
EFFICIENT DEEP NETWORKS FOR REAL-WORLD INTERACTION

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Abhishek Chaurasia

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2019

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Eugenio Culurciello, Chair

Weldon School of Biomedical Engineering

Dr. Fang Huang

Weldon School of Biomedical Engineering

Dr. Felix Xiaozhu Lin

School of Electrical and Computer Engineering

Dr. Zhongming Liu

Weldon School of Biomedical Engineering

Approved by:

Dr. Dimitrios Peroulis

Head of the School Graduate Program

iii

To my parents and my sisters who made me the person I am today.

iv

ACKNOWLEDGMENTS

I was once told that there are three main things which any student has to deal

with during his/her Ph.D.: research interest, advisor, and financial support. Most of

the time a Ph.D. student gets to choose only two out of these three things. The sad

fact is, I was having a hard time finding even one out of these three during my first

year until I met my advisor Dr. Eugenio Culurciello.

I would like to thank him for giving me a new family (e-Lab) far away from my

home, for giving me so much freedom in my research, for helping me in my overall

personality development and for advises related to my personal life. Sometimes he

took those extra steps for me which most of the advisors would not even have thought

about. I am grateful to Dr. Fang Huang for allowing me to work with him and for all

those invaluable suggestions which he gave me during our meetings. I would also like

to thank Dr. Felix Lin, and Dr. Zhongming Liu to serve on my advisory committee.

I need to mention here the never ending help and support extended to me by my

e-Lab and FWDNXT members: Alfredo, Ali, Andre, Ayse, Dawood, Jonghoon, Juan,

Lukasz, Michael, Thomas, and Vinayak. Thank you Kaushal, Nabheen, Rohit, Sagar

and Shraddha for making these five years fun and memorable. Finally, I would like

to thank my parents for supporting me in every way they possibly could and Gaurav

Chatterjee and my sisters for standing next to me, believing in me and bringing me

where I am today.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

ABSTRACT . xi

1 INTRODUCTION . 1

1.1 Neural network layers/modules . 3

1.1.1 Linear/Fully-connected layer . 3

1.1.2 Convolution layer . 4

1.1.3 Residual module . 7

1.1.4 Inception module . 10

1.1.5 Separable convolution . 11

1.1.6 Dilated convolution . 13

1.2 Motivation . 14

2 EFFICIENT DEEP NEURAL NETWORK ARCHITECTURE FOR REAL-
TIME SEMANTIC SEGMENTATION . 18

2.1 Network architecture . 18

2.2 Design choices . 21

2.3 Results . 26

2.3.1 Performance Analysis . 26

2.3.2 Benchmarks . 29

2.4 Conclusion . 32

3 EXPLORING ENCODER REPRESENTATIONS FOR EFFICIENT SE-
MANTIC SEGMENTATION . 35

3.1 Network architecture, version 1 . 36

3.2 Results . 39

vi

Page

3.2.1 Performance Analysis . 40

3.2.2 Benchmarks . 40

3.3 Network architecture, version 2 . 42

3.4 Conclusion . 46

4 LANE FOLLOWING SYSTEM FOR AUTONOMOUS DRIVING 48

4.1 Lane detection . 50

4.1.1 Model architecture . 50

4.1.2 Results . 52

4.2 Lane-following system . 55

4.3 Conclusion . 58

5 SUMMARY . 64

5.1 Conclusion . 64

5.2 Limitations . 65

5.3 Future work . 65

REFERENCES . 67

VITA . 73

vii

LIST OF TABLES

Table Page

1.1 State-of-the-art deep neural networks trained on cityscapes dataset [50]
with default input image resolution of 2048 × 1024. 17

2.1 Proposed architecture. Output sizes are given for an example input of
512 × 512. 19

2.2 Performance comparison. 27

2.3 Hardware requirements. FLOPs are estimated for an input of 3 × 640 × 360.27

2.4 Cityscapes test set results . 29

2.5 Results on CamVid test set of (1) SegNet-Basic, (2) SegNet, and (3) Our
work . 30

2.6 SUN RGB-D test set results . 31

3.1 Input and output feature maps . 35

3.2 Performance comparison. Image size is W×H 39

3.3 Comparison on the basis of operations . 39

3.4 Results on CamVid test set of (1) SegNet, (2) ENet, (3) Dilation8, (4)
LinkNet without bypass, and (5) LinkNet 41

3.5 Incremental improvement in performance as a result of addition of indi-
vidual modules. A: Encoder with dilated convolution, B: Loss at multiple
level, C: Positional encoding in lateral blocks, D: Multiple encoder paths . 44

3.6 Performance on cityscapes dataset [50]. 45

4.1 Detailed encoder parameters . 51

viii

LIST OF FIGURES

Figure Page

1.1 Artificial neuron: xi being inputs, σ can be any non-linearity and y is the
output. 2

1.2 Fully connected neural network architecture. This example has one input
(L0), one output (L2), and one hidden L1 layer. Each neuron of a fully
connected/linear layer is linked with all the neurons of next layer. 3

1.3 Convolution layer with n different kernels. In a vanilla convolution layer,
depth of each kernel is the same as number of input feature maps and
number of output maps is equal to the number of different kernels used. . . 4

1.4 Receptive field of a two layer convolutional neural network. Kernel size of
both convolution operation is 3 × 3. Input size is 5 × 5 and output size is
1 × 1. Receptive field of output neuron w.r.t. input neurons is five. 7

1.5 (a) Residual module (b) Residual module with bottleneck architecture [18]. 8

1.6 Inception module [29]: parallel convolutional layers in L1 allow the network
to work on same input at different scale by using different kernel sizes (3×3,
5×5, and 7×7). Output of L1 is then concatenated in L2 along the feature
dimension. 9

1.7 Comparison of receptive field of convolution layer with different kernel
size. Block A has the same receptive field as Block B, and Block C has the
same receptive field as Block D. 10

1.8 Spatially separable convolution [23]: each kernel looks into the input in-
formation along only one spatial dimension. 11

1.9 Depth-wise separable convolution [32]: unlike vanilla convolution, depth
of each kernel does not need to be of the same size as the number of input
channels. Each kernel looks at only one or a group of input feature maps. . 12

1.10 Dilated convolution [33]: 3×3 convolution without dilation (k1), and with
dilation of 1 (k2). 13

ix

Figure Page

2.1 (a) Initial block. MaxPooling is performed with non-overlapping 2 × 2
windows, and the convolution has 13 filters, which sums up to 16 feature
maps after concatenation. This is heavily inspired by [29]. (b) Bottleneck
module. conv is either a regular, dilated, or full convolution (also known
as deconvolution) with 3 × 3 filters, or a 5 × 5 convolution decomposed
into two asymmetric ones. 20

2.2 PReLU weight distribution vs network depth. Blue line is the weights
mean, while an area between maximum and minimum weight is grayed out.
Each vertical dotted line corresponds to a PReLU in the main branch and
marks the boundary between each of bottleneck blocks. The gray vertical
line at 67th module is placed at encoder-decoder border. 24

2.3 Predictions on Cityscapes validation set [50]. From left to right the images
belong to input image, ground truth, and output of our network respectively.32

2.4 Predictions on CamVid test set [59]. From left to right the images belong
to input image, ground truth, and output of our network respectively. . . . 33

2.5 Predictions on SUN RGB-D test set [60]. From left to right the images
belong to input image, ground truth, and output of our work respectively. 34

3.1 Proposed network architecture . 36

3.2 Convolutional modules in encoder-block (i) 37

3.3 Convolutional modules in decoder-block (i) 37

3.4 LinkNet prediction on CamVid [59] test set. From left to right the images
belong to input image, ground truth, and Linknet output respectively. . . . 41

3.5 Modified network architecture with branched encoder and multiple loss. . . 43

3.6 (a) Start block 1 of encoder. (b) Start block 2 (c) Module for bypass
connection. Both start block 1 and 2 take in the same input. 43

3.7 (a) Positional encoding in x-direction. (b) Positional encoding in y-direction.44

3.8 Our network prediction on Cityscapes [50] validation set. From left to
right the images belong to input image, ground truth, and network output
respectively. 46

3.9 Confusion matrix of proposed network on cityscapes [50] validation data. . 47

4.1 Proposed network architecture for lane marking detection. Encoder of this
network is similar to dilated ResNet 34 [45] and bypass connections are
point-wise convolutions. 49

x

Figure Page

4.2 (a) Encoder block (b)Decoder block. Each block represents a convolution
layer followed by batch-normalization and ReLU. 50

4.3 Validation loss curve per epoch. 52

4.4 Proposed feedback control system for lane following assistant. B is error
in speed, E is positional error. C and F represent suggested throttle and
steering angle respectively. Similarly, X is actual speed and Y contains
vehicle’s current position. 55

4.5 Top to bottom: (a) Input image with ROI from CARLA [73]. (b) Lane
marking provided by the simulator and road curb extracted using edge
detector. (c) Curve fit on the left lane marking in order to make a decision
about incoming turn. 57

4.6 Heat map showing detected lane markings and their corresponding ground
truths. 59

4.7 Output of proposed network on images from validation set. These images
include day and night time, highway as well as busy city road, and straight
and curve roads. 60

4.8 Top to bottom: (a) Input image with region of interest. (b) Neural network
output. (c) Detected lane marking when viewed from top perspective. (d)
Broken white line as final output with their position on region of interest. . 61

4.9 Moving left to right and top to bottom, detected lane markings are: (a)
road curbs and broken white line, (b) road curbs and broken white line,
(c) broken white lines, (d) solid yellow and broken white lines, (e) double
solid white line and broken white line, (f) road curb, solid yellow and white
lines. Here, both road curbs as well as solid yellow lines are shown using
yellow lines. 62

4.10 Suggested steering angle and throttle value by proposed method while
performing a sharp turn. Vertical bar on the right is for throttle and
horizontal bar on top is for steering angle. White arrow is a vector using
both the values. Green dot at the bottom represents center of the lane. . . 63

xi

ABSTRACT

Abhishek Chaurasia Ph.D., Purdue University, August 2019. Efficient Deep Networks
for Real-world Interaction. Major Professor: Eugenio Culurciello.

Deep neural networks are essential in applications such as image categorization,

natural language processing, autonomous driving, home automation, and robotics.

Most of these applications require instantaneous processing of data and decision

making. In general, existing neural networks are computationally expensive, and

hence they fail to perform in real-time. Models performing semantic segmentation

are being extensively used in self-driving vehicles. Autonomous vehicles not only need

segmented output, but also control system capable of processing segmented output

and deciding actuator outputs such as speed and direction.

In this thesis we propose efficient neural network architectures with fewer opera-

tions and parameters as compared to current state-of-the-art algorithms. Our work

mainly focuses on designing deep neural network architectures for semantic segmen-

tation. First, we introduce few network modules and concepts which help in reducing

model complexity. Later on, we show that in terms of accuracy our proposed net-

works perform better or at least at par with state-of-the-art neural networks. Apart

from that, we also compare our networks’ performance on edge devices such as Nvidia

TX1. Lastly, we present a control system capable of predicting steering angle and

speed of a vehicle based on the neural network output.

1

1. INTRODUCTION

There is no doubt that automated devices and robots can serve as an effective tool

in taking mankind towards a better future. Not only they can help us in tasks which

we can do, but also help us with things that might be impossible/dangerous for

us, such as scouting vastness of universe or a region of natural disaster. Artificial

Intelligence (AI) is the field that can be broadly related to it. AI tries to emulate

human perception and decision making using sensory inputs and computer systems

respectively. One section of AI: Machine Learning (ML), deals with a more focused

task, where machines look into data and train themselves for specific tasks. ML

algorithms assume that any phenomena occurring in this world can be represented

using mathematical models and over the years researchers have come up with several

such models for different applications. These models comprise one or combination of

man-made filters [1, 2] or filters that are learned by the machines all by themselves

during training phase [3–5]. The latter approach generally uses an objective function

and tries to minimize that objective function based on the training data. One of the

algorithms that fall under this type of ML is Neural network.

