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ABSTRACT

Kim, Daesung PhD, Purdue University, August 2019. Stability for Functional and
Geometric Inequalities and a Stochastic Representation of Fractional Integrals and
Nonlocal Operators. Major Professor: Rodrigo Bañuelos.

The dissertation consists of two research topics.

The first research direction is to study stability of functional and geometric in-

equalities. Stability problem is to estimate the deficit of a functional or geometric

inequality in terms of the distance from the class of optimizers or a functional that

identifies the optimizers. In particular, we investigate the logarithmic Sobolev in-

equality, the Beckner–Hirschman inequality (the entropic uncertainty principle), and

isoperimetric type inequalities for the expected lifetime of Brownian motion.

In Chapter 3, we derive several types of stability estimates of the logarithmic

Sobolev inequality in terms of the Wasserstein distance, Lp distances, and the Kol-

mogorov distance. We consider the spaces of probability measures satisfying different

conditions on the second moments, the lower bounds of the density, and some inte-

grability of the density. To obtain these results, we employ the optimal transport

technique, Fourier analysis, and probability theoretic approach. In Chapter 4, we

construct an example to understand the conditions on the space and the distance

under which stability of the logarithmic Sobolev inequality does not hold. As an ap-

plication, we show that stability of the Beckner–Hirschman inequality does not hold

for the normalized Lp distance with some weighted measures in Chapter 5.

In Chapter 6, we study quantitative improvements of the inequalities for the ex-

pected lifetime of Brownian motion, which state that the Lp-norms of the expected

lifetime in a bounded domain for 1 ≤ p ≤ ∞, are maximized when the region is a

ball with the same volume. Since the inequalities also hold for a general class of Lévy
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processes, it is interesting to see if the quantitative improvement can be extended to

general Lévy processes. We discuss the related open problems in that direction.

The second topic of the thesis is a stochastic representation of fractional integrals

and nonlocal operators. In Chapter 7, we extend the Hardy–Littlewood–Sobolev

inequality to symmetric Markov semigroups. To this end, we construct a stochastic

representation of the fractional integral using the background radiation process. The

inequality follows from a new inequality for the fractional Littlewood–Paley square

function. In Chapter 8, we prove the Hardy–Stein identity for non-symmetric pure

jump Lévy processes and the Lp boundedness of a certain class of Fourier multiplier

operators arising from non-symmetric pure jump Lévy processes. The proof is based

on Itô’s formula for general jump processes and the symmetrization of Lévy processes.
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1. INTRODUCTION

The thesis consists of two parts. The first subject of this thesis is stability of functional

and geometric inequalities. The second subject is the Littlewood–Paley inequality and

its applications.

1.1 Stability of functional and geometric inequalities

We present some terminology regarding stability problems, introduced by Carlen

[41]. Consider nonnegative functionals G and H defined on a class of admissible

functions or sets X. A functional or geometric inequality can be written as

G(u) ≥ H(u) (1.1.1)

for all u ∈ X. The inequality is called sharp if for each λ > 1 there exists uλ ∈ X

such that G(uλ) < λH(uλ). It is called optimal if there exists u0 ∈ X such that

G(u0) = H(u0). Such u0 is called an optimizer. The deficit is defined by δ(u) =

G(u)−H(u) ≥ 0. Once the class of optimizers X0 is characterized, a natural question

is to measure the deviation of u from the class of optimizers when δ(u) gets close to

0. Let d : X × X → [0,∞) be a distance defined on X. We say the inequality is

d-stable in X if for any sequence {uk} in X, δ(uk) → 0 as k → ∞ implies

lim
k→∞

d(uk, X0) = lim
k→∞

inf
v∈X0

d(uk, v) = 0. (1.1.2)

In particular, a stability estimate or a quantitative improvement of the inequality is

a lower bound of the deficit in terms of the distance

δ(u) ≥ Φ(d(u,X0)) (1.1.3)

for all u and for some modulus of continuity Φ. Sometimes, instead of a distance,

we consider a nonnegative functional on X that identifies the class of optimizers.
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Namely, consider a functional d : X → [0,∞] such that d(u) = 0 if and only if

u ∈ X0. Stability with respect to this functional is defined in the same way. In

contrast to (1.1.3), (1.1.2) it is also called a non-quantitative result or weak stability.

Recently, finding stability estimates has become of significant interest in the

study of functional and geometric inequalities; the Sobolev inequalities [23, 44, 48],

the Hardy–Littlewood–Sobolev inequality [41], the logarithmic Sobolev inequality

[53, 57, 58, 82, 83, 85], the Hausdorff–Young inequality [45], the isoperimetric inequal-

ities [59, 64, 65], and the Faber–Krahn inequalities [32, 34]. In particular, there have

been great efforts to find sharp stability results. A stability estimate is sharp if the

modulus of continuity Φ is best possible. That is, if Φ cannot be replaced by any

other modulus of continuity Ψ which satisfies

lim
t→0

Φ(t)

Ψ(t)
= 0.

Another direction is to study the best possible admissible space and distance in

which stability of (1.1.1) holds. Even though the inequality (1.1.1) holds for all u ∈ X,

it is possible that a stability estimate holds only for u ∈ X̃ ⊂ X. In this case, one can

ask what is the largest possible subset X̃ of X in which stability of (1.1.1) is valid.

1.1.1 The sharp quantitative isoperimetric inequality

As an example, we review stability results for the classical isoperimetric inequality.

Let D be a Borel set in Rn, then the classical isoperimetric inequality states that

P (D) ≥ P (B) (1.1.4)

where B is a ball in Rn with |D| = |B| and P (E) denotes the perimeter of E. This

is sharp and optimal: equality holds in (1.1.4) if and only if D is a ball. The deficit

of (1.1.4) is defined by

δ(D) =
P (D)− P (B)

P (B)
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where B is a ball with |D| = |B|. Fuglede [63] showed that if D is convex then there

exists κ(n), Cn > 0 such that

δ(D) ≥ Cna(D)κ(n)

where a(D) = inf{dH(D, x + B) : x ∈ Rn}, dH is the Hausdorff distance, and B is

a ball with |D| = |B|. He constructed an one-parameter family of domains to show

that κ(n) is the sharp exponent. Note that the asymmetry a(D) is not appropriate

for general non-convex sets. For example, if D is a ball in Rn (n ≥ 3) with a long

and thin tail, then a(D) could be large whereas the deficit is close to 0. Thus it is

natural to deal with the Fraenkel asymmetry

A(D) = inf

󰀝
|D△(x+B)|

|D| : x ∈ Rn, B is a ball with |B| = |D|
󰀞

for a general stability estimate. Hall [74] proved that if D has an axis of symmetry,

then

δ(D) ≥ CnA(D)2 (1.1.5)

with an explicit dimensional constant Cn. For a general class of sets, he used the

Steiner symmetrization and the estimate from [75] to deduce (1.1.5) with the exponent

4. It was conjectured that the sharp exponent is 2. One can see this by considering an

ellipse which is very close to a ball; see [75, pp. 88–89]. Fusco, Maggi, and Pratelli [64]

gave an affirmative answer to the conjecture. They proved (1.1.5) for a Borel set with

finite volume.

1.1.2 The logarithmic Sobolev inequality

In Chapter 3, we study stability of the logarithmic Sobolev inequality. In Chapter

4, we investigate conditions on probability measure spaces and metrics under which

the LSI is not stable. As an application, we discuss instability of the Beckner–

Hirschman inequality in Chapter 5. Chapter 3 is based on joint work with Emanuel

Indrei [82], and Chapter 4 and 5 are based on my work [85].
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Let dγ be the standard Gaussian measure on Rn. The classical logarithmic Sobolev

inequality (the LSI) states that for a probability measure fdγ

1

2
I(f) =

1

2

󰁝 |∇f |2
f

dγ ≥
󰁝

f log f dγ = H(f) (1.1.6)

where I(f) and H(f) are the Fisher information and the relative entropy respectively.

Note that I and H are nonnegative functionals and well-defined on the space of prob-

ability measures fdγ with
√
f ∈ W 1,2(Rn, dγ). The constant 1

2
is sharp and equality

holds if and only if f(x) = eb·x−|b|2/2 for some b ∈ Rn.

In Chapter 3, we explore various probability measure spaces and metrics in which

stability of the LSI holds. To be specific, we find several types of lower bounds of the

deficit δ(f) := 1
2
I(f) − H(f) in terms of the Wasserstein distances, the Kolmogorov

distance, and Lp distances for p ≥ 1, under different conditions on the function f .

To obtain these results, we employ several different techniques: optimal transport

theory, Fourier analysis, and probability.

We considered the space of probability measures on Rn whose second moments

are bounded by M > 0, denoted by PM
2 (Rn). The first main result (Theorem 3.2.1)

is to show that if fdγ is a centered probability measure in PM
2 (R) then

δ(f) ≥ CM󰀂f − 1󰀂4L1(dγ). (1.1.7)

The proof is mainly based on the optimal transport technique, which was introduced

by Cordero-Erausquin [50] and adapted to the context of stability of the LSI by [83]

and thereafter [57]. We consider the Brenier map between fdγ and dγ, which is the

solution to the optimal transportation problem. First, we derive W1 stability of the

LSI (Theorem 3.2.6) from that of Talagrand’s transportation inequality, which was

obtained by [18] in dimension 1, [51] for higher dimensions (see also [57] for W1,1-

stability). By a lower bound of the deficit (2.2.7) which follows from the Monge–

Ampère equation, we derive L1-stability (1.1.7). Under different assumptions on f

(see (3.2.2) and (3.2.3)), we exploit the deficit bound (2.2.7) of Cordero-Erausquin

to show that the deficit is bounded below by the L1 distance of log f from some
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affine function (Theorem 3.2.9). Combining W1–stability and a compactness argu-

ment (the Rellich–Kondrachov theorem), we also derive non-quantitative L1–stability

in PM
2 (Rn), for n ≥ 2 (Theorem 3.2.13).

Compared to the previous results [57, 83], our stability results in PM
2 can be

thought of as an extension in terms of probability measure spaces. Indrei and Marcon

[83] showed W2–stability in a class of probability measures fdγ such that (−1+ ε) ≤

D2(− log f) ≤ M for ε,M > 0. The proof is based on the optimal transport technique

(2.2.7). In [57], a strict improvement of the LSI for the class of probability measures

that satisfy a (2, 2)-Poincaré inequality was proved, which yields stability bounds

with respect to W2 and L1. One can see that these spaces are contained in PM
2 for

some M . Note that the authors in [57] also considered stability estimates in a general

probability measure space via Talagrand’s transportation inequality.

The second approach is concerned with the deficit bound (2.2.4) derived by Carlen

[40] (see Theorem 2.2.1). To characterize the case of equality in (1.1.6), Carlen [40]

derived a lower bound of the deficit in terms of the relative entropy of the Fourier–

Wiener transform from the entropic uncertainty principle, which was conjectured

by Hirschman [80] and proven by Beckner [20]. By investigating the behavior of

the relative entropy of the Fourier–Wiener transform when the deficit gets close to

0, we obtain non-quantitative L1-stability (Theorem 3.2.14). Applying the optimal

transport technique to the Fourier–Wiener transform, we obtain a lower bound of the

deficit which holds for a wide class of functions (Theorem 3.2.16). As a corollary of this

bound, we prove non-quantitative L1–stability under some integrability assumptions

(Corollary 3.2.18 and 3.2.19) .

From the probabilistic point of view, we derive stability estimates in terms of

the Kolmogorov distance. The proof is mainly based on the quantitative versions

of Cramér’s theorem of [25, 68, 103]. Cramér’s theorem says that if the sum of two

independent random variables has a normal distribution, then both random variables

are normal. Combining quantitative versions of Cramér’s theorem (Theorem 2.3.1

and 2.3.2) with a convolution type deficit bound of the LSI in [58] (see Theorem
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3.4.1), we derive stability estimates in terms of the Kolmogorov distance under some

moment assumptions (Theorem 3.2.21 and 3.2.22).

In the process of finding the best possible function spaces and metrics, a natural

question is whether the previous stability results can be improved. In Chapter 4, we

give a partial answer by showing that there exists a sequence of centered probability

measures in PM
2 (R) such that the deficit converges to 0 but the distance from the

optimizer does not converge to 0 in terms of W2 and Lp for p > 1 (Theorem 4.1.1).

Furthermore, we construct a sequence of centered probability measures in P2(R) such

that the deficit converges to 0 and theW1-distance from the Gaussian measure goes to

∞ (Theorem 4.1.2). The implication of these results is that W2–stability of [26] and

W1–stability of Theorem 3.2.6 are sharp in terms of PM
2 (Rn) and that L1–stability in

PM
2 (R) of Theorem 3.2.1 is sharp in terms of the Lp distances.

To construct a sequence of probability measures whose deficit converges to 0, we

start with the Gaussian measure with a small perturbation in the tails. It turns out

that this perturbation controls the second moment and the relative entropy, which

leads to the desired result.

The problem of finding the best possible function space and metric remains open.

The most general space in the setting of the LSI is the space of probability measures

with finite second moments, since if the relative entropy is finite then so is the second

moment.

In Chapter 5, we prove that stability of the entropic uncertainty principle, which

is also called the Beckner–Hirschman inequality (BHI), fails with respect to the nor-

malized Lp distances some weighted measures. For a nonnegative function h in L2(R)

with 󰀂h󰀂2 = 1, the entropic uncertainty principle states that

δBH(h) = S(|h|2) + S(|󰁥h|2)− (1− log 2) ≥ 0

where S(·) denotes Shannon’s entropy, 󰁥h is the Fourier transform of h, and δBH(h) is

the deficit of the Beckner–Hirschman inequality. Carlen [40] showed that the deficit

of the LSI is bounded below by that of the BHI, which implies that the example

constructed in Chapter 4 has a small deficit of the BHI. With careful computation,
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we show that there exists a sequence of L2 normalized functions such that the deficit

converges to 0 but the distance from the class of optimizers does not. In these

results, we consider the Lp distances with polynomial (Theorem 5.1.1) and exponential

weights (Theorem 5.1.2).

The entropic uncertainty principle was first proposed by Hirschman [80], and

proved by Beckner [20] by differentiating the sharp Hausdorff–Young inequality with

respect to the exponent. Inspired by the quantitative Hausdorff–Young inequality

of Christ [45], it is natural to ask if there is a stability estimate for the BHI. The

heuristic consideration in Chapter 5 suggests that the BHI could be stable in terms

of the L2 distance, which is an interesting open problem.

1.1.3 The expected lifetime of Brownian motion

In Chapter 6, we investigate stability of isoperimetric type inequalities arising

from stochastic analysis and their relation to geometric inequalities. This is based on

my work [86].

Let α ∈ (0, 2] and D a bounded domain in Rn. Let Xα
t be the symmetric α–stable

process with generator −(−∆)α/2. The first exit time of Xα
t from D is defined by

ταD = inf{t ≥ 0 : Xα
t /∈ D}

and the expected lifetime by uα
D(x) = Ex[ταD], where Ex is the expectation associated

with Xα
t starting at x ∈ Rn. For α = 2, Xα

t is Brownian motion with generator ∆.

Bañuelos and Méndez-Hernández [16] showed that several isoperimetric type in-

equalities for Brownian motion continue to hold for a wide class of Lévy processes

using the symmetrization of Lévy processes and the multiple integral rearrangement

inequalities of Brascamp–Lieb–Luttinger [31]. Indeed, they proved that if Yt is a

Lévy process, its Lévy measure is absolutely continuous with respect to the Lebesgue
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measure, and f and V are nonnegative continuous functions, then for any x ∈ D and

t > 0,

E0[f ∗(Y ∗
t ) exp

󰀕󰁝 t

0

V ∗(Y ∗
s ) ds

󰀖
; τ

Y ∗
t

B > t] ≥ Ex[f(Yt) exp

󰀕󰁝 t

0

V (Ys) ds

󰀖
; τYt

D > t]

where f ∗ and V ∗ are the symmetric decreasing rearrangements of f and V , Y ∗
t is the

symmetrization of Yt, and B is a ball centered at 0 with |D| = |B|; see [16, Theorem

1.4]. A particular case of this is that for all t ≥ 0 and x ∈ Rn,

P0(ταB > t) ≥ Px(ταD > t), (1.1.8)

which yields

uα
B(0) ≥ uα

D(x), (1.1.9)

where B is a ball centered at 0 with |B| = |D|. In fact, (1.1.8) gives

E0(ταB)
p ≥ Ex(ταD)

p (1.1.10)

for all p > 0. Talenti [110] proved that the Lp norm of a solution of a second-

order elliptic equation is maximized when the elliptic operator and the domain are

symmetrically rearranged. In particular, the result yields that for p > 0, α = 2, and

a bounded domain D,

󰀂uB󰀂p ≥ 󰀂uD󰀂p (1.1.11)

where B is a ball with |B| = |D|.

Given the above isoperimetric type inequalities for the first exit times of the α-

stable processes and their connection to the classical torsion function, there are many

questions that arise concerning quantitative versions of these inequalities. The goal

of Chapter 6 is to study quantitative versions of the expected lifetime inequalities

(1.1.9) for α = 2 and (1.1.11) for p ≥ 1.

The first main result is a lower bound of the deficit of (1.1.9) in terms of the

deviations of x and D from the optimizers. Note that equality holds in (6.2.1) if D

is a ball and uD(x) = maxy∈D uD(y). The deviation of x is represented by |{y ∈ D :



9

uD(y) > uD(x)}|, and the deviation of D by the Fraenkel asymmetry, which is defined

by

A(D) = inf

󰀝
|D△B|
|D| : B is a ball with |B| = |D|

󰀞
. (1.1.12)

The proof is based on the proof of (1.1.9) for α = 2 in [6, 110], and the sharp

quantitative isoperimetric inequality [64]. In order to estimate the asymmetry of the

level set, we use the idea of Hansen and Nadirashvili [76] as in the proof of the boosted

Pólya–Szegö inequality [33, Lemma 2.9].

The second result is a quantitative inequality for the Lp norm of the expected

lifetime (1.1.11), 1 ≤ p ≤ ∞. We define the Lp deficit of the expected lifetime

inequality for 1 ≤ p ≤ ∞ by

δp(D) = 1−
󰀕
󰀂uD󰀂p
󰀂uB󰀂p

󰀖κ(p)

where κ(p) = p for 1 ≤ p < ∞, κ(∞) = 1, and B is a ball centered at 0 with

|B| = |D|. Let n ≥ 2 and D be a bounded domain in Rn. For 1 ≤ p ≤ ∞, we have

δp(D) ≥ Cn,pA(D)2+κ(p). (1.1.13)

The torsional rigidity of D is defined by T (D) = 󰀂uD󰀂1. In this context, we call

uD the torsion function of D. The Saint-Venant inequality states that the torsional

rigidity is maximized when the region is a ball. If p = 1, the result produces the

non-sharp quantitative Saint-Venant inequality

T (B)− T (D) ≥ Cn,1T (B)A(D)3, (1.1.14)

which was proven in [33]. Thus the result can be thought of as an extension of

(1.1.14) to the case 1 < p ≤ ∞. Note that Brasco, De Philippis, and Velichkov [34]

showed that the sharp exponent of (1.1.14) is 2 in the sense that the power cannot

be replaced by any smaller number. Their method, however, does not give an explicit

dimensional constant because the proof relies on the selection principle of Cicalese

and Leonardi [49].
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The key step in the proof is the removal of t∗ defined in (6.2.3). In [33], the authors

proved a non-sharp quantitative Saint-Venant inequality using the boosted Pólya–

Szegö inequality. In the proof, they used the variational representation for T (D) to

replace the term t∗ by A(D) (up to dimensional constant). In our case, however, the

Lp norm of the expected lifetime does not have an appropriate variational formula for

1 < p ≤ ∞. To overcome this difficulty, we find a critical level t0 which is comparable

to A(D) and use the layer cake representation of the Lp norm for p ∈ (1,∞) and the

strong Markov property for p = ∞.

The fractional analogue of (1.1.14) is proven in [32]. They showed that if n ≥ 2,

α ∈ (0, 2), and D is an open set with |D| = 1, then

Tα(B)− Tα(D) ≥ Cn,αA(D)
6
α

where Cn,α is explicit and B is a ball with |B| = 1. Here Tα(D) is the fractional

torsional rigidity defined in (6.4.3). Furthermore, they proved that if D has Lipschitz

boundary and satisfies the exterior ball condition, then the exponent can be lowered

to 2 + 2
α
. It turns out that our method for removing t∗ yields the same exponent

without any additional geometric assumptions on D.

1.2 Littlewood–Paley inequality

Littlewood–Paley square (quadratic) functions have been of interest for many

years with many applications in harmonic analysis and probability. On the analysis

side, these include the classical square functions obtained from the Poisson semigroup

as in [106] and more general heat semigroups as in [107]. On the probability side, these

correspond to the celebrated Burkholder–Gundy inequalities which are of fundamental

importance in modern stochastic analysis.

Littlewood–Paley Lp inequalities have played an important role in a broad area of

analysis and probability. These inequalities give a nice way of understanding the qual-

itative and quantitative properties of functions and operators. In the classical case,
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the Lp inequalities for square functions are obtained from the Calderón–Zygmund

theory, which relies on the property of harmonic functions.

In Chapter 7, we introduce a fractional analogue of the Littlewood–Paley square

function and derive an Lp–Lq inequality for the square function. It turns out that

the square function and its inequality hold for a general setting. As an application,

we prove a Hardy–Littlewood–Sobolev inequality for symmetric Markov semigroups.

This is based on my work [84].

In [106], Stein provided an alternative approach to obtaining the Lp bound for the

square function using the so-called Hardy–Stein identity. In Chapter 8, we extend

this to non-symmetric pure jump Lévy processes and derive the Lp inequalities for

the corresponding square functions. As an application, we define a certain class of the

Fourier multipliers and prove the Lp boundedness of the multipliers. This is based

on joint work with Rodrigo Bañuelos [11].

1.2.1 The Hardy–Littlewood–Sobolev inequality

The Hardy–Littlewood–Sobolev (HLS) inequality, first derived by [77, 78, 105],

states that 󰁝

Rn

󰁝

Rn

f(x)g(y)

|x− y|n−α
dxdy ≤ Cn,α,p󰀂f󰀂p󰀂g󰀂r

where 1 < p < q < ∞, 1 = 1
p
+ 1

r
− α

n
, 0 < α < n, f ∈ Lp(Rn), and g ∈ Lr(Rn).

Lieb [90] showed the existence of optimizers and obtained the explicit formulas for

optimizers in special cases. In light of its geometric implications, a subsequent prob-

lem is to extend the sharp HLS inequality to a more general setting than Rn. Because

Lieb’s result is based on rearrangement techniques which do not apply to outside of

Rn, it is necessary to find a new way of proving Lieb’s inequality. There have been

several attempts along this line, for instance [42, 60]. Frank and Lieb [61] extended

the sharp HLS inequality to the Heisenberg group using a radically new method.

In Chapter 7, we study an extension of the HLS inequality to symmetric Markov

semigroups. We give a stochastic representation for the fractional integrals for sym-
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metric Markov semigroups and derived an analogue of the HLS inequality for the

semigroups. The stochastic representation is based on the techniques of Gundy and

Varopoulos [70–72] where the background radiation processes and time reversal were

used to obtain the probabilistic representations for the Riesz transforms. The rep-

resentation is a variation of the one used by Applebaum and Bañuelos [3], which is

based on the space-time Brownian motion and martingale inequalities. Unlike the

space-time Brownian motion representation which requires a gradient in the space

variable (or a carré du champ), the representation in Theorem 7.2.1 only requires the

time derivative which is well defined for general semigroups.

To prove the (non-sharp) HLS inequality for symmetric Markov semigroups, we

introduce a fractional Littlewood–Paley square function for symmetric Markov semi-

groups and derive a new Lp–Lq inequality for the square function. The proof is

based on the ergodic inequality for maximal functions, the optimal splitting tech-

nique of [79,106], and an estimate for the classical Littlewood–Paley square functions

in [107].

The basic question, in connection with the problem of finding the sharp inequality,

is how to bypass the Littlewood–Paley square function method and the optimal split-

ting argument. This optimal splitting is also a key step in the proof of Applebaum and

Bañuelos [3], although it is done in combination with the Burkholder–Davis–Gundy

inequalities.

The stochastic representation of the fractional integral can be thought of as a mar-

tingale transform where the predictable process is not bounded. Martingale transform

techniques have been used quite effectively in the study of singular integral opera-

tors, particularly in obtaining optimal, or nearly optimal inequalities. Given the

powerful martingale and Bellman function methods pioneered by Burkholder [37] to

obtain sharp inequalities for martingale transforms and their many subsequent uses

in various problems in analysis and probability, it is natural to ask if these techniques

can be extended to martingale transforms with unbounded predictable processes and

provide a different proof of the sharp HLS inequalities which could be extended to
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other settings. At this moment, it is unclear how to obtain the sharp results with the

Bellman function methods. This remains an interesting challenging problem.

1.2.2 Hardy–Stein identity for nonlocal operators and Fourier multipliers

Littlewood–Paley square functions and their Lp inequalities have been extensively

studied with applications in the study of function spaces, PDEs, and Fourier mul-

tiplier operators. From the probabilistic point of view, square functions and the Lp

inequalities correspond to the quadratic variations of martingales and the Burkholder–

Davis–Gundy inequalities. In the classical case, the Lp inequalities for square func-

tions are obtained from the Calderón–Zygmund theory, which relies on the property

of harmonic functions. In [106], Stein provided an alternate approach to obtaining

the Lp bound for the square function when 1 < p < 2. Using the chain rule and

Green’s theorem, he derived the so-called Hardy–Stein identity [106, Equation (16),

p.88], which states that for f ∈ Lp(Rd),

󰁝

Rd

|f |pdx =

󰁝 ∞

0

󰁝

Rd

y∆updxdy

where u is the harmonic extension of f to the upper half-space. This approach can

be adapted to more general diffusion operators for which the chain rule holds.

In [10], the authors extended the Littlewood–Paley Lp inequalities for 1 < p < ∞

to nonlocal operators arising from symmetric pure jump Lévy processes. Their proof

is based on the Burkholder–Gundy inequalities and the Hardy–Stein type identity for

symmetric pure jump Lévy processes. As an application, they introduced a certain

family of Fourier multiplier operators and proved the Lp boundedness.

In Chapter 8, we extend the Hardy–Stein identity of [10] to non-symmetric pure

jump Lévy processes. For a, b ∈ R and p ∈ (1,∞), let F (a, b; p) be the second-order

Taylor remainder of the maps x 󰀁→ |x|p given by F (a, b; p) = |b|p−|a|p−pa|a|p−2(b−a).

Let Pt be the semigroup corresponding to a non-symmetric pure jump Lévy process
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and ν the Lévy measure. In this setting, we prove the following Hardy–Stein identity

(Theorem 8.3.1): for f ∈ Lp(Rd) and 1 < p < ∞,

󰁝

Rd

|f |pdx =

󰁝

Rd

󰁝 ∞

0

󰁝

Rd

F (Ptf(x), Ptf(x+ y); p) ν(dy)dtdx.

Compared to the result of [10] where the authors used properties of the semigroups,

our proof relies on Itô’s formula for general jump processes, which allows us to ex-

tend the identity to non-symmetric cases. Furthermore, it gives a Hardy–Stein type

identity for uniformly integrable martingales in L2 ∩ Lp (Theorem 8.3.5).

We also prove the Lp–boundedness of a certain class of Fourier multiplier operators

for non-symmetric pure jump Lévy processes (Theorem 8.4.1). Since the two-sided

Lp–inequalities for square functions rely heavily on the symmetry of the Lévy mea-

sures, the application to Fourier multiplies also requires it. To bypass this difficulty,

we employ the symmetrization technique as in [16].
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2. PRELIMINARIES

2.1 Probability metrics

2.1.1 The Wasserstein distances

For p ≥ 1 and a probability measure µ, the p-th moment of µ is given by mp(µ) =
󰁕
Rn |x|pdµ. We say that µ has finite p-th moment if mp(µ) < ∞. The space of

probability measures with finite p-th moments is denoted by Pp(Rn). TheWasserstein

distance of order p between two probability measures µ, ν ∈ Pp(Rn) is

Wp(µ, ν) = inf
π

󰀕󰁝󰁝

Rn×Rn

|x− y|pdπ(x, y)
󰀖 1

p

where the infimum is taken over all probability measures π on Rn×Rn with marginals

µ and ν. In general, one can define the optimal transportation cost with a cost

function c(x, y) on Rn × Rn by

Tc(µ, ν) = inf
π

󰀕󰁝󰁝

Rn×Rn

c(x, y)dπ(x, y)

󰀖
. (2.1.1)

In particular, W1 is called the Kantorovich–Rubinstein distance and W2 is called the

quadratic Wasserstein distance.

For p ≥ 1, Wp defines a metric on Pp(Rn). For p1 < p2 and probability measures

µ, ν ∈ Pp2(Rn), it follows from Jensen’s inequality that Wp1(µ, ν) ≤ Wp2(µ, ν) and

Pp2(Rn) ⊆ Pp1(Rn). The Wasserstein distance of order p is stronger than the weak

convergence: let νk be a sequence of probability measures in Pp(Rn), then νk converges

to µ in Wp if and only if νk ⇀ µ weakly and mp(νk) → mp(µ) as k → ∞.

Let µ and ν be probability measures with finite second moments. Then there

exists a map T : Rn → Rn such that ν(A) = µ(T−1(A)) for all Borel sets A in Rn and

W 2
2 (µ, ν) =

󰁝

Rn

|T (x)− x|2dµ.
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It is well-known that the map T is uniquely determined µ-almost everywhere and is

the gradient of a convex function ϕ such that T = ∇ϕ. The map is called the Brenier

map.

We say a function ϕ is 1-Lipschitz if |ϕ(x)−ϕ(y)| ≤ |x− y| for all x, y ∈ Rn. The

Kantorovich–Rubinstein distance W1 has a dual form

W1(µ, ν) = sup

󰀝󰁝

Rn

ϕ(dµ− dν) : ϕ ∈ L1(d|µ− ν|),ϕ is 1-Lipschitz.

󰀞
.

On the real line, we have explicit formulas for W1. For probability measures µ and ν

on R, let F and G be the distribution functions of µ and ν. Then the W1 distance

between µ and ν can be written as

W1(µ, ν) =

󰁝 1

0

|F−1(t)−G−1(t)|dt =
󰁝

R
|F (x)−G(x)|dx.

Let γ be the Gaussian measure and dν = fdγ. The relative entropy functional

ν 󰀁→ H(f) is stronger than the total variation distance but weaker than the Lp-norm

for p > 1 in a sense that

2󰀂f − 1󰀂2L1(dγ) ≤ H(f) ≤ 2

p− 1
󰀂f − 1󰀂pLp(dγ) + 2󰀂f − 1󰀂Lp(dγ). (2.1.2)

The first inequality is called Pinsker’s inequality and the second inequality follows

from Hölder’s inequality and the fact that t log t ≤ 2
p−1

|t− 1|p + 2|t− 1|, for all t ≥ 0

(see [56, p.93]). In particular, the second inequality tells us that if the relative entropy

does not converge to zero then fdγ does not converge to dγ in Lp for p > 1, which is

a key ingredient in the proof of Theorem 4.1.1.

Talagrand [108] introduced the inequality

δTal(f) = 2H(f)−W 2
2 (fdγ, dγ) ≥ 0 (2.1.3)

where δTal(f) is the deficit of Talagrand’s transportation inequality. This implies

that the relative entropy is stronger than the quadratic Wasserstein distance. Otto

and Villani [99] proved that the LSI implies Talagrand’s transportation inequality. If

ν ∈ P2 is centered, then Cordero-Erausquin [51] showed

δTal(f) ≥ Cmin
󰀋
W 2

1 (fdγ, dγ),W1(fdγ, dγ)
󰀌
. (2.1.4)
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Note that a comparable stability result was also shown in [57] . The quantitative

Talagrand’s transportation inequality is one of the main ingredients in the proof of

Theorem 3.2.6. Otto and Villani proved the HWI inequality which is an “interpo-

lation” inequality between the relative entropy, the Wasserstein distance, and the

Fisher information

H(f) ≤ W2(dν, dγ)
󰁳

I(f)− 1

2
W 2

2 (dν, dγ). (2.1.5)

We refer the reader to [1, 113] for further details.

2.1.2 The total variation distance

Let µ and ν be probability measures. The total variation distance between µ and

ν is defined by

dTV(µ, ν) = sup
A

|µ(A)− ν(A)|

where the supremum is taken over all Borel sets in Rn and yields a stronger topology

than the weak topology. That is, if dTV(µ, νk) → 0 as k → ∞, then νk converges

weakly to µ (however, the converse does not hold). The total variation distance can

be thought of as the optimal transportation distance (2.1.1) with c(x, y) = 1{x ∕=y}. It

has a dual form

dTV(µ, ν) = sup
0≤|ϕ|≤1

󰁝

Rn

ϕ(dµ− dν).

If dν = fdµ, then the total variation distance dTV(µ, ν) can be written in terms of

the L1–norm

dTV(µ, ν) =
1

2
󰀂f − 1󰀂L1(dµ).

It is well-known that the total variation distance is comparable to the Hellinger dis-

tance

󰀂
󰁳

f − 1󰀂2L2(dµ) ≤ 󰀂f − 1󰀂L1(dµ) ≤ 2󰀂
󰁳

f − 1󰀂L2(dµ). (2.1.6)
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2.1.3 Comparison between probability metrics

This subsection is devoted to introduce probability metrics and investigate their

relations. The following is based on [25,67, 113].

Definition 2.1.1. Let (Ω,F ,λ) be a measure space. For probability measures dµ =

fdλ and dν = gdλ, the Hellinger distance is defined by

dH(µ, ν) =
󰀓󰁝

Ω

|
󰁳

f −√
g|2dλ

󰀔 1
2
.

Note that dH is a metric and 0 ≤ dH(µ, ν) ≤
√
2.

Definition 2.1.2. Let (Ω,F ) be a measurable space. Let µ and ν be probability

measures on (Ω,F ). The total variation distance is

dTV(µ, ν) = sup
h

󰀏󰀏󰀏󰀏
󰁝

Ω

hdµ−
󰁝

Ω

hdν

󰀏󰀏󰀏󰀏

where the supremum is taken over all measurable functions h : Ω → R with |h(x)| ≤ 1.

