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ABSTRACT

Ahmadi Lida Ph.D., Purdue University, August 2019. Asymptotic Analysis of the
kth Subword Complexity. Major Professor: Dr. Mark Daniel Ward.

The Subword Complexity of a character string refers to the number of distinct

substrings of any length that occur as contiguous patterns in the string. The kth

Subword Complexity in particular, refers to the number of distinct substrings of length

k in a string of length n. In this work, we evaluate the expected value and the second

factorial moment of the kth Subword Complexity for the binary strings over memory-

less sources. We first take a combinatorial approach to derive a probability generating

function for the number of occurrences of patterns in strings of finite length. This

enables us to have an exact expression for the two moments in terms of patterns’

auto-correlation and correlation polynomials. We then investigate the asymptotic

behavior for values of k = Θ(log n). In the proof, we compare the distribution of the

kth Subword Complexity of binary strings to the distribution of distinct prefixes of

independent strings stored in a trie. The methodology that we use involves complex

analysis, analytical poissonization and depoissonization, the Mellin transform, and

saddle point analysis.
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1. INTRODUCTION

Analyzing and understanding occurrences of patterns in a character string is helpful

for extracting useful information regarding the nature of a string. We classify strings

to low complexity and high complexity, according to their level of randomness. For in-

stance, we take the binary string X = 10101010..., which is constructed by repetitions

of the pattern w = 10. This string is periodic, and therefore has low randomness.

Such periodic strings are classified as low-complexity strings, whereas strings that

do not show periodicity are considered to have high complexity. An effective way

of measuring a string’s randomness is to count all distinct patterns that appear as

contiguous subwords in the string. This value is called the Subword Complexity. The

name is given by Ehrenfeucht, Lee, and Rozenberg [1], and initially was introduced

by Morse and Hedlund in 1938 [2]. The higher the Subword Complexity, the more

complex the string is considered to be.

Assessing information about the distribution of the Subword Complexity enables

us to better characterize strings, and determine atypically random or periodic strings

that have complexities far from the average complexity [3]. This type of string clas-

sification has applications in fields such as data compression [4], genome analysis

(see [5], [6], [7], [8], and [9]), and plagiarism detection [10]. For example, in data

compression, a data set is considered compressible if it has low complexity, since

it consists of repeated subwords. In computational genomics, Subword Complexity

(known as the number of k-mers) is used in detection of repeated sequences and DNA

barcoding [11], [12].

There are two variations for the definition of the Subword Complexity: The one

that counts all distinct subwords of a given string (also known as Complexity Index,

and Sequence Complexity [13]), and the one that only counts the subwords of the
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same length, say k, that appear in the string. In our work, we analyze the latter, and

we call it the kth Subword Complexity to avoid any confusion.

1.1 Thesis Statement

Throughout this thesis, we consider the kth Subword Complexity of a random

binary string of length n over a memory-less source, and we denote it by Xn,k. We

analyze the first and second factorial moments of Xn,k for the range k = Θ(log n), as

n → ∞. More precisely, we are interested in the range k = a log n, for the following

intervals of a

i.
1

log q−1
< a <

2

log q−1 + log p−1
,

ii.
2

log q−1 + log p−1
< a <

1

q log q−1 + p log p−1
, and

iii.
1

q log q−1 + p log p−1
< a <

1

log p−1
.

1.2 Analysis Outline

Our approach involves two major steps. At first we choose a suitable model for

the asymptotic analysis, and afterwards we provide proofs for the derivation of the

asymptotic expansion of the first two factorial moments.

1.2.1 Part I

This part of the analysis is inspired by the earlier work of Jacquet and Sz-

pankowski [14] on the analysis of suffix trees by comparing them to independent

tries. A trie, first introduced by René de la Briandais in 1959 (see [15]), is a search

tree that stores n strings, according to their prefixes. A suffix tree, introduced by

Weiner in 1973 (see [16]), is a trie where the strings are suffixes of a given string. An

example of these data structures are given in Figure 1.1.
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(a) Suffix Tree (b) Trie

Figure 1.1. The suffix tree in (a) is built over the first four suffixes of
string X = 101110..., and the trie in (b) is build over strings X1 =
111..., X2 = 101..., X3 = 100, and X4 = 010....

A direct asymptotic analysis of the moments is a difficult task, since patterns in a

string are not independent from each other. However, we note that each pattern in a

string can be regarded as a prefix of a suffix of the string. Therefore, the number of

distinct patterns of length k in a string is actually the number of nodes of the suffix

tree at level k and lower. It is shown by I. Gheorghiciuc and M. D. Ward [17] that

the expected value of the k-th Subword Complexity of a Bernoulli string of length n

is asymptotically comparable to the expected value of the number of nodes at level k

of a trie built over n independent strings generated by a memory-less source.

We extend this analysis to the desired range for k, and we prove that the result

holds for when k grows logarithmically with n. Additionally, we show that asymp-

totically, the second factorial moment of the k-th Subword Complexity can also be

estimated by admitting the same independent model generated by a memory-less

source. The proof of this theorem heavily relies on the characterization of the over-

laps of the patterns with themselves and with one another. Auto-correlation and

correlation polynomials explicitly describe these overlaps. The analytic properties of

these polynomials are key to understanding repetitions of patterns in large Bernoulli

strings. This, in conjunction with Cauchy’s integral formula (used to compare the
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generating functions in the two models) and the residue theorem, provides solid ver-

ification that the second factorial moment in the Subword Complexity behaves the

same as in the independent model.

To make this comparison, we derive the generating functions of the first two fac-

torial moments in both settings. In a paper published by F. Bassino, J. Clément, and

P. Nicodème in 2012 [18], the authors provide a multivariate probability generating

function f(z, x) for the number of occurrences of patterns in a finite Bernoulli string.

That is, given a pattern w, the coefficient of the term znxm in f(z, x) is the probabil-

ity in the Bernoulli model that a random string of size n has exactly m occurrences of

the pattern w. Following their technique, we derive the exact expression for the gen-

erating functions of the first two factorial moments of the kth Subword Complexity.

In the independent model, the generating functions are obtained by basic probability

concepts.

1.2.2 Part II

This part of the proof is analogous to the analysis of profile of tries [19]. To

capture the asymptotic behavior, the expressions for the first two factorial moments

in the independent trie are further improved by means of a Poisson process. The

poissonized version yields generating functions in the form of harmonic sums for each

of the moments. The Mellin transform and the inverse Mellin transforms of these

harmonic sums establish a connection between the asymptotic expansion and sin-

gularities of the transformed function. This methodology is sufficient for when the

length k of the patterns are fixed. However, allowing k to grow with n, makes the

analysis more challenging. This is because for large k, the dominant term of the

poissonized generating function may come from the term involving k, and singular-

ities may not be significant compared to the growth of k. This issue is treated by

combining the singularity analysis with a saddle point method [20]. The outcome

of the analysis is a precise first-order asymptotics of the moments in the poissonized
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model. Depoissonization theorems are then applied to obtain the desired result in the

Bernoulli model. References [21], [22], [13], [23], [24], [25], [26], [27], [28], [29] have

been very useful in studying the methodology utilized in this work.
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2. MAIN RESULTS

We let X be a binary string over a Bernoulli Model; That is, X = X1X2...Xn, where

for i ∈ 1, ..., n, Xi’s are independent and identically distributed random variables over

the alphabet A = {0, 1}. We assume that P(Xi = 1) = p, P(Xi = 0) = q = 1 − p,

and p > q. We let Xn,k denote the the number of distinct patterns of length k that

appear as substrings of X, called the kth Subword Complexity. In this work, we

intend to find the average and the second factorial moment of Xn,k, namely E[Xn,k]

and E[(Xn,k)2], asymptotically. We perform the analysis for large n, where k grows

as a function of n. The desired range in our analysis is k = Θ(log n). More precisely,

k = a log n, in the following ranges for a

i.
1

log q−1
< a <

2

log q−1 + log p−1
,

ii.
2

log q−1 + log p−1
< a <

1

q log q−1 + p log p−1
, and

iii.
1

q log q−1 + p log p−1
< a <

1

log p−1
.

The first challenge in our analysis is that patterns in a string are not independent

from each other and they overlap one another. This makes the direct analysis of

the k-th Subword Complexity quite difficult. For this reason, we compare the kth

Subword Complexity to an independent model constructed in the following way: We

store a set of n independently generated strings (by a memory-less source) in a trie.

We denote the number of distinct prefixes of length k in the trie by X̂n,k, and we call

it the kth prefix complexity. We then show that the average and the second moment

of Xn,k is asymptotically comparable to X̂n,k, when k = Θ(log n).

In Chapter 3, we provide a summary of the methodology that we use to derive the

generating functions for the average and the second factorial moment of the kth
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Subword Complexity. The approach is borrowed from the paper by Bassino, Clément,

and Nicodème on counting occurrences for a finite set of words (see [18]). In Chapter 4,

we utilize the techniques presented in Chapter 3, and we derive a closed form for the

desired generating functions in Theorems 4.1.1, and 4.2.1.

In order to proceed with our analysis, we need more information on the analytic prop-

erties of the generating functions given in Theorem 4.1.1. We show that for large

enough k, the polynomials Dw(z) and Dw,w′(z) have exactly one root in a disk of ra-

dius ρ, where ρ > 1. The proof regarding Dw(z) is shown by Jacquet and Szpankowski

in [30]. In Chapter 5, we provide some lemmas and the proof for the existence of a

unique root of Dw,w′(z) in a disk of radius ρ.

In Chapter 6, in Theorem 6.2.1 we prove that for k = Θ(log n), E[Xn,k] and E[X̂n,k]

have the same first order asymptotic growth. In other words, we show that

E[Xn,k]− E[X̂n,k] = O(n−M),

where M is a positive real value. The proof involves considering the two generating

functions Hk(z) and Ĥk(z) (whose coefficients are E[Xn,k] and E[X̂n,k], respectively).

We apply the Cauchy’s coefficient formula to express the coefficient [zn](H(z)−Ĥ(z))

in precise terms. By a residue analysis, and the application of the Mellin transform,

we prove that [zn](H(z)−Ĥ(z)) tends to zero for large values of n even when k grows

logarithmically with n. We apply the same methodology for comparing E[(Xn,k)2]

and E[(X̂n,k)2] asymptotically. In Theorem 6.3.1, we prove the following

E[(Xn,k)2]− E[(X̂n,k)2] = O(n−ε),

for ε a positive real value.

The final chapter of this dissertation is devoted to the analysis of the first order

asymptotics of the average and the second factorial moment of the kth Prefix Com-

plexity. The results hold true for the average and the second factorial moment of the
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kth Subword Complexity as we proved in Chapter 6. The methodology presented in

this chapter is analogues to the asymptotic analysis of profile of tries [19]. To achieve

complete independence throughout the trie, we embed the Bernoulli model into a

Poisson process, where the fixed value n is replaced by a Poisson random variable

Nz with mean equal to z. We perform all of our analysis in the poissonized model,

and we derive the corresponding results in the Bernoulli model by a depoissonization

process. The poissonized generating functions for the average and the second factorial

moment are respectively

Ẽk(z) =
∑
w∈Ak

(
1− e−zP(w)

)
,

and

G̃k(z) =
(
Ẽk(z)

)2

−
∑
w∈Ak

(
1− 2e−P(w)z + e−2P(w)z

)
.

Since we are dealing with the harmonic sums, the Mellin transform is a quite useful

technique for deriving the asymptotic expansions for Ẽk(z) and G̃k(z). When esti-

mating the inverse Mellin transform, we obtain integrals that involve k which is a

large parameter. For this reason, we compute the integrals through a combination

of singularity analysis and the saddle point method. The fundamental strip of the

Mellin integral corresponds to

2

log p−1 + log q−1
< a <

1

p log p−1 + q log q−1
,

In this range, there is no coalescence between the saddle points and the singularities

of the integrals, and therefore we proceed by a saddle point method. For the range

1

p log p−1 + q log q−1
< a <

1

log p−1
,

we take into account the dominant pole of the integrand at s = 0, as well as a saddle

point analysis. And finally, for the range

1

log q−1
< a <

2

log p−1 + log q−1
,
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The pole at s = −1 has the dominant contribution to the asymptotic growth.

We prove the following theorems.