Neural networks (NNs) were inspired by the way animal brain processes and infers

any given sensory inputs. Same as the nervous system of any species, the functional

and structural unit of NN is called a neuron. Even though early artificial neurons

were designed to mimic biological neurons and NN models were formulated using

them in the 1940s [6, 7], there are still a lot of differences between them. They dif-

fer at the fundamental level itself: creation and destruction of connection between

two neurons. Moreover, the limited knowledge of the working of a biological neuron

makes it difficult to create a mathematical model for it and mimic it using an artificial

neuron. Although the mathematical formulation of NN started in the 1940s; effective

training of neural net became possible only after the release of backpropagation algo-

2

Fig. 1.1. Artificial neuron: xi being inputs, σ can be any non-linearity
and y is the output.

rithms [8,9]. This finally led to the actual implementation of NN to perform specific

tasks such as classification [5] and segmentation [10].

Generally, an artificial neuron (Figure 1.1) comprises of inputs (x0 to xn), non-

linear activation function (σ), and an output (y). Figure 1.2 shows a simple neural

network architecture formed by grouping several artificial neurons. This neural net-

work has one input layer (L0), one hidden layer (L1) and one output layer (L2). It

is possible to simulate simple AND, OR gates using a neural net without any hid-

den layer. But the implementation of just a bit more complicated gate like XOR

needs at least one hidden layer. As the tasks get more and more complicated, there

is an exponential increase in the number of layers and neurons. This results in a

need for massive memory and computational power which was not available a decade

ago. That was one of the reasons why NN remained dormant for so many years until

recently.

Advancement in machines with the ability to perform computationally intensive

tasks has enabled researchers to tap deeper into neural networks. [11] successfully

trained a deep neural network on multiple GPUs on ImageNet dataset [12]. NNs are

data hungry and as discussed earlier, require a lot of computational power. Both,

ImageNet dataset and GPUs proved to be a perfect setup to give a boost to deep

neural networks (DNNs). In recent years, the availability of larger datasets and

computationally-powerful machines have helped deep convolutional neural networks

(CNNs) [5, 11,13,14] surpass the performance of many conventional computer vision

3

w00

w10

w20

w01

w11

w21

w10

w11

x0

x1

x2

y0

L0 L1 L2

Fig. 1.2. Fully connected neural network architecture. This example
has one input (L0), one output (L2), and one hidden L1 layer. Each
neuron of a fully connected/linear layer is linked with all the neurons
of next layer.

algorithms [15–17]. In 2015, DNN even surpassed human level accuracy performance

on Imagenet dataset [18]. CNNs [5,19] recent success has been demonstrated in image

classification [11,14,20–23], localization [24,25], scene understanding [26,27] etc.

1.1 Neural network layers/modules

Different arrangement/organization of neurons lead to different architectures of

neural network. Some of these important arrangements are discussed below. Any

neural network can have a combination of any of these layers/modules.

1.1.1 Linear/Fully-connected layer

One of the very basic NN architecture is shown in Figure 1.2. The important

thing to notice here is that, each neuron is connected with all the neurons of the

subsequent layer, hence they are called fully-connected or linear layers. If we look at

4

k0

k1

kn
n

Fig. 1.3. Convolution layer with n different kernels. In a vanilla
convolution layer, depth of each kernel is the same as number of input
feature maps and number of output maps is equal to the number of
different kernels used.

the two neurons in layer L1 output of ith neuron can be calculated using the following

formula:

zi1 = σ

(2∑
j=0

wij × xj

)
(1.1)

The weight wij associated with each connection is known as parameter. A neural

network with more parameters means it has more freedom to learn different filters and

hence it means a stronger network. On one hand, fully-connected layers have more

capacity to learn features, but on the other hand, they need a lot more data to learn

those features. Apart from that, each connection leads to one extra multiplication

and addition operation. So, not only this type of layer needs more data to learn, but

also needs more computation power.

1.1.2 Convolution layer

Neighboring pixels of an image or successive samples of speech data are highly

correlated. This correlation is exploited in the convolution layer which takes care

of some of the issues which are present in a linear layer. Unlike a linear layer, only

neighboring neurons of one layer are connected to neurons of the next convolution

5

layer. For example, in Figure 1.2, only x0 and x1 of L0 will be connected to first

neuron and x1 and x2 will be connected to second neuron of layer L1. This results in

a reduced number of connections, leading to fewer parameters and less computation.

Convolution layers also use shared weights, which further reduces the number of

parameters and computation. Figure 1.3 shows how convolution layer and shared

weights work. In this figure, there is a 2-D input with M number of channels. Each

kernel ki moves across this input and performs convolution. As can be seen, the same

ki traces the whole input and gives one output feature map. All the output neurons

of each output map were generated using the same kernel, hence sharing the same

weight. Finally, n different kernels contribute to n different feature maps.

Number of parameters and operations

Two very important terms which have been talked about in the preceding sections

are:

• parameters of a neural network

• number of operations required to perform for one forward pass of neural network

In Figure 1.3, lets assume input, output and kernel size is M ×H ×W , N ×H ×W

and M × kH × kW respectively. The number of parameters is the total number of

neurons present in all kernels, which is the total kernel size and is often related to

model capacity.

∴ number of parameters = N ×M × kH × kW (1.2)

Therefore, people often think that increasing number of parameters will lead to better

performance of neural network which is not the whole truth. Training a network with a

lot of parameters for a simple task on a small dataset overfits the model on the training

set. Also, two networks with the same number of parameters but different architecture

can have different performance on the same dataset. The network architecture should

6

be ”wisely” designed so that information learned by each parameter (information

density of the network) is high.

Meanwhile, increasing the number of operations gives rise to its own set of prob-

lems. The amount of computational resources available should always be kept in mind

while designing network architecture. Real-time applications which are supposed to

run on the edge need a network with less number of operations as compared to the

applications which can run a neural network on servers. Let us consider the same ex-

ample used for calculation of the number of parameters. Each convolution operation

using one kernel generates one output neuron. This roughly takes 2×M × kH × kW

number of multiplications and additions. Each kernel has to traverse through the

whole input in order to generate N ×H ×W output neurons.

Ops. to generate one output map = 2 ×M × kH × kW ×H ×W

∴ Number of ops. for N output maps = N × 2 ×M × kH × kW ×H ×W
(1.3)

As we can see number of parameters is only related to kernel size, but number of

operations also depends on input and output size of each layer. Therefore, increasing

number of parameters do increase number of operations but it is not a linear relation.

Receptive field

The amount of input neurons one particular neuron can look at is termed as the

receptive field of that neuron. In case of Figure 1.2, one neuron of L1 is connected

with three input neurons. Hence, we can say that the receptive field of each neuron

of L1 is three. On the contrary, one neuron of L2 is connected with two neurons of

L1. That is why, it’s receptive field with respect to L1 is two, but it’s receptive field

with respect to L0 is three.

Figure 1.4 demonstrates receptive field of three layered convolutional network.

Similar to the previous example, the final output neuron is looking at a section of

3 × 3 of L1. One neuron of L1 is looking at 3 × 3 inputs of L0. Therefore, receptive

field of one neuron of L2 with respect to the input or L0 is 5 × 5.

7

Fig. 1.4. Receptive field of a two layer convolutional neural network.
Kernel size of both convolution operation is 3 × 3. Input size is 5 × 5
and output size is 1×1. Receptive field of output neuron w.r.t. input
neurons is five.

1.1.3 Residual module

As the networks become deeper, it becomes more difficult to train them. One

major reason behind this is the problem of vanishing gradient. During the training

and backpropagation step, gradient values in general, tend to decrease as they make

their way towards the first layer from the last layer. In the case of deep networks,

more than often these gradients become almost zero for the layers close to input. As

a result, the weights of these layers do not get updated. [22] introduced the concept

of residual networks to counter this problem. Figure 1.5.a contains a neural network

layer representing a non-linear function f(x) alongside a bypass/residual connection.

8

f(x)

+

x

y

conv(n/2	->	n/2,	3x3)

conv(n	->	n/2,	1x1)

conv(n/2	->	n,	1x1)

+

Fig. 1.5. (a) Residual module (b) Residual module with bottleneck
architecture [18].

This residual connection gives gradients alternate path when required, thus enabling

deeper networks to learn rich features, which otherwise would not have been possible.

Moreover, it also allows NNs to mimic identity operation. In equation 1.4, if the

network feels that layer with f(x) is not required then it will set f(x) to zero and

effectively use the residual path for forward pass. It has been empirically found that

it is difficult for NNs to learn identity operation using a non-linear function, which

without the bypass connection would have been the case.

y = x+ f(x) (1.4)

f(x) can be one layer or stack of layers as shown in Figure 1.5.b.

The type of arrangement shown in Figure 1.5.b is known as bottleneck architec-

ture. The first layer in this module squeezes feature information from n to n/2 using

1 × 1 convolution and then performs 3 × 3 convolution on this squeezed input. The

final layer of this module brings the output back to the original (as in this example to

n) or higher number of feature maps. It has been shown that this squeezing and un-

9

conv(64	->	128,	3x3)

conv(128	->	64,	5x5) conv(128	->	64,	7x7)conv(128	->	64,	3x3)

conv(192	->		256,	3x3)

L1

L2

Fig. 1.6. Inception module [29]: parallel convolutional layers in L1

allow the network to work on same input at different scale by using
different kernel sizes (3 × 3, 5 × 5, and 7 × 7). Output of L1 is then
concatenated in L2 along the feature dimension.

squeezing of feature maps helps neural networks in learning better features [18,22,28].

Since 3 × 3 kernel is used to perform convolution on smaller input, this inherently

helps in reducing the number of operations and parameters of a neural network. Us-

ing equations 1.2 and 1.3 we can make a numerical comparison between Figure 1.5.a,

where f(x) is just one convolution layer with 3×3 kernel size and n input and output

channels (without bottleneck) and Figure 1.5.b (with bottleneck).

number of parameters with bottleneck = 9N

number of parameters without bottleneck = 2 ×N + 9 × N

2

=
13

2
N

number of operations with bottleneck = 18HWN2

number of operations without bottleneck =
18

4
HWN2 +

4

2
HWN2

=
13

2
HWN2

10

conv(n	->	n,	1x3)

conv(n	->	n,	3x1)

conv(n	->	n,	3x3)

conv(n	->	n,	3x3)

conv(n	->	n,	5x5)

Block	A

Block	B

Block	C

Block	D

Fig. 1.7. Comparison of receptive field of convolution layer with dif-
ferent kernel size. Block A has the same receptive field as Block B,
and Block C has the same receptive field as Block D.

1.1.4 Inception module

Neural networks are not inherently scale invariant but carefully designing the

architecture can make them scale invariant. One of the ways to make the network

scale invariant is using inception module [23, 29]. Figure 1.6 shows a basic form of

inception module with three parallel convolutional layers in L1 with three different

kernel sizes. Since the kernel sizes are different; each parallel layer has a different

receptive field. This implies that each parallel layer is capable of dealing with different

scales. Inception modules can also have normal bypass connections with no layers

(same as residual blocks) or with a kernel size of 1 × 1.

One more thing to note here is that L2 is concatenation whereas in the residual

module it is an addition. To keep the number of operations in check, number of

output feature maps of L1 is generally kept low so that when they get concatenated

in L2, this does not result in a very wide network. Moreover, it is possible to have the

same receptive field as 5×5 using two layers of convolution with a kernel size of 3×3

each. This can be seen in Figure 1.7 where receptive field of Block D is the same as

Block C, and receptive field of Block B is the same as Block A. Using this concept,

we can have a lot of variants of the inception module. Block D present in Figure 1.6

can be replaced with Block C or two Block As. Similarly, 7 × 7 convolution can be

11

replaced by three layers of convolution with 3 × 3 kernel. Doing so we not only keep

the receptive field the same, but we also increase non-linearity in our network. Apart

from that, the number of operations and parameters also drop by a lot.

number of parameters in Block A = 6n

number of parameters in Block B = 9n

number of operations in Block A = 12HWn2

number of operations in Block B = 18HWn2

number of parameters in Block C = 18n

number of parameters in Block D = 25n

number of operations in Block C = 36HWn2

number of operations in Block D = 50HWn2

1.1.5 Separable convolution

Figure 1.8 shows an example of spatially separable convolution [23]. It is similar to

the operation in Block A of Figure 1.7. Spatial separable convolution uses asymmetric

kernels and tries to reduce the number of operations while keeping the receptive field

the same. In classical computer vision terms, a kernel is called to be separable if it

can be split into two separate kernels and still give the same result. One such example

3x1 1x37x7 5x7 5x5

Fig. 1.8. Spatially separable convolution [23]: each kernel looks into
the input information along only one spatial dimension.

