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5.14 PICO matched the real terrain from the left by a set of Gaussians (right). 148

6.1 Relative comparison of the modeling paradigms across different dimensions. 160
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ABSTRACT

Krs, Vojtech Ph.D., Purdue University, August 2019. Optimization and Control in
Procedural Modeling. Major Professor: Bedrich Benes.

Procedural modeling is a powerful technique used in computer graphics to create

geometric models. Instead of manual geometry definition, models are generated

implicitly from a set of rules and parameters. Procedural systems have found

widespread use in generating content for games, film, and simulation of natural

phenomena. Their strength comes from the ability to automatically generate large

amount of varied geometry. One of their drawbacks is lack of control because a

small change in input parameters often causes large changes in the generated

model. In this work we present three novel procedural systems, investigate different

forms of control, namely simulation and optimization, and discuss them in terms of

general procedural modeling workflow. First we show modeling of 3D objects with

arbitrary topology via erosion and deposition simulation controlled by Smoothed

Particle Hydrodynamics. Next, we present an algorithm for generating 3D curves

using 2D sketches and contextual geometry. Finally, we propose a novel procedural

system capable of generating arbitrary type of geometry with respect to

user-defined constraints. We show that these systems can be controlled via several

means and identify common preconditions that facilitate control: maximizing

interactivity and amount of structured information input, minimizing unexpected

behaviour, and local control akin to traditional modeling.
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CHAPTER 1. INTRODUCTION

The research in computer graphics has yielded impressive results over the past

decades. The heart of computer graphics lies in observing the real world and

attempting to simulate it visually by using a computer, with the ultimate goal

being a simulation indistinguishable from reality. There are many pieces of the

puzzle to discover before this goal can be reached, but some are already in our

grasp. For instance, we have long known the rendering equation (Kajiya, 1986)

which describes how light travels through space and interacts with the

environment, enabling us to render photorealistic images of virtual worlds. The

required amount of computation has been gradually decreasing using various

optimizations (Akenine-Moller, Haines, & Hoffman, 2018) and the hardware

capabilities to do said computation have been increasing exponentially (R. Smith,

2014). Currently, photorealistic rendering is common in offline rendering (Pixar,

2018) and is currently making its way to real-time applications as well (NVIDIA

Corporation, 2018). Similarly, significant advances have been made in the field of

data-acquisition. Imaging physical objects from the atomic level (Haugstad, 2012),

through human bodies (Suetens, 2002) to distant galaxies (Gendler & GaBany,

2015) has become increasingly precise and cost-effective, thanks to the advances in

many fields including sensor technologies, computer vision, and artificial

intelligence.
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There is another piece of the puzzle that has received considerable attention in the

computer graphics community: modeling of virtual worlds. Modeling is the process

of creating a computer representation of physical or virtual objects. An important

feature of modeling is the freedom it offers. This freedom enables artists, designers

or scientists to model not only existing objects, but to come up with new creative

shapes for solving a particular problem, simulating a particular part of a real

system, or telling a visual story. Consequently, the applications of modeling span

many areas, from physics simulation, through product design, to entertainment,

and they affect the everyday lives of most people.

Modeling of 3D objects, however, continues to pose many challenges. The major

challenge is how to express user’s intent by simple means. Other challenges include

creating geometry of quality, that is with sufficient detail for visual fidelity or

simulation accuracy, but also of quantity, to richly fill virtual environments.

Traditional modeling by hand is a time-consuming task requiring expertise, not

unlike traditional drawing on a paper or clay sculpting. In traditional modeling,

the modeler manually and iteratively modifies an object until a desired shape is

reached. Procedural Modeling (PM) is an alternative approach that generates

models algorithmically and is able to produce high quality models in a fraction of

time compared to modeling by hand (Ebert, Musgrave, Peachey, Perlin, & Worley,

1998). PM systems have enjoyed a widespread use, particularly in movie and game

industries. The procedural approach is not only automatic, but uses a model

representation that uses less memory than traditional models. However, one of the

biggest disadvantages of PM systems is that they are difficult to control and

therefore often require expert knowledge to use. Furthermore, each system is
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typically tailored to a specific type of a physical object, such as plants, terrains or

urban layouts.

In this dissertation, we explore the issue of control of procedural systems. There is

a wide range of different types of procedural systems and their representations.

Therefore, instead of focusing on control in general systems, we look at control

from three specific angles. First, control via simulation, specifically modeling via

erosion and deposition simulation. Second, we focus on fine control in 3D curve

modeling. Finally, we present a novel framework able to model variety of objects

via optimization with respect to user-defined constraints. The rest of this chapter

will detail current modeling methods and their challenges, our proposed solutions,

their significance and associated research questions.

1.1 Traditional Methods

In traditional modeling, artists typically start with individual primitives, such as

vertices, lines, surfaces or volumes. Through an iterative process of modifying

geometry and topology the user gradually improves the model until the desired

form is reached. The gradual changes are made by a set of operations, such as

applying transformations or sculpting brushes (Figure 1.1). Some of the popular

software packages currently in use include Autodesk Maya (Autodesk, 2018b), 3DS

Max(Autodesk, 2018a), ZBrush (Pixologic, 2018) and SolidWorks (Dassault

Systèmes, 2018).

The operations and tools available to create and modify 3D models depend on the

internal representation of the model and on the intended use of the model. There

two categories of representations: solid and boundary.
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Figure 1.1. Sculpting workflow in the work of Stanculescu et al. (2011)

Solid model representations hold information about what volume in space is

occupied, typically with additional properties of density or color, and can therefore

provide information about the internal structure of the object. This is important,

for instance, in physical simulations or for representing fluids. Typical

representations include collection of volumetric primitives, e.g., tetrahedrons, or a

space-occupancy data-structure, such as a voxel grid or an octree (Samet, 1990).

Constructive Solid Geometry (CSG) is one example of a modeling workflow

leveraging solid representation. The modeler places parametrized primitives, for

example spheres or cylinders, and combines them into a hierarchy using Boolean

operations of union, subtraction and intersection to generate the final model. Solid

representations are also sometimes used in sculpting applications because of their

native support for topology changes, e.g., for creating or bridging holes in an object.

Boundary representations store information about the surface of the object and are

therefore more memory efficient than solid representations, while sacrificing the

information about the internal structure. These representations are common for

applications where the main focus is on outside appearance or spatial delimitation

of the object. Boundary representations are typically used for purely virtual
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objects, for example for movies or games, but they can be used to create

manufacturable objects for 3D printing as well. The typical boundary

representation is a triangular mesh, popular for its simplicity and efficient

rasterization (Preparata & Shamos, 1985). Other representations use

quadrilaterals or other polygons, curves, or freeform surfaces (Farin, 1996). A

typical workflow is polygonal modeling, where the modeler subdivides, inserts and

extrudes polygons to add detail while adjusting positions of individual vertices.

Similarly, curve or freeform surface modeling consists of manipulating individual

curves or surfaces, respectively, by placing control vertices that approximate the

surface of the modeled object. Sculpting can be performed on surface

representation as well, despite some drawbacks, such as the need for remeshing to

preserve surface quality and handling of topology changes.

While being able to customize every atomic part of the model provides the user

with great degree of control over the result, modeling complex and detailed scenes

with many objects soon becomes infeasible without any automation. Some degree

of automation in traditional modeling is often afforded using tools that perform

high-level operations on the model, however most of the work still has to be done

by hand.

1.2 Procedural Methods

Procedural modeling is a powerful technique used in Computer Graphics to create

geometric models or textures. Instead of having the user define every detail

explicitly, e.g., individual vertices or pixels, a procedural system generates a model

or an image implicitly from a set of rules and parameters. In this work, we focus on
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systems generating 3D geometry. These systems have found widespread use in

generating content for virtual scenes used in games (Hendrikx, Meijer, Van Der

Velden, & Iosup, 2013), film, and recently even in reinforcement learning (Justesen

et al., 2018). Procedural systems are particularly useful for modeling natural

phenomena, such as terrains, trees, plants (Figure 1.2), or other fractal-like

structures. Man-made objects that are frequently generated procedurally include

buildings, cities, and road networks (Smelik, Tutenel, Bidarra, & Benes, 2014).

Figure 1.2. Procedural system for interactive plant modeling (Hädrich et
al., 2017)

A popular way of representing procedural systems are as formal generative

grammars (Chomsky, 1956). The grammars start with some initial symbol, called

axiom, and through a series of rewriting rules the axiom is transformed into other

symbols. These symbols are themselves, recursively, transformed until a terminal

symbol is reached. The symbols in these grammars represent geometry, for

example, line segments. The two most common grammars used are

L-systems (Lindenmayer, 1968a), operating on strings, and Shape

Grammars (Stiny & Gips, 1972), operating on shapes. Other representations of

procedural systems include fractals for terrain generation (Mandelbrot, 1982),

cellular automata (Von Neumann, Burks, et al., 1966; Wolfram, 2002) for

generating game levels (Johnson, Yannakakis, & Togelius, 2010), and noise

functions (Perlin, 1985) for modeling terrains, water bodies, or clouds.
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Figure 1.3 shows an example of a simple L-system generating a binary fractal tree.

The grammar in this example is defined as follows: {0, 1, [, ]} is a set of possible

symbols, with 0 being the axiom. There are two rewriting rules: 1→ 11 and

0→ 1[0]0. The geometric interpretation of individual symbols is defined as follows:

0→ draw a leaf line segment, 1→ draw a line segment, [→ push position and

angle to a stack and turn left by 45◦ degrees, and ]→ pop position and angle from

a stack and turn right by 45◦ degrees. The symbols in a string are interpreted in

order and drawn by pen with a variable position and angle. In each iteration shown

in the figure, all symbols are rewritten using these two rules in parallel. The figure

shows the geometric interpretation of the intermediate strings.

0 1[0]0 11[1[0]0]1[0]0 1111[11[1[0]0]1[0]0]11[1[0]0]1[0]0

Figure 1.3. Binary fractal tree generated by a simple L-system.

Many of the procedural systems start from an initial state and evolve that state

through time until a desired result is reached. This can be achieved using a

grammar derivation as shown above, or an actual physics-based simulation. Various

physics-based simulation methods have been used to model terrains via

erosion (Beneš, Těš́ınskỳ, Hornyš, & Bhatia, 2006) or plant growth (Hädrich et al.,
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2017). Furthermore, particle systems are typically modeled using

simulation (Reeves, 1983).

One of the main strengths of procedural systems is their emergence property

(Mitchell, 2009a). By applying very few simple rules repeatedly, a complex model

emerges through the interaction between the parts of the system. This results in

data amplification, where a relatively small number of parameters or rules given to

the system yield wide variety of outputs (A. R. Smith, 1984). Stochastic

procedural systems amplify the number of outputs even further by introducing

randomness in to the generative process. Another important property of procedural

system is their compact representation, which effectively compresses models that

would otherwise require much more memory storage. This fact has been exploited,

for example, by the demoscene community focusing on generating visual art with

small self-contained programs (Burger, Paulovic, & Hasan, 2002). Finally, the

practical benefit over traditional methods is the fact that procedural systems can

generate content automatically, often in real time and at a controllable level of

detail (Greuter, Parker, Stewart, & Leach, 2003).

1.3 Problem Statement

There are several open problems in procedural modeling, which we will discuss in

the context of the recent survey by Smelik et al. (2014).

One of the issues of procedural modeling is the lack of control. In this work, we

define control as follows: The ability of the user to modify the procedural system

such that it generates a model matching user’s imagination, to the degree that is

within solution space of the system. While the essence of procedural modeling is to
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generate geometry automatically, it is desirable to have a degree of control over the

generative process and the final result. Ideally, we seek control of both the global

characteristics of the model and the local geometry anywhere on the model. For

example, when modeling a tree, we would like to have control of the overall

branching angle while at the same time being able to modify individual branches.

There are several reason why controlling procedural systems is difficult. One of the

reasons being their nonlinear nature: a small change in input parameters often

causes disproportionate changes in the generated model (Mitchell, 2009a).

Furthermore, the system’s parameters form high-dimensional spaces which are not

trivial to visualize or restrict to achieve desired result (Talton, Gibson, Yang,

Hanrahan, & Koltun, 2009). Finally, the sheer amount of parts generated, for

example hundreds of branches when generating a tree, can be overwhelming to

manage.

Fundamentally, there are two methods of control: forward and inverse. Forward

control constitutes of modifying initial conditions of the generative system, for

example its parameters and rules. This leads to an iterative modeling process

where user adjusts parameters while observing their effect on the final geometry.

While this process is typically tedious due to the nonlinear response to a change of

parameters, the use of simulation has been successful in simplifying this process.

An example of control via simulation can be found in the work of Beneš et al.

(2006), where hydraulic erosion has been used for generating terrains. On the other

hand, inverse control is performed by specifying requirements of the final result,

while the system’s parameters are automatically modified to generate result that

fulfill those requirements. These requirements can range from sketches (Ijiri et al.,

2006), painting brushes (De Carpentier & Bidarra, 2009) or volume and image
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matching (Talton, Lou, Lesser, Duke, Měch, & Koltun, 2011). This leads to an

optimization problem where the system’s parameters are optimized such that the

system generates a model respecting user specified requirements. While this

decreases the nonlinearity of the system exposed to the user, it shifts the burden to

the optimizer which has to navigate the nonlinear space. Therefore, finding the

optimal solution is difficult and is hard to maintain interactivity of system. This

parameter search problem can be often narrowed by leveraging domain knowledge,

as was done, for example, in the work of (Ijiri et al., 2006) on sketching trees.

Another facet of control is the modification of the final generated geometry.

Procedural systems often generate a hierarchical representation of the geometry

which is conducive to manual editing after separating it from the system. However,

in cases where integrated editing is desired, i.e., when changes of the final geometry

should propagate back to the system and maintain consistency, there seems to

be no generic and straightforward solution. For example, when editing a generated

tree geometry, should a local change of a branch propagate to instances of the same

branch elsewhere on the model? What if that violates some other requirement

imposed on the model, such as avoiding self-collisions? The difficulty of answering

these questions is reflected in the literature, where this feature is seldom

implemented. For example, Lipp, Scherzer, Wonka, and Wimmer (2011)

demonstrated editing of procedurally generated city layouts where the consistency

is maintained by freezing a small part of the urban network in a separate layer and

then merging it with other, newly generated, layers. Similarly, Smelik, Tutenel, de

Kraker, and Bidarra (2011) use merging of layers to maintain consistency of a

system generating combination of landscapes, urban layouts and vegetation.

Finally, the recent work by Vimont, Rohmer, Begault, and Cani (2017) introduced
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deformation grammars that can be edited while maintaining constraints and

consistency.

Figure 1.4. Operator graph generating the Menger sponge (Boechat et
al., 2016)

Another issue in procedural modeling is that the systems are typically specific to a

certain type of model, for example trees, terrains or buildings. While the common

representations, such as L-systems (Lindenmayer, 1968a) and Shape

Grammars (Stiny & Gips, 1972), can be extended and specialized to model a

variety of objects, there has been little work on developing further generalizations

until the recent years. For example, the work of Boechat et al. (2016) presented an

operator graph representation able to represent a general geometric procedural

system (Figure 1.4). Another interesting trend of research is treating procedural

systems as general programs and amortizing their optimization cost using neural

networks (Ellis, Ritchie, Solar-Lezama, & Tenenbaum, 2018; Sharma et al., 2018).
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1.4 Research Questions

The overarching theme of this dissertation is to explore and improve control of

procedural systems. The main research question being:

Is is possible to control procedural systems?

There is a wide variety of procedural modeling methods, and answering this broad

question cannot be done in this work alone. Therefore, we focus on three

procedural systems with different forms and degrees of control afforded to the user.

We formulate a research question for each of them in attempt to understand and

answer, at least in part, the overarching question. We explore control via simulation

and via optimization in two different systems with a specific type of geometry.

Finally, we introduce a more general system controllable via optimization.

In the first part of the dissertation we focus on indirect control via simulation. As

demonstrated by the literature (Beneš et al., 2006; Krǐstof, Beneš, Křivánek, &

Št’ava, 2009; Musgrave, Kolb, & Mace, 1989; Št’ava, Beneš, Brisbin, &

Křivánek, 2008), it is a viable form of procedural modeling that produces natural

looking results. We seek to extend this concept by applying interactive erosion and

deposition simulation to modeling of arbitrary 3D objects, as opposed to terrains

only. Thus, our first research question is:

1. Can erosion and deposition simulation be controlled to model objects of

arbitrary topology?

Second, we look at control via optimization in the specific context of modeling 3D

curves. Traditionally, modeling 3D curves is a painstaking process involving manual

placement and modification of control vertices from multiple viewpoints. An

alternative approach is to simply sketch the curve and infer its 3D shape
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automatically. Unfortunately, there are infinite number of possible 3D shapes for a

given sketch from a single view. We hypothesize that combining context of existing

geometry to restrict the space of possible 3D curves and applying optimization with

respect to curve’s fairness can enable sketching from a single view. Our second

research question is therefore:

2. Is it possible to provide fine control of 3D curve generation, given a 2D sketch

from single view and existing geometry as context?

Finally, we focus on developing a generic system controllable by optimization. This

system presents a novel procedural system representation and its optimization via

evolutionary algorithm with respect to user-defined constraints. While most of the

existing procedural systems are aimed at generating one type of object, we design

this system with the ability to generate multiple types of models, such as

man-made objects, trees and terrains. Additionally, the system is intended to be

interactive, i.e., the user can iterate and modify the system on-the-fly. The final

research question is therefore:

3. Is it possible to control procedural system generating arbitrary geometry using

user-defined constraints?

1.5 Scope

1.5.1 Control via Erosion and Deposition Simulation

The first part of this dissertation (Chapter 3) focuses on exploring control of

procedural systems via simulation. In particular, interactively modeling shapes
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using hydraulic erosion and deposition simulated using Smoothed Particle

Hydrodynamics (SPH) (Monaghan & Gingold, 1977). Hydraulic erosion and

deposition are natural phenomena that contribute to formation of terrains and

other geological features. The eroding agent, such as river water, rain, or wind,

exerts pressure and shear stress on object’s surface, which results into removal and

advection of material. Subsequently, deposition occurs when the advected material

has lost most of its kinetic energy and gradually builds up layers of sediment. SPH

is a Lagrangian method of simulating fluids and gases: the substance is represented

as a set of particles, each having certain mass, velocity, and other properties. The

properties of the substance at any point in space are then calculated by averaging

(smoothing) the properties of nearby particles. Most of current systems for

hydraulic erosion modeling focus on large scale terrain generation without local

control and are limited to 2D data structures (i.e., heightmaps), which limits the

achievable topology. In our approach, we utilize a layered volumetric data structure

to be able to model arbitrary topology, such as overhangs (Benes & Forsbach,

2001). Finally, we focus on local control of erosion by utilizing fluid emitters which

can be placed and modified interactively, much like a sculpting brush.

1.5.2 3D Curve Control via Optimization

Chapter 4 focuses on control via optimization in the specific case of modeling 3D

curves. Traditionally, 3D curves are modeled by placing a set of control vertices in

the 3D space that are interpolated or approximated to form a curve. Although this

manual placement provides flexibility of the shape, a typical workflow consists of

many iterations and observations from different points of view. We propose a

system that is able to take a sketch from a single view and find the corresponding
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3D curve, reducing the workflow to a single stroke. To achieve that, we utilize

context of existing geometry to constraint the possible space of curves. Through an

optimization process we then find the final 3D shape of the curve that respects the

contextual geometry and maximizes its smoothness. Finally, we provide editing

operations that enable easy modification of the sketched curve, even from different

points of view.

1.5.3 General Control via Optimization

Chapter 5 presents a novel procedural system and an optimization framework. The

representation is inspired by the operator graph of Boechat et al. (2016) and

models the generative process as a dataflow graph where geometry flows through

discrete operations. This gives the ability to generate various objects with arbitrary

underlying geometric representation. The control of the system is achieved by

user-specified constraints, which can range from high-level constraints, such as

stability or ability to spin, to more local, for example, volume matching or collision

avoidance. To generate objects that match the user given constraints, we cast the

problem as multi-objective optimization problem and we attempt to solve it using

an evolutionary algorithm. Specifically, we use an approach based on

NeuroEvolution of Augmenting Topologies (Stanley & Miikkulainen, 2002) to

optimize the graph representation using custom operations of mutation and

crossover.
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1.6 Significance

While the open problems in procedural modeling are not trivial, any advancements

in solving them translate in an easier and faster modeling process by minimizing

repetitive manual work. Particularly, solving the issue of control enables users to be

more creative and have more expressive power while costing them less time and

requiring less expertise. In fact, both individuals and companies can benefit from a

more efficient content creation pipeline, as the expectations for realism and detail

in virtual scenes increase.

The first part of this dissertation, focused on modeling object by erosion and

deposition, provides a novel way to use simulation to model objects of arbitrary

topology. While physics-based methods have been used in the past, our method

method alleviates the problems of tweaking initial conditions by providing

interactive control of the eroding agent. This significantly speeds up the modeling

process and enables modeling variety of objects with arbitrary topology.

The second part, aimed at sketching 3D curves, provides a unique way of modeling

3D curves. Curves are ubiquitous in computer graphics and their use includes

animation control (e.g., camera or character movement) and modeling freeform

surfaces or tubular objects. By being able to use a single stroke from a single view,

the user can model 3D curves rapidly and conveniently. Furthermore, an easy

iterative editing process is offered to refine the curve, even from different views.

In the final chapter, a generic framework for generating procedural models via

user-defined requirements is presented. This work is a step toward generalizing

procedural systems optimization, addressing the problem of the ad-hoc nature of
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most of procedural systems. Furthermore it offers an interactive method of control

for rapid ideation and design space exploration.

1.7 Summary

This chapter provided the background to modeling in computer graphics and

detailed the traditional and procedural modeling paradigms. We have discussed

several open problems in procedural modeling, particularly the lack of control, and

introduced three systems with different approaches on how to address these

problems. The next chapter provides an in-depth overview of current literature on

the topic of control and optimization in procedural modeling.
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CHAPTER 2. REVIEW OF RELEVANT LITERATURE

Procedural modeling has been an active area of research for several decades. The

earliest formalisms of procedural systems include L-systems and shape grammars.

Figure 2.1. Parametric L-systems generating trees from Prusinkiewicz
and Lindenmayer (1997).

L-systems were originally developed for simulating the development of multicellular

organisms by Lindenmayer (1968a) and gained popularity in nature inspired

procedural systems such as plant growth (Prusinkiewicz & Lindenmayer, 1997).

An L-system is a formal grammar featuring parallel rewriting system in which all

rules are applied in parallel as opposed to sequential rewriting of traditional

grammars (Figure 2.1). It operates over bracketed strings of symbols. In the

context of computer graphics, each symbol stands for a command to a LOGO-style
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turtle that moves around a space and draws or generates geometry. A pair of

opening and closing brackets in the strings represent branching, allowing L-systems

to easily model tree-like phenomena. L-systems has seen number of extensions,

notably parametric L-systems (Lindenmayer, 1974), which allow symbols to

contain real valued parameters and stochastic L-systems (Eichhorst & Savitch,

1980) that assign each rewriting rule a certain probability. A stochastic L-system

can therefore generate wide variety of models with a single ruleset.

Figure 2.2. Example split grammar derivation of a facade from Wonka
et al. (2003).

Shape grammars are another grammar based formalization of procedural systems.

Introduced by Stiny and Gips (1972) with the goal of formalizing the generative

process of paintings and sculptures, a shape grammar is an extension of formal

grammar where the terminal, non-terminal and initial symbols are defined as a set

of N-dimensional shapes. The grammar rewriting rules then correspond to adding a

certain shape with a geometric transformation to a canvas based on already

generated shapes. Shape grammars have become a popular tool for generation of

architectural procedural models and have been extended by Wonka et al. (2003)
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who introduced split grammars. Split grammars are a specialization of shape

grammars that split individual shapes into smaller parts.