Definition 2.1.3. Let (Ω, d) be a Polish space. Let µ and ν be probability measures

on Ω. For a Borel set B and ε > 0, Bε = {x ∈ Ω : infy∈B d(x, y) ≤ ε}. The Prokhorov

metric is defined by

dP(µ, ν) = inf{ε > 0 : µ(B) ≤ ν(Bε) + ε for all Borel sets B}.

If X and Y random variables with the laws µ and ν, then it follows from Strassen’s

theorem that

dP(µ, ν) = inf
P
{ε > 0 : P(d(X, Y ) > ε) < ε}

where the infimum is taken over all joint distributions of X and Y . Similarly, we have

dTV(µ, ν) = inf E[1{X ∕=Y }] = sup{µ(F )− ν(F ) : F closed}.

Definition 2.1.4. The Kolmogorov distance between two probability measures µ and

ν on R is given by

dK(µ, ν) = sup
x∈R

|µ((−∞, x])− ν((−∞, x])|.
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If F and G are distribution functions of µ and ν, then we denote by dK(F,G) =

dK(µ, ν). One can see that 0 ≤ dK(µ, ν) ≤ 1.

Definition 2.1.5. Let µ and ν be probability measures on R with distribution func-

tions F and G. The Lévy metric is defined by

dL(µ, ν) = dL(F,G) = inf{ε > 0 : G(x− ε)− ε ≤ F (x) ≤ G(x+ ε) + ε, ∀x ∈ R}.

Proposition 2.1.6. Let µ and ν be probability measures on R, then we have

dL(µ, ν) ≤ min{dK(µ, ν), dP(µ, ν)}

≤ max{dK(µ, ν), dP(µ, ν)}

≤ min{dTV(µ, ν),
󰁳

W1(µ, ν)}.

Proposition 2.1.7. Let µ be a probability measure on R and γ the standard Gaussian

measure on R, then

dK(µ, γ) ≤ 2dP(µ, γ).

Proposition 2.1.8 ( [25, Proposition A.1.2]). Let µ, ν ∈ PM
2 (R), then

W1(µ, ν) ≤ 2dL(µ, ν) + 2
√
MdL(µ, ν)

1/2,

W1(µ, ν) ≤ 4
√
MdK(µ, ν)

1/2.

Proposition 2.1.9. Let Ω be a measurable space. Let µ and ν be probability measures

on Ω, then

dH(µ, ν)
2 ≤ dTV(µ, ν) ≤ 2dH(µ, ν).

2.2 The LSI deficit bounds

Let dγ = (2π)−
n
2 e−

|x|2
2 dx be the standard Gaussian measure on Rn and f a non-

negative function in L1(dγ) such that dν = fdγ is a probability measure. We define

the Fisher information and the relative entropy of f with respect to γ by

I(ν) = I(f) =

󰁝

Rn

|∇f |2
f

dγ,

H(ν) = H(f) =

󰁝

Rn

f log fdγ.
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The classical logarithmic Sobolev inequality (the LSI) states that

δ(f) =
1

2
I(f)− H(f) ≥ 0. (2.2.1)

We call δ(f) the deficit of the LSI. In this section, we discuss some estimates on the

LSI deficit that we will call upon later.

2.2.1 Carlen’s deficit estimate

Carlen [40] characterized the equality cases in two ways: if f ∈ Lp(R2n) is a prod-

uct function in (x, y) and
󰀓

x+y√
2
, x−y√

2

󰀔
, then f and its factors are Gaussian functions.

Thereafter, he proved a Minkowski-type inequality and derived the strict superaddi-

tivity of the Fisher information. Combining this with the factorization theorem, he

deduced that equality holds in (2.2.1) only if eb·x−
b2

2 , b ∈ Rn.

The second proof is based on the Beckner–Hirschman entropic uncertainty prin-

ciple. Indeed, he derived a lower bound of the LSI deficit in terms of the relative

entropy of the Fourier–Wiener transform, which leads to the characterization of the

equality cases.

Let g(x) := 2
n
4 e−π|x|2 and dm = g(x)2dx. The Fourier transform of f in L2(Rn) is

F(f)(ξ) = 󰁥f(ξ) =
󰁝

Rn

e−2πix·ξf(x) dx.

Let U : L2(dx) → L2(dm) be defined by f 󰀁→ f/g and W := UFU∗ on L2(dm)

where U∗ is the adjoint operator of U . The operator W is called the Fourier–Wiener

transform. Let f ∈ L2(dm) with 󰀂f󰀂L2(dm) = 1. By the Plancherel theorem, we have

󰀂Wf󰀂L2(dm) = 󰀂f󰀂L2(dm) = 1. The LSI deficit with respect to dm is defined by

δc(f) =
1

2π

󰁝

Rn

|∇f |2 dm−
󰁝

Rn

|f |2 log |f |2 dm.

For a probability measure fdγ, let uf (x) = (f(2
√
πx))1/2. Then u2

fdm is a probability

measure and δ(f) = δc(uf ).

For a nonnegative function ρ on Rn with
󰁕
ρ dx = 1, the entropy of ρ is given by

S(ρ) = −
󰁝

ρ log ρ dx. (2.2.2)
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The Beckner–Hirschman inequality [20] states that for a function h with
󰁕
|h|2dx = 1,

S(|h|2) + S(|F(h)|2) ≥ n(1− log 2). (2.2.3)

Let µ be a probability measure and f a nonnegative function such that f dµ is a

probability measure. The relative entropy of f with respect to µ is denoted by

Entµ(f) =

󰁝
f log f dµ.

Theorem 2.2.1 ( [40, Theorem 6]). Let f ∈ L2(dm) be normalized, then

δc(f) ≥ Entdm(|Wf |2). (2.2.4)

Proof. Let h = U∗f , then (2.2.3) yields

S(|h|2) + S(|F(h)|2) = S(|fg|2) + S(|W(f)g|2)

=

󰁝

R
(|h|2 + |F(h)|2)(2π|x|2 − n

2
log 2) dx

− (Entdm(|f |2) + Entdm(|Wf |2))

≥ n(1− log 2).

Since 󰀂h󰀂2 = 󰀂F(h)󰀂2 = 1, it suffices to show that

1

2π

󰁝
(|2πxh|2 + |2πxF(h)|2) dx =

1

2π

󰁝
|∇f |2 dm+ n.

Using ∇(g−1) = 2πxg−1, −2πxF(h) = F(∇h), and Parseval’s formula, we have
󰁝

(|2πxh|2 + |2πxF(h)|2)dx =

󰁝
(|∇(g−1)h|2 + |g−1∇h|2) dm

=

󰁝
|∇(g−1)h+ g−1∇h|2 dm− 2π

󰁝
x ·∇(|h|2) dx

=

󰁝
|∇f |2 dm+ 2πn,

which finishes the proof.

Remark 2.2.2. For h ∈ L2(dx) with
󰁕
|h|2 dx = 1, we define the deficit of the

Beckner–Hirschman inequality by

δBH(h) = S(|h|2) + S(|󰁥h|2)− n(1− log 2).
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In fact, the proof of Theorem 2.2.1 yields

δc(f)−
󰁝

Rn

|W (f)|2 log |W (f)|2dm = δBH(fg). (2.2.5)

Remark 2.2.3. Suppose f ≥ 0 and δc(f) = 0, then Theorem 2.2.1 yields Entdm(|Wf |2) =

0. By Cramér’s theorem, one obtains f(x) = e2π(b·x−
|b|2
2

) for some b ∈ Rn, which is

equivalent to the cases of equality in (2.2.1). Indeed, since |Wf |2 = 1 a.e., we have

|F(h)(x)|2 = F(h(x))F(h(−x)) = g2(x)

where h(x) = g(x)f(x). By the Fourier inversion theorem,

󰁝
h(x)h(x+ y) dy = 2−

n
2 e−

π|x|2
2 ,

which yields in turn that h is Gaussian by Cramér’s theorem. Since |Wf | = 1, we

get Wf = eib·x as desired.

In §3.2.2, we investigate the lower bound Entdm(|Wf |2) to obtain weak stability

of the LSI. Combining Carlen’s estimate with the optimal transport method, we also

get several types of deficit bounds which hold for a wide class of probability measures.

2.2.2 Optimal transport method

Let µ and ν be Borel probability measures on Rn. We say that a map T : Rn → Rn

pushes µ forward to ν if ν(B) = µ(T−1(B)) for every Borel set B ⊂ Rn. Brenier

[36] and McCann [94] showed that if µ is absolutely continuous with respect to the

Lebesgue measure, then there exists a convex function ϕ such that T = ∇ϕ pushes

µ forward to ν and ∇ϕ is uniquely determined µ-a.s. If µ and ν have finite second

moments, then π0 = (Id×∇ϕ) is the optimal plan for

W2(µ, ν)
2 = inf

π

󰁝󰁝
|x− y|2 dπ(x, y) =

󰁝
|x− T (x)|2 dµ(x),

where the infimum is taken over all probability measures π on Rn×Rn with marginals

µ and ν.
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Cordero-Erausquin [50] used the Brenier map to derive the following inequality

that holds for a wide class of probability measures, which entails the logarithmic

Sobolev inequalities, Talagrand’s transport inequalities, and the HWI inequalities.

Theorem 2.2.4 ( [50, Theorem 1]). Let µ be a probability measure on Rn of the form

dµ(x) = e−V (x)dx, where V is a twice differentiable function satisfying HessV ≥ c for

some c ∈ R. Let f, g : Rn → [0,∞) be non-negative compactly supported functions.

Assume that f ∈ C1 and
󰁕
fdµ =

󰁕
gdµ. If T (x) = x + ∇θ is the Brenier map

pushing fdµ forward to gdµ, then

Entµ(g) ≥ Entµ(f) +

󰁝
∇f ·∇θdµ+

c

2

󰁝
f |∇θ|2dµ

+

󰁝
(∆Aθ − log det(I +Hess θ)) fdµ (2.2.6)

where ∆A denotes the Aleksandrov Laplacian.

Remark 2.2.5. For µ = γ and g ≡ 1 (using an approximation argument), (2.2.6)

yields

δ(f) ≥ 1

2

󰁝
|∇(log f) +∇θ|2fdγ +

󰁝
(∆Aθ − log det(I +Hess θ)) fdµ. (2.2.7)

Remark 2.2.6. If we apply this theorem to µ = dm (i.e. V (x) = 2π|x|2 and c = 4π),

then one can see

1

2π

󰁝
|∇f |2 dm+ Entdm(|g|2) ≥ Entdm(|f |2) +

1

2π

󰁝
|2πf∇θ +∇f |2 dm

where T (x) = x + ∇θ is the Brenier map pushing |f |2dm forward to |g|2dm. In

particular, if g = Wf , then

δc(f) + Entdm(|Wf |2) ≥ 1

2π

󰁝
|2πf∇θ +∇f |2 dm. (2.2.8)

2.2.3 Scaling asymmetry of the logarithmic Sobolev inequality

Following the proof of [53, Proposition 1], we obtain a lower bound of the deficit

in terms of the second moment and the relative entropy.
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Proposition 2.2.7. If dν = fdγ ∈ P2(Rn) and
√
f ∈ W 1,2(Rn, dγ), then

δ(f) ≥ 1

4n
((m2(γ)−m2(ν)) + 2H(f))2 . (2.2.9)

Proof. Let u ∈ H1(Rn, dγ) be such that
󰁕
|u|2dγ = 1 and

󰁕
|x|2|u|2dγ = s < ∞. Let

dγ = γ(x)dx. We define v = u
√
γ, then

󰁕
|v|2dx = 1 and

󰁕
|x|2|v|2dx = s. Direct

computations show that

|∇v|2 = |√γ∇u− 1

2
u
√
γx|2 = |∇u|2γ +

1

4
|x|2|u|2γ +

1

2
∇(u2) ·∇γ,

and
󰁝

|∇v|2dx =

󰁝
|∇u|2dγ +

1

4

󰁝
|x|2|u|2dγ +

1

2

󰁝
∇(u2) ·∇γdx

=

󰁝
|∇u|2dγ +

1

4

󰁝
|x|2|u|2dγ − 1

2

󰁝
u2(−n+ |x|2)dγ

=

󰁝
|∇u|2dγ − 1

4

󰁝
|x|2|u|2dγ +

n

2

󰁝
|u|2dγ.

Similarly, we have
󰁝

|v|2 log |v|2dx =

󰁝
|u|2 log |u|2dγ − 1

2

󰁝
|x|2|u|2dγ − n

2
log(2π)

󰁝
|u|2dγ.

It then follows from the LSI with respect to γ that
󰁝

|∇u|2dγ − 1

2

󰁝
|u|2 log |u|2dγ =

󰁝
|∇v|2dx− 1

2

󰁝
|v|2 log |v|2dx− n

4
log(2πe2).

Let w(x) := λ−n
2 v(x/λ) for λ > 0, then

󰁕
Rn |w|2dx = 1,

󰁕
Rn |x|2|w|2dx = λ2s,

󰁝
|∇v|2dx = λ2

󰁝
|∇w|2dx,

󰁝
|v|2 log |v|2dx =

󰁝
|w|2 log |w|2dx+ n log λ.

The LSI with respect to the Lebesgue measure yields

λ2

󰁝
|∇w|2dx− n

2
log λ ≥ 1

2

󰁝
|w|2 log |w|2dx+

n

4
log(2πe2).

Optimizing the LHS in λ, we have
󰁝

|∇w|2dx ≥ nπe

2
exp

󰀓 2
n

󰁝
|w|2 log |w|2dx

󰀔
.

Let w =
√
fγ, dν = fdγ, and A = 1

n
(2H(f) + (m2(γ)−m2(ν)), then

δ(f) ≥ n

2
(eA − 1− A) ≥ 1

4n
(2H(f) + (m2(γ)−m2(ν))

2.
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2.3 Stability for Cramér’s theorem

Cramér’s theorem says that if the sum of two independent random variables has

a normal distribution, then both random variables are normal. Let X and Y be

independent random variables with distribution functions F and G respectively, then

the Kolmogorov distance between X and Y is given by

dK(F,G) = sup
x∈R

|F (x)−G(x)|.

Let F ∗G be the distribution of the sum X + Y so that it is defined by

F ∗G(x) =

󰁝

R
F (x− y)dG(y).

If p1 and p2 are density functions of X and Y , one can write it as

F ∗G(x) =

󰁝 x

−∞
p1 ∗ p2(t)dt.

Let γb,σ(x) = 1√
2πσ2

e−
|x−b|2

2σ2 be the Gaussian density with mean b, variance σ2, and

Φb,σ its distribution function. For simplicity, let Φσ := Φ0,σ and Φ := Φ0,1. We recall

the following stability result of Cramér’s theorm from [68,103].

Theorem 2.3.1 ( [25, Theorem 2.2]). Let ε > 0 and N = N(ε) = 1 +
󰁳

2 log(1/ε).

Let X1, X2 be random variables with distribution functions F1, F2. We also put

ai =

󰁝 N

−N

xdFi(x), σ2
i =

󰁝 N

−N

x2dFi(x)− a2i

for i = 1, 2. Suppose that F1 and F2 have median zero and σ1, σ2 > 0. If dK(F1 ∗

F2,Φ) ≤ ε < 1, then there exist absolute constants C1, C2 > 0 such that for i = 1, 2,

dK(Fi,Φai,σi
) ≤ Ci

σi

󰁳
log(1/ε)

min

󰀝
1

√
σi

, log log
ee

ε

󰀞
.

A general version of the stability result can be found in [25].

Theorem 2.3.2 ( [25, Theorem 2.3]). Let X1, X2 be independent random variables

with E[X1] = E[X2] = 0 and Var[X1+X2] = 1. For i = 1, 2, let Fi be the distribution
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function of Xi and v2i = Var(Xi). If dK(F1 ∗ F2,Φ1) ≤ ε < 1, then there exists C > 0

such that

dK(Fi,Φvi) ≤
C

vi

󰁴
log 1

ε

min

󰀝
1

√
vi
, log log

ee

ε

󰀞

for i = 1, 2.

2.4 Entropic uncertainty principle

For a nonnegative function h on Rn, the entropy of h is given by

S(h) = −
󰁝

Rn

h log h dx.

Let h ∈ L2(Rn) with 󰀂h󰀂2 = 1. The Beckner–Hirschman inequality (the BHI in short)

states that

S(|h|2) + S(|󰁥h|2) ≥ n(1− log 2) (2.4.1)

where 󰁥h(ξ) =
󰁕
Rn e

−2πix·ξh(x)dx. It is also called the entropic uncertainty princi-

ple. By differentiating the (non-sharp) Hausdorff–Young inequality in p at p = 2,

Hirschman obtained S(|h|2) + S(|󰁥h|2) ≥ 0. He conjectured in [80] that the Gaussian

functions are extremal for the inequality and the best constant in the right hand side

of (2.4.1) is n(1−log 2). Beckner [20] found the best constant in the Hausdorff–Young

inequality for all p ∈ [1, 2], which gave an affirmative answer to the conjecture.

Even though the Gaussian functions satisfy the equality, it was an open problem

to show that the Gaussians are the only optimizers. Lieb [91] characterized the class

of optimizers for the Hausdorff–Young inequality and the BHI. Indeed, he proved

that every optimizer for a convolution operator with a Gaussian kernel is Gaussian.

Equality holds in (2.4.1) if and only if h is of the form

h(x) = ce−〈x,Jx〉+x·v

where c ∈ C, v ∈ Cn, and J is an n×n real positive definite matrix (see [40, Remarks

in p.207]).
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2.5 Torsional rigidity

Let α ∈ (0, 2] and D a bounded domain in Rn. Let Xα
t be the rotationally

symmetric α–stable process with generator −(−∆)α/2. The first exit time of Xα
t

from D is defined by

ταD = inf{t > 0 : Xα
t /∈ D}.

The expected lifetime is defined by uα
D(x) = Ex[ταD] where Ex is the expectation

associated with Xα
t starting at x ∈ Rn. Note that uα

D(x) is a solution to the equation
󰀻
󰁁󰀿

󰁁󰀽

(−∆)
α
2 u(x) = 1, x ∈ D,

u(x) = 0, x /∈ D

(2.5.1)

in the weak sense. If B is a ball of radius R and centered at the origin, then uα
B(x) is

explicitly given by

uα
B(x) = Cn,α(R

2 − |x|2)α
2 .

For α = 2, Xα
t is Brownian motion with generator ∆. In this case, we drop the

superscript α.

The semigroup Pα
t associated with Xα

t killed upon exiting D is given by

Pα
t f(x) = Ex[f(Xα

t ); t < ταD]

on L2(D). The general semigroup theory yields (see [52]) that there exists an or-

thonormal basis {ϕn} of L2(D) and the corresponding eigenvalues 0 < λ1 < λ2 ≤

λ3 ≤ · · · such that Pα
t ϕn = e−tλnϕn and (−∆)α/2ϕn = λnϕn. Using the representation

of the transition density of Xα
t

pt(x, y) =
∞󰁛

n=1

e−λntϕn(x)ϕn(y),

one obtains

Px(ταD > t) =

󰁝

D

pt(x, y)dy =
∞󰁛

n=1

e−λnt󰀂ϕn󰀂1ϕn(x)

and

uα
D(x) =

󰁝 ∞

0

Px(ταD > t)dt =
∞󰁛

n=1

󰀂ϕn󰀂1
λn

ϕn(x).
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In addition (see [29, Theorem 4.4]), there exist constants c1, c2 depending on D and

α such that c1u
α
D(x) ≤ ϕ1(x) ≤ c2u

α
D(x) for all x ∈ D. For further information, we

refer the reader to [29] and the references therein.

The classical torsional rigidity of D is defined by T (D) = 󰀂uD󰀂1 for α = 2. We say

that uD(x) is the torsion function of D. Let W 1,2
0 (D) be the completion of C∞

0 (D)

with respect to the norm u 󰀁→ 󰀂∇u󰀂2. We have variational representations of the

torsional rigidity

T (D) = max

󰀝
󰀂u󰀂21
󰀂∇u󰀂22

: u ∈ W 1,2
0 (D), u ∕= 0

󰀞
(2.5.2)

= max
󰀋
2󰀂u󰀂1 − 󰀂∇u󰀂22 : u ∈ W 1,2

0 (D), u ∕= 0
󰀌
.

Since uD is an optimizer for the maximization problems, we have T (D) = 󰀂uD󰀂1 =

󰀂∇uD󰀂22. There are two important inequalities for T (D). The Saint-Venant inequality,

an isoperimetric type inequality for T (D), states that if D is a set of finite measure

in Rn then

|B|−
n+2
n T (B) ≥ |D|−

n+2
n T (D)

where B is a ball. The Kohler-Jobin inequality states that for a ball B,

λ1(D)T (D)
2

n+2 ≥ λ1(B)T (B)
2

n+2 .

Note that the classical Faber–Krahn inequality for the first eigenvalue λ1 follows from

these two inequalities for T (D):

λ1(D)

λ1(B)
≥

󰀕
T (B)

T (D)

󰀖 2
n+2

≥
󰀕
|B|
|D|

󰀖 2
n

. (2.5.3)

Furthermore, it is well-known [34] that stability of Saint-Venant inequality can be

transferred to that of Faber–Krahn inequalities for the first eigenvalues. To see this,

suppose that there is a modulus of continuity Φ : [0,∞) → [0,∞) such that Φ(t) = 0

if and only if t = 0, and

|B|−n+2
n T (B)− |D|−n+2

n T (D) ≥ Φ(A(D))
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where A(D) is the Fraenkel asymmetry defined in (1.1.12). Without loss of generality,

we assume that |D| = 1 and B is a ball with |B| = 1. If T (B) ≤ 2T (D), it follows

from (2.5.3) that

λ1(D)

λ1(B)
− 1 ≥

󰀕
T (B)

T (D)

󰀖 2
n+2

− 1 ≥ Cn

󰀕
T (B)

T (D)
− 1

󰀖
≥ CnΦ(A(D)).

If T (B) > 2T (D), then λ1(D) − λ1(B) ≥ cn for some universal constant cn. Since

0 ≤ A(D) < 2, if there exists M > 0 such that Φ(x) ≤ M for all x ∈ [0, 2), then one

can choose Cn,M small enough that

λ1(D)− λ1(B) ≥ Cn,MΦ(A(D)).

Thus we obtain

|D| 2nλ1(D)− |B| 2nλ1(B) ≥ Cn,MΦ(A(D)).

This is called the Faber–Krahn hierarchy (see [33, Proposition A.1]).

The fractional torsional rigidity for 0 < α < 2 is defined by

Tα(D) =

󰁝

D

uα
D(x) dx =

󰁝

D

󰁝 ∞

0

Px(ταD > t) dtdx.

There has been recent progress in the study of the fractional torsional rigidity. The

isoperimetric inequality for Tα(D), a fractional analogue of the Saint-Venant inequal-

ity, follows from [16, Corollary 5.4] where the isoperimetric inequality was proven for

a general class of Lévy processes. For the stable processes, it also follows from the

sharp rearrangement inequality of [62, Theorem A.1]. Recently, Brasco, Cinti, and

Vita [32] proved a quantitative improvement of the fractional Saint-Venant inequal-

ity. Their method is based on the extension of [39] and the symmetrization argument

of [65].
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3. STABILITY OF THE LOGARITHMIC SOBOLEV

INEQUALITY

We investigate different probability measure spaces and metrics under which the

logarithmic Sobolev inequality is stable. We consider the Wasserstein distances, the

Kolmogorov distance, and the Lp distances for p ≥ 1. To obtain these results, we use

optimal transport theory, Fourier analysis, and probability. This chapter is based on

joint work with Emanuel Indrei [82].

3.1 Setting

Let dγ = (2π)−
n
2 e−

|x|2
2 dx be the standard Gaussian measure on Rn and f a non-

negative function in L1(dγ) such that dν = fdγ is a probability measure. We define

the Fisher information and the relative entropy of f with respect to γ by

I(ν) = I(f) =

󰁝

Rn

|∇f |2
f

dγ,

H(ν) = H(f) =

󰁝

Rn

f log fdγ.

The classical logarithmic Sobolev inequality (the LSI) states that

δ(f) =
1

2
I(f)− H(f) ≥ 0. (3.1.1)

We call δ(f) the deficit of the LSI. Note that the constant 1
2
is sharp and I(f),H(f)

are well-defined if
√
f ∈ W 1,2(Rn, dγ). Equality holds in (3.1.1) if and only if eb·x−

b2

2

for some b ∈ Rn. Note that the Gaussian measure (that is, f = 1) is the only

centered optimizer. There are several proofs based on the central limit theorem [69],

the Ornstein–Uhlenbeck semigroup [88], the Prékopa–Leindler inequality [27], optimal

transport theory [50], and harmonic analysis [21, 40].
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We are interested in measuring the deviation of a centered probability measure

dν = fdγ from the Gaussian measure γ, which is the only centered optimizer. Let

A be a family of centered probability measures and d a metric or a functional that

identifies the equality cases. We say that the LSI is weakly stable under (d,A) if

{fkdγ} ⊂ A and δ(fk) → 0 implies d(fkdγ, dγ) → 0 as k → ∞. The LSI is stable

if a modulus of continuity is explicit: for a function Φ : [0,∞) → [0,∞) such that

Φ(t) = 0 if and only if t = 0,

δ(f) ≥ Φ(d(fdγ, dγ))

for all fdγ ∈ A. Let P2(Rn) be the class of probability measures with finite second

moments, and PM
2 (Rn) the class of probability measures whose second moments are

bounded by M > 0.

3.2 Statements of stability results

3.2.1 Optimal transport method

We present stability estimates obtained by the optimal transport technique (The-

orem 2.2.4 and Remark 2.2.5).

Theorem 3.2.1. Let fdγ be a centered probability measure in PM
2 (R). Then there

exists C = C(M) > 0 such that

δ(f) ≥ C󰀂f − 1󰀂4L1(dγ). (3.2.1)

In the next chapter, we will see that (3.2.1) is false in Lp if p > 1 (Theorem 4.1.1)

: there exists a sequence of centered probability measures fkdγ ∈ PM
2 (R) (also on

Rn) for which δ(fk) → 0 and

lim inf
k→∞

󰀂fk − 1󰀂Lp(dγ) > 0.

A sufficient additional condition for Lp–stability is higher integrability.
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Corollary 3.2.2. Let fdγ be a centered probability measure in PM
2 (R) such that

󰁕
|f |2p−1dγ ≤ N for some p > 1 and N > 0. Then there exists C = C(M,N, p) > 0

such that

δ(f) ≥ C󰀂f − 1󰀂8pLp(dγ).

We extend Theorem 3.2.1 to higher dimension, under some tensorization assump-

tions.

Corollary 3.2.3. Let fdγ be a probability measure such that
󰁕
xifdγ = 0 and

󰁝
|xi|2fdγ(xi) ≤ M a.e. x′ = (x1, . . . , xi−1, xi+1, . . . , xn)

for some M > 0 and some i = 1, 2, · · · , n. Then there exists C = C(M) > 0 such

that

δ(f) ≥ C󰀂f − 1󰀂4L1(dγ).

Remark 3.2.4. Consider a class of probability measures fdγ such that 󰀂f󰀂L∞(Rn) <

R for some R > 1. If f(x1, . . . , xn) = Πn
i=1fi(xi) and fj is centered for some j,

then f satisfies the above condition. Therefore, the constant C is independent of the

dimension for this function space.

Corollary 3.2.5. Suppose f(x1, . . . , xn) = Πn
i=1fi(xi), where fi ∈ PM

2 (R) and fdγ is

a centered probability measure. Then there exists C = C(n,M) > 0 such that

δ(f) ≥ C󰀂f − 1󰀂4L1(dγ).

To prove Theorem 3.2.1, we apply the optimal transport technique and deduce

that the total variation distance is bounded above by W1 and the LSI deficit. Then

we employ the following W1–stability result.

Theorem 3.2.6. Let fdγ be a centered probability measure in PM
2 (Rn). There exists

a constant C = C(n,M) > 0 such that

δ(f) ≥ Cmin{W1(fdγ, dγ),W
4
1 (fdγ, dγ)}.
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Remark 3.2.7. The proof is based on the stability estimates of Talagrand’s trans-

portation inequality in terms of W1 by [18, 51]. In the same way, one can obtain

W1,1-stability from [57, Theorem 5].

Remark 3.2.8. Since W1–stability is not true in P2(Rn), the constant C = C(n,M)

in Theorem 3.2.6 cannot be taken independent of M (see Theorem 4.1.2). Further-

more, the constant C necessarily depends on the dimension for the following reason:

there exists a sequence of centered probability measures {fkdγ} in PM
2 (R) such that

δ(fk) → 0 by Example 4.3.2. Then Theorem 3.2.16 implies

n ≤ n+ lim sup
k→∞

I(fk) ≤ M.

The proof of Theorem 3.2.6 is based on the observation that the relative entropy

is bounded by the deficit and the second moment via the HWI inequality. Then

we combine this with a stability estimate for Talagrand’s transportation inequality

[51, 57].

The following theorem does not impose additional regularity assumptions or bounds

on the second moment and yields L1-stability in case that there is an L1 bound on

the densities. For g ∈ L1(dγ) and α > 0, we define

B(α) = {fdγ ∈ P : f(x) ≥ α a.e. x}, (3.2.2)

B(α, g) = {fdγ ∈ P : α ≤ f(x) ≤ g(x) a.e. x} (3.2.3)

where P is the space of probability measures.

Theorem 3.2.9. Let α ∈ (0, 1] and fdγ ∈ B(α) be a centered probability measure.

Then there exists C(α, n) > 0 and a linear function Lf = af · x+ bf such that

δ(f) ≥ C(α, n)󰀂 log f − Lf󰀂2L1(dγ), (3.2.4)

where af ∈ Rn, bf ∈ R, and |af |+ |bf | ≤ c for some c = c(n,α) > 0.

Corollary 3.2.10. Let α ∈ (0, 1] and {fkdγ} ⊂ B(α) be a sequence of centered

probability measures such that δ(fk) → 0 as k → ∞. Then there exist a subsequence

{fkj} ⊂ {fk} and a constant c ∈ [α, 1] such that fkj → c a.e. as j → ∞.
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Corollary 3.2.11. Let α ∈ (0, 1], g ∈ L1(dγ), and {fkdγ} ⊂ B(α, g) be a sequence

of centered probability measures. If δ(fk) → 0 as k → ∞, then fk → 1 in L1(dγ).

Remark 3.2.12. For any M,α > 0 and g ∈ L1(dγ), we have B(α, g) ∕⊂ PM
2 (Rn) and

PM
2 (Rn) ∕⊂ B(α, g). To see this, it suffices to consider the case n = 1. Let M > 0

be fixed and fkdγ be a sequence of probability measures constructed as in Example

4.3.2 with w = 2. Then we can choose v so that {fkdγ} is included in PM
2 as we

have seen in the end of Section 4.3. Since the minimum of fk converges to 0, we get

PM
2 ∕⊂ B(α, g). We define a sequence of functions fk such that fk(x) = fk(−x) and

fk(x) =

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

e
x2

2

Ckπ(x
2 + 1)

, x ∈ [0, k],

e
k2

2

Ckπ(k
2 + 1)

, x ∈ (k,∞)

where

Ck =
2

π

󰀓
arctan(k) +

e
k2

2 (1− Φ(k))

k2 + 1

󰀔
.

Note that fkdγ is a probability measure and Ck → 1 as k → ∞. Furthermore, there

exist C,α > 0 such that fk ≥ α for all k and

fk(x) ≤
Ce

x2

2

π(x2 + 1)
∈ L1(dγ)

for all x and k. Since the second moment of fkdγ diverges, we conclude that B(α, g) ∕⊂

PM
2 (Rn).

Combining Theorem 3.2.6 with the standard compactness argument, we obtain

weak L1-stability in PM
2 (Rn).

Theorem 3.2.13. Let M ≥ n and {fkdγ} be a sequence of centered probability mea-

sures in PM
2 (Rn). If δ(fk) → 0 as k → ∞, then fk → 1 in L1(dγ).

3.2.2 Fourier analytic method

Let g(x) = 2
n
4 e−π|x|2 and dm = g2(x)dx. The LSI deficit with respect to dm is

defined by

δc(f) =
1

2π

󰁝

Rn

|∇f |2 dm−
󰁝

Rn

|f |2 log |f |2 dm
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for a normalized function f ∈ L2(dm). Note that if uf (x) = f(2
√
πx)

1
2 , then we have

δc(uf ) = δ(f) by change of variable. Since

󰀂uf − 1󰀂2L2(dm) ≤ 󰀂f − 1󰀂L2(dγ) ≤ 2󰀂uf − 1󰀂L2(dm),

L2–stability with respect to δc(f) is equivalent to L1–stability with respect to δ(f).

Recall that Carlen [40] derived the lower bound of δc(f) in terms of the relative

entropy of the Fourier–Wiener transform (see Theorem 2.2.1). We investigate the

case where Entdm(|Wf |2) converges to 0 and use a compactness argument to obtain

the following weak L2–stability result.

Theorem 3.2.14. Let M > 0, 󰂃 ∈ (0, 2π), and {fk} be a sequence of normalized and

centered functions in L2(dm). Suppose

󰁝
|fk|2e−(2π−󰂃)|x|2dx ≤ M

for all k. If δc(fk) → 0 as k → ∞, fk → 1 in L2(dm).

Remark 3.2.15. As we have seen in Corollary 3.2.2, higher integrability assumption

yields weak Lp-stability for p > 2.

The optimal transport method and Carlen’s deficit estimate (2.2.4) yields the

following inequality which in particular implies weak L2–stability for PM
2 (Rn) with

respect to δc.

Theorem 3.2.16. Let f be normalized in L2(dm). Then

2
√
πnW2(dm, |Wf |2dm) + Entdm(|Wf |2)

≥ 2π

󰁝
|x|2dm− 2π

󰁝
|x|2|f |2dm+

1

2π

󰁝
|∇f |2dm. (3.2.5)

As a consequence,

√
2nδ

1
2
c (f) + δc(f) ≥ 2π

󰁝
|x|2dm− 2π

󰁝
|x|2|f |2dm+

1

2π

󰁝
|∇f |2dm. (3.2.6)

Remark 3.2.17. Stability for Talagrand’s transportation inequality (2.1.4) yields an

extra remainder term while passing from (3.2.5) to (3.2.6).
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Corollary 3.2.18. Let M ≥ 1 and {fk} be a sequence of normalized and centered

functions in L2(dm). Suppose
󰁕
|fk|4dm ≤ M for all k. If δc(fk) → 0 as k → ∞,

then

lim
k→∞

󰁝
|∇fk|2dm = 0.

In particular, we have fk → 1 in L2(dm).