12

Fig. 1.9. Depth-wise separable convolution [32]: unlike vanilla con-
volution, depth of each kernel does not need to be of the same size
as the number of input channels. Each kernel looks at only one or a
group of input feature maps.

is a Sobel kernel [30] which acts as an edge detector. But in case of deep learning,

the term ”separable convolution” is loosely used, and splitting a convolution layer of

3 × 3 into two convolution layers of 1 × 3 and 3 × 1 is called as spatially separable

convolution even though they might not give same results. In this type of convolution,

kernel size is modified only in the spatial dimension, meaning a 3-D volume kernel

is split into two 2-D volume kernels (Figure 1.8). It has been shown that further

reduction in dimension is possible using flattened convolution where a 3-D kernel can

be broken into 1-D kernels [31].

Another form of separable convolution is depth-wise separable convolution and it

was introduced as part of Xception network architecture [32]. Instead of 3-D volume

kernels, in depth-wise separable convolution, only 2-D kernels are used in Figure 1.9.

When input feature maps of a layer are independent of each other; each map can

be processed by a separate kernel. One assumption here is that the input feature

maps are orthogonal to each other. To make sure that this assumption is true, most

of the time depth-wise separable convolution is preceded with a 1 × 1 point-wise

convolution layer. One benefit of using depth-wise convolution is the reduction in the

number of parameters and operations. Consider an example where we want to use

13

k2

k1

Fig. 1.10. Dilated convolution [33]: 3×3 convolution without dilation
(k1), and with dilation of 1 (k2).

normal convolution with 3× 3 kernel going from N to N feature maps with a spatial

size of input and output being H ×W . From equation 1.2 and 1.3, we can say that:

number of parameters = 9N2

number of operations = 18HWN2

Now if we replace this layer with 1 × 1 point-wise convolution and 3 × 3 depth-wise

separable convolution,

number of parameters = N2 + 9N

number of operations = 2HWN2 + 18HWN

When N is very large, we can say that the number of parameters and operations

were reduced by a factor of kH × kW , here 9.

1.1.6 Dilated convolution

One way to have a bigger receptive field is to have a bigger kernel; which means

a lot of computation. Apart from the architectural choices discussed before, another

14

approach is to use dilated convolution [33]. Neighboring pixels of an image, in general,

are highly correlated. Therefore, instead of using 3 × 3 kernel with an arrangement

as k1 of Figure 1.10, we can skip one pixel and have an arrangement as k2. The

latter has a receptive field of 5 × 5 kernel but complexity of 3 × 3 kernel. In this

example, k1 is a normal convolutional kernel or a kernel with zero dilation and k2 has

a dilation of 1. Another obvious alternative which we can think of is getting rid of the

redundancy/correlation in the pixels by downsampling them. Downsampling comes

with a cost of information loss, whereas in case of dilated convolution, the kernel

can go through the immediate next pixel which was skipped in the previous stride.

Therefore, there is no actual loss of information when using dilated convolution.

1.2 Motivation

Even though convolutional neural networks (CNNs) are being extensively used for

categorization, natural language processing, style-transfer, etc.; scene understanding

is one important area that has gained a lot of attention. This shift in focus has

been mostly because of the advancement in home-automation, wearable technology

(headsets for virtual/augmented reality), and self-driving vehicles. One important

aspect of scene understanding is pixel-level classification/semantic segmentation [34,

35]. Similar to a classification network where our goal is to identify what is there

in one image; in semantic segmentation, the goal is to classify each and every pixel.

As a result, the input and output resolution of segmentation networks need to be

similar. Since segmentation is about extracting precise and detailed information

from an input, most of the time the provided input image is of high resolution. On

one hand, categorization networks are trained on images with resolution generally

raging between 200× 200 to 300× 300, on the other hand, the input of segmentation

networks generally range between 640 × 360 (nHD) to 7680 × 4320 (8K UHD). From

equation 1.3, we know that the number of operations is proportional to input and

15

output size. Therefore, segmentation networks are one of the most computationally

expensive networks.

Even though semantic segmentation targets applications that require real-time

operation, ironically most of the current deep networks require excessively large pro-

cessing time. Networks such as YOLO [36], Fast RCNN [37], SSD [38] focus on

real-time object detection but there is very little to no work done in this direction

in case of semantic segmentation [39]. Inspired by auto-encoders [20, 40], most of

the existing techniques for semantic segmentation use an encoder-decoder pair as the

core of their network architecture. Here the encoder encodes information into feature

space (discriminator), and the decoder maps this information into spatial categoriza-

tion (generator) to perform segmentation. State-of-the-art segmentation networks,

use categorization models which are winners of ImageNet Large Scale Visual Recog-

nition Challenge (ILSCRC) as their discriminator. The generator either uses the

stored pooling indices from discriminator or learns the parameters using convolution

to perform upsampling [41, 42]. Parameterized upsampling is done by either using

simple interpolation followed by convolution or by using transpose convolution [43,44].

Moreover, encoder and decoder can be either symmetric (same number of layers in

encoder and decoder with the same number of pooling and unpooling layers), or they

can be asymmetric.

In [41] a pre-trained VGG16 [21] was used as the discriminator. Pooling in-

dices after every max-pooling step was saved and then later used for upsampling

in the decoder. Later on, researchers came up with the idea of deep deconvolution

network [42, 43], a fully convolutional network (FCN) combined with skip architec-

ture [44], which eliminated the need of saving pooling indices. Networks designed for

classification and categorization mostly use a fully-connected layer as their classifier;

in FCN they were replaced with convolutional layers. Standard pre-trained encoders

such as: AlexNet [11], VGG [21], and GoogLeNet [14] have been used for segmenta-

tion. To get precise segmentation boundaries, researchers have also tried to cascade

their deep convolutional neural network (DCNN) with post-processing steps, like the

16

use of Conditional Random Field (CRF) [26,45]. Instead of using networks that were

designed to perform image classification, [33] proposed to use networks specifically

designed for dense predictions. Pooling or downsampling using strided convolution

increases the receptive field but lowers/loses spatial information. To overcome this,

dilated/atrous convolution was used in [33,45]. They used fewer downsampling layers

but still had similar receptive field and complexity because of dilated convolution.

Apart from this, recently recurrent neural networks (RNNs) were used to get contex-

tual information [46] and to optimize CRF [47]; but the use of RNN in itself makes

it computationally expensive.

However, these networks are slow during inference due to their large architectures

and numerous parameters. Table 1.1 lists out the computational complexity of some

of the existing networks. Here downsampling factor 1 indicates default image resolu-

tion was used, whereas factor of 4 means the input image size used for training was

512×256. It is obvious that most of the networks will not even fit in one Nvidia graph-

ics processor unit (GPU) with 12 GB RAM and they will not run on edge devices

which have even fewer compute power and memory. There are several researchers,

working on designing neural network hardware accelerators [cite]. They are mostly

focused on inference on the edge. We compare our designed networks’ performance

on Nvidia TX1 which is being widely used in self-driving vehicles and we also present

results achieved on Inference Engine [48,49] which is an field programmable gate array

(FPGA) based neural network hardware accelerator.

In our work, we have attempted to get accurate instance level prediction without

compromising the processing time of the network. Generally, spatial information is

lost in the encoder due to pooling or strided convolution is recovered by using the

pooling indices or by full convolution. We hypothesize and later prove that instead

of the above techniques; bypassing spatial information, directly from the encoder

to the corresponding decoder improves accuracy along with a significant decrease in

processing time. We also show a few other modules which help in reducing model

complexity while showing minimal to no effect on network accuracy.

17

Table 1.1.
State-of-the-art deep neural networks trained on cityscapes dataset
[50] with default input image resolution of 2048 × 1024.

Model Downsample factor Parameters (million) Operations (GOps)

SegNet [42] 4 39.8 315.1

FCN 8s [33] 1 134.5 2685.1

PSPNet [51] 1 68.1 4344.7

DeepLab v3+ [52] 1 59.3 1419.5

FRRN B [53] 2 23.9 915.5

As discussed earlier, the proposed networks can be used in self-driving vehicles.

The segmented outputs of these networks are not sufficient in itself. Another vital

component of autonomous vehicles is the driving control system. This control system

processes this segmented output and predicts the desirable actuator output. In this

thesis, we also design a control system capable of deciding the steering angle and

speed of the vehicle based on the lane marking segmentation mask generated by our

segmentation network.

Major contributions of this thesis are:

• designing an efficient neural network architecture using existing modules,

• using novel approach to share encoder information with decoder,

• finding lane markings using proposed segmentation network, and

• development of lane following assistant.

18

2. EFFICIENT DEEP NEURAL NETWORK

ARCHITECTURE FOR REAL-TIME SEMANTIC

SEGMENTATION

The ability to perform pixel-wise semantic segmentation in real-time is of paramount

importance in practical mobile applications. Recent deep neural networks aimed at

this task have the disadvantage of requiring a large number of floating point opera-

tions and have long run-times that hinder their usability. In this chapter, we propose

a novel deep neural network architecture, created specifically for tasks requiring low

latency operation. Our model is up to 18× faster, requires 75× fewer FLOPs, has

79× fewer parameters, and provides similar or better accuracy to existing models.

We have tested it on CamVid, Cityscapes and SUN datasets and report on com-

parisons with existing state-of-the-art methods, and the trade-offs between accuracy

and processing time of a network. We also present performance measurements of the

proposed architecture on embedded systems.

2.1 Network architecture

The architecture of our network is presented in Table 2.1. It is divided into several

stages, as highlighted by horizontal lines in the table and the first digit after each block

name. Output sizes are reported for an example input image resolution of 512× 512.

We adopt a view of ResNets [22] that describes them as having a single main branch

and extensions with convolutional filters that separate from it, and then merge back

with an element-wise addition, as shown in Figure 2.1(b). Each block consists of

three convolutional layers: a 1× 1 projection that reduces the dimensionality, a main

convolutional layer (conv in Figure 2.1(b)), and a 1 × 1 expansion. We place Batch

Normalization [54] and PReLU [18] between all convolutions. Just as in the original

19

paper, we refer to these as bottleneck modules. If the bottleneck is downsampling, a

max pooling layer is added to the main branch.

Table 2.1.
Proposed architecture. Output sizes are given for an example input of 512 × 512.

Name Type Output size

initial 16 × 256 × 256

bottleneck1.0 downsampling 64 × 128 × 128

4× bottleneck1.x 64 × 128 × 128

bottleneck2.0 downsampling 128 × 64 × 64

bottleneck2.1 128 × 64 × 64

bottleneck2.2 dilated 2 128 × 64 × 64

bottleneck2.3 asymmetric 5 128 × 64 × 64

bottleneck2.4 dilated 4 128 × 64 × 64

bottleneck2.5 128 × 64 × 64

bottleneck2.6 dilated 8 128 × 64 × 64

bottleneck2.7 asymmetric 5 128 × 64 × 64

bottleneck2.8 dilated 16 128 × 64 × 64

Repeat section 2, without bottleneck2.0

bottleneck4.0 upsampling 64 × 128 × 128

bottleneck4.1 64 × 128 × 128

bottleneck4.2 64 × 128 × 128

bottleneck5.0 upsampling 16 × 256 × 256

bottleneck5.1 16 × 256 × 256

fullconv C × 512 × 512

20

Also, the first 1×1 projection is replaced with a 2×2 convolution with stride 2 in

both dimensions. We zero pad the activations, to match the number of feature maps.

conv is either a regular, dilated or full convolution (also known as deconvolution or

fractionally strided convolution) with 3 × 3 filters. Sometimes we replace it with

asymmetric convolution i.e. a sequence of 5 × 1 and 1 × 5 convolutions. For the

regularizer, we use Spatial Dropout [25], with p = 0.01 before bottleneck2.0, and

p = 0.1 afterwards.

Input

3x3, stride 2 MaxPooling

Concat PReLU
+

Regularizer

1x1

convMaxPooling

Padding

1x1

PReLU

PReLU

Fig. 2.1. (a) Initial block. MaxPooling is performed with non-
overlapping 2 × 2 windows, and the convolution has 13 filters, which
sums up to 16 feature maps after concatenation. This is heavily in-
spired by [29]. (b) Bottleneck module. conv is either a regular, di-
lated, or full convolution (also known as deconvolution) with 3 × 3
filters, or a 5 × 5 convolution decomposed into two asymmetric ones.