Both of the mentioned grammar systems are able to approximate many natural

phenomena, especially those exhibiting fractal behavior such as self-similarity on

multiple scales. Fractals themselves have been used extensively to generate

landscapes, organic structures or textures as first shown by Mandelbrot (1982) and

later by Musgrave et al. (1989). A related concept, while commonly not used for

geometry generation, are cellular automata (Von Neumann et al., 1966; Wolfram,

2002). Cellular automata operate on a N-dimensional grid of cells where individual

cells change their state based on the state of their neighbors. They share the

emergence property of other procedural systems and are able to generate complex

patterns using very simple rules.

2.1 Control and Guidance in Procedural Modeling

The essence of procedural systems is to generate geometry automatically, while the

idea of user control is to create geometry manually. Because of this opposition,

control in procedural modeling is a difficult problem that has been studied for

decades but remains unsolved. Following are select works that improved the level of

user control in procedural systems. Majority of past work has leveraged domain

and representation specific knowledge to provide the user ways to control and guide

the procedural model generation beyond mere rule and parameter adjustment.

Three of the most studied domains of procedural modeling are discussed: tree,

terrain and urban model generation.
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2.1.1 L-systems and Trees

Trees are a crucial part of modeling realistic outdoor environments, futhermore,

simulating virtual trees has been an important tool in biology and horticulture.

L-systems is the formalism of choice when it comes to modeling virtual trees. Many

researchers have been inspired by the biological processes and recognized that the

tree geometry is heavily influenced not only by its genetics (i.e., internal

parameters of the model) but also by its environment (i.e., light & shadow,

nutrients). Thus, both can be leveraged to provide direct and indirect control over

a generated tree model.

Měch and Prusinkiewicz (1996) extended the L-system to simulate the interaction

of a growing plant and its environment, namely to grow plants into predefined

shapes using pruning. Boudon, Prusinkiewicz, Federl, Godin, and Karwowski

(2003) developed a tree modeling framework that allows the user to specify

parameters using hierarchical decomposition of the generated L-system tree,

including control of the resulting tree silhouette. They demonstrate their system’s

ability to finely control branches on several bonsai trees. Ijiri et al. (2006)

introduced a tree modeling framework where the user can control the global shape

of a tree using a single sketch. They automatically infer branching direction and

level of recursion based on the sketch (Figure 2.3). Palubicki et al. (2009)

developed a more advanced system utilizing the self-organizing process emerging

from competition of tree buds for space and light. Their method not only produces

highly realistic trees by using biology inspired parameters such as tropism and

resource distribution ratios, but allows the user to control the tree shape using

procedural brushes and offers other editing operations including branch pruning

and bending in real-time (Figure 2.4). Longay, Runions, Boudon, and
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Figure 2.3. Sketch based interface for controlling L-system trees by Ijiri
et al. (2006).

Prusinkiewicz (2012) later developed a sketch-based system based on the work of

Palubicki et al. (2009) with a multi-touch tablet interface specifically aimed to

provide simple interactive way of modeling trees. Beneš, Št’ava, Měch, and Miller

Figure 2.4. Custom shapes of plants from Palubicki et al. (2009)

(2011) improved on Palubicki et al. (2009) by using sketched regions that

communicate via message passing, giving the user the ability to control procedural

rules in each region and the interactions between them. This gives user a degree of

both local and global control. They demonstrated the capabilities of their system

on examples including not only trees, but also urban layouts and bridges.
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Recently, Hädrich et al. (2017) introduced a system for modeling climbing plants

that focused on providing user control over the growth process. The authors used

strings of anisotropic particles to model the plants, instead of a set of line segments

or generalized cylinders as previous works. This allowed them to simulate plausible

physical effects such as bending and breaking of branches, and interaction with the

wind (Pirk, Niese, Hädrich, Benes, & Deussen, 2014).

2.1.2 Terrains

Generation of terrain has a long history in computer graphics. Starting with

Mandelbrot (1982) who noticed the similarity between the one-dimensional

Brownian motion and the shape of mountain peaks, early methods used fractals

(Peitgen, Jürgens, & Saupe, 1991), midpoint displacement (Fournier, Fussell, &

Carpenter, 1982; Miller, 1986) and noise generators (Ebert et al., 1998;

Musgrave et al., 1989), particularly Perlin noise (Perlin, 1985). Majority of current

methods use a combination of noise functions to generate heightfields, a grayscale

2D image representing elevation at a given position. Other representations that are

able to model overhangs and caves have been proposed (Benes & Forsbach, 2001;

Gamito & Musgrave, 2001; Peytavie, Galin, Grosjean, & Mérillou, 2009). The

early methods of terrain generation provided very little control to the user and were

limited to choice of non-intuitive initial global parameters of the model, providing

no local control of the result. Since then, multitude of methods have been

developed that aim to provide more control over the terrain generation process.

Several simulation based methods have been proposed that leverage natural

processes involved in creation of terrains in the real world, namely erosion and
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weathering. Musgrave et al. (1989) developed a system that combines noise

synthesis with local fractal dimension control with simple 2D simulation of

hydraulic and thermal erosion implemented as cellular automata. A more

sophisticated system able to erode 3D terrains was introduced by Beneš et al.

(2006) that erodes and deposits material in a voxel grid using Eulerian fluid

simulation. Wojtan, Carlson, Mucha, and Turk (2007) introduced a framework for

simulating erosion and corrosion, including sedimentation. Št’ava et al. (2008)

introduced an interactive GPU implementation of a combination of hydraulic

erosion algorithms on layered terrains. Finally, Krǐstof et al. (2009) developed a

hydraulic erosion system using smoothed particle hydrodynamics (SPH) to sculpt

large terrains efficiently. These systems provide an indirect control over the final

terrain using fluid simulation as a proxy. This can create realistic terrains, but the

control of the fluid itself may be difficult and produce non-obvious results.

A more direct control of procedural terrain generation can be afforded by sketching.

Zhou et al. (2007) implemented a system that takes a line drawing corresponding

to ridges and valleys from the user and produces a terrain by leveraging real or

synthetic elevation data. This is accomplished by extracting features from the

elevation data, matching them to the user’s drawing and transferring and stitching

corresponding patches into the final result (Figure 2.5). Belhadj (2007) also used

line drawings to guide a terrain generator. The method he used was midpoint

displacement, that is, repeated subdivision of a planar mesh, which produces

fractal patterns. By constraining the subdivision process using the user provided

drawings, the generated terrains remain random enough to look natural, but adhere

to the user provided specification. Gain et al. (2009) used a sketch from an

arbitrary perspective, as opposed to top-down view of previous methods (Figure
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Figure 2.5. Sketch controlled heightmap generation by Zhou et al. (2007)

2.6). Using their method, the user defines a silhouette of ridges and the system

automatically synthesizes a matching terrain. Furthermore, regions of the terrain

can be filled with noise that is matching the frequency scribbled by the user. Apart

from a forward synthesization, the system offers over-sketching and deletion

capabilities, making the system applicable to a typical artist’s workflow.

De Carpentier and Bidarra (2009) implemented a interactive GPU-based terrain

Figure 2.6. Terrain generation controlled by a drawing from perspective
by Gain et al. (2009)

editing framework using procedural brushes. The user is able to paint on the

terrain using a brush which in turn generates noise-based perturbations in

elevation. Several different noises are available and can be seamlessly blended

together during the painting process. Hnaidi, Guérin, Akkouche, Peytavie, and
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Galin (2010) allow users to specify 3D curves denoting terrain features such as

ridges or valleys and specify constraints on elevation, slope, angle and roughness.

Their system then interactively generates the terrain using a simulated diffusion

process that propagates the constraints to the entire working domain. Smelik,

Tutenel, de Kraker, and Bidarra (2010) and Smelik et al. (2011) discuss a

declarative approach to modeling terrains. Their framework, SketchaWorld, offers

users to draw features of terrains, including cities, road networks and rivers. By

combining multiple previous methods, SketchaWorld generates the terrain that

includes all the features declared by the user. Gain, Merry, and Marais (2015)

presented a comprehensive framework that offers high degree of local control when

generating large scale terrains. They provide users with intuitive constraints and

editing tools, including painting and transformation. Their framework generates

the terrains using a constrained pixel-based texture synthesis from heightfield

exemplars. Génevaux et al. (2015) introduced a system that is able model the

terrains from a hierarchy of high-level parametrized primitives such as rivers and

mountains. Similar to a CSG representation, they blend together individual terrain

features to produce a final model of the terrain. Recently, Guérin et al. (2017a)

presented an interactive system for sketching terrains using a conditional generative

adversarial network (CGAN). By training this neural network on real and synthetic

terrains conditioned on a sketch, the network can produce novel terrains for unseen

sketches with high-fidelity (Figure 2.7). Cordonnier et al. (2017b) introduced a

comprehensive framework inspired by real ecosystems that combines several natural

phenomena to control the resulting terrain, including rainfall, vegetation,

temperature, fire, and others.
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Figure 2.7. Example of the method of Guérin et al. (2017a). Realistic
terrains can be generated based on a constraint image (insets).

2.1.3 Urban Modeling

Procedural modeling of urban scenes has been an another active area of research in

recent years. Several systems have been proposed that can generate anything from

room layouts, through facades and buildings, to entire cities. Shape grammars

(Stiny & Gips, 1972), split grammars (Wonka et al., 2003) and CGA grammars

(P. Müller, Wonka, Haegler, Ulmer, & Van Gool, 2006) have been particularly

popular for generating facades and buildings, while L-systems have been employed

in generating street layouts (Parish & Müller, 2001). The topic of urban modeling

is quite wide, with focus not only on procedural generation but also on building

and facade reconstruction (Nishida, Bousseau, & Aliaga, 2018; Wu, Yan, Dong,

Zhang, & Wonka, 2014), proceduralization (Demir & Aliaga, 2018) and

city-layout compression (Fiser et al., 2016). Following works were selected based

on how they handle the control and guidance of the modeling process.

Several methods utilizing a simulation for creating cities have been proposed,

Lechner, Watson, and Wilensky (2003) and Vanegas, Aliaga, Benes, and Waddell

(2009) used simulated agents and let the city layout emerge from their interactions.

Weber, Müller, Wonka, and Gross (2009) proposed a similar method but simulating
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plausible city growth in time. The disadvantage of these methods is that they

provide only global control over the general layout.

Figure 2.8. In G. Chen et al. (2008), a tensor field (left) is used to generate
a street layout (middle) and a final city geometry is generated (right).

In the method of de Villiers and Naicker (2006), the user can create and modify

city layouts using a simple sketch and gesture based interface. The user is able to

sketch the road networks and subsequently modify properties of the city blocks

using simple gestures. A similar system was developed by Kelly and McCabe

(2007) who allow users to fill discrete regions with procedural patterns, for example

a grid or organic like networks. An example-based method was presented by

Aliaga, Vanegas, and Benes (2008) that uses both structure and image based

synthesis to generate new city layouts. In their method, the user is able to

manually stitch and expand parts of the city without having to connect individual

roads. G. Chen et al. (2008) drive the city layout generation using a tensor field

(Figure 2.8). Their system provides several global and local editing operations,

including brush strokes, that modify the underlying tensor field and provide

intuitive control of the flow of the streets. A system developed by Lipp et al. (2011)
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offers even more local and precise control of urban layout that preserves validity of

the layout and provide tools that allow users to make certain parts of the layout

persistent even if the whole city is regenerated. Recently, Nishida et al. (2016b)

presented a framework that allows for easy generation of urban road networks even

by novice users based on exemplars. First, they start with a sketch of an area and

existing road network, and then proceed to grow the network while allowing the

user to blend and warp specific portions of the network at will.

Procedural building generation has not received the same amount of focus on

control as the other types of models. Lipp, Wonka, and Wimmer (2008) attempted

to address this issue by developing a visual editor for shape grammars. Although

providing high degree of control unlike any previous building modeling system, the

user still has to be familiar with the internal rules of the grammar. Patow (2012)

and Silva, Müller, Bidarra, and Coelho (2013) later developed graph based editors

to help visualize and easily edit the shape grammars. These systems however only

provide access to the procedural rules and parameters and do not offer local control

of the geometry.

To provide a more direct control of the resulting building model, Nishida et al.

(2016b) presented a neural network approach that allows the user the sketch a

building and a procedural system generates the geometry best explaining the

sketch. They maintain a database of simple grammars capable of generating parts

of a building, such as roofs or windows. Then they train a neural network to

predict parts of a building based on a user sketch by utilizing a non-photorealistic

rendered dataset of pre-generated building parts. Their system is able to quickly

model buildings true to to the sketch, however this approach is limited by the

amount of hand-crafted data available for training of the neural network.
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Figure 2.9. Pipeline of generating procedural building from a sketch
proposed by Nishida et al. (2016b).

2.1.4 Conclusions

Effectively and efficiently controlling procedural system remains an open problem,

although impressive progress has been made to date. To conclude, several points

can be made based on the surveyed literature:

• Sketching and painting is a popular method to guide various procedural

systems and is accessible to novice users.

• Iterative modification of the model, especially modification that does not

break consistency of the model, i.e., the model still follows the procedural

system’s rules, is desirable but seldom implemented (Lipp et al., 2011, 2008;

Smelik et al., 2011; Vimont et al., 2017).

• Control of procedural models through indirect use of simulation provides

natural looking results, however lacks local control of the model.
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• Graph based and hierarchical interfaces have been seldom employed in the

scientific literature, in contrast to commercial packages where they are

relatively common (Autodesk, 2018b; Epic Games, 2018; Keeter, 2015;

Unity Technologies, 2018).

• Majority of the contributions to control of procedural modeling focus on

specific classes of procedural system, with a few exceptions that target

general procedural modeling (Beneš et al., 2011; Vimont et al., 2017).

2.2 Optimizing Procedural Systems

Procedural systems can be viewed not only as a grammar, but as a specific subclass

of general programs: a set of instructions that perform a task, where the task is to

generate a virtual representation of an object based on some input. Optimizing and

evolving general programs has been a topic of research for several decades and the

idea has been even mentioned by Alan Turing as early as 1950 (Turing, 1950).

Particularly genetic programming (Koza, 1992), the simulated evolution of

programs, has been successful in finding optimal programs for various tasks. For an

overview of the latest literature on the topic of genetic programming, and genetic

program improvement in particular, see Petke et al. (2018). This section discusses

literature related to optimizing procedural systems, either in the context of

parameter or program search.
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2.2.1 Parameter search

One way to optimize programs is to attempt to find optimal set of parameters that

allow the program complete a particular task. In the context of procedural

modeling there are several areas where this approach has been utilized.

In constraint based procedural modeling the goal is: given a set of constraints and a

procedural system, find parameters of the system that generate a model adhering

to the constraints. The constraints are typically modeled as a single objective

function that is supposed to be minimized.

Another recent area of research is inverse procedural modeling, which looks at the

problem from a different angle: given an object and a procedural system, find

parameters of the system that generates the object. Again, the problem typically

reduces to minimizing an objective function, in this case a measure of similarity

between the given object and procedurally generated one. Therefore, both inverse

and constraint based modeling can be reduced to a parameter search that

minimizes an objective function.

Recently, several neural network based methods have been presented. In these

methods, the neural network is used to amortize the cost of optimization. The

network is typically trained to map constraints to parameters of the procedural

system.

Finally, a related area of design space exploration focuses on searching through the

parameter space and aims to provide the user with a curated collection of

procedurally generated models.

Constraint based procedural modeling. Whiting, Ochsendorf, and Durand

(2009) optimized parameters of a CGA grammar (P. Müller et al., 2006) to
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Figure 2.10. Procedural models optimized to adhere to a constraint.
Shadow matching using SOSMC by Ritchie, Thomas, et al. (2016) (left).
Sketch matching using MCMC by Talton, Lou, Lesser, Duke, Měch, and
Koltun (2011) (right)

generate stable buildings. In their approach they use a measure of infeasibility as a

energy function that is minimized using gradient descent. Talton, Lou, Lesser,

Duke, Měch, and Koltun (2011) optimized grammar-based procedural systems,

including L-systems and shape grammars, to follow constraints using the Monte

Carlo Markov Chain method (MCMC). Some of the constraints they used are 2D

and 3D shape matching and sketch matching (Figure 2.10). Their method works by

sampling the production space of a given grammar to find parameters of the

procedural system that best match the given constraints. Although this method can

achieve impressive results, the time it takes to converge is on the order of minutes

or hours, making it impractical for interactive modeling. Ritchie, Mildenhall,

Goodman, and Hanrahan (2015) presented an improvement to the MCMC method

by using Stochastically-Ordered Sequential Monte Carlo (SOSMC). The key idea is

to gather information during the procedural generation and inform the choices of

generating next piece. This is in contrast to Talton, Lou, Lesser, Duke, Měch, and

Koltun (2011) where a quality of the model is determined after the whole model

has been generated. They showed notable improvement in generation times over

MCMC, however their method can have problems converging when choosing
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suboptimal choices in the beginning of the process, as noted by Haubenwallner et

al. (2017). Boechat et al. (2016) further improved on the optimization speed of

Talton, Lou, Lesser, Duke, Měch, and Koltun (2011) using a GPU implementation

and the operator graph representation of the procedural system.

One of the first works that investigated inverse procedural modeling was

Aliaga, Rosen, and Bekins (2007). They presented an algorithm capable of

inferring a split grammar from an existing subdivided model of a building. Their

system was applied to interactive building completion. Št’ava, Beneš, Měch, Aliaga,

and Krǐstof (2010) developed a similar algorithm capable of finding parameters of

2D L-systems. Both of these methods look for repeated elements, symmetries and

spatial relationships to encode the studied object into a grammar. Vanegas,

Garcia-Dorado, Aliaga, Benes, and Waddell (2012) used a MCMC approach to

model cities. In their system they define several indicators that locally evaluate the

model, such as floor-to-area ratio and sun exposure. The user is able to choose the

values of the indicators and a city model is generated to match them. Another

method that uses MCMC is the work of Št’ava et al. (2014) who presented a new

parametric tree-generating model along with an efficient similarity metric of two

trees. Their method can therefore find the parameters of wide variety of trees in

the matter of minutes. Emilien, Vimont, Cani, Poulin, and Benes (2015) used

inverse procedural modeling to analyze patches of objects positioned on terrain to

learn their spatial pattern, which can then be reproduced elsewhere in a scene with

a brush interface. Demir and Aliaga (2018) presented a grammar extraction

framework for architectural models that provides the user with a degree of control

to guide the process, allowing easy extraction of a procedural model from an

existing architectural model.
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Figure 2.11. Sketch and generated model pairs from Huang et al. (2016)

Neural based amortization. Ritchie, Thomas, et al. (2016) trained a neural

network that decides parameters of the procedural system during model growth.

They demonstrated their system on growing a vine into a predefined 2D shape in a

fraction of time of previous methods. However, this method requires application

specific pre-training of the neural network, effectively amortizing the cost of

optimization. Further work on amortizing inference in general probabilistic

programs is discussed in Ritchie, Horsfall, and Goodman (2016). Another neural

network approach has been presented by Huang et al. (2016) who proposed a

system capable of predicting procedural system parameters based on a 2D sketch.

They showed impressive results generating containers, trees and ornamental objects

(Figure 2.11). Their system is trained on a number of pre-generated

parameter-model pairs. Their neural architecture consists of two subnetworks, one

trained for regression of continuous parameters, the other on classification of

discrete parameters. Aforementioned Nishida et al. (2018) presented a similar

approach that generates procedural buildings based on a 2D sketch and Guérin et

al. (2017a) proposed a terrain generator utilizing Generative Adversarial Networks.

Due to the nonlinearity inherent to procedural systems, tweaking parameters may

change the resulting models drastically. Design space exploration focuses on
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providing the user with representative sample of the parameter space and tools to

explore it intuitively. Talton et al. (2009) developed such a system for exploring the

parameter space. They collected a number models created in their software by

thousands of users. From this data they learned the desirable regions of the

parametric space using kernel density estimation. Their method then samples the

parametric space and generates novel models. Lienhard, Specht, Neubert, Pauly,

and Müller (2014) also sample the parametric space and combine it with desirable

view estimation. Their method selects a set of visually varied models that the user

can choose to generate. They demonstrate their approach in an application where

the user is shown a gallery of thumbnails of available models. Yumer et al. (2015)

Figure 2.12. Yumer et al. (2015) achieved multi-dimensional linear
interpolation of procedurally generated models using an autoencoder
neural network.

used an autoencoder neural network to encode procedural model. The autoencoder

reduces the dimension of the parameter space and simplifies navigation of this

space. By learning a latent representation, they are able to smoothly interpolate

between any model in a linear fashion, which would be impossible in the original

parameter space. To ensure that the latent space interpolation is continuous in

shape space, they augment the input and output of the autoencoder with shape

descriptors.
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The disadvantages of parameter search methods is that the generating system is

not allowed to vary. This is useful when we have a well-defined description of the

problem and we are only missing parameters for the particular model.

2.2.2 Program search

Program search is a more general approach that focuses on optimizing the program

itself, which in context of procedural systems means the set of rules. While

parameters can usually be mapped into some N-dimensional vector, program

representations tend to be represented by a graph or list of instructions. When it

comes to optimization, there are two main issues. First, programs are typically

discrete and non-differentiable, making any gradient based methods impractical.

Second, the dimensionality of the program can vary widely. The first issue is

typically solved by employing other types of optimization processes, such as genetic

programming. The second can be alleviated by different strategies, such as

Reversible Jump MCMC used by Talton, Lou, Lesser, Duke, Měch, and Koltun

(2011).

Many algorithms have been inspired by evolution by means of natural selection, for

example the seminal work of Karl Sims on evolving virtual creatures (Sims,

1994b). The genetic programming (GP) is a technique that evolves computer

programs (Koza, 1992). GP has seen remarkable success and amount of research in

past decades, as illustrated by Koza’s survey of GP methods that are competitive

with humans on difficult tasks like image classification and circuit design (Koza,

2010). Genetic programming evolves programs by evaluating a population of

individual programs based on their fitness and applies mutation and crossover
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operations to create new individuals. The programs with the best fitness are kept

in the population and the rest is discarded. By repeating this process, the

algorithm iteratively maximizes fitness while having the important property of

avoiding local minima.

a) Genome of a derivation derivation tree

b) Uncontrolled Generation c) Controlled Generation

Figure 2.13. Genetic algorithm applied to procedural model optimization
(Haubenwallner et al., 2017). The derivation tree of a given grammar
is encoded into a linear genome (a). One of the demonstrated examples
shows a shape controlled generation (c) versus random derivation of the
grammar (b).

There is little work in the literature that applied genetic programming to problems

in procedural modeling. McDermott (2012) presented a method for evolving graph

grammars that produce 3D networks using grammatical evolution (O’neill, Ryan,

Keijzer, & Cattolico, 2003). The fitness function they have employed measures

only the complexity of the model. Therefore, there is little control in what

geometry is generated.
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Haubenwallner et al. (2017) uses a genetic algorithm to evolve procedural models.

They encode the derivation of a given grammar into a genome (Figure 2.13a) and

perform mutation and crossover operations that retain validity of the grammar

derivation. They showed that their approach converges faster and more often than

previous methods of Talton, Lou, Lesser, Duke, Měch, and Koltun (2011) and

Ritchie et al. (2015), demonstrating that evolutionary optimization is a valid and

effective way to optimize procedural models. However, this approach only finds a

particular derivation of a procedural grammar.

Neural based methods have been recently applied to program optimization as

well. Beltramelli (2017) used deep learning to translate screenshots of graphical

user interfaces into a code able to generate it, such as HTML/CSS or XML. One of

the most recent examples is the work of Ellis et al. (2018). They proposed a method

that is able to take simple hand-drawn images and translate them into a graphic

programs able to generate LATEX-style figures. The programs follow a simple

grammar that include simple primitive drawing, loops and conditional statements.