Corollary 3.2.19. Let M ≥ n
4π

and {fk} be a sequence of normalized and centered

functions in L2(dm). Suppose
󰁕
|x|2|fk|2dm ≤ M for all k. If δc(fk) → 0 as k → ∞,

then fk → 1 in L2(dm).

Remark 3.2.20. Suppose there is a modulus of continuity ω and C = C(M) > 0

such that 󰀂f − 1󰀂Lp(dγ) ≤ Cω(δ(f)) as δ(f) → 0 and f ∈ PM
k (Rn) for k ∈ N and

p ≥ 1. Then C necessarily depends on the dimension since
󰁕
|x|kdγ ≤ M .

3.2.3 Probabilistic method

Another approach to proving stability estimates for the LSI is to investigate quan-

titative versions of Cramér’s theorem [24, 25] and combine them with a convolution

type deficit estimate of the LSI in [58]. We consider the space of probability measures

in PM
2 satisfying further integrability and assumptions on the second moment. For

probability measures µ and ν on R, the Kolmogorov distance is given by

dK(µ, ν) = sup
x∈R

|µ((−∞, x])− ν((−∞, x])|.

Theorem 3.2.21. Let f be a symmetric nonnegative function on R and dµ = fdγ ∈

PM
2 (R) with m2(µ) = k. Let v(x) = f( x√

2
)2 and assume that dν := vdγ is a probability

measure. Then there exists ε0 > 0 such that if δ(v) ≤ ε ≤ ε0, then

dK(µ, γε) ≤
Ck󰁴
log 1

ε

(3.2.7)

where Ck depends on k and γε is a Gaussian measure given by

dγε =
1󰁳
4πσ2

ε

e
− |x|2

4σ2
ε dx,

for some σ2
ε > 0 depending on ε.
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Theorem 3.2.22. Let f be a symmetric nonnegative function on R, dµ = fdγ, and

m2(µ) = 1. Let v(x) = f( x√
2
)2 and assume that dν := vdγ is a probability measure.

We have

δ(v) ≥ Ψ(dK(µ, γ))

where Ψ(t) = e−
c
t2 for some c > 0.

Remark 3.2.23. Note that for dγ 1√
2
= 1√

π
e−|x|2dx and v(x) = f( x√

2
)2,

δ(v) =

󰁝
|∇f |2dγ 1√

2
−

󰁝
|f |2 log |f |2dγ 1√

2
.

Remark 3.2.24. By Proposition 2.1.6, Theorem 3.2.6 implies that

δ(f) ≥ CM min{dK(µ, γ)2, dK(µ, γ)8}.

On the other hand, it follows from Proposition 2.1.8 that Theorem 3.2.22 implies

δ(v) ≥ c1Ψ(c2W1(µ, γ)
2).

Note that if t is small then Ψ(t) is bounded by t8, which implies that Theorem 3.2.6 is

stronger than Theorem 3.2.22. Notice also that Theorem 3.2.22 has a scaled version

of the deficit δ(v).

3.3 Dimension-free stability estimates

One of the most important features of the logarithmic Sobolev inequality is that

the sharp constant 1
2
is dimension-independent, which leads to many interesting ap-

plications. It is natural to ask if there is a dimension-free quantitative improvement

of the LSI.

We observe that Carlen’s deficit estimate (2.2.1) is dimension-free. He showed

that the LSI deficit is bounded below by the relative entropy of the Fourier–Wiener

transform, which yields the characterization of the equality cases. This estimate is,

however, not metric-involved. The first result on dimension-free stability estimates
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in terms of a metric is found in [83], where W2–stability was considered in the space

of probability measures satisfying the differential inequalities

−1 + ε ≤ D2(− log f) ≤ M

for ε,M > 0. The estimate only depends on the choice of ε and M . In [57], the

authors considered the space of probability measures satisfying Poincaré inequalities.

Indeed, they proved a strict improvement of the LSI in within the class of probability

measures satisfying a (2, 2)-Poincaré inequality with a constant λ > 0

λ

󰁝
g2 fdγ ≤

󰁝
|∇g|2 fdγ.

for every smooth function g with
󰁕
g fdγ = 0. The improvement yields stability

estimates in terms of W2 and L1, which depend only on the Poincaré constant λ.

In [58], it was shown that if fdγ is a probability measure satisfying

F(e−π|x|2f(2
√
πx)) ≥ 0,

then δ(f) ≥ 1
2
󰀂f − 1󰀂42, which is dimension-free. We note that this estimate does not

have any parameters while the above estimates have the parameters that define the

probability measure spaces.

The stability estimate in Corollory 3.2.3 is dimension-free. We show L1–stability in

the space of probability measures such that for some M > 0 and some i = 1, 2, · · · , n,
󰁕
xifdγ = 0 and

󰁝
|xi|2fdγ(xi) ≤ M a.e. x′ = (x1, . . . , xi−1, xi+1, . . . , xn).

Note that the constant depends only on M . In particular, as we have seen in Remark

3.2.4, we have a dimension-free L1–stability estimate in the space

{fdγ ∈ P : f(x1, · · · , xn) =
n󰁜

i=1

fi(xi), 󰀂f󰀂∞ < R}

for R > 0.

Recently, it was shown in [55] that the LSI can be self-improved with a dimension-

free estimate. Previously, a self-improvement of the LSI with a dimensional constant
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was proven in [26,53]. The authors in [55] derived a dimension independent estimate

in terms of the Fisher information matrix. As a consequence, they proved that if the

covariance matrix of a measure is dominated by the identity matrix, then the deficit

of the LSI is bounded below by some functionals in term of the eigenvalues of the

Fisher information matrix.

However, the logarithmic Sobolev inequality turns out to be so delicate that such

dimension-free stability estimates require strong restrictions on probability measures

and distance functionals. As we have seen in Remark 3.2.8, anyW1–stability estimates

in PM
2 should depend onM by Example 4.3.2 and the constantM necessarily depends

on n by Theorem 3.2.16. In Theorem 4.1.1, we show thatW2–stability fails in PM
2 (Rn)

for M > n, which implies that dimension-dependency is necessary for W2–stability.

We remark that it was shown in [55] that there exist a sequence of dimensions nk ∈ N

and a sequence of probability measures µk on Rnk such that the deficit converges to

0 but the W2 distance from the class of optimizers diverges.

3.4 Proofs of the main results

3.4.1 Proofs of Theorem 3.2.1 and its corollaries

Proof of Theorem 3.2.1. Let T be the Brenier map between fdγ and dγ. Recall that

the Gaussian measure dγ satisfies the (1, 1)-Poincaré inequality

󰁝
|f − 1|dγ ≤ 2

󰁝
|∇f | dγ = 2

󰁝
|∇(log f)| fdγ.

Combining this with (2.2.7), we have

󰁝
|f − 1| dγ ≤ 2

󰁝
|∇ log f | fdγ

≤ 2

󰁝
|∇ log f − T (x) + x| fdγ + 2

󰁝
|T (x)− x| fdγ

≤ 2
󰀓󰁝

|∇ log f − T (x) + x|2fdγ
󰀔 1

2
+ 2

󰁝
|T (x)− x|fdγ

≤ 2
√
2δ

1
2 (f) + 2

󰁝
|T (x)− x|fdγ.
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Note that in one-dimensional case, the Brenier map between fdγ and dγ gives an

optimal transport plan for W1 as well as W2. In other words, we have

󰁝
|T (x)− x|fdγ = W1(fdγ, dγ).

Applying Theorem 3.2.6, we get

󰁝
|f − 1|dγ ≤ 2

√
2δ

1
2 (f) + Cmax(δ(f), δ

1
4 (f))

as desired.

Proof of Corollary 3.2.2. The result follows from Cauchy–Schwarz inequality

󰁝
|f − 1|pdγ =

󰁝
|f − 1|p− 1

2 |f − 1| 12dγ

≤ (22p−2(N + 1))
1
2󰀂f − 1󰀂

1
2

L1(dγ)

≤ CM(22p−2(N + 1))
1
2 δ

1
8 (f).

Proof of Corollary 3.2.3. For fixed x′ = (x1, . . . , xi−1, xi+1, · · · , xn), let gx′(xi) =

f(x′). Theorem 3.2.1 implies

1

2

󰁝
(∂xi

gx′(xi))
2

gx′(xi)
dγ(xi) ≥

󰁝
gx′(xi) log gx′(xi)dγ(xi) + c

󰀓󰁝
|gx′(xi)− 1|dγ(xi)

󰀔4

.

Since we have

󰁝 󰁝 |∇f |2
f

dγ(xi)dγ(x
′) ≥

󰁝 󰁝
(∂xi

gx′(xi))
2

gx′(xi)
dγ(xi)dγ(x

′),

it follows from Jensen’s inequality that

δ(f) ≥ C

󰁝 󰀓󰁝
|gx′(xi)− 1|dγ(xi)

󰀔4

dγ(x′)

≥ C
󰀓󰁝 󰁝

|gx′(xi)− 1|dγ(xi)dγ(x
′)
󰀔4

= C󰀂f − 1󰀂4L1(dγ).



41

Proof of Corollary 3.2.5. By applying Theorem 3.2.1 to fi, it follows that

n󰁛

i=1

δ(fi) ≥ c

n󰁛

i=1

󰀓󰁝
|fi(xi)− 1|dγ(xi)

󰀔4

.

Since the Fisher information and the relative entropy of f = f1f2 · · · fn are
󰁝 |∇f |2

f
dγ =

󰁝 |∇(f1f2 · · · fn)|2
f

dγ

=
n󰁛

i=1

󰁝
(∂xi

fi(xi))
2Πj ∕=i(fj(xj))

2

f
dγ

=
n󰁛

i=1

󰁝
(∂xi

fi)
2

fi
dγ(xi)

and 󰁝
f log f dγ =

n󰁛

i=1

󰁝
fi(xi) log fi(xi) dγ(xi),

we have δ(f) =
󰁓n

i=1 δ(fi). The result follows from

n󰁛

i=1

󰀓󰁝
|fi(xi)− 1| dγ(xi)

󰀔4

≥ n−3
󰀓 n󰁛

i=1

󰁝
|fi(xi)− 1| dγ(xi)

󰀔4

≥ n−3
󰀓󰁝

|f − 1| dγ
󰀔4

.

3.4.2 Proofs of Theorem 3.2.6

By the HWI inequality (2.1.5), we obtain

H(f) ≤ W2(fdγ, dγ)
󰁳

I(f)− 1

2
W 2

2 (fdγ, dγ)

≤ 1

2t
I(f) +

t− 1

2
W 2

2 (fdγ, dγ)

for any t > 1. Let T : Rn → Rn be the Brenier map from dγ to fdγ, then

H(f) ≤ t

2

󰁝

Rn

|T (x)− x|2dγ +
t

t− 1
δ(f)

≤ t
󰀓󰁝

Rn

|x|2fdγ +

󰁝

Rn

|x|2dγ
󰀔
+

t

t− 1
δ(f)

≤ t(n+M) +
t

t− 1
δ(f).
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Note that it is well-known (for example [57]) that 16δ(f)H(f) ≥ δ2Tal(f) where δTal(f)

is defined in (2.1.3). Thus we obtain

δ2(f) + (t− 1)(n+M)δ(f)− (t− 1)

16t
δ2Tal(f) ≥ 0.

Solving this inequality for δ(f) and applying (2.1.4), we get

δ(f) ≥ t− 1

2
(n+M)

󰀓󰀃
1 +

δ2Tal(f)

4t(t− 1)(n+M)

󰀄 1
2 − 1

󰀔

≥ t− 1

6
(n+M)G

󰀣
δTal(f)

2
󰁳

t(t− 1)(n+M)

󰀤

≥ t− 1

6
(n+M)G

󰀣
CCE

2
󰁳

t(t− 1)(n+M)
G(W1(fdγ, dγ))

󰀤

where G(x) = min{x, x2}. We finish the proof by choosing t > 1 such that CCE =

2
󰁳

t(t− 1)(n+M).

3.4.3 Proofs of Theorem 3.2.9 and its corollaries

Proof of Theorem 3.2.9. Let T = ∇Φ = (T 1, T 2, . . . , T n) be the Brenier map from

fdγ to dγ and {λi} the eigenvalues of DT − Id. By (2.2.7), we have

δ(f) ≥ 1

2

󰁝
|T (x)− x+∇ log f |2 fdγ +

󰁝 n󰁛

i=1

(λi − log(1 + λi)) fdγ.

Since f(x) ≥ α for all x, there exists a constant C such that | log f | ≤ C(|f |+1). This

implies that 󰀂 log f −Lf󰀂L1(dγ) is bounded so that it suffices to assume that δ(f) ≤ 1.

Since t− log(1 + t) ≥ (1− log 2)min{t, t2} for t ≥ 0 and f(x) ≥ α for all x, we have

󰁝 n󰁛

i=1

(λi − log(1 + λi)) fdγ ≥ Cα

n󰁛

i=1

󰀓󰁝

{|λi|≤1}
|λi|2dγ +

󰁝

{|λi|>1}
|λi|dγ

󰀔

≥ Cα

n󰁛

i=1

󰀓󰀓󰁝

{|λi|≤1}
|λi|dγ

󰀔2

+

󰁝

{|λi|>1}
|λi|dγ

󰀔

≥ Cα

n󰁛

i=1

󰀓󰀓󰁝

{|λi|≤1}
|λi|dγ

󰀔2

+
󰀓󰁝

{|λi|>1}
|λi|dγ

󰀔2󰀔

≥ Cα,n

󰀓 n󰁛

i=1

󰁝
|λi|dγ

󰀔2
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where Cα,n = (1− log 2)α/n. Let a =
󰁕
Tdγ and a = (a1, . . . , an), then

|a| ≤
󰁝

|T |dγ ≤ 1

α

󰁝
|x|dγ.

By the (1, 1)-Poincaré inequality for dγ, we have

n󰁛

i=1

󰁝
|λi| dγ ≥ C

󰁛

i,j

󰁝
|∂jT i − δij| dγ

≥ C
󰁛

i

󰁝
|∇(T i − xi)| dγ

≥ C
󰁛

i

󰁝
|T i − xi − ai| dγ

for some universal constant C. Thus we have

󰁝
|∇ log f + a| dγ ≤

󰁝
|∇ log f + (T − x)| dγ +

󰁝
|T − x− a| dγ

≤ 1√
α

󰀓󰁝
|∇ log f + (T − x)|2 fdγ

󰀔 1
2
+

󰁝
|T − x− a| dγ

≤ C(α, n)δ
1
2 (f).

Let b =
󰁕
log fdγ ∈ (logα, 0). It then follows from the (1, 1)-Poincaré inequality for

dγ that 󰁝
|∇ log f + a| dγ ≥ c

󰁝
| log f + a · x− b| dγ,

which finishes the proof.

Proof of Corollary 3.2.10. Theorem 3.2.9 implies that

lim
k→∞

󰁝
| log

󰀃
fke

−(afk ·x+bfk )
󰀄
| dγ = 0

Since |afk | + |bfk | is uniformly bounded in k, there exists a ∈ Rn and b ∈ R such

that afk → a and bfk → b as k → ∞ along a subsequence. There exists a further

subsequence such that log(fke
−(afk ·x+bfk )) → 0 and in turn that fk → ea·x+b a.e. as

k → ∞. Since fk(x) ≥ α for all k and x, we have a = 0 as desired.

Proof of Corollary 3.2.11. Suppose that there exists a subsequence {fk} such that

󰀂fk − 1󰀂L1(dγ) ≥ C > 0 for all k. By Corollary 3.2.10, fk converges to a constant



44

a.e. along a subsequence as k → ∞. It then follows from the dominated convergence

theorem and the mass constraint that fk converges to 1 a.e., which is a contradiction.

3.4.4 Proof of Theorem 3.2.13

Let {fj} be any subsequence of the original sequence. We will show that there

exists a further subsequence {fj(k)} that converges to 1 in L1(Rn, dγ). By (2.1.6), it

suffices to show that
󰁳

fj(k) → 1 in L2(Rn, dγ). Since the deficit converges to zero, it

follows from Theorem 3.2.16 that {I(fj)}j≥1 is uniformly bounded in j. Let hj = fjγ

where γ(x) = (2π)−
n
2 e−

|x|2
2 , then

I(fj) = 4

󰁝

Rn

|∇(
󰁳

fj)|2dγ

= 4

󰁝

Rn

|∇(
󰁳

hj)−
󰁳

fj∇(
√
γ)|2dx

= 4

󰁝

Rn

|∇(
󰁳

hj)|2dx− 2n+

󰁝

Rn

|x|2dνj.

So {
󰁳

hj}j≥1 is bounded in W 1,2(Rn).

Let Ω ⊂ Rn be a bounded domain. The Rellich–Kondrashov theorem says that

there exists a subsequence {hj(k)}k≥1 such that
󰁳

hj(k) converges to a function g in

L2(Ω). Since
󰁳

hj is nonnegative for all j, we let g =
√
fγ.

We claim that f = 1 a.e. in Ω. Let dνj = fjdγ. Since δ(fj(k)) converges to 0, we

have W1(νj(k), γ) → 0 by Theorem 3.2.6. This implies that νj(k) ⇀ γ weakly, that is,

lim
k→∞

󰁝

Rn

ϕdνj(k) =

󰁝

Rn

ϕdγ

for all ϕ ∈ C0
b (Rn). Let ε > 0 and ϕ be a bounded continuous function such that

|ϕ| ≤ K for some K > 0. We pick N ∈ N such that

󰀏󰀏󰀏
󰁝

Ω

ϕdνj(k) −
󰁝

Ω

ϕdγ
󰀏󰀏󰀏 ≤

ε

2
,

󰀏󰀏󰀏
󰁝

Ω

|
󰁴

fj(k) −
󰁳

f |2dγ
󰀏󰀏󰀏 ≤

ε2

16K2

for any k ≥ N . Since
󰁕
Ω
fj(k)dγ ≤ 1 for all k and

󰁝

Ω

fdγ ≤
󰁝

Ω

|
󰁴

fj(k) −
󰁳

f |2dγ +

󰁝

Ω

fj(k)dγ,
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we obtain
󰁕
Ω
fdγ ≤ 1. One can see that

󰀏󰀏󰀏
󰁝

Ω

(f − 1)ϕdγ
󰀏󰀏󰀏 ≤

󰀏󰀏󰀏
󰁝

Ω

(fj(k) − 1)ϕdγ
󰀏󰀏󰀏+

󰀏󰀏󰀏
󰁝

Ω

(f − fj(k))ϕdγ
󰀏󰀏󰀏

≤ ε

2
+K

󰁝

Ω

|f − fj(k)|dγ

≤ ε

2
+K

󰀓󰁝

Ω

|
󰁳

f −
󰁴

fj(k)|2dγ
󰀔 1

2
󰀓󰁝

Ω

|
󰁳

f +
󰁴

fj(k)|2dγ
󰀔 1

2

≤ ε.

This holds for all ε > 0 and all ϕ ∈ C0
b (Ω). Thus, we conclude that f = 1 a.e. in Ω.

Let Bk := {x ∈ Rn : |x| < k} for each k ∈ N. Choose a subsequence {f1,j}j≥1 such

that
󰁳

f1,j → 1 in L2(B1, dγ) as j → ∞. On B2, we can find a further subsequence

{f2,j}j≥1 ⊆ {f1,j}j≥1 such that
󰁳

f2,j → 1 in L2(B2, dγ) as j → ∞. Iterating this

procedure, we have {fk,j}j,k≥1 such that
󰁳

fk,j → 1 in L2(Bk, dγ) as j → ∞. Define

f (k) := fk,k and let ε > 0.

Since νj converges weakly to γ, the family {νj} is tight by Prokhorov’s theorem.

Thus, we can choose N1 ∈ N be such that
󰁕
Rn\Bk

dνj < ε
8
and

󰁕
Rn\Bk

dγ < ε
8
for all

k ≥ N1. By definition, there exists N2 ∈ N such that
󰁕
Bk

|
󰁳

f (k) − 1|2dγ < ε
2
for all

k ≥ N2. Combining our observation, we have

󰀏󰀏󰀏
󰁝

Rn

|
󰁳

f (k) − 1|2dγ
󰀏󰀏󰀏 ≤

󰀏󰀏󰀏
󰁝

Bk

|
󰁳

f (k) − 1|2dγ
󰀏󰀏󰀏+ 2

󰀏󰀏󰀏
󰁝

Rn\Bk

(f (k) + 1)dγ
󰀏󰀏󰀏 < ε

for any k ≥ max{N1, N2}. Therefore, we conclude that
󰁳

f (k) → 1 in L2(Rn, dγ) as

desired.

3.4.5 Proof of Theorem 3.2.14

Suppose that there exists a subsequence {fk} such that 󰀂fk − 1󰀂L2(dm) ≥ C > 0

for all k. Let dm󰂃 = e−(2π−󰂃)|x|2dx. Since

󰁝
|fk|2dm󰂃 ≤ M,
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fk converges weakly to f in L2(dm󰂃) along a subsequence. Since ϕ(x) := e−2πiξ·xe(π−󰂃)|x|2

is in L2(dm󰂃) for each ξ, we have

lim
k→∞

󰁝
e−2πiξ·xU∗fk(x)dx =

󰁝
e−2πiξ·xU∗f(x)dx.

Therefore, Wfk(ξ) → Wf(ξ) for every ξ ∈ Rn. On the other hand, it follows from

δc(fk) → 0 and Carlen’s deficit estimate (2.2.4) that

lim
k→∞

Entdm(|Wfk|2) = 0.

By Pinsker’s inequality (2.1.2), we have |Wfk|2 → 1 in L1(dm) as k → ∞ and

|Wf |2 = 1 a.e. This implies f = 1 by Cramér’s theorem. Since fk is normalized

in L2(dm), therefore fk ⇀ g weakly in L2(dm) along a further subsequence. By

uniqueness of weak limits, we have g = 1. This yields fk → 1 in L2(dm), which is a

contradiction.

3.4.6 Proof of Theorem 3.2.16

Proof of Theorem 3.2.16. Let f ∈ L2(dm) be normalized and T the Brenier map

between dm = |U∗|2dx and |Wf |2dm = |󰁧U∗f |2dx. Note that there exists a convex

function φ such that T = ∇φ and it satisfies the Monge–Ampère equation

log detD2φ = log
|U∗|2

|󰁧U∗f(T )|2

=
n

2
log 2− 2π|x|2 − log |󰁧U∗f(T )|2.

Integrating of both sides with respect to dm = |U∗|2dx, we get

󰁝
|U∗|2 log |󰁧U∗f(T )|2dx+

󰁝
|U∗|2 log detD2φdx =

n

2
log 2− 2π

󰁝
|x|2|U∗|2dx.
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Let ψ(x) = φ(x)− 1
2
|x|2 and λi be the eigenvalues of D2ψ, then

2π

󰁝
|x|2|󰁧U∗f |2dx− 2π

󰁝
|x|2 dm =

󰁝
log detD2φ dm+ Entdm(|Wf |2)

=

󰁝 n󰁛

i=1

log(1 + λi) dm+ Entdm(|Wf |2)

≤
󰁝

∆ψ dm+ Entdm(|Wf |2)

= 4π

󰁝
(T (x)− x) · x dm+ Entdm(|Wf |2)

≤ 4πW2(dm, |Wf |2dm)(m2(dm))
1
2 + Entdm(|Wf |2)

where m2(dm) is the second moment of dm. By the Plancherel theorem, we have

4π2

󰁝
|x|2|󰁧U∗f |2dx =

󰁝
|󰁦∇U∗f |2dx

=

󰁝
|∇U∗f |2dx

= 4π2

󰁝
|x|2|U∗f |2dx− 4π

󰁝
x ·∇ffdm+

󰁝
|∇f |2dm.

Using

−2

󰁝
x ·∇ffdm = n− 4π

󰁝
|x|2|f |2dm,

we obtain

2π

󰁝
|x|2dm− 2π

󰁝
|x|2|f |2dm+

1

2π

󰁝
|∇f |2dm

≤ 2
√
πnW2(dm, |Wf |2dm) + Entdm(|Wf |2).

Therefore, it follows from Talagrand’s transportation inequality (2.1.3) for the mea-

sure dm and the entropic uncertainty principle (2.2.3) that

2π

󰁝
|x|2dm− 2π

󰁝
|x|2|f |2dm+

1

2π

󰁝
|∇f |2dm ≤ 2

√
πnW2(dm, |Wf |2dm) + δc(f)

≤
√
2n

󰁳
δc(f) + δc(f).
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Proof of Corollary 3.2.18. Suppose that there exists a subsequence {fk} such that

δc(fk) → 0 as k → ∞ and
󰁕
|∇fk|2dm ≥ c > 0 for all k. Since

󰁕
|fk|4 dm ≤ C for

all k, along a further subsequence, f 2
k converges weakly to f 2 in L2(dm) for some

f ∈ L4(dm). In particular, we have

󰁝
|x|2|fk|2dm →

󰁝
|x|2|f |2dm

as k → ∞ because |x|2 ∈ L2(dm). By Theorem 3.2.6 and Theorem 3.2.16, f = 1 and

󰁝
|∇fk|2dm → 0

as k → ∞, which is a contradiction.

Proof of Corollary 3.2.19. Suppose that there exists a subsequence {fk} such that

δc(fk) → 0 and 󰀂fk−1󰀂L1(dγ) ≥ c > 0. Since Theorem 3.2.16 implies
󰁕
|∇fk|2dm ≤ M

for all k, we have fk → f in L2(dm) as k → ∞ along a further subsequence, for some

f ∈ L2(dm). Theorem 3.2.6 yields f = 1, which is a contradiction.

3.4.7 Proofs of Theorem 3.2.21 and Theorem 3.2.22

We recall a convolution type deficit estimate for the LSI of [58].

Theorem 3.4.1 ( [58, Theorem 4.1]). Let f ∈ L2(dm), f(x) = f(−x), 󰀂f󰀂2 = 1,

and h = fg. Then there exists a constant C > 0 such that

󰁝

R
|h ∗ h− g ∗ g|2dx ≤ Cδc(f)

1
4 (󰀂h− g󰀂26

5
+ 󰀂h− g󰀂2)

3
2 .

The following lemma is an L1–L2 estimate under a second moment assumption,

which allows connecting stability of Cramér’s theorem in [68,103] (see Theorem 2.3.1

and 2.3.2) with Theorem 3.4.1.

Lemma 3.4.2. Let u be a nonnegative function in L1(dx) ∩ L2(dx) such that

󰁝

R
x2u(x)dx = k󰀂u󰀂1 < ∞

for some k > 0. Then we have 󰀂u󰀂1 ≤ e
k+1
2 󰀂u󰀂2.
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Proof. Let p(x) = u(x)/󰀂u󰀂1 and q(x) = 1√
π
e−x2

. Since ϕ = x log x for x ≥ 0 is

convex (ϕ(0) = 0), one can see by Jensen’s inequality that

󰁝

R
p(x) log

p(x)

q(x)
dx =

󰁝

R
ϕ(

p(x)

q(x)
)q(x)dx ≥ ϕ(

󰁝

R
p(x)dx) = 0.

So, we have

󰁝

R
p(x) log p(x)dx ≥

󰁝

R
p(x) log q(x)dx (3.4.1)

= −
󰁝

R
x2p(x)dx− 1

2
log π

≥ −(k + 1).

Let 1 ≤ p0, p1 ≤ 2, θ ∈ (0, 1), and 1
pθ

= 1−θ
p0

+ θ
p1
. It follows from Hölder’s inequality

that

󰀂u󰀂pθ ≤ 󰀂u󰀂1−θ
p0

󰀂u󰀂θp1 . (3.4.2)

This implies that the map p 󰀁→ J(p) := log 󰀂f󰀂pp is convex on [1, 2]. On the other

hand, the derivative of J(p) is given by

d

dp
J(p) =

1

󰀂u󰀂pp

󰁝

R
|u|p log |u|dx.

By the convexity of J(p), we have J(2)−J(1) ≥ J ′(1). So, we apply (3.4.1) to obtain

log 󰀂u󰀂22 − log 󰀂u󰀂1 ≥
1

󰀂u󰀂1

󰁝

R
|u| log |u|dx

=

󰁝

R
p(x) log p(x)dx+ log 󰀂u󰀂1

> −(k + 1) + log 󰀂u󰀂1,

which yields the desired result.

Proof of Theorem 3.2.21 . Let h(x) = 󰁨f(x)g(x) and 󰁨f(x) = f(
√
2πx) then one can

easily see that

󰁝

R
|h|2dx = 1,

󰁝

R
hdx = 2

1
4 ,

󰁝

R
x2hdx =

2−
3
4k

π
. (3.4.3)
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Let X1, X2 be i.i.d. random variables with the density p(x) = 2−1/4
√
π
h( x√

π
) and the

distribution function F . Note that F has median zero and Var[X1] =
k
2
. Since the

Kolmogorov distance is bounded by the total variation, one can see that

dK(F ∗ F,Φ1) ≤
1

2

󰁝

R
|p ∗ p(x)− γ(x)|dx.

Since we have h ∗ h(x) =
√
2πp ∗ p(

√
πx) and g ∗ g(x) =

√
2πγ(

√
πx), we obtain

dK(F ∗ F,Φ1) ≤
1

2
√
2

󰁝

R
|h ∗ h(x)− g ∗ g(x)|dx.

Let u := h ∗ h− g ∗ g, then we have 󰀂u󰀂1 ≤ 2
√
2 and

󰁝

R
x2|u|dx ≤

󰁝

R
x2(h ∗ h)(x)dx+

󰁝

R
x2(g ∗ g)(x)dx

≤ 2
5
4

󰀓󰁝

R
x2h(x)dx+

󰁝

R
x2g(x)dx

󰀔

≤ C(k + 1).

By Lemma 3.4.2, we have 󰀂u󰀂1 ≤ Ck󰀂u󰀂2 where Ck > 0 depends only on k. Combining

our observation with Theorem 3.4.1, we obtain

dK(F ∗ F,Φ1) ≤ Ck(󰀂h− g󰀂26
5
+ 󰀂h− g󰀂2)

3
4 δc( 󰁨f)

1
8

where 󰁨f = f(
√
2πx). Note that δc( 󰁨f) = δ(v). It follows from (3.4.2) and (3.4.3) that

(󰀂h− g󰀂26
5

+ 󰀂h− g󰀂2)
3
4 is bounded by a universal constant and that

dK(F ∗ F,Φ1) ≤ Ckδ(v)
1
8 .

Choose ε0 > 0 such that Ckε
1
8
0 < 1. Let ε > 0 be such that δ(v) < ε < ε0, and

put η = Ckε
1
8 , N = N(η) = 1 +

󰁳
2 log(1/η) and

σ(η)2 =

󰁝 N(η)

−N(η)

x2p(x)dx.
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Note that σ(η)2 ↗ Var[X1] =
1
2
m2(µ) as η → 0. So, we choose ε0 small enough so

that 1
4
m2(µ) < σ(η)2 for all ε < ε0. It then follows from Theorem 2.3.1 that

dK(F,Φσ(η)) ≤
C

σ(η)
󰁳

log(1/η)
min

󰀫
1󰁳
σ(η)

, log log
ee

η

󰀬

≤ C

σ(η)
3
2

󰁳
log(1/η)

≤ C

m2(µ)
3
4

󰁴
1
8
log(1

ε
)− logCk

≤ Ck󰁴
log 1

ε

.

By change of variables, we have dK(F,Φσ(η)) = dK(µ, γε) where

dγε =
1󰁳

4πσ(η)2
e
− |x|2

4σ(η)2 dx,

which yields (3.2.7).

Proof of Theorem 3.2.22 . Let h(x) = 󰁨f(x)g(x) and 󰁨f(x) = f(
√
2πx). Let X1, X2

be i.i.d. random variables with the density p(x) = 2−1/4
√
π
h( x√

π
) and the distribution

function F . Since m2(µ) = 1, we have Var(X1) = Var(X2) =
1
2
. The same argument

then leads to

dK(F ∗ F,Φ1) ≤ c1δc( 󰁨f)
1
8 = c1δ(v)

1
8

for some universal constant c1. So, we choose ε0 > 0 such that c1ε
1
8
0 < 1. Assume

δ(v) < ε < ε0. We apply Theorem 2.3.2 to obtain

dK(F,Φ 1√
2
) <

c2󰁴
log 1

ε

.

Note that dK(F,Φ 1√
2
) = dK(µ, γ) by change of variables. Let Ψ(s) be the inverse of

the map t 󰀁→ c2√
log 1

t

, then δ(v) ≥ Ψ(dK(µ, γ)) as desired.
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4. INSTABILITY OF THE LOGARITHMIC SOBOLEV

INEQUALITY

We have seen that there are different types of stability estimates for the LSI according

to the choice of probability measure spaces and distances. A natural question is to

find the best possible probability measure space and distance in which the LSI is

stable. In this chapter, we investigate this question. To be specific, we show that

there are no stability in PM
2 (R) (resp. P2(R)) with respect to W2 and Lp(dγ) for

p > 1 (resp. W1). This chapter is based on my work [85].

4.1 Main results

The first result shows that the W2-stability estimate obtained in [26, Corollary

1.2] cannot be improved in terms of the probability measure space P1
2 (R). It also

implies that the L1-stability estimate in Theorem 3.2.1 is best possible in terms of

the Lp distances. Note that there is an Lp-stability estimate in PM
2 (R) (p > 1) with

a higher integrability assumption (see Corollary 3.2.2).

Theorem 4.1.1. Let M > 1 and p > 1. There exists a sequence of centered probability

measures dνk = fkdγ in PM
2 (R) such that limk→∞ δ(fk) = 0,

lim inf
k→∞

W2(νk, γ) ≥ C1,

and

lim inf
k→∞

󰀂fk − 1󰀂Lp(dγ) ≥ C2,

for some C1, C2 > 0.

The next result is W1-instability in P2(R), which implies that the W1-stability

estimate in Theorem 3.2.6 cannot be improved in terms of the space PM
2 (R).
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Theorem 4.1.2. There exists a sequence of centered probability measures dνk = fkdγ

in P2(R) such that limk→∞ δ(fk) = 0 and limk→∞ W1(νk, γ) = ∞.

The key idea of the proofs is as follows. Using the class of the LSI optimizers,

we construct a sequence of centered probability measures with a small deficit. We

then control the second moments and the relative entropies so as to conclude that the

distances from the standard Gaussian measure, which is the only centered optimizer,

do not converge to zero.

