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ABSTRACT

Kim, Daesung PhD, Purdue University, August 2019. Stability for Functional and
Geometric Inequalities and a Stochastic Representation of Fractional Integrals and
Nonlocal Operators. Major Professor: Rodrigo Banuelos.

The dissertation consists of two research topics.

The first research direction is to study stability of functional and geometric in-
equalities. Stability problem is to estimate the deficit of a functional or geometric
inequality in terms of the distance from the class of optimizers or a functional that
identifies the optimizers. In particular, we investigate the logarithmic Sobolev in-
equality, the Beckner—Hirschman inequality (the entropic uncertainty principle), and
isoperimetric type inequalities for the expected lifetime of Brownian motion.

In Chapter 3, we derive several types of stability estimates of the logarithmic
Sobolev inequality in terms of the Wasserstein distance, L? distances, and the Kol-
mogorov distance. We consider the spaces of probability measures satisfying different
conditions on the second moments, the lower bounds of the density, and some inte-
grability of the density. To obtain these results, we employ the optimal transport
technique, Fourier analysis, and probability theoretic approach. In Chapter 4, we
construct an example to understand the conditions on the space and the distance
under which stability of the logarithmic Sobolev inequality does not hold. As an ap-
plication, we show that stability of the Beckner—Hirschman inequality does not hold
for the normalized L? distance with some weighted measures in Chapter 5.

In Chapter 6, we study quantitative improvements of the inequalities for the ex-
pected lifetime of Brownian motion, which state that the LP-norms of the expected
lifetime in a bounded domain for 1 < p < oo, are maximized when the region is a

ball with the same volume. Since the inequalities also hold for a general class of Lévy
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processes, it is interesting to see if the quantitative improvement can be extended to
general Lévy processes. We discuss the related open problems in that direction.

The second topic of the thesis is a stochastic representation of fractional integrals
and nonlocal operators. In Chapter 7, we extend the Hardy—Littlewood—Sobolev
inequality to symmetric Markov semigroups. To this end, we construct a stochastic
representation of the fractional integral using the background radiation process. The
inequality follows from a new inequality for the fractional Littlewood—Paley square
function. In Chapter 8, we prove the Hardy—Stein identity for non-symmetric pure
jump Lévy processes and the LP boundedness of a certain class of Fourier multiplier
operators arising from non-symmetric pure jump Lévy processes. The proof is based

on Ito’s formula for general jump processes and the symmetrization of Lévy processes.



1. INTRODUCTION

The thesis consists of two parts. The first subject of this thesis is stability of functional
and geometric inequalities. The second subject is the Littlewood—Paley inequality and

its applications.

1.1 Stability of functional and geometric inequalities

We present some terminology regarding stability problems, introduced by Carlen
[41].  Consider nonnegative functionals G and H defined on a class of admissible

functions or sets X. A functional or geometric inequality can be written as
G(u) > H(u) (1.1.1)

for all u € X. The inequality is called sharp if for each A > 1 there exists uy € X
such that G(uy) < AH(uy). It is called optimal if there exists uy € X such that
G(ug) = H(ug). Such wg is called an optimizer. The deficit is defined by d(u) =
G(u) —H(u) > 0. Once the class of optimizers Xy is characterized, a natural question
is to measure the deviation of u from the class of optimizers when d6(u) gets close to
0. Let d : X x X — [0,00) be a distance defined on X. We say the inequality is

d-stable in X if for any sequence {uy} in X, 0(ux) — 0 as k — oo implies

klirn d(ug, Xo) = lim inf d(ug,v)=0. (1.1.2)
—00

k—oo vEX(

In particular, a stability estimate or a quantitative improvement of the inequality is

a lower bound of the deficit in terms of the distance
d(u) > (d(u, Xo)) (1.1.3)

for all u and for some modulus of continuity ®. Sometimes, instead of a distance,

we consider a nonnegative functional on X that identifies the class of optimizers.



Namely, consider a functional d : X — [0,00] such that d(u) = 0 if and only if
u € Xg. Stability with respect to this functional is defined in the same way. In
contrast to (1.1.3), (1.1.2) it is also called a non-quantitative result or weak stability.

Recently, finding stability estimates has become of significant interest in the
study of functional and geometric inequalities; the Sobolev inequalities [23,44, 48],
the Hardy-Littlewood—Sobolev inequality [41], the logarithmic Sobolev inequality
[53,57,58,82,83,85], the Hausdorff-Young inequality [45], the isoperimetric inequal-
ities [59,64,65], and the Faber—Krahn inequalities [32,34]. In particular, there have
been great efforts to find sharp stability results. A stability estimate is sharp if the
modulus of continuity ® is best possible. That is, if ® cannot be replaced by any

other modulus of continuity ¥ which satisfies

20y,

50 (t)
Another direction is to study the best possible admissible space and distance in
which stability of (1.1.1) holds. Even though the inequality (1.1.1) holds for all u € X,

it is possible that a stability estimate holds only for u € X C X. In this case, one can
ask what is the largest possible subset X of X in which stability of (1.1.1) is valid.

1.1.1 The sharp quantitative isoperimetric inequality

As an example, we review stability results for the classical isoperimetric inequality.

Let D be a Borel set in R”, then the classical isoperimetric inequality states that

P(D) > P(B) (1.1.4)

where B is a ball in R" with |D| = |B| and P(E) denotes the perimeter of E. This
is sharp and optimal: equality holds in (1.1.4) if and only if D is a ball. The deficit
of (1.1.4) is defined by



where B is a ball with |D| = |B|. Fuglede [63] showed that if D is convex then there
exists k(n), C,, > 0 such that

5(D) > Coa( D))

where a(D) = inf{dg(D,z + B) : x € R"}, dy is the Hausdorff distance, and B is
a ball with |D| = | B|. He constructed an one-parameter family of domains to show
that x(n) is the sharp exponent. Note that the asymmetry a(D) is not appropriate
for general non-convex sets. For example, if D is a ball in R” (n > 3) with a long
and thin tail, then a(D) could be large whereas the deficit is close to 0. Thus it is

natural to deal with the Fraenkel asymmetry

DA B
A(D) = inf {% :x € R", B is a ball with |B| = |D|}
for a general stability estimate. Hall [74] proved that if D has an axis of symmetry,
then
(D) > C,A(D)? (1.1.5)

with an explicit dimensional constant C,,. For a general class of sets, he used the
Steiner symmetrization and the estimate from [75] to deduce (1.1.5) with the exponent
4. It was conjectured that the sharp exponent is 2. One can see this by considering an
ellipse which is very close to a ball; see [75, pp. 88-89]. Fusco, Maggi, and Pratelli [64]
gave an affirmative answer to the conjecture. They proved (1.1.5) for a Borel set with

finite volume.

1.1.2 The logarithmic Sobolev inequality

In Chapter 3, we study stability of the logarithmic Sobolev inequality. In Chapter
4, we investigate conditions on probability measure spaces and metrics under which
the LSI is not stable. As an application, we discuss instability of the Beckner—
Hirschman inequality in Chapter 5. Chapter 3 is based on joint work with Emanuel

Indrei [82], and Chapter 4 and 5 are based on my work [85].



Let dvy be the standard Gaussian measure on R". The classical logarithmic Sobolev
inequality (the LSI) states that for a probability measure fd~y
510 =5 [ ay> [ iog fay=nis) (1.1.6)
where I(f) and H(f) are the Fisher information and the relative entropy respectively.
Note that I and H are nonnegative functionals and well-defined on the space of prob-
ability measures fdy with \/f € W(R", dv). The constant 3 is sharp and equality
holds if and only if f(z) = e>*~"*/2 for some b € R™.

In Chapter 3, we explore various probability measure spaces and metrics in which
stability of the LSI holds. To be specific, we find several types of lower bounds of the
deficit 6(f) := $1(f) — H(f) in terms of the Wasserstein distances, the Kolmogorov
distance, and LP distances for p > 1, under different conditions on the function f.
To obtain these results, we employ several different techniques: optimal transport
theory, Fourier analysis, and probability.

We considered the space of probability measures on R™ whose second moments

are bounded by M > 0, denoted by P3!(R™). The first main result (Theorem 3.2.1)
is to show that if fdv is a centered probability measure in P57 (R) then

0(f) = Cutllf = Uz an)- (1.1.7)

The proof is mainly based on the optimal transport technique, which was introduced
by Cordero-Erausquin [50] and adapted to the context of stability of the LSI by [83]
and thereafter [57]. We consider the Brenier map between fdvy and dv, which is the
solution to the optimal transportation problem. First, we derive W, stability of the
LSI (Theorem 3.2.6) from that of Talagrand’s transportation inequality, which was
obtained by [18] in dimension 1, [51] for higher dimensions (see also [57] for W ;-
stability). By a lower bound of the deficit (2.2.7) which follows from the Monge—
Ampere equation, we derive L'-stability (1.1.7). Under different assumptions on f
(see (3.2.2) and (3.2.3)), we exploit the deficit bound (2.2.7) of Cordero-Erausquin

to show that the deficit is bounded below by the L' distance of log f from some



affine function (Theorem 3.2.9). Combining Wj—stability and a compactness argu-
ment (the Rellich-Kondrachov theorem), we also derive non-quantitative L'-stability
in PY(R"), for n > 2 (Theorem 3.2.13).

Compared to the previous results [57,83], our stability results in P can be
thought of as an extension in terms of probability measure spaces. Indrei and Marcon
[83] showed Wy—stability in a class of probability measures fdvy such that (—=14¢) <
D?*(—log f) < M for e, M > 0. The proof is based on the optimal transport technique
(2.2.7). In [57], a strict improvement of the LSI for the class of probability measures
that satisfy a (2,2)-Poincaré inequality was proved, which yields stability bounds
with respect to W, and L!. One can see that these spaces are contained in P37 for
some M. Note that the authors in [57] also considered stability estimates in a general
probability measure space via Talagrand’s transportation inequality.

The second approach is concerned with the deficit bound (2.2.4) derived by Carlen
[40] (see Theorem 2.2.1). To characterize the case of equality in (1.1.6), Carlen [40]
derived a lower bound of the deficit in terms of the relative entropy of the Fourier—
Wiener transform from the entropic uncertainty principle, which was conjectured
by Hirschman [80] and proven by Beckner [20]. By investigating the behavior of
the relative entropy of the Fourier—-Wiener transform when the deficit gets close to
0, we obtain non-quantitative L'-stability (Theorem 3.2.14). Applying the optimal
transport technique to the Fourier—Wiener transform, we obtain a lower bound of the
deficit which holds for a wide class of functions (Theorem 3.2.16). As a corollary of this
bound, we prove non-quantitative L'-stability under some integrability assumptions
(Corollary 3.2.18 and 3.2.19) .

From the probabilistic point of view, we derive stability estimates in terms of
the Kolmogorov distance. The proof is mainly based on the quantitative versions
of Cramér’s theorem of [25,68,103]. Cramér’s theorem says that if the sum of two
independent random variables has a normal distribution, then both random variables
are normal. Combining quantitative versions of Cramér’s theorem (Theorem 2.3.1

and 2.3.2) with a convolution type deficit bound of the LSI in [58] (see Theorem



3.4.1), we derive stability estimates in terms of the Kolmogorov distance under some
moment assumptions (Theorem 3.2.21 and 3.2.22).

In the process of finding the best possible function spaces and metrics, a natural
question is whether the previous stability results can be improved. In Chapter 4, we
give a partial answer by showing that there exists a sequence of centered probability
measures in P37(R) such that the deficit converges to 0 but the distance from the
optimizer does not converge to 0 in terms of Wy and L? for p > 1 (Theorem 4.1.1).
Furthermore, we construct a sequence of centered probability measures in Py (R) such
that the deficit converges to 0 and the W;-distance from the Gaussian measure goes to
00 (Theorem 4.1.2). The implication of these results is that Wa—stability of [26] and
W, -stability of Theorem 3.2.6 are sharp in terms of P37 (R") and that L'-stability in
PM(R) of Theorem 3.2.1 is sharp in terms of the L? distances.

To construct a sequence of probability measures whose deficit converges to 0, we
start with the Gaussian measure with a small perturbation in the tails. It turns out
that this perturbation controls the second moment and the relative entropy, which
leads to the desired result.

The problem of finding the best possible function space and metric remains open.
The most general space in the setting of the LSI is the space of probability measures
with finite second moments, since if the relative entropy is finite then so is the second
moment.

In Chapter 5, we prove that stability of the entropic uncertainty principle, which
is also called the Beckner—Hirschman inequality (BHI), fails with respect to the nor-
malized L distances some weighted measures. For a nonnegative function i in L?(R)

with ||h]|2 = 1, the entropic uncertainty principle states that
dmn(h) = S(hJ?) + S(|h[?) — (1 —log2) > 0

where S(-) denotes Shannon’s entropy, T is the Fourier transform of h, and dgg(h) is
the deficit of the Beckner—Hirschman inequality. Carlen [40] showed that the deficit
of the LSI is bounded below by that of the BHI, which implies that the example

constructed in Chapter 4 has a small deficit of the BHI. With careful computation,



we show that there exists a sequence of L? normalized functions such that the deficit
converges to 0 but the distance from the class of optimizers does not. In these
results, we consider the L? distances with polynomial (Theorem 5.1.1) and exponential
weights (Theorem 5.1.2).

The entropic uncertainty principle was first proposed by Hirschman [80], and
proved by Beckner [20] by differentiating the sharp Hausdorff-Young inequality with
respect to the exponent. Inspired by the quantitative Hausdorff-Young inequality
of Christ [45], it is natural to ask if there is a stability estimate for the BHI. The
heuristic consideration in Chapter 5 suggests that the BHI could be stable in terms

of the L? distance, which is an interesting open problem.

1.1.3 The expected lifetime of Brownian motion

In Chapter 6, we investigate stability of isoperimetric type inequalities arising
from stochastic analysis and their relation to geometric inequalities. This is based on
my work [86].

Let a € (0,2] and D a bounded domain in R". Let X;* be the symmetric a—stable
process with generator —(—A)®/2. The first exit time of X from D is defined by

mh=inf{t >0: X' ¢ D}

and the expected lifetime by u$,(z) = E*[73], where E* is the expectation associated
with X' starting at € R". For a = 2, X;* is Brownian motion with generator A.
Banuelos and Méndez-Herndndez [16] showed that several isoperimetric type in-
equalities for Brownian motion continue to hold for a wide class of Lévy processes
using the symmetrization of Lévy processes and the multiple integral rearrangement
inequalities of Brascamp-Lieb-Luttinger [31]. Indeed, they proved that if Y; is a

Lévy process, its Lévy measure is absolutely continuous with respect to the Lebesgue



measure, and f and V' are nonnegative continuous functions, then for any x € D and

t >0,

B/ (¥;") exp ( /0 V) ds) T > 1] > B [F(Y)) exp ( /0 V) ds) T >

where f* and V* are the symmetric decreasing rearrangements of f and V, Y;* is the
symmetrization of Y;, and B is a ball centered at 0 with |D| = | B|; see [16, Theorem
1.4]. A particular case of this is that for all ¢ > 0 and x € R",

PO(78 > t) > P*(1] > 1), (1.1.8)

which yields
u(0) = up (), (1.1.9)

where B is a ball centered at 0 with |B| = |D|. In fact, (1.1.8) gives
EY(18)? > E*(15)? (1.1.10)

for all p > 0. Talenti [110] proved that the LP norm of a solution of a second-
order elliptic equation is maximized when the elliptic operator and the domain are
symmetrically rearranged. In particular, the result yields that for p > 0, o = 2, and
a bounded domain D,

luslly = lluplly (1.1.11)

where B is a ball with |B| = |D|.

Given the above isoperimetric type inequalities for the first exit times of the a-
stable processes and their connection to the classical torsion function, there are many
questions that arise concerning quantitative versions of these inequalities. The goal
of Chapter 6 is to study quantitative versions of the expected lifetime inequalities
(1.1.9) for « = 2 and (1.1.11) for p > 1.

The first main result is a lower bound of the deficit of (1.1.9) in terms of the
deviations of x and D from the optimizers. Note that equality holds in (6.2.1) if D

is a ball and up(z) = max,ep up(y). The deviation of = is represented by |{y € D :



up(y) > up(x)}|, and the deviation of D by the Fraenkel asymmetry, which is defined

by

A(D) = inf { ‘D‘§|B| : B is a ball with |B| = \D|} . (1.1.12)

The proof is based on the proof of (1.1.9) for « = 2 in [6,110], and the sharp
quantitative isoperimetric inequality [64]. In order to estimate the asymmetry of the
level set, we use the idea of Hansen and Nadirashvili [76] as in the proof of the boosted
Pélya—Szego inequality [33, Lemma 2.9].

The second result is a quantitative inequality for the LP norm of the expected
lifetime (1.1.11), 1 < p < oo. We define the L? deficit of the expected lifetime
inequality for 1 < p < oo by

5,(D)=1— (M)n(p)

[usll,

where k(p) = p for 1 < p < o0, kK(o0) = 1, and B is a ball centered at 0 with

|B| = |D|. Let n > 2 and D be a bounded domain in R”. For 1 < p < oo, we have
6,(D) > C, ,A(D)**"®) (1.1.13)

The torsional rigidity of D is defined by T'(D) = |jup|l;. In this context, we call
up the torsion function of D. The Saint-Venant inequality states that the torsional
rigidity is maximized when the region is a ball. If p = 1, the result produces the

non-sharp quantitative Saint-Venant inequality
T(B) —T(D) > C,1T(B)A(D)?, (1.1.14)

which was proven in [33]. Thus the result can be thought of as an extension of
(1.1.14) to the case 1 < p < oo. Note that Brasco, De Philippis, and Velichkov [34]
showed that the sharp exponent of (1.1.14) is 2 in the sense that the power cannot
be replaced by any smaller number. Their method, however, does not give an explicit

dimensional constant because the proof relies on the selection principle of Cicalese

and Leonardi [49].
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The key step in the proof is the removal of ¢, defined in (6.2.3). In [33], the authors
proved a non-sharp quantitative Saint-Venant inequality using the boosted Pdlya—
Szego inequality. In the proof, they used the variational representation for 7'(D) to
replace the term ¢, by A(D) (up to dimensional constant). In our case, however, the
LP norm of the expected lifetime does not have an appropriate variational formula for
1 < p < 00. To overcome this difficulty, we find a critical level ty which is comparable
to A(D) and use the layer cake representation of the LP norm for p € (1,00) and the
strong Markov property for p = oco.

The fractional analogue of (1.1.14) is proven in [32]. They showed that if n > 2,
a € (0,2), and D is an open set with |D| = 1, then

Qo

To(B) —To(D) > C, o A(D)

where C,,, is explicit and B is a ball with |B| = 1. Here T,(D) is the fractional
torsional rigidity defined in (6.4.3). Furthermore, they proved that if D has Lipschitz
boundary and satisfies the exterior ball condition, then the exponent can be lowered
to 2 + % It turns out that our method for removing ¢, yields the same exponent

without any additional geometric assumptions on D.

1.2 Littlewood—Paley inequality

Littlewood—Paley square (quadratic) functions have been of interest for many
years with many applications in harmonic analysis and probability. On the analysis
side, these include the classical square functions obtained from the Poisson semigroup
as in [106] and more general heat semigroups as in [107]. On the probability side, these
correspond to the celebrated Burkholder-Gundy inequalities which are of fundamental
importance in modern stochastic analysis.

Littlewood—Paley L inequalities have played an important role in a broad area of
analysis and probability. These inequalities give a nice way of understanding the qual-

itative and quantitative properties of functions and operators. In the classical case,
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the L? inequalities for square functions are obtained from the Calderén-Zygmund
theory, which relies on the property of harmonic functions.

In Chapter 7, we introduce a fractional analogue of the Littlewood—Paley square
function and derive an LP—L? inequality for the square function. It turns out that
the square function and its inequality hold for a general setting. As an application,
we prove a Hardy—Littlewood—Sobolev inequality for symmetric Markov semigroups.
This is based on my work [84].

In [106], Stein provided an alternative approach to obtaining the L? bound for the
square function using the so-called Hardy—Stein identity. In Chapter 8, we extend
this to non-symmetric pure jump Lévy processes and derive the LP inequalities for
the corresponding square functions. As an application, we define a certain class of the
Fourier multipliers and prove the L” boundedness of the multipliers. This is based

on joint work with Rodrigo Banuelos [11].

1.2.1 The Hardy—-Littlewood—Sobolev inequality

The Hardy-Littlewood—Sobolev (HLS) inequality, first derived by [77,78, 105],
states that

/ / S@0G) 40, < ¢l Lo
n n |5L‘ - y|n “

where 1 < p < ¢ < 00, 1:%+%—%,O<a<n,f€LP(R”), and g € L"(R").
Lieb [90] showed the existence of optimizers and obtained the explicit formulas for
optimizers in special cases. In light of its geometric implications, a subsequent prob-
lem is to extend the sharp HLS inequality to a more general setting than R”. Because
Lieb’s result is based on rearrangement techniques which do not apply to outside of
R", it is necessary to find a new way of proving Lieb’s inequality. There have been
several attempts along this line, for instance [42,60]. Frank and Lieb [61] extended
the sharp HLS inequality to the Heisenberg group using a radically new method.

In Chapter 7, we study an extension of the HLS inequality to symmetric Markov

semigroups. We give a stochastic representation for the fractional integrals for sym-
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metric Markov semigroups and derived an analogue of the HLS inequality for the
semigroups. The stochastic representation is based on the techniques of Gundy and
Varopoulos [70-72] where the background radiation processes and time reversal were
used to obtain the probabilistic representations for the Riesz transforms. The rep-
resentation is a variation of the one used by Applebaum and Bafiuelos [3], which is
based on the space-time Brownian motion and martingale inequalities. Unlike the
space-time Brownian motion representation which requires a gradient in the space
variable (or a carré du champ), the representation in Theorem 7.2.1 only requires the
time derivative which is well defined for general semigroups.

To prove the (non-sharp) HLS inequality for symmetric Markov semigroups, we
introduce a fractional Littlewood—Paley square function for symmetric Markov semi-
groups and derive a new LP—L? inequality for the square function. The proof is
based on the ergodic inequality for maximal functions, the optimal splitting tech-
nique of [79,106], and an estimate for the classical Littlewood—Paley square functions
in [107].

The basic question, in connection with the problem of finding the sharp inequality,
is how to bypass the Littlewood—Paley square function method and the optimal split-
ting argument. This optimal splitting is also a key step in the proof of Applebaum and
Banuelos [3], although it is done in combination with the Burkholder—-Davis—Gundy
inequalities.

The stochastic representation of the fractional integral can be thought of as a mar-
tingale transform where the predictable process is not bounded. Martingale transform
techniques have been used quite effectively in the study of singular integral opera-
tors, particularly in obtaining optimal, or nearly optimal inequalities. Given the
powerful martingale and Bellman function methods pioneered by Burkholder [37] to
obtain sharp inequalities for martingale transforms and their many subsequent uses
in various problems in analysis and probability, it is natural to ask if these techniques
can be extended to martingale transforms with unbounded predictable processes and

provide a different proof of the sharp HLS inequalities which could be extended to
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other settings. At this moment, it is unclear how to obtain the sharp results with the

Bellman function methods. This remains an interesting challenging problem.

1.2.2 Hardy—Stein identity for nonlocal operators and Fourier multipliers

Littlewood—Paley square functions and their L? inequalities have been extensively
studied with applications in the study of function spaces, PDEs, and Fourier mul-
tiplier operators. From the probabilistic point of view, square functions and the L?
inequalities correspond to the quadratic variations of martingales and the Burkholder—
Davis—Gundy inequalities. In the classical case, the LP inequalities for square func-
tions are obtained from the Calderéon—Zygmund theory, which relies on the property
of harmonic functions. In [106], Stein provided an alternate approach to obtaining
the L? bound for the square function when 1 < p < 2. Using the chain rule and
Green’s theorem, he derived the so-called Hardy—Stein identity [106, Equation (16),
p.88], which states that for f € LP(R?),

/|f|pdx:/ /yAupdxdy
Rd 0 Jre

where u is the harmonic extension of f to the upper half-space. This approach can
be adapted to more general diffusion operators for which the chain rule holds.

In [10], the authors extended the Littlewood—Paley LP inequalities for 1 < p < oo
to nonlocal operators arising from symmetric pure jump Lévy processes. Their proof
is based on the Burkholder-Gundy inequalities and the Hardy—Stein type identity for
symmetric pure jump Lévy processes. As an application, they introduced a certain
family of Fourier multiplier operators and proved the L” boundedness.

In Chapter 8, we extend the Hardy—Stein identity of [10] to non-symmetric pure
jump Lévy processes. For a,b € R and p € (1,00), let F(a,b;p) be the second-order
Taylor remainder of the maps z — |z|P given by F(a, b;p) = |b|P—|a|P —palalP~2(b—a).

Let P, be the semigroup corresponding to a non-symmetric pure jump Lévy process
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and v the Lévy measure. In this setting, we prove the following Hardy-Stein identity

(Theorem 8.3.1): for f € LP(R%) and 1 < p < o0,

[vas= [ [7 [ FRs). st i vy

Compared to the result of [10] where the authors used properties of the semigroups,
our proof relies on It0’s formula for general jump processes, which allows us to ex-
tend the identity to non-symmetric cases. Furthermore, it gives a Hardy—Stein type
identity for uniformly integrable martingales in L? N L? (Theorem 8.3.5).

We also prove the LP—boundedness of a certain class of Fourier multiplier operators
for non-symmetric pure jump Lévy processes (Theorem 8.4.1). Since the two-sided
LP—inequalities for square functions rely heavily on the symmetry of the Lévy mea-
sures, the application to Fourier multiplies also requires it. To bypass this difficulty,

we employ the symmetrization technique as in [16].
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2. PRELIMINARIES
2.1 Probability metrics
2.1.1 The Wasserstein distances

For p > 1 and a probability measure y, the p-th moment of p is given by m,(u) =

Jan

probability measures with finite p-th moments is denoted by P,(R™). The Wasserstein

zPdp. We say that p has finite p-th moment if m,(n) < oo. The space of

distance of order p between two probability measures y, v € P,(R") is

W,(p,v) = inf (// |z — y|Pdr(x, y)) ’
T R7 xR

where the infimum is taken over all probability measures 7 on R” x R™ with marginals
p and v. In general, one can define the optimal transportation cost with a cost

function ¢(z,y) on R" x R™ by

T, v) = inf <//R o, y)dw(x,y)) . (2.1.1)

In particular, W is called the Kantorovich—Rubinstein distance and W is called the
quadratic Wasserstein distance.

