Ng KO mice and phosphorylation of GluA1 at p831 would decrease.  

 Methods 

Chemical reactions between species were written and converted to ordinary differential 

equations according to laws of mass action using the XCellerator package [212]. Mathematica was 

used to solve the differential equations using the NDSolve command. All other data analysis 

(including integration of species concentration over time and the LHS/PRCC sensitivity analysis) 

were performed in Mathematica (Wolfram Research, Mathematical version 11).  Model output is 

plotted in the 2D graphing program GraphPad Prism (GraphPad, version 7).  

 Ca2+ stimulation was implemented as a boundary condition forcing function for the system 

of differential equations solved in Mathematica. To control for the magnitude of Ca2+ exposure 

from a single Ca2+ pulse, Ca2+ spike half widths are set to 5 msec regardless of frequency. To 

reduce computational complexity and control for the cumulative magnitude of Ca2+ exposure 

across all simulations, total magnitude of calcium flux is conserved at 100 pulses regardless of 

Ca2+ frequency. 

 All the equations for this model can be found in the Supplement to Chapter 3. Mathematica 

files for the complete models can be found on the Purdue PURR database: Pharris, M. C., Patel, 

N. M., Kinzer-Ursem, T. L. (2018). Competitive Tuning of Ca2+/Calmodulin-Activated Proteins 

Provides a Compensatory Mechanism for AMPA Receptor Phosphorylation in Synaptic Plasticity. 

Purdue University Research Repository. doi:10.4231/R7ST7N11. 

A global sensitivity analysis was used to investigate how variation in input parameter values 

contributed to variation in model output. Latin hypercube sampling (LHS) was used to efficiently 

sample input parameters over a range of values that were determined by experimental 

measurement or calculated by thermodynamic equilibrium (see Section Model Parameterization 

for a more in-depth discussion of model parameterization). In all variations of my sensitivity 

analysis, each parameter was sampled at least 250 times using values within 2-fold of each 

parameter’s listed value (results available at [165]). Partial rank correlation coefficients were used 
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correlate the rank contribution of parameter variation on the variation in desired model output as 

described in my previous work [42, 184, 208]. I have previously shown that allowing the Kd of an 

interaction to vary by either varying the kon or koff (but not both simultaneously) produced similar 

results in the sensitivity analysis [208]. Therefore only association rate constants (kon) and catalytic 

rate constants (kp) were varied. PRCC analysis produces correlation factors over a range of 1 to -

1, where 1 indicates perfect positive correlation and -1 indicates perfect negative correlation. In 

order to show the parameters whose variation most greatly impacted model output (total 

phosphorylation of GluA1 AMPAR subunits), a threshold PRCC value of absolute magnitude of 

0.5 was used to generate the parameter list in Table 3.3. 
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4. COMPETITION FOR CALMODULIN BINDING REGULATES THE 

IN SILICO SPATIAL GRADIENTS OF DOWNSTREAM PROTEIN 

ACTIVATION IN THE DENDRITIC SPINE 

 Summary 

Dendritic spines are small neuronal structures that dynamically shift in size and excitability 

in response to calcium ion (Ca2+) influx. Depending on Ca2+ influx frequency, location, and other 

factors, the intracellular Ca2+ sensor calmodulin (CaM) differentially activates enzymes and other 

CaM-binding proteins (CBPs) that subsequently set the dendritic spine’s size or excitability. For 

example, at high frequency Ca2+ flux CaM may activate kinases such as Ca2+/CaM-dependent 

protein kinase II (CaMKII), while low frequency Ca2+ flux CaM may activate phosphatases such 

as calcineurin (CaN). Characterizing the molecular mechanisms regulating differential Ca2+/CaM 

activation of CBPs may be essential to understanding Ca2+ signal transduction in the dendritic 

spine. Indeed, computational studies have shown using non-spatial frameworks how competition 

among CBPs for CaM binding is alone sufficient to recreate the observed Ca2+ frequency-

dependence of many CBPs. However, the dendritic spine is highly spatially organized, which 

likely additionally influences the competitive environment. Therefore, here I present a 

computational model that describes competition for binding to Ca2+/CaM among multiple 

explicitly-defined CBPs and downstream proteins in a spatial-stochastic framework. With this 

model, I quantify how competition and spatial effects co-regulate the dynamics of Ca2+/CaM-

dependent signaling. My results suggest that spatial effects alone are insufficient to set the Ca2+ 

frequency-dependence of CBP activation, and the frequency-dependence set by competition is 

mostly independent of spatial effects. Instead, spatial dependence of CBP activation and regulation 

of downstream proteins such as AMPA receptors (AMPARs) appears to be enhanced by 

competition. Notably, the spatial location of protein activation could be important to how Ca2+-

dependent signals are transduced. To explore this transduction, I use the spatial-stochastic model 

to explore the effects of adenylyl cyclase (AC) knock-outs on the spatiotemporal dynamics of 

Ca2+/CaM and AMPAR phosphorylation. Interestingly, my results suggest how the adenylyl 

cyclase 8 (AC8) N-terminus may regulate the predominant states and locations of Ca2+/CaM in the 

dendritic spine. This chapter will soon be submitted for publication. The co-authors include a 

number of undergraduates I have supervised: Neal Patel, who developed and parameterized the 
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model; Christopher Rust, who performed statistical analysis of the spatial gradient results; and 

Lakmini Wilson and Eva Yezeretz, who explored the effects of adenylyl cyclase knockouts.  

 Introduction 

Synaptic plasticity, the process by which neuronal connections dynamically shift in size 

and connective strength, occurs within specialized neuronal structures called dendritic spines. Two 

long-studied outcomes of synaptic plasticity include long-term potentiation (LTP) and long-term 

depression (LTD), both of which are essential to healthy learning and memory formation. Both 

LTP and LTD depend on calcium ion (Ca2+) flux through N-methyl-D-aspartate glutamate 

receptors (NMDARs), and the magnitude and timing of these excitatory changes are regulated by 

Ca2+-dependent signaling pathways [3]. Dysregulation of Ca2+ signaling pathways disrupts 

synaptic plasticity within dendritic spines, putatively leading to disorders as wide ranging as 

Alzheimer’s disease and epilepsy [1, 213]. To better understand neuronal Ca2+ signaling and its 

regulation of downstream proteins, experimental techniques such as genetic knock-down and 

super-resolution microscopy are frequently used [5, 6, 214]. However, experimental techniques 

lack the spatiotemporal resolution needed to characterize precise regulatory mechanisms within 

the dendritic spine. The dendritic spine’s volume (femtoliters) and the molecular concentrations 

therein (micromolar) produce a highly stochastic environment in which signaling events also occur 

on small timescales (microseconds) [185]. Therefore, to complement experimental techniques, 

computational models are increasingly used to help characterize signaling mechanisms in synaptic 

plasticity (reviewed in [215]). In the computational model presented here I explore how the Ca2+ 

signaling pathways involved in synaptic plasticity induction may be regulated by spatial and 

stochastic effects.  

A dendritic spine’s response to NMDAR-mediated Ca2+ influx is determined by many 

factors. The frequency, magnitude, duration, location, and pattern of Ca2+ flux each contribute to 

how Ca2+ sensor proteins, namely calmodulin (CaM), integrate and transduce Ca2+ signals [23, 

216, 217]. For example, high frequency and short-term Ca2+ flux (100Hz, 1sec) classically elicits 

LTP in hippocampal neurons, in-part due to heightened activation of Ca2+/CaM-dependent protein 

kinase II (CaMKII) [29, 218, 219]. In contrast, low frequency and longer-term Ca2+ flux (1Hz, 

many minutes) classically elicits LTD, in-part due to heightened activation of Ca2+/CaM-

dependent enzymes such as phosphodiesterase 1 (PDE1) and the phosphatase calcineurin (CaN) 
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[3, 4, 24, 186, 220, 221]. Importantly, LTP is not solely dependent on kinase activity, and LTD is 

not solely dependent on phosphatase activity. Indeed, CaMKII activation has been shown to be 

involved in LTD promotion, and a separate study suggests that CaN contributes to LTP [80, 222]. 

It may therefore be necessary for computational models to explicitly account for CaMKII and CaN 

in addition to many other downstream CaM-binding partners (CBPs). Explicitly accounting for 

multiple CBPs highlights the fact that the concentration of CBPs in the dendritic spine (tens of 

micromolar each) cumulatively exceeds that of CaM (33 μM), resulting in competition for 

Ca2+/CaM binding [46]. Thus, in addition to factors such as Ca2+ influx frequency, competition for 

Ca2+/CaM may further regulate, or tune, the activation of CBPs.  

Competition for Ca2+/CaM appears in previous computational models [30, 211, 221], but 

few expressly aim to quantify the effect of competition on CBP activation. Some models implicitly 

create competition by including a generalized CaM-buffering species, though such implicit models 

obscure how the activation of specific CBPs may depend on competition [92, 185]. Alternatively, 

some models account for competition by explicitly defining multiple CBPs, though these models 

often restrict the competitive pool to only two or three CBPs and focus on other regulatory 

mechanisms [24, 33, 211]. Romano et al. (2017) was the first model aiming to quantify the effect 

of competition on the Ca2+ frequency-dependence of multiple (eight) explicitly-defined CBPs [46]. 

Romano et al. found that in a deterministic model void of spatial parameters or feedback 

mechanisms, competition alone could recreate the in vivo Ca2+ frequency-dependence of CBP 

activation. For example, whereas an isolated model of Ca2+, CaM, and CaN alone predicts maximal 

activation of CaN at high Ca2+ frequencies (>100Hz), a competitive model of Ca2+, CaM, CaN, 

and seven other CBPs predicts a maximal activation of CaN at low Ca2+ frequencies (1-10Hz), 

which is consistent with experimental observations [104, 220]. Pharris et al. (2018) extend upon 

the work by Romano et al., adding the CBP PDE1, as well as a variety of downstream proteins 

including protein kinase A (PKA), protein phosphatase 1 (PP1), and AMPA receptor (AMPAR) 

GluA1 subunits. The deterministic model by Pharris et al. examines how competitive tuning, in 

the presence of feedback mechanisms, regulates downstream signaling events relevant to synaptic 

plasticity [165]. 

In addition to feedback mechanisms, spatial effects may further regulate the effect of 

competitive tuning. Because Ca2+ ions flux through NMDARs at the top of a spine, the diffusion 

of Ca2+ may lead to spatial gradients of Ca2+ and Ca+/CaM along the major axis of the dendritic 
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spine [41, 185]. Moreover, these spatial gradients may be enhanced by CaM-buffering proteins 

such as the membrane-associated protein neurogranin (Ng), which distinctly binds apo-CaM in the 

absence of Ca2+ [155, 204]. Additionally, spatial gradients may also be set by interactions with 

cytosolic proteins such as PSD-95 or synGAP, which are major components of a membrane-less 

organelle located at the intracellular synaptic membrane called the post-synaptic density (PSD) 

[37, 223]. The observed localization of CBPs motivates my hypothesis that competition regulates 

the location of CBP activation within the dendritic spine. Therefore, I aim to quantify how 

competition and spatial effects co-regulate the frequency-dependence and localization of CBPs. 

By quantifying this co-regulation in a computational model, it may also be possible to characterize 

how localized CBPs could subsequently transduce signals to downstream CBP-dependent 

pathways. Indeed, characterizing CBP-dependent protein localizations could help elucidate how 

downstream signaling leads to various outputs such as changes in protein expression [224, 225], 

post-translational modifications [226, 227], or molecular trafficking [228].  

In this work, I again adopt the view of Romano et al. that CaM is a limiting resource in the 

dendritic spine and that competition for CaM in-part tunes the selection of CBPs by Ca2+/CaM. I 

also adapt the previous work by Pharris et al. (2018) to explicitly account for downstream signaling 

events, in particular the phosphorylation of AMPARs by CaMKII and PKA. In contrast to these 

previous deterministic and non-spatial models, here I use the software MCell to implement a 

spatial-stochastic model of Ca2+ flux, 9-state CaM activation, nine explicitly-defined CBPs, and 

CBP-mediated downstream signaling [229]. In my spatial-stochastic model, I again find that 

competition alone may be sufficient to set the Ca2+ frequency-dependence of CBP activation by 

CaM. Also, I find that many CBPs exhibit robust spatial gradients of activation at multiple Ca2+ 

frequencies. Interestingly, although the spatial gradients do not seem to require competition, 

competition for CaM-binding consistently increases spatial gradient steepness. Importantly, 

increased steepness in the spatial gradient of a CBP’s activation may support the localization of a 

CBP’s downstream effectors. For example, I show evidence that spatial gradients of CaMKII 

activation sets gradients of phosphorylation at the AMPAR GluA1 subunit residue Ser-831 

(GluA1-p831). However, I do not observe spatial gradients of GluA1 phosphorylation at residue 

Ser-845 (GluA1-p845), which is mediated by PKA, despite consistent formation of spatial 

gradients of AC isoforms. Therefore, I finally simulate the effect of various AC isoform knockouts 

on GluA1-p845. My results suggest a role for the AC8 N-terminus (AC8-Nt) as a regulator of the 
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distribution of Ca2+/CaM states in the dendritic spine. Ultimately, this work provides a framework 

for quantifying how competition and space co-regulate protein activation during synaptic plasticity 

induction. 

 Results 

4.3.1 Model Development 

4.3.1.1 Model Structure 

The spatial-stochastic model presented in this study is created with the open-source 

software MCell and its complementary Blender plug-in called CellBlender [185, 230]. I use 

CellBlender to approximate the geometry of a single dendritic spine, and with this geometry I use 

MCell to simulate the diffusion and interactions of individual molecular species. The molecular 

species, mostly proteins, are shown in Figure 4.1 and described in Model Parameterization. With 

this setup, the input to my model is the frequency of NMDAR-mediated Ca2+ flux. Although the 

magnitude, location, and patterning of Ca2+ flux may influence the selection of distinct CBPs by 

Ca2+/CaM, these parameters are held constant throughout all simulations in order to observe 

differences in signaling as a function of Ca2+ frequency alone.   



91 

 

 

Figure 4.1. Model reaction networks and simulation framework. (A) The 

complete reaction network of NMDAR-mediated Ca2+ flux, Ca2+ binding to CaM, 

Ca2+/CaM activation of CBP’s, and CBP-mediated downstream pathways 

regulating AMPAR phosphorylation at Ser-831 and Ser-845. (B) Nine-state 

Ca2+/CaM activation. Ca2+ reversibly binds CaM (blue), Ca2+/CaM reversibly binds 

CBP’s (denoted ‘B’) (orange), and Ca2+ also reversibly binds CaM-CBP’s (green). 

(C) Model dendritic spine constructed using CellBlender.   

   

In my model, intracellular Ca2+ binds exclusively the Ca2+ sensor protein CaM. CaM has 

two globular EF-hand domains, one at the N- and C-terminus, and each domain cooperatively 

binds up to two Ca2+ [15]. Interestingly, sub-saturated Ca2+/CaM states (with fewer than four Ca2+ 

bound) may predominate and exhibit non-negligible binding affinities for CBPs, as suggested in 

experiments by Shifman et al. [97] and as-modeled first by Pepke et al. (2010) [42]. Pepke et al. 
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present two models of Ca2+/CaM activation: a coarse four-state model and a detailed nine-state 

model. The four-state model assumes that due to cooperativity, the binding of 2 Ca2+ to each CaM 

terminus can be modeled as a single event. In contrast, the nine-state model explicitly accounts for 

individual Ca2+-CaM binding events and is thus thermodynamically complete [208]. The four-state 

model is relatively simple and more convenient compared to the nine-state model, and it may be 

appropriate for use depending on a study’s timescales of interest or simulation framework. For 

example, Romano et al., using a deterministic framework of ordinary differential equations, 

compare the utility of a four- versus nine-state model of Ca2+/CaM in a competitive scenario [46]. 

The results of Romano et al. suggest that for their analysis, there is little difference in output for 

the four- and nine-state models, and they therefore defer to the simpler four-state model. Pharris 

et al., using a similar deterministic framework, also utilize the four-state model [165]. However, 

for the present study the four-state model is inappropriate because the spatial-stochastic, particle-

based framework in MCell causes trimolecular reactions to exhibit unrealistically small 

probabilities (MCell developers encourage use of bimolecular reactions only—see mcell.org). 

Consequently, the model presented here utilizes a nine-state model of Ca2+/CaM activation (Figure 

4.1B).  

4.3.1.2 Model Parameterization 

The initial concentrations and kinetic parameters, listed in the Supplement to Chapter 4, 

are all adopted from previous literature [21, 33, 42, 46, 165]. The majority of these parameters are 

based on experimental measurements. Kinetic parameters not measured experimentally, such as 

affinities of Ca2+ for sub-saturated Ca2+/CaM or of sub-saturated Ca2+/CaM for CBPs, are 

determined using the thermodynamic principle of microscopic reversibility [42, 208], the 

definition of the dissociation constant (KD = koff/kon), and two biophysical assumptions.  

First, I assume that the affinity of Ca2+ for CaM increases upon CaM-binding to a CBP 

[20], and this increase in affinity is primarily due to a reduction in the Ca2+ dissociation rate 

constant [58]. Second, I assume that because Ca2+-binding to CaM induces structural changes that 

stabilize CaM and expose its hydrophobic patches [14, 231], Ca2+-binding to CaM increases the 

association (but not dissociation) rate constant of CaM to a CBP. These assumptions are discussed 

in detail by Romano et al. [46].  
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  MCell uses a Monte Carlo algorithm to approximate the Brownian motion of molecules 

in space. Diffusion coefficients for all molecular species, listed in Table 4.1 and Table 7.6, are 

adapted from experimental measurements or calculated using the Stokes-Einstein relation (see the 

Supplement to Chapter 4). The Stokes-Einstein relation describes a molecule’s diffusion 

coefficient as a function of its hydrodynamic radius. If I assume that proteins in solution are 

roughly spherical and that hydrodynamic radius is proportional to molecular weight, I can 

approximate diffusion coefficients for unmeasured proteins and for all protein-protein complexes 

in my model [232, 233].  

Table 4.1. Model protein classifications and initial localizations. 

Protein/Molecule Class Diffusion Coeff. 

(cm2/s) 

Localization 

Calcium (Ca2+) Stimulator 3.55e-6 Cytosol 

Calmodulin (CaM) Stimulator 8.48e-9 Cytosol 

Adenylyl Cyclase 1 (AC1) CBP (Enzyme) 2.41e-9 Spine membrane 

Adenylyl Cyclase 8 (AC8) CBP (Enzyme) 1.89e-9 Spine membrane 

Calcineurin (CaN) CBP (Enzyme) 1.83e-9 Cytosol 

Ca2+/CaM-dependent Kinase 

II (CaMKII subunit) 

CBP (Enzyme) 2.5e-10 Cytosol 

Myosin Light Chain Kinase 

(MLCK) 

CBP  6.76e-10 Cytosol 

Neurogranin (Ng) CBP 8.14e-9 30% spine membrane; 

70% cytosol [112] 

Nitric Oxide Synthetase 

(NOS) 

CBP 9.19e-10 Spine membrane 

Phosphodiesterase 1 (PDE1) CBP (Enzyme) 3.39e-9 Cytosol 

AMPA Receptor (AMPAR) CBP-

dependent 

4.45e-10 Spine membrane 

Cyclic Adenosine 

Monophosphate (cAMP) 

CBP-

dependent 

4.33e-7  Cytosol 

Inhibitor 1 (Inh-1) Downstream 7.5e-9 Cytosol 

Protein Kinase A (PKAc) Downstream 3.75e-9 Cytosol 

Protein Phosphatase 1 (PP1) Downstream 3.8e-9 Cytosol 

Phosphodiesterase 4 (PDE4) Downstream 2.1e-9 Cytosol 

 

4.3.1.3 Model Stimulation 

The input to every model simulation is NMDAR-dependent Ca2+ flux at a particular 

frequency. In this model, NMDAR receptors are surface molecules constrained to the synaptic 

membrane at the top of the model geometry. All other components of Ca2+ flux, such as magnitude 
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and the inter-spike intervals (patterning), are held uniform regardless of Ca2+ frequency as 

described in Methods. In short, Ca2+ influx is controlled in MCell according to time-dependent 

variables informing the forward rate of the reactions 𝑁𝑀𝐷𝐴𝑅 → 𝑁𝑀𝐷𝐴𝑅 + 𝐶𝑎2+ and 𝐶𝑎2+ →

𝑁𝑈𝐿𝐿. The combined effect of these reactions is to produce global free Ca2+ dynamics obeying 

the equation [Ca](t)=12e-t/0.012 as used by Romano et al. 

4.3.1.4 Calmodulin-binding proteins 

CBPs in this model are the set of eight proteins (nine CaM binding sites) which directly 

compete for and reversibly bind CaM. CBPs are here classed as either enzymatic or non-enzymatic.  

Enzymatic CBPs include AC1, AC8 (C-terminus; AC8-Ct), CaN, CaMKII, and PDE1. 

AC1 and AC8 are membrane-associated which, when activated upon Ca2+/CaM-binding, 

catalytically generate cAMP [191]. Note that only the C-terminus, and not the N-terminus, of AC8 

exhibits Ca2+/CaM-dependent catalysis [193]. CaN is a serine/threonine phosphatase which, when 

activated upon Ca2+/CaM binding, de-phosphorylates CaMKII, Inhibitor 1 (Inh-1), and AMPAR 

GluA1 subunits [33, 199, 234]. CaMKII is a homomeric holoenzyme consisting of twelve identical 

catalytic subunits arranged in two directly-apposed, symmetric rings [3]. However, for simplicity 

I here model CaMKII as monomers, which activate only upon binding by Ca2+/CaM. In addition 

to CaMKII activation, I account for CaMKII auto-phosphorylation at Thr-286 according to the 

mechanism described by Pepke et al. (see Figure 6 in [42]) [46, 218]. Auto-phosphorylated 

CaMKII monomers remain active even in the absence of bound CaM. Finally, PDE1 is a 

phosphodiesterase which, upon Ca2+/CaM binding, catalytically converts cAMP into AMP [21]. 

Note that for all enzymatic CBPs, catalytic rate parameters are adapted from literature where 

available. Any un-measured catalytic rates, such as those for CBPs bound to sub-saturated 

Ca2+/CaM, are assumed to scale identically to the ratio of catalytic rates for sub-saturated 

Ca2+/CaM-CaMKII to fully-saturated Ca2+/CaM4-CaMKII (calculated by Pepke et al. and used by 

Romano et al. and Pharris et al.). Consequently, each CBP’s catalytic activity is greatest when 

activated by fully-saturated CaM4.  

Non-enzymatic CBPs in this model include AC8 (N-terminus; AC8-Nt), Myosin Light 

Chain Kinase (MLCK), Neurogranin (Ng), and Nitric Oxide Synthetase (NOS). Note that although 

MLCK and NOS are in fact enzymes in vivo, the model presented here does not account for their 

downstream enzymatic activity. Note also that I model the N- and C-termini of AC8 on the same 
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particle in MCell, though I reiterate that only AC8-Ct catalyzes ATP into cAMP. Explicitly 

accounting for both AC8 termini is important to the AC isoform knockouts I explore at the end of 

this paper. Furthermore, it is important to include these non-enzymatic CBPs because they enhance 

the competitive environment for CaM binding.  

4.3.1.5 CBP-dependent downstream signaling 

Activated CBPs initiate downstream signaling pathways Figure 4.1. Here, I focus on 

pathways leading to AMPAR GluA1 subunit phosphorylation, a hallmark of synaptic plasticity. 

For example, CaM-activated AC1 and AC8-Ct both generate cAMP, which subsequently binds 

either CaM-PDE1 or PKA [207]. PKA binds up to four cAMP, and fully-saturated PKA (PKA4), 

may disassemble yielding 2 catalytic PKA (PKAc) subunits. PKAc binds the generic target PKA 

Inhibitor (PKAI), and it also may phosphorylate GluA1 subunits (at Ser-845) and Inh-1 [32, 209]. 

Inh-1 phosphorylated at Ser-35 (Ip35) may bind and inhibit the phosphatase PP1. Note that PKAc 

has one catalytic rate per substrate, each adopted from previous literature. 

The CBPs CaN and CaMKII also regulate GluA1 phosphorylation. Active CaMKII 

phosphorylates GluA1 at Ser-831 [196]. Active CaN and PP1 may de-phosphorylate GluA1 at 

either Ser-831 or Ser-845 [33]. Active CaN additionally may also bind and de-phosphorylate Ip35. 

All kinetic rate constants for these pathways are taken directly from literature. Note that PP1 has 

one catalytic rate per substrate, each adopted from previous literature.  

4.3.2 Model Validation 

I first quantify any differences in global CaM activation between my nine-state spatial-

stochastic model and its deterministic equivalent. The nine-state deterministic model is 

implemented using the software Mathematica. For both the deterministic and spatial-stochastic 

models, I allow the model system to equilibrate for 10 sec of simulation time prior to initiating 

Ca2+ flux. Ca2+ flux begins at t=10 sec, proceeding at 10 Hz of evenly-spaced Ca2+ peaks for an 

additional 10 sec (a total of 100 Ca2+ pulses). Each panel in Figure 4.2 monitors a distinct 

Ca2+/CaM state (whether CBP-bound or -unbound) as a function of time for both the deterministic 

and spatial-stochastic models. In comparison, the deterministic and spatial-stochastic models 

respond to 10 Hz Ca2+ flux very similarly, suggesting that fundamental model behavior is 

preserved when implemented in a spatial-stochastic framework. 



96 

 

 

Figure 4.2. Ca2+/CaM states in deterministic versus spatial-stochastic 

frameworks. Ca2+/CaM activation for 10 Hz Ca2+ flux in deterministic (grey) and 

spatial-stochastic (blue) frameworks. Spatial-stochastic traces are the averaged 

output representative of N=50 executions. For the same comparison at 100 Hz Ca2+ 

flux, see Figure 7.5. 

 

Comparing 10 Hz (Figure 4.2) and 100 Hz (Figure 7.5) Ca2+ flux reveals considerable 

differences in levels of various Ca2+/CaM states as a function of Ca2+ frequency. For example, 

apo-CaM (top left panel) is much more dynamic and on time-average more abundant under 10 Hz 

than 100 Hz Ca2+. The same is also true, although to a lesser extent, for the CaM1C and CaM1N 

states. Note that apo-CaM, CaM1C, and CaM1N have relatively high affinities for CBPs that are 

conventionally LTD-associated such as CaN. Also, CaM4 (bottom right panel) is on time-average 

much less abundant under 10 Hz compared to 100 Hz Ca2+, and note that CaM4 has a high affinity 

for CBPs that are conventionally LTP-associated such as CaMKII. Finally, in addition to CaM4, 
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CaM2C is a highly predominant Ca2+/CaM state, especially at 100 Hz Ca2+ flux, consistent with 

previous results [42, 45]. Taken together, I interpret these results as consistent with experimental 

observations [20, 97, 188, 189].  

 Having benchmarked my spatial-stochastic model against its deterministic equivalent, as a 

further validation I next ask how spatial and stochastic effects impact the global frequency-

dependence of CBP activation. To compare CBP activation at distinct Ca2+ frequencies, I use a 

metric also utilized by Romano et al. [46]. This metric, denoted Cb, describes the normalized time-

averaged active concentration of a particular CBP (‘b’) at a particular Ca2+ frequency. I calculate 

Cb for each CBP and display this as a function of Ca2+ frequency for the deterministic (Figure 4.3A) 

and spatial-stochastic models (Figure 4.3B). Comparing Figure 4.3A and Figure 4.3B reveals that 

the Ca2+ frequencies of peak CBP activation are similar in both the deterministic and spatial-

stochastic frameworks. The slight differences, perhaps most notably for CaN and PDE1, are 

attributed to the fact that CaN and PDE1 are expressed at very low concentrations and thus 

susceptible to stochastic effects. That is, because fewer than 50 total particles of CaN are 

instantiated in each spatial-stochastic execution, the relative levels of CaN activation are highly 

variable even when averaged over many (N = 50) equivalent executions. Despite such variability, 

CaN exhibits peak activation at relatively low Ca2+ frequencies (~20 Hz) in Figure 4.3B, roughly 

consistent with the deterministic results (Figure 4.3A) and its putative role in LTD. Similarly, other 

proteins such as CaMKII exhibit peak activation at high Ca2+ frequencies (about 100 Hz), 

consistent with the known importance of CaMKII to LTP [27]. Overall, my results in Figure 4.3 

further suggest that my model output is biophysically realistic.  
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Figure 4.3. Ca2+ frequency-dependence of CBP activation. (A) and (B) show 

relative levels of CBP activation by Ca2+/CaM as a function of Ca2+ frequency for 

a deterministic and spatial-stochastic framework, respectively. Red denotes 

maximal CBP activation, and blue denotes minimal CBP activation. Heatmap rows 

pertain to a particular CBP, and the horizontal axis is Ca2+ frequency on a 

logarithmic scale. Spatial-stochastic results are the averaged output of N=50 

executions. 

4.3.3 Competition steepens spatial gradients of CBP activation 

MCell provides a framework to monitor the spatial locations of Ca2+/CaM and CBP 

activations. Others use MCell similarly, namely Keller et al. (2008) who model Ca2+ buffering in 

the dendritic spine [185]. With their MCell model, Keller explores how Ca2+ channel positions, 

Ca2+ patterning, and initial localizations of CaM influence the spatial distributions of Ca2+/CaM 

states within the dendritic spine. Their results show a predomination of CaM2C that becomes even 

more exaggerated when CaM is artificially localized to the PSD, suggesting that the location of 

CaM in the spine can influence its state. Building on this previous work, my model’s addition of 

multiple explicitly-defined CBPs allows me to determine if spatial dependence of Ca2+/CaM states 

subsequently influences the spatial dependence of CBPs and CBP-dependent proteins.  

Therefore, I explore how different Ca2+/CaM states may exhibit both spatial and temporal 

dynamics. To monitor Ca2+/CaM states in space, I construct three equal-volume compartments in 

my model of the dendritic spine (Figure 4.4C). The compartments are used to monitor model 

proteins in the top (purple), middle (yellow), and bottom (red) of the dendritic spine. All proteins 

can freely move between each compartment. Each compartment monitors total levels of both 

cytosolic (units of concentration) and membrane-bound (units of density) proteins, so I report 

model output in terms of total number of protein particles in each compartment. 
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Figure 4.4. Ca2+/CaM states at distinct spatial locations. (A) Equal-volume compartments arranged along the major 

axis of the dendritic spine, each monitoring protein counts at the top (purple), middle (yellow), or bottom (red) regions. 

(B) CBP-bound Ca2+/CaM states in each compartment as a function of time under 10 Hz Ca2+ flux. (C) CBP-bound 

Ca2+/CaM states in each compartment as a function of time under 100 Hz Ca2+ flux. Each trace is the average of N=50 

executions. 

 

 

9
9
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For Figure 4.4B and Figure 4.4C, I simulate my model at 10 Hz and 100 Hz Ca2+ flux, 

respectively, and monitor each Ca2+/CaM state bound to a CBP in each compartment. I observe 

that all bound Ca2+/CaM states exhibit spatial dependence, in which the numbers of a particular 

state in each compartment are almost always different. For example, apo-CaM (top left panels) 

exhibits spatial dependence during Ca2+ flux regardless of Ca2+ frequency. Specifically, apo-CaM 

is always most abundant in the bottom (red) compartment, which is reasonable because that 

compartment is furthest from the site of Ca2+ flux. CaM2C and CaM4 also exhibit clear spatial 

dependence, even at 10Hz Ca2+ flux. At 100Hz Ca2+ flux, CaM4 exhibits such strong spatial 

dependence that its traces (Figure 4.4C bottom-right panel) never overlap during stimulation, 

which I regard as a fully-developed spatial gradient. My observation of spatial dependence and 

spatial gradients among Ca2+/CaM states at multiple Ca2+ frequencies may suggest that distinct 

CBPs may be activated at distinct locations within the spine. 

I next explore whether the spatial dependence of Ca2+/CaM states observed in Figure 4.4 

is transduced as spatial locations of active CBPs and how localization may influence Ca2+ 

frequency-dependence of CBP activation. For this, I compare my standard, or “competitive”, 

version of the model against a non-competitive, or “isolated”, version. The competitive model 

contains Ca2+/CaM and all nine CBPs simultaneously competing for CaM-binding, whereas the 

isolated models contain Ca2+/CaM and only one of the respective CBPs. In Figure 4.5, I compare 

these model versions to quantify how competition sets CBP activation (using the Cb metric) as a 

function of Ca2+ frequency in each compartment of the model dendritic spine.    
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Figure 4.5. Spatial gradients of CBP activation are regulated by competition. 

(A) and (E) show normalized global activation of CBPs time-averaged over the 

entire dendritic spine geometry as a function of Ca2+ frequency for the isolated and 

competitive models, respectively. (B-D) show the normalized compartmental 

activation of CBPs in isolated model. (F-H) show the normalized compartmental 

activation of CBPs in the competitive model. Red denotes peak activation; blue 

denotes minimal activation. All data points are the average of N=50 executions. 
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First, I compare the isolated and competitive versions of my spatial-stochastic model 

“globally”; for Figure 4.5A and Figure 4.5E, Cb values are calculated for each CBP and then 

plotted as a function of Ca2+ frequency. The global-isolated model (Figure 4.5A) predicts most 

CBPs to be preferentially activated at relatively high (>50 Hz) and broad ranges of Ca2+ 

frequencies. In contrast, the global-competitive model (Figure 4.5E; identical to Figure 4.3B) 

predicts CBPs to be activated at distinct and relatively narrower Ca2+ frequencies. Indeed, just as 

in the deterministic-competitive model (Figure 4.3A), the spatial-competitive model predicts CaN 

to be most active at relatively low Ca2+ frequencies, unlike the isolated models. These results 

further indicate that, even in a spatial-stochastic environment, competition remains an emergent 

property that seems to tune the Ca2+ frequency-dependence of CBPs.  

Second, I compare the isolated and competitive versions of my spatial-stochastic model 

“compartmentally”. For this, I calculate Cb values for each CBP in only the top (Figure 4.5 B and 

F), middle (Figure 4.5 C and G), or bottom (Figure 4.5 D and H) compartments of the dendritic 

spine. Notably, the Cb-frequency heat-band for a particular CBP in these panels is normalized to 

itself and also across spine compartments. This compartmental normalization helps convey how 

Cb’s vary with Ca2+ frequency in addition to spatial location. The compartmental-isolated results 

(Figure 4.5B-D) reveal similar Ca2+ frequency-dependence compared to the global-isolated results. 

Similarly, the compartmental-competitive results (Figure 4.5F-H) also reveal similar Ca2+ 

frequency-dependence compared to the global-competitive results. However, peak Cb values are 

highest in the top compartment for both the isolated and competitive models. Cb peaks appear to 

decline with increasing distance from the top compartment, which is reasonable given that the Ca2+ 

source is at the top compartment. Notably, this decrease in Cb magnitude is much more apparent 

in the competitive model. Overall, these results indicate that spatial effects alone do not elicit 

physiological Ca2+ frequency-dependence of CBP activation, and the Ca2+ frequency-dependence 

set by competition for CaM is largely independent of spatial effects. However, because the 

decrease in Cb with increasing distance from the Ca2+ source is greater in the competitive model, 

it appears that competition may sharpen possible spatial gradients of activation for certain CBPs.  

Spatial gradients of CBP activation may influence the localization of CBP-dependent 

proteins downstream. For example, I hypothesize that spatial gradients of active CaMKII might 

lead to gradients of phosphorylated CaMKII (pCaMKII) or AMPARs phosphorylated by CaMKII 
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at Ser-831 (GluA1p831). Similarly, gradients in AC1 or AC8 might elicit gradients in catalytically-

active PKAc, and perhaps subsequently set gradients of AMPARs phosphorylated by PKA at Ser-

845 (GluA1p845). Given the results in Figure 4.5, these hypothetical gradients of downstream 

protein states might only occur, or perhaps become exaggerated, in a competitive CaM-binding 

environment. Because these hypothetical gradients could be dynamic, I forgo the time-averaging 

Cb metric and return to time-dependent plots of protein states. In Figure 4.6 and Figure 4.7, I 

monitor CaMKII-relevant and AC-relevant protein states, respectively, in response to 100 Hz Ca2+ 

flux and in each spine compartment. Equivalent plots of protein states in response to 10 Hz Ca2+ 

flux are found in the Supplement to Chapter 4.  