Theorem 7.3.1 The average of the kth Prefix Complexity has the following asymp-

totic expansion

i. For a as in (7.13),

E[X̂n,k] = 2k − Φ1((1 + log p) logp/q n)
nν√
log n

(
1 +O

(
1√

log n

))
, (2.1)

where ν = −r0 + a log(p−r0 + q−r0), and

Φ1(x) =
(p/q)−r0/2 + (p/q)r0/2√

2π log p/q

∑
j∈Z

Γ(r0 + itj)e
−2πijx

is a bounded periodic function.

ii. For a as in (7.14),

E[X̂n,k] = Φ1((1 + log p) logp/q n)
nν√
log n

(
1 +O

(
1√

log n

))
.

iii. For a as in (7.15)

E[X̂n,k] = n+O(nν0),

for some ν0 < 1.

Theorem 7.4.1 The second factorial moment of the kth Prefix Complexity has the

following asymptotic expansion.

i. For a as in (7.13),

E[(X̂n,k)2] =

(
2k − Φ1(logp/q n(1 + log p))

nν√
log n

(
1 +O

(
1√

log n

)))2

.

ii. For a as in (7.14),

E[(X̂n,k)2] = Φ2
1(logp/q n(1 + log p))

n2ν

log n

(
1 +O

(
1

log n

))
.



10

ii. For a as in (7.15),

E[(X̂n,k)2] = n2 +O(n2ν0).

The periodic function Φ1(x) in Theorems 7.3.1, and 7.4.1 is shown in Figures 9.5

and 9.6. For a fixed p, the amplitude increases as r0 increases. For a fixed r0, the

amplitude tends to 0 as p→ 1/2+.
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3. PRELIMINARIES

In this chapter, we provide a summary of some of the results that are discussed

in [18]. We recall that X = X1X2...Xn denotes a binary string, where the characters

{Xi | i = 1...n} are independent and identically distributed Bernoulli random variables

over the alphabetA = {0, 1}. We assume that for each i, P(Xi = 1) = p, P(Xi = 0) =

q = 1−p, and p > q. For a random binary string, we are able to obtain a multivariate

generating function that gives the probability that r distinct patterns u1, u2, ..., ur

occur exactly n1, n2, .., nr times, respectively, in the string. The analysis for derivation

of such generating functions dates back to Régnier and Szpankowski [31], and it relies

on understanding the overlaps of patterns with themselves and with each other. Here,

we will present the analysis for occurrences of both a single pattern and a pair of

patterns {w,w′} of the same length. The approach for the case of r > 2 patterns can

be found in [18].

3.1 Word Overlaps: Auto-correlation and Correlation Polynomials

We begin by introducing a few terminologies that describe the self-overlaps in a single

pattern w and the overlaps between a pair {w,w′}. The notations we use in this work

are borrowed from Jacquet and Szpankowski [30].

Definition 3.1.1 Let w = w1...wk be a binary word of length k. The auto-correlation

set Sw of the word w is defined in the following way

Sw = {wi+1..wk |w1...wi = wk−i+1..wk}. (3.1)

We also define the auto-correlation index set to be

P(w) = {i |w1...wi = wk−i+1..wk}. (3.2)
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Finally, we define the auto-correlation polynomial as

Sw(z) =
∑
i∈P(w)

P(wi+1...wk)z
k−i. (3.3)

Definition 3.1.2 Let w = w1...wk and w′ = w′1...w
′
k be two distinct binary words of

length k. The correlation set Sw,w′ of the words w and w′ is

Sw,w′ = {w′i+1...w
′
k |w′1...w′i = wk−i+1...wk}. (3.4)

The correlation index set is defined as

P(w,w′) = {i |w′1...w′i = wk−i+1..wk}. (3.5)

And the correlation polynomial is given as

Sw,w′(z) =
∑

i∈P(w,w′)

P(w′i+1...w
′
k)z

k−i. (3.6)

3.2 The Occurrence PGF for a Single Pattern

We explain the analysis by providing a simple example. Consider the binary string

X = 01101000111101 and the pattern w = 11. We can distinguish occurrences of w

in the given string by marking the ending position of each occurrence with a bullet

notation. Below are a few ways of distinguishing occurrences of w in the string X.

X1 = 01
•
1010001

•
1
•
1
•
101 X2 = 011010001

•
1
•
1
•
101 X3 = 01

•
1010001

•
11
•
101

Paper [18] refers to the above strings as decorated strings. We let X denote the class

of all decorated strings. We can easily observe that X can be written as a sequence

of arbitrary letters and decorated words (possibly followed by a sequence of their

nontrivial decorated overlaps). In other words, X = SEQ
(
A+

•
w · SEQ(S •

w
− ε)

)
.
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Note that the bullet in
•
w emphasizes that w is a decorated word. This yields the

probability generating function

Fw(z, t) =
1

1− A(z)− tP(w)zk

1− t(Sw(z)− 1)

, (3.7)

where z marks the length of the string X, t marks the number of distinguished

occurrences of w, and A(z) is the probability generating function for the alphabet.

We then apply the substitution t → x − 1 to indicate whether an occurrence is

distinguished or not. This way, overcounting of occurrences is prevented and we

obtain the probability generating function

Fw(z, x− 1) =
1

1− A(z)− (x− 1)P(w)zk

1− (x− 1)(Sw(z)− 1)

, (3.8)

where the coefficient [znxm]Fw(z, x−1) is the probability that a random binary string

of length n has m occurrences of the pattern w.

3.3 The Occurrence PGF for Two Distinct Patterns

We again consider the example provided above. This time, we let w = 11 and w′ = 01.

We use the asterisk notation to distinguish occurrences of w′, and we recall that the

bullet notation is used to distinguish occurrences of w. Below are a few examples of

distinguishing both patterns in X.

X1 = 0
∗
1
•
1010001

•
1
•
1
•
101 X2 = 0

∗
11010001

•
1
•
1
•
101 X3 = 0

∗
1101000

∗
1
•
11
•
101

In this case, X can be written as a sequence of arbitrary letters and decorated w and

w′ (possibly followed by a sequence of their nontrivial decorated self-overlaps or the
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decorated overlaps between w and w′). We can describe the decorated part of the

string like the following

M =
(
•
w

∗
w
′)

SEQ

S •w−ε S •
w,
∗
w
′

S ∗
w
′
,
•
w
S ∗
w
′ − ε

ε
ε

 . (3.9)

Then we have X = SEQ (A+M), which results in the generating function below

Fw,w′(z, t1, t2) =
1

1− A(z)−M(z, t1, t2)
, (3.10)

where

M(z, t1, t2) =
(
P(w)zkt1 P(w′)zkt2

)I−

(Sw(z)− 1)t1 Sw,w′(z)t2

Sw′,w(z)t1 (Sw′(z)− 1)t2

−11

1



is the generating function for M, z marks the length of the string, t1 marks the

number of distinguished occurrences of w, and t2 marks the number of distinguished

occurrences of w′. Like for the singular pattern, we apply the substitutions t1 → x1−1

and t2 → x2 − 1 to avoid overcounting the occurrences of w and w′. Then the coeffi-

cient [znxm1
1 xm2

2 ]Fw,w′(z, x1−1, x2−1) is the probability that there are m1 occurrences

of w and m2 occurrences of w′ in a random string of length n.

We will utilize the above results to find mathematical expressions for the first two

factorial moments of the kth Subword Complexity in the next chapter.
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4. SUBWORD COMPLEXITY VS. PREFIX

COMPLEXITY

We recall that in chapter one we defined the kth Subword Complexity Xn,k of a string

X (of length n) to be the number of distinct patterns of length k that appear in X.

Due to overlaps between the subwords of the string X, direct asymptotic evaluation

of the first and second moments of Xn,k is quite complicated. To alleviate this, we

note that each subword in a string can be regarded as a prefix of a suffix. Clearly, the

suffixes of a string are highly dependent on each other. The analysis will be simplified

by comparing to a model with strings that were generated independently. We can

show that for same ranges of the parameters, the factorial moments in the original

problem are asymptotically comparable to the this new version, where the strings are

independent from one another. In the independent model, we first construct a set of

n independently generated strings by a memory-less source. We denote the number

of distinct prefixes of length k of the strings by X̂n,k, and we call it the kth Prefix

Complexity. In chapter six, we will show that for k = Θ(lnn), both E[Xn,k]−E[X̂n,k]

and E[(Xn,k)2] − E[(X̂n,k)2] are asymptotically negligible. A reasonable approach

for comparing the moments of the kth Subword Complexity to those of the kth

Prefix Complexity, is to derive the generating function of the first two moments in

both settings. Therefore, the focus of this chapter is on the analysis which leads to

obtaining a closed form for each of the desired generating functions.

4.1 On the kth Subword Complexity

The methodology for obtaining the generating functions for E[Xn,k] and E[(Xn,k)2]

is centered on the results shown in the previous chapter. We will present these

generating functions in the following theorem.
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Theorem 4.1.1 Let Hk(z) =
∑

n≥0 E[Xn,k]z
n and Gk(z) =

∑
n≥0 E[(Xn,k)2]zn de-

note the generating functions for the first and second moments of Xn,k, E[Xn,k] and

E[(Xn,k)2] respectively. We have

i.

Hk(z) =
∑
w∈Ak

(
1

1− z
− Sw(z)

Dw(z)

)
, (4.1)

where Dw(z) = P(w)zk + (1− z)Sw(z), and

ii.

Gk(z) =
∑

w,w
′∈Ak

w 6=w′

(
1

1− z
− Sw(z)

Dw(z)
− Sw′ (z)

Dw′(z)
+
Sw(z)Sw′ (z)− Sw,w′(z)Sw′ ,w(z)

Dw,w′(z)

)
,

(4.2)

where

Dw,w′(z) = (1− z)(Sw(z)Sw′(z)− Sw,w′(z)Sw′,w(z))

+ zk (P(w)(Sw′(z)− Sw,w′(z)) + P(w′)(Sw(z)− Sw′,w(z))) . (4.3)

Proof i. Let Fw(z, x) denote the occurrence probability generating function for w

as in (3.8). Recall that [znxm]Fw(z, x) is the probability that there are exactly m

occurrences of w in a randomly generated binary string of length n. To compute

E[Xn,k], We consider all binary patterns w of length k and define

X
(w)
n,k =

1 if w appears at least once in string X

0 otherwise.

It follows that Xn,k =
∑

w∈Ak X
(w)
n,k , and by linearity of expectation, we have

E[Xn,k] =
∑
w∈Ak

E[X
(w)
n,k ], (4.4)
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Using the properties of indicator variables, we have

E[X
(w)
n,k ] = P(X

(w)
n,k = 1)

= 1− P (X
(w)
n,k = 0)

= 1− [znx0]Fw(z, x). (4.5)

Note that [znx0]Fw(z, x) = [zn]Fw(z, 0). We define fw(z) = Fw(z, 0). By (3.8), we

obtain

fw(z) =
Sw(z)

P(w)zk + (1− z)Sw(z)
. (4.6)

Therefore, the generating function Hk(z) for the average kth Subword Complexity is

the following

H(z) =
∑
n≥0

E[Xn,k]z
n

=
∑
n≥0

∑
w∈Ak

(1− [zn]fw(z))zn

=
∑
w∈Ak

(
1

1− z
− fw(z)

)
=
∑
w∈Ak

(
1

1− z
− Sw(z)

Dw(z)

)
. (4.7)

ii. To find the generating function for E[(Xn,k)2], we observe that by linearity of

expectation

E[(Xn,k)2] = E[X2
n,k]− E[Xn,k]

= E
[
(X

(w)
n,k + ...+X

(w(r))
n,k )2

]
− E

[
X

(w)
n,k + ...+X

(w(r))
n,k

]
=
∑
w∈Ak

E
[
(X

(w)
n,k )2

]
+

∑
w,w′∈Ak
w 6=w′

E
[
X

(w)
n,kX

(w′)
n,k

]
−
∑
w∈Ak

E
[
X

(w)
n,k

]

=
∑

w,w′∈Ak
w 6=w′

E
[
X

(w)
n,kX

(w′)
n,k

]
. (4.8)
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Since each X
(w)
n,k is an indicator random variable, we have E[(X

(w)
n,k )2] = E[X

(w)
n,k ], and

we get

E[(Xn,k)2] =
∑

w,w′∈Ak
w 6=w′

E
[
X

(w)
n,kX

(w′)
n,k

]
. (4.9)

To compute E[X
(w)
n,kX

(w′)
n,k ], we first note that

X
(w)
n,kX

(w′)
n,k =

1 if X
(w)
n,k = X

(w′)
n,k = 1

0 otherwise,

which yields

E[X
(w)
n,kX

(w′)
n,k ] = P

(
X

(w)
n,k = 1, X

(w′)
n,k = 1

)
= 1−P

(
X

(w)
n,k = 0 ∪X(w′)

n,k = 0
)

= 1−P
(
X

(w)
n,k = 0

)
−P

(
X

(w′)
n,k = 0

)
+ P

(
X

(w)
n,k = 0, X

(w′)
n,k = 0

)
.