For p > 1, W, defines a metric on P,(R™). For p; < p, and probability measures
v € Ppy(R™), it follows from Jensen’s inequality that W, (u,v) < W, (u,v) and
Py, (R™) C Py, (R™). The Wasserstein distance of order p is stronger than the weak
convergence: let v, be a sequence of probability measures in P,(R™), then v, converges
to p in W), if and only if v, — p weakly and my,(vy) — m, (1) as k — oo.

Let p© and v be probability measures with finite second moments. Then there
exists a map T : R™ — R™ such that v(A) = u(T~1(A)) for all Borel sets A in R” and

W) = | |T(x) - af*dp.

R"
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It is well-known that the map T is uniquely determined p-almost everywhere and is
the gradient of a convex function ¢ such that 7' = V. The map is called the Brenier
map.

We say a function ¢ is 1-Lipschitz if |p(z) — o(y)| < |x —y] for all z,y € R™. The

Kantorovich—Rubinstein distance W; has a dual form

Wi(p,v) = sup {/ o(du —dv) o € L'(dlu — v|), p is 1—Lipschitz.} :

On the real line, we have explicit formulas for W;. For probability measures p and v
on R, let I and G be the distribution functions of p and v. Then the W; distance

between p and v can be written as

Wi, v) = / F (1) — G\ (b))t = / F(z) - G(a)|dz.

Let v be the Gaussian measure and dv = fdv. The relative entropy functional
v — H(f) is stronger than the total variation distance but weaker than the LP-norm

for p > 1 in a sense that

2
21 f = UFrayy < HS) < ]:Hf = Un(ay) + 2lf = Ulzoay- (2.1.2)

The first inequality is called Pinsker’s inequality and the second inequality follows
from Holder’s inequality and the fact that tlogt < Z%h& —1P+2]t—1|, forallt >0
(see [56, p.93]). In particular, the second inequality tells us that if the relative entropy
does not converge to zero then fd~ does not converge to dv in L? for p > 1, which is
a key ingredient in the proof of Theorem 4.1.1.

Talagrand [108] introduced the inequality

ora(f) = 2H(f) — W3 (fdy,dv) > 0 (2.1.3)

where 1 (f) is the deficit of Talagrand’s transportation inequality. This implies
that the relative entropy is stronger than the quadratic Wasserstein distance. Otto
and Villani [99] proved that the LST implies Talagrand’s transportation inequality. If

v € Py is centered, then Cordero-Erausquin [51] showed

ra(f) > Cmin {WE(fdry, dv), Wi(fdy,dv)} . (2.1.4)
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Note that a comparable stability result was also shown in [57] . The quantitative
Talagrand’s transportation inequality is one of the main ingredients in the proof of
Theorem 3.2.6. Otto and Villani proved the HWI inequality which is an “interpo-
lation” inequality between the relative entropy, the Wasserstein distance, and the

Fisher information

H() < Waldv, dy)v/ICF) — 5 W3 (dv, ). (2.15)

We refer the reader to [1,113] for further details.

2.1.2 The total variation distance

Let 1 and v be probability measures. The total variation distance between p and

v is defined by
drv(p,v) = Sup [u(A) —v(A)]

where the supremum is taken over all Borel sets in R™ and yields a stronger topology
than the weak topology. That is, if drv(u,vx) — 0 as k& — oo, then v, converges
weakly to p (however, the converse does not hold). The total variation distance can
be thought of as the optimal transportation distance (2.1.1) with c(z,y) = L2y It

has a dual form

drv(p,v) = sup / p(dp — dv).

0<lel<1 JR

If dv = fdu, then the total variation distance dry(u,v) can be written in terms of

the L'norm
1
drv(p,v) = §||f — 1|21 (ap)-
It is well-known that the total variation distance is comparable to the Hellinger dis-

tance

VT = Wy < IF = Ulzrca < 20VF = Uezan- (2.1.6)
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2.1.3 Comparison between probability metrics

This subsection is devoted to introduce probability metrics and investigate their

relations. The following is based on [25,67,113].

Definition 2.1.1. Let (£2,.%, \) be a measure space. For probability measures du =
fdX and dv = gd), the Hellinger distance is defined by

dntpr) = ([ WVF=vakin)”
Note that dy is a metric and 0 < dy(u, v) < V2.

Definition 2.1.2. Let (€,.%) be a measurable space. Let u and v be probability

measures on (£2,.%#). The total variation distance is

/hd,u—/hdl/
Q Q

where the supremum is taken over all measurable functions 4 : Q — R with |h(z)| < 1.

dTV(M» V) = Sl}llp

Definition 2.1.3. Let (€2, d) be a Polish space. Let p and v be probability measures
on 2. For a Borel set Band e > 0, B* = {z € Q : inf cpd(z,y) < e}. The Prokhorov
metric is defined by

dp(u,v) =inf{e > 0: u(B) < v(B°) + ¢ for all Borel sets B}.

If X and Y random variables with the laws p and v, then it follows from Strassen’s

theorem that
dp(p,v) = i%f{e >0:PA(X,Y) >¢e) <e}
where the infimum is taken over all joint distributions of X and Y. Similarly, we have
drv(p,v) = inf E[1x4yy] = sup{u(F) — v(F) : F closed}.

Definition 2.1.4. The Kolmogorov distance between two probability measures ;1 and

v on R is given by

(1. ) = sup p((~o0.]) ~ v((~00. 2],
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If F and G are distribution functions of p and v, then we denote by dx(F,G) =
dk (g, ). One can see that 0 < dg(p,v) < 1.

Definition 2.1.5. Let p and v be probability measures on R with distribution func-
tions F' and G. The Lévy metric is defined by

dp(p,v) =du(F,G) =inf{e >0: G(z —¢) —e < F(z) < G(x +¢) + &,Vz € R}.
Proposition 2.1.6. Let p and v be probability measures on R, then we have

dL(:ua V) < mln{dK(/“L7 V)? dP(M? V>}
< maX{dK(:ua V)7dP(:u7 V)}

< min{dTV(#v V)v \% Wl(lu>y)}'

Proposition 2.1.7. Let i be a probability measure on R and v the standard Gaussian

measure on R, then

dic (k) < 2dp (1, 7).
Proposition 2.1.8 ( [25, Proposition A.1.2]). Let u,v € PM(R), then
Wi (p, v) < 2dg(p, v) 4 2V Mdy(p, v)'?,
Wi (p, v) < 4V Mdx(p,v)Y2.

Proposition 2.1.9. Let ) be a measurable space. Let pn and v be probability measures

on (1, then

dH(:U’a V)2 < dTV(M? V) < 2dH(M7 V)‘

2.2 The LSI deficit bounds

2|2
Let dy = (271')_%6_%6&(3 be the standard Gaussian measure on R" and f a non-

negative function in L'(dy) such that dv = fdv is a probability measure. We define
the Fisher information and the relative entropy of f with respect to v by

) =1 = [ L

H(v) = H(f) = | flogfdv.

]R’IL

dvy,
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The classical logarithmic Sobolev inequality (the LSI) states that

1

() = S1(F) — H(p) > 0. (2:2.1)

We call §(f) the deficit of the LSI. In this section, we discuss some estimates on the
LSI deficit that we will call upon later.

2.2.1 Carlen’s deficit estimate

Carlen [40] characterized the equality cases in two ways: if f € LP(R?") is a prod-
uct function in (z,y) and (x—\ga’, x—\;%’), then f and its factors are Gaussian functions.
Thereafter, he proved a Minkowski-type inequality and derived the strict superaddi-
tivity of the Fisher information. Combining this with the factorization theorem, he
deduced that equality holds in (2.2.1) only if e?*~%, b € R™.

The second proof is based on the Beckner—Hirschman entropic uncertainty prin-
ciple. Indeed, he derived a lower bound of the LSI deficit in terms of the relative
entropy of the Fourier—Wiener transform, which leads to the characterization of the

equality cases.

Let g(x) := 2% ™" and dm = g(x)?dz. The Fourier transform of f in L2(R") is

FONQ = o) = [ ey do.

Let U : L*(dx) — L?*(dm) be defined by f +— f/g and W := UFU* on L*(dm)
where U* is the adjoint operator of U. The operator W is called the Fourier—Wiener
transform. Let f € L*(dm) with || f|| 2(am) = 1. By the Plancherel theorem, we have
IWfll2(@my = | fllz2(am) = 1. The LSI deficit with respect to dm is defined by

1

1) = - /R R dm = [ o P dm.

For a probability measure fdvy, let us(z) = (f(2y/mx))"/?. Then ufdm is a probability
measure and §(f) = d.(uy).
For a nonnegative function p on R™ with [ pdz = 1, the entropy of p is given by

S(p) = —/plogpdx. (2.2.2)
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The Beckner—Hirschman inequality [20] states that for a function h with [ |h|?dz = 1,
S(Ih)*) + S(IF(h)[*) = n(1 —log2). (2.2.3)

Let p be a probability measure and f a nonnegative function such that fdu is a

probability measure. The relative entropy of f with respect to p is denoted by
Ent,(f) = / flog f dp.
Theorem 2.2.1 ( [40, Theorem 6]). Let f € L*(dm) be normalized, then
d.(f) = Entan (IWF). (2.2.4)
Proof. Let h = U* f, then (2.2.3) yields
S(?) + S(FR)F) = S(| f9l*) + S(W(f)gl*)
= [P + 1 F WP eAla? - §log2) do

— (Entan(f*) + Entan (W)

> n(l —log2).
Since ||hl|2 = ||F(h)||2 = 1, it suffices to show that
% /(|27rxh]2 +12ma F(h)[?) d = % / IV 2 dm + 1.
Using V(g71) = 2nzg™!, —2n2F(h) = F(Vh), and Parseval’s formula, we have
/(]27rxh\2 T 2reF(h))dz = /(|V(gl)h]2 T g\ VA2 dm
= / V(g™ )h + g~ ' Vh|> dm — 27T/x - V(|h]?) da
= / IV £|* dm + 2mn,
which finishes the proof. O

Remark 2.2.2. For h € L*(dz) with [|h|*dz = 1, we define the deficit of the

Beckner—Hirschman inequality by

Spi(h) = S(Ih[?) + S(|hJ?) — n(1 - log2).
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In fact, the proof of Theorem 2.2.1 yields

Se(f) — . (W () log |[W (f)[*dm = dpu(fg). (2.2.5)

Remark 2.2.3. Suppose f > 0 and 6.(f) = 0, then Theorem 2.2.1 yields Entg,,, (|Wf]?) =
2
0. By Cramér’s theorem, one obtains f(z) = 2o =15) for some b € R"™, which is

equivalent to the cases of equality in (2.2.1). Indeed, since [Wf|*> =1 a.e., we have

which yields in turn that h is Gaussian by Cramér’s theorem. Since |Wf| = 1, we

get Wf = e®? as desired.

In §3.2.2, we investigate the lower bound Entg,(]VWf]?) to obtain weak stability
of the LSI. Combining Carlen’s estimate with the optimal transport method, we also

get several types of deficit bounds which hold for a wide class of probability measures.

2.2.2 Optimal transport method

Let p and v be Borel probability measures on R”. We say that a map 7" : R — R"
pushes p forward to v if v(B) = u(T~'(B)) for every Borel set B C R". Brenier
[36] and McCann [94] showed that if p is absolutely continuous with respect to the
Lebesgue measure, then there exists a convex function ¢ such that 7' = V¢ pushes
p forward to v and Vg is uniquely determined p-a.s. If g and v have finite second

moments, then 7y = (Id x V) is the optimal plan for

Waur)? =it [ [ fo = yP (o) = [ lo = T@)P duta),

where the infimum is taken over all probability measures m on R™ x R" with marginals

wand v.
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Cordero-Erausquin [50] used the Brenier map to derive the following inequality
that holds for a wide class of probability measures, which entails the logarithmic

Sobolev inequalities, Talagrand’s transport inequalities, and the HWI inequalities.

Theorem 2.2.4 ( [50, Theorem 1]). Let pu be a probability measure on R™ of the form
du(z) = e V@ dx, where V is a twice differentiable function satisfying Hess V > ¢ for
some ¢ € R. Let f,g : R" — [0,00) be non-negative compactly supported functions.
Assume that f € C' and [ fdpu = [gdp. If T(x) = x + VO is the Brenier map
pushing fdu forward to gdu, then
Ent,(g) > Ent,(f) + /Vf - VOdu + g/f|V9|2du
+ /(AAH —logdet(/ + Hess0)) fdu (2.2.6)

where Ay denotes the Aleksandrov Laplacian.

Remark 2.2.5. For p = 7 and ¢ = 1 (using an approximation argument), (2.2.6)
yields

Sf) > %/|V(logf) + VO fdy + /(AAH —logdet(I + Hess#)) fdu.  (2.2.7)

Remark 2.2.6. If we apply this theorem to u = dm (i.e. V(z) = 2r|z|* and ¢ = 47),

then one can see

1 1
or [ 194 dm + Bt (9) 2 Entan(1$2) + 5 [ 2 V0 + 942 dm

where T'(z) = x + V0 is the Brenier map pushing |f|?dm forward to |g|*dm. In
particular, if ¢ = W/, then

5.(f) + Entam(IWF[2) > %/]27er€+Vf|2dm. (2.2.8)

2.2.3 Scaling asymmetry of the logarithmic Sobolev inequality

Following the proof of [53, Proposition 1], we obtain a lower bound of the deficit

in terms of the second moment and the relative entropy.
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Proposition 2.2.7. If dv = fdvy € Po(R") and \/f € WH2(R", dv), then

5(£) 2 7 ((maly) = ma(0)) + 2H())* (229)

Proof. Let u € H'(R™, dv) be such that [ |u|*dy =1 and [ |z|*|u|*dy = s < co. Let
dy = vy(x)dx. We define v = u/7, then [ |v[*dz =1 and [ |z|*|v[*dz = s. Direct

computations show that

1 1 1
Vol? = |V3Vu - suyFel = [Vuly + gloPlufy + 59 - ¥,

1 1
/|V’u\2d:c:/|Vu]2d'y+1/\x|2|u|2dv+§/V(u2)~V7d:ﬁ
1 1
= [1vupar+ § [laPluPdy = 5 [(-n-+1afiay

1
= [19updy = [laPluay+ 5 [ upar
Similarly, we have

1 n
/ o[ log |oPdz = / ul? o ufdy — / o?fuPPdy — = log(2r) / uPdy.

It then follows from the LSI with respect to v that

1 1
/!Vu]Qd’y— —/\u!ﬂog\uﬁd’y :/\Vv|2dx— —/\v|2log]v]2da: — ﬁ10g(27r62).
Let w(z) := A" 2v(x/A) for A > 0, then [, |w|’dx =1, [o. |z|*|w|?dz = A?s,

/|VU| dx—)\Q/|Vw| dz,

/]0]210g|v\ dx:/]w]2log]w]2da:+nlog)\.

and

The LSI with respect to the Lebesgue measure yields
/\2/|Vw|2dx - glog)\ > %/|w|210g|w|2dx + %log(%re?).
Optimizing the LHS in A\, we have
/\Vw|2da: > %exp <2 /|w|210g]w]2d:z:>.
Let w = +/f7, dv = fdy, and A = 2(2H(f) + (ma(7y) — ma(v)), then

5() 2 (et = 1= A) > L (H(f) + (maly) - ma(o))?
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2.3 Stability for Cramér’s theorem

Cramér’s theorem says that if the sum of two independent random variables has
a normal distribution, then both random variables are normal. Let X and Y be
independent random variables with distribution functions F' and G respectively, then
the Kolmogorov distance between X and Y is given by

d(F, G) = sup |F(z) — G(x).

zeR

Let F' % G be the distribution of the sum X + Y so that it is defined by

FxG(x) = /RF(x—y)dG(y).

If p; and p, are density functions of X and Y, one can write it as
FxG(x)= / p1* pa(t)dt.

b2
Let v o(x) = ﬁei 22~ be the Gaussian density with mean b, variance o2, and
®,, , its distribution function. For simplicity, let ®, := @, and & := ®;;. We recall
the following stability result of Cramér’s theorm from [68,103].

Theorem 2.3.1 ( [25, Theorem 2.2]). Let € > 0 and N = N(¢) = 1+ /2log(1/e).
Let X1, X5 be random variables with distribution functions Fy, F5. We also put
N N
a; = / rdFy(z), o? = / 22dFi(z) — a?
-N -N

for i = 1,2. Suppose that Fy and F» have median zero and 01,09 > 0. If dg(F} *

Fy, ®) < e < 1, then there exist absolute constants Cy,Cy > 0 such that fori = 1,2,

Ci 1 e°
di(F;, @y, 5,) < —————=min{ —,loglog — ¢ .
k{ 2 oi/log(1/e) {\/Ui 88 }

A general version of the stability result can be found in [25].

Theorem 2.3.2 ( [25, Theorem 2.3]). Let X, Xy be independent random variables
with E[X] = E[X5] = 0 and Var[ X, + X3| = 1. Fori = 1,2, let F; be the distribution
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function of X; and v? = Var(X;). If dx(Fy * Fy, ®1) < e < 1, then there exists C > 0
such that

1 [+
dg(F;, @,,) < ¢ min { ,log log 6—}
vy /log L Vi €

£

fori=1,2.

2.4 Entropic uncertainty principle

For a nonnegative function h on R", the entropy of A is given by

S(h) = —/ hloghdz.

Let h € L*(R™) with ||k]|2 = 1. The Beckner-Hirschman inequality (the BHI in short)
states that
S(Ih?) + S([h?) > n(1 —log?2) (2.4.1)

where E({) = Jon €2 n(x)dz. Tt is also called the entropic uncertainty princi-
ple. By differentiating the (non-sharp) Hausdorff-Young inequality in p at p = 2,
Hirschman obtained S(|h|2) + S([k|2) > 0. He conjectured in [80] that the Gaussian
functions are extremal for the inequality and the best constant in the right hand side
of (2.4.1) is n(1—log 2). Beckner [20] found the best constant in the Hausdorff-Young
inequality for all p € [1,2], which gave an affirmative answer to the conjecture.

Even though the Gaussian functions satisfy the equality, it was an open problem
to show that the Gaussians are the only optimizers. Lieb [91] characterized the class
of optimizers for the Hausdorff~Young inequality and the BHI. Indeed, he proved
that every optimizer for a convolution operator with a Gaussian kernel is Gaussian.

Equality holds in (2.4.1) if and only if & is of the form
h(x) _ cef@c,Jx)er-v

where ¢ € C, v € C", and J is an n x n real positive definite matrix (see [40, Remarks

in p.207]).
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2.5 Torsional rigidity

Let a € (0,2] and D a bounded domain in R". Let X be the rotationally
symmetric a-stable process with generator —(—A)*2. The first exit time of X?
from D is defined by

5 =inf{t > 0: X;* ¢ D}.

The expected lifetime is defined by u$,(z) = E*[r3] where E* is the expectation
associated with X7 starting at € R™. Note that u$(z) is a solution to the equation

(—A)zu(z)=1, x€ D, (25.1)

u(z) =0, x ¢ D
in the weak sense. If B is a ball of radius R and centered at the origin, then u%(z) is
explicitly given by
uf(2) = Coa(R® = [2*)%.

For o = 2, X is Brownian motion with generator A. In this case, we drop the
superscript .

The semigroup P associated with X;* killed upon exiting D is given by
PP f(x) = E*[f(X}):t < 7p)]

on L*(D). The general semigroup theory yields (see [52]) that there exists an or-
thonormal basis {p,} of L?(D) and the corresponding eigenvalues 0 < A\; < Ay <
A3 < -+ - such that P, = e ¢, and (—A)*%p, = \,,. Using the representation
of the transition density of X

pi(7,y) = Z e_AntSOn<x)90n(y)a

one obtains
(@)

P(r > 1) = / P, )y = 3 e gnlion()
D

n=1

and

ufy(z) = /0 P*(r5y > t)dt = Z ”(’f\"ngpn(a:)
n=1 n
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In addition (see [29, Theorem 4.4]), there exist constants ¢y, co depending on D and
a such that c;uf(z) < p1(z) < cou$(x) for all x € D. For further information, we
refer the reader to [29] and the references therein.

The classical torsional rigidity of D is defined by T'(D) = ||lup]||; for o = 2. We say
that up(z) is the torsion function of D. Let W, *(D) be the completion of C5°(D)
with respect to the norm u — ||Vulls. We have variational representations of the

torsional rigidity

T(D) = max { H”VUEQ cu € WyP(D),u # 0} (2.5.2)

= max {2|[ul|; — || Vull3 : u € Wy*(D),u #0}.

Since up is an optimizer for the maximization problems, we have T(D) = ||upl|; =
|Vup||3. There are two important inequalities for T'(D). The Saint-Venant inequality,
an isoperimetric type inequality for T'(D), states that if D is a set of finite measure
in R™ then

n+2 n+2

|B|" " T(B) = D[

(D)
where B is a ball. The Kohler-Jobin inequality states that for a ball B,

2

A (D)T(D)#2 > A\ (B)T(B)+.

Note that the classical Faber-Krahn inequality for the first eigenvalue \; follows from

these two inequalities for T'(D):

G e

Furthermore, it is well-known [34] that stability of Saint-Venant inequality can be
transferred to that of Faber—Krahn inequalities for the first eigenvalues. To see this,
suppose that there is a modulus of continuity ® : [0,00) — [0, 00) such that ®(¢) =0
if and only if t = 0, and

_n+2 n+2

BI-"*T(B) - |D| ™

T(D) > ®(A(D))
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where A(D) is the Fraenkel asymmetry defined in (1.1.12). Without loss of generality,
we assume that |D| = 1 and B is a ball with |B| = 1. If T(B) < 2T(D), it follows
from (2.5.3) that

M (D) T(B)\#*
nB) 7 <W>

T(B)
—1>C, | == — > C,P(A(D)).
> G, (g~ 1) 2 GrlAD)
If T(B) > 2T(D), then A\ (D) — A\ (B) > ¢, for some universal constant ¢,. Since
0 < A(D) < 2, if there exists M > 0 such that ®(z) < M for all = € [0,2), then one

can choose C,, s small enough that
AM(D) = M(B) > C, i ®(A(D)).

Thus we obtain

D[ A(D) — |Bl#Ai(B) > Cpar®(A(D)).

This is called the Faber—Krahn hierarchy (see [33, Proposition A.1]).
The fractional torsional rigidity for 0 < @ < 2 is defined by

T.(D) = /D u% (x) de = /D /0 TP > 1) dida.

There has been recent progress in the study of the fractional torsional rigidity. The
isoperimetric inequality for T, (D), a fractional analogue of the Saint-Venant inequal-
ity, follows from [16, Corollary 5.4] where the isoperimetric inequality was proven for
a general class of Lévy processes. For the stable processes, it also follows from the
sharp rearrangement inequality of [62, Theorem A.1]. Recently, Brasco, Cinti, and
Vita [32] proved a quantitative improvement of the fractional Saint-Venant inequal-
ity. Their method is based on the extension of [39] and the symmetrization argument

of [65].
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3. STABILITY OF THE LOGARITHMIC SOBOLEV
INEQUALITY

We investigate different probability measure spaces and metrics under which the
logarithmic Sobolev inequality is stable. We consider the Wasserstein distances, the
Kolmogorov distance, and the LP distances for p > 1. To obtain these results, we use
optimal transport theory, Fourier analysis, and probability. This chapter is based on

joint work with Emanuel Indrei [82].

3.1 Setting

. 2
Let dy = (271')_%6_%6&6 be the standard Gaussian measure on R" and f a non-
negative function in L'(dy) such that dv = fdv is a probability measure. We define
the Fisher information and the relative entropy of f with respect to v by

) =10~ [ Mo,
H(v) = H(f) = . flog fdy.

The classical logarithmic Sobolev inequality (the LSI) states that

6(f) = 51(f) = H(f) = 0. (3.1.1)

We call §(f) the deficit of the LSI. Note that the constant £ is sharp and I(f), H(f)
are well-defined if /f € WY2(R"™, dv). Equality holds in (3.1.1) if and only if bty
for some b € R™. Note that the Gaussian measure (that is, f = 1) is the only
centered optimizer. There are several proofs based on the central limit theorem [69],
the Ornstein—Uhlenbeck semigroup [88], the Prékopa—Leindler inequality [27], optimal
transport theory [50], and harmonic analysis [21,40].
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We are interested in measuring the deviation of a centered probability measure
dv = fdv from the Gaussian measure 7, which is the only centered optimizer. Let
A be a family of centered probability measures and d a metric or a functional that
identifies the equality cases. We say that the LSI is weakly stable under (d,.A) if
{frdy} C A and §(f) — 0 implies d(frdy,dvy) — 0 as k — oco. The LSI is stable
if a modulus of continuity is explicit: for a function ® : [0,00) — [0, 00) such that

®(t) = 0 if and only if t = 0,

0(f) = @(d(fdv, dv))

for all fdy € A. Let Py(R"™) be the class of probability measures with finite second
moments, and P (R™) the class of probability measures whose second moments are

bounded by M > 0.
3.2 Statements of stability results

3.2.1 Optimal transport method

We present stability estimates obtained by the optimal transport technique (The-
orem 2.2.4 and Remark 2.2.5).

Theorem 3.2.1. Let fdy be a centered probability measure in P2 (R). Then there
exists C = C(M) > 0 such that

0(f) = CIf = Uz (ay- (3.2.1)

In the next chapter, we will see that (3.2.1) is false in L? if p > 1 (Theorem 4.1.1)
: there exists a sequence of centered probability measures frdy € PM(R) (also on

R™) for which 6(fy) — 0 and
hlgglolgf ka — 1”LP(d'y) > 0.

A sufficient additional condition for LP—stability is higher integrability.
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Corollary 3.2.2. Let fdy be a centered probability measure in PM(R) such that
[1f1?~tdy < N for some p > 1 and N > 0. Then there exists C' = C(M,N,p) >0
such that

8
5(f) = CIf = UE

We extend Theorem 3.2.1 to higher dimension, under some tensorization assump-

tions.