 

Figure 4.6. CaMKII-associated state gradients depend on competition for 

CaM. In response to 100Hz Ca2+ flux from time t = 0 until t = 2.5 sec, Ca2+/CaM 

activates CaMKII to elicit the complex CaM-CaMKII (A & D). Active CaM-

CaMKII may become auto-phosphorylated into pCaMKII (B & E), and both CaM-

CaMKII and pCaMKII may bind and phosphorylate GluA1 subunits, leading to 

GluA1-p831 (C & F). For each protein state, I monitor the number of states in the 

spine head’s top (purple), middle (yellow), and bottom (red) compartments. (A-C) 

Are the isolated model, and (D-F) are the competitive model. All traces are the 

average of N=50 executions. 
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Figure 4.7. AC-associated state gradients depend on competition for CaM. In 

response to 100Hz Ca2+ flux from time t = 0 until t = 2.5 sec, Ca2+/CaM activates 

AC1 (A & F), AC8-Ct (B & G), and AC8-Nt (C & H). Active AC1 and AC8-Ct are 

catalytically active, leading to PKA activation into PKAc (D & I). PKAc may bind 

and phosphorylate GluA1 subunits, leading to GluA1-p845 (E & J). For each 

protein state, I monitor the number of states in the spine head’s top (purple), middle 

(yellow), and bottom (red) compartments. (A-E) Are the isolated model, and (F-J) 

are the competitive model. All traces are the average of N=50 executions. 
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 Comparing the isolated and competitive model results shown in Figure 4.6 & Figure 4.7 

reveals a clear effect of competition on the spatial gradients of protein states. Indeed, the 

compartmental traces (in purple, yellow, and red) for almost all protein states never overlap, at 

least during Ca2+ stimulation. To verify that I in fact observe distinct spatial gradients in these 

stochastic model results, in the Supplement to Chapter 4 (Table 7.7) I test for statistically 

significant differences in the number of protein states in each spine compartment. I find that at the 

termination of 100 Hz Ca2+ flux (t = 2.5sec), the only protein states not exhibiting a statistically 

significant spatial gradient were PKAc and p845. The same is true at the termination of 10 Hz Ca2+ 

flux (see Table 7.7). Interestingly, regardless of Ca2+ frequency, the spatial gradients that do occur 

all steepen when moving from an isolated to a competitive environment.   

 To quantify the increased steepness in spatial gradients of protein states, I measure the 

percent difference in the average number of protein states at the top and bottom compartments of 

the spine. Therefore, Table 4.2 enumerates the number of proteins at the top and bottom 

compartments at t = 2.5sec (as shown in Figure 4.6 and Figure 4.7), and the corresponding percent 

differences (far-right column). For every protein for which a statistically significant spatial 

gradient is observed, the spatial gradient is steeper in the presence of competition for CaM-binding. 

Furthermore, it is notable that the relative shift in steepness for each protein state is fairly 

independent of Ca2+ frequency, not changing by more than about ten percent. This is further 

evidence that competition-sharpening of spatial gradients is not an anomalous phenomenon but 

instead a distinct regulatory mechanism.  
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Table 4.2. Quantifying spatial gradient steepness in isolated and competitive environments. 

100Hz Ca2+ flux 

Average count 

(#) 

Percent Change 

(%) 

   Isol. Comp. Isol. Comp. 

CaM-

CaMKII Top 597.98 441.6    

  Bottom 494.78 278.7 17% 37% 

pCaMKII Top 479.4 197.94    

  Bottom 374.6 120.52 22% 39% 

p831 Top 70.84 48.96    

  Bottom 54.28 29.72 23% 39% 

AC1 Top 352.48 105.26    

  Bottom 231.9 65 34% 38% 

AC8ct Top 200.02 37.48    

  Bottom 140.86 21.72 30% 42% 

AC8nt Top 437.08 173.6    

  Bottom 390.96 145.02 11% 16% 

        

        

10Hz Ca2+ flux 

Average count 

(#) 

Percent Change 

(%) 

   Isol. Comp. Isol. Comp. 

CaM-

CaMKII Top 555.74 175.72    

  Bottom 459.78 114.07 17% 35% 

pCaMKII Top 120.62 15.06    

  Bottom 92.60 9.25 23% 39% 

p831 Top 24.32 8.84    

  Bottom 17.76 4.64 27% 48% 

AC1 Top 149.72 52.24    

  Bottom 113.94 32.52 24% 38% 

AC8ct Top 223.38 25.1    

  Bottom 164.5 17.28 26% 31% 

AC8nt Top 413.92 206.82    

  Bottom 355.22 159.7 14% 23% 

      

4.3.4 N-terminus of AC8 as a regulator of spatial distributions of Ca2+/CaM 

Given that Figure 4.7 and Table 4.2 indicate consistent spatial gradients of active AC1 and 

AC8, it is surprising that these spatial gradients seemingly do not produce gradients of PKAc or 

GluA1-p845. Indeed, LTP in vivo elicits increased levels of GluA1-p845 and GluA1 localization 



107 

 

(gradients) to the synaptic membrane [180, 228]. To explore why my detailed model elicits 

increased levels but not localization of GluA1-p845, I refer to experiments by Wong et al. who 

show that mice with single knock-out of AC1 or AC8 retain the ability to achieve LTP [235]. 

Wong et al. further show that abolishing LTP requires double knockout of both AC1 and AC8. 

Therefore, I hypothesize that spatial gradients of LTP, and in particular GluA1-p845, may 

somehow depend on expression levels of AC1 and AC8.  

 To test the effect of AC1 and AC8 expression levels on spatial gradients GluA1-p845, I 

present two alternative versions of my model. The first alternative simulates knock-out (KO) of 

the AC8 N-terminus (AC8-Nt), chosen because although AC8-Nt binds Ca2+/CaM it has no known 

enzymatic activity [189, 193]. The second alternative simulates knock-out of AC8 altogether. I 

simulate my standard (wild-type; WT) and alternative models at 10Hz and 100Hz Ca2+ at various 

initial concentrations of AC1, and I then calculate the time-averaged concentration of GluA1-p845 

observed in each compartment of the spine. Figure 4.8 reveals that for the WT and AC8-Nt-KO 

cases, average GluA1-p845 levels are robust to decreasing concentrations of AC1. Furthermore, 

the AC8-KO case is similarly robust until AC1 concentrations fall below ~10μM. It appears that, 

at multiple Ca2+ frequencies, decreasing concentrations of AC1 causes a shift in competition such 

that Ca2+/CaM increasingly binds and activates AC8, allowing the system to maintain overall 

PKAc and GluA1-p845 levels. Only the double KO of AC1 and AC8 abolishes GluA1-p845, 

which is consistent with Wong et al. However, I continue to observe no spatial gradients of GluA1-

p845.  
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Figure 4.8. Normalized time-averaged GluA1-p845 for various AC-knockouts. 

Wild-type (A & D), AC8-Nt-KO (B & E), and AC8-KO (C & F) model responses 

to 10Hz Ca2+ (100 pulses; A-C) and 100Hz Ca2+ (250 pulses; D-F) as a function of 

AC1 concentration. Time-averaged GluA1-p845 levels are monitored in the top 

(purple), middle (yellow), and bottom (red) compartments. The data in each panel 

are normalized to the maximum average concentration observed in the top (purple) 

compartment. All traces are the average of N=50 executions. 

 

The persistent lack of GluA1-p845 spatial gradients in Figure 4.8 and elsewhere in this 

paper is likely evidence that such gradients are regulated on longer timescales and/or by 

mechanisms not accounted for by this model. For example, my model may produce excessive 

cAMP/PKA levels or effective diffusivities, despite inclusion of cAMP- and PKA-sequestering 

mechanisms. These considerations can be accounted for in future work. Although in this model 

AC KO has seemingly no effect on spatial gradients of GluA1-p845, KO of AC (or any CBP) 

could still disrupt the competitive environment for CaM-binding and thereby perturb the 

spatiotemporal dynamics of other proteins in the system. For instance, Romano et al. identify how 

decreasing concentrations of the CBP Ng causes a shift in competition for CaM-binding, resulting 

in decreased CaMKII activation and a concomitant increase in AC1 activation [46]. Similarly, 

perturbing the concentration of AC isoforms as in Figure 4.8 could likely shift the spatiotemporal 

dynamics of Ca2+/CaM in the spine.  

Therefore, I next examine how various AC isoform KO scenarios influence the 

spatiotemporal dynamics of Ca2+/CaM. In Figure 4.9, I monitor CBP-bound CaM2N, CaM2C, and 
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CaM4 in each spine compartment at 100Hz Ca2+ flux. Each row in Figure 4.9 pertains to a distinct 

AC isoform KO scenario. Note that the WT Ca2+/CaM (Figure 4.9A-C) dynamics are consistent 

with those observed in Figure 4.4B. Specifically, the levels of the CaM2N state, with its high 

association and dissociation rate constants for Ca2+, rapidly climb and then decline as Ca2+/CaM 

moves into the higher-affinity CaM2C state. Moreover, the fully-saturated CaM4 state eventually 

predominates, consistent with expectation under 100Hz Ca2+ flux. Also, each Ca2+/CaM state 

exhibits at least some spatial dependence, with distinct levels of each state in each spatial 

compartment. And the CaM4 state exhibits a clear spatial gradient as before. Importantly, these 

general spatiotemporal dynamics are conserved in every AC KO shown in Figure 4.9. Notably, 

the spatiotemporal dynamics of Ca2+/CaM are also conserved in every AC KO under 10Hz Ca2+ 

flux, as shown in Figure 7.7 in the Supplement to Chapter 4. However, under both 10Hz and 100Hz 

Ca2+ flux, absence of the AC8-Nt (Figure 4.9G-I) halves the levels of CaM2C observed during Ca2+ 

stimulation. AC8-Nt changes the activation levels and spatial dependence of CBP-bound CaM2C, 

and leading to a concomitant increase in CaM4. This observation holds for the AC8-KO (Figure 

4.9K) and double KO (DKO; Figure 4.9N) scenarios. These results suggest that one consequence 

of AC8-Nt-KO, or equivalent perturbations, in vivo could be a reduction in the dynamic activation 

of CBPs with high affinities for CaM2C and increase in activation of CBPs with high affinities for 

CaM4.  
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Figure 4.9. Spatiotemporal dynamics of CBP-bound Ca2+/CaM under 100Hz 

stimulation for various AC isoform KO’s. CBP-bound CaM2N (left column), 

CaM2C (middle column), and CaM4 (right column) in each compartment in 

response to 100Hz Ca2+ flux. Ca2+/CaM states in the top (purple), middle (yellow), 

and bottom (red) compartments may overlap and are therefore plotted from top to 

bottom, with bottom at the foreground. Ca2+ flux begins at t=0 and proceeds until 

t=2.5sec. All traces are the average of N=50 executions. 
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Having explored the effects of AC KO on CBP-bound Ca2+/CaM in Figure 4.9, I next 

examine the effects on free Ca2+/CaM. During active Ca2+ flux, the concentration of free Ca2+/CaM 

can be quite low, especially at high Ca2+ frequencies and in the presence of many CBPs. Yet 

examining free Ca2+/CaM (as opposed to CBP-bound or global Ca2+/CaM), particularly in a 

spatial-stochastic model, might better elucidate how perturbing competition for CaM-binding 

changes where individual CBPs bind or unbind Ca2+/CaM. Figure 4.10 is identical to Figure 4.9 

but instead of monitoring bound Ca2+/CaM in each spine compartment under 100Hz Ca2+, I 

monitor free Ca2+/CaM. Again, each row in Figure 4.10 is a distinct AC KO scenario. For each 

AC KO scenario in Figure 4.10, the spatiotemporal dynamics of CaM2N and CaM2C are both 

unchanged. However, the AC8-Nt- and AC8-KO scenarios both exhibit noticeable reductions in 

the levels of CaM4 in the middle (yellow) compartment. This surprising result is remarkably not 

observed at 10Hz Ca2+ flux, shown in Figure 7.8. Instead, free Ca2+/CaM under 10Hz causes a 

noticeable shift in CaM2C location only observed upon AC8-Nt-KO. That is, AC8-Nt-KO results 

in consistently higher levels of CaM2C in the middle compartment than the top compartment. Given 

these results, I further speculate that AC8, and especially AC8-Nt, is an essential regulator of the 

type and location of CBPs activated by CaM.   
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Figure 4.10. Spatiotemporal dynamics of free Ca2+/CaM under 100Hz 

stimulation for various AC isoform KO’s. Free CaM2N (left column), CaM2C 

(middle column), and CaM4 (right column) in each compartment in response to 

100Hz Ca2+ flux. Ca2+/CaM states in the top (purple), middle (yellow), and bottom 

(red) compartments may overlap and are therefore plotted from top to bottom, with 

bottom at the foreground. Ca2+ flux begins at t=0 and proceeds until t=2.5sec. All 

traces are the average of N=50 executions. 



113 

 

Finally, I aim to explain my results in Figure 4.9 and Figure 4.10 by identifying the CBP 

to which CaM-binding shifts upon AC8-Nt-KO. For this, I leverage the fact that my model 

explicitly accounts for each CBP, whereas other models may lump CBPs into a single term. 

Specifically, I monitor the activation of each CBP by the major Ca2+/CaM states CaM2N, CaM2C, 

and CaM4 in each spine compartment, and then I calculate (see Methods) the dynamic changes in 

these activations between the WT and AC8-Nt-KO scenarios. My results in Figure 4.11 indicate 

that upon AC8-Nt-KO, there is a marked increase in CaMKII and AC1 activation by CaM4 during 

Ca2+ flux and by CaM2C following Ca2+ flux (which terminates at t=2.5 sec). It appears that without 

AC8-Nt, which has a high affinity for CaM2C, Ca2+ flux leads to a greater abundance of CaM4. 

Consequently, this increase in CaM4 appears to increase the activation of CBPs with high affinities 

with CaM4. Indeed, the CBPs in my model with the highest affinities for CaM4 are CaMKII, AC1, 

and MLCK.  

 

Figure 4.11. Shifts in individual CBP activations upon AC8-Nt-KO. Changes 

in individual CaM2C-activated (left column) and CaM4-activated (right column) 

CBPs in the top (A-B), middle (C-D), and bottom (E-F) compartment of the spine 

in response to 100Hz Ca2+ flux. The CBPs that shift by at least 20% are colored 

non-black as shown in the legend. All traces are the average of N=50 executions. 
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 Discussion 

This study uses MCell to simulate a system of differential equations in a particle-based 

spatial-stochastic framework, modeling the dynamic interactions of Ca2+/CaM with nine 

explicitly-defined CBPs and a set of CBP-dependent signaling pathways relevant to early synaptic 

plasticity. My spatial-stochastic model accounts for competition among multiple CBPs for binding 

to CaM. With my model, I analyze how competition and spatial effects co-regulate signaling 

outputs relevant to synaptic plasticity.  

I validate my spatial-stochastic model by comparing its output against the deterministic 

equivalent. Note that the equivalent deterministic model, which I implement using the software 

Mathematica, is not the same as that published by Pharris et al. (2018), although the model species 

and parameters are mostly identical [165]. In contrast to this previous publication, the deterministic 

equivalent used in my validation models 9-state Ca2+/CaM to match the spatial-stochastic model. 

Recall that my spatial-stochastic model requires 9-state Ca2+/CaM because the 4-state Ca2+/CaM 

alternative calls for trimolecular reactions to which MCell assigns unreasonably low reaction 

probabilities. Comparing the dynamics of Ca2+/CaM between my deterministic and spatial-

stochastic models in Figure 4.2 reveals that both models agree and exhibit Ca2+/CaM states 

consistent with past experimental and computational results [42, 45]. Furthermore, in Figure 4.3 I 

show that the Ca2+ frequency-dependence of CBP activation is preserved upon inclusion of spatial 

effects. The minor differences between Figure 4.3A and B are likely a consequence of both 

stochasticity and space. First, weakly expressed proteins such as CaN (0.5 μM) and PDE1 (2.25 

μM) are most susceptible to stochastic effects and therefore exhibit noise despite averaging over 

many executions [21]. Second, spatial effects may localize active CBPs to distinct compartments 

in the spine. Protein localization, compounded by the particle-based methods in MCell, creates a 

scenario in which not all CBPs simultaneously compete for binding to the same CaM particle. 

Indeed, the Ca2+ frequency-dependence shown in Figure 4.3B can be regarded as a hybrid of the 

isolated and competitive results from a deterministic model (compare to Fig 4 in [46]). Thus, I 

proceed with my validated model and analyze how spatial effects and competition together 

regulate CBP activation. 

A major outcome of this work suggests that competition is the predominant mechanism for 

setting the physiological Ca2+ frequency-dependence of CBP activation. Figure 4.5A indicates that 

spatial effects alone, in the absence of competition for CaM-binding, do not influence the Ca2+ 
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frequency-dependence of any CBP (for example, compare to Fig 4A in [46] which is a 

deterministic model with a similar reaction network). Moreover, Figure 4.5F-H indicate that the 

frequency-dependence, specifically the frequencies of peak activation, for each CBP are 

unchanged by location within the dendritic spine. However, although the frequency-dependence 

is seemingly independent of spatial effects, spatial effects do seem to influence the magnitudes of 

CBP activation. For example, while CaMKII is most activated at 100Hz Ca2+, the magnitude of 

CaMKII activation at 100Hz is much higher in the top compartment (Figure 4.5F) than the bottom 

compartment (Figure 4.5H). Notably, this decrease in peak activation magnitude is reduced in the 

isolated model (Figure 4.5B-D), suggesting how competition regulates the localization of CBPs in 

the spine. 

To further examine how localization of active CBPs is regulated by competition for CaM, 

in Figure 4.6 & Figure 4.7 I show spatiotemporal dynamics of protein states in CaMKII- and AC-

mediated signaling pathways. Both pathways exhibit statistically significant spatial gradients 

during Ca2+ stimulation at multiple frequencies, for multiple protein states, in both the presence 

and absence of competition. Critically, inclusion of competition increases the percent change in 

spatial gradient height for every protein state (Table 2). I can be confident this increase in gradient 

height is not merely due to the pre-localization of CBPs such as Ng to the PSD, because I observe 

that all spatial gradients become more pronounced during Ca2+ flux, while Ca2+/CaM states (non-

apo-CaM) have low affinity for Ng. Although Ng likely localizes apo-CaM to the PSD prior to 

Ca2+ flux, Ng’s affinity for Ca2+/CaM is so low (and the diffusion of Ca2+/CaM is sufficiently fast) 

that it likely does not interact with Ca2+/CaM during Ca2+ flux, given the presence of other CBPs 

competing for CaM-binding. Thus, during Ca2+ flux it appears that competition alone is 

responsible for the enhancement of the spatial localization of proteins such as CaMKII, as depicted 

in Figure 4.12.  
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Figure 4.12. Schematic depiction of CaMKII spatial gradient enhancement by 

competition for CaM. (Left) Isolated CaMKII (red circles) binds CaM (orange 

dumbbells) along a spatial gradient throughout the spine. (Right) Competition for 

CaM-binding reduces CaMKII activation overall, causing most CaMKII to occur 

locally to the Ca2+ source, resulting in a steeper spatial gradient. Gradient bars are 

non-quantitative, illustrating shifts from high (red) to low (blue) local 

concentrations of CaMKII along the spine. 

 

Competition’s apparent influence on spatial localization highlights its importance as a 

regulatory mechanism. Although competition for CaM-binding has long been a known 

phenomenon [14, 30], the effect of competition on other regulatory mechanisms is now becoming 

understood. In addition to setting the Ca2+ frequency-dependence of CBPs through competitive 

tuning [46], competitive tuning may, in the presence of feedback loops, provide a compensatory 

mechanism that lends robustness to Ca2+-dependent outputs of synaptic plasticity induction [165]. 

Now, I identify how competition could enhance spatial microdomains of CBP activation, helping 

to ensure that active CBPs transduce their downstream signals at correct/consistent locations 

within the spine (Figure 4.6 and Figure 4.7). And note that activating CBP-dependent pathways at 

the appropriate location may be important to ensure, for example, that CaMKII is predominantly 

active in the PSD and able to phosphorylate or localize GluA1 receptors at the synaptic membrane 

[236, 237]. Alternatively, inactivating CaMKII and other CBPs at the appropriate location may 

also be important; as, for example, CaMKII inactivation at the PSD and subsequent re-binding to 

actin may be essential to the structural remodeling following LTP [37, 238-242].    

The final section of my results explores various AC isoform KO scenarios in an attempt to 

explain to why, despite robust gradients of AC activation, I observe no spatial gradients of GluA1-
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p845. First, I observe that only AC DKO abolishes GluA1-p845 (Figs 8C & 8F), consistent with 

experiments by Wong et al. that individual knockouts of either AC1 or AC8 are insufficient to 

abolish LTP [235]. I also observe robust GluA1-p845 levels across a wide range of AC 

concentrations, perhaps consistent with experiments in insular cortex, where LTP is observed as 

long as AC1 alone is at least weakly expressed [243]. However, despite my model’s agreement 

with these experimental results, none of my simulated AC KOs affect the distribution of GluA1-

p845 in space. Thus, I speculate that this aspect of my model could be under-regulated in a variety 

of ways. For example, my parameterization of cAMP generation by AC, cAMP degradation by 

PDE1 and PDE4, or the binding of cAMP to PKA could be incomplete. To quantify how these 

parameters influence the spatial dependence of GluA1-p845, future studies could implement a 

global sensitivity analysis, though this may be computationally impractical for a spatial-stochastic 

model such as ours. Moreover, my representation of diffusion for small cytosolic molecules such 

as cAMP and PKA may be incomplete. If diffusion is too rapid for molecules such as cAMP, the 

spatial gradients of AC activation may not be efficiently transduced downstream. Future work 

could explore reports by previous studies that propose how actin filaments, molecular crowding, 

spine geometry, and high affinity interactions may reduce the effective diffusion of particles in the 

spine [185, 244-246]. I note, of course, that if the model presented here were to more rigorously 

account for diffusion, the spatial gradients currently observed would likely become more 

pronounced. Finally, my model excludes structural mechanisms that might restrict bound or 

phosphorylated AMPARs to the synaptic membrane. Therefore, my results may provide further 

evidence that intracellular interactions involving PSD-95 or A-kinase-anchoring proteins (AKAPs) 

might be necessary to encumber the trafficking of AMPARs to the synaptic membrane [19, 37, 

180]. To further explore the regulation of AMPAR trafficking, it might be interesting to combine 

my MCell model with that recently published by Antunes et al., who use MCell to explore AMPAR 

trafficking in response to generic LTP and LTD inputs [228].  

Although my AC KO scenarios do not influence the spatial dependence of GluA1-p845, 

they did impact the spatiotemporal dynamics of Ca2+/CaM. Indeed, levels of CBP-bound CaM2C 

are roughly halved in the absence of the AC8-Nt (Figure 4.9H, K, and N). Interestingly, when 

CaM2C levels halve, CaM4 levels increase by roughly the same amount, and this result is consistent 

at multiple Ca2+ frequencies (see the 10Hz scenario in Figure 7.7). I attribute this result mainly to 

the differences in my kinetic parameters for CaM binding each AC isoform. First, with my 
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parameterization each AC isoform binds CaM2N and CaM4 at affinities all within roughly one order 

of magnitude. Second, AC8-Nt binds CaM2C at a higher affinity than the other AC isoforms (KD = 

0.8μM). Thus, it is reasonable that AC8-Nt-KO causes a reduction in dynamic CaM2C levels; one 

of the most abundant CBPs (42μM) with a relatively high affinity for CaM2C is no longer in the 

system. So, in the absence of AC8-Nt, other CBPs with high affinities for CaM2C may either 

become less activated or become activated by different Ca2+/CaM states instead. Determining the 

full impact of AC8-Nt-KO may require a rigorous examination of individual CBP dynamics in 

future work. While others have explored how Ca2+/CaM influences AC isoforms [247, 248], there 

has been less work on how the AC isoforms influence the spatiotemporal dynamics of Ca2+/CaM.  

In this study I distinguish between CBP-bound Ca2+/CaM and free (unbound) Ca2+/CaM. 

In Figure 4.10, I examine free Ca2+/CaM under identical conditions to Figure 4.9, again revealing 

a seemingly critical role for the AC8-Nt. First, at 100Hz Ca2+ AC8-Nt-KO (Figure 4.10I) causes a 

reduction in the levels of free CaM4 in the middle compartment of the spine. This reduction persists 

upon AC8-KO (Figure 4.10L) but is recovered upon AC DKO (Figure 4.10O), likely due to a shift 

in competition for CaM4 upon removal of AC1. The results in Figure 4.10 I and L reveal a critical 

function for AC8, and AC8-Nt in particular. Specifically, AC8-Nt-KO may cause CBPs with high 

affinity for CaM4 (such as AC1 and CaMKII) to excessively bind CaM4 at the top of the spine, 

instead of more uniformly as Figure 4.9C implies. Secondly, at 10Hz Ca2+ (Figure 7.8) AC8-Nt-

KO uniquely causes higher levels of CaM4 in the middle than the top compartment of the spine. 

This surprising result implies how AC8-Nt-KO may cause some CBP(s) not necessarily localized 

to the PSD (such as CaMKII, AC1, or MLCK as identified in Figure 4.11) to perhaps 

pathologically predominate in CaM4 binding. Especially given that Figure 4.11 implicates 

dysregulation of AC1 upon AC8-Nt-KO, it would be interesting to explore my results in light of 

results by Garelick et al. who show that young mice with excess AC1 (AC1+) have improved 

spatial memory, while older AC1+ mice show deficient spatial memory [249, 250]. Based on my 

results, it could be that old mice have under-expressed AC8 or some other perturbation specific to 

AC8-Nt.   

Ca2+ signaling is important in virtually every cell type in addition to hippocampal neurons. 

Because CaM has over 100 downstream binding partners, it is reasonable to expect that 

competition provides an added layer of regulation to how different cell types respond to Ca2+/CaM 

[14]. Certainly, my view of Ca2+/CaM as a limiting resource could also be adopted in a 



119 

 

computational model of Ca2+/CaM-regulated neurotransmitter release in presynaptic neurons, 

cardiac muscle contractility, or insulin secretion in the pancreas [251, 252]. The methods used for 

this model, such as the principle of microscopic reversibility, may be useful in estimating other 

parameter values (e.g. the as-yet unmeasured kinetic rates of sub-saturated Ca2+/CaM for binding 

AC3 in olfactory receptors) [253]. My results motivate further examination of the influence of 

competition on spatial effects, and such future studies could build on my and others’ use of MCell 

and CellBlender. Indeed, it would be interesting to return to work by Saucerman et al. (2008) or 

Antunes et al. (2018), expanding those models with added spatial detail, thermodynamically-

complete Ca2+/CaM binding, and/or multiple explicitly-defined CBPs [92, 228].  

 Methods 

All model code and associated files are available at the Purdue University Research 

Repository. The model is written using MCell 3.3 with syntax documented at mcell.org. MCell 3.3 

accepts geometry files exported from the open-source software Blender using the plug-in 

CellBlender. In my model, I use the same dendritic spine geometry as Keller et al. (2008) [185], 

excluding their dendrite shaft. The spine head is a 0.5 μm cuboid.  

  Prior to Ca2+ flux, all model simulations are run for t=10sec to allow model species to 

equilibrate. I forgo showing this equilibration period in all time-course plots. At t=10sec, Ca2+ flux 

begins according to time-variable rates informing the reactions 𝑁𝑀𝐷𝐴𝑅 → 𝑁𝑀𝐷𝐴𝑅 + 𝐶𝑎2+ and 

𝐶𝑎2+ → 𝑁𝑈𝐿𝐿. The combined effect of these reactions is to produce global free Ca2+ dynamics 

obeying the equation [Ca](t)=12e-t/0.012 as used by Romano et al. [46]. To implement this equation 

in MCell as time-variable reaction rates, I numerically differentiate as shown in Ca_train.m 

provided in the code repository. This equation controls for Ca2+ magnitude and patterning by 

ensuring that all Ca2+ pulses are evenly spaced and consistently peak at 12μM. Note that NMDARs 

are constrained to the synaptic membrane, or the top surface of my dendritic spine geometry. Thus, 

Ca2+ magnitude, patterning, and location are all controlled, allowing me to observe model output 

as a function of Ca2+ frequency alone.  
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To calculate the changes in dynamic activation of individual CBPs between WT and AC8-

Nt-KO scenarios as shown in Figure 4.11, I define the metric ‘delta activation’. Here, I define this 

metric as shown in equation 1. Note that positive delta activation implies an increase in a CBP’s 

activation upon AC8-Nt-KO.  

(1) 𝐷𝑒𝑙𝑡𝑎𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝑡) = 𝐴𝐶8𝑁𝑇𝐾𝑂(𝑡) − 𝑊𝑇(𝑡) 
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5. A MULTI-STATE MODEL OF THE CAMKII DODECAMER 

SUGGESTS A ROLE FOR CALMODULIN IN MAINTENANCE OF 

AUTOPHOSPHORYLATION 

 Summary 

Ca2+/calmodulin-dependent protein kinase II (CaMKII) accounts for up to 2 percent of all 

brain protein and is essential to memory function. CaMKII activity is known to regulate dynamic 

shifts in the size and signaling strength of neuronal connections, a process known as synaptic 

plasticity. Increasingly, computational models are used to explore synaptic plasticity and the 

mechanisms regulating CaMKII activity. Conventional modeling approaches may exclude 

biophysical detail due to the impractical number of state combinations that arise when explicitly 

monitoring the conformational changes, ligand binding, and phosphorylation events that occur on 

each of the CaMKII holoenzyme’s twelve subunits. To manage the combinatorial explosion 

without necessitating bias or loss in biological accuracy, I use a specialized syntax in the software 

MCell to create a rule-based model of the twelve-subunit CaMKII holoenzyme. Here I validate the 

rule-based model against previous measures of CaMKII activity and investigate molecular 

mechanisms of CaMKII regulation. Specifically, I explore how Ca2+/CaM-binding may both 

stabilize CaMKII subunit activation and regulate maintenance of CaMKII autophosphorylation. 

Noting that Ca2+/CaM and protein phosphatases bind CaMKII at nearby or overlapping sites, I 

compare model scenarios in which Ca2+/CaM and protein phosphatase do or do not structurally 

exclude each other’s binding to CaMKII. My results suggest a functional mechanism for the so-

called “CaM trapping” phenomenon, such that Ca2+/CaM structurally excludes phosphatase 

binding and thereby prolongs CaMKII autophosphorylation. I conclude that structural protection 

of autophosphorylated CaMKII by Ca2+/CaM may be an important mechanism for regulation of 

synaptic plasticity. This chapter has been submitted for publication and is currently in revision. 

Co-authors include Dr. Melanie Stefan of the University of Edinburgh, a collaborator with our 

laboratory who introduced us to the idea of rule-based modeling. Other co-authors include Drs. 

Tom Bartol and Terrence Sejnowski of the Salk Institute, who helped with the development of 

MCell, and Dr. Mary Kennedy of the California Institute of Technology, who provided key insight 

into the possibility for Ca2+/CaM to structurally exclude PP1 from CaMKII-binding.  
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 Introduction 

CaMKII is a protein of interest because of its crucial role in synaptic plasticity [5, 254-

257]. In the hippocampus, synaptic plasticity in the post-synapse occurs within mushroom-shaped 

protrusions called dendritic spines [258]. Synaptic plasticity is dependent on calcium ion (Ca2+) 

flux through N-methyl-D-aspartate receptors (NMDARs) located on the dendritic spines of the 

post-synaptic neuron [23]. Depending on the magnitude, frequency, and location of Ca2+ flux, 

synaptic plasticity may produce increases or decreases (or neither) in synaptic strength [3, 259]. 

Large, higher-frequency Ca2+ spikes can induce an enduring up-regulation of synaptic strength, 

called long-term potentiation (LTP); while weak, lower-frequency Ca2+ spikes can induce an 

enduring down-regulation of synaptic strength, called long-term depression (LTD) [29, 259]. 

Whether Ca2+ spikes induce LTP or LTD depends on relative activation of intracellular protein 

signaling networks. When Ca2+ first enters the dendritic spine, it interacts with a variety of buffer 

and sensor proteins, chiefly calmodulin (CaM), which has many protein targets in the spine, 

including CaMKII [20, 46, 257]. 

The CaMKII holoenzyme contains at least twelve subunits [260-263] arranged as two rings 

of six. As shown in Figure 5.1, each CaMKII subunit features an N-terminal kinase domain and 

C-terminal hub domain [218]. Between the kinase and hub domains is a flexible regulatory domain 

which lends to the subunit a wide range of movement away from the holoenzyme’s central hub. A 

crystal structure of human alpha-CaMKII expressed in E. coli published by Chao et al. (2011) 

shows CaMKII subunits as able to rapidly and stochastically pivot between a “docked” and 

“undocked” conformation, seemingly mediated by residues on the kinase domain’s activation loop 

and a spur structure on the hub domain (see Fig 3C in [218]), such that a docked subunit may be 

inaccessible to CaM binding. In contrast, a more recent work using electron microscopy with rat 

alpha-CaMKII expressed in Sf9 cells suggests that less than 3 percent of subunits exhibit a compact 

(or docked) conformation [264]. Given the uncertainty in the field, I include subunit docking and 

undocking in my model, allowing for future exploration of this possible subunit functionality. In 

addition to docking and undocking, each subunit can be in an “inactive” conformation when the 

regulatory domain is bound to the kinase domain (Fig 1B), or an “active” conformation when this 

binding is disrupted by the binding of Ca2+/CaM or phosphorylation at Thr-286 [218, 265]. In the 

active conformation the catalytic domain of a subunit is able to bind and phosphorylate enzymatic 
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substrates. A subunit may spontaneously return to an inactive conformation in the absence of 

Ca2+/CaM or phosphorylation at Thr-286 [265]. 

 

Figure 5.1. Schematic of CaMKII Subunit Structure. (A) Map of amino acid 

residues in a CaMKII subunit. The N-terminal kinase domain (blue) approximately 

spans residues 1-274. The regulatory domain (residues 275-314, yellow) binds to 

the kinase domain autoinhibiting the kinase activity of the each CaMKII subunit. 

The putative phosphatase binding site is also shown purple. The Ca2+/CaM binding 

site is shown in orange. Subunits self-associate via the hub domain (residues 315-

475, green) to form multimeric complexes of 12-14 subunit holoenzymes. (B) The 

“inactive” CaMKII subunit (PDB: 3SOA) in which the regulatory domain (yellow) 

is closely associated with the kinase domain (blue). (C) A schematic of the “active” 

CaMKII subunit. The regulatory domain (yellow) is not bound to the kinase domain 

(blue). This schematic was generated by manually modifying PDB entry 3SOA to 

illustrate how the regulatory domain may be available for Ca2+/CaM binding and 

the kinase domain open for substrate binding. (D) Cartoon depiction of all protein 

species in my model, in which Ca2+/CaM (orange) or phosphatase (purple) may 

bind to the regulatory domain (yellow) of a CaMKII subunit. 

 

CaMKII activity can become Ca2+/CaM-independent through phosphorylation at Thr-286, 

which is required for LTP [5, 26]. Importantly, this phenomenon is an autophosphorylation: it is 

thought to occur when an active subunit phosphorylates neighboring subunits within the same 

holoenzyme [195, 266]. Autophosphorylation at Thr-286 (“pThr-286”) is thought to provide 

structural stability to a subunit’s active conformation (reviewed in [267]) [42]. Because CaMKII 

plays a key role in the induction of LTP, and ultimately learning and memory (reviewed in [3, 
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256]), I seek to better understand the biochemical regulation of CaMKII activation and 

autophosphorylation via computational modeling.  