The above expression gives the following

E[(Xn,k)2] =
∑

w,w′∈Ak
w 6=w′

(1− [zn] fw(z)− [zn]fw′(z) + [zn]fww′(z)) , (4.10)

where fw,w′(z) = Fw,w′(z, 0, 0) and [zn]Fw,w′(z, 0, 0) = [znx0
1x

0
2]Fw,w′(z, x1, x2). Fol-

lowing (3.9), and (3.10), we arrive at

fw,w′(z) =
Sw(z)Sw′(z)− Sw,w′(z)Sw′,w(z)

Dw,w′(z)
. (4.11)
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Finally, we obtain

Gk(z) =
∑
n≥0

E[(Xn,k)2]zn

=
∑

w,w
′∈Ak

w 6=w′

∑
n≥0

(
1− [zn]fw(z)− [zn]fw′ (z) + [zn]fw,w′ (z)

)
zn

=
∑

w,w
′∈Ak

w 6=w′

(
1

1− z
− fw(z)− fw′ (z) + fw,w′ (z)

)

=
∑

w,w
′∈Ak

w 6=w′

(
1

1− z
− Sw(z)

Dw(z)
− Sw′ (z)

Dw′(z)
+
Sw(z)Sw′ (z)− Sw,w′(z)Sw′ ,w(z)

Dw,w′(z)

)
.

(4.12)

4.2 On the kth Prefix Complexity

We recall that, in the independent model, we construct a set P of n independent

strings generated by a memory-less source. Here, we present the generating functions

of the first two factorial moments for the kth Prefix Complexity. We will see in the

proof of the following theorem that the analysis is much simpler than the one given

in Theorem 4.1.1. This is due to assuming independence between the strings.

Theorem 4.2.1 Let Ĥk(z) =
∑

n≥0 E[X̂n,k]z
n and Ĝk(z) =

∑
n≥0 E[(X̂n,k)2]zn de-

note the generating functions for E[X̂n,k] and E[(X̂n,k)2] respectively. We have

i.

Ĥk(z) =
∑
w∈Ak

(
1

1− z
− 1

1− (1−P(w))z

)
. (4.13)
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ii.

Ĝk(z) =
∑

w,w
′∈Ak

w 6=w′

(
1

1− z
− 1

1− (1−P(w))z
− 1

1− (1−P(w′))z

)

+
∑

w,w
′∈Ak

w 6=w′

1

1− (1−P(w)−P(w′))z
. (4.14)

Proof i. We begin by defining the following indicator variable.

X̂
(w)
n,k =

1 if w is a prefix of at least one string in P

0 otherwise.

For each X̂
(w)
n,k , we compute that

E[X̂
(w)
n,k ] = P(X̂

(w)
n,k = 1)

= 1− P (X̂
(w)
n,k = 0)

= 1− (1−P(w))n . (4.15)

We then sum over all words w of length k, and obtain the generating function below

Ĥ(z) =
∑
n≥0

E[X̂n,k]z
n

=
∑
w∈Ak

(
1

1− z
− 1

1− (1−P(w))z

)
. (4.16)
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ii. Similar to what we did in (4.8) and (4.10), we see that

E[(X̂n,k)2] =
∑

w,w′∈Ak
w 6=w′

E[X̂
(w)
n,k X̂

(w′)
n,k ]

=
∑

w,w
′∈Ak

w 6=w′

(1− (1−P(w))n − (1−P(w′))n + (1−P(w)−P(w′))n) ,

(4.17)

And this yields the following

Ĝ(z) =
∑
n≥0

E[(X̂n,k)2]zn

=
∑

w,w
′∈Ak

w 6=w′

∑
n≥0

(1− (1−P(w))n − (1−P(w′))n + (1−P(w)−P(w′))n) zn

=
∑

w,w
′∈Ak

w 6=w′

(
1

1− z
− 1

1− (1−P(w))z
− 1

1− (1−P(w′))z

)

+
∑

w,w
′∈Ak

w 6=w′

1

1− (1−P(w)−P(w′))z
. (4.18)

In Chapter 6, we will compare the coefficients of the generating functions in the

two models. We will show that the coefficients are asymptotically equivalent in the

specified range for k.
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5. SOME ANALYTIC PROPERTIES

In Theorem 4.1.1, we derived the generating functions for the first two factorial mo-

ments of the kth Subword Complexity. In this chapter, we will provide some results

regarding the roots of Dw(z) and Dw,w′(z) seen in Theorem 4.1.1. The polynomial

Dw(z) has a term involving the auto-correlation polynomial and Dw,w′(z) has terms

involving both the auto-correlation and correlation polynomials. For this reason,

we begin by stating some lemmas on the analytic properties of Sw(z) (cf. [14]) and

Sw,w′(z). As stated in chapter two, our work concerns binary strings in the Bernoulli

model with P(1) = p, P(0) = q, and p > q.

Lemma 5.0.1 (Jacquet and Szpankowski, 1994) For most words w, the auto-

correlation polynomial Sw(z) is very close to 1, with high probably. More precisely, if

w is a binary word of length k and δ =
√
p, there exists ρ > 1, such that ρδ < 1 and∑

w∈Ak
[[|Sw(ρ)− 1| ≤ (ρδ)kθ ]]P(w) ≥ 1− θδk, (5.1)

where θ = (1− p)−1. We use Iverson notation

[[A]] =

1 if A holds

0 otherwise

Proof We follow the method of proof given in [32]. If the minimal degree of Sw(z)−1

is greater than bk/2c, we have

|Sw(ρ)− 1| ≤
∑

i>bk/2c

(ρp)i ≤ ρk
pk/2

1− p
. (5.2)



23

we define δ =
√
p , θ = (1 − p)−1, then [[|Sw(ρ)− 1| ≤ (ρδ)kθ ]] = 1 for those

Sw(z)− 1 with minimal degree greater than bk/2c. Thus, we simplify the problem to

finding a lower bound for∑
w∈Ak

[[Sw(z)− 1 has minimal degree > bk/2c]]P(w).

First we note that, for w = w1...wiwi+1...wk, we have∑
w∈Ak

[[Sw(z)− 1 has minimal degree ≤ bk/2c ]]P(w)

=

bk/2c∑
i=1

∑
w∈Ak

[[Sw(z)− 1has minimal degree = i ]]P(w)

=

bk/2c∑
i=1

∑
w1...wi∈Ai

P(w1...wi)

∑
wi+1...wk∈Ak−i

[[Sw(z)− 1 has minimal degree = i ]]P(wi+1...wk)

≤
bk/2c∑
i=1

∑
w1..wi∈Ai

P(w1...wi)p
k−i

=

bk/2c∑
i=1

pk−i
∑

w1...wi∈Ai
P(w1...wi)

=

bk/2c∑
i=1

pk−i

≤ pk−bk/2c

1− p
. (5.3)

And this yields the following∑
w∈Ak

[[Sw(z)− 1 has minimal degree > bk/2c]]P(w)

= 1−
∑
w∈Ak

[[Sw(z)− 1 has minimal degree ≤ bk/2c]]P(w)

≥ 1− pdk/2e

1− p

≥ 1− θδk. (5.4)
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Lemma 5.0.2 (Jacquet and Szpankowski, 1994) There exist K > 0 and ρ > 1,

such that pρ < 1, and for every binary word w with length k ≥ K and |z| ≤ ρ, we

have

|Sw(z)| > 0. (5.5)

In other words, Sw(z) does not have any roots in |z| ≤ ρ.

Proof We follow the method of proof and notations from [30]. We let i denote the

minimal degree of Sw(z)− 1, and consider the following two cases.

Case i. If i > bk/2c, then there exists K1 > 0, such that, for w of length k ≥ K1 and

|z| ≤ ρ, we have

|Sw(z)| ≥ 1−

∣∣∣∣∣
k−1∑
j=i

P(wj+1...wk)z
k−j

∣∣∣∣∣ ≥ 1− (pρ)i

1− pρ
≥ 1− (pρ)k/2

1− pρ
> 0. (5.6)

Case ii. If i ≤ bk/2c, we define q = bk/ic. Then w = uqv where u is a prefix of length

i of word w. Thus

Sw(z) = 1 + P(u)zi + P(u2)(zi)2 + ...+ P(uq−1)(zi)q−1Suv(z)

= 1 + P(u)zi +
(
P(u)zi

)2
+ ...+

(
P(u)zi

)q−1
Suv(z), (5.7)

where the second equality follows by the independence assumption of the probability

metric P. Therefore, there exists K2 > 0, such that for w of length k, with k >

q(i− 1) ≥ K2 and |z| ≤ ρ, we have

|Sw(z)| ≥
∣∣∣1 + P(u)zi +

(
P(u)zi

)2
+ ...+

(
P(u)zi

)q−2
∣∣∣− ∣∣∣(P(u)zi

)q−1
Suv(z)

∣∣∣
≥ 1− (pρ)(q−1)i

1 + (pρ)i
− (pρ)(q−1)i · 1

1− pρ
> 0. (5.8)

We complete the proof by setting K = max{K1, K2}, so that the assumptions of

cases i and ii are both satisfied.

In a similar manner, we present Lemmas 5.0.3 and 5.0.4 below.
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Lemma 5.0.3 With high probability, for most distinct pairs {w,w′}, the correlation

polynomial Sw,w′(z) is very close to 0. More precisely, if w and w′ are two distinct

binary words of length k and δ =
√
p, there exists ρ > 1, such that ρδ < 1 and∑

w∈Ak
[[|Sw,w′(ρ)| ≤ (ρδ)kθ]]P(w) ≥ 1− θδk (5.9)

Proof The proof is similar to Lemma 5.0.1. If the minimal degree of Sw,w′(z) is

greater than > bk/2c, then

|Sw,w′(ρ)| ≤ (ρδ)kθ. (5.10)

for θ = (1− p)−1. For a fixed w′, we have∑
w∈Ak

[[Sw,w′(z) has minimal degree ≤ bk/2c ]] P(w)

=

bk/2c∑
i=1

∑
w∈Ak

[[Sw,w′(z) has minimal degree = i]] P(w)

=

bk/2c∑
i=1

∑
w1...wi∈Ai

P(w1...wi)

∑
wi+1...wk∈Ak−i

[[Sw,w′(z) has minimal degree = i]]P(wi+1...wk)

≤
bk/2c∑
i=1

∑
w1..wi∈Ai

P(wi+1...wk)p
k−i

=

bk/2c∑
i=1

pk−i
∑

w1..wi∈Ai
P(w1...wi)

=

bk/2c∑
i=1

pk−i ≤ pk−bk/2c

1− p
. (5.11)

And this leads to the following∑
w∈Ak

[[ every term of Sw,w′(z) is of degree > bk/2c]]P(w)

= 1−
∑
w∈Ak

[[Sw,w′(z) has a term of degree ≤ bk/2c]]P(w)

≥ 1− pdk/2e

1− p
≥ 1− θδk. (5.12)
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Lemma 5.0.4 There exist K ′ > 0, and ρ > 1 such that pρ < 1, and such that, for

every pair of distinct words w, and w′ of length k ≥ K ′, and for |z| ≤ ρ, we have

|Sw(z)Sw′(z)− Sw,w′(z)Sw′,w(z)| > 0. (5.13)

In other words, Sw(z)Sw′(z)− Sw,w′(z)Sw′,w(z) does not have any roots in |z| ≤ ρ.

Proof We consider the three following cases.