Corollary 3.2.3. Let fdy be a probability measure such that [ x;fdy =0 and

/|xi|2fd7(x,») <M ae &= (21, ,Ti1,Tis1,. -, Tn)

for some M > 0 and some i = 1,2,--- ,n. Then there exists C' = C(M) > 0 such
that

0(f) = Cllf = UL ay-

Remark 3.2.4. Consider a class of probability measures fdy such that || f||zeomn) <
R for some R > 1. If f(zy,...,2,) = I, fi(x;) and f; is centered for some j,
then f satisfies the above condition. Therefore, the constant C' is independent of the

dimension for this function space.

Corollary 3.2.5. Suppose f(x1,...,x,) =%, fi(x;), where f; € PY(R) and fdy is
a centered probability measure. Then there exists C' = C(n, M) > 0 such that

0(f) = CIf = Uz (ay-

To prove Theorem 3.2.1, we apply the optimal transport technique and deduce
that the total variation distance is bounded above by W; and the LSI deficit. Then

we employ the following W;-stability result.

Theorem 3.2.6. Let fdvy be a centered probability measure in PM(R™). There exists
a constant C = C(n, M) > 0 such that

0(f) = Cmin{Wi(fdy,dy), Wi (fdv,dy)}.



33

Remark 3.2.7. The proof is based on the stability estimates of Talagrand’s trans-
portation inequality in terms of Wj by [18,51]. In the same way, one can obtain

W 1-stability from [57, Theorem 5.

Remark 3.2.8. Since W;-stability is not true in Py(R"), the constant C' = C(n, M)
in Theorem 3.2.6 cannot be taken independent of M (see Theorem 4.1.2). Further-
more, the constant C' necessarily depends on the dimension for the following reason:

there exists a sequence of centered probability measures { frdy} in P} (R) such that

d(fx) — 0 by Example 4.3.2. Then Theorem 3.2.16 implies

n <n+limsupI(f;) < M.

k—00

The proof of Theorem 3.2.6 is based on the observation that the relative entropy
is bounded by the deficit and the second moment via the HWI inequality. Then
we combine this with a stability estimate for Talagrand’s transportation inequality
[51,57].

The following theorem does not impose additional regularity assumptions or bounds
on the second moment and yields L!-stability in case that there is an L' bound on

the densities. For g € L'(dv) and o > 0, we define
B(a) ={fdyeP: f(z) > aae. zx}, (3.2.2)
Bla,g) ={fdyeP:a< f(x) <gx)ae z} (3.2.3)
where P is the space of probability measures.

Theorem 3.2.9. Let a € (0,1] and fdvy € B(a) be a centered probability measure.

Then there ezists C(a,n) > 0 and a linear function Ly = ay - x + by such that

3(f) = Cla,n)||log f — Lgll71(ay)s (3.2.4)
where ay € R", by € R, and |as| + |bf| < ¢ for some ¢ = c(n,a) > 0.

Corollary 3.2.10. Let a € (0,1] and {frdy} C B(a) be a sequence of centered
probability measures such that 6(fy) — 0 as k — oo. Then there exist a subsequence

{fr,;} € {fr} and a constant c € [, 1] such that fi, — ¢ a.e. as j — oo.



34

Corollary 3.2.11. Let « € (0,1], g € L' (dv), and {frdy} C B(a, g) be a sequence
of centered probability measures. If 6(fi) — 0 as k — oo, then fr — 1 in L'(dv).

Remark 3.2.12. For any M,a > 0 and g € L'(dy), we have B(a, g) ¢ PM(R") and
PM(R") ¢ B(a,g). To see this, it suffices to consider the case n = 1. Let M > 0
be fixed and frdy be a sequence of probability measures constructed as in Example
4.3.2 with w = 2. Then we can choose v so that {fydv} is included in P as we

have seen in the end of Section 4.3. Since the minimum of f; converges to 0, we get

PM ¢ B(a, g). We define a sequence of functions f;, such that fy(x) = fi(—2) and

5

—5——, x €0,k
e 2

Ckﬂ'(kz T 1)7 LS (kJ,OO)

where ,
e (1 - 2(k))
k241 )
Note that frdy is a probability measure and C, — 1 as k — oco. Furthermore, there

Cy = 2 ( arctan(k) +

T
exist C, o > 0 such that f;, > « for all k£ and

Ceé
m(x? +1)
for all z and k. Since the second moment of frd7y diverges, we conclude that B(«a, g) ¢

PI(R™).

fe(z) < € L'(dy)

Combining Theorem 3.2.6 with the standard compactness argument, we obtain

weak L'-stability in P} (R").

Theorem 3.2.13. Let M > n and {frdvy} be a sequence of centered probability mea-
sures in PM(R™). If §(fx) — 0 as k — oo, then fr — 1 in L' (dy).

3.2.2 Fourier analytic method

Let g(z) = 2%e ™" and dm = ¢?(z)dz. The LSI deficit with respect to dm is

defined by

) =5 [ VI am— [ \7P10gfFam
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for a normalized function f € L*(dm). Note that if us(z) = f(2y/7z)z, then we have
dc(us) = 0(f) by change of variable. Since
[y = UZ2my < I = U2y < 2lup = 12 (dm),

L?-stability with respect to d.(f) is equivalent to L'-stability with respect to d(f).
Recall that Carlen [40] derived the lower bound of d.(f) in terms of the relative

entropy of the Fourier—Wiener transform (see Theorem 2.2.1). We investigate the

case where Entg,,(|Wf|?) converges to 0 and use a compactness argument to obtain

the following weak L2-stability result.

Theorem 3.2.14. Let M > 0, € € (0,27), and { fr} be a sequence of normalized and

centered functions in L*(dm). Suppose

/|fk|26_(27r_6)|m|2d$ S M
for all k. If 6.(fx) — 0 as k — oo, fr, — 1 in L*(dm).

Remark 3.2.15. As we have seen in Corollary 3.2.2; higher integrability assumption
yields weak LP-stability for p > 2.

The optimal transport method and Carlen’s deficit estimate (2.2.4) yields the
following inequality which in particular implies weak L2*-stability for P (R") with

respect to ..

Theorem 3.2.16. Let f be normalized in L?(dm). Then

2v/mnWa(dm, [W f[2dm) + Entgnm (W f[?)

1
> 27r/|;1:|2dm—27r/\x|2\f|2dm+%/\Vf|2dm. (3.2.5)

AS a consequence,
V262 (f) + 6.(f) > zw/yxmm—zw/|x|2\f\2dm+%/\Vfﬁdm. (3.2.6)
e

Remark 3.2.17. Stability for Talagrand’s transportation inequality (2.1.4) yields an

extra remainder term while passing from (3.2.5) to (3.2.6).
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Corollary 3.2.18. Let M > 1 and {fx} be a sequence of normalized and centered
functions in L*(dm). Suppose [ |fi|*dm < M for all k. If 5.(fr) — 0 as k — oo,
then

I}LIEO/|ka|2dm—O.
In particular, we have fi, — 1 in L*(dm).

Corollary 3.2.19. Let M > = and {fi} be a sequence of normalized and centered
functions in L*(dm). Suppose [ |z[?|fi|*dm < M for all k. If 6.(fr) — 0 as k — oo,
then fr — 1 in L*(dm).

Remark 3.2.20. Suppose there is a modulus of continuity w and C = C(M) > 0
such that || f — 1||rr@y) < Cw(d(f)) as 6(f) — 0 and f € PM(R") for k € N and

p > 1. Then C necessarily depends on the dimension since [ |z[fdy < M.

3.2.3 Probabilistic method

Another approach to proving stability estimates for the LSI is to investigate quan-
titative versions of Cramér’s theorem [24,25] and combine them with a convolution
type deficit estimate of the LSI in [58]. We consider the space of probability measures
in PM satisfying further integrability and assumptions on the second moment. For

probability measures o and v on R, the Kolmogorov distance is given by

(1. ) = sup p((~o0,2]) ~ v((~00. 2],

Theorem 3.2.21. Let f be a symmetric nonnegative function on R and du = fdv €
Py' (R) with mg(p) = k. Letv(z) = f(35)* and assume that dv := vdy is a probability

%
measure. Then there exists g > 0 such that if 6(v) < e < gy, then
C
dic(1,7) < ——= (3.2.7)
log L

g
where Cy, depends on k and . is a Gaussian measure given by

1 |z|2

for some o > 0 depending on e.
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Theorem 3.2.22. Let f be a symmetric nonnegative function on R, du = fdvy, and

T

mao(p) = 1. Let v(z) = f(ﬁ)2 and assume that dv := vdy is a probability measure.
We have

d(v) > U(dk(p, 7))

where U(t) = e~ for some ¢ > 0.

_ 1 2P TRy
Remark 3.2.23. Note that for dyﬁ = —ze “"dx and v(x) = f(\/i> ,

_ 2 B 2 200
o(v) = / IV fIFdy s /|f| log | f[*d 1.
Remark 3.2.24. By Proposition 2.1.6, Theorem 3.2.6 implies that

3(f) = Carmin{dic (11, 7)?, dic(p1,7)"}-

On the other hand, it follows from Proposition 2.1.8 that Theorem 3.2.22 implies

6(v) = 1 W (caWi(p,7)?).

Note that if ¢ is small then ¥(¢) is bounded by ¥, which implies that Theorem 3.2.6 is
stronger than Theorem 3.2.22. Notice also that Theorem 3.2.22 has a scaled version

of the deficit 6(v).

3.3 Dimension-free stability estimates

One of the most important features of the logarithmic Sobolev inequality is that
the sharp constant % is dimension-independent, which leads to many interesting ap-
plications. It is natural to ask if there is a dimension-free quantitative improvement
of the LSI.

We observe that Carlen’s deficit estimate (2.2.1) is dimension-free. He showed
that the LSI deficit is bounded below by the relative entropy of the Fourier—Wiener
transform, which yields the characterization of the equality cases. This estimate is,

however, not metric-involved. The first result on dimension-free stability estimates
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in terms of a metric is found in [83], where Wy—stability was considered in the space

of probability measures satisfying the differential inequalities
—14+e<D*(~logf) <M

for e, M > 0. The estimate only depends on the choice of ¢ and M. In [57], the
authors considered the space of probability measures satisfying Poincaré inequalities.
Indeed, they proved a strict improvement of the LSI in within the class of probability

measures satisfying a (2, 2)-Poincaré inequality with a constant A > 0

A/gz fdy < /\VQIQfdv-

for every smooth function g with [g¢ fdy = 0. The improvement yields stability
estimates in terms of W5 and L', which depend only on the Poincaré constant .

In [58], it was shown that if fdv is a probability measure satisfying

Fle T f(2v/mx)) > 0,

then 6(f) > %[/ f — 1|3, which is dimension-free. We note that this estimate does not
have any parameters while the above estimates have the parameters that define the
probability measure spaces.

The stability estimate in Corollory 3.2.3 is dimension-free. We show L!'-stability in
the space of probability measures such that for some M > 0 and some i =1,2,--- | n,

[ xifdy =0 and

/\fci|2fdfy(a:i) <M ae o =(x1, ..., T 1,Tiy1,---,Tp).

Note that the constant depends only on M. In particular, as we have seen in Remark

3.2.4, we have a dimension-free L'-stability estimate in the space

{fdy € P f(ar,-+ wn) = [ ] fi(wi), Ifllo < R}
=1

for R > 0.
Recently, it was shown in [55] that the LSI can be self-improved with a dimension-

free estimate. Previously, a self-improvement of the LSI with a dimensional constant
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was proven in [26,53]. The authors in [55] derived a dimension independent estimate
in terms of the Fisher information matrix. As a consequence, they proved that if the
covariance matrix of a measure is dominated by the identity matrix, then the deficit
of the LSI is bounded below by some functionals in term of the eigenvalues of the
Fisher information matrix.

However, the logarithmic Sobolev inequality turns out to be so delicate that such
dimension-free stability estimates require strong restrictions on probability measures
and distance functionals. As we have seen in Remark 3.2.8, any W;—stability estimates
in P should depend on M by Example 4.3.2 and the constant M necessarily depends
on n by Theorem 3.2.16. In Theorem 4.1.1, we show that W,-stability fails in P (R")
for M > n, which implies that dimension-dependency is necessary for Ws—stability.
We remark that it was shown in [55] that there exist a sequence of dimensions ny € N
and a sequence of probability measures p; on R™ such that the deficit converges to

0 but the W5 distance from the class of optimizers diverges.

3.4 Proofs of the main results
3.4.1 Proofs of Theorem 3.2.1 and its corollaries

Proof of Theorem 3.2.1. Let T be the Brenier map between fdvy and dvy. Recall that

the Gaussian measure dvy satisfies the (1, 1)-Poincaré inequality
[1s=tav<z [(vsiay=2 [ [9tog p) far.
Combining this with (2.2.7), we have
/\f— 1 dy < 2/!V1ng|fd’y
<2 [ Viogs = T(a) +al fay + 2 [ [T(a) - 2| iy
<o [0 1)+ 2 sin) 2 [ 110 - sl
< 2v283(f) + 2/ T(z) — | fdy.
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Note that in one-dimensional case, the Brenier map between fdy and dvy gives an

optimal transport plan for Wi as well as Ws. In other words, we have

l/W?%x)——aﬂfdvzzlwﬁ<fdv,dv»

Applying Theorem 3.2.6, we get
[18 =11y = 2VB5 (1) + Comax(3(0), 0% ()
as desired. O]
Proof of Corollary 3.2.2. The result follows from Cauchy—Schwarz inequality
J1g=1par= [1g=1pir -1y
< @A N+ 1S = U,
< Cur(@77(N +1))26%(f).
0

Proof of Corollary 3.2.53. For fixed o' = (x1,...,2i-1,Tip1, ,Tpn), let gu(x;) =
f(z"). Theorem 3.2.1 implies

%/Wcﬂ’y(%) > /Qx/(iUi)lOggx/(%)d”Y(xi) +C</|9m/(xi) - 1‘d7(xi)>4'

Since we have

//|Vf|2dv (i) dry(x // (6 g’“’ xl dv(xi)dv(l"),

it follows from Jensen’s inequality that

512 ¢ [ ([ lgrto) - ar@) dr(w)

> 0( [ [ laste) = Udrtmpin@))’

= CIIf = Ul as)-



Proof of Corollary 3.2.5. By applying Theorem 3.2.1 to f;, it follows that

n n 4
o) 2 3 ([ 1) - Uar(w)
i=1 i=1
Since the Fisher information and the relative entropy of f = fifs--- f, are

IVIE g, [ St

/ Y / !
_Z/ v, fi(:) J;ﬁz(fj(xj)) dy
_Z/ axlfz

and .
[ foeray=3" [ @) os s dria),
=1

we have §(f) =

>
” /|fzxZ —1|d7xz) >n /|foZ 1|d7xz)>

=1
>0 /\f—lldv

', 0(fi). The result follows from

3.4.2 Proofs of Theorem 3.2.6

By the HWI inequality (2.1.5), we obtain

H(J) < Wyl fdy, d)VITT) - SWE(fdy, dn)
1 —1
< S 1)+ S WE(fdy,dy)

for any ¢t > 1. Let T': R® — R"” be the Brenier map from dvy to fdv, then

t

< t</R" |x|2fd7+/n |x|2d7) + %&f)

< t(n+ M) + %w).

H() < 5 [ IT(@) = oy + o)

41
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Note that it is well-known (for example [57]) that 165(f)H(f) > 02.,(f) where dru(f)
is defined in (2.1.3). Thus we obtain

P + (= D+ 20005~ s () 20

Solving this inequality for d(f) and applying (2.1.4), we get

0t (f) 3
u—nm+Mﬂ'4>
)

5Tal(f
2¢/t(t —1)(n+ M)

>l e ( Con G (fdy, dw))

t—1

5(f) > T(n+M)<(1+ o

ztim+Mm<

D

6 2¢/t(t —1)(n+ M)
where G(z) = min{z,x?}. We finish the proof by choosing ¢ > 1 such that Ccg =
2¢/t(t — 1)(n + M). O

3.4.3 Proofs of Theorem 3.2.9 and its corollaries

Proof of Theorem 3.2.9. Let T = V® = (T',T?,...,T") be the Brenier map from
fdvy to dy and {\;} the eigenvalues of DT — Id. By (2.2.7), we have

5() 2 5 [1T6@) =+ Vo P v+ 5200 g1 +00) s

Since f(x) > « for all z, there exists a constant C' such that |log f| < C(|f|+1). This
implies that || log f — L¢||11(4y) is bounded so that it suffices to assume that J(f) < 1.
Since t — log(1 +t) > (1 —log2) min{¢, t*} for t > 0 and f(x) > « for all z, we have

Cn - A) fdy > G0 Y A2 / ld
/Z( os(1+ A) fiy > ;(/{M}| s [ )
- 2
> Ca / Aild +/ Aild
z‘zl <( {|/\i\§1}| | 7) {|)\i|>1}| | fy)

n 2 2
- Ca; (</{I/\i§1} ‘)\i’dv) i </{I/\i>1} Mi,d7> >
zca,n<i/’)‘i‘d7>2
i=1
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where C, , = (1 —log2)a/n. Let a = [ Tdy and a = (ay, ..., a,), then

1
ol < [ iy << [ lalin

By the (1, 1)-Poincaré inequality for dv, we have
Z/Mimyzcz/mﬂ’i—@jm
i=1 ,J
>0y [I9 - wl
ZCZ/|Ti—xi—ai\d7
for some universal constant C. Thus we have
/!Vlogf—l—a]dfyg/]Vlogf—l—(T—:z:)|d'y+/]T—a:—a|d'y
<= [ Wosr+ @ =P o)+ [1T -0 —alay

< Ca,n)82(f).
Let b = [log fdy € (loga,0). It then follows from the (1,1)-Poincaré inequality for
dy that
[Wioes+aldyzc [fogs+as -l
which finishes the proof. O

Proof of Corollary 3.2.10. Theorem 3.2.9 implies that

lim / | log (fkef(“fk"”bfk)) |dy =0
k—oo

Since |ay,| + |by,| is uniformly bounded in k, there exists a € R™ and b € R such
that ay, — a and by, — b as k — oo along a subsequence. There exists a further
subsequence such that log(fke*(“fk"”bfk)) — 0 and in turn that f;, — e***® ae. as

k — oo. Since fx(z) > a for all k and z, we have a = 0 as desired. H

Proof of Corollary 3.2.11. Suppose that there exists a subsequence {fx} such that
|fe = 1f|z1@@y) = C > 0 for all k. By Corollary 3.2.10, f; converges to a constant
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a.e. along a subsequence as k — oo. It then follows from the dominated convergence

theorem and the mass constraint that f; converges to 1 a.e., which is a contradiction.

O

3.4.4 Proof of Theorem 3.2.13

Let {f;} be any subsequence of the original sequence. We will show that there
exists a further subsequence { ;) } that converges to 1 in L*(R",dv). By (2.1.6), it
suffices to show that \/T(k) — 1in L*(R",dy). Since the deficit converges to zero, it
follows from Theorem 3.2.16 that {I(f;)};>: is uniformly bounded in j. Let h; = f;y

|2

where y(z) = (27)"%e” 2, then
() =4 IVW/F)Pdy
—1 [ VB - VET (A

=4 | |V(/hj)Pdx —2n+ | |z]*dv;.
]Rn

RP
So {y/h;};>1 is bounded in WH2(R™).

Let © C R™ be a bounded domain. The Rellich-Kondrashov theorem says that
there exists a subsequence {h;)}r>1 such that \/% converges to a function ¢ in
L2(Q). Since /h; is nonnegative for all j, we let g = \/f7.

We claim that f =1 a.e. in Q. Let dv; = f;dv. Since 6(f;x)) converges to 0, we
have W1 (vjky,y) — 0 by Theorem 3.2.6. This implies that v;) — v weakly, that is,

lim odvjy = / wdry
R n

k—ro0
for all p € CP(R™). Let ¢ > 0 and ¢ be a bounded continuous function such that
lp] < K for some K > 0. We pick N € N such that

2

15 15

v — d‘<—,‘ i — 2d)<
’/Qsoyg(m /9907_2 /Ql fitwy =V IPdy| < 173

for any k > N. Since [, fjwydy < 1 for all k and

/Qfdvé/gl\/%—\/?IZdwr/ﬂfmd%
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we obtain [, fdy < 1. One can see that

‘/Q(f - 1)80657‘ < ‘/Q(fj(k) - 1)gpd7‘ + ‘ /Q(f_ fj(k))tpdv‘

e
<S4k [ 1f = fuldr
Q

< S+ k([ W= hwla) ([ W+ [fwra)

<e.

This holds for all € > 0 and all ¢ € CP(£2). Thus, we conclude that f =1 a.e. in Q.

Let By := {x € R" : |z| < k} for each k € N. Choose a subsequence { f; ;};>1 such
that \/fTJ — 1in L*(By,dy) as j — oo. On By, we can find a further subsequence
{fa;}i>1 C {fij};>1 such that \/fo; — 1 in L*(B,dy) as j — oo. Iterating this
procedure, we have { fj,;};5>1 such that \/fr; = 1 in L?(By, dy) as j — oo. Define
k) = frr and let € > 0.

Since v; converges weakly to v, the family {v;} is tight by Prokhorov’s theorem.

Thus, we can choose N; € N be such that f]R"\Bk dv; < § and f]R”\Bk dy < £ for all
k > N,. By definition, there exists N, € N such that ka |V [ —112dy < 5 for all

k > N,. Combining our observation, we have

‘/RIW—HQM < ‘/B |\/W—1\2d7‘+2(/

(f® + 1)d’y‘ <e
"\ By,

for any k& > max{N;, No}. Therefore, we conclude that y/f*) — 1 in L*(R", dv) as
desired. O]

3.4.5 Proof of Theorem 3.2.14

Suppose that there exists a subsequence {f;} such that ||fi — 1{|12(4m) = C > 0

for all k. Let dm, = e~ (@m=9lel* g2 Since

/ fuldm, < M,
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f converges weakly to f in L?(dm,) along a subsequence. Since @(x) 1= e~ 2 e(m=¢)lzl?
is in L?(dm,) for each £, we have

lim [ e ?™*U* fi(v)dz = / e 2mET T f () d.

k—00

Therefore, Wfi(&§) — Wf(E) for every £ € R™. On the other hand, it follows from
d¢(fr) — 0 and Carlen’s deficit estimate (2.2.4) that

lim Entg,, (W fil?) = 0.
k—o0

By Pinsker’s inequality (2.1.2), we have [W/fi[*> — 1 in L'(dm) as k — oo and
IWf|*> = 1 ae. This implies f = 1 by Cramér’s theorem. Since f; is normalized
in L?(dm), therefore f, — g weakly in L?(dm) along a further subsequence. By
uniqueness of weak limits, we have g = 1. This yields f, — 1 in L?*(dm), which is a

contradiction. O

3.4.6 Proof of Theorem 3.2.16

Proof of Theorem 3.2.16. Let f € L?(dm) be normalized and T the Brenier map
between dm = |U*[2dz and |Wf|2dm = |U*f|*dz. Note that there exists a convex
function ¢ such that T'= V¢ and it satisfies the Monge-Ampere equation

U2
T F(T)
= glogZ — 2r|z|? — log |lj*§”(T)|2

log det D?*¢ = log

Integrating of both sides with respect to dm = |U*|*dx, we get

/|U*|210g|ﬁ§“(T)|2d93+/|U*|210gdetD2¢d:v: glogQ—Qﬂ/|x|2|U*|2dx.
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Let ¢(z) = ¢(z) — |x|? and A; be the eigenvalues of D%, then
27T/ |$|2|(7’?f|2d:p - 27?/ |z|? dm = /log det D*¢ dm + Entg,, ((Wf|?)
= /zn:log(l + \;) dm + Entgn, ((W£]?)
i=1
< [ A dm+ Batan (W)
= 47r/(T($) — ) - 2 dm + Entg, ((Wf[?)
< AnWa(dm, W Pdm) (mo(dm))? + Enty (W)
where mo(dm) is the second moment of dm. By the Plancherel theorem, we have
S L R
= / |VU* f|*dx
= 47 / |z|?|U* f|*dx — 47T/x -Vffdm+ / |V f|?dm.
Using
—2/:B~fodm = n—47r/|a:\2|f|2dm,
we obtain
27r/|:t|2dm—27r/|x|2|f|2dm—l—%/|Vf|2dm

< 2/manWy(dm, |Wf|*dm) + Enta, ((WF]?).

Therefore, it follows from Talagrand’s transportation inequality (2.1.3) for the mea-

sure dm and the entropic uncertainty principle (2.2.3) that

27r/ |z|2dm — 27r/ |z|?| f |2 dm + % / IV f|2dm < 2/TnWa(dm, [WF2dm) + 6.(f)
< V20/6:(f) + 0c(f).
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Proof of Corollary 3.2.18. Suppose that there exists a subsequence {fi} such that
6c(fx) = 0 as k — oo and [ |V fx|?dm > ¢ > 0 for all k. Since [ |fi|*dm < C for
all k, along a further subsequence, fZ converges weakly to f? in L?*(dm) for some

f € L*(dm). In particular, we have
[ a1 feldm = [ faPlspdm
as k — oo because |z|*> € L?*(dm). By Theorem 3.2.6 and Theorem 3.2.16, f = 1 and
/ \V fe|?dm — 0

as k — oo, which is a contradiction. O

Proof of Corollary 3.2.19. Suppose that there exists a subsequence {fi.} such that
oc(fr) = Oand || fu—1||12(4y) = ¢ > 0. Since Theorem 3.2.16 implies [ |V fx[*dm < M
for all k, we have f, — f in L?(dm) as k — oo along a further subsequence, for some

f € L*(dm). Theorem 3.2.6 yields f = 1, which is a contradiction. O

3.4.7 Proofs of Theorem 3.2.21 and Theorem 3.2.22

We recall a convolution type deficit estimate for the LSI of [58].

