
CNN-BASED SYMBOL RECOGNITION AND DETECTION IN PIPING

DRAWINGS

by

Yuxi Zhang

A Thesis

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Master of Science

Department of Lyles School of Civil Engineering

West Lafayette, Indiana

August 2019

2

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Hubo Cai, Chair

Lyles School of Civil Engineering, Purdue University

Dr. Dulcy M. Abraham

Lyles School of Civil Engineering, Purdue University

Dr. Charles A. Bouman

School of Electrical and Computer Engineering, Purdue University

Approved by:

Dr. Dulcy M. Abraham

Head of the Departmental Graduate Program

3

ACKNOWLEDGMENTS

I am deeply thankful to my advisor, Professor Cai. He is knowledgeable and patient in guiding

me to solve a problem. With his encouragement and supervision, I learned a lot in technical

knowledge and critical thinking. His passion, hardworking and extraordinary vision make him an

outstanding scientist and engineer, which affects me in my research life. I appreciate his support,

which provides me a comfortable environment for research.

It is my privilege to have Prof. Abraham, Prof. Bouman in my thesis committee, who are always

willing to help in their expertise – Prof. Abraham provides her insights in construction

management and project lifecycle; Prof. Bouman leads me to the field of image processing.

I am so honored as a member of the Lab of Computer Integrated Infrastructure Informatics

(LCIII) and indebted to all the lab members and alumni in Prof. Cai’s research group. It has been

a wonderful experience to have such a close relationship with so many people. Dr. Chenxi Yuan

are my previous colleagues and we share so many good memories when we worked together in

INDOT projects. Besides, it is always inspiring and pleasant to discuss with group members such

as Xin Xu, Jiannan Cai, JungHo Jeon, and Liu Yang.

I would also like to take the time to acknowledge my parents who have been supporting me

mentally and financially throughout my student life in China and my Master abroad. They have

been extremely patient and understanding and I would like to thank them for all the amazing

opportunities they have given me over the years.

.

4

TABLE OF CONTENTS

LIST OF TABLES ...7

LIST OF FIGURES ...8

ABSTRACT ...9

CHAPTER 1. INTRODUCTION ...11

1.1 Background and Problem Statement ..11

1.2 Literature Review ...15

1.2.1 Traditional Statistical Methods ... 16

1.2.2 Structural or Syntactic Methods .. 18

1.2.3 Review of Deep Neural Networks ... 21

1.2.3.1 Principles of Neural Networks ... 21

1.2.3.2 Related Works on CNN-based Object Classification and Detection 23

1.2.4 Review of Data Augmentation .. 25

1.3 Goal and Objectives ...26

1.4 Significance and Research Contributions ..26

1.5 Organization of the Thesis ...27

CHAPTER 2. CNN-BASED SYMBOL RECOGNITION ..29

2.1 Introduction ..29

2.2 Data Preparation ...30

2.2.1 Normal Synthetic Symbols .. 30

2.2.2 Affine Transformation ... 31

2.2.3 Additional Variations .. 32

2.3 Methodology ..33

2.3.1 The Design of the Architectures of the Basic CNN .. 33

2.3.2 The Design of the Architectures of the CNN + STN Model 36

2.3.3 The Design of the Loss Function .. 38

2.3.4 The Selection of the Optimization Methods .. 39

2.4 Experiments ..40

2.4.1 Experimental Setup ... 40

5

2.4.2 Experimental Results ... 41

2.5 Generalization Capabilities of CNNs to Rotations ..43

2.5.1 Rotation Invariance ... 43

2.5.2 Generalization Capabilities of CNNs to Rotations .. 44

2.6 Summary and Conclusions ...46

2.6.1 Summary ... 46

2.6.2 Conclusions ... 47

2.6.3 Limitations ... 48

2.6.4 Future Works ... 48

CHAPTER 3. CNN-BASED SYMBOL DETECTION ...49

3.1 Introduction ..49

3.2 Methodology ..49

3.2.1 The Convolutional Network .. 50

3.2.2 The Region Proposal Network .. 51

3.2.3 ROI Pooling ... 53

3.2.4 Classification ... 53

3.3 Data Preparation and Experiments ...54

3.3.1 Data Preparation .. 54

3.3.2 Experimental Setup ... 55

3.3.3 Experimental Results ... 56

3.4 Summary and Conclusions ...59

3.4.1 Summary ... 59

3.4.2 Conclusions ... 60

3.4.3 Limitations ... 60

3.4.4 Future Works ... 60

CHAPTER 4. SUMMARY AND CONCLUSIONS ..61

4.1 Summary and Conclusions ...61

4.2 Limitations ...61

4.3 Future Works ..61

APPENDIX A. CODE ...63

APPENDIX B. IMAGE SAMPLES ..118

6

REFERENCES ..127

7

LIST OF TABLES

Table 1.1 Sub-problems of technical drawings interpretation and methods 13

Table 1.2 Pixel-based methods for symbol recognition in drawings .. 17

Table 2.1 Parameters for affine transformation .. 32

Table 2.2 Noise and distortion additions and dilation/erosion operations 33

Table 2.3 The architecture of the basic CNN ... 34

Table 2.4 The architecture of the localisation network ... 37

Table 2.5 Experimental setup ... 41

Table 2.6 Experimental results – recognition accuracies .. 42

Table 2.7 The average and standard deviation of recognition accuracies for five repeats 42

Table 2.8 The confusion matrix for the CNN model .. 43

Table 2.9 The confusion matrix for the CNN + STN model .. 43

Table 3.1 The architecture of VGG16 (Simonyan and Zisserman 2016) 50

Table 3.2 Results for piping symbols with Faster RCNN detectors and VGG16. 57

8

LIST OF FIGURES

Figure 1.1 Parts of a plumbing diagram in the elevation view ... 12

Figure 1.2 General pipeline for region-based symbol detection ... 16

Figure 1.3 The taxonomy of primitive-based symbol recognition and detection methods 19

Figure 1.4 (a) multilayer neural networks and (b) backpropagation (LeCun et al. 2015) 22

Figure 1.5 Architecture of LeNet-5 (LeCun et al. 1998). ... 23

Figure 2.1 The pipeline of generating symbols .. 30

Figure 2.2 Example of parameters in a normal synthetic symbol ... 31

Figure 2.3 A convolutional layer using a 3x3 filter .. 35

Figure 2.4 Max pooling using a 2 x 2 window and a stride size of one 36

Figure 2.5 The architecture of CNN+STN model. ... 37

Figure 2.6 Sample images used in the dataset for symbol recognition ... 40

Figure 2.7 Predictions of CNN and CNN + STN models ... 45

Figure 3.1 The architecture of the Faster RCNN network (Ren et al. 2016) 50

Figure 3.2 The architecture of RPN .. 51

Figure 3.3 The anchors which scale ∈{128, 256, 512} and aspect ratio ∈{0.5, 1, 2} 51

Figure 3.4 The architecture of ROI pooling.. 53

Figure 3.5 Seven symbols used in drawings ... 54

Figure 3.6 The distribution of the numbers of symbols for each class ... 55

Figure 3.7 The samples of true positive and false positive ... 58

9

ABSTRACT

Author: Zhang, Yuxi. M.S.

Institution: Purdue University

Degree Received: August 2019

Title: CNN-based Symbol Recognition and Detection in Piping Drawings

Major Professor: Hubo Cai

Piping is an essential component in buildings, and its as-built information is critical to facility

management tasks. Manually extracting piping information from legacy drawings that are in paper,

PDF, or image format is mentally exerting, time-consuming, and error-prone. Symbol recognition

and detection are core problems in the computer-based interpretation of piping drawings, and the

main technical challenge is to determine robust features that are invariant to scaling, rotation, and

translation. This thesis aims to use convolutional neural networks (CNNs) to automatically extract

features from raw images, and consequently, to locate and recognize symbols in piping drawings.

In this thesis, the Spatial Transformer Network (STN) is applied to improve the performance

of a standard CNN model for recognizing piping symbols, and the Faster Region-based

Convolutional Neural Network (Faster RCNN) is adopted to exploit its capacity in symbol

detection. For experimentation, the synthetic data are generated as follows. Two datasets are

generated for symbol recognition and detection, respectively. For recognition, eight types of

symbols are synthesized based on the geometric constraints between the primitives. The drawing

samples for detection are manually sketched using AutoCAD MEP software and its piping

component library, and seven types of symbols are selected from the piping component library.

Both sets of samples are augmented with various scales, rotations, and random noises.

The experiment for symbol recognition is conducted and the accuracies of the recognition

accuracy of the CNN + STN model and the standard CNN model are compared. It is observed that

the spatial transformer layer improves the accuracy in classifying piping symbols from 95.39% to

98.26%. For the symbol detection task, the experiment is conducted using a public implementation

of Faster RCNN. The mean Average Precision (mAP) is 82.8% when Intersection over Union (IoU)

threshold equals to 0.5. Imbalanced data (i.e., imbalanced samples in each class) led to a decrease

in the Average Precision in the minority class. Also, the symbol library, the small dataset, and the

10

complex backbone network limit the generality of the model. Future work will focus on the

collection of larger set of drawings and the improvement of the network’s geometric invariance.

11

CHAPTER 1. INTRODUCTION

1.1 Background and Problem Statement

As-built information on the piping system is critical to many facility management (FM) tasks,

but unfortunately, that information is typically in paper-format piping drawings (Joseph and

Pridmore 1992, Rahul et al. 2019) and is very difficult to access in a timely manner. A piping

drawing is a schematic representation of the flow and the constitution of a piping system, such as

a plumbing system that is an essential component in buildings. The piping diagram uses a graphical

language that is composed of schematic lines and graphical symbols and annotations to illustrate

the piping process with instrumentations and control devices. Figure 1.1 shows the snapshots of a

plumbing drawing in the elevation view. Users interpret the meaning of graphics based on the

legend table, annotations, and geometric and topological relationships of graphics. With the rich

context and spatial information, piping drawings are used to locate specific piping components

and extract product information such as product models, pipeline orientation, and piping

components’ locations, all of which has been identified as required information for many FM tasks,

including maintenance (Javier et al. 2012; Cavka et al. 2015), operations (Sattenini et al. 2011;

Mayo and Issa 2016), asset management (Becerik-Gerber et al. 2012), and energy monitoring

(Volk et al. 2014; Yalcinkaya and Singh 2015). Therefore, information extraction from piping

drawings is a key task in facility management.

12

Figure 1.1 Parts of a plumbing diagram in the elevation view

However, manually extracting information from legacy drawings that are in paper, PDF, or

image format is mentally exerting, time-consuming, and error-prone. According to a report by the

National Institute of Standards and Technology (NIST), the estimated cost of inadequate

interoperability in the U.S. capital facilities industry is $15.8 billion per year; about 57.8% of this

cost is borne by owners and operators during facility O&M (O’Conner 2004). Some of these costs

arise from the information retrieval process in many existing buildings. Volk et al (2014) proposed

that the high conversion efforts from drawings to semantic objects is the main challenge in building

information integration. Paradoxically, with the accumulation of recreated models, concern about

information overload is also evolving. From the view of lean management, many researchers (e.g.,

Jylhä and Suvanto 2015; Gerrish et al. 2017) recognize that the irretrievable and non-indexed files

lead to inefficiencies in facility management, meaning that poor document management is the key

deficiency in the current practice. Therefore, to eliminate the tedious process of manually

rebuilding piping design or repeatedly digging into the superfluous documents, there is a critical

need for developing an automated method to extract semantic information from piping drawings.

In today’s market, tools for interpreting drawings are still stuck in a low automated level.

Existing tools can be categorized into two types: drawing vectorization and navigation. AutoCAD

Raster Design and Bluebeam Revu are representatives in these two types, the former emphasizes

the vectorization process and needs further correction and recognition by users, and the latter one

integrates some useful measures and tracking tools based on the users’ markers.

From a scientific point of view, automated interpretation of general engineering drawings is an

active topic in graphics recognition and document analysis community, but over the years end-to-

13

end applications have been regarded as a utopia and abandoned (Doermann and Tombre 2014). In

fact, focuses have been set on the subparts of the problem, including text-graphics separation,

primitive extraction and vectorization, symbol recognition and detection and knowledge modeling.

The methods for each sub-problem are categorized in Table 1.1.

Table 1.1 Sub-problems of technical drawings interpretation and methods

Sub-problem Methods

Text-graphics

separation

Heuristics: connected component analysis + Hough transform + criterion

Sparse representations: morphological component analysis; K-SVD

Deep learning: connectionist text proposal networks (CTPN)

Primitive

extraction and

vectorization

Model fitting and voting: least square; random sample consensus (RANSAC);

Hough transform (HT)

Hypothesis testing: line support region growing + a contrario approach

Line/arc decomposition: recursively significance comparison

Symbol

recognition

Statistical: statistical features (geometric moments, R-signatures, etc.) +

similarity measures

Structural: structural descriptors (usually visual primitives or their spatial

relations) and graph-based matching

Syntactic: spatial predicates (usually primitives’ relations) and inductive learning

programming

Deep learning: convolution neural networks (CNN)

Symbol detection

Region-based: region proposals (CC, grid partitions, sliding windows, region of

interests) and similarity measures

Line primitive based: graph embedding and indexing

Deep learning: fully convolution networks (FCN)

Knowledge

modeling

Descriptive knowledge: geometric and topological reasoning based on rule sets,

ontologies or meta-models

Control knowledge: image analysis methods selection and sequential ordering

based on strategy rules, ontologies or meta-models

For the text-graphics separation problem, the baseline methods are the heuristic ones, which

iteratively group connected components bounding boxes based on their properties (similar size,

centers alignment, the histogram and aspect ratio of the elongated rectangle formed by aligned

boxes). Their main limitation is in the case of text touching graphics (Fletcher and Kasturi 1988;

Tombre et al. 2002). To overcome this limitation, some researchers proposed methods based on

the sparse representation, which consider texts and graphics as two types of signals and separate

them based discriminative dictionaries (Hoang and Tabbone 2010; Do et al. 2012). Recently, deep

14

learning approaches for text detection, such as CTPN (Tian et al. 2016), have been proposed, to

seamlessly connect CNN and recurrent neural networks (RNN). CTPN has been adopted to solve

text-graphics separation in drawings (Rahul et al. 2019) since it takes advantage of capturing the

sequential context information.

Primitive extraction and vectorization are low-level processing steps and usually used as

preliminaries to symbol recognition and detection. Least square, RANSAC and HT are generally

applied as complements of vectorization or symbol recognition (Lamiroy and Guebbas 2010,

Coustaty et al. 2011; Boumaiza and Tabbone 2012). Another interesting perspective on primitive

extraction is based on the Helmholtz principle, which formulates lines/arcs as meaningful events

(Desolneux et al. 2001). Based on this principle, a serial of researches on line/arc detection has

been proposed (e.g., Von Gioi et al. 2010; Pătrăucean et al. 2012; Akinlar and Topal 2013). The

significant advancement is that these approaches enable the control of false detection by computing

the expectation of the number of event occurrences. Line/arc decomposition is a typical problem

in drawing vectorization, which can transform the skeletons or edges into either lines or arcs.

Rosin’s method has been widely adopted in this field, which extracts line and arc segments by

recursively comparing segments’ significance (Rosin and West 1989). The main advantage of this

method is that only a limited set of parameters are used so that it can be generalized into many

applications. The common drawback of raster-vector conversion is error-prone (Santosh and

Wendling 2015), and it is not trivial to jointly consider vectorization and further analysis.

Symbol recognition and detection methods are the core problems of drawings interpretation and

can be roughly classified into two categories: with primitive extraction (structural or syntactic) and

without primitive extraction (statistical). Here is a brief summary, and more details about this

problem will be discussed in Section 2. Overall, the benefit of statistical methods is low

computation cost, but the main challenge is the difficulty in feature selection which is critical to

discriminative power and robustness. Structural and syntactic methods are much closer to human

interpretation, and these methods outperform the statistical ones in the case of complex and

composite symbols. However, the performance is limited by the precision of the vectorization

process, and matching based on graph representation needs high computation cost.

Because of the dual image/language nature of drawings (Dori and Tombre 1995), knowledge is

considered necessary to interpret some of the contextual information. On the whole, the required

knowledge can be classified into two levels: descriptive knowledge and control knowledge of

15

descriptive ones as explained in Table 1. Many researches have shown the strengths of modeling

descriptive and control knowledge using rules and grammars (Joseph and Pridmore 1992; Lu et al.

2009). Lu et al. (2009) proposed many implicit composition rules, such as reference and

inheritance, which can be applied in the interpretation of drawings. Based on that, the recent trend

on knowledge modeling is the inference of implicit knowledge based on ontologies and meta-

models (Raveaux 2010; Bhatt et al. 2012; de las Heras et al. 2017). The ontology-based methods

and meta model-based methods are complementary to each other, in that the former takes

advantage of the expressive power of the domain ontologies, while the latter is not sensitive to the

variations introduced in the low-level processing.

Therefore, there is a need to design an automated piping drawings interpretation method. Based

on the review of state of the art, the sub-problems seem to reach a plateau, and the boundaries of

these sub-problems have begun to blur. Therefore, this study focuses on symbol recognition and

detection tasks. The reasons are mainly in twofold: (1) they are core sub-problems in this field

since both low-level processing and high-level interpretation are tightly connected with them; (2)

recent researches on deep learning have shown excellent performance on feature extraction, and

its connectionist architecture enables the exploration of end-to-end applications.

1.2 Literature Review

Over the years, great efforts have been poured into the symbol recognition and spotting in

technical drawings. Studies on symbol recognition and localization in technical drawings are based

on either: (1) pixel-based descriptors or (2) primitive-based descriptors, including lines, arcs as

well as the relations between them. They are commonly referred to as statistical and

structural/syntactic methods (Doermann and Tombre 2014; Santosh and Wendling 2015), which

will be reviewed in 1.2.1 and 1.2.2, respectively.

These traditional methods still face challenges in robust representations and computation

complexity. With recent progress in deep neural networks, classification and object detection for

natural images can be achieved via the connectionist architecture, which can break through the

plateau of conventional approaches. In this paper, deep neural networks are applied for symbol

classification and detection, and principles and recent studies will be discussed in 1.2.3. Besides,

16

data augmentation techniques are applied in this study to enrich the dataset, so relate works in data

augmentation will be briefly reviewed in 1.2.4

1.2.1 Traditional Statistical Methods

For methods in the statistical group, Figure 1.2 shows the general process in region-based

symbol detection, including three steps:

(1) Region detection: minimum bounding regions (e.g. rectangular, circular) enclosing the

target symbols are detected;

(2) Feature extraction: an optimal set of region-based features are selected and normalized by

estimating the centroid position, orientation, and scale;

(3) Classification: a proper classifier or a fusion of classifiers is designed.

In the remaining part of this subsection, pixel-based symbol recognition methods will be first

reviewed, and then a discussion of related studies and challenges in region detection will be

followed.

Figure 1.2 General pipeline for region-based symbol detection

As indicated in Figure 1.2, symbol recognition can be regarded as a sub-task of detection based

on the assumption that the symbol is already well segmented; thus, only feature extraction and

classification are needed in this task. However, it is challenging to develop an optimal set of

features as well as classifiers for discriminative and robust symbol recognition because of the high

variability nature of symbols, such as rotation, scaling, deformation, intra-class, and inter-class

Region Detection

Feature Extraction

Classification

Symbol

Recognition

17

variations. (Santosh and Wendling 2015). Table 1.2 shows some benchmark methods as well as

recent studies for symbol recognition in technical drawings.

Table 1.2 Pixel-based methods for symbol recognition in drawings

Features Classifiers Advantages Limitations References

Radon transform

+ Fourier

transform /

Generic Radon

transform

Euclidean

distance

Invariant to

rotation and

scaling

Sensitive to noise

and deformation

Tabbone et al. (2006)

Hoang and Tabbone

(2012)

Histogram of

Radon transform

Dynamic time

warping

Invariant to

rotation, scaling;

Robust to

distortion and

degradation

High computation

cost

Tabbone et al. (2008)

Santosh et al. (2013)

Moments (e.g. Hu

moments, Zernike

moments)

Locality-Sensitive

Hashing

Invariant to

rotation and

scaling

Not suitable for

complex symbols

Dutta et al. (2013)

Generic Fourier

transform +

normalization

City block

distance

Invariant to

rotation and

scaling; Robust

to distortion

Less

discriminative

power

Zhang and Lu

(2002a)

Zhang and Lu

(2002b)

Blurred shape

model (BSM) /

BSM + Active

appearance model

Adaboost / SVM

Invariant to

rotation; Robust

to deformation

Less

discriminative

power

Escalera et al. (2009)

Almazán et al.

(2012)

Shape context

descriptors +

Sparse

representation

Term frequency

and inverse

document

frequency (tf-idf)

Invariant

to rotation and

scaling

Not suitable for

complex symbols
Do et al. (2016)

As illustrated in Table 1.2, related studies have provided significant insights into the fusion of

features and the proper selection of classifier to balance similarity invariance and discriminative

power. However, state-of-the-art approaches in symbol recognition community addressed slightly

on affine invariance, which may become a trend with the popularity of mobile devices (Doermann

and Tombre 2014).

In addition to symbol recognition, the region detection problem is crucial since the accuracy of

symbol recognition highly relies on the segmentation. Compared to the intensive studies on symbol

recognition, little works have been done on region detection in technical drawings due to its

textureless nature, which only shape information is available (Nibal Nayef 2012). There are two

18

main types of region detection, one is window filtering, and the other one is grouping (Hosang et

al. 2015). The window filtering method is based on a grid or sliding window, which works like a

correlation filter, but this method is sensitive to size and rotation variation (Maclean and Tsotsos

2009, Escalera et al. 2011). The grouping methods are mainly applied in the primitive-based

symbol detection task, which will be discussed in Section 1.2.2.

Above all, the challenges in the pixel-based symbol recognition and detection mainly lie on two

aspects: (1) the selection of an optimal set of features and classifiers; (2) efficient and robust

symbol localization which is invariant to scaling and rotation. It seems that traditional pixel-based

approaches face the bottleneck that lacks useful high-level representations for symbols, resulting

in that the interest on primitive-based descriptors is increasing substantially.

1.2.2 Structural or Syntactic Methods

Symbol patterns, which are of the strong structural nature, can be regarded as the composition

of visual primitives (e.g., lines, arcs, meaningful regions) and represented by graph or grammar

structures. This kind of representation enables it to capture high-level features of symbols.