To characterize the spatiotemporal regulation of CaMKII, experimental studies are 

increasingly complemented by computational models [45, 218, 262, 268]. Computational models 

of Ca2+-dependent signaling implicate competition, binding kinetics, feedback loops, and spatial 

effects in regulating enzyme activation [23, 33, 42, 46, 185]. However, fully characterizing these 

and other mechanisms of CaMKII regulation is impeded by the challenge of accurately portraying 

the CaMKII holoenzyme. As described by previous work, combinatorial explosion applies to 

models of CaMKII (and similar biomolecules) because the protein exhibits a large number of 

functionally significant and not necessarily inter-dependent states [24, 42, 45, 269, 270]. The large 

number of possible states of CaMKII can neither be explicitly specified nor efficiently evaluated 

with conventional mass action-based methods. Indeed, for just one CaMKII hexamer ring, I 

estimate a state space of ~32 billion states, and for the full dodecamer approximately 1020 possible 

states (see the Supplement to Chapter 5). The numbers of possible CaMKII states far exceeds the 

number of CaMKII molecules in a dendritic spine, suggesting that some states never occur and are 

therefore not functionally important. Previous models leverage this observation to reduce the 

model state space and provide valuable insight to CaMKII binding and autophosphorylation 

dynamics [4, 24, 42, 245, 271]. However, for CaMKII it remains unclear which states functionally 

participate in synaptic plasticity. Reduced models can inadvertently obscure key mechanisms 

regulating CaMKII activation and autophosphorylation. To elucidate complex regulatory 

mechanisms, it may be necessary for models to provide for all possible states ab initio.  

In this work, I use rule-based model specification and particle-based rule evaluation 

methods to overcome combinatorial explosion [45, 270, 272]. Rules are conditions, based 

primarily on experimental observations, that prescribe when an implicitly-defined reaction may 

occur. At a given iteration, only states that matter for the execution of a particular rule are explicitly 

declared. States that do not matter to a particular rule can be omitted, a principle that has been 

paraphrased as “don’t care, don’t write” [273]. I use rule- and particle-based methods within the 

spatial-stochastic software MCell 3.3 [185, 274] to present a comprehensive multi-state model of 

the CaMKII dodecamer. Other simulation platforms can also overcome combinatorial explosion 

through rule-based model specification (e.g. BioNetGen [275]) or network-free approaches (e.g. 

NFsim [276]). Unlike other platforms, MCell 3.3 provides both spatial-stochastic and rule-based 
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modeling, although multi-state molecules in MCell 3.3 cannot diffuse. I use MCell 3.3 in 

anticipation of future MCell versions accounting for multi-state molecule diffusion, and to 

eventually build on simulations with physiological dendritic spine geometries such as those by 

Bartol et al. (2015) [230]. 

Here, I validate this rule-based MCell model of CaMKII regulation against current 

descriptions of the Ca2+ frequency-dependence of CaMKII activation. By varying the rules and 

model parameter values I can simulate different experimental manipulations of CaMKII 

interaction with Ca2+/CaM and phosphatase and thereby explore various mechanisms regulating 

CaMKII activity. In particular, I show that Ca2+/CaM is important not only for regulating activation 

of CaMKII but may also contribute to the maintenance of CaMKII phosphorylation at Thr-286. I 

hypothesize that by limiting access of phosphatases to CaMKII Thr-286 (perhaps by steric 

hindrance), Ca2+/CaM may prolong the lifetime of the auto-phosphorylated state.  

 Results 

5.3.1 Model Development  

5.3.1.1 Molecular Species 

The model contains three protein species: CaM, protein phosphatase, and CaMKII. 

Ca2+/CaM facilitates CaMKII activation, which leads to autophosphorylation at Thr-286, and 

phosphatase activity facilitates de-phosphorylation at Thr-286. Both protein phosphatase 1 (PP1) 

and protein phosphatase 2A (PP2A) have been shown to dephosphorylate Thr-286, though in 

different subcellular fractions (reviewed by [266, 277-279]). Here I refer to them generally as 

protein phosphatase (PP).  

CaM and PP are modeled in MCell as conventional cytosolic molecules. CaM is modeled 

as having one of two states: un-bound apo-CaM and fully-saturated Ca2+/CaM (four Ca2+ bound 

to CaM). Although I and others have described the importance of sub-saturated Ca2+/CaM states 

with fewer than 4 Ca2+ [24, 42, 46, 97, 190, 215], the dynamics of Ca2+-CaM binding and the 

binding of sub-saturated Ca2+/CaM to CaMKII are beyond the scope of this current work. Indeed, 

accounting for sub-saturated Ca2+/CaM would here require a multi-state representation, and 

because multi-state molecules cannot diffuse in MCell 3.3, I simplify my Ca2+/CaM model to allow 

CaM and CaMKII to interact. Thus, similarly to previous models [33, 216], I assume that apo-
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CaM has a negligible affinity for CaMKII; only fully-saturated Ca2+/CaM binds CaMKII. In 

contrast to CaM, PP is modeled as single-state protein that is constitutively active and able to bind 

auto-phosphorylated CaMKII subunits. My representation of constitutively active PP is consistent 

with previous models such as that by Lisman and Zhabotinsky (2001) [280].  

CaMKII is modeled as a multi-subunit complex, defined using a specialized model syntax 

for complex molecules (COMPLEX_MOLECULE) in MCell 3.3 [43]. This syntax allows for 

explicit representation of individual CaMKII dodecamers with distinguishable subunits. As shown 

in Figure 5.2, the holoenzyme is arranged as two directly-apposed, radially-symmetric rings each 

with six subunits. Each subunit features five “flags”, each standing for a particular state that each 

CaMKII subunit can adopt. Flags are used in rule evaluation, which occurs at each time step and 

for each individual subunit. That is, MCell repeatedly evaluates model rules against a given 

subunit’s flags (and those of the neighboring subunits) to determine which state transitions a 

subunit undertakes at each time step. In the following sub-sections, I describe all CaMKII model 

flags, the state transitions that apply to each flag, the conditions and rate parameters for each state 

transition, and related model assumptions. In Figure 5.2, I visually convey how CaMKII subunits 

transition between states according to my model’s rules. In Table 7.8 I summarize the state 

transition rules and rate parameter values.  
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Figure 5.2. CaMKII holoenzyme state transitions. (A) CaMKII has twelve subunits 

arranged in two radially symmetric, directly apposed rings. Subunits may 

spontaneously undock/extend from the central hub or dock/retract (if inactive). 

When undocked, subunits may spontaneously open/activate. (B) If two neighboring 

subunits are active, one may auto-phosphorylate the other at Thr-286. If auto-

phosphorylated (pThr-286), a subunit may remain active even upon un-binding of 

CaM. A pThr-286 subunit un-bound to CaM may additionally phosphorylate at 

Thr-306, blocking subsequent re-binding of Ca2+/CaM. A pThr-286 subunit may 

also bind and become de-phosphorylated by PP (purple).  

5.3.1.2 Subunit Docking 

Docking is a binary flag that describes subunits as either “docked” or “undocked” to the 

CaMKII central hub. Subunits are instantiated in a docked state but may undergo numerous 

transitions between docked and undocked over the course of a simulation. At each time step, I 

assess a rule governing the subunit’s transition from a docked to undocked state. If this rule is 

satisfied, meaning that the subunit’s docking flag is verified as “docked”, then the transition is 

considered. Similarly, I assess a separate rule governing a transition from an undocked to docked 

state, which requires that the subunit not be bound to CaM and not phosphorylated at Thr-306 

[218]. 

 Subunit docking follows the structural model of Chao et al., who showed that a subunit 

cannot bind CaM as long as the subunit is in a compact conformation, docked to its central hub 

[218]. Docking implies a two-step process in which the subunit must first un-dock before 

subsequent CaM-binding, which accounts for the reported difference in binding rate for CaM to 

CaMKII-derived peptide (1 × 108 M-1s-1 [281]) and for CaM to full-length CaMKII-T286A (1.8 × 
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106 M-1s-1 [282]). Taking the ratio of these two rates gives an equilibrium constant for docking of 

0.018, which is consistent with estimates by Chao et al., who assumed Kdocking to fall between 0.01 

and 100 [218]. With this equilibrium constant, I estimate kinetic rates for docking and undocking. 

For this estimation, I first note that subunit docking involves a structural conformation change on 

a relatively large scale. Referring to a separate, and notably smaller-scale, conformational change 

in my model, in which CaM quickly transitions from an initially- to fully-bound state (see Flag 3: 

CaM Binding), I assume the docked-to-undocked transition to proceed at an order of magnitude 

slower. I therefore arrive at an assumed rate for kdock of 35 s-1. In turn, this gives an undocking rate 

kundock=kdock × Kdocking of 0.63 s-1, which lies within the range of 0.01 s-1 and 100 s-1 for kundock 

assumed by Chao et al.  

5.3.1.3 Subunit Activation 

The activation flag describes subunits as either “active” or “inactive”. An inactive subunit 

has no catalytic activity because the regulatory domain is bound to the subunit’s catalytic site; 

others may refer to it as a closed subunit. Conversely, an active subunit has catalytic activity 

because the regulatory domain’s inhibition of the kinase domain is disrupted; in other words, an 

active subunit is an open subunit. When a subunit is active, Ca2+/CaM and/or other proteins may 

access and bind CaMKII. In my model, the transition reaction from inactive to active (opening) 

involves no explicit rules (but rather occurs unconditionally and as governed by rates described 

below). In contrast, two rules inform the conditions for subunit inactivation: that the subunit is 1) 

not fully-bound to CaM, and 2) not phosphorylated at Thr-286.  

To assign rate parameters for this flag, I first note that subunits can fluctuate between 

inactive and active states rapidly in the absence of Ca2+/CaM (on the order of hundreds of 

nanoseconds) [116, 265]. Noting this, I set the rate parameter for subunit inactivation at 1 × 107 s-

1. Further, Stefan et al. determined that the activation probability (in the absence of CaM and 

phosphorylation) is 0.002, leading me to set my activation rate parameter to 2 × 104 s-1 [269]. Thus, 

I arrive at a model in which CaMKII subunit activation is unstable until stabilized by CaM-binding 

or autophosphorylation. 
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5.3.1.4 CaM binding 

CaM binding is a ternary flag meaning that each CaMKII subunit displays one of three 

states, where CaM may be “unbound”, “initially-bound”, or “fully bound”. My model adapts 

previous work by Stefan et al. (2012) to describe CaM-binding to CaMKII as a two-step process 

[269]. First, CaM binds to the regulatory domain of a CaMKII subunit (residues 298-312), 

resulting in a low-affinity “initially bound” CaMKII state, which is compatible with both the closed 

and open subunit conformation. Second, if the initially bound CaMKII opens it may transition to 

a “fully bound” state that describes the complete, higher-affinity interaction between CaM and 

CaMKII along residues 291-312 (see Figure 5 in [269]). I specify three rules to govern the 

transition from an unbound to initially bound state: the subunit must be 1) undocked, 2) not PP-

bound, and 3) un-phosphorylated at Thr-306. The transition reaction from initially bound to a fully 

bound state is governed by a single rule that the subunit already be active/open. Dissociation of 

CaM from a fully bound CaM-CaMKII state proceeds through the initially bound state before 

becoming completely unbound from CaMKII.  

 In order to determine the parameters governing initial binding of CaM to CaMKII, I use 

data on CaM binding to CaMKII-derived peptides, rather than full-length CaMKII. This is done 

to separate the intrinsic binding constants from the parameters governing subunit 

activation/inactivation and docking/undocking. The microscopic kon for CaM binding to CaMKII 

has been measured, using a CaMKII peptide and fluorescently labeled DA-CaM, as 1 × 108 M-1s-

1 [281]. For the KD governing initial CaM binding, I use the KD reported by Tse et al. for CaM 

binding to a low-affinity peptide (CaMKII residues 300-312), which is 5.9 × 10-6 M [283]. From 

these two parameters, I can compute the dissociation rate of initially-bound CaM from CaMKII: 

koff_CaM_ini= Kd_CaM_ini × kon_CaM = 590 s-1. 

 In order to determine the parameters governing the transition from initially-bound to fully-

bound CaM to CaMKII, I note that this transition involves a structural compaction of the CaM 

molecule, which has been measured using fluorescent labels [281, 282]. Using fluorescent labels 

to analyze the structural compaction of CaM is convenient in its exclusion of effects due to 

conformational changes within CaMKII subunits or the CaMKII holoenzyme. Thus, I use these 

measurements as a proxy for CaM binding to a CaMKII peptide and to estimate parameters 

governing the transition between initially- and fully-bound CaM-CaMKII. Taken from 

experimental measurements by Torok et al., I identify a transition rate from initially- to fully-
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bound CaM-CaMKII (compaction of CaM) of 350 s-1 and from fully- back to initially-bound CaM-

CaMKII (de-compaction of CaM) of 4 × 10-3 s-1 [281]. This means that, in the absence of 

obstructions to binding, the likelihood of a bound CaM molecule being in the initial binding state 

(rather than the fully bound state) is 4 × 10-3 / 350 = ~1.1 × 10-5. This is consistent with a probability 

of CaM being bound to the high-affinity site of 0.99999 which was derived by Stefan et al. (2012) 

[269].  

5.3.1.5 Phosphorylation at Thr-286 

Phosphorylation at the residue Thr-286 is a ternary flag that describes this site as either 

“un-phosphorylated (uThr-286)”, “phosphorylated (pThr-286)”, or “phosphatase-bound”. I 

specify three rules to govern the reaction that transitions a subunit from uThr-286 to pThr-286: the 

subunit 1) be uThr-286, 2) be active, and 3) have an active neighbor subunit in the same 

holoenzyme ring. The neighboring subunit’s activation flag is considered because 

autophosphorylation is facilitated by its catalytic site. My model only considers the counter-

clockwise neighbor subunit because, in the absence of experimental observations to the contrary, 

I assume that steric effects cause autophosphorylation to occur in only one direction about a 

CaMKII ring, similar to previous work [284, 285]. The rate of autophosphorylation, 1 s-1, at Thr-

286 is taken from an earlier study of CaMKII autophosphorylation in the presence of CaM [97].  

 De-phosphorylation of pThr-286 is facilitated by binding and enzymatic activity of protein 

phosphatases PP1 and PP2A, here referred to generally as PP [277, 278]. Two rules govern PP 

binding to a CaMKII subunit (the transition from pThr-286 to a phosphatase-bound state): that the 

subunit be 1) pThr-286 and 2) un-bound to CaM. It has been shown that a majority of 

autophosphorylated CaMKII in the PSD is dephosphorylated by PP1 [286, 287]; while in brain 

extracts autophosphorylated CaMKII is mostly dephosphorylated by PP2A [277]. The requirement 

that CaM be unbound from CaMKII in order for PP to bind to CaMKII is motivated by the 

observation that simultaneous binding of CaM and PP to the CaMKII regulatory domain may be 

mutually exclusive due to steric hindrance. CaM, having molecular weight 18 kDa, binds to the 

CaMKII regulatory domain around residues 290–309 [284, 288, 289], which is at least 4 residues, 

and at most 23 residues away from Thr-286 (again, see also Figure 5 in [269]). To the best of my 

knowledge, the peptide binding footprint of neither PP (PP1 nor PP2A) onto CaMKII is not yet 

fully described. However, both PP1 and PP2A are widely known to target pThr-286 [104, 286, 
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287] and de-phosphorylate threonine residues nearby alpha helices in other substrates [290, 291]. 

Additionally, the catalytic subunit of PP1 has a molecular weight of 37 kDa, which is nearly twice 

that of CaM and more than half that of a CaMKII subunit. Taken together, I hypothesize that the 

PP binding footprint likely overlaps with the CaM binding site, such that the presence of bound 

PP likely structurally excludes or impedes upon a subsequent binding of CaM to CaMKII. 

Similarly, the presence of bound Ca2+/CaM structurally would exclude coincident binding of PP. 

In the Supplement to Chapter 5, I further discuss the quantitative basis of this structural exclusion 

hypothesis in light of the crystal structure of the PP1-spinophilin interaction (PDB: 3EGG) [292]. 

In short, PP1 tends to bind substrates at a site >20Å from the PP1 active site. Thus, if the PP1 

binding footprint does not actually contain T286, then the furthest likely CaMKII residue of PP1 

binding (at least on the hub domain side of T286) is G301, well within the CaM binding footprint 

(see the Supplement to Chapter 5).  I examine the regulatory implications of this hypothesis by 

relaxing the rules of PP binding and requiring only that the subunit be pThr-286. The association, 

dissociation, and catalytic rates of PP for CaMKII are taken from Zhabotinsky (2000), using a 

Michaelis constant of 6 μM and a catalytic rate of 2 s-1 [216].  

5.3.1.6 Phosphorylation at Thr-306 

Phosphorylation at the residue Thr-306 is a binary flag that describes this site as either un-

phosphorylated (“uThr-306”) or phosphorylated (“pThr-306”). I model the transition from uThr-

306 to pThr-306 using three rules: that that the subunit be 1) uThr-306, 2) active, and 3) un-bound 

by CaM. My model uses a forward rate parameter 50-fold slower than that of phosphorylation at 

Thr-286, based on past experimental measurements [271, 293]. Over the course of my simulation 

times, I observe very few pThr-306 transitions and therefore exclude the reverse transition reaction 

describing de-phosphorylation of pThr-306 into uThr-306. 

5.3.2 Stimulation frequency correlates with subunit activity 

 To validate my model, I assessed a variety of model outputs under various regimes of 

Ca2+/CaM stimulation. As a first assessment, I simulated a persistent Ca2+/CaM bolus, similar to 

experiments by Bradshaw et al. (2002), who monitored CaMKII autophosphorylation over time 

[285]. In Figure 5.3 I simultaneously monitored the time-course concentration of CaMKII subunit 

flags indicating: initially-bound Ca2+/CaM, fully-bound Ca2+/CaM, active CaMKII, and pThr-286. 
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In the persistent, continuous presence of Ca2+/CaM, the concentration of subunits with initially-

bound Ca2+/CaM (orange trace) is noisy and consistently low, implying that Ca2+/CaM transiently 

binds subunits in an initially-bound conformation. That is, initially-bound Ca2+/CaM seems rapidly 

to either dissociate or proceed to a fully-bound conformation.  Fully-bound Ca2+/CaM (red trace) 

subunit concentrations closely follow those of active CaMKII subunits (dark blue trace) over time, 

providing evidence that Ca2+/CaM stabilizes CaMKII activation. Indeed, because the difference in 

concentrations of fully-bound Ca2+/CaM and active CaMKII is always small, I observe that 

although unbound CaMKII may spontaneously activate, these activated subunits rapidly return to 

an inactive state and are not likely to progress to a phosphorylated (pThr-286) state. I next observe 

that the increase of CaMKII autophosphorylation at Thr-286 (cyan trace) over time is strongly 

associated with increases in the number of subunits that are fully-bound to Ca2+/CaM and active 

subunits (dark blue and red traces, respectively). This is consistent with previous work showing 

that Ca2+/CaM must be bound to CaMKII for pThr-286 to occur [284] and CaMKII Ca2+-

independent activity is strongly associated CaMKII autophosphorylation at Thr-286 [218, 282, 

294, 295]. Furthermore, I observe in Figure 5.3A that more than 80 percent of CaMKII subunits 

are autophosphorylated at t=20sec, which is of similar magnitude and timescale as observed by 

Bradshaw et al. (see Figure 2A in [285]). 
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Figure 5.3. Validation of the Rule-based Model. Bold traces (A-C) and solid 

circles (D) are the average of N = 50 executions. For each species (A-C), six 

representative traces are also shown (semi-transparent lines). (A) Model output 

resulting from stimulation with a large continuous bolus of Ca2+/CaM. 

Concentrations of active (red), initially CaM-bound (yellow), fully CaM-bound 

(blue), and pThr-286 (cyan) subunits. (B) Time-course average concentration (bold 

trace) of active subunits stimulated by 5 Hz or 50 Hz Ca2+/CaM. (C) Time-course 

concentration of pThr-286 subunits stimulated continuously by 5 Hz or 50 Hz 

Ca2+/CaM. (D) Frequency-dependent activation (red) and pThr-286 (cyan) of 

CaMKII subunits, with SEM error bars. Black dotted traces are linear fits.   

 

 Next, I assessed model behavior under low- and high-frequency stimulating conditions. 

CaMKII activation and autophosphorylation at Thr-286 in response to 5Hz and 50Hz Ca2+/CaM 

is plotted in Figure 5.3 B and C, respectively; 50 seeds were run for each condition, with 6 

representative traces (transparent lines) and the average response (bold) plotted. As expected, the 

data showed significantly greater levels of CaMKII activation and autophosphorylation at 50Hz 

[26, 46]. Indeed, I compared my result in Figure 5.3C to work by Shifman et al. (2006), who 

observed much lower autophosphorylation at low Ca2+/CaM concentrations (less than 2 μM) than 

at high concentrations (see Figure 4D in [97]). Therefore, because my 50Hz model cumulatively 
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exposes CaMKII to approximately ten times as much Ca2+/CaM per second as my 5Hz model, my 

results in Figure 5.3C are consistent with Shifman et al., showing much higher 

autophosphorylation at 50Hz than 5Hz.  

 To further determine how stimulation frequency affects CaMKII activity, the model was 

stimulated at frequencies ranging from 1Hz to 50 Hz. At each frequency, models were sampled at 

20 seconds of simulation time. I observe a nearly linear correlation between both subunit activation 

(R2 = 0.99) and pThr-286 (R2 = 0.96) and stimulation frequency (Figure 5.3D). This result is 

consistent with computational results from Chao et al., who developed a stochastic model that also 

yielded a linear relationship between pThr-286 and stimulation frequency for frequencies greater 

than 1 Hz [15]. Additionally, my results in Figure 5.3D show that the model elicits ~10% (~2μM 

out of 21μM total) CaMKII pThr-286 in response to 10Hz stimulation, which is in agreement with 

experimental results given my relatively short pulse width of 10msec (see Figure 4A in [296]). 

Taken together, these results show that my model behaves as expected and is able to produce 

CaMKII activity and autophosphorylation behaviors similar to previous computational and 

experimental results.  

5.3.3 A thresholded response of CaMKII to Ca2+/CaM 

CaMKII has long been theorized to exhibit switch-like or bistable behavior, which could 

underlie the importance of pThr-286 to learning and memory formation [216, 256, 280, 297, 298]. 

However, experimental efforts have struggled to identify a bistability between CaMKII and 

phosphatase activity. Though recently, Urakubo et al. used the chelator EGTA to control single 

pulses of Ca2+ in a mixture of CaM, CaMKII, PP1, and NMDAR peptides, leading to what seemed 

to be the first direct observation of CaMKII bistability [299]. Referring to Urakubo et al., I 

explored whether a spatial stochastic model of the CaMKII dodecamer would exhibit near 

bistability or switch-like behavior for concentration parameters of Ca2+, CaM, CaMKII, and PP 

known to exist in hippocampal spines. To explore this bistability, I stimulated the model with a set 

of short Ca2+/CaM input pulses (which could also be reproducible in vitro). Importantly, I did not 

aim to identify true bistability because exploring the many combinations of Ca2+, kinase, and 

phosphatase concentrations was outside the scope of this paper. Instead I wondered if, by 

stimulating with brief pulses of Ca2+/CaM of variable duration, my model would exhibit switch-
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reminiscent pThr-286 behavior. Specifically, I predicted a Ca2+/CaM stimulation threshold below 

which pThr-286 was unachievable and above which pThr-286 was maintained.  

In Figure 5.4 I exposed my model to single Ca2+/CaM pulses of constant magnitude but of 

variable duration (similar to Figure 1B in [299]). The model was stimulated with single Ca2+/CaM 

input pulses of magnitude 26 M and varying duration (0.05, 0.1, 0.2, 0.3, 0.4, or 0.5 sec). 

Different pulse durations resulted in distinct levels of subunit activation, where longer pulse 

durations resulted in greater activation and autophosphorylation (p-Thr286) levels, (Figure 5.4 A 

and B, respectively). Interestingly, subunits stimulated by even the shortest pulses of 0.05 or 0.1 

sec, appeared to sustain their activation for the complete simulation period (120 sec). However, 

these short-pulse (0.05-0.1 sec) stimulations rarely resulted in autophosphorylation (pThr-286, Fig 

4B). Longer (0.2-0.5 sec) Ca2+/CaM pulses resulted in greater levels of subunit activation that 

started declining immediately after the Ca2+/CaM pulse ended (Figure 5.4A), but elicited pThr-

286 levels that were generally sustained for the duration of a simulation (Figure 5.4B). Taken 

together, I found that CaMKII may be thresholded at a level of Ca2+/CaM exposure below which 

pThr-286 is unobserved and above which pThr-286 is achieved and subsequently sustained across 

several minutes even in the presence of phosphatase.  

 

Figure 5.4. Response to short Ca2+/CaM pulse stimulation. Average 

concentration of (A) active and (B) pThr-286 CaMKII subunits over time, 

following Ca2+/CaM stimulating pulses of length 0.05 (red), 0.1 (blue), 0.2 (green), 

0.3 (purple), 0.4 (yellow), and 0.5 (orange) seconds. Each trace represents the 

average of N=50 executions.  

 

I briefly explored how this Ca2+/CaM threshold may depend on the number of directions 

by which subunits can autophosphorylate their neighbors. Note that in the results up to this point, 
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autophosphorylation was limited to occurring in a single direction, or degree of freedom. That is, 

subunits could only autophosphorylate their adjacent neighbors [218]. I therefore created 

alternative versions of my model in which autophosphorylation could occur with multiple degrees 

of freedom, both intra- and/or trans- holoenzyme ring. I used these higher-degree of freedom 

models to monitor the rates of pThr-286 formation both in bulk and on an individual subunit basis. 

As expected, pThr-286 formation and intra-holoenzyme propagation rates increased with 

increasing degrees of freedom (see S1 Appendix, Figure S2.2), though the differences would likely 

not be distinguishable by bench-top experimentation. In addition, the length of time in which 

consecutive subunits remained autophosphorylated also increased with increasing degrees of 

freedom. This implied that subunits may be more frequently autophosphorylated on time-average 

with increasing degrees of freedom (See Figure 7.12 and Figure 7.13). Future experimental and 

computational studies could perhaps explore autophosphorylation with higher degrees of freedom.  

Figure 5.4 suggested a threshold of Ca2+/CaM activation beyond which CaMKII remains 

autophosphorylated, implying a balance between kinase and phosphatase activity. I wondered how 

a putative balance between CaMKII autophosphorylation and phosphatase activity might be 

regulated. In the previous experimental work by Urakubo et al., maximally-phosphorylated 

CaMKII was maintained in the presence of PP1 and GluN2B peptide for as long as 8 hours (at 

4°C). In that work, addition of the kinase inhibitor K252a to phosphorylated CaMKII resulted in 

a steady decline in pThr-286 towards basal levels, suggesting that maintenance of pThr-286 over 

time was not due to low phosphatase activity, but rather a recovery of de-phosphorylated subunits 

back a phosphorylated state. To recreate inhibition of kinase activity in my model, at time t=30 

sec I introduced a high concentration (21 μM) of K252a, enough to bind all CaMKII subunits in 

the model. K252a binding results in a blocked CaMKII state that cannot be autophosphorylated 

(see Flag 2 in Table 7.8). Importantly, the blocked CaMKII subunit can still be de-phosphorylated 

at pThr-286. In separate simulations I explored the effects of a phosphatase inhibitor, which was 

also introduced at t=30sec. To simulate the introduction of a phosphatase inhibitor, I defined the 

catalytic rate of de-phosphorylation by PP1 (kcat
PP1) as a time-dependent variable that assumed a 

value of zero at t = 30sec. This implementation of kinase and phosphatase inhibition preserved 

normal CaM and PP1 binding dynamics.  

I compared non-inhibited, control versions of my model to versions in which kinase 

activity or phosphatase activity was inhibited after stimulating with Ca2+/CaM for 2 sec (Figure 
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5.5). As expected, inhibiting phosphatase activity (green trace) caused kinase activity to dominate, 

resulting in a steady increase in pThr-286 compared to the control (black trace). Surprisingly, the 

kinase-inhibited model (blue trace) showed little difference compared to the control. Instead of 

causing phosphatase activity to dominate, simulated kinase inhibition caused pThr-286 activity to 

persist as if no kinase inhibitor were present. Because pThr-286 persisted even in the presence of 

kinase inhibitor, I hypothesized that some other, non-enzymatic mechanism in my model was 

contributing to the maintenance of pThr-286.  

 

Figure 5.5. Blocking kinase or phosphatase activity. Average concentration of 

pThr-286 CaMKII subunits over time. For all traces, the model is stimulated by a 

2 sec pulse of Ca2+/CaM. At time t=30 sec (arrowhead), either a kinase inhibitor 

(blue trace) or phosphatase inhibitor (green trace) is introduced. No inhibitor is 

introduced in the control (black trace). Each trace represents the average of N=50 

executions.   

 

5.3.4 CaM-dependent exclusion of PP1 binding stabilizes autophosphorylation 

To understand why my model as-presented in Figure 5.5 showed no significant response 

to kinase inhibition, I wondered if another mechanism was regulating the putative balance between 

kinase and phosphatase activity. In every simulation presented thus far, I assumed that CaM 

binding to the CaMKII regulatory domain sterically hinders PP binding to the regulatory domain, 

and vice-versa. This was implemented in the model via a rule that requires a subunit be unbound 

by CaM in order for PP to bind. 

 To test the role of PP exclusion by CaM, I created a second version of my model in which 

PP binding would become allowable regardless of the presence of CaM. In contrast to my original 
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“exclusive” model, the “non-exclusive” model required only that a subunit be pThr-286 in order 

for PP binding to be allowable. In other words, the non-exclusive model allowed Ca2+/CaM and 

PP to bind CaMKII agnostically of each other. Aside from this rule adjustment, my exclusive and 

non-exclusive models utilized identical parameters. As in Figure 5.5, I selected a Ca2+/CaM bolus 

time of 2 sec. Again, I monitored both CaMKII activation (Figure 5.6 A and B) and pThr-286 

(Figure 5.6 C and D) over 120 seconds of simulated time. Critically, both the exclusive and non-

exclusive models were examined with high (purple trace) and low (orange trace) association rate 

parameter values for PP binding to CaMKII. Increasing and decreasing the association rate of PP 

(kon
PP is normally set to 3 μM-1sec-1) to CaMKII by one order of magnitude accounted for 

parameter uncertainty and provided a magnified view of the signaling effects of CaM-mediated 

exclusion of PP binding.  
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Figure 5.6. Comparison of Exclusive and Non-exclusive Models. For all traces, 

models are stimulated by a 2sec pulse of Ca2+/CaM. (A) Active CaMKII subunits 

over time in my exclusive model. (B) Active CaMKII subunits over time in my 

non-exclusive model. (C) pThr-286 subunits over time in my exclusive model. (D) 

pThr-286 subunits over time in my non-exclusive model. (A-D) The parameter 

value for the rate of PP association (kon
PP1) with CaMKII is either increased (purple 

traces) or decreased (orange traces) by one order of magnitude. (E) Extension of 

Figure 5.5 to include non-exclusive model results. At time t=30sec (arrows), either 

a kinase inhibitor (light blue trace) or phosphatase inhibitor (light green trace) is 

introduced. No inhibitor is introduced in the control (grey trace). All traces are the 

average of N=50 executions.   
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 My results suggested that CaM-dependent exclusion of PP is an important regulatory 

mechanism for maintaining CaMKII autophosphorylation levels. While the PP exclusion rule had 

little to no effect on CaMKII subunit activation (Figure 5.6 A and B), pThr-286 (Figure 5.6 C and 

D) was highly influenced by the PP exclusion rule. In the exclusive model (Figure 5.6C), pThr-

286 levels were steady and stable despite varying the PP association rate parameter by two orders 

of magnitude. In contrast, the non-exclusive model (Figure 5.6D) showed that for a high PP 

association rate, significant pThr-286 levels were never achieved. Moreover, for a low PP 

association rate, the non-exclusive model briefly attained pThr-286 levels similar to those achieved 

in the exclusive model, but the pThr-286 levels then declined while also displaying a high level of 

noise. It seemed that in order to maintain pThr-286 over longer time periods, CaMKII required a 

mechanism regulating phosphatase access, and a regulator of phosphatase access could be CaM 

itself.  

 To reinforce my assertion that CaM-dependent structural exclusion of PP binding stabilizes 

pThr-286, I repeated simulations shown in Figure 5.5, but with my non-exclusive model. In Figure 

5.6E, I stimulated my non-exclusive model with a 2sec pulse of Ca2+/CaM and then monitored 

pThr-286 over time. For these simulations, kon
PP1 was restored to its standard value of 3 μM-1sec-

1. As in Figure 5.5, in separate simulations I inhibited at t=30sec either phosphatase activity, kinase 

activity, or neither (control). The control (grey trace) was reminiscent of results in Figure 5.6D, in 

which pThr-286 was achieved but then slowly declined on a steady yet noisy basis. Notably, all 

non-exclusive model variants were much noisier than their exclusive model counterparts in Figure 

5.6E. Inhibiting phosphatase activity (light green trace) in the non-exclusive model again caused 

kinase activity to dominate and pThr-286 levels to generally increase over time, similarly to the 

exclusive model. In contrast to the exclusive model, inhibiting kinase activity (light blue trace) in 

the non-exclusive model rapidly and totally abolished pThr-286. It seemed that for the non-

exclusive model, in which CaM and PP could bind simultaneously, inhibiting kinase activity 

caused phosphatase activity to dominate. Taken together, these results suggested that in addition 

to supporting CaMKII subunit activation, CaM also has a role in maintaining CaMKII activity by 

blocking phosphatase access and thereby slowing down dephosphorylation. 

CaM-dependent exclusion of PP1 binding may depend significantly on how I model 

Ca2+/CaM. Until this point, I have modeled Ca2+/CaM as “2-state-2-step”, existing as either Ca2+-

unbound apo-CaM or CaM4
 (2-state), which binds CaMKII in an initially- then fully-bound 
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conformation (2-step). However, previous experimental and computational studies have 

determined that sub-saturated Ca2+/CaM, with fewer than four Ca2+ bound, may significantly bind 

CaM-binding partners such as CaMKII [42, 97]. Indeed, Pepke et al. [42] and others use a “9-

state-1-step” model of Ca2+/CaM, which explicitly accounts each mode of Ca2+-binding at the CaM 

N- and C-termini. Importantly, each Ca2+/CaM state in the 9-state model has unique binding 

kinetics for CaMKII. However, I emphasize that these 9-state binding kinetics, which were 

measured using wild-type CaMKII in vitro, are incompatible with my 2-step CaM-binding model. 

In other words, a 9-state-2-step CaM-CaMKII model is difficult to parameterize because the 9-

state parameter values inherently account for 2-step CaM-binding (if it in fact occurs 

physiologically). Moreover, the 9-state-2-step model would likely require a multi-state, rule-based 

model of CaM. And problematically, MCell 3.3 prohibits diffusion for rule-based species. Still, it 

is important to consider whether sub-saturated Ca2+/CaM states might still be able to structurally 

exclude, or kinetically out-compete, PP1-CaMKII binding. 