Theorem 3.4.1 ( [58, Theorem 4.1)). Let f € L*(dm), f(z) = f(—=x), ||fl2 = 1,
and h = fg. Then there exists a constant C > 0 such that

[ hsh—g gl < Coir) (ln—glf +1h - glla)
R

The following lemma is an L'-L? estimate under a second moment assumption,
which allows connecting stability of Cramér’s theorem in [68,103] (see Theorem 2.3.1

and 2.3.2) with Theorem 3.4.1.

Lemma 3.4.2. Let u be a nonnegative function in L'(dz) N L*(dz) such that
/xzu(x)dx = k||lul; < o0
R

for some k > 0. Then we have ||ul|; < G%HUHQ.
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Proof. Let p(x) = u(z)/||ully and ¢(x) = ﬁe‘xz. Since ¢ = xlogz for z > 0 is

convex (¢(0) = 0), one can see by Jensen’s inequality that

e tog 2 g — / Py > o [ vty <o

q(z) q(z) R

So, we have

/Rp(:v) log p(z)dz > /Rp(x) log q(z)dx (3.4.1)
= —/Rx2p(a:)dx — %logﬂ'
> —(k+1).

Let 1 < po,p1 < 2,0 € (0,1), and p%, = 1p_709 + p%. It follows from Holder’s inequality
that

luallpy < Hlully*llellp, - (3.4.2)
This implies that the map p +— J(p) := log|| f|[} is convex on [1,2]. On the other
hand, the derivative of J(p) is given by

d 1
—J(p) = /uplogudx.
" Tl Ji B

By the convexity of J(p), we have J(2) —J(1) > J'(1). So, we apply (3.4.1) to obtain

1
log [[ull? — log Jull; > —— / ] log Julde
Tall: Ja
_ / p(z) log p()dzx + log [Jul]s
R
> (k4 1) +log Julh.
which yields the desired result. O

Proof of Theorem 3.2.21 . Let h(z) = f(2)g(z) and f(z) = f(v/27x) then one can

273k
/ Ih2dz = 1, /hdx =21, /thda: =20 (3.4.3)
R R R Q

easily see that
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Let X;, X5 be ii.d. random variables with the density p(z) = 27;h(%) and the
distribution function F. Note that F has median zero and Var[X;] = £. Since the

Kolmogorov distance is bounded by the total variation, one can see that
1
de(Fx F.0) < 3 [ pep(e) =1 (a)lde
R
Since we have h x h(x) = /2mp * p(y/7z) and g x g(x) = V/27y(y/7x), we obtain
1
dg(Fx F,®) < — hxh(x)—g=*g(x)|de.
WP 3 P00 < s [ [l hia) g = g(2)

Let u := h* h — g * g, then we have |lu; < 2v/2 and

/Rz?yu\da; < /RxQ(h*h)(x)dx—i—/xZ(g*g)(z)dz

R

< 2%</R:Jc2h(x)dx+/Rx2g(x)dx>
<C(k+1).

By Lemma 3.4.2, we have ||u|; < Cy||u|l2 where Cy, > 0 depends only on k. Combining

our observation with Theorem 3.4.1, we obtain

dic(F % F, @) < C(llh — gl + [1h = gll2) F6.(F)*

where f = f(v/27z). Note that 8.(f) = 8(v). It follows from (3.4.2) and (3.4.3) that
(IIh = g||2 + |h — g||2)T is bounded by a universal constant and that

ol

dg (F'* F, ®1) < Cid(v)s.

Choose gy > 0 such that Cye§ < 1. Let € > 0 be such that 6(v) < € < g9, and

put n = Cres, N = N(n) = 1+ 1/2log(1/n) and

N(n)
o = [ apla)de.
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Note that o(n)?  Var[X;] = sma(n) as n — 0. So, we choose €, small enough so
that 1mo(p) < o(n)? for all € < &o. It then follows from Theorem 2.3.1 that

C 1 e
dx (F, ®o() < min ¢ ———, log log —
T o (n)y/log(1/n) a(n) 77
C
~ o(n)2/log(1/n)
C
S 3
ma()¥ /4 10g(2) — log Gy
Ck
<

i

log 1
By change of variables, we have dk (F, ®,(,;)) = dk(jt,y-) where

1 =
dy, = ————=e 4™’ dx,
Tra(n)?

which yields (3.2.7). O

Proof of Theorem 3.2.22 . Let h(z) = f(z)g(z) and f(z) = f(v2rx). Let X1, Xo
9—1/4

VT

function F. Since ma(p) = 1, we have Var(X;) = Var(X,) = 1. The same argument

be i.i.d. random variables with the density p(z) =

h(-%=) and the distribution

then leads to

d(F * F,®;) < ¢16.(f)5 = c18(v)3

1
for some universal constant ¢;. So, we choose gy > 0 such that c;¢f < 1. Assume

d(v) < e < gg. We apply Theorem 2.3.2 to obtain

Ca

F & )
dK(7 ﬁ)< 1

log

Note that dk(F, q)%) = dk(u,7) by change of variables. Let W(s) be the inverse of
the map ¢t — —2=, then 0(v) > V(dk (i, 7)) as desired. O

\/log%’
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4. INSTABILITY OF THE LOGARITHMIC SOBOLEV
INEQUALITY

We have seen that there are different types of stability estimates for the LSI according
to the choice of probability measure spaces and distances. A natural question is to
find the best possible probability measure space and distance in which the LSI is
stable. In this chapter, we investigate this question. To be specific, we show that
there are no stability in P2 (R) (resp. P2(R)) with respect to Wy and LP(dy) for
p > 1 (resp. Wi). This chapter is based on my work [85].

4.1 Main results

The first result shows that the Wh-stability estimate obtained in [26, Corollary
1.2] cannot be improved in terms of the probability measure space P3(R). It also
implies that the L!-stability estimate in Theorem 3.2.1 is best possible in terms of
the L? distances. Note that there is an LP-stability estimate in PM(R) (p > 1) with

a higher integrability assumption (see Corollary 3.2.2).

Theorem 4.1.1. Let M > 1 andp > 1. There exists a sequence of centered probability
measures dvy = frdy in PM(R) such that limy,_,., 06(fi) = 0,

lim inf Wy (v, v) > Cy,

k—o0
and
lim inf | fe — Ll 2oy = Co,
for some C,Cy > 0.

The next result is Wi-instability in Py(R), which implies that the W;j-stability

estimate in Theorem 3.2.6 cannot be improved in terms of the space P31 (R).
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Theorem 4.1.2. There exists a sequence of centered probability measures dvy, = frdry

in Py(R) such that limg_,o, 6(fx) = 0 and limy_,o W1 (vg,y) = 00.

The key idea of the proofs is as follows. Using the class of the LSI optimizers,
we construct a sequence of centered probability measures with a small deficit. We
then control the second moments and the relative entropies so as to conclude that the
distances from the standard Gaussian measure, which is the only centered optimizer,
do not converge to zero.

Theorem 4.1.1 and 4.1.2 deal with probability measures on the real line. These
results, however, can be directly generalized to the higher dimensional case. Let vy
be the sequence of probability measures on R constructed in Example 4.3.2 and ~v,,_1
the standard Gaussian measure on R, If we define a probability measure 7, on
R" by 1 = v ® Yn—1, then we have (1) = I(vy), H(g) = H(y), and 6(0) = 6(vg).
Furthermore, we have mq(v;) = (n — 1) + ma(v) and mq(vy) > mq(v) — ma(Yn-1)-
Controlling the second moment and the relative entropy of v as in the proofs of
Theorem 4.1.1 and 4.1.2, we extend the results to R” for n > 2.

In Proposition 4.3.4, we show that the sequence v, in Py(R) constructed in The-
orem 4.1.2 converges to v in L'(d~y). Thus it is still open to show L!-stability in Ps.
Note that if H(f) is finite, then it follows from Jensen’s inequality that the second
moment is finite. So Py is the most general probability measure space in the setting

of the LSI.

4.2 Literature review

We review previous stability results and compare the probability spaces and the

conditions used in this literature.
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4.2.1 Wasserstein distance

Indrei and Marcon [83] showed that if fdvy is a centered probability measure with

the log-concavity condition on the density

—1+e< D2(1og(%)) <M (4.2.1)

for e, M > 0, then
8(f) = CepaW5 (fdry, dv). (4.2.2)

Their method relies on the optimal transport method (Theorem 2.2.4) and Caffarelli’s
contraction theorem [38]. Note that Wy-stability cannot hold for all probability
measures since it would improve the constant in the sharp LSI (see [83, Remark 4.3]).

Let A > 0 and P(A) be the space of probability measure fdy satisfying a (2, 2)-

Poincaré inequality with a constant A: for every smooth function g with [ g fdy =0,

3 [ ra < 199 g (423)

It was shown in [57] that every probability measure fdy € P(A) for A > 0 satisfies
the following improvement of the LSI

C

() < ) (424

where ¢(\) = % < 1. The proof is based on an interpolation along the

Ornstein—-Uhlenbeck semigroup. In particular, this yields Wy—stability

5(f) = el NWE(fdy, dv). (4.2.5)

where ¢;(\) = %(C(l)\) — 1). Note that every probability measure fdy with (4.2.1)
satisfies a (2,2)-Poincaré inequality. Thus the Wy-stability bound (4.2.5) of [57] is

an improvement of (4.2.2). We note that if fdy € P()) then

ma(fdy) = / af? fdvy <

>3

by (4.2.3) with g(z) = a; for i = 1,2,--- ,n. Thus we have P(\) C Py (R™).
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The Fisher information and the relative entropy with respect to dv have different
scaling. From this observation, Way—stability was derived in [26] (see also [53, Theorem

1] and Proposition 2.2.7), which states that if fdy € Py(R") is centered, then

0(f) = CWa(fdy,dy)*.

4.2.2 Total variation distance

One of the consequences of (4.2.4) in [57] is an L'-stability estimate, which states
that if fdy satisfies (2, 2)-Poincaré inequality with constant A then

5(f) = cxWIIf = U Zaay
where c3(A) = (1 — ¢(N)).
In [58, Proposition 4.7], the authors proved that if fdv is a probability measure
satisfying
Fle ™ f(2y/mz)) > 0, (4.2.6)
then
() > 51 11, (127)
which also implies an L!'-stability estimate. The proof is based on Carlen’s deficit
bound (2.2.4) and Pinsker’s inequality (2.1.2). It is remarkable that the positivity of
the Fourier transform is quite different from P}. Indeed, the spaces of probability

measures fdy satisfying (4.2.6) is not included in P37 for any M, and vice versa.

Proposition 4.2.1. Let S be the space of probability measures fdy satisfying (4.2.6).
For any M > 0, we have S ¢ PM(R™) and PM(R") ¢ S.

Proof. Since the LSI is L?-stable in S by (4.2.7), Theorem 4.1.1 implies that PM ¢ S
for all M > 0. Let frd7y be the centered Gaussian with variance k, then { frd~y} is not
included in PM for any M > 0. Since e ™*°\/f.(2nz) is also Gaussian, its Fourier

transform is positive. Thus we get S ¢ PM. O

We note that the positivity condition for the Fourier transform can be relaxed in

a sense that F(e~7* f(27z)2) belongs to some region in the complex plane. See [58].
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4.3 Examples

In this section, we construct a sequence of centered probability measures to prove
Theorem 4.1.1 and Theorem 4.1.2. First, we find a sequence of centered probability
measures such that the deficit of the LSI goes to 0. By Lemma 4.4.1 and (2.1.2), it
is enough to control the second moments and the relative entropies of the sequence
to show that it does not converge to v in the Wasserstein distances and the LP(d7)
distances for p > 1.

Recall that §(f) = 0 if and only if f(z) = exp(b-z — [b]?), for b € R". We start
with a trivial example.

2
[b]

Example 4.3.1. Let b € R", g,(z) = e =2, and dv, = g,dy. Since g, are the
optimizers of the LSI, we have 6(g,) = 0 for all b € R™. Indeed, a direct calculation
yields that

V 2
1) - [ Vol y, — o [ =1,
n gb n
1 2 1 2
How = [ avtorandy = [ (b G 0) = 5bf7) dy = P,
ma(p) = [ |z[Pgdy = [ |z +0dy =n+ b
Rn R

Note that I(v4), H(v), and ma(1s) all tend to oo, as |b] — co. Notice also that the

measure g,dy is not centered provided b # 0.
Now we present the main example.

Example 4.3.2. Let gy(z) = % and v(z) = (27)"2¢7 "/ for 2,b € R. We
denote by dy = y(x)dz and set ®(x) = [*_ dy. For each k € N, let . be a function
in C*(R) such that

(

1, z € [0, k]

fk(x) = lk($), VS (k’k + %]

ag(@), @€ (k+ },00)

\

and fi(z) = fiu(—z) where
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(i) b=0by=2(k+ 1)+ Vk,
(i) a =g =vb;" € (0,3) for v,w >0,
(ili) I € C*°(R) satisfies lx(k) = 1, ly(k + 1) = agy(k + 7), |l (2)| < 2k, and

1
agy(k + E) <l(x) <1
for all z € (k, k + £

We observe that agy(k + 1) < 5 for all k € N. Note also that fr € L*(dv) and

. k k—l—% 0o
/ frdy = 2/ dy + 2/ I (x)dy + Qa/ gp(x)dry
R 0 k ket

— (20(k) — 1) + z/m (@) dy + 200 (b — k — %).

Since I (z) < 1 and

k+4
/ li(x)dy
k

we have [p fudy — 1, as k — oo. Let ¢ = (Ja frdvy)~ and define fy = ¢ fr and

< [ otwde < i) = o),

dvy, = frdy. The constants v and w in a = a4, will be determined later. They play a
role in controlling the second moment and the relative entropy of v,. Note that the

following lemma and proposition do not depend on the choices of v and w.

Lemma 4.3.3. Let f;, and v, be defined as in Example 4.3.2. Then we have

lim §(fx) =

k—o0

Proof. Direct computations give

1(f5) zzck/k ‘ |ll/k(( ))|2d 42 oz/]:; |gg”b(( ))|2d7

E+1p 2
- zck/ R LG | P R S S
k Ik() k
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and

k k+1
H(fx) = 2/ cx log cdry + 2/ el (z) log(crly(x))dy (4.3.1)
0 k

+ 2/ (cragy) log(cragy)dry
kt 4
kit
= (crlogcy)(2®(k) — 1) + 2/ celi () log(cli(x))dry
k

1 1 1
+ 2¢ralog(cra)®(b — k — E) + 2craby(b — k — E) + cab?®(b — k — E)

Thus the deficit of the LSI is

5(f) = e /k ’ 'll/k:(‘?)’ dy — 2 /k " eule() Tog(cali(@))dy — (e log e) (2D(k) — 1)
1

1
— 2¢cpalog(cra)®(b — k — E> — 2cpaby(b—k — E)

Note that ¢x — 1 and @ — 0, as kK — oo. Since the limits of the map t — tlogt at

t=0and t=11is 0, we have

klggo ((cxloger)(2®(k) — 1) + 2cprlog(cra) ®(b — k — %)) = 0.

By the construction of oy and by, we have

1 1
lim aby(b—k — —) = lim

_ _1
pbtve2VE — g,
k—oo k k—oo /27

By the construction of I, we have
1
lk<$) 2 ong(k’ + E),

which yields

/k—i-% |l;€(x)‘2d7 - AR2 /k—&-% "
k lk(l') - Ong(k? + %) k

4k~ (k)
~ agy(k+ 1)

4k

= —=¢

V2To

—3 W -VE) — (1),



99

Choose kg € N such that < cp < 3 forall k > ky. Since [(x) < 1 for all k, there

N

exists a constant C' such that |cilx(z) log(crli(x))| < C for all k > kg. So we have

Q

[ty ogteatiots| < Stk = o),

for k > ko. Therefore we conclude that 6(f;) — 0 as k — oo as desired. O

Proposition 4.3.4. Let fi and vy be defined as in Example 4.3.2. Then, fr — 1 in

LY(dv). As a consequence, vy — v weakly as k — oo.

Proof. By (2.1.6), it suffices to show that ||v/f —1|[2(4y) — 0. A direct computation
yields

k kit
VG = Wy =2 [ 1V — 1Py +2 / Verds — 1
0
+2/ |/ eragy(z) — 112dy
kJrk

| — 1P(20(k) - +2/k+_|M—1|dv

1 2 b 1 1
+ cad(b—k — E) — 2\/ckae*%®(§ —k— %) + O(—k — E)

ket i
— o(1) +2/ o — 1127,
k

It follows from the assumption on [i(x) that ‘fk’“% Vel — 1)2dy| < wv(kz) =
o(1), which leads to ||v/fi — 1{|12(ay) = 0(1) as desired. O

4.4 Proofs of the main results
4.4.1 Lemma

Let {vx} be a sequence of probability measures in P,(R"). The next lemma gives
a sufficient condition for the sequence {vy} not converging to a measure p in the
W, metric. In the proof of Theorem 4.1.1 and Theorem 4.1.2, we control the second

moments to conclude that the W, distance does not converge to .
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Lemma 4.4.1. Let p > 1 and p, pu, € Pp(R"™) for k > 1. If there exists a constant
C1 > 0 such that
lminf (m, (1) — my (1)) > Ci.

then iminfy_,oc WE(p, ) > Ca, for some Cy > 0.
Proof. Let t > 0, then there exists a constant C; > 0 such that
[P = |y|” < tly|” + Cilz — yI?

for any z,y € R™. Let 7 be a probability measure on R"™ x R" with marginals py

and p. Taking the integral with respect to dmy, we get

7%ww—mgmsm%wwuz/ & — yPdmi(z, ).
R xR"

We take the infimum over all such 7 to get

my () — my(p) < tmy () + G (ks k)

Let t; € (0,C}) and choose kg € N large enough that

lim inf(my (115) — mp(1)) — 1 < mp(pie) —mp (1)
for all k > ky. Put C5 = liminf; ,(m,(1;) — my(p)) — t1, then
Cs < tmy(p) + CWP (1, i)

for all k& > kqy. We finish the proof by choosing ¢ = Qm;iﬁ >0 and Cy = 2% O

4.4.2 Proof of Theorem 4.1.1

Let w =2 and v € (0, (M — 1)/4) be such that vb,* < i for all k. Define f;, and
vy as in Example 4.3.2 with b, = 2(k + %) +Vk and ay = vb,f. The second moment

of v, is
k k-&—% 0o
ma(vg) = QCk/ vidy + QCk/ 221, () dry + QCka/ gy (x)dy (4.4.1)
0 k k+4
k—‘r% 1
=, (20(k) — 1 — 2kvy(k)) + 2ck/ 22 (2)dy + 2¢,ab*® (b — k — E)
k

+ 200 (@(b—k—%)—(b—k—%)y(b—k—%)JrQby(b—k—%)).
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Note that ¢ (2®(k) — 1 — 2kvy(k)) — 1 and

}}i_}rgOQCka(@(b—k—l)—(b—k—l)v(b—k‘—l)%—%y(b—k—l)) = 0.

k k k k
Since ‘fk]ﬁ% :U2lk(x)d'y’ < %”y(/ﬂ) = 0(1), we obtain
. . 5 1
lim ma(vg) = 1+ lim 2¢,ab”®(b— k — —)
k—ro0 k—ro0 k
) 1
= 1—1—21)’}5?(()106]4;(1)([)—]6’— E)

=1+ 2v.
Since 1+ 2v < M, there exists N € N such that {vy }r>n C P2, Since pa(y) = 1 and

lim (ma(vk) — p2(y)) = 2v > 0,

k—o0

it follows from Lemma 4.4.1 that liminfy o Wa(p, ux) > C, for some C' > 0. By
(4.3.1), we have

1 1
H(f) = o(1) + 2¢,vb*by(b — k — E> + b 2D*®(b — k — E)
=o(1) + vep®(b— k — %),

which implies that H(fx) — v > 0. By (2.1.2), we conclude that || fy — 1||ray) does

not converge to zero for p > 1. ]

4.4.3 Proof of Theorem 4.1.2

Let v, and f; be defined as in Example 4.3.2 with a = b2 (i,e. v =1 and
w = 3). Note that ms (1) < oo for all k and my(vy,) — oo as k — oo by (4.4.1). By
Lemma 4.4.1 it is enough to show that mq(1}) does not converge to mq(y). By the

construction of v, we have

ml(uk):/|x|dl/k
R

k k—i—% oo
= QCk/ |$|d7—|—20k/ |x|lk(x)d7+20ka/ |z + b|dy.
0 k k

+5-b
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We observe that 2¢;, fok |z|dy = o(1) + my (),

/:H ||l () dy k)

< (k+7) 52 = o).

and
2cka/ |z + b|ldy > QCka/ (b — |x|)dy
k+%—b k-&-%—b

1
> 2¢,ab®(b — k — E) — 2cxamy (7).

Since we have ab = b2 — oo, we conclude that my(vg) — o0o. By Lemma 4.4.1, the

proof is complete. O

Remark 4.4.2. We summarize what we have seen in this section. Let v and f; be
as in Example 4.3.2. Note that aj, = vb;" and b= 2(k + 1) + V'k. According to the

computations above, we have

H(vg) = o(1) + cxob> (b — k — %)

and

o(1) + 21 P obP ™ < my(vy) — my(y) < o(1) + 2Pc b

for all p > 1. For any v,w > 0, we have v, € Po(R), 6(vg) = 0, || fe — L||l£1(ay) — O,
and v, — 7. The followings describe the behaviors of the relative entropy and the

second moment of v, in terms of w.

(i) If w > 2, then H(r;) — 0 and ma(vx) — me(y) so that no instability results

can be obtained.

(i) If w = 2, then ma () does not converge to ma(~y) which implies that Wy (v, ) #

0. In this case, ma(1}) can be bounded by some constant so that v, € P,

(iii) Ifw < 2, then my(v) goes to co so that v, does not belong to P2 for any M > 0.

In this case, we have m,(vy) — m,(y) # 0 for any p > w. So W,(vx,y) /4 0.

(iv) The relative entropy H(v;) /4 0 if and only if w < 2.



63

5. INSTABILITY FOR BECKNER-HIRSCHMAN
INEQUALITY

In the previous chapter, we constructed a sequence of probability measures such that
the LSI deficit converges to 0 but the distances from the Gaussian measure does not.
Note that we have seen in (2.2.5) that the deficit of the BHI is bounded above by that
of the LSI. As an application of Example 4.3.2, we prove that there are no stability for
the Beckner—Hirschman inequality (the BHI) in terms of the normalized L? distances

with some weighted measures and range of p. This chapter is based on my work [85].

5.1 Main results

For a nonnegative function A on R with |||l = 1, the Beckner—Hirschman in-

equality states that
bpu(h) = S(R|*) + S(IA*) — (1 ~log2) > 0

where S(p) is the entropy of p defined as in (2.2.2), and dgu(h) is the deficit of the
BHI. It is also called the entropic uncertainty principle. We say that a function h
is an optimizer for the BHI if dgg(h) = 0. Let & be the set of all nonnegative, L?-
normalized optimizers for the BHI. Using the fact that the optimizers are Gaussian
(see [91] and [40, p.207]), we get

2a
T

& ={Gor(r) = ( )Zef“("“"*r)2 ca> 0,7 € R} (5.1.1)

We denote by G, (z) = Guo(z) and g(z) = G, (). For a measure g on R and p > 0,

we define

distze (g (h, &) = irelgﬁ P — || zo@an = a>ig}feR |h = Gapllr(du)-
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The key element of the application is that the deficit of the LSI is bounded below
by that of the BHI. To be specific, we have 6(f) > dgu(h) where

h(z) = (f(2v/72))2g(2). (5.1.2)

Let fi be a sequence of functions constructed in Example 4.3.2 and h;, the transfor-
mation of fi by (5.1.2), then we have dgp(hy) — 0; see Lemma 4.3.3. Note that hy
is indeed a Gaussian function with small Gaussian bumps in the tails. In the proofs
of Theorem 4.1.1 and Theorem 4.1.2, we have seen that the growth of the second
moments of the probability measures { fydy} can be controlled by the choice of pa-
rameters. This implies that the Gaussian bumps of A in the tails are not negligible
with respect to measures with some polynomial weights. This observation leads us

to adopt the polynomial measure dny = |z| dz.

Theorem 5.1.1. Let A > 0, dny = |z|*dx, and p > 2(\ + 1), then there exists a
sequence of nonnegative functions {hy }x>1 in LP(dny) such that ||h||2 = 1, dpu(hy) —
0, HthL”(dm) — OQ, and

dist hi, &
lim inf i5t o) (r, 6)
koo [ hiel Le(any)

> C(p,A) > 0.

Inspired by the transformation (5.1.2), it is natural to consider a reference measure
with a Gaussian weight g(x). It turns out that for dmy = g~%dx with specific ranges

of p and 6, we obtain an instability result for the BHI with respect to LP(dmy).

Theorem 5.1.2. Let p > 0 > 0 and dmy = g %dx. There exists a sequence
of nonnegative functions {hy}r>1 in LP(dmy) such that ||hgll2 = 1, égu(he) — 0,
2|l Lo (dmy) — 00, and

dist 1o (gm,) (e, ®
lim inf 15t o dmg) (R, ®)
k—o0 ||hk:||LP(dmg)

> C(p,60) > 0.

We emphasize that dn, is a more suitable reference measure than dmy in a sense
that LP(dn,) contains all optimizers & whereas LP(dmyg) does not (see (5.3.2)). If we

choose the Lebesgue measure as a reference measure (that is, ¢ = 0 in Theorem 5.1.1
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or A = 0 in Theorem 5.1.2), then the sequence of functions hy converges to g in LP
(see Remark 5.3.4). It remains open to show LP-stability for the BHI with respect to

the Lebesgue measure.

5.2 Relation to stability of the Hausdorff—-Young inequality

We briefly review the work of Christ [45] and discuss how it is related to the
Beckner—Hirschman inequality. This consideration gives a glimpse of what stability
of the Beckner—Hirschman inequality would be and the connection to our instability
results of the BHI.