However, primitive-based symbol recognition is not trivial. Instead of formulating this problem as

an exact graph matching based on an ideal model, researchers often focus on developing robust

representations and efficient and error-tolerant matching/indexing methods. The reasons are

mainly in twofold: (1) the intrinsic variability of the patterns, noise in the processing steps, and

nondeterministic representations; (2) high computational complexity in the matching process

(Conte et al. 2004). As an analogy to structural pattern recognition, syntactic methods are also

adopted in this field. Different from structural ones, syntactic approaches often consider the

primitives as grammars and interpret patterns with parsing technologies rather than matching.

Figure 1.3 shows the taxonomy of related works.

19

Figure 1.3 The taxonomy of primitive-based symbol recognition and detection methods

According to Figure 1.3, the pipeline of structural/syntactic methods is not straightforward.

First, the graph-based descriptions vary widely, such as attributed relational graphs (ARGs)

(Bunke and Messmer 1995; Luqmen et al. 2013; Santosh et al. 2014), region adjacency graphs

(RAGs) (Lladós 2001; Le Bodic et al. 2009) and proximity graphs, encoding the fundamental

parameters of primitives as well as geometric and topological relationships between them. After

graph construction, there are four categories of methods widely adopted in the next steps.

Previously, researchers formulated this problem as error-correcting subgraph isomorphism. By

minimizing the graph/string edit cost between the prototype and the input, the optimal subgraph

can be detected, and tree search algorithms are applied to reduce the search space. For instance,

Lladós (2001) encoded regions with boundary strings and represented the whole circuit diagram

as a RAG, and then matched strings (at a local level) and the graph (at a global level) via

minimizing edit costs and the branch and bound search algorithm. Similar researches with various

20

graph representations and tree search algorithms (Messmer and Bunke 1995; Bunke and Messmer

1998) can also be found. Another interesting perspective is to formulate it as an integer linear

program, which enables error-tolerant on the vertex and edge labels (Le Bodic et al. 2009). The

main limitation of these methods is the high computation cost, which is not suitable for large

graphs.

To take advantage of low computation cost in statistical methods, a strategy that is mapping a

graph to a low-dimensional vector is developed. The traditional structural signatures are

handcrafted, such as parallelism, connectivity, relative lengths and angles between two lines

(Dosch and Lladós 2003; Rusiñol and Lladós 2005; Coustaty et al. 2011). In contrast, recent studies

on representation engineering are using graph embedding, which is to define a mapping function

that can well describe the properties of the graphs, such as pair of paths, acyclic paths, node degrees,

etc. Then, the compressed feature vectors can be learned offline via well-studied statistical

methods, forming a large database. Lastly, the problems can be solved by database indexing and

scoring. To spot the symbols in the drawings, researchers focus on developing a further step, and

there are two kinds of methods. One is voting the hypothetic center and clustering, which uses the

spatial relationships between symbol parts (Rusiñol et al 2010; Santosh et al. 2014; Dutta et al.

2013); the other one is grouping based on the confidence value, which needs the rich

representations on each node (Luqmen et al. 2013). Overall, depending on how to design the

features, these methods vary widely.

Studies in the second group, Galois lattice-based approaches, are also creative and insightful in

mining the semantics behind the patterns. Although until now researches in this group can only

tackle the symbol recognition problem, they introduce a novel view on the design of classifiers.

Galois lattice can be regarded as a classifier since it indicates the correspondence between two

partially ordered sets – shared attributes of a set of objects and shared objects of a set of attributes

(Jaoua and Elloumi 2002). Based on that, the classification can be achieved by navigating on the

Galois lattice, which is much closer to the hu man reasoning process. The attributes are similar to

the features used in the third group, which has already been reviewed. Recent advances can refer

to these related works (Coustaty et al. 2011; Visani et al. 2011; Boumaiza and Tabbone 2011;

Boumaiza and Tabbone 2012).

Similarly, syntactic methods can be further divided into two: handcrafting and learning. The

conventional rules are various, including but not limited to the spatial predicates between

21

primitives and the geometric information of a primitive with respect to the whole symbol (Yu et

al. 2007). Recent studies using syntactic approaches is to automatically learn implicit descriptions

of symbols using inductive logic programming based on background knowledge about spatial

relationships (Santosh et al. 2009). In general, it is not trivial to transform structural signatures into

grammars to robustly represent a symbol.

On the whole, structural or syntactic methods are more powerful in higher-level representations,

conveying how parts are connected. With the growing interest in graph embedding and

representation learning, recent advances provide significant insights into symbol recognition and

detection. However, it is still far away from end-to-end drawings interpretation since the

components in existing methods are separately trained and tuned. In the next section, related works

on deep learning will be reviewed to explain how to solve these problems via an elegant

connectionist architecture.

1.2.3 Review of Deep Neural Networks

1.2.3.1 Principles of Neural Networks

Compared to traditional statistical methods, which are limited by hand-engineered features, a

deep neural network takes advantage of its multiple layer structure to extract higher-level

features. Without the vectorization process and non-trivial graph embedding, representations at

an abstract level can be automatically learned based on the training data. Figure 1.4 shows the

multilayer neural networks and backpropagation.

22

Figure 1.4 (a) multilayer neural networks and (b) backpropagation (LeCun et al. 2015)

Figure 1.4 (a) shows the multilayer neural networks with one hidden layer and one output layer.

At each layer, the total input z is first computed, which is a weighted sum of the outputs y from the

lower layer and weights w. Then a non-linear function f(.) is applied to z to get the output of the

unit. This is the forward pass of neural networks, which can transform the input space into a

distorted space. Next, a continuous optimization problem is formulated, which is to learn the

weights in the neural networks so that the networks can be used as a feature extractor. Figure 1.4

(b) shows the backward pass. The value of cost function C(yk, zk), averaged over all the training

examples, is proportional to the square errors (tk indicates the target value). To find the weights

resulting in the local minimum of the cost function, the gradient descent algorithm is commonly

applied. Using the chain rule of derivatives, the gradient can be computed according to equations

in Figure 1.4 (b) so that weights between layers are available. In practice, to accelerate the training

23

process, stochastic gradient descent is usually applied, which is a method to repeat the optimization

process for many small sets of examples until the average of the loss function converges.

Taking into account the local correlations and high dimensions of images, convolutional neural

networks (CNNs) are widely adopted because of the four key ideas: local connections, shared

weights, pooling and the use of many layers (LeCun et al. 2015). Figure 1.5 shows a classical CNN

architecture: LeNet-5. The convolution operation is to multiply weights by the input values from

local receptive fields, which can extract the locally sensitive features called feature maps, such as

oriented edges and corners. In the framework of general multilayer neural networks, the

convolution is equal to share weights for these repeated blocks. Next, the subsampling, or pooling,

is conducted to reduce the resolution of feature maps, reducing the sensitivity of the output to shifts

and distortions (LeCun et al. 1998). In the end, fully connected layers are connected as a classifier

so that the feature extractor and the classifier can be trained together.

Figure 1.5 Architecture of LeNet-5 (LeCun et al. 1998).

Convolution neural networks are remarkable since it enables to extract high-level features as

well as end-to-end learning framework, which breaks through the plateau in traditional statistical

methods and structural methods. Inspired by the significant performance improvements, related

works are in explosive growth.

1.2.3.2 Related Works on CNN-based Object Classification and Detection

The overall evolution of the CNNs architectures for image classification is going deeper and

deeper, from LeNet-5 (LeCun et al. 1998) to AlexNet (Krizhevsky et al 2012), ZFNet (Zeiler and

Fergus 2014), VGGNet (Russakovsky et al. 2015), GoogleNet (Szegedy et al. 2014) and ResNet

24

(He et al. 2016). In addition to deep structures, recent advances lie in many aspects including

convolutional layer, pooling layer, activation function, loss function, regularization and

optimization (Gu et al. 2018).

To focus the review in symbol classification and detection, only studies related to the challenges

in this field will be reviewed. Some studies have been focused on to improve CNNs in the

invariance to scaling, rotation and translation. Lenc and Vedaldi (2015) proposed a transformation

layer to study the equivariance in CNNs, and the results showed the invariance is not always

increasing with depth. Some researchers focused on further generalizing CNNs, which can extract

feature maps invariant to the symmetry transform (Gens and Domingos 2014; Cohen and Welling

2015). Recently, the spatial transformer network (STN), a differentiable module which can be

injected into CNNs, was developed by Jaderberg et al. (2015) to increase the networks performance

related to geometric invariance. The invariance is achieved by three components: (1) localization

network – estimates the parameters of affine transformation; (2) grid generator – generates the

coordinates after affine transformation; (3) bilinear sampler – uses bilinear interpolation to round

the generated coordinates to the integers. This spatial transformer will be applied in this paper to

test its performance improvement in the symbol classification task.

In addition to learning features invariant to affine transform, another challenge lies in the

symbol detection. As mentioned in 1.2.1, symbol detection in technical drawings is not trivial

owing to the textureless nature of drawings, but recent advances in CNNs enable to encode rich

representations in local regions, which can solve this problem. One of the famous object detectors

is Region-based CNN (R-CNN), in that Selective Search is applied to extract region proposals,

and then the object in the proposed region is classified using CNNs (Girshick et al. 2014). But the

limitation of this network is that the input image must have a fixed size. To overcome this

limitation, He et al. (2015) proposed spatial pyramid pooling network (SPP), which can encode

the entire image into a fixed-length vector, but the training process is still in multiple stages. Fast

RCNN (Girshick 2015) and Faster RCNN (Ren et al. 2015) are end-to-end solutions, and Faster

RCNN is better since it spots the regions based on a region proposal network instead of Selective

Search, reducing the computation burden. Furthermore, recent studies in object detection are

notable for the one-shot paradigm, such as SSD (Liu et al. 2016) and YOLO (Redmon et al. 2015;

Redmon and Farhadi 2017; Redmon 2018), which are much faster.

25

Recently, some researchers have begun to apply state-of-the-art networks for symbol

recognition and detection. Elyan et al. (2018) presented a semi-automatic and heuristic-based

approach to localize symbols in the drawings, and CNNs are applied in the symbol classification.

Rahul et al. (2019) proposed an end-to-end pipeline to extract information in the piping and

instrumentation diagram (P&ID), and symbol detection is achieved via FCN. Both experiments

showed relatively good performance on their own datasets.

In conclusion, studies on CNNs have proved that the connectionist architecture significantly

boosts the performance in image classification and object detection, as well as in symbol

recognition and detection. In this paper, CNNs augmented with a spatial transformer will be

applied to classify symbols in various scales and orientations. Besides, Faster-RCNN will be

implemented for fast symbol spotting in piping drawings.

1.2.4 Review of Data Augmentation

For symbol classification and detection, one of the limitations of basic CNN architecture is that

the learned features are not invariant to geometric transformation; thus, this study will use data

augmentation to improve the invariance of the model and enrich the dataset. Data augmentation is

widely applied to create a larger dataset and alleviate the overfitting issue, and the following is a

brief introduction about the state-of-the-art methods.

Traditional data augmentation is achieved by performing affine transformations, brightness and

contrast changes, and noise addition. Affine transformation means that the images in the small

dataset are duplicated by rotation, scaling, translation, and shearing. As an approximation of real-

world scenarios, brightness and contrast changes are simulations of physical illumination.

Similarly, noise addition is also necessary, and the noise types include but not limited to Gaussian,

speckle, and pepper and salt. Another group of transformation derives from the prior domain

knowledge, i.e. representations of symbols should be invariant to changes in line thickness,

changes in angles between lines, etc. These augmentation strategies enable the learned model

robust to different data.

Recent advance in data augmentation is to use generative adversarial networks (GANs)

(Goodfellow et al. 2014), which can learn domain-invariant knowledge. For instance, Antoniou et

al. (2017) proposed a generative model to do data augmentation. This model can take data from a

26

source domain and generate other within-class data items based on conditional GANs, and the

experiment results showed the accuracy increase in many benchmark datasets.

In this paper, traditional data augmentation will be used in this paper to generate a larger dataset

for robust symbol classification and detection.

1.3 Goal and Objectives

The overarching goal is to fully automate the process of detecting and classifying symbols in

piping drawings. The specific objectives include 1) classification of piping symbols and 2)

detecting and labeling piping symbols from drawings.

The first objective is to classify the piping symbols using convolutional neural networks, which

can automatically learn the representations from the data. The networks used in this part are CNN

and CNN + STN, and datasets are synthetic, including eight types of symbols in piping drawings.

Then, an experiment about comparing the performance between CNN and CNN+STN will be

designed to test the performance improvement of STN in the context of symbol classification

problem. Chapter Two of this thesis is devoted to this problem.

The second objective is applying Faster RCNN to detect symbols in the drawings, considering

the clutter scenario that symbols are connected with pipelines. Compared to the first objective, the

symbol detection task is more advanced, including localizing the regions highly likely to contain

symbols and classifying different symbols. The original dataset is created by sketching in

AutoCAD software to simulate the real-world drawings, and seven symbols are used in this task.

Besides, this dataset is augmented via affine transformation and noise addition. The experiment is

conducted with a public repository of Faster RCNN on Tensorflow platform, and the model is

trained and tested using the dataset of piping drawings.

1.4 Significance and Research Contributions

The research involves the design of CNN-based methods to recognize and spot symbols in the

piping drawings. Compared to conventional approaches, this study explores the ability of CNNs

for symbol recognition and detection in cluttered engineering drawings. Two specific outcomes

are summarized:

27

First, CNN and STN are adopted for symbol classification. This combination exhibits the ability

to learn invariance to affine transformation, which captures the characteristic of symbols in

technical drawings. Specifically, two outstanding merits to apply this architecture in the context

of piping symbols recognition are as follows: 1) the convolutional neural network can extract the

features in an abstract level, and it enables to jointly train the feature extractor and the classifier;

2) the use of STN increases the ability of the model to learn invariance to translation, scale, rotation,

and more generic warping. The adaptability of CNNs in symbol recognition is evaluated by

recognition accuracy.

Second, Faster RCNN is applied to detect symbols in cluttered drawings. The benefits of this

network are in threefold: 1) instead of searching for candidate boxes using selective search, the

location of candidate boxes is based on the classification of background and foreground using

feature maps; 2) it tunes the locations of the bounding box using twice regression, which can

increase the accuracy of localization; 3) this network consists of spatial pooling layers, which is

capable of detecting symbols in multiple scales. It overcomes the challenge in the traditional

statistical methods, such as finding local descriptors for the textureless drawings and choosing the

window size.

The importance of fulfilling these two objectives is acknowledged in a wide range of fields,

including the reduction of the data inaccessibility issues in facility management, the reconstruction

of 3D models for existing buildings, and knowledge discovery in the design of piping systems.

With accurately locating symbols in piping drawings, facility staff will be free from the tedious

process of repeatedly digging into the superfluous documents so that the facility management

process will be smoothed and streamlined.

1.5 Organization of the Thesis

The remainder of this thesis is organized as follows.

Chapter 2 aims to fulfill the objective of symbol recognition. The process of synthesizing the

piping symbols is introduced. Then, the methods used to recognize the symbols in technical

drawings are explained, including the design of network architecture, the loss function and the

selection of the optimization method. Next, experiments are conducted to test the model

performance of two models. Lastly, the rotation invariance of learned representation is evaluated

28

by the predicted score of the correct class, showing that learning rotation-invariant features is the

challenge of using CNN models in symbol recognition.

Chapter 3 aims to explore the capability of Faster RCNN in the symbol detection problem. The

architecture of Faster RCNN is introduced, and four main modules of this model are clearly

explained. The next part includes data preparation and experiments. Data preparation includes the

process of synthesizing piping drawings. For experimentation, the parameters and evaluation

matrices used in this study are introduced. Based on the results, the conclusions and limitations of

using Faster RCNN in symbol detection are discussed.

Chapter 4 includes summary, conclusions, limitations and future works. In this chapter,

potential improvements on the dataset, the network architectures, and invariance measurements

are discussed to increase the adaptability of models in recognizing and detecting symbols in piping

drawings.

29

CHAPTER 2. CNN-BASED SYMBOL RECOGNITION

2.1 Introduction

In this chapter, the problem to be addressed is the symbol recognition in technical drawings.

Symbol recognition is a task that is fundamental to drawing interpretation. The challenge in the

computer-based symbol recognition in engineering drawings is to extract a set of robust features,

which is invariant to geometric transformation, noise, and distortion, from variations/noises

introduced during the symbol sketching process. Collectively, recognizing symbols and learning

invariant representations are the focuses of this chapter.

In Section 2.2, the process of generating synthetic data is introduced. The synthetic data is used

to explore the capability of CNN models in the context of symbol recognition. There are eight

types of symbols in the dataset, including various valves, water pressure meter, and the indicator.

The number of symbols in each class is 1000. The parameters for generating samples take account

of the variations of symbols in the real piping drawings, including the rotation, scaling, translation,

noises, etc., and the distribution of the parameters will be introduced in this section.

In Section 2.3, the methodology of symbol recognition is introduced. There are two models

applied in this study, including a basic CNN model and the CNN model augmented with a spatial

transformer network (STN) (Jaderberg et al. 2015). This section covers the design of the basic

CNN and CNN+STN models, including the layers, the loss function, and the selection of the

optimization method.

In Section 2.4, experiments based on two models are conducted on the Tensorflow platform.

Random subsampling is used to provide an accurate estimate of the model performance. The

experiment results show that the spatial transformer layer can improve the recognition accuracy

from 95.39% to 98.26%.

In Section 2.5, sensitivity analysis is used to test the generalization of trained models to rotation

transformation. By rotating the sample, the curve of the predicted score of the ground-truth class

is generated, which measures the degree of rotation invariance of predictions using two models.

The experimental results show that although data augmentation technology is applied, both models

30

lack the generalization capabilities to rotation transformation. Even a negligible rotation can

significantly decrease the predicted score.

2.2 Data Preparation

In this section, the simulated datasets for experiments include eight symbols in total. The

pipeline for synthesizing is to generate a normal symbol with parameters to control the variations,

apply an affine transformation to this symbol, and then add noise, distortion, and dilation/erosion.

The output is an image showing a symbol connected with pipelines, since in practice the symbol

is not always well segmented, and bounding boxes are usually not rotated (except for some

researches using rotated bounding boxes). Also, the simulated symbols are free of shearing and

stretching because these transformations are scarcely seen in drawings. The overall flowchart is

illustrated in Figure 2.1, showing the process of generating piping symbol datasets. The output is

in a black background because the zero value is taken to be black.

Figure 2.1 The pipeline of generating symbols

In the next subsections, the parameters used in the simulation process are discussed to explain

how to control variations in the synthetic datasets.

2.2.1 Normal Synthetic Symbols

The normal synthetic symbol is that the symbol is not rotated, scaled, translated or noise added,

etc., but there is still a need to customize the parameters of primitives and stroke width in this step

since symbols are various from libraries to libraries. All symbols are sketched on a white canvas,

which the size is 105 x105. The example of the simulation parameters is shown in Figure 2.2.

31

Figure 2.2 Example of parameters in a normal synthetic symbol

In this case, this symbol is symmetric. The parameter u, which is in a normal distribution,

controls the diameter of the circle in the middle. Besides, the length of the pipeline connected to

this symbol is uniformly distributed, and the stroke width is uniformly distributed from 3 to 3.2,

which is visually similar to the stroke width in real drawings. For other types of symbols, there are

other variations for primitive parameters, and most of them are consistent with piping symbols in

the real world in the aspect of symmetricity and geometric constraints. The code for generating all

symbols are listed in Appendix A.

2.2.2 Affine Transformation

Affine transformation is a necessary step for simulation since the symbols are usually in

different orientations and scales. The affine transform matrix used in this study is indicated in

Equation 2.1.

[
𝑥𝑜

𝑦𝑜

1
] = [

𝑠 ∗ 𝑐𝑜𝑠 𝛼 𝑠𝑖𝑛 𝛼 𝑡𝑥
− 𝑠𝑖𝑛 𝛼 𝑠 ∗ 𝑐𝑜𝑠 𝛼 𝑡𝑦

 0 0 1

] [
𝑥𝑖

𝑦𝑖

1
] (2.1)

32

In Equation 2.1, (xi, yi) means the coordinates of the input, and (xo, yo) are the coordinates of

the output. s is the scale value and 𝛼 indicates the rotation angle, (tx, ty) is a pair of parameters,

meaning the translation distance with respect to the origin. Since this step is performed before

rasterizing, the interpolation is not needed. The parameters for affine transformation for all

symbols are the same as listed in Table 2.1.

Table 2.1 Parameters for affine transformation

Parameter Distribution

s N (1.2, 1)

𝛼 U (0, 360)

tx N (0, 400)

ty N (0, 400)

This dataset is designed for symbol recognition, which assumes that the symbol is segmented.

Therefore, the variance of the scale of the symbol is small. The rotation angle is uniformly

distributed from 0° to 360°, meaning that the generated samples can be presented in all orientations

to ensure the model can be possibility generalized to rotation transformation. The translation

parameters are selected considering the size of the canvas. Finally, the plot symbol will be resized

into 60 x 60 and rasterized for further operations.

2.2.3 Additional Variations

Taking account of the real-world conditions, other variations are added, including noise,

distortion and dilation/erosion operations. The ratios of augmented images and the parameters to

control the strengths of these operations are listed in Table 2.2.

33

Table 2.2 Noise and distortion additions and dilation/erosion operations

Operation Ratio Type Parameters

Noise

0.25
Speckle

(J = I + n*I)

n is uniformly distributed with mean 0

and variance 0.05.

0.25 Salt and pepper Noise density=0.05

0.5 Gaussian white noise N (0, 0.01)

Distortion 0.5
Elastic deformation

(Simard et al. 2003)

7 x 7 Gaussian filter with σ = 10

Scalar = 200

Dilation or

Erosion

Dilation: 0.25
Line-shape

structuring element

Line length =2

Orientation ~ U (0, 360)

Erosion: 0.25
Line-shape

structuring element

Line length =3

Orientation ~ U (0, 360)

The criteria for selecting parameters are to increase the randomness of samples but to ensure

that the symbols can be still interpreted by a human.