Theorem 4.1.1 and 4.1.2 deal with probability measures on the real line. These

results, however, can be directly generalized to the higher dimensional case. Let νk

be the sequence of probability measures on R constructed in Example 4.3.2 and γn−1

the standard Gaussian measure on Rn−1. If we define a probability measure 󰁨νk on

Rn by 󰁨νk = νk ⊗ γn−1, then we have I( 󰁨νk) = I(νk), H( 󰁨νk) = H(νk), and δ( 󰁨νk) = δ(νk).

Furthermore, we have m2( 󰁨νk) = (n − 1) +m2(νk) and m1( 󰁨νk) ≥ m1(νk) −m1(γn−1).

Controlling the second moment and the relative entropy of νk as in the proofs of

Theorem 4.1.1 and 4.1.2, we extend the results to Rn for n ≥ 2.

In Proposition 4.3.4, we show that the sequence νk in P2(R) constructed in The-

orem 4.1.2 converges to γ in L1(dγ). Thus it is still open to show L1-stability in P2.

Note that if H(f) is finite, then it follows from Jensen’s inequality that the second

moment is finite. So P2 is the most general probability measure space in the setting

of the LSI.

4.2 Literature review

We review previous stability results and compare the probability spaces and the

conditions used in this literature.
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4.2.1 Wasserstein distance

Indrei and Marcon [83] showed that if fdγ is a centered probability measure with

the log-concavity condition on the density

− 1 + ε ≤ D2(log(
1

f
)) ≤ M (4.2.1)

for ε,M > 0, then

δ(f) ≥ Cε,MW 2
2 (fdγ, dγ). (4.2.2)

Their method relies on the optimal transport method (Theorem 2.2.4) and Caffarelli’s

contraction theorem [38]. Note that W2–stability cannot hold for all probability

measures since it would improve the constant in the sharp LSI (see [83, Remark 4.3]).

Let λ > 0 and P(λ) be the space of probability measure fdγ satisfying a (2, 2)-

Poincaré inequality with a constant λ: for every smooth function g with
󰁕
g fdγ = 0,

λ

󰁝
g2 fdγ ≤

󰁝
|∇g|2 fdγ. (4.2.3)

It was shown in [57] that every probability measure fdγ ∈ P(λ) for λ > 0 satisfies

the following improvement of the LSI

H(f) ≤ c(λ)

2
I(f) (4.2.4)

where c(λ) = 1−λ+λ log λ
(1−λ)2

< 1. The proof is based on an interpolation along the

Ornstein–Uhlenbeck semigroup. In particular, this yields W2–stability

δ(f) ≥ c1(λ)W
2
2 (fdγ, dγ). (4.2.5)

where c1(λ) = 1
2
( 1
c(λ)

− 1). Note that every probability measure fdγ with (4.2.1)

satisfies a (2, 2)-Poincaré inequality. Thus the W2–stability bound (4.2.5) of [57] is

an improvement of (4.2.2). We note that if fdγ ∈ P(λ) then

m2(fdγ) =

󰁝
|x|2 fdγ ≤ n

λ

by (4.2.3) with g(x) = xi for i = 1, 2, · · · , n. Thus we have P(λ) ⊆ Pn/λ
2 (Rn).
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The Fisher information and the relative entropy with respect to dγ have different

scaling. From this observation, W2–stability was derived in [26] (see also [53, Theorem

1] and Proposition 2.2.7), which states that if fdγ ∈ Pn
2 (Rn) is centered, then

δ(f) ≥ CW2(fdγ, dγ)
4.

4.2.2 Total variation distance

One of the consequences of (4.2.4) in [57] is an L1-stability estimate, which states

that if fdγ satisfies (2, 2)-Poincaré inequality with constant λ then

δ(f) ≥ c2(λ)󰀂f − 1󰀂2L1(dγ)

where c2(λ) =
1
4
(1− c(λ)).

In [58, Proposition 4.7], the authors proved that if fdγ is a probability measure

satisfying

F(e−π|x|2f(2
√
πx)) ≥ 0, (4.2.6)

then

δ(f) ≥ 1

2
󰀂f − 1󰀂42, (4.2.7)

which also implies an L1–stability estimate. The proof is based on Carlen’s deficit

bound (2.2.4) and Pinsker’s inequality (2.1.2). It is remarkable that the positivity of

the Fourier transform is quite different from PM
2 . Indeed, the spaces of probability

measures fdγ satisfying (4.2.6) is not included in PM
2 for any M , and vice versa.

Proposition 4.2.1. Let S be the space of probability measures fdγ satisfying (4.2.6).

For any M > 0, we have S ∕⊂ PM
2 (Rn) and PM

2 (Rn) ∕⊂ S.

Proof. Since the LSI is L2-stable in S by (4.2.7), Theorem 4.1.1 implies that PM
2 ∕⊂ S

for all M > 0. Let fkdγ be the centered Gaussian with variance k, then {fkdγ} is not

included in PM
2 for any M > 0. Since e−π|x|2

󰁳
fk(2πx) is also Gaussian, its Fourier

transform is positive. Thus we get S ∕⊂ PM
2 .

We note that the positivity condition for the Fourier transform can be relaxed in

a sense that F(e−π|x|2f(2πx)
1
2 ) belongs to some region in the complex plane. See [58].
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4.3 Examples

In this section, we construct a sequence of centered probability measures to prove

Theorem 4.1.1 and Theorem 4.1.2. First, we find a sequence of centered probability

measures such that the deficit of the LSI goes to 0. By Lemma 4.4.1 and (2.1.2), it

is enough to control the second moments and the relative entropies of the sequence

to show that it does not converge to γ in the Wasserstein distances and the Lp(dγ)

distances for p > 1.

Recall that δ(f) = 0 if and only if f(x) = exp(b · x− 1
2
|b|2), for b ∈ Rn. We start

with a trivial example.

Example 4.3.1. Let b ∈ Rn, gb(x) = eb·x−
|b|2
2 , and dνb = gbdγ. Since gb are the

optimizers of the LSI, we have δ(gb) = 0 for all b ∈ Rn. Indeed, a direct calculation

yields that

I(νb) =

󰁝

Rn

|∇gb|2
gb

dγ = |b|2
󰁝

Rn

gbdγ = |b|2,

H(νb) =

󰁝

Rn

gb log gbdγ =

󰁝

Rn

󰀕
b · (x+ b)− 1

2
|b|2

󰀖
dγ =

1

2
|b|2,

m2(νb) =

󰁝

Rn

|x|2gbdγ =

󰁝

Rn

|x+ b|2dγ = n+ |b|2.

Note that I(νb), H(νb), and m2(νb) all tend to ∞, as |b| → ∞. Notice also that the

measure gbdγ is not centered provided b ∕= 0.

Now we present the main example.

Example 4.3.2. Let gb(x) = ebx−
b2

2 and γ(x) = (2π)−
1
2 e−x2/2 for x, b ∈ R. We

denote by dγ = γ(x)dx and set Φ(x) =
󰁕 x

−∞ dγ. For each k ∈ N, let 󰁨fk be a function

in C∞(R) such that

󰁨fk(x) =

󰀻
󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰀽

1, x ∈ [0, k]

lk(x), x ∈ (k, k + 1
k
]

αgb(x), x ∈ (k + 1
k
,∞)

and 󰁨fk(x) = 󰁨fk(−x) where
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(i) b = bk = 2(k + 1
k
) +

√
k,

(ii) α = αk = vb−w
k ∈ (0, 1

2
) for v, w > 0,

(iii) lk ∈ C∞(R) satisfies lk(k) = 1, lk(k + 1
k
) = αgb(k + 1

k
), |l′k(x)| ≤ 2k, and

αgb(k +
1

k
) ≤ lk(x) ≤ 1

for all x ∈ (k, k + 1
k
].

We observe that αgb(k + 1
k
) < 1

2
for all k ∈ N. Note also that 󰁨fk ∈ L1(dγ) and

󰁝

R

󰁨fkdγ = 2

󰁝 k

0

dγ + 2

󰁝 k+ 1
k

k

lk(x)dγ + 2α

󰁝 ∞

k+ 1
k

gb(x)dγ

= (2Φ(k)− 1) + 2

󰁝 k+ 1
k

k

lk(x)dγ + 2αΦ(b− k − 1

k
).

Since lk(x) ≤ 1 and

󰀏󰀏󰀏󰀏󰀏

󰁝 k+ 1
k

k

lk(x)dγ

󰀏󰀏󰀏󰀏󰀏 ≤
󰁝 k+ 1

k

k

γ(x)dx ≤ 1

k
γ(k) = o(1),

we have
󰁕
R
󰁨fkdγ → 1, as k → ∞. Let ck = (

󰁕
R
󰁨fkdγ)−1 and define fk = ck 󰁨fk and

dνk = fkdγ. The constants v and w in α = αk will be determined later. They play a

role in controlling the second moment and the relative entropy of νk. Note that the

following lemma and proposition do not depend on the choices of v and w.

Lemma 4.3.3. Let fk and νk be defined as in Example 4.3.2. Then we have

lim
k→∞

δ(fk) = 0.

Proof. Direct computations give

I(fk) = 2ck

󰁝 k+ 1
k

k

|l′k(x)|2
lk(x)

dγ + 2ckα

󰁝 ∞

k+ 1
k

|g′b(x)|2
gb(x)

dγ

= 2ck

󰁝 k+ 1
k

k

|l′k(x)|2
lk(x)

dγ + 2ckαb
2Φ(b− k − 1

k
)
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and

H(fk) = 2

󰁝 k

0

ck log ckdγ + 2

󰁝 k+ 1
k

k

cklk(x) log(cklk(x))dγ (4.3.1)

+ 2

󰁝 ∞

k+ 1
k

(ckαgb) log(ckαgb)dγ

= (ck log ck)(2Φ(k)− 1) + 2

󰁝 k+ 1
k

k

cklk(x) log(cklk(x))dγ

+ 2ckα log(ckα)Φ(b− k − 1

k
) + 2ckαbγ(b− k − 1

k
) + ckαb

2Φ(b− k − 1

k
).

Thus the deficit of the LSI is

δ(fk) = ck

󰁝 k+ 1
k

k

|l′k(x)|2
lk(x)

dγ − 2

󰁝 k+ 1
k

k

cklk(x) log(cklk(x))dγ − (ck log ck)(2Φ(k)− 1)

− 2ckα log(ckα)Φ(b− k − 1

k
)− 2ckαbγ(b− k − 1

k
).

Note that ck → 1 and α → 0, as k → ∞. Since the limits of the map t 󰀁→ t log t at

t = 0 and t = 1 is 0, we have

lim
k→∞

󰀃
(ck log ck)(2Φ(k)− 1) + 2ckα log(ckα)Φ(b− k − 1

k
)
󰀄
= 0.

By the construction of αk and bk, we have

lim
k→∞

αbγ(b− k − 1

k
) = lim

k→∞

1√
2π

vb1−we−
1
2
b
√
k = 0.

By the construction of lk, we have

lk(x) ≥ αgb(k +
1

k
),

which yields

󰀏󰀏󰀏󰀏󰀏

󰁝 k+ 1
k

k

|l′k(x)|2
lk(x)

dγ

󰀏󰀏󰀏󰀏󰀏 ≤
4k2

αgb(k + 1
k
)

󰁝 k+ 1
k

k

dγ

≤ 4kγ(k)

αgb(k + 1
k
)

=
4k√
2πα

e−
1
2
(k2−b

√
k) = o(1).
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Choose k0 ∈ N such that 1
2
≤ ck ≤ 3

2
for all k ≥ k0. Since lk(x) ≤ 1 for all k, there

exists a constant C such that |cklk(x) log(cklk(x))| ≤ C for all k ≥ k0. So we have

󰀏󰀏󰀏󰀏󰀏

󰁝 k+ 1
k

k

cklk(x) log(cklk(x))dγ

󰀏󰀏󰀏󰀏󰀏 ≤
C

k
γ(k) = o(1),

for k ≥ k0. Therefore we conclude that δ(fk) → 0 as k → ∞ as desired.

Proposition 4.3.4. Let fk and νk be defined as in Example 4.3.2. Then, fk → 1 in

L1(dγ). As a consequence, νk ⇀ γ weakly as k → ∞.

Proof. By (2.1.6), it suffices to show that 󰀂
√
fk−1󰀂L2(dγ) → 0. A direct computation

yields

󰀂
󰁳

fk − 1󰀂2L2(dγ) = 2

󰁝 k

0

|
√
ck − 1|2dγ + 2

󰁝 k+ 1
k

k

|
󰁳

cklk − 1|2dγ

+ 2

󰁝 ∞

k+ 1
k

|
󰁳

ckαgb(x)− 1|2dγ

= |
√
ck − 1|2(2Φ(k)− 1) + 2

󰁝 k+ 1
k

k

|
󰁳

cklk − 1|2dγ

+ ckαΦ(b− k − 1

k
)− 2

√
ckαe

− b2

8 Φ(
b

2
− k − 1

k
) + Φ(−k − 1

k
)

= o(1) + 2

󰁝 k+ 1
k

k

|
󰁳

cklk − 1|2dγ.

It follows from the assumption on lk(x) that
󰀏󰀏󰀏
󰁕 k+ 1

k

k
|
√
cklk − 1|2dγ

󰀏󰀏󰀏 ≤ 2(ck+1)
k

γ(k) =

o(1), which leads to 󰀂
√
fk − 1󰀂L2(dγ) = o(1) as desired.

4.4 Proofs of the main results

4.4.1 Lemma

Let {νk} be a sequence of probability measures in Pp(Rn). The next lemma gives

a sufficient condition for the sequence {νk} not converging to a measure µ in the

Wp metric. In the proof of Theorem 4.1.1 and Theorem 4.1.2, we control the second

moments to conclude that the Wp distance does not converge to γ.
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Lemma 4.4.1. Let p ≥ 1 and µ, µk ∈ Pp(Rn) for k ≥ 1. If there exists a constant

C1 > 0 such that

lim inf
k→∞

(mp(µk)−mp(µ)) ≥ C1,

then lim infk→∞ W p
p (µ, µk) ≥ C2, for some C2 > 0.

Proof. Let t > 0, then there exists a constant Ct > 0 such that

|x|p − |y|p ≤ t|y|p + Ct|x− y|p

for any x, y ∈ Rn. Let πk be a probability measure on Rn × Rn with marginals µk

and µ. Taking the integral with respect to dπk, we get

mp(µk)−mp(µ) ≤ tmp(µ) + Ct

󰁝

Rn×Rn

|x− y|pdπk(x, y).

We take the infimum over all such πk to get

mp(µk)−mp(µ) ≤ tmp(µ) + CtW
p
p (µ, µk).

Let t1 ∈ (0, C1) and choose k0 ∈ N large enough that

lim inf
j→∞

(mp(µj)−mp(µ))− t1 < mp(µk)−mp(µ)

for all k ≥ k0. Put C3 = lim infj→∞(mp(µj)−mp(µ))− t1, then

C3 ≤ tmp(µ) + CtW
p
p (µ, µk)

for all k ≥ k0. We finish the proof by choosing t = C3

2mp(µ)+1
> 0 and C2 =

C3

2Ct
.

4.4.2 Proof of Theorem 4.1.1

Let w = 2 and v ∈ (0, (M − 1)/4) be such that vb−2
k < 1

2
for all k. Define fk and

νk as in Example 4.3.2 with bk = 2(k + 1
k
) +

√
k and αk = vb−2

k . The second moment

of νk is

m2(νk) = 2ck

󰁝 k

0

x2dγ + 2ck

󰁝 k+ 1
k

k

x2lk(x)dγ + 2ckα

󰁝 ∞

k+ 1
k

x2gb(x)dγ (4.4.1)

= ck(2Φ(k)− 1− 2kγ(k)) + 2ck

󰁝 k+ 1
k

k

x2lk(x)dγ + 2ckαb
2Φ(b− k − 1

k
)

+ 2ckα

󰀕
Φ(b− k − 1

k
)− (b− k − 1

k
)γ(b− k − 1

k
) + 2bγ(b− k − 1

k
)

󰀖
.
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Note that ck(2Φ(k)− 1− 2kγ(k)) → 1 and

lim
k→∞

2ckα

󰀕
Φ(b− k − 1

k
)− (b− k − 1

k
)γ(b− k − 1

k
) + 2bγ(b− k − 1

k
)

󰀖
= 0.

Since
󰀏󰀏󰀏
󰁕 k+ 1

k

k
x2lk(x)dγ

󰀏󰀏󰀏 ≤ (k+ 1
k
)2

k
γ(k) = o(1), we obtain

lim
k→∞

m2(νk) = 1 + lim
k→∞

2ckαb
2Φ(b− k − 1

k
)

= 1 + 2v lim
k→∞

ckΦ(b− k − 1

k
)

= 1 + 2v.

Since 1+2v < M , there exists N ∈ N such that {νk}k≥N ⊂ PM
2 . Since µ2(γ) = 1 and

lim
k→∞

(m2(νk)− µ2(γ)) = 2v > 0,

it follows from Lemma 4.4.1 that lim infk→∞ W2(µ, µk) ≥ C, for some C > 0. By

(4.3.1), we have

H(fk) = o(1) + 2ckvb
−2bγ(b− k − 1

k
) + ckvb

−2b2Φ(b− k − 1

k
)

= o(1) + vckΦ(b− k − 1

k
),

which implies that H(fk) → v > 0. By (2.1.2), we conclude that 󰀂fk − 1󰀂Lp(dγ) does

not converge to zero for p > 1.

4.4.3 Proof of Theorem 4.1.2

Let νk and fk be defined as in Example 4.3.2 with α = b−
1
2 (i.e. v = 1 and

w = 1
2
). Note that m2(νk) < ∞ for all k and m2(νk) → ∞ as k → ∞ by (4.4.1). By

Lemma 4.4.1 it is enough to show that m1(νk) does not converge to m1(γ). By the

construction of νk, we have

m1(νk) =

󰁝

R
|x|dνk

= 2ck

󰁝 k

0

|x|dγ + 2ck

󰁝 k+ 1
k

k

|x|lk(x)dγ + 2ckα

󰁝 ∞

k+ 1
k
−b

|x+ b|dγ.
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We observe that 2ck
󰁕 k

0
|x|dγ = o(1) +m1(γ),

󰀏󰀏󰀏󰀏󰀏

󰁝 k+ 1
k

k

|x|lk(x)dγ

󰀏󰀏󰀏󰀏󰀏 ≤
󰀓
k +

1

k

󰀔γ(k)
k

= o(1),

and

2ckα

󰁝 ∞

k+ 1
k
−b

|x+ b|dγ ≥ 2ckα

󰁝 ∞

k+ 1
k
−b

(b− |x|)dγ

≥ 2ckαbΦ(b− k − 1

k
)− 2ckαm1(γ).

Since we have αb = b
1
2 → ∞, we conclude that m1(νk) → ∞. By Lemma 4.4.1, the

proof is complete.

Remark 4.4.2. We summarize what we have seen in this section. Let νk and fk be

as in Example 4.3.2. Note that αk = vb−w
k and b = 2(k + 1

k
) +

√
k. According to the

computations above, we have

H(νk) = o(1) + ckvb
2−wΦ(b− k − 1

k
)

and

o(1) + 21−pckvb
p−w ≤ mp(νk)−mp(γ) ≤ o(1) + 2pckvb

p−w

for all p ≥ 1. For any v, w > 0, we have νk ∈ P2(R), δ(νk) → 0, 󰀂fk − 1󰀂L1(dγ) → 0,

and νk ⇀ γ. The followings describe the behaviors of the relative entropy and the

second moment of νk in terms of w.

(i) If w > 2, then H(νk) → 0 and m2(νk) → m2(γ) so that no instability results

can be obtained.

(ii) If w = 2, thenm2(νk) does not converge tom2(γ) which implies thatW2(νk, γ) ∕→

0. In this case, m2(νk) can be bounded by some constant so that νk ∈ PM
2 .

(iii) If w < 2, thenm2(νk) goes to∞ so that νk does not belong to PM
2 for anyM > 0.

In this case, we have mp(νk)−mp(γ) ∕→ 0 for any p ≥ w. So Wp(νk, γ) ∕→ 0.

(iv) The relative entropy H(νk) ∕→ 0 if and only if w ≤ 2.
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5. INSTABILITY FOR BECKNER–HIRSCHMAN

INEQUALITY

In the previous chapter, we constructed a sequence of probability measures such that

the LSI deficit converges to 0 but the distances from the Gaussian measure does not.

Note that we have seen in (2.2.5) that the deficit of the BHI is bounded above by that

of the LSI. As an application of Example 4.3.2, we prove that there are no stability for

the Beckner–Hirschman inequality (the BHI) in terms of the normalized Lp distances

with some weighted measures and range of p. This chapter is based on my work [85].

5.1 Main results

For a nonnegative function h on R with 󰀂h󰀂2 = 1, the Beckner–Hirschman in-

equality states that

δBH(h) = S(|h|2) + S(|󰁥h|2)− (1− log 2) ≥ 0

where S(ρ) is the entropy of ρ defined as in (2.2.2), and δBH(h) is the deficit of the

BHI. It is also called the entropic uncertainty principle. We say that a function h

is an optimizer for the BHI if δBH(h) = 0. Let G be the set of all nonnegative, L2-

normalized optimizers for the BHI. Using the fact that the optimizers are Gaussian

(see [91] and [40, p.207]), we get

G = {Ga,r(x) =
󰀓2a
π

󰀔 1
4
e−a(x−r)2 : a > 0, r ∈ R}. (5.1.1)

We denote by Ga(x) = Ga,0(x) and g(x) = Gπ(x). For a measure µ on R and p > 0,

we define

distLp(dµ)(h,G) = inf
u∈G

󰀂h− u󰀂Lp(dµ) = inf
a>0,r∈R

󰀂h−Ga,r󰀂Lp(dµ).
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The key element of the application is that the deficit of the LSI is bounded below

by that of the BHI. To be specific, we have δ(f) ≥ δBH(h) where

h(x) = (f(2
√
πx))

1
2 g(x). (5.1.2)

Let fk be a sequence of functions constructed in Example 4.3.2 and hk the transfor-

mation of fk by (5.1.2), then we have δBH(hk) → 0; see Lemma 4.3.3. Note that hk

is indeed a Gaussian function with small Gaussian bumps in the tails. In the proofs

of Theorem 4.1.1 and Theorem 4.1.2, we have seen that the growth of the second

moments of the probability measures {fkdγ} can be controlled by the choice of pa-

rameters. This implies that the Gaussian bumps of hk in the tails are not negligible

with respect to measures with some polynomial weights. This observation leads us

to adopt the polynomial measure dηλ = |x|λdx.

Theorem 5.1.1. Let λ > 0, dηλ = |x|λdx, and p ≥ 2(λ + 1), then there exists a

sequence of nonnegative functions {hk}k≥1 in Lp(dηλ) such that 󰀂hk󰀂2 = 1, δBH(hk) →

0, 󰀂hk󰀂Lp(dηλ) → ∞, and

lim inf
k→∞

distLp(dηλ)(hk,G)

󰀂hk󰀂Lp(dηλ)

≥ C(p,λ) > 0.

Inspired by the transformation (5.1.2), it is natural to consider a reference measure

with a Gaussian weight g(x). It turns out that for dmθ = g−θdx with specific ranges

of p and θ, we obtain an instability result for the BHI with respect to Lp(dmθ).

Theorem 5.1.2. Let p > θ > 0 and dmθ = g−θdx. There exists a sequence

of nonnegative functions {hk}k≥1 in Lp(dmθ) such that 󰀂hk󰀂2 = 1, δBH(hk) → 0,

󰀂hk󰀂Lp(dmθ) → ∞, and

lim inf
k→∞

distLp(dmθ)(hk,G)

󰀂hk󰀂Lp(dmθ)

≥ C(p, θ) > 0.

We emphasize that dηλ is a more suitable reference measure than dmθ in a sense

that Lp(dηλ) contains all optimizers G whereas Lp(dmθ) does not (see (5.3.2)). If we

choose the Lebesgue measure as a reference measure (that is, θ = 0 in Theorem 5.1.1
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or λ = 0 in Theorem 5.1.2), then the sequence of functions hk converges to g in Lp

(see Remark 5.3.4). It remains open to show Lp-stability for the BHI with respect to

the Lebesgue measure.

5.2 Relation to stability of the Hausdorff–Young inequality

We briefly review the work of Christ [45] and discuss how it is related to the

Beckner–Hirschman inequality. This consideration gives a glimpse of what stability

of the Beckner–Hirschman inequality would be and the connection to our instability

results of the BHI.

Let p ∈ [1, 2], q = p/(p− 1), and Ap = p1/2pq−1/2q. For a complex-valued function

h ∈ Lp(Rn), the sharp Hausdorff–Young inequality by Babenko [4] and Beckner [20]

states that 󰀂󰁥h󰀂q ≤ An
p󰀂h󰀂p. Then Lieb [91] showed that equality holds if and only if a

function h is of the form h(x) = ce−Q(x)+x·v where v ∈ Cn, c ∈ C, and Q is a positive

definite real quadratic form. Let G be the set of all optimizers for the Hausdorff–

Young inequality. Define P(Rn) to be the set of all polynomials P : Rn → C of the

form P (x) = −x ·Ax+ b · x+ c where b ∈ Cn, c ∈ C, and A is a symmetric, positive

definite real matrix. Note that G \ {0} = {eP : P ∈ P(Rn)}. Let u ∈ G \ {0}. The

real tangent space to G at u is TuG = {Pu : P ∈ P(Rn)}, and the normal space to

G at u is

NuG = {h ∈ Lp : Re
󰀓󰁝

Rn

hPu|u|p−2dx
󰀔
= 0}. (5.2.1)

Define distp(h,G ) = infu∈G 󰀂h − u󰀂p. There exists δ0 > 0 such that if a nonzero

function h satisfies distp(h,G ) ≤ δ0󰀂h󰀂p, then h can be written as h = h⊥ + π(h)

where π(h) ∈ G and h⊥ ∈ Nπ(h)G . Since 󰀂h⊥󰀂p = 󰀂h − π(h)󰀂p and π(h) ∈ G , we

have 󰀂h⊥󰀂p ≥ distp(h,G ). For a function h satisfying distp(h,G ) ≤ δ0󰀂h󰀂p, we define

dist∗p(h,G ) = 󰀂h⊥󰀂p.

Let p ∈ [1, 2] and h ∈ Lp(Rn). The deficit of the Hausdorff–Young inequality is

given by

δHY(h; p) = An
p −

󰀂󰁥h󰀂q
󰀂h󰀂p

.
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Let Bp,n = 1
2
(p− 1)(2− p)An

p . For η > 0, we define

h⊥
η =

󰀻
󰁁󰀿

󰁁󰀽

h⊥, |h⊥| ≤ η|π(h)|,

0 |h⊥| > η|π(h)|.

In [45], Christ proved the following quantitative Hausdorff–Young inequality. He

firstly showed a compactness result using combinatoric arguments, and then computed

the second variation to obtain remainder terms for the Hausdorff–Young inequality.

Theorem 5.2.1 ( [45, Theorem 1.3]). For each n ≥ 1 and p ∈ (1, 2), there exist

η0, γ > 0 and C, c > 0 such that for all η ∈ (0, η0), if a nonzero function h ∈ Lp(Rn)

satisfies distp(h,G ) ≤ ηγ󰀂h󰀂p, then δHY(h; p) ≥ R1(h; p) +R2(h; p) where

R1(h; p) = (Bp,n − Cη)󰀂h󰀂−p
p

󰀓󰁝

Rn

|h⊥
η |2|π(h)|p−2dx

󰀔
, (5.2.2)

R2(h; p) = cη2−p

󰀕
distp(h,G )

󰀂h󰀂p

󰀖p−2
󰀣
󰀂h⊥ − h⊥

η 󰀂p
󰀂h󰀂p

󰀤2

.

By differentiating the sharp Hausdorff–Young inequality, one can derive the BHI.

Indeed, let h ∈ L1(Rn)∩L2(Rn) with 󰀂h󰀂2 = 1. Since δHY(h; p) ≥ 0 and δHY(h; 2) = 0,

the derivative of δHY(h; p) with respect to p at p = 2 is less than or equal to 0, which

yields

− d

dp
δHY(h, p)|p=2 =

1

4

󰀓
S(|h|2) + S(|󰁥h|2)− n(1− log 2)

󰀔
≥ 0.

A natural question is whether stability of the Hausdorff–Young inequality also yields

that of the BHI. In what follows, we fix a function h ∈ L1(Rn)∩L2(Rn) that satisfies

distp(h,G ) ≤ δ0󰀂h󰀂p and 󰀂h󰀂2 = 1 for all p ∈ [1, 2]. Note that h⊥ and π(h) depend

on p. We assume the following:

(i) We can choose a constant δ0 to be uniform in p ∈ [1, 2].

(ii) The constant η in (5.2.2) is independent of p ∈ (1, 2).

(iii) We choose the constant C = C(p) in (5.2.2) such that C is differentiable on

(1, 2] and C(2) = 0.
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(iv) R1(h; p) ≥ 0 for all p ∈ (1, 2).

(v) h⊥ and π(h) are differentiable with respect to p.

Based on these assumptions, we have δHY(h; p) ≥ R1(h; p) + R2(h; p) ≥ R1(h; p) ≥ 0

and δHY(h; 2) = R1(h; 2) = 0. Taking the derivative with respect to p, we obtain

S(|h|2) + S(|󰁥h|2)− n(1− log 2) = −4
d

dp

󰀓
An

p −
󰀂󰁥h󰀂q
󰀂h󰀂p

󰀔
|p=2 ≥ −4

d

dp
R1(h; p)|p=2

and

d

dp
R1(h; p)|p=2 =

d

dp
(Bp,n − Cη)|p=2

󰀓
lim
p↑2

󰁝

Rn

|h⊥
η |2|π(h)|p−2dx

󰀔

= −(
1

2
+ C ′(2)η)

󰀓
lim
p↑2

󰁝

Rn

|h⊥
η |2|π(h)|p−2dx

󰀔
.

Let h be a nonnegative function and Lη = {x : |h⊥(x)| ≤ η|π(h)(x)|}, then h⊥
η =

h⊥ · 1Lη . By Fatou’s lemma, we get

lim
p↑2

󰁝

R
|h⊥

η |2|π(h)|p−2dx ≥
󰁝

R
|h⊥

η |2dx

=

󰁝

Lη

|h− π(h)|2dx.

Since h − π(h) ∈ Nπ(h)G , it follows from (5.2.1) that π(h) is nonnegative with

󰀂π(h)󰀂2 ≤ 1. Let

󰁨G = {u ∈ G : u ≥ 0, 󰀂u󰀂2 ≤ 1}.

Note that the set of the optimizers for the BHI defined in (5.1.1), G, is contained in

󰁨G and π(h) ∈ 󰁨G. For η small such that 1
2
+ C ′(2)η > 0, we get

δBH(f) ≥ Cηdist2(󰁨h, 󰁨G)2

where dist2(󰁨h, 󰁨G) = infu∈󰁨G 󰀂󰁨h− u󰀂2 and

󰁨h(x) =

󰀻
󰁁󰀿

󰁁󰀽

h(x), x ∈ Lη,

π(h)(x), x /∈ Lη.

Although we make strong assumptions, our observation suggests that there might

be a stability estimate for the BHI in terms of L2 or weaker distance than L2 with
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respect to the Lebesgue measure. We remark that Theorem 5.1.1 and 5.1.2 do not

contradict to the observation. In Theorem 5.1.2, we show that the BHI is not stable

in terms of distLp(dmθ)(·,G) with normalization for p > θ > 0. In Remark 5.3.4, we

explain that our example constructed in Theorem 5.1.2 does not give any instability

results for the BHI when θ = 0. Note that dist2(·, ·) is the boundary case when θ = 0

and p = 2. Compared to Theorem 5.1.1, dist2(·, ·) can be seen as the case when λ = 0

(so that p ≥ 2(λ+ 1) = 2). Furthermore, Theorem 5.1.1 implies that an L2-stability

estimate would be best possible in terms of the Lp distances if exists.

5.3 Proofs of Theorem 5.1.1 and Theorem 5.1.2

5.3.1 Technical lemmas

To complete the proof of Theorem 5.1.2, we want to show that if k is large enough

then

distLp(dmθ)(hk,G) ≥ C󰀂hk󰀂Lp(dmθ)

for some C > 0. Lemma 5.3.1 and Lemma 5.3.2 reduce the left hand side to the

infimum of Lp norms over a finite interval when p > 2, which makes it easy to

estimate a lower bound of the distance. To control the right hand side, we obtain a

two-sided estimate of 󰀂hk󰀂Lp(dmθ) in Lemma 5.3.3.

Lemma 5.3.1. Let p > θ > 0, a ≥ a0 > π, 0 < t < (a0/π)
1
4 , and Ga(x) =

Ga,0(x) = (2a
π
)
1
4 e−ax2

. Let M(a, t) = {x : Ga(x) ≥ tGπ(x)}, then there exist constants

C(p, a0, t), C(p, θ) > 0 such that

C(p, a0, t)a
p−2
4p ≤ 󰀂Ga · 1M(a,t)󰀂Lp(dmθ) ≤ C(p, θ)a

p−2
4p

for all a ≥ a0. In particular, if p > 2 then lima→∞ 󰀂Ga · 1M(a,t)󰀂Lp(dmθ) = ∞.

Proof. Since Ga is symmetric and decreasing in [0,∞), the level set Ma,t = [−x0, x0]

where x0 > 0 satisfies Ga(x0) = tGπ(x0). Solving the equation for x0, we obtain

x0 =
1

2

󰁵
log a− log π − 4 log t

a− π
.
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Let β = ap− θπ > 0, then

󰀂Ga · 1M(a,t)󰀂pLp(dmθ)
=

󰁝 x0

−x0

|Ga(x)|pdmθ

=
󰀓2a
π

󰀔 p
4

󰁝 x0

−x0

e−βx2

dx

= 2
p
4π− p−2

4 a
p−2
4 (p− θπ

a
)−

1
2 (2Φ(

󰁳
2βx0)− 1).

Since
√
2βx0 → ∞ as a → ∞, there exists a constant C(a0, t) > 0 such that C(a0, t) ≤

2Φ(
√
2βx0)− 1 ≤ 1. We have

2
1
4π− p−2

4p p−
1
2pC(a0, t)

1
pa

p−2
4p ≤ 󰀂Ga · 1M(a,t)󰀂Lp(dmθ) ≤ 2

1
4π− p−2

4p (p− θ)−
1
2pa

p−2
4p ,

which completes the proof.