Similarly, Sharma et al. (2018) showed a neural approach that infers a simple

program, equivalent to a CSG hierarchy, that constructs a given 2D or 3D shape

(Figure 2.14). Their method uses reinforcement learning and encoder-decoder

architecture, where the input is an image of an object, the output is a program that

generates an object, and the reward is the minimization of difference of the two in

image space.
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Figure 2.14. Method of Sharma et al. (2018) converts a 2D or 3D object
to a program and an equivalent CSG representation.

2.2.3 Conclusions

Optimization of procedural systems is a currently active research area with many

avenues for further research. Following points can be made to summarize the

current literature:

• Optimization has been proven to be a great way to control and guide

procedural modeling. This can be expected to improve even further with the

increase of computational resources.

• Majority of the work in the domain of procedural system optimization has

focused on optimizing over parameter space.
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• Genetic Programming, although powerful at optimizing programs (which

procedural systems are a subset of), has not been applied in this context in

any significant way.

• Neural networks and deep learning have been shown to be useful in

amortizing the cost of optimization (Guérin et al., 2017a; Nishida et al.,

2018; Ritchie, Thomas, et al., 2016). While not as flexible as general

optimization methods, they are extremely useful tool for applications where a

predefined training dataset is available.

• Neural networks excel at learning representations, as shown in Yumer et al.

(2015). There is opportunity for further research that can leverage these

learned representations.

2.3 Summary

This chapter provided an overview of the literature related to procedural modeling,

specifically their control and optimization. Furthermore it identified common

themes, open problems and opportunities for future work. The next chapters will

discuss the three proposed procedural systems.
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CHAPTER 3. EROSION AND DEPOSITION SIMULATION

This chapter is a result of collaboration with Torsten Hädrich1, Alejandro

Guayaquil2, Oliver Deussen1, Sören Pirk1, and Bedrich Benes2. It has been

submitted to SCA 2019: Symposium on Computer Animation. Author’s

contribution include implementation of the erosion and deposition system,

rendering pipeline, result generation, measurement, and manuscript writing.

1University of Konstanz, 2Purdue University

3.1 Abstract

A novel user-assisted method for physics-inspired modeling of geomorphological

features on polygonal meshes using material erosion and deposition as the driving

mechanisms is introduced. Multiple polygonal meshes that define an input scene

are converted into a volumetric data structure that allows to efficiently track mass

and boundary of the resulting morphological changes. Our approach allows

simulation of multiple materials and different media. We use Smoothed Particle

Hydrodynamics (SPH) to simulate fluids and to track the eroded material. Erosion

and deposition happen on the material boundary. The eroded material is converted

to material particles and naturally deposits in locations such as sinks or corners.

Once deposited, we convert material particles back into the volumetric

representation. This limits the number of required particles and enables capturing a
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large variety of natural terrain features, such as mountain ridges, valleys, overhangs,

and arches. By using graphics hardware, our method runs at interactive rates, with

the ability to process moderately complex scenes with interactive feedback.

Figure 3.1. An example of sculpting by using wind. The dragon
embedded in the block of stone reveals itself after being interactively
eroded out by the user. Our system allows to interchangeably represent
material as particles and volumes and thereby enables the efficient
modeling of erosion and deposition of complex scenes.

3.2 Introduction

Defining and controlling natural shape morphology is still a challenging problem in

computer graphics. Real world objects undergo a large variety of morphological

changes that can be modeled by a human, but this is often a tedious manual

process. Many areas of computer graphics have been inspired by Nature, and many

approaches exist that allow for user-controlled creation of real-world features. A

good example is rendering, where physics-based algorithms are preferred over ad

hoc approaches. However, geometric modeling still heavily relies on approaches,

where the user defines an object shape by manual carving and adding material.
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This may be tedious, requires experienced users, and does not scale for large

models or large quantity of elements.

Physics-based modeling has been successfully used in computer animation, fluids,

and material appearance but it is not commonly used for shape modeling. In

nature, one of the most important morphogenetic agents are erosion and

deposition. Among the geomorphological processes that consistently shape natural

objects, interaction with wind and water are probably the most important ones.

Although these methods have been previously used in computer graphics, they are

still not common in production probably because of their low controllability. Many

parameters are required to control the simulation, and the effects are often difficult

to predict and handle. Furthermore, existing approaches mostly focus on modeling

large scale objects, such as terrains, and cannot capture subtle structures and fine

details. The usual procedure is that the simulation is executed and if the results

are not desirable, the user needs to restart the simulation with different input

parameters.

We introduce wind erosion as a new method for physically-based modeling of

geomorphological processes that uses erosion and deposition. Our focus is on the

simplicity of use and interactivity. We start from a set of polygonal meshes

representing input objects and their inner structure. These meshes are first

converted to a volumetric representation. The user controls erosion and deposition

by interactively manipulating fluid emitters that affect the objects. Our framework

combines two kinds of particles in one system, one that represents fluids and

another one for the eroded material. During the simulation, each surface voxel is

examined and its stress is calculated. Depending on the material properties, it can

be eroded and the eroded mass is converted to material particles. The released
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particles are advected by the fluid particles and they naturally sink to the ground.

If a material particle did not move for a certain amount of time, it is deposited and

converted back to a voxel. The dual particle representation allows for a simple

implementation and it also allows to treat both phenomena independently. In

theory, any fluid simulation that provides stress on the boundary could be used.

Besides the automatic modeling of geomorphological changes in large scenes, such

as terrains, our system supports interactive shaping of different kinds of objects.

Controlling the fluid emitters allows the user to precisely release material at certain

parts of the input geometry. Similar to a brush tool this provides new means for

modeling geometry. Figure 3.1 shows an example of erosion and deposition based

modeling. The dragon embedded in the material reveals itself after the outer

material is interactively eroded out by a user.

We present the following contributions:

• the introduction of a dual SPH simulation for erosion and transportation of

materials,

• a novel erosion and deposition model that employs particles for fluids and

eroded materials and a volumetric data structure for input meshes,

• the simulation of multiple materials to approximate layered objects, and

• we introduce means for interactively shaping and accentuating different

objects.
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3.3 Related Work

Modeling shapes with appearance similar to natural objects has been the focus of

computer graphics research for many years. While early approaches were inspired

by fractals Fournier et al. (1982); Mandelbrot (1982) it has been quickly noticed

that a convenient way to simulate natural phenomena is by mimicking natural

processes such as erosion Musgrave et al. (1989).

Appearance modeling by simulated aging adds complex natural phenomena to

computer graphics S. Merillou and Ghazanfarpour (2008) and increases the visual

realism of objects and landscapes. One of the main challenges lies in efficiently

tracking morphological changes of the input geometry. The approach of Bremer et

al. (Bremer, Porumbescu, Kuester, Joy, & Hamann, 2001) attempts to overcome

this limitation by presenting adaptive distance fields. Dorsey et al. (Dorsey,

Edelman, Jensen, Legakis, & Pedersen, 1999) introduced a slab-based data

structure that supports a weathering model for simulating the flow of moisture and

recrystallization of minerals in stones. Dorsey and Hanrahan (Dorsey & Hanrahan,

1996) as well as Merillou et al. (N. Merillou, Merillou, Galin, & Ghazanfarpour,

2012) model the rendering of metallic patinas and the effects of salt decay to

enhance the appearance of buildings. Gagnon et al. (Gagnon & Paquette, 2011)

and Cutler et al. (Cutler, Dorsey, McMillan, Müller, & Jagnow, 2002) employ

procedural techniques for modeling and authoring solid models. Wang et al. (Wang

et al., 2006) propose a simulation technique for changing the appearance of

materials over time and thus to model different degrees of weathering for

man-made objects and even plants. A key problem with these methods is their

large number of control parameters that make it difficult for users to express their

intent, in addition to low interactivity.
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Many approaches focus on approximating physical processes to simulate complex

surfaces and geomorphological behavior. One of the early approaches by

Blinn (Blinn, 1982) introduces reflection of light on dusty surfaces and clouds.

Various approaches address aspects of modeling such natural phenomena, such as

corrosion S. Merillou, Dischler, and Ghazanfarpour (2001a), peeling of

coatings Gobron and Chiba (2001b); Paquette, Poulin, and Drettakis (2002) and

patination Chang and Shih (2000), cracking patterns Gobron and Chiba (2001a);

Hirota, Tanoue, and Kaneko (1998); Iben and O’Brien (2006), surface

scratches Bosch, Pueyo, Merillou, and Ghazanfarpour (2004); S. Merillou, Dischler,

and Ghazanfarpour (2001b), fractures Busaryev, Dey, and Wang (2013);

M. Müller, Chentanez, and Kim (2013); Pauly et al. (2005), rust Chang and Shih

(2003), and drying Lu, Georghiades, Rushmeier, Dorsey, and Xu (2005), or a

geometric simulation of woodification Kratt et al. (2015). Many of those algorithms

are common in production, however, most of them focus on appearance changes. In

our work, we address the geometrical changes of the model.

While the previous methods focus on small-scale objects, the synthesis of large

scale objects is a very difficult problem. Among large objects, terrains have been an

open problem for almost three decades. The first works focused on using

fractals Musgrave et al. (1989), other methods use predefined maps Miller (1986),

splines combined with fractals Szeliski and Terzopoulos (1989), or noise-based

procedural approaches Ebert et al. (1998). Peytavie et al. (Peytavie et al., 2009)

propose a method for modeling complex geomorphological phenomena such as

stone arcs or caves with a high degree of realism by creating arches, overhangs, and

stones by aperiodic tiling. Other methods focus on interactive modeling and

authoring of terrain and its corresponding features Jones, Farley, Butler, and
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Beardall (2010); Schneider, Boldte, and Westermann (2006); Št’ava et al. (2008);

Vanek, Benes, Herout, and Stava (2011). Emilien et al. (Emilien, Poulin, Cani, &

Vimont, 2014) amends this by designing waterfall scenes. In Emilien et al. (2015)

localized inverse procedural modeling is used that learned from existing models to

allow the user interactively modeling object distribution in virtual worlds. Deep

learning has been used to generate terrains from sketches by using cGANs

in Guérin et al. (2017b). Just recently a novel approach has been

introduced Cordonnier, Cani, Benes, Braun, and Galin (2018) that uses subsurface

geology to simulate large-scale terrains.

Even erosion and deposition have been used to simulate realistic materials. One of

the early works of Kelly et al. (Kelley, Malin, & Nielson, 1988) and Hsu et al. (Hsu

& Wong, 1995) simulate eroded terrains. Other methods focus on

expressiveness Nagashima (1998), layered data structures Benes and Forsbach

(2001) or on interactive modeling mechanisms Neidhold, Wacker, and Deussen

(2005) to efficiently model terrain erosion. Advances in hardware technology

allowed for more complex and realistic methods for computing hydraulic

erosion Beneš et al. (2006) even at interactive rates Anh, Sourin, and Aswani

(2007). More recently, Wojtan et al. (Wojtan et al., 2007) proposed a discretized

approach for simulating physical and chemical behavior based on finite differences

and level sets. Šťava et al. (Št’ava et al., 2008) propose a method that supports a

variety of local and global editing operations by integrating different erosion

approaches. Just recently, ecosystems were combined with terrain erosion

in Cordonnier et al. (2017a).

Close to our work is the approach of Kristof et al. (Krǐstof et al., 2009) who also

coupled a physically-based erosion model with smoothed particle hydrodynamics.
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In their approach, particles carry eroded material that is implicitly and explicitly

advected due to particle motion. In contrast to them we introduce a dual particle

approach that supports the interactive erosion, transport and deposition of

different materials. To efficiently track morphological changes we use a layered data

structure Benes and Forsbach (2001). Additionally, we couple a fluid simulation

based on SPH Monaghan (2005) with solid granular particles (Alduán & Otaduy,

2011; Narain, Golas, & Lin, 2010) to model released eroded material. These

granular particles are transported by the fluid system and naturally deposit

material in characteristic locations such as sinks and corners. Our system supports

various materials such as rock, sand stone, soil and dust as well as different media

such as wind and water.

3.4 Overview

An overview of our method is given in Figure 3.2. Input is a set of polygonal

surface meshes that represent embedded volumetric objects, the fluid sources, and

parameters that control erosion simulation. In the simplest configuration the entire

system runs completely automatically. The user can also interact with the model

by moving the fluid emitters and obstacles in the scene and by changing system

properties such as the strength of the particles or their density.

Our system first converts the input mesh into a layered slab-based data structure

introduced in Benes and Forsbach (2001). This representation stores detailed

information about the interface of the material and the outer environment. It also

allows us to track the geomorphological changes typical for an erosion process.
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Figure 3.2. Overview: given is a set of input meshes representing
the volumetric object, a set of parameters for material properties,
and the erosion simulation. The mesh is converted into a volumetric
representation. Erosion is simulated by converting object material at the
outermost layer of the object into material particles and by tracing and
depositing those particles using SPH.

Each slab represents a volume with different material properties at the surface of

the material and we will call it a material stack (see Figure 3.3).

We simulate erosion with a Lagrangian fluid model that uses particles as discrete

quantities – Smoothed Particle Hydrodynamics (SPH) Monaghan (1992, 2005).

Such systems are adaptive and allow for quick integration and interaction with a

given geometry. They provide complex fluid phenomena such as turbulence, fusion,

and separation. The SPH simulation runs entirely independently of the material

erosion/deposition and it just traces particles in the scene. We use the shear stress

from the SPH to erode the material and the material particles carry the material.

To speed up the calculation, we use an additional data structure to store voxels

that represent the outermost material layer of our model on the interface between

the geometry and the fluid. We calculate the shear stress caused by the SPH

simulation on the surface of the object. If the stress exceeds a material critical

value, the material erodes. Erosion is simulated by removing the material from the
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affected voxel and by converting it to material particles that are advected by the

fluid. Gravity causes them to sink. If the material particles do not move for some

time they are deposited to the object and integrated into its material stack.

This approach provides interactivity by computing the simulation on the graphics

hardware. The user manipulates the erosion by controlling fluid emitters in the

scene that allows for an efficient shaping (carving) and editing of geometry and is

similar to the various brush tools available in image processors.

3.5 Data Structure

Initially, we implemented volumetric slabs that extrude triangles of the input mesh

that were introduced by Dorsey et al. (Dorsey et al., 1999) for stone weathering.

This data structure is highly suitable for small and localized surface changes, but it

requires expensive re-triangulation and slab reconstruction when large changes

occur that deemed ineffective in our context. Moreover, this data structure does

not handle topological changes of the mesh caused by erosion and deposition.

Our data structure is an extension of a hybrid layered representation introduced by

Benes and Forsbach (Benes & Forsbach, 2001). This representation compresses

materials as layers of run-length encoded voxels that we call stacks. The main

advantage of this representation is its high compression and the ability to represent

overhangs and caves. Moreover, it can also efficiently track the mass and the

boundary of morphological changes. Peytavie et al. (Peytavie et al., 2009)

extended this representation with an implicit model that allows for constructing a

smooth surface suitable for SPH collision detection and for the conversion back to a

triangular mesh.
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The erosion and deposition processes occur on the boundary of the object.

Therefore, we have further extended the previous work by explicitly representing

the list of boundary voxels, i.e., active voxels that participate in the erosion and

deposition process. When a new voxel is exposed it is added to the list of active

voxels and when a voxel is deposited, the potentially covered voxels are tested for

removal from the list.

Figure 3.3 shows a 3D canyon scene with caves and overhangs encoded as

volumetric representation (top) and its rendering as an implicit surface (bottom).

3.5.1 Stacks Generation

The input to our method is a set of polygonal meshes where each mesh represents a

different material. The conversion from a triangular mesh to our data structure is

performed by the scanline algorithm. It initially converts a mesh into an evenly

spaced volumetric grid – each space between two meshes is one material.

The voxels corresponding to the area outside the mesh are marked as layers of air.

Additionally, a unit sized ground stack with zero mass is created to allow for

deposition of particles that fall on the ground. Finally, voxels are converted into a

material stack if they are on top of each other, are not exposed, and share the same

material type.

3.5.2 Stacks Boundary – Active Voxels

As mentioned above, instead of evaluating the SPH and model interaction in every

voxel, we use an additional list of voxels that represents the layers lying on the
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Figure 3.3. Input meshes are converted into a layered volumetric
structure, the material stack (top), that is rendered as implicit surfaces
(bottom).

erodeable boundary of the model. This significantly speeds up the erosion and

deposition simulation.
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Figure 3.4. Interaction of different particle types. Granular particles
interacting with air (left); a layer of dust on top of a pile of a granular
material (middle), and all three particle types interacting with each other
(right).

The exposed voxel structure represents a volume on the surface, it carries the

information about the amount of material in its volume, which is implemented as a

single scalar value in the range of (0, 1]. Note that the active voxels can be also

inside the structure if there are caves present.

Additionally, the active voxels data structure also contains surface vertices, i.e.,

the points where the implicit surface intersects the voxel, and the normal vectors in

them. Finally, the interconnection between exposed voxels and their respective

layers is achieved by both structures, which contain array indices that point to one

another. The boundary voxels need to be updated after erosion, when some voxels

may disappear, and deposition, when new voxels may be created.

3.5.3 Isosurfaces

During the erosion and deposition simulation the SPH particles collide with the

surface. In order to calculate collision response, we need to know the location of
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the surface and the local gradient. Therefore, we evaluate the isovalue f of the

implicit model at a given point p as

f(p) =
1

4σ3

(∑
m∈M

Vm(p)− 1

)
, (3.1)

where Vm is the volume of the material of type m inside a cube kernel, whose sides

are 2σ. The set M includes material types except air.

Our algorithm calculates the material volume, traverses the active voxels and

stacks in the neighborhood of the point, and sums volume contributions from layers

in these stacks. If a slab is located on the surface, its volume contribution is

multiplied with the amount of material that is present in it. This allows for a

smooth transition of the surface shape as the material erodes away or deposits.

3.6 Particle Simulation

A particle system that couples two different materials is introduced: one is the fluid

that corresponds to the erosion agent and the other are particles that represent

eroded material. We simulate the fluid and the eroded materials that are advected

by using Lagrangian particle integration. In particular, we use SPH according to

Monaghan (Monaghan, 1992) to sample continuous behavior of the fluid flow.

Particles are trackable in 3D space and they allow for easy and scalable simulation

that can be ported on the GPU. Moreover, they are implicitly adaptive since they

move in the areas where the erosion is happening and the calculation needs to be

executed.

SPH have been used for erosion simulation in the work by Kristof et al. (Krǐstof et

al., 2009). In contrast to the previous work, we use a dual particle system and we
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do not use the fluid particles to carry material. Also, we do not use an explicit

boundary representation by converting the boundary to particles, but we employ a

volumetric representation that makes our approach fully 3D and allows for easier

solution of topological changes. Finally, we aim at interactive erosion and

deposition simulation. We convert volumes of material into particles and couple

them with fluid particles similar to the approach of Lenaerts and Dutré (Lenaerts

& Dutre, 2009). Material and fluid particles are integrated by solving for pressure

gradients in the continuum domain. Compared to other granular material methods

this blends well with SPH and allows for an efficient processing at interactive rates.

3.6.1 Smoothed Particle Hydrodynamics

SPH solves the movement of the fluid by representing it as a set of independent

particles that carry physical quantities, e.g., such as pressure and mass. The

acceleration ai of the i−th particle is computed as

ai =
dvi
dt

= (−∇p+ µ∇2v + fext)
1

ρ
, (3.2)

where −∇p is pressure, µ∇2v is the viscosity, external forces are denoted by fext,

and density by ρ. Fluid quantities A(x) at a certain location x (different from the

location of the particles) are computed as a weighted sum of neighboring particles j

A(x) =
N∑
j=1

VjAj W (x− xj, h), (3.3)

where Vj is the volume and W a smoothing kernel with a compact support radius h.

The fluid moves over time by applying Eulerian integration.
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3.6.2 Eroded Material

Material particles are transported by the fluid that is simulated as a second SPH

system that is embedded in the fluid. The particles of the material can be thought

of as granular material carried by the fluid.

The Mohr-Coulomb yield criterion is employed to determine material yielding. It

states that plastic deformation occurs if the friction stress exceeds the yield

strength. Otherwise the particles remain undeformed.

Zhu and Bridson (Zhu & Bridson, 2005) treat particles in non-flowing regions as

rigid particle clusters, other approaches compute granular forces in an iterative

predictive-corrective fashion in order to dissipate the strain rate Ihmsen, Wahl, and

Teschner (2012). To avoid computational overhead of such methods in our

simulation, particles in non-flowing regions are marked as static, that also simplifies

the material deposition (Section 3.8).

The governing equation for conservation of momentum of granular material can be

written as

ρ
dvi
dt

= fpressure + fshear + fext, (3.4)

where fshear represents friction between particles. A shear stress tensor ŝ is

computed as

ŝ = 2µ(D − 1

3
|D|δ), (3.5)

where µ is the shear modulus, D is the strain rate tensor

D =
1

2
(∇v +∇vT ),
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moreover, |D| is the trace of the strain rate tensor, and δ is the Kronecker’s delta

tensor. The shear force is computed by the SPH approximation

fshear =
∑
j

mj

ρj
ŝj∇W (x− xj, h) (3.6)

Figure 3.4 illustrates the interaction of the different particle types in our

framework. Granular particles form a characteristic pile of material. Wind interacts

with the granular particles and sets them in motion (left). Dust particles form a

layer of material on top of the pile (middle) and also react with the wind (right).

3.7 Erosion

Erosion occurs on the boundary of the object and it is caused by an erosion agent

such as wind or water. We model erosion by coupling a physically-plausible fluid

simulation with the layer-based data structure described in Section 3.5. In contrast

to previous approaches, we couple the fluid simulation with granular materials.

Both particle types are modeled based on an continuum approach described in

Lenaerts and Dutré (Lenaerts & Dutre, 2009). Due to the Lagrangian setting we

can detect local interactions efficiently while particles individually interact with the

surface to cause different erosion behavior.

We capture the interaction between fluid and the object by accumulating the fluid

shear stress τ for each surface voxel. The occurrence of the stress triggers the

erosion process that resolves a stack into granular and dust particles. These

particles are released at the location of the stack and immediately interact with the

particles of the fluid simulation.
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3.7.1 Erosion Rate

The shear stress τ is calculated by using the power law Wojtan et al. (2007):

τ = θ0.5,

where θ is the shear rate expressed in terms of a velocity of the fluid θ = vr/l,

where vr is the relative velocity of the fluid and l is the distance over which the

shear is applied Krǐstof et al. (2009). The erosion rate ε depends on the shear stress

and the critical shear stress τc Partheniades (1965): ε = κ(τ − τc), where κ is the

proportionality constant. The amount of removed material in each surface voxel is

then calculated as
dm

dt
= ε, (3.7)

Note that we only need one material property τc that characterizes the material.

3.7.2 Particle Emission

The eroded material from Eqn. (3.7) is removed from the active voxel and

converted to material particles that are advected by the fluid. The amount of

material dm is converted to M particles. We assume each particle has a mass mp so

M = dm/mp. The particles are emitted in disc-like clusters oriented in the

direction of the reflected fluid assuming non-slip boundary.

The position p of the emitted particle is calculated as

p =
1

n

∑
v∈V

v + δ
VR

‖VR‖
+ γ1e1 + γ2e2, (3.8)

where V is the set of n vertices on the intersection of the surface stack and the

implicit surface, VR is the velocity vector reflected over the averaged normal of the
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stack vertices, and δ is a user-defined scalar value that controls how far from the

surface the particles should be placed. The values of e1 and e2 are unit sized

vectors orthogonal to VR and each other and γ1 and γ2 are two scalars generated

from a normal distribution. The last define the spread of the particles that are

emitted in a cone-like shape. Finally, the velocity v of the emitted particle is

v‖ = cos (α) |VR| (3.9)

v⊥ = sin (α) |VR|

The parameter α is a user-specified value that allows to approximate the behavior

of different material types.