 Although a 9-state-2-step model of CaM-CaMKII binding is currently impractical with 

MCell 3.3, a 9-state-1-step model of CaM-CaMKII binding is practical, at least to verify my PP1-

exclusion mechanism when accounting for sub-saturated Ca2+/CaM. For the 9-state-1-step model, 

I again use MCell 3.3 to describe the multi-state CaMKII holoenzyme, but I modify three of the 

flags described earlier in this paper. First, I remove the subunit docking and activation flags to 

reduce model noise and ensure the 9-state CaM-binding parameters remain valid. Second, I modify 

the CaM-binding flag to allow all nine Ca2+/CaM states (including apo-CaM) to bind a CaMKII 

subunit. Thus, whereas in the 2-state-2-step CaMKII model subunit activation is equivalent to 

subunit opening, in the 9-state-1-step model activation is equivalent to CaM-binding. The 

parameters and reaction network for Ca2+-CaM binding and CaM-CaMKII binding may be found 

in Pepke et al. (see Figure 2C in [42]). With my 9-state-1-step model in place (MCell code 

provided in the PURR repository—see Methods), I simulate using identical conditions to those 

used for Figure 5.6A-D. My 9-state-1-step model results are shown in Figure 5.7, where I again 

show that CaMKII subunit activation and pThr-286 levels are maintained on significantly longer 

timescales when CaM and PP1 cannot bind CaMKII simultaneously (Figure 5.7 A and D). Note 

the increased activation and pThr-286 levels and reduced output noise are almost certainly due to 

the absence of the docking and activation flags, which pose significant obstacles to CaM-binding 

in the 2-state-2-step model presently in the rest of this paper. Finally, I observe that when only 
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fully-saturated CaM4 but no other Ca2+/CaM state is allowed to exclude CaM (Figure 5.7 B and 

E), model output is virtually identical to the non-exclusive case (Figure 5.7 C and F). This suggests 

that sub-saturated Ca2+/CaM states may significantly contribute to PP1 exclusion. Indeed, this may 

be unsurprising given the affinity of states such as CaM2C for CaMKII (7.4μM), which is only one 

order of magnitude larger than that of PP1 for CaMKII (0.166μM). Notably, because I explicitly 

account for CaM-trapping in my 9-state-1-step model, the CaM2C-CaMKII affinity increases by 

1000-fold when a CaMKII is subunit is pThr-286 [300]. Therefore, sub-saturated Ca2+/CaM states, 

including apo-CaM, are very likely to out-compete PP1 and prevent its binding to pThr-286 

subunits, at least from a kinetics perspective. 

 

Figure 5.7. Exclusion in a 9-state-1-step CaM-CaMKII model. For all traces, 

models are stimulated by a 2sec pulse of Ca2+/CaM. (A-C) Active CaMKII subunits 

over time in my 9-state-1-step model. (D-F) pThr-286 subunits over time. The 

parameter value for the rate of PP association (kon
PP1) with CaMKII is either 

increased (purple traces) or decreased (orange traces) by one order of magnitude. 

Because this model version has inherently less output noise, all traces are the 

average of N=20 executions.   

 

5.3.5 Discussion 

In this work, I use rule- and particle-based methods with the software MCell to model the 

complete CaMKII holoenzyme. Rule-based modeling allows me to account for and monitor 

multiple CaMKII states simultaneously without eliciting combinatorial explosion. By explicitly 
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accounting for multiple CaMKII states, I can use this model to explore regulatory mechanisms 

such as the CaM-dependent maintenance of pThr-286 by structural exclusion of phosphatase 

binding to CaMKII.  

Previous multi-state models of CaMKII exist but are different in focus and in scope from 

the present model. For example, my model is based on an earlier multi-state model by Stefan et al. 

(2012) [269] implemented in the particle-based stochastic simulator StochSim [301]. StochSim 

accounts for subunit topology (i.e. the user can specify whether a subunit is adjacent to another, 

and reactions can be neighbor-sensitive), but StochSim does not explicitly account for spatial 

information. MCell, as a spatial simulator, offers more possibilities to precisely account for spatial 

effects and to situate models in spatially realistic representations of cellular compartments. In 

addition, the model by Stefan et al. provides only for interactions between adjacent CaMKII 

molecules on the same hexamer ring and therefore models CaMKII as a hexamer, not a dodecamer. 

Similarly, another previous model of CaMKII by Michalski and Loew (2012) uses the softwares 

BioNetGen and VCell to offer an infinite subunit holoenzyme approximation (ISHA) of the 

CaMKII hexamer [44, 302, 303]. The ISHA asserts that under certain enzymatic assumptions, the 

output of a multi-state CaMKII model is independent of holoenzyme size when the number of 

subunits exceeds six. However, Michalski’s ISHA model is most suitable for systems containing 

only one holoenzyme structure-dependent reaction such as the autophosphorylation at Thr-286. 

Additional reactions to describe actin binding [244] or subunit exchange [261, 262] may invalidate 

Michalski’s ISHA, whereas my model can in the future readily accommodate additional, 

holoenzyme structure-dependent phenomena. Finally, a more recent rule-based model of the 

CaMKII holoenzyme by Li and Holmes [45] offers a detailed representation of how CaM binds to 

Ca2+ and subsequently activates CaMKII subunits, based on earlier results of CaM regulation [15]. 

Li and Holmes offer valuable and detailed insight into how CaM binding to CaMKII depends on 

Ca2+ dynamics. While my model is less detailed in representing the regulation of CaM itself, my 

model is much more detailed in representing other aspects of CaMKII regulation, including 

multiple modes of CaM binding, conformational change, detailed holoenzyme structure, multiple 

phosphorylation sites, and dephosphorylation. I can in the future expand my MCell model to 

account for multiple holoenzyme structure-dependent phenomena and simultaneously incorporate 

this model into the broader Ca2+-dependent signaling network. 
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This work in-part demonstrates the value of MCell as a rule-based modeling framework. 

Rule-based modeling accommodates much larger state spaces than is possible using conventional 

systems of differential equations. Admittedly, not all models (including models of CaMKII) 

require extensive state spaces, but rule-based modeling results can help justify the assumptions 

typically used to reduce a state space. For example, my model conditions yield, as shown in Figure 

5.3A, negligible levels of initially-bound CaM compared to other states such as fully-bound CaM 

or pThr-286. Therefore, it might sometimes be appropriate to exclude an initially-bound CaM state 

from future implementations in frameworks for which combinatorial explosion is a concern. Aside 

from addressing combinatorial explosion, rule-based models are especially well-suited to discern 

otherwise concealed mechanisms, as exemplified by Di Camillo et al. who used rule-based models 

to identify a robustness-lending negative feedback mechanism in the insulin signaling pathway 

[49]. Furthermore, MCell describes CaMKII holoenzymes as discrete particles in space, which 

will lend realism to future spatial-stochastic models of Ca2+-dependent signaling networks in the 

dendritic spine, a compartment in which the Law of Mass Action is invalid [24]. This particle-

based framework also allows for individual subunit monitoring, which works in conjunction with 

the Blender software plugin, CellBlender (see S1 Movie).  

One of the results of this work is the identification of distinct levels of CaMKII activation 

and pThr-286 in response to distinct pulses of Ca2+/CaM stimulation. Distinct levels of CaMKII 

activation could tune the selectivity of CaMKII for certain downstream binding targets such as 

AMPA receptors or the structural protein PSD-95. If stimulation-dependent tuning of CaMKII 

activation were observed, it would be reminiscent of other studies that have implicated feedback 

loops [33] and binding dynamics [42] as regulators of Ca2+-dependent enzyme activation. For 

example, a recent study suggests that competition is an emergent property that tunes the Ca2+ 

frequency dependence of CaM binding to downstream targets, leading Ca2+/CaM to set distinct 

levels of calcineurin- and CaMKII-binding [46]. Similarly, CaMKII itself could preferentially 

select downstream binding partners as a function of its level of activation by Ca2+/CaM, possibly 

providing a mechanism by which CaMKII facilitates certain LTP-related molecular events. 

Additionally, my observation of distinct levels of CaMKII activation and thresholded pThr-286 

could be an indication of long-hypothesized switch-like behavior in synaptic plasticity [256, 297]. 

If switch-like behavior in fact occurs, then pThr-286 is likely maintained by a balance in kinase 

and phosphatase activity. 
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While investigating a putative interplay in CaMKII kinase and PP phosphatase activity in 

maintaining pThr-286 levels, I may have identified a CaM-dependent mechanism that blocks PP 

binding to CaMKII. In a model that excludes simultaneous binding of CaM and PP to CaMKII, 

pThr-286 significantly increases upon phosphatase inhibition, yet in the same model kinase 

inhibition causes little change in pThr-286 over time (Figure 5.5). In contrast, a non-exclusive 

model that allows simultaneous binding of CaM and PP shows that introduction of a kinase 

inhibitor rapidly abolishes pThr-286. These results suggest that CaM-dependent exclusion of PP 

may provide a stabilizing mechanism. Additionally, I use my MCell-based implementation of the 

model to monitor transitions between multiple states of distinct subunits within holoenzymes 

(Figure 5.8).  

 

Figure 5.8. Visualizing Individual Subunits with MCell and CellBlender. In the 

exclusive model, PP does not bind a pThr-286 subunit until Ca2+/CaM dissociation 

(see t = 85 sec, comparing rows B and C). Each frame depicts the same CaMKII 

holoenzyme, from the same perspective, at identical time points under 50Hz 

Ca2+/CaM stimulation. Each dodecahedron is a single CaMKII subunit. (A) 

Inactive CaMKII subunits (white) spontaneously become active (black) and remain 

active while bound to Ca2+/CaM. (B) Un-bound CaMKII subunits (yellow) will not 

bind Ca2+/CaM (red) and become Ca2+/CaM-bound (purple) unless the subunit had 

previously activated. (C) uThr-286 subunits (green) become pThr-286 (blue). If 

Ca2+/CaM dissociates from a pThr-286 subunit, then PP can bind and form a PP-

CaMKII complex (cyan).  

 

The major outcome of this work is a proposed mechanism in which bound Ca2+/CaM could 

exclude PP from accessing CaMKII subunits, thereby protecting pThr-286. I assert that CaM-
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dependent exclusion of PP could provide a functional role for so-called “CaM trapping” [284] and 

possibly contribute to CaMKII bistability. Indeed, a model by Zhabotinsky (2000) explored 

CaMKII bistability, indicating that two stable states of pThr-286 would in-part require very high 

CaMKII concentrations, seemingly to bolster kinase activity in the system [216]. However, the 

Zhabotinsky model assumes that CaM and PP1 could bind CaMKII simultaneously, possibly 

exaggerating the ability of PP1 to de-phosphorylate at Thr-286. If PP1 binding were to be 

encumbered in the Zhabotinsky model, perhaps through CaM-dependent exclusion, then bistability 

might be achievable at lower CaMKII concentrations.   

Previous studies have sought to explore the dependence of CaMKII de-phosphorylation on 

the presence of Ca2+/CaM. An experiment by Bradshaw et al. (2003) quantifies PP1-mediated de-

phosphorylation rates of pThr-286 in vitro, in the presence or absence of the Ca2+ chelator EGTA 

(see Figure 4B in [304]). The Bradshaw results suggest that PP1 activity at 0°C is unaffected by 

the presence of bound-CaM to CaMKII, seemingly at odds with the results of my model. However, 

the Bradshaw results show that regardless of the presence of CaM, CaMKII activation persists for 

at least tens of minutes. The persistence of CaMKII activity on relatively long timescales is 

consistent with separate experimental results [195, 285, 297, 300], and I emphasize that with my 

model, CaMKII activity persists for many minutes only when CaM excludes PP1. Indeed, the 

effect of CaM exclusion on the timescale of CaMKII activation is even more pronounced in my 9-

state 1-step CaM-binding model results. Moreover, my 9-state-1-step model suggests that 

following termination of Ca2+ flux, sub-saturated Ca2+/CaM states may significantly contribute to 

PP1-exclusion. Thus, because the Bradshaw experiments use EGTA to chelate Ca2+, but not 

remove CaM, the Bradshaw experiments may be confounded. 

In the Supplement to Chapter 5, I show that the Ca2+/CaM state predominantly responsible 

for PP1-exclusion following termination of Ca2+ stimulation in the 9-state-1-step model is apo-

CaM (Figure 7.17). Apo-CaM remaining bound to CaMKII is consistent with results by Brown et 

al., who determine that when free Ca2+ levels decrease, Ca2+ dissociates from CaM before CaM 

dissociates from its binding partner [119]. Of course, the affinity of apo-CaM for CaMKII 

(1.45mM) should be insufficient to out-compete PP1-CaMKII binding (1.6μM). Yet because the 

9-state-1-step model explicitly accounts for CaM-trapping by increasing the affinity of pThr-286 

subunits for Ca2+/CaM by 1000-fold [300], the affinity of pThr-286 CaMKII for apo-CaM 

(1.45μM) is on the same order of magnitude as that of PP1. Thus, apo-CaM may be able to 
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significantly compete with PP1 for CaMKII-binding, but it now remains for future experimental 

studies to directly quantify the kinetics and/or structure of the apo-CaM interaction with pThr-286 

CaMKII.   

Further structural studies of the CaM-CaMKII and PP1-CaMKII interaction are needed. 

Also, because this work could only model multi-state CaMKII (but not also multi-state CaM) due 

to limitations in MCell 3.3, perhaps a future version of MCell should provide for the diffusion of 

multiple multi-state proteins. With a platform that can handle multiple multi-state proteins, a model 

could much more explicitly handle Ca2+/CaM-binding and further explore my results. 

CaM-dependent PP exclusion could provide an added layer of robustness to similar 

mechanisms that may protect pThr-286 from de-phosphorylation. For example, Mullasseril et al. 

(2007) observe that endogenous, PSD-resident PP1 cannot de-phosphorylate CaMKII at pThr-286, 

whereas adding exogenous PP1 does cause de-phosphorylation [298]. The results by Mullasseril 

et al. suggest that endogenous PP1 is somehow sequestered by the PSD scaffold, and only upon 

saturation of this scaffold by exogenous PP1 does pThr-286 become de-phosphorylated. My results 

indicate that perhaps in addition to saturating the PSD scaffold, the added exogenous PP1 could 

be out-competing CaM for binding to CaMKII, thereby terminating protection of pThr-286 by 

CaM. As another example, Urakubo et al. suggest that pThr-286 could be protected from PP 

activity by GluN2B binding, showing that GluN2B peptides are necessary for an apparent CaMKII 

bistability in vitro [299]. Notably, Urakubo et al. observe a decline in pThr-286 upon kinase 

inhibition, in contrast with my exclusive model, though this is likely due to differences in the 

conditions and timescales between Urakubo’s experiments and my model. Moreover, it could be 

that the GluN2B-dependent PP exclusion suggested by Urakubo could operate on a longer 

timescale than CaM-dependent exclusion, and I again note that the Urakubo study did not remove 

CaM from any reaction mixture. Overall, it seems scaffold-dependent sequestration of PP1 [298], 

GluN2B-dependent PP exclusion [299], and CaM-dependent PP exclusion could together provide 

considerable robustness of pThr-286 to phosphatase activity.  

 Methods 

In each MCell execution, proteins are instantiated at time zero having random positions 

within a 0.32 μm3 (0.32 fL) cube. All proteins are described as three-dimensional volume 

molecules having the following concentrations: 1.52 μM CaMKII (30 holoenzymes, 360 subunits), 



148 

 

22.8 μM CaM (450 discrete proteins), and 0.86 μM PP1 (17 discrete proteins). Because CaMKII 

particles are modeled using the specialized COMPLEX_MOLECULE syntax and MCell 3.3 does 

not accommodate diffusion for such particles, CaMKII is given no diffusion constant. In contrast, 

CaM and PP1 are simple volume-type molecules that move about the model space with a diffusion 

constant 6 × 10-6 μm2/sec, so chosen to minimize the effects of any possible spatial localizations 

that may arise during a simulation. I emphasize that because this model does not explore spatial 

effects and, indeed, does not utilize a physiological spine geometry, using such a relatively fast 

diffusion parameter ensures that spatial effects do not confound my results. All models are run at 

a time step of 0.1 μs for a total of either 20 or 120 seconds of simulation time, depending on the 

model variant.  

MCell is a particle-based spatial-stochastic simulation engine. In a particle-based 

framework, individual protein species are modeled as discrete objects in space, rather than 

bulk/well-mixed fluids. At each model timestep, MCell calculates each protein particle’s 

subsequent diffusion distance and trajectory, in addition to the particle’s probabilities for reacting 

with any nearby particles. More information about MCell’s internal algorithms may be found at 

mcell.org and in publications such as those by Bartol et al. [43]. In short, the particle-based 

framework in MCell provides for spatial and stochastic considerations because each protein 

particle has unique spatial coordinates that proceed along random (stochastic) trajectories. 

Importantly, I assert that spatial-stochastic frameworks may be essential to characterizing CaMKII 

regulation, because 1) proteins in the spine are spatially organized and 2) protein copy numbers in 

the spine are low (tens to hundreds each), possibly invalidating the Law of Mass Action. Because 

MCell models are stochastic and change with each simulation, I average the output of many 

identical simulations. To ensure that the averaged output converges and is statistically significant, 

all model variants are repeated 50 times each. 

CaM activation/inactivation is modeled by a pair of forcing functions which serve as a 

proxy for Ca2+ flux. Both forcing functions are time-dependent square waves and inform the rates 

at which free CaM transitions between states. Equation 1 rapidly transitions all free CaM towards 

an active (Ca2+/CaM) state, and Equation 2 rapidly transitions all free CaM towards an inactive 

(apo-CaM) state. 

(1)𝐹𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝑡) = {
100000000, 𝑡 = 𝑛𝑖

0, 𝑡 ≠ 𝑛𝑖
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(2)𝐹𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝑡) = {
0, 𝑡 = 𝑛𝑖

100000000, 𝑡 ≠ 𝑛𝑖
 

For both Equations 1 and 2, n = i/f where i is the number of time step iterations and f is frequency. 

Time t iterates at 0.01sec intervals for the complete duration of a simulation. Equations 1 and 2 

therefore yield a peak width of 0.01sec regardless of frequency, which allows me to directly 

compare the effect of different Ca2+/CaM frequencies on CaMKII activity, without having to 

account for variable amounts of Ca2+/CaM exposure per pulse. In separate simulations without 

frequency dependence (i.e. Ca2+/CaM is continuously available to CaMKII), Equation 1 is adjusted 

to always fulfill the t=ni condition. Similarly, for pulse simulations in which Ca2+/CaM becomes 

withdrawn or blocked, Equations 1 and 2 are given abbreviated time domains.  

 All MCell code and associated files are available online at Github, the Purdue University 

Research Repository, and the University of Edinburgh Repository.  
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6. USING MCELL TO QUANTIFY THE EFFECTS OF CAMKII 

MULTIVALENCE ON PROTEIN SPATIOTEMPORAL DYNAMICS IN 

THE DENDRITIC SPINE 

 Summary 

Following initiation of long-term potentiation (LTP), proteins localize to distinct sub-

regions within the dendritic spine. Indeed, in Chapter 4 I demonstrate how Ca2+, Ca2+/CaM, and 

other protein states exhibit spatial dependence within the dendritic spine. For example, one protein 

state that exhibits strong spatial dependence is CaMKII. That is, in the presence of Ca2+ flux, I 

observe steep gradients of CaMKII activation along the major axis of the dendritic spine, with 

most active CaMKII in the top compartment of the spine. Because CaMKII is essential to synaptic 

plasticity and LTP, it may be important to characterize the mechanisms regulating CaMKII 

localization to the top of the spine, or post-synaptic density (PSD). CaMKII localization or 

mobility is likely regulated by its diffusion, interactions with the actin cytoskeleton, and affinity 

for its many enzymatic substrates, as others have previously explored. However, most studies do 

not account for, or are unable to quantify, the dependence of CaMKII localization on the protein’s 

dodecameric quaternary structure. Otherwise put, CaMKII has a multivalence that could 

potentially increase its effective affinity for binding partners, perhaps significantly impacting its 

mobility within the spine. Therefore, here I combine modified versions of the models presented in 

Chapters 4 and 5 of this thesis, to quantify how CaMKII multivalence may contribute to the 

spatiotemporal dynamics of proteins within the dendritic spine. For this quantification, I compare 

output from a deterministic, non-spatial model of Ca2+-dependent signaling against output from an 

equivalent but spatial-stochastic model of Ca2+-dependent signaling. The spatial-stochastic model 

initially describes CaMKII as monomers, and then I incorporate a rule-based model of the CaMKII 

holoenzyme based on that first presented in Chapter 5. By comparing output from models with 

deterministic, spatial-stochastic, and rule-based frameworks, I show that CaMKII multivalence 

may significantly influence the spatiotemporal dynamics of cytosolic proteins in the spine, 

especially Ca2+/CaM. 
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 Introduction 

The dendritic spine is a specialized structure on the message-receiving side of a neuronal 

connection, or synapse [27, 180]. The dendritic spine contains proteins that control synaptic 

plasticity, the process by which synapses dynamically shift in size and excitability [257, 305]. 

Downward shifts are called long-term depression (LTD), and upward shifts are called long-term 

potentiation (LTP). Both LTD and LTP elicit remodeling of the dendritic spine’s actin 

cytoskeleton and membrane-associated receptors [3, 12, 256]. For example, LTP elicits actin 

cross-linking and remodeling close to the synaptic membrane, at a protein-rich region called the 

post-synaptic density (PSD). LTP also induces AMPA receptor (AMPAR) phosphorylation and 

trafficking to the synaptic membrane. Interestingly, both LTP- and LTD-associated actin and 

receptor regulation and are thought to be directly regulated by calcium/calmodulin-dependent 

protein kinase II (CaMKII) [219, 280]. CaMKII is one of the most highly expressed neuronal 

proteins and is essential to synaptic plasticity [260, 306, 307]. Characterizing the complex and 

dynamic interactions between CaMKII, actin, AMPARs, and other proteins is likely necessary for 

understanding the molecular regulation of synaptic plasticity.  

CaMKII holoenzymes have twelve subunits, each of which can bind and/or phosphorylate 

a variety of proteins in the dendritic spine [218, 260, 262]. In a naïve spine, CaMKII subunits are 

generally inactive and therefore bound to F-actin throughout the dendritic spine head [37, 244]. 

Following influx of Ca2+ through NMDA receptors (NMDARs), the Ca2+-sensor calmodulin (CaM) 

activates CaMKII, terminating the actin-CaMKII interaction [239, 240]. Termination of this 

interaction allows the F-actin scaffold to structurally remodel and CaMKII to translocate to the 

PSD [237, 308], both by unclear mechanisms. Once localized to the PSD, active CaMKII has a 

variety of targets such as NMDARs [236] and AMPARs [33, 199]. The mechanisms and 

conditions by which AMPARs subsequently become phosphorylated and localized to the synaptic 

membrane remain unclear. When intracellular Ca2+ levels decrease and CaMKII returns to an 

inactive state, CaMKII re-binds the remodeled F-actin filaments near the synaptic membrane, 

seemingly acting as a cross-linking or actin-bundling agent [239, 242, 309].   

Previous experimental studies have explored CaMKII localization in the dendritic spine. 

Notably, this CaMKII localization is essential to synaptic plasticity [256]. For instance, studies 

have determined that CaMKII localization at the spine head in response to Ca2+ influx is due to 

both diffusion and protein binding [237]. More recently, single-molecule photoactivated 
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localization microscopy (PALM) has been used to identify immobilized sub-populations of 

CaMKII at not only the PSD but other microdomains in the spine [38].  

In particular, there is strong evidence that CaMKII localization is dependent on subunit 

isoform [38]. In the brain, CaMKII holoenzymes are heteromers of the alpha and beta subunit 

isoforms, which are expressed at a ratio of approximately 3:1 [260]. This ratio may be important 

to synaptic plasticity because of the distinct kinetics of alpha and beta CaMKII for actin binding 

sites, as determined by Hoffman et al. [310]. To quantify these distinct kinetics, Khan et al. use 

total internal reflection fluorescence (TIRF) microscopy to track single molecules and 

subsequently measure the kinetics of both alpha and beta CaMKII binding to actin [244]. The 

dissociation constant for beta CaMKII binding actin (0.5 μM) is one order of magnitude smaller 

than that of alpha CaMKII (1.4 μM). Thus, the question of how CaMKII holoenzymes become 

localized and select phosphorylation targets becomes even more complex.  

To help understand the highly dynamic and crowded signaling pathways in the dendritic 

spine, bench-top studies can be complemented by computational models. For example, Byrne et 

al. use Monte Carlo simulations to describe discrete CaMKII monomer particles in a spine, 

showing how spine geometry, binding interactions at the PSD, and encumbrance by F-actin 

contribute to the Ca2+-induced accumulation of CaMKII at the PSD [245]. The study determines 

that individual CaMKII monomers are likely too diffuse to remain localized to the PSD, even if 

their binding affinities are assumed to be high. Byrne et al. therefore conclude that either an F-

actin barrier and/or multivalent interactions may be necessary to prevent CaMKII escape. To 

quantify how F-actin and multivalence contribute to CaMKII localization, the field requires further 

computational modeling to account for both the complex Ca2+/CaM-CaMKII signaling dynamics 

and complicated CaMKII structure. Currently, models describing Ca2+/CaM signaling dynamics 

are available [21, 32, 42, 46, 92, 165], but these generally describe CaMKII as non-multivalent 

monomers. Notably, models of the multivalent CaMKII holoenzyme exist but do not explicitly 

account for distinct CaMKII subunit kinetics or quantify the specific contributions of CaMKII 

multivalence on spatiotemporal dynamics of proteins in the spine [44, 45].  

Thus, here I demonstrate a strategy for quantifying the effects of CaMKII multivalence and 

subunit isoform type on the spatiotemporal dynamics of Ca2+-dependent proteins in the dendritic 

spine. For this, I model with three distinct frameworks a reaction network consisting of Ca2+, 

CaM, nine CaM-binding proteins (CBPs), CaMKII interactions with actin binding sites, CaMKII 
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autophosphorylation, and CaMKII phosphorylation of NMDARs and AMPARs. My first model 

framework is a deterministic system of ordinary differential equations describing the time-rate of 

change of each protein state independently of spatial effects. Importantly, the deterministic model 

framework provides for rapid model validation and computationally tractable global sensitivity 

analysis. My second model framework is a spatial-stochastic implementation in MCell 3.3, which 

describes each protein, including CaMKII, as discrete monomers in space. Finally, my third model 

framework is a spatial-stochastic implementation incorporating the rule-based model syntax of 

MCell 3.3, allowing me to describe multi-state proteins such as the twelve-subunit CaMKII 

holoenzyme. By comparing my MCell 3.3 and rule-based model results, I can quantify how 

CaMKII multivalence might impact the activation and/or localization of CaMKII and other 

proteins in the dendritic spine.  

 Results 

6.3.1 Model Development 

6.3.1.1 Model Structure 

The reaction network accounts for Ca2+ flux, Ca2+-CaM binding, CaM-dependent 

activation of CBPs such as CaMKII, CaMKII interactions with actin binding sites, and CaMKII-

mediated phosphorylation of membrane-associated receptors. 

Ca2+ fluxes into the dendritic spine at a range of frequencies. Low frequency (<10Hz) Ca2+ 

flux results in Ca2+/CaM states that may predominantly activate LTD-associated CBPs. In contrast, 

high frequency (~100Hz) Ca2+ flux results in Ca2+/CaM states that may predominantly activate 

LTP-associated CBPs. Notably, besides Ca2+ frequency, the magnitude, location, and pattern of 

Ca2+ flux can also influence intracellular Ca2+ signaling within the spine [23, 41, 311]. However, 

for simplicity this study excludes Ca2+ flux through voltage-gated and other Ca2+ channels, and I 

ignore Ca2+-buffering by proteins besides CaM. Therefore, I control Ca2+ flux in all simulations to 

have constant magnitude (12 μM [164]), location (in spatial models, via NMDARs at the top of 

the spine), and uniformly-spaced patterning. Thus, all model output is a function of Ca2+ frequency 

alone. 

Up to four Ca2+ can bind CaM, two at each of the EF-hand domains located at the CaM N- 

and C- termini [14]. Both CaM termini bind Ca2+ cooperatively but with distinct kinetics. 
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Importantly, these distinct kinetics may cause sub-saturated Ca2+/CaM states (with fewer than four 

bound Ca2+) to predominate at various Ca2+ frequencies. Because sub-saturated Ca2+/CaM states 

exhibit distinct affinities for various CBPs, it may be important to explicitly account for them in 

computational models [97]. Here, I use a thermodynamically-complete, nine-state model of Ca2+-

CaM binding first presented by Pepke et al. (see Fig 2C in [42]). Although other models [46, 165] 

use a simpler, four-state model of Ca2+-CaM binding also presented by Pepke et al., my usage of 

MCell as a spatial-stochastic framework requires the more complex nine-state model. Specifically, 

I use the nine-state model because the alternative four-state model causes MCell to calculate 

inaccurately small probabilities for trimolecular reactions (2 Ca2+ plus 1 CaM; see mcell.org and 

[43, 229]).  

Each of the nine Ca2+/CaM states (including apo-CaM [35, 116]) in my model have distinct, 

explicitly-defined binding kinetics for each of my nine CBPs. These CBPs include adenylyl 

cyclase 1 (AC1) [235], adenylyl cyclase 8 N- and C-termini (AC8-Nt and -Ct) [189], calcineurin 

(CaN), CaMKII, myosin light chain kinase (MLCK) [231], neurogranin (Ng), nitric oxide 

synthetase (NOS) [205], and phosphodiesterase 1 (PDE1) [21, 198]. I emphasize that with the 

exception of CaMKII, this model does not include the known enzymatic functions of these CBPs, 

each of which are discussed by Pharris et al. [165]. Explicitly defining CBPs helps in accurately 

accounting for competition for CaM-binding, which may be important because there are more than 

100 known CaM-binding partners [312]. The CBPs included in my model are enriched in the 

dendritic spine, with a cumulative concentration (tens of micromolar each) exceeding that of CaM 

(33 μM). And indeed, recent computational studies have shown that competition alone, in the 

absence of spatial effects or feedback loops, may be sufficient to set the Ca2+ frequency-

dependence of CBP activation observed in vivo [46]. Although competition is not the focus of this 

study, I again describe competition for CaM-binding to help ensure that model stimulation at a 

particular Ca2+ frequency results in physiological CaMKII activation levels. 

In this study, I model CaMKII in two distinct ways. First, I describe monovalent CaMKII 

monomers similarly to Pepke et al. [42]. In my model, CaMKII monomers become activated by 

Ca2+/CaM, and active CaMKII are able to bind and subsequently phosphorylate AMPARs and 

NMDARs (my first two model frameworks, Figure 6.1 A and B). I also account for CaMKII 

phosphorylation by allowing CaMKII monomers to dimerize (see Figure 6 in [42]). Importantly, 

by modeling active CaMKII monomers as monovalent, they can only bind one other protein 
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(AMPAR, NMDAR, or another monomer) at a time. In contrast, I secondly describe multivalent 

CaMKII holoenzymes using a specialized rule-based syntax (Figure 6.1C). In this rule-based 

framework, each CaMKII holoenzyme has twelve subunits, and each subunit can be activated by 

Ca2+/CaM and a bind one other protein target. I note that rule-based (multi-state) molecules cannot 

diffuse due to limitations in MCell 3.3, an obstacle I address later in this paper. Therefore, my rule-

based CaMKII holoenzymes do not interact with NMDARs or AMPARs. However, I can still 

describe CaMKII monomer and holoenzyme interactions with actin binding sites, which strongly 

depend on CaMKII subunit isoform.  

 

Figure 6.1. Model frameworks for comparing effects of CaMKII subunit type 

and multivalence. (A) The deterministic (non-spatial) model of Ca2+-CaM binding 

(red arrows), Ca2+/CaM-dependent activation of CBPs (orange arrows), and 

regulation of receptor proteins by CaMKII monomers and the phosphatase PP1 

(blue arrows). (B) The spatial-stochastic (MCell 3.3) model equivalent to the 

deterministic model, with monomer CaMKII. Note that I model actin binding sites 

as diffuse particles (orange circles). (C) The rule-based equivalent to the MCell 3.3, 

which describes CaMKII as twelve-subunit holoenzymes. Double-edged arrows are 

reversible reactions. Blunt-ended arrows denote PP1-mediated de-phosphorylation.  

 

In all model frameworks, I distinguish between CaMKII subunit isoforms. Although at 

least four CaMKII isoforms are known, the alpha and beta isoforms are most abundant in the 

hippocampus, expressed at a ratio of 3:1 [260]. In this study, alpha- and beta-CaMKII are modeled 

identically, with the exception of their binding affinities for actin binding sites. Whereas I model 

alpha- and beta-CaMKII as having identical affinities for Ca2+/CaM, NMDARs, and AMPARs, I 

account for observations by Khan et al. that both the alpha and beta isoform bind actin in the 

absence of Ca2+/CaM, and that the affinity of alpha-CaMKII for actin (1.4 μM) is one order of 

magnitude weaker than that of beta CaMKII (0.5 μM) [244]. To minimize confounding model 
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output, I note that my model requires Ca2+/CaM binding to CaMKII as a condition for CaMKII-

actin dissociation. 

Finally, I emphasize my model describes neither G-actin, F-actin, nor actin polymerization 

or degradation. Because actin regulation is not the main focus of this study, I instead model only 

actin binding sites. To model actin binding sites, I make a number of model assumptions. First, I 

assume that the number of actin binding sites is non-limiting, which ensures that actin binding 

sites are always available to bind inactive CaMKII, given the dendritic spine’s extensive actin 

scaffold. Thus, I set the concentration of actin binding sites at 100 μM, which is greater than the 

total concentration of CaMKII subunits (74 μM). Second, I assume that the number of actin 

binding sites is constant, which is valid given my model timescales (seconds) [245]. Third, I 

assume that CaM-bound CaMKII is unable to re-bind actin, which could be due either to steric 

hindrance of the CaMKII-actin binding site by CaM or because CaM-binding changes the 

conformation of the CaMKII subunit.  

6.3.1.2 Model Parameterization 

Ca2+ flux and the kinetics of Ca2+-CaM and CaM-CBP binding are identical to those used 

in previously published computational models [42, 46, 165]. Briefly, Ca2+ flux is a model boundary 

condition defined by the function [Ca](t) = 12e-t/0.012 where t is time, the coefficient is the peak 

magnitude, and the exponent’s denominator is a decay time constant for a single Ca2+ pulse. As 

mentioned, Ca2+ pulses are uniformly spaced in order to control model output as a function of Ca2+ 

frequency.  Ca2+-CaM and CaM-CBP binding kinetic parameters (including those for CaMKII 

autophosphorylation) are taken directly or derived from experimental measurements as described 

in the previous publications. CaMKII binding and phosphorylation kinetics of AMPARs and 

NMDARs are also taken directly from experimental measurements as listed in Table 7.5 and Table 

7.9. The deterministic, spatial-stochastic, and rule-based models presented in this study all use 

identical kinetic parameters. The only exception to this pertains to CaMKII autophosphorylation 

in the rule-based model, which I discuss later in this paper.  

   Diffusion coefficients are also used to parameterize the spatial-stochastic and rule-based 

models. Almost all diffusion coefficients for unbound proteins are taken from experimental 

measurements as listed in Table 7.6. For diffusion coefficients of proteins and protein-protein 

complexes not measured experimentally, I use the Stokes-Einstein relation [233]. The Stokes-
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Einstein relation describes a protein’s diffusion as a function of its hydrodynamic radius. As also 

discussed in the Supplement to Chapter 5, if I assume hydrodynamic radius to be proportional to 

molecular weight, I can determine diffusion coefficients for all protein states in my models. 

Throughout this paper, diffusion coefficients taken directly from experimentation or calculated by 

the Stokes-Einstein relation are referred to as “standard” diffusion parameters. 

 Diffusion in the dendritic spine is difficult to characterize. Indeed, experimental 

measurements and the Stokes-Einstein relation both assume proteins obey Brownian motion in a 

dilute medium. However, the dendritic spine is a small and crowded space in which 1) proteins 

may no longer diffuse according to Brownian motion, and 2) effective diffusion coefficients may 

be reduced. Fortunately, work by Regner et al. suggests that diffusion in the spine is reasonably 

well modeled in the dendritic spine by a continuous-time random walk [246]. To reproduce a 

continuous-time random walk in MCell, my spatial-stochastic and rule-based models use a small 

time-step of 0.5 μsec. To account for possible reductions in effective diffusion coefficients, I refer 

to experiments by Blanpied et al. [38] and Heidarinejad et al. [313], who experimentally determine 

that particles in the dendritic spine diffuse on average approximately one order of magnitude more 

slowly than simulations predict. Therefore, throughout this paper I compare model results using 

“standard” against “reduced” diffusion parameters, in which diffusion coefficients are all reduced 

by one order of magnitude.   