Case i. When either Sw(z) = 1 or Sw′(z) = 1, then every term of Sw,w′(z)Sw′,w(z) has

degree k or larger, and therefore

|Sw,w′(z)Sw′,w(z)| ≤ k
(pρ)k

1− pρ
. (5.14)

There exists K1 > 0, such that for k > K1, we have limk→∞ k
(pρ)k

1− pρ
= 0. This yields

|Sw(z)Sw′(z)− Sw,w′(z)Sw′,w(z)| ≥ |Sw(z)Sw′(z)| − |Sw,w′(z)Sw′,w(z)|

≥ 1− k (pρ)k

1− pρ
> 0. (5.15)

Case ii. If the minimal degree for Sw(z)− 1 or Sw′(z)− 1 is greater than bk/2c, then

every term of Sw,w′(z)Sw′,w(z) has degree at least k/2. We also note that, by Lemma

5.0.2, |Sw(z)Sw′(z)| > 0. Therefore, there exists K2 > 0, such that

|Sw(z)Sw′(z)− Sw′,w(z)Sw,w′(z)| ≥ |Sw(z)Sw′(z)| − |Sw′,w(z)Sw,w′(z)|

> 0 for k > K2. (5.16)

Case iii. The only remaining case is where the minimal degree for Sw(z) − 1 and

Sw′(z)−1 are both less than or equal to bk/2c. If w = w1...wk, then w′ = uw1...wk−m,

where u is a word of length m ≥ 1. Then we have

Sw′,w(z) = P(wk−m+1...wk)z
m
(
Sw(z)−O

(
(pz)k−m

))
. (5.17)
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There exists K3 > 0, such that

|Sw′,w(z)| ≤ (pρ)m
(
|Sw(z)|+O

(
(pρ)k−m

)
= (pρ)m|Sw(z)|+O

(
(pρ)k

)
< |Sw(z)| for k > K3 . (5.18)

Similarly, we can show that there exists K ′3, such that |Sw,w′(z)| < |Sw′(z)|. Therefore,

for k > K ′3 we have

|Sw(z)Sw′(z)− Sw,w′(z)Sw′,w(z)| ≥ |Sw(z)||Sw′(z)| − |Sw,w′(z)||Sw′,w(z)|

> |Sw(z)||Sw′(z)| − |Sw(z)||Sw′(z)| = 0. (5.19)

We complete the proof by setting K ′ = max{K1, K2, K3, K
′
3}.

We now use the above lemmas to show that both Dw(z) and Dw,w′(z) have exactly one

root in the disk |z| ≤ ρ. For Theorem 5.0.5 and Remark 5.0.6, we use the notations

and methodology presented in [30].

Theorem 5.0.5 (Jacquet and Szpankowski, 1994) There exist Kw > 0 and ρ >

1 such that, pρ < 1, and for every word w of length k ≥ Kw, the polynomial Dw(z) =

(1− z)Sw(z) + P(w)zk has exactly one root in the disk |z| ≤ ρ.

Proof We first show that |P(w)zk| is bounded above by |(1 − z)Sw(z)|, for large

enough k. Note that |P(w)zk| ≤ (pρ)k, and by lemma 5.0.2, for |z| ≤ ρ, and w of

length k > K, There exists α > 0 such that |Sw(z)| ≥ α. Therefore, if we set K̄ > 0

to be such that (pρ)K̄ < α(ρ− 1), for k ≥ Kw = max{K, K̄}, we will have

|P(w)zk| ≤ (pρ)k

≤ α(ρ− 1)

< |(1− z)Sw(z)|. (5.20)

Therefore, by Rouché’s theorem (cf. [33]), the polynomial Dw(z) must have the same

number of roots as (1 − z)Sw(z) in the disk |z| ≤ ρ. But (1 − z)Sw(z) has only one

root in |z| ≤ ρ, and this completes the proof.
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Remark 5.0.6 Following the notations in [30], we denote the root within the disk

|z| ≤ ρ of Dw(z) by Aw, and by bootstrapping we obtain

Aw = 1 +
1

Sw(1)
P(w) +O

(
P(w)2

)
. (5.21)

We also denote the derivative of Dw(z) at the root Aw, by Bw, and we obtain

Bw = −Sw(1) +

(
k − 2S ′w(1)

Sw(1)
P(w)

)
+O

(
P(w)2

)
. (5.22)

Theorem 5.0.7 There exist Kw,w′ > 0 and ρ > 1 such that pρ < 1, and for every

word w and w′ of length k ≥ Kw,w′, the polynomial

Dw,w′(z) = (1− z)(Sw(z)Sw′(z)− Sw,w′(z)Sw′,w(z))

+ zk (P(w)(Sw′(z)− Sw,w′(z)) + P(w′)(Sw(z)− Sw′,w(z))) , (5.23)

has exactly one root in the disk |z| ≤ ρ.

Proof First note that

|Sw(z)− Sw′,w(z)| ≤ |Sw(z)|+ |Sw′,w(z)|

≤ 1

1− pρ
+

pρ

1− pρ
=

1 + pρ

1− pρ
. (5.24)

This yields

∣∣zk (P(w)(Sw′(z)− Sw,w′(z)) + P(w′)(Sw(z)− Sw′,w(z)))
∣∣

≤ (pρ)k (|Sw(z)− Sw′,w(z)|+ |Sw′(z)− Sw,w′(z)|)

≤ (pρ)k
(

2(1 + pρ)

1− pρ

)
. (5.25)

There exist K ′, K ′′ large enough, such that, for k > K ′, we have

|(Sw(z)Sw′(z)− Sw,w′(z)Sw′,w(z))| ≥ β > 0,

and for k > K ′′,

(pρ)k
(

2(1 + pρ)

1− pρ

)
< (ρ− 1)β.
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If we define Kw,w′ = max{K ′, K ′′}, then we have, for k ≥ Kw,w′ ,

(pρ)k
(

2(1 + pρ)

1− pρ

)
< (ρ− 1)β

< |(1− z)(Sw(z)Sw′(z)− Sw,w′(z)Sw′,w(z))|. (5.26)

by Rouché’s theorem, since (1− z)(Sw(z)Sw′(z)−Sw,w′(z)Sw′,w(z)) has only one root

in |z| ≤ ρ, then also Dw,w′(z) has exactly one root in |z| ≤ ρ.

We present this root in the following Remark.

Remark 5.0.8 We denote the root within the disk |z| ≤ ρ of Dw,w′(z) by αw,w′, and

by bootstrapping we obtain

αw,w′ = 1 +
Sw′(1)− Sw,w′(1)

Sw(1)Sw′(1)− Sw,w′(1)Sw′,w(1)
P(w)

+
Sw(1)− Sw′,w(1)

Sw(1)Sw′(1)− Sw,w′(1)Sw′,w(1)
P(w′) +O(p2k). (5.27)

We also denote the derivative of Dw,w′(z) at the root αw,w′, by βw,w′, and we obtain

βw,w′ = Sw,w′(1)Sw′,w(1)− Sw(1)Sw′(1) +O(kpk). (5.28)

We will refer to Remarks 5.0.6, and 5.0.8 in the residue analysis that we present in

the next chapter.
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6. ASYMPTOTIC DIFFERENCE

The results discussed in the previous chapters enable us to show that the first two

factorial moments of the kth Subword Complexity asymptotically behave the same

way as the first two factorial moments of the kth prefix complexity. The proof for this

analysis includes Cauchy’s coefficient formula, the residue theorem, and the Mellin

transform. Before conducting this analysis, we provide a brief introduction to the

Mellin transform and its asymptotic properties. A more detailed discussion on the

Mellin transforms can be found in [34], [35] and chapter nine of [36]. We will adopt

the notations used in [34,36] in the section below.

6.1 Review of The Mellin Transform

Definition 6.1.1 Let f(z) be a complex valued function defined over positive real

values. The Mellin transform f ∗(s) of f(z) is defined as

f ∗(s) =

∫ ∞
0

f(z)zs−1dz, (6.1)

where s ∈ C.

To ensure the existence of the Mellin transform for a continuous function f(z), we

use α and β in characterizing the asymptotics of f(z), as follows:

f(z) =

O(zα) z → 0,

O(zβ) z →∞.

We then have∣∣∣∣∫ ∞
0

f(z)zs−1dz

∣∣∣∣ ≤ ∫ 1

0

|f(z)|z<(s)−1dz +

∫ ∞
1

|f(z)|z<(s)−1dz

≤ c1

∫ 1

0

z<(s)+α−1dz + c2

∫ ∞
1

z<(s)+β−1dz, (6.2)
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where c1 and c2 are constants. The above integrals exist only when <(s) > −α for

the first integral and <(s) < −β for the second one. The strip −α < <(s) < −β is

called the fundamental strip of the Mellin transform and is denoted by 〈−α,−β〉.

The inverse of the Mellin transform of the function f ∗(s) with the fundamental strip

〈−α,−β〉 can be represented as the following integral

f(z) =
1

2πi

∫ m+i∞

m−i∞
f ∗(s)z−sds, (6.3)

where m ∈ 〈−α,−β〉.

What draws our attention to the Mellin transform in our analysis is its asymptotic

properties discussed in [36]. There exists a direct mapping between the asymptotic

expansion of a function f(z) near infinity and the set of singularities of f ∗(s) in C.

If f ∗(s) is a meromorphic function that can be analytically continued to 〈−α,M〉 for

some M > −β, then

f(z) = −
∑
λi∈Λ

Res[f ∗(s)z−s, s = λi] +O(z−M) as z →∞, (6.4)

where Λ is the set of singularities and M is as large as desired. This is easy to see, for

to solve the inverse Mellin integral f(z), we can consider a large rectangular contour

γ as in Figure 6.1 with its left edge at m, its right edge at M , while the top and

bottom edges approach ±∞. Therefore,∫
γ

f ∗(s)z−sds =

∫ m+i∞

m−i∞
f ∗(s)z−sds+

∫ M+i∞

m+i∞
f ∗(s)z−sds

+

∫ M−i∞

M+i∞
f ∗(s)z−sds+

∫ m−i∞

M−i∞
f ∗(s)z−sds. (6.5)

The integrals over the top and bottom edges are relatively insignificant, since for an

r-times differentiable function f(z), we have f ∗(r+ it) = o(|t|−r) as |t| → ±∞. Also,

for the integral over the line <(s) = M , we have∣∣∣∣∫ M−i∞

M+i∞
f ∗(s)z−sds

∣∣∣∣ ≤ |z−M |∫ −∞
∞
|f ∗(r + it)||z−it|dt = O(z−M). (6.6)
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Figure 6.1. The integral contour γ for estimating the inverse of the
Mellin transform.

Therefore, the result in (6.4) follows. We will use the above property in the proofs of

Theorems 6.2.1 and 6.3.1.

6.2 Comparison of The Expected Values

Here, we prove that for large n, and for k = Θ(log n), the expected values E[Xn,k]

and E[X̂n,k] have similar asymptotic growth.

Theorem 6.2.1 For large values of n, and for k = Θ(log n), there exists M > 0

such that E[Xn,k]− E[X̂n,k] = O(n−M).

Proof Recall that in Theorems 4.1.1 and 4.2.1, we stated that the generating func-

tions representing E[Xn,k] and E[X̂n,k] are respectively

H(z) =
∑
w∈Ak

(
1

1− z
− Sw(z)

Dw(z)

)
,

and

Ĥ(z) =
∑
w∈Ak

(
1

1− z
− 1

1− (1−P(w))z

)
.
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We have

H(z)− Ĥ(z) =
∑
w∈Ak

(
1

1− (1−P(w))z
− Sw(z)

Dw(z)

)
. (6.7)

We define

∆w(z) =
1

1− (1−P(w))z
− Sw(z)

Dw(z)
. (6.8)

Therefore, by Cauchy integral formula (see [20], page 236), we have

[zn]∆w(z) =
1

2πi

∮
∆w(z)

dz

zn+1
= Resz=0 ∆w(z)

dz

zn+1
, (6.9)

where the path of integration is a circle about zero with counterclockwise orientation.

We note that the above integrand has poles at z = 0, z =
1

1−P(w)
, and z = Aw

(refer to Remark 5.0.6). Therefore, we define

Iw(ρ) :=
1

2πi

∫
|z|=ρ

∆w(z)
dz

zn+1
, (6.10)

where the circle of radius ρ contains all of the above poles. By the residue theorem,

we have

Iw(ρ) = Resz=0
∆w(z)

zn+1
+ Resz=Aw

∆w(z)

zn+1
+ Resz=1/1−P(w)

∆w(z)

zn+1

= [zn]∆w(z)− Resz=Aw
Hw(z)

zn+1
+ Resz=1/1−P(w)

Ĥw(z)

zn+1
(6.11)

We observe that

Resz=Aw
∆w(z)

zn+1
=

Sw(Aw)

Bw An+1
w

, where Bw is as in Remark 5.0.6

Resz=1/1−P(w)
Ĥw(z)

zn+1
= −(1−P(w))n+1.