3.7.3 Surface Voxel Update

After the material removal from active voxels and particle emission, the amount of

material in a voxel may reach zero. To track the morphological changes of the

modeled object we dynamically adapt the data structure. First, we search the

neighborhood of the fully eroded voxels and mark the stacks and height intervals

that will become exposed to air layers when these eroded voxels are removed. We

then remove the voxels, and subdivide all previously marked stacks.

The subdivision is an important step, as it makes sure that all the layers that are

on the surface have unit height. Using these small layers on the boundary allows us

to track changes in shape with greater detail and also emit and deposit eroded

particles with better precision. The subdivision takes a stack of layers and height

intervals to subdivide as input. It first divides the stack in unit sized layers and

then fuses the layers of same material that were not marked for subdivision. For
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Figure 3.5. The erosion of a gargoyle and a mouse statue. SPH particles
interact with the surface and slowly carry away material. We handle
different material types and their distribution is defined by a noise
function. The soft material erodes faster than the hard material.

each newly exposed layer, an exposed voxel structure is created to keep track of the

amount of material.

Figure 3.5 shows the erosion of two statues. SPH particles interact with the surface

and slowly carry away material. In our system we can handle different material

types. In these examples we used a noise function for the distribution of a soft and

a hard material. As can be seen, soft material erodes faster and the hard material

remains.



62

3.8 Deposition

A complementary process to erosion is deposition that converts the freely moving

material back to a solid volumetric object. The moving particles of material are

advected by the fluid as described in Section 3.6. The material particles have their

mass and if the movement of the fluid ceases, they sink down to the ground and

naturally accumulate in characteristic locations (Figure 3.6).

Figure 3.6. Erosion and Deposition: the erosion of an input mesh (left)
releases material particles that are transported by the fluid. The released
material is represented by particles that deposit in the scene (right).



63

3.8.1 Particle Conversion to Surface Voxels

We simulate the material deposition of the freely moving material by voxelizing the

particles that do not move for a certain period of time. In this way a new layer is

deposited on the object surface. The newly deposited layer has material properties

of an easily corrodible material.

A fixed particle is not allowed to move freely, but it requires a certain amount of

stress to be released again. Over time a resting particle requires increased stress to

be released. This is similar to natural deposition behavior; volatile sediment

particles are transported, sink down, and slowly become more rigid. An example in

Figure 3.7 show a complex form that has been modeled by a simple process.

Figure 3.7. The particle-based modeling allows to dynamically track
precise collision of particles with objects. Fluid particles (visualized as
white stream lines) collide with the object and erode it. The material is
transported by the fluid and deposits elsewhere.

3.8.2 Stack Update

Before a fixed particle can be deposited, we first check whether it has come in to

contact with the surface. We calculate the local normal vector of the contact point

and check whether it points in the direction opposite to the gravity in order to

avoid deposition on faces pointing down. If the angle between the normal and
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negative gravity direction is less than 45◦ the particle is marked as being ready for

deposition.

During the deposition step, the voxel neighborhood of every surface is checked for

fixed particles that are ready for deposition. The amount of material represented

by these particle is added to the corresponding stack and the particles are removed

from the fluid simulation. If the amount of material in an individual voxel reaches

its capacity, we create a new voxel on its top and update its amount of material.

This voxel is added to the active voxels. Finally, we update the corresponding stack

and the list of surface particles. This provides us with a fine-grained level of control

and lowers the number of required particles to model these phenomena.

Figure 3.6 exemplifies this process. The material is eroded from the surface of the

object, the erosion process releases material particles that are carried away by the

fluid. These particles have different characteristics than SPH particles and over

time will deposit somewhere in the scene.

3.9 Implementation and Results

We have implemented our system in C++; all experiments were conducted on a

desktop computer with an Intel i7 processor at 3.4 GHz and 16 GB RAM. Results

were rendered with an Nvidia Geforce 780 GPU in our own graphics framework.

We used OpenGL 4.2 for rendering and employed the compute capabilities of

modern GPUs based on CUDA 7.0 for modeling.

We render the model interactively as a set of 3D boxes to get a rough idea of the

model shape. Moreover, we have implemented a CUDA-based raytracer with

ambient occlusion and shadows that allows to visualize the implicit surface with
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textured materials. We trace the isosurface by sending rays from the camera and

detecting a sign change in the isovalue (see Eqn (3.1) in Section 3.5.3). We then

refine the surface point by a few iterations of Newton’s method. The normals are

calculated as the gradient of the isovalues.

The texturing is done similarly to Peytavie et al. (2009) by weighting the material

contributions at a given point and blending their respective textures. The

uv-coordinates for texturing are then calculated as tri-planar projection from the

three world axes. The Oren-Nayar reflectance model has been used in all figures.

The particles are visualized as sprites by using alpha blending. Granular particles

are visualized as polygonal objects using instanced rendering. Air particles are

rendered as sprites with alpha blending. Trajectory lines of the air particles are

rendered to capture their motion. Volumetric lighting for the dust particles is

performed using the half-angle slicing method Fernando, Haines, and Sweeney

(2001).

User Interaction: Even though our system can run completely automatically, it

was designed with interactivity in mind and thus provides several levels of

interaction. Although the implementation of fluids and granular materials depends

on a number of parameters, it can still be used intuitively. The main parameters

are the material properties of the input objects, each of those is specified once per

polygonal mesh. During interaction, the user can adjust the intensity of the fluid

(and its pressure) as well as viscosity, mass, rest density, and friction. Most of the

parameters are defined by the system, the user only needs to define the material

properties and to interact with the fluid emitters (see the accompanying video).

Different particles are either created automatically, e.g., dust particles are created

when wind erodes an object, or directly infused by the user.
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The fast response of our system makes it possible to use for interactive and

physics-based sculpting of models. Figure 3.1 illustrates these capabilities. The user

starts with a block of material and interactively carves out the dragon model while

the material deposits automatically. It is important to note that the user can also

handle the deposited material, as the deposition is not immediate. This is similar

to blowing away a sand pile. Another example of virtual sculpting by using wind is

shown in Figure 3.9. The user interacts with the framework to shape a lion statue.

The input mesh is converted to our data-structure (a), that allows to efficiently

track volumetric changes of the model (c) - (d). The system runs at interactive

rates and thereby allows to immediately see the result of the modeling process (e).

Figure 3.8. Deposition without erosion is possible when the user only
sprays the scene with material particles that deposit on the surface of
the existing objects and convert into them.
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Although we aim for physically-based modeling, our method also allows for erosion

without deposition. Here the material is simply being removed from the system as

soon as it is eroded. Figure 3.8 shows the opposite process, where the user blows

the material into the virtual scene. The material dusts on the surface of the objects

and eventually deposits and converts back to a solid object.

Figure 3.9. A lion statue interactively shaped with our system. The
input model (a) is converted into our volumetric representation (b). The
user interacts with the system by placing the emitter and by changing
material properties and wind strength ((c)-(d)). Our system supports
interactive rates allowing to immediately see the result of the modeling
process (e).

Automatic mode: Our system can perform physically-based erosion and

deposition in a fully automated mode with no interaction. In Figure 3.10 we show a

large scene that has been eroded by a wind prevailing from one direction. The

simulation forms patterns and objects commonly found in the nature. No user

interaction was used in this experiment.

Performance: Table 3.1 shows computation times for the results shown in the

paper using our non-optimized code. Depending on the model complexity we reach

between 0.1− 10 fps, for larger scenes, with the raytracing-based rendering being

the largest bottleneck.
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Table 3.1.
Modeling and rendering times for the figures shown in the paper.
Rendering times are based on a resolution of 1270x720px. For some
figures we did not enable the deposition or erosion.

Specification Updates

Figure Layers Particles Particles Erosion Deposition Render

(k) (k) (ms) (ms) (ms) (ms)

3.1 18-28 30-65 17-29 5 0.46 860

3.3 40 - - - - 827

3.5 (top) 76-81 20 18-21 5 - 519

3.5 (bottom) 72-80 25 22-25 7 - 525

3.7 101-110 50 14-16 6 0.47 414

3.9 82-88 20 22 8 - 726

3.8 27-40 20 21 - 0.5 834

3.10 14 80 75 2 0.49 1270

3.10 Conclusion

We have introduced a novel approach for shaping polygonal meshes by an

interactive erosion and deposition modeling. The overall goal was to integrate

erosion and deposition into creative frameworks by simplifying the physics and by

providing interactive frame rates. Our system supports full 3D volumetric objects

with multiple materials and enables modeling complex geomorphological

phenomena, such as overhangs, arches, dust, and sand piles. We employed a dual

SPH simulation that couples fluids and granular materials in a Lagrangian setup.
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Figure 3.10. An automatically generated canyon scene. Granular, dust,
and air particles interact with the layer-based data structure (a, c). The
interaction of particles with individual voxels models the erosion and
deposition of material that allows to create realistic scenes with a high
level of complexity (b, d).

The proposed erosion and deposition model resolves material from a layer-based

representation of an object into particles. Material particles are transported by the

fluid and naturally deposited in the scene. Our approach represents material as

voxels or particles and thereby allows for converting material from one state to

another. Once particles accumulate in a certain location, we track their movement

and eventually transform them back into volumes. This limits the number of

particles and makes the computation efficient.
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Compared to existing approaches we proposed a physically-plausible system that

allows new modeling approaches. In particular, we have shown that modeling

erosion and deposition of material can be used as new means for shaping and

accentuating individual objects. Similar to real sculptures, the user can use fluid

emitters to carve out naturally looking objects from a block of stone. Our system

runs at interactive rates and thus enables users an immediate feedback loop for the

modeling process. The individual parts of the system can be used independently;

the user can use only the deposition or only the erosion of objects.

However, our system holds a number of limitations. First, our current data

structure does not support kinematic physics and it allows to create geometry that

does not follow proper constraints; e.g., we can easily achieve objects hanging in

space without any support that would fall in reality. Second, we only approximate

the material properties and it would be important to actually provide real material

measurements and implement them in our system. Although we did not go in this

direction, this would certainly be possible and it would open an interesting avenue

for incorporating real materials into computer graphics. Third, our current data

structure is not dynamically adaptive. There is a limit of resolution and it would

be interesting to increase this wherever possible and necessary. It would be also

interesting to exploit adaptive volumetric structures for material representation and

fluid simulation. Fourth, we did not focus on the usability of our implementation,

but only on the development of the method. It would be interesting to exploit how

and if users can quickly and intuitively generate their intent by using such

approach. Finally, although the texturing used in our system is fast, it does not

provide good visual results. A volumetric texturing would be more suitable.
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CHAPTER 4. 3D CURVE SKETCHING

This chapter has been published and presented at SIGGRAPH 2017 (Krs, Yumer,

Carr, Benes, & Měch, 2017). Author’s contribution include implementation and

manuscript preparation.

4.1 Abstract

We introduce Skippy, a novel algorithm for 3D interactive curve modeling from a

single view. While positing curves in space can be a tedious task, our rapid

sketching algorithm allows users to draw curves in and around existing geometry in

a controllable manner. The key insight behind our system is to automatically infer

the 3D curve coordinates by enumerating a large set of potential curve trajectories.

More specifically, we partition 2D strokes into continuous segments that land both

on and off the geometry, duplicating segments that could be placed in front or

behind, to form a directed graph. We use distance fields to estimate 3D coordinates

for our curve segments and solve for an optimally smooth path that follows the

curvature of the scene geometry while avoiding intersections. Using our curve

design framework we present a collection of novel editing operations allowing artists

to rapidly explore and refine the combinatorial space of solutions. Furthermore, we

include the quick placement of transient geometry to aid in guiding the 3D curve.
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Finally we demonstrate our interactive design curve system on a variety of

applications including geometric modeling, and camera motion path planning.

Figure 4.1. The user draws a 2D stroke in front of the 3D model (left).
The 2D stroke is converted into a 3D curve (middle). A complete 3D
model from multiple curves is generated within a few seconds (right).

4.2 Introduction

Computer graphics has achieved impressive results in areas such as rendering and

computer animation. However, 3D modeling still poses many challenges; one of

them is expressing user intent by simple means. User interaction, which is at the

heart of modeling, is where most of the related complexity still exists. This is

mainly due to the fact that most input and display devices currently in use are 2D,

which is not intuitive to human interaction with the world, where we operate and

think in 3D. To overcome the loss of depth, the user is usually forced to change the

viewpoint, rotate the object, or use multiple viewports at once Bae, Balakrishnan,

and Singh (2008); which can lead to a loss of efficiency.

A particularly difficult problem is drawing of 3D curves. These space curves are

important to a variety of tasks such as planning of trajectories of dynamic objects,

for example, particle systems or virtual cameras, design of curved surface patches,
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such as NURBS, or swept surfaces, or generalized cylinders. The main problem of

drawing 3D curves in 2D is that there is an infinite number of possible

configurations of the curve in the missing dimension, and, as explored by Schmidt

et al. (Schmidt, Khan, Kurtenbach, & Singh, 2009), even expert users have trouble

with drawing 3D objects and curves. The foreshortening caused by perspective

projection is especially difficult to get right and the resulting objects hardly match

user’s intent. While the use of shadows as visual depth cues has been shown to

improve spatial understanding Cohen, Markosian, Zeleznik, Hughes, and Barzel

(1999); specifying the shape of curves when drawing in 3D poses an additional set

of challenges.

Prior work has addressed this issue by using constraints and additional sources of

information to infer the desired curve’s shape. One of the common problems not

addressed by the previous work is drawing behind occluding surfaces or drawing

curves with high curvature and torsion, such as spirals. One of the underlying

mechanisms that makes this such a hard task is that our prior knowledge of the

object’s shape alters our perception Taylor and Mitchell (1997). As noted by

Matthews and Adams (Matthews & Adams, 2008), “people seem to draw what

they know rather than what they see”.

One way to make drawing in 3D easier is to impose assumptions about the

underlying form, such as regularity, symmetry, planarity, and orthogonality Bae et

al. (2008); Kara and Shimada (2007); Schmidt, Khan, Singh, and Kurtenbach

(2009); B. Xu et al. (2014). While these approaches work well in practice they are

often restricted to a certain class of shapes, which may limit artistic expressiveness.

Reasoning about the 3D representation of the sketched curve using other 3D

objects in the scene is a more practical and less disturbing approach from the user’s
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point of view since it does not require any change of viewport at the time of

drawing. De Paoli and Singh (De Paoli & Singh, 2015) used this insight for

modeling shapes around already existing 3D geometry. Their approach is limited to

shorter and fully visible or partially visible symmetrical curve segments, which

apply well to local shape modeling.

We present Skippy, a new method for sketching 3D curves from a single viewpoint

using both existing or transient 3D geometry for shape inference. Our method

enables the user to draw arbitrarily long, smooth curves that are placed at various

depths between objects in the scene and that can also be partially occluded at

authoring time (Figure 4.1). After being drawn the 3D curve can skip between

different depths around the objects by clicking on the part of the curve that is

visible or obstructed by an object. The user can also click on any surface and add

transient guiding objects. Such temporary geometry is then also used to guide

drawing of the curve without having to change the viewpoint. Furthermore, our

system allows a quick intuitive way for users to guide and control the skipping

behavior, allowing curves to be easily woven in a complex manner through the

negative space surrounding any geometry. We do not place underlying assumptions

about these curves (i.e., that they form surfaces, or represent regular geometric

forms), and as such our curves can be used for a variety of applications from

motion path planning, surface decoration, and even shape design. Finally we

demonstrate a number of intuitive overdrawing mechanisms that enable iterative

refinement of curve solutions interactively. Our main contributions are as follows:

• an intuitive approach for drawing 3D curves with varying depth using only

2D input by leveraging existing 3D shapes as guides,
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• an efficient graph data structure that stores valid variations of the 3D curve

for the input 2D stroke and enables real-time interaction with the curve, and

• a set of novel editing operations specifically for skip editing, re-drawing, and

via anchoring through template 3D shapes.

4.3 Related Work

Positioning 3D curves using a 2D interface poses numerous challenges, a number of

which have been tackled in the sketch based modeling literature. We refer the

reader to Olsen, Samavati, Sousa, and Jorge (2009) and a recent survey Kazmi,

You, and Zhang (2014) for a more complete overview of this domain. To highlight

the most relevant work in this space, we divide related work into a set of broad

categories; each relying on different sets of underlying assumptions which ease the

3D curve drawing process.

Design Curve Modeling. The early work of Cohen et al. (Cohen et al., 1999)

presented a single view interface for designing 3D space curves. The novel idea of

this work was to rely on shadows as additional depth cues. This conceptual idea is

orthogonal to our approach and we leverage a form of shadowing (i.e., real-time

screen space ambient occlusion) in our interface to improve spatial understanding.

The work of Cohen et al. (Cohen et al., 1999) did not directly address the tedious

nature of specifying curve shape during the drawing process.

One way to make drawing in 3D easier is to choose an angle that minimizes the

foreshortening. A popular approach, investigated for drawing 3D curves, is to rely

on epipolar geometry. This allows sketching from a second viewpoint to find a

unique solution to the curve’s shape Bae et al. (2008), or choosing two view
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orthogonal directions Karpenko, Hughes, and Raskar (2004). Such approaches

either require a symmetric structure to be drawn, or consistent change of

viewpoint; limiting artistic expressiveness.

An important aspect that is often considered during object sketching are

occlusions. Cordier and Seo (Cordier & Seo, 2007) construct self-occluding objects

from free-form sketches using constrained optimization. Similarly, McCrae and

Singh (McCrae & Singh, 2008, 2009) , use clothoid splines, to infer 3D road

networks from sketches with self-crossings. McCann and Pollard (McCann &

Pollard, 2009) order interactively 2D objects with local overlaps, which Igarashi

and Mitani (Igarashi & Mitani, 2010) extended to 3D, and LayerPaint C.-W. Fu,

Xia, and He (2010) allows users to paint on occluded surfaces using a multi-layer

approach.

Another approach that helps with 3D modeling is leveraging existing geometry and

environment. Coleman and Singh (Coleman & Singh, 2006) presented a method

that adapts existing rough 3D curves to their surroundings. Turquin et

al. (Turquin, Wither, Boissieux, Cani, & Hughes, 2007) allows users to sketch

clothes on 3D mannequins from a single view by inferring the 3D position of

sketched curves. Furthermore, 3D curves inferred from sketches have been used for

hair design H. Fu, Wei, Tai, and Quan (2007); Wither, Bertails, and Cani (2007).

OverCoat Schmid, Senn, Gross, and Sumner (2011) uses proxy geometry to embed

brush strokes in 3D space and enables sculpting of the underlying proxy geometry

with brush strokes. Perhaps most closely aligned with our method is that of De

Paoli and Singh (De Paoli & Singh, 2015) who presented SecondSkin. Rather than

allowing curves to be drawn directly on a surface, it allows artists to sketch design

curves in the nearby shell offset space surrounding an object; providing many
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interesting design operations. In contrast, our system allows the user to

simultaneously sketch over large collections of shapes, deals with dense occlusions,

specifies curves that are further from the surface, all without changing view.

Organic Surface Modeling. The ambiguity of taking 2D sketch curves and

producing 3D content can be reduced by assuming that the sketch curves represent

some underlying organic form. Both the seminal work of Teddy Igarashi,

Matsuoka, and Tanaka (1999) and Fibermesh Nealen, Igarashi, Sorkine, and Alexa

(2007), begin the design process by assuming the curves reside on silhouette edges

of some inflated base shape. Karpenko et al. (Karpenko et al., 2004) presented

SmoothSketch which extended this notion by analyzing T-intersections and cusps

in the drawing to enable the creation of more complex base shapes. Initial 3D base

forms can be used to anchor more complex curve sketching operations. For example

curves drawn directly on a surface can be pulled and tugged to deform the

underlying shape. These surface curves can also be used as localized regions for

extrusion Igarashi et al. (1999); Nealen et al. (2007). Both these works

demonstrate that the presence of an existing 3D shape can bootstrap the 3D

drawing process enabling the creation of more complex form. Recently, 2D curves

have been used to construct 3D cartoon canvases in Bessmeltsev, Chang, Vining,

Sheffer, and Singh (2015). We take inspiration from these works, however, we focus

our attention on populating the empty space between shapes allowing our designers

to bootstrap the 3D curve design with the types of complex 3D models that can

easily be found on the web or in shape repositories.

Surface Modeling using Curve Networks. An alternative approach to aid

users in creating 3D space curves is to assume the curves represent underlying

man-made structure. The SKETCH interface Zeleznik, Herndon, and Hughes
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(1996) starts by allowing the user to sketch box like forms which anchor additional

3D space curve sketching operations. Schmidt et al. (Schmidt, Khan, Singh, &

Kurtenbach, 2009) uses sketching on an initial ground plane to build a scaffold

which acts as a set of visual constraints for sketching additional 3D curves.

Photographs have also been used in conjunction with sketches to disambiguate

form Lau, Saul, Mitani, and Igarashi (2010). Xu et al. (B. Xu et al., 2014) infer

3D curve networks from a given 2D sketched design by assuming implied

regularities, such as planarity, curvature, symmetry, and parallelism. In contrast,

we target our system at freeform space curves which may or may not directly

participate in defining some underlying surface.

3D Drawing using Shape Priors. By restricting the class of target shapes to

conform to some underlying model (i.e. procedural or otherwise), many drawing

operations can be simplified. Just recently, deep neural networks were used to

automatically infer 3D architectural procedural models from 2D user single view

sketches Nishida, Garcia-Dorado, Aliaga, Benes, and Bousseau (2016a). Chen et

al. (X. Chen, Neubert, Xu, Deussen, & Kang, 2008) used Markov random fields

with sketching to reconstruct 3D models of vegetation. Automatic character model

reconstruction from 3D sketches has also been demonstrated Buchanan, Mukundan,

and Doggett (2013). Drawing assistance and recommendation can also be achieved

using large pre-existing 3D shape collections. For example, shadows have been used

to guide the users during drawing by leveraging a database of 3D template

objects Fan, Wang, Xu, Deng, and Liu (2013). While the use of strong shape priors

can greatly enhance 3D drawing, they can also potentially limit artistic freedom.

Our system focuses more on freeform design and does not impose such restrictions.
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4.4 Method Overview

User 2D Stroke

3D Scene

Point 
Sequences

Height 
Estimation

3D Scene with 3D CurveVertex and Height Estimation Segment Graph Construction

Curve Construction and Editing

The on Segments Depth Discontinuity

Shortest Path Curve Smoothing Curve and Scene EditingCandidate Vertices for on Sequences

Input

The off Segments

Figure 4.2. Skippy overview. A 3D scene is displayed from a single view
and the user draws series of 2D points that are converted into a 3D curve
that passes through the scene. First, 3D candidate vertices are found for
intersecting parts of the stroke. A segment graph is built from groups of
the candidate vertices and is used to store all possible valid curves. The
best curve is selected and converted into a full 3D curve. The user can
quickly select different curves and skip from one solution to another.

Our goal is to infer a 3D curve shape from 2D strokes so that it follows the 3D

scene geometry, with optional transient guide objects that can be added by the

user. The user’s 2D stroke is converted to a set of equidistant points in the view

plane. Given these points and distances to geometric surfaces in the scene, we

estimate 3D locations. This process may generate multiple candidate 3D locations

for each 2D sample. Based on a curvature criterion we then find a combination of

these 3D points that makes up the 3D curve.

Figure 4.2 shows an overview of our method. The input is a 3D scene that may also

contain a set of transient objects. The 3D curves are input as sequences of strokes

converted into sets of equidistant points in a 2D viewing plane. The output is a 3D

scene that includes both the input scene and the added objects. The only

requirement for the 3D scene representation is that it must be possible to find a
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distance field around it, since it is needed for fast distance calculations. After a

stroke is drawn, the user can change the viewing direction and the curve is extended

as the user continues to draw more strokes or modified when the user overdraws an

existing part of the curve. We infer a 3D curve for each set of 2D strokes, so that

the user can instantly see the modification during the sketching process.