6.3.2 Deterministic, Monovalent CaMKII Model Analysis 

First, I implement my reaction network in a deterministic framework. Using my 

deterministic framework, I can validate my reaction network and model parameters, rapidly 

perform global sensitivity analysis, and set a non-spatial benchmark against which to compare 

spatial versions of my model.  

To validate my model, I first explore my model’s Ca2+/CaM dynamics in response to 

various Ca2+ frequencies. Although this study’s Ca2+/CaM reaction network is similar to 

previously published work, it is important to ensure that new model features added in this study, 

such as CaMKII interactions with actin binding sites, preserve fundamental model behavior. 

Therefore, shown in Figure 6.2, I monitor global Ca2+/CaM dynamics in response to 10Hz and 

100Hz Ca2+ flux. Starting with the top-left panels in Figure 6.2 A and B, apo-CaM (with no Ca2+ 

bound) levels rapidly drop in the presence of Ca2+. Unsurprisingly, the drops in apo-CaM under 
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10Hz Ca2+ are more dynamic because the period of Ca2+ oscillation is much longer compared to 

the 100Hz case. Next, in the bottom-left panels CaM2N (2 Ca2+ bound to the CaM N-terminus) 

levels peak very shortly after initiation of Ca2+ flux, consistent with the high association and 

dissociation rate parameters for Ca2+ binding to the CaM N-terminus. The CaM2N levels steadily 

decline later during Ca2+ stimulation (by t=8sec), as Ca2+/CaM shifts into the CaM2C state shown 

at the top-right panels. Again, late predomination of CaM2C is consistent with expectation because 

the CaM C-terminus has a higher affinity (but slower association rate) for Ca2+ than the N-terminus. 

Finally, the fully-saturated CaM4 state most highly predominates during Ca2+ flux, again consistent 

with expectation, especially in the 100Hz case. Indeed, 100Hz Ca2+ flux is associated with LTP, 

and LTP is known to involve the CBPs with highest affinity for CaM4 (CaMKII and AC1) [3, 27, 

250, 256].    

 

Figure 6.2. Deterministic Ca2+/CaM dynamics. (A) All nine Ca2+/CaM states in 

response to 10Hz Ca2+ flux (green). (B) All nine Ca2+/CaM states in response to 

100Hz Ca2+ flux (purple). Here, Ca2+ flux begins at t=6.5sec and terminates after 

2.5sec regardless of Ca2+ frequency. Note differences in scale for apo-CaM (CaM00) 

panels and the CaM4 panel in (B).   

 

 In addition to analyzing Ca2+/CaM dynamics as shown in Figure 6.2, validation can also 

be achieved through global sensitivity analysis. Using global sensitivity analysis, it is possible to 

quantify the model parameters that most significantly influence model output. If a particular model 

output is significantly affected by parameters as-expected, it could be further evidence the model 

output is valid. For my sensitivity analysis, it is necessary to quantify the influence of 162 distinct 

model parameters (all KD’s, catalytic rates, and initial concentrations). Problematically, 

quantifying a parameter’s influence relative to all other model parameters requires sampling each 

parameter over a relatively wide range of values (two orders of magnitude). To minimize 
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computational expense, I restrict my sensitivity analysis to the deterministic model and 

systematically vary all parameters simultaneously using Latin hypercube sampling (LHS) [208]. 

With LHS, I can subsequently calculate partial rank correlation coefficients (PRCCs) to 

quantitatively rank each parameter’s impact on model output (see Methods). In my analysis, I 

calculate PRCCs for two model outputs: the concentration of CaMKII-bound NMDARs following 

stimulation, and the cumulative number of actin-CaMKII dissociations. In particular, using LHS-

PRCCs to identify parameters important to NMDAR-binding could also help elucidate 

mechanisms relevant to CaMKII localization to the PSD. 

 In Table 6.1, I present LHS-PRCC results for end-time CaMKII-bound NMDARs. I first 

group results for simulations varying initial protein concentrations. While varying initial 

concentrations, I also consider model output at 10Hz and 100Hz Ca2+ flux. I find that regardless 

of Ca2+ frequency, the end-time bound NMDARs are most dependent on the concentrations of 

CaM, actin binding sites, and (of course) NMDARs. Notably, these results match intuition; as the 

CaM concentrations (PRCC > 0.76) increase, actin-CaMKII complexes are more readily 

terminated, leading to increased NMDAR-binding. And as the actin concentration (PRCC < -0.68) 

increases, actin out-competes CaM for CaMKII binding, reducing opportunities for CaMKII to 

bind NMDARs.  
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Table 6.1. Global sensitivity analysis by LHS-PRCC. 

Varying Initial Concentrations       

Output Variable 

Ca2+ 

frequency Alpha:Beta        

End-time bound NMDARs 100Hz 1a:1b Parameters: concCaM concActin concNMDAR    

      PRCC value: 0.766176922 -0.68759582 0.776849323    

End-time bound NMDARs 10Hz 1a:1b 

Sig. 

Parameters: concCaM concActin concNMDAR    

   PRCC value: 0.785320279 -0.69298301 0.77669873    

Varying Kinetic Parameters       

Output Variable 

Ca2+ 

frequency Alpha:Beta        

End-time bound NMDARs 100Hz 1a:1b Parameters: konNg2C konKCaM4 koffAlphaActin koffBetaActin     

      PRCC value: 0.533317695 0.810042637 0.968025072 0.851005754     

End-time bound NMDARs 100Hz 1a:0b Parameters: konNg2C konKCaM4 koffAlphaActin    

   PRCC value: 0.528466089 0.787735837 0.981058808    

End-time bound NMDARs 100Hz 0a:1b Parameters: konNg2C konKCaM4 koffBetaActin       

      PRCC value: 0.56535111 0.825029887 0.986898838       

End-time bound NMDARs 10Hz 1a:1b Parameters: konNg1C konNg2C konKCaM4 kcatGluN2Bphos  koffAlphaActin koffBetaActin 

   PRCC value: 0.670819777 0.811708542 0.794176764 -0.62127195 0.903539074 0.688161823 

End-time bound NMDARs 10Hz 1a:0b Parameters: konNg1C konNg2C konKCaM4 kcatGluN2Bphos  koffAlphaActin   

      PRCC value: 0.692816713 0.827943014 0.772165805 -0.627392718 0.950889559   

End-time bound NMDARs 10Hz 0a:1b Parameters: konNg1C konNg2C konKCaM4 kcatGluN2Bphos  koffBetaActin  

   PRCC value: 0.629175299 0.798228385 0.768403709 -0.552920502 0.959586706  
LHS-PRCC values are calculated from deterministic model simulations varying initial concentrations and kinetic parameters. I also consider model output in 

response to 10Hz and 100Hz Ca2+ flux and distinct CaMKII subunit isoform ratios. Here, I list only parameters with significant PRCCs having absolute values 

greater than 0.5. Complete PRCC results are provided in the research repository cited in Methods. 
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In my sensitivity analysis, I also vary the model’s kinetic parameters. While varying the 

kinetic parameters, I again analyze scenarios at 10Hz and 100Hz Ca2+ flux and at variable CaMKII 

subunit isoform ratios. Here, in all scenarios, the association rate for CaM4-CaMKII binding 

(kon
KCaM4) is shown to significantly impact the concentration of CaMKII-bound NMDARs (PRCC 

> 0.77). Again, this is consistent with intuition as CaM4 is the Ca2+/CaM state with highest affinity 

for CaMKII and therefore is most able to outcompete actin for CaMKII-binding. Also, I observe 

that the catalytic rate for CaMKII-mediated phosphorylation of NMDARs (kcat
GluN2Bphos) 

significantly impacts model output at 10Hz but not 100Hz Ca2+ flux (PRCC < -0.55). Note that in 

my model, phospho-NMDARs have reduced affinity for CaMKII. Therefore, I attribute the 

importance of kcat
GluN2Bphos at 10Hz to the fact that Ca2+ levels, and therefore CaMKII activation, 

are more dynamic at low frequencies. Because CaMKII activation is more dynamic at low 

frequencies, NMDAR-binding is likely more dependent on the phosphorylation status of 

NMDARs rather than the activation of CaMKII.  

Next, I observe that high association rates for Ng-CaM binding (kon
Ng1C and kon

Ng2C) have 

a surprisingly positive impact on model output (PRCC > 0.52). Intuitively, one would expect Ng, 

which strongly binds apo-CaM, to sequester Ca2+/CaM away from CaMKII, reducing NMDAR-

CaMKII binding. However, my LHS-PRCC results indicate that increasing the affinity of Ng for 

sub-saturated CaM1C and CaM2C (kon
Ng1C and kon

Ng2C) leads to increased NMDAR-CaMKII 

binding. This result is reminiscent of results by Krucker et al., who showed that Ng knock-down 

in vivo leads to reduced CaMKII activity [186]. Romano et al. subsequently explained the Krucker 

et al. results by demonstrating that Ng knock-down may cause a shift in competition for CaM-

binding leading to decreased CaMKII activation and concomitantly increased AC1 activation. I 

speculate that my results here show that increasing the Ng affinity for the CaM C-terminus causes 

a similar shift in competition, perhaps reducing the activation of CBPs with high affinity for CaM2C 

such as AC1. Having reduced AC1 activation, more CaM2C may bind CaMKII, ultimately leading 

to increased CaMKII-NMDAR binding. 

My sensitivity analysis also identifies a strong dependence on CaMKII subunit 

composition. Regardless of Ca2+ frequency, when concentrations of alpha- and beta-CaMKII are 

equal (1:1 alpha-beta) the actin dissociation rate constants for both subunits types are important to 

NMDAR-CaMKII binding (PRCC > 0.68). In the absence of alpha-CaMKII, the beta subunit’s 

dissociation from actin remains important. Similarly, in the absence of beta-CaMKII, the alpha 
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subunit’s dissociation from actin remains important. Based on these results, I speculate that 

CaMKII-NMDAR binding is strongly regulated by CaMKII subunit composition, despite the fact 

that I model alpha- and beta-CaMKII as having identical affinities for NMDARs. To explore this 

regulation, in Figure 6.3 I monitor CaMKII-actin complexes, CaMKII-NMDAR binding in the 

presence of actin binding sites, and CaMKII-NMDAR binding in the absence of actin binding sites 

in response to 100Hz Ca2+ flux, at various CaMKII subunit isoform ratios. My results demonstrate 

that, in the absence of spatial effects, that CaMKII-NMDAR is highly dependent on the CaMKII 

subunit isoform ratio. In Figure 6.3A I show that increasing levels of alpha-CaMKII (which has a 

weaker affinity for actin) relative to beta-CaMKII increases CaMKII-actin dissociations during 

Ca2+ flux. Increased CaMKII-actin dissociations leads to increased levels of free CaM-CaMKII, 

which subsequently bind increased levels of NMDARs (Figure 6.3B). However, in the absence of 

actin binding sites, CaMKII-NMDAR binding is totally independent of CaMKII subunit isoform 

ratio (Figure 6.3C). 

 

Figure 6.3. CaMKII-NMDAR dependence on CaMKII subunit composition. 

CaMKII-actin complexes (A), CaMKII-NMDAR complexes in the presence of 

actin binding sites (B), and CaMKII-NMDAR complexes in the absence of actin 

binding sites (C). Model output is shown for equal (purple), alpha-only (red), beta-

only (blue), and physiological (black) CaMKII subunit isoform ratios. I monitor 

deterministic model output as a function of time in response to 100Hz Ca2+ flux. 

Here, Ca2+ flux begins at t=8sec and terminates after 1sec of stimulation.  

 

6.3.3 Spatial-stochastic, Monovalent CaMKII Model Analysis 

Because NMDARs are spatially localized to the synaptic membrane in vivo, the results 

shown in Figure 6.3 may constitute evidence that CaMKII subunit composition regulates its 

localization to the PSD. To further explore this regulation, I shift from my non-spatial deterministic 

framework to an equivalent spatial-stochastic model framework. In my spatial-stochastic 

implementation, I use MCell 3.3 to simulate each model species as a discrete particle diffusing 
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about a cuboidal dendritic spine geometry as described in Methods. Ca2+ flux is identical to my 

deterministic model except that Ca2+ ions enter the spine via NMDARs located at the synaptic 

membrane, at the top of my model geometry.  

As a first validation of my spatial-stochastic model, I again monitor CaMKII-NMDAR 

binding. As shown in Figure 6.4 A and B, I monitor CaMKII-NMDAR binding in the presence 

and absence of actin binding sites, respectively, and at various CaMKII subunit isoform ratios. As 

in Figure 6.3, CaMKII-NMDAR binding is highly CaMKII subunit isoform-dependent, increasing 

with an increasing alpha-beta CaMKII ratio, but only in the presence of actin binding sites. In 

Figure 6.4C, I again monitor CaMKII activation but with “reduced” diffusion conditions, for which 

all model diffusion coefficients are reduced by one order of magnitude, as described in Model 

Parameterization. Even with reduced diffusion, isoform-dependence of CaMKII-NMDAR binding 

requires the presence of actin binding sites. Thus, my deterministic results in Figure 6.3 appear to 

be preserved in my spatial-stochastic model as shown in Figure 6.4. Specifically, because 

NMDARs are localized to the synaptic membrane and because CaMKII-NMDAR binding is 

subunit isoform-dependent, my results may suggest an isoform-dependence for CaMKII 

localization overall. 
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Figure 6.4. Spatial-stochastic CaMKII-NMDAR dependence on CaMKII 

subunit composition. CaMKII-NMDAR complexes in the absence of actin 

binding sites (A & C) and CaMKII-NMDAR complexes in the absence of actin 

binding sites (B & D). Model output is shown for equal (purple), alpha-only (red), 

and beta-only (blue) CaMKII subunit isoform ratios. I monitor spatial-stochastic 

model output as a function of time in response to 100Hz Ca2+ flux. Here, Ca2+ flux 

begins at t=8sec and terminates after 1.5sec of stimulation. Equivalent model output 

in response to 10Hz Ca2+ is provided in Figure 7.18.. 

 

 To further ensure that transitioning to a spatial-stochastic framework preserves 

fundamental model behavior, I simulate my model as previously shown in Figure 6.2. However, 

in addition to monitoring major Ca2+/CaM states as a function of time, I use MCell to monitor 

Ca2+/CaM states in space. For this, I partition the dendritic spine geometry into three transparent, 

equally-spaced, equal-volume compartments distributed along the spine’s major axis. Within these 

compartments, I monitor local concentrations of protein states (see Methods). As shown in Figure 

6.5, I monitor the major Ca2+/CaM states in response to 10Hz and 100Hz Ca2+ flux. As in the non-

spatial deterministic model, CaM2N peaks early upon initiation of Ca2+ flux due to that terminus’ 

high association rate for Ca2+ binding. Subsequently, the CaM N-terminus’ high dissociation rate 

and the C-terminus’ high affinity for Ca2+ cause a shift from CaM2N to CaM2C. The fully-saturated 

CaM4 state ultimately predominates, especially under 100Hz Ca2+. Importantly, using the spatial-
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stochastic framework allows me to observe clear spatial dependence of Ca2+/CaM states. That is, 

there are distinct concentrations of Ca2+/CaM across each compartment at multiple Ca2+ 

frequencies. In particular, during 100Hz Ca2+ flux the CaM4 state exhibits a clear spatial gradient, 

in which the levels of CaM4 in each compartment never appear to overlap. In the Supplement to 

Chapter 6, I provide equivalent results to Figure 6.5 demonstrating that spatiotemporal dynamics 

of Ca2+/CaM are independent of CaMKII subunit isoform ratios and the presence of actin binding 

sites. Because the spatiotemporal dynamics of Ca2+/CaM are preserved in my spatial-stochastic 

framework, I proceed to use this framework to explore CaMKII localization.   

 

Figure 6.5. Spatial-stochastic Ca2+/CaM dynamics. CaM2C (A & D), CaM2N (B 

& E), and CaM4 (C & F) in response to 10Hz (left column) and 100Hz (right column) 

Ca2+ flux at standard diffusion conditions. Ca2+/CaM states are monitored in the top 

(red), middle (yellow), and bottom (blue) spine compartments. Here, 10Hz Ca2+ 

flux begins at t=7sec and terminates after 3sec of stimulation. Also, 100Hz Ca2+ 

flux begins at t=8sec and terminates after 2.5sec of stimulation. Differences in 

stimulation are meant to enhance visualization of model dynamics. All traces are 

the average of N=50 executions.  

 

 Because my results in Figure 6.5 show clear spatial dependence of Ca2+/CaM states, I next 

explore how this spatial dependence may be transduced to CBPs. Specifically, I explore the extent 
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to which the location of CaMKII activation by Ca2+/CaM may influence CaMKII localization. 

Therefore, in Figure 6.6 I monitor the spatiotemporal dynamics of active CaMKII in response to 

100Hz Ca2+ flux. In Figure 6.6A, I show that CaMKII activation exhibits clear spatial gradients 

that are seemingly unaffected by the presence of actin binding sites or the CaMKII subunit isoform 

ratio. With reduced diffusion in Figure 6.6B, I observe exaggerated spatial gradients of CaMKII 

activation, again mostly unaffected by actin binding sites or subunit isoform ratio.  

 

Figure 6.6. Spatiotemporal dynamics of monovalent CaMKII. Active CaMKII 

in the top (red), middle (yellow), and bottom (blue) spine compartments in response 

to 100Hz Ca2+ flux. Output is shown for various CaMKII subunit isoform ratios, in 

the presence or absence of actin binding sites, and with standard (A) and reduced 

(B) diffusion conditions. Here, Ca2+ flux begins at t=8sec and terminates after 

2.5sec of stimulation. All traces are the average of N=50 executions.  

  

  Although CaMKII activation levels are unaffected by subunit isoform type and the 

presence of actin binding sites, I next explore whether these factors regulate CaMKII binding to 

AMPAR GluA1 subunits. For this I monitor GluA1-CaMKII binding complexes in each spine 
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compartment in response to 100 Hz Ca2+ flux. Similarly to Figure 6.6, in Figure 6.7 I compare 

model output for GluA1-CaMKII complexes for scenarios in the presence and absence of actin 

binding sites and with various CaMKII subunit isoform ratios. Critically, I observe GluA1-

CaMKII complex formation dependence on subunit isoform, and only in the presence of actin 

binding sites (Figure 6.7A, top row). This is understandable given my model setup, because the 

only difference between alpha and beta subunits in this model is their affinity for actin binding 

sites. Indeed, in the presence of actin binding sites, CaMKII-GluA1 levels are highest with a high 

alpha:beta isoform ratio. I attribute this to the relatively low affinity of alpha CaMKII for actin 

binding sites—if CaMKII can rapidly dissociate from actin, it can more readily interact with its 

substrates. Notably, this result is exaggerated when diffusion coefficients are reduced (Figure 

6.7B).   
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Figure 6.7. Spatiotemporal dynamics of GluA1-CaMKII complexes. GluA1-

CaMKII complexes in the top (red), middle (yellow), and bottom (blue) spine 

compartments in response to 100Hz Ca2+ flux. Output is shown for various CaMKII 

subunit isoform ratios, in the presence or absence of actin binding sites, and with 

standard (A) and reduced (B) diffusion conditions. Here, Ca2+ flux begins at t=8sec 

and terminates after 2.5sec of stimulation. All traces are the average of N=50 

executions. 

 

 The differences in CaMKII dynamics observed in Figure 6.5-7 may also be a result of my 

dendritic spine volume. Although my dendritic spine head geometry (0.5 μm cuboid) is roughly 

physiological, its volume may be large relative to the average diffusion of molecules in my model. 

To verify whether my results in Figure 6.5-7 could be preserved in small model geometry, I 

repeated my analysis in Figure 6.5. As in Figure 6.5, in Figure 6.8 I monitor CaMKII-NMDAR 

complexes in response to 100Hz Ca2+ flux with various CaMKII subunit isoform ratios, but in a 

model geometry in which each dimension is reduced 2-fold. All other parameters, including initial 
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protein concentrations, are the same as previous simulations in this Chapter. I find that in the 

absence of actin binding sites (Figure 6.8 A and C), CaMKII-NMDAR complex formation is 

independent of CaMKII subunit isoform ratio, consistent with Figure 6.5. In the presence of actin 

binding sites (Figure 6.8 B and D), CaMKII-NMDAR complex formation increases with 

increasing alpha:beta subunit ratio, also consistent with Figure 6.5. Note that due to axis scaling 

in Figure 6.8B, the differences between each subunit ratio trace are visually obscured. Still, the 

differences with subunit ratio are quite evident with reduced diffusion in Figure 6.8D. Altogether, 

my results indicate that even in a reduced-volume spine geometry, CaMKII may still exhibit spatial 

localizations that depend on its subunit isoform composition. 

 

 

Figure 6.8. CaMKII-NMDAR complex formation with reduced spine volume. 

CaMKII-NMDAR complexes in the absence of actin binding sites (A & C) and 

CaMKII-NMDAR complexes in the absence of actin binding sites (B & D). Model 

output is shown for equal (purple), alpha-only (red), and beta-only (blue) CaMKII 

subunit isoform ratios. I monitor spatial-stochastic model output as a function of 

time in response to 100Hz Ca2+ flux. Here, Ca2+ flux begins at t=8sec and terminates 

after 1.5sec of stimulation. Simulations are identical to those in Figure 6.5 except 

with a re-scaled dendritic spine geometry in which each dimension is reduced by 

2-fold. 
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6.3.4 Spatial-Stochastic, Multivalent CaMKII Model Analysis 

The deterministic and spatial-stochastic models in the preceding sections both describe 

CaMKII as a simple monomer. However, CaMKII is of course a twelve-subunit holoenzyme. It 

may be important to account for intra-holoenzyme subunit interactions and/or the avidity effects 

created by co-localizing such a high number of subunits. Few computational models have been 

able to satisfactorily describe the CaMKII holoenzyme because of the combinatorial problem of 

specifying and evaluating the large CaMKII state space. As shown in Chapter 5, though, it is 

possible to use rule-based modeling as an alternative to conventional systems of differential 

equations, thereby bypassing the combinatorial problem typically posed by CaMKII. Here, I 

extend on the CaMKII holoenzyme model in Chapter 5 by incorporating it into the larger Ca2+-

dependent signaling network used in this chapter.  

As discussed in Chapter 5, that CaMKII holoenzyme model uses a so-called “2-state-2-

step” model. “2-state-2-step” refers to two states of CaM (apo-CaM and fully-saturated CaM4), 

wherein only CaM4 is allowed to bind CaMKII, and the CaM4-CaMKII binding interaction occurs 

in two steps. First, CaM4 assumes an “initially bound” conformation which is compatible with a 

closed CaMKII subunit (see Chapter 5 for a discussion of CaMKII subunit docking and opening). 

When the CaMKII subunit opens, the initially-bound CaM4 can proceed to a high affinity “fully 

bound” conformation. Although the 2-state-2-step model of CaM-CaMKII binding was useful for 

parameterization and analysis of CaMKII in Chapter 5, the challenge for this chapter is to make 

the 9-state Ca2+/CaM model compatible with a similar rule-based CaMKII holoenzyme model.  

To reconcile the 9-state Ca2+/CaM model with my existing description of the CaMKII 

holoenzyme, a new “9-state-2-step” model would be ideal. Problematically, the parameters for the 

9-state model are mainly derived from experimental measurements by Shifman et al., who use 

wild type rat CaMKII in vitro [97]. So, the 9-state kinetic parameters inherently account for 

CaMKII subunit docking, opening, and two-step CaM-binding. Therefore, without a total re-

parameterization, a 9-state-2-step model of CaM-CaMKII binding would likely predict non-

physiologically small probabilities for CaM binding to CaMKII. Indeed, preliminary data not 

presented in this thesis indicates that a naïve 9-state-2-step model exhibits virtually no CaM-

CaMKII binding.  

To reconcile 9-state CaM and the CaMKII holoenzyme, I therefore present a “9-state-1-

step” model. In this model, I eliminate CaMKII subunit docking and opening, and I simplify the 
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process of CaM-CaMKII binding. Specifically, I allow any Ca2+/CaM state (including apo-CaM) 

to bind CaMKII, and as elsewhere in this thesis, I define CaM-CaMKII binding as equivalent to 

CaMKII activation. Note that the 9-state-1-step model remains developmental, primarily because 

of how it accounts for subunit auto-phosphorylation and CaM-trapping [145]. That is, the 2-state-

2-step model implicitly accounts for CaM-trapping because CaMKII autophosphorylation 

stabilizes the high-affinity “fully bound” CaM state. In contrast, the 9-state-1-step model explicitly 

accounts for CaM-trapping by uniformly imposing a 1000-fold higher affinity of CaM-CaMKII 

binding whenever the CaMKII subunit is phosphorylated. Determining which model better 

accounts for CaM-trapping remains for future experimental studies and/or a rigorous 

computational sensitivity analysis. Still, for the purposes of this thesis I here present preliminary 

output from my 9-state-1-step model. 

 A primary reason for incorporating the CaMKII holoenzyme into larger models of Ca2+-

dependent signaling is to quantify the effect of CaMKII multivalence. Proteins with high 

multivalence, such as CaMKII, may exhibit avidity affects that result in increased effective 

affinities for binding partners. Increasing the effective affinity for CaMKII binding could 

significantly impact the spatial dependence of many proteins in the dendritic spine. For example, 

increasing the actin-CaMKII affinity could reduce the mobility of CaMKII in the spine, or at least 

increase the Ca2+ stimulation threshold required to initiate CaMKII mobilization. Additionally, 

increasing the CaMKII affinity for membrane receptors could enhance the localization of CaMKII 

and/or membrane receptors to the synaptic membrane or other regions of the spine. However, 

because MCell 3.3 prohibits diffusion of my multivalent CaMKII holoenzymes, I can only analyze 

the effects of CaMKII multivalence on the CaM-CaMKII interaction. Therefore, in Figure 6.9 I 

monitor the all major Ca2+/CaM states (whether CaMKII-bound or unbound) in response to 100Hz 

Ca2+ flux in each spine compartment. Because here CaMKII cannot diffuse, I further compare 

model output when holoenzymes are uniformly distributed about the spine head (Figure 6.9A-C), 

to output when holoenzymes are localized only to the PSD (Figure 6.9D-F).  
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Figure 6.9. Spatial-stochastic Ca2+/CaM dynamics with multivalent CaMKII. 

CaM2C (A & D), CaM2N (B & E), and CaM4 (C & F) in response to 100Hz Ca2+ 

flux at standard diffusion conditions. Ca2+/CaM states are monitored in the top (red), 

middle (yellow), and bottom (blue) spine compartments. CaMKII holoenzymes are 

uniformly distributed about the entire spine head (A-C) or localized to the PSD (D-

F). Ca2+ flux begins at t=8sec and terminates after 2.5sec of stimulation. All traces 

are the average of N=50 executions.  

 

 Figure 6.9 indicates that CaMKII multivalence could significantly effect the 

spatiotemporal dynamics of Ca2+/CaM in the spine. I compare Figure 6.9A-C to Figure 6.5D-F, 

which are identical simulations except that Figure 6.9 describes CaMKII holoenzymes. Whereas 

in Figure 6.5 all Ca2+/CaM states are highest in the top spine compartment (PSD), in Figure 6.9 all 

Ca2+/CaM states are markedly increased in the middle spine compartment. In particular, fully-

saturated CaM4 levels are almost the same in the middle and top compartments when CaMKII 

holoenzymes are uniformly distributed about the spine head (Figure 6.9 A-C). This may be 

explained by the high affinity of CaMKII for CaM4, which is effectively increased when I describe 

CaMKII as holoenzymes. By increasing the effective affinity of CaMKII for CaM4, the 
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predomination of CaM4 becomes even more pronounced. Notably, in Figure 6.9C CaM4 no longer 

exhibits a clear spatial gradient as seen in the presence of monomer CaMKII (Figure 6.5F). 

Interestingly, when I localize CaMKII holoenzymes only to the top spine compartment, or PSD, 

CaM2C and especially CaM4 also predominantly localize to the PSD (Figure 6.9D-F). Thus, it 

seems that prior to CaMKII localization to the PSD, CaMKII holoenzymes reduce spatial gradients 

of CaM4, but prior to CaMKII localization to the PSD (by unidentified mechanisms), CaMKII 

holoenzyme multivalence may be essential to setting significant spatial gradients of Ca2+/CaM.   

 Discussion 

This study provides a framework for quantifying the effects of CaMKII subunit isoform 

composition and multivalence in early synaptic plasticity.  

First, I present a deterministic and non-spatial model of Ca2+, CaM, nine explicitly-defined 

CBPs including CaMKII, and CaMKII interactions with membrane receptors and actin binding 

sites. I validate the deterministic model by comparing the temporal dynamics of Ca2+/CaM to 

previously published data. I explore the deterministic model using global sensitivity analysis 

(using LHS-PRCC) to quantify how various model parameters contribute to model output. 

Interestingly, I find that parameters associated with actin-CaMKII interactions may significantly 

regulate CaMKII interactions with membrane receptors. Because membrane receptors are often 

localized to the synaptic membrane (at the PSD), it could therefore be that CaMKII localization to 

the PSD is regulated by its subunit isoform composition, also suggested in Figure 6.3.  

Because the deterministic model suggests that actin interactions with CaMKII subunits 

could regulate CaMKII localization to the PSD, I adapt the deterministic model into a spatial-

stochastic framework. Notably, this spatial-stochastic framework describes CaMKII as monomers. 

The spatial-stochastic model output again indicates the temporal dynamics of Ca2+/CaM are 

consistent with previously published results, and the spatial dependence of Ca2+/CaM is consistent 

with output from a similar (but distinct) model presented in Chapter 4 of this thesis. Moreover, the 

spatial gradients of Ca2+/CaM are transduced as gradients of CaMKII activation. Significantly, 

these spatial gradients of CaMKII activation are preserved at multiple diffusivities and dendritic 

spine geometries. Interestingly, although the deterministic model suggests that CaMKII 

localization could depend on subunit isoform composition, the results in Figure 6.6 indicates no 

dependence on isoform composition in the spatial-stochastic model. Further analysis will be 
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required to verify whether this lack of dependence persists when monitoring all CaMKII, rather 

than solely the active CaMKII monomers. Still, in Figure 6.7 and Figure 6.8 I monitor CaMKII-

GluA1 and -NMDAR complexes, respectively, and I show increasing CaMKII-receptor complex 

formation with increasing alpha-beta CaMKII ratio. Indeed, this result is reasonable given the high 

affinity of beta-CaMKII for actin binding sites. 

To quantify the possible contribution of CaMKII multivalence on protein spatiotemporal 

dynamics, I modify the spatial-stochastic model to include a rule-based implementation of the 

CaMKII holoenzyme. Notably, rule-based species in MCell 3.3 cannot diffuse, so my analysis here 

is limited to interactions between CaMKII and cytosolic proteins such as CaM. Indeed, in Figure 

6.9 I show that when CaMKII holoenzymes are uniformly distributed about the spine head, 

Ca2+/CaM states show somewhat decreased spatial dependence. Specifically, fully-saturated CaM4 

levels are roughly equivalent between the middle and top spine compartments. It appears that in 

this scenario (Figure 6.9A-C), due to the increased effective affinity of CaMKII for CaM4, 

multivalent CaMKII causes CaM4 to predominate throughout the spine. At least, compared to 

Figure 6.5F, Figure 6.9C shows a much less steep spatial gradient of CaM4. Interestingly, when I 

localize CaMKII holoenzymes to the PSD (Figure 6.9D-F), spatial dependence of Ca2+/CaM 

becomes much more exaggerated, especially for CaM4. This result may be significant in light of 

experimental studies indicating that CaMKII localizes to the PSD in response to LTP. Prior to LTP, 

uniformly-distributed CaMKII could be responsible for setting high CaM4 levels throughout the 

spine head. But, following LTP, it might be preferential for localized CaMKII to localize CaM4 

only to the PSD to ensure that other CaM4-dependent signaling pathways are activated at that 

region of the spine.  

This study provides a framework for quantifying the effects of CaMKII multivalence. In 

the future, though, it may be necessary for models to more rigorously define or explore interactions 

between CaMKII and actin, as I discuss in Chapter 7 of this thesis.  

 Methods 

All model code and associated files will be made available at the Purdue University 

Research Repository. The deterministic model is written and evaluated using the software 

Mathematica. The spatial-stochastic models are written and evaluated using the software MCell 

3.3. For the spatial-stochastic models, the dendritic spine geometry is defined using the open-
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source software Blender and its plug-in CellBlender, and the relevant geometry files are also 

provided in the research repository.  

For the global sensitivity analysis of the deterministic model output, I use Latin hypercube 

sampling (LHS) to efficiently vary the model parameter space and subsequently parameter 

contributions using partial rank correlation coefficients (PRCC). Using LHS-PRCC is a more 

efficient approach to sampling large parameter spaces than random sampling and has previously 

been used to analyze complex biological models [208, 314]. In this thesis, I present results for a 

single objective function against which PRCCs are calculated, which is the end-time concentration 

of CaMKII-NMDARs. I calculate PRCCs for this objective function at two Ca2+ frequencies (10Hz 

and 100Hz) and at three CaMKII subunit ratios (1:1, 1:0, and 0:1 alpha-beta).  

For the spatial-stochastic models, simulations are identical to those implemented in the 

deterministic model. However, in the spatial-stochastic model proteins are described as individual 

particles in space rather than bulk concentrations. Thus, individual particles diffuse about a 

geometry representing the dendritic spine. With the exception of Fig 8, all spatial-stochastic 

simulations utilize a spine head geometry identical to that used by Keller et al.  [185], in which the 

spine head is a 0.5 μm cuboid. For Figure 6.8, I re-scale the spine head dimensions uniformly by 

50%, to account for scenarios in which the dendritic spine is much smaller and explore whether 

spatial gradients of protein activation occur under such conditions. Regardless of geometry, the 

dendritic spine head contains three equal-volume, equally-spaced compartments distributed along 

the major axis of the spine head. These compartments are entirely transparent to molecular 

diffusion and are used to monitor local concentrations of proteins in the top (PSD), middle, and 

bottom of the spine head. Throughout this chapter, figures denote proteins in the top compartment 

as red, middle as yellow, and bottom as blue traces. A different color scheme is used in Chapter 4, 

but the methodology is identical. As in Chapter 4, Ca2+ fluxes into the model dendritic spine via 

NMDARs localized to the synaptic membrane (at the top of the model geometry). 

For the spatial-stochastic model with holoenzyme CaMKII, I use the specialized rule-based 

modeling syntax in MCell 3.3, as described at length in Chapter 5 of this thesis. In these 

simulations, only CaMKII uses the rule-based syntax. Thus, while CaMKII holoenzymes cannot 

diffuse in these simulations (due to limitations in MCell), all other protein species can diffuse.  