Let p € [1,2], ¢ =p/(p—1), and A, = p'/?Pq~ /24 For a complex-valued function
h € LP(R"), the sharp Hausdorff-Young inequality by Babenko [4] and Beckner [20]
states that ||}L\||q < A7||h]|,. Then Lieb [91] showed that equality holds if and only if a
function h is of the form h(z) = ce” @@+ where v € C", ¢ € C, and Q is a positive
definite real quadratic form. Let ¢ be the set of all optimizers for the Hausdorff—
Young inequality. Define &(R™) to be the set of all polynomials P : R" — C of the
form P(z) = —x- Az +b-x + ¢ where b € C", ¢ € C, and A is a symmetric, positive
definite real matrix. Note that 4\ {0} = {e” : P € 2(R")}. Let u € 4 \ {0}. The
real tangent space to 4 at u is T, = {Pu : P € Z(R")}, and the normal space to
¢ at u is

N.% = {h e L? : Re (/R hPE]uP”’de) —0}. (5.2.1)

Define dist,(h,¥) = inf,cy ||h — ul[,. There exists dy > 0 such that if a nonzero
function h satisfies dist,(h,¥) < d&o||k||,, then h can be written as h = h* + m(h)
where m(h) € 4 and ht € N,,»¥. Since ||h*], = ||h — 7(h)||, and 7 (h) € ¥, we
have ||ht]|, > dist,(h,%¥). For a function h satisfying dist,(h,4) < do||h||,, we define
dist;(h,9) = ||h"]|,.

Let p € [1,2] and h € LP(R™). The deficit of the Hausdorff-Young inequality is

given by R
I7ll,
172/l

ony (h;p) = Ap —
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Let By, = 3(p — 1)(2 — p)AZ. For > 0, we define

N e O]
! i
0 |p=] > nlm(h)].
In [45], Christ proved the following quantitative Hausdorff-Young inequality. He

firstly showed a compactness result using combinatoric arguments, and then computed

the second variation to obtain remainder terms for the Hausdorff-Young inequality.

Theorem 5.2.1 ( [45, Theorem 1.3]). For each n > 1 and p € (1,2), there exist
Mo,y > 0 and C,c > 0 such that for all n € (0,10), if a nonzero function h € LP(R")
satisfies dist,(h,9) < n"||hl,, then duy(h;p) > Ri(h;p) + Rao(h;p) where

Ralhip) = (B = Copll ([ () (5.2.2)
2
 ((disty (B, 2\ (1Bt — bl
Ry(h;p) = en*P (712 > —_— ]
23 7) Il il

By differentiating the sharp Hausdorff-Young inequality, one can derive the BHI.
Indeed, let h € LY(R™)NL*(R™) with ||h||s = 1. Since duy (h;p) > 0 and oy (h;2) = 0,
the derivative of dyy (h;p) with respect to p at p = 2 is less than or equal to 0, which
yields

d 1

~ gt (up)lp = 5 (S(APR) + SRR = n(1 - 10g2)) = 0.

A natural question is whether stability of the Hausdorff—Young inequality also yields
that of the BHI. In what follows, we fix a function h € L*(R™) N L*(R") that satisfies
dist,(h,¥) < d||h||, and ||h]j2 = 1 for all p € [1,2]. Note that h*+ and 7(h) depend

on p. We assume the following;:
(i) We can choose a constant dy to be uniform in p € [1,2].
(ii) The constant 7 in (5.2.2) is independent of p € (1,2).

(iii)) We choose the constant C' = C(p) in (5.2.2) such that C is differentiable on
(1,2] and C(2) = 0.



67

(iv) Ry(h;p) > 0 for all p € (1,2).
(v) ht and 7(h) are differentiable with respect to p.

Based on these assumptions, we have oy (h;p) > Ry(h;p) + Ra(h;p) > Ri(h;p) >0
and dpy(h;2) = Ry(h;2) = 0. Taking the derivative with respect to p, we obtain

h 2 + h 2y — 1 —l 2) = —4_ An — 4 _o > —4_1i h —
S(| | ) S(| | ) n( 0g ) / < D ||h||p>|p 2 Z / 1( ap)|p 2

and

d . _ d : 112 p—2
d_pRl(hap)|p:2 = %(Bp,n - 077)|p2(1;gl /]R" |hn *|m(h)] d$>

— —é + () (lim / by Pl ()P~ dz).

Let h be a nonnegative function and L, = {z : |h*(z)| < n|n(h)(z)[}, then h; =

ht-1p,. By Fatou’s lemma, we get

i [ Pl e > [ i
= |h — 7(Rh)|*d.
Ly
Since h — w(h) € Nyw¥, it follows from (5.2.1) that m(h) is nonnegative with
|7(h)]l2 < 1. Let
G={uec u>0,lul, <1}

Note that the set of the optimizers for the BHI defined in (5.1.1), &, is contained in
& and 7(h) € &. For ;) small such that 5 +C'(2)n >0, we get
Spu(f) > Cydisty(h, &)?

where dists (R, Q~5) =inf, g HE — ul[2 and

o) = h(zx), x € Ly,

m(h)(z), = ¢ L,
Although we make strong assumptions, our observation suggests that there might

be a stability estimate for the BHI in terms of L? or weaker distance than L? with
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respect to the Lebesgue measure. We remark that Theorem 5.1.1 and 5.1.2 do not
contradict to the observation. In Theorem 5.1.2, we show that the BHI is not stable
in terms of distzr(gm,) (-, ®) with normalization for p > 6 > 0. In Remark 5.3.4, we
explain that our example constructed in Theorem 5.1.2 does not give any instability
results for the BHI when 6§ = 0. Note that dists(-, ) is the boundary case when 6 = 0
and p = 2. Compared to Theorem 5.1.1, dists(+, ) can be seen as the case when A = 0
(so that p > 2(\ + 1) = 2). Furthermore, Theorem 5.1.1 implies that an L*-stability

estimate would be best possible in terms of the L? distances if exists.

5.3 Proofs of Theorem 5.1.1 and Theorem 5.1.2
5.3.1 Technical lemmas

To complete the proof of Theorem 5.1.2, we want to show that if k is large enough
then
dist Lo (amg) (hk, &) = C||hk]| Lo (dmg)

for some C' > 0. Lemma 5.3.1 and Lemma 5.3.2 reduce the left hand side to the
infimum of LP norms over a finite interval when p > 2, which makes it easy to
estimate a lower bound of the distance. To control the right hand side, we obtain a

two-sided estimate of ||hx| 2o (dm,) in Lemma 5.3.3.

Lemma 5.3.1. Let p > 0 > 0, a > ap > 7, 0 < t < (ao/7)1, and Gu(z) =
Gap(z) = (%)%‘“2. Let M(a,t) = {z : Go(x) > tG.(x)}, then there exist constants
C(p,ap,t),C(p,0) > 0 such that

p—2

;2
C<p7 a07t)ap4p < ”Ga : ]lM(a,t)HLP(dmg) < C<p7 6)(1 4»
for all a > ay. In particular, if p > 2 then lim, o0 ||Ga - Las(a) || r(dmg) = 00-

Proof. Since G, is symmetric and decreasing in [0, c0), the level set M, ; = [—xq, o]

where zy > 0 satisfies G,(xg) = tG,(x). Solving the equation for xy, we obtain

1\/loga—log7r—4logt
5 :

o =
a— T
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Let B8 =ap — 67 > 0, then
xo
G ttan piany = | 1Gala) P
o

N <2_a) / e d
™ —

zo

:2%71'_;741;2@%72(]9— — _% 2(1) \/2 fo — ]_

Since \/2fxy — 00 as a — 0o, there exists a constant C'(ag,t) > 0 such that C'(ag,t) <

20(\/2Bxy) —1 < 1. We have
2ir % p 3 Cag, t)ra® < [|Ga - Dasan |l iotamy < 207 % (p—0) %a"®
which completes the proof. O

Let fi be the sequence of functions defined in Example 4.3.2 with b = b, =
_3
2(k+ 3) + Vk and @ = o, = b, >. Recall that by = 2(k + 1) + Vk, fi(z) = fi(—2),

and
(

Ck, T e [O, k’],

fo(@) = exli(w), @ e (kk+ 1],

\ckagb(m), x € (k+ %,oo).

Here ¢, is a normalization constant so that fR frdy = 1. Note that o — 0, by, — 00,
and ¢y — 1 as k — oo. Define hy(z) = \/ fr(2y/7x)g(x). Tt follows from change of
variables that [|hx||2 = || frll 21 (@) = 1.

Lemma 5.3.2. Letp > 2, p > 0 > 0, and h; be defined as above. There exist kg € N

and ag > 7 such that
1Pk — GallLr(dme) = [Pk — Gl Ledmy)
for all a > ag and k > k.

Proof. Let Go(z) = Ga(ﬁ)/Gw(ﬁ), then

1t = Gl gy = (47) 5 / VTe(@) — Galz) [P (2)da
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||

where y(z) = (27)"2¢~ 2 and 8 = b= b We choose ko € N such that 5 <cp <3 for
all k > kq. Since li(x) < 1, we have |\/c;€l;€ x) — 1] < 1. Let k > kg, then we get

k k+—
/ V@) — 17 () de = / WG = 1P (a)da + 2 / e — 172
(5.3.1)
o [ a1 @)
b+

2797 (k)
k

<27P(2m) "2 B2 (20(/Bk) — 1) +
+2/ |V ekags(z) — 1[PA7
k+k

S Cl(p, 8) + 2/ |\/ ckagb — 1|p

ket L
Choose a; > 7 so that éa(l) < % < /¢y for all a > a;. Setting A = {z: éa(x) > %},
we see that A C [—k, k] and

/ Ve — Gal@)PP (@) > /

Go(x ‘7

ps—1

> 91- p/ Gio(2) P (2)dz — (—) (2m)25 g

for all @ > a;. Let B = {x : \/cragy(z) > 1}. Note that b= 2(k + %) + vk, ay, < 3,
and ¢, < 3. If \/epagy(x) > 1, then 2 > & — ;log(crr) and B C [k + ,00). If
x> k+ %, then éa(a:) < 1; we have

/ ) [V ewagy(z) — éa(x x)dr > / I\ cragy(z) — 1‘10
kt
1
2/ |V ekagy(z) — llp x)dr — 5(27T) 21@— ,
ket 1

Combining our observation, we get
[ W@ = Guta)p* )i
k . [e'e) .
> [ WVa- Gl s 2 [ Vaan() - Cu@)Py @)
—k

k+

zzl‘p/léa(x)lpvﬁ(x)dff”/ [Verag(z) = 1777 (2)dz = Ca(p, 0).
A k+

>3
25

D=



71

By Lemma 5.3.1, one can choose ag > a; such that

/ |G )PP (z)dx > 2P~ H(Cy(p, ) + Ca(p, 0))

for all a > ay. By (5.3.1), we have

/‘W dm>21p/\G )P d:v+/!\/fk7—1]p
— Ci(p.0) — Ca(p,9)
> [IVAE) - 1Py @)
which finishes the proof. O

Lemma 5.3.3. Let p > 6 > 0 and hy be defined as above. There exists ky € N such
that

9b2
P || Lo (dmg) =po b~ Te -0

for all k > kg.
Proof. Let = pT_(;. A direct computation yields that
B=1 P
g = (475 [ () Er @)
p.B=1 1 r k+_ 2 3
— lalf2'% 3 h20(/B) - D+ 2alt [ @) @)
k
p pob? b 1
+ 28 ol B2 I — VB4 1)),

2VB

Choose k; € N such that ¢ € [3, 3] and ®(;2= — /B(k+1)) > 3 for all k > k. Then

2vB
we have

0b2
k]| otamay = C(p, )b 7T
Since we have
p_B=1 1 P k+% P
lf2’7 5EB(VEK) - D+ 2lalt [ @l @) < C.0)
k
we can choose ks € N such that
2
|hllzotame) < Clp, )b~ e

for all & > ks. O



72

5.3.2 Proof of Theorem 5.1.2

Let fr be the sequence of functions defined in Example 4.3.2 with b = b, =
2(k + 1) + VEk and a = ap = b;%. Define hy(z) = +/fr(2/7x)g(z). Note that
1Pkl 2 (dmg) = [ frll 2@y = 1. By (2.2.5) and Lemma 4.3.3, we have dp(hy) — 0 as
k — oo. Since the function hy; and g% are symmetric and the symmetric decreasing
rearrangement of G, , is G,, it follows from the rearrangement inequality (see [92,

Theorem 3.5]) that

diStL”(dme)(hka 6) = ier}rf | ”hk - GaHLP(dme)

ac )

for all £ > 1. Here we used the fact that
Ga,r € LP(dmy) if and only if a > 67 /p. (5.3.2)
Our goal is to show that there exists a constant C' = C(p, ) > 0 such that
1 = Gallzr(@mg) = Okl o am)

for all a € (%’r, oo) and for large k.

Casel: a>nm
Suppose p > 2. By Lemma 5.3.2, there exists ag > m such that

diStLp(dmg)(hk, @) = igrf ] Hhk — GaHLP(de)

ac ?7(10

for all large k. So it suffices to show that if % is large enough, then ||hx — Gal| Lo (dmg) >

Cl|hi|| Lo (dmy) for all a € (7, a0]. First we consider the case when 7 < a < ag. Since

p> 2,
p—0 (A p=2 Or. 1
1Gall o (amg) =27 (;) T(p-— ;) 2 (5.3.3)
p—2 Qﬂ'
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is uniformly bounded in a € |7, ap]. By Lemma 5.3.3, we can choose k; € N so that

for all & > ki, [|hl| 2o (dmg) = 25UPgefr a0) |GallLr(dmg)- We obtain

|hie — Gallrdme) = [Pl o (dmy) — s[up ] |G all e (dmeg)
ae|m,a0

> §||hk||Lp(dme)

for all a € [7, ap] and k > k.

If p < 2, then it follows from (5.3.3) that || Gal|7, (g, < C(p O)WPT_Q(p—H)’% for all
a > m. By Lemma 5.3.3, we choose ks € N such that ||k, — GallLeame) = 5|7l Lo (ame)
for all & > ko.

Case 2: 9” <a<T
By Lemma 5.3.3, it suffices to show that there exists a constant ¢ > 0 such that

2
s — GaHLp(dme) 2 06—364(?—9)

forallae(e—7r )andlargek Letﬂ:%and3:1—%,then0<s<1—% We

define Ry x( )/\/ fr(x), then
“hk G HLP (dmg) = 47T 2 /’\/fk Ga\p’yﬁda:
= ()5 [ 1= Rl |t s

— 2
> () T faalt [ 1= RaPete T e
k+k

Choose t € (1, ;25), then

Qs k(th) = Z(tb_ 9)2 _ (1 _S)b2 _ ﬁ(s— (225— 1))
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Since the map ¢ — 25 is decreasing on (1, -£5), we know

_ 2 1
2t —1 > ( 9)
2 =

’B

2 92 —0
p
P_\2 - 2 > :
p_g) p p

A’U

Since s € (0, I%f)), we have Q,x(tb) < 0. The function Qsx(x) is symmetric about
= Yand ¥ > tb. This yields that Q,x(z) < Q. (th) for all z € [tb, 22 — tb]. Thus
we can choose k3 € N so that R,y(z) < 5 for all k > k3 and s € (0,’%9). Since

(t—;55) <0and (2—t— -55) = ¢ > 0 uniformly in s, we can choose k4 € N so that

B((2 —t =L b/B) - a((t - ~Lv/B) 2 5
for all k£ > k, and s € (0, ’%9). If £ is large enough, then we obtain
I = Gullianyy 2 (4) T2 7lcnalt [ B

k+4
> C(p, Q)b_i_pe‘“;f—f@.
By Lemma 5.3.3, we have
1k = GallLotame) = Cllhkl| Lo (amo)

for all a € (97”, 7), which completes the proof. O

5.3.3 Proof of Theorem 5.1.1

We note that G, € LP(dn,) for all @ > 0 and r € R. Indeed we have

(Garllian = [ |Garta) i (5:3.4)

< [1Gu@)lan
2 ya
_a 4/\:1:'[’\eapx2dx
( " (2ap)” /IfﬂlA

=C(p >\) i mA('V)
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where m, () is the A\-th moment of the standard Gaussian measure. Let hy(z) =
V f(2y/mx)g(x) with ap = b,* and 0 < w < %, then

2% (2)a da
o0

Iy = €0 ) [ 1futa)

> C(p, )\)|ckak|§/ |z e 5@t gy

k+4

= Clo Vlereud / @ + by[re 1 du
k

+4—bk

> O(p, Nlexa|% ([b* = ma(7))
so that ||Ag|| Lr(an,) — 00 as k — oo. By the rearrangement inequality,
diStLP(dm)(hk7 ®) = (llgg [k — GCLHL”(dm)'

Assume p = 2\ + 2, then ||Gq||rr@an,) = C(p, A\)ma(y) is independent of a. We
pick k1 € N such that ||hg||zeny) > 2||GallLr(any) for all & > &y, then

1
| — GallLeanyy = 1Pl zeny) — [1GallLrany) = §||hk||LP(dm)

for all k > kq, as desired.
Suppose p —2A — 2 > 0. By (5.3.4), we have |G| tr(dy,) — 00 as a — oo. Since
| Akl Lo (dy) — 00 and || Gy || Lr(an,) is bounded in a € (0, ag] for a fixed ag by (5.3.4), it

suffices to show that there exist kg and ag such that

|hr — Gallzony) = 1Ak — GrllLr(any)

for all k > ko and a > ag. Let Go(2) = Go(5%=)/Gr(55=), then

I~ Galany = COA) [ VA = Culw)Prf ()

We choose k; € N such that % < < % for all k£ > k. Let I = [—xq,x0| with

Y

1\/loga —logm —4log(3/2)

To— =
2 a—T
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then Go(z) > 3/2 for all € I. Choose a; > 7 so that G,(1)
a > ay, then I C [k, k]. We get

/ V@) ()| de > / V@) +E (@) 2 e

< 1 < /¢ for all

> Op, Na" 5" / Py = Cip ).

Since v/azy — 0o as a — 0o, there exist az and C' > 0 such that [, |z[*dy > C for all
a > as. Let B = {x : \/cyargy, (x) > 1}. Note that b, = 2(k + 1) + VE, ap < 1, and
cr < % If\/mz 1, then z > g—%log(cka) and B C [k—i—%,oo). Ifz > /{4—%,
then G,(z) < 1; thus we have

| WA - @laPds > [ |Vaom@ - 197} @)laPds

+k
> [ Waan(@ - 1P @l de - O
k—i—k

Combining our observation, we get

/ V(@) = Gal@) "7 (2)] da
/ Vil )|$|Adx+2/k IV fr( (z) |z dz
1
> Cl(p,A)aW _'_2/’; | /Ckagb _ 1|p |x|)\dx_02(p’ )
+k:

We choose ks large enough so that for all £ > ko, we have
JWVEG - @l =2 [ e - 1Pl

ket +

—|—2/ |\/Ckk—1|p |ZL’|>\d£E
k

+2/ |\/erags — 1|Py2 () |z da
kL

= Cs(p, \) + 2/ |\/erags — 1|Py2 (x)|z| da.

ket L
It then follows that

| VR = GutaPt @)l s
> Cl(p, )\) p— 2(>\+1) /| /fk . 1|p |:L"| do — C'g(p, )\) _ Cg(p, )\).
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Letting a large enough, we obtain

/ V@) () > / VE@) — 175 ()| da

Therefore, we have ||hy, — Gol|ze(any) = [|Pe — Gx||Lr(an,) as desired. O

Remark 5.3.4. For the Lebesgue measure and p > 0, we have

i — G |l2 = (4m) 4/W—1|p
— o(1) + 2cxa)? / o) — 1

k+k

and

| WaE -1yt <
k+1 k

o0 o0

gu(2) 5k (@) + 2 / i (@)de < C(p).

1 1

So we get

lim dist ;s dx)(hk, ) < klim |y — Gw“p =0,
—00

k—o0
which implies that our method does not give an instability result for the BHI when

6 = 0 in Theorem 5.1.2 and A = 0 in Theorem 5.1.1.
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6. STABILITY OF THE EXPECTED LIFETIME
INEQUALITY

The isoperimetric inequalities for the expected lifetime of Brownian motion state
that the LP-norms of the expected lifetime in a bounded domain for 1 < p < oo are
maximized when the region is a ball with the same volume. In this chapter, we prove
quantitative improvements of the inequalities. We also discuss related open problems

that arise from these improvements. This chapter is based on my work [86].

6.1 Introduction

Let o € (0,2] and D a bounded domain in R". Let X be the rotationally
symmetric a-stable process with generator —(—A)®2. The first exit time of X¢

from D is given by
7 =1inf{t > 0: X" ¢ D}.

The expected lifetime of X is denoted by u$(z) = E*[73] where E* is the expectation
associated with X starting at € R™. Note that u$(z) is a solution to the equation
(=A)2u(z) =1, €D,
u(x) =0, r ¢ D.

If B is a ball of radius R and centered at the origin, then u%(x) is explicitly given by
uf () = Cpa(R? — |2P)%.

For o = 2, X7 is Brownian motion with generator A. In this case, we drop the
superscript a.
Banuelos and Méndez-Herndndez [16] showed that several isoperimetric type in-

equalities for Brownian motion continue to hold for a wide class of Lévy processes
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using the symmetrization of Lévy processes and the multiple integral rearrangement
inequalities of Brascamp—Lieb—Luttinger [31]. A particular case of this is that for all
t>0and x € R",

PO(78 > t) > P*(1) > 1), (6.1.1)

which yields in turn that
ug(0) > uf(x), (6.1.2)

where B is a ball centered at 0 with |B| = |D|. In fact, (6.1.1) gives
E°(78)? > E*(75)P (6.1.3)

for all p > 0.

Talenti [110] proved that the LP norm of a solution of a second-order elliptic
equation is maximized when the elliptic operator and the domain are symmetrically
rearranged. In particular, the result yields that for p > 0, a = 2, and a bounded
domain D,

[uslly = [luplly (6.1.4)

where B is a ball with |B| = |D|.

Given the above isoperimetric type inequalities for the first exit time of the stable
processes and their connection to the classical torsion function, it is interesting to
find quantitative versions of these inequalities: for example, quantitative versions of
(6.1.1) and (6.1.2), and their implications to quantitative versions of the torsional
rigidity inequality, not only for the stable processes but even for the more general
Lévy processes studied in [16]. The goal of this chapter is to study quantitative

versions of the expected lifetime inequalities (6.1.2) for a = 2 and (6.1.4) for p > 1.

6.2 Main results

We define the deficit of (6.1.2) by

8(z,D)=1— >0 (6.2.1)



30

where B is a ball centered at 0 with |B| = |D|. We provide a lower bound of the
deficit 0(x, D) in terms of the deviations of x and D from the optimizers. Note that
equality holds in (6.2.1) if D is a ball and up(x) = maxyep up(y). The deviation of
x is represented by the level set [{y € D : up(y) > up(z)}|, and the deviation of D

by the Fraenkel asymmetry, which is defined by

DAB
A(D) = inf {‘ D | : B is a ball with |B| = \D|} : (6.2.2)

Theorem 6.2.1. Let D C R" be a bounded domain with A(D) > 0. Let Dy = {y €
D up(y) > t}, ult) = Dy, and

t = 1.(D) = sup{t > 0: u(t) > |D|(1 — %A(D))}. (6.2.3)
Then we have
§(z,D) > |D|"# (u(up(x))% + Colup(a) A t*)A(D)2>, (6.2.4)

1
where C,, = Buwyy, By is a dimensional constant in (6.3.3), and w, is the volume of a

unit ball in R™.

The proof is based on the proof of (6.1.2) for @ = 2 in [6,110], and the sharp
quantitative isoperimetric inequality [64]. In order to estimate the asymmetry of the
level sets, we use the idea of Hansen and Nadirashvili [76] as in the proof of the

boosted Pdlya—Szeg6 inequality [33, Lemma 2.9].

Remark 6.2.2. We note that (6.2.4) with the first remainder term follows from
the pointwise estimate ug(z) > (up)*(z) of [109]. For simplicity, we assume that
|D| = 1. For each z € D, we define 7(x) > 0 by pu(up(x)) = |By)| where B, is a
ball of radius r(x). For a nonnegative measurable function f on D, the symmetric
decreasing rearrangement f*(x) = f*(|z|) satisfies f*(r(z)) > f(x) for each z € D.
Since up is rotationally symmetric, we use the notation ug(z) = ug(|z|). Using

up(x) > (up)*(z), one has

1

up(?) < (up)*(r(x)) < up(r(z)) = up(0)(1 — (wir(z))*) = up(0)(1 — u(up(z))

S

).

Notice that (6.2.4) can be written as ug(r(z)) — up(z) > C,(up(x) A t.)A(D)>.
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Remark 6.2.3. Note that if A(D) > 0, then ¢, > 0. Suppose 6(z,D) = 0. If
A(D) > 0, then (6.2.4) implies p(up(x)) =0 and up(z) = 0. This contradicts to the
assumption |D| > 0 and thus D is a ball with |B| = |D|. As a consequence, one sees

that equality holds (6.2.1) only if D is a ball and up(x) = max,ep up(y).

Remark 6.2.4. One can extend the result to an uniformly elliptic operator as in [110].

Let £ = 0;(a;;(x)0;) where a;;(x) is a bounded measurable function with

D ay(a)s =D & (6.2.5)
i1

,j=1

for each # € R™ and & = (&, -+ ,&,) € R". Consider a weak solution u% of
—Lu(x) =1, x € D,
u(z) =0, x € 0D.

Following the proof of Theorem 6.2.1 and modifying (6.3.6) with inequality, which

follows from the elliptic condition (6.2.5), one obtains

uf)(:v) -2 2 2
1B 2 I (Blub@)® + Caluf (@) AL)AD)?).

The second result is a quantitative inequality for the LP norm of the expected
lifetime, 1 < p < co. We define the LP deficit of the expected lifetime inequality
(6.1.4) for 1 < p < oo by

6p(D) =1 (||uD||p)n<p>

lusllp
where k(p) = p for 1 < p < o0, kK(o0) = 1, and B is a ball centered at 0 with
|B| = |DI.

Theorem 6.2.5. Let n > 2 and D be a bounded domain in R™. For 1 < p < oo, we
have

6,(D) > C, ,A(D)* @) (6.2.6)

where C,,,, is explicitly given in (6.3.12) and (6.3.13). In particular, if p = 1, we have

T(B) —T(D) > C,,T(B)A(D)>. (6.2.7)
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Remark 6.2.6. Let n = 2 and € > 0. Consider an ellipse D = {(x,y) € R? : x =
cost,y = (14+¢)sint,t € R}. The asymmetry of D is A(D) = te+0O(g?) (see [75, pp.