Then we obtain

[zn]∆w = Iw(ρ)− Sw(Aw)

Bw An+1
w

− (1−P(w))n+1, (6.12)

and finally, we have

[zn](H(z)− Ĥ(z)) =
∑
w∈Ak

[zn]∆w

=
∑
w∈Ak

Iwn (ρ)−
∑
w∈Ak

(
Sw(Aw)

Bw An+1
w

+ (1−P(w))n+1

)
. (6.13)



34

First we show that, for sufficiently large n, the sum
∑

w∈Ak

(
Sw(Aw)

Bw An+1
w

+ (1−P(w))n+1

)
approaches zero.

Lemma 6.2.2 For large enough n, and for k = Θ(log n), there exists M > 0 such

that ∑
w∈Ak

(
Sw(Aw)

Bw An+1
w

+ (1−P(w))n+1

)
= O(n−M). (6.14)

Proof We let

rw(z) = (1−P(w))z +
Sw(Aw)

BwAzw
. (6.15)

The Mellin transform of the above function is

r∗w(s) = Γ(s) log−s
(

1

1−P(w)

)
− Sw(Aw)

Bw

Γ(s) log−s(Aw). (6.16)

We define

Cw =
Sw(Aw)

Bw

=
Sw(Aw)

−Sw(1) +O(kP(w))
, (6.17)

which is negative and uniformly bounded for all w. Also, for a fixed s, we have

ln−s
(

1

1−P(w)

)
= ln−s

(
1 + P(w) +O

(
P(w)2

))
=
(
P(w) +O

(
P(w)2

))−s
= P(w)−s (1 +O (P(w)))−s

= P(w)−s (1 +O (P(w))) , (6.18)

ln−s(Aw) = ln−s
(

1−
(
−P(w)

Sw(1)
+O

(
P(w)2

)))
=

(
P(w)

Sw(1)
+O

(
P(w)2

))−s
=

(
P(w)

Sw(1)

)−s
(1 +O (P(w)))−s

=

(
P(w)

Sw(1)

)−s
(1 +O (P(w))) , (6.19)
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and therefore, we obtain

r∗w(s) = Γ(s)P(w)−s
(

1− 1

Sw(1)−s

)
O(1). (6.20)

From this expression, and noticing that the function has a removable singularity at

s = 0, we can see that the Mellin transform r∗w(s) exists on the strip where <(s) > −1.

We still need to investigate the Mellin strip for the sum
∑

w∈Ak r
∗
w(s). In other words,

we need to examine whether summing r∗w(s) over all words of length k (where k grows

with n) has any effect on the analyticity of the function. We observe that∑
w∈Ak

|r∗w(s)| =
∑
w∈Ak

∣∣∣∣Γ(s)P(w)−s
(

1− 1

Sw(1)−s

)
O(1)

∣∣∣∣
≤ |Γ(s)|

∑
w∈Ak

P(w)−<(s)

(
1− 1

Sw(1)−<(s)

)
O(1)

= (qk)−<(s)−1|Γ(s)|
∑
w∈Ak

P(w)(1− Sw(1)<(s))O(1).

Lemma 5.0.1 allow us to split the above sum between the words for which Sw(1) ≤

1 +O(δk) and words that have Sw(1) > 1 +O(δk). Such a split yields the following∑
w∈Ak

|r∗w(s)| = (qk)−<(s)−1|Γ(s)|O(δk). (6.21)

This shows that
∑

w∈Ak r
∗
w(s) is bounded above for <(s) > −1 and therefore, it is

analytic. This argument holds for k = Θ(log n) as well, since (qk)−<(s)−1 would still

be bounded above by a constant Ms,k that depends on s and k.

We would like to approximate
∑

w∈Ak r
∗
w(s) when z → ∞. By the inverse Mellin

transform, we have ∑
w∈Ak

rw(z) =
1

2πi

∫ c+i∞

c−i∞

( ∑
w∈Ak

r∗w(s)
)
z−sds. (6.22)

We choose c ∈ (−1,M) for a fixed M > 0. Then by (6.4), we obtain∑
w∈Ak

rw(z) = O(z−M). (6.23)
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and subsequently, we get∑
w∈Ak

(
Sw(Aw)

Bw An+1
w

+ (1−P(w))n+1

)
= O(n−M). (6.24)

We next prove the asymptotic smallness of Iwn (ρ) in (6.10).

Lemma 6.2.3 Let

Iwn (ρ) =
1

2πi

∫
|z|=ρ

(
1

1− (1−P(w))z
− Sw(z)

Dw(z)

)
dz

zn+1
. (6.25)

For large n and k = Θ(log n), we have∑
w∈Ak

Iwn (ρ) = O
(
ρ−n(ρδ)k

)
. (6.26)

Proof We observe that

|Iwn (ρ)| ≤ 1

2π

∫
|z|=ρ

∣∣∣∣∣ P(w)z
(
zk−1 − Sw(z)

)
Dw(z)(1− (1−P(w))z)

1

zn+1

∣∣∣∣∣ dz. (6.27)

For |z| = ρ, we show that the denominator in (6.27) is bounded away from zero.

|Dw(z)| = |(1− z)Sw(z) + P(w)zk|

≥ |1− z||Sw(z)| −P(w)|zk|

≥ (ρ− 1)α− (pρ)k, where α is as in the proof of Theorem 5.0.5.

> 0, since (pρ)k < α(ρ− 1) by the assumption in Theorem 5.0.5.

(6.28)

To find a lower bound for |1− (1−P(w))z|, we can choose Kw in Theorem 5.0.5 large

enough such that

|1− (1−P(w))z| ≥ |1− (1−P(w))|z||

≥ |1− ρ(1− pKw)|

> 0. (6.29)
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We now move on to finding an upper bound for the numerator in (6.27), for |z| = ρ.

|zk−1 − Sw(z)| ≤ |Sw(z)− 1|+ |1− zk−1|

≤ (Sw(ρ)− 1) + (1 + ρk−1)

= (Sw(ρ)− 1) +O(ρk). (6.30)

Therefore, there exists a constant µ > 0 such that

|Iwn | ≤ µρP(w)
(
(Sw(ρ)− 1) +O(ρk)

) 1

ρn+1

= O(ρ−n)
(
P(w)(Sw(ρ)− 1) + P(w)O(ρk)

)
. (6.31)

Summing over all patterns w, and applying Lemma 5.0.1, we obtain∑
w∈Ak

|Iwn (ρ)| = O(ρ−n)
∑
w∈Ak

P(w)(Sw(ρ)− 1) +O(ρ−n+k)
∑
w∈Ak

P(w)

= O(ρ−n)

(
θ(ρδ)k +

pρ

1− pρ
θδk
)

+O(ρ−n+k)

= O(ρ−n(ρδ)k), (6.32)

which approaches zero as n → ∞ and k = Θ(log n). This completes the proof of of

Theorem 6.2.1.

6.3 Comparison of The Second Factorial Moments

Similar to the previous section, we provide a proof to show that the second factorial

moments of the kth Subword Complexity and the kth Prefix Complexity, have the

same first order asymptotic behavior.

Theorem 6.3.1 For large values of n, and for k = Θ(log n), there exists ε > 0 such

that E[(Xn,k)2]− E[(X̂n,k)2] = O(n−ε).

Proof As discussed in Theorems 4.1.1 and 4.2.1, the generating functions represent-

ing E[(Xn,k)2] and E[(X̂n,k)2] respectively, are

G(z) =
∑

w,w′∈Ak
w 6=w′

(
1

1− z
− Sw(z)

Dw(z)
− Sw′(z)

Dw′(z)
+
Sw(z)Sw′(z)− Sw,w′(z)Sw′,w(z)

Dw,w′(z)

)
,
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And

Ĝ(z) =
∑

w,w′∈Ak
w 6=w′

(
1

1− z
− 1

1− (1−P(w))z
− 1

1− (1−P(w′))z

)

+
∑

w,w′∈Ak
w 6=w′

1

1− (1−P(w)−P(w′))z
.

Note that

G(z)− Ĝ(z) =
∑
w′∈Ak
w 6=w′

∑
w∈Ak

(
1

1− (1−P(w))z
− Sw(z)

Dw(z)

)
(6.33)

+
∑
w∈Ak
w 6=w′

∑
w′∈Ak

(
1

1− (1−P(w′))z
− Sw′(z)

Dw′(z)

)
(6.34)

+
∑

w,w′∈Ak
w 6=w′

(
1

1− (1−P(w)−P(w′))z
− Sw(z)Sw′(z)− Sw,w′(z)Sw′,w(z)

Dw,w′(z)

)

(6.35)

In Theorem 6.2.1, we proved that for every M > 0 (which does not depend on n or

k), we have

H(z)− Ĥ(z) =
∑
w∈Ak

(
1

1− (1−P(w))z
− Sw(z)

Dw(z)

)
= O(n−M).

Therefore, both (6.33) and (6.34) are of order (2k − 1)O(n−M) = O(n−M+a log 2) for

k = a log n. Thus, in order to show the asymptotic smallness, it is enough to choose

M = a log 2+ε, where ε is a small positive value. Now, it only remains to show (6.35)

is asymptotically negligible as well. We define

∆w,w′(z) =
1

1− (1−P(w)−P(w′))z
− Sw(z)Sw′(z)− Sw,w′(z)Sw′,w(z)

Dw,w′(z)
. (6.36)

Next, we extract the coefficient of zn

[zn]∆w,w′(z) =
1

2πi

∮
∆w,w′(z)

dz

zn+1
, (6.37)
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where the path of integration is a circle about the origin with counterclockwise ori-

entation. We define

Iw,w
′

n (ρ) =
1

2πi

∫
|z|=ρ

∆w,w′(z)
dz

zn+1
, (6.38)

The above integrand has poles at z = 0, z = αw,w′ (as in Remark 5.0.7), and z =

1
1−P(w)−P(w′)

. We have chosen ρ such that the poles are all inside the circle |z| = ρ.

It follows that

Iw,w
′

n (ρ) = Resz=0
∆w,w′(z)

zn+1
+ Resz=αw,w′

∆w,w′(z)

zn+1
+ Resz= 1

1−P(w)−P(w′)

∆w(z)

zn+1
, (6.39)

and the residues give us the following.

Resz= 1
1−P(w)−P(w′)

1

1− (1−P(w)−P(w′))z)zn+1
= −(1−P(w)−P(w′))n+1,

and

Resz=αw,w′
Sw(z)Sw′(z)− Sw,w′(z)Sw′,w(z)

Dw,w′(z)
=

Sw(αw,w′)Sw′(αw,w′)− Sw,w′(αw,w′)Sw′,w(αw,w′)

βw,w′α
n+1
w,w′

,

where βw,w′ is as in Remark 5.0.7. Therefore, we get∑
w,w′∈Ak
w 6=w′

[zn]∆w,w′(z) =
∑

w,w′∈Ak
w 6=w′

Iw,w
′

n (ρ)

−
∑

w,w′∈Ak
w 6=w′

(
Sw(αw,w′)Sw′(αw,w′)− Sw,w′(αw,w′)Sw′,w(αw,w′)

βw,w′α
n+1
w,w′

+ (1−P(w)−P(w′))n+1

)
. (6.40)

We now show that the above two terms are asymptotically small.

Lemma 6.3.2 There exists ε > 0 where the sum∑
w,w′∈Ak
w 6=w′

(
Sw(αw,w′)Sw′(αw,w′)− Sw,w′(αw,w′)Sw′,w(αw,w′)

βw,w′α
n+1
w,w′

+ (1−P(w)−P(w′))n+1

)

is of order O(n−ε).
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Proof We define

rw,w′(z) =
Sw(αw,w′)Sw′(αw,w′)− Sw,w′(αw,w′)Sw′,w(αw,w′)

βw,w′αzw,w′
+ (1−P(w)−P(w′))z.