2.3 Methodology

To recognize the piping symbols in paper drawings, the basic CNN model and CNN+STN

model are used in this paper. The customization parts are the design of layers and the loss function,

and selection of the optimization method. For these parts, some recent advances in designing the

layers, such as batch normalization and ReLU, are applied in this model to improve the

performance. Also, L2-norm is used in this study to reduce overfitting issues. Since learning is a

process to minimize the loss function, the proper optimization method also needs to be selected.

2.3.1 The Design of the Architectures of the Basic CNN

The basic CNN architecture is shown in Table 2.3.

34

Table 2.3 The architecture of the basic CNN

Basic Convolution Network

Input 60x60 grayscale images

3 x 3 conv. 8 BN ReLU

2 x 2 Max pooling

3 x 3 conv. 16 BN ReLU

2 x 2 Max pooling

3 x 3 conv. 32 BN ReLU

2 x 2 Max pooling

2048 to 64 Dense

64 to 8 Dense

Softmax

M x M conv. N: a convolution layer (LeCun et al. 1998). M x M is the size of filters, and N is

the number of filters convolving over the image or feature maps. Figure 2.3 shows how the

convolution layer works. The operation is to multiply the weight and the corresponding pixel value

in the input image, sum them and add a bias. The result will be the output. The padding area is

used to ensure the size of the output is the same as the input. The tricky part of this operation is

that it can encode the neighboring values into the center, which can capture the information in a

local region. Also, a convolutional layer is another type of fully connected layer, which the weights

are shared with other units. Since the grayscale image is used in this study, the number of outputs

(feature maps) is equal to the number of the filters used. In this layer, weights and biases are the

parameters; thus, millions of parameters will be generated from a deep neural network.

35

Figure 2.3 A convolutional layer using a 3x3 filter

BN: a batch normalization layer (Loffe and Szegedy 2015). The batch normalization layer is

used to reduce the internal covariate shift, which is caused by the various distributions of input

data from different batches. In deep networks, the change in the inputs will result in a problem,

because all layers need to adapt to the new distribution, and the effects of distribution shift will be

amplified down the network. So, the batch normalization layer is used to normalize batches into

zero mean and unit variance approximately through several updates. The algorithm can be referred

to this work (Loffe and Szegedy 2015).

ReLU: a rectified linear unit (Nair and Hinton 2010). It acts as an activation function, which

can prune the negative values to zero and retain positive values. It is used to add the nonlinearity

of the model.

M x M Max pooling: a subsampling layer. It takes the maximum value in a sub-region, which

can reduce the features and computation complexity of the network. M x M is the region size.

Figure 2.4 shows the mechanism of the Max pooling layer. The maximum value in the 2 x 2 matrix

is taken as the output. So, after this layer, the width and height of the outputs will be reduced to

half.

36

Figure 2.4 Max pooling using a 2 x 2 window and a stride size of one

Dense: a fully connected layer. M is the number of the input neurons, and N is the number of

the output neurons.

Softmax: a classifier. It applies a standard exponential function to each element from input

vectors and then normalizes these values to ensure the sum of the output equals to one. Equation

2.3 illustrates this process. So, the output of the softmax layer is the probability of the input

belonging to each class, and the dimension of the output in this study is eight. In Equation 2.2, K

is the number of the class. z is the input of the softmax layer, and σ(𝑧)i is the output, which is the

predicted score of the 𝑖𝑡ℎ class.

𝜎(𝑧)𝑖 =
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗𝐾

𝑗=1

 for 𝑖 = 1, … , 𝐾 and 𝑧 = (𝑧1, … , 𝑧𝐾) ∈ 𝑅𝐾 (2.2)

2.3.2 The Design of the Architectures of the CNN + STN Model

The spatial transformer network (STN) is proposed by Jaderberg et al. (2015) to facilitate the

geometric invariance learning by an embedded module. In this study, the spatial transformer

network is embedded after the input layer as shown in Figure 2.5, so the size of the input and the

size of the output of this network are the same.

37

Figure 2.5 The architecture of CNN+STN model.

STN is composed of the localisation network, the grid generator and the sampler. M is the

transformation matrix, and T(G) represents the transformation operation is applied on the regular

grid G.

This network consists of three components: (1) a localisation network to output the six

parameters in affine transform; (2) a grid generator to produce the coordinates of the image after

the transformation; (3) a bilinear sampler to round the coordinates to integers using the bilinear

interpolation. The localisation network can be either a standard convolutional network or a fully

connected network.

The architecture of the localisation network used in this paper is shown in Table 2.4.

Table 2.4 The architecture of the localisation network

The localisation network

Input 60x60 grayscale images

3 x 3 conv. 8 BN ReLU

2 x 2 Max pooling

3 x 3 conv. 16 BN ReLU

2 x 2 Max pooling

3600 to 64 Dense

64 to 6 Dense

38

The grid generator is to apply the pointwise transformation to the input image, and the

transformation is illustrated in Equation 2.3.

 (
𝑥𝑜

𝑦𝑜
) = 𝑀 (

𝑥𝑖

𝑦𝑖

1
) = [

𝑎 𝑏 𝑐
𝑑 𝑒 𝑓

] (
𝑥𝑖

𝑦𝑖

1
) (2.3)

In Equation 2.4, M is the transformation matrix, which is regressed from the localisation

network. (𝑥𝑖 , 𝑦𝑖) represents the coordinates of the input image. The coordinates of the output image,

(𝑥𝑜 , 𝑦𝑜), are the product of M and the pixel values in the input image.

The creativity of the spatial transformer network is that it builds up a differentiable module, so

it can actively transform the images or feature maps to minimize the overall loss function.

2.3.3 The Design of the Loss Function

In addition to the design of networks architecture, the loss function is also critical to the

performance of the model. The loss function used in this paper is illustrated in Equation 2.4. In

this equation, 𝜽 represents all the parameters used in the model.

𝑙𝑜𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = ∑ 𝐻(𝒚𝒊, 𝒚̂𝒊)
𝑁
𝑖=1 + 0.01 ∗ ||𝜽||

2
 (2.4)

The fitting term, 𝐻(𝒚, 𝒚̂𝒊), in the loss function, is the cross-entropy, which is commonly used in

the multilabel classification problem. The principle of cross entropy is illustrated in Equation 2.5,

which can be explained from the view of maximum likelihood.

Pr(𝒚̂𝐢 |𝜽) = [𝑦̂𝑖
1, 𝑦̂𝑖

2, … , 𝑦̂𝑖
𝐾] where ∑ 𝑦̂𝑖

𝑗𝐾
𝑗=1 = 1

Pr(𝒚𝒊|𝜽) = [𝑦𝑖
1, 𝑦𝑖

2, … , 𝑦𝑖
𝐾] where ∑ 𝑦𝑖

𝑗𝐾
𝑗=1 = 1 (2.5)

 − 𝑙𝑜𝑔(𝑃𝑟(𝒚̂𝟏 , 𝒚̂𝟐, … 𝒚̂𝑵|𝜽)) = − 𝑙𝑜𝑔 (∏ 𝑃𝑟(𝒚̂𝒊 |𝜽)
𝑁

𝑖=1
)

= − ∑ 𝑙𝑜𝑔 𝑃𝑟(𝒚̂𝒊 |𝜽)
𝑁

𝑖=1

39

= − ∑ ∑ 𝑦𝑖
𝑗
𝑙𝑜𝑔

𝐾

𝑗=1

𝑁

𝑖=1

𝑦̂𝑖
𝑗

 = ∑ 𝐻(𝒚, 𝒚̂𝒊)

𝑁

𝑖=1

In Equation 2.5, the index of the sample is denoted by i, and the index of the class is denoted

by j. The number of classes is denoted by K. 𝒚̂𝒊 is the prediction vector in K dimensions, which

indicates the probability of K classes for the ith sample, In Equation 2.6, the vector yi is the ground-

truth vector, which is a one-hot encoding of the ith sample, in which one represents the label

category and zero represents other categories.

In Equation 2.7, the number of samples is denoted by N. This equation shows that the sum of

cross entropy, 𝐻(𝒚, 𝒚̂𝒊), is equal to the negative log-likelihood over N samples, which means that

to minimize the entropy is equal to maximize the log-likelihood of parameters. That is the reason

why the cross-entropy is usually used as the fitting term in the cost function. In addition, the

benefits of the log operation are in twofold: (1) it can reduce the production to summation, which

is much easier to calculate; (2) if the number is very small, it will run out of the floating-point

precision in the computer.

In addition to the fitting term, the L2 norm regularizer, ||𝜽||
2
, is added in the loss function to

reduce the overfitting issues. L2 norm is used as a shrinkage of weights, which makes parameters

much closer to zeros (but not exact zeros). This can reduce the complexity of the model and reduce

the variances in the view of bias-variance tradeoff. So, adding the regularization term can help

alleviate the overfitting issues.

2.3.4 The Selection of the Optimization Methods

The optimization method applied in this study is Adam (Kingma and Ba 2015). The main

challenge in the optimization is to choose a proper direction and step size in each update. Adam is

a complex algorithm, which takes advantage of both RMSProp and Momentum (Qian 1999). In

the Momentum method, the update is based not only on the gradient but also on the previous

movement. RMSProp is proposed by Hinton, which is to divide the learning rate by the root mean

square (RMS) of the multiplication of the gradients and previous decayed gradients. Besides, the

40

originality of Adam is that it also incorporates a bias-correction step. Adam algorithm is

computationally efficient and widely used in training deep neural networks.

2.4 Experiments

2.4.1 Experimental Setup

The application of the CNN is demonstrated in classifying eight piping symbols, including

valves, the water pressure meter and the indicator, which are commonly used in the building

plumbing system. The sample images for eight classes are shown in Figure 2.6.

Figure 2.6 Sample images used in the dataset for symbol recognition

The synthetic dataset includes 1000 samples for each class, and the size is 8 * 1000 = 8000 in

total. The ratio to split the training set, validation set, and testing set is 3:1:1, and the size of the

input image is 60 x 60. All the input images are grayscale images, and the pixel intensity was

scaled down to [0, 1]. The dataset was shuffled first and then randomly split into training,

validation, and testing set for five times. This can reduce the biases in reporting the result, which

gives a realistic estimation of the predictions. The CNN is developed using Tensorflow API, which

is an open source platform for machine learning. Multiple experiments were performed to select

the parameters in the neural networks, such as the number of layers, learning rate, batch size and

so on. Based on the experiments, the best set of parameters are selected for two models, which is

listed in Table 2.5.

41

Table 2.5 Experimental setup

Model Learning rate Batch size Epoch

CNN 0.01 256 50

CNN + STN 0.0005 256 70

The learning rate for training the CNN + STN model is much smaller than a standard CNN

model. The reason is that training with a larger learning rate will cause the loss function diverged.

The batch size for both models is 256, which is selected as a compromise of the generalization

capability and training efficiency. A larger batch size will make the loss converge faster. However,

using a larger batch degrades generalization abilities of models (Keskar et al. 2016). For a standard

CNN model, the loss is converged between 30 to 50 epochs; while for a CNN + STN model, the

loss is converged between 50 to 70 epochs. So, the number of epochs is selected based on the loss

convergence.

2.4.2 Experimental Results

The evaluation matrix is the accuracy and confusion matrix. The calculation of accuracy is

shown in Equation 2.6.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (2.6)

In Equation 2.6, TP denotes the number of true positives, TN denotes true negatives, FP refers

to the number of false positives, FN refers to the number of false negatives. The results of these

are listed in Table 2.6, including the training, validation, and testing accuracies for five repeats.

The mean and standard deviation for the accuracy is illustrated in Table 2.7.

42

Table 2.6 Experimental results – recognition accuracies

No.

CNN CNN + STN

Training Validation Testing Training Validation Testing

1 95.94 95.31 95.94 99.65 99.50 99.22

2 96.16 94.84 94.44 98.37 97.92 97.22

3 97.29 96.29 94.88 98.46 97.64 98.05

4 96.85 96.29 95.88 98.89 98.68 97.22

5 97.07 96.22 95.81 99.37 99.24 99.61

Table 2.7 The average and standard deviation of recognition accuracies for five repeats

Model

Training Validation Testing

Avg. (%) Std. (%) Avg. (%) Std. (%) Avg. (%) Std. (%)

CNN 96.66 0.58 95.79 0.68 95.39 0.68

CNN +STN 98.94 0.56 98.59 0.81 98.26 1.11

For the standard CNN, the average training accuracies is 96.66%, while the average of the

testing accuracies is 95.39%, which is a little smaller than the training accuracies. For CNN + STN,

the average training accuracies is 98.94% and the average of testing accuracies is 98.26%. Based

on the testing accuracies, the CNN + STN model improves the accuracy from 95.39% to 98.26%,

which increases by 2.87%.

The visualization of the output of the spatial transformation network is attached in Appendix B,

which some symbols showing interesting patterns of transformation.

The confusion matrices for CNN and CNN + STN are shown in Table 2.8 and Table 2.9.

43

Table 2.8 The confusion matrix for the CNN model

 (a) (b) (c) (d) (e) (f) (g) (h)

(a) 214 0 0 0 0 0 0 0

(b) 0 179 0 0 11 0 0 0

(c) 0 17 156 12 5 0 0 0

(d) 0 2 2 181 10 0 0 0

(e) 0 2 1 0 196 0 0 0

(f) 0 0 0 0 0 218 0 1

(g) 0 0 0 0 0 0 203 0

(h) 0 0 0 0 0 0 0 190

Table 2.9 The confusion matrix for the CNN + STN model

 (a) (b) (c) (d) (e) (f) (g) (h)

(a) 210 0 0 0 0 0 0 0

(b) 0 195 0 0 0 0 0 0

(c) 0 0 197 1 0 0 0 0

(d) 0 1 3 205 1 0 0 0

(e) 0 0 0 0 178 0 0 0

(f) 0 0 0 0 0 201 0 0

(g) 0 0 0 0 0 0 194 0

(h) 0 0 0 0 0 0 0 214

Based on Table 2.8, (b) gate valve, (c) balancing valve and (d) needle valve are easily

misclassified. The reason may be that these three types of valves are visually similar. Based on

Table 2.9, the model with spatial transformer shows a better result that the misclassification among

these three types of valves is reduced. Therefore, the trained CNN + STN model is more robust to

classifying visually similar valves.

2.5 Generalization Capabilities of CNNs to Rotations

2.5.1 Rotation Invariance

The formula for invariance is illustrated in Equation 2.7.

𝑓(𝑇(𝑥)) = 𝑓(𝑥) (2.7)

44

Formally, f is invariant to transformations, if the output is identical for all transformations T of

the input x (Schmidt and Roth 2012).

Generally, researchers focus on the invariance properties of features. In CNNs, the rotation

invariance is not inherently satisfied, but the “approximately” invariance can be learned from the

excessive training data (Schmidt and Roth 2012). So, data augmentation technologies are

commonly used to enrich the data with various rotations. However, the shortcoming of this

approach is that it is difficult to understand what invariant features are learned.

Learning robust representations invariant to rotations is a crucial problem in symbol recognition.

Different from the objects in the natural scene, the symbols in drawings are likely to be rotated in

different angles. However, without the transformation-invariant features, CNNs can be fooled with

a simple transformation (Engstrom et al. 2018). Therefore, learning rotation-invariant descriptors

is necessary for the symbol recognition problem.

In this paper, the prediction correctness of models reflects of rotation invariance of features. If

the predictions are not invariant to rotations, it means the features learned from networks are not

rotation invariant, which is the limitation of CNN-based methods.

2.5.2 Generalization Capabilities of CNNs to Rotations

In Section 2.4, the CNN + STN model shows the accuracy of 98.26% on the testing data,

however, it cannot ensure the generality of the trained model. Inspired by the work of Azulay and

Weiss (2018), the predicted score vector is used to analyze the sensitivity of both CNN and CNN

+STN models to rotations It is designed to test if the generalization capabilities of CNNs can be

obtained using data augmentation and spatial transformer module.

The predicted score vector is the output of a model, which indicates the probability of the

symbol belonging to the corresponding class.

The experiment tests if rotation transform attacks the CNN and CNN + STN models, which

have been trained in Section 2.4. Three samples are used, and each sample is rotated

counterclockwise with an interval of five degrees. The range of rotation is from 0° to 180°. By

feeding the samples into the network, the predicted scores of the correct class can be extracted

from the outputs of the softmax layer. Figure 2.7 shows the predictions of CNN and CNN + STN

models.

Figure 2.7 Predictions of CNN and CNN + STN models

 4
6

46

Figure 2.7 shows the samples tested, the predicted scores of the correct class using the standard

CNN model and the CNN + STN model. For the curves, the horizontal axis of the plots represents

the rotation angle, and the vertical axis means the probability of the sample recognized as the

correct class. The curve shows how the predictions change with rotations. The color of the square

indicates if the rotated sample is correctly recognized or not. Blue means it is correctly classified,

while red means it is wrongly classified as one of the other classes. For (a) ball valve and (f)

indicator, the trained CNN + STN model shows a better performance in generalization to rotation

transform, because the curve is almost a straight line and the probability of correct classification

equals to one. The possible reason is that salient features are extracted from circles (in different

scales for these two types of symbols), so the effects of rotation are reduced since the circle is

inherently invariant to rotations. For other types of symbols, both models show jagged curves in

predicting a correct class, meaning that they generalize poorly to rotation transformation. Also, the

sharp shape (i.e sample (c) from 100° to 105°) in Figure 2.7 means that even a negligible rotation

can significantly decrease the predicted score.

Generally speaking, this experiment shows the difficulty of convolutional networks in learning

rotation-invariant features, and the invariance properties of learned features depend on the

geometric pattern of symbols.

2.6 Summary and Conclusions

2.6.1 Summary

The focus of this chapter is to recognize symbols in piping drawings using CNNs. The symbols

dataset is simulated based on the geometric constraints, and then augmented with scaling, rotation,

translation, and noises. Two models, CNN and CNN+STN, are applied to compare the model

performances in symbol recognition. The experiments are conducted based on the synthetic dataset,

and the results show that the accuracy improves 2.87% using the spatial transformer module. The

numbering and contents of sections are summarized in the following.

In Section 2.2, the data preparation process is introduced. It covers how to generate synthetic

data and the internal parameters for samples. Taking account of the variations in stroke width, the

geometric relationship between primitives, affine transformation, noises, and distortions, the

synthetic dataset is generated for experiments.

47

In Section 2.3, the methodology of symbol recognition is covered, including the design of

network architectures, the cost function and the selection of the optimization method. The state-

of-the-art models, CNN and CNN+STN, are used to recognize symbols in piping drawings. The

principles of these methods are emphasized and clearly elaborated in this section.

In Section 2.4, experiment setup and results are stated. Experiments are implemented on the

Tensorflow platform based on the CNN and CNN + STN models. Recognition accuracy is used as

the evaluation matrix to compare the model performances. To further understand the spatial

transformer network, the output of this module is visualized in Appendix B.

In Section 2.5, the generalization capabilities of CNNs to rotations are discussed. The limitation

of CNN-based approaches is proposed by counterexamples, showing how prediction correctness

changes with rotations.

2.6.2 Conclusions

This chapter presents a CNN-based method for recognizing symbols in piping drawings, and

the spatial transformer is applied in this study. The basic CNN model consists of three layers of

convolution, batch normalization, Relu, and max-pooling, and two fully connected layers,

followed by a softmax layer for classification. The spatial transformer module is injected after the

input layer and consists of three components: a localisation network, a grid generator and a sampler.

The localisation network consists of two layers of convolution, batch normalization, Relu, and

max-pooling, and two fully connected layers to output the six parameters in the affine matrix. This

spatial transformer is differentiable, so it can actively transform the images or feature maps to help

minimize the overall loss function of the network during training (Jaderberg et al. 2015).

Previous CNN-based approaches on symbol recognition only adopted data augmentation

technologies to improve the generalization capabilities of CNNs to the rotation, scaling, and

translation. The proposed method shows a gain of 2.87% with the spatial transformer in the

recognition accuracy. Also, the CNN + STN model is more robust to classifying visually similar

valves.

Compared with the traditional statistical methods, the main advantage of CNN-based methods

is that the classification network can be potentially embedded into a larger network for the

detection task, which will be discussed in Chapter 3.

48

2.6.3 Limitations

The limitation of this study is that the synthetic dataset is used to train and test the CNN models

so that the trained models cannot be directly used on the real piping drawings.

2.6.4 Future Works

The first thing is to collect the real drawings because it is essential in symbol recognition

whichever method is used. Also, there is a need to improve the network architecture to learn

rotation-invariant descriptors, which is a challenge in CNNs. Recently, researchers have begun to

study the transformation invariance in CNNs using rotated filters for convolutional layers (Marcos

et al. 2016) or a transition layer which can transform the image into the Fourier space (Chidester

et al. 2018). These are the candidate solutions to improve the model in learning rotation-invariant

representations. Also, to measure the transformation invariance of the features, the quantified

approaches, such as measuring the linearity of learned features under the transformation (Lenc and

Vedaldi 2015), are needed.

49

CHAPTER 3. CNN-BASED SYMBOL DETECTION

3.1 Introduction

Symbol detection in piping drawings is the problem to be addressed in this chapter. Given a

drawing in whole or in part, it can identify where the symbol is. The challenge in symbol detection

derives from the paradox: to correctly recognize the symbols, one should be able to segment them;

but to correctly segment them, one needs to recognize the symbols (Doermann and Tombre 2014).

In this paper, the state-of-the-art CNN-based object detection methods are used to detect symbols

in piping drawings and to explore the potential improvements.

In this paper, Faster Region-based Convolutional Neural Networks (Faster-RCNN) (Ren et al.

2016) is applied to detect symbols in piping drawings. Section 3.2 covers the methodology of

Faster-RCNN, including the components of this network. By digging into the architecture of

Faster-RCNN, the adaptability of this model to detect symbols can be discussed.

In Section 3.3, the data preparation and experiments are stated. The drawings are sketched using

AutoCAD MEP software, and symbols are selected from the piping component library. Next, the

sketched drawings are cropped into several patches and augmented with affine transformation and

noise addition. For experimentations, a public Tensorflow repository of Faster RCNN (Chen and

Gupta 2017) is used for training and testing the generated dataset. The model performance is

evaluated using the mean Average Precision (mAP) under three levels of Interaction over Union.

The results show that piping symbols in a cluttered drawing can be detected and classified;

however, some classes have low Average Precision (AP) owing to the small size of data.