™

88-89]). Note that the torsion function of D is

2

(1+¢)? (1—3}2— Y )

21+ (1+¢)?) (1+¢)?

up(x) =

Let B be a ball with |B| = |D| = (1+¢)w. Let p € [1,00). Direct computations yield

™

P _ p___ ° (1 p+1 1 2p+1
uslly = el = g U+~ wprnarar o Y

T g2 P

0 i)
e EaESE

= Cpe? + o(?)
for some C, > 0, and

1 2

syt ol 200 @

luple 1+(1+¢)? 1+ (1+¢)

for p = co. This implies that the exponent of A(D) in (6.2.6) cannot be replaced by

smaller number than 2. It is open to show the inequality (6.2.6) with power 2.

Brasco, De Philippis, and Velichkov [34] showed that the sharp exponent of (6.2.7)
is 2 in the sense that the power cannot be replaced by any smaller number. Their
method, however, does not give an explicit dimensional constant because the proof
relies on the selection principle of Cicalese and Leonardi [49].

The key step in the proof of Theorem 6.2.5 is the removal of ¢, defined in (6.2.3).
In [33], the authors proved the non-sharp quantitative Saint-Venant inequality (6.2.7)
using transfer of asymmetry (Lemma 6.3.1) and the boosted Pélya—Szegd inequality.
Thus t, also appears in their proof. To replace t, by A(D) (up to a dimensional
constant), they made use of the variational representation for 7°(D) (2.5.2). In our
case, however, the LP norm of the expected lifetime does not have an appropriate
variational formula for 1 < p < oo. Instead, we estimate the distribution function
of up when t, is sufficiently small, and apply the layer cake representation and the

strong Markov property. It turns out that this enables us to replace t, by A(D).
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The fractional analogue of (6.2.7) is proven in [32]. Brasco, Cinti, and Vita showed

that if n > 2, a € (0,2), and D is an open set with |D| = 1, then

Qo

To(B) —To(D) > C, ,A(D)

where C,, , is explicit and B is a ball with |B| = 1. Furthermore, if D has Lipschitz
boundary and satisfies the exterior ball condition, then the exponent can be lowered
to 2 + % It turns out that our method for removing ¢, yields the same exponent

without any additional geometric assumptions on D.

Theorem 6.2.7. Ifn > 2, a € (0,2), and D is an open set with |D| = 1, then
To(B) — Ta(D) > Cp o A(D)*s

where B is a ball with |B| = |D|.

6.3 Proofs of the main results
6.3.1 Transfer of asymmetry

The following lemma is essentially from [76, Lemma 5.1], which provides an esti-
mate of asymmetries of two sets when these sets are close in L' sense. We refer the

reader to [32, Lemma 4.1] for its generalization.

Lemma 6.3.1 ( [33, Lemma 2.8]). Let D C R" be an open set with finite measure,
UCD,|U|>0, and

D\ U]
D < kD)

for k€ (0,3). Then, A(U) > (1 —2k)A(D).

Proof. Let B; be a ball centered at 0 with |B;| = |U| satisfying

_|UA@ +B))|

A(U) 0]
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for some € R" and By a ball centered at 0 with |By| = |D|. Note that [UAD| =
|D\ U| = |B1ABs|. Using the triangular inequality for the symmetric difference, one

can see that

UA(x+ B
_ [DA@ + By)| = [UAD| ~ | BIAB;|
- D
D\ U|
> A(D) -2

> (1 - 2k)A(D).
O

Remark 6.3.2. Let D be a bounded domain in R", v a nonnegative function defined

in D, and D; = {x : u(z) >t} for t > 0. Assume A(D) > 0 and
1
t. =sup{t > 0: u(t) > |D|(1 - ZA(D»} > 0.

If t < t,, then we have

ID\Dy| - pu() 1 B
Dl qp S AD) = 740), (6.3.1)

which yields A(D;) > 3 A(D) by Lemma 6.3.1.

6.3.2 Proof of Theorem 6.2.1

We assume that |D| = 1. Let Dy = {& € D : u(z) > t}, pu(t) = |Dy], and

u(z) = up(x). By the coarea formula, we have

(-5 [ rwular) = Py (6:3.2)

for almost every ¢ > 0. Note that the sharp quantitative isoperimetric inequality [64]

states

P(D) > P(B) + 8,A(D)? (6.3.3)
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where B is a ball with |B| = |D| = 1 and 3, is a dimensional constant. A simple
manipulation gives
P(D,)* > P(D;)* + 2P (D;)(P(Dy) — P(Dy)) (6.3.4)
> P(D])? + (20 B)u(t)*~* A(Dy)*
2 2 2 _1
> nPwi u(t)* n (1 + —Bpwn ”A(Dt)2>
n
where w,, is the volume of the unit ball in R™ and Dy is a ball with |D;| = |Djf|. It

follows from Cauchy—Schwarz inequality that

L d 9 3 d
—u(t))2 ——/ Vul"dx ) > —— Vu|dzx. 6.3.5
(@) (= g [ 1VuPde)” = =2 [ (9l (6:3.5)

By (6.3.2), (6.3.4), and (6.3.5), we get
/ d 2 2 2 9_2 2 _1 2
(=3 [ IVulPde) 2wt (1+ 2w AD)?)
dt Jp, n
for almost every t > 0. Since u is a weak solution of —Au =1 in D,

/gpdx:/Vu-thdx
D D

for all o € Wy*(D). Let @(x) = (u(zx) —t)4, then it belongs to ¢ € Wy*(D) and

/(u—t)d:v:/ |Vul? dx.
Dt Dt

Let h € R be small enough, then

1
—< |Vu|2dx—/ \Vu|2das> :u(t—l—h)—l-/ ‘
h Dy Dyyp DiADiyp

Since 0 < |u —t| < |h| in D;ADyyp, and |DiADyyp| — 0 as h — 0, we obtain

u—t

‘dm

u(t) = = |Vu|2dx (6.3.6)

Therefore, we have

() > 2wl (1+ ann A(Dy)?) (6.3.7)

for almost every ¢ > 0.
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For each t > 0, choose R(t) > 0 such that ;u(t) = |Bry(0)], where Bry)(0) is

the ball of radius R(t), centered at 0. Let Tgy) be the first exit time from the ball

BR(t)(O). Since E* [TR(t)] = (R(t)2 — ’xP), we have

T on

1 _2 2
Erae] = 5-wn (1)}

Differentiating of the both sides in ¢ and applying (6.3.7), we have

2 2,
——E[rr)] = —aYn Tt () > 1+ —Bnton "A(Dy)?.

Taking the integral over [0, up(z)] and applying (6.3.8), we have

1 n
27t (up())*" = E*[R(0)] — E*[TRup (a))]

up(0) — 5
Nnwn,

2 1 u(z)
> up(x) + —Ppwn ™ / A(D,)? dt.
n 0

By Lemma 6.3.1 and Remark 6.3.2, we have A(D;) > s A(D) for t < t, and

1
2

u(z) w(x)Ats
/ Awyﬁz/ A(D)?dt > ~(u(z) At)A(D)2.

1
4
Therefore, we obtain

1 2 2 1 [ul)
up(0) —up(z) > —nﬂu(uD(x))ﬂ + Eﬁnwn " / A(Dy)? dt
0

2nwn
> up(0) (plun(@)* + Culz) A 1)A(D)?)

1
where C,, = S,wn .

(6.3.8)

Suppose that |D| = r~" for some r > 0. By translation invariance, we assume

0 € D without loss of generality. For r > 0, we denote by rD = {ry : y € D}.

Note that the Fraenkel asymmetry is scaling invariant, i.e. A(D) = A(rD). By the
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2

scaling property of X;, we have r*up(z) = u,.p(rz). This leads to the following scaling

identities
d(z,D) = 0(rz,rD),
po(t) = Hy up(y) >t} = {y : wep(ry) > r’t}| = r " pp(r’t),
1.(D) = sup{t > 0 (1) > |DI(1 ~ {A(D)}
= sup{t > 0: p,p(r’t) > |rD|(1 — iA(rD))}

=r~%t,(rD).
Since |[rD| = 1, we have

0(x,D) =d(rz,rD)
> u(urD(rx))% + Cp(urp(rz) At.(rD))A(rD)?
= 12 (u(@))* + C(u(x) A 1)A(D)?)

= D[ (u(up(@)? + Colulx) AL)AD)?),

as desired. O

6.3.3 Proof of Theorem 6.2.5

If A(D) =0, the results follow from (6.1.4). From now on, we assume A(D) > 0.
By scaling invariance, we assume |D| = 1 without loss of generality. Let B be a ball
centered at 0 with |B| = 1.

Consider p € [1,00). Let D; = {z € D : up(xz) >t} and p(t) = |D;|. Note that
Theorem 6.2.1 reads

m}%/n(l — w(up(2))*™) = up(x) > Cplup(x) At.)A(D)
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where C,, = ﬁcn. By the coarea formula, we have
nwy,

1

(2n)Pwik/"

- W [ = wtuna) i gus e ) d
- —W JACEFCERIOY
1

= 2p+1np71w721p/n3(p7 (77, - 2)/2)

/D (1 - plup ()P da

= [lusl[;
where B(a,b) is the Beta function. Using a? — b” > pb?~!(a — b) for a > b, we get

luglly — [lup|lh > C,A(D)? /DpuD(as)p_l(uD(x) Aty)dx (6.3.9)

v
)

T
WADP [ gt ey at
0

C.A(D)?(t,)P.

Y,
DO | =

In the last inequality, we used the fact that p(t) > [D|(1—3A(D)) > 5 for 0 < ¢ < ..
1
Let p1o(t) = {z € B : up(z) > t}|. Since up(x) = 5 (r2 — |z|*) with r, = w, ",

we have
po(t) = (1 — 2nwyit)®. (6.3.10)

Choose tg > 0 so that uo(2tg) =1 — £A(D). By (6.3.10) and the inequality 1 — (1 —

x)* > ax for 0 < z,a < 1, we have

= (-1 éA(D))i) > _A(D). (6.3.11)

Anw;? 16m2wy
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Suppose t. < to, then p(t) < 1 — $A(D) for all ¢ > ¢, by definition. Since po(t) >
1— 2 A(D) for ¢ < 2to, we get po(t) — u(t) > $A(D) for t € [to, 2to]. By the layer cake

representation and (6.3.11), we have

|wmm—mmw=/'m%%muwwm»w
0

> / toptp*l(uo(t) — u(t)) dt

to

Y
03

(to)?A(D)
— L A(D)
24p+3n2pwn7

> P Ay,
24(p+1) py2p(y,m

If t, > to, then it follows from (6.3.9) and (6.3.11) that

v

C
luslly — [luplly = 5 A(D)**P.
24p+1p2py 1

For 1 < p < oo, we finish the proof of (6.2.6) by letting

Cop= ! min{p, 8C, } (6.3.12)

200200, upll]

B 1 . 443,
T PEw B, (n-2)/2) P

nwy

where f3,, is the constant in (6.3.3).
Consider the case p = co. By translation invariance, we assume that 0 € D and

up(0) = maxyep up(y) without loss of generality. Putting x = 0 in (6.2.4), we get
6oo(D) > Cpt, A(D)?.

Let po(t) = {z € B : ug(x) > t}| and choose to > 0 so that uo(2tg) =1 — $A(D) as
above. If t, > t¢, then it follows from (6.3.11) that

5(D) > — " A(DY.

16n2wn

Let t, < tg. Let &€ > 0 be small enough that ¢; := ¢, + & < tp and D; = {z € D :
up(x) > t1}, then Dy is open. Let B be a ball centered at 0 with |B| = |Dy| and ¢
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be such that po(f) = p(t). Since 1 — 1A(D) > p(t), we have ¢ > 2t;. Recall that the
strong Markov property of X; yields for any x € U C D that

E*[rp] = E*[ry] + E*[E*0 [7p)]].

Since the paths of X; are continuous a.s., we have X, € 9D a.s. Since D, is open,

0Dy C R\ Dy and up(y) < t; for y € 0D;. Then we obtain
E[rp] = E°[7p,] + E°[E*"2: [rp]] < E'[rp,] + 1.

On the other hand, it follows from a direct computation that E[r5] = E°[r3] + ¢.
Since E°[75] > E%[7p,] by (6.1.2), we get

[uBllec = [lupllee = up(0) = up(0)

(E°[r5] — E’[p,]) + to
1

v

v

= A(D)

16n2wsr

32n

We complete the proof by letting

: B 1
= — 3. 3.1
Ch.00 = min { ) Tam (6.3.13)

1
16m2w;?

6.3.4 Proof of Theorem 6.2.7

Since A(D) < 2, it suffices to consider the case 1T, (B) < T,(D). Let u$, be the
expected lifetime of the a-stable process in D, u(t) = [{y € D : u}(y) > t}|, and

t. =sup{t > 0: pu(t) > |D|(1 — $A(D))}. By the proof of [32, Theorem 1.3], one has
To(B) — Ta(D) > CpoTa(B)*(t,)= A(D)5. (6.3.14)

1
Let uo(t) = [{y € D : u%(y) > t}|. Since u@(x) = Cpo(r® — |2]?)> and 7 = wy, ", we

have
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Choose to > 0 such that pg(2tg) = 1 — (g A(D), then

o

fo = Coall = (1 = 2 A(D))H)F > CraA(D)?. (6.3.15)

n[Q

If t. < to, then p(t) < 1 — 3A(D) for all t > ¢, by definition. Since po(t) >
1 — ZA(D) for ¢ < 2tg, we get po(t) — pu(t) > £ A(D) for t € [to,2to]. By the layer

cake representation and (6.3.11), we have

T.(B) - Tu(D) = / " (po(t) — u(t)) dt

1
> _
> 18?5014(17)

> Ch o A(D)H5,

If ¢, > to, then by (6.3.14) and (6.3.15) we have

2

T.(B) — Ta(D) > C,, o Ta(B)*A(D)* "=,

which completes the proof. O

6.4 Related open problems
6.4.1 Brownian motion

It is open to find quantitative improvement of (6.1.1) and (6.1.3) even for Brownian
motion. In particular, it is unclear what is the right statement for stability of (6.1.1).
Having a small deficit of (6.1.1) at some ¢ is not enough to obtain the proximity of
the region to a ball, which implies that the deficit should be defined in a strong sense.

As discussed in Remark 6.2.6, it is expected that the sharp exponent of (6.2.6)
is 2 for 1 < p < oo. For p = 1, the sharp result was derived in [34]. It is, however,
not obvious how to apply the method of [34] to the case 1 < p < oo because the
proof strongly replies on the variational formula (2.5.2), whereas the LP norm of the
expected lifetime does not have such formula.

In Theorem 6.2.1, our quantitative result of (6.1.2) for & = 2 depends on t,. It is
unclear whether this dependence is necessary. Removing ¢, in (6.2.4) is an interesting

open problem.
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It was shown in [34] that the sharp exponent of A(D) in (6.2.7) is 2. Since the
proof is based on the selection principle of [49], the constant is not explicit. The
best-known exponent with an explicit constant is 3. It is still open to prove a sharp

quantitative result of (6.2.7) with an explicit dimensional constant.

6.4.2 Symmetric stable processes

As mentioned above, it is an open problem to extend Theorems 6.2.1 and Theorem
6.2.5 to the case 0 < a < 2. At this moment, a fractional analogue of the inequality
(6.1.4) for 0 < a < 2 and 1 < p < o0 is not known. Our approach of Theorem 6.2.1
may not work for this case since it is not obvious how to apply the coarea formula
in the fractional setting. A standard way of avoiding this difficulty is to consider
the extension of Caffarelli-Silvestre [39]. Fusco, Millot, and Morini [65] considered
the rearrangement inequality for the extension to show the quantitative isoperimetric
inequality for the fractional perimeter. Recently, Brasco, Cinti, and Vita [32] proved
stability of the fractional Faber—Krahn inequality using a similar argument. As a
corollary, they also showed stability of the fractional Saint-Venant inequality.

We introduce some notations. The fractional Laplacian of order § is given by

VY _ flz) = fly)
(=A)2f(z) = Ana vy d (6.4.1)
where ( N )
ga (nta
Ana = 2 6.4.2
TR 042

The space Wg"p(D) is the closure of C§°(D) with respect to the norm u — [u]s,, +

y)IP z
o /]Rn /]Rn ’I_ ’n—&-ap/? dz dy)

The fractional torsional rigidity of order « is defined by ||[u$||;. We have the following

||| Lr(py Where

variational representations

ATLO(
T(D)= _max (2ullpm) - —22[u,) = max
weW e 2(D)\{0} 2 weW 22 (D) {0} Ana

[u] 3
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where A, , is given by (6.4.2). In particular, since uf € WOQ’Q(D) we have

a Ana o Ana ug () — up(y)”
To(D) = ) = =5 [uD]gng/ / D‘x_y‘nﬁa drdy.  (6.4.3)

Consider a solution of the equation

div(z1=eVU) =0, (z,2)€ R},
U(z,0) =u}(z), xe€R™

Then we have

[U%]i,z = Tn,a //R“+1 7Y VU|? dadz
+

for some constant v, .. Let U*(z,z) = (U(+, 2))"(x) be the symmetric decreasing

rearrangement of U with respect to z, then it was shown in [65, Lemma 2.6] that

// zl_a|VxU|2dxdz2// 27|V U*|? dadz (6.4.4)
R1+1 R1+1

// 270U dedz > // 217%0,U* | dwdz.
Ri—‘-l Ri+1

In [32], the authors improved (6.4.4) quantitatively as in the local case, which leads

and

to a quantitative fractional Saint-Venant inequality.

To generalize Theorems 6.2.1 and Theorem 6.2.5 to the a-stable processes, one
might need to apply this extension and symmetrization argument at the level of the
function U, not the seminorm [u$], 2. Then it is required to show that a quantitative
improvement can be transferred as z tends to 0. For o = 1, this approached was
also used in [12-14] to study spectral gap estimates and properties of nodal domains.
Because of its connection to the Cauchy process and the Steklov problem, this special

case may be more tractable with such an approach.
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6.4.3 A fractional Pdolya—Szego6 inequality

We discuss stability of fractional Poélya—Szego inequalities. The fractional a—

perimeter of D is defined by

1 1
P.(D) = — — _dzdy = =[1p|a.
(L) /D/n\D|ZU—y|n+a/2 vy = 3 [Tplas

o

Note that P,(D) > C’,W|D|2T§; by the fractional Sobolev embedding. The quan-
titative isoperimetric inequality for fractional perimeter [65] states that for n > 1
and o € (0,2), there exists a constant B, , such that for all Borel set D C R"™ with
0<|D| < o0,

Po(D) > Po(D*)(1 + B, A(D)=). (6.4.5)
By layer cake representation, we obtain a fractional version of the coarea formula [35,

Lemma 4.7]. Indeed, if u € L'(R") is a nonnegative function vanishing at oo, then

[U]o1 =2 /000 P.({z : u(x) > t})dt. (6.4.6)

We have a fractional version of the Pdélya—Szego inequality with a remainder term.

Proposition 6.4.1. Let a € (0,2) and D be a bounded domain in R™ with A(D) > 0.
If u € W' (D), then there exists t, > 0 such that

[as > [Ua1 + CoaA(D)s max{t,|D|"=", |u At,

Proof. Let Dy = {x : u(z) > t} and u(t) = |D;|. Using the coarea formula (6.4.6)
and the quantitative isoperimetric inequality for fractional perimeter (6.4.5), we have
[u]a,l = 2/ Pa(Dt)dt
0
> 2/ Pa(D;)dHQBn,a/ Po(D;)A(Dy)=dt
0 0

2n

2 A(D,)= dt

v

o+ Coa [ )

for some constant C, . Let t, = sup{t > 0 : p(t) > |D|(1 — ;A(D))}. By Lemma
6.3.1 and (6.3.1), we have A(D,) > LA(D) for t < t, and

2n

5 A(D)s

[u]a,l Z [U*]a,l + On,oct*|D|
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Using the inequality

(/OOO f(x)dx)r > /Ooorf(x)w—ldx

for r > 1 and a nonnegative, non-increasing function f on (0,00) (see [93, p.49]), we

tx Ty 1
/u(t)rdt2</ rtu(t)de) " = Al
0 0

> 1, which implies

get

2n
2n—a

where r =

Qv

[u]ml > [U*]a,l + On,a“u A t*HQj—faA(D) .
O

A natural question is a quantitative improvement of the inequality [u]a2 > [u*]a2
in terms of A(D). This open problem is interesting because it yields a quantitative
Saint-Venant inequality. Suppose that we have [u], 2 > [u*]a2 + P(t, A(D)) for some
function ®. By (6.4.3) and the rearrangement inequality [62], we get

2 o3
Ana [U*EQ + (L., A(D))
O (., A(D))>1

[u*]ig

T.(D) <
< TQ(B)(l +

where u = 1%, is the a-—torsion function and B is a ball with |D| = |B|. Using the

fact that [u*]2 , < [u]? ,, we get

To(B) —To(D) > O(t., A(D)).

Under mild assumption on ®, ¢, can be removed as in Theorem 6.2.5.
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7. THE HARDY-LITTLEWOOD-SOBOLEV
INEQUALITY

7.1 Introduction

The classical Hardy—Littlewood—Sobolev inequality [77,78,105] (the HLS inequal-
ity) states that if 0 < o < d and 1 = % + % — 9, then there exists a constant Cy 4

such that

[, [ dedy] < ol 1,00, 7.11)
for f € LP(RY) and h € L"(R%). Lieb [90] showed the existence of maximizing func-
tions in (7.1.1) based on the rearrangement inequalities and a compactness argument.
Also, he explicitly computed the maximizing functions f and h and so the sharp con-
stant C,, 4, for the spacial cases p = r, p = 2, and r = 2. After this, there has been
many effort to find a different proof of the sharp result: competing symmetry [43],
inversion positivity [60], fast diffusion flows [42]. Frank and Lieb [61] introduced a
rearrangement-free proof of the sharp HLS inequality, which leads to an analogue of
the sharp inequality on the Heisenberg group. For the recent progress on the extension
of the sharp HLS inequality, we refer to [46,47,54,95,96].

In this chapter, we give a probabilistic representation for fractional integrals for
symmetric Markov semigroups and derive an analogue of the Hardy-Littlewood—
Sobolev inequality using the background radiation process, which was exploited in
[71-73], together with time reversal, to represent the Riesz transforms via harmonic
extensions. To prove the HLS inequality, we introduce a fractional analogue of the
Littlewood—Paley function for symmetric Markov semigroups and prove Littlewood—
Paley type inequalities. This chapter is based on my work [84].

Our representation is a variation of the one used in [3] based on the space-time

Brownian motion often used for the second order Riesz transforms. In [3], Applebaum
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and Banuelos give a probabilistic proof of the HLS inequality on R using their rep-
resentation and the martingale inequalities of Doob and Burkholder—Davis—Gundy.
Unlike the space-time Brownian motion representation which requires the gradient
of the harmonic extension in the space variable (or a carré du champ), our represen-
tation only requires the time derivative which is well-defined for symmetric Markov
semigroups.

The probabilistic representation of the fractional integrals can be thought of as
a martingale transform where the predictable sequence is not bounded. Martingale
transform techniques have been used quite effectively in the study of singular integral
operators, particularly in obtaining optimal, or near optimal, inequalities. For some
of this extensive literature on this subject, we refer the reader to [5,7,15,17,66,89,97]
and references therein. Given the powerful martingale and Bellman function methods
pioneered by Burkholder in [37] to obtain sharp inequalities for martingale transforms
and their many subsequent uses in various problems in analysis and probability (see
for example Osgkowski [98]), it is natural to ask if those techniques can be extended
to martingale transforms with unbounded multipliers and provide a different proof of
the sharp HLS inequalities which could be extended to other settings. Unfortunately,
as of now, we have not been able to obtain sharp results with the Bellman function

methods. This remains an interesting challenging problem.

7.2 Main results

Let S be a locally compact space with a countable base equipped with a positive
Radon measure dz on S and {7}};>¢ a strongly continuous symmetric Markov semi-
group. We assume that the semigroup is Feller and has the Varopoulos dimension d
that we will define below. The fractional integral of order o (0 < v < d) associated

to {7} }+>0 is defined by

Zo(f)(x) =

1.,
F(%)/o t2 T, f(z)dt. (7.2.1)
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Note that if {T}}>¢ is the standard heat semigroup on R? then (7.2.1) reads

To(f)(a) = L2 [

~ 2277PL(5) Jaa =yl

which is called the Riesz potential associated with the symmetric Markov semigroup
that

1—17 -9 % + & =1, and 0 < a < d, then the HLS inequality for Z, states

(Za(f), )] < Capall Fllpl ANl (7.2.2)

for f € L? and h € LY.

Suppose that (X;):>o is a stochastic process associated to {1} }+>0 and (Y;)i> is the
standard 1-dimensional Brownian motion independent of (X3);>o. Let Z; = (X4, ;).
Since {T}}i>0 is Feller, (X;);>0 is right continuous with left limits and has the strong
Markov property. Fix s > 0 and assume that the initial distribution of (Z;):> is given
by dz ® 6s. We denote by E® the expectation of (Z;);>o. Let 7 be the hitting time of
Y; at 0 and {P,},>0 the Poisson semigroup associated with {7}}:>o (see (7.3.1)). Let
us(z,y) = P,f(x) be the harmonic extension of f defined on S x [0, 00). We set

T3 ()(x) = ES[/OT Ka%(zt)dmx = 1], (7.2.3)

The main result of this chapter is to show that 77 gives a probabilistic representation
of the fractional integral, and that it satisfies the analogue of the HLS inequality
(7.2.2).