  In all models, Ca2+ flux proceeds according to time-variable rates informing the reactions 

𝑁𝑀𝐷𝐴𝑅 → 𝑁𝑀𝐷𝐴𝑅 + 𝐶𝑎2+ and 𝐶𝑎2+ → 𝑁𝑈𝐿𝐿. The combined effect of these reactions is to 
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produce global free Ca2+ dynamics obeying the equation [Ca](t)=12e-t/0.012 as used by Romano et 

al. [46], and in Chapters 2-4 of this thesis.  
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7. CONCLUSIONS AND FUTURE DIRECTIONS 

Summary 

 In this thesis I present a series of computational models for quantifying how various 

molecular mechanisms regulate outputs relevant to synaptic plasticity. First, I present a 

deterministic, non-spatial model of Ca2+ flux, Ca2+/CaM binding, and CaM-binding to multiple 

explicitly-defined CBPs. By explicitly modeling individual CBPs, I show how competition alone, 

in the absence of feedback loops or spatial effects, may influence the selection of CBPs by 

Ca2+/CaM. Indeed, I show that competition is sufficient to set in vitro the Ca2+ frequency-

dependence of CBPs observed in vivo. Moreover, shifts in competition may explain 

counterintuitive experimental results suggesting that reductions in CaM-buffers also reduce 

CaMKII activity. Second, I extend on the original deterministic model, adding pathways leading 

to AMPAR phosphorylation by CaMKII and PKA. With this model, I explain that reductions in 

CaMKII activity, and its phosphorylation of AMPARs, may be compensated for by shifts in 

competition that increase activation of AC. Third, I adapt the extended deterministic model into a 

particle-based, spatial-stochastic framework. This third model allows me to quantify how spatial 

effects influence competitive tuning. Interestingly, I find that spatial effects seem to contribute 

relatively little to the Ca2+ frequency-dependence of CBP activation. However, I observe that when 

protein states exhibit spatial gradients in the dendritic spine, these spatial gradients are sharpened 

by the presence of competition. Notably, while exploring why AC-mediated pathways tend not to 

exhibit spatial gradients, I reveal how the AC8 N-terminus may provide a key function regulating 

the spatiotemporal dynamics of Ca2+/CaM. Fourth, to more accurately characterize spatiotemporal 

dynamics in the spine, I show how rule-based modeling can be used to model multivalent proteins 

such as the CaMKII holoenzyme. Fifth, I incorporate this multivalent CaMKII holoenzyme model 

into the larger Ca2+ signaling network. With this, I begin to quantify how CaMKII multivalence 

regulates proteins in the spine. Altogether, this thesis demonstrates how competition, spatial effects, 

multivalence, and other mechanisms may contribute to model outputs relevant to synaptic 

plasticity.   
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Further exploration of competition for CaM-binding  

 The first major result of this thesis is the identification of competition as an emergent 

property regulating protein activity. Specifically, I explore how competition sets physiological 

protein activations in response to Ca2+ frequency. However, other inputs besides Ca2+ frequency 

are known to determine the response of proteins within the spine, such as Ca2+ location, magnitude, 

and pattern. Indeed, whereas NMDARs are located at the top of the synaptic membrane, Ca2+ flux 

may also occur through voltage-gated channels located about the entire spine surface. The 

magnitudes of Ca2+ flux are also variable depending on the electrochemical input to the spine 

(EPSP vs AP) and probabilistic membrane channel opening. And during oscillatory Ca2+ flux, it is 

unlikely that Ca2+ peaks are uniformly spaced. Thus, it may be important for future work to 

characterize how competition or other mechanisms set the location-, magnitude-, and pattern-

dependence of CBP activation [75].  

 In addition to adjusting the Ca2+ inputs, there may be a need to complement the pool of 

competitors for CaM-binding. The models presented in this thesis account for at-most nine 

explicitly-defined CBPs, so chosen because their cumulative concentration (>200μM) is 

significantly greater than that of CaM (33μM). However, there may be other competitors for CaM-

binding yet to be included. For example, CaM binds NMDARs, and although NMDARs are 

relatively weakly expressed (1-2μM), their localization to the synaptic membrane could have 

implications for how others CBPs are able to compete for CaM-binding. Also, CaM binds the 

protein synGAP, which is highly expressed in the spine (tens of micromolar) [223]. Because CaM-

synGAP binding may regulate the affinity of synGAP for the structural protein PSD-95, including 

synGAP into the list of explicit CBPs may be important for future work. In general, it will be 

important to explore how increasing or decreasing the CaM-CBP ratio, or competitiveness, 

influences the observations made in Chapter 2 and elsewhere in this thesis.  

 Although this thesis explores competition strictly in the context of CaM-binding, the 

strategies employed here may be adapted for studying competition among other regulators of 

protein signaling. For example, because PKA activation is at least partially Ca2+-dependent (via 

AC activation by Ca2+/CaM) and PKA has multiple phosphorylation targets [32, 209, 315], it might 

be interesting to compare output for models in which PKA’s targets do or do not compete for PKA-

binding. Similarly, the highly non-specific phosphatase PP1 is indirectly Ca2+-dependent (via its 

interactions with Inh-1) and has multiple de-phosphorylation substrates such as CaMKII, 
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AMPARs, and NMDARs [104, 280, 316, 317]. Thus, it might also be interesting to compare output 

for models in which PP1’s substrates do or do not compete for PP1-binding. Notably, PP1-binding 

is even more interesting in light of the possible PP1 exclusion mechanism revealed in Chapter 5, 

where Ca2+/CaM may significantly out-compete PP1 for CaMKII-binding. Lastly, the structural 

protein PSD-95 has at least three PDZ binding motifs that are competed for by many proteins such 

as synGAP, CaMKII, and AMPARs [223]. Because competition for PDZ-binding may regulate 

the localization of AMPARs to the synaptic membrane, it may be interesting to compare output 

for models in which PSD-95 has variable numbers of PDZ domains. Furthermore, it is especially 

relevant to study the synGAP-PSD-95 interaction which has been shown to regulate apparent 

liquid-liquid phase separation in vivo, with possible implications for proteins’ abilities to diffuse 

and/or spatially localize within the dendritic spine [318].  

 Experimental studies using bench-top technologies may also follow up on the results of 

Chapter 2. Specifically, it would be important to analyze how Ng knockout influences AC activity 

in vivo. For this, Ng knockout could be achieved in mice using the same strategies as those 

described by Krucker et al. [186]. Next, in addition to quantifying CaMKII activity (by Western 

blot), future work could also measure activity levels of AC. To measure AC activity, it might be 

possible to create a FRET-based reporter system for observing binding between CaM and AC. Or, 

studies can utilize antibodies specific for the cAMP/PKA-dependent phosphorylation sites on 

AMPAR GluR1 subunits [315]. With these antibodies, Western blot can again be used to observe 

AMPAR phosphorylation at S831 following neuronal stimulation in the presence and absence of 

Ng and in the presence and absence of forskolin, which inhibits AC. Using this strategy, future 

work could determine whether competitive tuning mediates shifts in CaMKII and AC activity upon 

Ng knockout.  

 

Further exploration of signaling robustness due to shifts in competition 

 The second major result of this thesis is the characterization of how competition may 

provide robustness to model output. Specifically, in Chapter 3 I identify that upon knock-down of 

the CaM-buffer Ng, the resultant decrease in CaMKII activity may be compensated for by a 

competition-mediated increase in AC activity. As demonstrated in Chapter 3, this compensatory 

mechanism provides robustness to AMPAR phosphorylation, at least during Ca2+ stimulation. 

Upon termination of Ca2+ flux, however, it is unclear whether AMPAR phosphorylation remains 



180 

 

robust. The protein species included in my models do not necessarily regulate AMPAR 

phosphorylation on long timescales. To better regulate AMPAR phosphorylation, a more detailed 

or better-parameterized model is required. That is, future work could reconsider how the models 

in Chapters 3 and 4 regulate AC activation, cAMP generation, and competition for PKA. First, my 

models assume that AC-CaM binding is sufficient to initiate catalysis of ATP into cAMP, whereas 

AC’s enzymatic activity may also require stimulation by G-protein subunits [319]. Including G-

protein-dependence for AC activation may help set physiological cAMP generation levels. Second, 

my models assume that cAMP exclusively activates PKA and is solely degraded by 

phosphodiesterases PDE1 and PDE4. Introducing additional phosphodiesterases in future work 

could help ensure that transient activations of AC result in physiological levels and half-lives of 

cAMP. Third, my models allow PKA to bind only AMPARs and a generic PKA-inhibitor species. 

The PKA-inhibitor species is intended to account for non-specific interactions between PKA and 

its substrates. However, explicitly defining these substrates could more physiologically regulate 

PKA-AMPAR binding. Moreover, explicitly-defined PKA substrates would allow for a PKA-

centric exploration of competition, as mentioned in a previous section of this Chapter.  

 Experimental studies could also further explore the results of Chapter 3. In the preceding 

section of this conclusions chapter, I describe a strategy for quantifying how Ng knockout 

influences AC activity. To quantify AC activity, I suggest using Western blot to measure 

cAMP/PKA-dependent AMPAR phosphorylation, in a manner similar to Lee et al. (2000). This 

strategy would be also be sufficient to validate my results in Chapter 3 showing that AC pathway-

mediated AMPAR phosphorylation increases in the absence of Ng. In Chapter 3, I additionally 

assert that CaMKII-mediated AMPAR phosphorylation decreases in the absence of Ng. To 

experimentally quantify CaMKII-mediated AMPAR phosphorylation in vivo, it may be possible 

to generate a FRET-based system that reports binding interactions between CaMKII and AMPARs. 

However, I suggest using CaMKII phosphorylation site-specific antibodies for subsequent 

Western blot, as described by Mammen et al. (1997) [320]. With this strategy, it may be possible 

to experimentally validate whether the effects of competitive tuning are transduced downstream 

of both AC and CaMKII. 
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Further exploration of spatial effects 

 The third major result of this thesis is the apparent sharpening of spatial gradients due to 

competition for CaM-binding. Notably, this competition-sharpened spatial dependence of Ca2+, 

Ca2+/CaM, and CBP activation is preserved at multiple Ca2+ frequencies (Chapter 4) and spine 

volumes (Chapter 6). In addition to Ca2+ frequency and spine volume, however, the spatial 

dependence reported in this thesis may also depend on descriptions of diffusion, spine geometry, 

and other factors.  

 Diffusion of molecules in a dilute medium is, according to the Stokes-Einstein relation, a 

function of molecular weight, hydrodynamic radius, and the solution viscosity [321]. The spatial 

models in this thesis generally utilize the Stokes-Einstein relation. Yet dendritic spine proteins are 

crowded, low in copy number, interact dynamically, and may be subject to convective 

microfluidics. Thus, the effective diffusion coefficients in the spine may be smaller than the 

Stokes-Einstein relation predicts. Indeed, experimental results show that diffusion of spine proteins 

is on average one order of magnitude smaller than simulations predict [38]. Although in Chapter 

6 I quantify differences in model output using standard and reduced diffusion coefficients, more 

can be done to characterize the mechanisms determining effective diffusion in the spine.  For 

example, using the models presented in Chapters 4 and 6, it may be possible to return to the work 

by Byrne et al. to better characterize how diffusion and/or explicit Ca2+-dependent signaling 

dynamics regulate CaMKII entry and escape from the dendritic spine [245]. Also, it may be 

valuable to quantify how different descriptions of diffusion influence model output. The spatial 

models in this thesis all use MCell to describe diffusion as a discrete-time random walk (DTRW). 

Here, DTRW is effectively a continuous-time random walk (CTRW) process due to my use of a 

relatively small timestep of 1μsec or less. Although CTRW may be acceptable for my analysis, 

future work may aim to quantify how alternative representations of diffusion or protein transport 

influence model output. Using MCell, it is possible to monitor at each time step the three-

dimensional spatial coordinates of each protein, making it possible to calculate a particle’s 

effective diffusion at any given point in simulated time. Alternatively, models could use other 

platforms such as spatialKappa, which describes diffusion using an agent-based grid [322], or 

COMSOL®, which would describe protein transport in bulk.  

Other future studies could explore how this spatial dependence may influence protein 

translocation into and out of the dendritic spine. For example, Byrne et al. use a spatial model to 
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explore the conditions for CaMKII entry and escape from a single spine, using generic terms to 

describe CaMKII interactions with CaM and substrates [245]. Future work can modify the Byrne 

model to include the intracellular signaling pathways modeled throughout this paper, to more 

rigorously quantify how these pathways may regulate CaMKII translocation. Similarly, proteins 

entering the spine’s plasma membrane can also be studied in more detail. For example, Antunes 

et al. use MCell 3.3 to describe diffusional trapping of AMPARs at the synaptic membrane [228]. 

Just as Byrne et al., Antunes et al. describe generalized Ca2+-dependent protein signaling pathways. 

Thus, using the models presented in this thesis, it is possible to complement the work by Antunes 

et al. and subsequently quantify how specific intracellular signaling mechanisms regulate AMPAR 

trafficking to the synaptic membrane. 

To experimentally validate the results of Chapter 4, I would aim to measure changes to the 

spatiotemporal dynamics of Ca2+ and CaM in response to AC mutation scenarios. For this, studies 

could use the mouse mutants described by Wong et al., who compared learning behaviors between 

WT, AC1 knock-out, AC8 knock-out, and double knock-out mice [101]. Notably, an additional 

mouse variant could be created that ensures inhibition of CaM-binding to only the AC8 N-terminus, 

possibly by introducing some point mutation in AC8. After isolating neuronal slices from each 

mouse genotype, it could be possible to observe Ca2+ and CaM localizations in the spine before, 

after, or even during electrical stimulation. To observe localizations of Ca2+ and/or CaM, super 

resolution microscopy could be used, assuming appropriate fluorescent reporters are available. If 

fluorescent reporters for CaM or various Ca2+/CaM states prove unavailable or difficult to design, 

at minimum it could be possible to utilize the photoactivated localization microscopy (PALM) 

technique discussed by Lu et al. (2014) [38]. Lu et al. use PALM to monitor single molecules of 

CaMKII. Because CaMKII strongly binds fully-saturated Ca2+/CaM, it could be used as a proxy 

to monitor the dynamic locations of Ca2+/CaM in each of the mouse genotypes. Using this strategy, 

it may be possible to further explore how the AC8 N-terminus regulates the dynamics of Ca2+/CaM 

and CaMKII activity.  

Experimental results may also be useful for subsequent training or re-parameterization of 

my spatial models. For instance, I observe in Chapter 4 a 39 percent gradient in activated CaMKII 

when the spine is stimulated at 100 Hz Ca2+ flux in a competitive scenario (Table 4.2). While this 

39 percent gradient supports my conclusion that competition sharpens spatial gradients of protein 

states, it remains unclear whether its numerical value is physiological. In vivo, it may be that the 
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gradient of active CaMKII along the major axis of the spine has a different value, and future 

computational studies may wish to adopt this different value. To adopt this value, it is first 

necessary to experimentally quantify the possible spatial gradients of active CaMKII in vivo. For 

this, the PALM microscopy mentioned in the last paragraph may be sufficient, or perhaps a rapid-

fixing electron microscopy (EM) technique would be more appropriate. Previous studies such as 

those by Fera et al. and Ding et al. have shown that distinct populations of active CaMKII can be 

identified through EM. If future studies use a similar approach to measure the localizations of 

active CaMKII at various time points during Ca2+ flux, it could be possible to construct an 

objective function for CaMKII localization against which to train a more physiological 

computational model [323, 324]. To train this new model, it is easy to use Latin Hypercube 

Sampling, as described in Chapters 2, 3, and 6, to find parameter sets that cause model output to 

agree with the physiological localizations of CaMKII activation.  

 

Exploration of CaMKII holoenzyme activation dynamics 

 The fourth major result of this thesis is the development of the most complete CaMKII 

holoenzyme model to-date, and with this model I make a series of biophysical analyses. First, I 

identify a possible threshold of Ca2+/CaM stimulation beyond which CaMKII exhibits a stable 

state of auto-phosphorylation despite the presence of phosphatase. Second, I characterize a 

possible regulatory mechanism in which CaMKII-bound CaM may structurally exclude, or out-

compete, PP1 for CaMKII-binding. Altogether, this thesis lays the groundwork for future analyses 

of the CaMKII holoenzyme in silico. 

 The CaMKII holoenzyme stimulation threshold identified in Chapter 5 is reminiscent of 

the long-hypothesized CaMKII bistable switch [256, 297]. CaMKII bistability refers to the idea 

that following sufficient Ca2+/CaM stimulation, CaMKII may enter a dynamic steady-state in 

which its kinase activity exceeds the activity of phosphatases in the dendritic spine. If CaMKII 

kinase activity can be robust to phosphatase activity for significant timescales, it might be evidence 

that CaMKII is the bistable switch hypothetically providing a fundamental unit of molecular 

memory. Notably, a previous and simpler model of CaMKII regulation shows that CaMKII 

bistability would likely require non-physiologically high kinase activity [280]. However, the CaM-

dependent PP1 exclusion mechanism identified in Chapter 5 may, in conjunction with other 

mechanisms, provide significant reductions to phosphatase activity, reviving the possibility for 
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CaMKII to function as a bistable switch under physiological conditions. Therefore, an immediate 

follow-up study for this thesis may be to re-parameterize the previous Lisman and Zhabotinsky 

model to account for CaM-dependent PP1 exclusion. My laboratory has already begun exploring 

this project.  

 Validating my proposed CaM-dependent PP1 exclusion mechanism likely requires more 

rigorous parameterization through experimental measurements. First, it remains unclear whether 

my model results are consistent with in vitro studies such as by Bradshaw et al. [304]. Although 

Bradshaw et al. show no dependence of CaMKII de-phosphorylation by PP1 on the presence of 

CaM, they do show that CaMKII phosphorylation levels are maintained on relatively long 

timescales. Critically, CaMKII phosphorylation is only maintained on long timescales in my 

models when CaM is able to exclude PP1 from CaMKII binding. So, CaMKII phosphorylation 

levels are likely maintained in the Bradshaw experiments by some regulatory mechanism, either 

by CaM-dependent exclusion or otherwise. To better identify this mechanism, my immediate next 

step is to replicate the Bradshaw experiment in silico. For this, it is easy to adjust the 9-state-1-

step CaMKII holoenzyme model’s initial protein concentrations and also their rate parameters to 

account for 0°C conditions. To adjust the rate parameters, I can use the Arrhenius equation with 

the assumption that the change in free energy upon protein-protein binding (E = 8 kcal/mol) is 

temperature-independent and uniform for all interactions [325]. Simulations using this re-

parameterization are underway as of the writing of this thesis.   

 Further analysis of CaM-dependent PP1 exclusion requires further experimental 

information regarding the structure and kinetics of CaM- and PP1-CaMKII binding. Indeed, the 

PP1 binding footprint on CaMKII is entirely undetermined. As discussed in the Supplement to 

Chapter 5, it is likely that even if PP1 binds CaMKII at a site distant from its substrate at Thr-286, 

the sizes of CaM and PP1 together likely reduce the ability of PP1 to interact with Thr-286. To 

verify this, structural studies will be essential, especially because my 9-state-1-step CaMKII 

holoenzyme model suggests that the Ca2+/CaM state predominantly responsible for excluding PP1 

(in the absence of Ca2+) is apo-CaM. Although my kinetic parameters of apo-CaM-binding to 

pThr-286 CaMKII may explain the ability of apo-CaM to out-compete PP1, my kinetic parameters 

utilize considerable biophysical assumptions as discussed in [42, 46, 97]. It may therefore be 

necessary for experimental studies to directly quantify the structure and affinity of apo-CaM 

binding to CaMKII and phosphorylated CaMKII.   
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Exploring effects of protein multivalence in the dendritic spine 

 The fifth major result of this thesis is the development of a strategy for quantifying the 

effect of CaMKII multivalence on Ca2+-dependent signaling pathway activation. Specifically, I 

present a series of computational models identical except for their descriptions of either 

deterministic, spatial-stochastic and monomeric, or spatial-stochastic and dodecameric CaMKII. 

The deterministic model is useful for rapid model validation, global sensitivity analysis, and 

quantifying non-spatial model behavior. The spatial-stochastic and monomeric CaMKII model, 

which uses MCell 3.3., is useful for quantifying the spatial dependence of model behavior with 

monovalent CaMKII. The spatial-stochastic and dodecameric CaMKII model, which also uses 

MCell 3.3., is useful for quantifying how localized CaMKII holoenzymes influence the spatial 

dependence of Ca2+/CaM and other CaMKII binding partners. This result, described in Chapter 6, 

lays the groundwork for rigorously quantifying model dependence on CaMKII multivalence and 

CaMKII subunit isoform type. To proceed, future work should endeavor to more accurately portray 

the CaMKII-actin interaction and accommodate diffusion of the multivalent (multi-state) CaMKII 

holoenzyme. 

 The CaMKII-actin model presented through Chapter 6 is an extreme case which, though 

useful for preliminary insight, produces biased model output. That is, in Chapter 6 I describe 

CaMKII-actin complexes as irreversible, only becoming terminated upon CaM-CaMKII binding. 

This irreversibility assumption is meant to account for the number of actin binding sites available 

to CaMKII likely exceeding the number of CaMKII subunits. In other words, even if CaMKII 

transiently dissociates from actin in vivo, CaMKII likely rapidly re-associates with another actin 

binding site in the absence of Ca2+/CaM. Thus, my irreversibility assumption allows me to reduce 

the number of explicitly-instantiated actin binding sites, which is helpful for reducing simulation 

run-times especially when using MCell. Still, it may be important for future studies to quantify the 

validity of this assumption, and my laboratory is now undertaking simulations with model 

networks that allow CaMKII and actin to reversibly bind according to kinetics measured by Khan 

et al. [244]. 

  Quantifying the effects of CaMKII multivalence is significantly hindered by the lack of 

simulation platforms that can acceptably account for diffusion of multiple multi-state molecules. 

In Chapter 6, I use MCell 3.3 because its rule-based syntax is sufficient for handling the 
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combinatorial explosion associated with modeling CaMKII holoenzymes. However, MCell 3.3 

does not account for diffusion of multi-state molecules such as CaMKII. Thus, it is impossible to 

quantify the effect of CaMKII multivalence with proteins other than cytosolic species such as 

Ca2+/CaM and actin binding sites. Moreover, because CaMKII holoenzymes cannot diffuse in 

MCell 3.3, key interactions between CaMKII and membrane receptors cannot be modeled. And 

furthermore, other potentially multi-state molecules such as CaM and AC cannot be 

simultaneously modeled with rules because the lack of multi-state diffusion would abolish their 

interactions with other multi-state proteins. Problematically, I am aware of no other platform 

currently ready for the analysis I begin in Chapter 6. NFsim can handle multiple rule-based species, 

but it is non-spatial [276]. SpatialKappa provides rule-based species and is spatial, but its grid-

based handling of diffusion may be inaccurate, and no published models have used it [322].  

A new version of MCell, called MCell-R, accounts for diffusion of multiple multi-state 

molecules [326]. While the developers of MCell-R have seemingly validated their platform, the 

platform may not be ready to handle large reaction networks, and nor does it preserve all of the 

functionalities previously available in MCell 3.3. In their validation, MCell-R is shown to 

reproduce non-rule-based simulation results in a reaction network of three to four molecules. With 

only three or four particle-based molecules, MCell-R calculates physiological reaction 

probabilities, even if molecules spatially aggregate during a simulation. Unfortunately, more 

complex networks such as mine involving CaMKII holoenzymes can lead to large-scale aggregates 

of CaMKII subunits, CaM, Ca2+, and other CaMKII binding partners. Indeed, Tapia et al. warn 

that such large-scale aggregates may cause reaction probabilities to become non-physiologically 

high, reducing the accuracy of model output [326]. One solution to this aggregation problem is to 

reduce simulation time-step, but this solution’s effectiveness is limited and my unsuccessful 

MCell-R trial runs (not shown) use time-steps as small as 0.1μsec. Reducing MCell-R time-steps 

may be suitable for analyses of very short simulation times, but this analysis may depend on 

functionalities only available in MCell 3.3. For instance, I would attempt to monitor the spatial 

coordinates of CaMKII to calculate how the effective diffusivity of CaMKII may depend on its 

valence. However, similarly to the problem with reaction probabilities, large-scale molecular 

aggregation prevents MCell-R from reporting spatial coordinates of individual particles. 

Additionally, MCell-R does not currently accommodate the time-variable parameters used to 

create dynamic Ca2+ flux as I do throughout this thesis using MCell 3.3. Altogether, while MCell-
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R may soon be ready for the analysis presented in this thesis, it is not yet. Still, I anticipate future 

work with MCell-R that directly complements this thesis and also explores exciting new 

biophysical phenomena in the spine, such as CaMKII subunit exchange [261, 262], synGAP-PSD-

95 interactions [223, 318], and actin polymerization [239, 245].   
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SUPPLEMENT TO CHAPTER 2 

Comparison of four-state and nine-state models  

 The high cooperativity of Ca2+ binding at each CaM terminus has led to the development 

of several models of Ca2+ binding to CaM (see [30, 81, 99]). That is, the binding of individual Ca2+ 

ions at each CaM terminus can each be treated as distinct events, resulting in a thermodynamically 

complete model of all nine possible Ca2+/CaM states (henceforth referred to as the nine-state 

model). Alternatively, the binding of both Ca2+ ions at each CaM terminus can be treated as a 

single event, resulting in an approximated model (henceforth referred to as the four-state model). 

The former model is more biophysically accurate, but the latter model is less computationally 

complex. Therefore, it is important to determine if the nine-state model is truly necessary, or if the 

four-state model is sufficient.  

 To test this, isolated and competitive models were each developed as both nine- and four-

state models, and the average bound concentrations (Cb) predicted by these models were compared 

by dividing four-state model’s predictions by those of the nine-state model. Red lines correspond 

to comparisons between isolated models, while blue lines correspond to comparisons between 

competitive models. All models included 100 Ca2+ spikes introduced at frequencies ranging from 

0.1 Hz to 1 kHz. All parameters of the four-state model were derived from the parameters of the 

nine-state model using a steady-state approximation (see [81]). 

 The level of disagreement between the four-state and nine-state models varied across 

targets, frequencies, and models (i.e., isolated and competitive). Overall, the four-state model’s 

predictions for the average bound concentrations of CaM targets ranged from 65% to 200% of 

those for the nine-state model. Compared to the potential cumulative error of experimental values 

and previously-described model assumptions, this deviation was deemed negligible. Furthermore, 

if I am to trust that the implications of this study are robust to in vivo extrapolation, then these 

implications should also be robust to such small deviations in model outputs. Therefore, I chose to 

use the four-state model for all subsequent simulations. 
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Figure 7.1. Comparison of 4-state and 9-state models of CaM-protein binding. 

Each panel corresponds to CaM binding to the titled protein as a function of Ca2+ 

frequency. Blue traces are the four-state model; red traces are for nine-state 

descriptions of CaM. For the purposes of this study, the differences between the 

two model types are negligible and therefore, I use the four-state model of CaM 

(with the exception of sensitivity analysis). 
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Figure 7.2. Average Bound Concentrations as a Function of Ca2+ Frequency. 

Data is also shown as heatmaps in Fig 4A and Fig 4B. Here, red traces are the output 

form the competitive models and blue traces are the output from isolated models. 
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Figure 7.3. Time-course of CaM binding partners bound to various states of 

CaM (in micromolar) for 1 second of 10 Hz Ca2+ flux. Each plot tracks binding of 

individual CaM states to the indicated binding partner. Note differences in scale. 

The concentration of indicated binding partner is bound to CaM0 (blue), CaM2N 

(red), CaM2C (green), CaM4 (purple), and CaMtot (orange). Solid lines denote the 

isolated model plotted against the right axis; dotted lines denote the competitive 

model plotted against the left axis. The differences between isolated and 

competitive behavior are more significant for some CaM binding partners than 

others.  

 



 

 

SUPPLEMENT TO CHAPTER 3 

Table 7.1. Calmodulin binding proteins and their chemical reaction 

Protein Description and Chemical Reactions 

Adenylyl Cyclase 

1 (AC1) 

A prominent, membrane-associated Adenylyl Cyclase isoform in hippocampal 

neurons. Binds CaM at its C1b domain and, when activated, converts ATP to cAMP. 

AC1 + CaMiN,jC ↔ AC1_CaMiN,jC 

2 Ca2+ + AC1_CaMiN,jC ↔ AC1_CaM(i+1)N,jC 

2 Ca2+ + AC1_CaMiN,jC ↔ AC1_CaMiN,(j+1)C 

AC1_CaMiN,jC →AC1_CaMiN,jC + cAMP 

Adenylyl Cyclase 

8 (AC8) 

A prominent, Adenylyl Cyclase isoform in hippocampal neurons. Binds Ca2+/CaM 

at both its N- and C-termini, which are explicitly accounted for in this work. 

Ca2+/CaM-AC8ct (C-terminus-bound AC8) may bind ATP for conversion to cAMP. 

AC8nt + CaMiN,jC ↔ AC8nt_CaMiN,jC 

2 Ca2+ + AC8nt_CaMiN,jC ↔ AC8nt_CaM(i+1)N,jC 

2 Ca2+ + AC8nt_CaMiN,jC ↔ AC8nt_CaMiN,(j+1)C 

AC8ct + CaMiN,jC ↔ AC8ct_CaMiN,jC 

2 Ca2+ + AC8ct_CaMiN,jC ↔ AC8ct_CaM(i+1)N,jC 

2 Ca2+ + AC8ct_CaMiN,jC ↔ AC8ct_CaMiN,(j+1)C 

AC8ct_CaMiN,jC →AC8ct_CaMiN,jC + cAMP 

Table 7.1. Continued. 
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Ca2+/CaM-

dependent kinase 

II (CaMKII) 

Ca2+/CaM-dependent kinase. Highly expressed in brain, and especially hippocampal 

tissue. In this work, CaMKII is modeled as monomers which, when active, may 

dimerize and subsequently become Ca2+/CaM-independent via autophosphorylation. 

Active CaMKII phosphorylates many downstream proteins such as the GluA1 

subunit of AMPA receptors.  

CaMKII + CaMiN,jC ↔ CaMKII_CaMiN,jC 

Ca2+ + CaMKII_CaMiN,jC ↔ CaMKII_CaM(i+1)N,jC 

Ca2+ + AC8nt_CaMiN,jC ↔ AC8nt_CaMiN,(j+1)C 

CaMKII_CaMiN,jC + CaMKII_CaMiN,jC ↔ Dimer(iN,jC),(iN,jC) → pCaMKII_CaMiN,jC 

+ CaMKII_CaMiN,jC 

CaMKII_CaMiN,jC + pCaMKII_CaMiN,jC ↔ pDimer(iN,jC),(iN,jC) 

→pCaMKII_CaMiN,jC + pCaMKII_CaMiN,jC 

CaMKII_CaMiN,jC + GluA1 ↔ CaMKIIiN,jC_GluA1 → CaMKII_CaMiN,jC + 

GluA1p831 

CaMKII_CaMiN,jC + GluA1p845 ↔ CaMKIIiN,jC_GluA1p845 → CaMKII_CaMiN,jC + 

GluA1p831p845 

pCaMKII_CaMiN,jC + GluA1 ↔ pCaMKIIiN,jC_GluA1 → pCaMKII_CaMiN,jC + 

GluA1p831 

pCaMKII_CaMiN,jC + GluA1p845 ↔ pCaMKIIiN,jC_GluA1p845 → 

pCaMKII_CaMiN,jC + GluA1p831p845 

Calcineurin 

(CaN) 

A Ca2+/CaM-dependent serine/threonine phosphatase. For simplicity, my models are 

restricted only to binding of Ca2+/CaM to the catalytic CaNA subunit. 

CaN + CaMiN,jC ↔ CaN_CaMiN,jC 

Ca2+ + CaN_CaMiN,jC ↔ CaN_CaM(i+1)N,jC 

Ca2+ + CaN_CaMiN,jC ↔ CaN_CaMiN,(j+1)C 

Table 7.1 Continued. 
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Myosin Light 

Chain Kinase 

(MLCK) 

A putatively abundant CBP in dendritic spines, which I model using kinetic 

parameters derived from studies on smooth muscle.  

MLCK+ CaMiN,jC ↔ MLCK_CaMiN,jC 

Ca2+ + MLCK_CaMiN,jC ↔ MLCK_CaM(i+1)N,jC 

Ca2+ + MLCK_CaMiN,jC ↔ MLCK_CaMiN,(j+1)C 

Neurogranin (Ng) A membrane-associated protein, and one of the few proteins that strongly binds CaM 

in absence of Ca2+. 

Ng+ CaMiN,jC ↔ Ng_CaMiN,jC 

Ca2+ + Ng_CaMiN,jC ↔ Ng_CaM(i+1)N,jC 

Ca2+ + Ng_CaMiN,jC ↔ Ng_CaMiN,(j+1)C 

Nitric Oxide 

Synthetase (NOS) 

Typically a membrane-associated protein that binds tightly to CaM and generates 

Nitric Oxide from citrulline and arginine.  

NOS+ CaMiN,jC ↔ NOS_CaMiN,jC 

Ca2+ + NOS_CaMiN,jC ↔ NOS_CaM(i+1)N,jC 

Ca2+ + NOS_CaMiN,jC ↔ NOS_CaMiN,(j+1)C  

Phosphodiesterase 

1 (PDE1) 

A Ca2+/CaM dependent phosphodiesterase that cleaves cAMP into AMP. 

PDE1+ CaMiN,jC ↔ PDE1_CaMiN,jC 

Ca2+ + PDE1_CaMiN,jC ↔ PDE1_CaM(i+1)N,jC 

Ca2+ + PDE1_CaMiN,jC ↔ PDE1_CaMiN,(j+1)C  

PDE1_CaMiN,jC + cAMP → PDE1_CaMiN,jC + AMP 

Reaction parameters are provided in Table 7.5. Bidirectional arrows denote reversibility; unidirectional arrows indicate irreversible 

reactions. Under-scores denote protein complexes. Subscripts i and j pertain to the 4-state model and denote total Ca2+ at the CaM N- and 

C-terminus, respectively. Therefore, in the 4-state model, i and j may be either 0 or 2 independently of each other. In the 2-state model, i 

and j must both either be 0 or 2. Prefix p denotes phosphorylated players. The corresponding system of differential equations are found 

in this section entitled “Model Equations”. 

 

 

 

 

 

 

 

1
9
4
 



 

 

Table 7.2. Non-calmodulin binding proteins included in model and their respective chemical reactions  

Phosphodiesterase 

4 (PDE4) 

PDE4 is not Ca2+/CaM dependent but plays a significant role in regulating the levels of 

cAMP in cells by cleaving cAMP into AMP. Phosphorylation by active PKAc increases the 

enzymatic activity of PDE4 [32]. 

PDE4 + PKAc ↔ PDE4_PKAc → PKAc + pPDE4 

PDE4 + cAMP → PDE4 + AMP  

pPDE4 + cAMP → pPDE4 + AMP  

Protein kinase A 

(PKA, also known 

as cAMP-

dependent kinase) 

Binds up to four cAMP, liberating catalytic subunits that bind and phosphorylate a number 

of downstream targets such as PDE4 and GluA1 [21, 32]. Reaction subscripts: numbers 

denote bound cAMP, R denotes auto-inhibition, C denotes a catalytic subunit.  

PKA + cAMP ↔ R2C2_cAMP 

R2C2_cAMP + cAMP ↔ R2C2_cAMP2 

R2C2_cAMP2 + cAMP ↔ R2C2_cAMP3 

R2C2_cAMP3 + cAMP ↔ R2C2_cAMP4 

R2C2_cAMP4 ↔ R2C_cAMP4 + PKAc 

R2C_cAMP4 ↔ R2_cAMP4 + PKAc 

R2_cAMP4 ↔ R2 + 4 AMP 

PKAc + PKAinhibitor ↔ PKAi 

R2 + PKAi ↔ R2C + PKAinhibitor 

R2C + PKAi ↔ PKA + PKAinhibitor 

Table 7.2 Continued. 
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Inhibitor 1 (Inh-1 

or I1) 

Inhibitor 1 may become phosphorylated at Ser-35 by PKAc, and phosphorylated Ip35 is able 

to bind and inhibit the activity of protein phosphatase 1 (PP1). Activated CaN-CaM is able to 

de-phosphorylate Ip35 back to the original I1 state.  

I1 + PKAc ↔ I1_PKAc → Ip35 + PKAc 

Ip35 + PP1 ↔ Ip35_PP1 

Ip35 + CaN_CaMiN,jC ↔ Ip35_CaN_CaMiN,jC → I1 + CaN_CaMiN,jC 

Protein 

Phosphatase 1 

(PP1) 

PP1 + pCaMKII_CaMiN,jC ↔ PP1_ pCaMKII_CaMiN,jC → PP1 + CaMKII_CaMiN,jC 

PP1 + GluA1p831 ↔ PP1_GluA1p831→ PP1 + GluA1 

PP1 + GluA1p845 ↔ PP1_GluA1p845→ PP1 + GluA1 

PP1 + GluA1p831p845 ↔ PP1_GluA1p831p845→ PP1 + GluA1p845 

GluA1 One of four subunits of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor 

(AMPA receptor). Is phosphorylated at amino acid residue Ser-831 by CaMKII and residue 

Ser-845 by PKA [32, 33]. Increase AMPA phosphorylation is implicated in synaptic plasticity, 

and GluA1-p845 may be necessary for exocytosis of AMPARs to the synaptic membrane [33]. 