3.2 Methodology

There are four components in Faster RCNN (Ren et al. 2016), including a basic convolutional

network to extract feature maps, a region proposal network (RPN) to classify the background and

foreground, an ROI pooling layer to generate fixed-length feature vectors, and a classification

module. The feature maps generated by the basic convolutional network are share for both RPN

and ROI pooling. Figure 3.1 illustrates the architecture of Faster RCNN.

50

Figure 3.1 The architecture of the Faster RCNN network (Ren et al. 2016)

3.2.1 The Convolutional Network

The convolution network can be one of the popular deep CNNs, such as VGG, ZF, and ResNet.

It is used to extract features from images, so the fully connected layers are dropped, and the outputs

are feature maps. The convolutional network used in this paper is VGG16, since it shows good

performance on the ImageNet dataset and the architecture is listed in Table 3.1.

Table 3.1 The architecture of VGG16 (Simonyan and Zisserman 2016)

VGG16

2 * conv3-64

max-pooling

2 * conv3-128

max-pooling

3 * conv3-256

max-pooling

3 * conv3-512

max-pooling

3 * conv3-512

51

After the backbone network, the size of the output feature maps is downscaled by after four

layers of max pooling.

3.2.2 The Region Proposal Network

The Region Proposal Network (RPN) is critical to accelerating the region detection process.

The architecture of this network is shown in Figure 3.2.

Figure 3.2 The architecture of RPN

Figure 3.3 The anchors which scale ∈{128, 256, 512} and aspect ratio ∈{0.5, 1, 2}

52

Based on Figure 3.2 and 3.3, 9 anchors are assigned to each point in feature maps, which equals

to generate anchors with a stride of 16 on the original image. The aspect ratio of anchors belongs

to {1:1, 1:2, 2:1}. Then, there are two paths. The first one is a classification layer, which can

classify the foreground and background. So, the depth of feature maps is 18 (9 anchors x 2 labels),

and the flattened feature vectors can be fed into the softmax layer for binary classification. The

second path is for the bounding box regression. The proposals are adjusted by estimating the

parameters of scaling and translation, as shown in Equation 3.1 and 3.2. (Girshick et al.2013)

= ()x y w hA A A A A, , ,

(, , ,)x y w hG G G G G= (3.1)

() (' , ' , ' , ') (, , ,)x y w h x y w h x y w hF A A A A G G G G G G G G= , , ,

' ()x w x xG A d A A= +

' ()y h y yG A d A A= + (3.2)

' exp(())w w wG A d A=

' exp(())h h hG A d A=

(x, y, w, h) represents the coordinates of the center, the width and the height of boxes. A

represents the anchor box, and G represents the ground-truth box. G’ is the regressed bounding

box using function F. Then, the problem is formulated as a prediction of the transformation, which

is (, , ,)x y w hd d d d . (, , ,)x y w ht t t t is similar to (, , ,)x y w hd d d d but it is associated with G, not G’. The

loss function and the smooth L1 loss is illustrated in Equation 3.3 (Girshick 2015).

1

{ , , , }

(,) (())loc L i i

i x y w h

L t d smooth t d A


= −

2

1

0.5 1
()

0.5
L

x if x
smooth x

x otherwise

 
= 

−

 (3.3)

53

The loss function in this component consists of the loss of the bounding box location and the

binary classification, and a parameter 𝜆 is used to balance these two tasks losses. In this study, 𝜆=1.

Based on the foreground anchor and bounding box regression, proposals are generated for the ROI

pooling layer.

3.2.3 ROI Pooling

ROI pooling is applied to generate fixed-length feature vectors. The proposals are in different

sizes, which cannot be fed into the convolutional networks directly. The feature maps in the region

proposal are separated into the same number of grids, and a max pooling operation is applied on

each grid. This can generate fixed-length representations, which can remove the fixed-size

constraint of the network. The architecture of ROI pooling is shown in Figure 3.4.

Figure 3.4 The architecture of ROI pooling

3.2.4 Classification

The classification is based on the feature maps of region proposals, including two modules

which are classification and bounding box regression. The classification is achieved by a fully

54

connected layer and a softmax layer. The location of the bounding box is further tuned using

regression, resulting in the final output.

3.3 Data Preparation and Experiments

3.3.1 Data Preparation

The data is generated by sketching a piping plan using AutoCAD MEP software, and seven

classes of symbols in drawings are chosen from the default library of piping components.

Sketching takes account of the connectivity between symbols and pipelines, the cluttered

environment with the symmetry axis and terminal symbols, to simulate the real drawings. The total

number of drawings is fourteen with different scales, and then they are cropped into patches and

augmented with rotation, scaling, and noise addition. Finally, 225 images are generated for training,

validation, and testing.

Figure 3.5 Seven symbols used in drawings

PASCAL VOC format is used to store the dataset, including a folder for images, a folder for

XML files, and a folder for TXT files. PASCAL VOC is a dataset which is a popular used in

detection and segmentation. XML files store all the information about an image, such as the classes

55

of objects and the locations of the bounding boxes. TXT files indicate which set and which class

the sample image belonging to. LabelImg, a graphical image annotation tool, is used for labeling.

The annotations of the objects can be saved as XML files in PASCAL VOC format. Then, based

on the XML files, the corresponding TXT files are generated automatically by parsing the

information in XML files. This is the general pipeline of generating a dataset in PASCAL VOC

format.

The numbers of symbols for each class are summarized in Figure 3.6.

Figure 3.6 The distribution of the numbers of symbols for each class

Based on Figure 3.6, the size of this dataset is small, especially for symbol 5, 6 and 7. This

means the trained model is likely to be overfitting. This dataset is used to test the performance of

this model in symbol detection, and it will be enlarged in the future.

3.3.2 Experimental Setup

Several parameters are needed to set up the experiment. First, the ratio between the validation

set and training set is 0.3, and the ratio between the testing set and the sum of the validation set

and training set is 0.3. This model is trained with a full batch, and the total number of iterations is

70000. The optimization method used in this chapter is the stochastic gradient descent with

momentum method (SGDM) (Qian 1999), and the initial learning rate is set to 0.001. The scales

of anchors are {128, 256, 512} and the aspect ratios are {0.5, 1, 2}, so 9 anchors are generated for

each grid.

176

236

483
435

37 45 26

0

100

200

300

400

500

600

1 2 3 4 5 6 7

56

The Average Precision (AP) is the area under the precision-recall curve. The evaluation matrix

for symbol detection is the mean Average Precision (mAP), which is the mean of APs for seven

classes. Formally, the formula for precision, recall, AP and mAP is illustrated in Equation 3.4.

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3.4)

 AP = ∫ 𝑝(𝑟)𝑑𝑟
1

0

 mAP =
∑ 𝐴𝑃𝑖

𝐾
𝑖=1

𝐾
, K is the number of classes

The localization task is typically evaluated on the Intersection over Union threshold (IoU). The

formula for IoU is illustrated in Equation 3.14. Area of interaction means the overlap of the

predicted bounding box and the ground truth, and area of a union means the union of the predicted

bounding box and the ground truth.

IoU =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛
 (3.5)

3.3.3 Experimental Results

The experiment is designed to detect seven symbols in piping drawings, and the IoU levels are

set to 0.5, 0.6 and 0.7 so that the average precision is calculated based on these three levels. These

IoU levels are commonly used in the researches using the PASCAL VOC dataset. Table 3.2 shows

the experiment results, including the mAP and the AP for each class.

57

Table 3.2 Results for piping symbols with Faster RCNN detectors and VGG16.

No. AP
IoU=0.5

 AP
IoU=0.6

 AP
IoU=0.7

Symbol 1 90.9 90.9 90.9

Symbol 2 90.8 90.8 90.4

Symbol 3 90.5 90.5 90.1

Symbol 4 88.9 88.9 80.9

Symbol 5 67.8 67.8 31.6

Symbol 6 94.7 94.7 59.1

Symbol 7 56.2 56.2 45.5

mAP 82.8 82.8 69.8

Based on Table 3.2, Faster RCNN achieves good results on the symbol 1-4 with APs are greater

than 0.8 when IoU equals to 0.7. For symbol 6, the AP dropped abruptly when IoU changes from

0.6 to 0.7. It means the predicted class is correct, but the location of the bounding box is not

regressed well. Relatively, Faster RCNN model shows the undesired result on symbol 5-7. The

reasons for this failure might be the imbalanced data or the small size of the data as shown in

Figure 3.6. Thinking of the symbol 7, which contains only 27 samples. Suppose the ratio for

training, validation, and testing for this symbol is the same the ratio for drawing images. In this

case, only 6 samples are used for testing, the estimation will introduce a large bias. Also, the

instances of the minority class are oversampling, leading to overfitting issues.

Overall, this problem can be solved by increasing the number of symbols in a small size, so

data augmentation technologies can be used to enrich the dataset. This issue will also occur in real

drawings. Some of the classes are frequently used in drawings, but some are rarely used. Therefore,

this issue needs to be solved whether synthetic data or the real data are used.

The samples for true positive and false positive are shown in Figure 3.7 to visualize the results.

58

(a) Symbol 1 detections with p (symbol 1 | box) >= 0.8

(b) Symbol 2 detections with p (symbol 2 | box) >= 0.8

Figure 3.7 The samples of true positive and false positive

59

There is an interesting observation that the symbol 2 is misclassified as symbol 1, but the

locations of bounding boxes of this symbol in true positive and false positive cases are the same.

The possible reason is that they are originally from different anchors, and finally adjusted to this

location after the regression. The reason of this kind of errors needs to be further studied with

visualizing how the location of the bounding box changes in different stages (i.e comparing the

outputs of the bounding box locations after the first regression and the second regression).

3.4 Summary and Conclusions

3.4.1 Summary

The focus of this chapter is to detect symbols in piping drawings using Faster RCNN. The

dataset is generated by sketching in AutoCAD MEP software, and symbols are selected from the

default library. The results of experiments on Faster RCNN show its effectivity in the symbol

detection task, but the Average Precision of the minority class is severely dropped by imbalanced

data or small size of samples. Therefore, future works can be focused on labeling more objects and

reducing the effects of the imbalanced data in drawings.

In Section 3.2, the methodology of symbol detection is introduced. The model used for symbol

detection is Faster RCNN, which is a unified network composed of four modules. The principles

of the four modules are clearly explained. The advantages of this model are discussed in this

section.

In Section 3.3, the dataset is prepared by sketching in AutoCAD software, and symbols are

selected from the default piping library. Next, the sketched drawings are cropped into several

patches and augmented with affine transformation and noise addition. For the experiment part, the

public Tensorflow repository of Faster RCNN is used in this study. Using this library, the model

can be trained using the dataset of piping symbols. The results show that piping symbols in a

cluttered drawing can be detected and classified using Faster RCNN; however, some classes have

low AP owing to the imbalanced data, and this factor also needs to be considered when using real

drawings.

60

3.4.2 Conclusions

This chapter mainly focuses on exploring the capability of Faster RCNN on the symbol

detection task. The backbone network used in this experiment is VGG16. The scales of anchors

are {128, 256, 512} and the aspect ratios are {0.5, 1, 2}. SGDM is applied to optimize the loss

function, which consists of the loss for bounding box regression and the loss for classifications

(binary in the region proposal network and multiclass in the classification module).

This method shows a good result with a mAP of 82.8% (IoU=0.5), which can be used in practice.

The generalization of the model can be improved by labeling more symbols in various templates

and libraries.

Region detection using traditional statistical methods is challenging owing to its textureless

nature. Comparatively, Faster RCNN takes advantage of the regression of the bounding box, which

makes the size and the location of windows more flexible. Also, it combines the location loss and

classification loss into the cost function, so Faster RCNN can provide an accurate prediction of

both the bounding box location and the symbol class via jointly minimizing the loss of locations

and classification.

3.4.3 Limitations

This study is an exploratory work of symbol detection. The limitations are in two aspects: (1)

the dataset is not balanced and too small, and it is not collected from real drawings; (2) the

backbone network is too deep, leading to an overfitting problem.

3.4.4 Future Works

Future works are mainly in threefold: (1) collecting real drawings with different

templates/libraries and labeling more symbols to enrich the dataset; (2) replacing the current

backbone network into a smaller one, specifically, the number of layers is smaller; (3) combining

other modules, which can improve the capabilities of learning invariance to geometric

transformation.

61

CHAPTER 4. SUMMARY AND CONCLUSIONS

4.1 Summary and Conclusions

This study presents two topics, symbol classification, and detection based on CNN methods.

Chapter One of the thesis is devoted to providing an overview of the research problems, related

works, and challenges that underpin my research significance and thereby the research objectives.

Chapter Two of the thesis proposes a CNN model, which is augmented with a Spatial

Transformer Network (STN) for recognizing piping symbols. The merits of STN are dual: (1) it is

a differentiable module, which can be embedded in CNNs; (2) it can actively learn the parameters

in affine transformation matrix in the training process. The improvement of the proposed CNN

model is evaluated using a synthetic dataset, including eight piping symbols. Compared with

previous CNN-based approaches on symbol recognition, the proposed method shows a gain of

2.87% with the spatial transformer in the recognition accuracy. Also, the CNN + STN model is

more robust to classifying visually similar valves.

Chapter Three of this thesis explores the capability of Faster RCNN model for detecting symbol

in drawings. The dataset is generated by sketching drawings in AutoCAD software, selecting seven

symbols from the piping component library and data augmentation. The experiment is conducted

based on a public implementation of Faster RCNN, and the results are evaluated by mean Average

Precision (mAP). The experiment results show a good result with a mAP of 82.8% (IoU=0.5).

4.2 Limitations

The limitation of this study lies into two points: (1) the dataset is not generated from real

drawings with various templates/libraries, and the current dataset is too small for detection; (2)

The network architecture and some parameters for symbol detection are not the best for this

application.

4.3 Future Works

Future works on symbol recognition and detection are in four directions:

62

(1) Collect real drawings and enrich the dataset. The drawback of this study is that the synthetic

data is used for training and testing, which is not substantial enough to support the conclusions.

Although drawings are printed and human-crafted, there is still a need to collect data from various

piping libraries.

(2) Improve the model in learning transformation invariance and measure the invariance of

learned features. Researches related to improving the equivariance and invariance of CNNs are a

hot topic in recent years. Researchers have begun to study the transformation invariance in CNNs

using rotated filters for convolutional layers (Marcos et al 2016) or a transition layer which can

transform the image into the Fourier space (Chidester et al. 2018). Sabour et al. (2017) proposed

the CapsuleNet, which can actively predict the transformation matrix. These are the candidate

solutions to improve the model in learning rotation-invariant representations. Also, to measure the

transformation invariance of the features, the quantified approaches, such as measuring the

linearity of learned features under the transformation (Lenc and Vedaldi 2015), are needed.

(3) Improve symbol detection via selecting a simple backbone network and proper parameters.

The currently used backbone network is VGG16, which is commonly used on the ImageNet dataset.

For piping symbols, the proper backbone network will be selected based on the experimentations.

(4) Improve symbol detection using the priors of the neighboring objects information. The

information from neighbors is commonly used in scene understanding problems. Drawings are

rich in the context information, such as the orientation of pipelines and the proximity of

neighboring symbols. This kind of information can be incorporated into a detection network to

improve symbol detection.

63

APPENDIX A. CODE

Matlab Code for Chapter 2 – Synthetic Symbols

main.m

%% parameters

clear all

close all

% author:Yuxi Zhang

% 1 Symbol

m=1;

K=1000;

for k=1:K

 u=randn*1/3;

 stk{m,1}{k,1}{1,1}=[(46+u*2*sqrt(2)),(60-u*2);28,70;28,40;(46+u*2*sqrt(2)),(50+u*2)];

 drawing{m,1}{k,1}{1,1}=sub_stroke_line(stk{m,1}{k,1}{1},1,1); %default in tv=1,

width=1

 stk{m,1}{k,1}{2,1}=[(46+2*sqrt(2)*u),(50+u*2);(46+u*2*sqrt(2)),(60-u*2);(64-

2*sqrt(2)*u),(60-u*2) ; (64-2*sqrt(2)*u),(50+u*2);(46+2*sqrt(2)*u),(50+u*2)];

 drawing{m,1}{k,1}{2,1}=sub_stroke_arc(stk{m,1}{k,1}{2},1,1); %default intv=1,

width=1

 stk{m,1}{k,1}{3,1}=[(64-2*sqrt(2)*u),(60-u*2);82,70;82,40;(64-2*sqrt(2)*u),(50+u*2)];

 drawing{m,1}{k,1}{3,1}=sub_stroke_line(stk{m,1}{k,1}{3},1,1); %default intv=1,

width=1

 stk{m,1}{k,1}{4,1}=[82,55;82+20+rand*10,55];

 drawing{m,1}{k,1}{4,1}=sub_stroke_line(stk{m,1}{k,1}{4},1,1); %default intv=1,

width=1

 stk{m,1}{k,1}{5,1}=[28,55;28-20-rand*10,55];

64

 drawing{m,1}{k,1}{5,1}=sub_stroke_line(stk{m,1}{k,1}{5},1,1); %default intv=1,

width=1

 aff=true;

 if (aff)

 close all

 tran_x=normrnd(0,1)*20;

 trans_y=normrnd(0,1)*20;

 theta=rand*360;

 scale=1.2+normrnd(0,0.05);

 interval=1;

 width=3+1/5*rand;

 fnc= @(stk) affine_fun(stk, tran_x,trans_y,55,55,theta,scale,scale,interval,width);

 drawing{m,1}{k,1}=apply_to_nested(drawing{m,1}{k,1},fnc);

 end

 axis tight

 axis equal

 axis off;

 Tight = get(gca, 'TightInset'); %Gives you the bording spacing between plot box and any

axis labels

 %[Left Bottom Right Top] spacing

 NewPos = [Tight(1) Tight(2) 1-Tight(1)-Tight(3) 1-Tight(2)-Tight(4)]; %New plot position

[X Y W H]

 set(gca, 'Position', NewPos);

 set(gcf,'color','w');

 f = getframe(gcf); %# Capture the current window

 im{m,1}{k,1}=rgb2gray(f.cdata);

 image{m,1}{k,1}=imresize(im{m,1}{k,1},[224 224]);

 % Distortion

 improc=image{m,1}{k,1};

65

 % Compute a random displacement field

 u=rand;

 if u>0.5

 dx = -1 + 2*rand(size(improc)); % dx ~ U(-1,1)

 dy = -1 + 2*rand(size(improc)); % dy ~ U(-1,1)

 % Normalizing the field

 nx = norm(dx);

 ny = norm(dy);

 dx = dx./nx; % Normalization: norm(dx) = 1

 dy = dy./ny; % Normalization: norm(dy) = 1

 % Smoothing the field

 sig = 10; % Standard deviation of Gaussian convolution

 alpha = 200; % Scaling factor

 fdx = imgaussfilt(dx,sig,'FilterSize',7); % 2-D Gaussian filtering of dx

 fdy = imgaussfilt(dy,sig,'FilterSize',7); % 2-D Gaussian filtering of dy

 % Filter size: 2 * 3*ceil(std2(dx)) + 1

 % = 3 sigma pixels in each direction + 1 to make an odd integer

 fdx = alpha*fdx; % Scaling the filtered field

 fdy = alpha*fdy; % Scaling the filtered field

 % The resulting displacement

 [y,x] = ndgrid(1:size(improc,1),1:size(improc,2));

 % Applying the displacement to the original pixels

 improc = griddata(x-fdx,y-fdy,double(improc),x,y);

 improc(isnan(improc)) = 0;

 end

66

% erosion or dilation

 v=rand;

 if v<0.25

 bw=imbinarize(improc,0.7);

 se=strel('line',3,rand*360);

 improc = imerode(bw,se);

 elseif v>0.75

 bw=imbinarize(improc,0.7);

 se=strel('line',2,rand*360);

 improc = imdilate(bw,se);

 end

 improc=uint8(255 * improc);

 %add noise

 u=rand;

 if u<0.25

 improc=imnoise(improc,'speckle');

 elseif u>0.75

 improc=imnoise(improc,'salt & pepper');

 elseif u<0.5 && u>0.25

 improc=imnoise(improc,'gaussian');

 end

 rot_angle(m,k)=theta;

 improc=imresize(improc,[60 60]);

 imwrite((255-improc),[num2str(m),'_',num2str(k),'.png']);

 close all

end

% 2 Symbol

m=2;

for k=1:K

 u=randn*2;

67

 stk{m,1}{k,1}{1,1}=[55,55;28,(70-2*u);28,(40+2*u);55,55];

 drawing{m,1}{k,1}{1,1}=sub_stroke_line(stk{m,1}{k,1}{1},1,1); %default in tv=1,

width=1

 stk{m,1}{k,1}{2,1}=[55,55;82,(70-2*u);82,(40+2*u);55,55];

 drawing{m,1}{k,1}{2,1}=sub_stroke_line(stk{m,1}{k,1}{2},1,1); %default intv=1,

width=1

 stk{m,1}{k,1}{3,1}=[82,55;82+20+rand*10,55];

 drawing{m,1}{k,1}{3,1}=sub_stroke_line(stk{m,1}{k,1}{3},1,1); %default intv=1,

width=1

 stk{m,1}{k,1}{4,1}=[28,55;28-20-rand*10,55];

 drawing{m,1}{k,1}{4,1}=sub_stroke_line(stk{m,1}{k,1}{4},1,1); %default intv=1,

width=1

 aff=true;

 if (aff)

 close all

 tran_x=normrnd(0,1)*20;

 trans_y=normrnd(0,1)*20;

 theta= rand*360;

 scale=1.2+normrnd(0,0.05);

 interval=1;

 width=3+1/5*rand;

 fnc= @(stk) affine_fun(stk, tran_x,trans_y,55,55,theta,scale,scale,interval,width);

 drawing{m,1}{k,1}=apply_to_nested(drawing{m,1}{k,1},fnc);

 end

 axis tight

 axis equal

 axis off;

68

 Tight = get(gca, 'TightInset'); %Gives you the bording spacing between plot box and any

axis labels

 %[Left Bottom Right Top] spacing

 NewPos = [Tight(1) Tight(2) 1-Tight(1)-Tight(3) 1-Tight(2)-Tight(4)]; %New plot position

