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ABSTRACT 
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Major Professor: Hubo Cai 

 

Piping is an essential component in buildings, and its as-built information is critical to facility 

management tasks. Manually extracting piping information from legacy drawings that are in paper, 

PDF, or image format is mentally exerting, time-consuming, and error-prone. Symbol recognition 

and detection are core problems in the computer-based interpretation of piping drawings, and the 

main technical challenge is to determine robust features that are invariant to scaling, rotation, and 

translation. This thesis aims to use convolutional neural networks (CNNs) to automatically extract 

features from raw images, and consequently, to locate and recognize symbols in piping drawings. 

In this thesis, the Spatial Transformer Network (STN) is applied to improve the performance 

of a standard CNN model for recognizing piping symbols, and the Faster Region-based 

Convolutional Neural Network (Faster RCNN) is adopted to exploit its capacity in symbol 

detection. For experimentation, the synthetic data are generated as follows. Two datasets are 

generated for symbol recognition and detection, respectively. For recognition, eight types of 

symbols are synthesized based on the geometric constraints between the primitives. The drawing 

samples for detection are manually sketched using AutoCAD MEP software and its piping 

component library, and seven types of symbols are selected from the piping component library. 

Both sets of samples are augmented with various scales, rotations, and random noises. 

The experiment for symbol recognition is conducted and the accuracies of the recognition 

accuracy of the CNN + STN model and the standard CNN model are compared. It is observed that 

the spatial transformer layer improves the accuracy in classifying piping symbols from 95.39% to 

98.26%. For the symbol detection task, the experiment is conducted using a public implementation 

of Faster RCNN. The mean Average Precision (mAP) is 82.8% when Intersection over Union (IoU) 

threshold equals to 0.5. Imbalanced data (i.e., imbalanced samples in each class) led to a decrease 

in the Average Precision in the minority class. Also, the symbol library, the small dataset, and the 
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complex backbone network limit the generality of the model.  Future work will focus on the 

collection of larger set of drawings and the improvement of the network’s geometric invariance. 
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CHAPTER 1. INTRODUCTION 

1.1 Background and Problem Statement 

As-built information on the piping system is critical to many facility management (FM) tasks, 

but unfortunately, that information is typically in paper-format piping drawings (Joseph and 

Pridmore 1992, Rahul et al. 2019) and is very difficult to access in a timely manner. A piping 

drawing is a schematic representation of the flow and the constitution of a piping system, such as 

a plumbing system that is an essential component in buildings. The piping diagram uses a graphical 

language that is composed of schematic lines and graphical symbols and annotations to illustrate 

the piping process with instrumentations and control devices. Figure 1.1 shows the snapshots of a 

plumbing drawing in the elevation view. Users interpret the meaning of graphics based on the 

legend table, annotations, and geometric and topological relationships of graphics. With the rich 

context and spatial information, piping drawings are used to locate specific piping components 

and extract product information such as product models, pipeline orientation, and piping 

components’ locations, all of which has been identified as required information for many FM tasks, 

including maintenance (Javier et al. 2012; Cavka et al. 2015), operations (Sattenini et al. 2011; 

Mayo and Issa 2016), asset management (Becerik-Gerber et al. 2012), and energy monitoring 

(Volk et al. 2014; Yalcinkaya and Singh 2015). Therefore, information extraction from piping 

drawings is a key task in facility management. 
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Figure 1.1 Parts of a plumbing diagram in the elevation view 

 

However, manually extracting information from legacy drawings that are in paper, PDF, or 

image format is mentally exerting, time-consuming, and error-prone. According to a report by the 

National Institute of Standards and Technology (NIST), the estimated cost of inadequate 

interoperability in the U.S. capital facilities industry is $15.8 billion per year; about 57.8% of this 

cost is borne by owners and operators during facility O&M (O’Conner 2004). Some of these costs 

arise from the information retrieval process in many existing buildings. Volk et al (2014) proposed 

that the high conversion efforts from drawings to semantic objects is the main challenge in building 

information integration. Paradoxically, with the accumulation of recreated models, concern about 

information overload is also evolving. From the view of lean management, many researchers (e.g., 

Jylhä and Suvanto 2015; Gerrish et al. 2017) recognize that the irretrievable and non-indexed files 

lead to inefficiencies in facility management, meaning that poor document management is the key 

deficiency in the current practice. Therefore, to eliminate the tedious process of manually 

rebuilding piping design or repeatedly digging into the superfluous documents, there is a critical 

need for developing an automated method to extract semantic information from piping drawings. 

In today’s market, tools for interpreting drawings are still stuck in a low automated level. 

Existing tools can be categorized into two types: drawing vectorization and navigation. AutoCAD 

Raster Design and Bluebeam Revu are representatives in these two types, the former emphasizes 

the vectorization process and needs further correction and recognition by users, and the latter one 

integrates some useful measures and tracking tools based on the users’ markers. 

From a scientific point of view, automated interpretation of general engineering drawings is an 

active topic in graphics recognition and document analysis community, but over the years end-to-
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end applications have been regarded as a utopia and abandoned (Doermann and Tombre 2014). In 

fact, focuses have been set on the subparts of the problem, including text-graphics separation, 

primitive extraction and vectorization, symbol recognition and detection and knowledge modeling. 

The methods for each sub-problem are categorized in Table 1.1. 

 

Table 1.1 Sub-problems of technical drawings interpretation and methods 

Sub-problem Methods 

Text-graphics 

separation 

Heuristics: connected component analysis + Hough transform + criterion 

Sparse representations: morphological component analysis; K-SVD 

Deep learning: connectionist text proposal networks (CTPN) 

Primitive 

extraction and 

vectorization 

Model fitting and voting: least square; random sample consensus (RANSAC); 

Hough transform (HT) 

Hypothesis testing: line support region growing + a contrario approach 

Line/arc decomposition: recursively significance comparison 

Symbol 

recognition 

Statistical: statistical features (geometric moments, R-signatures, etc.) + 

similarity measures  

Structural: structural descriptors (usually visual primitives or their spatial 

relations) and graph-based matching 

Syntactic: spatial predicates (usually primitives’ relations) and inductive learning 

programming 

Deep learning: convolution neural networks (CNN) 

Symbol detection 

Region-based: region proposals (CC, grid partitions, sliding windows, region of 

interests) and similarity measures 

Line primitive based: graph embedding and indexing 

Deep learning: fully convolution networks (FCN)  

Knowledge 

modeling   

Descriptive knowledge: geometric and topological reasoning based on rule sets, 

ontologies or meta-models 

Control knowledge: image analysis methods selection and sequential ordering 

based on strategy rules, ontologies or meta-models  

 

For the text-graphics separation problem, the baseline methods are the heuristic ones, which 

iteratively group connected components bounding boxes based on their properties (similar size, 

centers alignment, the histogram and aspect ratio of the elongated rectangle formed by aligned 

boxes). Their main limitation is in the case of text touching graphics (Fletcher and Kasturi 1988; 

Tombre et al. 2002). To overcome this limitation, some researchers proposed methods based on 

the sparse representation, which consider texts and graphics as two types of signals and separate 

them based discriminative dictionaries (Hoang and Tabbone 2010; Do et al. 2012). Recently, deep 
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learning approaches for text detection, such as CTPN (Tian et al. 2016), have been proposed, to 

seamlessly connect CNN and recurrent neural networks (RNN). CTPN has been adopted to solve 

text-graphics separation in drawings (Rahul et al. 2019) since it takes advantage of capturing the 

sequential context information. 

Primitive extraction and vectorization are low-level processing steps and usually used as 

preliminaries to symbol recognition and detection. Least square, RANSAC and HT are generally 

applied as complements of vectorization or symbol recognition (Lamiroy and Guebbas 2010, 

Coustaty et al. 2011; Boumaiza and Tabbone 2012). Another interesting perspective on primitive 

extraction is based on the Helmholtz principle, which formulates lines/arcs as meaningful events 

(Desolneux et al. 2001). Based on this principle, a serial of researches on line/arc detection has 

been proposed (e.g., Von Gioi et al. 2010; Pătrăucean et al. 2012; Akinlar and Topal 2013). The 

significant advancement is that these approaches enable the control of false detection by computing 

the expectation of the number of event occurrences. Line/arc decomposition is a typical problem 

in drawing vectorization, which can transform the skeletons or edges into either lines or arcs. 

Rosin’s method has been widely adopted in this field, which extracts line and arc segments by 

recursively comparing segments’ significance (Rosin and West 1989). The main advantage of this 

method is that only a limited set of parameters are used so that it can be generalized into many 

applications. The common drawback of raster-vector conversion is error-prone (Santosh and 

Wendling 2015), and it is not trivial to jointly consider vectorization and further analysis. 

Symbol recognition and detection methods are the core problems of drawings interpretation and 

can be roughly classified into two categories: with primitive extraction (structural or syntactic) and 

without primitive extraction (statistical). Here is a brief summary, and more details about this 

problem will be discussed in Section 2. Overall, the benefit of statistical methods is low 

computation cost, but the main challenge is the difficulty in feature selection which is critical to 

discriminative power and robustness. Structural and syntactic methods are much closer to human 

interpretation, and these methods outperform the statistical ones in the case of complex and 

composite symbols. However, the performance is limited by the precision of the vectorization 

process, and matching based on graph representation needs high computation cost. 

Because of the dual image/language nature of drawings (Dori and Tombre 1995), knowledge is 

considered necessary to interpret some of the contextual information. On the whole, the required 

knowledge can be classified into two levels: descriptive knowledge and control knowledge of 
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descriptive ones as explained in Table 1. Many researches have shown the strengths of modeling 

descriptive and control knowledge using rules and grammars (Joseph and Pridmore 1992; Lu et al. 

2009). Lu et al. (2009) proposed many implicit composition rules, such as reference and 

inheritance, which can be applied in the interpretation of drawings. Based on that, the recent trend 

on knowledge modeling is the inference of implicit knowledge based on ontologies and meta-

models (Raveaux 2010; Bhatt et al. 2012; de las Heras et al. 2017). The ontology-based methods 

and meta model-based methods are complementary to each other, in that the former takes 

advantage of the expressive power of the domain ontologies, while the latter is not sensitive to the 

variations introduced in the low-level processing. 

Therefore, there is a need to design an automated piping drawings interpretation method. Based 

on the review of state of the art, the sub-problems seem to reach a plateau, and the boundaries of 

these sub-problems have begun to blur. Therefore, this study focuses on symbol recognition and 

detection tasks. The reasons are mainly in twofold: (1) they are core sub-problems in this field 

since both low-level processing and high-level interpretation are tightly connected with them; (2) 

recent researches on deep learning have shown excellent performance on feature extraction, and 

its connectionist architecture enables the exploration of end-to-end applications. 

1.2 Literature Review 

Over the years, great efforts have been poured into the symbol recognition and spotting in 

technical drawings. Studies on symbol recognition and localization in technical drawings are based 

on either: (1) pixel-based descriptors or (2) primitive-based descriptors, including lines, arcs as 

well as the relations between them. They are commonly referred to as statistical and 

structural/syntactic methods (Doermann and Tombre 2014; Santosh and Wendling 2015), which 

will be reviewed in 1.2.1 and 1.2.2, respectively.  

These traditional methods still face challenges in robust representations and computation 

complexity. With recent progress in deep neural networks, classification and object detection for 

natural images can be achieved via the connectionist architecture, which can break through the 

plateau of conventional approaches. In this paper, deep neural networks are applied for symbol 

classification and detection, and principles and recent studies will be discussed in 1.2.3. Besides, 
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data augmentation techniques are applied in this study to enrich the dataset, so relate works in data 

augmentation will be briefly reviewed in 1.2.4 

1.2.1 Traditional Statistical Methods 

For methods in the statistical group, Figure 1.2 shows the general process in region-based 

symbol detection, including three steps: 

(1) Region detection: minimum bounding regions (e.g. rectangular, circular) enclosing the 

target symbols are detected; 

(2) Feature extraction: an optimal set of region-based features are selected and normalized by 

estimating the centroid position, orientation, and scale; 

(3) Classification: a proper classifier or a fusion of classifiers is designed.  

In the remaining part of this subsection, pixel-based symbol recognition methods will be first 

reviewed, and then a discussion of related studies and challenges in region detection will be 

followed. 

 

      

Figure 1.2 General pipeline for region-based symbol detection 

 

As indicated in Figure 1.2, symbol recognition can be regarded as a sub-task of detection based 

on the assumption that the symbol is already well segmented; thus, only feature extraction and 

classification are needed in this task. However, it is challenging to develop an optimal set of 

features as well as classifiers for discriminative and robust symbol recognition because of the high 

variability nature of symbols, such as rotation, scaling, deformation, intra-class, and inter-class 

Region Detection

Feature Extraction

Classification

Symbol 

Recognition
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variations. (Santosh and Wendling 2015). Table 1.2 shows some benchmark methods as well as 

recent studies for symbol recognition in technical drawings.  

 

Table 1.2 Pixel-based methods for symbol recognition in drawings 

Features Classifiers Advantages Limitations References 

Radon transform 

+ Fourier 

transform / 

Generic Radon 

transform 

Euclidean 

distance 

Invariant to 

rotation and 

scaling 

Sensitive to noise 

and deformation 

Tabbone et al. (2006) 

Hoang and Tabbone 

(2012) 

Histogram of 

Radon transform 

Dynamic time 

warping 

Invariant to 

rotation, scaling; 

Robust to 

distortion and 

degradation 

High computation 

cost 

Tabbone et al. (2008) 

Santosh et al. (2013) 

Moments (e.g. Hu 

moments, Zernike 

moments) 

Locality-Sensitive 

Hashing 

Invariant to 

rotation and 

scaling 

Not suitable for 

complex symbols 

Dutta et al. (2013) 

 

Generic Fourier 

transform + 

normalization 

City block 

distance 

Invariant to 

rotation and 

scaling; Robust 

to distortion 

Less 

discriminative 

power 

Zhang and Lu 

(2002a) 

Zhang and Lu 

(2002b) 

Blurred shape 

model (BSM) / 

BSM + Active 

appearance model 

Adaboost / SVM 

Invariant to 

rotation; Robust 

to deformation 

Less 

discriminative 

power 

Escalera et al. (2009) 

Almazán et al. 

(2012) 

Shape context 

descriptors + 

Sparse 

representation 

Term frequency 

and inverse 

document 

frequency (tf-idf) 

Invariant 

to rotation and 

scaling 

Not suitable for 

complex symbols 
Do et al. (2016) 

 

As illustrated in Table 1.2, related studies have provided significant insights into the fusion of 

features and the proper selection of classifier to balance similarity invariance and discriminative 

power. However, state-of-the-art approaches in symbol recognition community addressed slightly 

on affine invariance, which may become a trend with the popularity of mobile devices (Doermann 

and Tombre 2014). 

In addition to symbol recognition, the region detection problem is crucial since the accuracy of 

symbol recognition highly relies on the segmentation. Compared to the intensive studies on symbol 

recognition, little works have been done on region detection in technical drawings due to its 

textureless nature, which only shape information is available (Nibal Nayef 2012). There are two 
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main types of region detection, one is window filtering, and the other one is grouping (Hosang et 

al. 2015). The window filtering method is based on a grid or sliding window, which works like a 

correlation filter, but this method is sensitive to size and rotation variation (Maclean and Tsotsos 

2009, Escalera et al. 2011). The grouping methods are mainly applied in the primitive-based 

symbol detection task, which will be discussed in Section 1.2.2. 

Above all, the challenges in the pixel-based symbol recognition and detection mainly lie on two 

aspects: (1) the selection of an optimal set of features and classifiers; (2) efficient and robust 

symbol localization which is invariant to scaling and rotation. It seems that traditional pixel-based 

approaches face the bottleneck that lacks useful high-level representations for symbols, resulting 

in that the interest on primitive-based descriptors is increasing substantially.  

1.2.2 Structural or Syntactic Methods 

Symbol patterns, which are of the strong structural nature, can be regarded as the composition 

of visual primitives (e.g., lines, arcs, meaningful regions) and represented by graph or grammar 

structures. This kind of representation enables it to capture high-level features of symbols. 

However, primitive-based symbol recognition is not trivial. Instead of formulating this problem as 

an exact graph matching based on an ideal model, researchers often focus on developing robust 

representations and efficient and error-tolerant matching/indexing methods. The reasons are 

mainly in twofold: (1) the intrinsic variability of the patterns, noise in the processing steps, and 

nondeterministic representations; (2) high computational complexity in the matching process 

(Conte et al. 2004). As an analogy to structural pattern recognition, syntactic methods are also 

adopted in this field. Different from structural ones, syntactic approaches often consider the 

primitives as grammars and interpret patterns with parsing technologies rather than matching. 

Figure 1.3 shows the taxonomy of related works.  
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Figure 1.3 The taxonomy of primitive-based symbol recognition and detection methods 

 

According to Figure 1.3, the pipeline of structural/syntactic methods is not straightforward. 

First, the graph-based descriptions vary widely, such as attributed relational graphs (ARGs) 

(Bunke and Messmer 1995; Luqmen et al. 2013; Santosh et al. 2014), region adjacency graphs 

(RAGs) (Lladós 2001; Le Bodic et al. 2009) and proximity graphs, encoding the fundamental 

parameters of primitives as well as geometric and topological relationships between them. After 

graph construction, there are four categories of methods widely adopted in the next steps. 

Previously, researchers formulated this problem as error-correcting subgraph isomorphism. By 

minimizing the graph/string edit cost between the prototype and the input, the optimal subgraph 

can be detected, and tree search algorithms are applied to reduce the search space. For instance, 

Lladós (2001) encoded regions with boundary strings and represented the whole circuit diagram 

as a RAG, and then matched strings (at a local level) and the graph (at a global level) via 

minimizing edit costs and the branch and bound search algorithm. Similar researches with various 
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graph representations and tree search algorithms (Messmer and Bunke 1995; Bunke and Messmer 

1998) can also be found. Another interesting perspective is to formulate it as an integer linear 

program, which enables error-tolerant on the vertex and edge labels (Le Bodic et al. 2009). The 

main limitation of these methods is the high computation cost, which is not suitable for large 

graphs. 

To take advantage of low computation cost in statistical methods, a strategy that is mapping a 

graph to a low-dimensional vector is developed. The traditional structural signatures are 

handcrafted, such as parallelism, connectivity, relative lengths and angles between two lines 

(Dosch and Lladós 2003; Rusiñol and Lladós 2005; Coustaty et al. 2011). In contrast, recent studies 

on representation engineering are using graph embedding, which is to define a mapping function 

that can well describe the properties of the graphs, such as pair of paths, acyclic paths, node degrees, 

etc. Then, the compressed feature vectors can be learned offline via well-studied statistical 

methods, forming a large database. Lastly, the problems can be solved by database indexing and 

scoring. To spot the symbols in the drawings, researchers focus on developing a further step, and 

there are two kinds of methods. One is voting the hypothetic center and clustering, which uses the 

spatial relationships between symbol parts (Rusiñol et al 2010; Santosh et al. 2014; Dutta et al. 

2013); the other one is grouping based on the confidence value, which needs the rich 

representations on each node (Luqmen et al. 2013). Overall, depending on how to design the 

features, these methods vary widely.  

Studies in the second group, Galois lattice-based approaches, are also creative and insightful in 

mining the semantics behind the patterns. Although until now researches in this group can only 

tackle the symbol recognition problem, they introduce a novel view on the design of classifiers. 