The Mellin transform of the above function is

r∗w,w′(s) = Γ(s) log−s
(

1

1−P(w)− p(w′)

)
+ Cw,w′Γ(s) log−s(αw,w′), (6.41)

where Cw,w′ =
Sw(αw,w′)Sw′(αw,w′)− Sw,w′(αw,w′)Sw′,w(αw,w′)

βw,w′
. We note that Cw,w′ is

negative and uniformly bounded from above for all w,w′ ∈ Ak.For a fixes s, we also

have,

ln−s
(

1

1−P(w)−P(w′)

)
= ln−s

(
1 + P(w) + P(w′) +O

(
p2k
))

=
(
P(w) + P(w′) +O

(
p2k
))−s

= (P(w) + P(w′))−s
(
1 +O

(
pk
))−s

= (P(w) + P(w′))−s
(
1 +O

(
pk
))
, (6.42)

and

ln−s(αw,w′) =
( Sw′(1)− Sw,w′(1)

Sw(1)Sw′(1)− Sw,w′(1)Sw′,w(1)
P(w)

+
Sw(1)− Sw′,w(1)

Sw(1)Sw′(1)− Sw,w′(1)Sw′,w(1)
P(w′) +O(p2k)

)−s
=
( Sw′(1)− Sw,w′(1)

Sw(1)Sw′(1)− Sw,w′(1)Sw′,w(1)
P(w)

+
Sw(1)− Sw′,w(1)

Sw(1)Sw′(1)− Sw,w′(1)Sw′,w(1)
P(w′)

)−s (
1 +O(pk)

)
.

(6.43)

Therefore, we have

r∗w,w′(s) = Γ(s) (P(w) + P(w′))
−s

(1 +O(pk))

− Γ(s)

(
Sw′(1)− Sw,w′(1)

Sw(1)Sw′(1)− Sw,w′(1)Sw′,w(1)
P(w)

+
Sw(1)− Sw′,w(1)

Sw(1)Sw′(1)− Sw,w′(1)Sw′,w(1)
P(w′)

)−s (
1 +O(pk)

)
O(1).

(6.44)
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To find the Mellin strip for the sum
∑

w∈Ak r
∗
w,w′(s), we first note that

(x+ y)a ≤ xa + ya, for any real x, y > 0 and a ≤ 1.

Since −<(s) < 1, we have

(P(w) + P(w′))
−<(s) ≤ P(w)−<(s) + P(w′)−<(s), (6.45)

and(
Sw′(1)− Sw,w′(1)

Sw(1)Sw′(1)− Sw,w′(1)Sw′,w(1)
P(w) +

Sw(1)− Sw′,w(1)

Sw(1)Sw′(1)− Sw,w′(1)Sw′,w(1)
P(w′)

)−<(s)

≤

(
Sw′(1)− Sw,w′(1)

Sw(1)Sw′(1)− Sw,w′(1)Sw′,w(1)
P(w)

)−<(s)

+

(
Sw(1)− Sw′,w(1)

Sw(1)Sw′(1)− Sw,w′(1)Sw′,w(1)
P(w′)

)−<(s)

.

(6.46)
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Therefore, we get∑
w,w′∈Ak
w 6=w′

|r∗w,w′(s)| ≤ |Γ(s)|O(1)

( ∑
w,w′∈Ak
w 6=w′

P(w)−<(s)

(
1−

(
Sw(1)Sw′(1)− Sw,w′(1)Sw′,w(1)

Sw′(1)− Sw,w′(1)

)<(s)
)

+
∑

w,w′∈Ak
w 6=w′

P(w′)−<(s)

(
1−

(
Sw(1)Sw′(1)− Sw,w′(1)Sw′,w(1)

Sw(1)− Sw′,w(1)

)<(s)
))

≤ (qk)−<(s)−1|Γ(s)|O(1)( ∑
w′∈Ak
w 6=w′

∑
w∈Ak

P(w)

(
1− (Sw(1))<(s)

(
1− Sw,w′(1)

Sw′(1)

)−<(s)
)

(6.47)

+
∑
w′∈Ak
w 6=w′

∑
w∈Ak

P(w)Sw,w′(1)<(s)

(
Sw′(1)− Sw,w′(1)

Sw′,w(1)

)−<(s)

(6.48)

+
∑
w∈Ak
w 6=w′

∑
w′∈Ak

P(w′)

(
1− (Sw′(1))<(s)

(
1− Sw′,w(1)

Sw(1)

)−<(s)
)

(6.49)

+
∑
w∈Ak
w 6=w′

∑
w′∈Ak

P(w′)Sw′,w(1)<(s)

(
Sw(1)− Sw′,w(1)

Sw,w′(1)

)−<(s)
)
. (6.50)

By Lemma 5.0.3, with high probability, a randomly selected w has the property

Sw,w′(1) = O(δk) , and thus(
1− Sw,w′(1)

Sw′(1)

)−<(s)

= 1 +O(δk).

With that and by Lemma 5.0.1, for most words w,

1− Sw(1)<(s)(1 +O(δk)) = O(δk).
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Therefore, both sums (6.47) and (6.49) are of the form (2k−1)O(δk). The sums (6.48)

and (6.50) are also of order (2k−1)O(δk) by Lemma 5.0.3. Combining all these terms

we will obtain ∑
w,w′∈Ak
w 6=w′

|r∗w,w′(s)| ≤ (2k − 1)(qk)−<(s)−1|Γ(s)|O(δk)O(1). (6.51)

By the inverse Mellin transform, for k = a log n, M = a log 2 + ε and c ∈ (−1,M),

we have ∑
w,w′∈Ak
w 6=w′

rw,w′(z) =
1

2πi

∫ c+i∞

c−i∞

( ∑
w,w′∈Ak
w 6=w′

r∗w,w′(s)
)
z−sds = O(z−M)O(2k)

= O(z−ε). (6.52)

In the following lemma we show that the first term in (6.41) is asymptotically small.

Lemma 6.3.3 Recall that

Iw,w
′

n (ρ) =
1

2πi

∫
|z|=ρ

∆w,w′(z)
dz

zn+1
.

We have ∑
w,w′∈Ak
w 6=w′

Iw,w
′

n (ρ) = O
(
ρ−n+2kδk

)
. (6.53)

Proof First note that

∆w,w′(z) =
1

1− (1−P(w)−P(w′))z
− Sw(z)Sw′(z)− Sw,w′(z)Sw′,w(z)

Dw,w′(z)

=
zP(w)

(
Sw,w′(z)Sw′,w(z)− Sw(z)Sw′(z) + zk−1Sw′(z)− zk−1Sw,w′(z)

)
(1− (1−P(w)−P(w′))z)Dw,w′(z)

+
zP(w′)

(
Sw′,w(z)Sw,w′(z)− Sw′(z)Sw(z) + zk−1Sw(z)− zk−1Sw′,w(z)

)
(1− (1−P(w)−P(w′))z)Dw,w′(z)

.

(6.54)
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We saw in (6.29) that |1− (1−P(w′))z| ≥ c2, and therefore, it follows that

|1− (1−P(w)−P(w′))z| ≥ c1 (6.55)

For z = ρ, |Dw,w′(z)| is also bounded below as the following

|Dw,w′(z)| =
∣∣(1− z)(Sw(z)Sw′(z)− Sw,w′(z)Sw′,w(z))

+ zk (P(w)(Sw′(z)− Sw,w′(z)) + P(w′)(Sw(z)− Sw′,w(z)))
∣∣

≥ |(1− z)(Sw(z)Sw′(z)− Sw,w′(z)Sw′,w(z))|

−
∣∣zk∣∣ |(P(w)(Sw′(z)− Sw,w′(z)) + P(w′)(Sw(z)− Sw′,w(z)))|

≥ (ρ− 1)β − (pρ)k
(

2(1 + pρ)

1− pρ

)
, (6.56)

which is bounded away from zero by the assumption of Theorem 5.0.7. Additionally,

we show that the numerator in (6.54) is bounded above, as follows

|Sw,w′(z)Sw′,w(z)− Sw(z)Sw′(z) + zk−1Sw′(z)− zk−1Sw,w′(z)| ≤

|Sw′(z)(zk−1 − Sw(z))|+ |Sw,w′(z)(Sw′,w(z)− zk−1)|

≤ Sw′(ρ)
(
(Sw(ρ)− 1) +O(ρk)

)
+ Sw,w′(ρ)

(
Sw′,w(ρ) +O(ρk)

)
. (6.57)

This yields∑
w,w′∈Ak
w 6=w′

|Iw,w′n | ≤ O(ρ−n)
∑
w′∈Ak
w 6=w′

Sw′(ρ)
∑
w∈Ak

P(w)
(
(Sw(ρ)− 1) +O(ρk)

)

+O(ρ−n)
∑
w′∈Ak
w 6=w′

∑
w∈Ak

P(w)Sw,w′(ρ)
(
Sw′,w(ρ) +O(ρk)

)
. (6.58)

By (6.31), the first term above is of order (2k − 1)O(ρ−n+k) and by Lemma 5.0.3 and

an analysis similar to (6.31), the second term yields (2k−1)O(ρ−n+k) as well. Finally,

we have ∑
w,w′∈Ak
w 6=w′

|Iw,w′n | ≤ O(ρ−n+2kδk).

Which goes to zero asymptotically, for k = Θ(log n).

This lemma completes our proof of Theorem 6.3.1.
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7. ASYMPTOTIC ANALYSIS OF THE kth PREFIX

COMPLEXITY

In this final chapter, we proceed by analyzing the asymptotic moments of the kth

Prefix Complexity. The results obtained hold true for the moments of the kth Subword

Complexity, as we proved in chapter 6. Our methodology here is analogous to the

analysis of profile of tries (see [19], [3]), and it involves poissonization, saddle point

analysis (the complex version of Laplace’s method [37]), and depoissonization. Below,

we will give a brief introduction to poissonization (cf. [36]) and the saddle point

method (cf. [20, 36]). Afterwards, we conclude with the asymptotic analysis of the

average and the second factorial moment of the kth Subword Complexity.

7.1 Review of Poissonization and Depoissonization

Poissonization is a probabilistic approach in which a Bernoulli model is replaced by a

Poisson process. A Bernoulli process still suffers from some sort of dependence. As for

instance, for the case of n randomly and independently generated strings, the number

of prefixes starting with a 0, influences the number of prefixes that start with a 1. In

other words, the sum of the number of prefixes that start with a 0 and the number

of prefixes that start with a 1 is always equal to n. A remedy for this is to replace

the fixed value n with a Poisson random variable N with mean equal to n. This way,

the number of prefixes that start with 0, and the number of those that start with 1

are two a Poisson random variables that are independent from each other. Below is

the formal definition of the Poisson transform.
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Definition 7.1.1 Let gn be a sequence of size n over a Bernoulli model. The Poisson

transform of gn is defines as

G̃(z) = E[gN ] =
∑
n≥0

gn
zn

n!
e−z, (7.1)

where z is often viewed as the mean of the Poisson random variable N .

Once we solve the poissonized problem, we need to convert it back to its original

Bernoulli form. This process is called depoissonization. The following depoissoniza-

tion theorem (see [36] for proof) gives an expression for the Bernoulli sequence in

terms of its poissonized generating function.

Theorem 7.1.1 (Jacquet and Szpankowski, 1998) Let G̃(z) be the Poisson transform

of a sequence gn. If G̃(z) is analytic in a linear cone Sθ with θ < π/2, and if the

following two conditions hold:

(I) For z ∈ Sθ and real values B, r > 0, ν

|z| > r → |G̃(z)| ≤ B|zν |Ψ(|z|), (7.2)

where Ψ(x) is such that, for fixed t, limx→∞
Ψ(tx)

Ψ(x)
= 1;

(O) For z /∈ Sθ and A,α < 1

|z| > r → |G̃(z)ez| ≤ Aeα|z|. (7.3)

Then, for every nonnegative integer n, we have

gn = G̃(n) +O(nν−1Ψ(n)).

7.2 Review of Laplace and Saddle Point Methods

One approach to solving a complex integral is to adopt a contour that crosses one

or multiple saddle points of the integrand. This is especially useful for when the

integrand involves a large parameter n such as the following

I(n) =

∫
C

f(z)e−nh(z)dz. (7.4)
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This method is known as the Laplace method, in which the path C is a real interval

and z is a real value. For this case, we have the following theorem.

