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ABSTRACT

Sun, Chenguang PhD, Purdue University, August 2019. Demand-Driven Static Anal-
ysis of Heap-Manipulating Programs. Major Professor: Samuel Midkiff.

Modern Java application frameworks present significant challenges for existing

static analysis algorithms. Such challenges include large-scale code bases, heap-

carried dependency, and asynchronous control flow caused by message passing.

Existing analysis algorithms are not suitable to deal with these challenges. One

reason is that analyses are typically designed to operate homogeneously on the whole

program. This leads to scalability problems when the analysis algorithms are used

on applications built as plug-ins of large frameworks, since the framework code is

analyzed together with the application code. Moreover, the asynchronous message

passing of the actor model adopted by most modern frameworks leads to control flows

which are not modeled by existing analyses.

This thesis presents several techniques for more powerful debugging and program

understanding tools based on slicing. In general, slicing-based techniques aim to

discover interesting properties of a large program by only reasoning about the relevant

part of the program (typically a small amount of code) precisely, abstracting away

the behavior of the rest of the program.

The key contribution of this thesis is a demand-driven framework to enable precise

and scalable analyses on programs built on large frameworks. A slicing algorithm,

which can handle heap-carried dependence, is used to identify the program elements

relevant to an analysis query. We instantiated the framework to infer correlations

between registration call sites and callback methods, and resolve asynchronous control

flows caused by asynchronous message passing.
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1. INTRODUCTION

People have been searching for methods to build robust software for decades [1]. The

result is a corpus of theoretical and practical tools and methods. Since the advent of

heap-manipulating programs, most programs’ logic are tightly integrated with heap

models. Hence these tools and methods are essentially designed as client analyses of

underlying heap analyses for heap modeling and the efficiency of former relies on that

of later.

The problem of heap modeling has been attacked from all angles with different

kinds of heap analyses, from the long-standing points-to analyses [2] to the more

recent shape analyses [3]. However, for all existing heap analyses, there exists certain

trade offs between the precision of heap-modeling and the scalability of heap analysis.

On the other hand, most existing client analyses and heap analyses in the literature

have been proposed independently. Hence the trade-off adopted in most heap analyses

may not be aligned with the demands from their client analyses.

Recently, increasingly more heap analyses are designed in a demand-driven style

such that these heap analyses are customizable according to the demand from certain

client analysis. However, most such customization methods are designed specific to

certain heap analysis and cannot be generalized to and hence benefit other existing

heap analysis methods.

Hence we propose a more general customization approach – applying a slicing

analysis to identify all program elements relevant to given demand from certain client

analysis and applying any existing heap analyses to the identified elements only.

In the proposed approach, a demand-driven heap analysis, called Clipper, is used

as the slicing analysis and two demand-driven heap analyses – a points-to analysis

called DynaSens and a shape analysis called DynaShape, both customized by
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Clipper – are implemented to illustrate and evaluate the effect of the proposed

approach.

The remainder of this chapter introduces two challenges in analyzing real-world

programs – large-scale code bases (Section 1.1) and heap-carried data flow (Section

1.2) – as well as two features in many real-world frameworks to demonstrate the

application of on-demand heap analysis – the callback mechanism (Section 1.3) and

the message-driven mechanism (Section 1.4).

1.1 Large-Scale Code Base

Many popular framworks written in Java have a large code base consisting of a

large number of classes and methods grouped in JAR archives and representing li-

braries. For example, an early version (2.3.7 r1) of the Android framework1 alone

consists of about 1.8M of bytecodes. Even seemingly simple applications can tran-

sitively depend on and thus trigger the loading of hundreds of classes because they

transitively call methods defined in these libraries.

Such large code base presents significant challenges to existing static analysis

algorithms, because existing analysis algorithms are typically designed to operate ho-

mogeneously on whole programs, starting from scratch at each analysis execution.

For Java applications built with large libraries, the library code is analyzed together

with the application code as part of the whole program. This creates potential scala-

bility problems in terms of analysis time and memory usage, which limit the practical

application of these analyses on real-world Java programs.