Galois lattice can be regarded as a classifier since it indicates the correspondence between two 

partially ordered sets – shared attributes of a set of objects and shared objects of a set of attributes 

(Jaoua and Elloumi 2002). Based on that, the classification can be achieved by navigating on the 

Galois lattice, which is much closer to the hu man reasoning process. The attributes are similar to 

the features used in the third group, which has already been reviewed. Recent advances can refer 

to these related works (Coustaty et al. 2011; Visani et al. 2011; Boumaiza and Tabbone 2011; 

Boumaiza and Tabbone 2012). 

Similarly, syntactic methods can be further divided into two: handcrafting and learning. The 

conventional rules are various, including but not limited to the spatial predicates between 
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primitives and the geometric information of a primitive with respect to the whole symbol (Yu et 

al. 2007). Recent studies using syntactic approaches is to automatically learn implicit descriptions 

of symbols using inductive logic programming based on background knowledge about spatial 

relationships (Santosh et al. 2009). In general, it is not trivial to transform structural signatures into 

grammars to robustly represent a symbol. 

On the whole, structural or syntactic methods are more powerful in higher-level representations, 

conveying how parts are connected. With the growing interest in graph embedding and 

representation learning, recent advances provide significant insights into symbol recognition and 

detection. However, it is still far away from end-to-end drawings interpretation since the 

components in existing methods are separately trained and tuned. In the next section, related works 

on deep learning will be reviewed to explain how to solve these problems via an elegant 

connectionist architecture.  

1.2.3 Review of Deep Neural Networks 

1.2.3.1 Principles of Neural Networks 

Compared to traditional statistical methods, which are limited by hand-engineered features, a 

deep neural network takes advantage of its multiple layer structure to extract higher-level 

features. Without the vectorization process and non-trivial graph embedding, representations at 

an abstract level can be automatically learned based on the training data. Figure 1.4 shows the 

multilayer neural networks and backpropagation.  
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Figure 1.4  (a) multilayer neural networks and (b) backpropagation (LeCun et al. 2015) 

 

Figure 1.4 (a) shows the multilayer neural networks with one hidden layer and one output layer. 

At each layer, the total input z is first computed, which is a weighted sum of the outputs y from the 

lower layer and weights w. Then a non-linear function f(.) is applied to z to get the output of the 

unit. This is the forward pass of neural networks, which can transform the input space into a 

distorted space. Next, a continuous optimization problem is formulated, which is to learn the 

weights in the neural networks so that the networks can be used as a feature extractor. Figure 1.4 

(b) shows the backward pass. The value of cost function C(yk, zk), averaged over all the training 

examples, is proportional to the square errors (tk indicates the target value). To find the weights 

resulting in the local minimum of the cost function, the gradient descent algorithm is commonly 

applied. Using the chain rule of derivatives, the gradient can be computed according to equations 

in Figure 1.4 (b) so that weights between layers are available. In practice, to accelerate the training 
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process, stochastic gradient descent is usually applied, which is a method to repeat the optimization 

process for many small sets of examples until the average of the loss function converges. 

Taking into account the local correlations and high dimensions of images, convolutional neural 

networks (CNNs) are widely adopted because of the four key ideas: local connections, shared 

weights, pooling and the use of many layers (LeCun et al. 2015). Figure 1.5 shows a classical CNN 

architecture: LeNet-5. The convolution operation is to multiply weights by the input values from 

local receptive fields, which can extract the locally sensitive features called feature maps, such as 

oriented edges and corners. In the framework of general multilayer neural networks, the 

convolution is equal to share weights for these repeated blocks. Next, the subsampling, or pooling, 

is conducted to reduce the resolution of feature maps, reducing the sensitivity of the output to shifts 

and distortions (LeCun et al. 1998). In the end, fully connected layers are connected as a classifier 

so that the feature extractor and the classifier can be trained together. 

 

 

Figure 1.5 Architecture of LeNet-5 (LeCun et al. 1998). 

 

Convolution neural networks are remarkable since it enables to extract high-level features as 

well as end-to-end learning framework, which breaks through the plateau in traditional statistical 

methods and structural methods. Inspired by the significant performance improvements, related 

works are in explosive growth.  

1.2.3.2 Related Works on CNN-based Object Classification and Detection 

The overall evolution of the CNNs architectures for image classification is going deeper and 

deeper, from LeNet-5 (LeCun et al. 1998) to AlexNet (Krizhevsky et al 2012), ZFNet (Zeiler and 

Fergus 2014), VGGNet (Russakovsky et al. 2015), GoogleNet (Szegedy et al. 2014) and ResNet 
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(He et al. 2016). In addition to deep structures, recent advances lie in many aspects including 

convolutional layer, pooling layer, activation function, loss function, regularization and 

optimization (Gu et al. 2018).  

To focus the review in symbol classification and detection, only studies related to the challenges 

in this field will be reviewed. Some studies have been focused on to improve CNNs in the 

invariance to scaling, rotation and translation. Lenc and Vedaldi (2015) proposed a transformation 

layer to study the equivariance in CNNs, and the results showed the invariance is not always 

increasing with depth. Some researchers focused on further generalizing CNNs, which can extract 

feature maps invariant to the symmetry transform (Gens and Domingos 2014; Cohen and Welling 

2015). Recently, the spatial transformer network (STN), a differentiable module which can be 

injected into CNNs, was developed by Jaderberg et al. (2015) to increase the networks performance 

related to geometric invariance. The invariance is achieved by three components: (1) localization 

network – estimates the parameters of affine transformation; (2) grid generator – generates the 

coordinates after affine transformation; (3) bilinear sampler – uses bilinear interpolation to round 

the generated coordinates to the integers. This spatial transformer will be applied in this paper to 

test its performance improvement in the symbol classification task. 

In addition to learning features invariant to affine transform, another challenge lies in the 

symbol detection. As mentioned in 1.2.1, symbol detection in technical drawings is not trivial 

owing to the textureless nature of drawings, but recent advances in CNNs enable to encode rich 

representations in local regions, which can solve this problem. One of the famous object detectors 

is Region-based CNN (R-CNN), in that Selective Search is applied to extract region proposals, 

and then the object in the proposed region is classified using CNNs (Girshick et al. 2014). But the 

limitation of this network is that the input image must have a fixed size. To overcome this 

limitation, He et al. (2015) proposed spatial pyramid pooling network (SPP), which can encode 

the entire image into a fixed-length vector, but the training process is still in multiple stages. Fast 

RCNN (Girshick 2015) and Faster RCNN (Ren et al. 2015) are end-to-end solutions, and Faster 

RCNN is better since it spots the regions based on a region proposal network instead of Selective 

Search, reducing the computation burden. Furthermore, recent studies in object detection are 

notable for the one-shot paradigm, such as SSD (Liu et al. 2016) and YOLO (Redmon et al. 2015; 

Redmon and Farhadi 2017; Redmon 2018), which are much faster. 
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Recently, some researchers have begun to apply state-of-the-art networks for symbol 

recognition and detection. Elyan et al. (2018) presented a semi-automatic and heuristic-based 

approach to localize symbols in the drawings, and CNNs are applied in the symbol classification. 

Rahul et al. (2019) proposed an end-to-end pipeline to extract information in the piping and 

instrumentation diagram (P&ID), and symbol detection is achieved via FCN. Both experiments 

showed relatively good performance on their own datasets. 

In conclusion, studies on CNNs have proved that the connectionist architecture significantly 

boosts the performance in image classification and object detection, as well as in symbol 

recognition and detection. In this paper, CNNs augmented with a spatial transformer will be 

applied to classify symbols in various scales and orientations. Besides, Faster-RCNN will be 

implemented for fast symbol spotting in piping drawings. 

1.2.4 Review of Data Augmentation 

For symbol classification and detection, one of the limitations of basic CNN architecture is that 

the learned features are not invariant to geometric transformation; thus, this study will use data 

augmentation to improve the invariance of the model and enrich the dataset. Data augmentation is 

widely applied to create a larger dataset and alleviate the overfitting issue, and the following is a 

brief introduction about the state-of-the-art methods. 

Traditional data augmentation is achieved by performing affine transformations, brightness and 

contrast changes, and noise addition. Affine transformation means that the images in the small 

dataset are duplicated by rotation, scaling, translation, and shearing. As an approximation of real-

world scenarios, brightness and contrast changes are simulations of physical illumination. 

Similarly, noise addition is also necessary, and the noise types include but not limited to Gaussian, 

speckle, and pepper and salt. Another group of transformation derives from the prior domain 

knowledge, i.e. representations of symbols should be invariant to changes in line thickness, 

changes in angles between lines, etc. These augmentation strategies enable the learned model 

robust to different data. 

Recent advance in data augmentation is to use generative adversarial networks (GANs) 

(Goodfellow et al. 2014), which can learn domain-invariant knowledge. For instance, Antoniou et 

al. (2017) proposed a generative model to do data augmentation. This model can take data from a 
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source domain and generate other within-class data items based on conditional GANs, and the 

experiment results showed the accuracy increase in many benchmark datasets. 

In this paper, traditional data augmentation will be used in this paper to generate a larger dataset 

for robust symbol classification and detection. 

1.3 Goal and Objectives 

The overarching goal is to fully automate the process of detecting and classifying symbols in 

piping drawings. The specific objectives include 1) classification of piping symbols and 2) 

detecting and labeling piping symbols from drawings.  

The first objective is to classify the piping symbols using convolutional neural networks, which 

can automatically learn the representations from the data. The networks used in this part are CNN 

and CNN + STN, and datasets are synthetic, including eight types of symbols in piping drawings. 

Then, an experiment about comparing the performance between CNN and CNN+STN will be 

designed to test the performance improvement of STN in the context of symbol classification 

problem. Chapter Two of this thesis is devoted to this problem. 

The second objective is applying Faster RCNN to detect symbols in the drawings, considering 

the clutter scenario that symbols are connected with pipelines. Compared to the first objective, the 

symbol detection task is more advanced, including localizing the regions highly likely to contain 

symbols and classifying different symbols. The original dataset is created by sketching in 

AutoCAD software to simulate the real-world drawings, and seven symbols are used in this task. 

Besides, this dataset is augmented via affine transformation and noise addition. The experiment is 

conducted with a public repository of Faster RCNN on Tensorflow platform, and the model is 

trained and tested using the dataset of piping drawings. 

1.4 Significance and Research Contributions 

The research involves the design of CNN-based methods to recognize and spot symbols in the 

piping drawings. Compared to conventional approaches, this study explores the ability of CNNs 

for symbol recognition and detection in cluttered engineering drawings. Two specific outcomes 

are summarized: 
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First, CNN and STN are adopted for symbol classification. This combination exhibits the ability 

to learn invariance to affine transformation, which captures the characteristic of symbols in 

technical drawings. Specifically, two outstanding merits to apply this architecture in the context 

of piping symbols recognition are as follows: 1) the convolutional neural network can extract the 

features in an abstract level, and it enables to jointly train the feature extractor and the classifier; 

2) the use of STN increases the ability of the model to learn invariance to translation, scale, rotation, 

and more generic warping. The adaptability of CNNs in symbol recognition is evaluated by 

recognition accuracy.  

Second, Faster RCNN is applied to detect symbols in cluttered drawings. The benefits of this 

network are in threefold: 1) instead of searching for candidate boxes using selective search, the 

location of candidate boxes is based on the classification of background and foreground using 

feature maps; 2) it tunes the locations of the bounding box using twice regression, which can 

increase the accuracy of localization; 3) this network consists of spatial pooling layers, which is 

capable of detecting symbols in multiple scales. It overcomes the challenge in the traditional 

statistical methods, such as finding local descriptors for the textureless drawings and choosing the 

window size. 

The importance of fulfilling these two objectives is acknowledged in a wide range of fields, 

including the reduction of the data inaccessibility issues in facility management, the reconstruction 

of 3D models for existing buildings, and knowledge discovery in the design of piping systems. 

With accurately locating symbols in piping drawings, facility staff will be free from the tedious 

process of repeatedly digging into the superfluous documents so that the facility management 

process will be smoothed and streamlined.  

1.5 Organization of the Thesis 

The remainder of this thesis is organized as follows.  

Chapter 2 aims to fulfill the objective of symbol recognition. The process of synthesizing the 

piping symbols is introduced. Then, the methods used to recognize the symbols in technical 

drawings are explained, including the design of network architecture, the loss function and the 

selection of the optimization method. Next, experiments are conducted to test the model 

performance of two models. Lastly, the rotation invariance of learned representation is evaluated 
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by the predicted score of the correct class, showing that learning rotation-invariant features is the 

challenge of using CNN models in symbol recognition. 

Chapter 3 aims to explore the capability of Faster RCNN in the symbol detection problem. The 

architecture of Faster RCNN is introduced, and four main modules of this model are clearly 

explained. The next part includes data preparation and experiments. Data preparation includes the 

process of synthesizing piping drawings. For experimentation, the parameters and evaluation 

matrices used in this study are introduced. Based on the results, the conclusions and limitations of 

using Faster RCNN in symbol detection are discussed. 

Chapter 4 includes summary, conclusions, limitations and future works. In this chapter, 

potential improvements on the dataset, the network architectures, and invariance measurements 

are discussed to increase the adaptability of models in recognizing and detecting symbols in piping 

drawings.
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CHAPTER 2. CNN-BASED SYMBOL RECOGNITION 

2.1 Introduction 

In this chapter, the problem to be addressed is the symbol recognition in technical drawings. 

Symbol recognition is a task that is fundamental to drawing interpretation. The challenge in the 

computer-based symbol recognition in engineering drawings is to extract a set of robust features, 

which is invariant to geometric transformation, noise, and distortion, from variations/noises 

introduced during the symbol sketching process. Collectively, recognizing symbols and learning 

invariant representations are the focuses of this chapter. 

In Section 2.2, the process of generating synthetic data is introduced. The synthetic data is used 

to explore the capability of CNN models in the context of symbol recognition. There are eight 

types of symbols in the dataset, including various valves, water pressure meter, and the indicator. 

The number of symbols in each class is 1000. The parameters for generating samples take account 

of the variations of symbols in the real piping drawings, including the rotation, scaling, translation, 

noises, etc., and the distribution of the parameters will be introduced in this section. 

In Section 2.3, the methodology of symbol recognition is introduced. There are two models 

applied in this study, including a basic CNN model and the CNN model augmented with a spatial 

transformer network (STN) (Jaderberg et al. 2015). This section covers the design of the basic 

CNN and CNN+STN models, including the layers, the loss function, and the selection of the 

optimization method. 

In Section 2.4, experiments based on two models are conducted on the Tensorflow platform. 

Random subsampling is used to provide an accurate estimate of the model performance. The 

experiment results show that the spatial transformer layer can improve the recognition accuracy 

from 95.39% to 98.26%. 

In Section 2.5, sensitivity analysis is used to test the generalization of trained models to rotation 

transformation. By rotating the sample, the curve of the predicted score of the ground-truth class 

is generated, which measures the degree of rotation invariance of predictions using two models. 

The experimental results show that although data augmentation technology is applied, both models 
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lack the generalization capabilities to rotation transformation. Even a negligible rotation can 

significantly decrease the predicted score.  

2.2 Data Preparation  

In this section, the simulated datasets for experiments include eight symbols in total. The 

pipeline for synthesizing is to generate a normal symbol with parameters to control the variations, 

apply an affine transformation to this symbol, and then add noise, distortion, and dilation/erosion. 

The output is an image showing a symbol connected with pipelines, since in practice the symbol 

is not always well segmented, and bounding boxes are usually not rotated (except for some 

researches using rotated bounding boxes). Also, the simulated symbols are free of shearing and 

stretching because these transformations are scarcely seen in drawings. The overall flowchart is 

illustrated in Figure 2.1, showing the process of generating piping symbol datasets. The output is 

in a black background because the zero value is taken to be black. 

 

 

Figure 2.1 The pipeline of generating symbols 

 

In the next subsections, the parameters used in the simulation process are discussed to explain 

how to control variations in the synthetic datasets. 

2.2.1 Normal Synthetic Symbols 

The normal synthetic symbol is that the symbol is not rotated, scaled, translated or noise added, 

etc., but there is still a need to customize the parameters of primitives and stroke width in this step 

since symbols are various from libraries to libraries. All symbols are sketched on a white canvas, 

which the size is 105 x105. The example of the simulation parameters is shown in Figure 2.2. 
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Figure 2.2 Example of parameters in a normal synthetic symbol 

 

In this case, this symbol is symmetric. The parameter u, which is in a normal distribution, 

controls the diameter of the circle in the middle. Besides, the length of the pipeline connected to 

this symbol is uniformly distributed, and the stroke width is uniformly distributed from 3 to 3.2, 

which is visually similar to the stroke width in real drawings. For other types of symbols, there are 

other variations for primitive parameters, and most of them are consistent with piping symbols in 

the real world in the aspect of symmetricity and geometric constraints. The code for generating all 

symbols are listed in Appendix A. 

2.2.2 Affine Transformation 

Affine transformation is a necessary step for simulation since the symbols are usually in 

different orientations and scales. The affine transform matrix used in this study is indicated in 

Equation 2.1. 

 

[
𝑥𝑜

𝑦𝑜

1
] =  [

𝑠 ∗ 𝑐𝑜𝑠 𝛼  𝑠𝑖𝑛 𝛼        𝑡𝑥 
− 𝑠𝑖𝑛 𝛼   𝑠 ∗ 𝑐𝑜𝑠 𝛼   𝑡𝑦

     0            0             1

] [
𝑥𝑖

𝑦𝑖

1
]                                                                                  (2.1) 
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In Equation 2.1, (xi, yi) means the coordinates of the input, and (xo, yo) are the coordinates of 

the output. s is the scale value and 𝛼 indicates the rotation angle, (tx, ty) is a pair of parameters, 

meaning the translation distance with respect to the origin. Since this step is performed before 

rasterizing, the interpolation is not needed. The parameters for affine transformation for all 

symbols are the same as listed in Table 2.1. 

 

Table 2.1 Parameters for affine transformation 

Parameter Distribution 

s N (1.2, 1) 

𝛼 U (0, 360) 

tx N (0, 400) 

ty N (0, 400) 

 

This dataset is designed for symbol recognition, which assumes that the symbol is segmented. 

Therefore, the variance of the scale of the symbol is small. The rotation angle is uniformly 

distributed from 0° to 360°, meaning that the generated samples can be presented in all orientations 

to ensure the model can be possibility generalized to rotation transformation. The translation 

parameters are selected considering the size of the canvas. Finally, the plot symbol will be resized 

into 60 x 60 and rasterized for further operations. 

2.2.3 Additional Variations 

Taking account of the real-world conditions, other variations are added, including noise, 

distortion and dilation/erosion operations. The ratios of augmented images and the parameters to 

control the strengths of these operations are listed in Table 2.2. 
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Table 2.2 Noise and distortion additions and dilation/erosion operations 

Operation Ratio Type Parameters 

Noise 

0.25 
Speckle  

(J = I + n*I) 

n is uniformly distributed with mean 0 

and variance 0.05. 

0.25 Salt and pepper Noise density=0.05 

0.5 Gaussian white noise N (0, 0.01) 

Distortion 0.5 
Elastic deformation 

(Simard et al. 2003) 

7 x 7 Gaussian filter with σ = 10 

Scalar = 200 

Dilation or 

Erosion 

Dilation: 0.25 
Line-shape  

structuring element 

Line length =2  

Orientation ~ U (0, 360) 

Erosion: 0.25 
Line-shape  

structuring element 

Line length =3  

Orientation ~ U (0, 360) 

 

The criteria for selecting parameters are to increase the randomness of samples but to ensure 

that the symbols can be still interpreted by a human.  