Theorem 7.2.1 (Laplace’s Method) Let h(t) and f(t) be twice differentiable func-

tions on the interval [a,b]. Assume that h(t) has only one minimum in (a, b) occurring

at a point t0 (i.e. h′(t0) = 0 and h′′(t0) > 0). Then for n→∞, we have

I(n) =

∫ b

a

f(t)e−nh(t)dt = f(t0)

√
2π

nh′′(t0)
e−nh(t0)(1 +O(n−1/2)). (7.5)

The integral that shows up in our work in (7.10) will be of the form

I(n) =

∫ c+i∞

c−i∞
f(z)e−nh(z)dz, (7.6)

which is over a complex line. By a change of variables, we transform the path into a

real interval, and we obtain

I(n) =

∫ ∞
−∞

f(c+ it)e−nh(c+it)dt. (7.7)

Like in the Laplace case, we are interested in finding a point z0 that minimizes the

surface |h(z)|, i.e. h′(z0) = 0. The point z0 is called the saddle point. It is expected

that the main contribution for estimation of integrals like (7.7) will come from a

small neighborhood around the saddle point(s) of h(z). This analysis is known as the

saddle point method. Below we provide a road-map for the saddle point analysis to

approximate the integral given in (7.6).

i. We choose an integration line that crosses the saddle point(s).

ii. We split the integration line l into l0 ∪ l1, and the range l0 is chosen such that

h′′(t)δ → ∞, and h(3)δ → 0. (The goal is to get a good approximation from the

quadratic expansion of h(t).)

iii. Tails pruning: We show that the integral over l1 doesn’t contribute much to the
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integral estimation.

iv. Central approximation: Theorem 7.2.1 holds for the range l0.

A detailed discussion on the saddle point method can be found in [20,36].

7.3 On the Expected Value

To transform the sequence of interest, (E[X̂n,k])n≥0, into a Poisson model, we recall

that in (4.15) we found

E[X̂n,k] =
∑
w∈Ak

(1− (1−P(w))n) .

Thus, the Poisson transform is

Ẽk(z) =
∞∑
n=0

E[X̂n,k]
zn

n!
e−z

=
∞∑
n=0

∑
w∈Ak

(1− (1−P(w))n)
zn

n!
e−z

=
∑
w∈Ak

(
1− e−zP(w)

)
. (7.8)

To asymptotically evaluate this harmonic sum, we turn our attention to the Mellin

Transform once more. The Mellin transform of Ẽk(z) is

Ẽ∗k(s) = −Γ(s)
∑
w∈Ak

P (w)−s

= −Γ(s)(p−s + q−s)k, (7.9)

which has the fundamental strip s ∈ 〈−1, 0〉. For c ∈ (−1, 0), the inverse Mellin

integral is the following

Ẽk(z) =
1

2πi

∫ c+i∞

c−i∞
Ẽ∗k(s) · z−sds

=
−1

2πi

∫ c+i∞

c−i∞
z−sΓ(s)(p−s + q−s)kds

=
−1

2πi

∫ c+i∞

c−i∞
Γ(s)e−k(s log z

k
−log(p−s+q−s))ds

=
−1

2πi

∫ c+i∞

c−i∞
Γ(s)e−kh(s)ds, (7.10)
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where we define h(s) =
s

a
− log(p−s + q−s) for k = a log z. We emphasize that the

above integral involves k, and k grows with n. We evaluate the integral through the

saddle point analysis. Therefore, we choose the line of integration to cross the saddle

point r0. To find the saddle point r0, we let h′(r0) = 0, and we obtain

(p/q)−r0 =
a log p−1 − 1

1− a log q−1
, (7.11)

and therefore,

r0 =
−1

log p/q
log

(
a log q−1 − 1

1− a log p−1

)
, (7.12)

where
1

log q−1
< a <

1

log p−1
.

By (7.11) and the fact that (p/q)itj = 1 for tj =
2πj

log p/q
and j ∈ Z, we can see that

there are actually infinitely many saddle points zj of the form r0 + itj on the line of

integration.

We remark that the location of r0 depends on the value of a. We have r0 → ∞ as

a→ 1

log q−1
, and r0 → −∞ as a→ 1

log p−1
. We divide the analysis into three parts,

for the three ranges r0 ∈ (0,∞), r0 ∈ (−1, 0), and r0 ∈ (−∞,−1).

In the first range, which corresponds to

1

log q−1
< a <

2

log q−1 + log p−1
, (7.13)

we perform a residue analysis, taking into account the dominant pole at s = −1. In

the second range, we have

2

log q−1 + log p−1
< a <

1

q log q−1 + p log p−1
, (7.14)

and we get the asymptotic result through the saddle point method. The last range

corresponds to

1

q log q−1 + p log p−1
< a <

1

log p−1
, (7.15)

and we approach it with a combination of residue analysis at s = 0, and the saddle

point method.

We prove the following theorem.
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Theorem 7.3.1 The average of kth Prefix Complexity has the following asymptotic

expansion

i. For a as in (7.13),

E[X̂n,k] = 2k − Φ1((1 + log p) logp/q n)
nν√
log n

(
1 +O

(
1√

log n

))
, (7.16)

where ν = −r0 + a log(p−r0 + q−r0), and

Φ1(x) =
(p/q)−r0/2 + (p/q)r0/2√

2π log p/q

∑
j∈Z

Γ(r0 + itj)e
−2πijx (7.17)

is a bounded periodic function.

ii. For a as in (7.14),

E[X̂n,k] = Φ1(logp/q n(1 + log p))
nν√
log n

(
1 +O

(
1√

log n

))
. (7.18)

iii. For a as in (7.15)

E[X̂n,k] = n+O(nν0), (7.19)

for some ν0 < 1.

Proof We begin with proving part ii which requires a saddle point analysis. We

rewrite the inverse Mellin transform with integration line at <(s) = r0 as

Ẽk(z) =
−1

2π

∫ ∞
−∞

z−(r0+it)Γ(r0 + it)(p−(r0+it) + q−(r0+it))kdt

=
−1

2π

∫ ∞
−∞

Γ(r0 + it)e−k((r0+it) log z
k
−log(p−(r0+it)+q−(r0+it)))dt. (7.20)

Step one: Saddle points’ contribute to the integral estimation

First, we are able to show those saddle points with |tj| >
√

log n do not have a

significant asymptotic contribution to the integral. To show this, we let

Tk(z) =

∫
|t|>
√

logn

z−r0−itΓ(r0 + it)(p−r0−it + q−r0−it)kdt. (7.21)
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Since |Γ(r0 + it)| = O(|t|r0− 1
2 e
−π|t|

2 ) as |t| → ±∞, we observe that

Tk(z) = O

(
z−r0(p−r0 + q−r0)k

∫ ∞
√

logn

tr0/2−1/2e−πt/2dt

)
= O

(
z−r0(p−r0 + q−r0)k(log n)r0/4−1/4

∫ ∞
√

logn

e−πt/2dt

)
= O

(
z−r0(p−r0 + q−r0)k(log n)r0/4−1/4e−π

√
logn/2

)
= O

(
(log n)r0/4−1/4e−π

√
logn/2

)
, (7.22)

which is very small for large n. Note that for t ∈ (
√

log n,∞), tr0/2−1/2 is decreasing,

and bounded above by (log n)r0/4−1/4.

Step two: Partitioning the integral

There are now only finitely many saddle points to work with. We split the integral

range into sub-intervals, each of which contains exactly one saddle point. This way,

each integral has a contour traversing a single saddle-point, and we will be able to

estimate the dominant contribution in each integral from a small neighborhood around

the saddle point. Assuming that j∗ is the largest j for which
2πj

log p/q
≤
√

log n, we

split the integral Ẽk(z) as following

Ẽk(z) = − 1

2π

∑
|j|<j∗

∫
|t−tj |≤ π

log p/q

z−r0+itΓ(r0 + it)(p−r0−it + q−r0−it)kdt


− 1

2π

∫
π

log p/q
≤|t∗j |<

√
logn

Γ(r + it)z−r0+it(p−r0−it + q−r0−it)kdt. (7.23)

By the same argument as in (7.22), the second term in (7.23) is also asymptotically

negligible. Therefore, we are only left with

Ẽk(z) =
∑
|j|<j∗

Sj(z), (7.24)

where Sj(z) = − 1

2π

∫
|t−tj |≤ π

log p/q
z−r0+itΓ(r0 + it)(p−r0−it + q−r0−it)kdt.
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Step three: Splitting the saddle contour

For each integral Sj, we write the expansion of h(t) about tj, as follows

h(t) = h(tj) +
1

2
h
′′
(tj)(t− tj)2 +O((t− tj)3). (7.25)

The main contribution for the integral estimate should come from an small integration

path that reduces kh(t) to its quadratic expansion about tj. In other words, we want

the integration path to be such that

k(t− tj)2 →∞, and k(t− tj)3 → 0. (7.26)

The above conditions are true when |t− tj| � k−1/2 and |t− tj| � k−1/3. Thus, we

choose the integration path to be |t− tj| ≤ k−2/5. Therefore, we have

Sj(z) = − 1

2π

∫
|t−tj |≤k−2/5

z−r0+itΓ(r0 + it)(p−r0−it + q−r0−it)kdt

− 1

2π

∫
k−2/5<|t−tj |< π

log p/q

z−r0+itΓ(r0 + it)(p−r0−it + q−r0−it)kdt.

(7.27)

Saddle Tails Pruning.

We show that the integral is small for k−2/5 < |t− tj| <
π

log p/q
. We define

S
(1)
j (z) = − 1

2π

∫
k−2/5<|t−tj |< π

log p/q

z−r0+itΓ(r0 + it)(p−r0−it + q−r0−it)kdt. (7.28)

Note that for |t− tj| ≤
π

log p/q
, we have

|p−r0−it + q−r0−it| = (p−r0 + q−r0)

√
1− 2p−r0q−r0

(p−r0 + q−r0)2
(1− cos (t log p/q))

≤ (p−r0 + q−r0)

(
1− p−r0q−r0

(p−r0 + q−r0)2
(1− cos (t− tj) log p/q)

)
since

√
1− x ≤ 1− x

2
for x ∈ [0, 1]

≤ (p−r0 + q−r0)

(
1− 2p−r0q−r0

π2(p−r0 + q−r0)2
((t− tj) log p/q)2

)
since 1− cosx ≥ 2x2

π2
for |x| ≤ π

≤ (p−r0 + q−r0)e−(t−tj)2 , (7.29)
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where γ =
2p−r0q−r0 log2 p/q

π2(p−r0 + q−r0)2
. Thus,

S
(1)
j (z) = O

(
z−r0 |Γ(r0 + it)|

∫
k−2/5<|t−tj |< π

log p/q

|p−r0−it + q−r0−it|dt

)

= O

(
z−r0(p−r0 + q−r0)k

∫ ∞
k−2/5

e−γku
2

du

)
= O

(
z−r0(p−r0 + q−r0)kk−3/5e−γk

1/5
)
, since erf(x) = O

(
e−x

2

/x
)
. (7.30)

Central Approximation.

Over the main path, the integrals are of the form

S
(0)
j (z) = − 1

2π

∫
|t−tj |≤k−2/5

Γ(r0 + it)z−r0+it(p−r0−it + q−r0−it)kdt

= − 1

2π

∫
|t−tj |≤k−2/5

Γ(r0 + it)e−kh(t)dt.

We have

h
′′
(tj) =

log2 p/q

((p/q)−r0/2 + (p/q)r0/2)2
, (7.31)

and

p−r0−itj + q−r0−itj = p−itj(p−r0 + q−r0). (7.32)

Therefore, by Theorem 7.2.1, we obtain

S
(0)
j (z) =

1√
2πkh′′(tj)

Γ(r0 + itj)e
−kh(tj)(1 +O(k−1/2))

=
(p/q)−r0/2 + (p/q)r0/2√

2π log p/q

× z−r0(p−r0 + q−r0)kΓ(r0 + itj)z
−itjp−iktjk−1/2

(
1 +O

(
1√
k

))
.

(7.33)

We finally sum over all j (|j| < j∗), and we get
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Ẽk(z) =
(p/q)−r0/2 + (p/q)r0/2√

2π log p/q

×
∑
|j|<j∗

z−r0(p−r0 + q−r0)kΓ(r0 + itj)z
−itjp−iktjk−1/2

(
1 +O

(
1√
k

))
.