The vertex and height estimation (Section 4.5) is the very first step of our

pipeline. Note that we denote the 3D counterparts of 2D stroke points as vertices.

The first step takes the input scene and the input 2D points and finds a set of

candidate 3D vertices in 3D space for each 2D point and their distance from the

geometry that we call the vertex height. The candidate vertices are the possible

locations of the point in the 3D space. In order to create this set, we first project

the set of 2D points into the 3D scene by constructing a set of rays, and classify the

2D points based on their intersection with the 3D objects as on and off points. We

then use the non-intersecting rays to estimate the height for each sequence of on

3D vertices. Given the rays and the estimated heights, we can find a set of

candidate vertex sequences for the on 2D points.

The segment graph construction (Section 4.6) step creates a graph of vertex

segments at varying depths that is later used to find the optimal 3D curve.

Segments are 3D polylines connecting given vertices. First, the segments

corresponding to on points are constructed, forming the nodes of the segment

graph. The edges of the segment graph represent the parts of the input stroke that

did not intersect the geometry. These edges, which we call off segments, are

constructed between individual on segments. An additional step is performed to

handle depth discontinuities. This step adds nodes and edges to the segment graph

that help to find a better solution.
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The curve construction (Section 4.7) step, finds the best path through the

segment graph and constructs a smooth cubic spline. First, both the segment graph

nodes and edges are scored using a curvature criterion. Then the best path through

the segment graph is found and the segments along this path are concatenated into

a single curve. Finally, the curve is re-sampled and iteratively smoothed.

Additionally, editing operations such as change in depth or redrawing are

facilitated.

4.5 Vertex and Height Estimation

The input to our method is a 3D scene and a set of strokes that are sampled into

sets of 2D points.

The first step of the pipeline takes the sequence of the input 2D points and the

geometry and splits it into a sequence of on and off points that lie on the scene

geometry (Figure 4.3). Afterwards, it generates the candidate vertices in 3D for the

on sequences.

4.5.1 Point Sequences

The sequence of 2D input points is provided by the user in a single stroke. The

input point sequence have varying distance, therefore we resample them so that the

new sequence is equidistant. We denote the new point sequence by

P = (p1, p2, . . . , p|P |) | pi ∈ R2, where |P | is the number of points.

We then divide the sequence of points into points that are on and off geometry

after projection (Figure 4.3 and see also (De Paoli & Singh, 2015, page 4)). We
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perform an initial projection of the 2D points pi by casting a ray with direction ri

from the camera position c and finding intersections with the objects in the scene.

𝑠5
𝑠1

𝑠2

𝑠3

𝑠4
on on

off

off

off

Figure 4.3. The input 2D stroke is divided into on and off sequences.

The rays that intersect the geometry will define on points while the

non-intersection ones will determine off points. There is an implicit ordering of the

rays ri that is defined by the sequence of the input points pi. Therefore, there is

also an implicit ordering of the vertices vi in the 3D space. Moreover, the points

that are off geometry will later be used to determine the distance of the final curve

from the actual object. The points are then grouped into successive sequences

S =
〈
s1, s2 . . . , s|S|

〉
with a flag whether it is on or off .

A special care needs to be taken for sequences of on points with depth discontinuity

such as in Figure 4.4. The situation indicates multiple obstructed surfaces and the

on sequence needs to be split in two. In our implementation we parse all on

sequences and we perform a check for each pair of subsequent points by comparing

the distance of the ray intersections. If the intersections are far apart relative to
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off off

on on

off

off off

on on

off

onon SubdivideSubdivide

Figure 4.4. The sequence of on 2D points with depth discontinuity (left)
is divided into two on sequences (right).

the distance of their screen coordinates (three times or more in our

implementation, assuming unit cube workspace and unit square screen), we check

whether the slope between those two intersections is continuous. We cast an

additional ray in between the successive points and check if the new intersection’s

distance is close to the average of the distance of the involved points (40% relative

depth change or less). Otherwise if the distance of the intersection of the new ray is

closer to either of the two vertices, the sequence is split in two.

4.5.2 Height Estimation

Our goal is to draw the curve at a certain distance from the geometry. Although it

would be possible to ask the user for an explicit distance value input, we use a

more intuitive way to infer the distance from the actual stroke. In particular, the

distance of the curve from the geometry is derived from the distance of the rays

defining the off points.
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We call the distance of the final curve from the geometry its height and we denote

it as h. Height is a function that returns the value for an input point pj or a

sequence si. All points in an off sequence si have their height h(si) constant. It is

found as the maximum distance of the rays that define the segment from the scene

geometry (Figure 4.5). The height of an on sequences is found by the linear

interpolation of the heights of the neighboring off sequences (Figure 4.5). If the

user starts or ends drawing on the object’s surface the on sequence does not have

two neighboring off sequences and we set the start or the end of the corresponding

on sequence to zero.

𝑜𝑜𝑜𝑜𝑓𝑓1

ℎ(𝑜𝑜𝑜𝑜𝑓𝑓2)

ℎ(𝑜𝑜𝑜𝑜𝑓𝑓1)

ℎ(𝑜𝑜𝑜𝑜𝑓𝑓3)

𝑜𝑜𝑛𝑛1 𝑜𝑜𝑜𝑜𝑓𝑓2 𝑜𝑜𝑛𝑛2 𝑜𝑜𝑜𝑜𝑓𝑓3

𝑜𝑜𝑜𝑜𝑓𝑓1

𝑜𝑜𝑛𝑛1

𝑜𝑜𝑛𝑛2

𝑜𝑜𝑜𝑜𝑓𝑓2

𝑜𝑜𝑜𝑜𝑓𝑓3

}
}ℎ(𝑜𝑜𝑜𝑜𝑓𝑓2)

}
}

}

image plane

input sketch
points 𝑃𝑃 ℎ(𝑜𝑜𝑜𝑜𝑓𝑓1)

ℎ(𝑜𝑜𝑜𝑜𝑓𝑓3)

Figure 4.5. Height of the off sequences is constant and given by the
color-coded distance field (left). Height of the on sequences is interpolated
from the neighbors.
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After this step all off sequences have constant height h(si) and all on sequences

have their height interpolated.

The result of the distance estimation step is a mapping of the input points to the

distance from the scene geometry.

4.5.2.1 Candidate Vertices for on Sequences

Next we find candidate vertices v but only for on sequences; the off sequences are

processed differently in Section 4.6. We generate a distance field df for the entire

scene by using the L2 norm (Figure 4.5 top left). The distance field significantly

speeds up the distance calculations.

In order to generate the candidate vertices, we again cast a ray ri for each point

from each on sequence. The candidate vertices are found as intersections with the

isosurface at distance df(hi).

This step generates a large number of candidate vertices, some of which are

unnecessary and can be removed. In particular, if we encounter two volumes in a

row intersecting the ray, the space in-between them will be filled by two candidate

intersections: one for the ”after” the first object and one for ”before” the second

one. However, in practical experimentation the user usually does not need to have

such a small level of refinement and one point is usually enough for curve editing.

We choose to discard the point that is close to the back-face in our implementation,

shown as ”Discarded (in-between)” in Figure 4.6. The user may not expect the

multiple points in the middle that may cause jumps in depth in the 3D curve

construction. Moreover, this step prunes the amount of vertices and speeds up the
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computation. However, all discarded vertices are kept in the system and can be

later accessed by editing operations.

The candidate vertices for on sequences are denoted vji and are indexed in two

ways. The lower index (Figure 4.6) corresponds to the index of the ray ri that is

also given by the index of the point pi in the re-sampled input stroke. The upper

index j is the ordering number of the intersection on the ray, with zero being closest

to the camera. Moreover, we also assume all vertices in the first on sequence are

not occluded i.e., the user starts drawing either off or in front of the geometry.

Rays 𝑟𝑟0

Discarded (in-between)

Discarded (no connection)

𝑟𝑟1
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Figure 4.6. Segment creation and indexing from the candidate vertices for
on segments (left), the possible connections of the on segments (middle),
and the corresponding segment graph (right).

4.6 Segment Graph Construction

The previous step created candidate vertices for on points and identified rays that

do not intersect the geometry (potential off points). It also created the height

function for all off and on sequences.

In order to generate the curve, we could consider individual combinations of all

vertices. However, a ray ri, i = 1, 2, . . . , n can generate multiple candidate
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vertices
〈
v0i , v

1
i , . . . , v

k
i

〉
and the number of possible combinations greatly increases

with each added ray and possible depths at which the candidate vertices can lie.

The number of possible curves increases with O(kn). Therefore it is not feasible to

calculate the curve for every combination. Fortunately, many of the combinations

can be trivially rejected, for example, the connecting edge should not intersect

geometry or they should have a similar distance from the camera (see details in

Section 4.6.1).

We group candidate vertices into segments denoted by g. A segment is a 3D

polyline that connects candidate vertices. We further classify the segments into on

segments ḡ and off segments ĝ.

After all segments were found we construct a segment graph that includes all

possible valid (following constraints listed in Section 4.6.1) curves in the 3D space

for the given stroke. The segment graph G = {N,E} has a set of nodes N that

correspond to the on segments and the edges E correspond to the off segments

(Figure 4.6 right). From the segment graph we automatically offer the best

segment and let the user select a different one during the scene editing, for

example, to skip part of the curve to a different depth.

The inputs to the segment graph construction algorithm are the scene geometry,

the on candidate vertices, and the off rays. The segment graph construction is a

three step process that is described in detail below. First, we connect candidate

vertices for each on sequence on the corresponding side of the geometry and create

on segments. Then we connect the on segments by generating off segments. There

is a special case of the depth discontinuity (Figure 4.4) which we further discuss in

Section 4.6.3.



88

4.6.1 The on Segments

We create the on segments by connecting all candidate vertices of on points. Each

on segment is denoted ḡjse, where j is the intersection order as above, and the lower

index se denotes the start and then the end vertex. For example in Figure 4.6 we

have ḡ169 = 〈v16, v17, v18, v19〉.

These segments will become the nodes N of the segment graph G (Figure 4.6

right). We create the on segments by connecting individual candidate vertices of

consecutive on points and then group them into the longest segments that can be

found. Individual connections of candidate vertices are tested against three criteria:

1) the connection does not intersect the geometry (example in Figure 4.6:

”Discarded (no connection)”), 2) the vertices lie at similar distance from the

camera, and 3) the gradient of the distance field is similar at the vertex position.

We then find all segments that start at a candidate vertex with no inbound

connections and end at a candidate vertex with no outgoing connections.
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Figure 4.7. Depth discontinuity of an on segment (left) will lead to
multiple on segments (right).
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While this construction is simple for a short sequence of vertices on a single side of

geometry, it can be more complicated in cases of depth discontinuity (Figure 4.4).

Each ray can generate multiple candidate vertices at different distances (vertices

with varying upper index in Figure 4.7), but the discontinuity will tend to merge

and split the segments that would generate large zig-zag steps in the 3D curve. By

applying the above-described construction we obtain an acyclic oriented graph (the

direction of the stroke defines the orientation). From this we extract all segments

that start from the candidate vertex with the lowest index and end in the candidate

vertex with the highest one (start = {v00, v10}, end = {v09, v19} in Figure 4.7).

Because of the varying depth of the vertices in each segment, the upper index of the

on segment is given by the order in which it was extracted (g009, g
1
09, . . . , g

3
09 in the

example in Figure 4.7). We store all those segments as nodes of the segment graph,

because they provide alternatives for the final curve construction. A key idea

behind our approach is that we can select the subset of curve segments that lead to

a desired outcome (e.g., a final curve that is smooth with a monotonic curvature).

Initial sketch

on segments
New off
segments

Final curve

a)

b) c) d)

e)

Figure 4.8. When depth discontinuity occurs (a), we break the conflicting
on segments (b) and insert new off segments that bridge the discontinuity
gap (c) and allow for smooth curve generation (d-e).
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4.6.2 The off Segments

After all on segments are constructed we can connect them by constructing the off

segments. Because there are multiple combinations on how the segments can be

connected, we use the graph G where the on segments are its nodes and off

segments correspond to the graph edges as shown in an example in Figure 4.6

middle. Each on segment (left) is connected to all segments that are accessible by

skipping a sequence of off rays. Every such connection is an edge in the segment

graph (right).

𝑣𝑖
𝑎

𝑣𝑗
𝑏

ҧ𝑔𝑥𝑖
𝑎

ො𝑔𝑖𝑗
𝑎𝑏

ҧ𝑔𝑏𝑗
𝑏

The off segment ĝabij corresponds to an edge in G

that connects two on segments ḡaxi and ḡbjy. More precisely,

the off segment ĝij connects the last vertex vai from the first

on segment with the first vertex of the second segment vbj .

Note that we need the upper indices for an off segment,

because the vertices vi and vj can be at different depths that

would cause multiple off edges with the same lower indices.

To find the off vertices

of the off segment ĝabij = 〈wi+1, . . . , wj−1〉, we interpolate the

depth of vai and vbj . In other words, we interpolate between

di = ‖c− vai ‖ and dj =
∥∥c− vbj∥∥, where c is the position of the camera.

The input sketch of the off segment defines a surface passing the rays

〈ri+1, . . . , rj−1〉 over which we interpolate the depth. Since the user is free to draw

virtually any shape, such as loops, zig-zags, etc., we cannot always guarantee the

off segment to be smooth. For most cases, we use linear interpolation of di and dj

to calculate the vertices (Figure 4.9 bottom). This produces a reasonably smooth
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segment, especially if the input sketch is also smooth. However, the linear

interpolation fails when there is a sharp corner in the input sketch. We detect the

corner by using the algorithm from Ben-Haim, Harary, and Tal (2010) and use

sigomoidal interpolation that achieves a smoother result that is closer to a circular

arc (Figure 4.9 top)

d(t) = di(1− π(t)) + djπ(t),

where π(t)

π(t) =

−
1
2

√
1− (2t)2 + 1

2
if t ∈ [0, 0.5]

1
2

√
1− (2t− 2)2 + 1

2
if t ∈ (0.5, 1] .

(4.1)

Furthermore, an off segment can begin on the first ray or end on the last ray. In

this case we do not use interpolation. For an off segment ĝxa0i beginning on the first

ray we calculate the average change in depth ∆d of several vertices of the following

on segment ḡbiy. (Up to four vertices were used to calculate ∆d in our

implementation.) We then extrapolate the vertices of ĝ0b as follows

wq = c+ (di + (i− q)∆d)rq. (4.2)

The case of off segment ending on last ray, ĝayi|P | is analogous and the on segment

used is the previous one ḡaxi. To connect these outer off segments and maintain the

graph structure, we add a node ḡ000 or ḡ0|P ||P | at the beginning or end, respectively,

that have zero length.

4.6.3 Depth Discontinuity

The last case is a treatment of depth discontinuity (Figure 4.8). The direct

connection of the consecutive on segment would generate sharp corners with large
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𝑡

𝜋 𝑡

𝑡

𝑡

Figure 4.9. Off segment interpolation. An off segment with a single
corner in initial sketch (top) is interpolated by Equation 4.1. Otherwise
linear interpolation is used (bottom).

depth jumps. To avoid this situation we generate new off segments that bridge the

on segments that participate in depth discontinuity as shown in Figure 4.8. The off

segments are added between all on segments that are accessible by skipping an on

sequence that includes a depth discontinuity. Note the new off segment is in fact

parallel to the on segment but connects the on segment that is behind the second

object. When multiple depth discontinuities occur, the curve generation algorithm

described in Section 4.7 will select the smoothest path in the graph that

corresponds to the curve passing behind the last object. This is also the typical

intuitive choice of the users, but it can be overridden if needed.
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4.7 Curve Construction and Editing

The previous step created a graph G that contains interconnected on and off

segments (Figure 3.2). A number of curves can be generated by finding paths in G

that go through all the rays of the initial sketch. However, not all curves have good

visual properties. We use the intuition that the curve should be smooth and follow

the curvature of the underlying geometry. Figure 4.10 shows that if the geometry is

round the curve will likely go behind the object.

Figure 4.10. The path selection attempts to keep the curvature of the
off segment constant. In this way the underlying geometry navigates
the direction of the curve. The curves were sketched from top-down
viewpoint.

Therefore, to select the best path, we define a weight for the nodes and edges of G

that is based on curvature of the individual segments. When a best path through

the graph is found, we connect the traversed segments into a single curve. Finally,

the curve is resampled and iteratively smoothed, while making sure that the final

curve does not deviate from the initial sketch and the height of the curve is

preserved.
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4.7.1 Optimal Path

We are not aware of any method to determine the best curve based on the

above-described criteria. A common approach is to select a curve that does not

deviate in depth but our objective is to create curves with varying depth. Another

way to select the curve is by considering its fairness as explored by Levien and

Séquin (Levien & Séquin, 2009), where the authors noted that one of the

indicators of a fair curve is its monotonic curvature.

Since we stitch the curve together from segments, we need a criterion that can be

evaluated independently for each segment and reused for different final curves. We

chose the criterion to be integral of absolute change in curvature that we denote K:

K =

∫
|κ(s)′|ds, κ(s) = ‖T ′(s)‖ , (4.3)

where s is the arc length parameter of the curve and κ(s) is the curvature defined

by using the unit tangent vector T .

The minimization of this criterion favors curves with monotonic curvature.

Whenever the underlying geometry causes the curve to turn, this criterion prefers

the curve to keep turning, which often results in the curve wrapping around the

object (Figure 4.10).

We estimate the discrete curvature for each on segment ḡaij from its vertices〈
vai , v

a
i+1, . . . , v

a
j

〉
. The curvature of the off segments is calculated from its vertices

but also from the last and first vertices of the connecting on segments (inset Figure

in Section 4.6.2). This makes sure that any sharp connection between on and off

segments is penalized.
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The curvature is estimated differently for input strokes that form a loop. If the

first p0 and the last point p|P | of the input 2D stroke are within a small distance,

we merge the first and last segments and the curvature is estimated for this merged

segment.

The previous step assigned the weights to nodes and edges of the graph. In this

step we find the path through the graph that will represent the final curve. Such a

path has to start with a segment that includes the vertex for the first ray, i.e., any

segment ḡa0x, and end with a segment that includes the vertex for the last ray, i.e.,

any segment ḡby|P |. In the case of beginning or ending the stroke off the geometry,

recall that these segments can be zero length (ḡ000 or ḡ0|P ||P |). The graph is implicitly

topologically sorted, therefore we simply do a depth first traversal from the nodes

starting at first ray and perform edge relaxation, noting the best predecessors at

each node. To construct the curve we simply retrace the best predecessors from all

nodes ending at |P | and concatenate the segments. In our implementation we use

Catmull-Rom splines to construct the final curve geometry.

4.7.2 Curve Smoothing

The previous steps generate a 3D curve that follows the geometry but may have

some sharp turns. To improve its quality it is resampled and iteratively smoothed.

Recall that the 2D points are equidistant in 2D (Section 4.5.1). However, when

projected to 3D, the distance between successive vertices of the 3D curve is not

constant so we further resample the curve in 3D so that the distance between

vertices is constant.
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We use the active contours approach Kass, Witkin, and Terzopoulos (1988) to

smooth the 3D curve with two additional constraints. First, similar to Kara and

Shimada (2007), we make sure that the final curve’s projection to the sketching

viewpoint is similar to the sketched 2D curve. Second, we preserve curve height h

that was defined in Section 4.5.2. To smooth the curve we minimize the energy of

the curve E by using the gradient descent:

E =

∫ 1

0

(Einternal(s) + Eexternal(s)) ds. (4.4)

The internal energy is the sum of continuity and smoothness energies:

Einternal(s) = α

∥∥∥∥dv(s)

ds

∥∥∥∥2 + β

∥∥∥∥d2v(s)

ds2

∥∥∥∥2 , (4.5)

where v(s) is the position of the curve at arc length parameter s ∈ (0, 1). The

external energy is defined as:

Eexternal(s) = γ|r(v(s)) · Γ(s)|+ δ|d(v(s))− h(s)|, (4.6)

where r (v(s)) is the direction of the ray from the camera to v(s), Γ(s) is the

direction of the ray from the initial sketch at s, d (v(s)) is the distance of v(s) the

geometry, and h(s) is the height of the curve at s. The α, β, γ, δ are respective

weights of individual terms and α + β + γ + δ = 1. We use α = 0.0039, β = 0.011,

γ = 0.982, and δ = 0.0019 in our implementation, which prefers smoothness over

equidistance of vertices and penalizes even a small deviation from the input sketch.

4.7.3 Curve and Scene Editing

Skippy offers by default a smooth curve that keeps the distance from the surface as

defined by the user strokes and follows the surface geometry (please see the
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accompanying video). However, this may not always be the user’s preferred choice

and we can easily provide alternative curves that are stored in the segment graph G.

Stroke modifiers allow the user to change the selected curve while drawing. Using

a bidirectional gesture such as a mouse wheel, the user can change the depth of the

last inferred segment. The depth is only a suggestion, as a further stroke points can

change the configuration of the curve. Furthermore, a modal gesture, like a key

being pressed, can disable intersections. This is particularly useful in dense scenes,

such as in Figure 4.14, since otherwise the system automatically assumes that any

geometry intersecting the stroke will have effect on the final curve.

After the stroke has been finished, the user can modify the curve by redrawing

its part or changing the depth of certain segments. The redrawing can be done

from any viewpoint and is performed by inferring a new curve from a redraw

stroke. This new curve has its end vertices fixed to match the closest vertices of the

original curve and is used to replace the part of the original curve that is being

redrawn. Furthermore, the depth of individual parts of the curve (the on segments)

can be selected manually, again by using a bidirectional gesture such as the mouse

wheel as shown in example in Figure 4.11 and in the accompanying video.

click click

Figure 4.11. Once the segment graph has been calculated the curve can
be modified by simply clicking on the 2D stroke or the geometry covering
the stroke to change its depth.
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We found that transient geometry is a powerful way to model the curves.

Transient objects work as scaffolds for the 3D curves. We allow the user to add a

transient object, defined as a mesh, by clicking on a surface of an existing one. The

object is placed such that its vertical axis is perpendicular to the surface and the

mouse wheel controls its scale. If there is no object in the scene, the transient

object is placed to the origin. Once the transient object is not needed it can be

removed by shift click. Similarly, any new 3D geometry created around the space

curves generated by Skippy can act as a transient geometry and can be removed at

any stage. In Figure 4.18, several transient objects were used to produce snakes

that stay farther from the head. The process in Figure 4.13 is similar, except that

the initial transient sphere was placed at the origin.

4.8 Implementation and Results

Our system was implemented in C++ with OpenGL and glm and we tested our

results on an Intel-based desktop computer with Intel Xeon E5-1630 @ 3.7GHz,

12GB of DDR4 RAM and NVIDIA GeForce GTX TITAN X.

Timing of our application depends on several aspects. The most important is the

number n of the resampled points pi and the number of the triangles of the input

geometry. The speed of the application also depends on the number of ray

intersections, i.e., multiple occlusions. This generates multiple on segments that

add to the number of combinations of the off segments (edges of the segment

graph). The speed of the application also depends on various variables such as the

distance field resolution (we use an octree of depth seven) and curve discretization

(we use screen distance of 5-15 pixels). The distance field needs to be modified
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when temporal geometry is added or deleted. To speed up the calculation we store

individual distance field for each object, thus the recalculation depends only on the

added geometry.

We report the timing of the individual steps of our application for all results in

Table 4.1. The timing is for the last step of the model creation, when all the 2D

strokes are present in the scene and the scene is most complex. In order to get to

the most complex case, the user goes through a sequence of simpler scenes as

shown in example in Figure 4.12 that reports timing of the design process during a

model creation for two different objects. It can be seen that the number of multiple

rays (holes) greatly affects the calculation time.

The authoring column of Table 4.1 reports the time necessary for the design of each

model, when the user may undo some actions, erase wrong parts etc. Overall, the

object creation was in order in seconds.