2.3 Methodology  

To recognize the piping symbols in paper drawings, the basic CNN model and CNN+STN 

model are used in this paper. The customization parts are the design of layers and the loss function, 

and selection of the optimization method. For these parts, some recent advances in designing the 

layers, such as batch normalization and ReLU, are applied in this model to improve the 

performance. Also, L2-norm is used in this study to reduce overfitting issues. Since learning is a 

process to minimize the loss function, the proper optimization method also needs to be selected. 

2.3.1 The Design of the Architectures of the Basic CNN 

The basic CNN architecture is shown in Table 2.3. 
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Table 2.3 The architecture of the basic CNN 

Basic Convolution Network 

Input 60x60 grayscale images 

3 x 3 conv. 8 BN ReLU 

2 x 2 Max pooling 

3 x 3 conv. 16 BN ReLU 

2 x 2 Max pooling 

3 x 3 conv. 32 BN ReLU 

2 x 2 Max pooling 

2048 to 64 Dense 

64 to 8 Dense 

Softmax 

 

M x M conv. N: a convolution layer (LeCun et al. 1998). M x M is the size of filters, and N is 

the number of filters convolving over the image or feature maps. Figure 2.3 shows how the 

convolution layer works. The operation is to multiply the weight and the corresponding pixel value 

in the input image, sum them and add a bias. The result will be the output. The padding area is 

used to ensure the size of the output is the same as the input. The tricky part of this operation is 

that it can encode the neighboring values into the center, which can capture the information in a 

local region. Also, a convolutional layer is another type of fully connected layer, which the weights 

are shared with other units. Since the grayscale image is used in this study, the number of outputs 

(feature maps) is equal to the number of the filters used. In this layer, weights and biases are the 

parameters; thus, millions of parameters will be generated from a deep neural network. 
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Figure 2.3 A convolutional layer using a 3x3 filter 

 

BN: a batch normalization layer (Loffe and Szegedy 2015). The batch normalization layer is 

used to reduce the internal covariate shift, which is caused by the various distributions of input 

data from different batches. In deep networks, the change in the inputs will result in a problem, 

because all layers need to adapt to the new distribution, and the effects of distribution shift will be 

amplified down the network. So, the batch normalization layer is used to normalize batches into 

zero mean and unit variance approximately through several updates. The algorithm can be referred 

to this work (Loffe and Szegedy 2015).  

ReLU: a rectified linear unit (Nair and Hinton 2010). It acts as an activation function, which 

can prune the negative values to zero and retain positive values. It is used to add the nonlinearity 

of the model. 

M x M Max pooling: a subsampling layer. It takes the maximum value in a sub-region, which 

can reduce the features and computation complexity of the network. M x M is the region size. 

Figure 2.4 shows the mechanism of the Max pooling layer. The maximum value in the 2 x 2 matrix 

is taken as the output. So, after this layer, the width and height of the outputs will be reduced to 

half. 
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Figure 2.4 Max pooling using a 2 x 2 window and a stride size of one 

 

Dense: a fully connected layer. M is the number of the input neurons, and N is the number of 

the output neurons. 

Softmax: a classifier. It applies a standard exponential function to each element from input 

vectors and then normalizes these values to ensure the sum of the output equals to one. Equation 

2.3 illustrates this process. So, the output of the softmax layer is the probability of the input 

belonging to each class, and the dimension of the output in this study is eight. In Equation 2.2, K 

is the number of the class. z is the input of the softmax layer, and σ(𝑧)i is the output, which is the 

predicted score of the 𝑖𝑡ℎ class. 

 

𝜎(𝑧)𝑖 =
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗𝐾

𝑗=1

     for 𝑖 = 1, … , 𝐾 and 𝑧 = (𝑧1, … , 𝑧𝐾) ∈ 𝑅𝐾                                             (2.2) 

 

2.3.2 The Design of the Architectures of the CNN + STN Model 

The spatial transformer network (STN) is proposed by Jaderberg et al. (2015) to facilitate the 

geometric invariance learning by an embedded module. In this study, the spatial transformer 

network is embedded after the input layer as shown in Figure 2.5, so the size of the input and the 

size of the output of this network are the same. 
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Figure 2.5 The architecture of CNN+STN model. 

 

STN is composed of the localisation network, the grid generator and the sampler. M is the 

transformation matrix, and T(G) represents the transformation operation is applied on the regular 

grid G. 

This network consists of three components: (1) a localisation network to output the six 

parameters in affine transform; (2) a grid generator to produce the coordinates of the image after 

the transformation; (3) a bilinear sampler to round the coordinates to integers using the bilinear 

interpolation. The localisation network can be either a standard convolutional network or a fully 

connected network. 

The architecture of the localisation network used in this paper is shown in Table 2.4. 

 

Table 2.4 The architecture of the localisation network 

The localisation network 

Input 60x60 grayscale images 

3 x 3 conv. 8 BN ReLU 

2 x 2 Max pooling 

3 x 3 conv. 16 BN ReLU 

2 x 2 Max pooling 

3600 to 64 Dense 

64 to 6 Dense 

 



38 

 

 

 

The grid generator is to apply the pointwise transformation to the input image, and the 

transformation is illustrated in Equation 2.3.  

 

 (
𝑥𝑜

𝑦𝑜
) = 𝑀 (

𝑥𝑖

𝑦𝑖

1
) = [

𝑎   𝑏   𝑐
𝑑   𝑒   𝑓

 ] (
𝑥𝑖

𝑦𝑖

1
)                                                                                       (2.3) 

 

In Equation 2.4, M is the transformation matrix, which is regressed from the localisation 

network. (𝑥𝑖 , 𝑦𝑖) represents the coordinates of the input image. The coordinates of the output image, 

(𝑥𝑜 , 𝑦𝑜), are the product of M and the pixel values in the input image.  

The creativity of the spatial transformer network is that it builds up a differentiable module, so 

it can actively transform the images or feature maps to minimize the overall loss function. 

2.3.3 The Design of the Loss Function 

In addition to the design of networks architecture, the loss function is also critical to the 

performance of the model. The loss function used in this paper is illustrated in Equation 2.4. In 

this equation, 𝜽 represents all the parameters used in the model. 

 

𝑙𝑜𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =  ∑ 𝐻(𝒚𝒊, 𝒚̂𝒊)
𝑁
𝑖=1 + 0.01 ∗ ||𝜽||

2
                                                                  (2.4) 

 

The fitting term, 𝐻(𝒚, 𝒚̂𝒊), in the loss function, is the cross-entropy, which is commonly used in 

the multilabel classification problem. The principle of cross entropy is illustrated in Equation 2.5, 

which can be explained from the view of maximum likelihood. 

 

Pr(𝒚̂𝐢 |𝜽) = [𝑦̂𝑖
1, 𝑦̂𝑖

2, … , 𝑦̂𝑖
𝐾]  where ∑ 𝑦̂𝑖

𝑗𝐾
𝑗=1 = 1                                                                   

Pr(𝒚𝒊|𝜽) = [𝑦𝑖
1, 𝑦𝑖

2, … , 𝑦𝑖
𝐾] where ∑ 𝑦𝑖

𝑗𝐾
𝑗=1 = 1                                                                       (2.5) 

      − 𝑙𝑜𝑔(𝑃𝑟(𝒚̂𝟏 , 𝒚̂𝟐, … 𝒚̂𝑵|𝜽)) = − 𝑙𝑜𝑔 (∏ 𝑃𝑟(𝒚̂𝒊 |𝜽) 
𝑁

𝑖=1
) 

= − ∑ 𝑙𝑜𝑔 𝑃𝑟(𝒚̂𝒊 |𝜽)
𝑁

𝑖=1
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= − ∑ ∑ 𝑦𝑖
𝑗
𝑙𝑜𝑔

𝐾

𝑗=1

𝑁

𝑖=1

𝑦̂𝑖
𝑗
 

                      = ∑ 𝐻(𝒚, 𝒚̂𝒊) 

𝑁

𝑖=1

 

 

In Equation 2.5, the index of the sample is denoted by i, and the index of the class is denoted 

by j. The number of classes is denoted by K. 𝒚̂𝒊 is the prediction vector in K dimensions, which 

indicates the probability of K classes for the ith sample, In Equation 2.6, the vector yi is the ground-

truth vector, which is a one-hot encoding of the ith sample, in which one represents the label 

category and zero represents other categories. 

In Equation 2.7, the number of samples is denoted by N. This equation shows that the sum of 

cross entropy, 𝐻(𝒚, 𝒚̂𝒊), is equal to the negative log-likelihood over N samples, which means that 

to minimize the entropy is equal to maximize the log-likelihood of parameters. That is the reason 

why the cross-entropy is usually used as the fitting term in the cost function. In addition, the 

benefits of the log operation are in twofold: (1) it can reduce the production to summation, which 

is much easier to calculate; (2) if the number is very small, it will run out of the floating-point 

precision in the computer.  

In addition to the fitting term, the L2 norm regularizer, ||𝜽||
2
, is added in the loss function to 

reduce the overfitting issues. L2 norm is used as a shrinkage of weights, which makes parameters 

much closer to zeros (but not exact zeros). This can reduce the complexity of the model and reduce 

the variances in the view of bias-variance tradeoff. So, adding the regularization term can help 

alleviate the overfitting issues.  

2.3.4 The Selection of the Optimization Methods 

The optimization method applied in this study is Adam (Kingma and Ba 2015). The main 

challenge in the optimization is to choose a proper direction and step size in each update. Adam is 

a complex algorithm, which takes advantage of both RMSProp and Momentum (Qian 1999). In 

the Momentum method, the update is based not only on the gradient but also on the previous 

movement. RMSProp is proposed by Hinton, which is to divide the learning rate by the root mean 

square (RMS) of the multiplication of the gradients and previous decayed gradients. Besides, the 
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originality of Adam is that it also incorporates a bias-correction step. Adam algorithm is 

computationally efficient and widely used in training deep neural networks. 

2.4 Experiments 

2.4.1 Experimental Setup 

The application of the CNN is demonstrated in classifying eight piping symbols, including 

valves, the water pressure meter and the indicator, which are commonly used in the building 

plumbing system. The sample images for eight classes are shown in Figure 2.6. 

 

 

Figure 2.6 Sample images used in the dataset for symbol recognition 

 

The synthetic dataset includes 1000 samples for each class, and the size is 8 * 1000 = 8000 in 

total. The ratio to split the training set, validation set, and testing set is 3:1:1, and the size of the 

input image is 60 x 60. All the input images are grayscale images, and the pixel intensity was 

scaled down to [0, 1]. The dataset was shuffled first and then randomly split into training, 

validation, and testing set for five times. This can reduce the biases in reporting the result, which 

gives a realistic estimation of the predictions. The CNN is developed using Tensorflow API, which 

is an open source platform for machine learning. Multiple experiments were performed to select 

the parameters in the neural networks, such as the number of layers, learning rate, batch size and 

so on. Based on the experiments, the best set of parameters are selected for two models, which is 

listed in Table 2.5. 
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Table 2.5 Experimental setup 

Model Learning rate Batch size Epoch 

CNN 0.01 256 50 

CNN + STN 0.0005 256 70 

 

The learning rate for training the CNN + STN model is much smaller than a standard CNN 

model. The reason is that training with a larger learning rate will cause the loss function diverged. 

The batch size for both models is 256, which is selected as a compromise of the generalization 

capability and training efficiency. A larger batch size will make the loss converge faster. However, 

using a larger batch degrades generalization abilities of models (Keskar et al. 2016). For a standard 

CNN model, the loss is converged between 30 to 50 epochs; while for a CNN + STN model, the 

loss is converged between 50 to 70 epochs. So, the number of epochs is selected based on the loss 

convergence. 

2.4.2 Experimental Results 

The evaluation matrix is the accuracy and confusion matrix. The calculation of accuracy is 

shown in Equation 2.6. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                                                                     (2.6) 

 

In Equation 2.6, TP denotes the number of true positives, TN denotes true negatives, FP refers 

to the number of false positives, FN refers to the number of false negatives. The results of these 

are listed in Table 2.6, including the training, validation, and testing accuracies for five repeats. 

The mean and standard deviation for the accuracy is illustrated in Table 2.7. 
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Table 2.6 Experimental results – recognition accuracies 

No. 

CNN CNN + STN 

Training Validation Testing Training Validation Testing 

1 95.94 95.31 95.94 99.65 99.50 99.22 

2 96.16 94.84 94.44 98.37 97.92 97.22 

3 97.29 96.29 94.88 98.46 97.64 98.05 

4 96.85 96.29 95.88 98.89 98.68 97.22 

5 97.07 96.22 95.81 99.37 99.24 99.61 

 

Table 2.7 The average and standard deviation of recognition accuracies for five repeats 

Model 

Training Validation Testing  

Avg. (%) Std. (%) Avg. (%) Std. (%) Avg. (%) Std. (%) 

CNN 96.66 0.58 95.79 0.68 95.39 0.68 

CNN +STN 98.94 0.56 98.59 0.81 98.26 1.11 

 

For the standard CNN, the average training accuracies is 96.66%, while the average of the 

testing accuracies is 95.39%, which is a little smaller than the training accuracies. For CNN + STN, 

the average training accuracies is 98.94% and the average of testing accuracies is 98.26%. Based 

on the testing accuracies, the CNN + STN model improves the accuracy from 95.39% to 98.26%, 

which increases by 2.87%.  

The visualization of the output of the spatial transformation network is attached in Appendix B, 

which some symbols showing interesting patterns of transformation. 

The confusion matrices for CNN and CNN + STN are shown in Table 2.8 and Table 2.9. 
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Table 2.8 The confusion matrix for the CNN model 

 (a) (b) (c) (d) (e) (f) (g) (h) 

(a) 214 0 0 0 0 0 0 0 

(b) 0 179 0 0 11 0 0 0 

(c) 0 17 156 12 5 0 0 0 

(d) 0 2 2 181 10 0 0 0 

(e) 0 2 1 0 196 0 0 0 

(f) 0 0 0 0 0 218 0 1 

(g) 0 0 0 0 0 0 203 0 

(h) 0 0 0 0 0 0 0 190 

 

Table 2.9 The confusion matrix for the CNN + STN model 

 (a) (b) (c) (d) (e) (f) (g) (h) 

(a) 210 0 0 0 0 0 0 0 

(b) 0 195 0 0 0 0 0 0 

(c) 0 0 197 1 0 0 0 0 

(d) 0 1 3 205 1 0 0 0 

(e) 0 0 0 0 178 0 0 0 

(f) 0 0 0 0 0 201 0 0 

(g) 0 0 0 0 0 0 194 0 

(h) 0 0 0 0 0 0 0 214 

 

Based on Table 2.8, (b) gate valve, (c) balancing valve and (d) needle valve are easily 

misclassified. The reason may be that these three types of valves are visually similar. Based on 

Table 2.9, the model with spatial transformer shows a better result that the misclassification among 

these three types of valves is reduced. Therefore, the trained CNN + STN model is more robust to 

classifying visually similar valves. 

2.5   Generalization Capabilities of CNNs to Rotations 

2.5.1 Rotation Invariance 

The formula for invariance is illustrated in Equation 2.7. 

𝑓(𝑇(𝑥)) = 𝑓(𝑥)                                                                                                                      (2.7) 
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Formally, f is invariant to transformations, if the output is identical for all transformations T of 

the input x (Schmidt and Roth 2012).  

Generally, researchers focus on the invariance properties of features. In CNNs, the rotation 

invariance is not inherently satisfied, but the “approximately” invariance can be learned from the 

excessive training data (Schmidt and Roth 2012). So, data augmentation technologies are 

commonly used to enrich the data with various rotations. However, the shortcoming of this 

approach is that it is difficult to understand what invariant features are learned.  

Learning robust representations invariant to rotations is a crucial problem in symbol recognition. 

Different from the objects in the natural scene, the symbols in drawings are likely to be rotated in 

different angles. However, without the transformation-invariant features, CNNs can be fooled with 

a simple transformation (Engstrom et al. 2018). Therefore, learning rotation-invariant descriptors 

is necessary for the symbol recognition problem.  

In this paper, the prediction correctness of models reflects of rotation invariance of features. If 

the predictions are not invariant to rotations, it means the features learned from networks are not 

rotation invariant, which is the limitation of CNN-based methods. 

2.5.2 Generalization Capabilities of CNNs to Rotations 

In Section 2.4, the CNN + STN model shows the accuracy of 98.26% on the testing data, 

however, it cannot ensure the generality of the trained model. Inspired by the work of Azulay and 

Weiss (2018), the predicted score vector is used to analyze the sensitivity of both CNN and CNN 

+STN models to rotations It is designed to test if the generalization capabilities of CNNs can be 

obtained using data augmentation and spatial transformer module. 

The predicted score vector is the output of a model, which indicates the probability of the 

symbol belonging to the corresponding class.  

The experiment tests if rotation transform attacks the CNN and CNN + STN models, which 

have been trained in Section 2.4. Three samples are used, and each sample is rotated 

counterclockwise with an interval of five degrees. The range of rotation is from 0° to 180°. By 

feeding the samples into the network, the predicted scores of the correct class can be extracted 

from the outputs of the softmax layer. Figure 2.7 shows the predictions of CNN and CNN + STN 

models. 



 

 

 

 

 

 

 

Figure 2.7 Predictions of CNN and CNN + STN models 

 4
6
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Figure 2.7 shows the samples tested, the predicted scores of the correct class using the standard 

CNN model and the CNN + STN model. For the curves, the horizontal axis of the plots represents 

the rotation angle, and the vertical axis means the probability of the sample recognized as the 

correct class. The curve shows how the predictions change with rotations. The color of the square 

indicates if the rotated sample is correctly recognized or not. Blue means it is correctly classified, 

while red means it is wrongly classified as one of the other classes. For (a) ball valve and (f) 

indicator, the trained CNN + STN model shows a better performance in generalization to rotation 

transform, because the curve is almost a straight line and the probability of correct classification 

equals to one. The possible reason is that salient features are extracted from circles (in different 

scales for these two types of symbols), so the effects of rotation are reduced since the circle is 

inherently invariant to rotations. For other types of symbols, both models show jagged curves in 

predicting a correct class, meaning that they generalize poorly to rotation transformation. Also, the 

sharp shape (i.e sample (c) from 100° to 105°) in Figure 2.7 means that even a negligible rotation 

can significantly decrease the predicted score. 

Generally speaking, this experiment shows the difficulty of convolutional networks in learning 

rotation-invariant features, and the invariance properties of learned features depend on the 

geometric pattern of symbols. 

2.6 Summary and Conclusions 

2.6.1 Summary 

The focus of this chapter is to recognize symbols in piping drawings using CNNs. The symbols 

dataset is simulated based on the geometric constraints, and then augmented with scaling, rotation, 

translation, and noises. Two models, CNN and CNN+STN, are applied to compare the model 

performances in symbol recognition. The experiments are conducted based on the synthetic dataset, 

and the results show that the accuracy improves 2.87% using the spatial transformer module. The 

numbering and contents of sections are summarized in the following. 

In Section 2.2, the data preparation process is introduced. It covers how to generate synthetic 

data and the internal parameters for samples. Taking account of the variations in stroke width, the 

geometric relationship between primitives, affine transformation, noises, and distortions, the 

synthetic dataset is generated for experiments. 
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In Section 2.3, the methodology of symbol recognition is covered, including the design of 

network architectures, the cost function and the selection of the optimization method. The state-

of-the-art models, CNN and CNN+STN, are used to recognize symbols in piping drawings. The 

principles of these methods are emphasized and clearly elaborated in this section. 

In Section 2.4, experiment setup and results are stated. Experiments are implemented on the 

Tensorflow platform based on the CNN and CNN + STN models. Recognition accuracy is used as 

the evaluation matrix to compare the model performances. To further understand the spatial 

transformer network, the output of this module is visualized in Appendix B.  