The initial stage contains a single block, that is presented in Figure 2.1(a). Stage

1 consists of 5 bottleneck blocks, while stage 2 and 3 have the same structure, with

the exception that stage 3 does not downsample the input at the beginning (we omit

the 0th bottleneck). These three first stages are the encoder. Stage 4 and 5 belong

to the decoder.

We did not use bias terms in any of the projections, in order to reduce the number

of kernel calls and overall memory operations, as cuDNN [55] uses separate kernels

for convolution and bias addition. This choice didn’t have any impact on the accu-

21

racy. Between each convolutional layer and the following non-linearity we use Batch

Normalization [54]. In the decoder, max pooling is replaced with max unpooling, and

padding is replaced with spatial convolution without bias. We did not use pooling

indices in the last upsampling module, because the initial block operated on the 3

channels of the input frame, while the final output has C feature maps (the number

of object classes). Also, for performance reasons, we decided to place only a bare

full convolution as the last module of the network, which alone takes up a sizeable

portion of the decoder processing time.

2.2 Design choices

In this section we will discuss our most important experimental results and intu-

itions, that have shaped the final architecture of our model.

Feature map resolution

Downsampling images during semantic segmentation has two main drawbacks.

Firstly, reducing feature map resolution implies loss of spatial information like exact

edge shape. Secondly, full pixel segmentation requires that the output has the same

resolution as the input. This implies that strong downsampling will require equally

strong upsampling, which increases model size and computational cost. The first issue

has been addressed in FCN [44] by adding the feature maps produced by encoder,

and in SegNet [41] by saving indices of elements chosen in max pooling layers, and

using them to produce sparse upsampled maps in the decoder. We followed the

SegNet approach, because it allows to reduce memory requirements. Still, we have

found that strong downsampling hurts the accuracy, and tried to limit it as much as

possible.

However, downsampling has one big advantage. Filters operating on downsampled

images have a bigger receptive field, that allows them to gather more context. This

is especially important when trying to differentiate between classes like, for example,

22

rider and pedestrian in a road scene. It is not enough that the network learns how

people look, the context in which they appear is equally important. In the end, we

have found that it is better to use dilated convolutions for this purpose [33].

Early downsampling

One crucial intuition to achieving good performance and real-time operation is

realizing that processing large input frames is very expensive. This might sound

very obvious, however many popular architectures do not to pay much attention to

optimization of early stages of the network, which are often the most expensive by

far.

The first two blocks our our network heavily reduce the input size, and use only

a small set of feature maps. The idea behind it, is that visual information is highly

spatially redundant, and thus can be compressed into a more efficient representation.

Also, our intuition is that the initial network layers should not directly contribute

to classification. Instead, they should rather act as good feature extractors and only

preprocess the input for later portions of the network. This insight worked well in our

experiments; increasing the number of feature maps from 16 to 32 did not improve

accuracy on Cityscapes [50] dataset.

Decoder size

In this work we would like to provide a different view on encoder-decoder archi-

tectures than the one presented in [42]. SegNet is a very symmetric architecture, as

the encoder is an exact mirror of the encoder. Instead, our architecture consists of a

large encoder, and a small decoder. This is motivated by the idea that the encoder

should be able to work in a similar fashion to original classification architectures, i.e.

to operate on smaller resolution data and provide for information processing and fil-

tering. Instead, the role of the the decoder, is to upsample the output of the encoder,

only fine-tuning the details.

23

Nonlinear operations

A recent paper [28] reports that it is beneficial to use ReLU and Batch Normal-

ization layers before convolutions. We tried incorporating these ideas, but they had

a detrimental effect on accuracy. Instead, we have found that removing most ReLUs

in the initial layers of the network improved the results. It was quite a surprising

finding so we decided to investigate its cause.

We replaced all ReLUs in the network with PReLUs [18], which use an additional

parameter per feature map, with the goal of learning the negative slope of non-

linearities. We expected that in layers where identity is a preferable transfer function,

PReLU weights will have values close to 1, and conversely, values around 0 if ReLU

is preferable. Results of this experiment can be seen in Figure 2.2.

Initial layers weights exhibit a large variance and are slightly biased towards pos-

itive values, while in the later portions of the encoder they settle to a recurring

pattern. All layers in the main branch behave nearly exactly like regular ReLUs,

while the weights inside bottleneck modules are negative i.e. the function inverts

and scales down negative values. We hypothesize that identity did not work well in

our architecture because of its limited depth. The reason why such lossy functions

are learned might be that that the original ResNets [28] are networks that can be

hundreds of layers deep, while our network uses only a couple of layers, and it needs

to quickly filter out information. It is notable that the decoder weights become much

more positive and learn functions closer to identity. This confirms our intuitions that

the decoder is used only to fine-tune the upsampled output.

Information-preserving dimensionality changes

As stated earlier, it is necessary to downsample the input early, but aggressive

dimensionality reduction can also hinder the information flow. A very good approach

to this problem has been presented in [29]. It has been argued that a method used

by the VGG architectures, i.e. as performing a pooling followed by a convolution

24

10 20 30 40 50 60 70 80
PReLU index

0.5

0.0

0.5

1.0

1.5

2.0

W
ei

gh
t v

al
ue

Fig. 2.2. PReLU weight distribution vs network depth. Blue line is the
weights mean, while an area between maximum and minimum weight
is grayed out. Each vertical dotted line corresponds to a PReLU in
the main branch and marks the boundary between each of bottleneck
blocks. The gray vertical line at 67th module is placed at encoder-
decoder border.

expanding the dimensionality, however relatively cheap, introduces a representational

bottleneck (or forces one to use a greater number of filters, which lowers computational

efficiency). On the other hand, pooling after a convolution, that increases feature

map depth, is computationally expensive. Therefore, as proposed in [29], we chose to

perform pooling operation in parallel with a convolution of stride 2, and concatenate

resulting feature maps. This technique allowed us to speed up inference time of the

initial block 10 times.

Additionally, we have found one problem in the original ResNet architecture.

When downsampling, the first 1 × 1 projection of the convolutional branch is per-

formed with a stride of 2 in both dimensions, which effectively discards 75% of the

input. Increasing the filter size to 2 × 2 allows to take the full input into considera-

tion, and thus improves the information flow and accuracy. Of course, it makes these

layers 4× more computationally expensive, however there are so few of these in our

architecture, that the overhead is unnoticeable.

25

Factorizing filters

It has been shown that convolutional weights have a fair amount of redundancy,

and each n× n convolution can be decomposed into two smaller ones following each

other: one with a n×1 filter and the other with a 1×n filter [31]. This idea has been

also presented in [29], and from now on we adopt their naming convention and will

refer to these as asymmetric convolutions. We have used asymmetric convolutions

with n = 5 in our network, so cost of these two operations is similar to a single 3× 3

convolution. This allowed to increase the variety of functions learned by blocks and

increase the receptive field.

What’s more, a sequence of operations used in the bottleneck module (projection,

convolution, projection) can be seen as decomposing one large convolutional layer into

a series of smaller and simpler operations, that are its low-rank approximation. Such

factorization allows for large speedups, and greatly reduces the number of parameters,

making them less redundant [31]. Additionally, it allows to make the functions they

compute richer, thanks to the non-linear operations that are inserted between layers.

Dilated convolutions

As argued above, it is very important for the network to have a wide receptive

field, so it can perform classification by taking a wider context into account. We

wanted to avoid overly downsampling the feature maps, and decided to use dilated

convolutions [33] to improve our model. They replaced the main convolutional layers

inside several bottleneck modules in the stages that operate on the smallest resolu-

tions. These gave a significant accuracy boost, by raising IoU on Cityscapes by around

4 percentage points, with no additional cost. We obtained the best accuracy when

we interleaved them with other bottleneck modules (both regular and asymmetric),

instead of arranging them in sequence, as has been done in [33].

26

Regularization

Most pixel-wise segmentation datasets are relatively small (on order of 103 im-

ages), so such expressive models as neural networks quickly begin to overfit them.

In initial experiments, we used L2 weight decay with little success. Then, inspired

by [56], we have tried stochastic depth, which increased accuracy. However it became

apparent that dropping whole branches (i.e. setting their output to 0) is in fact a

special case of applying Spatial Dropout [25], where either all of the channels, or none

of them are ignored, instead of selecting a random subset. We placed Spatial Dropout

at the end of convolutional branches, right before the addition, and it turned out to

work much better than stochastic depth.

2.3 Results

We benchmarked the performance of our work on three different datasets to

demonstrate real-time and accurate for practical applications. We tested on CamVid

and Cityscapes datasets of road scenes, and SUN RGB-D dataset of indoor scenes.

We set SegNet [41] as a baseline since it is one of the fastest segmentation models,

that also has way fewer parameters and requires less memory to operate than FCN.

All our models, training, testing and performance evaluation scripts were using the

Torch7 machine-learning library, with cuDNN backend. To compare results, we use

class average accuracy and intersection-over-union (IoU) metrics.

2.3.1 Performance Analysis

We report results on inference speed on widely used NVIDIA Titan X GPU as well

as on NVIDIA TX1 embedded system module. This network was designed to achieve

more than 10 fps on the NVIDIA TX1 board with an input image size 640 × 360,

which is adequate for practical road scene parsing applications. For inference we

27

merge batch normalization and dropout layers into the convolutional filters, to speed

up all networks.

Table 2.2.
Performance comparison.

Model

NVIDIA TX1 NVIDIA Titan X

480×320 640×360 1280×720 640×360 1280×720 1920×1080

ms fps ms fps ms fps ms fps ms fps ms fps

SegNet 757 1.3 1251 0.8 - - 69 14.6 289 3.5 637 1.6

Our network 47 21.1 69 14.6 262 3.8 7 135.4 21 46.8 46 21.6

Inference time

Table 2.2 compares inference time for a single input frame of varying resolution.

We also report the number of frames per second that can be processed. Dashes

indicate that we could not obtain a measurement, due to lack of memory. Proposed

architecture is significantly faster than SegNet, providing high frame rates for real-

time applications and allowing for practical use of very deep neural network models

with encoder-decoder architecture.

Table 2.3.
Hardware requirements. FLOPs are estimated for an input of 3 × 640 × 360.

GFLOPs Parameters Model size (fp16)

SegNet 286.03 29.46M 56.2 MB

Our network 3.83 0.37M 0.7 MB

28

Hardware requirements

Table 2.3 reports a comparison of number of floating point operations and param-

eters used by different models. Our model efficiency is evident, as its requirements

are on two orders of magnitude smaller. Please note that we report storage required

to save model parameters in half precision floating point format. This network has

so few parameters, that the required space is only 0.7MB, which makes it possible to

fit the whole network in an extremely fast on-chip memory in embedded processors.

Also, this alleviates the need for model compression [57], making it possible to use

general purpose neural network libraries. However, if one needs to operate under in-

credibly strict memory constraints, these techniques can still be applied to proposed

neural network as well.

Software limitations

One of the most important techniques that has allowed us to reach these levels

of performance is convolutional layer factorization. However, we have found one

surprising drawback. Although applying this method allowed us to greatly reduce

the number of floating point operations and parameters, it also increased the number

of individual kernels calls, making each of them smaller.

We have found that some of these operations can become so cheap, that the cost

of GPU kernel launch starts to outweigh the cost of the actual computation. Also, be-

cause kernels do not have access to values that have been kept in registers by previous

ones, they have to load all data from global memory at launch, and save it when their

work is finished. This means that using a higher number of kernels, increases the num-

ber of memory transactions, because feature maps have to be constantly saved and

reloaded. This becomes especially apparent in case of non-linear operations. In the

proposed model, PReLUs consume more than a quarter of inference time. Since they

are only simple point-wise operations and are very easy to parallelize, we hypothesize

it is caused by the aforementioned data movement.

29

These are serious limitations, however they could be resolved by performing kernel

fusion in existing software i.e. create kernels that apply non-linearities to results of

convolutions directly, or perform a number of smaller convolutions in one call. This

improvement in GPU libraries, such as cuDNN, could increase the speed and efficiency

of our network even further.