Theorem 7.2.1. Let s > 0 and f,h € Cy(S). Ifé = %— 9,1 <p<q< oo,

0 < a<d, and ¢ is the conjugate exponent of q, then we have

(TS Ml =

s| [T a0u ou
o | [ e GG | < codiil, @20

where Cq pq depends only on o, p and d. As a consequence, we have

tim 72 () = Lot

s—00 2a+2

Za(f)

in the distributional sense.
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The proof of Theorem 7.2.1 relies on an auxiliary function which satisfies an HLS-

type inequality. To be specific, we define the fractional Littlewood—Paley function G,

by
9 1/2
dy) . (7.2.5)

The next theorem says that the fractional Littlewood—Paley function satisfies an

L (z,y)

Gulf)(x) = ( / o |0

dy

HLS-type inequality, which leads to the HLS inequality for 7.

Theorem 7.2.2. Let%:%—%>0, l<p<g<oo,and0<a<d. If feLrS),
then the fractional Littlewood—Paley function G, (f) defined in (7.2.5) satisfies

1Ga()llq < Capall llp-

7.3 Preliminaries
7.3.1 Notations

The space of all continuous functions on S vanishing at oo is denoted by Cy(S). We
also use C.(S) to denote the space of all compactly supported continuous functions.
The lower case letter ¢, ¢, ¢y, -+ denote generic constants which may change from
line to line. We use the notation C,, 4, to specify that the constant depends on p, ¢ and
r. We denote the inner product by (f, g) = [ f(z)g(x)dz for notational convenience.
The domain of an operator A is denoted by Dom(A).

7.3.2 General semigroup theory

We recall some facts about semigroups that we will call upon later. Particularly,
we review the definition of a strongly continuous symmetric Markov semigroup and
the construction of the Poisson semigroup used in the probabilistic representation of
the fractional integral (7.2.3).

We say that a semigroup {7;}+>0 on S is a symmetric Markov semigroup if it has

the following properties:
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(S1) If f >0, then T3 f > 0.

(S2) T;1 =1 for all t > 0.

(S3) (Symmetry) If f, g € L*(S), then (T} f, g) = (f,T;g) for all t > 0.

(S4) (LP-contraction) If 1 < p < oo and f € LP(S), then ||T;f]|, < || f|l, for all £ > 0.

In what follows, we assume that there exists a symmetric Markov semigroup {7} }+>¢
on S. We also assume that the semigroup is strongly continuous on L?*(S) and a

Feller semigroup:

(S5) (Strong continuity) If f € L*(S), then lim \T.f — fll2 = 0.

(S6) (Feller) If f € Cy(S), then T} f € Cy(S) for all t > 0 and 11&6 IT.f — flleo = 0.
We assume that {7} }:>¢ has the Varopoulos dimension d (d > 2) in the sense of [112]:

(S7) (Varopoulos dimension) If 1 < p < oo and f € LP(S), there exists C' > 0 such
that
_ad
[T flloo < CE72r [ £l (7.3.1)

for all £ > 0.

For instance, the heat semigroup e ** on R? (d > 3) has the Varopoulos dimension
d.

Given a symmetric Markov semigroup {7;}:>0, the Poisson semigroup associated
to {Ti}i>0 is defined in the following ways. The first way is to use the spectral
decomposition on L?(S). For f € L*(S), {T;}+>0 can be written as

T,f(z) = /0 e MAE, f(x)

where { £, : A > 0} is the spectral resolution associated to the infinitesimal generator

of {T;}+>0. The corresponding Poisson semigroup on L*(S) is defined by

P.f(z) = / T e VraE, f(a). (7.3.2)

0
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Another way of defining the Poisson semigroup is to subordinate {7;}:>¢ in the
sense of Bochner [28]. For 1 < p < oo and f € LP(S), the Poisson semigroup is
defined by

Pf(x) = / T (@)l ds) (7.3.3)

0

where p;(ds) = #6_9/455_3/ 2ds. For p = 2, it follows from a direct calculation
that (7.3.3) is equivalent to (7.3.2). We notice that this construction is a special
case of the subordination. Generally speaking, one obtains a new semigroup by
subordinating with a convolution measure on [0,00), which is a Lévy process on
[0,00) from the probabilistic point of view. In (7.3.3), we adopted the convolution
measure ji;(ds) called the %—stable subordinator. The harmonic extension of f is

defined by us(z,y) = P, f(z).

Lemma 7.3.1. Let {T}}i>0 be a strongly continuous symmetric Markov semigroup
and {P,} the Poisson semigroup defined by (7.3.2). Then {P,} is also a strongly
continuous symmetric Markov semigroup. In addition, if {T}}+>o has the Varopoulos

dimension d, then there exists C' > 0 such that

C
1Py flloe = llus (-, 9)lle < Wllfllp (7.3.4)

forall f e LP, 1 <p<oo, andy > 0. (That is, {P,} has the Varopoulos dimension
2d)

Proof. The assumptions (S1), (S2), and (S3) follow from the definition (7.3.3). By

Jensen’s inequality, we see
1RSI = [ 1Pur(e)da

< / / T () Py (ds)
- / ITf 21y (ds) < || ]2
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Similarly, one can show that P, is strongly continuous on L?. Since {T}};>o has the

dimension d, we have

[Py f ()| =

/0 T @)y (ds)
< [ im sl
<Clflly [ 5 Eplas)

_d
<Cy» ||pr’

which yields (7.3.4) as desired. O

Note that for each v € S and f € L? (1 < p < 00), uys(z,-) is real-analytic [107,
p.67, p.72]. Next lemma is concerned with a derivative estimate for the harmonic

extension .

Lemma 7.3.2. Let f be a bounded measurable function on S, then there exists c; > 0

such that

y%('xay)‘ < Clu|f\<x7 %)

Proof. Let p,(ds) = ﬁny(s)ds, then we have

2
yaﬁy(s) _ (1 o y_>yefy2/45873/2.

dy 2s
Since there exists a constant ¢; such that |1 — g—z| < 01692/ 8 for every y > 0 and s > 0,
we have
any 2
ly —y?/8s —3/2 _
Yy By (s)| < crye s = 0177%(3)

for every y > 0 and s > 0. We finish the proof by interchanging the differentiation
and the integral. O

Let Ar and Ap be the infinitesimal generators of {T}}:>o and { P, };>( respectively,
then we have Ap = —(—Az)2. Let

Ry = {f € Dom(Ar) : Ar(f) € Dom(Ar)},

R, = ﬁ Dom(A%) (7.3.5)

k=1
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forn>1. If1<k<mnand f € R,, then the 2ruy € R, 4. Since {Ti};> and
{P;}+>0 are Feller, R, is contained in Cy(S) for every n > 0, which implies that R, is
dense in L? for p > 1 and n > 0. Thus it suffices to consider Cy(S) in what follows.
We refer the reader to [111, p.29] and [114, Chap. IV §10, §11] for further discussion.

We recall the maximal ergodic theorem, which plays an important role in the
proof of Theorem 7.2.2. Stein [107] gives two different proofs. One is to use the
Hopf-Dunford-Schwartz ergodic theorem with an interpolation argument. The other
way is to rely on the martingale inequalities via the result of Rota [101]. For the
completeness, we provide a continuous martingale version of the second proof, which

is a special case of [104, Theorem 3.1].

Proposition 7.3.3 (Maximal ergodic theorem). If 1 < p < oo and f € LP(S), then

sup fus ()| < OIS

y>0

where C(p) = St for 1 <p < oo and C(oc0) = 1.
Proof. We prove the result for a general symmetric Markov semigroup {Q;}:>o. Let
(X¢)t>0 be the stochastic process corresponding to {Q; }+>0, that is, Q: f(x) = E*[f(X})]
for f € LP. We assume 1 < p < oo since the case p = oo is trivial. Let 7" > 0 be

fixed and {F; : t > 0} the natural filtration of X;. By the Markov property, we have

QQ(T—t)f(XT) = QTH&(QTftf) (XT)
= EXT [QT—tf(XT—t)]
= [E” [QT—tf(XzT—t)|-FT]-

Since

sup ’Q2(Tft)f(XT)|p < E*[ sup |Qr—if(Xor—) | Fr],

0<t<T 0<t<T

we have

/ E*[ sup |Qagr—o f(Xr)"] de < / E*[ sup |Qr_of (Xor_o)P] da
S S

0<t<T 0<t<T

_ /S B[ sup |Qrif(X0)]] da. (7.3.6)

0<t<T
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We have used the reversibility of X; in the equality. Note that Qr_.f(X}) is a
martingale because Qr_;f(X;) = E*[f(X7)|F:]. Then Doob’s maximal inequality
yields )

B s (0r-of (X)) < (25 ) B P (787

0<t<T 1
Since Q) is self-adjoint and ;1 = 1, we have

[ Elande = [ @rotade = [ g(ao

for any bounded measurable function g. Applying this to (7.3.6) (7.3.7), we get
1

and
| sup [Qarof(@)ll < ( [E 5w j@rs(xopa )
0<t<T

<2 ( / Exmxmp]dx)
= U1l

We complete the proof by letting T" — oo. O

For a function f € LP(S) and k > 1, the Littlewood—Paley function of order k is

defined by
0 aku 2 1
_ 2k—1 f 2
@ = ([ G| w)”

Proposition 7.3.4. Let 1 <p < oo and k > 1. If f € L*(S), then gp(f) € LP(S)

and satisfies
g5l < Cpill £l

for some constant C), ;. depending only on p and k.
p’

We refer the reader to [106, p.111, p.120] for the proof. In what follows, we only

use the Littlewood—Paley function of order 1.

7.3.3 Stochastic analysis

Let {T}}+>0 be a strongly continuous symmetric Markov semigroup of the Varopou-

los dimension d and {H,};>o the heat semigroup on R defined by

1 z—y)?
(@) = s [ fwy
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Let (Xt)i>0 and (Y:)i>0 be the stochastic processes on a probability space (€,.7,P)
associated with {7} }+>0 and { H; }+>0 respectively. We assume that (X;):>0 and (Y;)i>0
are independent each other and their paths are right-continuous with left limits a.s.
Let Z;, = (X,,Y;) € S x R. For example, if T} is the standard heat semigroup on R”,
then Z; is Brownian motion on R"*!. Let 7 = inf{t > 0 : Y; = 0} be the hitting time
of Y; at 0. From now on, we consider the killed process (Ziar)i>0-

For fixed s > 0, we assume that the initial distribution of (Z;);>¢ is given by
dr ® 65 where J; is the Dirac delta measure at fixed s > 0. In other words, (Z;)i>0
starts at (xg,s) € S X R where z¢ is randomly chosen with respect to the measure
dx. The probability and expectation of Z; with the initial distribution are denoted
by E® and P? respectively. Explicitly, we have

E° = / E@9)dy, P°= / P9 .
S S

Note that even though P® may not be a probability measure, all the results from
probability theory connected with this context remain valid as explained in [111].

Let h € L'(S) and P, be the Poisson semigroup associated with T;. Since P, is
invariant and symmetric, we have

B [h(X,)] = / ECOR(X, )dr — /

S

Psh(x)dx:/h(x)dx.

S

We recall the Green function formula for Z;.

Lemma 7.3.5 ( [111, Proposition 3.1]). For a Borel measurable function f on S xR,

we have

ol /0 " F(Z)dl] =2 /0 h /S (y A 5)f(w,y) dudy. (7.3.8)

Definition 7.3.6. We say a stochastic process (A4;);>0 on (2, P, %) is in L*(Q, P¥)
if the map A : Q x [0,00) — R is jointly measurable, A, € .%; for every t € [0, 00),
and

ES[/OOo A2 df] < oo. (7.3.9)
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Let (Ay)i>0 € L*(Q, P?). If the “probability” P* is finite, then we define

t
-[(A)t :/ Asd}{g
0

as a L2-limit of martingale transforms using It6’s isometry. If P*® is infinite, we
decompose the Radon measure dz into a countable family of finite measures dx,, and
define the stochastic integral for each finite measure dx, as above. Then we define
I(A); by the sum of the stochastic integrals. The sum is well-defined by (7.3.9). We
refer the reader to [111, pp.37-38].

We recall the projection lemma, which is an analogue of Itd’s formula for the
(d+1)-dimensional Brownian motion. We omit the proof and refer to [111, pp.50-59].
Let V be the set of stochastic processes in L*(Q2, P*) of the form (I(A);)s>0. Note
that V is a closed subspace. Let ®y be the orthogonal projection from L?(£2, P¥)
onto V.

Proposition 7.3.7. Let R, be defined as in (7.3.5). If f € R, then

By (ug(Zine) = usZ) = [ G2 )Y,

for all t > 0.

7.4 Proofs of the main results
7.4.1 Proof of Theorem 7.2.2

For § > 0, we divide G,(f)? into two parts

(%) 2
Gl f)()? = / ot |24 gy
0 0y
0 ou 2 &0 ou 2
2a+1 f 20+1 f
_ Ous ol dy + / 9t )| dy.
/Oy ay(y)y v ay(y)y

Applying Lemma 7.3.2 to the first integral, we obtain

1) 2 4
/ y2a+1 dy S e / y2a—1
0 0

2 e
< Cysup |uyp (z, y)| 67
y>0

2

OUf dy

a—y('x?y)

wy(z, %y)



For the second integral, we apply Lemma 7.3.1 and Lemma 7.3.2 to see

[eS)
2a0+1
[
4

which yields

8Uf

ad
Go(F)(w) < Capalsup fus (2, 9)|0% + || fll,0"»)
y
for some constant C, ;4. Optimizing the RHS in ¢ yields
Go(f)(w) < Capalsup gy ()DL
y
Proposition 7.3.3 yields
(sup [y (2, 9))' 4 Nlg = [l sup luygy (2, 9)l 15 < Cyll f113
y>0 y>0

because 1 — % = §' Therefore, we obtain

1Ga(F)llg < Capall(sup iy (o, )P g LF 1,
Y

= Capaall(sup [y (2, y)])|[2/9]] f]|5 72/
y>0

2
00 B 1 oy d
Town| dy e [ ugte sl < TR
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< Coapdllflps
which finishes the proof. O
7.4.2 Proof of Theorem 7.2.1
We claim that
o an auh
E*[ i Yt 3y (Z) o ——(Z1)| dt] < Copall fllpllhllg- (7.4.1)

Applying the Green function formula (7.3.8), we see

GUf 0uh f 8uh
E° Y 7 (Z;) =2 =k
[/0 ; 8y(t) 8y 1) | dt] = // (y A\ s)y 2 | |3y dydx
/ / auf % dydx
dy

< /S Ga(f)g1 (h)da

< NGa(Hllallgr(R)lly-
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The claim follows from Proposition 7.3.4 and Theorem 7.2.2.
For N > 0, we define

T () = B[ 07 8 N GHEIYI, =

By Lemma 7.3.5, we have
(TN () h) = ES[ES’N(J”)(XT)h(XT)]

= ES[ES[/OT(YW A N) ( 1)dYi| X [h(X7)]

Ouy
oy

— B[h(X,) / (e a2y ean!

~ BB, | T(Ya N AN b)

Note that

tAT 8
1 ::/ Y AN
' 0 ( >8y

Indeed, it follows from the Green formula (7.3.8) that

dt<2N2/ / ‘ (x,y)

= 2N*|lg1 ()13

(Z,)dY, € L*(Q, P*).

aqu

Z
8y(t

tAT
E°| / (Y2 A N?) d:vdy
0

< eN?||fI3 < oo

Furthermore, I; € V, where V is the closed subspace of L*(Q2, P*) of stochastic

integrals with respect to (Y;):>o. Thus, Proposition 7.3.7 yields that

70 =B [ Gz ) ([ e am Gz )

B /0 “(ve A N)aa“f (Zt)aa“h (Z,)dH].

By (7.4.1), the dominated convergence theorem, and letting N — oo, we obtain

T =B [ Ve Gz,

Finally, we show that 7 f converges to c¢,Z,(f) as s tends to oo in the distribu-

tional sense. By (7.2.4) and the Green function formula (7.3.8), we see

o 0 Ouy,
s =2 [ [ non G Gt dady.
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Thus it suffices to show

(Zof,h) / / O‘“auf aa—(m,y)dxdy.

Since f and g are in L2, it follows from (7.3.2) that
Ouy ouy, Ouy ouy,
[t e.) e = (Gt ). )

< / NP2 gp, f, / /\1/2e‘A1/2ydEAh>
0 0

/ Ae N VA(ELF, Bah).
0

By Fubini’s theorem, we get

o0 ou ou /°° <8u ouy, >
a+1 Yy h a+l f
U e )L ) daedy = Gur. d
| [ GenGiw ety = [y (G G ) do
:/ ya+1 (/ )\672/\1/2yd<E)\f, E)\h>> dy
0 0
B / A </ yaHezAl/Zydy) d(E\f, Exh)
0 0

Mat+2) [~
:W/O A"2d(E\f, Exh)

= Ca<[af7 h’>7

which completes the proof. [l
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8. HARDY-STEIN IDENTITY FOR NON-SYMMETRIC
LEVY PROCESSES AND FOURIER MULTIPLIERS

8.1 Introduction

Littlewood—Paley square (quadratic) functions have been of interest for many
years with many applications in harmonic analysis and probability. On the analysis
side, these include the classical square functions obtained from the Poisson semigroup
as in [106] and more general heat semigroups as in [107]. On the probability side, these
correspond to the celebrated Burkholder—-Gundy inequalities which are of fundamental
importance in modern stochastic analysis.

In [10], the authors extend some of the classical Littlewood—Paley L inequalities
for 1 < p < oo to symmetric pure jump Lévy processes and apply them to prove LP
bounds for a certain class of Fourier multipliers that arise from transformations of
symmetric Lévy processes. The key to the proof in [10] is a Hardy—Stein identity,
which is proved from properties of the semigroup. In the classical case of the Lapla-
cian, such Hardy—-Stein identity follows from, essentially, Green’s theorem and the
chain rule as in Lemmas 1 and 2 in [106, pp.86-87]. In the case of Brownian motion,
a probabilistic Burkholder—Gundy type version of this Hardy—Stein identity can be
proved (see [5], [100, p.152]) as a simple application of It6’s formula.

The goal of this chapter is to extend the results of [10] to non-symmetric pure jump
Lévy processes. The first result is a Hardy—Stein identity for non-symmetric Lévy
measure (Theorem 8.3.1). The proof is based on the It6’s formula for jump processes
(Theorem 8.2.1). It turns out that this method gives a Hardy—Stein type identity for
uniformly integrable martingales ((Theorem 8.3.5). Furthermore, the proof contains
additional information, further illuminating the origins of the function F'(a,b;p) (see

(8.3.1)) used in [10].
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In the second part, we introduce a certain class of the Fourier multipliers for non-
symmetric pure jump Lévy measures and prove the LP boundedness of the Fourier
multipliers (Theorem 8.4.1). It is important to emphasize that although the Hardy—
Stein identity holds for non-symmetric Lévy measures, the full comparability of the
LP-norms between the function itself and its Littlewood—Paley square function proved
in [10] requires symmetry and hence the main application given there to the bound-
edness of the Fourier multipliers requires it too. Thus we use a symmetrization of the
Littlewood—Paley function (see (8.4.2) and (8.4.3)) to obtain the L? inequalities for
the Littlewood—Paley functions (Lemma 8.4.2), which leads to the LP boundedness
of the Fourier multipliers.

This chapter is based on joint work with Rodrigo Banuelos [11].

8.2 Preliminaries
8.2.1 Notations

The indicator function of a set A is denoted by 1 4. For a,b € R, we denote by
a Ab = min{a,b}. The real part of a complex number ¢ is denoted by Re(§) = =
where ¢ = z +iy. For a set B C R? we define —B = {—x : x € B}. An open
ball in R? of radius r, centered at zp € R? is denoted by B,(z¢). We denote by
B.(0) = B,. For f,g € L*(R%), we define the inner product of f and g in L*(R?) by
(f,9) = Jga f(@)g(x)dz. Let S(R?) be the Schwartz space on R? and f € S(RY). We

define the Fourier transform and the inverse Fourier transform of f by

-~

0N = 7O = [ flae =<,
FNE) = @) = Cr [ e e

With our definition, Parseval’s formula takes the form

P T —

[ J@ot@ s - o [ Fleaeac 8:2.0)
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for f,g € L*(R?). Let Ny = NU {0}. For a multi-index o € NZ we use the
notations |a| = a3 +---+ag and V* = 07 - - - 97¢. The space of continuous functions
vanishing at infinity is denoted by Cy(R?). For k € N, CF(R?) is the space of functions
[ € Ck(R?) such that Vo f € Cyp(R?) for all a € N¢ with |a| < k, and C5°(RY) is the

intersection of all C¥(RY) over k € N.

8.2.2 Lévy processes

A d-dimensional stochastic process (X;);>o defined on a filtered probability space
(Q,.7,P) is called a Lévy process if

(i) for 0 <ty <ty <--- <t, <oo, {Xy, —Xt,_, }r>1 are independent,

(ii) for 0 < s <t < oo and a Borel set A C R", P(X; — X, € A) = P(X;_5 € A),

and

(iii) for all 6 > 0 and s > 0,

lim P(|X; — X,| > 6) = 0. (8.2.2)

t—s

The characteristic exponent ¢(£) of a Lévy process (X;);>o is defined by E[e®Xt] =
e " for ¢ € R The Lévy Khintchine theorem tells us that (X;);>o is a Lévy
process with characteristic exponent ¥ () if and only if there exists a triplet (b, A, v)
such that
. 1 e
BO = b6+ 56 AE+ [ (1= iyl (1) vidy),
R
where b € R?, A is a positive semi-definite d x d matrix, and v is a o-finite Borel

measure on R?\ {0} satisfying

[ aniypyay) <.
R4\ {0}

We call v the Lévy measure. This gives a large class of stochastic processes that have

been extensively studied. For instance, Brownian motion is the case where b = 0,
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v =0, and A is the identity matrix. We say that (X;):>o is a pure jump Lévy process
if b =0 and A = 0, and symmetric if v is symmetric. We refer the reader to [2]
for further information on these processes. The jump of X, at time s is denoted by

AX; = Xy — X,_. Fort > 0 and a Borel subset A C R™\ {0}, we define the jump

measure of (X3)i>o by

N(t, A) = the number of jumps during time [0, ¢] of size in A
— #{s€[0,]: AX, € A},

Note that N(t, A) is a Poisson random measure with intensity dt ® dv. By the Lévy—

[t6 decomposition theorem [2, Theorem 2.4.16], one can decompose X; into

Xt:bt+Gt+/

|lz|>1

x N(t,dz) +/ x N(t,dz),

|z|<1
where b € R?, G is a Gaussian process, and N (¢, A) = N (¢, A) —tv(A). Following the
standard terminology, we call N(¢, A) the compensated jump measure. Let P,f(z) =
E*[f(X;)], then the semigroup P; has the Feller property: for f € Co(RY), Pf €
Co(R%) and limy o | P, f(z) — f(z)| = 0 uniformly in = (see [19, Theorem 3.1.9] and [22,
p.19]). The infinitesimal generator £ for the semigroup (P;);>¢ is given by

o B() ~ (@)

Lf(z) = m ;
whenever the limit exists. Here the limit is taken in the supremum norm. Let D(L)
be the domain of £, then C2(R?) C D(L) and L can be explicitly written as

d
1 02 f
Lf(x)=b-Vf(x)+ 3 > Ays—a—(2)

ii
“~— J@xiaxj
i,j=1

- /Rd<f(x +y) = flx) —y - Vf(@)lp(y) v(dy) (8.2.3)

for f € C2(RY), where (b, A, v) is the triplet of X; (see [102, Theorem 31.5]).

8.2.3 It0’s formula

We recall 1td’s formula for a general stochastic process Z; from [81, Theorem

5.1, p. 66]. Let M, be a continuous square integrable local martingale and A; a
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continuous adapted process of bounded variation with Ay = 0. Let (X}):>0 be a Lévy
process with its jump measure N(t,-). Let G(t,z) = (Gi(t,z), - ,Gy(t,x)) and
H(t,x) = (Hy(t,x), -+, Hy(t,z)) be d-dimensional predictable processes such that
Gi(t,x)H;(t,z) =0,

t
/ |Gi(s,z)| N(ds,dz) < oo a.s., (8.2.4)
0 JRA
and
t
E[/ |HZ-(3/\Tn,x)|2V(dx)ds] < o0, (8.2.5)
0 JRd
for all ¢t > 0 and 4,5 = 1,2,--- ,d, where (7,) is a sequence of stopping times such

that 7, — 0o as n — oo almost surely. Let (Z;);>0 be the d-dimensional stochastic

process defined by
t t _
Zy = Zo+ M, + Ay +/ / G(s,z) N(ds,dx) +/ H(s,z) N(ds,dx). (8.2.6)
0 JRrd R

Theorem 8.2.1. Let (Z;)i>o be given by (8.2.6) and ¢ € C*(R?). Assume that for
all1 <i,5<dandT >0,

sup sup |H(t,x)| < oo (8.2.7)
0<t<T zeRd
almost surely. Then we have
t
o(Zt) — o(Zo) = / V(Zs) - dM (8.2.8)

/Vgp dA+/D2 M],

/ [ 62+ Glsa) = 9(Ze0)) N(ds.d)
i /0 /Rd<9"<zs + H(s,y)) — ¢(Zs-)) N(ds, dy)
" / 2+ ) = (20) = Hlsv) - Vol Zo) s

where [M]; is the quadratic variation of M.
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8.2.4 Hartman—Wintner condition

In what follows, we assume that (X;):>o is a pure jump Lévy process with cadlac

path and its Lévy measure v satisfies the Hartman—Wintner condition

Re(w(©) _
A Tog L+ Je) (HW)

In [87, Theorem 2.1], Knopova and Schilling proved that a Lévy process (X;)i>o
satisfies (HW) if and only if for all ¢ > 0, the transition density p:(z,y) = pi(y — z)
exists and p;, Vop; € CP(RY) N LY(RY), for all @ € N¢. By (HW), B is an LP-
contraction for 1 < p < co and P.f € LP(RY)NCS(RY) for f € LP(RY) and 1 < p < 00
(see [87, Theorem 2.1] and [10, p. 466]).

8.2.5 Fourier multipliers

Let m : R® — C be a function in L>®. For 1 < p < oo and f € L?> N LP, we
define an operator Ty, by T, f(€) = m(€)F(€). I [T flly < [If]l, for all f € L2 N L7,
then T, can be extended to all of L? uniquely. We say T,, is an LP-Fourier multiplier
operator with symbol m. For many of the classical examples of LP—Fourier multipliers,

we refer the reader to [106].