In Section 2.5, the generalization capabilities of CNNs to rotations are discussed. The limitation 

of CNN-based approaches is proposed by counterexamples, showing how prediction correctness 

changes with rotations.  

2.6.2 Conclusions 

This chapter presents a CNN-based method for recognizing symbols in piping drawings, and 

the spatial transformer is applied in this study. The basic CNN model consists of three layers of 

convolution, batch normalization, Relu, and max-pooling, and two fully connected layers, 

followed by a softmax layer for classification. The spatial transformer module is injected after the 

input layer and consists of three components: a localisation network, a grid generator and a sampler. 

The localisation network consists of two layers of convolution, batch normalization, Relu, and 

max-pooling, and two fully connected layers to output the six parameters in the affine matrix. This 

spatial transformer is differentiable, so it can actively transform the images or feature maps to help 

minimize the overall loss function of the network during training (Jaderberg et al. 2015). 

Previous CNN-based approaches on symbol recognition only adopted data augmentation 

technologies to improve the generalization capabilities of CNNs to the rotation, scaling, and 

translation. The proposed method shows a gain of 2.87% with the spatial transformer in the 

recognition accuracy. Also, the CNN + STN model is more robust to classifying visually similar 

valves. 

Compared with the traditional statistical methods, the main advantage of CNN-based methods 

is that the classification network can be potentially embedded into a larger network for the 

detection task, which will be discussed in Chapter 3. 
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2.6.3 Limitations 

The limitation of this study is that the synthetic dataset is used to train and test the CNN models 

so that the trained models cannot be directly used on the real piping drawings. 

2.6.4 Future Works 

The first thing is to collect the real drawings because it is essential in symbol recognition 

whichever method is used. Also, there is a need to improve the network architecture to learn 

rotation-invariant descriptors, which is a challenge in CNNs. Recently, researchers have begun to 

study the transformation invariance in CNNs using rotated filters for convolutional layers (Marcos 

et al. 2016) or a transition layer which can transform the image into the Fourier space (Chidester 

et al. 2018). These are the candidate solutions to improve the model in learning rotation-invariant 

representations. Also, to measure the transformation invariance of the features, the quantified 

approaches, such as measuring the linearity of learned features under the transformation (Lenc and 

Vedaldi 2015), are needed.
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CHAPTER 3. CNN-BASED SYMBOL DETECTION 

3.1 Introduction 

Symbol detection in piping drawings is the problem to be addressed in this chapter. Given a 

drawing in whole or in part, it can identify where the symbol is. The challenge in symbol detection 

derives from the paradox: to correctly recognize the symbols, one should be able to segment them; 

but to correctly segment them, one needs to recognize the symbols (Doermann and Tombre 2014). 

In this paper, the state-of-the-art CNN-based object detection methods are used to detect symbols 

in piping drawings and to explore the potential improvements. 

In this paper, Faster Region-based Convolutional Neural Networks (Faster-RCNN) (Ren et al. 

2016) is applied to detect symbols in piping drawings. Section 3.2 covers the methodology of 

Faster-RCNN, including the components of this network. By digging into the architecture of 

Faster-RCNN, the adaptability of this model to detect symbols can be discussed. 

In Section 3.3, the data preparation and experiments are stated. The drawings are sketched using 

AutoCAD MEP software, and symbols are selected from the piping component library. Next, the 

sketched drawings are cropped into several patches and augmented with affine transformation and 

noise addition. For experimentations, a public Tensorflow repository of Faster RCNN (Chen and 

Gupta 2017) is used for training and testing the generated dataset. The model performance is 

evaluated using the mean Average Precision (mAP) under three levels of Interaction over Union. 

The results show that piping symbols in a cluttered drawing can be detected and classified; 

however, some classes have low Average Precision (AP) owing to the small size of data. 

3.2 Methodology 

There are four components in Faster RCNN (Ren et al. 2016), including a basic convolutional 

network to extract feature maps, a region proposal network (RPN) to classify the background and 

foreground, an ROI pooling layer to generate fixed-length feature vectors, and a classification 

module. The feature maps generated by the basic convolutional network are share for both RPN 

and ROI pooling. Figure 3.1 illustrates the architecture of Faster RCNN.  
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Figure 3.1 The architecture of the Faster RCNN network (Ren et al. 2016) 

 

3.2.1 The Convolutional Network 

The convolution network can be one of the popular deep CNNs, such as VGG, ZF, and ResNet. 

It is used to extract features from images, so the fully connected layers are dropped, and the outputs 

are feature maps. The convolutional network used in this paper is VGG16, since it shows good 

performance on the ImageNet dataset and the architecture is listed in Table 3.1. 

 

Table 3.1 The architecture of VGG16 (Simonyan and Zisserman 2016) 

VGG16 

2 * conv3-64 

max-pooling 

2 * conv3-128 

max-pooling 

3 * conv3-256 

max-pooling 

3 * conv3-512 

max-pooling 

3 * conv3-512 
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After the backbone network, the size of the output feature maps is downscaled by after four 

layers of max pooling. 

3.2.2 The Region Proposal Network 

The Region Proposal Network (RPN) is critical to accelerating the region detection process. 

The architecture of this network is shown in Figure 3.2. 

 

 

Figure 3.2 The architecture of RPN 

 

 

Figure 3.3 The anchors which scale ∈{128, 256, 512} and aspect ratio ∈{0.5, 1, 2} 
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Based on Figure 3.2 and 3.3, 9 anchors are assigned to each point in feature maps, which equals 

to generate anchors with a stride of 16 on the original image. The aspect ratio of anchors belongs 

to {1:1, 1:2, 2:1}. Then, there are two paths. The first one is a classification layer, which can 

classify the foreground and background. So, the depth of feature maps is 18 (9 anchors x 2 labels), 

and the flattened feature vectors can be fed into the softmax layer for binary classification. The 

second path is for the bounding box regression. The proposals are adjusted by estimating the 

parameters of scaling and translation, as shown in Equation 3.1 and 3.2. (Girshick et al.2013) 

 

= ( )x y w hA A A A A, , ,                                                                                                                  

( , , , )x y w hG G G G G=                                                                                                               (3.1) 

( ) ( ' , ' , ' , ' ) ( , , , )x y w h x y w h x y w hF A A A A G G G G G G G G= , , ,                                                       

 

' ( )x w x xG A d A A= +                                                                                                                 

' ( )y h y yG A d A A= +                                                                                                                (3.2)  

' exp( ( ))w w wG A d A=                                                                                                               

' exp( ( ))h h hG A d A=                                                                                                                

  

(x, y, w, h) represents the coordinates of the center, the width and the height of boxes. A 

represents the anchor box, and G represents the ground-truth box. G’ is the regressed bounding 

box using function F. Then, the problem is formulated as a prediction of the transformation, which 

is ( , , , )x y w hd d d d . ( , , , )x y w ht t t t  is similar to ( , , , )x y w hd d d d  but it is associated with G, not G’. The 

loss function and the smooth L1 loss is illustrated in Equation 3.3 (Girshick 2015). 
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The loss function in this component consists of the loss of the bounding box location and the 

binary classification, and a parameter 𝜆 is used to balance these two tasks losses. In this study, 𝜆=1. 

Based on the foreground anchor and bounding box regression, proposals are generated for the ROI 

pooling layer. 

3.2.3 ROI Pooling 

ROI pooling is applied to generate fixed-length feature vectors. The proposals are in different 

sizes, which cannot be fed into the convolutional networks directly. The feature maps in the region 

proposal are separated into the same number of grids, and a max pooling operation is applied on 

each grid. This can generate fixed-length representations, which can remove the fixed-size 

constraint of the network. The architecture of ROI pooling is shown in Figure 3.4. 

 

 

Figure 3.4 The architecture of ROI pooling 

 

3.2.4 Classification 

The classification is based on the feature maps of region proposals, including two modules 

which are classification and bounding box regression. The classification is achieved by a fully 
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connected layer and a softmax layer. The location of the bounding box is further tuned using 

regression, resulting in the final output. 

3.3 Data Preparation and Experiments 

3.3.1 Data Preparation 

The data is generated by sketching a piping plan using AutoCAD MEP software, and seven 

classes of symbols in drawings are chosen from the default library of piping components. 

Sketching takes account of the connectivity between symbols and pipelines, the cluttered 

environment with the symmetry axis and terminal symbols, to simulate the real drawings. The total 

number of drawings is fourteen with different scales, and then they are cropped into patches and 

augmented with rotation, scaling, and noise addition. Finally, 225 images are generated for training, 

validation, and testing.  

 

 

Figure 3.5 Seven symbols used in drawings 

 

PASCAL VOC format is used to store the dataset, including a folder for images, a folder for 

XML files, and a folder for TXT files. PASCAL VOC is a dataset which is a popular used in 

detection and segmentation. XML files store all the information about an image, such as the classes 
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of objects and the locations of the bounding boxes. TXT files indicate which set and which class 

the sample image belonging to. LabelImg, a graphical image annotation tool, is used for labeling. 

The annotations of the objects can be saved as XML files in PASCAL VOC format. Then, based 

on the XML files, the corresponding TXT files are generated automatically by parsing the 

information in XML files. This is the general pipeline of generating a dataset in PASCAL VOC 

format.  

The numbers of symbols for each class are summarized in Figure 3.6. 

 

 

Figure 3.6 The distribution of the numbers of symbols for each class 

  

Based on Figure 3.6, the size of this dataset is small, especially for symbol 5, 6 and 7. This 

means the trained model is likely to be overfitting. This dataset is used to test the performance of 

this model in symbol detection, and it will be enlarged in the future. 

3.3.2 Experimental Setup 

Several parameters are needed to set up the experiment. First, the ratio between the validation 

set and training set is 0.3, and the ratio between the testing set and the sum of the validation set 

and training set is 0.3. This model is trained with a full batch, and the total number of iterations is 

70000. The optimization method used in this chapter is the stochastic gradient descent with 

momentum method (SGDM) (Qian 1999), and the initial learning rate is set to 0.001. The scales 

of anchors are {128, 256, 512} and the aspect ratios are {0.5, 1, 2}, so 9 anchors are generated for 

each grid.  
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The Average Precision (AP) is the area under the precision-recall curve. The evaluation matrix 

for symbol detection is the mean Average Precision (mAP), which is the mean of APs for seven 

classes. Formally, the formula for precision, recall, AP and mAP is illustrated in Equation 3.4. 

 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                                                               

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                                                                        (3.4) 

 AP = ∫ 𝑝(𝑟)𝑑𝑟 
1

0
                                                                                                                  

 mAP =
∑ 𝐴𝑃𝑖

𝐾
𝑖=1

𝐾
, K is the number of classes                                                                      

 

The localization task is typically evaluated on the Intersection over Union threshold (IoU). The 

formula for IoU is illustrated in Equation 3.14. Area of interaction means the overlap of the 

predicted bounding box and the ground truth, and area of a union means the union of the predicted 

bounding box and the ground truth. 

 

IoU =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛
                                                                                                                 (3.5) 

 

3.3.3 Experimental Results 

The experiment is designed to detect seven symbols in piping drawings, and the IoU levels are 

set to 0.5, 0.6 and 0.7 so that the average precision is calculated based on these three levels. These 

IoU levels are commonly used in the researches using the PASCAL VOC dataset. Table 3.2 shows 

the experiment results, including the mAP and the AP for each class. 
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Table 3.2 Results for piping symbols with Faster RCNN detectors and VGG16. 

No. AP
IoU=0.5

 AP
IoU=0.6

 AP
IoU=0.7

 

Symbol 1 90.9 90.9 90.9 

Symbol 2 90.8 90.8 90.4 

Symbol 3 90.5 90.5 90.1 

Symbol 4 88.9 88.9 80.9 

Symbol 5 67.8 67.8 31.6 

Symbol 6 94.7 94.7 59.1 

Symbol 7 56.2 56.2 45.5 

mAP 82.8 82.8 69.8 

 

Based on Table 3.2, Faster RCNN achieves good results on the symbol 1-4 with APs are greater 

than 0.8 when IoU equals to 0.7. For symbol 6, the AP dropped abruptly when IoU changes from 

0.6 to 0.7. It means the predicted class is correct, but the location of the bounding box is not 

regressed well. Relatively, Faster RCNN model shows the undesired result on symbol 5-7. The 

reasons for this failure might be the imbalanced data or the small size of the data as shown in 

Figure 3.6. Thinking of the symbol 7, which contains only 27 samples. Suppose the ratio for 

training, validation, and testing for this symbol is the same the ratio for drawing images. In this 

case, only 6 samples are used for testing, the estimation will introduce a large bias. Also, the 

instances of the minority class are oversampling, leading to overfitting issues.  

Overall, this problem can be solved by increasing the number of symbols in a small size, so 

data augmentation technologies can be used to enrich the dataset. This issue will also occur in real 

drawings. Some of the classes are frequently used in drawings, but some are rarely used. Therefore, 

this issue needs to be solved whether synthetic data or the real data are used.  

The samples for true positive and false positive are shown in Figure 3.7 to visualize the results. 
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(a) Symbol 1 detections with p (symbol 1 | box) >= 0.8 

 

(b) Symbol 2 detections with p (symbol 2 | box) >= 0.8 

Figure 3.7 The samples of true positive and false positive  
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There is an interesting observation that the symbol 2 is misclassified as symbol 1, but the 

locations of bounding boxes of this symbol in true positive and false positive cases are the same. 

The possible reason is that they are originally from different anchors, and finally adjusted to this 

location after the regression. The reason of this kind of errors needs to be further studied with 

visualizing how the location of the bounding box changes in different stages (i.e comparing the 

outputs of the bounding box locations after the first regression and the second regression). 

3.4 Summary and Conclusions 

3.4.1 Summary 

The focus of this chapter is to detect symbols in piping drawings using Faster RCNN. The 

dataset is generated by sketching in AutoCAD MEP software, and symbols are selected from the 

default library. The results of experiments on Faster RCNN show its effectivity in the symbol 

detection task, but the Average Precision of the minority class is severely dropped by imbalanced 

data or small size of samples. Therefore, future works can be focused on labeling more objects and 

reducing the effects of the imbalanced data in drawings.  

In Section 3.2, the methodology of symbol detection is introduced. The model used for symbol 

detection is Faster RCNN, which is a unified network composed of four modules. The principles 

of the four modules are clearly explained. The advantages of this model are discussed in this 

section.  

In Section 3.3, the dataset is prepared by sketching in AutoCAD software, and symbols are 

selected from the default piping library. Next, the sketched drawings are cropped into several 

patches and augmented with affine transformation and noise addition. For the experiment part, the 

public Tensorflow repository of Faster RCNN is used in this study. Using this library, the model 

can be trained using the dataset of piping symbols. The results show that piping symbols in a 

cluttered drawing can be detected and classified using Faster RCNN; however, some classes have 

low AP owing to the imbalanced data, and this factor also needs to be considered when using real 

drawings. 
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3.4.2 Conclusions 

This chapter mainly focuses on exploring the capability of Faster RCNN on the symbol 

detection task. The backbone network used in this experiment is VGG16. The scales of anchors 

are {128, 256, 512} and the aspect ratios are {0.5, 1, 2}. SGDM is applied to optimize the loss 

function, which consists of the loss for bounding box regression and the loss for classifications 

(binary in the region proposal network and multiclass in the classification module). 

This method shows a good result with a mAP of 82.8% (IoU=0.5), which can be used in practice. 

The generalization of the model can be improved by labeling more symbols in various templates 

and libraries.  

Region detection using traditional statistical methods is challenging owing to its textureless 

nature. Comparatively, Faster RCNN takes advantage of the regression of the bounding box, which 

makes the size and the location of windows more flexible. Also, it combines the location loss and 

classification loss into the cost function, so Faster RCNN can provide an accurate prediction of 

both the bounding box location and the symbol class via jointly minimizing the loss of locations 

and classification.  

3.4.3 Limitations 

This study is an exploratory work of symbol detection. The limitations are in two aspects: (1) 

the dataset is not balanced and too small, and it is not collected from real drawings; (2) the 

backbone network is too deep, leading to an overfitting problem.  

3.4.4 Future Works 

Future works are mainly in threefold: (1) collecting real drawings with different 

templates/libraries and labeling more symbols to enrich the dataset; (2) replacing the current 

backbone network into a smaller one, specifically, the number of layers is smaller; (3) combining 

other modules, which can improve the capabilities of learning invariance to geometric 

transformation.
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CHAPTER 4. SUMMARY AND CONCLUSIONS 

4.1 Summary and Conclusions 

This study presents two topics, symbol classification, and detection based on CNN methods.  

Chapter One of the thesis is devoted to providing an overview of the research problems, related 

works, and challenges that underpin my research significance and thereby the research objectives.  

Chapter Two of the thesis proposes a CNN model, which is augmented with a Spatial 

Transformer Network (STN) for recognizing piping symbols. The merits of STN are dual: (1) it is 

a differentiable module, which can be embedded in CNNs; (2) it can actively learn the parameters 

in affine transformation matrix in the training process. The improvement of the proposed CNN 

model is evaluated using a synthetic dataset, including eight piping symbols. Compared with 

previous CNN-based approaches on symbol recognition, the proposed method shows a gain of 

2.87% with the spatial transformer in the recognition accuracy. Also, the CNN + STN model is 

more robust to classifying visually similar valves. 

Chapter Three of this thesis explores the capability of Faster RCNN model for detecting symbol 

in drawings. The dataset is generated by sketching drawings in AutoCAD software, selecting seven 

symbols from the piping component library and data augmentation. The experiment is conducted 

based on a public implementation of Faster RCNN, and the results are evaluated by mean Average 

Precision (mAP). The experiment results show a good result with a mAP of 82.8% (IoU=0.5).  

4.2 Limitations 

The limitation of this study lies into two points: (1) the dataset is not generated from real 

drawings with various templates/libraries, and the current dataset is too small for detection; (2) 

The network architecture and some parameters for symbol detection are not the best for this 

application. 

4.3 Future Works 

Future works on symbol recognition and detection are in four directions: 
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(1) Collect real drawings and enrich the dataset. The drawback of this study is that the synthetic 

data is used for training and testing, which is not substantial enough to support the conclusions. 

Although drawings are printed and human-crafted, there is still a need to collect data from various 

piping libraries.  

(2) Improve the model in learning transformation invariance and measure the invariance of 

learned features. Researches related to improving the equivariance and invariance of CNNs are a 

hot topic in recent years. Researchers have begun to study the transformation invariance in CNNs 

using rotated filters for convolutional layers (Marcos et al 2016) or a transition layer which can 

transform the image into the Fourier space (Chidester et al. 2018). Sabour et al. (2017) proposed 

the CapsuleNet, which can actively predict the transformation matrix. These are the candidate 

solutions to improve the model in learning rotation-invariant representations. Also, to measure the 

transformation invariance of the features, the quantified approaches, such as measuring the 

linearity of learned features under the transformation (Lenc and Vedaldi 2015), are needed. 

(3) Improve symbol detection via selecting a simple backbone network and proper parameters. 

The currently used backbone network is VGG16, which is commonly used on the ImageNet dataset. 

For piping symbols, the proper backbone network will be selected based on the experimentations. 