2.3.2 Benchmarks

We have used the Adam optimization algorithm [58] to train the network. It

allowed the model to converge very quickly and on every dataset we have used training

took only 3-6 hours, using four Titan X GPUs. It was performed in two stages: first

we trained only the encoder to categorize downsampled regions of the input image,

then we appended the decoder and trained the network to perform upsampling and

pixel-wise classification. Learning rate of 5e−4 and L2 weight decay of 2e−4, along

with batch size of 10 consistently provided the best results. We have used a custom

class weighing scheme defined as wclass = 1
ln(c+pclass)

. In contrast to the inverse class

probability weighing, the weights are bounded as the probability approaches 0. c is

an additional hyper-parameter, which we set to 1.02 (i.e. we restrict the class weights

to be in the interval of [1, 50]).

Table 2.4.
Cityscapes test set results

Model Class IoU Class iIoU Category IoU Category iIoU

SegNet 56.1 34.2 79.8 66.4

Proposed model 58.3 34.4 80.4 64.0

30

Cityscapes

This dataset consists of 5000 fine-annotated images, out of which 2975 are avail-

able for training, 500 for validation, and the remaining 1525 have been selected as

test set [50]. Cityscapes was the most important benchmark for us, because of its

outstanding quality and highly varying road scenarios, often featuring many pedes-

trians and cyclists. We trained on 19 classes that have been selected in the official

evaluation scripts [50]. It makes use of an additional metric called instance-level in-

tersection over union metric (iIoU), which is IoU weighed by the average object size.

As reported in Table 2.4, our network outperforms SegNet in class IoU and iIoU, as

well as in category IoU. It is currently the fastest model in the Cityscapes benchmark.

Example predictions for images from validation set are presented in Figure 2.3.

Table 2.5.
Results on CamVid test set of (1) SegNet-Basic, (2) SegNet, and (3) Our work

M
o
d
el

B
u
il
d
in
g

T
re
e

S
k
y

C
ar

S
ig
n

R
oa
d

P
ed
es
tr
ia
n

F
en
ce

P
ol
e

S
id
ew

al
k

B
ic
y
cl
is
t

C
la
ss

av
g
.

C
la
ss

Io
U

1 75.0 84.6 91.2 82.7 36.9 93.3 55.0 47.5 44.8 74.1 16.0 62.9 n/a

2 88.8 87.3 92.4 82.1 20.5 97.2 57.1 49.3 27.5 84.4 30.7 65.2 55.6

3 74.7 77.8 95.1 82.4 51.0 95.1 67.2 51.7 35.4 86.7 34.1 68.3 51.3

CamVid

Another automotive dataset, on which we have tested our work, was CamVid. It

contains 367 training and 233 testing images [59]. There are eleven different classes

such as building, tree, sky, car, road, etc. while the twelfth class contains unlabeled

data, which we ignore while training. The original frame resolution for this dataset is

960×720 but we downsampled the images to 480×360 before training. In Table 2.5

we compare the performance of proposed architecture with existing state-of-the-art

31

algorithms. Our network outperforms other models in six classes, which are difficult

to learn because they correspond to smaller objects. Its output for example images

from the test set can be found in Figure 2.4.

Table 2.6.
SUN RGB-D test set results

Model Global avg. Class avg. Mean IoU

SegNet 70.3 35.6 26.3

Proposed network 59.5 32.6 19.7

SUN RGB-D

The SUN dataset consists of 5285 training images and 5050 testing images with 37

indoor object classes. We did not make any use of depth information in this work and

trained the network only on RGB data. In Table 2.6 we compare the performance of

our network with SegNet [42], which is the only neural network model that reports

accuracy on this dataset. Our results, though inferior in global average accuracy and

IoU, are comparable in class average accuracy. Since global average accuracy and IoU

are metrics that favor correct classification of classes occupying large image patches,

researchers generally emphasize the importance of other metrics in case of semantic

segmentation. One notable example is introduction of iIoU metric [50]. Comparable

result in class average accuracy indicates, that our network is capable of differentiating

smaller objects nearly as well as SegNet. Moreover, the difference in accuracy should

not overshadow the huge performance gap between these two networks. The proposed

network can process the images in real-time, and is nearly 20× faster than SegNet

on embedded platforms. Example predictions from SUN test set are shown in Figure

2.5.

32

Fig. 2.3. Predictions on Cityscapes validation set [50]. From left to
right the images belong to input image, ground truth, and output of
our network respectively.

2.4 Conclusion

While designing neural network architecture, we must pay attention to complexity

of each layer. Especially for applications which require model to run on the edge and

in real-time, it becomes imperative that we do not indiscriminately add layers. In this

chapter we provide an insight on ways to reduce number of parameters and operations.

We tested our proposed model performance on various datasets and also on different

hardwares.

33

Fig. 2.4. Predictions on CamVid test set [59]. From left to right
the images belong to input image, ground truth, and output of our
network respectively.

34

Fig. 2.5. Predictions on SUN RGB-D test set [60]. From left to right
the images belong to input image, ground truth, and output of our
work respectively.

35

3. EXPLORING ENCODER REPRESENTATIONS FOR

EFFICIENT SEMANTIC SEGMENTATION

Pixel-wise semantic segmentation for visual scene understanding not only needs to

be accurate but also efficient to find any use in real-time applications. Existing

algorithms even though are accurate but they do not focus on utilizing the parameters

of neural network efficiently. As a result, they are huge in terms of parameters and

number of operations; hence slow too. In this chapter, we propose a novel deep

neural network architecture which allows it to learn without any significant increase

in the number of parameters. Our network uses only 11.5 million parameters and

21.2 GFLOPs for processing an image of resolution 3× 640× 360. It gives a state-of-

the-art performance on CamVid and comparable results on Cityscapes dataset. We

also compare our network’s processing time on NVIDIA GPU and embedded system

devices with existing state-of-the-art architectures for different image resolutions.

Table 3.1.
Input and output feature maps

Block
Encoder Decoder

m n m n

1. 64 64 64 64

2. 64 128 128 64

3. 128 256 256 128

4. 256 512 512 256

36

Fig. 3.1. Proposed network architecture

3.1 Network architecture, version 1

The architecture of LinkNet is presented in Figure 3.1. Here, conv means convo-

lution and full-conv means full convolution [44]. Furthermore, /2 denotes down-

sampling by a factor of 2 which is achieved by performing strided convolution, and ∗2

means upsampling by a factor of 2. We use batch normalization between each con-

volutional layer and which is followed by ReLU non-linearity [54,61]. Left half of the

network shown in Figure 3.1 is the encoder while the one the right is the decoder. The

encoder starts with an initial block which performs convolution on input image with

37

Fig. 3.2. Convolutional modules in encoder-block (i)

Fig. 3.3. Convolutional modules in decoder-block (i)

a kernel of size 7 × 7 and a stride of 2. This block also performs spatial max-pooling

in an area of 3× 3 with a stride of 2. The later portion of encoder consists of residual

38

blocks [22] and are represented as encoder-block(i). Layers within these encoder-blocks

are shown in detail in Figure 3.2. Similarly, layer details for decoder-blocks are pro-

vided in Figure 3.3. Table 3.1 contains the information about the feature maps used

in each of these blocks. Contemporary segmentation algorithms use networks such

as VGG16 (138 million parameters), ResNet101 (45 million parameters) as their en-

coder which are huge in terms of parameters and GFLOPs. LinkNet uses ResNet18

as its encoder, which is fairly lighter network and still outperforms them as evident

from Section 2.3. We use the technique of full-convolution in our decoder as proposed

earlier by [44]. Every conv(k×k)(im, om) and full-conv(k×k)(im, om) operations

has at least three parameters. Here, (k × k) represent (kernel − size) and (im, om)

represent (inputmap, outputmap) respectively.

Unlike existing neural network architectures which are being used for segmenta-

tion, our novelty lies in the way we link each encoder with decoder. By performing

multiple downsampling operations in the encoder, some spatial information is lost.

It is difficult to recover this lost information by using only the downsampled output

of encoder. [41] linked encoder with decoder through pooling indices, which are not

trainable parameters. Other methods directly use the output of their encoder and

feed it into the decoder to perform segmentation. In this work, input of each encoder

layer is also bypassed to the output of its corresponding decoder. By doing this we

aim at recovering lost spatial information that can be used by the decoder and its

upsampling operations. In addition, since the decoder is sharing knowledge learned

by the encoder at every layer, the decoder can use fewer parameters. This results

in an overall more efficient network when compared to the existing state-of-the-art

segmentation networks, and thus real-time operation. Information about trainable

parameters and number operations required for each forward pass is provided in de-

tail in Section 2.3.

39

Table 3.2.
Performance comparison. Image size is W×H

Model

NVIDIA TX1 NVIDIA Titan X

480×320 640×360 1280×720 640×360 1280×720 1920×1080

ms fps ms fps ms fps ms fps ms fps ms fps

SegNet 757 1.3 1251 0.8 - - 69 14.6 289 3.5 637 1.6

ENet 47 21.1 69 14.6 262 3.8 7 135.4 21 46.8 46 21.6

LinkNet 108 9.3 134 7.8 501 2.0 15 65.8 53 18.7 117 8.5

Table 3.3.
Comparison on the basis of operations

GFLOPs Parameters Model size (fp16)

SegNet 286.0 29.5M 56.2 MB

ENet 3.8 0.4M 0.7 MB

Proposed Net 21.2 11.5M 22.0 MB

3.2 Results

We compare LinkNet with existing architectures on two different metrics:

1. Performance in terms of speed:

• Number of operations required to perform one forward pass of the network

• Time taken to perform one forward pass

2. Performance in terms of accuracy on CamVid [59] dataset.

40

3.2.1 Performance Analysis

We report inference speed of LinkNet on NVIDIA TX1 embedded system module

as well as on widely used NVIDIA TitanX. Table 3.2 compares inference time for a

single input frame with varying resolution. As evident from the numbers provided,

LinkNet can process very high resolution image at 8.5 fps on GPU. More importantly,

it can give real-time performance even on NVIDIA TX1. ’-’ indicates that network

was not able to process image at that resolution on the embedded device. Our network

was also tested on Inference Engine (IE): an FPGA based neural network hardware

accelerator [48, 49]. On IE4 which is a 250MHz 256 MACs 64KB maps buffer and

32KB kernel buffer system, our network’s execution time for and image resolution of

480 × 320 was 168.1 ms. Whereas, on IE5 which has 1024 MACs and 512 KB maps

buffer, proposed network took 82.58 ms for forward pass.

We choose 640× 360 as our default image resolution and report number of opera-

tions required to process image of this resolution in Table 3.3. Number of operations

determine the forward pass time of any network, therefore reduction in it is more

vital than reduction in number of parameters. Our approach’s efficiency is evident in

the much low number of operations per frame and overall parameters.

3.2.2 Benchmarks

We use Torch7 [62] machine-learning tool for training with RMSProp as the opti-

mization algorithm. The network was trained using four NVIDIA TitanX. Since the

classes present in all the datasets are highly imbalanced; we use a custom class weigh-

ing scheme defined as wclass = 1
ln(1.02+pclass)

. This class weighing scheme has been taken

from [63] and it gave us better results than mean average frequency. As suggested in

Cityscapes [50], we use intersections over union (IoU) and instance-level intersection

over union (iIoU) as our performance metric instead of using pixel-wise accuracy. In

order to prove that the bypass connections do help, each table contains IoU and iIoU

41

Table 3.4.
Results on CamVid test set of (1) SegNet, (2) ENet, (3) Dilation8,
(4) LinkNet without bypass, and (5) LinkNet

M
o
d
el

B
u
il
d
in
g

T
re
e

S
k
y

C
a
r

S
ig
n

R
o
a
d

P
ed
es
tr
ia
n

F
en
ce

P
o
le

S
id
ew

a
lk

B
ic
y
cl
is
t

Io
U

iI
o
U

1 88.8 87.3 92.4 82.1 20.5 97.2 57.1 49.3 27.5 84.4 30.7 65.2 55.6

3 74.7 77.8 95.1 82.4 51.0 95.1 67.2 51.7 35.4 86.7 34.1 68.3 51.3

2 82.6 76.2 89.9 84.0 46.9 92.2 56.3 35.8 23.4 75.3 55.5 65.3 -

3 84.6 87.4 88.8 72.6 37.1 95.3 61.2 56.0 33.1 88.3 24.4 66.3 52.7

4 88.8 85.3 92.8 77.6 41.7 96.8 57.0 57.8 37.8 88.4 27.2 68.3 55.8

values with as well as without bypass. We also compare LinkNet’s performance with

other standard models such as SegNet [42], ENet [63], Dilation8/10 [33].