GluA1 + PKA4 ↔ GluA1_PKA4 

GluA1 + PKAc ↔ GluA1_PKAc → GluA1p845 + PKAc 

GluA1 + CaMKII_CaMiN,jC ↔ GluA1_CaMKII_CaMiN,jC → GluA1p831 + CaMKII_CaMiN,jC 

GluA1 + pCaMKII_CaMiN,jC ↔ GluA1_pCaMKII_CaMiN,jC → GluA1p831 + 

pCaMKII_CaMiN,jC 

GluA1p845 + CaMKII_CaMiN,jC ↔ GluA1p845_CaMKII_CaMiN,jC → GluA1p831p845 + 

CaMKII_CaMiN,jC 

GluA1p845 + pCaMKII_CaMiN,jC ↔ GluA1p845_pCaMKII_CaMiN,jC → GluA1p831p845 + 

pCaMKII_CaMiN,jC 

GluA1p831 + PKAc ↔ GluA1p831_PKAc → GluA1p831p845 + PKAc 

Reaction parameters are provided in Table 7.5. Bidirectional arrows denote reversibility; Unidirectional arrows indicate irreversible reactions. Under-

scores denote protein complexes. Subscripts i and j pertain to the 4-state model and denote total Ca2+ at the CaM N- and C-terminus, respectively. 

Therefore, in the 4-state model, i and j may be either 0 or 2 independently of each other. In the 2-state model, i and j must both either be 0 or 2. Prefix 

p denotes phosphorylated players. The corresponding system of differential equations are found in Supplemental Material section entitled “Model 

Equations”. 
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Calculation of Cb for Figure 3.3.  

In Figure 3.3, I deploy a metric first utilized in a previous publication (Romano et al. 2017 

PLoS Comp Biol). In that publication, the metric Cb is defined as the time-averaged concentration 

of CaM-bound CBP at a given Ca2+ frequency. Cb is mathematically represented in Equation 1 or 

Equation 2 below. Sometimes, I use Equation 1 which accounts for all CaM4-bound CBPs, and 

sometimes I use Equation 2, which accounts for CBPs bound by any Ca2+/CaM state.   

(1) Cb =
1

tf − t0
∫ ∑ ∑[TbCaM4]

2

j=0

2

i=0

dt

tf

t=t0

 

(2) Cb =
1

tf − t0
∫ ∑ ∑[TbCaMNiCj]

2

j=0

2

i=0

dt

tf

t=t0

 

 

The subscript b indexes the binding partners, so the average bound concentration for a 

given binding partner (Cb) is found by integrating the total concentration of that binding partner 

(Tb) bound to each CaM state (CaMNiCj, i and j = 0, 1, or 2) over the stimulation period (to until 

tf) and dividing by the stimulus duration (tf - to). Note that dividing by stimulus duration is 

necessary because I reduce tf – to in order to limit computational expense at high frequencies. To 

compare relative levels of CaM-binding across various proteins and experimental conditions, for 

each binding partner I normalize Cb by its peak value from among all the Ca2+ frequencies 

simulated. 
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Figure 7.4. 2-state vs 4-state time-course comparison at 50Hz. (A, B) Response 

of binding models to 50 Hz Ca2+ frequency stimulation, monitoring each CBP 

bound to Ca2+-saturated CaM4 for the (A) 2-state and (B) 4-state models. (C, D) 

Response of binding models to 50 Hz Ca2+ frequency stimulation, monitoring the 

cumulative concentration of each CBP bound to any Ca2+/CaM state for the (C) 2-

state and (D) 4-state models.  
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Table 7.3. Sensitivity Analysis of Kinetic Parameters at 10 Hz Ca2+ and WT Ng. 

Parameter PRCC 

𝑘𝑝
𝐴𝐶1𝐶𝑎𝑀4  0.736 

𝑘𝑜𝑛
𝐴𝐶1𝐶𝑎𝑀4  0.568 

𝑘𝑝
𝐾𝐶𝑎𝑀4𝐺𝑙𝑢𝐴1  0.550 

𝑘𝑜𝑛
𝐶𝑎𝑀𝐾𝐼𝐼𝐺𝑙𝑢𝐴1  0.540 

𝑘𝑜𝑛
𝐾𝐶𝑎𝑀4  -0.560 

𝑘𝑝
𝑃𝐷𝐸4𝑐𝐴𝑀𝑃  -0.771 

Note that both CaMKII- and AC-associated parameters are both implicated as significant in this analysis. 

Table 7.4. Sensitivity Analysis of Initial Concentrations at 10 vs 100 Hz Ca2+ with WT Ng. 

Parameter 
PRCC 

10 Hz 

 
Parameter 

PRCC 

100 Hz 

𝑐𝑜𝑛𝑐𝐶𝑎𝑀  0.898  𝑐𝑜𝑛𝑐𝐶𝑎𝑀  0.893 

𝑐𝑜𝑛𝑐𝐺𝑙𝑢𝐴1  0.708  𝑐𝑜𝑛𝑐𝐺𝑙𝑢𝐴1  0.775 

𝑐𝑜𝑛𝑐𝐴𝐶1  0.578  𝑐𝑜𝑛𝑐𝐴𝐶1  0.632 

𝑐𝑜𝑛𝑐𝐶𝑎𝑀𝐾𝐼𝐼  -0.540  𝑐𝑜𝑛𝑐𝑃𝐾𝐴  0.556 

𝑐𝑜𝑛𝑐𝑃𝐷𝐸4  -0.747  𝑐𝑜𝑛𝑐𝐶𝑎𝑀𝐾𝐼𝐼  -0.597 

   𝑐𝑜𝑛𝑐𝑃𝐷𝐸4  -0.758 

At both 10 Hz and 100 Hz, that [CaM] and [GluA1] are highly significant lends confidence to my sensitivity 

analysis results. 
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Table 7.5. Model parameter values. 

Parameter Description Value Used 

𝑘𝑜𝑛
2𝑁

 2 Ca2+ binding to CaM N-terminus 100.0 μM-1s-1 

𝑘𝑜𝑓𝑓
2𝑁  2 Ca2+ dissociation from CaM N-terminus 750.0 s-1 

𝐾𝐷
2𝑁 Equilibrium binding of 2 Ca2+ to CaM N-

terminus 

7.5 μM 

𝑘𝑜𝑛
2𝐶

 2 Ca2+ binding to CaM C-terminus 4.0 μM-1s-1 

𝑘𝑜𝑓𝑓
2𝐶  2 Ca2+ dissociation from CaM C-terminus 9.25 s-1 

𝐾𝐷
2𝐶 Equilibrium binding of 2 Ca2+ to CaM C-

terminus 

2.32 μM 

𝑘𝑜𝑛
𝐴𝐶1𝐶𝑎𝑀0

 CaM0 binding to AC1 0.00166 μM-1s-

1 

𝑘𝑜𝑓𝑓
𝐴𝐶1𝐶𝑎𝑀0

 CaM0 dissociation from AC1 0.9 s-1 

𝐾𝐷
𝐴𝐶1𝐶𝑎𝑀0

 Equilibrium binding of CaM0 to AC1 542.0 μM 

𝑘𝑜𝑛
𝐴𝐶1𝐶𝑎𝑀2𝑁

 CaM2N binding to AC1 0.156 μM-1s-1 

𝑘𝑜𝑓𝑓
𝐴𝐶1𝐶𝑎𝑀2𝑁

 CaM2N dissociation from AC1 0.9 s-1 

𝐾𝐷
𝐴𝐶1𝐶𝑎𝑀2𝑁

 Equilibrium binding of CaM2N to AC1 5.78 μM 

𝑘𝑜𝑛
𝐴𝐶1𝐶𝑎𝑀2𝐶

 CaM2C binding to AC1 0.064 μM-1s-1 

𝑘𝑜𝑓𝑓
𝐴𝐶1𝐶𝑎𝑀2𝐶

 CaM2C dissociation from AC1 0.9 s-1 

𝐾𝐷
𝐴𝐶1𝐶𝑎𝑀2𝐶

 Equilibrium binding of CaM2C to AC1 14.1 μM 

𝑘𝑜𝑛
𝐴𝐶1𝐶𝑎𝑀4

 CaM4 binding to AC1 6.0 μM-1s-1 

𝑘𝑜𝑓𝑓
𝐴𝐶1𝐶𝑎𝑀4

 CaM4 dissociation from AC1 0.9 s-1 

𝐾𝐷
𝐴𝐶1𝐶𝑎𝑀4

 Equilibrium binding of CaM4 to AC1 0.15 μM 

𝑘𝑜𝑛
𝐴𝐶12𝑁

 2 Ca2+ binding to AC1-CaM N-terminus 100.0 μM-1s-1 

𝑘𝑜𝑓𝑓
𝐴𝐶12𝑁 2 Ca2+ dissociation from AC1-CaM N-

terminus 

8.0 s-1 

𝐾𝐷
𝐴𝐶12𝑁 Equilibrium binding of 2 Ca2+ to AC1-

CaM N-terminus 

0.08 μM 

𝑘𝑜𝑛
𝐴𝐶12𝐶

 2 Ca2+ binding to AC1-CaM C-terminus 4.0 μM-1s-1 

𝑘𝑜𝑓𝑓
𝐴𝐶12𝐶 2 Ca2+ dissociation from AC1-CaM C-

terminus 

1.2 s-1 

𝐾𝐷
𝐴𝐶12𝐶 Equilibrium binding of 2 Ca2+ to AC1-

CaM C-terminus 

0.3 μM 

𝑘𝑜𝑛
𝐴𝐶8𝑛𝑡𝐶𝑎𝑀0

 CaM0 binding to AC8 N-terminus 0.00828 μM-1s-

1 

𝑘𝑜𝑓𝑓
𝐴𝐶8𝑛𝑡𝐶𝑎𝑀0

 CaM0 dissociation from AC8 N-terminus 1.0 s-1 

𝐾𝐷
𝐴𝐶8𝑛𝑡𝐶𝑎𝑀0

 Equilibrium binding of CaM0 to AC8 N-

terminus 

121.0 μM 

𝑘𝑜𝑛
𝐴𝐶8𝑛𝑡𝐶𝑎𝑀2𝑁

 CaM2N binding to AC8 N-terminus 0.00828 μM-1s-

1 

Table 7.5 Continued. 
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𝑘𝑜𝑓𝑓
𝐴𝐶8𝑛𝑡𝐶𝑎𝑀2𝑁

 CaM2N dissociation from AC8 N-

terminus 

1.0 s-1 

𝐾𝐷
𝐴𝐶8𝑛𝑡𝐶𝑎𝑀2𝑁

 Equilibrium binding of CaM2N to AC8 

N-terminus 

121.0 μM 

𝑘𝑜𝑛
𝐴𝐶8𝑛𝑡𝐶𝑎𝑀2𝐶

 CaM2C binding to AC8 N-terminus 1.25 μM-1s-1 

𝑘𝑜𝑓𝑓
𝐴𝐶8𝑛𝑡𝐶𝑎𝑀2𝐶

 CaM2C dissociation from AC8 N-

terminus 

1.0 s-1 

𝐾𝐷
𝐴𝐶8𝑛𝑡𝐶𝑎𝑀2𝐶

 Equilibrium binding of CaM2C to AC8 

N-terminus 

0.8 μM 

𝑘𝑜𝑛
𝐴𝐶8𝑛𝑡𝐶𝑎𝑀4

 CaM4 binding to AC8 N-terminus 1.25 μM-1s-1 

𝑘𝑜𝑓𝑓
𝐴𝐶8𝑛𝑡𝐶𝑎𝑀4

 CaM4 dissociation from AC8 N-terminus 1.0 s-1 

𝐾𝐷
𝐴𝐶8𝑛𝑡𝐶𝑎𝑀4

 Equilibrium binding of CaM4 to AC8 N-

terminus 

0.8 μM 

𝑘𝑜𝑛
𝐴𝐶8𝑛𝑡2𝑁

 2 Ca2+ binding to AC8(N-terminus)-CaM 

N-terminus 

100.0 μM-1s-1 

𝑘𝑜𝑓𝑓
𝐴𝐶8𝑛𝑡2𝑁 2 Ca2+ dissociation from AC8(N-

terminus)-CaM N-terminus 

750.0 s-1 

𝐾𝐷
𝐴𝐶8𝑛𝑡2𝑁 Equilibrium binding of 2 Ca2+ to AC8(N-

terminus)-CaM N-terminus 

7.5 μM 

𝑘𝑜𝑛
𝐴𝐶8𝑛𝑡2𝐶

 2 Ca2+ binding to AC8(N-terminus)-CaM 

C-terminus 

4.0 μM-1s-1 

𝑘𝑜𝑓𝑓
𝐴𝐶8𝑛𝑡2𝐶 2 Ca2+ dissociation from AC8(N-

terminus)-CaM C-terminus 

0.5 s-1 

𝐾𝐷
𝐴𝐶8𝑛𝑡2𝐶 Equilibrium binding of 2 Ca2+ to AC8(N-

terminus)-CaM C-terminus 

0.125 μM 

𝑘𝑜𝑛
𝐴𝐶8𝑐𝑡𝐶𝑎𝑀0

 CaM0 binding to AC8 C-terminus 0.00267 μM-1s-

1 

𝑘𝑜𝑓𝑓
𝐴𝐶8𝑐𝑡𝐶𝑎𝑀0

 CaM0 dissociation from AC8 C-terminus 1.0 s-1 

𝐾𝐷
𝐴𝐶8𝑐𝑡𝐶𝑎𝑀0

 Equilibrium binding of CaM0 to AC8 C-

terminus 

375.0 μM 

𝑘𝑜𝑛
𝐴𝐶8𝑐𝑡𝐶𝑎𝑀2𝑁

 CaM2N binding to AC8 C-terminus 1.25 μM-1s-1 

𝑘𝑜𝑓𝑓
𝐴𝐶8𝑐𝑡𝐶𝑎𝑀2𝑁

 CaM2N dissociation from AC8 C-

terminus 

1.0 s-1 

𝐾𝐷
𝐴𝐶8𝑐𝑡𝐶𝑎𝑀2𝑁

 Equilibrium binding of CaM2N to AC8 

C-terminus 

0.8 μM 

𝑘𝑜𝑛
𝐴𝐶8𝑐𝑡𝐶𝑎𝑀2𝐶

 CaM2C binding to AC8 C-terminus 0.00267 μM-1s-

1 

𝑘𝑜𝑓𝑓
𝐴𝐶8𝑐𝑡𝐶𝑎𝑀2𝐶

 CaM2C dissociation from AC8 C-

terminus 

1.0 s-1 

𝐾𝐷
𝐴𝐶8𝑐𝑡𝐶𝑎𝑀2𝐶

 Equilibrium binding of CaM2C to AC8 

C-terminus 

375.0 μM 

𝑘𝑜𝑛
𝐴𝐶8𝑐𝑡𝐶𝑎𝑀4

 CaM4 binding to AC8 C-terminus 1.25 μM-1s-1 

Table 7.5 Continued. 



202 

 

𝑘𝑜𝑓𝑓
𝐴𝐶8𝑐𝑡𝐶𝑎𝑀4

 CaM4 dissociation from AC8 C-terminus 1.0 s-1 

𝐾𝐷
𝐴𝐶8𝑐𝑡𝐶𝑎𝑀4

 Equilibrium binding of CaM4 to AC8 C-

terminus 

0.8 μM 

𝑘𝑜𝑛
𝐴𝐶8𝑐𝑡2𝑁

 2 Ca2+ binding to AC8(C-terminus)-CaM 

N-terminus 

100.0 μM-1s-1 

𝑘𝑜𝑓𝑓
𝐴𝐶8𝑐𝑡2𝑁 2 Ca2+ dissociation from AC8(C-

terminus)-CaM N-terminus 

1.6 s-1 

𝐾𝐷
𝐴𝐶8𝑐𝑡2𝑁 Equilibrium binding of 2 Ca2+ to AC8(C-

terminus)-CaM N-terminus 

0.016 μM 

𝑘𝑜𝑛
𝐴𝐶8𝑐𝑡2𝐶

 2 Ca2+ binding to AC8(C-terminus)-CaM 

C-terminus 

4.0 μM-1s-1 

𝑘𝑜𝑓𝑓
𝐴𝐶8𝑐𝑡2𝐶 2 Ca2+ dissociation from AC8(C-

terminus)-CaM C-terminus 

9.25 s-1 

𝐾𝐷
𝐴𝐶8𝑐𝑡2𝐶 Equilibrium binding of 2 Ca2+ to AC8(C-

terminus)-CaM C-terminus 

2.31 μM 

𝑘𝑜𝑛
𝑃𝑃𝐶𝑎𝑀0 CaM0 binding to CaN 0.0000000798 

μM-1s-1 

𝑘𝑜𝑓𝑓
𝑃𝑃𝐶𝑎𝑀0

 CaM0 dissociation from CaN 0.000319 s-1 

𝐾𝐷
𝑃𝑃𝐶𝑎𝑀0

 Equilibrium binding of CaM0 to CaN 3999.0 μM 

𝑘𝑜𝑛
𝑃𝑃𝐶𝑎𝑀2𝑁

 CaM2N binding to CaN 0.000416 μM-

1s-1 

𝑘𝑜𝑓𝑓
𝑃𝑃𝐶𝑎𝑀2𝑁

 CaM2N dissociation from CaN 0.000319 s-1 

𝐾𝐷
𝑃𝑃𝐶𝑎𝑀2𝑁

 Equilibrium binding of CaM2N to CaN 0.768 μM 

𝑘𝑜𝑛
𝑃𝑃𝐶𝑎𝑀2𝐶

 CaM2C binding to CaN 0.000123 μM-

1s-1 

𝑘𝑜𝑓𝑓
𝑃𝑃𝐶𝑎𝑀2𝐶

 CaM2C dissociation from CaN 0.000319 s-1 

𝐾𝐷
𝑃𝑃𝐶𝑎𝑀2𝐶

 Equilibrium binding of CaM2C to CaN 2.59 μM 

𝑘𝑜𝑛
𝑃𝑃𝐶𝑎𝑀4

 CaM4 binding to CaN 0.64 μM-1s-1 

𝑘𝑜𝑓𝑓
𝑃𝑃𝐶𝑎𝑀4

 CaM4 dissociation from CaN 0.000319 s-1 

𝐾𝐷
𝑃𝑃𝐶𝑎𝑀4

 Equilibrium binding of CaM4 to CaN 0.000498 μM 

𝑘𝑜𝑛
𝑃𝑃2𝑁

 2 Ca2+ binding to CaN-CaM N-terminus 100.0 μM-1s-1 

𝑘𝑜𝑓𝑓
𝑃𝑃2𝑁 2 Ca2+ dissociation from CaN-CaM N-

terminus 

12.0 s-1 

𝐾𝐷
𝑃𝑃2𝑁 Equilibrium binding of 2 Ca2+ to CaN-

CaM N-terminus 

0.12 μM 

𝑘𝑜𝑛
𝑃𝑃2𝐶

 2 Ca2+ binding to CaN-CaM C-terminus 4.0 μM-1s-1 

𝑘𝑜𝑓𝑓
𝑃𝑃2𝐶 2 Ca2+ dissociation from CaN-CaM C-

terminus 

0.6 s-1 

𝐾𝐷
𝑃𝑃2𝐶 Equilibrium binding of 2 Ca2+ to CaN-

CaM C-terminus 

0.15 μM 

𝑘𝑜𝑛
𝐾𝐶𝑎𝑀0

 CaM0 binding to CaMKII 0.0038 μM-1s-1 

𝑘𝑜𝑓𝑓
𝐾𝐶𝑎𝑀0

 CaM0 dissociation from CaMKII 5.5 s-1 

𝐾𝐷
𝐾𝐶𝑎𝑀0

 Equilibrium binding of CaM0 to CaMKII 1.45 mM 
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𝑘𝑜𝑛
𝐾𝐶𝑎𝑀2𝑁

 CaM2N binding to CaMKII 0.12 μM-1s-1 

𝑘𝑜𝑓𝑓
𝐾𝐶𝑎𝑀2𝑁

 CaM2N dissociation from CaMKII 1.7 s-1 

𝐾𝐷
𝐾𝐶𝑎𝑀2𝑁

 Equilibrium binding of CaM2N to 

CaMKII 

14.2 μM 

𝑘𝑜𝑛
𝐾𝐶𝑎𝑀2𝐶

 CaM2C binding to CaMKII 0.92 μM-1s-1 

𝑘𝑜𝑓𝑓
𝐾𝐶𝑎𝑀2𝐶

 CaM2C dissociation from CaMKII 6.8 s-1 

𝐾𝐷
𝐾𝐶𝑎𝑀2𝐶

 Equilibrium binding of CaM2C to 

CaMKII 

7.39 μM 

𝑘𝑜𝑛
𝐾𝐶𝑎𝑀4

 CaM4 binding to CaMKII 30.0 μM-1s-1 

𝑘𝑜𝑓𝑓
𝐾𝐶𝑎𝑀4

 CaM4 dissociation from CaMKII 1.7 s-1 

𝐾𝐷
𝐾𝐶𝑎𝑀4

 Equilibrium binding of CaM4 to CaMKII 0.0567 μM 

𝑘𝑜𝑛
𝐾2𝑁

 2 Ca2+ binding to CaMKII-CaM N-

terminus 

76.0 μM-1s-1 

𝑘𝑜𝑓𝑓
𝐾2𝑁 2 Ca2+ dissociation from CaMKII-CaM 

N-terminus 

33.0 s-1 

𝐾𝐷
𝐾2𝑁 Equilibrium binding of 2 Ca2+ to CaMKII-

CaM N-terminus 

0.43 μM 

𝑘𝑜𝑛
𝐾2𝐶

 2 Ca2+ binding to CaMKII-CaM C-

terminus 

44.0 μM-1s-1 

𝑘𝑜𝑓𝑓
𝐾2𝐶 2 Ca2+ dissociation from CaMKII-CaM C-

terminus 

2.7 s-1 

𝐾𝐷
𝐾2𝐶 Equilibrium binding of 2 Ca2+ to CaMKII-

CaM C-terminus 

0.0614 μM 

𝑘𝑜𝑛
𝑀𝐾𝐶𝑎𝑀0

 CaM0 binding to MLCK 0.00717 μM-1s-

1 

𝑘𝑜𝑓𝑓
𝑀𝐾𝐶𝑎𝑀0

 CaM0 dissociation from MLCK 0.132 s-1 

𝐾𝐷
𝑀𝐾𝐶𝑎𝑀0

 Equilibrium binding of CaM0 to MLCK 18.4 μM  

𝑘𝑜𝑛
𝑀𝐾𝐶𝑎𝑀2𝑁

 CaM2N binding to MLCK 2.34 μM-1s-1 

𝑘𝑜𝑓𝑓
𝑀𝐾𝐶𝑎𝑀2𝑁

 CaM2N dissociation from MLCK 0.132 s-1 

𝐾𝐷
𝑀𝐾𝐶𝑎𝑀2𝑁

 Equilibrium binding of CaM2N to MLCK 0.0564 μM 

𝑘𝑜𝑛
𝑀𝐾𝐶𝑎𝑀2𝐶

 CaM2C binding to MLCK 0.170 μM-1s-1 

𝑘𝑜𝑓𝑓
𝑀𝐾𝐶𝑎𝑀2𝐶

 CaM2C dissociation from MLCK 0.132 s-1 

𝐾𝐷
𝑀𝐾𝐶𝑎𝑀2𝐶

 Equilibrium binding of CaM2C to MLCK 0.776 μM  

𝑘𝑜𝑛
𝑀𝐾𝐶𝑎𝑀4

 CaM4 binding to MLCK 55.5 μM-1s-1 

𝑘𝑜𝑓𝑓
𝑀𝐾𝐶𝑎𝑀4

 CaM4 dissociation from MLCK 0.132 s-1 

𝐾𝐷
𝑀𝐾𝐶𝑎𝑀4

 Equilibrium binding of CaM4 to MLCK 0.00238 μM 

𝑘𝑜𝑛
𝑀𝐾2𝑁

 2 Ca2+ binding to MLCK-CaM N-

terminus 

100.0 μM-1s-1 

𝑘𝑜𝑓𝑓
𝑀𝐾2𝑁 2 Ca2+ dissociation from MLCK-CaM N-

terminus 

2.3 s-1 
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𝐾𝐷
𝑀𝐾2𝑁 Equilibrium binding of 2 Ca2+ to MLCK-

CaM N-terminus 

0.023 μM 

𝑘𝑜𝑛
𝑀𝐾2𝐶

 2 Ca2+ binding to MLCK-CaM C-

terminus 

4.0 μM-1s-1 

𝑘𝑜𝑓𝑓
𝑀𝐾2𝐶  2 Ca2+ dissociation from MLCK-CaM C-

terminus 

0.39 s-1 

𝐾𝐷
𝑀𝐾2𝐶  Equilibrium binding of 2 Ca2+ to MLCK-

CaM C-terminus 

0.098 μM 

𝑘𝑜𝑛
𝑁𝑔𝐶𝑎𝑀0

 CaM0 binding to Ng 28.0 μM-1s-1 

𝑘𝑜𝑓𝑓
𝑁𝑔𝐶𝑎𝑀0

 CaM0 dissociation from Ng 36.0 s-1 

𝐾𝐷
𝑁𝑔𝐶𝑎𝑀0

 Equilibrium binding of CaM0 to Ng 1.29 μM 

𝑘𝑜𝑛
𝑁𝑔𝐶𝑎𝑀2𝑁

 CaM2N binding to Ng 28.0 μM-1s-1 

𝑘𝑜𝑓𝑓
𝑁𝑔𝐶𝑎𝑀2𝑁

 CaM2N dissociation from Ng 36.0 s-1 

𝐾𝐷
𝑁𝑔𝐶𝑎𝑀2𝑁

 Equilibrium binding of CaM2N to Ng 1.29 μM 

𝑘𝑜𝑛
𝑁𝑔𝐶𝑎𝑀2𝐶

 CaM2C binding to Ng 2.0 μM-1s-1 

𝑘𝑜𝑓𝑓
𝑁𝑔𝐶𝑎𝑀2𝐶

 CaM2C dissociation from Ng 136.0 s-1 

𝐾𝐷
𝑁𝑔𝐶𝑎𝑀2𝐶

 Equilibrium binding of CaM2C to Ng 68.0 μM 

𝑘𝑜𝑛
𝑁𝑔𝐶𝑎𝑀4

 CaM4 binding to Ng 2.0 μM-1s-1 

𝑘𝑜𝑓𝑓
𝑁𝑔𝐶𝑎𝑀4

 CaM4 dissociation from Ng 136.0 s-1 

𝐾𝐷
𝑁𝑔𝐶𝑎𝑀4

 Equilibrium binding of CaM4 to Ng 68.0 μM 

𝑘𝑜𝑛
𝑁𝑔2𝑁

 2 Ca2+ binding to Ng-CaM N-terminus 100.0 μM-1s-1 

𝑘𝑜𝑓𝑓
𝑁𝑔2𝑁

 2 Ca2+ dissociation from Ng-CaM N-

terminus 

750.0 s-1 

𝐾𝐷
𝑁𝑔2𝑁

 Equilibrium binding of 2 Ca2+ to Ng-CaM 

N-terminus 

7.5 μM 

𝑘𝑜𝑛
𝑁𝑔2𝐶

 2 Ca2+ binding to Ng-CaM C-terminus 426.0 μM-1s-1 

𝑘𝑜𝑓𝑓
𝑁𝑔2𝐶

 2 Ca2+ dissociation from Ng-CaM C-

terminus 

418.0 s-1 

𝐾𝐷
𝑁𝑔2𝐶

 Equilibrium binding of 2 Ca2+ to Ng-CaM 

C-terminus 

0.98 μM 

𝑘𝑜𝑛
𝑁𝑂𝑆𝐶𝑎𝑀0

 CaM0 binding to NOS 0.135 μM-1s-1 

𝑘𝑜𝑓𝑓
𝑁𝑂𝑆𝐶𝑎𝑀0

 CaM0 dissociation from NOS 0.01 s-1 

𝐾𝐷
𝑁𝑂𝑆𝐶𝑎𝑀0

 Equilibrium binding of CaM0 to NOS 0.074 μM 

𝑘𝑜𝑛
𝑁𝑂𝑆𝐶𝑎𝑀2𝑁

 CaM2N binding to NOS 0.135 μM-1s-1 

𝑘𝑜𝑓𝑓
𝑁𝑂𝑆𝐶𝑎𝑀2𝑁

 CaM2N dissociation from NOS 0.01 s-1 

𝐾𝐷
𝑁𝑂𝑆𝐶𝑎𝑀2𝑁

 Equilibrium binding of CaM2N to NOS 0.074 μM 

𝑘𝑜𝑛
𝑁𝑂𝑆𝐶𝑎𝑀2𝐶

 CaM2C binding to NOS 1.25 μM-1s-1 

𝑘𝑜𝑓𝑓
𝑁𝑂𝑆𝐶𝑎𝑀2𝐶

 CaM2C dissociation from NOS 0.01 s-1 

𝐾𝐷
𝑁𝑂𝑆𝐶𝑎𝑀2𝐶

 Equilibrium binding of CaM2C to NOS 0.008 μM 

𝑘𝑜𝑛
𝑁𝑂𝑆𝐶𝑎𝑀4

 CaM4 binding to NOS 1.25 μM-1s-1 
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𝑘𝑜𝑓𝑓
𝑁𝑂𝑆𝐶𝑎𝑀4

 CaM4 dissociation from NOS 0.01 s-1 

𝐾𝐷
𝑁𝑂𝑆𝐶𝑎𝑀4

 Equilibrium binding of CaM4 to NOS 0.008 μM 

𝑘𝑜𝑛
𝑁𝑂𝑆2𝑁

 2 Ca2+ binding to NOS-CaM N-terminus 100.0 μM-1s-1 

𝑘𝑜𝑓𝑓
𝑁𝑂𝑆2𝑁 2 Ca2+ dissociation from NOS-CaM N-

terminus 

750.0 s-1 

𝐾𝐷
𝑁𝑂𝑆2𝑁 Equilibrium binding of 2nd Ca2+ to NOS-

CaM N-terminus 

7.5 μM 

𝑘𝑜𝑛
𝑁𝑂𝑆2𝐶

 2 Ca2+ binding to NOS-CaM C-terminus 4.0 μM-1s-1 

𝑘𝑜𝑓𝑓
𝑁𝑂𝑆2𝐶 2 Ca2+ dissociation from NOS-CaM C-

terminus 

1.0 s-1 

𝐾𝐷
𝑁𝑂𝑆2𝐶 Equilibrium binding of 2 Ca2+ to NOS-

CaM C-terminus 

0.25 μM 

𝑘𝑜𝑛
𝑃𝐷𝐸1𝐶𝑎𝑀0

 CaM0 binding to PDE1 0.0000000138 

μM-1s-1 

𝑘𝑜𝑓𝑓
𝑃𝐷𝐸1𝐶𝑎𝑀0

 CaM0 dissociation from PDE1 0.001 s-1 

𝐾𝐷
𝑃𝐷𝐸1𝐶𝑎𝑀0

 Equilibrium binding of CaM0 to PDE1 72463.8 μM 

𝑘𝑜𝑛
𝑃𝐷𝐸1𝐶𝑎𝑀2𝑁

 CaM2N binding to PDE1 0.00002 μM-1s-

1 

𝑘𝑜𝑓𝑓
𝑃𝐷𝐸1𝐶𝑎𝑀2𝑁

 CaM2N dissociation from PDE1 0.001 s-1 

𝐾𝐷
𝑃𝐷𝐸1𝐶𝑎𝑀2𝑁

 Equilibrium binding of CaM2N to PDE1 50 μM 

𝑘𝑜𝑛
𝑃𝐷𝐸1𝐶𝑎𝑀2𝐶

 CaM2C binding to PDE1 0.00013 μM-1s-

1 

𝑘𝑜𝑓𝑓
𝑃𝐷𝐸1𝐶𝑎𝑀2𝐶

 CaM2C dissociation from PDE1 0.001 s-1 

𝐾𝐷
𝑃𝐷𝐸1𝐶𝑎𝑀2𝐶

 Equilibrium binding of CaM2C to PDE1 7.69 μM 

𝑘𝑜𝑛
𝑃𝐷𝐸1𝐶𝑎𝑀4

 CaM4 binding to PDE1 0.18182 μM-1s-

1 

𝑘𝑜𝑓𝑓
𝑃𝐷𝐸1𝐶𝑎𝑀4

 CaM4 dissociation from PDE1 0.001 s-1 

𝐾𝐷
𝑃𝐷𝐸1𝐶𝑎𝑀4

 Equilibrium binding of CaM4 to PDE1 0.0055 μM 

𝑘𝑜𝑛
𝑃𝐷𝐸12𝑁

 2 Ca2+ binding to PDE1-CaM N-terminus 750.0 μM-1s-1 

𝑘𝑜𝑓𝑓
𝑃𝐷𝐸12𝑁 2 Ca2+ dissociation from PDE1-CaM N-

terminus 

25 s-1 

𝐾𝐷
𝑃𝐷𝐸12𝑁 Equilibrium binding of 2 Ca2+ to PDE1-

CaM N-terminus 

0.033 μM 

𝑘𝑜𝑛
𝑃𝐷𝐸12𝐶

 2 Ca2+ binding to PDE1-CaM C-terminus 204 μM-1s-1 

𝑘𝑜𝑓𝑓
𝑃𝐷𝐸12𝐶 2 Ca2+ dissociation from PDE1-CaM C-

terminus 

1.02 s-1 

𝐾𝐷
𝑃𝐷𝐸12𝐶 Equilibrium binding of 2 Ca2+ to PDE1-

CaM C-terminus 

0.005 μM 

𝑘𝑜𝑛
𝐶𝑎𝑀𝐾𝐼𝐼

 CaMKII binding to CaMKII 45 μM-1s-1 

𝑘𝑜𝑓𝑓
𝐶𝑎𝑀𝐾𝐼𝐼 CaMKII dissociation from CaMKII 2250 s-1 

𝐾𝐷
𝐶𝑎𝑀𝐾𝐼𝐼 Equilibrium binding of CaMKII to 

CaMKII 

50 μM 
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𝑘𝑜𝑛
𝐶𝑎𝑀𝐾𝐼𝐼𝑝

 CaMKII binding pCaMKII 45 μM-1s-1 

𝑘𝑜𝑓𝑓
𝐶𝑎𝑀𝐾𝐼𝐼𝑝

 CaMKII dissociation from pCaMKII 2250 s-1 

𝐾𝐷
𝐶𝑎𝑀𝐾𝐼𝐼𝑝

 Equilibrium binding of CaMKII to 

pCaMKII 

50 μM 

𝑘𝑝
𝐶𝑎𝑀𝐾𝐼𝐼𝐶𝑎𝑀0

 Autophosphorylation of CaMKII-CaM0 0 s-1 

𝑘𝑝
𝐶𝑎𝑀𝐾𝐼𝐼𝐶𝑎𝑀2𝑁 Autophosphorylation of CaMKII-CaM2N 0.120 s-1 

𝑘𝑝
𝐶𝑎𝑀𝐾𝐼𝐼𝐶𝑎𝑀2𝐶  Autophosphorylation of CaMKII-CaM2C 0.064 s-1 

𝑘𝑝
𝐶𝑎𝑀𝐾𝐼𝐼𝐶𝑎𝑀4

 Autophosphorylation of CaMKII-CaM4 0.875 s-1 

𝑘𝑐𝑎𝑡
𝐴𝐶1𝐶𝑎𝑀

 Catalysis of ATP by AC1-CaM0 0 s-1 

𝑘𝑐𝑎𝑡
𝐴𝐶1𝐶𝑎𝑀2𝑁

 Catalysis of ATP by AC1-CaM2N 0.77897 s-1 

𝑘𝑐𝑎𝑡
𝐴𝐶1𝐶𝑎𝑀2𝐶 Catalysis of ATP by AC1-CaM2C 0.41545 s-1 

𝑘𝑐𝑎𝑡
𝐴𝐶1𝐶𝑎𝑀4 Catalysis of ATP by AC1-CaM4 5.68 s-1 

𝑘𝑐𝑎𝑡
𝐴𝐶8𝑐𝑡𝐶𝑎𝑀

 Catalysis of ATP by AC8ct-CaM0 0 s-1 

𝑘𝑐𝑎𝑡
𝐴𝐶8𝑐𝑡𝐶𝑎𝑀2𝑁

 Catalysis of ATP by AC8ct-CaM2N 0.3895 s-1 

𝑘𝑐𝑎𝑡
𝐴𝐶8𝑐𝑡𝐶𝑎𝑀2𝐶 Catalysis of ATP by AC8ct-CaM2C 0.2077 s-1 

𝑘𝑐𝑎𝑡
𝐴𝐶8𝑐𝑡𝐶𝑎𝑀4 Catalysis of ATP by AC8ct-CaM4 2.84 s-1 

𝑘𝑐𝑎𝑡
𝑃𝐷𝐸1𝑐𝐴𝑀𝑃

 Catalysis of cAMP by PDE1 11.0 s-1 

𝑘𝑜𝑛
𝑐𝐴𝑀𝑃1

 Association of first cAMP to PKA 54 μM-1s-1 

𝑘𝑜𝑓𝑓
𝑐𝐴𝑀𝑃1 Dissociation of first cAMP to PKA  33 s-1 

𝑘𝑜𝑛
𝑐𝐴𝑀𝑃2 Association of second cAMP to PKA 54 μM-1s-1 

𝑘𝑜𝑓𝑓
𝑐𝐴𝑀𝑃2

 Dissociation of second cAMP to PKA 33 s-1 

𝑘𝑜𝑛
𝑐𝐴𝑀𝑃3 Association of third cAMP to PKA 75 μM-1s-1 

𝑘𝑜𝑓𝑓
𝑐𝐴𝑀𝑃3 Dissociation of third cAMP to PKA 110 s-1 

𝑘𝑜𝑛
𝑐𝐴𝑀𝑃4 Association of fourth cAMP to PKA 75 μM-1s-1 

𝑘𝑜𝑓𝑓
𝑐𝐴𝑀𝑃4 Dissociation of fourth cAMP to PKA 32.05 s-1 

𝑘𝑠𝑝𝑙𝑖𝑡
𝑃𝐾𝐴𝑐 Dissociation of PKAc from R2C2 60 s-1 

𝑘𝑗𝑜𝑖𝑛
𝑃𝐾𝐴𝑐 Association of PKAc to R2C 18 μM-1s-1 

𝑘𝑜𝑛
𝑃𝐾𝐴𝑖𝑛ℎ𝑖𝑏 Association of PKA to PKA Inhibitor 59 μM-1s-1 

𝑘𝑜𝑓𝑓
𝑃𝐾𝐴𝑖𝑛ℎ𝑖𝑏 Dissociation of PKAc from PKA Inhibitor 1 s-1 

𝑘𝑝
𝑃𝐷𝐸4

 PDE4 phosphorylation by PKAc 0.125 s-1 

𝑘𝑐𝑎𝑡
𝑐𝐴𝑀𝑃𝑃𝐷𝐸4

 PDE4 mediated catalysis of cAMP 17.23 s-1 

𝑘𝑐𝑎𝑡
𝑐𝐴𝑀𝑃𝑝𝑃𝐷𝐸4

 pPDE4 mediated catalysis of cAMP 34.5 s-1 

𝑘𝑜𝑛
𝑃𝐾𝐴4𝐺𝑙𝑢𝐴1

 PKA4 binding to GluA1 0.402 μM-1s-1 

𝑘𝑜𝑓𝑓
𝑃𝐾𝐴4𝐺𝑙𝑢𝐴1 PKA4 dissociation from GluA1 24.0 s-1 

𝐾𝐷
𝑃𝐾𝐴4𝐺𝑙𝑢𝐴1 Equilibrium binding of PKA4 to GluA1 59.7 μM 

𝑘𝑜𝑛
𝑃𝐾𝐴𝑐845

 PKAc binding to GluA1 4.02 μM-1s-1 

𝑘𝑜𝑓𝑓
𝑃𝐾𝐴𝑐845 PKAc dissociation to GluA1 24.0 s-1 

𝐾𝐷
𝑃𝐾𝐴𝑐845 Equilibrium binding of PKAc to GluA1 5.97 μM 

𝑘𝑝
𝑃𝐾𝐴𝑐845

 Phosphorylation of s845 site by PKAc 6.0 s-1 
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𝑘𝑜𝑛
𝐶𝑎𝑀𝐾𝐼𝐼831