(4) Improve symbol detection using the priors of the neighboring objects information. The 

information from neighbors is commonly used in scene understanding problems. Drawings are 

rich in the context information, such as the orientation of pipelines and the proximity of 

neighboring symbols. This kind of information can be incorporated into a detection network to 

improve symbol detection. 
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APPENDIX A. CODE 

Matlab Code for Chapter 2 – Synthetic Symbols 

main.m 

%% parameters 

clear all 

close all 

 

% author:Yuxi Zhang 

 

% 1 Symbol 

m=1; 

K=1000; 

for k=1:K 

    u=randn*1/3; 

    stk{m,1}{k,1}{1,1}=[(46+u*2*sqrt(2)),(60-u*2);28,70;28,40;(46+u*2*sqrt(2)),(50+u*2)]; 

    drawing{m,1}{k,1}{1,1}=sub_stroke_line(stk{m,1}{k,1}{1},1,1); %default in tv=1, 

width=1 

    stk{m,1}{k,1}{2,1}=[(46+2*sqrt(2)*u),(50+u*2);(46+u*2*sqrt(2)),(60-u*2);(64-

2*sqrt(2)*u),(60-u*2) ; (64-2*sqrt(2)*u),(50+u*2);(46+2*sqrt(2)*u),(50+u*2)]; 

    drawing{m,1}{k,1}{2,1}=sub_stroke_arc(stk{m,1}{k,1}{2},1,1); %default intv=1, 

width=1 

    stk{m,1}{k,1}{3,1}=[(64-2*sqrt(2)*u),(60-u*2);82,70;82,40;(64-2*sqrt(2)*u),(50+u*2)]; 

    drawing{m,1}{k,1}{3,1}=sub_stroke_line(stk{m,1}{k,1}{3},1,1); %default intv=1, 

width=1 

    stk{m,1}{k,1}{4,1}=[82,55;82+20+rand*10,55]; 

    drawing{m,1}{k,1}{4,1}=sub_stroke_line(stk{m,1}{k,1}{4},1,1); %default intv=1, 

width=1 

    stk{m,1}{k,1}{5,1}=[28,55;28-20-rand*10,55]; 
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    drawing{m,1}{k,1}{5,1}=sub_stroke_line(stk{m,1}{k,1}{5},1,1); %default intv=1, 

width=1 

     

    aff=true; 

    if (aff) 

        close all 

        tran_x=normrnd(0,1)*20; 

        trans_y=normrnd(0,1)*20; 

        theta=rand*360; 

        scale=1.2+normrnd(0,0.05); 

        interval=1; 

        width=3+1/5*rand; 

        fnc= @(stk) affine_fun(stk, tran_x,trans_y,55,55,theta,scale,scale,interval,width); 

        drawing{m,1}{k,1}=apply_to_nested(drawing{m,1}{k,1},fnc); 

    end 

      

    axis tight 

    axis equal 

    axis off; 

    Tight = get(gca, 'TightInset');  %Gives you the bording spacing between plot box and any 

axis labels 

    %[Left Bottom Right Top] spacing 

    NewPos = [Tight(1) Tight(2) 1-Tight(1)-Tight(3) 1-Tight(2)-Tight(4)]; %New plot position 

[X Y W H] 

    set(gca, 'Position', NewPos); 

    set(gcf,'color','w'); 

    f = getframe(gcf); %# Capture the current window 

    im{m,1}{k,1}=rgb2gray(f.cdata); 

    image{m,1}{k,1}=imresize(im{m,1}{k,1},[224 224]); 

    % Distortion 

    improc=image{m,1}{k,1}; 
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    % Compute a random displacement field 

    u=rand; 

    if u>0.5 

    dx = -1 + 2*rand(size(improc)); % dx ~ U(-1,1) 

    dy = -1 + 2*rand(size(improc)); % dy ~ U(-1,1) 

     

    % Normalizing the field 

    nx = norm(dx); 

    ny = norm(dy); 

    dx = dx./nx; % Normalization: norm(dx) = 1 

    dy = dy./ny; % Normalization: norm(dy) = 1 

     

    % Smoothing the field 

    sig = 10; % Standard deviation of Gaussian convolution 

    alpha = 200; % Scaling factor 

    fdx = imgaussfilt(dx,sig,'FilterSize',7); % 2-D Gaussian filtering of dx 

    fdy = imgaussfilt(dy,sig,'FilterSize',7); % 2-D Gaussian filtering of dy 

     

    % Filter size: 2 * 3*ceil(std2(dx)) + 1 

    % = 3 sigma pixels in each direction + 1 to make an odd integer 

    fdx = alpha*fdx; % Scaling the filtered field 

    fdy = alpha*fdy; % Scaling the filtered field 

     

    % The resulting displacement 

    [y,x] = ndgrid(1:size(improc,1),1:size(improc,2)); 

     

 % Applying the displacement to the original pixels 

    improc = griddata(x-fdx,y-fdy,double(improc),x,y); 

    improc(isnan(improc)) = 0; 

    end 
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% erosion or dilation 

    v=rand; 

    if v<0.25 

        bw=imbinarize(improc,0.7); 

        se=strel('line',3,rand*360); 

        improc = imerode(bw,se); 

    elseif v>0.75 

        bw=imbinarize(improc,0.7); 

        se=strel('line',2,rand*360); 

        improc = imdilate(bw,se); 

    end 

    improc=uint8(255 * improc); 

    %add noise 

    u=rand; 

    if u<0.25 

        improc=imnoise(improc,'speckle'); 

    elseif u>0.75 

        improc=imnoise(improc,'salt & pepper'); 

    elseif u<0.5 && u>0.25 

        improc=imnoise(improc,'gaussian'); 

    end 

    rot_angle(m,k)=theta; 

    improc=imresize(improc,[60 60]); 

    imwrite((255-improc),[num2str(m),'_',num2str(k),'.png']); 

    close all 

end 

 

% 2 Symbol 

m=2; 

for k=1:K 

    u=randn*2; 
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    stk{m,1}{k,1}{1,1}=[55,55;28,(70-2*u);28,(40+2*u);55,55]; 

    drawing{m,1}{k,1}{1,1}=sub_stroke_line(stk{m,1}{k,1}{1},1,1); %default in tv=1, 

width=1 

    stk{m,1}{k,1}{2,1}=[55,55;82,(70-2*u);82,(40+2*u);55,55]; 

    drawing{m,1}{k,1}{2,1}=sub_stroke_line(stk{m,1}{k,1}{2},1,1); %default intv=1, 

width=1 

    stk{m,1}{k,1}{3,1}=[82,55;82+20+rand*10,55]; 

    drawing{m,1}{k,1}{3,1}=sub_stroke_line(stk{m,1}{k,1}{3},1,1); %default intv=1, 

width=1 

    stk{m,1}{k,1}{4,1}=[28,55;28-20-rand*10,55]; 

    drawing{m,1}{k,1}{4,1}=sub_stroke_line(stk{m,1}{k,1}{4},1,1); %default intv=1, 

width=1 

     

    aff=true; 

    if (aff) 

        close all 

        tran_x=normrnd(0,1)*20; 

        trans_y=normrnd(0,1)*20; 

        theta= rand*360; 

        scale=1.2+normrnd(0,0.05); 

        interval=1; 

        width=3+1/5*rand; 

        fnc= @(stk) affine_fun(stk, tran_x,trans_y,55,55,theta,scale,scale,interval,width); 

        drawing{m,1}{k,1}=apply_to_nested(drawing{m,1}{k,1},fnc); 

    end 

     

     

    axis tight 

    axis equal 

    axis off; 
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    Tight = get(gca, 'TightInset');  %Gives you the bording spacing between plot box and any 

axis labels 

    %[Left Bottom Right Top] spacing 

    NewPos = [Tight(1) Tight(2) 1-Tight(1)-Tight(3) 1-Tight(2)-Tight(4)]; %New plot position 

[X Y W H] 

    set(gca, 'Position', NewPos); 

    set(gcf,'color','w'); 

    f = getframe(gcf); %# Capture the current window 

    im{m,1}{k,1}=rgb2gray(f.cdata); 

    image{m,1}{k,1}=imresize(im{m,1}{k,1},[224 224]); 

        improc=image{m,1}{k,1}; 

    % Compute a random displacement field 

    u=rand; 

    if u>0.5 

    dx = -1 + 2*rand(size(improc)); % dx ~ U(-1,1) 

    dy = -1 + 2*rand(size(improc)); % dy ~ U(-1,1) 

    % Normalizing the field 

    nx = norm(dx); 

    ny = norm(dy); 

    dx = dx./nx; % Normalization: norm(dx) = 1 

    dy = dy./ny; % Normalization: norm(dy) = 1 

    

    % Smoothing the field 

    sig = 10; % Standard deviation of Gaussian convolution 

    alpha = 200; % Scaling factor 

    fdx = imgaussfilt(dx,sig,'FilterSize',7); % 2-D Gaussian filtering of dx 

    fdy = imgaussfilt(dy,sig,'FilterSize',7); % 2-D Gaussian filtering of dy 

     

    % Filter size: 2 * 3*ceil(std2(dx)) + 1 

    % = 3 sigma pixels in each direction + 1 to make an odd integer 
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    fdx = alpha*fdx; % Scaling the filtered field 

    fdy = alpha*fdy; % Scaling the filtered field 

     

    % The resulting displacement 

    [y,x] = ndgrid(1:size(improc,1),1:size(improc,2)); 

     

    % Applying the displacement to the original pixels 

    improc = griddata(x-fdx,y-fdy,double(improc),x,y); 

    improc(isnan(improc)) = 0; 

    end 

    % erosion or dilation 

    v=rand; 

    if v<0.25 

        bw=imbinarize(improc,0.7); 

        se=strel('line',3,rand*360); 

        improc = imerode(bw,se); 

    elseif v>0.75 

        bw=imbinarize(improc,0.7); 

        se=strel('line',2,rand*360); 

        improc = imdilate(bw,se); 

    end 

    improc=uint8(255 * improc); 

    %add noise 

    u=rand; 

    if u<0.25 

        improc=imnoise(improc,'speckle'); 

    elseif u>0.75 

        improc=imnoise(improc,'salt & pepper'); 

    elseif u<0.5 && u>0.25 

        improc=imnoise(improc,'gaussian'); 

    end 
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    rot_angle(m,k)=theta; 

    improc=imresize(improc,[60 60]); 

    imwrite((255-improc),[num2str(m),'_',num2str(k),'.png']); 

    close all 

     

end 

 

% 3 Symbol 

m=3; 

for k=1:K 

    u=randn; 

    stk{m,1}{k,1}{1,1}=[55,55;28,(70-2*u);28,(40+2*u);55,55]; 

    drawing{m,1}{k,1}{1,1}=sub_stroke_line(stk{m,1}{k,1}{1},1,1); %default in tv=1, 

width=1 

    stk{m,1}{k,1}{2,1}=[55,55;82,(70-2*u);82,(40+2*u);55,55]; 

    drawing{m,1}{k,1}{2,1}=sub_stroke_line(stk{m,1}{k,1}{2},1,1); %default intv=1, 

width=1 

    stk{m,1}{k,1}{3,1}=[(50+2*u),(55-(15-2*u)*(5-2*u)/27);(50+2*u),40]; 

    drawing{m,1}{k,1}{3,1}=sub_stroke_line(stk{m,1}{k,1}{3},1,1); %default intv=1, 

width=1 

    stk{m,1}{k,1}{4,1}=[(60-2*u),(55-(15-2*u)*(5-2*u)/27);(60-2*u),40]; 

    drawing{m,1}{k,1}{4,1}=sub_stroke_line(stk{m,1}{k,1}{4},1,1); %default intv=1, 

width=1 

    stk{m,1}{k,1}{5,1}=[82,55;82+20+rand*10,55]; 

    drawing{m,1}{k,1}{5,1}=sub_stroke_line(stk{m,1}{k,1}{5},1,1); %default intv=1, 

width=1 

    stk{m,1}{k,1}{6,1}=[28,55;28-20-rand*10,55]; 

    drawing{m,1}{k,1}{6,1}=sub_stroke_line(stk{m,1}{k,1}{6},1,1); %default intv=1, 

width=1 

    aff=true; 

    if (aff) 
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        close all 

        tran_x=normrnd(0,1)*20; 

        trans_y=normrnd(0,1)*20; 

        theta=normrnd(0,0.2)*360; 

        scale=1.2+normrnd(0,0.05); 

        interval=1; 

        width=3+1/5*rand; 

        fnc= @(stk) affine_fun(stk, tran_x,trans_y,55,55,theta,scale,scale,interval,width); 

        drawing{m,1}{k,1}=apply_to_nested(drawing{m,1}{k,1},fnc); 

    end 

     

     

    axis tight 

    axis equal 

    axis off; 

    Tight = get(gca, 'TightInset');  %Gives you the bording spacing between plot box and any 

axis labels 

    %[Left Bottom Right Top] spacing 

    NewPos = [Tight(1) Tight(2) 1-Tight(1)-Tight(3) 1-Tight(2)-Tight(4)]; %New plot position 

[X Y W H] 

    set(gca, 'Position', NewPos); 

    set(gcf,'color','w'); 

    f = getframe(gcf); %# Capture the current window 

    im{m,1}{k,1}=rgb2gray(f.cdata); 

    image{m,1}{k,1}=imresize(im{m,1}{k,1},[224 224]); 

        improc=image{m,1}{k,1}; 

    % Compute a random displacement field 

    u=rand; 

    if u>0.5 

    dx = -1 + 2*rand(size(improc)); % dx ~ U(-1,1) 

    dy = -1 + 2*rand(size(improc)); % dy ~ U(-1,1) 
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    % Normalizing the field 

    nx = norm(dx); 

    ny = norm(dy); 

     

    dx = dx./nx; % Normalization: norm(dx) = 1 

    dy = dy./ny; % Normalization: norm(dy) = 1 

     

    % Smoothing the field 

     

    sig = 10; % Standard deviation of Gaussian convolution 

    alpha = 200; % Scaling factor 

     

    fdx = imgaussfilt(dx,sig,'FilterSize',7); % 2-D Gaussian filtering of dx 

    fdy = imgaussfilt(dy,sig,'FilterSize',7); % 2-D Gaussian filtering of dy 

     

    % Filter size: 2 * 3*ceil(std2(dx)) + 1 

    % = 3 sigma pixels in each direction + 1 to make an odd integer 

     

    fdx = alpha*fdx; % Scaling the filtered field 

    fdy = alpha*fdy; % Scaling the filtered field 

     

    % The resulting displacement 

     

    [y,x] = ndgrid(1:size(improc,1),1:size(improc,2)); 

     

    % Applying the displacement to the original pixels 

     

    improc = griddata(x-fdx,y-fdy,double(improc),x,y); 

    improc(isnan(improc)) = 0; 

    end 
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    % erosion or dilation 

    v=rand; 

    if v<0.25 

        bw=imbinarize(improc,0.7); 

        se=strel('line',3,rand*360); 

        improc = imerode(bw,se); 

    elseif v>0.75 

        bw=imbinarize(improc,0.7); 

        se=strel('line',2,rand*360); 

        improc = imdilate(bw,se); 

    end 

    improc=uint8(255 * improc); 

    %add noise 

    u=rand; 

    if u<0.25 

        improc=imnoise(improc,'speckle'); 

    elseif u>0.75 

        improc=imnoise(improc,'salt & pepper'); 

    elseif u<0.5 && u>0.25 

        improc=imnoise(improc,'gaussian'); 

    end 

    rot_angle(m,k)=theta; 

    improc=imresize(improc,[60 60]); 

    imwrite((255-improc),[num2str(m),'_',num2str(k),'.png']); 

    close all 

     

end 

 

% 4 Symbol 

m=4; 

for k=1:K 
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    u=randn*2; 

    stk{m,1}{k,1}{1,1}=[55,55;28,(70-2*u);28,(40+2*u);55,55]; 

    drawing{m,1}{k,1}{1,1}=sub_stroke_line(stk{m,1}{k,1}{1},1,1); %default in tv=1, 

width=1 

    stk{m,1}{k,1}{2,1}=[55,55;82,(70-2*u);82,(40+2*u);55,55]; 

    drawing{m,1}{k,1}{2,1}=sub_stroke_line(stk{m,1}{k,1}{2},1,1); %default intv=1, 

width=1 

    stk{m,1}{k,1}{3,1}=[55,(70-2*u);55,(40+2*u)]; 

    drawing{m,1}{k,1}{3,1}=sub_stroke_line(stk{m,1}{k,1}{3},1,1); %default intv=1, 

width=1 

    stk{m,1}{k,1}{4,1}=[82,55;82+20+rand*10,55]; 

    drawing{m,1}{k,1}{4,1}=sub_stroke_line(stk{m,1}{k,1}{4},1,1); %default intv=1, 

width=1 

    stk{m,1}{k,1}{5,1}=[28,55;28-20-rand*10,55]; 

    drawing{m,1}{k,1}{5,1}=sub_stroke_line(stk{m,1}{k,1}{5},1,1); %default intv=1, 

width=1 

    aff=true; 

    if (aff) 

        close all 

        tran_x=normrnd(0,1)*20; 

        trans_y=normrnd(0,1)*20; 

        theta= rand*360; 

        scale=1.2+normrnd(0,0.05); 

        interval=1; 

        width=3+1/5*rand; 

        fnc= @(stk) affine_fun(stk, tran_x,trans_y,55,55,theta,scale,scale,interval,width); 

        drawing{m,1}{k,1}=apply_to_nested(drawing{m,1}{k,1},fnc); 

    end 

     

    axis tight 

    axis equal 
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    %xlim([-50 150]) 

    %ylim([-50 150]) 

    %u=randn; 

    set(gcf, 'Position',  [100, 100, 150+5*u, 150+5*u]); 

    axis off; 

    Tight = get(gca, 'TightInset');  %Gives you the bording spacing between plot box and any 

axis labels 

    %[Left Bottom Right Top] spacing 

    NewPos = [Tight(1) Tight(2) 1-Tight(1)-Tight(3) 1-Tight(2)-Tight(4)]; %New plot position 

[X Y W H] 

    set(gca, 'Position', NewPos); 

    set(gcf,'color','w'); 

    f = getframe(gcf); %# Capture the current window 

    im{m,1}{k,1}=rgb2gray(f.cdata); 

    image{m,1}{k,1}=imresize(im{m,1}{k,1},[224 224]); 

        improc=image{m,1}{k,1}; 

    % Compute a random displacement field 

     u=rand; 

    if u>0.5 

    dx = -1 + 2*rand(size(improc)); % dx ~ U(-1,1) 

    dy = -1 + 2*rand(size(improc)); % dy ~ U(-1,1) 

     

    % Normalizing the field 

     

    nx = norm(dx); 

    ny = norm(dy); 

     

    dx = dx./nx; % Normalization: norm(dx) = 1 

    dy = dy./ny; % Normalization: norm(dy) = 1 

     

    % Smoothing the field 
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    sig = 10; % Standard deviation of Gaussian convolution 

    alpha = 200; % Scaling factor 

     

    fdx = imgaussfilt(dx,sig,'FilterSize',7); % 2-D Gaussian filtering of dx 

    fdy = imgaussfilt(dy,sig,'FilterSize',7); % 2-D Gaussian filtering of dy 

     

    % Filter size: 2 * 3*ceil(std2(dx)) + 1 

    % = 3 sigma pixels in each direction + 1 to make an odd integer 

     

    fdx = alpha*fdx; % Scaling the filtered field 

    fdy = alpha*fdy; % Scaling the filtered field 

     

    % The resulting displacement 

     

    [y,x] = ndgrid(1:size(improc,1),1:size(improc,2)); 

     

    % Applying the displacement to the original pixels 

     

    improc = griddata(x-fdx,y-fdy,double(improc),x,y); 

    improc(isnan(improc)) = 0; 

    end 

    % erosion or dilation 

    v=rand; 

    if v<0.25 

        bw=imbinarize(improc,0.7); 

        se=strel('line',3,rand*360); 

        improc = imerode(bw,se); 

    elseif v>0.75 

        bw=imbinarize(improc,0.7); 

        se=strel('line',2,rand*360); 
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        improc = imdilate(bw,se); 

    end 

    improc=uint8(255 * improc); 