Let fk be the sequence of functions defined in Example 4.3.2 with b = bk =

2(k + 1
k
) +

√
k and α = αk = b

− 3
2

k . Recall that bk = 2(k + 1
k
) +

√
k, fk(x) = fk(−x),

and

fk(x) =

󰀻
󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰀽

ck, x ∈ [0, k],

cklk(x), x ∈ (k, k + 1
k
],

ckαgb(x), x ∈ (k + 1
k
,∞).

Here ck is a normalization constant so that
󰁕
R fkdγ = 1. Note that αk → 0, bk → ∞,

and ck → 1 as k → ∞. Define hk(x) =
󰁳

fk(2
√
πx)g(x). It follows from change of

variables that 󰀂hk󰀂2 = 󰀂fk󰀂L1(dγ) = 1.

Lemma 5.3.2. Let p > 2, p > θ > 0, and hk be defined as above. There exist k0 ∈ N

and a0 > π such that

󰀂hk −Ga󰀂Lp(dmθ) ≥ 󰀂hk −Gπ󰀂Lp(dmθ)

for all a ≥ a0 and k ≥ k0.

Proof. Let 󰁨Ga(x) = Ga(
x

2
√
π
)/Gπ(

x
2
√
π
), then

󰀂hk −Ga󰀂pLp(dmθ)
= (4π)

β−1
2

󰁝
|
󰁳

fk(x)− 󰁨Ga(x)|pγβ(x)dx
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where γ(x) = (2π)−
1
2 e−

|x|2
2 and β = p−θ

2
. We choose k0 ∈ N such that 1

2
≤ ck ≤ 3

2
for

all k ≥ k0. Since lk(x) ≤ 1, we have |
󰁳

cklk(x)− 1| ≤ 1. Let k ≥ k0, then we get

󰁝
|
󰁳

fk(x)− 1|pγβ(x)dx =

󰁝 k

−k

|
√
ck − 1|pγβ(x)dx+ 2

󰁝 k+ 1
k

k

|
󰁳

cklk − 1|pγβ(x)dx

(5.3.1)

+ 2

󰁝 ∞

k+ 1
k

|√ckαgb − 1|pγβ(x)dx

≤ 2−p(2π)−
β−1
2 β− 1

2 (2Φ(
󰁳

βk)− 1) +
2γβ(k)

k

+ 2

󰁝 ∞

k+ 1
k

|
󰁳

ckαgb(x)− 1|pγβ(x)dx

≤ C1(p, θ) + 2

󰁝 ∞

k+ 1
k

|
󰁳

ckαgb(x)− 1|pγβ(x)dx.

Choose a1 > π so that 󰁨Ga(1) ≤ 1
2
≤ √

ck for all a ≥ a1. Setting A = {x : 󰁨Ga(x) ≥ 3
2
},

we see that A ⊆ [−k, k] and
󰁝 k

−k

|
√
ck − 󰁨Ga(x)|pγβ(x)dx ≥

󰁝

󰁩Ga(x)≥ 3
2

󰀏󰀏󰀏 󰁨Ga(x)−
3

2

󰀏󰀏󰀏
p

γβ(x)dx

≥ 21−p

󰁝

A

| 󰁨Ga(x)|pγβ(x)dx−
󰀓3
2

󰀔p

(2π)−
β−1
2 β− 1

2

for all a ≥ a1. Let B = {x :
󰁳

ckαgb(x) ≥ 1}. Note that b = 2(k + 1
k
) +

√
k, αk ≤ 1

2
,

and ck ≤ 3
2
. If

󰁳
ckαgb(x) ≥ 1, then x ≥ b

2
− 1

b
log(ckα) and B ⊂ [k + 1

k
,∞). If

x ≥ k + 1
k
, then 󰁨Ga(x) ≤ 1; we have

󰁝 ∞

k+ 1
k

|
󰁳

ckαgb(x)− 󰁨Ga(x)|pγβ(x)dx ≥
󰁝

B

|
󰁳

ckαgb(x)− 1|pγβ(x)dx

≥
󰁝 ∞

k+ 1
k

|
󰁳

ckαgb(x)− 1|pγβ(x)dx− 1

2
(2π)−

β−1
2 β− 1

2 .

Combining our observation, we get
󰁝

|
󰁳

fk(x)− 󰁨Ga(x)|pγβ(x)dx

≥
󰁝 k

−k

|
√
ck − 󰁨Ga(x)|pγβ(x)dx+ 2

󰁝 ∞

k+ 1
k

|
󰁳

ckαgb(x)− 󰁨Ga(x)|pγβ(x)dx

≥ 21−p

󰁝

A

| 󰁨Ga(x)|pγβ(x)dx+ 2

󰁝 ∞

k+ 1
k

|
󰁳

ckαgb(x)− 1|pγβ(x)dx− C2(p, θ).
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By Lemma 5.3.1, one can choose a0 ≥ a1 such that
󰁝

A

| 󰁨Ga(x)|pγβ(x)dx ≥ 2p−1(C1(p, θ) + C2(p, θ))

for all a ≥ a0. By (5.3.1), we have
󰁝

|
󰁳

fk(x)− 󰁨Ga(x)|pγβ(x)dx ≥ 21−p

󰁝

A

| 󰁨Ga(x)|pγβ(x)dx+

󰁝
|
󰁳

fk(x)− 1|pγβ(x)dx

− C1(p, θ)− C2(p, θ)

≥
󰁝

|
󰁳

fk(x)− 1|pγβ(x)dx,

which finishes the proof.

Lemma 5.3.3. Let p > θ > 0 and hk be defined as above. There exists k0 ∈ N such

that

󰀂hk󰀂Lp(dmθ) ≍p,θ b
− 3

4 e
θb2

4(p−θ)

for all k ≥ k0.

Proof. Let β = p−θ
2
. A direct computation yields that

󰀂hk󰀂pLp(dmθ)
= (4π)

β−1
2

󰁝
|fk(x)|

p
2γβ(x)dx

= |ck|
p
2 2

β−1
2 β− 1

2 (2Φ(
󰁳

βk)− 1) + 2|ck|
p
2

󰁝 k+ 1
k

k

|lk(x)|
p
2γβ(x)dx

+ 2
β+1
2 |ckα|

p
2β− 1

2 e
pθb2

4(p−θ)Φ(
pb

2
√
β
−

󰁳
β(k +

1

k
)).

Choose k1 ∈ N such that ck ∈ [1
2
, 3
2
] and Φ( pb

2
√
β
−
√
β(k+ 1

k
)) ≥ 1

2
for all k ≥ k1. Then

we have

󰀂hk󰀂Lp(dmθ) ≥ C(p, θ)b−
3
4 e

θb2

4(p−θ) .

Since we have

|ck|
p
2 2

β−1
2 β− 1

2 (2Φ(
󰁳

βk)− 1) + 2|ck|
p
2

󰁝 k+ 1
k

k

|lk(x)|
p
2γβ(x)dx ≤ C(p, θ),

we can choose k2 ∈ N such that

󰀂hk󰀂Lp(dmθ) ≤ C(p, θ)b−
3
4 e

θb2

4(p−θ)

for all k ≥ k2.
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5.3.2 Proof of Theorem 5.1.2

Let fk be the sequence of functions defined in Example 4.3.2 with b = bk =

2(k + 1
k
) +

√
k and α = αk = b

− 3
2

k . Define hk(x) =
󰁳

fk(2
√
πx)g(x). Note that

󰀂hk󰀂L2(dmθ) = 󰀂fk󰀂L1(dγ) = 1. By (2.2.5) and Lemma 4.3.3, we have δBH(hk) → 0 as

k → ∞. Since the function hk and g−θ are symmetric and the symmetric decreasing

rearrangement of Ga,r is Ga, it follows from the rearrangement inequality (see [92,

Theorem 3.5]) that

distLp(dmθ)(hk,G) = inf
a∈( θπ

p
,∞)

󰀂hk −Ga󰀂Lp(dmθ)

for all k ≥ 1. Here we used the fact that

Ga,r ∈ Lp(dmθ) if and only if a > θπ/p. (5.3.2)

Our goal is to show that there exists a constant C = C(p, θ) > 0 such that

󰀂hk −Ga󰀂Lp(dmθ) ≥ C󰀂hk󰀂Lp(dmθ)

for all a ∈ ( θπ
p
,∞) and for large k.

Case 1: a ≥ π

Suppose p > 2. By Lemma 5.3.2, there exists a0 > π such that

distLp(dmθ)(hk,G) = inf
a∈( θπ

p
,a0]

󰀂hk −Ga󰀂Lp(dmθ)

for all large k. So it suffices to show that if k is large enough, then 󰀂hk−Ga󰀂Lp(dmθ) ≥

C󰀂hk󰀂Lp(dmθ) for all a ∈ (π, a0]. First we consider the case when π ≤ a ≤ a0. Since

p > 2,

󰀂Ga󰀂pLp(dmθ)
= 2

p−θ
4 (

a

π
)
p−2
4 (p− θπ

a
)−

1
2 (5.3.3)

= C(p, θ)a
p−2
4 (p− θπ

a
)−

1
2
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is uniformly bounded in a ∈ [π, a0]. By Lemma 5.3.3, we can choose k1 ∈ N so that

for all k ≥ k1, 󰀂hk󰀂Lp(dmθ) ≥ 2 supa∈[π,a0] 󰀂Ga󰀂Lp(dmθ). We obtain

󰀂hk −Ga󰀂Lp(dmθ) ≥ 󰀂hk󰀂Lp(dmθ) − sup
a∈[π,a0]

󰀂Ga󰀂Lp(dmθ)

≥ 1

2
󰀂hk󰀂Lp(dmθ)

for all a ∈ [π, a0] and k ≥ k1.

If p ≤ 2, then it follows from (5.3.3) that 󰀂Ga󰀂pLp(dmθ)
≤ C(p, θ)π

p−2
4 (p−θ)−

1
2 for all

a ≥ π. By Lemma 5.3.3, we choose k2 ∈ N such that 󰀂hk−Ga󰀂Lp(dmθ) ≥ 1
2
󰀂hk󰀂Lp(dmθ)

for all k ≥ k2.

Case 2: θπ
p
< a < π

By Lemma 5.3.3, it suffices to show that there exists a constant c > 0 such that

󰀂hk −Ga󰀂Lp(dmθ) ≥ cb−
3
4 e

θb2

4(p−θ)

for all a ∈ ( θπ
p
, π) and large k. Let β = p−θ

2
and s = 1 − a

π
, then 0 < s < 1 − θ

p
. We

define Rs,k(x) = 󰁨Ga(x)/
󰁳

fk(x), then

󰀂hk −Ga󰀂Lp(dmθ) = (4π)
β−1
2

󰁝
|
󰁳

fk − 󰁨Ga|pγβdx

= (4π)
β−1
2

󰁝
|1−Rs,k|p|fk|

p
2γβdx

≥ (4π)
β−1
2 |ckα|

p
2

󰁝 ∞

k+ 1
k

|1−Rs,k|pe
pb
2
x− pb2

4 γβdx.

Let Qs,k(x) =
s
4
(x− b

s
)2 − (1−s

4s
)b2, then

Rs,k(x) =
(1− s)

1
4

(ckα)
1
2

eQs,k(x).

Choose t ∈ (1, p
p−θ

), then

Qs,k(tb) =
s

4
(tb− b

s
)2 − (

1− s

4s
)b2 =

t2b2

4

󰀓
s−

󰀃2t− 1

t2
󰀄󰀔

.
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Since the map t 󰀁→ 2t−1
t2

is decreasing on (1, p
p−θ

), we know

2t− 1

t2
≥

2( p
p−θ

)− 1

( p
p−θ

)2
=

p2 − θ2

p2
>

p− θ

p
.

Since s ∈ (0, p−θ
p
), we have Qs,k(tb) < 0. The function Qs,k(x) is symmetric about

x = b
s
and b

s
> tb. This yields that Qs,k(x) ≤ Qs,k(tb) for all x ∈ [tb, 2b

s
− tb]. Thus

we can choose k3 ∈ N so that Rs,k(x) ≤ 1
2
for all k ≥ k3 and s ∈ (0, p−θ

p
). Since

(t− p
p−θ

) < 0 and (2
s
− t− p

p−θ
) ≥ c > 0 uniformly in s, we can choose k4 ∈ N so that

Φ((
2

s
− t− p

p− θ
)b
󰁳

β)− Φ((t− p

p− θ
)b
󰁳

β) ≥ 1

2

for all k ≥ k4 and s ∈ (0, p−θ
p
). If k is large enough, then we obtain

󰀂hk −Ga󰀂pLp(dmθ)
≥ (4π)

β−1
2 2−p|ckα|

p
2

󰁝 ∞

k+ 1
k

e
pb
2
x− pb2

4 γβdx

≥ 2
β−1
2

−p|ckα|
p
2 e

pθb2

4(p−θ)β− 1
2 (Φ((

2

s
− t− p

2β
)b
󰁳

β)− Φ((t− p

2β
)b
󰁳

β))

≥ C(p, θ)b−
3p
4 e

pθb2

4(p−θ) .

By Lemma 5.3.3, we have

󰀂hk −Ga󰀂Lp(dmθ) ≥ C󰀂hk󰀂Lp(dmθ)

for all a ∈ ( θπ
p
, π), which completes the proof.

5.3.3 Proof of Theorem 5.1.1

We note that Ga,r ∈ Lp(dηλ) for all a > 0 and r ∈ R. Indeed we have

󰀂Ga,r󰀂pLp(dηλ)
=

󰁝
|Ga,r(x)|pdηλ (5.3.4)

≤
󰁝

|Ga(x)|pdηλ

=
󰀓2a
π

󰀔 p
4

󰁝
|x|λe−apx2

dx

=
󰀓2a
π

󰀔 p
4
(2ap)−

λ+1
2

󰁝
|x|λe−x2

2 dx

= C(p,λ)a
p−2λ−2

4 mλ(γ)
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where mλ(γ) is the λ-th moment of the standard Gaussian measure. Let hk(x) =
󰁳

fk(2
√
πx)g(x) with αk = b−w

k and 0 < w < 2λ
p
, then

󰀂hk󰀂pLp(dηλ)
= C(p,λ)

󰁝
|fk(x)|

p
2γ

p
2 (x)|x|λdx

≥ C(p,λ)|ckαk|
p
2

󰁝 ∞

k+ 1
k

|x|λe−
p
4
(x−bk)

2

dx

= C(p,λ)|ckαk|
p
2

󰁝 ∞

k+ 1
k
−bk

|x+ bk|λe−
p
4
x2

dx

≥ C(p,λ)|ckαk|
p
2 (|bk|λ −mλ(γ))

so that 󰀂hk󰀂Lp(dηλ) → ∞ as k → ∞. By the rearrangement inequality,

distLp(dηλ)(hk,G) = inf
a>0

󰀂hk −Ga󰀂Lp(dηλ).

Assume p = 2λ + 2, then 󰀂Ga󰀂Lp(dηλ) = C(p,λ)mλ(γ) is independent of a. We

pick k1 ∈ N such that 󰀂hk󰀂Lp(dηλ) ≥ 2󰀂Ga󰀂Lp(dηλ) for all k ≥ k1, then

󰀂hk −Ga󰀂Lp(dηλ) ≥ 󰀂hk󰀂Lp(dηλ) − 󰀂Ga󰀂Lp(dηλ) ≥
1

2
󰀂hk󰀂Lp(dηλ)

for all k ≥ k1, as desired.

Suppose p− 2λ− 2 > 0. By (5.3.4), we have 󰀂Ga󰀂Lp(dηλ) → ∞ as a → ∞. Since

󰀂hk󰀂Lp(dηλ) → ∞ and 󰀂Ga󰀂Lp(dηλ) is bounded in a ∈ (0, a0] for a fixed a0 by (5.3.4), it

suffices to show that there exist k0 and a0 such that

󰀂hk −Ga󰀂Lp(dηλ) ≥ 󰀂hk −Gπ󰀂Lp(dηλ)

for all k ≥ k0 and a ≥ a0. Let 󰁨Ga(x) = Ga(
x

2
√
π
)/Gπ(

x
2
√
π
), then

󰀂hk −Ga󰀂pLp(dηλ)
= C(p,λ)

󰁝
|
󰁳

fk(x)− 󰁨Ga(x)|pγ
p
2 (x)|x|λdx.

We choose k1 ∈ N such that 1
2
≤ ck ≤ 3

2
for all k ≥ k1. Let I = [−x0, x0] with

x0 =
1

2

󰁵
log a− log π − 4 log(3/2)

a− π
,
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then 󰁨Ga(x) ≥ 3/2 for all x ∈ I. Choose a1 > π so that 󰁨Ga(1) ≤ 1
2
≤ √

ck for all

a ≥ a1, then I ⊂ [−k, k]. We get
󰁝 k

−k

|
󰁳

fk(x)− 󰁨Ga(x)|pγ
p
2 (x)|x|λdx ≥

󰁝

I

|
󰁳

fk(x)− 󰁨Ga(x)|pγ
p
2 (x)|x|λdx

≥ C(p,λ)a
p−2(λ+1)

4

󰁝 √
ap
2π

x0

−
√

ap
2π

x0

|x|λdγ − C1(p,λ).

Since
√
ax0 → ∞ as a → ∞, there exist a2 and C > 0 such that

󰁕
I
|x|λdγ ≥ C for all

a ≥ a2. Let B = {x :
󰁳

ckαkgbk(x) ≥ 1}. Note that bk = 2(k + 1
k
) +

√
k, αk ≤ 1

2
, and

ck ≤ 3
2
. If

󰁳
ckαgb(x) ≥ 1, then x ≥ b

2
− 1

b
log(ckα) and B ⊂ [k+ 1

k
,∞). If x ≥ k+ 1

k
,

then 󰁨Ga(x) ≤ 1; thus we have
󰁝 ∞

k+ 1
k

|
󰁳

fk(x)− 󰁨Ga(x)|pγ
p
2 (x)|x|λdx ≥

󰁝

B

|
󰁳

ckαgb(x)− 1|pγ
p
2 (x)|x|λdx

≥
󰁝 ∞

k+ 1
k

|
󰁳

ckαgb(x)− 1|pγ
p
2 (x)|x|λdx− C(p,λ).

Combining our observation, we get
󰁝

|
󰁳

fk(x)− 󰁨Ga(x)|pγ
p
2 (x)|x|λdx

≥
󰁝 k

−k

|
󰁳

fk(x)− 󰁨Ga(x)|pγ
p
2 (x)|x|λdx+ 2

󰁝 ∞

k+ 1
k

|
󰁳

fk(x)− 󰁨Ga(x)|pγ
p
2 (x)|x|λdx

≥ C1(p,λ)a
p−2(λ+1)

4 + 2

󰁝 ∞

k+ 1
k

|
󰁳

ckαgb(x)− 1|pγ
p
2 (x)|x|λdx− C2(p,λ).

We choose k2 large enough so that for all k ≥ k2, we have
󰁝

|
󰁳

fk(x)− 1|pγ
p
2 (x)|x|λdx = 2

󰁝 k

0

|
√
ck − 1|pγ

p
2 (x)|x|λdx

+ 2

󰁝 k+ 1
k

k

|
󰁳

cklk − 1|pγ
p
2 (x)|x|λdx

+ 2

󰁝 ∞

k+ 1
k

|√ckαgb − 1|pγ
p
2 (x)|x|λdx

= C3(p,λ) + 2

󰁝 ∞

k+ 1
k

|√ckαgb − 1|pγ
p
2 (x)|x|λdx.

It then follows that
󰁝

|
󰁳

fk(x)− 󰁨Ga(x)|pγ
p
2 (x)|x|λdx

≥ C1(p,λ)a
p−2(λ+1)

4 +

󰁝
|
󰁳

fk(x)− 1|pγ
p
2 (x)|x|λdx− C2(p,λ)− C3(p,λ).
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Letting a large enough, we obtain

󰁝
|
󰁳

fk(x)− 󰁨Ga(x)|pγ
p
2 (x)|x|λdx ≥

󰁝
|
󰁳

fk(x)− 1|pγ
p
2 (x)|x|λdx.

Therefore, we have 󰀂hk −Ga󰀂Lp(dηλ) ≥ 󰀂hk −Gπ󰀂Lp(dηλ) as desired.

Remark 5.3.4. For the Lebesgue measure and p ≥ 0, we have

󰀂hk −Gπ󰀂pp = (4π)
p−2
4

󰁝
|
󰁳

fk − 1|pγ
p
2 (x)dx

= o(1) + 2(ckα)
p
2

󰁝 ∞

k+ 1
k

|
󰁳

gb(x)− 1|pγ
p
2 (x)dx

and

󰁝 ∞

k+ 1
k

|
󰁳

gb(x)− 1|pγ
p
2 (x)dx ≤ 2p

󰁝 ∞

k+ 1
k

gb(x)
p
2γ

p
2 (x)dx+ 2p

󰁝 ∞

k+ 1
k

γ
p
2 (x)dx ≤ C(p).

So we get

lim
k→∞

distLp(dx)(hk,G) ≤ lim
k→∞

󰀂hk −Gπ󰀂p = 0,

which implies that our method does not give an instability result for the BHI when

θ = 0 in Theorem 5.1.2 and λ = 0 in Theorem 5.1.1.
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6. STABILITY OF THE EXPECTED LIFETIME

INEQUALITY

The isoperimetric inequalities for the expected lifetime of Brownian motion state

that the Lp-norms of the expected lifetime in a bounded domain for 1 ≤ p ≤ ∞ are

maximized when the region is a ball with the same volume. In this chapter, we prove

quantitative improvements of the inequalities. We also discuss related open problems

that arise from these improvements. This chapter is based on my work [86].

6.1 Introduction

Let α ∈ (0, 2] and D a bounded domain in Rn. Let Xα
t be the rotationally

symmetric α–stable process with generator −(−∆)α/2. The first exit time of Xα
t

from D is given by

ταD = inf{t > 0 : Xα
t /∈ D}.

The expected lifetime ofXα
t is denoted by uα

D(x) = Ex[ταD] where Ex is the expectation

associated with Xα
t starting at x ∈ Rn. Note that uα

D(x) is a solution to the equation

󰀻
󰁁󰀿

󰁁󰀽

(−∆)
α
2 u(x) = 1, x ∈ D,

u(x) = 0, x /∈ D.

If B is a ball of radius R and centered at the origin, then uα
B(x) is explicitly given by

uα
B(x) = Cn,α(R

2 − |x|2)α
2 .

For α = 2, Xα
t is Brownian motion with generator ∆. In this case, we drop the

superscript α.

Bañuelos and Méndez-Hernández [16] showed that several isoperimetric type in-

equalities for Brownian motion continue to hold for a wide class of Lévy processes
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using the symmetrization of Lévy processes and the multiple integral rearrangement

inequalities of Brascamp–Lieb–Luttinger [31]. A particular case of this is that for all

t ≥ 0 and x ∈ Rn,

P0(ταB > t) ≥ Px(ταD > t), (6.1.1)

which yields in turn that

uα
B(0) ≥ uα

D(x), (6.1.2)

where B is a ball centered at 0 with |B| = |D|. In fact, (6.1.1) gives

E0(ταB)
p ≥ Ex(ταD)

p (6.1.3)

for all p > 0.

Talenti [110] proved that the Lp norm of a solution of a second-order elliptic

equation is maximized when the elliptic operator and the domain are symmetrically

rearranged. In particular, the result yields that for p > 0, α = 2, and a bounded

domain D,

󰀂uB󰀂p ≥ 󰀂uD󰀂p (6.1.4)

where B is a ball with |B| = |D|.

Given the above isoperimetric type inequalities for the first exit time of the stable

processes and their connection to the classical torsion function, it is interesting to

find quantitative versions of these inequalities: for example, quantitative versions of

(6.1.1) and (6.1.2), and their implications to quantitative versions of the torsional

rigidity inequality, not only for the stable processes but even for the more general

Lévy processes studied in [16]. The goal of this chapter is to study quantitative

versions of the expected lifetime inequalities (6.1.2) for α = 2 and (6.1.4) for p ≥ 1.

6.2 Main results

We define the deficit of (6.1.2) by

δ(x,D) = 1− uD(x)

uB(0)
≥ 0 (6.2.1)
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where B is a ball centered at 0 with |B| = |D|. We provide a lower bound of the

deficit δ(x,D) in terms of the deviations of x and D from the optimizers. Note that

equality holds in (6.2.1) if D is a ball and uD(x) = maxy∈D uD(y). The deviation of

x is represented by the level set |{y ∈ D : uD(y) > uD(x)}|, and the deviation of D

by the Fraenkel asymmetry, which is defined by

A(D) = inf

󰀝
|D△B|
|D| : B is a ball with |B| = |D|

󰀞
. (6.2.2)

Theorem 6.2.1. Let D ⊆ Rn be a bounded domain with A(D) > 0. Let Dt = {y ∈

D : uD(y) > t}, µ(t) = |Dt|, and

t∗ = t∗(D) = sup{t > 0 : µ(t) > |D|(1− 1

4
A(D))}. (6.2.3)

Then we have

δ(x,D) ≥ |D|− 2
n

󰀓
µ(uD(x))

2
n + Cn(uD(x) ∧ t∗)A(D)2

󰀔
, (6.2.4)

where Cn = βnω
1
n
n , βn is a dimensional constant in (6.3.3), and ωn is the volume of a

unit ball in Rn.

The proof is based on the proof of (6.1.2) for α = 2 in [6, 110], and the sharp

quantitative isoperimetric inequality [64]. In order to estimate the asymmetry of the

level sets, we use the idea of Hansen and Nadirashvili [76] as in the proof of the

boosted Pólya–Szegö inequality [33, Lemma 2.9].

Remark 6.2.2. We note that (6.2.4) with the first remainder term follows from

the pointwise estimate uB(x) ≥ (uD)
∗(x) of [109]. For simplicity, we assume that

|D| = 1. For each x ∈ D, we define r(x) ≥ 0 by µ(uD(x)) = |Br(x)| where Br(x) is a

ball of radius r(x). For a nonnegative measurable function f on D, the symmetric

decreasing rearrangement f ∗(x) = f ∗(|x|) satisfies f ∗(r(x)) ≥ f(x) for each x ∈ D.

Since uB is rotationally symmetric, we use the notation uB(x) = uB(|x|). Using

uB(x) ≥ (uD)
∗(x), one has

uD(x) ≤ (uD)
∗(r(x)) ≤ uB(r(x)) = uB(0)(1− (ω

1
n
n r(x))

2) = uB(0)(1− µ(uD(x))
2
n ).

Notice that (6.2.4) can be written as uB(r(x))− uD(x) ≥ Cn(uD(x) ∧ t∗)A(D)2.
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Remark 6.2.3. Note that if A(D) > 0, then t∗ > 0. Suppose δ(x,D) = 0. If

A(D) > 0, then (6.2.4) implies µ(uD(x)) = 0 and uD(x) = 0. This contradicts to the

assumption |D| > 0 and thus D is a ball with |B| = |D|. As a consequence, one sees

that equality holds (6.2.1) only if D is a ball and uD(x) = maxy∈D uD(y).

Remark 6.2.4. One can extend the result to an uniformly elliptic operator as in [110].

Let L = ∂i(aij(x)∂j) where aij(x) is a bounded measurable function with

n󰁛

i,j=1

aij(x)ξiξj ≥
n󰁛

i=1

ξ2i (6.2.5)

for each x ∈ Rn and ξ = (ξ1, · · · , ξn) ∈ Rn. Consider a weak solution uL
D of

󰀻
󰁁󰀿

󰁁󰀽

−Lu(x) = 1, x ∈ D,

u(x) = 0, x ∈ ∂D.

Following the proof of Theorem 6.2.1 and modifying (6.3.6) with inequality, which

follows from the elliptic condition (6.2.5), one obtains

1− uL
D(x)

uB(0)
≥ |D|− 2

n

󰀓
µ(uL

D(x))
2
n + Cn(u

L
D(x) ∧ t∗)A(D)2

󰀔
.

The second result is a quantitative inequality for the Lp norm of the expected

lifetime, 1 ≤ p ≤ ∞. We define the Lp deficit of the expected lifetime inequality

(6.1.4) for 1 ≤ p ≤ ∞ by

δp(D) = 1−
󰀕
󰀂uD󰀂p
󰀂uB󰀂p

󰀖κ(p)

where κ(p) = p for 1 ≤ p < ∞, κ(∞) = 1, and B is a ball centered at 0 with

|B| = |D|.

Theorem 6.2.5. Let n ≥ 2 and D be a bounded domain in Rn. For 1 ≤ p ≤ ∞, we

have

δp(D) ≥ Cn,pA(D)2+κ(p) (6.2.6)

where Cn,p is explicitly given in (6.3.12) and (6.3.13). In particular, if p = 1, we have

T (B)− T (D) ≥ Cn,1T (B)A(D)3. (6.2.7)
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Remark 6.2.6. Let n = 2 and ε > 0. Consider an ellipse D = {(x, y) ∈ R2 : x =

cos t, y = (1+ε) sin t, t ∈ R}. The asymmetry of D is A(D) = 1
π
ε+O(ε2) (see [75, pp.

88–89]). Note that the torsion function of D is

uD(x) =
(1 + ε)2

2(1 + (1 + ε)2)

󰀓
1− x2 − y2

(1 + ε)2

󰀔
.

Let B be a ball with |B| = |D| = (1+ ε)π. Let p ∈ [1,∞). Direct computations yield

󰀂uB󰀂pp − 󰀂uD󰀂pp =
π

22p(p+ 1)
(1 + ε)p+1 − π

2p(p+ 1)(1 + (1 + ε)2)p
(1 + ε)2p+1

=
π

22p(p+ 1)
(1 + ε)p+1

󰀓
1−

󰀓
1− ε2

1 + (1 + ε)2

󰀔p󰀔

= Cpε
2 + o(ε2)

for some Cp > 0, and

δ∞(D) = 1− 󰀂uD󰀂∞
󰀂uB󰀂∞

= 1− 2(1 + ε)

1 + (1 + ε)2
=

ε2

1 + (1 + ε)2

for p = ∞. This implies that the exponent of A(D) in (6.2.6) cannot be replaced by

smaller number than 2. It is open to show the inequality (6.2.6) with power 2.

Brasco, De Philippis, and Velichkov [34] showed that the sharp exponent of (6.2.7)

is 2 in the sense that the power cannot be replaced by any smaller number. Their

method, however, does not give an explicit dimensional constant because the proof

relies on the selection principle of Cicalese and Leonardi [49].

The key step in the proof of Theorem 6.2.5 is the removal of t∗ defined in (6.2.3).

In [33], the authors proved the non-sharp quantitative Saint-Venant inequality (6.2.7)

using transfer of asymmetry (Lemma 6.3.1) and the boosted Pólya–Szegö inequality.

Thus t∗ also appears in their proof. To replace t∗ by A(D) (up to a dimensional

constant), they made use of the variational representation for T (D) (2.5.2). In our

case, however, the Lp norm of the expected lifetime does not have an appropriate

variational formula for 1 < p ≤ ∞. Instead, we estimate the distribution function

of uD when t∗ is sufficiently small, and apply the layer cake representation and the

strong Markov property. It turns out that this enables us to replace t∗ by A(D).
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The fractional analogue of (6.2.7) is proven in [32]. Brasco, Cinti, and Vita showed

that if n ≥ 2, α ∈ (0, 2), and D is an open set with |D| = 1, then

Tα(B)− Tα(D) ≥ Cn,αA(D)
6
α

where Cn,α is explicit and B is a ball with |B| = 1. Furthermore, if D has Lipschitz

boundary and satisfies the exterior ball condition, then the exponent can be lowered

to 2 + 2
α
. It turns out that our method for removing t∗ yields the same exponent

without any additional geometric assumptions on D.

Theorem 6.2.7. If n ≥ 2, α ∈ (0, 2), and D is an open set with |D| = 1, then

Tα(B)− Tα(D) ≥ Cn,αA(D)2+
2
α

where B is a ball with |B| = |D|.

6.3 Proofs of the main results

6.3.1 Transfer of asymmetry

The following lemma is essentially from [76, Lemma 5.1], which provides an esti-

mate of asymmetries of two sets when these sets are close in L1 sense. We refer the

reader to [32, Lemma 4.1] for its generalization.

Lemma 6.3.1 ( [33, Lemma 2.8]). Let D ⊆ Rn be an open set with finite measure,

U ⊆ D, |U | > 0, and
|D \ U |
|D| ≤ kA(D)

for k ∈ (0, 1
2
). Then, A(U) ≥ (1− 2k)A(D).

Proof. Let B1 be a ball centered at 0 with |B1| = |U | satisfying

A(U) =
|U△(x+B1)|

|U |
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for some x ∈ Rn and B2 a ball centered at 0 with |B2| = |D|. Note that |U△D| =

|D \U | = |B1△B2|. Using the triangular inequality for the symmetric difference, one

can see that

A(U) =
|U△(x+B1)|

|U |

≥ |D△(x+B2)|− |U△D|− |B1△B2|
|D|

≥ A(D)− 2
|D \ U |
|D|

≥ (1− 2k)A(D).

Remark 6.3.2. Let D be a bounded domain in Rn, u a nonnegative function defined

in D, and Dt = {x : u(x) > t} for t > 0. Assume A(D) > 0 and

t∗ = sup{t > 0 : µ(t) > |D|(1− 1

4
A(D))} > 0.

If t < t∗, then we have

|D \Dt|
|D| = 1− µ(t)

|D| ≤ 1− (1− 1

4
A(D)) =

1

4
A(D), (6.3.1)

which yields A(Dt) ≥ 1
2
A(D) by Lemma 6.3.1.

6.3.2 Proof of Theorem 6.2.1

We assume that |D| = 1. Let Dt = {x ∈ D : u(x) > t}, µ(t) = |Dt|, and

u(x) = uD(x). By the coarea formula, we have

󰀓
− d

dt

󰁝

Dt

|∇u| dx
󰀔2

≥ P (Dt)
2 (6.3.2)

for almost every t > 0. Note that the sharp quantitative isoperimetric inequality [64]

states

P (D) ≥ P (B) + βnA(D)2 (6.3.3)
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where B is a ball with |B| = |D| = 1 and βn is a dimensional constant. A simple

manipulation gives

P (Dt)
2 ≥ P (D∗

t )
2 + 2P (D∗

t )(P (Dt)− P (D∗
t )) (6.3.4)

≥ P (D∗
t )

2 + (2nω
1
n
n βn)µ(t)

2− 2
nA(Dt)

2

≥ n2ω
2
n
n µ(t)

2− 2
n

󰀓
1 +

2

n
βnω

− 1
n

n A(Dt)
2
󰀔

where ωn is the volume of the unit ball in Rn and D∗
t is a ball with |Dt| = |D∗

t |. It

follows from Cauchy–Schwarz inequality that

(−µ′(t))
1
2

󰀓
− d

dt

󰁝

Dt

|∇u|2 dx
󰀔 1

2 ≥ − d

dt

󰁝

Dt

|∇u| dx. (6.3.5)

By (6.3.2), (6.3.4), and (6.3.5), we get

−µ′(t)
󰀓
− d

dt

󰁝

Dt

|∇u|2 dx
󰀔
≥ n2ω

2
n
n µ(t)

2− 2
n

󰀓
1 +

2

n
βnω

− 1
n

n A(Dt)
2
󰀔

for almost every t > 0. Since u is a weak solution of −∆u = 1 in D,

󰁝

D

ϕ dx =

󰁝

D

∇u ·∇ϕ dx

for all ϕ ∈ W 1,2
0 (D). Let ϕ(x) = (u(x)− t)+, then it belongs to ϕ ∈ W 1,2

0 (D) and

󰁝

Dt

(u− t) dx =

󰁝

Dt

|∇u|2 dx.