8.3 The Hardy—Stein identity

The purpose of this section is to give a proof of the Hardy—Stein identity based

on It6’s formula. For a,b € R, ¢ > 0, and p € (1,00), we define
F(a,b;p) = |b] — |a|’ — pala[’~*(b — a) (8.3.1)

and

D P p—2
2 2

F.(a,b;p) = (b* +e%)2 — (a* + &%)z —pa(a® + &%) 2 (b—a). (8.3.2)

We note that F'(a,b;p) and F.(a,b;p) are the second-order Taylor remainders of the

maps = — |z[” and z +— (22 4 £2)? respectively. Since the maps are convex, it follows

from Taylor’s theorem that F'(a,b;p) > 0 and F.(a,b;p) > 0 for any a,b € R.
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Theorem 8.3.1 (The Hardy—Stein identity). Let 1 < p < oo and F(a,b;p) be defined
as in (8.3.1). If f € LP(RY), then we have

[s@rar= [ 7 [ F@se). pie+ ) vanaar. 533
R4 rdJo JRre

Again we note that our proof of this result does not require that v is symmetric as
is the case in [10]. Before we present the proof of Theorem 8.3.1, we give the following
lemmas. The first lemma concerns basic properties of F' and F. which allow us to
use a limiting argument when we consider the case 1 < p < 2. This lemma is proved
in [30].
Lemma 8.3.2 ( [30, Lemma 6, p.198]). Letp > 1, F(a,b;p) = |b|P —|a’ —palaP~2(b—
a), and K(a,b;p) = (b —a)*(la| V |b))P~2. Then we have

K (a,b;p) < F(a,b;p) < C,K (a,b;p),
for some positive constants c,, C,, that depend only on p. If 1 < p < 2, then we have
0< Fllabip) € = Flabp
for alle >0 and a,b € R.

Next lemma is an application of It6’s formula, which is presented in [10, (4.4)]
and [3, p. 1118] for general Lévy processes without proof. For the completeness, we

give a proof.

Lemma 8.3.3. Let T > 0,t € [0,T), 1 < p < oo, and f € LP(R?). For P,f(z) =
E*[f(Xy)] and Yy = Pr_f(X:), we have

V= vt [ [ (B (X ) = Proof(Xe) Nids.d (83.4)

fort e [0,T), where N s the compensated jump measure of (X;)i>o.

Proof. Fix t > 0 and choose r € (0,T —t). Let T =T — r and g(z) = P, f(z), then
it follows from (HW) and [87, Theorem 2.1] that g € C§°(R?) N LP(R?). Since (8.3.4)

can be written as

Pr_a(X) = Pra(%o) + [ [ (Pr_a(Xec +4) = Pr_g(X.0)) N(ds. dy).
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it suffices to prove (8.3.4) for f € Cg°(R?) N LP(RY).

We claim that if h(z) is Co(R?) then the map (s, x) — Pr_,h(x) is Cy([0,t] x R?).
Let (so, 7o) € [0,¢] x R? and & > 0. By the Feller property, Pr_,h is continuous in s
uniformly in x, and Pr_sh(x) is continuous in x for each s. Thus there exists 6 > 0

such that for (s,z) € Bs((so,20)), a (d + 1)-dimensional ball of radius § centered at

(SOa xD)?

|PT_Sh(ZE) - PT_SOI’L(.T())| (835)
< |Prosh(z) = Prosh(2)] + | Prosyh(2) = Pr—s,i(zo)| + | Pr—sh(wo) = Pr—s,h(wo)]

<e,

which proves the claim.
Let o(s,2) = Pr_,f(z). Since f € Cy(R?), we have (s, z) € C([0,] x R?). Let
ie{l,2,---,d}. Forh>0andi=1,---,d, we have

. flx+y+he) — flz+y)
& (Prosf(z + hei) = Pr.f(z)) = /Rd ( h )

Since f € C5°(R?), we have

pr—s(y) dy.

f(x+y+hei)—f(a:+y‘<H “
0x; oo )

h

By the dominated convergence theorem and the claim, we conclude that %(s, x) =
Pr_,(0:f)(z) € C([0,t] x R?Y). Since X; is a pure jump Lévy process, Lf can be
written as

£1@) = [ e+ 9) = 1) =y V@)L ) vldy

by (8.2.3). By Taylor’s theorem, we have

Fa+9) — F(@) 3 V@), )] < 20 ooy, ) + 5ol Z [ )

&L’Zﬁx j

Since the RHS is integrable with respect to the Lévy measure v, Lf is Co(R?) by the
dominated convergence theorem. It then follows from

g—f(s, T) = %PT_sf(x) = —LPr_f(z) = —Pr_,Lf(z), (8.3.6)
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that 22 € C([0,] x R?). Therefore we have ¢ € C*([0,#] x R9).

Note that X, can be written as

Xt:/ :pN(t,da:)+/ x N(t,dzx)
|z|>1 |z|<1

by the Lévy-Ito decomposition. Since X; has no continuous martingale part, we can
apply Theorem 8.2.1 for p € C1([0,t] x R?) and the process Z; = (¢, X;). Note that
Z; is a (d + 1)-dimensional stochastic process of the form (8.2.6) and satisfies the

assumptions of Theorem 8.2.1. Thus we have

390

p(t, Xe) = (0, Xo) = | 5-(s, Xs-) ds

/ / (Pl Xo ) =l X)) N(ds. )
i / / (65X ) — gl X)) N, )

/ /| 1 p(s, Xom +y) — (s, Xoo) =y - Vaop(s, X)) v(dy)ds

_ / 00 s, ) ds + / / (5, Xy +y) — (s, X,)) N(ds, dy)

—i—/ Lo(s, Xs-)ds
0

The result follows from (8.3.6). O

Although not explicitly written, the next lemma follows from [87]. Since its proof

is quite simple, we present it here for the completeness.

Lemma 8.3.4. The semigroup P, defined by P.f(x) = E*[f(X})] is ultracontractive
on ILP, 1 <p<oo. That is, for everyt > 0, there exists a constant Cy > 0 such that
for all f € LP(RY),

1P flloo < CZ N1 Fllp- (8.3.7)

Furthermore, C; converges to zero ast tends to oo.

Proof. Fix t > 0. Note that e ) = E[e®¢Xt] = (27)4F~L(p,(-))(€). Since p; is in
LY(R%), one sees that e belongs to L®(R?). We claim that e=*(©) is in L'(R%).
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To see this, it suffices to show that e tRe¥(®) € L1(R?). Let h: R? — R be a function
satisfying Re (&) = log(1 + [€])R(§). Since we have h(§) — oo as |{| — oo by the
Hartman—Wintner condition (HW), there exists R > 0 such that th(§) > d + 1 holds
whenever |£| > R. Let By be an open ball centered at 0 and radius R. Denote its

Lebesgue measure by | Bg|. Using the definition of h, one sees that

1 1
e tReV() e = e < e
/Rd\BR g>r (14 [€])10E g=r (14 [)*

Since we have
et REU(E) _ |=t0(6)| ‘/ () da| < 1 (8.3.8)
Rd
we obtain

1
e tRev(O) ge < —d¢ +|Bg| < .
/Rd g>r (1+[€])* Bal

So we have e~ ¢ L}(R?) as desired. By the Fourier inversion formula, we have

1 —tp(§) ,—ixz-¢
e e s dg

R R S
pt( ) (QW)dF( )

and p; € L>®(R?). Define

]' —tRe
C, = ) /IR K tRev() ge¢ (8.3.9)

then it is obvious to see that C; is finite and |p;(z)| < C; for all z € RY Using

Jensen’s inequality, we obtain that

pa@l=| [ somena] <| [ oyl < ciis,

for any x € R?, which yields (8.3.7).

We now prove the second assertion that C; — 0 as t — oo. First, we note
that Re (&) is nonnegative by (8.3.8) and in fact the Lebesgue measure of the set
{€ : Revp(€) = 0} is zero (see [9, §3]). Thus e *Fe¥(© tends to 0, a.e., as t — oo.
Since e~ tRe¥(©) ig integrable for all ¢ > 1 and bounded by e~ Re¥(©) it follows from the

dominated convergence theorem that

O — Tim ~tRey(©) g¢ _
tlggo Ci= tlggo (2m)d /Rd ¢ e =0.
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We are ready to prove the HardyStein identity.

Proof of Theorem 8.3.1. Let p > 2. Fix T > 0 and let 0 < Ty < T. Consider
o(x) = |z|P, Vi = Pr_f(Xy), and H(t,z) = Pr_f(X;— + x) — Pr_f(X,_) for
0<t<T,and z € R% It follows from Lemma 8.3.3 that

t
YthoJr/ H(s,y) N(ds,dy)
0 JRd
for 0 <t < Ty. By Lemma 8.3.4,
E|Y,|* = E|[Pr_ f(X))* < Cf_g[If]; < 00

for 0 < ¢t < Ty and H(t, ) satisfies (8.2.5) and (8.2.7). Applying It6’s formula to

©(Y;), we obtain

(Y1) — o(Yo) = /0 /Rd(w(Ys + H(s,y)) — ¢(Ys_)) N(ds, dy)
* /0 /Rd(@(ys— +H(s.y)) — o(Yer) = H(s,y) - VoY) v(dy)ds  (8.3.10)

for all 0 < ¢t < T,. Note that Y, + H(s,y) = Pr_sf(Xs_ +y), Yoo = Pr_of(Xs),

and
t
BY; - % =E[ [ [ [Prof(Xe +9) = Proof (X wldn)ds] <00 (8:3.11)
0 JRrd
for all 0 <t <Ty. By Lemma 8.3.4, we have

[o(Yae + H(s,y)) — (Yo )| = [|Pr—of (Xoe +9)I” = | Pr—of (X )"
S p‘PTfsf(Xsf + y)’p_lyprsf(Xsf + ?J) - PTfsf(Xsf)’

< pCE P\ 1Y Proo f(Xo- + ) — Proof(X,).

Here we used the fact that the constant C; in (8.3.9) is decreasing in ¢t. By (8.3.11),

we see that

B[ [ [l + His.0) - otV ) vidis]

t
< pPCRY| f||§<P—1>E[ /0 /R NP f(Xae +y) = Proof (X0 y(dy)ds] < 00
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for t € [0,Tp], which implies that fot Jpale(Yee + H(s,y)) — o(Ys-)) N(ds,dy) is a
martingale for ¢ € [0,75]. Note that
(Yoo + H(s,y)) — p(Yso) = H(s,y) - Vo(Ys-)
= |Pr—sf(Xs— +y)[" — [Pr—s f(Xs-) [P
- pPT—sf(Xs—)|PT—sf(Xs—)‘p_z(PT—sf(Xs— + y) - PT—sf(Xs—))

= F(Pr-of(Xs- +y), Prof(Xs-);p).
Putting ¢t = T and taking the expectation of both sides in (8.3.10), we have
To
E[Ya P — B Yol? — 7| / / F(Pr-of(Xe + ), Prof (Xo )i p) v(dy)ds|.
o Jr

(8.3.12)

Integrating both sides in (8.3.12), we see
| Pr—z, fIl; — [1Pr fI}
To
- /Rd E® [/0 /Rd F(Pr_sf(Xs— +y), Pr—sf(Xs-);p) V(dy)ds] dx
To
:/ / / / F(Pr_sf(z+y), Pr_sf(2); p)ps(x, z) v(dy)dsdzdx
rd Jrd Jo JRd
To
— [ [ [ P ) P vidg)asd:
rdJo Jrd
T
— [ [ [ Bt ). Pl vidy)asdz,
Rd JT-T, JRA

First, we let T'— Ty. Since F'(a,b; p) is nonnegative, we have

iy [ [ [ R pi s

T*}TO

= [ ][ Feste . Rt s

We claim that || Pr_g, f|l, — || fll, as T — To. It suffices to show that || P, f — f||, = 0
as t — 0. Let ¢ > 0. Using the continuity of the translation operator on LP(R%), we
choose § > 0 small enough such that ||T,f — f|? < e where T, f(x) = f(x +y). By
(8.2.2), there exists to > 0 such that for all ¢ € [0, #¢]

PO X,| > ) = / po(y) dy < <.

ly[>0
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For 0 <t < ty, we get

B - fl2 < / o +y) — F(@)Ppily) dyda
p—1 p . d Ty — flPp, d
<2 ||fup/|y>6p<y> y+/ IT, 7 — FEpi(y) dy

ly|<s

< @ISy + e,
which proves the claim and yields

T
= 0Pesly = [ [ [ PRAG o+ 0).PapGlin) vidgydsi

Let f*(z) = sup, |P.f(x)], then it follows from Proposition 7.3.3 that ||f*|, <
L[ fllp- Since |Prf(z)] < |f*(2)] and Prf(z) — 0, as T — oo for each z € R?
by Lemma 8.3.4, the dominated convergence theorem yields ||Prf||, — 0 as T — oo.

Since F'(a,b;p) is nonnegative, we have

1= [ [ [ PRI+ 0Pl vamsa: CESE)

as desired.
Let 1 < p <2 and ¢ > 0. Following the same argument as in the case p > 2 with

the function ¢(x) = (|z|> + £%)2, we arrive at

/Rd <(’f($)\2 —i—gz)% — (|Prf(z)]? +82)g) A
- /Rd /OT /]Rd F.(Pof(z+y), Pf(2);p) v(dy)dsdz,

where F is the function defined by (8.3.2). Since the function z ~— z% is 2-Hélder
continuous on [0,00) for 1 < p < 2, we have (|f(2)|* + &) —e? < C,|f(x)[” and
(IPrf(z)? + %)% — e? < Cy|Prf(x)|P. Thus the left hand side converges to | f|[2 —
|Prflp as e — 0 by the dominated convergence theorem. On the other hand, 0 <
F.(a,b;p) — F(a,b;p),ase — 0, and 0 < F.(a,b;p) < ﬁF(a, b;p), by Lemma 8.3.2.

Since the integral

e = [ [ [ REsG. i s
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is bounded for each ¢ > 0, Fatou’s lemma and the dominated convergence theorem

give (see [30, p.199]) that

T
g 1e.1) = [ [ [ PP ). PG vidy)dsi
e—0 R4 0 R4

We finish the proof by letting 7" — oc. O

Following the same argument, we obtain a more general result for martingales of

which Theorem 8.3.1 is a special case.

Theorem 8.3.5 (A Hardy—Stein identity for martingales). Let 1 < p < oo and
H(t,x) be a d-dimensional predictable process satisfying (8.2.5) and (8.2.7). Assume
that a martingale M, defined by

t
M; = M +/ H(s,y) N(ds, dy)
0 JRd
is uniformly integrable in L?> N LP, that is,
sup E|M,|m#{2P} < oo,

t>0

Then we have
E|Ma|? — E|Mop = / / E[F(M, . M, + H(s.p);p)] v(dy)ds.  (8.3.14)
0 Rd

Proof. Let p > 2. Let T > 0 and ¢(x) = |z|P. By It6’s formula, we have

o) = () = [ [ (oM + Hs.9) = 9010 Fids, )
b [ POV H ) = V)~ Hs.) - V0, )l
for 0 <t <T. Since

[o(Mo— + H(s,y)) — o(Ms_)|* < p*2 3 (IMo_ "2 + |H (s, y)|** %) |H (s,y)|
< C(p,T)|H(s,y)|?
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for 0 < s < T, we get

B[ [ [ 10+ Hls,0) = o0 vid)as]

<O, T / [H (s ) ? v{dy)ds]
Rd
= C(pa T)]E’Mt — M0|

< 00,

which implies that fot Jpa(o(Ms— + H(s,y)) — o(M,-)) N(ds, dy) is a martingale and
its expectation is zero. Since F'(a,b;p) > 0 and v is o-finite, it follows from Fubini-

Tonelli theorem that
t
BV~ EMP = [ [ Bl + Hs.0) - (M) — H(s,y) - Tl )] wldy)ds
0 JR

N / / E[F(M,—, M, + H(s,); p)] v(dy)ds.

Letting ¢ — 0o, we get the result.

b
2

Suppose 1 < p < 2. Let € >0, T > 0, and @.(t) = (t* + %)2. By Itd’s formula,

we have
Blen (1)~ Blar (Vo) = [ [ BIEOVL- M.+ Hs. )0 s
for 0 <t < T. Since p.(t) < Cplt[P + €” and sup,>q E|M,;|? < oo, we have
i (E[p: (My)] — Elip=(Mo)]) = E|M;[” — E[Mol".

Let I(e,t) fo Jpa E[Fe(M,—, M,_ + H(s,y); p)] v(dy)ds, then liminf. o I(e,t) < oo
by Lemma 8.3.2. Using Fatou’s lemma, we have 1(0,¢) < co. Thus the result follows

from . (t) < C,|t|P 4+ P and the dominated convergence theorem. O

8.4 Fourier multipliers and square functions

The main application of the results in [10] was to show the LP boundedness of the

Fourier multipliers introduced in [8], 1 < p < oo, without appealing to martingale
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transforms. Of course, a disadvantage of such a proof is that we do not obtain the
sharp bounds given in [8,9], which follow from Burkholder’s sharp inequalities. In
addition, the Littlewood—Paley inequalities proved in [10] only apply to symmetric
pure jump Lévy processes and therefore the Fourier multiplier proof given there also
has this restriction. In this section, we prove, via a symmetrization of the Littlewood—
Paley inequalities, the general result for Fourier multipliers.

We recall that (X;);>o is a pure jump Lévy process with cadlac path and v is its

Lévy measure that satisfies the Hartman—Wintner condition

Re(w(©) _
A Tog L+ Je) (HW)

Let P; be a semigroup defined by P, f(z) = E*[f(X})]. Let ¢ : (0,00) x R — R be a
bounded measurable function and 1 < p, g < oo with % + % =1. Let m : R? = C be
a measurable function. The Fourier multiplier operator with symbol m is denoted by
T,,. Note that T, is determined by F(T,,f)(&) = m(ﬁ)f(ﬁ) For f,g € L*(RY), we
denote by (f, g) = Jpa fgdz. By Parseval’s formula (8.2.1), we have

Tut.0) = [ Tud@lo(o)do

1

= i L, FEnDOF(9)(E) de

- g L, MO de.

We are ready to state our result on Fourier multipliers.

Theorem 8.4.1. Let ¢ : (0,00) x R? — R be a bounded measurable function, p €
(1,00), and q the conjugate exponent of p. Then for f € L*(R?) N LP(RY) and g €
L2(RY) (1 L9(RY),
Mo = [ [ [ B+ 0) - Pr@)(Pale + ) - Pgl))ott.y) vid)itda
rdJo Jr
(8.4.1)

is well-defined. Furthermore, there is a unique bounded linear operator S, on LP(R?)

such that Ag(f,q) = (Ss(f),g9) and Sy = T, with symbol my given by

mal€) = [ [ IS = 1P Ot y) v(dy)at.
0 R
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When v is symmetric, this result was proved in [10] as an application of the
boundedness on LP of the Littlewood—Paley square functions which itself was the
main application of the Hardy—Stein inequality, completely bypassing the martin-
gale transform arguments used earlier. The question left open in [10] was whether
Littlewood—Paley arguments can be used to prove the result for general v. We answer
this in the affirmative.

Let us introduce the dual process and the symmetrization of the Lévy process
(X¢)t>0 with the Lévy measure v. Let ()?t)tzo be a cadlag stochastic process having
the same finite dimensional distribution as (—X)¢>0, and independent of (X;);>0. The
process ()?t>t20 is said to be the dual process of (X;);>o. Note that ()?t)tzo is a Lévy
process with triplet (0,0, v(—dz)). We define its semigroup by P.f(z) = E*[f(X,)].

Note that for any Borel function f and g, we have
| Rt de= [ j@)Rgt)d,
R4 R4

which explains why ()A(t)tzo is called the dual of (X¢)i>o.

Let X, = Xo+ )/(\'% for t > 0. We define (&) = Re((€)) and #(B) = L(v(B) +

N [—

v(—B)) for any measurable set B in R?. Since we have

X4 o8O 96 — 1O

Nl

E[e$%] = E[e” ™4 |E[e
and
5O = [ (1= coste ) vl
_ /R (1= cos(§ - ) P(dy)
- /Rda — Y ig -yl <) U(dy),

the process )?t is a Lévy process with characteristic exponent 15(5) and the Lévy
measure . We say that X, is the symmetrization of X;. Define ﬁtf(a:) = ]E’”[f()?t)]
The Fourier transform of P, f is given by

-~ -~

FR)E) = Of () = e 0O (g,
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Since )N(t is a symmetric pure jump Lévy process and the measure v satisfies
(HW) condition, it leads us to apply the result of [10] for the symmetrization X;. In
particular, we obtain two side estimates for the square functions of X,. We define the

square functions of the symmetrized process X, by
e = ([ [ |Pre+o - e
0 Jrd

G.(f)(z) = </OOO /A(t,z,f)

where A(t,z, f) = {y € R%: |P,f(z)| > |P,f(z +y)|}. The following lemma is found
in [10, Theorem 4.1, Corollary 4.4 |.

: (dy)d : (8.4.2)

Fuf(a +y) — B 5 (8.1.3)

Lemma 8.4.2. Let 2 < p < oo and f € LP(R?). Then there are constants ¢, and C,

depending only on p such that

Sl fllo S NGy < Coll £l

If1 <p<ooand f € LP(R?), then we have

dyllfllp < NG (f)llp < Dyl flp

for some d,, and D,, depending only on p.

For a function f and a measure p, the essential supremum of f with respect to

the measure p is denoted by || f|l -

Lemma 8.4.3. Let (B) = 3(v(B) —v(—B)) for any measurable set B C R?. Then,
there is a measurable function r(y) such that v(dy) = r(y)v(dy). Furthermore, the

function r(y) is bounded v-a.s. with ||r||ey < 1.

Proof. Note that v is o-finite since v({0}) = 0 and [,,(1 A |z[*)v(dz) < co. So are
v and 7. Suppose that B C R? is a measurable set such that 7(B) = 0. Since v
is a positive measure, we have v(B) = v(—B) = 0, which implies 7(B) = 0. Thus
7 is absolutely continuous with respect to v. By the Radon-Nikodym theorem, we

conclude that there is a measurable function r(y) such that v(dy) = r(y)v(y).
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To see r(y) is bounded, we consider the set B® := {y € R? : |r(y)| > 1+ &}
for an arbitrary ¢ > 0. From the relation 7(dy) = r(y)v(y) obtained above, we
have 7(B°) > (1 + ¢)v(B°). It then yields ev(B*) + (2 + )v(—B°) < 0 so that
v(B*®) = v(—B°¢) = 0. Therefore, r(y) is bounded v-a.s. and ||r||y < 1. O

Proof of Theorem §.4.1. The first argument is directly obtained by Theorem 8.3.1.
Indeed, since F(a,b;2) = |a — b|?, Theorem 8.3.1 yields that

||f||2—/// (P.f(x), Pof(x + y); 2) v(dy)dtda

/]Rd / Rd |2 ( P, f(z +y)|* v(dy)dtdz.

It then follows from the Cauchy-Schwartz inequality that

At < Wl [, [ [ IR0 - PG@IIRgG +3) — Pata)] dy)ids
< 1ol Nl

Since f,g € L*(R?), Theorem 8.3.1 implies that A4(f, g) is absolutely convergent. To

see the second assertion, we use Parseval’s formula (8.2.1) so that

As(f;9)

_ ; / / F(PS(+y) = P () EOF gl + y) — Bg()(©€)o(t, y) dev(dy)dt

(€Y — 1)e WO F(€) (€ — 1)e©OG(E) (L, y) dév(dy)dt

(27) /// Y — 1272 B F(&)5(E) b1, y) dEv (dy)dt

where 1(&) is the characteristic exponent of (X;);>0. In the second equality, we have

used the fact that

F(P(-+y) = BLONE) = (€9 = DF(Pf)(E) = (€57 = 1)e O J(&).
By Lemma 8.4.3, there is a measurable function r(y) such that 7(dy) = r(y)v(dy)

with ||7]|ecy < 1. Using v = v + 7, we have

As(f.9) = € — 126 2RO F(eYG(€) (1, y) dEv(dy)dt

R4 Rd

|5V — 1|22 ReE) F(£)g(€)p(t, y) dET(dy)dt

R4 J R4
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If we define n(t,y) = ¢(t,y)(1 + r(y)), then n is bounded v-a.s.; thus, we obtain

i [ [ = e Fi g, ) deani.

Ag(f.9) =

We consider 5@ and ]5;, the symmetrization of X; and P,. Since the characteristic

exponent of X, is the real part of 1(€), 1(€) = Re(4(€)), and
F(PFC+y) = BFONE = (57 = DF(BL)(E) = (57 = )e T fg),
it follows from Parseval’s formula (8.2.1) that
M) = [ [ (Bt ) = Bre) Byl +) ~ Pg(o)nte. ) Pldy)dida
ri Jo  JRd
Ay(f.9) (8.4.4)

To show the boundedness of Ay(f,g), we use the square functions defined in (8.4.2).
It is enough to show the case p > 2 and 1 < ¢ < 2. Note that ||7||e 5 is finite and
1Mooz < 2l@lloo- Let A(t,x,9) := {y € R : |Pg(z)| > |Pg(z + y)|}. Note that it

follows from the symmetry of v that

L] 1B - Br@liPye + ) - ()| dy)deds
R4 JO A(t,x,g)
[ s - B Pt + ) - Pt ).
Rd JO RA\ A(t,z,9)
Applying Cauchy-Schwartz and Holder’s inequalities, we have

Rlf.9)
<o [, [~ [ 1Pste+) = s @) Pgte +y) = Paga)| 7(dy)itds

< 2|Inl|scr h P f(x — P.f(2)||Pg(x — Pyg(2)| D(dy)dtdx
<olalles [ [ [ RS+ = Br@)IPate +y) ~ P )
<2l [ GG (9)(0) do

< 2/l IG(NIlpl|Ga(9) -

It follows from Lemma 8.4.2 and (8.4.4) that

As(f,9) < 4C,Dollolloo | Fllpllglls-
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Therefore, the Riesz representation theorem yields that there is a unique linear oper-

ator Sy satisfying Ay(f,9) = (Ss(f), 9). O
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