Smoothing is performed both while the user is drawing and after the stroke is

finished. Only a few iterations (32) is performed while drawing. Once the stroke is

finished, we smooth the curve using 32 iterations per frame until we reach no

substantial change in position of the vertices or we reach a maximum limit (we

typically use 512).

An example in Figure 4.13 and in the accompanying video shows usage of the

transient geometry. A sphere is used as an object that carries the initial curve

that defines the overall shape of the final object Figure 4.13 a). The sphere is

deleted and the first curve becomes a part of the scene (Figure 4.13 b)).

Results. Figure 4.18 shows an example of Medusa that heavily uses transient

objects. The input scene is a model of the head without hair. The user starts by
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Figure 4.12. The scene generation time increases with the complexity of
the scene and the number of intersections for each point.

placing several transient objects that help to position the first snakes in 3D. The

snakes become a part of the scene and the user draws further snakes around them.

This was a time demanding scene to complete and the overall authoring time was

16 minutes. The final scene has 36 curves with the total of 1, 167 vertices made

from 1, 810 input points. The complete scene calculation from the 2D points was

2.1 seconds.

Figure 4.1 shows an example of Kraken that has been generated by multiple strokes

from a single view. It is interesting to observe that the individual strokes actually
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a) b)

c) d)

Figure 4.13. An example of usage of transient geometry. Sphere is used
as a shape-defining object and after a first sketch it is deleted a). The first
curve becomes part of the scene and is used to wrap several additional
curves around c)-d). The overall look of the resulting geometry is defined
by the initial transient sphere.

correspond to wrapping the tentacles of the Kraken around the ship. This example

had 606 input points that generated 724 3D vertices. The time to generate the

complete model from the 2D strokes was 98 ms and the overall authoring time was

a little bit over one minute.

Figure 4.14 shows an example of a dense scene (tree) that is enhanced by cords

with lights. This example includes multiple occlusions of tiny objects that is a

difficult case for our framework, because it causes frequent depth skipping during
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the curve drawing. This input scene had 1, 273 input points that generated 1, 653

vertices and it took nearly four seconds to generate it. Authoring of this scene took

about 19 minutes.

Figure 4.14. A dense scene with tiny geometry is a difficult case because
of frequent skipping during curve drawing.
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Figure 4.15 shows an example of a path control in a scene of a city that could be

used in an animation for camera planning. In order to provide flyover the center of

the city the user created transient geometry and wrapped the curve around it.

Authoring of this scene took 11 seconds and the curve generation was 16 ms.

Transient 
geometry

3D curve

Figure 4.15. Camera path through the city can be sketched very quickly
with the help of transient geometry. The curve was sketched from the
viewpoint on the left.

The cup with snake in Figure 4.16 shows generation of wrapping of a 3D object

with a single stroke made up of 615 points. Authoring of this scene was around 1.5

minutes and the curve was generated in 75 ms.

User interaction. We engaged novice users (see Figure 4.16) as well as

professional artists to refine and test the system. Although the users had the

option to change the depth of the last segment while drawing, they noted that the

automatic prediction helped them to draw more efficiently.

The majority of the curves were created with a single stroke without any editing

operations. Whenever a change was needed, the curve was usually removed and
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Figure 4.16. Two examples of wrapping an object by a single stroke.

sketched again from scratch. In more complicated cases, such as Figures 4.1, 4.14

and 4.18, redrawing of parts of the curve and manual depth changes were utilized

more often.

Even though every curve was sketched from a single viewpoint, a change of

viewpoint was not entirely eliminated. The most common perspective changes were

rotating the camera to inspect the resulting curve and choosing a perspective that

minimized foreshortening, since the resulting curve may differ depending on chosen

viewpoint as shown in Figure 4.17.
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a) b)

c) d)

Figure 4.17. Influence of the viewpoint on the final curve. Curve
defined by a stroke (a) is inferred (b). By applying the same stroke
from different viewpoints (c), the shape of the curve changes depending
on the orientation. In (d) we generate the curve from (b) by using its
projection to a different viewpoint, which gets progressively harder due
to foreshortening and for more oblique views it is hard to obtain the same
curve. Blue to red transition signifies the increasing absolute elevation
angle of the camera.

4.9 Conclusion

We presented Skippy, a novel algorithm for 3D curves generation from single view.

The user draws a 2D stroke and the algorithm divides it into on and off sequences.

The distance of the 3D curve from the object (its height) is estimated from the user

stroke. The sequences are converted to on segments in 3D and so called segment

graph encodes the on segments as its nodes and all possible connections of the off

segments as segment graph edges. The optimal path is generated that follows the
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Transient 
Geometry

Figure 4.18. Two frames from the creation of Medusa (top left and right)
show usage of transient geometry that keeps the snakes away from the
head. Some snakes eventually become part of the geometry and are used
as supporting objects as well.
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object geometry and has monotone curvature. The user can quickly edit the curve

by selecting alternative options that are all encoded in the segment graph.

Moreover, we include the concept of transient geometry that is used to scaffold the

curve creation. We show Skippy on a number of examples ranging from simple

wrapping of curves around objects to complex scenes with intertwined geometries.

Limitations. One of the limitations arising from input geometries in the form of

triangle soups, is that arbitrarily small elements can be in place. Skippy will not be

able to treat these small and noisy geometries before any post-processing.

Intersection with such structures cause jumping between different options.

Although we solve this partially by allowing a variable threshold of rays that can

be ignored, it shifts the problem to higher frequencies or causes unwanted

geometries to be ignored. Also, Skippy does not eliminate the need for changing

the viewpoint. In case of a complex guiding object or scene the user may have to

draw the curve in several parts and reposition the view between each part to reduce

the foreshortening of the guiding objects. Still, the number of necessary viewpoint

changes is small compared to traditional approaches.

There are several possible avenues for future work. One of them is to allow

branching or more complex network topologies on the generated curves. Similarly

to our redrawing approach, the curve end points could be restricted, for example to

lie on an existing curve structure, or we could enforce orthogonality or parallelity to

existing curves. Another area of future work could address the shape of the curve.

We assume that a visually plausible curve is a smooth one, but it would be

interesting to allow different options, such as corners and sharp features. One of

the ways to achieve this would be to use Manhattan or Chebyshev distance instead

of Euclidean as the basis of the distance field or explicitly detect sharp features and
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modify the curve accordingly. We have experimented with the way the curve is

controlled by the object surface. So far we only consider the distance of the stroke

that defines the height of the curve. This concept could generalize to considering

different properties such as salient features that could attract or repulse the curve,

or the texture on the surface could further control the curve shape. Finally, we

believe our method has strong potential application in both Virtual and

Augmented Reality (VR, AR) modeling systems, allowing artists to rapidly

decorate and populate large or distant spaces (either virtual or real) that might not

otherwise be easily accessible. In other words, Skippy may allow artists to draw

content that extends beyond their physical reach; such a system is particularly

relevant to AR where the world cannot be scaled down. For this reason we find it

exciting to explore the use of Skippy combined with 6-DOF tracking for design

tasks in immersive and virtual environments.
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5.1 Abstract

Procedural modeling has produced amazing results, yet fundamental issues such as

controllability and limited user guidance persist. We introduce a novel procedural

model called PICO (Procedural Iterative Constrained Optimizer) and PICO-Graph

that is the underlying procedural model designed with optimization in mind. The

key novelty of PICO is that it enables the exploration of generative designs by

combining both user and environmental constraints into a single framework by

using optimization. The PICO-Graph procedural model consists of a set of

geometry generating operations and a set of axioms connected in a directed graph

with cycles. The forward generation is initiated by a set of axioms that use the

connections to send coordinate systems and geometric objects through the

PICO-Graph, which in turn generate more objects. This allows for the fast

generation of complex and varied geometries. Moreover, we combine PICO-Graph
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with efficient optimization that allows for quick exploration of the generated models

and the generation of variants. The user defines the rules, the axioms, and the set

of constraints; for example whether an existing object should be supported by the

generated model, whether symmetries exist, whether the object should spin, etc.

PICO then generates a class of geometric models and optimizes them so that they

fulfill the constraints. The generation and the optimization in our implementation

is interactive and can be influenced by the user while running. For example, the

user can sketch the constraints and direct the generation in the desired direction.

We show PICO on a variety of examples such as the generation of procedural chairs

with multiple supports, generation of support structures for 3D printing, generation

of spinning objects, or generation of procedural terrains matching a given input.

5.2 Introduction

Figure 5.1. PICO automatically generated various procedural models of a
chair. The user first marks the bottom of the character as an active area
and PICO generates the procedural chair that supports it. All models
were built while making sure the model will not tip over.

Procedural modeling has been successfully applied in a wide variety of areas such

as vegetation, texturing, architecture, and decorative design. One of its most
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important strengths is the ability to encapsulate a large variety of shapes into a

concise formal description that can be efficiently parameterized. This, in effect,

allows for the generation of variants of the structures by changing the procedural

model parameters or rules.

While procedural modeling has been recognized as a strong and expressive

methodology capable of solving various problems, its strength has not been fully

harnessed because of its disadvantages. Probably the most important problem is

the difficulty to fully comprehend the procedural shape derivation from an initial

state (axiom). Procedural models exhibit complex behavior and non-linearity

between input parameters and output shape Flake (1998); Mitchell (2009b)

because the derivation may include various feedback that can exponentially amplify

some features while diminishing others. The designer is usually left with

trial-and-error experimentation. Due to the lack of controllability, practical

applications of procedural models usually hide the procedural rules and show just

an interface Huang, Kalogerakis, Yumer, and Mech (2017); Nishida et al. (2016b).

Alternatively, they may provide sets of examples that are reused which is a common

strategy adopted by many commercial products ESRI (2017); SideFx (2019).

Procedural models can be targeted to a specific goal by using optimization.

User-defined constraints have been used to control procedural models as detailed in

Section 5.3. These approaches attempt to find the parameters of the procedural

system that generate results matching the user-specified requirements and/or

adhere to the user-defined constraints. Constraint-based procedural models provide

the user with the ability to define what the final result should look like, without

worrying about the internals of the system. However, existing systems target

narrow domains and usually focus on a single procedural model. More general
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approaches capable of working with multiple procedural representations often lack

interactivity due to the sheer amount of search space that must be explored and

lack of any domain-specific information that could otherwise speed up the process.

Furthermore, they optimize a predefined function that cannot be changed during

the optimization. Finally, prior work focuses predominantly on optimizing the

derivation of a predefined grammar, e.g., a tree grammar to grow into a desired

shape. There has been little work on optimizing the procedural rules themselves.

Several observations motivate this work. The first key observation is that a set of

user-defined constraints can be used together to impose complex requirements on

the generated objects. For example, the function of the object can be specified

with a handful of geometric constraints, as we demonstrate by generating a variety

of free-form chairs (Figure 5.1). The second key observation is that a broader

procedural system can be created that encompasses the commonly used

hand-crafted grammars. This generic system can then be optimized to produce a

wider range of objects that a single hand-crafted grammar cannot express. The

generated objects can match the user’s intent by simply defining and controlling a

set of constraints. This is again demonstrated by Figure 5.1, where no chair-specific

grammar has been created, and the procedural models were evolved automatically.

The last observation is that, contrary to existing off-line approaches, instant visual

feedback and the ability to interactively control the optimization process

significantly improves the expressiveness of procedural modeling.

We introduce PICO (Procedural Iterative Constrained Optimizer), a framework for

procedural geometry optimization and interactive modeling. At the heart of the

framework is a novel procedural model which we call PICO-Graph. This model

uses a data-flow paradigm, where nodes represent geometry generation operations
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and edges define travel paths of objects. Objects travel through this graph between

source (axiom) and sink (scene output) nodes, triggering operations that generate

more geometry whenever they arrive at any node in the graph. This representation

supports branching, recursion, and instancing. The definition of the geometry

generation operations and traveling objects is flexible and supports arbitrary 2D

and 3D geometry such as user-defined meshes. The PICO framework itself consists

of an interactive constraint definition system and an optimization engine that

refines the PICO-Graph to match the given constraints. The optimization consists

of a multi-objective evolutionary algorithm which is capable of optimizing graphs

with cycles, as opposed to only derivation trees.

We demonstrate the capabilities of PICO on a variety of examples, including

automatically generated geometries such as chairs, trees, 3D printing supports, and

terrains. We show that many of these examples can be controlled interactively by

using simple and intuitive constraints. Furthermore, we demonstrate that our

optimizer coupled with the PICO-Graph representation outperforms previous work

in terms of speed. We claim the following main contributions:

1. A novel procedural model, called PICO-Graph, that generates wide range of

3D and 2D geometry. A simple design with fast evaluation makes it suitable

for optimization.

2. We couple PICO-Graph with a novel optimization technique that allows for

interactive user-controlled structure generation.

3. We introduce a novel procedural language at a higher level of abstraction,

where the user provides building blocks but the system finds their

relationships to generate the desired object.
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An example in Figure 5.1 shows an application of our framework. The input is a

3D mesh model of a person. The user interaction consists of marking areas that

require support, specifying additional constraints, e.g., stability and mass

minimization, and choosing the building blocks for the model. Our optimization

then evolves models that satisfy the given constraints.

5.3 Related Work

Procedural modeling is a broad topic that has been applied in a variety of contexts.

For readers interested in more broad coverage of the topic, we reference a number of

state-of-the-art surveys. These include the generation of procedural worlds Natali,

Lidal, Parulek, Viola, and Patel (2013); Smelik et al. (2014), optimization of

procedural models for games Togelius, Yannakakis, Stanley, and Browne (2011),

and inverse procedural modeling Aliaga, Demir, Benes, and Wand (2016).

Early explorations in procedural modeling leveraged fractals, focused on

generation of terrains Fournier et al. (1982); Galin et al. (2019), and

vegetation Aono and Kunii (1984). Shape grammars and split grammars Stiny and

Gips (1972) were successfully applied into architectural models in Wonka et al.

(2003). Split grammars were extended in various directions including procedural

buildings P. Müller et al. (2006) and just recently into a procedural model called

CGA++ in Schwarz and Müller (2015). Numerous examples of purely procedural

models exist such as the approach of Merrell and Manocha (2011) that generates

infinite architectural structures by using only procedural rules. While these systems

can produce complex high quality output, they have a low level of directability and

often fail to capture the user-intent of the artist or designer.
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Many design tools have been designed around specific tasks such as the design

specific shape classes (e.g., chairs Garcia and Romão (2015)) or handling the

arrangement or placement of shapes Guerrero, Jeschke, Wimmer, and Wonka

(2015). By targeting the system with some level of domain specificity more

compelling results can often be achieved. However, the drawback of most

procedural modeling systems is the lack of artistic control. Our system is agnostic

to the class of shapes allowing it to be used on a a variety of tasks. Procedural

models give rise to an often exponential space of variation. While approaches have

been suggested for navigating and exploring these spaces Talton et al. (2009), more

direct artistic control remains challenging.

Control for Procedural Models: a lot of active research has gone into

addressing control of procedural models. Ijiri et al. (2006) introduced a system that

can encode a simple user sketch as L-system and Palubicki et al. (2009) used

sketching of attraction particles to interactively control growth of simulated

vegetation. Closely related is the work of Mitra and Pauly (2009) who optimize 3D

structures so that they match user-defined shadows. Guided procedural

modeling (Benes, Št́ava, Měch, & Miller, 2011) generalizes the concept of

environments by closing procedural models into guides that can communicate by

message passing and Krecklau and Kobbelt (2011) introduced a procedural model

that allows for generation of interconnected structures.

A declarative approach to procedural modeling of virtual worlds of Smelik et al.

(2011) models terrains by defining constraints. Ritchie et al. suggests controlling

procedural models by stochastically-ordered sequential Monte Carlo programs

in Ritchie et al. (2015) and they later introduced neurally-guided procedural

models in Ritchie, Thomas, et al. (2016). Recently, procedural models were coupled
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with sketching and deep learning to provide a more natural interface for artists

Huang et al. (2017); Nishida et al. (2016b), where deep learning recognizes the

sketch and selects the procedural model and its parameters. Neural based methods

have been recently applied to program optimization as well. One of the most recent

examples is the work of Ellis et al. (2018) proposed a method that is able to take

simple hand-drawn images and translate them into a graphic programs able to

generate LATEX-style figures. The graphics programs follow a simple grammar that

include simple primitive drawing, loops and conditional statements. Similarly,

Sharma et al. (2018) showed a neural approach that infers a simple program,

equivalent to a CSG hierarchy, that constructs a given 2D or 3D shape. Their

method uses reinforcement learning and encoder-decoder architecture, where the

input is an image of an object, the output is a program that generates an object,

and the reward is the difference of the two in image space. Conversely, Du et al.

(2018) introduced an analytic method of synthesizing a CSG tree from existing

geometry using a search of possible CSG programs.

Procedural Modeling and Optimization: Procedural models were coupled

with various optimization approaches in the past. Sims used a combination of

genetic algorithms along with competition for resources to evolve virtual creatures

in an environment with simple physics in his seminal paper Sims (1994a). Hornby

and Pollack (2001) used L-systems and evolutionary algorithms to generate various

shapes and Talton, Lou, Lesser, Duke, Měch, and Koltun (2011) used L-systems to

parse states of expression of a rule set to find an optimal geometry by using

Metropolis Hasting variant called Reversible Jump Monte Carlo Markov Chains

(MCMC). Contrary to the previous work, our approach does not require fixed set

of rules and the rules and their dependencies are generated automatically during
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the optimization step. Merrell, Schkufza, Li, Agrawala, and Koltun (2011) used

similar approach to organize furniture in a virtual scene and MCMC was also used

to layout synthesis in Yeh, Yang, Watson, Goodman, and Hanrahan (2012).

Localized learning of stochastic procedural models for virtual terrains has been

used in brush-like approach in Emilien et al. (2015). Although MCMC approaches

provide good results, they tend to be very slow for large scenes.

Structurally sound masonry buildings were achieved via optimization in Whiting et

al. (2009) and our approach shares analogy with this work in that it attempts to

use functional constraints. However, our definition of function does not encompass

only the structure, but also other aspects such as volume, touching, proximity, etc.

Měch and Miller (2012) introduced Deco that uses a scripting language to generate

2D or 3D patterns by guiding the growth of the procedural model to follow the user

input. In our approach, we control the model indirectly by modifying the

constraints and by painting on the objects. Also similar to our method is the work

of McDermott (2012) who leverage graph grammars to evolve 3D shapes. However,

the control of their method is low as opposed to our approach that allows using

constraints to guide the procedural optimization to a desired output. Bergen and

Ross (2013) used aesthetic criteria to evolve L-systems and K. Xu, Zhang,

Cohen-Or, and Chen (2012) optimized shape collections of genetic algorithms by

using a higher semantic representation. Finally, Haubenwallner et al. (2017) used

genetic algorithms to find procedural grammar expansion to match given

constraints and was an inspiration for this work and we compare in Section 5.7.

Most previous works use a fixed procedural model or provide a direct control for its

definition. We were inspired by the seminal work Sims (1994a) and ours is closest

in spirit to Bergen and Ross (2013); Haubenwallner et al. (2017); Jacob (1994).
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Compared to Jacob (1994), we propose a new expressive class of procedural models

that can create a variety of shapes, without having to use predefined shapes like

flowers or leaves Jacob (1994), or use of voxel representation Bergen and Ross

(2013). We also introduce a novel optimization system enabling an interactive

control during the evolution process that allows for incremental updates.

Procedural model representations: Numerous representations for procedural

models have been proposed, whose formalism is rooted in programming language

design. These include data flow models as well as stream processing Abelson,

Sussman, and Sussman (1997); Wadge and Ashcroft (1985). Here we mention only

the most relevant systems from which our work takes inspiration. Lindenmayer

introduced L-systems Lindenmayer (1968b) that were extended by geometric

interpretation and recursion by Prusinkiewicz (1986). L-systems are linear, while

our approach aims at volumetric objects and allows for geometric operations on

them. In general, L-system rules are not easy to evolve directly, and as a result

only a relatively simple cases of L-systems have been evolved so far Jacob (1994);

McCormack (2004). Stellar grammars Velho (2003) were used to generate

subdivision structures and this approach is similar to ours, except we attempt to

expand each vertex. Similarly, vv-system allows vertex-vertex expansion to

simulate subdivision surface in C. Smith and Prusinkiewicz (2004). Our procedural

model is close to the operator graph representation Boechat et al. (2016) with the

most important difference being that we use a mix of coordinate frames and 2D/3D

primitives as the traveling objects among the rules that control the generated

shape. Moreover, we also provide novel optimization approach that allows for

reconnecting the rules, their mutations, and cross-over.
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PICO-Graph

Constraints

Building Blocks

Geometry
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Real-Time 
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Figure 5.2. Overview of PICO. User defines the building blocks which
represent parametrized geometry generating operations with connectivity
information. During the Forward Generation the user also connects
the operations into a PICO-Graph that generates the output geometry.
Alternatively, the user can define a set of constraints that are optimized
for by using an evolutionary algorithm. The constraints can be modified
interactively as various geometries are generated and shown to the user.

5.4 Method Overview

The input to our method is a set of building blocks, i.e., definition of geometry

generating operations, and constraints, i.e., requirements from the user how should

the generated geometry look like. Geometry generating operations can be either

simple geometric objects, such as spheres or boxes, or user-defined geometries
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imported from existing meshes. These operations may be parameterized (size,

orientation, recursion limit) and must contain information on how they can be

connected to other building blocks. The connectivity information, in examples

shown in this work, is a set of coordinate frame transformations.

The building blocks are connected into a PICO-Graph, which is the underlying

procedural representation in our system. Although our framework supports manual

definition of PICO-Graph, this may quickly become an overwhelming task when

modeling complex objects. The key contribution of our work is the automatic

generation of procedural models by using user-defined constraints and evolution.

Some constraints can be specified by a simple toggle (e.g., that the object should

be stable), some require manual input (e.g., sketching of support surfaces or image

to match), and some require loading external geometry (for example for object

avoidance). Each constraint has an associated importance that allows the user to

control various design trade-offs. An important feature of our system is the fast

evolution algorithm that allows for dynamic and interactive modifications of

constraints by the user during the model generation.

PICO can be used for forward generation to generate geometry by manually

defining the PICO-graph, i.e., connecting individual building blocks. The

PICO-graph is a dataflow graph in which objects travel from a source node (axiom)

to a sink node (scene output). The objects traveling in our implementation are

coordinate frames and 2D or 3D geometry. The geometry generating operations are

therefore defined as taking either frames or geometry as input and outputting

further frames or geometries or a combination of both. The actual procedural

output geometry generation starts by sending initial objects from the source nodes.

The objects trigger the geometry generating operations on the nodes they travel to.
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These operations generate new objects which are sent further into the graph.

Finally, the objects accumulated at sink node(s) can be gathered into the final

geometry (see an example of forward generation in Figure 5.3 and the

accompanying video).

The optimization iteratively evaluates geometry against the user-specified

constraints and modifies the PICO-Graph such that the generated geometry

satisfies the constraints. Constraints that cannot be enforced directly are combined

into a fitness that is maximized by solving a weighted multi-objective optimization

problem by using a novel evolutionary algorithm. The algorithm maintains a

population of individuals which are defined by using PICO-Graph as their genotype

and the generated geometry as their phenotype. New solutions are generated using

mutation and crossover operators defined over the PICO-Graph. Furthermore, we

use niching, i.e., we maintain different species in a population, to maintain

diversity and to explore fitness landscape that may be multi-modal.