Let h ∈ R be small enough, then

1

h

󰀓󰁝

Dt

|∇u|2 dx−
󰁝

Dt+h

|∇u|2 dx
󰀔
= µ(t+ h) +

󰁝

Dt△Dt+h

󰀏󰀏󰀏
u− t

h

󰀏󰀏󰀏 dx.

Since 0 ≤ |u− t| ≤ |h| in Dt△Dt+h and |Dt△Dt+h| → 0 as h → 0, we obtain

µ(t) = − d

dt

󰁝

Dt

|∇u|2 dx. (6.3.6)

Therefore, we have

− µ(t)
2
n
−1µ′(t) ≥ n2ω

2
n
n (1 +

2

n
βnω

− 1
n

n A(Dt)
2) (6.3.7)

for almost every t > 0.
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For each t > 0, choose R(t) > 0 such that µ(t) = |BR(t)(0)|, where BR(t)(0) is

the ball of radius R(t), centered at 0. Let τR(t) be the first exit time from the ball

BR(t)(0). Since Ex[τR(t)] =
1
2n
(R(t)2 − |x|2), we have

E0[τR(t)] =
1

2n
ω
− 2

n
n µ(t)

2
n . (6.3.8)

Differentiating of the both sides in t and applying (6.3.7), we have

− d

dt
E0[τR(t)] = − 1

n2
ω
− 2

n
n µ(t)

2
n
−1µ′(t) ≥ 1 +

2

n
βnω

− 1
n

n A(Dt)
2.

Taking the integral over [0, uD(x)] and applying (6.3.8), we have

uB(0)−
1

2nω
2/n
n

µ(uD(x))
2/n = E0[τR(0)]− E0[τR(uD(x))]

≥ uD(x) +
2

n
βnω

− 1
n

n

󰁝 u(x)

0

A(Dt)
2 dt.

By Lemma 6.3.1 and Remark 6.3.2, we have A(Dt) ≥ 1
2
A(D) for t < t∗ and

󰁝 u(x)

0

A(Dt)
2 dt ≥

󰁝 u(x)∧t∗

0

A(Dt)
2 dt ≥ 1

4
(u(x) ∧ t∗)A(D)2.

Therefore, we obtain

uB(0)− uD(x) ≥
1

2nω
n/2
n

µ(uD(x))
2
n +

2

n
βnω

− 1
n

n

󰁝 u(x)

0

A(Dt)
2 dt

≥ uB(0)
󰀓
µ(uD(x))

2
n + Cn(u(x) ∧ t∗)A(D)2

󰀔

where Cn = βnω
1
n
n .

Suppose that |D| = r−n for some r > 0. By translation invariance, we assume

0 ∈ D without loss of generality. For r > 0, we denote by rD = {ry : y ∈ D}.

Note that the Fraenkel asymmetry is scaling invariant, i.e. A(D) = A(rD). By the
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scaling property ofXt, we have r
2uD(x) = urD(rx). This leads to the following scaling

identities

δ(x,D) = δ(rx, rD),

µD(t) = |{y : uD(y) > t}| = |{y : urD(ry) > r2t}| = r−nµrD(r
2t),

t∗(D) = sup{t > 0 : µD(t) > |D|(1− 1

4
A(D))}

= sup{t > 0 : µrD(r
2t) > |rD|(1− 1

4
A(rD))}

= r−2t∗(rD).

Since |rD| = 1, we have

δ(x,D) = δ(rx, rD)

≥ µ(urD(rx))
2
n + Cn(urD(rx) ∧ t∗(rD))A(rD)2

= r2
󰀓
µ(uD(x))

2
n + Cn(u(x) ∧ t∗)A(D)2

󰀔

= |D|− 2
n

󰀓
µ(uD(x))

2
n + Cn(u(x) ∧ t∗)A(D)2

󰀔
,

as desired.

6.3.3 Proof of Theorem 6.2.5

If A(D) = 0, the results follow from (6.1.4). From now on, we assume A(D) > 0.

By scaling invariance, we assume |D| = 1 without loss of generality. Let B be a ball

centered at 0 with |B| = 1.

Consider p ∈ [1,∞). Let Dt = {x ∈ D : uD(x) > t} and µ(t) = |Dt|. Note that

Theorem 6.2.1 reads

1

2nω
2/n
n

(1− µ(uD(x))
2/n)− uD(x) ≥ C̃n(uD(x) ∧ t∗)A(D)2
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where C̃n = 1

2nω
2/n
n

Cn. By the coarea formula, we have

1

(2n)pω
2p/n
n

󰁝

D

(1− µ(uD(x))
2/n)p dx

=
1

(2n)pω
2p/n
n

󰁝 ∞

0

󰁝

∂Dt

(1− µ(uD(x))
2/n)p|∇uD|−1dHn−1(x) dt

= − 1

(2n)pω
2p/n
n

󰁝 ∞

0

(1− µ(t)2/n)pµ′(t) dt

=
1

2p+1np−1ω
2p/n
n

B(p, (n− 2)/2)

= 󰀂uB󰀂pp

where B(a, b) is the Beta function. Using ap − bp ≥ pbp−1(a− b) for a ≥ b, we get

󰀂uB󰀂pp − 󰀂uD󰀂pp ≥ C̃nA(D)2
󰁝

D

puD(x)
p−1(uD(x) ∧ t∗) dx (6.3.9)

≥ C̃nA(D)2
󰁝 t∗

0

ptp−1µ(t) dt

≥ 1

2
C̃nA(D)2 (t∗)

p.

In the last inequality, we used the fact that µ(t) > |D|(1− 1
4
A(D)) ≥ 1

2
for 0 < t < t∗.

Let µ0(t) = |{x ∈ B : uB(x) > t}|. Since uB(x) =
1
2n
(r2n − |x|2) with rn = ω

− 1
n

n ,

we have

µ0(t) =
󰀃
1− 2nω

2
n
n t

󰀄n
2 . (6.3.10)

Choose t0 > 0 so that µ0(2t0) = 1− 1
8
A(D). By (6.3.10) and the inequality 1− (1−

x)a ≥ ax for 0 ≤ x, a ≤ 1, we have

t0 =
1

4nω
2
n
n

󰀃
1− (1− 1

8
A(D))

2
n

󰀄
≥ 1

16n2ω
2
n
n

A(D). (6.3.11)
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Suppose t∗ < t0, then µ(t) ≤ 1 − 1
4
A(D) for all t ≥ t0 by definition. Since µ0(t) ≥

1− 1
8
A(D) for t ≤ 2t0, we get µ0(t)−µ(t) ≥ 1

8
A(D) for t ∈ [t0, 2t0]. By the layer cake

representation and (6.3.11), we have

󰀂uB󰀂pp − 󰀂uD󰀂pp =
󰁝 ∞

0

ptp−1(µ0(t)− µ(t)) dt

≥
󰁝 2t0

t0

ptp−1(µ0(t)− µ(t)) dt

≥ p

8
(t0)

pA(D)

≥ p

24p+3n2pω
2p
n
n

A(D)1+p

≥ p

24(p+1)n2pω
2p
n
n

A(D)2+p.

If t∗ ≥ t0, then it follows from (6.3.9) and (6.3.11) that

󰀂uB󰀂pp − 󰀂uD󰀂pp ≥
C̃n

24p+1n2pω
2p
n
n

A(D)2+p.

For 1 ≤ p < ∞, we finish the proof of (6.2.6) by letting

Cn,p =
1

24(p+1)n2pω
2p
n
n 󰀂uB󰀂pp

min{p, 8C̃n} (6.3.12)

=
1

23(p+1)np+1B(p, (n− 2)/2)
min

󰀫
p,

4βn

nω
1
n
n

󰀬

where βn is the constant in (6.3.3).

Consider the case p = ∞. By translation invariance, we assume that 0 ∈ D and

uD(0) = maxy∈D uD(y) without loss of generality. Putting x = 0 in (6.2.4), we get

δ∞(D) ≥ Cnt∗A(D)2.

Let µ0(t) = |{x ∈ B : uB(x) > t}| and choose t0 > 0 so that µ0(2t0) = 1− 1
8
A(D) as

above. If t∗ ≥ t0, then it follows from (6.3.11) that

δ∞(D) ≥ Cn

16n2ω
2
n
n

A(D)3.

Let t∗ < t0. Let ε > 0 be small enough that t1 := t∗ + ε < t0 and D1 = {x ∈ D :

uD(x) > t1}, then D1 is open. Let B̃ be a ball centered at 0 with |B̃| = |D1| and t̃
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be such that µ0(t̃) = µ(t1). Since 1− 1
4
A(D) > µ(t̃), we have t̃ > 2t0. Recall that the

strong Markov property of Xt yields for any x ∈ U ⊂ D that

Ex[τD] = Ex[τU ] + Ex[EXτU [τD]].

Since the paths of Xt are continuous a.s., we have XτD1
∈ ∂D1 a.s. Since D1 is open,

∂D1 ⊂ Rn \D1 and uD(y) ≤ t1 for y ∈ ∂D1. Then we obtain

E0[τD] = E0[τD1 ] + E0[EXτD1 [τD]] ≤ E0[τD1 ] + t1.

On the other hand, it follows from a direct computation that E0[τB] = E0[τB̃] + t̃.

Since E0[τB̃] ≥ E0[τD1 ] by (6.1.2), we get

󰀂uB󰀂∞ − 󰀂uD󰀂∞ = uB(0)− uD(0)

≥ (E0[τB̃]− E0[τD1 ]) + t0

≥ 1

16n2ω
2
n
n

A(D)

≥ 󰀂uB󰀂∞
32n

A(D)3.

We complete the proof by letting

Cn,∞ = min

󰀫
βn

16n2ω
1
n
n

,
1

32n

󰀬
. (6.3.13)

6.3.4 Proof of Theorem 6.2.7

Since A(D) < 2, it suffices to consider the case 1
2
Tα(B) ≤ Tα(D). Let uα

D be the

expected lifetime of the α-stable process in D, µ(t) = |{y ∈ D : uα
D(y) > t}|, and

t∗ = sup{t > 0 : µ(t) > |D|(1− 1
9
A(D))}. By the proof of [32, Theorem 1.3], one has

Tα(B)− Tα(D) ≥ Cn,αTα(B)2(t∗)
4
αA(D)

2
α . (6.3.14)

Let µ0(t) = |{y ∈ D : uα
B(y) > t}|. Since uα

B(x) = Cn,α(r
2 − |x|2)α

2 and r = ω
− 1

n
n , we

have

µ0(t) = (1− Cn,αt
2
α )

n
2 .
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Choose t0 > 0 such that µ0(2t0) = 1− 1
18
A(D), then

t0 = Cn,α(1− (1− 1

18
A(D))

2
n )

α
2 ≥ Cn,αA(D)

α
2 . (6.3.15)

If t∗ < t0, then µ(t) ≤ 1 − 1
9
A(D) for all t ≥ t0 by definition. Since µ0(t) ≥

1 − 1
18
A(D) for t ≤ 2t0, we get µ0(t) − µ(t) ≥ 1

18
A(D) for t ∈ [t0, 2t0]. By the layer

cake representation and (6.3.11), we have

Tα(B)− Tα(D) =

󰁝 ∞

0

(µ0(t)− µ(t)) dt

≥ 1

18
t0A(D)

≥ Cn,αA(D)1+
α
2 .

If t∗ ≥ t0, then by (6.3.14) and (6.3.15) we have

Tα(B)− Tα(D) ≥ Cn,αTα(B)2A(D)2+
2
α ,

which completes the proof.

6.4 Related open problems

6.4.1 Brownian motion

It is open to find quantitative improvement of (6.1.1) and (6.1.3) even for Brownian

motion. In particular, it is unclear what is the right statement for stability of (6.1.1).

Having a small deficit of (6.1.1) at some t is not enough to obtain the proximity of

the region to a ball, which implies that the deficit should be defined in a strong sense.

As discussed in Remark 6.2.6, it is expected that the sharp exponent of (6.2.6)

is 2 for 1 < p ≤ ∞. For p = 1, the sharp result was derived in [34]. It is, however,

not obvious how to apply the method of [34] to the case 1 < p ≤ ∞ because the

proof strongly replies on the variational formula (2.5.2), whereas the Lp norm of the

expected lifetime does not have such formula.

In Theorem 6.2.1, our quantitative result of (6.1.2) for α = 2 depends on t∗. It is

unclear whether this dependence is necessary. Removing t∗ in (6.2.4) is an interesting

open problem.
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It was shown in [34] that the sharp exponent of A(D) in (6.2.7) is 2. Since the

proof is based on the selection principle of [49], the constant is not explicit. The

best-known exponent with an explicit constant is 3. It is still open to prove a sharp

quantitative result of (6.2.7) with an explicit dimensional constant.

6.4.2 Symmetric stable processes

As mentioned above, it is an open problem to extend Theorems 6.2.1 and Theorem

6.2.5 to the case 0 < α < 2. At this moment, a fractional analogue of the inequality

(6.1.4) for 0 < α < 2 and 1 < p ≤ ∞ is not known. Our approach of Theorem 6.2.1

may not work for this case since it is not obvious how to apply the coarea formula

in the fractional setting. A standard way of avoiding this difficulty is to consider

the extension of Caffarelli–Silvestre [39]. Fusco, Millot, and Morini [65] considered

the rearrangement inequality for the extension to show the quantitative isoperimetric

inequality for the fractional perimeter. Recently, Brasco, Cinti, and Vita [32] proved

stability of the fractional Faber–Krahn inequality using a similar argument. As a

corollary, they also showed stability of the fractional Saint-Venant inequality.

We introduce some notations. The fractional Laplacian of order α
2
is given by

(−∆)
α
2 f(x) = An,α

󰁝

Rn

f(x)− f(y)

|x− y|n+α
dy (6.4.1)

where

An,α =
2αΓ

󰀃
n+α
2

󰀄

π
n
2 |Γ

󰀃
− α

2

󰀄
|
. (6.4.2)

The space 󰁩W α,p
0 (D) is the closure of C∞

0 (D) with respect to the norm u 󰀁→ [u]α,p +

󰀂u󰀂Lp(D) where

[u]α,p =
󰀓󰁝

Rn

󰁝

Rn

|u(x)− u(y)|p
|x− y|n+αp/2

dxdy
󰀔 1

p
.

The fractional torsional rigidity of order α is defined by 󰀂uα
D󰀂1. We have the following

variational representations

Tα(D) = max
u∈󰁩Wα,2

0 (D)\{0}

󰀓
2󰀂u󰀂L1(D) −

An,α

2
[u]2α,2

󰀔
= max

u∈󰁩Wα,2
0 (D)\{0}

2

An,α

[u]−2
α,2󰀂u󰀂2L1(D)
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where An,α is given by (6.4.2). In particular, since uα
D ∈ 󰁩W α,2

0 (D) we have

Tα(D) = 󰀂uα
D󰀂L1(D) =

An,α

2
[uα

D]
2
α,2 =

An,α

2

󰁝

Rn

󰁝

Rn

|uα
D(x)− uα

D(y)|2
|x− y|n+α

dxdy. (6.4.3)

Consider a solution of the equation

󰀻
󰁁󰀿

󰁁󰀽

div(z1−α∇U) = 0, (x, z) ∈ Rn+1
+ ,

U(x, 0) = uα
D(x), x ∈ Rn.

Then we have

[uα
D]

2
α,2 = γn,α

󰁝󰁝

Rn+1
+

z1−α|∇U |2 dxdz

for some constant γn,α. Let U∗(x, z) = (U(·, z))∗(x) be the symmetric decreasing

rearrangement of U with respect to x, then it was shown in [65, Lemma 2.6] that

󰁝󰁝

Rn+1
+

z1−α|∇xU |2 dxdz ≥
󰁝󰁝

Rn+1
+

z1−α|∇xU
∗|2 dxdz (6.4.4)

and

󰁝󰁝

Rn+1
+

z1−α|∂zU |2 dxdz ≥
󰁝󰁝

Rn+1
+

z1−α|∂zU∗|2 dxdz.

In [32], the authors improved (6.4.4) quantitatively as in the local case, which leads

to a quantitative fractional Saint-Venant inequality.

To generalize Theorems 6.2.1 and Theorem 6.2.5 to the α-stable processes, one

might need to apply this extension and symmetrization argument at the level of the

function U , not the seminorm [uα
D]α,2. Then it is required to show that a quantitative

improvement can be transferred as z tends to 0. For α = 1, this approached was

also used in [12–14] to study spectral gap estimates and properties of nodal domains.

Because of its connection to the Cauchy process and the Steklov problem, this special

case may be more tractable with such an approach.
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6.4.3 A fractional Pólya–Szegö inequality

We discuss stability of fractional Pólya–Szegö inequalities. The fractional α–

perimeter of D is defined by

Pα(D) =

󰁝

D

󰁝

Rn\D

1

|x− y|n+α/2
dxdy =

1

2
[1D]α,1.

Note that Pα(D) ≥ Cn,α|D| 2n−α
2n by the fractional Sobolev embedding. The quan-

titative isoperimetric inequality for fractional perimeter [65] states that for n ≥ 1

and α ∈ (0, 2), there exists a constant Bn,α such that for all Borel set D ⊂ Rn with

0 < |D| < ∞,

Pα(D) ≥ Pα(D
∗)(1 + Bn,αA(D)

2
α ). (6.4.5)

By layer cake representation, we obtain a fractional version of the coarea formula [35,

Lemma 4.7]. Indeed, if u ∈ L1(Rn) is a nonnegative function vanishing at ∞, then

[u]α,1 = 2

󰁝 ∞

0

Pα({x : u(x) > t})dt. (6.4.6)

We have a fractional version of the Pólya–Szegö inequality with a remainder term.

Proposition 6.4.1. Let α ∈ (0, 2) and D be a bounded domain in Rn with A(D) > 0.

If u ∈ 󰁩W α,1
0 (D), then there exists t∗ > 0 such that

[u]α,1 ≥ [u∗]α,1 + Cn,αA(D)
2
α max{t∗|D| 2n−α

2n , 󰀂u ∧ t∗󰀂 2n−α
2n

}.

Proof. Let Dt = {x : u(x) > t} and µ(t) = |Dt|. Using the coarea formula (6.4.6)

and the quantitative isoperimetric inequality for fractional perimeter (6.4.5), we have

[u]α,1 = 2

󰁝 ∞

0

Pα(Dt)dt

≥ 2

󰁝 ∞

0

Pα(D
∗
t )dt+ 2Bn,α

󰁝 ∞

0

Pα(D
∗
t )A(Dt)

2
αdt

≥ [u∗]α,1 + Cn,α

󰁝 ∞

0

µ(t)
2n−α
2n A(Dt)

2
αdt

for some constant Cn,α. Let t∗ = sup{t > 0 : µ(t) ≥ |D|(1 − 1
4
A(D))}. By Lemma

6.3.1 and (6.3.1), we have A(Dt) ≥ 1
2
A(D) for t < t∗ and

[u]α,1 ≥ [u∗]α,1 + Cn,αt∗|D| 2n−α
2n A(D)

2
α .
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Using the inequality

󰀓󰁝 ∞

0

f(x)dx
󰀔r

≥
󰁝 ∞

0

rf(x)rxr−1dx

for r ≥ 1 and a nonnegative, non-increasing function f on (0,∞) (see [93, p.49]), we

get 󰁝 t∗

0

µ(t)
1
r dt ≥

󰀓󰁝 t∗

0

rtr−1µ(t)dt
󰀔 1

r
= 󰀂u ∧ t∗󰀂r

where r = 2n
2n−α

> 1, which implies

[u]α,1 ≥ [u∗]α,1 + Cn,α󰀂u ∧ t∗󰀂 2n
2n−α

A(D)
2
α .

A natural question is a quantitative improvement of the inequality [u]α,2 ≥ [u∗]α,2

in terms of A(D). This open problem is interesting because it yields a quantitative

Saint-Venant inequality. Suppose that we have [u]α,2 ≥ [u∗]α,2+Φ(t∗, A(D)) for some

function Φ. By (6.4.3) and the rearrangement inequality [62], we get

Tα(D) ≤ 2

An,α

󰀂u∗󰀂21
[u∗]2α,2 + Φ(t∗, A(D))

≤ Tα(B)
󰀓
1 +

Φ(t∗, A(D))

[u∗]2α,2

󰀔−1

where u = uα
D is the α–torsion function and B is a ball with |D| = |B|. Using the

fact that [u∗]2α,2 ≤ [u]2α,2, we get

Tα(B)− Tα(D) ≥ Φ(t∗, A(D)).

Under mild assumption on Φ, t∗ can be removed as in Theorem 6.2.5.
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7. THE HARDY–LITTLEWOOD–SOBOLEV

INEQUALITY

7.1 Introduction

The classical Hardy–Littlewood–Sobolev inequality [77,78,105] (the HLS inequal-

ity) states that if 0 < α < d and 1 = 1
p
+ 1

r
− α

d
, then there exists a constant Cα,p,d

such that 󰀏󰀏󰀏󰀏
󰁝

Rd

󰁝

Rd

f(x)h(y)

|x− y|d−α
dxdy

󰀏󰀏󰀏󰀏 ≤ Cα,p,d󰀂f󰀂p󰀂h󰀂r (7.1.1)

for f ∈ Lp(Rd) and h ∈ Lr(Rd). Lieb [90] showed the existence of maximizing func-

tions in (7.1.1) based on the rearrangement inequalities and a compactness argument.

Also, he explicitly computed the maximizing functions f and h and so the sharp con-

stant Cα,p,d, for the spacial cases p = r, p = 2, and r = 2. After this, there has been

many effort to find a different proof of the sharp result: competing symmetry [43],

inversion positivity [60], fast diffusion flows [42]. Frank and Lieb [61] introduced a

rearrangement-free proof of the sharp HLS inequality, which leads to an analogue of

the sharp inequality on the Heisenberg group. For the recent progress on the extension

of the sharp HLS inequality, we refer to [46, 47, 54, 95, 96].

In this chapter, we give a probabilistic representation for fractional integrals for

symmetric Markov semigroups and derive an analogue of the Hardy–Littlewood–

Sobolev inequality using the background radiation process, which was exploited in

[71–73], together with time reversal, to represent the Riesz transforms via harmonic

extensions. To prove the HLS inequality, we introduce a fractional analogue of the

Littlewood–Paley function for symmetric Markov semigroups and prove Littlewood–

Paley type inequalities. This chapter is based on my work [84].

Our representation is a variation of the one used in [3] based on the space-time

Brownian motion often used for the second order Riesz transforms. In [3], Applebaum
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and Bañuelos give a probabilistic proof of the HLS inequality on Rd using their rep-

resentation and the martingale inequalities of Doob and Burkholder–Davis–Gundy.

Unlike the space-time Brownian motion representation which requires the gradient

of the harmonic extension in the space variable (or a carré du champ), our represen-

tation only requires the time derivative which is well-defined for symmetric Markov

semigroups.

The probabilistic representation of the fractional integrals can be thought of as

a martingale transform where the predictable sequence is not bounded. Martingale

transform techniques have been used quite effectively in the study of singular integral

operators, particularly in obtaining optimal, or near optimal, inequalities. For some

of this extensive literature on this subject, we refer the reader to [5,7,15,17,66,89,97]

and references therein. Given the powerful martingale and Bellman function methods

pioneered by Burkholder in [37] to obtain sharp inequalities for martingale transforms

and their many subsequent uses in various problems in analysis and probability (see

for example Osȩkowski [98]), it is natural to ask if those techniques can be extended

to martingale transforms with unbounded multipliers and provide a different proof of

the sharp HLS inequalities which could be extended to other settings. Unfortunately,

as of now, we have not been able to obtain sharp results with the Bellman function

methods. This remains an interesting challenging problem.

7.2 Main results

Let S be a locally compact space with a countable base equipped with a positive

Radon measure dx on S and {Tt}t≥0 a strongly continuous symmetric Markov semi-

group. We assume that the semigroup is Feller and has the Varopoulos dimension d

that we will define below. The fractional integral of order α (0 < α < d) associated

to {Tt}t≥0 is defined by

Iα(f)(x) =
1

Γ(α
2
)

󰁝 ∞

0

t
α
2
−1Ttf(x)dt. (7.2.1)
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Note that if {Tt}t≥0 is the standard heat semigroup on Rd then (7.2.1) reads

Iα(f)(x) =
Γ(d−α

2
)

2απd/2Γ(α
2
)

󰁝

Rd

f(y)

|x− y|d−α
dy,

which is called the Riesz potential associated with the symmetric Markov semigroup

{Tt}. If 1
q
= 1

p
− α

d
, 1

q
+ 1

q′ = 1, and 0 < α < d, then the HLS inequality for Iα states

that

|〈Iα(f), h〉| ≤ Cα,p,d󰀂f󰀂p󰀂h󰀂q′ (7.2.2)

for f ∈ Lp and h ∈ Lq′ .

Suppose that (Xt)t≥0 is a stochastic process associated to {Tt}t≥0 and (Yt)t≥0 is the

standard 1-dimensional Brownian motion independent of (Xt)t≥0. Let Zt = (Xt, Yt).

Since {Tt}t≥0 is Feller, (Xt)t≥0 is right continuous with left limits and has the strong

Markov property. Fix s > 0 and assume that the initial distribution of (Zt)t≥0 is given

by dx⊗ δs. We denote by Es the expectation of (Zt)t≥0. Let τ be the hitting time of

Yt at 0 and {Py}y≥0 the Poisson semigroup associated with {Tt}t≥0 (see (7.3.1)). Let

uf (x, y) = Pyf(x) be the harmonic extension of f defined on S × [0,∞). We set

T s
α (f)(x) = Es[

󰁝 τ

0

Y α
t

∂uf

∂y
(Zt)dYt|Xτ = x]. (7.2.3)

The main result of this chapter is to show that T s
α gives a probabilistic representation

of the fractional integral, and that it satisfies the analogue of the HLS inequality

(7.2.2).

Theorem 7.2.1. Let s > 0 and f, h ∈ C0(S). If 1
q
= 1

p
− α

d
, 1 < p < q < ∞,

0 < α < d, and q′ is the conjugate exponent of q, then we have

|〈T s
α f, h〉| =

󰀏󰀏󰀏󰀏E
s

󰀗󰁝 τ

0

Y α
t

∂uf

∂y
(Zt)

∂uh

∂y
(Zt) dt

󰀘󰀏󰀏󰀏󰀏 ≤ Cα,p,d󰀂f󰀂p󰀂h󰀂q′ (7.2.4)

where Cα,p,d depends only on α, p and d. As a consequence, we have

lim
s→∞

T s
α (f) =

Γ(α + 2)

2α+2
Iα(f)

in the distributional sense.
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The proof of Theorem 7.2.1 relies on an auxiliary function which satisfies an HLS-

type inequality. To be specific, we define the fractional Littlewood–Paley function Gα

by

Gα(f)(x) =

󰀣󰁝 ∞

0

y2α+1

󰀏󰀏󰀏󰀏
∂uf

∂y
(x, y)

󰀏󰀏󰀏󰀏
2

dy

󰀤1/2

. (7.2.5)

The next theorem says that the fractional Littlewood–Paley function satisfies an

HLS-type inequality, which leads to the HLS inequality for T s
α .

Theorem 7.2.2. Let 1
q
= 1

p
− α

d
> 0, 1 < p < q < ∞, and 0 < α < d. If f ∈ Lp(S),

then the fractional Littlewood–Paley function Gα(f) defined in (7.2.5) satisfies

󰀂Gα(f)󰀂q ≤ Cα,p,d󰀂f󰀂p.

7.3 Preliminaries

7.3.1 Notations

The space of all continuous functions on S vanishing at∞ is denoted by C0(S). We

also use Cc(S) to denote the space of all compactly supported continuous functions.

The lower case letter c, c1, c2, · · · denote generic constants which may change from

line to line. We use the notation Cp,q,r to specify that the constant depends on p, q and

r. We denote the inner product by 〈f, g〉 =
󰁕
S f(x)g(x)dx for notational convenience.

The domain of an operator A is denoted by Dom(A).

7.3.2 General semigroup theory

We recall some facts about semigroups that we will call upon later. Particularly,

we review the definition of a strongly continuous symmetric Markov semigroup and

the construction of the Poisson semigroup used in the probabilistic representation of

the fractional integral (7.2.3).

We say that a semigroup {Tt}t≥0 on S is a symmetric Markov semigroup if it has

the following properties:
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(S1) If f ≥ 0, then Ttf ≥ 0.

(S2) Tt1 = 1 for all t ≥ 0.

(S3) (Symmetry) If f, g ∈ L2(S), then 〈Ttf, g〉 = 〈f, Ttg〉 for all t ≥ 0.

(S4) (Lp-contraction) If 1 ≤ p ≤ ∞ and f ∈ Lp(S), then 󰀂Ttf󰀂p ≤ 󰀂f󰀂p for all t ≥ 0.

In what follows, we assume that there exists a symmetric Markov semigroup {Tt}t≥0

on S. We also assume that the semigroup is strongly continuous on L2(S) and a

Feller semigroup:

(S5) (Strong continuity) If f ∈ L2(S), then lim
t→0

󰀂Ttf − f󰀂2 = 0.

(S6) (Feller) If f ∈ C0(S), then Ttf ∈ C0(S) for all t ≥ 0 and lim
t→0

󰀂Ttf − f󰀂∞ = 0.

We assume that {Tt}t≥0 has the Varopoulos dimension d (d > 2) in the sense of [112]:

(S7) (Varopoulos dimension) If 1 ≤ p < ∞ and f ∈ Lp(S), there exists C > 0 such

that

󰀂Ttf󰀂∞ ≤ Ct−
d
2p󰀂f󰀂p (7.3.1)

for all t > 0.

For instance, the heat semigroup e−t∆ on Rd (d ≥ 3) has the Varopoulos dimension

d.

Given a symmetric Markov semigroup {Tt}t≥0, the Poisson semigroup associated

to {Tt}t≥0 is defined in the following ways. The first way is to use the spectral

decomposition on L2(S). For f ∈ L2(S), {Tt}t≥0 can be written as

Ttf(x) =

󰁝 ∞

0

e−λtdEλf(x)

where {Eλ : λ ≥ 0} is the spectral resolution associated to the infinitesimal generator

of {Tt}t≥0. The corresponding Poisson semigroup on L2(S) is defined by

Ptf(x) =

󰁝 ∞

0

e−
√
λtdEλf(x). (7.3.2)
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Another way of defining the Poisson semigroup is to subordinate {Tt}t≥0 in the

sense of Bochner [28]. For 1 ≤ p ≤ ∞ and f ∈ Lp(S), the Poisson semigroup is

defined by

Ptf(x) =

󰁝 ∞

0

Tsf(x)µt(ds) (7.3.3)

where µt(ds) = t
2
√
π
e−t2/4ss−3/2ds. For p = 2, it follows from a direct calculation

that (7.3.3) is equivalent to (7.3.2). We notice that this construction is a special

case of the subordination. Generally speaking, one obtains a new semigroup by

subordinating with a convolution measure on [0,∞), which is a Lévy process on

[0,∞) from the probabilistic point of view. In (7.3.3), we adopted the convolution

measure µt(ds) called the 1
2
-stable subordinator. The harmonic extension of f is

defined by uf (x, y) = Pyf(x).

Lemma 7.3.1. Let {Tt}t≥0 be a strongly continuous symmetric Markov semigroup

and {Py} the Poisson semigroup defined by (7.3.2). Then {Py} is also a strongly

continuous symmetric Markov semigroup. In addition, if {Tt}t≥0 has the Varopoulos

dimension d, then there exists C > 0 such that

󰀂Pyf󰀂∞ = 󰀂uf (·, y)󰀂∞ ≤ C

yd/p
󰀂f󰀂p (7.3.4)

for all f ∈ Lp, 1 ≤ p < ∞, and y > 0. (That is, {Py} has the Varopoulos dimension

2d)

Proof. The assumptions (S1), (S2), and (S3) follow from the definition (7.3.3). By

Jensen’s inequality, we see

󰀂Pyf󰀂pp =
󰁝

S
|Pyf(x)|pdx

≤
󰁝

S

󰁝 ∞

0

|Tsf(x)|pµy(ds)dx

=

󰁝 ∞

0

󰀂Tsf󰀂ppµy(ds) ≤ 󰀂f󰀂pp.
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Similarly, one can show that Py is strongly continuous on L2. Since {Tt}t≥0 has the

dimension d, we have

|Pyf(x)| =
󰀏󰀏󰀏󰀏
󰁝 ∞

0

Tsf(x)µy(ds)

󰀏󰀏󰀏󰀏

≤
󰁝 ∞

0

|Tsf(x)|µy(ds)

≤ C󰀂f󰀂p
󰁝 ∞

0

s−
d
2pµy(ds)

≤ Cy−
d
p󰀂f󰀂p,

which yields (7.3.4) as desired.

Note that for each x ∈ S and f ∈ Lp (1 < p < ∞), uf (x, ·) is real-analytic [107,

p.67, p.72]. Next lemma is concerned with a derivative estimate for the harmonic

extension uf .

Lemma 7.3.2. Let f be a bounded measurable function on S, then there exists c1 > 0

such that 󰀏󰀏󰀏󰀏y
∂uf

∂y
(x, y)

󰀏󰀏󰀏󰀏 ≤ c1u|f |(x,
y√
2
).

Proof. Let µy(ds) =
1

2
√
π
ηy(s)ds, then we have

y
∂ηy(s)

∂y
= (1− y2

2s
)ye−y2/4ss−3/2.