[X Y W H]

 set(gca, 'Position', NewPos);

 set(gcf,'color','w');

 f = getframe(gcf); %# Capture the current window

 im{m,1}{k,1}=rgb2gray(f.cdata);

 image{m,1}{k,1}=imresize(im{m,1}{k,1},[224 224]);

 improc=image{m,1}{k,1};

 % Compute a random displacement field

 u=rand;

 if u>0.5

 dx = -1 + 2*rand(size(improc)); % dx ~ U(-1,1)

 dy = -1 + 2*rand(size(improc)); % dy ~ U(-1,1)

 % Normalizing the field

 nx = norm(dx);

 ny = norm(dy);

 dx = dx./nx; % Normalization: norm(dx) = 1

 dy = dy./ny; % Normalization: norm(dy) = 1

 % Smoothing the field

 sig = 10; % Standard deviation of Gaussian convolution

 alpha = 200; % Scaling factor

 fdx = imgaussfilt(dx,sig,'FilterSize',7); % 2-D Gaussian filtering of dx

 fdy = imgaussfilt(dy,sig,'FilterSize',7); % 2-D Gaussian filtering of dy

 % Filter size: 2 * 3*ceil(std2(dx)) + 1

 % = 3 sigma pixels in each direction + 1 to make an odd integer

69

 fdx = alpha*fdx; % Scaling the filtered field

 fdy = alpha*fdy; % Scaling the filtered field

 % The resulting displacement

 [y,x] = ndgrid(1:size(improc,1),1:size(improc,2));

 % Applying the displacement to the original pixels

 improc = griddata(x-fdx,y-fdy,double(improc),x,y);

 improc(isnan(improc)) = 0;

 end

 % erosion or dilation

 v=rand;

 if v<0.25

 bw=imbinarize(improc,0.7);

 se=strel('line',3,rand*360);

 improc = imerode(bw,se);

 elseif v>0.75

 bw=imbinarize(improc,0.7);

 se=strel('line',2,rand*360);

 improc = imdilate(bw,se);

 end

 improc=uint8(255 * improc);

 %add noise

 u=rand;

 if u<0.25

 improc=imnoise(improc,'speckle');

 elseif u>0.75

 improc=imnoise(improc,'salt & pepper');

 elseif u<0.5 && u>0.25

 improc=imnoise(improc,'gaussian');

 end

70

 rot_angle(m,k)=theta;

 improc=imresize(improc,[60 60]);

 imwrite((255-improc),[num2str(m),'_',num2str(k),'.png']);

 close all

end

% 3 Symbol

m=3;

for k=1:K

 u=randn;

 stk{m,1}{k,1}{1,1}=[55,55;28,(70-2*u);28,(40+2*u);55,55];

 drawing{m,1}{k,1}{1,1}=sub_stroke_line(stk{m,1}{k,1}{1},1,1); %default in tv=1,

width=1

 stk{m,1}{k,1}{2,1}=[55,55;82,(70-2*u);82,(40+2*u);55,55];

 drawing{m,1}{k,1}{2,1}=sub_stroke_line(stk{m,1}{k,1}{2},1,1); %default intv=1,

width=1

 stk{m,1}{k,1}{3,1}=[(50+2*u),(55-(15-2*u)*(5-2*u)/27);(50+2*u),40];

 drawing{m,1}{k,1}{3,1}=sub_stroke_line(stk{m,1}{k,1}{3},1,1); %default intv=1,

width=1

 stk{m,1}{k,1}{4,1}=[(60-2*u),(55-(15-2*u)*(5-2*u)/27);(60-2*u),40];

 drawing{m,1}{k,1}{4,1}=sub_stroke_line(stk{m,1}{k,1}{4},1,1); %default intv=1,

width=1

 stk{m,1}{k,1}{5,1}=[82,55;82+20+rand*10,55];

 drawing{m,1}{k,1}{5,1}=sub_stroke_line(stk{m,1}{k,1}{5},1,1); %default intv=1,

width=1

 stk{m,1}{k,1}{6,1}=[28,55;28-20-rand*10,55];

 drawing{m,1}{k,1}{6,1}=sub_stroke_line(stk{m,1}{k,1}{6},1,1); %default intv=1,

width=1

 aff=true;

 if (aff)

71

 close all

 tran_x=normrnd(0,1)*20;

 trans_y=normrnd(0,1)*20;

 theta=normrnd(0,0.2)*360;

 scale=1.2+normrnd(0,0.05);

 interval=1;

 width=3+1/5*rand;

 fnc= @(stk) affine_fun(stk, tran_x,trans_y,55,55,theta,scale,scale,interval,width);

 drawing{m,1}{k,1}=apply_to_nested(drawing{m,1}{k,1},fnc);

 end

 axis tight

 axis equal

 axis off;

 Tight = get(gca, 'TightInset'); %Gives you the bording spacing between plot box and any

axis labels

 %[Left Bottom Right Top] spacing

 NewPos = [Tight(1) Tight(2) 1-Tight(1)-Tight(3) 1-Tight(2)-Tight(4)]; %New plot position

[X Y W H]

 set(gca, 'Position', NewPos);

 set(gcf,'color','w');

 f = getframe(gcf); %# Capture the current window

 im{m,1}{k,1}=rgb2gray(f.cdata);

 image{m,1}{k,1}=imresize(im{m,1}{k,1},[224 224]);

 improc=image{m,1}{k,1};

 % Compute a random displacement field

 u=rand;

 if u>0.5

 dx = -1 + 2*rand(size(improc)); % dx ~ U(-1,1)

 dy = -1 + 2*rand(size(improc)); % dy ~ U(-1,1)

72

 % Normalizing the field

 nx = norm(dx);

 ny = norm(dy);

 dx = dx./nx; % Normalization: norm(dx) = 1

 dy = dy./ny; % Normalization: norm(dy) = 1

 % Smoothing the field

 sig = 10; % Standard deviation of Gaussian convolution

 alpha = 200; % Scaling factor

 fdx = imgaussfilt(dx,sig,'FilterSize',7); % 2-D Gaussian filtering of dx

 fdy = imgaussfilt(dy,sig,'FilterSize',7); % 2-D Gaussian filtering of dy

 % Filter size: 2 * 3*ceil(std2(dx)) + 1

 % = 3 sigma pixels in each direction + 1 to make an odd integer

 fdx = alpha*fdx; % Scaling the filtered field

 fdy = alpha*fdy; % Scaling the filtered field

 % The resulting displacement

 [y,x] = ndgrid(1:size(improc,1),1:size(improc,2));

 % Applying the displacement to the original pixels

 improc = griddata(x-fdx,y-fdy,double(improc),x,y);

 improc(isnan(improc)) = 0;

 end

73

 % erosion or dilation

 v=rand;

 if v<0.25

 bw=imbinarize(improc,0.7);

 se=strel('line',3,rand*360);

 improc = imerode(bw,se);

 elseif v>0.75

 bw=imbinarize(improc,0.7);

 se=strel('line',2,rand*360);

 improc = imdilate(bw,se);

 end

 improc=uint8(255 * improc);

 %add noise

 u=rand;

 if u<0.25

 improc=imnoise(improc,'speckle');

 elseif u>0.75

 improc=imnoise(improc,'salt & pepper');

 elseif u<0.5 && u>0.25

 improc=imnoise(improc,'gaussian');

 end

 rot_angle(m,k)=theta;

 improc=imresize(improc,[60 60]);

 imwrite((255-improc),[num2str(m),'_',num2str(k),'.png']);

 close all

end

% 4 Symbol

m=4;

for k=1:K

74

 u=randn*2;

 stk{m,1}{k,1}{1,1}=[55,55;28,(70-2*u);28,(40+2*u);55,55];

 drawing{m,1}{k,1}{1,1}=sub_stroke_line(stk{m,1}{k,1}{1},1,1); %default in tv=1,

width=1

 stk{m,1}{k,1}{2,1}=[55,55;82,(70-2*u);82,(40+2*u);55,55];

 drawing{m,1}{k,1}{2,1}=sub_stroke_line(stk{m,1}{k,1}{2},1,1); %default intv=1,

width=1

 stk{m,1}{k,1}{3,1}=[55,(70-2*u);55,(40+2*u)];

 drawing{m,1}{k,1}{3,1}=sub_stroke_line(stk{m,1}{k,1}{3},1,1); %default intv=1,

width=1

 stk{m,1}{k,1}{4,1}=[82,55;82+20+rand*10,55];

 drawing{m,1}{k,1}{4,1}=sub_stroke_line(stk{m,1}{k,1}{4},1,1); %default intv=1,

width=1

 stk{m,1}{k,1}{5,1}=[28,55;28-20-rand*10,55];

 drawing{m,1}{k,1}{5,1}=sub_stroke_line(stk{m,1}{k,1}{5},1,1); %default intv=1,

width=1

 aff=true;

 if (aff)

 close all

 tran_x=normrnd(0,1)*20;

 trans_y=normrnd(0,1)*20;

 theta= rand*360;

 scale=1.2+normrnd(0,0.05);

 interval=1;

 width=3+1/5*rand;

 fnc= @(stk) affine_fun(stk, tran_x,trans_y,55,55,theta,scale,scale,interval,width);

 drawing{m,1}{k,1}=apply_to_nested(drawing{m,1}{k,1},fnc);

 end

 axis tight

 axis equal

75

 %xlim([-50 150])

 %ylim([-50 150])

 %u=randn;

 set(gcf, 'Position', [100, 100, 150+5*u, 150+5*u]);

 axis off;

 Tight = get(gca, 'TightInset'); %Gives you the bording spacing between plot box and any

axis labels

 %[Left Bottom Right Top] spacing

 NewPos = [Tight(1) Tight(2) 1-Tight(1)-Tight(3) 1-Tight(2)-Tight(4)]; %New plot position

[X Y W H]

 set(gca, 'Position', NewPos);

 set(gcf,'color','w');

 f = getframe(gcf); %# Capture the current window

 im{m,1}{k,1}=rgb2gray(f.cdata);

 image{m,1}{k,1}=imresize(im{m,1}{k,1},[224 224]);

 improc=image{m,1}{k,1};

 % Compute a random displacement field

 u=rand;

 if u>0.5

 dx = -1 + 2*rand(size(improc)); % dx ~ U(-1,1)

 dy = -1 + 2*rand(size(improc)); % dy ~ U(-1,1)

 % Normalizing the field

 nx = norm(dx);

 ny = norm(dy);

 dx = dx./nx; % Normalization: norm(dx) = 1

 dy = dy./ny; % Normalization: norm(dy) = 1

 % Smoothing the field

76

 sig = 10; % Standard deviation of Gaussian convolution

 alpha = 200; % Scaling factor

 fdx = imgaussfilt(dx,sig,'FilterSize',7); % 2-D Gaussian filtering of dx

 fdy = imgaussfilt(dy,sig,'FilterSize',7); % 2-D Gaussian filtering of dy

 % Filter size: 2 * 3*ceil(std2(dx)) + 1

 % = 3 sigma pixels in each direction + 1 to make an odd integer

 fdx = alpha*fdx; % Scaling the filtered field

 fdy = alpha*fdy; % Scaling the filtered field

 % The resulting displacement

 [y,x] = ndgrid(1:size(improc,1),1:size(improc,2));

 % Applying the displacement to the original pixels

 improc = griddata(x-fdx,y-fdy,double(improc),x,y);

 improc(isnan(improc)) = 0;

 end

 % erosion or dilation

 v=rand;

 if v<0.25

 bw=imbinarize(improc,0.7);

 se=strel('line',3,rand*360);

 improc = imerode(bw,se);

 elseif v>0.75

 bw=imbinarize(improc,0.7);

 se=strel('line',2,rand*360);

77

 improc = imdilate(bw,se);

 end

 improc=uint8(255 * improc);

 %add noise

 u=rand;

 if u<0.25

 improc=imnoise(improc,'speckle');

 elseif u>0.75

 improc=imnoise(improc,'salt & pepper');

 elseif u<0.5 && u>0.25

 improc=imnoise(improc,'gaussian');

 end

 rot_angle(m,k)=theta;

 improc=imresize(improc,[60 60]);

 imwrite((255-improc),[num2str(m),'_',num2str(k),'.png']);

 close all

end

% 5 Symbol

m=5;

for k=1:K

 u=randn;

 stk{m,1}{k,1}{1,1}=[55,55;28,(70-2*u);28,(40+2*u);55,55];

 drawing{m,1}{k,1}{1,1}=sub_stroke_line(stk{m,1}{k,1}{1},1,1); %default in tv=1,

width=1

 stk{m,1}{k,1}{2,1}=[55,55;82,(70-2*u);82,(40+2*u);55,55];

 drawing{m,1}{k,1}{2,1}=sub_stroke_line(stk{m,1}{k,1}{2},1,1); %default intv=1,

width=1

 stk{m,1}{k,1}{3,1}=[55,55;55,(80-2*u);(70+2*u),(80-2*u)];

78

 drawing{m,1}{k,1}{3,1}=sub_stroke_line(stk{m,1}{k,1}{3},1,1); %default intv=1,

width=1

 stk{m,1}{k,1}{4,1}=[82,55;82+20+rand*10,55];

 drawing{m,1}{k,1}{4,1}=sub_stroke_line(stk{m,1}{k,1}{4},1,1); %default intv=1,

width=1

 stk{m,1}{k,1}{5,1}=[28,55;28-20-rand*10,55];

 drawing{m,1}{k,1}{5,1}=sub_stroke_line(stk{m,1}{k,1}{5},1,1); %default intv=1,

width=1

 aff=true;

 if (aff)

 close all

 tran_x=normrnd(0,1)*20;

 trans_y=normrnd(0,1)*20;

 theta= rand*360;

 scale=1.2+normrnd(0,0.05);

 interval=1;

 width=3+1/5*rand;

 fnc= @(stk) affine_fun(stk, tran_x,trans_y,55,55,theta,scale,scale,interval,width);

 drawing{m,1}{k,1}=apply_to_nested(drawing{m,1}{k,1},fnc);

 end

 axis tight

 axis equal

 axis off;

 Tight = get(gca, 'TightInset'); %Gives you the bording spacing between plot box and any

axis labels

 %[Left Bottom Right Top] spacing

 NewPos = [Tight(1) Tight(2) 1-Tight(1)-Tight(3) 1-Tight(2)-Tight(4)]; %New plot position

[X Y W H]

 set(gca, 'Position', NewPos);

 set(gcf,'color','w');

79

 f = getframe(gcf); %# Capture the current window

 im{m,1}{k,1}=rgb2gray(f.cdata);

 image{m,1}{k,1}=imresize(im{m,1}{k,1},[224 224]);

 improc=image{m,1}{k,1};

 % Compute a random displacement field

 u=rand;

 if u>0.5

 dx = -1 + 2*rand(size(improc)); % dx ~ U(-1,1)

 dy = -1 + 2*rand(size(improc)); % dy ~ U(-1,1)

 % Normalizing the field

 nx = norm(dx);

 ny = norm(dy);

 dx = dx./nx; % Normalization: norm(dx) = 1

 dy = dy./ny; % Normalization: norm(dy) = 1

 % Smoothing the field

 sig = 10; % Standard deviation of Gaussian convolution

 alpha = 200; % Scaling factor

 fdx = imgaussfilt(dx,sig,'FilterSize',7); % 2-D Gaussian filtering of dx

 fdy = imgaussfilt(dy,sig,'FilterSize',7); % 2-D Gaussian filtering of dy

 % Filter size: 2 * 3*ceil(std2(dx)) + 1

 % = 3 sigma pixels in each direction + 1 to make an odd integer

 fdx = alpha*fdx; % Scaling the filtered field

 fdy = alpha*fdy; % Scaling the filtered field

80

 % The resulting displacement

 [y,x] = ndgrid(1:size(improc,1),1:size(improc,2));

 % Applying the displacement to the original pixels

 improc = griddata(x-fdx,y-fdy,double(improc),x,y);

 improc(isnan(improc)) = 0;

 end

 % erosion or dilation

 v=rand;

 if v<0.25

 bw=imbinarize(improc,0.7);

 se=strel('line',3,rand*360);

 improc = imerode(bw,se);

 elseif v>0.75

 bw=imbinarize(improc,0.7);

 se=strel('line',2,rand*360);

 improc = imdilate(bw,se);

 end

 improc=uint8(255 * improc);

 %add noise

 u=rand;

 if u<0.25

 improc=imnoise(improc,'speckle');

 elseif u>0.75

 improc=imnoise(improc,'salt & pepper');

 elseif u<0.5 && u>0.25

 improc=imnoise(improc,'gaussian');

 end

81

 rot_angle(m,k)=theta;

 improc=imresize(improc,[60 60]);

 imwrite((255-improc),[num2str(m),'_',num2str(k),'.png']);

 close all

end

% 6 Symbol

m=6;

for k=1:K

 u=rand;

 v=rand;

 stk{m,1}{k,1}{1,1}=[55,25;25,55;55,85;85,55;55,25];

 drawing{m,1}{k,1}{1,1}=sub_stroke_arc(stk{m,1}{k,1}{1},1,1); %default in tv=1,

width=1

 stk{m,1}{k,1}{2,1}=[(45-2*u),(40-2*v);(45-2*u),(70+2*v)];

 drawing{m,1}{k,1}{2,1}=sub_stroke_line(stk{m,1}{k,1}{2},1,1); %default intv=1,

width=1

 stk{m,1}{k,1}{3,1}=[(45-2*u),(40-2*v);(65+2*u),(40-2*v)];

 drawing{m,1}{k,1}{3,1}=sub_stroke_line(stk{m,1}{k,1}{3},1,1); %default intv=1,

width=1

 stk{m,1}{k,1}{4,1}=[85,55;85+20+rand*10,55];

 drawing{m,1}{k,1}{4,1}=sub_stroke_line(stk{m,1}{k,1}{4},1,1); %default intv=1,

width=1

 stk{m,1}{k,1}{5,1}=[25,55;25-20+rand*10,55];

 drawing{m,1}{k,1}{5,1}=sub_stroke_line(stk{m,1}{k,1}{5},1,1); %default intv=1,

width=1

 aff=true;

 if (aff)

 close all

 tran_x=normrnd(0,1)*20;

82

 trans_y=normrnd(0,1)*20;

 theta=rand*360;

 scale=1.2+normrnd(0,0.05);

 interval=1;

 width=3+1/5*rand;

 fnc= @(stk) affine_fun(stk, tran_x,trans_y,55,55,theta,scale,scale,interval,width);

 drawing{m,1}{k,1}=apply_to_nested(drawing{m,1}{k,1},fnc);

 end

 axis tight

 axis equal

 axis off;

 Tight = get(gca, 'TightInset'); %Gives you the bording spacing between plot box and any

axis labels

 %[Left Bottom Right Top] spacing

 NewPos = [Tight(1) Tight(2) 1-Tight(1)-Tight(3) 1-Tight(2)-Tight(4)]; %New plot position

[X Y W H]

 set(gca, 'Position', NewPos);

 set(gcf,'color','w');

 f = getframe(gcf); %# Capture the current window

 im{m,1}{k,1}=rgb2gray(f.cdata);

 image{m,1}{k,1}=imresize(im{m,1}{k,1},[224 224]);

 improc=image{m,1}{k,1};

 % Compute a random displacement field

 u=rand;

 if u>0.5

 dx = -1 + 2*rand(size(improc)); % dx ~ U(-1,1)

 dy = -1 + 2*rand(size(improc)); % dy ~ U(-1,1)

 % Normalizing the field

83

 nx = norm(dx);

 ny = norm(dy);

 dx = dx./nx; % Normalization: norm(dx) = 1

 dy = dy./ny; % Normalization: norm(dy) = 1

 % Smoothing the field

 sig = 10; % Standard deviation of Gaussian convolution

 alpha = 200; % Scaling factor

 fdx = imgaussfilt(dx,sig,'FilterSize',7); % 2-D Gaussian filtering of dx

 fdy = imgaussfilt(dy,sig,'FilterSize',7); % 2-D Gaussian filtering of dy

 % Filter size: 2 * 3*ceil(std2(dx)) + 1

 % = 3 sigma pixels in each direction + 1 to make an odd integer

 fdx = alpha*fdx; % Scaling the filtered field

 fdy = alpha*fdy; % Scaling the filtered field

 % The resulting displacement

 [y,x] = ndgrid(1:size(improc,1),1:size(improc,2));

 % Applying the displacement to the original pixels

 improc = griddata(x-fdx,y-fdy,double(improc),x,y);

 improc(isnan(improc)) = 0;

 end

 % erosion or dilation

84

 v=rand;

 if v<0.25

 bw=imbinarize(improc,0.7);

 se=strel('line',3,rand*360);

 improc = imerode(bw,se);

 elseif v>0.75

 bw=imbinarize(improc,0.7);

 se=strel('line',2,rand*360);

 improc = imdilate(bw,se);

 end

 improc=uint8(255 * improc);

 %add noise

 u=rand;

 if u<0.25

 improc=imnoise(improc,'speckle');

 elseif u>0.75

 improc=imnoise(improc,'salt & pepper');

 elseif u<0.5 && u>0.25

 improc=imnoise(improc,'gaussian');

 end

 rot_angle(m,k)=theta;

 improc=imresize(improc,[60 60]);

 imwrite((255-improc),[num2str(m),'_',num2str(k),'.png']);

 close all

end

% 7 Symbol

m=7;

for k=1:K

 stk{m,1}{k,1}{1,1}=[55,55;55,30-rand*10];

85

 drawing{m,1}{k,1}{1,1}=sub_stroke_line(stk{m,1}{k,1}{1},1,1); %default in tv=1,

width=1

 stk{m,1}{k,1}{2,1}=[55,40;50,45;55,50;60,45;55,40];

 drawing{m,1}{k,1}{2,1}=sub_stroke_arc(stk{m,1}{k,1}{2},1,1); %default intv=1,

width=1

 stk{m,1}{k,1}{3,1}=[55,55;45,65;55,75;65,65;55,55];

 drawing{m,1}{k,1}{3,1}=sub_stroke_arc(stk{m,1}{k,1}{3},1,1); %default intv=1,

width=1

 stk{m,1}{k,1}{4,1}=[60,45;65,45;65,40];

 drawing{m,1}{k,1}{4,1}=sub_stroke_line(stk{m,1}{k,1}{4},1,1); %default intv=1,

width=1

 stk{m,1}{k,1}{5,1}=[60,(65+5*sqrt(3));50,(65-5*sqrt(3))];

 drawing{m,1}{k,1}{5,1}=sub_stroke_line(stk{m,1}{k,1}{5},1,1); %default intv=1,

width=1

 aff=true;

 if (aff)

 close all

 tran_x=normrnd(0,1)*20;

 trans_y=normrnd(0,0.1)*20;

 theta=rand*360;

 scale=1.8+normrnd(0,0.05);

 interval=1;

 width=3+1/5*rand;

 fnc= @(stk) affine_fun(stk, tran_x,trans_y,55,55,theta,scale,scale,interval,width);

 drawing{m,1}{k,1}=apply_to_nested(drawing{m,1}{k,1},fnc);

 end

 axis tight

 axis equal

 axis off;