Fig. 3.4. LinkNet prediction on CamVid [59] test set. From left to
right the images belong to input image, ground truth, and Linknet
output respectively.

42

CamVid It is another automotive dataset which contains 367 training, 101 valida-

tion, and 233 testing images [59]. There are eleven different classes such as building,

tree, sky, car, road, etc. while the twelfth class contains unlabeled data, which we

ignore during training. The original frame resolution for this dataset is 960 × 720

(W,H) but we downsampled the images by a factor of 1.25 before training. Due to

hardware constraint, batch size of 8 was used to train the network. In Table 3.4 we

compare the performance of the proposed algorithm with existing state-of-the-art al-

gorithms on test set. LinkNet outperforms all of them in both IoU and iIoU metrics.

Segmented output of LinkNet can be seen in Figure 3.4.

3.3 Network architecture, version 2

We also propose a network with similar concept of bypass connections as shown

in Figure 3.5. There are five key differences in this network as compared to the

architecture in section 3.1.

• Input samples enter the network through two separate paths: start block 1 and

2. These two blocks are explained in Figure 3.6a. and b.

• Encoder of this network is inspired from dilated ResNet 34 [45].

• Bypass connection has a lateral module in it.

• Loss is calculated at different stages/layers of the model.

• Bilinear upsampling is used instead of transpose convolution.

Two different paths for the input and calculation of loss at different levels allow

the network to learn at different scale. The encoder of this network uses dilated

convolution, minimizing the loss in spatial information as data passes through it.

Input and output maps and internal structure of encoder blocks are the same as

shown in Table 3.1 and Figure 3.2. The difference is that after encoder block 2 there

is no downsampling. Also, all the layers of encoder 3 and 4 have a dilation of 2 and

43

Encoder	1

Encoder	2

Encoder	3

Encoder	4

(515,	256) (256,	256),	(3x3)

(256,	256),	(3x3)

Lateral	4

(256,	256),	(3x3)

Lateral	3

Lateral	2

Lateral	1

Classifier

Classifier

Classifier

+

+

Lateral	5

+

(256,	256),	(3x3)

+

(256,	256),	(3x3)

+Lateral	0

(256,	256),	(3x3)

Bilinear	Upsample

Bilinear	Upsample

Classifier

Classifier

Start	Block	1

Start	Block	2

Fig. 3.5. Modified network architecture with branched encoder and multiple loss.

(3,	64),	(3x3)	/2
(64,	128),	(3x3)	/2
(128,	256),	(3x3)	/2

(M+3,	N),	(1x1)

x
AvgPool

(M,	M),	(1x1)
Sigmoid

(3,	16),	(7x7)
(16,	32),	(3x3)
(16,	32),	(3x3)	/2

Start	Block	1 Start	Block	2 Lateral

Fig. 3.6. (a) Start block 1 of encoder. (b) Start block 2 (c) Module for
bypass connection. Both start block 1 and 2 take in the same input.

44

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5

Fig. 3.7. (a) Positional encoding in x-direction. (b) Positional encod-
ing in y-direction.

4 respectively. Moreover, encoder 4 contains two additional layers: the first with

dilation of 2 and the second with dilation of 1.

The lateral module as shown in Figure 3.6.c. takes in two inputs. Input 1 will

be output from the corresponding encoder block, while input 2 is fixed value with

3 feature maps. These feature maps contain positional encoding in x, y, and radial

direction. An example of input of size 5 × 5 is displayed in Figure 3.7. This lateral

module performs 1×1 convolution and then uses the attention mechanism (later part

of the module) to extract only important features from encoder blocks.

Table 3.5.
Incremental improvement in performance as a result of addition of
individual modules. A: Encoder with dilated convolution, B: Loss at
multiple level, C: Positional encoding in lateral blocks, D: Multiple
encoder paths

Module(s) Class IoU

A 65.98

A + B 68.37

A + B + C 69.42

A + B + C + D 72.20

45

Cityscapes This dataset consists of 5000 fine-annotated images, out of which 2975

are available for training, 500 for validation, and the remaining 1525 have been se-

lected as test set [50]. We trained on our network on 19 classes that was provided

in the official evaluation scripts [50]. Input image of resolution 1024 × 512 was used

for training the network. Table 3.5 shows the effect of addition of each module on

network’s performance.

We report performance values for our network calculated on validation set in Table

3.6. PSPNet [51] and Deep-Lab v3 [52] have better accuracy than our network, but

as we said earlier, this number in itself is not sufficient. Our network is way smaller

as compared to these networks. SegNet [42] and ENet [63] are way smaller than us

but their accuracy is in 50s which is very low. That is why, we only compare the

proposed network’s performance with rest of the state-of-the-art networks. Among

these models, our network architecture performs the best in terms of mean IoU per

giga operations (GOps). Figure 3.8 shows the predicted segmented output on couple

of cityscapes validation images. Confusion matrix of our network on cityscapes is

shown in Figure 3.9.

Table 3.6.
Performance on cityscapes dataset [50].

Model Class IoU Parameters (M) Operations (GOps) IoU/GOps

SegNet [42] 57.0 39.8 315.1 0.180

ENet [63] 58.3 0.4 3.8 15.34

FCN 8 [33] 65.3 134.5 2685.1 0.024

PSPNet [51] 80.2 68.1 4344.7 0.018

Deep-Lab v3 [52] 81.3 59.3 1419.5 0.057

FRRN B [53] 71.8 23.9 915.5 0.078

Proposed network 72.2 25.1 679.9 0.106

46

Fig. 3.8. Our network prediction on Cityscapes [50] validation set.
From left to right the images belong to input image, ground truth,
and network output respectively.

3.4 Conclusion

This chapter presents a few ways (bypass connection, multiple loss, and encoder

path, etc.) to tackle the problem of loss in spatial information because of downsam-

pling layers present in the encoder part of existing networks. As a result, we were

not only able to achieve better accuracy, but we also reduced number of parameters

of our decoder. In section 3.2 we also show that our network can be run even on edge

devices in real-time.

47

Fig. 3.9. Confusion matrix of proposed network on cityscapes [50] validation data.

48

4. LANE FOLLOWING SYSTEM FOR AUTONOMOUS

DRIVING

Autonomous driving is no more just a concept for the future. Researchers are working

day in and day out on building systems such as parking assistance, lane detector, 3-D

mapping and localization, driver attention warning, etc. First of all, a route has to be

decided to go from point A to B. This can be done using several existing simultaneous

localization and mapping (SLAM) techniques [64]. After path planning, a vehicle

needs to navigate through traffic. For this, it needs to have an idea about where

cars, pedestrians and other objects are located. Even though segmentation masks

and localization algorithms provide us valuable information such as the location of

traffic signs and symbols, presence of cars and pedestrians in a 2D plane, we need to

know exactly where an object is located in a 3D point cloud [65–67]. Then comes the

need for lane awareness [68] which includes lane following as well as switching lanes

when required. An ensemble of many more tasks like these when put together make

autonomous driving a reality.

A lot of success in all the aforementioned areas can be attributed to the success

of deep neural networks. Segmentation networks alone can serve as a solution to

most of these problems, but still, they are only one of the many cogs in the wheel of

autonomous driving. The segmentation mask in itself is not sufficient unless there is

a way to process and translate that information to vehicle actuators. This decision

making step is an integral part of self-driving vehicles that cannot be ignored. A

network with low accuracy and very small memory and computation footprint might

be sufficient for a strong and robust control system. Moreover, these controllers are

the only tools that can clearly tell us how is our system going to perform while

interacting in the real world.

49

Encoder	1

Encoder	2

Encoder	3

Encoder	4

(515,	256) (256,	256),	(3x3)

Decoder	4(515,	256)

Decoder	3

Decoder	2

Decoder	1

(259,	256)

(131,	256)

(67,	256)

(3,	16),	(7x7)
(16,	32),	(3x3)

(16,	32),	(3x3)	/2

Classifier

Classifier

Classifier

Classifier

Fig. 4.1. Proposed network architecture for lane marking detection.
Encoder of this network is similar to dilated ResNet 34 [45] and bypass
connections are point-wise convolutions.

In this chapter we will select one of the many intermediate blocks required for

autonomous driving: lane following. We design a segmentation model (Figure 4.1)

capable of detecting lane markings in the real world. Some work has been done [69]

in this area but on simple datasets such as CULane [68]. Then, we also propose a

system which can take in segmentation maps and predict optimal steering angle and

vehicle speed.

50

(M,	N),	(3x3),	/d
(N,	N),	(3x3)

(N,	N),	(3x3)
(N,	N),	(3x3)

+

+

(256,	256),	(3x3)

+

X

L

(256,	64),	(1x1)
(64,	64),	(3x3),	*u
(64,	256),	(1x1)

Y

Fig. 4.2. (a) Encoder block (b)Decoder block. Each block represents
a convolution layer followed by batch-normalization and ReLU.

4.1 Lane detection

4.1.1 Model architecture

The proposed network architecture is shown in Figure 4.1. Each block has entries

like: (M,N), (k × k), x. Here M and N represent input and output feature maps

respectively, k denotes the kernel size, and in some blocks x when present represents

downsampling or upsampling factor. /2 means convolution with a stride of 2 was used,

whereas ∗2 indicates the use of transpose convolution with an upsampling factor of

2.

The encoder of this model is inspired by dilated ResNet 34 [45]. Dilation allows

us in retaining the receptive field of a convolution layer with strides. As a result,

we avoid losing spatial information which otherwise would have been the case with

strided convolution. The first layer of encoder 1 and 2 have convolution with a stride

of 2. Also, all the layers encoder 3 and 4 use dilated convolution. Encoder 3 has

dilation of 2, and encoder 4 has a dilation of 4. The last layer of encoder 4 also has

51

Table 4.1.
Detailed encoder parameters

M N Downsampling Dilation

Encoder 1 32 64 2 1

Encoder 2 64 128 2 1

Encoder 3 128 256 1 2

Encoder 4 256 512 1 4

two extra layers with input and output feature maps equal to 512. The first layer out

of these two extra layers has dilation of 2 and the last layer has no dilation. Details

of each encoder block can be seen Figure 4.2.a and table 4.1. Dilation of 1 means

simple convolution with no dilation.

All the bypass connections linking encoder blocks to decoder blocks are point-wise

convolutions. The number of input feature maps of these layers does not match the

number of corresponding encoder’s output feature maps. It is because of the use

of matrix with positional encoding [70]. We want our network to retain positional

information as it goes through the encoder blocks. We hypothesize that there is a

correlation between the position of each object in a given image, especially in the case

of driving scenarios. In Figure 3.7 we show positional encoding in x and y direction

for an input of size 5 × 5. Values of each cell can be calculated using the following

equation:

zij =
√
i2 + j2

Size of this matrix is the same as that of the input of a given layer. This matrix is

normalized and then concatenated with the input matrix along the feature dimension

and then sent as an input to the layer in bypass connection.

Figure 4.2.b shows a detailed breakdown of decoder blocks. X is the output from

the previous decoder and input of the current decoder block. L is the link coming

from bypass connection and Y is the output of the decoder. Only decoder blocks 1

52

Fig. 4.3. Validation loss curve per epoch.

performs upsampling. The layer with ∗u is the layer upsampling input X by a factor

of 2 using transpose convolution. Encoder already has an understanding of what is

in the image (it was pretrained on imagenet [12] dataset. Therefore, the task of the

decoder is only to upsample the embedding of the encoder. For this simple task, we

claim that a decoder with very few parameters will be sufficient. That is why in the

bottleneck architecture used in decoder blocks, we reduce the number of feature maps

by a factor of 4 using point-wise convolution and then perform 3 × 3 convolution on

this reduced feature space. The output of each decoder block is fed into classifier

blocks. A classifier block is a single convolution layer with a kernel size of 1 × 1. In

our architecture, all these four classifiers share the same parameters. Classifiers at

different stages ensure that our network will have the ability to identify objects at

different scales and hence, give better performance.