Since there exists a constant c1 such that |1− y2

2s
| ≤ c1e

y2/8s for every y > 0 and s > 0,

we have 󰀏󰀏󰀏󰀏y
∂ηy
∂y

(s)

󰀏󰀏󰀏󰀏 ≤ c1ye
−y2/8ss−3/2 = c1η y√

2
(s)

for every y > 0 and s > 0. We finish the proof by interchanging the differentiation

and the integral.

Let AT and AP be the infinitesimal generators of {Tt}t≥0 and {Pt}t≥0 respectively,

then we have AP = −(−AT )
1
2 . Let

R0 = {f ∈ Dom(AT ) : AT (f) ∈ Dom(AT )},

Rn =
n󰁟

k=1

Dom(Ak
P ) (7.3.5)
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for n ≥ 1. If 1 ≤ k ≤ n and f ∈ Rn, then the ∂k

∂yk
uf ∈ Rn−k. Since {Tt}t≥0 and

{Pt}t≥0 are Feller, Rn is contained in C0(S) for every n ≥ 0, which implies that Rn is

dense in Lp for p ≥ 1 and n ≥ 0. Thus it suffices to consider C0(S) in what follows.

We refer the reader to [111, p.29] and [114, Chap. IV §10, §11] for further discussion.

We recall the maximal ergodic theorem, which plays an important role in the

proof of Theorem 7.2.2. Stein [107] gives two different proofs. One is to use the

Hopf–Dunford–Schwartz ergodic theorem with an interpolation argument. The other

way is to rely on the martingale inequalities via the result of Rota [101]. For the

completeness, we provide a continuous martingale version of the second proof, which

is a special case of [104, Theorem 3.1].

Proposition 7.3.3 (Maximal ergodic theorem). If 1 < p ≤ ∞ and f ∈ Lp(S), then
󰀐󰀐󰀐 sup

y>0
|uf (·, y)|

󰀐󰀐󰀐
p
≤ C(p)󰀂f󰀂p,

where C(p) = p
p−1

for 1 < p < ∞ and C(∞) = 1.

Proof. We prove the result for a general symmetric Markov semigroup {Qt}t≥0. Let

(Xt)t≥0 be the stochastic process corresponding to {Qt}t≥0, that is, Qtf(x) = Ex[f(Xt)]

for f ∈ Lp. We assume 1 < p < ∞ since the case p = ∞ is trivial. Let T > 0 be

fixed and {Ft : t ≥ 0} the natural filtration of Xt. By the Markov property, we have

Q2(T−t)f(XT ) = QT−t(QT−tf)(XT )

= EXT [QT−tf(XT−t)]

= Ex[QT−tf(X2T−t)|FT ].

Since

sup
0≤t≤T

|Q2(T−t)f(XT )|p ≤ Ex[ sup
0≤t≤T

|QT−tf(X2T−t)|p|FT ],

we have
󰁝

S
Ex[ sup

0≤t≤T
|Q2(T−t)f(XT )|p] dx ≤

󰁝

S
Ex[ sup

0≤t≤T
|QT−tf(X2T−t)|p] dx

=

󰁝

S
Ex[ sup

0≤t≤T
|QT−tf(Xt)|p] dx. (7.3.6)
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We have used the reversibility of Xt in the equality. Note that QT−tf(X
x
t ) is a

martingale because QT−tf(Xt) = Ex[f(XT )|Ft]. Then Doob’s maximal inequality

yields

Ex[ sup
0≤t≤T

|QT−tf(XT )|p] ≤
󰀕

p

p− 1

󰀖p

Ex[|f(XT )|p]. (7.3.7)

Since Qt is self-adjoint and Qt1 = 1, we have
󰁝

S
Ex[g(XT )]dx =

󰁝

S
QT g(x)dx =

󰁝

S
g(x)dx

for any bounded measurable function g. Applying this to (7.3.6) and (7.3.7), we get

󰀂 sup
0≤t≤T

|Q2(T−t)f(x)|󰀂p ≤
󰀕󰁝

S
Ex[ sup

0≤t≤T
|QT−tf(Xt)|p]dx

󰀖 1
p

≤ p

p− 1

󰀕󰁝

S
Ex[|f(XT )|p]dx

󰀖 1
p

=
p

p− 1
󰀂f󰀂p.

We complete the proof by letting T → ∞.

For a function f ∈ Lp(S) and k ≥ 1, the Littlewood–Paley function of order k is

defined by

gk(f)(x) =
󰀓󰁝 ∞

0

y2k−1
󰀏󰀏󰀏
∂kuf

∂yk
(x, y)

󰀏󰀏󰀏
2

dt
󰀔 1

2
.

Proposition 7.3.4. Let 1 < p < ∞ and k ≥ 1. If f ∈ Lp(S), then gk(f) ∈ Lp(S)

and satisfies

󰀂gk(f)󰀂p ≤ Cp,k󰀂f󰀂p

for some constant Cp,k depending only on p and k.

We refer the reader to [106, p.111, p.120] for the proof. In what follows, we only

use the Littlewood–Paley function of order 1.

7.3.3 Stochastic analysis

Let {Tt}t≥0 be a strongly continuous symmetric Markov semigroup of the Varopou-

los dimension d and {Ht}t≥0 the heat semigroup on R defined by

Htf(x) =
1

(2πt)1/2

󰁝

R
e−

(x−y)2

2t f(y)dy.
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Let (Xt)t≥0 and (Yt)t≥0 be the stochastic processes on a probability space (Ω,F ,P)

associated with {Tt}t≥0 and {Ht}t≥0 respectively. We assume that (Xt)t≥0 and (Yt)t≥0

are independent each other and their paths are right-continuous with left limits a.s.

Let Zt = (Xt, Yt) ∈ S × R. For example, if Tt is the standard heat semigroup on Rn,

then Zt is Brownian motion on Rn+1. Let τ = inf{t ≥ 0 : Yt = 0} be the hitting time

of Yt at 0. From now on, we consider the killed process (Zt∧τ )t≥0.

For fixed s > 0, we assume that the initial distribution of (Zt)t≥0 is given by

dx ⊗ δs where δs is the Dirac delta measure at fixed s > 0. In other words, (Zt)t≥0

starts at (x0, s) ∈ S × R where x0 is randomly chosen with respect to the measure

dx. The probability and expectation of Zt with the initial distribution are denoted

by Es and Ps respectively. Explicitly, we have

Es =

󰁝

S
E(x,s)dx, Ps =

󰁝

S
P(x,s)dx.

Note that even though Ps may not be a probability measure, all the results from

probability theory connected with this context remain valid as explained in [111].

Let h ∈ L1(S) and Py be the Poisson semigroup associated with Tt. Since Py is

invariant and symmetric, we have

Es[h(Xτ )] =

󰁝

S
E(x,s)h(Xτ )dx =

󰁝

S
Psh(x)dx =

󰁝

S
h(x)dx.

We recall the Green function formula for Zt.

Lemma 7.3.5 ( [111, Proposition 3.1]). For a Borel measurable function f on S×R,

we have

Es[

󰁝 τ

0

f(Zt)dt] = 2

󰁝 ∞

0

󰁝

S
(y ∧ s)f(x, y) dxdy. (7.3.8)

Definition 7.3.6. We say a stochastic process (At)t≥0 on (Ω,Ps,Ft) is in L2(Ω,Ps)

if the map A : Ω × [0,∞) → R is jointly measurable, At ∈ Ft for every t ∈ [0,∞),

and

Es[

󰁝 ∞

0

|At|2 dt] < ∞. (7.3.9)
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Let (At)t≥0 ∈ L2(Ω,Ps). If the “probability” Ps is finite, then we define

I(A)t :=

󰁝 t

0

As dYs

as a L2-limit of martingale transforms using Itô’s isometry. If Ps is infinite, we

decompose the Radon measure dx into a countable family of finite measures dxn and

define the stochastic integral for each finite measure dxn as above. Then we define

I(A)t by the sum of the stochastic integrals. The sum is well-defined by (7.3.9). We

refer the reader to [111, pp.37-38].

We recall the projection lemma, which is an analogue of Itô’s formula for the

(d+1)-dimensional Brownian motion. We omit the proof and refer to [111, pp.50-59].

Let V be the set of stochastic processes in L2(Ω,Ps) of the form (I(A)t)t≥0. Note

that V is a closed subspace. Let ΦV be the orthogonal projection from L2(Ω,Ps)

onto V .

Proposition 7.3.7. Let Rn be defined as in (7.3.5). If f ∈ R5, then

ΦV (uf (Zt∧τ )− uf (Z0)) =

󰁝 t∧τ

0

∂uf

∂y
(Zs)dYs

for all t > 0.

7.4 Proofs of the main results

7.4.1 Proof of Theorem 7.2.2

For δ > 0, we divide Gα(f)
2 into two parts

Gα(f)(x)
2 =

󰁝 ∞

0

y2α+1

󰀏󰀏󰀏󰀏
∂uf

∂y
(x, y)

󰀏󰀏󰀏󰀏
2

dy

=

󰁝 δ

0

y2α+1

󰀏󰀏󰀏󰀏
∂uf

∂y
(x, y)

󰀏󰀏󰀏󰀏
2

dy +

󰁝 ∞

δ

y2α+1

󰀏󰀏󰀏󰀏
∂uf

∂y
(x, y)

󰀏󰀏󰀏󰀏
2

dy.

Applying Lemma 7.3.2 to the first integral, we obtain
󰁝 δ

0

y2α+1

󰀏󰀏󰀏󰀏
∂uf

∂y
(x, y)

󰀏󰀏󰀏󰀏
2

dy ≤ c1

󰁝 δ

0

y2α−1

󰀏󰀏󰀏󰀏u|f |(x,
1√
2
y)

󰀏󰀏󰀏󰀏
2

dy

≤ Cα sup
y>0

󰀏󰀏u|f |(x, y)
󰀏󰀏2 δ2α.
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For the second integral, we apply Lemma 7.3.1 and Lemma 7.3.2 to see
󰁝 ∞

δ

y2α+1

󰀏󰀏󰀏󰀏
∂uf

∂y
(x, y)

󰀏󰀏󰀏󰀏
2

dy ≤ c1

󰁝 ∞

δ

y2α−1|u|f |(x,
1√
2
y)|2dy ≤ Cα󰀂f󰀂2pδ

2(α− d
p
),

which yields

Gα(f)(x) ≤ Cα,p,d(sup
y>0

|u|f |(x, y)|δα + 󰀂f󰀂pδα−
d
p )

for some constant Cα,p,d. Optimizing the RHS in δ yields

Gα(f)(x) ≤ Cα,p,d(sup
y>0

|u|f |(x, y)|)1−
αp
d 󰀂f󰀂

αp
d
p .

Proposition 7.3.3 yields

󰀂(sup
y>0

|u|f |(x, y)|)1−
αp
d 󰀂q = 󰀂 sup

y>0
|u|f |(x, y)|󰀂

p
q
p ≤ Cp󰀂f󰀂

p
q
p

because 1− αp
d
= p

q
. Therefore, we obtain

󰀂Gα(f)󰀂q ≤ Cα,p,d󰀂(sup
y>0

|u|f |(x, y)|)p/q󰀂q󰀂f󰀂1−p/q
p

= Cα,p,d󰀂(sup
y>0

|u|f |(x, y)|)󰀂p/qp 󰀂f󰀂1−p/q
p

≤ Cα,p,d󰀂f󰀂p,

which finishes the proof.

7.4.2 Proof of Theorem 7.2.1

We claim that

Es[

󰁝 τ

0

Y α
t

󰀏󰀏󰀏󰀏
∂uf

∂y
(Zt)

󰀏󰀏󰀏󰀏

󰀏󰀏󰀏󰀏
∂uh

∂y
(Zt)

󰀏󰀏󰀏󰀏 dt] ≤ Cα,p,d󰀂f󰀂p󰀂h󰀂q′ . (7.4.1)

Applying the Green function formula (7.3.8), we see

Es[

󰁝 τ

0

Y α
t

󰀏󰀏󰀏󰀏
∂uf

∂y
(Zt)

󰀏󰀏󰀏󰀏

󰀏󰀏󰀏󰀏
∂uh

∂y
(Zt)

󰀏󰀏󰀏󰀏 dt] = 2

󰁝

S

󰁝 ∞

0

(y ∧ s)yα
󰀏󰀏󰀏󰀏
∂uf

∂y

󰀏󰀏󰀏󰀏

󰀏󰀏󰀏󰀏
∂uh

∂y

󰀏󰀏󰀏󰀏 dydx

≤
󰁝

S

󰁝 ∞

0

yα+
1
2

󰀏󰀏󰀏󰀏
∂uf

∂y

󰀏󰀏󰀏󰀏 y
1
2

󰀏󰀏󰀏󰀏
∂uh

∂y

󰀏󰀏󰀏󰀏 dydx

≤
󰁝

S
Gα(f)g1(h)dx

≤ 󰀂Gα(f)󰀂q󰀂g1(h)󰀂q′ .
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The claim follows from Proposition 7.3.4 and Theorem 7.2.2.

For N > 0, we define

T s,N
α (f)(x) = Es[

󰁝 τ

0

(Y α
t ∧N)

∂uf

∂y
(Zt)dYt|Xτ = x].

By Lemma 7.3.5, we have

〈T s,N
α (f), h〉 = Es[T s,N

α (f)(Xτ )h(Xτ )]

= Es[Es[

󰁝 τ

0

(Y α
t ∧N)

∂uf

∂y
(Zt)dYt|Xτ ]h(Xτ )]

= Es[Es[h(Xτ )

󰁝 τ

0

(Y α
t ∧N)

∂uf

∂y
(Zt)dYt|Xτ ]]

= Es[h(Xτ )

󰁝 τ

0

(Y α
t ∧N)

∂uf

∂y
(Zt)dYt].

Note that

It :=

󰁝 t∧τ

0

(Y α
t ∧N)

∂uf

∂y
(Zt)dYt ∈ L2(Ω,Ps).

Indeed, it follows from the Green formula (7.3.8) that

Es[

󰁝 t∧τ

0

(Y 2α
t ∧N2)

󰀏󰀏󰀏󰀏
∂uf

∂y
(Zt)

󰀏󰀏󰀏󰀏
2

dt] ≤ 2N2

󰁝 ∞

0

󰁝

S
y

󰀏󰀏󰀏󰀏
∂uf

∂y
(x, y)

󰀏󰀏󰀏󰀏
2

dxdy

= 2N2󰀂g1(f)󰀂22

≤ cN2󰀂f󰀂22 < ∞.

Furthermore, It ∈ V , where V is the closed subspace of L2(Ω,Ps) of stochastic

integrals with respect to (Yt)t≥0. Thus, Proposition 7.3.7 yields that

〈T s,N
α (f), g〉 = Es[

󰀕󰁝 τ

0

∂uh

∂y
(Zt)dYt

󰀖󰀕󰁝 τ

0

(Y α
t ∧N)

∂uf

∂y
(Zt)dYt

󰀖
]

= Es[

󰁝 τ

0

(Y α
t ∧N)

∂uf

∂y
(Zt)

∂uh

∂y
(Zt)dt].

By (7.4.1), the dominated convergence theorem, and letting N → ∞, we obtain

〈T s
α (f), h〉 = Es[

󰁝 τ

0

Y α
t

∂uf

∂y
(Zt)

∂uh

∂y
(Zt)dt].

Finally, we show that T s
α f converges to cαIα(f) as s tends to ∞ in the distribu-

tional sense. By (7.2.4) and the Green function formula (7.3.8), we see

〈T s
α f, h〉 = 2

󰁝 ∞

0

󰁝

S
(y ∧ s)yα

∂uf

∂y
(x, y)

∂uh

∂y
(x, y)dxdy.
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Thus it suffices to show

〈Iαf, h〉 = Cα

󰁝 ∞

0

󰁝

S
yα+1∂uf

∂y
(x, y)

∂uh

∂y
(x, y)dxdy.

Since f and g are in L2, it follows from (7.3.2) that

󰁝

S

∂uf

∂y
(x, y)

∂uh

∂y
(x, y)dx =

󰀟
∂uf

∂y
(·, y), ∂uh

∂y
(·, y)

󰀠

=

󰀟󰁝 ∞

0

λ1/2e−λ1/2ydEλf,

󰁝 ∞

0

λ1/2e−λ1/2ydEλh

󰀠

=

󰁝 ∞

0

λe−2λ1/2yd〈Eλf, Eλh〉.

By Fubini’s theorem, we get

󰁝 ∞

0

󰁝

S
yα+1∂uf

∂y
(x, y)

∂uh

∂y
(x, y)dxdy =

󰁝 ∞

0

yα+1

󰀟
∂uf

∂y
(·, y), ∂uh

∂y
(·, y)

󰀠
dy

=

󰁝 ∞

0

yα+1

󰀕󰁝 ∞

0

λe−2λ1/2yd〈Eλf, Eλh〉
󰀖
dy

=

󰁝 ∞

0

λ

󰀕󰁝 ∞

0

yα+1e−2λ1/2ydy

󰀖
d〈Eλf, Eλh〉

=
Γ(α + 2)

2α+2

󰁝 ∞

0

λ−α/2d〈Eλf, Eλh〉

= Cα〈Iαf, h〉,

which completes the proof.
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8. HARDY–STEIN IDENTITY FOR NON-SYMMETRIC

LÉVY PROCESSES AND FOURIER MULTIPLIERS

8.1 Introduction

Littlewood–Paley square (quadratic) functions have been of interest for many

years with many applications in harmonic analysis and probability. On the analysis

side, these include the classical square functions obtained from the Poisson semigroup

as in [106] and more general heat semigroups as in [107]. On the probability side, these

correspond to the celebrated Burkholder–Gundy inequalities which are of fundamental

importance in modern stochastic analysis.

In [10], the authors extend some of the classical Littlewood–Paley Lp inequalities

for 1 < p < ∞ to symmetric pure jump Lévy processes and apply them to prove Lp

bounds for a certain class of Fourier multipliers that arise from transformations of

symmetric Lévy processes. The key to the proof in [10] is a Hardy–Stein identity,

which is proved from properties of the semigroup. In the classical case of the Lapla-

cian, such Hardy–Stein identity follows from, essentially, Green’s theorem and the

chain rule as in Lemmas 1 and 2 in [106, pp.86-87]. In the case of Brownian motion,

a probabilistic Burkholder–Gundy type version of this Hardy–Stein identity can be

proved (see [5], [100, p.152]) as a simple application of Itô’s formula.

The goal of this chapter is to extend the results of [10] to non-symmetric pure jump

Lévy processes. The first result is a Hardy–Stein identity for non-symmetric Lévy

measure (Theorem 8.3.1). The proof is based on the Itô’s formula for jump processes

(Theorem 8.2.1). It turns out that this method gives a Hardy–Stein type identity for

uniformly integrable martingales ((Theorem 8.3.5). Furthermore, the proof contains

additional information, further illuminating the origins of the function F (a, b; p) (see

(8.3.1)) used in [10].
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In the second part, we introduce a certain class of the Fourier multipliers for non-

symmetric pure jump Lévy measures and prove the Lp boundedness of the Fourier

multipliers (Theorem 8.4.1). It is important to emphasize that although the Hardy–

Stein identity holds for non-symmetric Lévy measures, the full comparability of the

Lp-norms between the function itself and its Littlewood–Paley square function proved

in [10] requires symmetry and hence the main application given there to the bound-

edness of the Fourier multipliers requires it too. Thus we use a symmetrization of the

Littlewood–Paley function (see (8.4.2) and (8.4.3)) to obtain the Lp inequalities for

the Littlewood–Paley functions (Lemma 8.4.2), which leads to the Lp boundedness

of the Fourier multipliers.

This chapter is based on joint work with Rodrigo Bañuelos [11].

8.2 Preliminaries

8.2.1 Notations

The indicator function of a set A is denoted by 1A. For a, b ∈ R, we denote by

a ∧ b = min{a, b}. The real part of a complex number ξ is denoted by Re(ξ) = x

where ξ = x + iy. For a set B ⊆ Rd, we define −B = {−x : x ∈ B}. An open

ball in Rd of radius r, centered at x0 ∈ Rd is denoted by Br(x0). We denote by

Br(0) = Br. For f, g ∈ L2(Rd), we define the inner product of f and g in L2(Rd) by

〈f, g〉 =
󰁕
Rd f(x)g(x)dx. Let S(Rd) be the Schwartz space on Rd and f ∈ S(Rd). We

define the Fourier transform and the inverse Fourier transform of f by

F(f)(ξ) = 󰁥f(ξ) =
󰁝

Rd

f(x)e−ix·ξ dx,

F−1(f)(x) = f∨(x) = (2π)−d

󰁝

Rd

f(ξ)eiξ·x dξ.

With our definition, Parseval’s formula takes the form

󰁝

Rd

f(x)g(x) dx =
1

(2π)d

󰁝

Rd

󰁥f(ξ)󰁥g(ξ) dξ, (8.2.1)
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for f, g ∈ L2(Rd). Let N0 = N ∪ {0}. For a multi-index α ∈ Nd
0, we use the

notations |α| = α1+ · · ·+αd and ∇α = ∂α1
1 · · · ∂αd

d . The space of continuous functions

vanishing at infinity is denoted by C0(Rd). For k ∈ N, Ck
0 (Rd) is the space of functions

f ∈ Ck(Rd) such that ∇αf ∈ C0(Rd) for all α ∈ Nd
0 with |α| ≤ k, and C∞

0 (Rd) is the

intersection of all Ck
0 (Rd) over k ∈ N.

8.2.2 Lévy processes

A d-dimensional stochastic process (Xt)t≥0 defined on a filtered probability space

(Ω,F ,P) is called a Lévy process if

(i) for 0 ≤ t0 < t1 < · · · < tn < ∞, {Xtk −Xtk−1
}k≥1 are independent,

(ii) for 0 < s < t < ∞ and a Borel set A ⊆ Rn, P(Xt − Xs ∈ A) = P(Xt−s ∈ A),

and

(iii) for all δ > 0 and s ≥ 0,

lim
t→s

P(|Xt −Xs| > δ) = 0. (8.2.2)

The characteristic exponent ψ(ξ) of a Lévy process (Xt)t≥0 is defined by E[eiξ·Xt ] =

e−tψ(ξ) for ξ ∈ Rd. The Lévy–Khintchine theorem tells us that (Xt)t≥0 is a Lévy

process with characteristic exponent ψ(ξ) if and only if there exists a triplet (b, A, ν)

such that

ψ(ξ) = ib · ξ + 1

2
ξ · Aξ +

󰁝

Rd

(1− eiξ·y + iξ · y1B1(y)) ν(dy),

where b ∈ Rd, A is a positive semi-definite d × d matrix, and ν is a σ-finite Borel

measure on Rd \ {0} satisfying

󰁝

Rd\{0}
(1 ∧ |y|2) ν(dy) < ∞.

We call ν the Lévy measure. This gives a large class of stochastic processes that have

been extensively studied. For instance, Brownian motion is the case where b = 0,
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ν = 0, and A is the identity matrix. We say that (Xt)t≥0 is a pure jump Lévy process

if b = 0 and A = 0, and symmetric if ν is symmetric. We refer the reader to [2]

for further information on these processes. The jump of Xt at time s is denoted by

∆Xs = Xs − Xs−. For t ≥ 0 and a Borel subset A ⊆ Rn \ {0}, we define the jump

measure of (Xt)t≥0 by

N(t, A) = the number of jumps during time [0, t] of size in A

= #{s ∈ [0, t] : ∆Xs ∈ A}.

Note that N(t, A) is a Poisson random measure with intensity dt⊗ dν. By the Lévy–

Itô decomposition theorem [2, Theorem 2.4.16], one can decompose Xt into

Xt = bt+Gt +

󰁝

|x|≥1

xN(t, dx) +

󰁝

|x|<1

x 󰁨N(t, dx),

where b ∈ Rd, Gt is a Gaussian process, and 󰁨N(t, A) = N(t, A)−tν(A). Following the

standard terminology, we call 󰁨N(t, A) the compensated jump measure. Let Ptf(x) =

Ex[f(Xt)], then the semigroup Pt has the Feller property: for f ∈ C0(Rd), Ptf ∈

C0(Rd) and limt→0 |Ptf(x)−f(x)| = 0 uniformly in x (see [19, Theorem 3.1.9] and [22,

p.19]). The infinitesimal generator L for the semigroup (Pt)t≥0 is given by

Lf(x) = lim
t↓0

Ptf(x)− f(x)

t

whenever the limit exists. Here the limit is taken in the supremum norm. Let D(L)

be the domain of L, then C2
0(Rd) ⊂ D(L) and L can be explicitly written as

Lf(x) = b ·∇f(x) +
1

2

d󰁛

i,j=1

Aij
∂2f

∂xi∂xj

(x)

+

󰁝

Rd

(f(x+ y)− f(x)− y ·∇f(x)1B1(y)) ν(dy) (8.2.3)

for f ∈ C2
0(Rd), where (b, A, ν) is the triplet of Xt (see [102, Theorem 31.5]).

8.2.3 Itô’s formula

We recall Itô’s formula for a general stochastic process Zt from [81, Theorem

5.1, p. 66]. Let Mt be a continuous square integrable local martingale and At a
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continuous adapted process of bounded variation with A0 = 0. Let (Xt)t≥0 be a Lévy

process with its jump measure N(t, ·). Let G(t, x) = (G1(t, x), · · · , Gd(t, x)) and

H(t, x) = (H1(t, x), · · · , Hd(t, x)) be d-dimensional predictable processes such that

Gi(t, x)Hj(t, x) = 0,

󰁝 t

0

󰁝

Rd

|Gi(s, x)|N(ds, dx) < ∞ a.s., (8.2.4)

and

E
󰁫 󰁝 t

0

󰁝

Rd

|Hi(s ∧ τn, x)|2 ν(dx)ds
󰁬
< ∞, (8.2.5)

for all t > 0 and i, j = 1, 2, · · · , d, where (τn) is a sequence of stopping times such

that τn → ∞ as n → ∞ almost surely. Let (Zt)t≥0 be the d-dimensional stochastic

process defined by

Zt = Z0 +Mt + At +

󰁝 t

0

󰁝

Rd

G(s, x)N(ds, dx) +

󰁝 t

0

󰁝

Rd

H(s, x) 󰁨N(ds, dx). (8.2.6)

Theorem 8.2.1. Let (Zt)t≥0 be given by (8.2.6) and ϕ ∈ C2(Rd). Assume that for

all 1 ≤ i, j ≤ d and T > 0,

sup
0≤t≤T

sup
x∈Rd

|H(t, x)| < ∞ (8.2.7)

almost surely. Then we have

ϕ(Zt)− ϕ(Z0) =

󰁝 t

0

∇ϕ(Zs) · dMs (8.2.8)

+

󰁝 t

0

∇ϕ(Zs) · dAs +
1

2

󰁝 t

0

D2ϕ(Zs) · d[M ]s

+

󰁝 t

0

󰁝

Rd

(ϕ(Zs− +G(s, y))− ϕ(Zs−))N(ds, dy)

+

󰁝 t

0

󰁝

Rd

(ϕ(Zs− +H(s, y))− ϕ(Zs−)) 󰁨N(ds, dy)

+

󰁝 t

0

󰁝

Rd

(ϕ(Zs− +H(s, y))− ϕ(Zs−)−H(s, y) ·∇ϕ(Zs−)) ν(dy)ds

where [M ]t is the quadratic variation of Mt.
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8.2.4 Hartman–Wintner condition

In what follows, we assume that (Xt)t≥0 is a pure jump Lévy process with càdlàc

path and its Lévy measure ν satisfies the Hartman–Wintner condition

lim
|ξ|→∞

Re(ψ(ξ))

log(1 + |ξ|) = ∞. (HW)

In [87, Theorem 2.1], Knopova and Schilling proved that a Lévy process (Xt)t≥0

satisfies (HW) if and only if for all t > 0, the transition density pt(x, y) = pt(y − x)

exists and pt,∇αpt ∈ C∞
0 (Rd) ∩ L1(Rd), for all α ∈ Nd

0. By (HW), Pt is an Lp-

contraction for 1 ≤ p ≤ ∞ and Ptf ∈ Lp(Rd)∩C∞
0 (Rd) for f ∈ Lp(Rd) and 1 ≤ p < ∞

(see [87, Theorem 2.1] and [10, p. 466]).

8.2.5 Fourier multipliers

Let m : Rn → C be a function in L∞. For 1 ≤ p ≤ ∞ and f ∈ L2 ∩ Lp, we

define an operator Tm by 󰁧Tmf(ξ) = m(ξ) 󰁥f(ξ). If 󰀂Tmf󰀂p ≲ 󰀂f󰀂p for all f ∈ L2 ∩ Lp,

then Tm can be extended to all of Lp uniquely. We say Tm is an Lp-Fourier multiplier

operator with symbol m. For many of the classical examples of Lp–Fourier multipliers,

we refer the reader to [106].

8.3 The Hardy–Stein identity

The purpose of this section is to give a proof of the Hardy–Stein identity based

on Itô’s formula. For a, b ∈ R, ε > 0, and p ∈ (1,∞), we define

F (a, b; p) = |b|p − |a|p − pa|a|p−2(b− a) (8.3.1)

and

Fε(a, b; p) = (b2 + ε2)
p
2 − (a2 + ε2)

p
2 − pa(a2 + ε2)

p−2
2 (b− a). (8.3.2)

We note that F (a, b; p) and Fε(a, b; p) are the second-order Taylor remainders of the

maps x 󰀁→ |x|p and x 󰀁→ (x2+ ε2)
p
2 respectively. Since the maps are convex, it follows

from Taylor’s theorem that F (a, b; p) ≥ 0 and Fε(a, b; p) ≥ 0 for any a, b ∈ R.



116

Theorem 8.3.1 (The Hardy–Stein identity). Let 1 < p < ∞ and F (a, b; p) be defined

as in (8.3.1). If f ∈ Lp(Rd), then we have
󰁝

Rd

|f(x)|p dx =

󰁝

Rd

󰁝 ∞

0

󰁝

Rd

F (Ptf(x), Ptf(x+ y); p) ν(dy)dtdx. (8.3.3)

Again we note that our proof of this result does not require that ν is symmetric as

is the case in [10]. Before we present the proof of Theorem 8.3.1, we give the following

lemmas. The first lemma concerns basic properties of F and Fε which allow us to

use a limiting argument when we consider the case 1 < p < 2. This lemma is proved

in [30].

Lemma 8.3.2 ( [30, Lemma 6, p.198]). Let p > 1, F (a, b; p) = |b|p−|a|p−pa|a|p−2(b−

a), and K(a, b; p) = (b− a)2(|a| ∨ |b|)p−2. Then we have

cpK(a, b; p) ≤ F (a, b; p) ≤ CpK(a, b; p),

for some positive constants cp, Cp that depend only on p. If 1 < p < 2, then we have

0 ≤ Fε(a, b; p) ≤
1

p− 1
F (a, b; p)

for all ε > 0 and a, b ∈ R.

Next lemma is an application of Itô’s formula, which is presented in [10, (4.4)]

and [3, p. 1118] for general Lévy processes without proof. For the completeness, we

give a proof.

Lemma 8.3.3. Let T > 0, t ∈ [0, T ), 1 ≤ p < ∞, and f ∈ Lp(Rd). For Ptf(x) =

Ex[f(Xt)] and Yt = PT−tf(Xt), we have

Yt = Y0 +

󰁝 t

0

󰁝

Rd

(PT−sf(Xs− + y)− PT−sf(Xs−)) 󰁨N(ds, dy) (8.3.4)

for t ∈ [0, T ), where 󰁨N is the compensated jump measure of (Xt)t≥0.

Proof. Fix t > 0 and choose r ∈ (0, T − t). Let 󰁨T = T − r and g(x) = Prf(x), then

it follows from (HW) and [87, Theorem 2.1] that g ∈ C∞
0 (Rd)∩Lp(Rd). Since (8.3.4)

can be written as

P󰁨T−tg(Xt) = P󰁨T g(X0) +

󰁝 t

0

󰁝

Rd

(P󰁨T−sg(Xs− + y)− P󰁨T−sg(Xs−)) 󰁨N(ds, dy),
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it suffices to prove (8.3.4) for f ∈ C∞
0 (Rd) ∩ Lp(Rd).

We claim that if h(x) is C0(Rd) then the map (s, x) 󰀁→ PT−sh(x) is C0([0, t]×Rd).

Let (s0, x0) ∈ [0, t]× Rd and ε > 0. By the Feller property, PT−sh is continuous in s

uniformly in x, and PT−sh(x) is continuous in x for each s. Thus there exists δ > 0

such that for (s, x) ∈ Bδ((s0, x0)), a (d + 1)-dimensional ball of radius δ centered at

(s0, x0),

|PT−sh(x)− PT−s0h(x0)| (8.3.5)

≤ |PT−sh(x)− PT−s0h(x)|+ |PT−s0h(x)− PT−s0h(x0)|+ |PT−sh(x0)− PT−s0h(x0)|

< ε,

which proves the claim.

Let ϕ(s, x) = PT−sf(x). Since f ∈ C0(Rd), we have ϕ(s, x) ∈ C([0, t] × Rd). Let

i ∈ {1, 2, · · · , d}. For h > 0 and i = 1, · · · , d, we have

1

h
(PT−sf(x+ hei)− PT−sf(x)) =

󰁝

Rd

󰀓f(x+ y + hei)− f(x+ y)

h

󰀔
pT−s(y) dy.

Since f ∈ C∞
0 (Rd), we have

󰀏󰀏󰀏
f(x+ y + hei)− f(x+ y)

h

󰀏󰀏󰀏 ≤
󰀐󰀐󰀐
∂f

∂xi

󰀐󰀐󰀐
∞

< ∞.

By the dominated convergence theorem and the claim, we conclude that ∂ϕ
∂xi

(s, x) =

PT−s(∂if)(x) ∈ C([0, t] × Rd). Since Xt is a pure jump Lévy process, Lf can be

written as

Lf(x) =
󰁝

Rd

(f(x+ y)− f(x)− y ·∇f(x)1B1(y)) ν(dy)

by (8.2.3). By Taylor’s theorem, we have

|f(x+ y)− f(x)− y ·∇f(x)1B1(y)| ≤ 2󰀂f󰀂∞1Rd\B1
(y)+

1

2
|y|2

d󰁛

i,j=1

󰀐󰀐󰀐
∂2f

∂xi∂xj

󰀐󰀐󰀐
∞
1B1(y).

Since the RHS is integrable with respect to the Lévy measure ν, Lf is C0(Rd) by the

dominated convergence theorem. It then follows from

∂ϕ

∂s
(s, x) =

∂

∂s
PT−sf(x) = −LPT−sf(x) = −PT−sLf(x), (8.3.6)
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that ∂ϕ
∂s

∈ C([0, t]× Rd). Therefore we have ϕ ∈ C1([0, t]× Rd).