    %add noise 

    u=rand; 

    if u<0.25 

        improc=imnoise(improc,'speckle'); 

    elseif u>0.75 

        improc=imnoise(improc,'salt & pepper'); 

    elseif u<0.5 && u>0.25 

        improc=imnoise(improc,'gaussian'); 

    end 

    rot_angle(m,k)=theta; 

    improc=imresize(improc,[60 60]); 

    imwrite((255-improc),[num2str(m),'_',num2str(k),'.png']); 

    close all 

     

end 

 

% 5 Symbol 

m=5; 

for k=1:K 

    u=randn; 

    stk{m,1}{k,1}{1,1}=[55,55;28,(70-2*u);28,(40+2*u);55,55]; 

    drawing{m,1}{k,1}{1,1}=sub_stroke_line(stk{m,1}{k,1}{1},1,1); %default in tv=1, 

width=1 

    stk{m,1}{k,1}{2,1}=[55,55;82,(70-2*u);82,(40+2*u);55,55]; 

    drawing{m,1}{k,1}{2,1}=sub_stroke_line(stk{m,1}{k,1}{2},1,1); %default intv=1, 

width=1 

    stk{m,1}{k,1}{3,1}=[55,55;55,(80-2*u);(70+2*u),(80-2*u)]; 
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    drawing{m,1}{k,1}{3,1}=sub_stroke_line(stk{m,1}{k,1}{3},1,1); %default intv=1, 

width=1 

    stk{m,1}{k,1}{4,1}=[82,55;82+20+rand*10,55]; 

    drawing{m,1}{k,1}{4,1}=sub_stroke_line(stk{m,1}{k,1}{4},1,1); %default intv=1, 

width=1 

    stk{m,1}{k,1}{5,1}=[28,55;28-20-rand*10,55]; 

    drawing{m,1}{k,1}{5,1}=sub_stroke_line(stk{m,1}{k,1}{5},1,1); %default intv=1, 

width=1 

    aff=true; 

    if (aff) 

        close all 

        tran_x=normrnd(0,1)*20; 

        trans_y=normrnd(0,1)*20; 

        theta= rand*360; 

        scale=1.2+normrnd(0,0.05); 

        interval=1; 

        width=3+1/5*rand; 

        fnc= @(stk) affine_fun(stk, tran_x,trans_y,55,55,theta,scale,scale,interval,width); 

        drawing{m,1}{k,1}=apply_to_nested(drawing{m,1}{k,1},fnc); 

    end 

     

    axis tight 

    axis equal 

    axis off; 

    Tight = get(gca, 'TightInset');  %Gives you the bording spacing between plot box and any 

axis labels 

    %[Left Bottom Right Top] spacing 

    NewPos = [Tight(1) Tight(2) 1-Tight(1)-Tight(3) 1-Tight(2)-Tight(4)]; %New plot position 

[X Y W H] 

    set(gca, 'Position', NewPos); 

    set(gcf,'color','w'); 
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    f = getframe(gcf); %# Capture the current window 

    im{m,1}{k,1}=rgb2gray(f.cdata); 

    image{m,1}{k,1}=imresize(im{m,1}{k,1},[224 224]); 

        improc=image{m,1}{k,1}; 

    % Compute a random displacement field 

    u=rand; 

    if u>0.5 

    dx = -1 + 2*rand(size(improc)); % dx ~ U(-1,1) 

    dy = -1 + 2*rand(size(improc)); % dy ~ U(-1,1) 

     

    % Normalizing the field 

     

    nx = norm(dx); 

    ny = norm(dy); 

     

    dx = dx./nx; % Normalization: norm(dx) = 1 

    dy = dy./ny; % Normalization: norm(dy) = 1 

     

    % Smoothing the field 

     

    sig = 10; % Standard deviation of Gaussian convolution 

    alpha = 200; % Scaling factor 

     

    fdx = imgaussfilt(dx,sig,'FilterSize',7); % 2-D Gaussian filtering of dx 

    fdy = imgaussfilt(dy,sig,'FilterSize',7); % 2-D Gaussian filtering of dy 

     

    % Filter size: 2 * 3*ceil(std2(dx)) + 1 

    % = 3 sigma pixels in each direction + 1 to make an odd integer 

     

    fdx = alpha*fdx; % Scaling the filtered field 

    fdy = alpha*fdy; % Scaling the filtered field 
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    % The resulting displacement 

     

    [y,x] = ndgrid(1:size(improc,1),1:size(improc,2)); 

     

    % Applying the displacement to the original pixels 

     

    improc = griddata(x-fdx,y-fdy,double(improc),x,y); 

    improc(isnan(improc)) = 0; 

    end 

    % erosion or dilation 

    v=rand; 

    if v<0.25 

        bw=imbinarize(improc,0.7); 

        se=strel('line',3,rand*360); 

        improc = imerode(bw,se); 

    elseif v>0.75 

        bw=imbinarize(improc,0.7); 

        se=strel('line',2,rand*360); 

        improc = imdilate(bw,se); 

    end 

    improc=uint8(255 * improc); 

    %add noise 

    u=rand; 

    if u<0.25 

        improc=imnoise(improc,'speckle'); 

    elseif u>0.75 

        improc=imnoise(improc,'salt & pepper'); 

    elseif u<0.5 && u>0.25 

        improc=imnoise(improc,'gaussian'); 

    end 



81 

 

 

    rot_angle(m,k)=theta; 

    improc=imresize(improc,[60 60]); 

    imwrite((255-improc),[num2str(m),'_',num2str(k),'.png']); 

    close all 

     

end 

 

% 6 Symbol 

m=6; 

for k=1:K 

    u=rand; 

    v=rand; 

    stk{m,1}{k,1}{1,1}=[55,25;25,55;55,85;85,55;55,25]; 

    drawing{m,1}{k,1}{1,1}=sub_stroke_arc(stk{m,1}{k,1}{1},1,1); %default in tv=1, 

width=1 

    stk{m,1}{k,1}{2,1}=[(45-2*u),(40-2*v);(45-2*u),(70+2*v)]; 

    drawing{m,1}{k,1}{2,1}=sub_stroke_line(stk{m,1}{k,1}{2},1,1); %default intv=1, 

width=1 

    stk{m,1}{k,1}{3,1}=[(45-2*u),(40-2*v);(65+2*u),(40-2*v)]; 

    drawing{m,1}{k,1}{3,1}=sub_stroke_line(stk{m,1}{k,1}{3},1,1); %default intv=1, 

width=1 

    stk{m,1}{k,1}{4,1}=[85,55;85+20+rand*10,55]; 

    drawing{m,1}{k,1}{4,1}=sub_stroke_line(stk{m,1}{k,1}{4},1,1); %default intv=1, 

width=1 

    stk{m,1}{k,1}{5,1}=[25,55;25-20+rand*10,55]; 

    drawing{m,1}{k,1}{5,1}=sub_stroke_line(stk{m,1}{k,1}{5},1,1); %default intv=1, 

width=1 

    aff=true; 

    if (aff) 

        close all 

        tran_x=normrnd(0,1)*20; 
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        trans_y=normrnd(0,1)*20; 

        theta=rand*360; 

        scale=1.2+normrnd(0,0.05); 

        interval=1; 

        width=3+1/5*rand; 

        fnc= @(stk) affine_fun(stk, tran_x,trans_y,55,55,theta,scale,scale,interval,width); 

        drawing{m,1}{k,1}=apply_to_nested(drawing{m,1}{k,1},fnc); 

    end 

     

     

    axis tight 

    axis equal 

    axis off; 

    Tight = get(gca, 'TightInset');  %Gives you the bording spacing between plot box and any 

axis labels 

    %[Left Bottom Right Top] spacing 

    NewPos = [Tight(1) Tight(2) 1-Tight(1)-Tight(3) 1-Tight(2)-Tight(4)]; %New plot position 

[X Y W H] 

    set(gca, 'Position', NewPos); 

    set(gcf,'color','w'); 

    f = getframe(gcf); %# Capture the current window 

    im{m,1}{k,1}=rgb2gray(f.cdata); 

    image{m,1}{k,1}=imresize(im{m,1}{k,1},[224 224]); 

        improc=image{m,1}{k,1}; 

    % Compute a random displacement field 

    u=rand; 

    if u>0.5 

    dx = -1 + 2*rand(size(improc)); % dx ~ U(-1,1) 

    dy = -1 + 2*rand(size(improc)); % dy ~ U(-1,1) 

     

    % Normalizing the field 
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    nx = norm(dx); 

    ny = norm(dy); 

     

    dx = dx./nx; % Normalization: norm(dx) = 1 

    dy = dy./ny; % Normalization: norm(dy) = 1 

     

    % Smoothing the field 

     

    sig = 10; % Standard deviation of Gaussian convolution 

    alpha = 200; % Scaling factor 

     

    fdx = imgaussfilt(dx,sig,'FilterSize',7); % 2-D Gaussian filtering of dx 

    fdy = imgaussfilt(dy,sig,'FilterSize',7); % 2-D Gaussian filtering of dy 

     

    % Filter size: 2 * 3*ceil(std2(dx)) + 1 

    % = 3 sigma pixels in each direction + 1 to make an odd integer 

     

    fdx = alpha*fdx; % Scaling the filtered field 

    fdy = alpha*fdy; % Scaling the filtered field 

     

    % The resulting displacement 

     

    [y,x] = ndgrid(1:size(improc,1),1:size(improc,2)); 

     

    % Applying the displacement to the original pixels 

     

    improc = griddata(x-fdx,y-fdy,double(improc),x,y); 

    improc(isnan(improc)) = 0; 

    end 

    % erosion or dilation 
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    v=rand; 

    if v<0.25 

        bw=imbinarize(improc,0.7); 

        se=strel('line',3,rand*360); 

        improc = imerode(bw,se); 

    elseif v>0.75 

        bw=imbinarize(improc,0.7); 

        se=strel('line',2,rand*360); 

        improc = imdilate(bw,se); 

    end 

    improc=uint8(255 * improc); 

    %add noise 

    u=rand; 

    if u<0.25 

        improc=imnoise(improc,'speckle'); 

    elseif u>0.75 

        improc=imnoise(improc,'salt & pepper'); 

    elseif u<0.5 && u>0.25 

        improc=imnoise(improc,'gaussian'); 

    end 

    rot_angle(m,k)=theta; 

    improc=imresize(improc,[60 60]); 

    imwrite((255-improc),[num2str(m),'_',num2str(k),'.png']); 

    close all 

     

end 

 

% 7 Symbol 

m=7; 

for k=1:K 

    stk{m,1}{k,1}{1,1}=[55,55;55,30-rand*10]; 
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    drawing{m,1}{k,1}{1,1}=sub_stroke_line(stk{m,1}{k,1}{1},1,1); %default in tv=1, 

width=1 

    stk{m,1}{k,1}{2,1}=[55,40;50,45;55,50;60,45;55,40]; 

    drawing{m,1}{k,1}{2,1}=sub_stroke_arc(stk{m,1}{k,1}{2},1,1); %default intv=1, 

width=1 

    stk{m,1}{k,1}{3,1}=[55,55;45,65;55,75;65,65;55,55]; 

    drawing{m,1}{k,1}{3,1}=sub_stroke_arc(stk{m,1}{k,1}{3},1,1); %default intv=1, 

width=1 

    stk{m,1}{k,1}{4,1}=[60,45;65,45;65,40]; 

    drawing{m,1}{k,1}{4,1}=sub_stroke_line(stk{m,1}{k,1}{4},1,1); %default intv=1, 

width=1 

    stk{m,1}{k,1}{5,1}=[60,(65+5*sqrt(3));50,(65-5*sqrt(3))]; 

    drawing{m,1}{k,1}{5,1}=sub_stroke_line(stk{m,1}{k,1}{5},1,1); %default intv=1, 

width=1 

    aff=true; 

    if (aff) 

        close all 

        tran_x=normrnd(0,1)*20; 

        trans_y=normrnd(0,0.1)*20; 

        theta=rand*360; 

        scale=1.8+normrnd(0,0.05); 

        interval=1; 

        width=3+1/5*rand; 

        fnc= @(stk) affine_fun(stk, tran_x,trans_y,55,55,theta,scale,scale,interval,width); 

        drawing{m,1}{k,1}=apply_to_nested(drawing{m,1}{k,1},fnc); 

    end 

     

     

    axis tight 

    axis equal 

    axis off; 
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    Tight = get(gca, 'TightInset');  %Gives you the bording spacing between plot box and any 

axis labels 

    %[Left Bottom Right Top] spacing 

    NewPos = [Tight(1) Tight(2) 1-Tight(1)-Tight(3) 1-Tight(2)-Tight(4)]; %New plot position 

[X Y W H] 

    set(gca, 'Position', NewPos); 

    set(gcf,'color','w'); 

    f = getframe(gcf); %# Capture the current window 

    im{m,1}{k,1}=rgb2gray(f.cdata); 

    image{m,1}{k,1}=imresize(im{m,1}{k,1},[224 224]); 

        improc=image{m,1}{k,1}; 

    % Compute a random displacement field 

        u=rand; 

    if u>0.5 

    dx = -1 + 2*rand(size(improc)); % dx ~ U(-1,1) 

    dy = -1 + 2*rand(size(improc)); % dy ~ U(-1,1) 

     

    % Normalizing the field 

     

    nx = norm(dx); 

    ny = norm(dy); 

     

    dx = dx./nx; % Normalization: norm(dx) = 1 

    dy = dy./ny; % Normalization: norm(dy) = 1 

     

    % Smoothing the field 

     

    sig = 10; % Standard deviation of Gaussian convolution 

    alpha = 200; % Scaling factor 

     

    fdx = imgaussfilt(dx,sig,'FilterSize',15); % 2-D Gaussian filtering of dx 
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    fdy = imgaussfilt(dy,sig,'FilterSize',15); % 2-D Gaussian filtering of dy 

     

    % Filter size: 2 * 3*ceil(std2(dx)) + 1 

    % = 3 sigma pixels in each direction + 1 to make an odd integer 

     

    fdx = alpha*fdx; % Scaling the filtered field 

    fdy = alpha*fdy; % Scaling the filtered field 

     

    % The resulting displacement 

     

    [y,x] = ndgrid(1:size(improc,1),1:size(improc,2)); 

     

    % Applying the displacement to the original pixels 

     

    improc = griddata(x-fdx,y-fdy,double(improc),x,y); 

    improc(isnan(improc)) = 0; 

    end 

    % erosion or dilation 

    v=rand; 

    if v<0.25 

        bw=imbinarize(improc,0.7); 

        se=strel('line',3,rand*360); 

        improc = imerode(bw,se); 

    elseif v>0.75 

        bw=imbinarize(improc,0.7); 

        se=strel('line',2,rand*360); 

        improc = imdilate(bw,se); 

    end 

    improc=uint8(255 * improc); 

    %add noise 

    u=rand; 
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    if u<0.25 

        improc=imnoise(improc,'speckle'); 

    elseif u>0.75 

        improc=imnoise(improc,'salt & pepper'); 

    elseif u<0.5 && u>0.25 

        improc=imnoise(improc,'gaussian'); 

    end 

    rot_angle(m,k)=theta; 

    improc=imresize(improc,[60 60]); 

    imwrite((255-improc),[num2str(m),'_',num2str(k),'.png']); 

    close all 

     

end 

 

% 8 Symbol 

m=8; 

for k=1:K 

    u=rand; 

    v=rand; 

    stk{m,1}{k,1}{1,1}=[55,55;55,30-rand*10]; 

    drawing{m,1}{k,1}{1,1}=sub_stroke_line(stk{m,1}{k,1}{1},1,1); %default in tv=1, 

width=1 

    stk{m,1}{k,1}{2,1}=[55,40;50,45;55,50;60,45;55,40]; 

    drawing{m,1}{k,1}{2,1}=sub_stroke_arc(stk{m,1}{k,1}{2},1,1); %default intv=1, 

width=1 

    stk{m,1}{k,1}{3,1}=[65,65;55,55;45,65]; 

    drawing{m,1}{k,1}{3,1}=sub_stroke_arc(stk{m,1}{k,1}{3},1,1); %default intv=1, 

width=1 

    stk{m,1}{k,1}{4,1}=[60,45;65,45;65,40]; 

    drawing{m,1}{k,1}{4,1}=sub_stroke_line(stk{m,1}{k,1}{4},1,1); %default intv=1, 

width=1 
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    stk{m,1}{k,1}{5,1}=[45,65;45,(75+2*u)]; 

    drawing{m,1}{k,1}{5,1}=sub_stroke_line(stk{m,1}{k,1}{5},1,1); %default intv=1, 

width=1 

    stk{m,1}{k,1}{6,1}=[65,65;65,(75+2*u)]; 

    drawing{m,1}{k,1}{6,1}=sub_stroke_line(stk{m,1}{k,1}{6},1,1); %default intv=1, 

width=1 

    stk{m,1}{k,1}{7,1}=[(44-2*v),(75+2*u);(66+2*v),(75+2*u)]; 

    drawing{m,1}{k,1}{7,1}=sub_stroke_line(stk{m,1}{k,1}{7},1,1); %default intv=1, 

width=1 

    stk{m,1}{k,1}{8,1}=[55,(75+2*u);55,(77+2*u)]; 

    drawing{m,1}{k,1}{8,1}=sub_stroke_line(stk{m,1}{k,1}{8},1,1); %default intv=1, 

width=1 

     

    aff=true; 

    if (aff) 

        close all 

        tran_x=normrnd(0,1)*20; 

        trans_y=normrnd(0,1)*20; 

        theta=rand*360; 

        scale=1.8+normrnd(0,0.05); 

        interval=1; 

        width=3+1/5*rand; 

        fnc= @(stk) affine_fun(stk, tran_x,trans_y,55,55,theta,scale,scale,interval,width); 

        drawing{m,1}{k,1}=apply_to_nested(drawing{m,1}{k,1},fnc); 

    end 

     

     

    axis tight 

    axis equal 

     axis off; 
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    Tight = get(gca, 'TightInset');  %Gives you the bording spacing between plot box and any 

axis labels 

    %[Left Bottom Right Top] spacing 

    NewPos = [Tight(1) Tight(2) 1-Tight(1)-Tight(3) 1-Tight(2)-Tight(4)]; %New plot position 

[X Y W H] 

    set(gca, 'Position', NewPos); 

    set(gcf,'color','w'); 

    f = getframe(gcf); %# Capture the current window 

    im{m,1}{k,1}=rgb2gray(f.cdata); 

    image{m,1}{k,1}=imresize(im{m,1}{k,1},[224 224]); 

        improc=image{m,1}{k,1}; 

    % Compute a random displacement field 

        u=rand; 

    if u>0.5 

    dx = -1 + 2*rand(size(improc)); % dx ~ U(-1,1) 

    dy = -1 + 2*rand(size(improc)); % dy ~ U(-1,1) 

     

    % Normalizing the field 

     

    nx = norm(dx); 

    ny = norm(dy); 

     

    dx = dx./nx; % Normalization: norm(dx) = 1 

    dy = dy./ny; % Normalization: norm(dy) = 1 

     

    % Smoothing the field 

     

    sig = 10; % Standard deviation of Gaussian convolution 

    alpha = 200; % Scaling factor 

     

    fdx = imgaussfilt(dx,sig,'FilterSize',15); % 2-D Gaussian filtering of dx 
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    fdy = imgaussfilt(dy,sig,'FilterSize',15); % 2-D Gaussian filtering of dy 

     