86

 Tight = get(gca, 'TightInset'); %Gives you the bording spacing between plot box and any

axis labels

 %[Left Bottom Right Top] spacing

 NewPos = [Tight(1) Tight(2) 1-Tight(1)-Tight(3) 1-Tight(2)-Tight(4)]; %New plot position

[X Y W H]

 set(gca, 'Position', NewPos);

 set(gcf,'color','w');

 f = getframe(gcf); %# Capture the current window

 im{m,1}{k,1}=rgb2gray(f.cdata);

 image{m,1}{k,1}=imresize(im{m,1}{k,1},[224 224]);

 improc=image{m,1}{k,1};

 % Compute a random displacement field

 u=rand;

 if u>0.5

 dx = -1 + 2*rand(size(improc)); % dx ~ U(-1,1)

 dy = -1 + 2*rand(size(improc)); % dy ~ U(-1,1)

 % Normalizing the field

 nx = norm(dx);

 ny = norm(dy);

 dx = dx./nx; % Normalization: norm(dx) = 1

 dy = dy./ny; % Normalization: norm(dy) = 1

 % Smoothing the field

 sig = 10; % Standard deviation of Gaussian convolution

 alpha = 200; % Scaling factor

 fdx = imgaussfilt(dx,sig,'FilterSize',15); % 2-D Gaussian filtering of dx

87

 fdy = imgaussfilt(dy,sig,'FilterSize',15); % 2-D Gaussian filtering of dy

 % Filter size: 2 * 3*ceil(std2(dx)) + 1

 % = 3 sigma pixels in each direction + 1 to make an odd integer

 fdx = alpha*fdx; % Scaling the filtered field

 fdy = alpha*fdy; % Scaling the filtered field

 % The resulting displacement

 [y,x] = ndgrid(1:size(improc,1),1:size(improc,2));

 % Applying the displacement to the original pixels

 improc = griddata(x-fdx,y-fdy,double(improc),x,y);

 improc(isnan(improc)) = 0;

 end

 % erosion or dilation

 v=rand;

 if v<0.25

 bw=imbinarize(improc,0.7);

 se=strel('line',3,rand*360);

 improc = imerode(bw,se);

 elseif v>0.75

 bw=imbinarize(improc,0.7);

 se=strel('line',2,rand*360);

 improc = imdilate(bw,se);

 end

 improc=uint8(255 * improc);

 %add noise

 u=rand;

88

 if u<0.25

 improc=imnoise(improc,'speckle');

 elseif u>0.75

 improc=imnoise(improc,'salt & pepper');

 elseif u<0.5 && u>0.25

 improc=imnoise(improc,'gaussian');

 end

 rot_angle(m,k)=theta;

 improc=imresize(improc,[60 60]);

 imwrite((255-improc),[num2str(m),'_',num2str(k),'.png']);

 close all

end

% 8 Symbol

m=8;

for k=1:K

 u=rand;

 v=rand;

 stk{m,1}{k,1}{1,1}=[55,55;55,30-rand*10];

 drawing{m,1}{k,1}{1,1}=sub_stroke_line(stk{m,1}{k,1}{1},1,1); %default in tv=1,

width=1

 stk{m,1}{k,1}{2,1}=[55,40;50,45;55,50;60,45;55,40];

 drawing{m,1}{k,1}{2,1}=sub_stroke_arc(stk{m,1}{k,1}{2},1,1); %default intv=1,

width=1

 stk{m,1}{k,1}{3,1}=[65,65;55,55;45,65];

 drawing{m,1}{k,1}{3,1}=sub_stroke_arc(stk{m,1}{k,1}{3},1,1); %default intv=1,

width=1

 stk{m,1}{k,1}{4,1}=[60,45;65,45;65,40];

 drawing{m,1}{k,1}{4,1}=sub_stroke_line(stk{m,1}{k,1}{4},1,1); %default intv=1,

width=1

89

 stk{m,1}{k,1}{5,1}=[45,65;45,(75+2*u)];

 drawing{m,1}{k,1}{5,1}=sub_stroke_line(stk{m,1}{k,1}{5},1,1); %default intv=1,

width=1

 stk{m,1}{k,1}{6,1}=[65,65;65,(75+2*u)];

 drawing{m,1}{k,1}{6,1}=sub_stroke_line(stk{m,1}{k,1}{6},1,1); %default intv=1,

width=1

 stk{m,1}{k,1}{7,1}=[(44-2*v),(75+2*u);(66+2*v),(75+2*u)];

 drawing{m,1}{k,1}{7,1}=sub_stroke_line(stk{m,1}{k,1}{7},1,1); %default intv=1,

width=1

 stk{m,1}{k,1}{8,1}=[55,(75+2*u);55,(77+2*u)];

 drawing{m,1}{k,1}{8,1}=sub_stroke_line(stk{m,1}{k,1}{8},1,1); %default intv=1,

width=1

 aff=true;

 if (aff)

 close all

 tran_x=normrnd(0,1)*20;

 trans_y=normrnd(0,1)*20;

 theta=rand*360;

 scale=1.8+normrnd(0,0.05);

 interval=1;

 width=3+1/5*rand;

 fnc= @(stk) affine_fun(stk, tran_x,trans_y,55,55,theta,scale,scale,interval,width);

 drawing{m,1}{k,1}=apply_to_nested(drawing{m,1}{k,1},fnc);

 end

 axis tight

 axis equal

 axis off;

90

 Tight = get(gca, 'TightInset'); %Gives you the bording spacing between plot box and any

axis labels

 %[Left Bottom Right Top] spacing

 NewPos = [Tight(1) Tight(2) 1-Tight(1)-Tight(3) 1-Tight(2)-Tight(4)]; %New plot position

[X Y W H]

 set(gca, 'Position', NewPos);

 set(gcf,'color','w');

 f = getframe(gcf); %# Capture the current window

 im{m,1}{k,1}=rgb2gray(f.cdata);

 image{m,1}{k,1}=imresize(im{m,1}{k,1},[224 224]);

 improc=image{m,1}{k,1};

 % Compute a random displacement field

 u=rand;

 if u>0.5

 dx = -1 + 2*rand(size(improc)); % dx ~ U(-1,1)

 dy = -1 + 2*rand(size(improc)); % dy ~ U(-1,1)

 % Normalizing the field

 nx = norm(dx);

 ny = norm(dy);

 dx = dx./nx; % Normalization: norm(dx) = 1

 dy = dy./ny; % Normalization: norm(dy) = 1

 % Smoothing the field

 sig = 10; % Standard deviation of Gaussian convolution

 alpha = 200; % Scaling factor

 fdx = imgaussfilt(dx,sig,'FilterSize',15); % 2-D Gaussian filtering of dx

91

 fdy = imgaussfilt(dy,sig,'FilterSize',15); % 2-D Gaussian filtering of dy

 % Filter size: 2 * 3*ceil(std2(dx)) + 1

 % = 3 sigma pixels in each direction + 1 to make an odd integer

 fdx = alpha*fdx; % Scaling the filtered field

 fdy = alpha*fdy; % Scaling the filtered field

 % The resulting displacement

 [y,x] = ndgrid(1:size(improc,1),1:size(improc,2));

 % Applying the displacement to the original pixels

 improc = griddata(x-fdx,y-fdy,double(improc),x,y);

 improc(isnan(improc)) = 0;

 end

 % erosion or dilation

 v=rand;

 if v<0.25

 bw=imbinarize(improc,0.7);

 se=strel('line',3,rand*360);

 improc = imerode(bw,se);

 elseif v>0.75

 bw=imbinarize(improc,0.7);

 se=strel('line',2,rand*360);

 improc = imdilate(bw,se);

 end

 improc=uint8(255 * improc);

 %add noise

 u=rand;

92

 if u<0.25

 improc=imnoise(improc,'speckle');

 elseif u>0.75

 improc=imnoise(improc,'salt & pepper');

 elseif u<0.5 && u>0.25

 improc=imnoise(improc,'gaussian');

 end

 rot_angle(m,k)=theta;

 improc=imresize(improc,[60 60]);

 imwrite((255-improc),[num2str(m),'_',num2str(k),'.png']);

 close all

end

sub_stroke_line.m

function stk=sub_stroke_line(p,intv,width)

n=length(p);

stk=cell(n-1,1);

for i=2:n

 %% compute distance between each point

 dist = zeros(n,1);

 x1 = p(i,:);

 x2 = p(i-1,:);

 dist(i) = norm(x1-x2);

 %% Generate uniform points

 nint = round(dist(i)/intv);

 nint = max(nint,2);

 xi = linspace(0,dist(i),nint); %nint: number of points

 stk{i-1} = interp1([0;dist(i)],[p(i-1,:); p(i,:)],xi);

 if(stk{i-1}(end,:)~=p(i,:))

93

 stk{i-1}=[stk{i-1};p(i,:)];

 end

 plot(stk{i-1}(:,1),stk{i-1}(:,2),'k','LineWidth', width);

 hold on

 plot(p(i-1,1),p(i-1,2),'.','MarkerEdgeColor','black','MarkerSize', pi*width);

 hold on

end

%% Plot

plot(p(n,1),p(n,2),'.','MarkerEdgeColor','black','MarkerSize', pi*width);

set(gca,'XTick',[],'YTick',[]);

xlim([1 105]);

ylim([1 105]);

hold on

sub_stroke_arc.m

function stk = sub_stroke_arc(p,intv,width)

n=length(p);

if n<3

 msg=['At least 3 points'];

 fprintf(1,[msg,'\n']);

end

stk=cell(n-1,1);

xcyc=cell(n-2,1);

R=cell(n-2,1);

for i=1:n-2

%% Compute Circle Center and Radius R, xcyc

 % FIT_CIRCLE_THROUGH_3_POINTS

 % Mathematical background is provided in

http://www.regentsprep.org/regents/math/geometry/gcg6/RCir.htm

94

 %

 % Input:

 %

 % ABC is a [3 x 2n] array. Each two columns represent a set of three points which lie on

 % a circle. Example: [-1 2;2 5;1 1] represents the set of points (-1,2), (2,5) and (1,1) in

Cartesian

 % (x,y) coordinates.

 %

 % Outputs:

 %

 % R is a [1 x n] array of circle radii corresponding to each set of three points.

 % xcyc is an [2 x n] array of of the centers of the circles, where each column is [xc_i;yc_i]

where i

 % corresponds to the {A,B,C} set of points in the block [3 x 2i-1:2i] of ABC

 %

 % Author: Danylo Malyuta.

 % Version: v1.0 (June 2016)

 % --

 % Each set of points {A,B,C} lies on a circle. Question: what is the circles radius and center?

 % A: point with coordinates (x1,y1)

 % B: point with coordinates (x2,y2)

 % C: point with coordinates (x3,y3)

 % ============= Find the slopes of the chord A<-->B (mr) and of the chord B<-->C (mt)

 % mt = (y3-y2)/(x3-x2)

 % mr = (y2-y1)/(x2-x1)

 % /// Begin by generalizing xi and yi to arrays of individual xi and yi for each {A,B,C} set

of points provided in ABC array

 x1 = p(i,1:2:end);

 x2 = p(i+1,1:2:end);

 x3 = p(i+2,1:2:end);

95

 y1 = p(i,2:2:end);

 y2 = p(i+1,2:2:end);

 y3 = p(i+2,2:2:end);

 % /// Now carry out operations as usual, using array operations

 mr = (y2-y1)./(x2-x1);

 mt = (y3-y2)./(x3-x2);

 % A couple of failure modes exist:

 % (1) First chord is vertical ==> mr==Inf

 % (2) Second chord is vertical ==> mt==Inf

 % (3) Points are collinear ==> mt==mr (NB: NaN==NaN here)

 % (4) Two or more points coincident ==> mr==NaN || mt==NaN

 % Resolve these failure modes case-by-case.

 idf1 = isinf(mr); % Where failure mode (1) occurs

 idf2 = isinf(mt); % Where failure mode (2) occurs

 idf34 = isequaln(mr,mt) | isnan(mr) | isnan(mt); % Where failure modes (3) and (4) occur

 % ============= Compute xc, the circle center x-coordinate

 xcyc{i}(1) = (mr.*mt.*(y3-y1)+mr.*(x2+x3)-mt.*(x1+x2))./(2*(mr-mt));

 xcyc{i}(idf1) = (mt(idf1).*(y3(idf1)-y1(idf1))+(x2(idf1)+x3(idf1)))/2; % Failure mode (1)

==> use limit case of mr==Inf

 xcyc{i}(idf2) = ((x1(idf2)+x2(idf2))-mr(idf2).*(y3(idf2)-y1(idf2)))/2; % Failure mode (2)

==> use limit case of mt==Inf

 xcyc{i}(idf34) = NaN; % Failure mode (3) or (4) ==> cannot determine center point, return

NaN

 % ============= Compute yc, the circle center y-coordinate

 xcyc{i}(2,:) = -1./mr.*(xcyc{i}-(x1+x2)/2)+(y1+y2)/2;

 idmr0 = mr==0;

 xcyc{i}(2,idmr0) = -1./mt(idmr0).*(xcyc{i}(idmr0)-

(x2(idmr0)+x3(idmr0))/2)+(y2(idmr0)+y3(idmr0))/2;

 xcyc{i}(2,idf34) = NaN; % Failure mode (3) or (4) ==> cannot determine center point, return

NaN

 % ============= Compute the circle radius

96

 R{i} = sqrt((xcyc{i}(1,:)-x1).^2+(xcyc{i}(2,:)-y1).^2);

 R{i}(idf34) = Inf; % Failure mode (3) or (4) ==> assume circle radius infinite for this case

%% Plot arc

 intv_d=2*asin((1/2)/R{i})*intv;

 if(i==1)

 %first segment

 if(p(i,2)<xcyc{i}(2,:))

 theta1=2*pi-acos((p(i,1)-xcyc{i}(1,:))/(R{i}));

 else

 theta1=acos((p(i,1)-xcyc{i}(1,:))/(R{i}));

 end

 if(p(i+1,2)<xcyc{i}(2,:))

 theta2=2*pi-acos((p(i+1,1)-xcyc{i}(1,:))/(R{i}));

 else

 theta2=acos((p(i+1,1)-xcyc{i}(1,:))/(R{i}));

 end

 if theta2>theta1

 theta2=theta2-2*pi;

 end

 th = theta2:intv_d:theta1;

 xunit = R{i} * cos(th) + xcyc{i}(1,:);

 yunit = R{i} * sin(th) + xcyc{i}(2,:);

 stk{2*i-1} = [xunit;yunit]';

 if(stk{2*i-1}(end,:)~=p(i,:))

 stk{2*i-1} = [stk{2*i-1};p(i,:)];

 end

 plot(xunit, yunit,'k','LineWidth', width);

 hold on

 plot(p(i+1,1), p(i+1,2),'.','MarkerEdgeColor','black','MarkerSize', pi*width);

97

 hold on

 plot(p(i,1), p(i,2),'.','MarkerEdgeColor','black','MarkerSize', pi*width);

 hold on

 end

 %second segment

 if(p(i+1,2)<xcyc{i}(2,:))

 theta2=2*pi-acos((p(i+1,1)-xcyc{i}(1,:))/(R{i}));

 else

 theta2=acos((p(i+1,1)-xcyc{i}(1,:))/(R{i}));

 end

 if(p(i+2,2)<xcyc{i}(2,:))

 theta3=2*pi-acos((p(i+2,1)-xcyc{i}(1,:))/(R{i}));

 else

 theta3=acos((p(i+2,1)-xcyc{i}(1,:))/(R{i}));

 end

 if theta3>theta2

 theta3=theta3-2*pi;

 end

 th = theta3:intv_d:theta2;

 xunit = R{i} * cos(th) + xcyc{i}(1,:);

 yunit = R{i} * sin(th) + xcyc{i}(2,:);

 stk{i+1}=[xunit;yunit]';

 if(stk{i+1}(end,:)~=p(i+1,:))

 stk{i+1} = [stk{i+1};p(i+1,:)];

 end

 plot(xunit, yunit,'k','LineWidth', width);

 hold on

 plot(p(i+1,1), p(i+1,2),'.','MarkerEdgeColor','black','MarkerSize', pi*width);

 hold on

 plot(p(i+2,1), p(i+2,2),'.','MarkerEdgeColor','black','MarkerSize', pi*width);

 hold on

98

end

set(gca,'XTick',[],'YTick',[]);

xlim([1 105]);

ylim([1 105]);

hold on

affine_fun.m

function stk_affu=affine_fun(stk, tx,ty,cx,cy,theta,w,h,dint,width)

% Create translation matrix

tm= @(x,y)[1 0 0;0 1 0; x y 1];

% Create rotation matrix

rm = @(x,y,theta) tm(-x,-y)*[cosd(theta) -sind(theta) 0; sind(theta) cosd(theta) 0;0 0

1]'*tm(x,y);

% Create scaling matrix

sm=@(x,y,w,h) tm(-x,-y)*[w 0 0;0 h 0; 0 0 1]*tm(x,y);

R=sm(cx,cy,w,h)*rm(cx,cy,theta)*tm(tx,ty);

% Rotate your point(s)

stk(:,3)=1;

stk_aff = stk*R;

stk_aff(:,3)=[];

% Plot

n=length(stk_aff);

j=2;

rm=[];

99

for i=1:n-1

 if(j-1<=n-1)

 i=j-1;

 else

 break

 end

 dist1(i+1)=0;

 while (dist1(i+1)<dint && j<=n)

 x1 = stk_aff(j,:);

 x2 = stk_aff(i,:);

 dist1(i+1) = norm(x1-x2);

 if(dist1(i+1)<dint && j<n)

 rm=[rm j];

 end

 j=j+1;

 end

end

stk_affu=stk_aff;

stk_affu(rm,:) = [];

[l m]=size(dist1);

rm=rm(rm<=m-1);

dist1(rm+1)=[];

cumdist = cumsum(dist1);

start_dist = cumdist(1);

end_dist = cumdist(end);

x = cumdist(:);

nint = round(end_dist/dint);

nint = max(nint,2);

xi = linspace(start_dist,end_dist,nint); %nint: number of points

stk_affu = interp1(x,stk_affu,xi);

plot(stk_aff(:,1),stk_aff(:,2),'k','LineWidth', width);

100

hold on

plot(stk_aff(1,1),stk_aff(1,2),'.','MarkerEdgeColor','black','MarkerSize', pi*width);

hold on

plot(stk_aff(end,1),stk_aff(end,2),'.','MarkerEdgeColor','black','MarkerSize', pi*width);

hold on

set(gca,'XTick',[],'YTick',[]);

xlim([1 105]);

ylim([1 105]);

Python Code for Chapter 2 – TFrecord file Generation

Datasetgenerator.py

#encoding=utf-8

import os

import tensorflow as tf

from PIL import Image

cwd = os.getcwd()

classes = {'1','2','3','4','5','6','7','8'}

def create_record():

 writer = tf.python_io.TFRecordWriter("train_final4.tfrecords")

 for index, name in enumerate(classes):

 class_path = cwd +"/STN_1000/"+ name+"/"

 for img_name in os.listdir(class_path):

 img_path = class_path + img_name

 img = Image.open(img_path)

 img_raw = img.tobytes()

 # print (index,img_raw)

 example = tf.train.Example(

 features=tf.train.Features(feature={

101

 "label": tf.train.Feature(int64_list=tf.train.Int64List(value=[index])),

 'img_raw': tf.train.Feature(bytes_list=tf.train.BytesList(value=[img_raw]))

 }))

 writer.write(example.SerializeToString())

 writer.close()

create_record()

Python Code for Chapter 2 – CNN

import tensorflow as tf

from tensorflow.keras import models, layers

import numpy as np

from stn import spatial_transformer_network as transformer

import matplotlib.pyplot as plt

def _parse_function(example_proto):

 features=tf.parse_single_example(

 example_proto,

 features={

 'label':tf.FixedLenFeature([],tf.int64),

 'img_raw': tf.FixedLenFeature([],tf.string)

 }

)

 label=features['label']

 img=features['img_raw']

 img=tf.decode_raw(img,tf.uint8)

 img=tf.reshape(img,[60, 60, 1])

 img=tf.cast(img, tf.float32)*(1./255)

 label=tf.cast(label,tf.int32)

 return img, label

102

def data_iterator(tfrecords,batch_size):

 full_dataset =tf.data.TFRecordDataset(tfrecords)

 full_dataset = full_dataset.shuffle(buffer_size=8000,seed=1)

 train_dataset = full_dataset.take(train_size)

 test_dataset = full_dataset.skip(train_size)

 val_dataset = test_dataset.skip(val_size)

 test_dataset = test_dataset.take(test_size)

 train_dataset=train_dataset.map(_parse_function)

 val_dataset=val_dataset.map(_parse_function)

 test_dataset=test_dataset.map(_parse_function)

 train_iterator=train_dataset.repeat().batch(batch_size).make_initializable_iterator()

 val_iterator=val_dataset.repeat().batch(batch_size).make_initializable_iterator()

 test_iterator=test_dataset.batch(test_size).repeat().make_initializable_iterator()

 return train_iterator, val_iterator, test_iterator

def conv2d(x, W, b, strides=1):

 # Conv2D wrapper, with bias and relu activation

 x = tf.nn.conv2d(x, W, strides=[1, strides, strides, 1], padding='SAME')

 x = tf.nn.bias_add(x, b)

 axis = list(range(len(x.get_shape()) - 1))

 mean,var = tf.nn.moments(x, axis)

 size = len(mean.get_shape())

 scale = tf.Variable(tf.ones([size]))

 shift = tf.Variable(tf.zeros([size]))

 epsilon = 0.001

 x = tf.nn.batch_normalization(x, mean, var, shift, scale, epsilon)

 return tf.nn.relu(x)

def maxpool2d(x, k=2):

 return tf.nn.max_pool(x, ksize=[1, k, k, 1], strides=[1, k, k, 1],padding='SAME')

103

def conv_net(x, weights, biases):

 # here we call the conv2d function we had defined above and pass the input image x, weights

wc1 and bias bc1.

 conv1 = conv2d(x, weights['wc1'], biases['bc1'])

 # Max Pooling (down-sampling), this chooses the max value from a 2*2 matrix window and

outputs a 14*14 matrix.

 pl1 = maxpool2d(conv1, k=2)

 # Convolution Layer

 # here we call the conv2d function we had defined above and pass the input image x, weights

wc2 and bias bc2.

 conv2 = conv2d(pl1, weights['wc2'], biases['bc2'])

 # Max Pooling (down-sampling), this chooses the max value from a 2*2 matrix window and

outputs a 7*7 matrix.

 pl2 = maxpool2d(conv2, k=2)

 #conv3 = conv2d(pl2, weights['wc3'], biases['bc3'])

 # Max Pooling (down-sampling), this chooses the max value from a 2*2 matrix window and

outputs a 4*4.