Note that Xt can be written as

Xt =

󰁝

|x|≥1

xN(t, dx) +

󰁝

|x|<1

x 󰁨N(t, dx)

by the Lévy–Itô decomposition. Since Xt has no continuous martingale part, we can

apply Theorem 8.2.1 for ϕ ∈ C1([0, t] × Rd) and the process Zt = (t,Xt). Note that

Zt is a (d + 1)-dimensional stochastic process of the form (8.2.6) and satisfies the

assumptions of Theorem 8.2.1. Thus we have

ϕ(t,Xt)− ϕ(0, X0) =

󰁝 t

0

∂ϕ

∂s
(s,Xs−) ds

+

󰁝 t

0

󰁝

|y|≥1

(ϕ(s,Xs− + y)− ϕ(s,Xs−))N(ds, dy)

+

󰁝 t

0

󰁝

|y|<1

(ϕ(s,Xs− + y)− ϕ(s,Xs−)) 󰁨N(ds, dy)

+

󰁝 t

0

󰁝

|y|<1

(ϕ(s,Xs− + y)− ϕ(s,Xs−)− y ·∇xϕ(s,Xs−)) ν(dy)ds

=

󰁝 t

0

∂ϕ

∂s
(s,Xs−) ds+

󰁝 t

0

󰁝

Rd

(ϕ(s,Xs− + y)− ϕ(s,Xs−)) 󰁨N(ds, dy)

+

󰁝 t

0

Lϕ(s,Xs−) ds.

The result follows from (8.3.6).

Although not explicitly written, the next lemma follows from [87]. Since its proof

is quite simple, we present it here for the completeness.

Lemma 8.3.4. The semigroup Pt defined by Ptf(x) = Ex[f(Xt)] is ultracontractive

on Lp, 1 ≤ p < ∞. That is, for every t > 0, there exists a constant Ct > 0 such that

for all f ∈ Lp(Rd),

󰀂Ptf󰀂∞ ≤ C
1
p

t 󰀂f󰀂p. (8.3.7)

Furthermore, Ct converges to zero as t tends to ∞.

Proof. Fix t > 0. Note that e−tψ(ξ) = E0[eiξ·Xt ] = (2π)dF−1(pt(·))(ξ). Since pt is in

L1(Rd), one sees that e−tψ(ξ) belongs to L∞(Rd). We claim that e−tψ(ξ) is in L1(Rd).
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To see this, it suffices to show that e−tReψ(ξ) ∈ L1(Rd). Let h : Rd → R be a function

satisfying Reψ(ξ) = log(1 + |ξ|)h(ξ). Since we have h(ξ) → ∞ as |ξ| → ∞ by the

Hartman–Wintner condition (HW), there exists R > 0 such that th(ξ) > d+ 1 holds

whenever |ξ| ≥ R. Let BR be an open ball centered at 0 and radius R. Denote its

Lebesgue measure by |BR|. Using the definition of h, one sees that
󰁝

Rd\BR

e−tReψ(ξ) dξ =

󰁝

|ξ|≥R

1

(1 + |ξ|)th(ξ) dξ ≤
󰁝

|ξ|≥R

1

(1 + |ξ|)d+1
dξ.

Since we have

e−tReψ(ξ) = |e−tψ(ξ)| =
󰀏󰀏󰀏
󰁝

Rd

eiξ·xpt(x) dx
󰀏󰀏󰀏 ≤ 1, (8.3.8)

we obtain
󰁝

Rd

e−tReψ(ξ) dξ ≤
󰁝

|ξ|≥R

1

(1 + |ξ|)d+1
dξ + |BR| < ∞.

So we have e−tψ(ξ) ∈ L1(Rd) as desired. By the Fourier inversion formula, we have

pt(x) =
1

(2π)d
F(e−tψ(ξ)) =

1

(2π)d

󰁝

Rd

e−tψ(ξ)e−ix·ξ dξ

and pt ∈ L∞(Rd). Define

Ct =
1

(2π)d

󰁝

Rd

e−tReψ(ξ) dξ, (8.3.9)

then it is obvious to see that Ct is finite and |pt(x)| ≤ Ct for all x ∈ Rd. Using

Jensen’s inequality, we obtain that

|Ptf(x)| =
󰀏󰀏󰀏
󰁝

Rd

f(y)pt(x, y) dy
󰀏󰀏󰀏 ≤

󰀏󰀏󰀏
󰁝

Rd

|f(y)|ppt(x, y) dy
󰀏󰀏󰀏
1
p ≤ C

1
p

t 󰀂f󰀂p,

for any x ∈ Rd, which yields (8.3.7).

We now prove the second assertion that Ct → 0 as t → ∞. First, we note

that Reψ(ξ) is nonnegative by (8.3.8) and in fact the Lebesgue measure of the set

{ξ : Reψ(ξ) = 0} is zero (see [9, §3]). Thus e−tReψ(ξ) tends to 0, a.e., as t → ∞.

Since e−tReψ(ξ) is integrable for all t ≥ 1 and bounded by e−Reψ(ξ), it follows from the

dominated convergence theorem that

lim
t→∞

Ct = lim
t→∞

1

(2π)d

󰁝

Rd

e−tReψ(ξ)dξ = 0.
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We are ready to prove the Hardy–Stein identity.

Proof of Theorem 8.3.1. Let p ≥ 2. Fix T > 0 and let 0 < T0 < T . Consider

ϕ(x) = |x|p, Yt = PT−tf(Xt), and H(t, x) = PT−tf(Xt− + x) − PT−tf(Xt−) for

0 ≤ t ≤ T0 and x ∈ Rd. It follows from Lemma 8.3.3 that

Yt = Y0 +

󰁝 t

0

󰁝

Rd

H(s, y) 󰁨N(ds, dy)

for 0 ≤ t ≤ T0. By Lemma 8.3.4,

E|Yt|2 = E|PT−tf(Xt)|2 ≤ C
2
p

T−T0
󰀂f󰀂2p < ∞

for 0 ≤ t ≤ T0 and H(t, x) satisfies (8.2.5) and (8.2.7). Applying Itô’s formula to

ϕ(Yt), we obtain

ϕ(Yt)− ϕ(Y0) =

󰁝 t

0

󰁝

Rd

(ϕ(Ys− +H(s, y))− ϕ(Ys−)) 󰁨N(ds, dy)

+

󰁝 t

0

󰁝

Rd

(ϕ(Ys− +H(s, y))− ϕ(Ys−)−H(s, y) ·∇ϕ(Ys−)) ν(dy)ds (8.3.10)

for all 0 ≤ t ≤ T0. Note that Ys− + H(s, y) = PT−sf(Xs− + y), Ys− = PT−sf(Xs−),

and

E|Yt − Y0|2 = E
󰁫 󰁝 t

0

󰁝

Rd

|PT−sf(Xs− + y)− PT−sf(Xs−)|2 ν(dy)ds
󰁬
< ∞ (8.3.11)

for all 0 ≤ t ≤ T0. By Lemma 8.3.4, we have

|ϕ(Ys− +H(s, y))− ϕ(Ys−)| = ||PT−sf(Xs− + y)|p − |PT−sf(Xs−)|p|

≤ p|PT−sf(Xs− + y)|p−1|PT−sf(Xs− + y)− PT−sf(Xs−)|

≤ pC
(p−1)/p
T−T0

󰀂f󰀂p−1
p |PT−sf(Xs− + y)− PT−sf(Xs−)|.

Here we used the fact that the constant Ct in (8.3.9) is decreasing in t. By (8.3.11),

we see that

E
󰁫 󰁝 t

0

󰁝

Rd

|ϕ(Ys− +H(s, y))− ϕ(Ys−)|2 ν(dy)ds
󰁬

≤ p2C
2(p−1)
T−T0

󰀂f󰀂2(p−1)
p E

󰁫 󰁝 t

0

󰁝

Rd

|PT−sf(Xs− + y)− PT−sf(Xs−)|2 ν(dy)ds
󰁬
< ∞
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for t ∈ [0, T0], which implies that
󰁕 t

0

󰁕
Rd(ϕ(Ys− + H(s, y)) − ϕ(Ys−)) 󰁨N(ds, dy) is a

martingale for t ∈ [0, T0]. Note that

ϕ(Ys− +H(s, y))− ϕ(Ys−)−H(s, y) ·∇ϕ(Ys−)

= |PT−sf(Xs− + y)|p − |PT−sf(Xs−)|p

− pPT−sf(Xs−)|PT−sf(Xs−)|p−2(PT−sf(Xs− + y)− PT−sf(Xs−))

= F (PT−sf(Xs− + y), PT−sf(Xs−); p).

Putting t = T0 and taking the expectation of both sides in (8.3.10), we have

Ex|YT0 |p − Ex|Y0|p = Ex
󰁫 󰁝 T0

0

󰁝

Rd

F (PT−sf(Xs− + y), PT−sf(Xs−); p) ν(dy)ds
󰁬
.

(8.3.12)

Integrating both sides in (8.3.12), we see

󰀂PT−T0f󰀂pp − 󰀂PTf󰀂pp

=

󰁝

Rd

Ex
󰁫 󰁝 T0

0

󰁝

Rd

F (PT−sf(Xs− + y), PT−sf(Xs−); p) ν(dy)ds
󰁬
dx

=

󰁝

Rd

󰁝

Rd

󰁝 T0

0

󰁝

Rd

F (PT−sf(z + y), PT−sf(z); p)ps(x, z) ν(dy)dsdzdx

=

󰁝

Rd

󰁝 T0

0

󰁝

Rd

F (PT−sf(z + y), PT−sf(z); p) ν(dy)dsdz

=

󰁝

Rd

󰁝 T

T−T0

󰁝

Rd

F (Psf(z + y), Psf(z); p) ν(dy)dsdz.

First, we let T → T0. Since F (a, b; p) is nonnegative, we have

lim
T→T0

󰁝

Rd

󰁝 T

T−T0

󰁝

Rd

F (Psf(z + y), Psf(z); p) ν(dy)dsdz

=

󰁝

Rd

󰁝 T

0

󰁝

Rd

F (Psf(z + y), Psf(z); p) ν(dy)dsdz.

We claim that 󰀂PT−T0f󰀂p → 󰀂f󰀂p as T → T0. It suffices to show that 󰀂Ptf−f󰀂p → 0

as t → 0. Let ε > 0. Using the continuity of the translation operator on Lp(Rd), we

choose δ > 0 small enough such that 󰀂Tyf − f󰀂pp < ε where Tyf(x) = f(x + y). By

(8.2.2), there exists t0 > 0 such that for all t ∈ [0, t0]

P0(|Xt| > δ) =

󰁝

|y|>δ

pt(y) dy < ε.
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For 0 ≤ t ≤ t0, we get

󰀂Ptf − f󰀂pp ≤
󰁝󰁝

|f(x+ y)− f(x)|ppt(y) dydx

≤ 2p−1󰀂f󰀂pp
󰁝

|y|>δ

pt(y) dy +

󰁝

|y|≤δ

󰀂Tyf − f󰀂pppt(y) dy

≤ (2p−1󰀂f󰀂pp + 1)ε,

which proves the claim and yields

󰀂f󰀂pp − 󰀂PTf󰀂pp =
󰁝

Rd

󰁝 T

0

󰁝

Rd

F (Psf(z + y), Psf(z); p) ν(dy)dsdz.

Let f ∗(x) = supt |Ptf(x)|, then it follows from Proposition 7.3.3 that 󰀂f ∗󰀂p ≤
p

p−1
󰀂f󰀂p. Since |PTf(x)| ≤ |f ∗(x)| and PTf(x) → 0, as T → ∞ for each x ∈ Rd

by Lemma 8.3.4, the dominated convergence theorem yields 󰀂PTf󰀂p → 0 as T → ∞.

Since F (a, b; p) is nonnegative, we have

󰀂f󰀂pp =
󰁝

Rd

󰁝 ∞

0

󰁝

Rd

F (Psf(z + y), Psf(z); p) ν(dy)dsdz (8.3.13)

as desired.

Let 1 < p < 2 and ε > 0. Following the same argument as in the case p > 2 with

the function ϕ(x) = (|x|2 + ε2)
p
2 , we arrive at

󰁝

Rd

󰀓
(|f(x)|2 + ε2)

p
2 − (|PTf(x)|2 + ε2)

p
2

󰀔
dx

=

󰁝

Rd

󰁝 T

0

󰁝

Rd

Fε(Psf(z + y), Psf(z); p) ν(dy)dsdz,

where Fε is the function defined by (8.3.2). Since the function x 󰀁→ x
p
2 is p

2
-Hölder

continuous on [0,∞) for 1 < p < 2, we have (|f(x)|2 + ε2)
p
2 − εp ≤ Cp|f(x)|p and

(|PTf(x)|2 + ε2)
p
2 − εp ≤ Cp|PTf(x)|p. Thus the left hand side converges to 󰀂f󰀂pp −

󰀂PTf󰀂pp as ε → 0 by the dominated convergence theorem. On the other hand, 0 ≤

Fε(a, b; p) → F (a, b; p), as ε → 0, and 0 ≤ Fε(a, b; p) ≤ 1
p−1

F (a, b; p), by Lemma 8.3.2.

Since the integral

I(ε, T ) =

󰁝

Rd

󰁝 T

0

󰁝

Rd

Fε(Psf(z + y), Psf(z); p) ν(dy)dsdz
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is bounded for each ε > 0, Fatou’s lemma and the dominated convergence theorem

give (see [30, p.199]) that

lim
ε→0

I(ε, T ) =

󰁝

Rd

󰁝 T

0

󰁝

Rd

F (Psf(z + y), Psf(z); p) ν(dy)dsdz.

We finish the proof by letting T → ∞.

Following the same argument, we obtain a more general result for martingales of

which Theorem 8.3.1 is a special case.

Theorem 8.3.5 (A Hardy–Stein identity for martingales). Let 1 < p < ∞ and

H(t, x) be a d-dimensional predictable process satisfying (8.2.5) and (8.2.7). Assume

that a martingale Mt defined by

Mt = M0 +

󰁝 t

0

󰁝

Rd

H(s, y) 󰁨N(ds, dy)

is uniformly integrable in L2 ∩ Lp, that is,

sup
t>0

E|Mt|max{2,p} < ∞.

Then we have

E|M∞|p − E|M0|p =
󰁝 ∞

0

󰁝

Rd

E[F (Ms−,Ms− +H(s, y); p)] ν(dy)ds. (8.3.14)

Proof. Let p ≥ 2. Let T > 0 and ϕ(x) = |x|p. By Itô’s formula, we have

ϕ(Mt)− ϕ(M0) =

󰁝 t

0

󰁝

Rd

(ϕ(Ms− +H(s, y))− ϕ(Ms−)) 󰁨N(ds, dy)

+

󰁝 t

0

󰁝

Rd

(ϕ(Ms− +H(s, y))− ϕ(Ms−)−H(s, y) ·∇ϕ(Ms−)) ν(dy)ds

for 0 ≤ t ≤ T . Since

|ϕ(Ms− +H(s, y))− ϕ(Ms−)|2 ≤ p222p−3(|Ms−|2p−2 + |H(s, y)|2p−2)|H(s, y)|2

≤ C(p, T )|H(s, y)|2
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for 0 ≤ s ≤ T , we get

E
󰁫 󰁝 t

0

󰁝

Rd

|ϕ(Ms− +H(s, y))− ϕ(Ms−)|2 ν(dy)ds
󰁬

≤ C(p, T )E
󰁫 󰁝 t

0

󰁝

Rd

|H(s, y)|2 ν(dy)ds
󰁬

= C(p, T )E|Mt −M0|2

< ∞,

which implies that
󰁕 t

0

󰁕
Rd(ϕ(Ms− +H(s, y))−ϕ(Ms−)) 󰁨N(ds, dy) is a martingale and

its expectation is zero. Since F (a, b; p) ≥ 0 and ν is σ-finite, it follows from Fubini–

Tonelli theorem that

E|Mt|p − E|M0|p =
󰁝 t

0

󰁝

Rd

E[ϕ(Ms− +H(s, y))− ϕ(Ms−)−H(s, y) ·∇ϕ(Ms−)] ν(dy)ds

=

󰁝 t

0

󰁝

Rd

E[F (Ms−,Ms− +H(s, y); p)] ν(dy)ds.

Letting t → ∞, we get the result.

Suppose 1 < p < 2. Let ε > 0, T > 0, and ϕε(t) = (t2 + ε2)
p
2 . By Itô’s formula,

we have

E[ϕε(Mt)]− E[ϕε(M0)] =

󰁝 t

0

󰁝

Rd

E[Fε(Ms−,Ms− +H(s, y); p)] ν(dy)ds

for 0 ≤ t ≤ T . Since ϕε(t) ≤ Cp|t|p + εp and supt≥0 E|Mt|p < ∞, we have

lim
ε→0

(E[ϕε(Mt)]− E[ϕε(M0)]) = E|Mt|p − E|M0|p.

Let I(ε, t) =
󰁕 t

0

󰁕
Rd E[Fε(Ms−,Ms− +H(s, y); p)] ν(dy)ds, then lim infε→0 I(ε, t) < ∞

by Lemma 8.3.2. Using Fatou’s lemma, we have I(0, t) < ∞. Thus the result follows

from ϕε(t) ≤ Cp|t|p + εp and the dominated convergence theorem.

8.4 Fourier multipliers and square functions

The main application of the results in [10] was to show the Lp boundedness of the

Fourier multipliers introduced in [8], 1 < p < ∞, without appealing to martingale
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transforms. Of course, a disadvantage of such a proof is that we do not obtain the

sharp bounds given in [8, 9], which follow from Burkholder’s sharp inequalities. In

addition, the Littlewood–Paley inequalities proved in [10] only apply to symmetric

pure jump Lévy processes and therefore the Fourier multiplier proof given there also

has this restriction. In this section, we prove, via a symmetrization of the Littlewood–

Paley inequalities, the general result for Fourier multipliers.

We recall that (Xt)t≥0 is a pure jump Lévy process with càdlàc path and ν is its

Lévy measure that satisfies the Hartman–Wintner condition

lim
|ξ|→∞

Re(ψ(ξ))

log(1 + |ξ|) = ∞. (HW)

Let Pt be a semigroup defined by Ptf(x) = Ex[f(Xt)]. Let φ : (0,∞)× Rd → R be a

bounded measurable function and 1 < p, q < ∞ with 1
p
+ 1

q
= 1. Let m : Rd → C be

a measurable function. The Fourier multiplier operator with symbol m is denoted by

Tm. Note that Tm is determined by F(Tmf)(ξ) = m(ξ) 󰁥f(ξ). For f, g ∈ L2(Rd), we

denote by 〈f, g〉 =
󰁕
Rd fg dx. By Parseval’s formula (8.2.1), we have

〈Tmf, g〉 =
󰁝

Rd

Tmf(x)g(x) dx

=
1

(2π)d

󰁝

Rd

F(Tmf)(ξ)F(g)(ξ) dξ

=
1

(2π)d

󰁝

Rd

m(ξ) 󰁥f(ξ)󰁥g(ξ) dξ.

We are ready to state our result on Fourier multipliers.

Theorem 8.4.1. Let φ : (0,∞) × Rd → R be a bounded measurable function, p ∈

(1,∞), and q the conjugate exponent of p. Then for f ∈ L2(Rd) ∩ Lp(Rd) and g ∈

L2(Rd) ∩ Lq(Rd),

Λφ(f, g) =

󰁝

Rd

󰁝 ∞

0

󰁝

Rd

(Ptf(x+ y)− Ptf(x))(Ptg(x+ y)− Ptg(x))φ(t, y) ν(dy)dtdx

(8.4.1)

is well-defined. Furthermore, there is a unique bounded linear operator Sφ on Lp(Rd)

such that Λφ(f, g) = 〈Sφ(f), g〉 and Sφ = Tmφ
with symbol mφ given by

mφ(ξ) =

󰁝 ∞

0

󰁝

Rd

|eiξ·y − 1|2e−2tRe(ψ(ξ))φ(t, y) ν(dy)dt.
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When ν is symmetric, this result was proved in [10] as an application of the

boundedness on Lp of the Littlewood–Paley square functions which itself was the

main application of the Hardy–Stein inequality, completely bypassing the martin-

gale transform arguments used earlier. The question left open in [10] was whether

Littlewood–Paley arguments can be used to prove the result for general ν. We answer

this in the affirmative.

Let us introduce the dual process and the symmetrization of the Lévy process

(Xt)t≥0 with the Lévy measure ν. Let ( 󰁥Xt)t≥0 be a càdlàg stochastic process having

the same finite dimensional distribution as (−Xt)t≥0, and independent of (Xt)t≥0. The

process ( 󰁥Xt)t≥0 is said to be the dual process of (Xt)t≥0. Note that ( 󰁥Xt)t≥0 is a Lévy

process with triplet (0, 0, ν(−dx)). We define its semigroup by 󰁥Ptf(x) = Ex[f( 󰁥Xt)].

Note that for any Borel function f and g, we have

󰁝

Rd

Ptf(x)g(x) dx =

󰁝

Rd

f(x) 󰁥Ptg(x) dx,

which explains why ( 󰁥Xt)t≥0 is called the dual of (Xt)t≥0.

Let 󰁨Xt = X t
2
+ 󰁥X t

2
for t ≥ 0. We define 󰁨ψ(ξ) = Re(ψ(ξ)) and 󰁨ν(B) = 1

2
(ν(B) +

ν(−B)) for any measurable set B in Rd. Since we have

E[eiξ· 󰁨Xt ] = E[eiξ·X t
2 ]E[eiξ·

󰁥X t
2 ] = e−

t
2
ψ(ξ)e−

t
2
ψ(−ξ) = e−t 󰁨ψ(ξ)

and

󰁨ψ(ξ) =
󰁝

Rd

(1− cos(ξ · y)) ν(dy)

=

󰁝

Rd

(1− cos(ξ · y)) 󰁨ν(dy)

=

󰁝

Rd

(1− eiξ·y + iξ · y1{|y|≤1}) 󰁨ν(dy),

the process 󰁨Xt is a Lévy process with characteristic exponent 󰁨ψ(ξ) and the Lévy

measure 󰁨ν. We say that 󰁨Xt is the symmetrization of Xt. Define 󰁨Ptf(x) = Ex[f( 󰁨Xt)].

The Fourier transform of 󰁨Ptf is given by

F( 󰁨Ptf)(ξ) = e−t 󰁨ψ(ξ) 󰁥f(ξ) = e−tRe(ψ(ξ)) 󰁥f(ξ).
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Since 󰁨Xt is a symmetric pure jump Lévy process and the measure 󰁨ν satisfies

(HW) condition, it leads us to apply the result of [10] for the symmetrization 󰁨Xt. In

particular, we obtain two side estimates for the square functions of 󰁨Xt. We define the

square functions of the symmetrized process 󰁨Xt by

󰁨G(f)(x) =
󰀓󰁝 ∞

0

󰁝

Rd

󰀏󰀏󰀏 󰁨Ptf(x+ y)− 󰁨Ptf(x)
󰀏󰀏󰀏
2

󰁨ν(dy)dt
󰀔 1

2
, (8.4.2)

󰁨G∗(f)(x) =
󰀓󰁝 ∞

0

󰁝

A(t,x,f)

󰀏󰀏󰀏 󰁨Ptf(x+ y)− 󰁨Ptf(x)
󰀏󰀏󰀏
2

󰁨ν(dy)dt
󰀔 1

2
(8.4.3)

where A(t, x, f) = {y ∈ Rd : | 󰁨Ptf(x)| > | 󰁨Ptf(x + y)|}. The following lemma is found

in [10, Theorem 4.1, Corollary 4.4 ].

Lemma 8.4.2. Let 2 ≤ p < ∞ and f ∈ Lp(Rd). Then there are constants cp and Cp

depending only on p such that

cp󰀂f󰀂p ≤ 󰀂 󰁨G(f)󰀂p ≤ Cp󰀂f󰀂p.

If 1 < p < ∞ and f ∈ Lp(Rd), then we have

dp󰀂f󰀂p ≤ 󰀂 󰁨G∗(f)󰀂p ≤ Dp󰀂f󰀂p,

for some dp and Dp depending only on p.

For a function f and a measure µ, the essential supremum of f with respect to

the measure µ is denoted by 󰀂f󰀂∞,µ.

Lemma 8.4.3. Let ν(B) = 1
2
(ν(B)− ν(−B)) for any measurable set B ⊆ Rd. Then,

there is a measurable function r(y) such that ν(dy) = r(y)󰁨ν(dy). Furthermore, the

function r(y) is bounded 󰁨ν-a.s. with 󰀂r󰀂∞,󰁨ν ≤ 1.

Proof. Note that ν is σ-finite since ν({0}) = 0 and
󰁕
Rd(1 ∧ |x|2)ν(dx) < ∞. So are

󰁨ν and ν. Suppose that B ⊆ Rd is a measurable set such that 󰁨ν(B) = 0. Since ν

is a positive measure, we have ν(B) = ν(−B) = 0, which implies ν(B) = 0. Thus

ν is absolutely continuous with respect to 󰁨ν. By the Radon-Nikodym theorem, we

conclude that there is a measurable function r(y) such that ν(dy) = r(y)󰁨ν(y).
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To see r(y) is bounded, we consider the set Bε := {y ∈ Rd : |r(y)| > 1 + ε}

for an arbitrary ε > 0. From the relation ν(dy) = r(y)󰁨ν(y) obtained above, we

have ν(Bε) > (1 + ε)󰁨ν(Bε). It then yields εν(Bε) + (2 + ε)ν(−Bε) < 0 so that

ν(Bε) = ν(−Bε) = 0. Therefore, r(y) is bounded 󰁨ν-a.s. and 󰀂r󰀂∞,󰁨ν ≤ 1.

Proof of Theorem 8.4.1. The first argument is directly obtained by Theorem 8.3.1.

Indeed, since F (a, b; 2) = |a− b|2, Theorem 8.3.1 yields that

󰀂f󰀂22 =
󰁝

Rd

󰁝 ∞

0

󰁝

Rd

F (Ptf(x), Ptf(x+ y); 2) ν(dy)dtdx

=

󰁝

Rd

󰁝 ∞

0

󰁝

Rd

|Ptf(x)− Ptf(x+ y)|2 ν(dy)dtdx.

It then follows from the Cauchy-Schwartz inequality that

|Λφ(f, g)| ≤ 󰀂φ󰀂∞
󰁝

Rd

󰁝 ∞

0

󰁝

Rd

|Ptf(x+ y)− Ptf(x)||Ptg(x+ y)− Ptg(x)| ν(dy)dtdx

≤ 󰀂φ󰀂∞󰀂f󰀂2󰀂g󰀂2.

Since f, g ∈ L2(Rd), Theorem 8.3.1 implies that Λφ(f, g) is absolutely convergent. To

see the second assertion, we use Parseval’s formula (8.2.1) so that

Λφ(f, g)

=
1

(2π)d

󰁝󰁝󰁝
F(Ptf(·+ y)− Ptf(·))(ξ)F(Ptg(·+ y)− Ptg(·))(ξ)φ(t, y) dξν(dy)dt

=
1

(2π)d

󰁝󰁝󰁝
(eiξ·y − 1)e−tψ(ξ) 󰁥f(ξ)(eiξ·y − 1)e−tψ(ξ)󰁥g(ξ)φ(t, y) dξν(dy)dt

=
1

(2π)d

󰁝󰁝󰁝
|eiξ·y − 1|2e−2tRe(ψ(ξ)) 󰁥f(ξ)󰁥g(ξ)φ(t, y) dξν(dy)dt

where ψ(ξ) is the characteristic exponent of (Xt)t≥0. In the second equality, we have

used the fact that

F(Ptf(·+ y)− Ptf(·))(ξ) = (eiξ·y − 1)F(Ptf)(ξ) = (eiξ·y − 1)e−tψ(ξ) 󰁥f(ξ).

By Lemma 8.4.3, there is a measurable function r(y) such that ν(dy) = r(y)󰁨ν(dy)

with 󰀂r󰀂∞,󰁨ν ≤ 1. Using ν = 󰁨ν + ν, we have

Λφ(f, g) =
1

(2π)d

󰁝 ∞

0

󰁝

Rd

󰁝

Rd

|eiξ·y − 1|2e−2tRe(ψ(ξ)) 󰁥f(ξ)󰁥g(ξ)φ(t, y) dξ󰁨ν(dy)dt

+
1

(2π)d

󰁝 ∞

0

󰁝

Rd

󰁝

Rd

|eiξ·y − 1|2e−2tRe(ψ(ξ)) 󰁥f(ξ)󰁥g(ξ)φ(t, y) dξν(dy)dt.
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If we define η(t, y) = φ(t, y)(1 + r(y)), then η is bounded 󰁨ν-a.s.; thus, we obtain

Λφ(f, g) =
1

(2π)d

󰁝 ∞

0

󰁝

Rd

󰁝

Rd

|eiξ·y − 1|2e−2tRe(ψ(ξ)) 󰁥f(ξ)󰁥g(ξ)η(t, y) dξ󰁨ν(dy)dt.

We consider 󰁨Xt and 󰁨Pt, the symmetrization of Xt and Pt. Since the characteristic

exponent of 󰁨Xt is the real part of ψ(ξ), 󰁨ψ(ξ) = Re(ψ(ξ)), and

F( 󰁨Ptf(·+ y)− 󰁨Ptf(·))(ξ) = (eiξ·y − 1)F( 󰁨Ptf)(ξ) = (eiξ·y − 1)e−tRe(ψ(ξ)) 󰁥f(ξ),

it follows from Parseval’s formula (8.2.1) that

Λφ(f, g) =

󰁝

Rd

󰁝 ∞

0

󰁝

Rd

( 󰁨Ptf(x+ y)− 󰁨Ptf(x))( 󰁨Ptg(x+ y)− 󰁨Ptg(x))η(t, y) 󰁨ν(dy)dtdx

=: 󰁨Λη(f, g). (8.4.4)

To show the boundedness of Λφ(f, g), we use the square functions defined in (8.4.2).

It is enough to show the case p > 2 and 1 < q < 2. Note that 󰀂η󰀂∞,󰁨ν is finite and

󰀂η󰀂∞,󰁨ν ≤ 2󰀂φ󰀂∞. Let A(t, x, g) := {y ∈ Rd : | 󰁨Ptg(x)| > | 󰁨Ptg(x + y)|}. Note that it

follows from the symmetry of 󰁨ν that

󰁝

Rd

󰁝 ∞

0

󰁝

A(t,x,g)

| 󰁨Ptf(x+ y)− 󰁨Ptf(x)|| 󰁨Ptg(x+ y)− 󰁨Ptg(x)| 󰁨ν(dy)dtdx

=

󰁝

Rd

󰁝 ∞

0

󰁝

Rd\A(t,x,g)

| 󰁨Ptf(x+ y)− 󰁨Ptf(x)|| 󰁨Ptg(x+ y)− 󰁨Ptg(x)| 󰁨ν(dy)dtdx.

Applying Cauchy-Schwartz and Hölder’s inequalities, we have

|󰁨Λη(f, g)|

≤ 󰀂η󰀂∞,󰁨ν

󰁝

Rd

󰁝 ∞

0

󰁝

Rd

| 󰁨Ptf(x+ y)− 󰁨Ptf(x)|| 󰁨Ptg(x+ y)− 󰁨Ptg(x)| 󰁨ν(dy)dtdx

≤ 2󰀂η󰀂∞,󰁨ν

󰁝

Rd

󰁝 ∞

0

󰁝

A(t,x,g)

| 󰁨Ptf(x+ y)− 󰁨Ptf(x)|| 󰁨Ptg(x+ y)− 󰁨Ptg(x)| 󰁨ν(dy)dtdx

≤ 2󰀂η󰀂∞,󰁨ν

󰁝

Rd

󰁨G(f)(x) 󰁨G∗(g)(x) dx

≤ 2󰀂η󰀂∞,󰁨ν󰀂 󰁨G(f)󰀂p󰀂 󰁨G∗(g)󰀂q.

It follows from Lemma 8.4.2 and (8.4.4) that

Λφ(f, g) ≤ 4CpDq󰀂φ󰀂∞󰀂f󰀂p󰀂g󰀂q.
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Therefore, the Riesz representation theorem yields that there is a unique linear oper-

ator Sφ satisfying Λφ(f, g) = 〈Sφ(f), g〉.
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ers, J. Funct. Anal. 250 (2007), no. 1, 197–213. MR 2345912
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Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 61 (1976),
125–134, 138, Continuity and stability in problems of probability theory and
mathematical statistics. MR 0428383

[104] Ichiro Shigekawa, Littlewood-Paley inequality for a diffusion satisfying the loga-
rithmic Sobolev inequality and for the Brownian motion on a Riemannian man-
ifold with boundary, Osaka J. Math. 39 (2002), no. 4, 897–930. MR 1951521

[105] S. L. Sobolev, On a theorem of functional analysis, Mat. Sbornik 4 (1938),
471–497.

[106] Elias M. Stein, Singular integrals and differentiability properties of functions,
Princeton Mathematical Series, No. 30, Princeton University Press, Princeton,
N.J., 1970. MR 0290095

[107] , Topics in harmonic analysis related to the Littlewood-Paley theory,
Annals of Mathematics Studies, No. 63, Princeton University Press, Princeton,
N.J.; University of Tokyo Press, Tokyo, 1970. MR 0252961

[108] M. Talagrand, Transportation cost for Gaussian and other product measures,
Geom. Funct. Anal. 6 (1996), no. 3, 587–600. MR 1392331

[109] Giorgio Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. (4)
110 (1976), 353–372. MR 0463908

[110] , Elliptic equations and rearrangements, Ann. Scuola Norm. Sup. Pisa
Cl. Sci. (4) 3 (1976), no. 4, 697–718. MR 0601601

[111] , Aspects of probabilistic Littlewood-Paley theory, J. Funct. Anal. 38
(1980), no. 1, 25–60. MR 583240

[112] N. Th. Varopoulos, Hardy-Littlewood theory for semigroups, J. Funct. Anal. 63
(1985), no. 2, 240–260. MR 803094

[113] Cédric Villani, Topics in optimal transportation, Graduate Studies in Math-
ematics, vol. 58, American Mathematical Society, Providence, RI, 2003. MR
1964483

[114] Kosaku Yosida, Functional analysis, Classics in Mathematics, Springer-Verlag,
Berlin, 1995, Reprint of the sixth (1980) edition. MR 1336382