    % Filter size: 2 * 3*ceil(std2(dx)) + 1 

    % = 3 sigma pixels in each direction + 1 to make an odd integer 

     

    fdx = alpha*fdx; % Scaling the filtered field 

    fdy = alpha*fdy; % Scaling the filtered field 

     

    % The resulting displacement 

     

    [y,x] = ndgrid(1:size(improc,1),1:size(improc,2)); 

     

    % Applying the displacement to the original pixels 

     

    improc = griddata(x-fdx,y-fdy,double(improc),x,y); 

    improc(isnan(improc)) = 0; 

    end 

    % erosion or dilation 

    v=rand; 

    if v<0.25 

        bw=imbinarize(improc,0.7); 

        se=strel('line',3,rand*360); 

        improc = imerode(bw,se); 

    elseif v>0.75 

        bw=imbinarize(improc,0.7); 

        se=strel('line',2,rand*360); 

        improc = imdilate(bw,se); 

    end 

    improc=uint8(255 * improc); 

    %add noise 

    u=rand; 
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    if u<0.25 

        improc=imnoise(improc,'speckle'); 

    elseif u>0.75 

        improc=imnoise(improc,'salt & pepper'); 

    elseif u<0.5 && u>0.25 

        improc=imnoise(improc,'gaussian'); 

    end 

    rot_angle(m,k)=theta; 

    improc=imresize(improc,[60 60]); 

    imwrite((255-improc),[num2str(m),'_',num2str(k),'.png']); 

    close all 

     

end 

 

sub_stroke_line.m 

function stk=sub_stroke_line(p,intv,width) 

n=length(p); 

stk=cell(n-1,1); 

for i=2:n  

    %% compute distance between each point 

    dist = zeros(n,1); 

    x1 = p(i,:);  

    x2 = p(i-1,:); 

    dist(i) = norm(x1-x2); 

 

    %% Generate uniform points 

    nint = round(dist(i)/intv); 

    nint = max(nint,2); 

    xi = linspace(0,dist(i),nint); %nint: number of points 

    stk{i-1} = interp1([0;dist(i)],[p(i-1,:); p(i,:)],xi); 

    if(stk{i-1}(end,:)~=p(i,:) ) 
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        stk{i-1}=[stk{i-1};p(i,:)]; 

    end 

    plot(stk{i-1}(:,1),stk{i-1}(:,2),'k','LineWidth', width); 

    hold on 

    plot(p(i-1,1),p(i-1,2),'.','MarkerEdgeColor','black','MarkerSize', pi*width); 

    hold on 

end 

 

%% Plot 

plot(p(n,1),p(n,2),'.','MarkerEdgeColor','black','MarkerSize', pi*width); 

 

set(gca,'XTick',[],'YTick',[]); 

xlim([1 105]); 

ylim([1 105]); 

hold on 

 

sub_stroke_arc.m 

function stk = sub_stroke_arc(p,intv,width) 

n=length(p); 

if n<3 

    msg=['At least 3 points']; 

    fprintf(1,[msg,'\n']); 

end 

stk=cell(n-1,1); 

xcyc=cell(n-2,1); 

R=cell(n-2,1); 

for i=1:n-2 

%% Compute Circle Center and Radius R, xcyc 

    % FIT_CIRCLE_THROUGH_3_POINTS 

    % Mathematical background is provided in 

http://www.regentsprep.org/regents/math/geometry/gcg6/RCir.htm 
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    % 

    % Input: 

    % 

    %   ABC is a [3 x 2n] array. Each two columns represent a set of three points which lie on 

    %       a circle. Example: [-1 2;2 5;1 1] represents the set of points (-1,2), (2,5) and (1,1) in 

Cartesian 

    %       (x,y) coordinates. 

    % 

    % Outputs: 

    % 

    %   R     is a [1 x n] array of circle radii corresponding to each set of three points. 

    %   xcyc  is an [2 x n] array of of the centers of the circles, where each column is [xc_i;yc_i] 

where i 

    %         corresponds to the {A,B,C} set of points in the block [3 x 2i-1:2i] of ABC 

    % 

    % Author: Danylo Malyuta. 

    % Version: v1.0 (June 2016) 

    % ---------------------------------------------------------------------------------------------------------- 

    % Each set of points {A,B,C} lies on a circle. Question: what is the circles radius and center? 

    % A: point with coordinates (x1,y1) 

    % B: point with coordinates (x2,y2) 

    % C: point with coordinates (x3,y3) 

    % ============= Find the slopes of the chord A<-->B (mr) and of the chord B<-->C (mt) 

    %   mt = (y3-y2)/(x3-x2) 

    %   mr = (y2-y1)/(x2-x1) 

    % /// Begin by generalizing xi and yi to arrays of individual xi and yi for each {A,B,C} set 

of points provided in ABC array 

 

    x1 = p(i,1:2:end); 

    x2 = p(i+1,1:2:end); 

    x3 = p(i+2,1:2:end);  
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    y1 = p(i,2:2:end); 

    y2 = p(i+1,2:2:end); 

    y3 = p(i+2,2:2:end); 

    % /// Now carry out operations as usual, using array operations 

    mr = (y2-y1)./(x2-x1); 

    mt = (y3-y2)./(x3-x2); 

    % A couple of failure modes exist: 

    %   (1) First chord is vertical       ==> mr==Inf 

    %   (2) Second chord is vertical      ==> mt==Inf 

    %   (3) Points are collinear          ==> mt==mr (NB: NaN==NaN here) 

    %   (4) Two or more points coincident ==> mr==NaN || mt==NaN 

    % Resolve these failure modes case-by-case. 

    idf1 = isinf(mr); % Where failure mode (1) occurs 

    idf2 = isinf(mt); % Where failure mode (2) occurs 

    idf34 = isequaln(mr,mt) | isnan(mr) | isnan(mt); % Where failure modes (3) and (4) occur 

    % ============= Compute xc, the circle center x-coordinate 

    xcyc{i}(1) = (mr.*mt.*(y3-y1)+mr.*(x2+x3)-mt.*(x1+x2))./(2*(mr-mt)); 

    xcyc{i}(idf1) = (mt(idf1).*(y3(idf1)-y1(idf1))+(x2(idf1)+x3(idf1)))/2; % Failure mode (1) 

==> use limit case of mr==Inf 

    xcyc{i}(idf2) = ((x1(idf2)+x2(idf2))-mr(idf2).*(y3(idf2)-y1(idf2)))/2; % Failure mode (2) 

==> use limit case of mt==Inf 

    xcyc{i}(idf34) = NaN; % Failure mode (3) or (4) ==> cannot determine center point, return 

NaN 

    % ============= Compute yc, the circle center y-coordinate 

    xcyc{i}(2,:) = -1./mr.*(xcyc{i}-(x1+x2)/2)+(y1+y2)/2; 

    idmr0 = mr==0; 

    xcyc{i}(2,idmr0) = -1./mt(idmr0).*(xcyc{i}(idmr0)-

(x2(idmr0)+x3(idmr0))/2)+(y2(idmr0)+y3(idmr0))/2; 

    xcyc{i}(2,idf34) = NaN; % Failure mode (3) or (4) ==> cannot determine center point, return 

NaN 

    % ============= Compute the circle radius 
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    R{i} = sqrt((xcyc{i}(1,:)-x1).^2+(xcyc{i}(2,:)-y1).^2); 

    R{i}(idf34) = Inf; % Failure mode (3) or (4) ==> assume circle radius infinite for this case 

 

%% Plot arc 

    intv_d=2*asin((1/2)/R{i})*intv; 

     

    if(i==1) 

        %first segment 

        if(p(i,2)<xcyc{i}(2,:)) 

            theta1=2*pi-acos((p(i,1)-xcyc{i}(1,:))/(R{i})); 

        else 

            theta1=acos((p(i,1)-xcyc{i}(1,:))/(R{i})); 

        end 

        if(p(i+1,2)<xcyc{i}(2,:)) 

            theta2=2*pi-acos((p(i+1,1)-xcyc{i}(1,:))/(R{i})); 

        else 

            theta2=acos((p(i+1,1)-xcyc{i}(1,:))/(R{i})); 

        end 

        if theta2>theta1 

            theta2=theta2-2*pi; 

        end 

        th = theta2:intv_d:theta1; 

        xunit = R{i} * cos(th) + xcyc{i}(1,:); 

        yunit = R{i} * sin(th) + xcyc{i}(2,:); 

        stk{2*i-1} = [xunit;yunit]'; 

        if(stk{2*i-1}(end,:)~=p(i,:)) 

            stk{2*i-1} = [stk{2*i-1};p(i,:)]; 

        end 

        plot(xunit, yunit,'k','LineWidth', width); 

        hold on 

        plot(p(i+1,1), p(i+1,2),'.','MarkerEdgeColor','black','MarkerSize', pi*width); 
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        hold on 

        plot(p(i,1), p(i,2),'.','MarkerEdgeColor','black','MarkerSize', pi*width); 

        hold on 

    end 

    %second segment 

    if(p(i+1,2)<xcyc{i}(2,:)) 

        theta2=2*pi-acos((p(i+1,1)-xcyc{i}(1,:))/(R{i})); 

    else 

        theta2=acos((p(i+1,1)-xcyc{i}(1,:))/(R{i})); 

    end 

    if(p(i+2,2)<xcyc{i}(2,:)) 

        theta3=2*pi-acos((p(i+2,1)-xcyc{i}(1,:))/(R{i})); 

    else 

        theta3=acos((p(i+2,1)-xcyc{i}(1,:))/(R{i})); 

    end 

    if theta3>theta2 

        theta3=theta3-2*pi; 

    end 

    th = theta3:intv_d:theta2; 

    xunit = R{i} * cos(th) + xcyc{i}(1,:); 

    yunit = R{i} * sin(th) + xcyc{i}(2,:); 

    stk{i+1}=[xunit;yunit]'; 

    if(stk{i+1}(end,:)~=p(i+1,:)) 

        stk{i+1} = [stk{i+1};p(i+1,:)]; 

    end 

    plot(xunit, yunit,'k','LineWidth', width); 

    hold on 

    plot(p(i+1,1), p(i+1,2),'.','MarkerEdgeColor','black','MarkerSize', pi*width); 

    hold on 

    plot(p(i+2,1), p(i+2,2),'.','MarkerEdgeColor','black','MarkerSize', pi*width); 

    hold on 
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end 

 

 

set(gca,'XTick',[],'YTick',[]); 

xlim([1 105]); 

ylim([1 105]); 

hold on 

 

affine_fun.m 

function stk_affu=affine_fun(stk, tx,ty,cx,cy,theta,w,h,dint,width) 

% Create translation matrix 

tm= @(x,y)[1 0 0;0 1 0; x y 1]; 

 

% Create rotation matrix 

rm = @(x,y,theta) tm(-x,-y)*[cosd(theta) -sind(theta) 0; sind(theta) cosd(theta) 0;0 0 

1]'*tm(x,y); 

 

% Create scaling matrix 

sm=@(x,y,w,h) tm(-x,-y)*[w 0 0;0 h 0; 0 0 1]*tm(x,y); 

 

R=sm(cx,cy,w,h)*rm(cx,cy,theta)*tm(tx,ty); 

 

% Rotate your point(s) 

stk(:,3)=1; 

stk_aff = stk*R; 

stk_aff(:,3)=[]; 

 

% Plot 

n=length(stk_aff); 

j=2; 

rm=[]; 
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for i=1:n-1 

    if(j-1<=n-1) 

        i=j-1; 

    else 

        break 

    end 

    dist1(i+1)=0; 

    while (dist1(i+1)<dint && j<=n) 

        x1 = stk_aff(j,:); 

        x2 = stk_aff(i,:); 

        dist1(i+1) = norm(x1-x2); 

        if(dist1(i+1)<dint && j<n) 

            rm=[rm j]; 

        end 

        j=j+1; 

    end 

end 

stk_affu=stk_aff; 

stk_affu(rm,:) = []; 

[l m]=size(dist1); 

rm=rm(rm<=m-1); 

dist1(rm+1)=[]; 

cumdist = cumsum(dist1); 

start_dist = cumdist(1); 

end_dist = cumdist(end); 

x = cumdist(:); 

nint = round(end_dist/dint); 

nint = max(nint,2);     

xi = linspace(start_dist,end_dist,nint); %nint: number of points 

stk_affu = interp1(x,stk_affu,xi);    

plot(stk_aff(:,1),stk_aff(:,2),'k','LineWidth', width); 
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hold on 

plot(stk_aff(1,1),stk_aff(1,2),'.','MarkerEdgeColor','black','MarkerSize', pi*width); 

hold on 

plot(stk_aff(end,1),stk_aff(end,2),'.','MarkerEdgeColor','black','MarkerSize', pi*width); 

hold on 

set(gca,'XTick',[],'YTick',[]); 

xlim([1 105]); 

ylim([1 105]); 

Python Code for Chapter 2 – TFrecord file Generation 

Datasetgenerator.py 

#encoding=utf-8 

import os 

import tensorflow as tf 

from PIL import Image 

  

cwd = os.getcwd() 

  

classes = {'1','2','3','4','5','6','7','8'} 

def create_record(): 

    writer = tf.python_io.TFRecordWriter("train_final4.tfrecords") 

    for index, name in enumerate(classes): 

        class_path = cwd +"/STN_1000/"+ name+"/" 

        for img_name in os.listdir(class_path): 

            img_path = class_path + img_name 

            img = Image.open(img_path) 

            img_raw = img.tobytes() 

            # print (index,img_raw) 

            example = tf.train.Example( 

               features=tf.train.Features(feature={ 
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                    "label": tf.train.Feature(int64_list=tf.train.Int64List(value=[index])), 

                    'img_raw': tf.train.Feature(bytes_list=tf.train.BytesList(value=[img_raw])) 

               })) 

            writer.write(example.SerializeToString()) 

    writer.close() 

  

create_record() 

Python Code for Chapter 2 – CNN 

import tensorflow as tf 

from tensorflow.keras import models, layers 

import numpy as np 

from stn import spatial_transformer_network as transformer 

import matplotlib.pyplot as plt 

 

def _parse_function(example_proto): 

    features=tf.parse_single_example( 

        example_proto, 

        features={ 

            'label':tf.FixedLenFeature([],tf.int64), 

            'img_raw': tf.FixedLenFeature([],tf.string) 

        } 

    ) 

    label=features['label'] 

    img=features['img_raw'] 

    img=tf.decode_raw(img,tf.uint8) 

    img=tf.reshape(img,[60, 60, 1]) 

    img=tf.cast(img, tf.float32)*(1./255) 

    label=tf.cast(label,tf.int32) 

    return img, label 
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def data_iterator(tfrecords,batch_size): 

    full_dataset =tf.data.TFRecordDataset(tfrecords) 

    full_dataset = full_dataset.shuffle(buffer_size=8000,seed=1) 

    train_dataset = full_dataset.take(train_size) 

    test_dataset = full_dataset.skip(train_size) 

    val_dataset = test_dataset.skip(val_size) 

    test_dataset = test_dataset.take(test_size) 

    train_dataset=train_dataset.map(_parse_function) 

    val_dataset=val_dataset.map(_parse_function) 

    test_dataset=test_dataset.map(_parse_function) 

    train_iterator=train_dataset.repeat().batch(batch_size).make_initializable_iterator() 

    val_iterator=val_dataset.repeat().batch(batch_size).make_initializable_iterator() 

    test_iterator=test_dataset.batch(test_size).repeat().make_initializable_iterator() 

    return train_iterator, val_iterator, test_iterator 

 

def conv2d(x, W, b, strides=1): 

    # Conv2D wrapper, with bias and relu activation 

    x = tf.nn.conv2d(x, W, strides=[1, strides, strides, 1], padding='SAME') 

    x = tf.nn.bias_add(x, b) 

    axis = list(range(len(x.get_shape()) - 1)) 

    mean,var = tf.nn.moments(x, axis) 

    size = len(mean.get_shape()) 

    scale = tf.Variable(tf.ones([size])) 

    shift = tf.Variable(tf.zeros([size])) 

    epsilon = 0.001 

    x = tf.nn.batch_normalization(x, mean, var, shift, scale, epsilon) 

    return tf.nn.relu(x)  

 

def maxpool2d(x, k=2): 

    return tf.nn.max_pool(x, ksize=[1, k, k, 1], strides=[1, k, k, 1],padding='SAME') 
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def conv_net(x, weights, biases):   

    # here we call the conv2d function we had defined above and pass the input image x, weights 

wc1 and bias bc1. 

    conv1 = conv2d(x, weights['wc1'], biases['bc1']) 

    # Max Pooling (down-sampling), this chooses the max value from a 2*2 matrix window and 

outputs a 14*14 matrix. 

    pl1 = maxpool2d(conv1, k=2) 

     

    # Convolution Layer 

    # here we call the conv2d function we had defined above and pass the input image x, weights 

wc2 and bias bc2. 

    conv2 = conv2d(pl1, weights['wc2'], biases['bc2']) 

    # Max Pooling (down-sampling), this chooses the max value from a 2*2 matrix window and 

outputs a 7*7 matrix. 

    pl2 = maxpool2d(conv2, k=2) 

 

    #conv3 = conv2d(pl2, weights['wc3'], biases['bc3']) 

    # Max Pooling (down-sampling), this chooses the max value from a 2*2 matrix window and 

outputs a 4*4. 