4.1.2 Results

We used cross entropy as our loss function and Adam [58] as the optimization

algorithm. Learning rate was set to 1e − 3 and weight decay parameter was set to

5e − 4. We trained our network using PyTorch framework [71] with a batch size of

53

16 for 200 epochs (Figure 4.3. The proposed network has 19.53 million parameters

and 326.31 GOps for an image of size 910 × 512. Encoder was first pretrained on

imagenet [12] dataset.

Dataset

Berkley Deep Drive (BDD) dataset [72] has 70000 training and 10000 validation

samples for lane markings. These images were collected from various cities during

different weather conditions and times of the day. That is why this is a very rich

and challenging dataset. It has 10 categories: crosswalk, road curb, solid and dashed

for single white, double white, single yellow, and double yellow. Annotations for this

dataset include single lines along edges of lane markings. For training, we modify

these annotations by passing them through a Gaussian kernel. Input images are

downsampled to size 910 × 512 before feeding them to the network.

Network performance

In Figure 4.6 we show detected lane markings as a heat map on an image from

the validation set. The first image shows the neural network generated lane markings

overlayed over the input image. This input has four different lane markings present

in it: crosswalk, road curb, broken white and solid white line. Left images are the

output of the neural network while the right images are their corresponding ground

truths. This example demonstrates the richness and in the meantime difficulty level

of the dataset. As it can be seen in Figure 4.6, lane markings in the ground truth are

not continuous lines. Sometimes they are just small fragments because of either how

far they are or because of occlusions. Still, the network is able to detect them as it

can be seen in the case of crosswalks. All three crosswalk markings are successfully

detected by the proposed model. Figure 4.7 shows the output of the neural network

on images from the validation set in the form of heat maps. All these images contain

54

different driving situations such as day, night and twilight time, straight, curved, city

and highway road.

From heat map to precise position of lane marking

The position of the camera and the angle at which it is mounted on the vehicle

is a critical piece of information required to find the location of lane markings. That

is why we first calibrate our system in the beginning by selecting four points on the

input image such that when seen from the top, those four points will form corners of

a rectangle. From this, we get a region of interest (ROI) indicated by the red box in

Figure 4.8. This ROI will remain the same until the mounted camera is moved.

Since BDD dataset [72] has 10 classes, our network generates 10 separate output

maps for each class. We process each map individually during the inference step.

Steps involved in generating the final output shown in Figure 4.8 are as follows:

• Get heat-maps from the neural network.

• Extract region from the predictions belonging to the ROI.

• Perform thresholding on this cropped prediction to remove background from

lane markings. This step will give Figure 4.8.b.

• Use the planar projection transformation matrix obtained using the four points

selected during the calibration step to get the top-down perspective of the de-

tection (Figure 4.8.c).

• Now find the center of these generated blobs and x-coordinate of the blobs will

tell us position of the lane markings in the horizontal direction.

Empirically we can see the robustness of the proposed network in detecting the

position of lane markings. Figure 4.9 contains few images from validation set and

performance of our proposed system. There are very few samples of double solid

lines in the training set and still, it gets detected in Figure 4.9.e. Apart from this, it

55

Environment

CCtrl. A

F
Ctrl. BE

BA
Reference

Speed
 Calculator

Neural
NetworkD + -

-+

X

Y

Fig. 4.4. Proposed feedback control system for lane following assis-
tant. B is error in speed, E is positional error. C and F represent
suggested throttle and steering angle respectively. Similarly, X is
actual speed and Y contains vehicle’s current position.

successfully detects yellow solid line and road curb even when they are very close by

(two solid yellow lines) in Figure 4.9.f. As it can be seen, our lane marking detection

system works well for multiple lanes. This can prove helpful in tasks involving lane

switching.

4.2 Lane-following system

Once we know the position of lanes, we can find out the vehicle’s current lane

based on lane positions with respect to (w.r.t.) the camera. The difference between

lane center and vehicle center can then be used to keep the vehicle within the lane.

This type of system can prove helpful in providing feedback to drivers once they start

deviating from their lane, but it is not sufficient in itself to move from one point to

another.

The block diagram of our proposed lane following assistant is shown in Figure

4.4. Ctrl. A and Ctrl. B are two proportional controllers. While Ctrl. A predicts

throttle of the vehicle, Ctrl. B predicts the steering angle. These values are sent to

the actuators and then they interact with the environment. After that, sensors gather

the vehicle’s positional information and speed. Positional information includes vehicle

56

orientation and location w.r.t. the current lane. A segmentation network capable of

detecting lane as proposed in section 4.1.1 can give us the location of the vehicle in

the lane. To calculate the angle between lane marking and vehicle, we can do curve

fitting over segmented output and then draw tangent on that curve. Value D contains

reference angle θ and reference position α. θ can be calculated while installing the

camera and it is the angle between lane marking and vehicle when the vehicle is

moving forward in a straight line. Reference position α is the center of the vehicle.

Figure 4.5 shows the angle calculation in detail. Region of interest is extracted

from input image (indicated by red box in Figure 4.5).a. Segmented output of lane

marking (Figure 4.5.b) is then generated for that ROI. For angle calculation, we only

use the immediate left lane marking. So we calculate centroids of both edges and

pick the left one. A non-linear curve is fit on top and bottom region of the detected

lane marking, depicted by red and green lines respectively in Figure 4.5.c. Tangents

on these two curves give is angles θ1 and θ2. The difference between these angles is

indicative of incoming curb or straight lane. Bigger ∆θ means a curb is ahead while

smaller ∆θ indicates a straight lane.

Total positional error E is then fed to controller B which eventually predicts the

optimum steering angle. The segmented output is also passed to the reference speed

calculator. In case of incoming turns or when the vehicle is at an offset with the lane

center, the reference speed calculator block suggests reducing the speed. Reference

speed A is then used to calculate the difference between expected (A) and current

(X) speed and is then feed to proportional controller A. After this, C finally calculates

the required amount of acceleration or deceleration.

To show the effectiveness of our driver assistant for lane following, we test it on

CARLA which is an open-source simulator for autonomous driving [73]. All the lane

markings in CARLA are labeled as one class and important classes such as road curb

are missing in this simulator. That is why we did not train our network on CARLA

data. Instead, we directly use the lane marking label provided by the simulator and

57

Fig. 4.5. Top to bottom: (a) Input image with ROI from CARLA [73].
(b) Lane marking provided by the simulator and road curb extracted
using edge detector. (c) Curve fit on the left lane marking in order to
make a decision about incoming turn.

check our proposed system’s performance. Our designed control system’s response to

an approaching turn is shown in Figure 4.10.

The top horizontal bar shows the steering angle, while the vertical bar on the right

is for throttle. The green dot at the bottom is the center point of the lane where the

vehicle should ideally be, and the arrow is showing all the information in a combined

form. Initially, when there is a straight road, the steering direction is close to zero.

Since the current speed is 10mph and the reference speed is 30mph, the vertical bar

58

is full. This means that the vehicle needs to accelerate. On the other hand in the

next image, a turn is detected. That is why the arrow at the bottom of the image

becomes smaller and the vertical bar starts filling downwards, indicating the vehicle

needs to decelerate.

4.3 Conclusion

In this chapter, we present an algorithm using a deep neural network to detect lane

markings. The proposed network was successfully able to learn even difficult instances

such as almost overlapping road curb and yellow line, distinguish between double and

single solid lines. We also showed that using our approach multiple lanes were also

detected, that too in various driving conditions. Later we develop a feedback control

system using a proportional controller which utilizes the lane marking information

provided to it. Based on that information, it suggests the steering and throttle values

for a vehicle.

59

Fig. 4.6. Heat map showing detected lane markings and their corre-
sponding ground truths.

60

Fig. 4.7. Output of proposed network on images from validation set.
These images include day and night time, highway as well as busy
city road, and straight and curve roads.

61

Fig. 4.8. Top to bottom: (a) Input image with region of interest.
(b) Neural network output. (c) Detected lane marking when viewed
from top perspective. (d) Broken white line as final output with their
position on region of interest.

62

Fig. 4.9. Moving left to right and top to bottom, detected lane mark-
ings are: (a) road curbs and broken white line, (b) road curbs and
broken white line, (c) broken white lines, (d) solid yellow and broken
white lines, (e) double solid white line and broken white line, (f) road
curb, solid yellow and white lines. Here, both road curbs as well as
solid yellow lines are shown using yellow lines.

63

Fig. 4.10. Suggested steering angle and throttle value by proposed
method while performing a sharp turn. Vertical bar on the right is
for throttle and horizontal bar on top is for steering angle. White
arrow is a vector using both the values. Green dot at the bottom
represents center of the lane.

64

5. SUMMARY

This dissertation focuses on designing efficient deep neural networks for semantic seg-

mentation. We show the capability of these models on benchmarks such as accuracy,

and memory and computation footprint.

5.1 Conclusion

Chapter 2 explores existing neural network modules/layers and uses them to build

a new architecture. It highlights the fact that it is possible to achieve the desired

performance in terms of accuracy without compromising performance in terms of

processing time. The proposed network has a very high density of information as

compared to existing models. This can be inferred from its comparable performance

on accuracy scale while having the number of parameters as low as 0.37 million.

Devices on which state-of-the-art networks did not even fit, we show that our network

can run on them in real-time.

Encoders of most of the existing segmentation networks contain downsampling

layers because of which important spatial information is lost. As a result, decoders

need to be strong enough to relearn this lost information and bring back encoder

output to input space. Chapter 3 uses a novel approach to share information between

encoder and decoder at each layer of abstraction, minimizing the loss in information

because of downsampling. This allows the decoder to be small and yet give com-

parable results. Apart from bypass connections, dilated convolution and branched

encoders were also used to preserve spatial context. Multiple loss at different lev-

els in the network were also shown to help learn better features. This chapter also

highlights the effect of individual modules on network’s performance. Especially mul-

65

tiple loss and multiple encoder paths help in improving performance of our proposed

architecture.

Segmentation networks are extensively used in the are of autonomous driving.

Chapter 4 puts forth a novel segmentation network to detect lane markings in a

variety of driving situations. The model is successfully able to detect markings from

different lanes and decide the vehicle’s position with respect to the current lane.

Finally, a driver assistance system is proposed, capable of navigating a vehicle from

point A to B by controlling its speed and steering angle. A driving simulator is used

to demonstrate the capabilities of the designed system while navigating on straight

tracks as well as during sharp turns.

5.2 Limitations

Networks proposed in this thesis were trained on separate images and not on a se-

quence of images. That is why, even though these networks have good representation

for ‘discrete’ scenes; they do not have any temporal information in them. As a result,

the output of these networks varies noticeably for even two consecutive frames, giving

a perception of jittery output on videos.

The current lane detector requires an initial setup to get the perspective transfor-

mation matrix. This might become problematic if the position of the mounted camera

changes due to vibrations in the vehicle. Sometimes, the width of lanes varies even

in close by areas. In such situations, the reference angle used in the lane following

system will have to be manually tuned.

5.3 Future work

• In order to store temporal information, some memory modules such as recurrent

neural networks can be added to the network.

66

• At present, only the encoders are pretrained and decoders are trained from

scratch for semantic segmentation. Since getting segmented data is a daunting

task, unsupervised techniques to pre-train a whole network is worth exploring.

• Instead of perspective transform, Hough transform can be used. This might

allow us to skip the calibration step for lane detection. It might also help us

in the adaptive calculation of the reference angle. To use the Hough transform,

the segmented output of the network will have to be improved.

• The proposed lane following assistant does not take traffic or pedestrians into

consideration. A deep neural network capable of giving segmentation mask

with depth information can potentially help in designing a proportional-integral-

derivative controller to respond to such situations.

• The updated driver assistant can later be used as a method to verify if mean

IoU of 70% is sufficient or a heavier segmentation network with a 90% mean

IoU is required.

REFERENCES

67

REFERENCES

[1] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detec-
tion,” in international Conference on computer vision & Pattern Recognition
(CVPR’05), vol. 1. IEEE Computer Society, 2005, pp. 886–893.

[2] C. P. Papageorgiou, M. Oren, and T. Poggio, “A general framework for object
detection,” in Sixth International Conference on Computer Vision (IEEE Cat.
No. 98CH36271). IEEE, 1998, pp. 555–562.