(7.34)

We can rewrite Ẽk(z) as

Ẽk(z) = Φ1((1 + a log p) logp/q n)
zν√
log n

(
1 +O

(
1√

log n

))
, (7.35)

where ν = −r0 + a log(p−r0 + q−r0), and

Φ1(x) =
(p/q)−r0/2 + (p/q)r0/2√

2aπ log p/q

∑
|j|<j∗

Γ(r0 + itj)e
−2πijx. (7.36)

For part ii, we move the line of integration to r0 ∈ (0,∞). Note that in this range,

we must consider the contribution of the pole at s = 0. We have

Ẽk(z) = Ress=0Ẽ
∗
k(s)z

−s +

∫ r0+i∞

r0−i∞
Ẽ∗k(z)z−sds. (7.37)

Computing the residue at s = 0, and following the same analysis as in part i for the

above integral, we arrive at

Ẽk(z) = 2k − Φ1((1 + a log p) logp/q n)
zν√
log n

(
1 +O

(
1√

log n

))
. (7.38)

For part iii. of Theorem 7.3.1, we shift the line of integration to c0 ∈ (−2,−1), then

we have

Ẽk(z) = Ress=−1Ẽ
∗
k(s)z

−s +

∫ c+i∞

c−i∞
Ẽ∗k(z)z−sds

= z +O
(
z−c0(p−c0 + q−c0)k

)
= za log 2 +O(zν0), (7.39)

where ν0 = −c0 + a log(p−c0 + q−c0) < 1.
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Step four: Asymptotic depoissonization

To show that both conditions in (7.1.1) hold for Ẽk(z), we extend the real values z

to complex values z = neiθ, where |θ| < π/2. To prove (7.2), we note that

|e−iθ(r0+it)Γ(r0 + it)| = O(|t|r0−1/2etθ−π|t|/2), (7.40)

and therefore

Ẽk(ne
iθ) =

1

2π

∫ ∞
−∞

e−iθ(r0+it)n−r0−itΓ(r0 + it)(p−r0−it + q−r0−it)kdt (7.41)

is absolutely convergent for |θ| < π/2. The same saddle point analysis applies here

and we obtain

|Ẽk(z)| ≤ B
|zν |√
log n

, (7.42)

where B = |Φ1((1 + a log p) logp/q n)|, and ν is as in 7.35. Condition (7.2) is therefore

satisfied. To prove condition (7.3) We see that for a fixed k,

|Ẽk(z)ez| ≤
∑
w∈Ak

|ez − ez(1−P(w))|

≤ 2k+1e|z| cos(θ). (7.43)

Therefore, we have

E[X̂n,k] = Ẽ(n) +O

(
nν−1

√
log n

)
. (7.44)

This completes the proof of Theorem 7.3.1.

7.4 On the Second Factorial Moment

We poissonize the sequence (E[(X̂n,k)2])n≥0 as well. By the analysis in (4.17),

E[(X̂n,k)2] =
∑

w,w′∈Ak
w 6=w′

(1− (1−P(w))n − (1−P(w′))n + (1−P(w)−P(w′))n) ,
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which gives the following poissonized form

G̃(z) =
∑
n≥0

E[(X̂n,k)2]
zn

n!
e−z

=
∑

w,w′∈Ak
w 6=w′

1− e−P(w)z − e−P(w′)z + e−(P(w)+P(w′))z

=
∑

w,w′∈Ak
w 6=w′

(
1− e−P(w′)z

) (
1− e−P(w)z

)

=

(∑
w∈Ak

(
1− e−P(w)z

))2

−
∑
w∈Ak

(
1− e−P(w)z

)2

= (Ẽk(z))2 −
∑
w∈Ak

(
1− e−P(w)z

)2

= (Ẽk(z))2 −
∑
w∈Ak

(
1− 2e−P(w)z + e−2P(w)z

)
. (7.45)

We show that in all ranges of a the leftover sum in (7.45) has a lower order contribution

to G̃k(z) compared to (Ẽk(z))2. We define

L̃k(z) =
∑
w∈Ak

(
1− 2e−P(w)z + e−2P(w)z

)
. (7.46)

In the first range for k, we take the Mellin transform of L̃k(z), which is

L̃∗k(s) = −2Γ(s)
∑
w∈Ak

P(w)−s + Γ(s)
∑
w∈Ak

(2P(w))−s

= −2Γ(s)(p−s + q−s)k + Γ(s)2−s(p−s + q−s)k

= Γ(s)(p−s + q−s)k(2−s−1 − 1), (7.47)

and we note that the fundamental strip for this Mellin transform of is 〈−2, 0〉 as well.

The inverse Mellin transform for c ∈ (−2, 0) is

L̃k(z) =
1

2πi

∫ c+i∞

c−i∞
L̃∗k(s)z

−sds

=
1

πi

∫ c+i∞

c−i∞
Γ(s)(p−s + q−s)k(2−s−1 − 1)z−sds (7.48)
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We note that this range of r0 corresponds to

2

log q−1 + log p−1
< a <

p2 + q2

q2 log q−1 + p2 log p−1
. (7.49)

The integrand in (7.48) is quite similar to the one seen in (7.10). The only difference is

the extra term 2−s−1−1. However, we notice that 2−s−1−1 is analytic and bounded.

Thus, we obtain the same saddle points with the real part as in (7.12) and the same

imaginary parts in the form of
2πij

log p/q
, j ∈ Z. Thus, the same saddle point analysis

for the integral in (7.10) applies to L̃k(z) as well. We avoid repeating the similar

steps, and we skip to the central approximation, where by theorem 7.2.1, we get

L̃k(z) =
(p/q)−r0/2 + (p/q)r0/2√

2π log p/q

×
∑
|j|<j∗

z−r0(p−r0 + q−r0)k(2−r0−1−itj − 1)

× Γ(r0 + itj)z
−itjp−iktjk−1/2

(
1 +O

(
1√
k

))
, (7.50)

which can be represented as

L̃k(z) = Φ2((1 + a log p) logp/q n)
zν√
log n

(
1 +O

(
1√

log n

))
, (7.51)

where

Φ2(x) =
(p/q)−r0/2 + (p/q)r0/2√

2aπ log p/q

∑
|j|<j∗

(2−r0−1−itj − 1)Γ(r0 + itj)e
−2πijx. (7.52)

This shows that L̃k(z) = O

(
zν√
log n

)
, when

2

log q−1 + log p−1
< a <

p2 + q2

q2 log q−1 + p2 log p−1
.

Subsequently, for
1

log q−1
< a <

2

log q−1 + log p−1
, we get

L̃k(z) = 2k − Φ2((1 + a log p) logp/q n)
zν√
log n

(
1 +O

(
1√

log n

))
, (7.53)
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and for
p2 + q2

q2 log q−1 + p2 log p−1
< a <

1

log p−1
, we get

L̃k(z) = O(n2). (7.54)

It is not difficult to see that for each range of a as stated above, L̃k(z) has a lower order

contribution to the asymptotic expansion of G̃k(z), compared to (Ẽk(z))2. Therefore,

this leads us to the following theorem.

Theorem 7.4.1 The second factorial moment of the kth Prefix Complexity has the

following asymptotic expansion.

i. For a as in (7.13),

E[(X̂n,k)2] =

(
2k − Φ1(logp/q n(1 + log p))

nν√
log n

(
1 +O

(
1√

log n

)))2

.

ii. For a as in (7.14),

E[(X̂n,k)2] = Φ2
1(logp/q n(1 + log p))

n2ν

log n

(
1 +O

(
1

log n

))
. (7.55)

ii. For a as in (7.15),

E[(X̂n,k)2] = n2 +O(n2ν0). (7.56)

Proof It is only left to show that the two depoissonization conditions hold: For

condition (7.2) in Theorem 7.1.1, from (7.42) we have

|G̃k(z)| ≤ B2 |z2ν |
log n

, (7.57)

and for condition (7.3), we have, for fixed k,

|G̃k(z)ez| ≤
∑

w,w′∈Ak
w 6=w′

∣∣∣ez − e(1−P(w))z − e(1−P(w′))z + e(1−(P(w)+P(w′)))z
∣∣∣

≤ 4ke|z| cos θ. (7.58)

Therefore both depoissonization conditions are satisfied and the desired result follows.
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7.5 A Remark on the Second Moment and the Variance

For the second moment we have

E
[
(X̂n,k)

2
]

=
∑

w,w′∈Ak
w 6=w′

E
[
X̂

(w)
n,k X̂

(w′)
n,k

]
+
∑
w∈Ak

E[X̂
(w)
n,k ]

=
∑

w,w′∈Ak
w 6=w′

(1− (1−P(w))n − (1−P(w′))n + (1−P(w)−P(w′))n)

+
∑
w∈Ak

(1− (1−P(w))n) . (7.59)

Therefore, by (7.8) and (7.45) the Poisson transform of the second moment, which

we denote by G̃
(2)
k (z) is

G̃
(2)
k (z) = (Ẽk(z))2 + Ẽk(z)−

∑
w∈Ak

(
1− 2e−P(w)z + e−2P(w)z

)
, (7.60)

which results in the same first order asymptotic as the second factorial moment. Also,

it is not difficult to extend the proof in Chapter 6 to show that the second moments

of the two models are asymptotically the same. For the variance we have

Var[X̂n,k] = E
[
(X̂n,k)

2
]
−
(
E
[
X̂n,k

])2

=
∑

w,w′∈Ak
w 6=w′

(1− (1−P(w))n − (1−P(w′))n + (1−P(w)−P(w′))n)

+
∑
w∈Ak

(1− (1−P(w))n)

−
∑

w,w′∈Ak
w 6=w′

(1− (1−P(w))n − (1−P(w′))n + (1−P(w)−P(w′))n)

−
∑
w∈Ak

(
1− (1−P(w))n − (1−P(w))n + (1−P(w))2n)

=
∑
w∈Ak

(
(1−P(w))n − (1−P(w))2n) . (7.61)
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Therefore the Poisson transform, which we denote by G̃var
k (z) is

G̃var
k (z) =

∑
w∈Ak

(
e−P(w)z − e−(2P(w)+(P(w))2)z

)
. (7.62)

The Mellin transform of the above function has the following form

G̃∗
var

k (z) = Γ(s)(p−s + q−s)k(−1 +O(P(w))). (7.63)

This is quite similar to what we saw in (7.9), which indicates that the variance has the

same asymptotic growth as the expected value. But the variance of the two models

do not behave in the same way (cf. Figure 9.4).
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8. SUMMARY

We studied the first order asymptotic growth of the first two (factorial) moments of

the kth Subwoed Complexity. We recall that the kth Subword Complexity of a string

of length n is denoted by Xn,k, and is defined as the number of distinct subwords of

length k, that appear in the string. We are interested in the asymptotic analysis for

when k grows as a function of the string’s length. More specifically, we conduct the

analysis for k = Θ(log n), and as n→∞.

The analysis is inspired by the earlier work of Jacquet and Szpankowski on the

analysis of suffix trees, where they are compared to independent tries (cf. [14]). In our

work, we compare the first two moments of the kth Subword Complexity to the kth

Prefix Complexity over a random trie built over n independently generated binary

strings. We recall that we define the kth Prefix Complexity as the number of distinct

prefixes that appear in the trie at level k and lower.

We obtain the generating functions representing the expected value and the second

factorial moments as their coefficients, in both settings. We prove that the first

two moments have the same asymptotic growth in both models. For deriving the

asymptotic behavior, we split the range for k into three intervals. We analyze each

range using the saddle point method, in combination with residue analysis. We close

our work with some remarks regarding the comparison of the second moment and the

variance to the kth Prefix Complexity.
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9. FIGURES

Figure 9.1. Approximated expectations of the kth Subword Com-
plexity (red), and the kth Prefix Complexity (blue), for n=4000, at
different probability levels, averaged over 10,000 iterations.
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Figure 9.2. Approximated second factorial moments of the kth Sub-
word Complexity (red), and the kth Prefix Complexity (blue), for
n=4000, at different probability levels, averaged over 10,000 itera-
tions.
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Figure 9.3. Approximated second moments of the kth Subword Com-
plexity (red), and the kth Prefix Complexity (blue), for n=4000, at
different probability levels, averaged over 10,000 iterations.
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Figure 9.4. Approximated variances of the kth Subword Complexity
(red), and the kth Prefix Complexity (blue), for n=4000, at different
probability levels, averaged over 10,000 iterations.
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Figure 9.5. Φ1(x) at p = 0.90, and various levels of r0. The amplitude
increases as r0 increases.
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Figure 9.6. Φ1(x) at r0 = 1, and various levels of p. The amplitude
tends to zero as p→ 1/2+.
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