 CaMKII binding to GluA1 0.02224 μM-1s-

1 

𝑘𝑜𝑓𝑓
𝐶𝑎𝑀𝐾𝐼𝐼831 CaMKII dissociation to GluA1 1.6 s-1 

𝐾𝐷
𝐶𝑎𝑀𝐾𝐼𝐼831 Equilibrium binding of CaMKII to GluA1 71.94 μM 

𝑘𝑝
𝐶𝑎𝑀𝐾𝐼𝐼831

 Phosphorylation of s831 site by CaMKII 0.4 s-1 

𝑘𝑜𝑛
𝑝𝐶𝑎𝑀𝐾𝐼𝐼831

 pCaMKII binding to GluA1 0.0278 μM-1s-1 

𝑘𝑜𝑓𝑓
𝑝𝐶𝑎𝑀𝐾𝐼𝐼831

 pCaMKII dissociation to GluA1 2 s-1 

𝐾𝐷
𝑝𝐶𝑎𝑀𝐾𝐼𝐼831

 Equilibrium binding of pCaMKII to 

GluA1 

71.94 μM 

𝑘𝑝
𝑝𝐶𝑎𝑀𝐾𝐼𝐼831

 Phosphorylation of s831 site by pCaMKII 0.5 s-1 

𝑘𝑜𝑛
𝑃𝑃1𝐶𝑎𝑀𝐾𝐼𝐼 Association of PP1 to pCaMKII 0.0006 μM-1s-1 

𝑘𝑜𝑓𝑓
𝑃𝑃1𝐶𝑎𝑀𝐾𝐼𝐼 Dissociation of PP1 to pCaMKII 0.34 s-1 

𝑘𝑝
𝑃𝑃1𝐶𝑎𝑀𝐾𝐼𝐼

 De-phosphorylation by PP1 of pCaMKII 0.086 s-1 

𝑘𝑜𝑛
𝐼1𝑃𝐾𝐴𝑐 Association of Inh-1 to PKAc 1.4 μM-1s-1 

𝑘𝑜𝑓𝑓
𝐼1𝑃𝐾𝐴𝑐

 Dissociation of Inh-1 from PKAc 5.6 s-1 

𝑘𝑝
𝐼1𝑃𝐾𝐴𝑐

 Phosphorylation of Inh-1 by PKAc 1.4 s-1 

𝑘𝑜𝑛
𝑝𝐼1𝑃𝑃1

 Association of PP1 to pInh-1 1 μM-1s-1 

𝑘𝑜𝑓𝑓
𝑝𝐼1𝑃𝑃1

 Dissociation of PP1 from pInh-1 0.0011 s-1 

𝑘𝑜𝑛
𝑝𝐼1𝐶𝑎𝑁

 Association of pInh-1 with CaN 2.33 μM-1s-1 

𝑘𝑜𝑓𝑓
𝑝𝐼1𝐶𝑎𝑁

 Dissociation of pInh-1 from CaN 11.2 s-1 

𝑘𝑝
𝑝𝐼1𝐶𝑎𝑁𝐶𝑎𝑀2𝐶

 De-phosphorylation of pInh-1 by CaN-

CaM2C 

0.2048 s-1 

𝑘𝑝
𝑝𝐼1𝐶𝑎𝑁𝐶𝑎𝑀2𝑁

 De-phosphorylation of pInh-1 by CaN-

CaM2N 

0.384 s-1 

𝑘𝑝
𝑝𝐼1𝐶𝑎𝑁𝐶𝑎𝑀4

 De-phosphorylation of pInh-1 by CaN-

CaM4 

2.8 s-1 

𝑘𝑜𝑛
𝑝845𝑃𝑃1

 Association of PP1 with phosphor-S845 0.218 μM-1s-1 

𝑘𝑜𝑓𝑓
𝑝845𝑃𝑃1

 Dissociation of PP1 from phosphor-S845 0.17 s-1 

𝑘𝑝
𝑝845𝑃𝑃1

 De-phosphorylation by PP1 at phosphor-

S845 

0.0425 s-1 

𝑘𝑜𝑛
𝑝831𝑃𝑃1

 Association of PP1 with phosphor-S831 0.219 μM-1s-1 

𝑘𝑜𝑓𝑓
𝑝831𝑃𝑃1

 Dissociation of PP1 from phosphor-S831 0.35 s-1 

𝑘𝑝
𝑝831𝑃𝑃1

 De-phosphorylation by PP1 at phosphor-

S831 

0.0875 

𝑘𝑜𝑛
𝑝845𝐶𝑎𝑁

 Association of CaN with phospho-S845 2.01 μM-1s-1 

𝑘𝑜𝑓𝑓
𝑝845𝐶𝑎𝑁

 Dissociation of CaN from phospho-S845 8 s-1 

𝑘𝑝
𝑝831𝐶𝑎𝑁𝐶𝑎𝑀2𝐶

 De-phosphorylation of pS845 by CaN-

CaM2C 

0.274 s-1 

Table 7.5 Continued. 
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𝑘𝑝
𝑝831𝐶𝑎𝑁𝐶𝑎𝑀2𝑁

 De-phosphorylation of pS845 by CaN-

CaM2N 

0.146 s-1 

𝑘𝑝
𝑝831𝐶𝑎𝑁𝐶𝑎𝑀4

 De-phosphorylation of pS845 by CaN-

CaM4 

2 s-1 

[Ca2+]t=0 Initial concentration of Ca2+ 0.005 μM 

[CaM]t=0 Initial concentration of CaM 33 μM 

[AC1]t=0 Initial concentration of AC1 42 μM 

[AC8nt]t=0 Initial concentration of AC8nt 42 μM 

[AC8ct]t=0 Initial concentration of AC8ct 42 μM 

[CaN]t=0 Initial concentration of CaN 0.5 μM 

[CaMKII]t=0 Initial concentration of CaMKII 74 μM 

[MLCK]t=0 Initial concentration of MLCK 5 μM 

[Ng]t=0 Initial concentration of Ng 52 μM 

[NOS]t=0 Initial concentration of NOS 1 μM 

[PDE1]t=0 Initial concentration of PDE1 2.25 μM 

[PDE4]t=0 Initial concentration of PDE4 3 μM 

[PP1]t=0 Initial concentration of ATP 1.47 μM 

[Inh-1]t=0 Initial concentration of AMP 1.422 μM 

[PKA]t=0 Initial concentration of PKA 2.2 μM 

[PKA Inhib]t=0 Initial concentration of PKA Inhibitor 0.259 μM 

[GluA1]t=0 Initial concentration of GluA1 11.6 μM 
References for each parameter value can be found in [165]. 
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SUPPLEMENT TO CHAPTER 4 

Calculation of Diffusion Coefficients 

Diffusion coefficients are identified from previous literature when available. However, 

most if not all protein complexes described in this model are un-measured. Therefore, the diffusion 

coefficients can be estimated from the Stokes-Einstein relation provided below.   

𝐷 =
𝜇𝑘𝐵𝑇

6𝜋𝜂𝑟
 

In the Stokes-Einstein relation, D is the diffusion coefficient and kB is Boltzmann’s 

constant [233, 321]. For a given protein complex, I assume constant T (human body temperature) 

and the dynamic viscosity η. The hydrodynamic radius r is assumed to be proportional to molecular 

weight. Noting that CaM has a molecular weight of approximately 18 kDa and a diffusion 

coefficient of 6 × 10-6 μm2/sec, I can calculate the hydrodynamic radius of CaM [327]. Referring 

to the hydrodynamic radius of CaM, I estimate hydrodynamic radii (and in turn, diffusion 

coefficients) for other proteins given their molecular weights.  

Table 7.6. Sources for diffusion coefficients. 

Molecules MW 

(kDa) 

Diffusion 

(cm2/s) 

Source 

ATP 0.5512 2.58527E-

07 

https://www.neb.com/products/p0756-adenosine-5-

triphosphate-atp#Product%20Information 

AMP 0.347 4.10663E-

07 

https://pubchem.ncbi.nlm.nih.gov/compound/5_-

adenylic_acid 

cAMP 0.329 4.33131E-

07 

https://pubchem.ncbi.nlm.nih.gov/compound/cAMP 

PKAc 38 3.75E-09 https://www.neb.com/products/p6000-camp-dependent-

protein-kinase-pka-catalytic-

subunit#Product%20Information 

PKAr 48 2.96875E-

09 

calculated 

PKA2r 96 1.48438E-

09 

https://www.sigmaaldrich.com/technical-

documents/articles/biology/rbi-handbook/protein-

serine-threonine-tyrosine-kinases/pka-and-pkg.html 

PKA 134 1.06343E-

09 

calculated 

Table 7.6 Continued. 
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PDE1 42.006 3.39237E-

09 

https://www.yeastgenome.org/locus/S000003217 

PDE1-

CaM 

58.796 2.42363E-

09 

calculated 

PDE4 68 2.09559E-

09 

https://datasheets.scbt.com/sc-25814.pdf 

PDE4-

PKAc 

106 1.34434E-

09 

calculated 

PP1 37.5 3.8E-09 https://www.neb.com/-/media/catalog/datacards-or-

manuals/p0754datasheet-lot0111204.pdf 

PP1-

CaMKII 

607.5 2.34568E-

10 

calculated 

I1 19 7.5E-09 http://www.pnas.org/content/pnas/97/11/5824.full.pdf 

I1-PP1 56.5 2.52212E-

09 

calculated 

I1-PKAc 57 2.5E-09 calculated 

I1-

CaMCaN 

113.633 1.25404E-

09 

calculated 

 

Membrane Bound 

AMPAR-

CaN 

746.83 3.98625E-

10 

calculated 

AMPAR-

CaMCaN 

763.63 3.89855E-

10 

calculated 

AMPAR-

CaMKII 

1239 2.40278E-

10 

calculated 

AMPAR-

KCaM 

1255.79 2.37066E-

10 

calculated 

AMPAR-

PKA4 

803 3.70741E-

10 

calculated 

AMPAR-

PKAc 

707 4.21082E-

10 

calculated 

AMPAR-

PP1 

706.5 4.2138E-

10 

calculated 
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Figure 7.5. Ca2+/CaM states in deterministic vs. spatial-stochastic frameworks 

at 100Hz Ca2+. Ca2+/CaM activation for 100 Hz Ca2+ flux (from t = 10 sec until t 

= 12.5 sec) in deterministic (grey) and spatial-stochastic (blue) frameworks. 

Spatial-stochastic traces are the averaged output representative of N=50 executions. 

Compare to Figure 4.2.  
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Figure 7.6. AC-associated state gradients in isolated and competitive 

environments at 10Hz Ca2+.Compare to Figure 4.6 and Figure 4.7. Spatial-

stochastic model response to 10Hz Ca2+ flux from time t = 0 until t = 2.5 sec. For 

each protein state, I monitor the number of proteins in the spine head’s top (purple), 

middle (yellow), and bottom (red) compartments. The left-hand columns are the 

isolated model, and the right-hand columns are the competitive model. All traces 

are the average of N=50 executions. 
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Table 7.7 Statistical analysis of AC- and CaMKII-associated spatial gradient formation. 

 

 

 

 

 

 

 

Protein Compartment F-Value

Tukey 

Groupings F-Value Tukey Groupings F-Value

Tukey 

Groupings F-Value

Tukey 

Groupings

Top A A A A

Middle B B B B

Bottom C C C C

Top A A A A

Middle B B B B

Bottom C C C C

Top A A A A

Middle B A B A

Bottom C B C B

Top A A A A

Middle B B B B

Bottom C C C C

Top A A A A

Middle A B A B

Bottom B B B C

Top A A A A

Middle A B B B

Bottom B C C B

Top A A A A

Middle A B A A

Bottom B C B B

Top A A A A

Middle B B B B

Bottom C C C C

Top A A A A

Middle A B B B

Bottom B C C C

Top A A

Middle A B

Bottom A C

Top A A A A

Middle A A A A

Bottom A A A A

Top A A A A

Middle B B A B

Bottom C C B C

Top A A A A

Middle A B A B

Bottom B B B C

Top A A A A

Middle A A B A

Bottom A A B A

p831 5.11 11.69 12.28 44.44

p845 0.57 0.17 4.06 0.56

Ng 3.1 61.75

PKAc 0.44 0.56 2.49 0.02

pKCaM 51.97 285.31 26.76 298.54

CaM4 922.32 2456.22 244.62 2497.58

Ca2+ 3.91 2346.72 848.93 2971.53

CaM2C 10.86 367.67 280.25 8.57

CaM2N 7.26 16.14 7.35 19.96

CaMKII 343.08 255.79 281.85 950.37

CaM 4.33 11.33 9.53 94.41

AC8ct 132.87 131.43 22.02 66.61

AC8nt 31.72 8.11 83.6 22.27

Isolated Competitive

Frequency: 10 Hz 100 Hz 10 Hz 100 Hz

AC1 68.71 494.22 75.53 128.09
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Figure 7.7. CBP-bound Ca2+/CaM states for various AC-knockouts at 10Hz 

Ca2+ flux. CBP-bound Ca2+/CaM states in top (purple), middle (yellow), and 

bottom (red) compartments of the spine in response to 10Hz Ca2+ flux (which 

terminates at t=10 sec). Ca2+/CaM states are CaM2N (left column), CaM2C (middle 

column), and fully-saturated CaM4 (right column). Each row is a distinct AC-

knockout. All traces are the average of N=50 executions. 
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Figure 7.8. Free Ca2+/CaM states for various AC-knockouts at 10Hz Ca2+ flux. 

Free/unbound Ca2+/CaM states in top (purple), middle (yellow), and bottom (red) 

compartments of the spine in response to 100Hz Ca2+ flux (which terminates at 

t=2.5 sec). Ca2+/CaM states are CaM2N (left column), CaM2C (middle column), 

and fully-saturated CaM4 (right column). Each row is a distinct AC-knockout. All 

traces are the average of N=50 executions. 
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Figure 7.9. Differences in individual CBP activation by Ca2+/CaM states upon 

AC8-Nt-KO. The change in activation of each CBP upon AC8-Nt-KO (Delta 

activation(t) = KO(t) – WT(t)) as a function of time in response to 100Hz Ca2+ flux. 

CBPs that change by at least 20% are colored non-black as identified in the legend. 

Changes are monitored for CBPs activated by CaM2N (left column), CaM2C 

(middle column), and CaM4 (right column), in the top (A-C), middle (D-F), and 

bottom (G-I) compartments of the spine. Note differences in scale for CaM2N-

activated CBPs. All traces are the average of N=50 executions. 
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SUPPLEMENT TO CHAPTER 5 

Table 7.8. CaMKII model state transitions, grouped by flag, with rates and conditions provided. 

Flag State Transition Rate Condition (Rule) References 

1) Docking Docked → Undocked 0.63 s-1 Subunit Flag 1 == Docked [218, 281, 282], this 

paper 

 Undocked → Docked 35 s-1 Subunit Flag 3 == Unbound 

Subunit Flag 5 == uThr-306 
[218, 281, 282], this 

paper 

2) Activation Inactive → Active 2×104 s-1 None [269] 

 Active → Inactive 1×107 s-1 Subunit Flag 4 == uThr-286  [116, 265], this paper 

     

Select executions: Active + K252a → Blocked 1×109 s-1 None Large value 

3) Ca2+/CaM 

Binding 

Unbound + CaM4 → Initially-Bound 1×108 M-1s-1 Subunit Flag 1 == Undocked [269, 281] 

  Subunit Flag 4 != PP1-bound    

  Subunit Flag 5 == uThr-306  

Initially-Bound → Fully-Bound 350 s-1 Subunit Flag 2 == Active [281] 

Fully-Bound → Initially-Bound 4×10-3 s-1 None [281] 
 Initially-Bound → Unbound + CaM4 590 s-1 None [281, 283], this paper 

4) Phosphorylation 

(Thr-286) 

uThr-286 → pThr-286 1 s-1 Subunit Flag 1 == Undocked [97] 

  Neighbor Flag 1 == Undocked  

  Subunit Flag 2 == Active  

  Neighbor Flag 2 == Active  

pThr-286 + PP1→ PP1-bound 3×106 M-1s-1 Subunit Flag 3 == Unbound [216] 

PP1-bound → uThr-286 + PP1 2 s-1 None [216] 

PP1-bound → pThr-286 + PP1 0.5 s-1 None [216] 

5) Phosphorylation 

(Thr-306) 

uThr-306 → pThr-306 0.02 s-1 Subunit Flag 1 == Undocked [271, 293], this paper 

   Subunit Flag 2 == Active  

  Subunit Flag 3 == Unbound  

Note: Double equal signs (==) denote the conditional “true” and the exclamation-equal sign (!=) denotes the conditional “false” 

statement.  
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Necklace Number Quantification of CaMKII Combinatorial Explosion 

In the absence of rules defining the conditions for subunit state transition, CaMKII subunit 

states are independent, causing combinatorial explosion. To quantify the combinatorial explosion, 

consider each of the five flags denoting CaMKII subunit states in my model. The docking flag can 

have one of two states. The activation flag can have one of two states. The CaM-binding flag can 

have one of three states. The Thr-286 flag can have one of three states. Finally, the Thr-306 flag 

can have one of two states. If each flag state is independent, there is a total of 72 possible state 

combinations that a single subunit can exhibit.  

Next, I consider a single ring of six subunits, noting the rotational symmetry. Leveraging 

this symmetry, I refer to so-called “necklace numbers”. Using necklace numbers, the number of 

fixed arrangements of beads on the necklace is defined as: 

𝑁(𝑛, 𝑎) =
1

𝑛
∑ 𝜙(𝑑𝑖) 𝑎𝑛/𝑑𝑖

𝑣(𝑛)

𝑖=1

 

Where n is the length of the necklace and a is the number of bead types. Phi is Euler’s 

totient function, and d are divisors of n. Thus, for a single CaMKII ring in which n=6 and a=72, 

the possible number of state combinations is: 23219075544.  

To count possible states for a single holoenzyme, I again use necklace numbers. (Squaring 

the number calculated for a single CaMKII ring fails to account for rare cases in which both rings 

exhibit identical states.) Thus, I calculate the number of states for the necklace with n=2 and 

a=23219075544. With this calculation, I determine that in the absence of rules, a twelve-subunit 

CaMKII holoenzyme as modeled in this paper has 269562734570598985740 possible states.   

I emphasize that this value is my estimation. I also acknowledge David Sterratt for his 

suggestion to use necklace numbers in this calculation. 
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Exploration of Multiple Degrees of Freedom for Autophosphorylation 

To explore the dependence of CaMKII pThr-286 patterns on varying mechanisms of 

autophosphorylation, I present alternative versions of my model in which autophosphorylation 

may occur in multiple directions, intra- and/or trans-ring. In these higher-degrees of freedom (DoF) 

models, autophosphorylation may occur in two directions (2 DoF) or three directions (3 DoF).  

 

Figure 7.10. Schematic of higher-DoF autophosphorylation of CaMKII 

subunits (blue). Black circles are the enzymes and red circles are the substrate 

subunits participating in an autophosphorylation. 

 

I hypothesized that higher DoF’s could elicit higher or more robust levels of CaMKII 

autophosphorylation in the presence of phosphatase. Therefore, in Figure 7.11 below, I monitor 

pThr-286 in each of the DoF models as a function of time. Each model is subjected to saturating 

levels of Ca2+/CaM for 20 sec, after which the stimulating Ca2+/CaM is removed. The results in 

Figure S2.2 indicate that a higher DoF may allow for more rapid formation of pThr-286. For 

example, the slope of the 3-DoF trace (pink) at t=10sec is noticeably greater than that for the 1-

DoF trace (dark blue). Also, following stimulation (after t=20sec) de-phosphorylation rate seems 

to be independent of DoF. I note that for the models as-simulated and as-parameterized in Figure 

7.11, the differences in output between each DoF model may not be experimentally distinguishable. 
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Figure 7.11. Comparing pThr-286 formation for various model DoF for 

autophosphorylation. For all simulations, holoenzymes were stimulated in the 

presence of phosphatase with a saturating level of Ca2+/CaM for 20sec, after which 

Ca2+/CaM was removed. Model output is shown for 1 DoF (blue), 2 DoF (red and 

cyan), and 3 DoF (violet). Each trace is the average of N=50 executions. 

 

It is also interesting to consider how a higher DoF could accelerate and/or provide 

redundant paths by which information (e.g. autophosphorylations) flows from one end of a 

holoenzyme to the opposite. Indeed, intra-holoenzyme information transfer could impact how 

CaMKII operates as a simultaneous signaling and structural protein, such as when one subunit 

interacts with Ca2+/CaM while a neighboring subunit binds to actin [280]. 

To explore the impact of higher DoF autophosphorylation on intra-holoenzyme 

information transfer, I use the MCell rule-based modeling syntax to monitor individual subunits 

on an individual holoenzyme. Monitoring individual subunits allows me to identify CaMKII 

autophosphorylation “chains”, defined as a series of consecutive autophosphorylated subunit 

neighbors. In Figure 7.12, I monitor individual CaMKII subunit autophosphorylations over time, 

in the continuous presence of saturating Ca2+/CaM and phosphatase, for various DoFs. In Figure 

7.13, I quantify the dependence of autophosphorylation chain formation on DoF number. 
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Increasing DoF increases the lifetime of autophosphorylation chains (of any length), albeit 

marginally leading me to suspect experimental measurements would be inconclusive.  

 

 

Figure 7.12. Monitoring individual CaMKII subunits at distinct 

autophosphorylation DoF. In each panel, the horizonal axis is time (up to 20 sec). 

Each row pertains to one of six subunits in a single holoenzyme ring, and each trace 

is a binary representation of whether that subunit is pThr-286 (one) or uThr-286 

(zero). Depending on the number of DoF, autophosphorylations may proceed 

clockwise (blue), counter-clockwise (green), and/or trans-ring (red).   
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Figure 7.13. pThr-286 chain occurrence increases with increasing DoF. Here, 

I monitored a single CaMKII holoenzyme over 2min. Each bar denotes the fraction 

of time that a chain of length n occurs for that number of DoF. Each bar is the 

average of N=50 executions. 

 

S1 Movie. 

Please see this link - https://youtu.be/lUSuv2mWa5g.  

 

Discussion of putative PP1-CaMKII binding site. 

Many PP1-binding proteins contain a variable binding motif commonly called the RVxF 

binding motif [317]. However, no such motif is seen in the alpha-CaMKII subunit amino acid 

sequence. Furthermore, no structure for the PP1-CaMKII interaction exists, in part because apo-

PP1 is unstable in solution [291]. I can instead refer to a crystal structure published by Ragusa et 

al., which shows PP1 binding the neuronal regulatory protein spinophilin (PDB 3EGG) [290]. 

The 3EGG crystal structure shows an interaction with PP1 spanning the spinophilin 

residues 417-494. This interaction involves 77 residues (~100 Å, see Figure 7.14), which are 

necessary and sufficient for PP1 to dephosphorylate spinophilin [292]. This interaction distance is 

longer than the CaMKII regulatory domain and CaM-binding footprint. Indeed, the CaMKII 

regulatory domain is only about 39 Å (as in PDB 3SOA, partially shown in Figure 7.15).  
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Figure 7.14. Visualization of the spinophilin and PP1 binding interaction (PDB: 

3EGG). Some of the PP1 (purple) surface is digitally removed to help visualize the 

dotted lines, which together approximate the distance spanned by spinophilin (cyan) 

residues 417-494.  

 

 

Figure 7.15. Visualization of the CaMKII regulatory domain (yellow) (PDB: 

3SOA). The CaMKII hub domain (green) and kinase domain (blue) are also shown. 

Dotted line measures from residues 280-306. 

 

Note also that the typical PP1 binding motif interacts with PP1 at a site roughly 20 Å from 

the PP1 active site [292]. Thus, if the PP1 binding footprint does not contain T286, then the furthest 

CaMKII residue the PP1 footprint could likely be (on the hub domain side of T286) is residue 301, 

well within the CaM-binding footprint (see Figure 7.16). Admittedly, the furthest likely PP1-

binding residue on the kinase domain side of T286 is difficult to ascertain from PDB 3SOA. Still, 

I believe there is strong evidence that CaM structurally excludes or limits PP1 from binding and/or 

catalyzing de-phosphorylation at T286. 
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Figure 7.16. Visualization of the furthest likely residue (G301; red) of PP1-

binding on the hub domain (green) side of T286 (cyan) (PDB: 3SOA). Dotted 

line measures from residues 286-301. 
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Figure 7.17. Major Ca2+/CaM-CaMKII states following Ca2+ bolus in the 9-

state-1-step model. Bound Ca2+/CaM states in response to 2 sec Ca2+ bolus as-

implemented in Fig 7. I monitor the CaMKII-bound Ca2+/CaM states apo-CaM 

(black), CaM2C (blue), CaM2N (yellow), and CaM4 (or CaM2C2N, red) in the PP1-

exclusive 9-state-1-step model under low (left) and high (right) association rate 

parameters for PP1-CaMKII binding. Each trace is the average of N=20 executions. 
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SUPPLEMENT TO CHAPTER 6 

 

Figure 7.18. CaMKII-NMDARs in the spatial-stochastic monovalent CaMKII 

model at 10Hz Ca2+ flux. CaMKII-bound NMDARs for CaMKII isoform ratios 

1:1 (purple), 1:0 (red), and 0:1 (blue) in response to 10Hz Ca2+ flux with the 

standard spine geometry, in the absence (-Actin) or presence (+Actin) of actin 

binding sites. Model executions using standard diffusion parameters (A & B) are 

shown, along with executions using diffusion parameters reduced by 1 order of 

magnitude (C & D). Ca2+ flux begins at t=3sec and proceeds for 2.5sec. All traces 

are the average =50 executions. 
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Figure 7.19. Compartmental Ca2+/CaM states in the spatial-stochastic 

monovalent-CaMKII model.The major Ca2+/CaM states (both bound and 

unbound) CaM2C (A), CaM2N (B), and CaM4 (C) in the top (red), middle (yellow), 

and bottom (blue) spine compartments in response to 100Hz Ca2+ flux in the 

standard spine geometry and with standard diffusion coefficients. Ca2+ flux begins 

at t = 8sec and proceeds for 2.5 sec. Each column is a distinct CaMKII alpha:beta 

subunit ratio. Each row is the model with actin binding sites (+Actin) or without. 

All traces are the average of N=50 executions. 
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Figure 7.20. Active CaMKII in the spatial-stochastic monomeric model at 

10Hz Ca2+ flux. Active CaMKII in the top (red), middle (yellow), and bottom (blue) 

spine compartments in response to 10Hz Ca2+ flux with the standard spine geometry, 

with the presence of actin binding sites (+Actin) or without. Model executions 

using standard diffusion parameters (A) are shown, along with executions using 

diffusion parameters reduced by 1 order of magnitude (B). Each column is a distinct 

CaMKII alpha:beta subunit ratio. Ca2+ flux begins at t = 3sec and proceeds for 2.5 

sec. All traces are the average =50 executions. 

 

 

 

 

 

 

 

 

 

(B) 



229 

 

 

Figure 7.21. Bound GluA1 in the spatial-stochastic monovalent model at 10Hz 

Ca2+ flux. Bound GluA1 in the top (red), middle (yellow), and bottom (blue) spine 

compartments in response to 10Hz Ca2+ flux with the standard spine geometry, with 

the presence of actin binding sites (+Actin) or without. Model executions using 

standard diffusion parameters (A) are shown, along with executions using diffusion 

parameters reduced by 1 order of magnitude (B). Each column is a distinct CaMKII 

alpha:beta subunit ratio. Ca2+ flux begins at t = 3sec and proceeds for 2.5 sec. All 

traces are the average of N=50 executions. 
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Table 7.9. Parameters and conditions for models in Chapter 6. 

Parameter Description Value Used Reference 

Kinetic Parameters 

𝑘𝑜𝑛
𝑎𝑐𝑡𝑖𝑛

 CaMKII association to actin binding site 0.5 μM-1s-1 [244] 

𝑘𝑜𝑓𝑓
𝑎𝑙𝑝ℎ𝑎𝐴𝑐𝑡𝑖𝑛

 Alpha-CaMKII dissociation from actin 

binding site 

0.68 s-1 [244] 

𝑘𝑜𝑓𝑓
𝑏𝑒𝑡𝑎𝐴𝑐𝑡𝑖𝑛 Beta-CaMKII dissociation from actin 

binding site 

0.23 s-1 [244] 

𝐾𝐷
𝐶𝑎𝑀𝐾𝐼𝐼𝐺𝑙𝑢𝑁2𝐵 Affinity of CaMKII for NMDAR 0.14 μM [328] 

𝑘𝑜𝑛
𝐶𝑎𝑀𝐾𝐼𝐼𝐺𝑙𝑢𝑁2𝐵 CaMKII association to NMDAR 0.0278  

μM-1s-1 

Assume CaMKII-

AMPAR 

association rate, 

see Table 7.5 

𝑘𝑜𝑓𝑓
𝐶𝑎𝑀𝐾𝐼𝐼𝐺𝑙𝑢𝑁2𝐵 CaMKII dissociation from NMDAR 0.003892 s-1 𝑘𝑜𝑓𝑓 = 𝐾𝐷𝑘𝑜𝑛 

𝑘𝑐𝑎𝑡
𝐶𝑎𝑀𝐾𝐼𝐼𝐺𝑙𝑢𝑁2𝐵 Phosphorylation of NMDAR by CaMKII 0.166 s-1 [329] 

Diffusion Coefficients 

𝐷𝑎𝑐𝑡𝑖𝑛  Diffusion of un-bound actin binding sites 8.5 μm2s-1 Assume highly 

diffuse 

Initial Conditions 

[𝐶𝑎𝑀𝐾𝐼𝐼𝑎𝑙𝑝ℎ𝑎]
𝑡=0

 Initial concentration of alpha-CaMKII 

subunits 

37 μM  
(see footnote) 

[42] 

[𝐶𝑎𝑀𝐾𝐼𝐼𝑏𝑒𝑡𝑎]𝑡=0 Initial concentration of beta-CaMKII 

subunits 

37 μM 
(see footnote) 

[42] 

[𝐴𝑐𝑡𝑖𝑛]𝑡=0 Initial concentration of actin binding 

sites 

100 μM Assume non-

limiting 

 Localization of all AC isoforms Plasma 

membrane 

[16, 17] 

 Localization of actin binding sites Cytosol [36, 258] 

 Localization of AMPAR Plasma 

membrane 

[37, 228, 238] 

 Localization of CaM Cytosol [14] 

 Localization of CaN Cytosol [132] 

 Localization of CaMKII Cytosol [254, 260] 

 Localization of MLCK Cytosol [188] 

 Localization of Ng Cytosol [203] 

 Localization of NOS Plasma 

membrane 

[159] 

 Localization of NMDAR Synaptic 

membrane 

[21, 23, 34, 

200] 

 Localization of PDE1 Cytosol [21, 198] 

 Localization of PP1 Cytosol [278, 316] 
Additional rate parameters not listed are identical to those used in Chapter 4. All model code is available at the Purdue 

University Research Repository. 
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