5.5 Forward Generation

PICO-Graph is the procedural model used in our system. It is built by using

building blocks, i.e., geometry generating nodes that take other geometry as input

and create more geometry. The PICO-Graph defines both the geometry generation

operations along with the order in which the operations should be applied to

produce the final model. Figure 5.4 shows an overview of the PICO-Graph.
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Output Frames

Input Frames

Box

Size (𝑤𝑤,ℎ,𝑑𝑑)

Rotation (𝜃𝜃𝑥𝑥,𝜃𝜃𝑦𝑦,𝜃𝜃𝑧𝑧)

Cylinder

Size (ℎ, 𝑟𝑟)

Rotation (𝜃𝜃𝑥𝑥,𝜃𝜃𝑦𝑦,𝜃𝜃𝑧𝑧)

3D object

Figure 5.3. An example of two building blocks generating a box and a
cylinder respectively. The input and output frames can be positioned
and orientated arbitrarily and define how the primitive will connect to
others. The size and orientation with respect to an incoming frame are
parametrized.

5.5.1 Building Blocks

The building blocks are geometry generating operations Op that take in a spatial

object Sin (triangle meshes, 3D coordinate frames, Gaussians, and Constructive

Solid Geometry (CSG) trees in our implementation). The operation Op generates a
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new set of spatial objects Si, i ∈ (0, n) (which can be of different types), subject to

the operation’s parameters pj, j ∈ (0, k):

Op : (Sin, p0, p1, · · · , pk)→ (S0, S1, · · · , Sn). (5.1)

Figure 5.4 (bottom) shows a graphical representation of this general operation. We

use two common forms of spatial objects in our implementation: coordinate frames

and 2D/3D objects. The coordinate frames F describe a linear transformation as a

4× 4 matrix. The 2D/3D objects are either defined parametrically, for simple

primitives such as spheres or cuboids, or using data, e.g., a mesh or a signed

distance field.

Figure 5.3 shows two examples of the building blocks, one generating a box and the

other a cylinder. Both take coordinate frames as input and output a 3D object and

four more coordinate frames. The new coordinate frames can then be used to

generate further objects. The operation generating a box is written as:

Box : (Fin, w, h, d, θx, θy, θz)→

(Ffront, Ftop, Fleft, Fbottom, Fright, Obox),

Ffront = T (0, h, 0)R(θx, θy, θz)Fin

Ftop = T (0, d/2, 0)R(−π/2, 0, 0)R(θx, θy, θz)Fin

Fleft = T (0, w/2, 0)R(0, 0, π/2)R(θx, θy, θz)Fin

Fbottom = T (0, d/2, 0)R(π/2, 0, 0)R(θx, θy, θz)Fin

Fright = T (0, w/2, 0)R(0, 0,−π/2)R(θx, θy, θz)Fin,

(5.2)

where T and R are translation and rotation matrices, respectively. The generated

object Obox is a box of size (w, h, d) at the origin, transformed by R(θx, θy, θz)Fin; in

our implementation, we use θ to adjust the frame of every generated geometry.
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Furthermore, consistent in the notation in L-systems, the y axis is direction of

procedural generation (growth) and it corresponds to the frame Ffront.

Each of the building block’s parameters pj ∈ Pj has an associated domain Pj; for

example, the rotation angle parameters can be restricted to a certain range, e.g.,

−π/4 ≤ Pθx ≤ π/4. This equips the user with a degree of control over the general

style of the generated geometry during the optimization (Section 5.6) .

5.5.2 PICO-Graph

The PICO-Graph is a data-flow graph that allows geometrical objects (coordinate

frames and 2D/3D geometry) to flow through the graph. The PICO-Graph is a

directed multi-graph G consisting of nodes vi ∈ V and directed edges ei ∈ E:

G = (V,E). (5.3)

Each node has a set of inputs Ivi and outputs Ovi , corresponding to I and O

in Eqn(5.1). Edges connect individual outputs to individual inputs, providing

one-to-one mapping:

E : {Ovi ∀vi ∈ V }� {Ivi ∀vi ∈ V }. (5.4)

Note that this mapping allows multiple outputs connected to a single input. The

set of all nodes V consists of three subsets: set of source (axiom) nodes, set of

building block (geometry generating) nodes, and a set of sink nodes. Figure 5.4

shows a diagram of the graph, as well as a general building block node (inset). The

source nodes (axioms) have no inputs. The sink nodes have no outputs, and they

collect objects that traveled to them.
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Axiom

Axiom

Scene 
Output

…

Geometry 
Generating 
Operation

Output 1 (type X)

Parameter 1

Parameter p

Parameter 2…
Output 2 (type X)

Output 3 (type Y)

Output N (type Y)

…Input (type X)

Figure 5.4. Schematic of the PICO-Graph (top). The graph includes
source (axiom) nodes, geometry generating nodes, and sink nodes (scene
output). Objects travel through this graph from sources to sinks, invoking
geometry generating operations, which create and send more objects
down the graph. A general template for a geometry generating operation
is shown in the zoomed portion. Each operation has a single input
and multiple outputs (shown in different colors) and it has multiple
parameters that influence the objects generation.
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The graph is executed by first initializing objects in the axiom nodes. These

objects are sent into the next nodes, as prescribed by E. Whenever an object

arrives at a node, the operation associated with that node is executed and new

objects are created that are sent further down the graph. The execution ends when

there are no traveling objects left and the generated geometry is accumulated in

the sink nodes. In our implementation, we use Constructive Solid Geometry (CSG)

hierarchy to accumulate the 3D objects, and an array for 2D objects. We denote

the generated geometry as G.

Figure 5.5. An example of a PICO-Graph with cycles (left) and the
generated recursive structure (right). Blue edges represent Constructive
Solid Geometry (CSG) primitives and green edges 3D coordinate frames.
The sink operation blends the incoming primitives and outputs them to
the scene.

The PICO-Graph may contain directed cycles (Figure 5.5) leading to a recursive

generation. The recursion is tracked by counting each time an object, or its

descendants, visit a given node. A recursion limit is enforced to stop further

execution of an object (1-3 in our experiments).
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If a node has multiple incoming edges, the node is executed for each object that

travels through it. Similarly to recursion, this produces an instance of the same

geometry (at a different position with a different frame), but contrary to recursion,

it only happens once (unless the node is part of a cycle as well).

5.6 Optimization

a) b) c)
KG

Figure 5.6. Modeling chair using several constraints. First, the user
sketches a side view (a). However, the model is free to grow in the
direction away or to the user. Therefore, a second sketch may be needed
from another view (b). Finally, to remove unnecessary parts, a mass
minimizing constraint is applied (c).

PICO is well-suited for the forward generation of procedural geometry.

Furthermore, our implementation provides immediate visual feedback of the output

(see the accompanying video). However, manual definition of the procedural model

is a known difficult problem that is exacerbated if both constraints and the

environment are considered.

We have designed PICO so that the PICO-Graph can be generated and efficiently

optimized automatically by using an evolutionary approach. To guide the

optimization we use user-defined constraints. Some constraints can be enforced



129

directly, for example symmetry, while others have to be quantified as objective

functions that are minimized.

5.6.1 Hard Constraints

Hard constraints must always be met and they can specified and enforced directly

by modifying the PICO-Graph. Our current implementation supports a number of

hard constraints including symmetry, spin and parameter spaces.

Parameter spaces: Pj for parameters pj are defined by the user and the

optimization is constrained to sample values from these spaces. Each space is

defined by specifying minimum and maximum values. The optimization samples

these spaces uniformly for initialization and perturbs them by a value sampled from

a normal distribution.

Plane and axis symmetry can be set by the user interactively. If the building

blocks contain two symmetrical frames F0 and F1, we modify the graph such that

the outputs O0
vi

and O1
vi

of a node vi that correspond to these frames are routed to

the same input Ivj of a node vj. Because the objects output from node vi are

oriented according to the symmetric frames F0 and F1, the two sets of objects

created further down the graph (in vj and further) will be symmetric as well.

Spinning objects (Figure 5.13) have their center of mass aligned to the spinning

axis and the spinning axis itself should be parallel to the maximal axis of

inertia (Bächer, Whiting, Bickel, & Sorkine-Hornung, 2014). We transform the

geometry to have its center of mass at the origin and we rotate it by using

rotation Q that is computed by using the eigen-decomposition QΛQT = I where I

is the inertia tensor.
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The 3D printing supports in Figure 5.12 are constrained to have a maximum angle

(45◦ in our example) and the overhang points are automatically connected to the

nearest geometry. If there’s no geometry in the cone specified by the above

maximum angle, the overhang is connected directly to the ground to ensure

printability.

5.6.2 Soft Constraints

In addition to hard constraints our system also supports the modeling of soft

constraints. We model each soft constraint by an associated objective function.

The optimization then minimizes all of the objective functions to find a Pareto

optimal solution, subject to the hard constraints outlined above. The user can

modify the importance of each constraint to further control the optimization.

We categorize the objective functions into two types: environmental and intrinsic.

That are normalized.

The environmental objective functions encompass extrinsic properties of the

model including 3D protected volumes Pi, the scene bounding box Ω, ground

plane G, and the points from the interacting surfaces from the input geometry Qi.

The protected volumes are input by the user as 3D objects and they indicate 3D

space that the generated geometry should avoid. The scene bounding box Ω limits

the operational space of the generated geometry by defining its extent and making

sure that the object does not become unreasonably large. The ground plane G

makes sure the generated model touches the ground and is also used to optimize for

stability of the objects that should not tip over.
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Furthermore, the user can add user-defined objects to the scene and mark target

areas by painting manually on their surfaces. We refer to them as interacting

surfaces and they specify locations to which the generated geometry should grow.

If the interaction surfaces are present, the goal of the optimization is to expand the

procedural geometry so that it approximates the shape of the interacting surfaces,

for example by generating a chair that follows the shape a person that sits on it.

The interacting surfaces are sampled into a set of 3D points denoted by Q and the

objective function attempts to minimize the distance between Q and the generated

procedural geometry G. If the goal is to generate an object that touches all points

in Q, the objective function is

1

|Q|
∑
q∈Q

d(q,G)

|Ωdiag|
, (5.5)

where |Ωdiag| denotes the length of the diagonal of the domain’s bounding box, i.e.,

the largest possible distance and d(p,G) is the distance between a point p and G.

If the goal is to only touch the interaction surface, for example the ground plane G,

the function is

min
q∈Q

d(q,G)

|Ωdiag|
. (5.6)

Protected volumes specify regions into which the generated objects should not

grow. We chose to model this constraint as soft, as it facilitates intermediate

solutions that eventually lead to a solution without any collisions. The objective

function is defined as
V (P ∩ G)

V (P )
(5.7)

where P is the protected volume and V denotes the user-defined volume that

should not be entered.
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Sketching: To control the shape of the generated geometry more finely, we

introduce a sketch matching constraint. The sketch is defined as a binary mask Is
that is either sketched or downloaded and it is compared to a perspective

projection of the generated geometry Ig. The objective function is defined as

smoothstep(N0, 0, Ng)− smoothstep(N1, 0, Ng), (5.8)

where Ng is the number of set pixels in Ig, N0 is the number set in Ig but not in

Is, and N1 is the number set in both Ig and Is.

The stability of the generated geometry G is also optimized. For an object to be

stable the following equation must hold:

m′ ∈ Conv(G ∩G), (5.9)

where m′ is the center of mass m projected along the gravity vector to the ground

plane G, and Conv denotes a convex hull. The objective function that maximizes

stability is:
|m′ − Conv(G ∩G)centroid|

|Ωdiag|
. (5.10)

Note that we assume constant density throughout the object to compute its center

of mass that is satisfied in 3D printing.

The spinnability of the object can be guaranteed by the hard constraints outlined

above, but the quality of the spin can be further improved by minimizing the ratio

of its moments of inertia (Bächer et al., 2014, Eqn (3)).

The intrinsic members of the objective function consider various properties of the

generated structure G. Intrinsic members are the volume of the bounding box of G

its mass, number of generated geometric primitives, and the total length of the

graph induced by the tokens passed around in the PICO graph.
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We control the size of the object by minimizing its bounding volume using the

following objective function
V (GBB)

V (Ω)
. (5.11)

Furthermore, to avoid bulky objects that contain unnecessary parts (with respect

to other objectives) we minimize mass using

ρV (G)

V (Ω)
, (5.12)

where ρ is the density of the structure. We keep ρ = 1 in our implementation.

Figure 5.6 shows the effect of applying several constraints in the modeling process.

The user is free to apply them at once or subsequently as needed, as is shown in

the figure. First a side sketch is created and then one from the front, which

determines the desired shape of the object. Finally, a mass minimizing constraint is

used to simplify the generated model.

5.6.3 Evolutionary Algorithm

The evolutionary approach optimizes the set of objective functions given by the

user-defined constraints. The main steps of the algorithm are population

initialization, speciation, evaluation, selection, and reproduction. Our overall

algorithm shares commonalities with Genetic Algorithms, i.e., we define a genotype

and a phenotype, and Genetic Programming (Koza, 1992), i.e., we evolve graphs

that can be conceptualized as programs. Furthermore, we adapted techniques from

Neuroevolution of Augmenting Topologies (NEAT) Stanley and Miikkulainen

(2002) that allow us to measure compatibility of individuals for reproduction versus

keeping a separate species.
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The population is initialized with a set of random individuals, each representing

the minimal working PICO-Graph, i.e., one axiom, one geometry generating node,

and one sink, each with randomized parameters. The individual consist of a

genotype and a phenotype. The genotype is a description of a single

PICO-Graph G. The genotype includes a list of nodes, along with their

parameters, and a list of edges, along with information whether they are enabled or

disabled. We keep an innovation number associated with every edge, which tracks

new topological changes within the broader population and assist in the crossover

operator and speciation. An edge between nodes is considered to be a gene. The

phenotype is defined as the generated geometry G and is used for evaluation.

The evaluation consists of computing the fitness F (I) for each individual I.

Because the objective functions may have different ranges and distributions, we use

the sum of weighted global ratios (Bentley & Wakefield, 1998) to compute the

fitness:

F (I) =
1∑N−1

i=0 wi

N−1∑
i=0

wi
fi(I)− fmini

fmaxi − fmini

, (5.13)

where fi is the i-th objective function out of N , fmini and fmaxi are the minimum

and maximum values of fi for the entire population throughout all past

generations, and wi is the user-defined importance of a member function fi.

Speciation is a process of dividing the population into multiple distinct species

based on a similarity metric, called compatibility, such that genotypically similar

individuals are grouped together and reproduce only within the species. This

ensures diversity in the population and helps explore multi-modal fitness

landscapes. We use a modified definition of compatibility from Stanley and
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Miikkulainen (2002) which differs in the term quantifying identical genes. Our

compatibility between two genotypes ga and gb is defined as:

δ(ga, gb) =
c1E

N
+
c2D

N
+ c3W, (5.14)

where N is the total number of genes (edges in the graph) and D and E is the

number of disjoint and excess genes respectively (appearing in only one of the

genotypes). The term W is computed as a distance between parameters pj of the

nodes v ∈ V in the graph. Thanks to the innovation numbers, we can track nodes

that occupy the same position in the graph topology, but are parameterized

differently in different individuals. Therefore we sum over the all differences in

parameters of nodes that are connected by the genes that appear in both

genotypes. The difference between two parameters pa and pb are calculated by

using an L2-norm. The coefficients c1, c2 and c3 are used to weight the

contributions of genes in compatibility (c1 = 2, c2 = 2, and c3 = 1 in our

implementation). Finally, to decide if two individuals belong to same species, we

use a threshold tδ. If δ > tδ, individuals do not belong to the same species and a

new species is created, unless there exists an individual within an existing species

whose compatibility is below the threshold. We vary tδ during the optimization

process to keep the number of species constant, in our case 3− 5 species for

population size of 150. Finally, we employ fitness sharing within the species.

We select individuals for reproduction from the top 5− 15% individuals in each

species. The reproduction uses two operators, mutation and crossover, to

produce children from selected individuals. We either use mutation only (5% of the

time), crossover only (85% of the time), or crossover with subsequent mutation.

We use five distinct types of mutations:
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1. add a node (after an existing node)

2. insert node (between connected nodes)

3. mutate parameter

4. add an edge

5. toggle edge

Add node finds an open output in the graph and adds a randomly initialized node,

causing the geometry to grow outward. Insert node finds an existing edge and

replaces it with a new node and two new edges, again causing the model the grow

by prolongation. Mutate parameter randomly perturbs parameters of the nodes,

with low probability (5%) but by a large amount (σ = 80% of parameter space P ,

using a normal distribution). Add an edge connects two nodes that were not

previously connected. Note that if this mutation is not performed, the graph will

remain cycle-free and will resemble a grammar derivation tree, similar to the work

of Haubenwallner et al. (2017). Finally, toggle edge randomly disables and enables

edges in the graph, allowing for pruning of unnecessary parts of the graph or

reactivating parts that may be relevant to the current state of the optimization.

Figure 5.7 shows an example of two generated structures resembling biological trees

(top) that were combined into four by two separate crossover operations.

We adapted the crossover operator from Stanley and Miikkulainen (2002), with

the main difference being that we need to transfer node parameters from parents to

child. Two parent genotypes are first aligned using their innovation numbers, same

as in the compatibility calculation (Eqn 5.14). Genes (i.e., edges in the graph) that

occur in both parents are randomly chosen from one parent to transfer to the child.
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+

Figure 5.7. Crossover on PICO-Graphs generating trees. The two middle
trees are parents (orange) that generate offsprings (blue) by using the
crossover operator.

Excess and disjoint genes are copied from the fitter parent. Finally, for whichever

edge transfers to the child, the parameters associated with the nodes that the edge

connects are transferred to the child as well. An example of the result of the

crossover operator is shown in Figure 5.7.
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The children replace all the parents after the reproduction step and form a new

generation. However, We keep the best individual for each species, ensuring that

the best to-date solution survives. The new generation is divided into the species

again and the process is repeated until a stopping criterion has been met. In our

implementation, we stop if after 100 generations there is no improvement in the

fitness, or, in interactive sessions, whenever user decides to stop the optimization.

Our algorithm starts from a minimal graph and progressively increases the number

of nodes and edges in the graph, which increases the complexity of the generated

model. The reproduction operators need to generate new solutions that would,

ideally, be fitter than previous generation. However, in practice, the mutation and

crossover operators often worsen the solution. We have observed that the rate of

improvement gradually slows down with the increased complexity, particularly

because there are a lot of mutations performed on parts of the graph that do not

need to be mutated. For example, in case of tree growth in Figure 4.14, mutations

to nodes generating the root and initial branches do not need to be changed after

first few hundred of generations. For that reason we use gene freezing. We track

whenever a gene mutation contributed to improvement in fitness. If there has been

no improvement in a certain number of generations (50 in our implementation), the

gene is frozen and cannot be mutated by parameter mutations and node insertion

mutations. We randomly unfreeze frozen genes with a probability of 0.5%. Finally,

we unfreeze all genes if any of the constraints have changed, so that the system can

adapt to the new environment.
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5.6.4 Convergence
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Figure 5.8. Average fitness and its standard deviation through time
for the tree sketch example (Figure 4.14). Individual curves show
convergence for variations of the algorithm without crossover, speciation,
or gene freezing. Values are an average of five runs.

Individual parts of the algorithm influence the overall convergence of the algorithm.

Figure 5.8 shows an ablation experiment where we disabled different parts of the

algorithm. We use the structures from Figure 4.14, where we try to grow a tree

model that matches a sketch. Besides the full algorithm, we ran a variation without

crossover (i.e., asexual reproduction through mutation), speciation, and gene

freezing. The fitness improves best over time if all parts are used and we conclude

that all of these parts contribute to better convergence.

Figure 5.9 shows the influence of the population size on the convergence and time.

The results are aligned with common behavior of genetic algorithms Davis (1991);

Haupt and Haupt (2004): increasing the size of the population improves the
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Figure 5.9. Effect of population size N on the average fitness and its
standard deviation through time for the tree sketch example (Figure
4.14). The experiment was run for 1,000 generations, and five runs per
curve.

convergence significantly (left). However, at a cost of increased computation time

(right). We chose the population size of 150 for our examples, because it gave us a

good middle ground between speed and convergence.
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5.7 Implementation and Results

5.7.1 Implementation

We have implemented PICO in C++ with support of OpenGL, GLSL and CUDA

for rendering. Results were generated on a desktop computer with an Intel i7

processor clocked at 4.0 Ghz, 16 GB of RAM, and an NVIDIA Titan Xp graphics

card.

We represent the 3D objects by a constructive solid geometry (CSG) tree, i.e., a

tree with set operations as inner nodes and geometric primitives as leafs. Because

many of our objective functions require distance estimation, we represent geometric

primitives by an analytic signed distance function or a signed distance field. Set

operations are then performed on the signed distance d. For example, the union

operation between two primitives a and b is defined as min(da(p), db(p)) for a

point p.

We render objects by using ray-marching on the GPU implemented in CUDA,

where tree traversals are expensive. Therefore we convert the CSG tree into a

custom program representation using the Sethi-Ullman (Sethi & Ullman, 1970)

algorithm. The resulting program is then uploaded to the CUDA constant memory

and evaluated on the GPU, or evaluated directly on the CPU.

In order to quickly detect collisions, we convert all meshes into a signed distance

field (SDF) representation by first voxelizing using ray-casting and then using the

Fast Marching Method (Sethian, 1996). The collision volume is then calculated as

the volume of the intersection of the SDF of the mesh and SDF of the CSG tree.

We do this calculation recursively, by subdividing the domain’s axis aligned box
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(AABB), evaluating the SDF at the box’s center. If the absolute distance is greater

than half the diagonal of the AABB, the entire AABB is either completely inside or

outside of the volume, depending on the sign of the distance. Otherwise we

subdivide further until we reach a certain depth (6− 8 in our implementation).

The same algorithm is used to compute the mass, volume, and moment of inertia

tensor of the generated object.

5.7.2 Results

Table 5.1 shows statistics of generation of the results. The input includes the

number of different constraints and number of different building blocks. The

optimization consists of the generation time [ms], evaluation of fitness in [ms],

reproduction time [ms], number of generations in the evolutionary optimization,

and the total optimization time in seconds. The output includes number of

generated coordinate frames, geometric objects (e.g., primitives, meshes,

Gaussians) and the total number of used geometry generating operations. The

most expensive fitness calculation was for the Spinning objects in Figure 5.13,

which includes calculating the moment of inertia tensor, and took on average

1,746.3 [ms] for the entire population. Concerning terrains, the generation

operation takes the most time due to the cost of evaluating Perlin noise, which is

the bottleneck for this application.
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Figure 5.10. Evaluation of tree sketching from ShapeGenetics
(Haubenwallner et al., 2017). Target image specifies areas where the
tree should grow. Shown is a comparison of generated models from our
system and models generated using ShapeGenetics implementation of
various algorithms. We also show that our system achieves higher fitness
faster (bottom). Curves correspond to are average fitness over 10 runs
and bands show the standard deviation.
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The first example in Figure 5.1 shows an array of generated 3D structures. The

bottom and back part of the person are marked and a 3D chair is fully

automatically generated by optimizing for touching the marked areas, stability, and

small mass of the entire structure. We have building blocks defined from actual

chair meshes to make the result visually plausible.

Figure 5.11. A procedural hat hanger is automatically expanded every
time a new hat is added.

To evaluate our approach against existing methods, we chose to recreate the tree

grammar from ShapeGenetics (Haubenwallner et al., 2017, Figure 8a). We used a

single type of building block that generated branch geometry and branched

three-fold, or generated leaf geometry if none of its outputs were being used. The

constraint in this experiment was matching a sketch shown in Figure 5.10, and we

used identical fitness and experiment setup to ShapeGenetics. We ran PICO and

the implementation of Genetic Algorithm (GA) (Haubenwallner et al., 2017),

Reversible Jump Monte Carlo Markov Chain (RJMCMC) (Talton, Lou, Lesser,

Duke, Měch, & Koltun, 2011), Sequential Markov Chain (SMC) (Doucet, Godsill,

& Andrieu, 2000) and Stochastically Ordered Markov Chain (SOSMC) (Ritchie et

al., 2015). The result geometry is shown in Figure5.10 (top). Figure 5.10 (bottom)

shows the mean fitness and its standard deviation as a function of time for

individual methods. The SMC and SOSMC methods have issues converging from
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the start and are unable to cover the entire space of the sketch. The RJMCMC and

GA methods converge to satisfactory results. Our method outperforms them,

especially in the first half of the optimization process.

b)a)

Photo

Figure 5.12. PICO can automatically generate organic supports for 3D
printing. We compared our generated supports (b) to the work of (Vanek
et al., 2014) (a). We used the same overhang points and same dimensions
of the print and we achieved a comparable resulting weight of the used
material.
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An interesting application of PICO is for generating organic support structures

for 3D printing (Figure 5.12). We compared our approach to CleverSupport

(Vanek et al., 2014), a method that that grows tree-like supports from overhang

points. We took the same model and used the same sampling and generated the

supports using PICO. The building blocks used were simple cylinders, branching up

to four-fold. There were two hard constraints used: angle with gravity vector had to

be less than 45◦ and all the overhang points had to be connected to our generated

object. The main optimization goal was minimization of the length of the structure.