 #pl3 = maxpool2d(conv3, k=2)

#catlayer=tf.concat([tf.contrib.layers.flatten(pl1),tf.contrib.layers.flatten(pl2),tf.contrib.layers.flat

ten(pl3)],1)

 #fc1 = tf.reshape(catlayer,[-1, weights['wd1'].get_shape().as_list()[0]])

 # Fully connected layer

 # Reshape conv2 output to fit fully connected layer input

 fc1 = tf.reshape(pl2, [-1, weights['wd1'].get_shape().as_list()[0]])

 fc1 = tf.add(tf.matmul(fc1, weights['wd1']), biases['bd1'])

104

 # Output, class prediction

 # finally we multiply the fully connected layer with the weights and add a bias term.

 out = tf.add(tf.matmul(fc1, weights['out']), biases['out'])

 return out, conv1

DATASET_SIZE=8000

train_size = int(0.6 * DATASET_SIZE)

val_size = int(0.2 * DATASET_SIZE)

test_size = int(0.2 * DATASET_SIZE)

batch_size=256

weights = {

 'wc1': tf.get_variable('W0', shape=(3,3,1,8), initializer=tf.contrib.layers.xavier_initializer()),

 'wc2': tf.get_variable('W1', shape=(3,3,8,16), initializer=tf.contrib.layers.xavier_initializer()),

 'wc3': tf.get_variable('W2', shape=(3,3,16,32), initializer=tf.contrib.layers.xavier_initializer()),

 'wd1': tf.get_variable('W3', shape=(15*15*16,64),

initializer=tf.contrib.layers.xavier_initializer()),

 'out': tf.get_variable('W4', shape=(64,8), initializer=tf.contrib.layers.xavier_initializer()),

 }

biases = {

 'bc1': tf.get_variable('B0', shape=(8), initializer=tf.contrib.layers.xavier_initializer()),

 'bc2': tf.get_variable('B1', shape=(16), initializer=tf.contrib.layers.xavier_initializer()),

 'bc3': tf.get_variable('B2', shape=(32), initializer=tf.contrib.layers.xavier_initializer()),

 'bd1': tf.get_variable('B3', shape=(64), initializer=tf.contrib.layers.xavier_initializer()),

 'out': tf.get_variable('B4', shape=(8), initializer=tf.contrib.layers.xavier_initializer()),

 }

105

both placeholders are of type float

x = tf.placeholder("float", [None, 60,60,1])

y = tf.placeholder("float", [None, 8])

pred, conv1 = conv_net(x, weights, biases)

cost = (tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))

 +0.01*tf.nn.l2_loss(weights['wc1'])

 +0.01*tf.nn.l2_loss(weights['wc2'])

 #+0.01*tf.nn.l2_loss(weights['wc3'])

 +0.01*tf.nn.l2_loss(weights['wd1'])

 +0.01*tf.nn.l2_loss(weights['out'])

)

learning_rate=0.01

optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)

#Here you check whether the index of the maximum value of the predicted image is equal to the

actual labelled image. and both will be a column vector.

correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))

#calculate accuracy across all the given images and average them out.

accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

train_tfrecords='train_final4.tfrecords'

train_iterator,val_iterator,test_iterator=data_iterator(train_tfrecords,batch_size)

init = tf.global_variables_initializer()

train=train_iterator.get_next()

val=val_iterator.get_next()

test=test_iterator.get_next()

saver = tf.train.Saver()

with tf.Session() as sess:

 sess.run(init)

 train_loss = []

106

 val_loss=[]

 train_accuracy = []

 val_accuracy=[]

 summary_writer = tf.summary.FileWriter('./Output', sess.graph)

 sess.run(train_iterator.initializer)

 sess.run(val_iterator.initializer)

 for epoch in range(50):

 sum_loss=0

 sum_acc=0

 avg_loss=0

 avg_acc=0

 sum_val_loss=0

 avg_val_loss=0

 sum_val_acc=0

 avg_val_acc=0

 for iteration in range(train_size//batch_size):

 train_x,train_y=sess.run(train)

 train_y=tf.one_hot(train_y, 8).eval()

 opt = sess.run(optimizer, feed_dict={x: train_x, y: train_y})

 loss, acc = sess.run([cost, accuracy], feed_dict={x: train_x, y: train_y})

 sum_loss=loss+sum_loss

 avg_loss=sum_loss/(iteration+1)

 sum_acc=acc+sum_acc

 avg_acc=sum_acc/(iteration+1)

 val_x,val_y=sess.run(val)

 val_y=tf.one_hot(val_y, 8).eval()

 valid_acc,valid_loss = sess.run([accuracy,cost], feed_dict={x: val_x,y : val_y})

 sum_val_loss=valid_loss+sum_val_loss

 avg_val_loss=sum_val_loss/(iteration+1)

 sum_val_acc=valid_acc+sum_val_acc

 avg_val_acc=sum_val_acc/(iteration+1)

107

 train_loss.append(avg_loss)

 val_loss.append(avg_val_loss)

 train_accuracy.append(avg_acc)

 val_accuracy.append(avg_val_acc)

 print("Epoch " + str(epoch+1) + ", Loss= " + \

 "{:.6f}".format(avg_loss) + ", Training Accuracy= " + \

 "{:.5f}".format(avg_acc))

 print("Epoch " + str(epoch+1) + ", Loss= " + \

 "{:.6f}".format(avg_val_loss) + \

 ", Validation Accuracy:","{:.5f}".format(avg_val_acc))

 summary_writer.close()

 save_path = saver.save(sess, "./tmp/model4.ckpt")

 sess.run(test_iterator.initializer)

 test_x,test_y=sess.run(test)

 test_y=tf.one_hot(test_y, 8).eval(session=sess)

 test_acc,test_loss = sess.run([accuracy,cost], feed_dict={x: test_x,y : test_y})

 print(test_acc)

 print(test_loss)

Python Code for Chapter 2 – CNN +STN

import tensorflow as tf

from tensorflow.keras import models, layers

import numpy as np

from stn.spatial_transformer import transformer

import matplotlib.pyplot as plt

def _parse_function(example_proto):

 features=tf.parse_single_example(

 example_proto,

 features={

108

 'label':tf.FixedLenFeature([],tf.int64),

 'img_raw': tf.FixedLenFeature([],tf.string)

 }

)

 label=features['label']

 img=features['img_raw']

 img=tf.decode_raw(img,tf.uint8)

 img=tf.reshape(img,[60, 60, 1])

 img=tf.cast(img, tf.float32)*(1./255)

 label=tf.cast(label,tf.int32)

 return img, label

def data_iterator(tfrecords,batch_size):

 full_dataset =tf.data.TFRecordDataset(tfrecords)

 full_dataset = full_dataset.shuffle(buffer_size=8000,seed=1)

 train_dataset = full_dataset.take(train_size)

 test_dataset = full_dataset.skip(train_size)

 val_dataset = test_dataset.skip(val_size)

 test_dataset = test_dataset.take(test_size)

 train_dataset=train_dataset.map(_parse_function)

 val_dataset=val_dataset.map(_parse_function)

 test_dataset=test_dataset.map(_parse_function)

 train_iterator=train_dataset.repeat().batch(batch_size).make_initializable_iterator()

 val_iterator=val_dataset.repeat().batch(batch_size).make_initializable_iterator()

 test_iterator=test_dataset.batch(test_size).repeat().make_initializable_iterator()

 return train_iterator, val_iterator, test_iterator

def conv2d(x, W, b, strides=1):

 # Conv2D wrapper, with bias and relu activation

 x = tf.nn.conv2d(x, W, strides=[1, strides, strides, 1], padding='SAME')

 x = tf.nn.bias_add(x, b)

109

 axis = list(range(len(x.get_shape()) - 1))

 mean,var = tf.nn.moments(x, axis)

 size = len(mean.get_shape())

 scale = tf.Variable(tf.ones([size]))

 shift = tf.Variable(tf.zeros([size]))

 epsilon = 0.001

 x = tf.nn.batch_normalization(x, mean, var, shift, scale, epsilon)

 return tf.nn.relu(x)

def maxpool2d(x, k=2):

 return tf.nn.max_pool(x, ksize=[1, k, k, 1], strides=[1, k, k, 1],padding='SAME')

def conv_net(x, weights, biases,loc_weights,loc_biases):

 h_fc1=loc_net(x, loc_weights, loc_biases)

 h_trans = transformer(x, h_fc1,[60,60])

 # here we call the conv2d function we had defined above and pass the input image x, weights

wc1 and bias bc1.

 conv1 = conv2d(h_trans, weights['wc1'], biases['bc1'])

 # Max Pooling (down-sampling), this chooses the max value from a 2*2 matrix window and

outputs a 14*14 matrix.

 pl1 = maxpool2d(conv1, k=2)

 # Convolution Layer

 # here we call the conv2d function we had defined above and pass the input image x, weights

wc2 and bias bc2

 conv2 = conv2d(pl1, weights['wc2'], biases['bc2'])

 # Max Pooling (down-sampling), this chooses the max value from a 2*2 matrix window and

outputs a 7*7 matrix.

 pl2 = maxpool2d(conv2, k=2)

 conv3 = conv2d(pl2, weights['wc3'], biases['bc3'])

110

 # Max Pooling (down-sampling), this chooses the max value from a 2*2 matrix window and

outputs a 4*4.

 pl3 = maxpool2d(conv3, k=2)

 # Fully connected layer

 # Reshape conv2 output to fit fully connected layer input

 fc1 = tf.reshape(pl3 ,[-1, weights['wd1'].get_shape().as_list()[0]])

 fc1 = tf.add(tf.matmul(fc1, weights['wd1']), biases['bd1'])

 # Output, class prediction

 # finally we multiply the fully connected layer with the weights and add a bias term.

 out = tf.add(tf.matmul(fc1, weights['out']), biases['out'])

 return out,h_fc1,h_trans

def loc_net(x, weights, biases):

 # here we call the conv2d function we had defined above and pass the input image x, weights

wc1 and bias bc1.

 conv1 = conv2d(x, weights['wc1'], biases['bc1'])

 # Max Pooling (down-sampling), this chooses the max value from a 2*2 matrix window and

outputs a 14*14 matrix.

 pl1 = maxpool2d(conv1, k=2)

 # Convolution Layer

 # here we call the conv2d function we had defined above and pass the input image x, weights

wc2 and bias bc2.

 conv2 = conv2d(pl1, weights['wc2'], biases['bc2'])

 # Max Pooling (down-sampling), this chooses the max value from a 2*2 matrix window and

outputs a 7*7 matrix.

 pl2 = maxpool2d(conv2, k=2)

 # Max Pooling (down-sampling), this chooses the max value from a 2*2 matrix window and

outputs a 4*4.

 # Fully connected layer

 # Reshape conv2 output to fit fully connected layer input

111

 fc1 = tf.reshape(pl2, [-1, weights['wd1'].get_shape().as_list()[0]])

 fc1 = tf.add(tf.matmul(fc1, weights['wd1']), biases['bd1'])

 # Output, class prediction

 # finally we multiply the fully connected layer with the weights and add a bias term.

 out = tf.add(tf.matmul(fc1, weights['out']), biases['out'])

 return out

DATASET_SIZE=8000

train_size = int(0.6 * DATASET_SIZE)

val_size = int(0.2 * DATASET_SIZE)

test_size = int(0.2 * DATASET_SIZE)

batch_size=256

train_tfrecords='train_final4.tfrecords'

train_iterator,val_iterator,test_iterator=data_iterator(train_tfrecords,batch_size)

initial = np.array([1,0,0,0,1,0],dtype='float32')

weights = {

 'wc1': tf.get_variable('W0', shape=(3,3,1,8), initializer=tf.contrib.layers.xavier_initializer()),

 'wc2': tf.get_variable('W1', shape=(3,3,8,16), initializer=tf.contrib.layers.xavier_initializer()),

 'wc3': tf.get_variable('W2', shape=(3,3,16,32), initializer=tf.contrib.layers.xavier_initializer()),

 'wd1': tf.get_variable('W3', shape=(8*8*32,64), initializer=tf.contrib.layers.xavier_initializer()),

 'out': tf.get_variable('W4', shape=(64,8), initializer=tf.contrib.layers.xavier_initializer()),

 }

biases = {

 'bc1': tf.get_variable('B0', shape=(8), initializer=tf.contrib.layers.xavier_initializer()),

 'bc2': tf.get_variable('B1', shape=(16), initializer=tf.contrib.layers.xavier_initializer()),

 'bc3': tf.get_variable('B2', shape=(32), initializer=tf.contrib.layers.xavier_initializer()),

 'bd1': tf.get_variable('B3', shape=(64), initializer=tf.contrib.layers.xavier_initializer()),

112

 'out': tf.get_variable('B4', shape=(8), initializer=tf.contrib.layers.xavier_initializer()),

 }

loc_weights = {

 'wc1': tf.get_variable('loc_W0', shape=(3,3,1,8),

initializer=tf.contrib.layers.xavier_initializer()),

 'wc2': tf.get_variable('loc_W1', shape=(3,3,8,16),

initializer=tf.contrib.layers.xavier_initializer()),

 #'wc3': tf.get_variable('loc_W2', shape=(3,3,16,32),

initializer=tf.contrib.layers.xavier_initializer()),

 'wd1': tf.get_variable('loc_W3', shape=(15*15*16,64),

initializer=tf.contrib.layers.xavier_initializer()),

 'out': tf.get_variable('loc_W4', initializer=tf.Variable(tf.zeros([64, 6]))),

 }

loc_biases = {

 'bc1': tf.get_variable('loc_B0', shape=(8), initializer=tf.contrib.layers.xavier_initializer()),

 'bc2': tf.get_variable('loc_B1', shape=(16), initializer=tf.contrib.layers.xavier_initializer()),

 #'bc3': tf.get_variable('loc_B2', shape=(32), initializer=tf.contrib.layers.xavier_initializer()),

 'bd1': tf.get_variable('loc_B3', shape=(64), initializer=tf.contrib.layers.xavier_initializer()),

 'out': tf.get_variable('loc_B4', initializer=initial),

 }

both placeholders are of type float

x = tf.placeholder("float", [None, 60,60,1])

y = tf.placeholder("float", [None, 8])

pred,h_fc1,h_trans = conv_net(x, weights, biases,loc_weights,loc_biases)

cost = (tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))

 +0.01*tf.nn.l2_loss(weights['wc1'])

 +0.01*tf.nn.l2_loss(weights['wc2'])

 +0.01*tf.nn.l2_loss(weights['wc3'])

 +0.01*tf.nn.l2_loss(weights['wd1'])

 +0.01*tf.nn.l2_loss(weights['out'])

113

 #+0.01*tf.nn.l2_loss(loc_weights2['wc1'])

 #+0.01*tf.nn.l2_loss(loc_weights2['wc2'])

 #+0.01*tf.nn.l2_loss(loc_weights['wc3'])

 #+0.01*tf.nn.l2_loss(loc_weights2['wd1'])

 #+0.01*tf.nn.l2_loss(loc_weights2['out'])

 +0.01*tf.nn.l2_loss(loc_weights['wc1'])

 +0.01*tf.nn.l2_loss(loc_weights['wc2'])

 #+0.01*tf.nn.l2_loss(loc_weights['wc3'])

 +0.01*tf.nn.l2_loss(loc_weights['wd1'])

 +0.01*tf.nn.l2_loss(loc_weights['out'])

)

learning_rate=0.0005

optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)

#Here you check whether the index of the maximum value of the predicted image is equal to the

actual labelled image. and both will be a column vector.

correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))

#calculate accuracy across all the given images and average them out.

accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

init = tf.global_variables_initializer()

train=train_iterator.get_next()

val=val_iterator.get_next()

test=test_iterator.get_next()

saver = tf.train.Saver()

for d in ['/gpu:0']:

 with tf.device(d):

 sess=tf.Session()

 sess.run(init)

 train_loss = []

 val_loss=[]

 train_accuracy = []

114

 val_accuracy=[]

 summary_writer = tf.summary.FileWriter('./Output', sess.graph)

 sess.run(train_iterator.initializer)

 sess.run(val_iterator.initializer)

 sess.run(test_iterator.initializer)

 for epoch in range(70):

 sum_loss=0

 sum_acc=0

 avg_loss=0

 avg_acc=0

 sum_val_loss=0

 avg_val_loss=0

 sum_val_acc=0

 avg_val_acc=0

 for iteration in range(train_size//batch_size):

 train_x,train_y=sess.run(train)

 train_y=tf.one_hot(train_y, 8).eval(session=sess)

 opt = sess.run(optimizer, feed_dict={x: train_x, y: train_y})

 loss, acc = sess.run([cost, accuracy], feed_dict={x: train_x, y: train_y})

 sum_loss=loss+sum_loss

 avg_loss=sum_loss/(iteration+1)

 sum_acc=acc+sum_acc

 avg_acc=sum_acc/(iteration+1)

 val_x,val_y=sess.run(val)

 val_y=tf.one_hot(val_y, 8).eval(session=sess)

 valid_acc,valid_loss = sess.run([accuracy,cost], feed_dict={x: val_x,y : val_y})

 sum_val_loss=valid_loss+sum_val_loss

 avg_val_loss=sum_val_loss/(iteration+1)

 sum_val_acc=valid_acc+sum_val_acc

 avg_val_acc=sum_val_acc/(iteration+1)

 print("Iter " + str(iteration+1) + ", Loss= " + \

115

 "{:.6f}".format(avg_loss) + ", Training Accuracy= " + \

 "{:.5f}".format(avg_acc))

 train_loss.append(avg_loss)

 val_loss.append(avg_val_loss)

 train_accuracy.append(avg_acc)

 val_accuracy.append(avg_val_acc)

 print("Epoch " + str(epoch+1) + ", Loss= " + \

 "{:.6f}".format(avg_loss) + ", Training Accuracy= " + \

 "{:.5f}".format(avg_acc))

 print("Epoch " + str(epoch+1) + ", Loss= " + \

 "{:.6f}".format(avg_val_loss) + \

 ", Validation Accuracy:","{:.5f}".format(avg_val_acc))

 summary_writer.close()

 save_path = saver.save(sess, "./tmp/model_stn3.ckpt")

Python Code for Chapter 3 – xml2txt_pascalvoc

import os

import xml.etree.ElementTree as ET

import pandas as pd

import numpy as np

txtpath='C:/Users/Yuxi/Desktop/Research/dataset/dataset_processed/txt/';

xmlpath='C:/Users/Yuxi/Desktop/Research/dataset/dataset_processed/xml/';

filetype='val'

f = open(txtpath+filetype+'.txt', 'r')

a = np.array(f.read().split('\n'))

b = a[range(len(a)-1)]

df1=pd.DataFrame(np.vstack((b,-np.ones([1,len(a)-

1],dtype='int32'))).T,columns=['filename','TF'])

df2=pd.DataFrame(np.vstack((b,-np.ones([1,len(a)-

1],dtype='int32'))).T,columns=['filename','TF'])

116

df3=pd.DataFrame(np.vstack((b,-np.ones([1,len(a)-

1],dtype='int32'))).T,columns=['filename','TF'])

df4=pd.DataFrame(np.vstack((b,-np.ones([1,len(a)-

1],dtype='int32'))).T,columns=['filename','TF'])

df5=pd.DataFrame(np.vstack((b,-np.ones([1,len(a)-

1],dtype='int32'))).T,columns=['filename','TF'])

df6=pd.DataFrame(np.vstack((b,-np.ones([1,len(a)-

1],dtype='int32'))).T,columns=['filename','TF'])

df7=pd.DataFrame(np.vstack((b,-np.ones([1,len(a)-

1],dtype='int32'))).T,columns=['filename','TF'])

for i in range(len(a)-1):

 filename=str(df1.loc[i,'filename'])+'.xml'

 tree= ET.parse(xmlpath+filename)

 root = tree.getroot()

 obj=root.findall('object')

 for j in range(len(obj)):

 idx=obj[j].find('name').text

 if idx==str(1):

 df1.loc[i,'TF']=1

 if idx==str(2):

 df2.loc[i,'TF']=1

 if idx==str(3):

 df3.loc[i,'TF']=1

 if idx==str(4):

 df4.loc[i,'TF']=1

 if idx==str(5):

 df5.loc[i,'TF']=1

 if idx==str(6):

 df6.loc[i,'TF']=1

 if idx==str(7):

 df7.loc[i,'TF']=1

117

d = {}

d=df1,df2,df3,df4,df5,df6,df7

for n in range(1,8):

np.savetxt(r'C:/Users/Yuxi/Desktop/Research/dataset/dataset_processed/txt/'+str(n)+'_'+filetype+

'.txt', d[n-1].values,fmt='%s')

118

APPENDIX B. IMAGE SAMPLES

The Input and Output of STN for Chapter 2

Input

119

Output

120

The Ground Truth of Detection for Chapter 3

121

122

123

124

Network Architecture and Loss Curve for Chapter 3

125

126

127

REFERENCES

Akinlar, C., & Topal, C. (2013). EDCircles: A real-time circle detector with a false detection

control. Pattern Recognition. https://doi.org/10.1016/j.patcog.2012.09.020

Almazán, J., Fornés, A., & Valveny, E. (2012). A non-rigid appearance model for shape

description and recognition. Pattern Recognition, 45(9), 3105–3113.

https://doi.org/10.1016/j.patcog.2012.01.010

Antoniou, A., Storkey, A., & Edwards, H. (2017). Data Augmentation Generative Adversarial

Networks, 1–14. Retrieved from http://arxiv.org/abs/1711.04340

Azulay, A., & Weiss, Y. (2018). Why do deep convolutional networks generalize so poorly to

small image transformations? Retrieved from http://arxiv.org/abs/1805.12177

Becerik-Gerber, B., Jazizadeh, F., Li, N., & Calis, G. (2011). Application Areas and Data

Requirements for BIM-Enabled Facilities Management. Journal of Construction

Engineering and Management. https://doi.org/10.1061/(asce)co.1943-7862.0000433

Bhatt, M., Hois, J., & Kutz, O. (2012). Ontological modelling of form and function for architectural

design. Applied Ontology. https://doi.org/10.3233/AO-2012-0104

Boumaiza, A., & Tabbone, S. (2011). A novel approach for graphics recognition based on Galois

lattice and bag of words representation. In Proceedings of the International Conference on

Document Analysis and Recognition, ICDAR. https://doi.org/10.1109/ICDAR.2011.170

Boumaiza, A., & Tabbone, S. (2012). Symbol recognition using a Galois lattice of frequent

graphical patterns. In Proceedings - 10th IAPR International Workshop on Document

Analysis Systems, DAS 2012. https://doi.org/10.1109/DAS.2012.83

Cavka, H., Staub-French, S., & Pottinger, R. (2015). Evaluating the Alignment of Organizational

and Project Contexts for BIM Adoption: A Case Study of a Large Owner Organization.