    #pl3 = maxpool2d(conv3, k=2) 

 

    

#catlayer=tf.concat([tf.contrib.layers.flatten(pl1),tf.contrib.layers.flatten(pl2),tf.contrib.layers.flat

ten(pl3)],1) 

    #fc1 = tf.reshape(catlayer,[-1, weights['wd1'].get_shape().as_list()[0]]) 

    # Fully connected layer 

    # Reshape conv2 output to fit fully connected layer input 

    fc1 = tf.reshape(pl2, [-1, weights['wd1'].get_shape().as_list()[0]]) 

    fc1 = tf.add(tf.matmul(fc1, weights['wd1']), biases['bd1']) 
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    # Output, class prediction 

    # finally we multiply the fully connected layer with the weights and add a bias term.  

    out = tf.add(tf.matmul(fc1, weights['out']), biases['out']) 

    return out, conv1 

 

 

DATASET_SIZE=8000 

 

train_size = int(0.6 * DATASET_SIZE) 

val_size = int(0.2 * DATASET_SIZE) 

test_size = int(0.2 * DATASET_SIZE) 

 

batch_size=256 

 

weights = { 

    'wc1': tf.get_variable('W0', shape=(3,3,1,8), initializer=tf.contrib.layers.xavier_initializer()),  

    'wc2': tf.get_variable('W1', shape=(3,3,8,16), initializer=tf.contrib.layers.xavier_initializer()),  

    'wc3': tf.get_variable('W2', shape=(3,3,16,32), initializer=tf.contrib.layers.xavier_initializer()),  

    'wd1': tf.get_variable('W3', shape=(15*15*16,64), 

initializer=tf.contrib.layers.xavier_initializer()),  

    'out': tf.get_variable('W4', shape=(64,8), initializer=tf.contrib.layers.xavier_initializer()),  

    } 

biases = { 

    'bc1': tf.get_variable('B0', shape=(8), initializer=tf.contrib.layers.xavier_initializer()), 

    'bc2': tf.get_variable('B1', shape=(16), initializer=tf.contrib.layers.xavier_initializer()), 

    'bc3': tf.get_variable('B2', shape=(32), initializer=tf.contrib.layers.xavier_initializer()), 

    'bd1': tf.get_variable('B3', shape=(64), initializer=tf.contrib.layers.xavier_initializer()), 

    'out': tf.get_variable('B4', shape=(8), initializer=tf.contrib.layers.xavier_initializer()), 

    } 
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# both placeholders are of type float 

x = tf.placeholder("float", [None, 60,60,1]) 

y = tf.placeholder("float", [None, 8]) 

pred, conv1 = conv_net(x, weights, biases) 

cost = (tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y)) 

        +0.01*tf.nn.l2_loss(weights['wc1']) 

        +0.01*tf.nn.l2_loss(weights['wc2']) 

        #+0.01*tf.nn.l2_loss(weights['wc3']) 

        +0.01*tf.nn.l2_loss(weights['wd1']) 

        +0.01*tf.nn.l2_loss(weights['out']) 

       ) 

 

learning_rate=0.01 

optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost) 

 

#Here you check whether the index of the maximum value of the predicted image is equal to the 

actual labelled image. and both will be a column vector. 

correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1)) 

#calculate accuracy across all the given images and average them out.  

accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) 

 

train_tfrecords='train_final4.tfrecords' 

train_iterator,val_iterator,test_iterator=data_iterator(train_tfrecords,batch_size) 

init = tf.global_variables_initializer() 

train=train_iterator.get_next() 

val=val_iterator.get_next() 

test=test_iterator.get_next() 

saver = tf.train.Saver() 

with tf.Session() as sess: 

    sess.run(init) 

    train_loss = [] 
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    val_loss=[] 

    train_accuracy = [] 

    val_accuracy=[]    

    summary_writer = tf.summary.FileWriter('./Output', sess.graph) 

    sess.run(train_iterator.initializer) 

    sess.run(val_iterator.initializer) 

    for epoch in range(50): 

        sum_loss=0 

        sum_acc=0 

        avg_loss=0 

        avg_acc=0 

        sum_val_loss=0 

        avg_val_loss=0 

        sum_val_acc=0 

        avg_val_acc=0 

        for iteration in range(train_size//batch_size): 

            train_x,train_y=sess.run(train) 

            train_y=tf.one_hot(train_y, 8).eval() 

            opt = sess.run(optimizer, feed_dict={x: train_x, y: train_y}) 

            loss, acc = sess.run([cost, accuracy], feed_dict={x: train_x, y: train_y}) 

            sum_loss=loss+sum_loss 

            avg_loss=sum_loss/(iteration+1) 

            sum_acc=acc+sum_acc 

            avg_acc=sum_acc/(iteration+1) 

            val_x,val_y=sess.run(val) 

            val_y=tf.one_hot(val_y, 8).eval() 

            valid_acc,valid_loss = sess.run([accuracy,cost], feed_dict={x: val_x,y : val_y}) 

            sum_val_loss=valid_loss+sum_val_loss 

            avg_val_loss=sum_val_loss/(iteration+1) 

            sum_val_acc=valid_acc+sum_val_acc 

            avg_val_acc=sum_val_acc/(iteration+1) 
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        train_loss.append(avg_loss) 

        val_loss.append(avg_val_loss) 

        train_accuracy.append(avg_acc) 

        val_accuracy.append(avg_val_acc) 

        print("Epoch " + str(epoch+1) + ", Loss= " + \ 

              "{:.6f}".format(avg_loss) + ", Training Accuracy= " + \ 

              "{:.5f}".format(avg_acc)) 

        print("Epoch " + str(epoch+1) + ", Loss= " + \ 

              "{:.6f}".format(avg_val_loss) + \ 

              ", Validation Accuracy:","{:.5f}".format(avg_val_acc))     

    summary_writer.close() 

    save_path = saver.save(sess, "./tmp/model4.ckpt") 

    sess.run(test_iterator.initializer) 

    test_x,test_y=sess.run(test) 

    test_y=tf.one_hot(test_y, 8).eval(session=sess) 

    test_acc,test_loss = sess.run([accuracy,cost], feed_dict={x: test_x,y : test_y}) 

    print(test_acc) 

    print(test_loss) 

Python Code for Chapter 2 – CNN +STN 

import tensorflow as tf 

from tensorflow.keras import models, layers 

import numpy as np 

from stn.spatial_transformer import transformer 

import matplotlib.pyplot as plt 

 

def _parse_function(example_proto): 

    features=tf.parse_single_example( 

        example_proto, 

        features={ 
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            'label':tf.FixedLenFeature([],tf.int64), 

            'img_raw': tf.FixedLenFeature([],tf.string) 

        } 

    ) 

    label=features['label'] 

    img=features['img_raw'] 

    img=tf.decode_raw(img,tf.uint8) 

    img=tf.reshape(img,[60, 60, 1]) 

    img=tf.cast(img, tf.float32)*(1./255) 

    label=tf.cast(label,tf.int32) 

    return img, label 

 

def data_iterator(tfrecords,batch_size): 

    full_dataset =tf.data.TFRecordDataset(tfrecords) 

    full_dataset = full_dataset.shuffle(buffer_size=8000,seed=1) 

    train_dataset = full_dataset.take(train_size) 

    test_dataset = full_dataset.skip(train_size) 

    val_dataset = test_dataset.skip(val_size) 

    test_dataset = test_dataset.take(test_size) 

    train_dataset=train_dataset.map(_parse_function) 

    val_dataset=val_dataset.map(_parse_function) 

    test_dataset=test_dataset.map(_parse_function) 

    train_iterator=train_dataset.repeat().batch(batch_size).make_initializable_iterator() 

    val_iterator=val_dataset.repeat().batch(batch_size).make_initializable_iterator() 

    test_iterator=test_dataset.batch(test_size).repeat().make_initializable_iterator() 

    return train_iterator, val_iterator, test_iterator 

 

def conv2d(x, W, b, strides=1): 

    # Conv2D wrapper, with bias and relu activation 

    x = tf.nn.conv2d(x, W, strides=[1, strides, strides, 1], padding='SAME') 

    x = tf.nn.bias_add(x, b) 
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    axis = list(range(len(x.get_shape()) - 1)) 

    mean,var = tf.nn.moments(x, axis) 

    size = len(mean.get_shape()) 

    scale = tf.Variable(tf.ones([size])) 

    shift = tf.Variable(tf.zeros([size])) 

    epsilon = 0.001 

    x = tf.nn.batch_normalization(x, mean, var, shift, scale, epsilon) 

    return tf.nn.relu(x)  

 

def maxpool2d(x, k=2): 

    return tf.nn.max_pool(x, ksize=[1, k, k, 1], strides=[1, k, k, 1],padding='SAME') 

 

 

def conv_net(x, weights, biases,loc_weights,loc_biases):    

    h_fc1=loc_net(x, loc_weights, loc_biases) 

    h_trans = transformer(x, h_fc1,[60,60]) 

    # here we call the conv2d function we had defined above and pass the input image x, weights 

wc1 and bias bc1. 

    conv1 = conv2d(h_trans, weights['wc1'], biases['bc1']) 

    # Max Pooling (down-sampling), this chooses the max value from a 2*2 matrix window and 

outputs a 14*14 matrix. 

    pl1 = maxpool2d(conv1, k=2) 

    # Convolution Layer 

    # here we call the conv2d function we had defined above and pass the input image x, weights 

wc2 and bias bc2 

    conv2 = conv2d(pl1, weights['wc2'], biases['bc2']) 

    # Max Pooling (down-sampling), this chooses the max value from a 2*2 matrix window and 

outputs a 7*7 matrix. 

    pl2 = maxpool2d(conv2, k=2) 

    conv3 = conv2d(pl2, weights['wc3'], biases['bc3']) 
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    # Max Pooling (down-sampling), this chooses the max value from a 2*2 matrix window and 

outputs a 4*4. 

    pl3 = maxpool2d(conv3, k=2) 

    # Fully connected layer 

    # Reshape conv2 output to fit fully connected layer input 

     

    fc1 = tf.reshape(pl3 ,[-1, weights['wd1'].get_shape().as_list()[0]]) 

    fc1 = tf.add(tf.matmul(fc1, weights['wd1']), biases['bd1']) 

    # Output, class prediction 

    # finally we multiply the fully connected layer with the weights and add a bias term.  

    out = tf.add(tf.matmul(fc1, weights['out']), biases['out']) 

    return out,h_fc1,h_trans 

 

def loc_net(x, weights, biases):   

    # here we call the conv2d function we had defined above and pass the input image x, weights 

wc1 and bias bc1. 

    conv1 = conv2d(x, weights['wc1'], biases['bc1']) 

    # Max Pooling (down-sampling), this chooses the max value from a 2*2 matrix window and 

outputs a 14*14 matrix. 

    pl1 = maxpool2d(conv1, k=2) 

    # Convolution Layer 

    # here we call the conv2d function we had defined above and pass the input image x, weights 

wc2 and bias bc2. 

    conv2 = conv2d(pl1, weights['wc2'], biases['bc2']) 

    # Max Pooling (down-sampling), this chooses the max value from a 2*2 matrix window and 

outputs a 7*7 matrix. 

    pl2 = maxpool2d(conv2, k=2) 

    # Max Pooling (down-sampling), this chooses the max value from a 2*2 matrix window and 

outputs a 4*4. 

    # Fully connected layer 

    # Reshape conv2 output to fit fully connected layer input 
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    fc1 = tf.reshape(pl2, [-1, weights['wd1'].get_shape().as_list()[0]]) 

    fc1 = tf.add(tf.matmul(fc1, weights['wd1']), biases['bd1']) 

    # Output, class prediction 

    # finally we multiply the fully connected layer with the weights and add a bias term.  

    out = tf.add(tf.matmul(fc1, weights['out']), biases['out']) 

    return out 

     

 

DATASET_SIZE=8000 

 

train_size = int(0.6 * DATASET_SIZE) 

val_size = int(0.2 * DATASET_SIZE) 

test_size = int(0.2 * DATASET_SIZE) 

 

batch_size=256 

train_tfrecords='train_final4.tfrecords' 

train_iterator,val_iterator,test_iterator=data_iterator(train_tfrecords,batch_size) 

initial = np.array([1,0,0,0,1,0],dtype='float32') 

 

weights = { 

    'wc1': tf.get_variable('W0', shape=(3,3,1,8), initializer=tf.contrib.layers.xavier_initializer()),  

    'wc2': tf.get_variable('W1', shape=(3,3,8,16), initializer=tf.contrib.layers.xavier_initializer()),  

    'wc3': tf.get_variable('W2', shape=(3,3,16,32), initializer=tf.contrib.layers.xavier_initializer()),  

    'wd1': tf.get_variable('W3', shape=(8*8*32,64), initializer=tf.contrib.layers.xavier_initializer()),  

    'out': tf.get_variable('W4', shape=(64,8), initializer=tf.contrib.layers.xavier_initializer()),   

    } 

biases = { 

    'bc1': tf.get_variable('B0', shape=(8), initializer=tf.contrib.layers.xavier_initializer()), 

    'bc2': tf.get_variable('B1', shape=(16), initializer=tf.contrib.layers.xavier_initializer()), 

    'bc3': tf.get_variable('B2', shape=(32), initializer=tf.contrib.layers.xavier_initializer()), 

    'bd1': tf.get_variable('B3', shape=(64), initializer=tf.contrib.layers.xavier_initializer()), 
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    'out': tf.get_variable('B4', shape=(8), initializer=tf.contrib.layers.xavier_initializer()), 

    } 

 

loc_weights = { 

    'wc1': tf.get_variable('loc_W0', shape=(3,3,1,8), 

initializer=tf.contrib.layers.xavier_initializer()),  

    'wc2': tf.get_variable('loc_W1', shape=(3,3,8,16), 

initializer=tf.contrib.layers.xavier_initializer()),  

    #'wc3': tf.get_variable('loc_W2', shape=(3,3,16,32), 

initializer=tf.contrib.layers.xavier_initializer()),  

    'wd1': tf.get_variable('loc_W3', shape=(15*15*16,64), 

initializer=tf.contrib.layers.xavier_initializer()), 

    'out': tf.get_variable('loc_W4', initializer=tf.Variable(tf.zeros([64, 6]))),   

    } 

loc_biases = { 

    'bc1': tf.get_variable('loc_B0', shape=(8), initializer=tf.contrib.layers.xavier_initializer()), 

    'bc2': tf.get_variable('loc_B1', shape=(16), initializer=tf.contrib.layers.xavier_initializer()), 

    #'bc3': tf.get_variable('loc_B2', shape=(32), initializer=tf.contrib.layers.xavier_initializer()), 

    'bd1': tf.get_variable('loc_B3', shape=(64), initializer=tf.contrib.layers.xavier_initializer()), 

    'out': tf.get_variable('loc_B4', initializer=initial), 

    } 

# both placeholders are of type float 

x = tf.placeholder("float", [None, 60,60,1]) 

y = tf.placeholder("float", [None, 8]) 

pred,h_fc1,h_trans = conv_net(x, weights, biases,loc_weights,loc_biases) 

cost = (tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y)) 

        +0.01*tf.nn.l2_loss(weights['wc1']) 

        +0.01*tf.nn.l2_loss(weights['wc2']) 

        +0.01*tf.nn.l2_loss(weights['wc3']) 

        +0.01*tf.nn.l2_loss(weights['wd1']) 

        +0.01*tf.nn.l2_loss(weights['out']) 
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        #+0.01*tf.nn.l2_loss(loc_weights2['wc1']) 

        #+0.01*tf.nn.l2_loss(loc_weights2['wc2']) 

        #+0.01*tf.nn.l2_loss(loc_weights['wc3']) 

        #+0.01*tf.nn.l2_loss(loc_weights2['wd1']) 

        #+0.01*tf.nn.l2_loss(loc_weights2['out']) 

        +0.01*tf.nn.l2_loss(loc_weights['wc1']) 

        +0.01*tf.nn.l2_loss(loc_weights['wc2']) 

        #+0.01*tf.nn.l2_loss(loc_weights['wc3']) 

        +0.01*tf.nn.l2_loss(loc_weights['wd1']) 

        +0.01*tf.nn.l2_loss(loc_weights['out'])    

       ) 

learning_rate=0.0005 

optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost) 

 

#Here you check whether the index of the maximum value of the predicted image is equal to the 

actual labelled image. and both will be a column vector. 

correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1)) 

#calculate accuracy across all the given images and average them out.  

accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) 

init = tf.global_variables_initializer() 

train=train_iterator.get_next() 

val=val_iterator.get_next() 

test=test_iterator.get_next() 

saver = tf.train.Saver() 

for d in ['/gpu:0']: 

    with tf.device(d): 

        sess=tf.Session() 

        sess.run(init) 

        train_loss = [] 

        val_loss=[] 

        train_accuracy = [] 
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        val_accuracy=[] 

        summary_writer = tf.summary.FileWriter('./Output', sess.graph) 

        sess.run(train_iterator.initializer) 

        sess.run(val_iterator.initializer) 

        sess.run(test_iterator.initializer) 

        for epoch in range(70): 

            sum_loss=0 

            sum_acc=0 

            avg_loss=0 

            avg_acc=0 

            sum_val_loss=0 

            avg_val_loss=0 

            sum_val_acc=0 

            avg_val_acc=0 

            for iteration in range(train_size//batch_size): 

                train_x,train_y=sess.run(train) 

                train_y=tf.one_hot(train_y, 8).eval(session=sess) 

                opt = sess.run(optimizer, feed_dict={x: train_x, y: train_y}) 

                loss, acc = sess.run([cost, accuracy], feed_dict={x: train_x, y: train_y}) 

                sum_loss=loss+sum_loss 

                avg_loss=sum_loss/(iteration+1) 

                sum_acc=acc+sum_acc 

                avg_acc=sum_acc/(iteration+1) 

                val_x,val_y=sess.run(val) 

                val_y=tf.one_hot(val_y, 8).eval(session=sess) 

                valid_acc,valid_loss = sess.run([accuracy,cost], feed_dict={x: val_x,y : val_y}) 

                sum_val_loss=valid_loss+sum_val_loss 

                avg_val_loss=sum_val_loss/(iteration+1) 

                sum_val_acc=valid_acc+sum_val_acc 

                avg_val_acc=sum_val_acc/(iteration+1) 

                print("Iter " + str(iteration+1) + ", Loss= " + \ 
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                      "{:.6f}".format(avg_loss) + ", Training Accuracy= " + \ 

                      "{:.5f}".format(avg_acc)) 

            train_loss.append(avg_loss) 

            val_loss.append(avg_val_loss) 

            train_accuracy.append(avg_acc) 

            val_accuracy.append(avg_val_acc) 

            print("Epoch " + str(epoch+1) + ", Loss= " + \ 

                      "{:.6f}".format(avg_loss) + ", Training Accuracy= " + \ 

                      "{:.5f}".format(avg_acc)) 

            print("Epoch " + str(epoch+1) + ", Loss= " + \ 

                      "{:.6f}".format(avg_val_loss) + \ 

                      ", Validation Accuracy:","{:.5f}".format(avg_val_acc)) 

        summary_writer.close() 

        save_path = saver.save(sess, "./tmp/model_stn3.ckpt") 

Python Code for Chapter 3 – xml2txt_pascalvoc 

import os 

import xml.etree.ElementTree as ET 

import pandas as pd 

import numpy as np 

txtpath='C:/Users/Yuxi/Desktop/Research/dataset/dataset_processed/txt/'; 

xmlpath='C:/Users/Yuxi/Desktop/Research/dataset/dataset_processed/xml/'; 

filetype='val' 

f = open(txtpath+filetype+'.txt', 'r') 

a = np.array(f.read().split('\n')) 

b = a[range(len(a)-1)] 

df1=pd.DataFrame(np.vstack((b,-np.ones([1,len(a)-

1],dtype='int32'))).T,columns=['filename','TF']) 

df2=pd.DataFrame(np.vstack((b,-np.ones([1,len(a)-

1],dtype='int32'))).T,columns=['filename','TF']) 
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df3=pd.DataFrame(np.vstack((b,-np.ones([1,len(a)-

1],dtype='int32'))).T,columns=['filename','TF']) 

df4=pd.DataFrame(np.vstack((b,-np.ones([1,len(a)-

1],dtype='int32'))).T,columns=['filename','TF']) 

df5=pd.DataFrame(np.vstack((b,-np.ones([1,len(a)-

1],dtype='int32'))).T,columns=['filename','TF']) 

df6=pd.DataFrame(np.vstack((b,-np.ones([1,len(a)-

1],dtype='int32'))).T,columns=['filename','TF']) 

df7=pd.DataFrame(np.vstack((b,-np.ones([1,len(a)-

1],dtype='int32'))).T,columns=['filename','TF']) 

for i in range(len(a)-1): 

    filename=str(df1.loc[i,'filename'])+'.xml' 

    tree= ET.parse(xmlpath+filename) 

    root = tree.getroot() 

    obj=root.findall('object') 

    for j in range(len(obj)): 

        idx=obj[j].find('name').text 

        if idx==str(1): 

            df1.loc[i,'TF']=1 

        if idx==str(2): 

            df2.loc[i,'TF']=1 

        if idx==str(3): 

            df3.loc[i,'TF']=1 

        if idx==str(4): 

            df4.loc[i,'TF']=1 

        if idx==str(5): 

            df5.loc[i,'TF']=1 

        if idx==str(6): 

            df6.loc[i,'TF']=1 

        if idx==str(7): 

            df7.loc[i,'TF']=1 
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d = {} 

d=df1,df2,df3,df4,df5,df6,df7 

for n in range(1,8): 

 

np.savetxt(r'C:/Users/Yuxi/Desktop/Research/dataset/dataset_processed/txt/'+str(n)+'_'+filetype+

'.txt', d[n-1].values,fmt='%s') 
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APPENDIX B. IMAGE SAMPLES 

The Input and Output of STN for Chapter 2 

Input 
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Output
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The Ground Truth of Detection for Chapter 3 
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Network Architecture and Loss Curve for Chapter 3 
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