[3] J. C. Dunn, “A fuzzy relative of the isodata process and its use in detecting
compact well-separated clusters,” Journal of Cybernetics, vol. 3, no. 3, pp. 32–
57, 1973.

[4] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learn-
ing, vol. 20, no. 3, pp. 273–297, Sep 1995. [Online]. Available:
https://doi.org/10.1007/BF00994018

[5] Y. LeCun and Y. Bengio, “Convolutional networks for images, speech, and time
series,” The handbook of brain theory and neural networks, pp. 255–258, 1998.

[6] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in
nervous activity,” The bulletin of mathematical biophysics, vol. 5, no. 4, pp.
115–133, 1943.

[7] D. O. Hebb, The Organization Of Behaviour. Wiley, 1949.

[8] H. J. Kelley, “Gradient theory of optimal flight paths,” Ars Journal, vol. 30,
no. 10, pp. 947–954, 1960.

[9] P. J. Werbos, “Backpropagation through time: what it does and how to do it,”
Proceedings of the IEEE, vol. 78, no. 10, pp. 1550–1560, Oct 1990.

[10] J. J. Weng, N. Ahuja, and T. S. Huang, “Learning recognition and
segmentation using the cresceptron,” International Journal of Computer
Vision, vol. 25, no. 2, pp. 109–143, Nov 1997. [Online]. Available:
https://doi.org/10.1023/A:1007967800668

[11] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in Neural Information Processing
Systems 25, 2012, pp. 1097–1105.

[12] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A
Large-Scale Hierarchical Image Database,” in CVPR09, 2009.

[13] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” arXiv preprint arXiv:1409.1556, 2014.

68

[14] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2015, pp. 1–9.

[15] J. Shotton, J. Winn, C. Rother, and A. Criminisi, “Textonboost for image under-
standing: Multi-class object recognition and segmentation by jointly modeling
texture, layout, and context,” Int. Journal of Computer Vision (IJCV), January
2009.

[16] F. Perronnin, Y. Liu, J. Snchez, and H. Poirier, “Large-scale image retrieval
with compressed fisher vectors,” in Computer Vision and Pattern Recognition
(CVPR), 2010 IEEE Conference on, 2010, pp. 3384–3391.

[17] K. E. A. van de Sande, J. R. R. Uijlings, T. Gevers, and A. W. M. Smeulders,
“Segmentation as selective search for object recognition,” in IEEE International
Conference on Computer Vision, 2011.

[18] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification,” in Proceedings of the IEEE
International Conference on Computer Vision, 2015, pp. 1026–1034.

[19] Y. LeCun, L. Bottou, G. B. Orr, and K. R. Müller, Neural Networks: Tricks of
the Trade. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998.

[20] M. A. Ranzato, F. J. Huang, Y.-L. Boureau, and Y. LeCun, “Unsupervised
learning of invariant feature hierarchies with applications to object recognition,”
in Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE Conference
on, 2007, pp. 1–8.

[21] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[22] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recogni-
tion,” arXiv preprint arXiv:1512.03385, 2015.

[23] C. Szegedy, S. Ioffe, and V. Vanhoucke, “Inception-v4, inception-resnet and the
impact of residual connections on learning,” arXiv preprint arXiv:1602.07261,
2016.

[24] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun, “Over-
feat: Integrated recognition, localization and detection using convolutional net-
works,” arXiv preprint arXiv:1312.6229, 2013.

[25] J. Tompson, R. Goroshin, A. Jain, Y. LeCun, and C. Bregler, “Efficient object lo-
calization using convolutional networks,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2015, pp. 648–656.

[26] P. Sturgess, K. Alahari, L. Ladicky, and P. H. Torr, “Combining appearance
and structure from motion features for road scene understanding,” in BMVC
2012-23rd British Machine Vision Conference, 2009.

[27] D. Eigen and R. Fergus, “Predicting depth, surface normals and semantic labels
with a common multi-scale convolutional architecture,” in Proceedings of the
IEEE International Conference on Computer Vision, 2015, pp. 2650–2658.

69

[28] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual net-
works,” arXiv preprint arXiv:1603.05027, 2016.

[29] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the
inception architecture for computer vision,” arXiv preprint arXiv:1512.00567,
2015.

[30] I. Sobel, “An isotropic 3x3 image gradient operator,” Presentation at Stanford
A.I. Project 1968, 02 2014.

[31] J. Jin, A. Dundar, and E. Culurciello, “Flattened convolutional neural networks
for feedforward acceleration,” arXiv preprint arXiv:1412.5474, 2014.

[32] F. Chollet, “Xception: Deep learning with depthwise separable convolutions,” in
Proceedings of the IEEE conference on computer vision and pattern recognition,
2017, pp. 1251–1258.

[33] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated convolutions,”
arXiv preprint arXiv:1511.07122, 2015.

[34] X. Ren, L. Bo, and D. Fox, “Rgb-(d) scene labeling: Features and algorithms,”
in Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference
on, 2012, pp. 2759–2766.

[35] C. Farabet, C. Couprie, L. Najman, and Y. LeCun, “Learning hierarchical fea-
tures for scene labeling,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 35, no. 8, pp. 1915–1929, Aug 2013.

[36] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Uni-
fied, real-time object detection,” in Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2016, pp. 779–788.

[37] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object
detection with region proposal networks,” in Advances in neural information
processing systems, 2015, pp. 91–99.

[38] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg,
“Ssd: Single shot multibox detector,” in European Conference on Computer
Vision. Springer, 2016, pp. 21–37.

[39] H. Zhao, X. Qi, X. Shen, J. Shi, and J. Jia, “Icnet for real-time semantic segmen-
tation on high-resolution images,” in Proceedings of the European Conference on
Computer Vision (ECCV), 2018, pp. 405–420.

[40] J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Y. Ng, “Multimodal
deep learning,” in Proceedings of the 28th international conference on machine
learning (ICML-11), 2011, pp. 689–696.

[41] V. Badrinarayanan, A. Handa, and R. Cipolla, “Segnet: A deep convolutional
encoder-decoder architecture for robust semantic pixel-wise labelling,” arXiv
preprint arXiv:1505.07293, 2015.

[42] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep convolu-
tional encoder-decoder architecture for image segmentation,” arXiv preprint
arXiv:1511.00561, 2015.

70

[43] H. Noh, S. Hong, and B. Han, “Learning deconvolution network for semantic seg-
mentation,” in Proceedings of the IEEE International Conference on Computer
Vision, 2015, pp. 1520–1528.

[44] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for seman-
tic segmentation,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2015, pp. 3431–3440.

[45] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Semantic
image segmentation with deep convolutional nets and fully connected crfs,” arXiv
preprint arXiv:1412.7062, 2014.

[46] F. Visin, M. Ciccone, A. Romero, K. Kastner, K. Cho, Y. Bengio, M. Matteucci,
and A. Courville, “Reseg: A recurrent neural network-based model for semantic
segmentation,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, 2016, pp. 41–48.

[47] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du, C. Huang,
and P. H. Torr, “Conditional random fields as recurrent neural networks,” in
Proceedings of the IEEE International Conference on Computer Vision, 2015,
pp. 1529–1537.

[48] A. X. M. Chang, A. Zaidy, L. Burzawa, and E. Culurciello, “Deep neural net-
works compiler for a trace-based accelerator (short wip paper),” in Proceedings
of the 19th ACM SIGPLAN/SIGBED International Conference on Languages,
Compilers, and Tools for Embedded Systems. ACM, 2018, pp. 89–93.

[49] A. Zaidy, A. X. M. Chang, V. Gokhale, and E. Culurciello, “A high efficiency
accelerator for deep neural networks,” in 2018 1st Workshop on Energy Efficient
Machine Learning and Cognitive Computing for Embedded Applications (EMC2).
IEEE, 2018, pp. 9–13.

[50] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson,
U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset for semantic ur-
ban scene understanding,” in Proc. of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2016.

[51] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing network.”
arXiv preprint arXiv:1612.01105, 2016.

[52] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking atrous con-
volution for semantic image segmentation,” arXiv preprint arXiv:1706.05587,
2017.

[53] T. Pohlen, A. Hermans, M. Mathias, and B. Leibe, “Full-resolution residual
networks for semantic segmentation in street scenes,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2017, pp. 4151–4160.

[54] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift,” arXiv preprint arXiv:1502.03167, 2015.

[55] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, and
E. Shelhamer, “cudnn: Efficient primitives for deep learning,” arXiv preprint
arXiv:1410.0759, 2014.

71

[56] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Weinberger, “Deep networks with
stochastic depth,” arXiv preprint arXiv:1603.09382, 2016.

[57] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neural
network with pruning, trained quantization and huffman coding,” arXiv preprint
arXiv:1510.00149, 2015.

[58] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[59] G. J. Brostow, J. Shotton, J. Fauqueur, and R. Cipolla, “Segmentation and
recognition using structure from motion point clouds,” in ECCV (1), 2008, pp.
44–57.

[60] S. Song, S. P. Lichtenberg, and J. Xiao, “Sun rgb-d: A rgb-d scene understanding
benchmark suite,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2015, pp. 567–576.

[61] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann
machines,” in Proceedings of the 27th international conference on machine learn-
ing (ICML-10), 2010, pp. 807–814.

[62] R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A matlab-like environ-
ment for machine learning,” in BigLearn, NIPS Workshop, 2011.

[63] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello, “Enet: A deep neu-
ral network architecture for real-time semantic segmentation,” arXiv preprint
arXiv:1606.02147, 2016.

[64] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and mapping: part
i,” IEEE Robotics Automation Magazine, vol. 13, no. 2, pp. 99–110, June 2006.

[65] P. Wang, R. Yang, B. Cao, W. Xu, and Y. Lin, “Dels-3d: Deep localization and
segmentation with a 3d semantic map,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2018, pp. 5860–5869.

[66] D. Maturana, P.-W. Chou, M. Uenoyama, and S. Scherer, “Real-time semantic
mapping for autonomous off-road navigation,” in Field and Service Robotics.
Springer, 2018, pp. 335–350.

[67] M. Menze and A. Geiger, “Object scene flow for autonomous vehicles,” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2015, pp. 3061–3070.

[68] X. Pan, J. Shi, P. Luo, X. Wang, and X. Tang, “Spatial as deep: Spatial cnn
for traffic scene understanding,” in Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

[69] R. F. Berriel, E. de Aguiar, A. F. D. Souza, and T. Oliveira-Santos,
“Ego-lane analysis system (ELAS): dataset and algorithms,” arXiv preprint
arXiv:1806.05984, 2018.

[70] R. Liu, J. Lehman, P. Molino, F. P. Such, E. Frank, A. Sergeev, and J. Yosinski,
“An intriguing failing of convolutional neural networks and the coordconv solu-
tion,” in Advances in Neural Information Processing Systems, 2018, pp. 9605–
9616.

72

[71] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Des-
maison, L. Antiga, and A. Lerer, “Automatic differentiation in pytorch,” in NIPS
Autodiff Workshop, 2017.

[72] F. Yu, W. Xian, Y. Chen, F. Liu, M. Liao, V. Madhavan, and T. Darrell,
“Bdd100k: A diverse driving video database with scalable annotation tooling,”
arXiv preprint arXiv:1805.04687, 2018.

[73] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA: An
open urban driving simulator,” in Proceedings of the 1st Annual Conference on
Robot Learning, 2017, pp. 1–16.

VITA

73

VITA

Abhishek received his Bachelors degree in Electronics and Communication En-

gineering from the Indian Institute of Technology Guwahati, India in 2012. As an

undergraduate, most of his work was in robotics and computer vision. In summer

2011, he did his internship at Hanyang University under Prof. Frank Chung-Hun

Rhee. After that, he was offered a scholarship for Masters at Hanyang University. He

went ahead with it and received his Masters degree in Electronics and Communica-

tion Engineering from Hanyang University, South Korea in 2014. His Masters thesis

was on clustering techniques using interval type-2 fuzzy logic. He joined Purdue

University in Fall 2014 and is currently a Ph.D. student in Electrical and Computer

Engineering as a part of e-Lab under Dr. Eugenio Culurciello. Abhishek’s research

is mainly focused on developing deep neural network architectures for real-world in-

teraction/application, using supervised, unsupervised and reinforcement techniques.