Buildings. https://doi.org/10.3390/buildings5041265

Chen, X., & Gupta, A. (2017). An Implementation of Faster RCNN with Study for Region

Sampling, 1–3. Retrieved from http://arxiv.org/abs/1702.02138

Chidester, B., Do, M. N., & Ma, J. (2018). Rotation Equivariance and Invariance in Convolutional

Neural Networks. Retrieved from http://arxiv.org/abs/1805.12301

Cohen, T. S., & Welling, M. (2014). Transformation Properties of Learned Visual Representations,

(3), 1–11. Retrieved from http://arxiv.org/abs/1412.7659

https://doi.org/10.1016/j.patcog.2012.09.020
https://doi.org/10.1016/j.patcog.2012.01.010
http://arxiv.org/abs/1711.04340
http://arxiv.org/abs/1805.12177
https://doi.org/10.1061/(asce)co.1943-7862.0000433
https://doi.org/10.3233/AO-2012-0104
https://doi.org/10.1109/ICDAR.2011.170
https://doi.org/10.1109/DAS.2012.83
https://doi.org/10.3390/buildings5041265
http://arxiv.org/abs/1702.02138
http://arxiv.org/abs/1805.12301

128

Conte, D., Foggia, P., Sansone, C., & Vento, M. (2004). Thirty years of graph matching in pattern

recognition. International Journal of Pattern Recognition and Artificial Intelligence.

https://doi.org/10.1142/s0218001404003228

Coustaty, M., Bertet, K., Visani, M., & Ogier, J. M. (2011). A new adaptive structural signature

for symbol recognition by using a Galois lattice as a classifier. IEEE Transactions on

Systems, Man, and Cybernetics, Part B: Cybernetics.

https://doi.org/10.1109/TSMCB.2011.2108646

Do, T. H., Tabbone, S., & Ramos Terrades, O. (2016). Sparse representation over learned

dictionary for symbol recognition. Signal Processing.

https://doi.org/10.1016/j.sigpro.2015.12.020

Do, T.-H., Tabbone, S., & Ramos-Terrades, O. (2012). Text/graphic separation using a sparse

representation with multi-learned dictionaries. Pattern Recognition (ICPR), 2012 21st

International Conference On, (Icpr), 689–692.

Doermann, D., & Tombre, K. (2014). Handbook of Document Image Processing and Recognition.

Handbook of Document Image Processing and Recognition. https://doi.org/10.1007/978-

0-85729-859-1

Dori, D., & Tombre, K. (1995). From engineering drawings to 3D cad models: are we ready now?

Computer-Aided Design. https://doi.org/10.1016/0010-4485(95)91134-7

Dosch, P., & Lladós, J. (2010). Vectorial Signatures for Symbol Discrimination.

https://doi.org/10.1007/978-3-540-25977-0_14

Dutta, A., Lladós, J., & Pal, U. (2013). A symbol spotting approach in graphical documents by

hashing serialized graphs. Pattern Recognition.

https://doi.org/10.1016/j.patcog.2012.10.003

Escalera, S., Fornés, A., Pujol, O., Lladós, J., & Radeva, P. (2011). Circular blurred shape model

for multiclass symbol recognition. IEEE Transactions on Systems, Man, and Cybernetics,

Part B: Cybernetics. https://doi.org/10.1109/TSMCB.2010.2060481

Escalera, S., Fornés, A., Pujol, O., Radeva, P., Sánchez, G., & Lladós, J. (2009). Blurred Shape

Model for binary and grey-level symbol recognition. Pattern Recognition Letters.

https://doi.org/10.1016/j.patrec.2009.08.001

Fletcher, L. A., & Kasturi, R. (1988). A Robust Algorithm for Text String Separation from Mixed

Text/Graphics Images. IEEE Transactions on Pattern Analysis and Machine Intelligence.

https://doi.org/10.1109/34.9112

Gallaher, M. P., O’Connor, A. C., Dettbarn, Jr., J. L., & Gilday, L. T. (2004). Cost Analysis of

Inadequate Interoperability in the U.S. Capital Facilities Industry.

https://doi.org/10.6028/NIST.GCR.04-867

https://doi.org/10.1142/s0218001404003228
https://doi.org/10.1109/TSMCB.2011.2108646
https://doi.org/10.1016/j.sigpro.2015.12.020
https://doi.org/10.1007/978-0-85729-859-1
https://doi.org/10.1007/978-0-85729-859-1
https://doi.org/10.1016/0010-4485(95)91134-7
https://doi.org/10.1007/978-3-540-25977-0_14
https://doi.org/10.1016/j.patcog.2012.10.003
https://doi.org/10.1109/TSMCB.2010.2060481
https://doi.org/10.1016/j.patrec.2009.08.001
https://doi.org/10.1109/34.9112

129

Gerrish, T., Ruikar, K., Cook, M., Johnson, M., Phillip, M., & Lowry, C. (2017). BIM application

to building energy performance visualisation and managementChallenges and potential.

Energy and Buildings. https://doi.org/10.1016/j.enbuild.2017.03.032

Girshick, R. (2015). Fast R-CNN. In Proceedings of the IEEE International Conference on

Computer Vision. https://doi.org/10.1109/ICCV.2015.169

Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate

object detection and semantic segmentation. In Proceedings of the IEEE Computer Society

Conference on Computer Vision and Pattern Recognition.

https://doi.org/10.1109/CVPR.2014.81

Goodfellow, I. J. (2014). Generative Adversarial Nets Ian. Corrosion.

https://doi.org/10.1016/B978-0-408-00109-0.50001-8

Grompone Von Gioi, R., Jakubowicz, J., Morel, J. M., & Randall, G. (2010). LSD: A fast line

segment detector with a false detection control. IEEE Transactions on Pattern Analysis and

Machine Intelligence. https://doi.org/10.1109/TPAMI.2008.300

Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., … Chen, T. (2018). Recent advances

in convolutional neural networks. Pattern Recognition.

https://doi.org/10.1016/j.patcog.2017.10.013

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Spatial Pyramid Pooling in Deep Convolutional

Networks for Visual Recognition. IEEE Transactions on Pattern Analysis and Machine

Intelligence. https://doi.org/10.1109/TPAMI.2015.2389824

Hoang, T. V., & Tabbone, S. (2012). The generalization of the R-transform for invariant pattern

representation. Pattern Recognition, 45(6), 2145–2163.

https://doi.org/10.1016/j.patcog.2011.11.007

Hoang, T. V., & Tabbone, S. (2010). Text extraction from graphical document images using sparse

representation. https://doi.org/10.1145/1815330.1815349

Hosang, J., Benenson, R., Dollar, P., & Schiele, B. (2016). What Makes for Effective Detection

Proposals? IEEE Transactions on Pattern Analysis and Machine Intelligence.

https://doi.org/10.1109/TPAMI.2015.2465908

Irizarry, J., Gheisari, M., Williams, G., & Roper, K. (2014). Ambient intelligence environments

for accessing building information. Facilities. https://doi.org/10.1108/F-05-2012-0034

Jaderberg, M., Simonyan, K., Zisserman, A., & Kavukcuoglu, K. (2015). Spatial Transformer

Networks, 1–15. Retrieved from http://arxiv.org/abs/1506.02025

https://doi.org/10.1016/j.enbuild.2017.03.032
https://doi.org/10.1109/ICCV.2015.169
https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.1016/B978-0-408-00109-0.50001-8
https://doi.org/10.1109/TPAMI.2008.300
https://doi.org/10.1016/j.patcog.2017.10.013
https://doi.org/10.1109/TPAMI.2015.2389824
https://doi.org/10.1016/j.patcog.2011.11.007
https://doi.org/10.1145/1815330.1815349
https://doi.org/10.1109/TPAMI.2015.2465908
https://doi.org/10.1108/F-05-2012-0034
http://arxiv.org/abs/1506.02025

130

Jaoua, A., & Elloumi, S. (2002). Galois connection, formal concepts and Galois lattice in real

relations: Application in a real classifier. In Journal of Systems and Software.

https://doi.org/10.1016/S0164-1212(01)00087-5

Joseph, S. H., & Pridrnore, T. P. (1992). Knowledge-directed interpretation of mechanical

engineering drawings. IEEE Transactions on Pattern Analysis and Machine Intelligence.

https://doi.org/10.1109/34.161351

Jylhä, T., & Suvanto, M. E. (2015). Impacts of poor quality of information in the facility

management field. Facilities. https://doi.org/10.1108/F-07-2013-0057

Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M., & Tang, P. T. P. (2017). On Large

Batch Training for Deep Learning. ICLR.

Kingma, D. P., & Ba, J. L. (2015). Adam: A method for stochastic gradient descent. ICLR:

International Conference on Learning Representations.

Lamiroy, B., & Guebbas, Y. (2010). Robust and precise circular arc detection. In Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics). https://doi.org/10.1007/978-3-642-13728-0_5

Le Bodic, P., Locteau, H., Adam, S., Héroux, P., Lecourtier, Y., & Knippel, A. (2009). Symbol

detection using region adjacency graphs and integer linear programming. In Proceedings

of the International Conference on Document Analysis and Recognition, ICDAR.

https://doi.org/10.1109/ICDAR.2009.202

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to

document recognition. Proceedings of the IEEE. https://doi.org/10.1109/5.726791

Lenc, K., & Vedaldi, A. (2019). Understanding Image Representations by Measuring Their

Equivariance and Equivalence. International Journal of Computer Vision.

https://doi.org/10.1007/s11263-018-1098-y

Lins, R. D., & Lamiroy, B. (2017). Preface. Lecture Notes in Computer Science (Including

Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),

9657 LNCS, V–VI. https://doi.org/10.1007/978-3-319-52159-6

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., & Berg, A. C. (2016). SSD:

Single shot multibox detector. In Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).

https://doi.org/10.1007/978-3-319-46448-0_2

Lladós, J., Martí, E., & Villanueva, J. J. (2001). Symbol recognition by error-tolerant subgraph

matching between region adjacency graphs. IEEE Transactions on Pattern Analysis and

Machine Intelligence. https://doi.org/10.1109/34.954603

https://doi.org/10.1016/S0164-1212(01)00087-5
https://doi.org/10.1109/34.161351
https://doi.org/10.1108/F-07-2013-0057
https://doi.org/10.1007/978-3-642-13728-0_5
https://doi.org/10.1109/ICDAR.2009.202
https://doi.org/10.1109/5.726791
https://doi.org/10.1007/s11263-018-1098-y
https://doi.org/10.1007/978-3-319-52159-6
https://doi.org/10.1007/978-3-319-46448-0_2

131

Lu, T., Tai, C.-L., Yang, H., & Cai, S. (2009). A novel knowledge-based system for interpreting

complex engineering drawings: theory, representation, and implementation. IEEE

Transactions on Pattern Analysis and Machine Intelligence.

https://doi.org/10.1109/TPAMI.2008.161

Luqman, M. M., Ramel, J. Y., Lladós, J., & Brouard, T. (2013). Fuzzy multilevel graph embedding.

Pattern Recognition. https://doi.org/10.1016/j.patcog.2012.07.029

MacLean, W. J., & Tsotsos, J. K. (2008). Fast pattern recognition using normalized grey-scale

correlation in a pyramid image representation. Machine Vision and Applications.

https://doi.org/10.1007/s00138-007-0089-8

Marcos, D., Volpi, M., & Tuia, D. (2017). Learning rotation invariant convolutional filters for

texture classification. In Proceedings - International Conference on Pattern Recognition.

https://doi.org/10.1109/ICPR.2016.7899932

Marcos, D., Volpi, M., & Tuia, D. (2017). Learning rotation invariant convolutional filters for

texture classification. In Proceedings - International Conference on Pattern Recognition.

https://doi.org/10.1109/ICPR.2016.7899932

Mayo, G., & Issa, R. R. A. (2015). Nongeometric Building Information Needs Assessment for

Facilities Management. Journal of Management in Engineering.

https://doi.org/10.1061/(asce)me.1943-5479.0000414

Messmer, B. T., & Bunke, H. (1998). clustering and error-correcting matching of graphs for

learning and recognition of symbols in engineering drawings.

https://doi.org/10.1142/9789812797704_0006

Messmer, B. T., & Bunke, H. (1995). Automatic learning and recognition of graphical symbols in

engineering drawings. https://doi.org/10.1007/3-540-61226-2_11

Munz, E. D. (2017). Batch Normalization: Accelerating Deep Network Training by Reducing

Internal Covariate Shift Sergey. Nervenheilkunde. https://doi.org/10.1007/s13398-014-

0173-7.2

Nair, V., & Hinton, G. (2010). Rectified Linear Units Improve Restricted Boltzmann Machines.

In Proceedings of the 27th International Conference on Machine Learning.

Nayef, N. (2012). Geometric-based Symbol Spotting and Retrieval in Technical Line Drawings,

(December).

Niimi, T., Hayashi, Y., & Sekiguchi, K. (2003). A Rotation and a Translation Suffice: Fooling

CNNs with Simple Transformations Logan. Journal of Biological Chemistry.

https://doi.org/10.1074/jbc.M212578200

https://doi.org/10.1109/TPAMI.2008.161
https://doi.org/10.1016/j.patcog.2012.07.029
https://doi.org/10.1007/s00138-007-0089-8
https://doi.org/10.1109/ICPR.2016.7899932
https://doi.org/10.1109/ICPR.2016.7899932
https://doi.org/10.1061/(asce)me.1943-5479.0000414
https://doi.org/10.1142/9789812797704_0006
https://doi.org/10.1007/3-540-61226-2_11
https://doi.org/10.1007/s13398-014-0173-7.2
https://doi.org/10.1007/s13398-014-0173-7.2

132

Pǎtrǎucean, V., Gurdjos, P., & Von Gioi, R. G. (2012). A parameterless line segment and elliptical

arc detector with enhanced ellipse fitting. In Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).

https://doi.org/10.1007/978-3-642-33709-3_41

Pedro, D., & Gens, R. (2012). Deep Symmetry Networks. Foundations and Trends® in Machine

Learning. https://doi.org/10.1561/2200000044

Rahul, R., Paliwal, S., Sharma, M., & Vig, L. (2019). Automatic Information Extraction from

Piping and Instrumentation Diagrams. Retrieved from http://arxiv.org/abs/1901.11383

Raveaux, R. (2010). Graph Mining and Graph Classification : application to cadastral map analysis.

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-

time object detection. In Proceedings of the IEEE Computer Society Conference on

Computer Vision and Pattern Recognition. https://doi.org/10.1109/CVPR.2016.91

Redmon, J., & Farhadi, A. (2017). YOLO9000: Better, faster, stronger. In Proceedings - 30th IEEE

Conference on Computer Vision and Pattern Recognition, CVPR 2017.

https://doi.org/10.1109/CVPR.2017.690

Redmon, J., & Farhadi, A. (2017). YOLOv3. In 2017 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR). https://doi.org/10.1109/CVPR.2017.690

Ren, S., He, K., Girshick, R., & Sun, J. (2017). Faster R-CNN: Towards Real-Time Object

Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and

Machine Intelligence. https://doi.org/10.1109/TPAMI.2016.2577031

Rosin, P. L., & West, G. A. (1989). Segmentation of edges into lines and arcs. Image and Vision

Computing. https://doi.org/10.1016/0262-8856(89)90004-8

Rusiñol, M., Borràs, A., & Lladós, J. (2010). Relational indexing of vectorial primitives for symbol

spotting in line-drawing images. Pattern Recognition Letters.

https://doi.org/10.1016/j.patrec.2009.10.002

Rusiñol, M., & Lladós, J. (2006). Symbol spotting in technical drawings using vectorial signatures.

https://doi.org/10.1007/11767978_4

Rusk, N. (2015). Deep learning. Nature Methods, 13(1), 35. https://doi.org/10.1038/nmeth.3707

Sabour, S., Frosst, N., & Hinton, G. E. (2017). Dynamic Routing Between Capsules, (Nips).

Retrieved from http://arxiv.org/abs/1710.09829

Santosh, K. C., Lamiroy, B., & Ropers, J. P. (2009). Inductive logic programming for symbol

recognition. In Proceedings of the International Conference on Document Analysis and

Recognition, ICDAR. https://doi.org/10.1109/ICDAR.2009.166

https://doi.org/10.1007/978-3-642-33709-3_41
https://doi.org/10.1561/2200000044
http://arxiv.org/abs/1901.11383
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/CVPR.2017.690
https://doi.org/10.1109/CVPR.2017.690
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1016/0262-8856(89)90004-8
https://doi.org/10.1016/j.patrec.2009.10.002
https://doi.org/10.1007/11767978_4
https://doi.org/10.1038/nmeth.3707
http://arxiv.org/abs/1710.09829
https://doi.org/10.1109/ICDAR.2009.166

133

Santosh, K., Lamiroy, B., & Wendling, L. (2013). DTW–Radon-Based shape descriptor for pattern

recognition. International Journal of Pattern Recognition and Artificial Intelligence.

https://doi.org/10.1142/s0218001413500080

Santosh, K. C., Lamiroy, B., & Wendling, L. (2014). Integrating vocabulary clustering with spatial

relations for symbol recognition. International Journal on Document Analysis and

Recognition. https://doi.org/10.1007/s10032-013-0205-4

Sattenini, A., Azhar, S., & Thuston, J. (2017). Preparing A Buindling Information Model For

Facility Maintenance And Management. In 28th International Symposium on Automation

and Robotics in Construction (ISARC 2011). https://doi.org/10.22260/isarc2011/0024

Schmidt, U., & Roth, S. (2012). Learning rotation-aware features: From invariant priors to

equivariant descriptors. In Proceedings of the IEEE Computer Society Conference on

Computer Vision and Pattern Recognition. https://doi.org/10.1109/CVPR.2012.6247909

Simard, P. Y., Steinkraus, D., & Platt, J. C. (2003). Best practices for convolutional neural

networks applied to visual document analysis. In Proceedings of the International

Conference on Document Analysis and Recognition, ICDAR.

https://doi.org/10.1109/ICDAR.2003.1227801

Tabbone, S., Ramos Terrades, O., & Barrat, S. (2009). Histogram of radon transform. A useful

descriptor for shape retrieval. https://doi.org/10.1109/icpr.2008.4761555

Tabbone, S., Wendling, L., & Salmon, J. P. (2006). A new shape descriptor defined on the Radon

transform. Computer Vision and Image Understanding.

https://doi.org/10.1016/j.cviu.2005.06.005

Tian, Z., Huang, W., He, T., He, P., & Qiao, Y. (2016). Detecting text in natural image with

connectionist text proposal network. In Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).

https://doi.org/10.1007/978-3-319-46484-8_4

Tombre, K., Tabbone, S., Pélissier, L., Lamiroy, B., & Dosch, P. (2007). Text/Graphics Separation

Revisited. https://doi.org/10.1007/3-540-45869-7_24

Visani, M., Bertet, K., & Ogier, J.-M. (2011). NAVIGALA: an original symbol classifier based on

based on navigation through a galois lattice. International Journal of Pattern Recognition

and Artificial Intelligence. https://doi.org/10.1142/s0218001411008634

Volk, R., Stengel, J., & Schultmann, F. (2014). Building Information Modeling (BIM) for existing

buildings - Literature review and future needs. Automation in Construction.

https://doi.org/10.1016/j.autcon.2013.10.023

https://doi.org/10.1142/s0218001413500080
https://doi.org/10.1007/s10032-013-0205-4
https://doi.org/10.22260/isarc2011/0024
https://doi.org/10.1109/CVPR.2012.6247909
https://doi.org/10.1109/ICDAR.2003.1227801
https://doi.org/10.1109/icpr.2008.4761555
https://doi.org/10.1016/j.cviu.2005.06.005
https://doi.org/10.1007/978-3-319-46484-8_4
https://doi.org/10.1007/3-540-45869-7_24
https://doi.org/10.1142/s0218001411008634
https://doi.org/10.1016/j.autcon.2013.10.023

134

Webster, J. G., Santosh, K. C., & Wendling, L. (2015). Graphical symbol recognition. In Wiley

Encyclopedia of Electrical and Electronics Engineering.

https://doi.org/10.1002/047134608x.w8260

Yalcinkaya, M., & Singh, V. (2015). Patterns and trends in Building Information Modeling (BIM)

research: A Latent Semantic Analysis. Automation in Construction.

https://doi.org/10.1016/j.autcon.2015.07.012

Zhang, D., & Lu, G. (2002). Generic Fourier descriptor for shape-based image retrieval. In

Proceedings - 2002 IEEE International Conference on Multimedia and Expo, ICME 2002.

https://doi.org/10.1109/ICME.2002.1035809

https://doi.org/10.1002/047134608x.w8260
https://doi.org/10.1016/j.autcon.2015.07.012
https://doi.org/10.1109/ICME.2002.1035809