Note that we use multiple axiom nodes in this example to grow multiple tree-like

structures at the same time. We printed the object and compared the resulting

weight of used material. Ours being 85.10g, compared to 86.54g achieved by (Vanek

et al., 2014). There are factors that were not considered, for example, structural

strength, tips for easy removal or optimized profile of the supports. However, we

show that we achieve the same task with a comparable amount of material.

We conducted a small pilot user study with four participants who were asked to

create simple model of gazebo. PICO had all constraints set to allow for quick

design and the users were asked to interact with the system by sketching

constraints. After that the participants filled a small survey on a four point

Likert-scale (2-strongly agree, 1-agree, -1-disagree, -2-strongly disagree). The

results to our questions were: This system is easy to use: 1.25, I can achieve my

intent quickly: 0.5, I can control the design easily: 1.25, The response is fast: 1,

and I need to understand procedural modeling: -4 showing that the need to

understand procedural rules is not necessary in order to use the system. Moreover,

the participants identified themselves as I have previous experience in procedural

modeling: 1.25, and I have previous experience in computer design: 0.75.
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a) b)

Figure 5.13. Two spinnable objects a) and b), shown from a side and top
view, have been generated from Stanford dragon building blocks. The
shape was guided by a sketch constraint from a single view, shown in
insets and corresponding to the view on the left. The center of mass and
maximal axis of inertia have been aligned using hard constraints. The
system optimized the placement of building blocks to improve the quality
of the spin. No symmetries were enforced but the optimization process
discovered a symmetrical geometry nevertheless.

Another example shows an automatically generated structure that is able to be

spun and stay balanced while spinning (Figure 5.13); which is an application

inspired by Bächer et al. (2014). The main objective of the optimization is to

achieve distribution of mass such that ratio of lateral axes of inertia to the principal

axis is as small as possible. Furthermore, to control the shape of the spinning top,

we sketch a rough shape from a side view. The center of mass and alignment of the

principal axis of inertia with the spinning axis are enforced as hard constraints.

Note that we intentionally disabled the hard symmetry constraint and we did not

use symmetrical frames. Nevertheless, the system found symmetrical models

automatically through optimization.
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a) b)

c) d)

e) f)

Figure 5.14. PICO matched the real terrain from the left by a set of
Gaussians (right).

Although there are many methods for procedural terrain generation and we do

not claim a contribution to this field, we wanted to show the expressiveness of our

method by matching three real terrains taken as a sample of digital elevation map

of Alps (resolution 64× 64 pixels, 30 meters per pixel) by the PICO procedural

model (Figure 5.14). The geometry generating operations were 2D Gaussians

modulated by Perlin noise. The resulting height map is the sum of the

contributions of all the Gaussians primitives. We used Mean Square Error (MSE)

to compare the height maps. The Gaussians cannot capture well the fine details of
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the terrain, but they work for the overall appearance. The optimization time was

about two minutes. The accompanying video shows the optimization process.

Figure 5.11 shows an example of interactive design. A procedural hat hanger is

automatically generated and then expanded each time a new object is added to the

scene.

5.8 Conclusion

We have introduced PICO that uses PICO-Graph, which is a novel procedural

model that is coupled with an evolutionary algorithm. PICO-Graph is a flexible

graph representation that defines procedural generation by connecting simple

geometry generating operations. Geometric objects, in our examples coordinate

frames and 2D/3D geometry, are sent from axiom nodes down the graph, triggering

further geometry generation in other nodes. We couple this representation with an

evolutionary algorithm and we guide it using various user-defined hard and soft

constraints as a means of control of the procedural generation. The evolutionary

algorithm uses reproduction operators and genome compatibility defined over the

PICO-Graph. Mutations are implemented as topological or parameter changes of

the graph. We adapted the crossover and speciation for our procedural graph

representation. The optimization allows for interactive guidance of the procedural

model, but also for offline generation of complex geometry.

We have shown PICO on a variety of examples including procedural trees,

automatically generated chairs, generation of supports for 3D printing, spinning

objects, and even terrains. We believe that the flexibility and generality of the

PICO system makes it a very powerful modeling tool for a wide range of
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applications. We have also evaluated PICO by comparing to the state-of-the art

algorithms. Contrary to the existing approaches, PICO can generate existing

models without the need of hand writing the underlying procedural model that is

generated automatically by evolution.

Our work has a number of notable limitations. If the procedural evolution discovers

an interesting pattern, it can be forgotten in next iterations or modified because of

the mutations. It would be interesting to evaluate the time each structure stays in

the iteration and its effect on the overall fitness. The objective function includes

various criteria that can compete with each other and this can lead to a poor

convergence rate in specific cases. In most cases however, PICO finds a solution

very quickly that follows the user’s intuition. Thanks to the interactive generation,

PICO can produce results quickly and does not require any knowledge of

procedural modeling as suggested by our user study. Although the constraints

provide good control over the generated structure, it is not always entirely clear

what the result will be. This is one of the main problems of procedural modeling

and we bring a partial solution by using stochastic evolutionary algorithm with

high level user guidance. Exploring finer levels of control would be beneficial.

Future work. In this work we have demonstrated PICO working with a specific

set of constraints and a small set of building blocks. We think there is a potential

in exploring this direction further and adapting PICO to even more domains. It

would be interesting to conduct additional studies with both artists and designers

to better understand workflow patterns that can enable further system refinements.

While our current optimization process is efficient, we believe there still exists

opportunity to improve the convergence of our method. This includes not only the
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raw performance of our system, but its ability to find high quality solutions in the

large search space.
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CHAPTER 6. CONCLUSIONS & FUTURE WORK

The purpose of this dissertation was to explore ways to improve control in

procedural modeling. Procedural systems offer a powerful way of modeling

geometry. A small representation, e.g., a handful a rules and parameters, can

produce complicated geometry and provide ability to model not only natural

phenomena but various synthetic objects as well. The automatic nature of these

systems is desirable as it allows fast generation of great number and variety of

models. One of the main problems in procedural modeling, however, is the lack of

ability to control the complex generative process. As such, control in procedural

modeling is an active area of research. Any advancements in this area benefit a

wide range of people in variety of situations, from individual artists looking to

produce creative works to large companies with large content production pipelines.

In this work we have focused on answering, at least in part, the question whether

procedural systems can be controlled. We focused on three different instances of

procedural systems: modeling via erosion and deposition simulation, modeling of

3D curves via 2D sketching, and modeling geometry via generic user-defined

constraints. The goal of this approach was to gain insights in these specific domains

that could generalize to procedural modeling as a whole.
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6.1 Erosion and Deposition Simulation

To answer the question whether erosion and deposition simulation be controlled to

model objects of arbitrary topology, we have focused on the issues that make

simulations difficult to control. The two problems we looked at in terms of

simulation were interactivity and local control.

Simulations are, in general, computationally expensive, which is especially true for

accurate physics-based simulation of fluid. To achieve interactivity, we employed a

SPH based simulation implemented on the GPU, which allowed us to run the

simulation at interactive frame rates. Because the erosion and deposition

phenomena are localized only to the surface of the objects, we explicitly kept track

of the surface volumetric elements. We then computed the force equations only for

these surface elements, thus eliminating unnecessary work. Finally, we employed a

dual representation of the material: he static uneroded material was represented

using volumetric elements, which were considered for any computation only if they

were near or at the surface. The dynamic material, i.e., the advected or depositing

substance, was represented using a particle in the SPH system. This allowed us to

focus only on the parts of the whole system that were undergoing change and

further speed up the simulation.

Another issue with simulations is that they are difficult to influence while running.

Therefore, modifications are often made only to the initial and boundary

conditions. To help with this issue, we designed an interactive interface that allows

the user to emit the fluid from a chosen position and angle and at chosen quantity

and pressure. This enables a degree of local and direct control and allows the user

to use fluid in a similar fashion as a sculpting brush, while retaining physically

plausible emergent effects on the modeled geometry.
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There are several limitations of the proposed method. First, the simulation

accuracy is limited in order to achieve interactivity. For example, we have not

implemented any kinematic simulation for bulk material, only for advected

material. Unphysical behavior can therefore occur, such as objects being suspended

in air without falling. Furthermore, many of the material properties are only

roughly approximated. Finally, the data structure and simulation domain are kept

at fixed resolution. While they provide acceleration, we would like to implement an

adaptive version, e.g., an adaptive mesh, which refines resolution where detail is

needed the most. Improving both the speed and accuracy of the simulation would

enable users to model complicated objects more easily. This would enable one

avenue of future work: faster than real time simulation, i.e., integrating the

simulation well into the future in a short period of time. Such feature would allow

the user to see effects of his/hers actions further in the future, and possibly mimic

the process of real erosion, which happens over millennia. Currently, any changes in

the system are permanent and the user has no ability to undo any actions or

simulation time. While it is possible to erode previously deposited material, it is

not possible to locally add material in directions other than the gravity vector. To

improve this, simulation history could be kept to easily undo simulation time.

Furthermore, additional operations similar to traditional sculpting, such as adding

and removing arbitrary material, could be implemented to help with the modeling

process and increase local control. Many of the examples presented rely on already

existing geometry with pre-defined materials. While it is possible to model via

deposition only, it would be beneficial to provide users with the ability to easily

assign materials to existing objects. Finally, an integration with a traditional

modeling workflow for modeling rough shapes that can be eroded later could help

this system to become an end-to-end modeling framework.
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6.2 3D Curve Sketching

Modeling of a single 3D curve for a specific purpose, such as animation trajectory

or generalized cylinder geometry, requires great deal of control. Traditionally,

detailed manual specification from the artist is required. To ease this tedious

process, we asked whether it possible to provide fine control of 3D curve generation,

given a 2D sketch from single view and existing geometry as context?. First, we

focused on enforcing given constraints as much as possible, i.e., the final curve

should look like the sketch from the initial viewpoint. However, there are remaining

degrees of freedom of the curve that are left unspecified. To reconcile this issue we

provide the user with the ability to place existing and transient geometry in the

scene as context, which greatly reduces the number of possible 3D curves. To find a

single final solution we applied the following assumption: the intended curve is fair,

i.e., its curvature is monotonous. Because our assumption may not match the user’s

intent or is affected by an imprecise stroke, we provide editing capabilities that

allow the user to provide more information, e.g., the depth or a shape of a certain

segment. In conclusion, the user has access to tools that are similar to those

afforded by manual modeling, with the benefit of sketching the curve with a single

stroke from a single view.

Although the presented algorithm can greatly improve the time to model 3D

curves, there are several limitations. While it is possible to sketch only from a

single view, in practice, multiple view points are necessary to visually evaluate the

curve and make adjustments to any inaccuracies present. We were unable to

completely eradicate these inaccuracies due to the fundamentally reduced degree of

freedom of a a single 2D view and perspective foreshortening, resulting in cases

when the final curve shape is not the shape that the user expected. Some of the
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promising approaches to help with these problems include using 6-DOF input

tracking devices, providing multiple views at the same time, or using a virtual

reality headset. Another limitation is that we assume that the final curve shape is

supposed to be smooth. It would be interesting to explore ways to model curves

with sharp features, such as corners. We also assume that the distance of the curve

to the object is determined mainly by the stroke’s distance to the object in screen

space. However, the distance and shape of the curve could be guided by other

information, e.g., salient parts of the object or surface texture. Furthermore, we

only focused on single curve at a time, but an interesting avenue of further research

is sketching branching curves or curve networks. Finally, a possible approach that

does not rely on assumptions is to learn the expected curve shape as a function of

the sketch and context via machine learning methods. The difficulty in this

approach, however, is measuring accuracy, as there may be multiple correct

solutions for a single sketch, and gathering enough data.

6.3 Procedural Iterative Constrained Optimizer

We investigated the question whether it is possible to control procedural system

generating arbitrary geometry using user-defined constraints. The arbitrary

geometry is achieved by a flexible operator graph representation. The main object

traveling through the procedural graph is an affine transformation, applicable in

most 2D or 3D modeling domains. The operations themselves can then be defined

as placing any geometry to the scene according to the transformation, or modifying

existing geometry. We demonstrate this by generating models using CSG-like

primitives for volumetric models and Gaussian functions for terrains.
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The main form of control we chose were user-defined constraints. These constraints

reduce the number of possible geometries that can be generated by the space of all

procedural graphs. Some of these constraints, i.e., contact surfaces or forbidden

regions, provide context for the generated geometry, similar to the transient

geometry in the 3D curve sketching system. Furthermore, by formulating more

abstract constraints such as stability or ability to spin, the user can model the

function of the object without worrying about the exact geometry. Finally,

multiple constraints can be formulated at the same time. This leads to a

multi-objective optimization problem where the individual constraints may oppose

each other. Because it may be impossible to minimize all the objectives

simultaneously, we provide the user with control of the importance of individual

constraints, placing him or her in charge of the design trade-offs. A degree of global

control of the generative process is provided in form of specifying parameter spaces,

i.e., the distribution from which the optimization can draw when searching for

optimal parameters of the geometric operations. These spaces provide the ability to

influence the overall style of the model, control the symmetry and recursion depth

of the model.

The proposed framework suffers from several limitations. A degree of local control

is possible through direct modification of the graph, however that may be

unintuitive and may produce behavior not expected by the user. To really achieve

direct control over the geometry, we would have to provide control of individual

generated geometry components and transfer modifications to the procedural

graph. In terms of global control, the system has only limited control of style via

defining parameter spaces. A possible avenue for future work would be to perform

a style transfer or style matching from existing objects or images. We presented a
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basic evolutionary design workflow, however there are many improvements that can

be made: evolving and visualizing multiple populations at the same time, letting

user manually assign fitness of solutions or entire populations, and reverting to

previous generations whenever a solution desired by the user died or mutated

excessively. While the system quickly converges to viable solutions, it prefers

exploitation over exploration. Any speed improvements could allow for wider

exploration and possibly even better final solutions. Finally, we would be interested

in seeing this framework applied in other domains besides CSG models and terrain

modeling, especially when employing accurate physical simulation or other carefully

crafted objective functions.

6.4 Summary

We have discussed the limitations of the three separate procedural systems and

possible future work in these three areas. While the proposed procedural systems

are quite diverse, we can see several patterns emerge that may be applicable to

procedural systems in general.

Let us compare traditional modeling methods, i.e., manual modeling such as

polygonal modeling or sculpting, and procedural methods. There are several

dimensions on which we can evaluate these methods and the following list is not

exhaustive. Figure 6.1 visualizes the relative ability of these two modeling

paradigms in the evaluated dimensions.

Interactivity is one of the aspects that help control procedural generation and is a

crucial part of traditional modeling methods. For procedural methods in

particular, near real-time feedback of the system helps the user to perceive
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Local Control

User's Intent

InteractivityAutomaticity

Global Control

Procedural Methods Traditional Methods

Figure 6.1. Relative comparison of the modeling paradigms across
different dimensions.

and understand the underlying process of the generative process. Therefore,

the ability of the user to influence the system during the generation process

and see immediate consequences seems to help with learning to control the

system and achieving the intended result.

User’s Intent. One of the key elements of procedural systems is their non-linearity.

It means, however, that the magnitude of changes in the output are

disproportionate to the changes in the input. Furthermore, changes in the

input may have side effects not known to the user. This results in unexpected

behavior and hinders the user’s ability to achieve his or hers intent. For

example in the 3D curve sketching system, a curve segment may end up at a

different distance from the viewpoint than the user expected, or in PICO, a
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combination of user-defined constraints may render the intended shape

impossible to find. On the other hand, the behavior of traditional modeling

systems can be predicted because a linear relationship exists between user’s

input and the system’s output.

Local Control. Traditional methods excel at providing users the ability to change

individual parts of the modeled object. In comparison, procedural systems

are often used in settings where a complicated model with many parts is

desired and the emphasis is on overall appearance and not individual details.

Local control seems to be an important aspect that makes procedural systems

applicable in situations where small details matter as well. However, it is

often not obvious how to handle local changes in relation to overall system

and local control is typically afforded only indirectly, through specifying

various spatial constraints.

Global Control refers to the ability of the user to change the overall apperance or

style of the modeled geometry. Traditional methods suffer in this regard as

they focus on local control and offer only limited global tools, for example,

texturing. Procedural systems encode the global structure in their rules and

parameters and therefore require less steps to change the global

characteristics of the model. For example, in systems for modeling trees,

parameters are readily available to change overall branching angle and other

global characteristics.

Automaticity is one of the core properties of procedural systems. Traditional

modeling workflows have been incorporating procedural tools to speed up the

modeling process, such as grid snapping when placing objects, smart selection

of geometry’s elements, and automatic symmetry in sculpting. They are still,
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however, predicated on the user manually interacting with the system from

start to finish.

6.5 Future Work

Procedural and traditional methods differ in fundamental ways. It may be

impossible to develop a system to combine the strengths and eliminate weaknesses

of both. However, we believe there is room for improvement for procedural

methods in terms of control. In particular, in the areas that they are lacking the

most as visualized by Figure 6.1. We layout possible remedies and future avenues of

research in terms of these comparative dimensions.

Interactivity has greatly improved in the recent years thanks to the availability of

faster hardware and employment of more sophisticated and parallelizable methods.

However, we believe it is crucial to improve the speed even further, in terms of both

optimization and generation, to make the modeling process even easier and allow

modeling of highly detailed geometry.

Achieving user’s intent and reducing unexpected behavior seems to be the most

difficult problem for procedural systems. A possible symptom relief is providing

control of history of the generative process, e.g., undo and redo operations, to

revert any undesirable changes. Similarly, users can benefit from learning and

understanding of how the system behaves, and therefore better anticipate the

consequences of their actions. Design space exploration tools, such as the work of

Talton et al. (2009), can further help with teaching the user the behavior of the

system and provide useful suggestions of designs. However, it is difficult to make

procedural generation produce expected results to begin with. A promising
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approach is linearization (Yumer et al., 2015), a process which makes the input

parameters have linear relationship with the output. Another possible avenue of

future work is learning how the system should anticipate the user’s intent, instead

of user anticipating the behavior of the system. This approach has been employed

in other complex tasks, such as text prediction (Garay-Vitoria & Abascal, 2006)

and recently in traditional sculpting (Peng, Xing, & Wei, 2018). Additional

information given to the system by the user should theoretically improve the

system’s ability to match user’s intent. Our experiments with user providing

context in form of existing geometry supports this idea. An analogy is readily

available in the practice of traditional modeling - many artists choose to use

blueprints, most often photos, to provide context, inspiration, and template for

their modeling process. The act of placing a transient object in the scene, as

opposed to mathematically or programmatically defining it, is a relatively easy task

for the user. The benefit, especially with using complicated existing geometry, is

that the amount of structured and useful information given to the system is

disproportionate to the time spent on placing the object. Similarly, sketching is

relatively straightforward task even for novice users and provides useful information

that can guide the system and can be as simple as a single stroke. Therefore, we

hypothesize that methods of input that transfer the most amount of useful and

structured information from the user in the least amount of time are the most

beneficial in the overall control of procedural systems.

In terms of improving local control, we can learn from traditional modeling. The

methods already mentioned, providing context and sketching, are useful for

specifying local constraints. However, we think that selection and editing strategy

is important as well, as we demonstrated in case of modifying 3D curves. Selection
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should allow the user to transparently specify which parts of the model should and

should not be modified. Similarly, edit operations should transparently modify the

model without unexpected side effects. We therefore posit that implementing

traditional local control tools, e.g., selection and editing, while retaining the

benefits or procedural methods, e.g., emergence, is a beneficial direction of further

research.

To conclude, procedural systems can be controlled and we identified and

demonstrated some of the useful strategies that may be beneficial for many existing

and future procedural systems:

• maximizing interactivity

• eliminating unexpected behavior

• providing high-bandwidth structured information input methods

• providing local control methods similar to traditional modeling

As we explored only three different procedural systems, the presented techniques of

control may not be applicable to all procedural systems. We suggest that further

exploration in general and specific forms of control of procedural modeling is an

important direction of future research.
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Bächer, M., Whiting, E., Bickel, B., & Sorkine-Hornung, O. (2014). Spin-it:
Optimizing moment of inertia for spinnable objects. ACM Trans. Graph.,
33 (4), 96:1–96:10.

Bae, S.-H., Balakrishnan, R., & Singh, K. (2008). Ilovesketch:
as-natural-as-possible sketching system for creating 3d curve models. In
Proc. of user interface software and technology (pp. 151–160).

Belhadj, F. (2007). Terrain modeling: A constrained fractal model. In Proceedings
of the 5th international conference on computer graphics, virtual reality,
visualisation and interaction in africa (pp. 197–204). New York, NY, USA:
ACM. doi: 10.1145/1294685.1294717

Beltramelli, T. (2017). pix2code: Generating code from a graphical user interface
screenshot. arXiv preprint arXiv:1705.07962 .

Benes, B., & Forsbach, R. (2001). Layered data representation for visual simulation
of terrain erosion. In Proceedings of the 17th spring conference on computer
graphics (pp. 80–). Washington, DC, USA: IEEE Computer Society.
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Hädrich, T., Benes, B., Deussen, O., & Pirk, S. (2017, May). Interactive modeling
and authoring of climbing plants. Comput. Graph. Forum, 36 (2), 49–61.
doi: 10.1111/cgf.13106

Haubenwallner, K., Seidel, H.-P., & Steinberger, M. (2017). Shapegenetics: Using
genetic algorithms for procedural modeling. Computer Graphics Forum,
36 (2), 213–223.

Haugstad, G. (2012). Atomic force microscopy: understanding basic modes and
advanced applications. John Wiley & Sons.

Haupt, R. L., & Haupt, S. E. (2004). Practical genetic algorithms. John Wiley &
Sons.

Hendrikx, M., Meijer, S., Van Der Velden, J., & Iosup, A. (2013). Procedural
content generation for games. ACM Transactions on Multimedia
Computing, Communications, and Applications , 9 (1), 1–22. doi:
10.1145/2422956.2422957

Hirota, K., Tanoue, Y., & Kaneko, T. (1998). Generation of crack patterns with a
physical model. The Visual Computer , 14 (3), 126-137. doi:
10.1007/s003710050128



172

Hnaidi, H., Guérin, E., Akkouche, S., Peytavie, A., & Galin, E. (2010). Feature
based terrain generation using diffusion equation. In Computer graphics
forum (Vol. 29, pp. 2179–2186).

Hornby, G. S., & Pollack, J. B. (2001). The advantages of generative grammatical
encodings for physical design. In Proceedings of the 2001 congress on
evolutionary computation (ieee cat. no.01th8546) (Vol. 1, p. 600-607 vol. 1).

Hsu, S.-c., & Wong, T.-t. (1995, January). Simulating dust accumulation. IEEE
Comput. Graph. Appl., 15 (1), 18–22. doi: 10.1109/38.364957

Huang, H., Kalogerakis, E., Yumer, E., & Měch, R. (2016). Shape synthesis from
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Vojtěch Krs, Ersin Yumer, Nathan Carr, Bedrich Benes, and Radomı́r Měch.
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