1.2 Heap-Carried Data Flow

Traditional data flow analyses only consider local variables [4]. However, local-only

data dependence is very rare in programs written in modern programming languages

1https://www.android.com/
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such as Java, which include heap load and store operations enabling data flow through

the heap.

The example (Fig. 1.1), modified from the one in [5], is used to explain our points.

1 class Vector {

2 Object [] arr;

3 Vector () {

4 Object [] a = new Object [10];

5 this.arr = a;}

6 Object get(int i) {

7 Object [] a = this.arr;

8 return a[i];}

9 void set(int i, Object x) {

10 Object [] a = this.arr;

11 a[i] = x;

12 }

13 }

14 class AddrBook {

15 Vector names;

16 AddrBook () {

17 Vector v_names = new Vector ();

18 this.names = v_names ;}

19 void update(int i, String name) {

20 Vector v_names = this.names;

21 v_names.set(i, name );}

22 String fetch(int i) {

23 Vector v_names = this.names;

24 return (String)v_names.get(i);}

25 }

26 void main() {

27 Vector v_main = new Vector ();

28 Integer i1 = 3;

29 v_main.set(0, i1);

30 Integer i2 = (Integer)v_main.get (0);

31 AddrBook book = new AddrBook ();

32 book.update(0, "bar");

33 book.fetch (0);

34 }

Fig. 1.1.: Example code illustrating downcast safety checking.

,
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The heap model generated by the example program in Fig. 1.1 is depicted in Fig.

1.2.

.f2 .f2

[i] [i]

v1 v2

x1 x2

a1v1 a1v2

Fig. 1.2.: The heap model generated by the example program in Fig. 1.1.

Consider the flow of the integer 3 at line 28 to the cast site at line 30. Manual

inspection of the source code shows the integer is first stored to the heap at line 11

and later loaded from the heap at line 8. The local data flow only propagates the

Vector object v1 directly, which references the integer indirectly via a sequence of

field and array accesses, as illustrated in the data flow graph (Fig. 1.3).

13: v1.set(0, x1);

11: x1 = new Integer();

15: x12 =
(Integer)v1.get(0);

3: return this.f2[i];

5: this.f2[i] = x;

a1v1[i]

x1
x

x12

Fig. 1.3.: Data flow generated by the example program in Fig. 1.1.

Heap-carried data flows pose a challenge to the scalability and precision of static

analyses. We present Clipper – an access-path based heap analysis – to resolve such

heap-carried data flow on demand in Chapter 4.
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1.3 Implicit Control Flow Analysis

Most frameworks provide registration interfaces for applications to register call-

back methods to interact with the framework. A callback method is implemented by,

and hence part of, the application (e.g. onPaused() in Fig. 1.4b) but invoked by the

framework (e.g. line 14 in Fig. 1.4a). Dually, a registration method is implemented

by and hence part of the framework (e.g. register() in Fig. 1.4a) but invoked by

the application (e.g. line 24 in Fig. 1.4b). In Fig. 1.4, for example, the onPaused()

callback method is designed for receiving notification of the life-cycle event to pause

the application that has registered the callback method with the register() method.

Once the application is to be paused, the framework automatically invokes the regis-

tered onPaused() method.

One drawback for static analysis is that the callback methods do not have explicit

incoming control flow within the application. Instead, control is transfered implic-

itly to the callback from the callback registration which notifies the framework of

the existence of the callback method. On the other hand, an analysis considering

the application’s code only cannot recover such implicit control flows, i.e., analyses

handling applications alone may generate incomplete control flow graphs with un-

reachable callback methods. The solution to such problems is explained in Chapter

5.

1.4 Asynchronous Control Flow Analysis

Concurrent programming is indispensable in distributed and multi-core environ-

ments. As one of the most popular computation model, the Actor model [6, 7] was

designed specifically for programming in such environments. In this model, actors

are essentially concurrent processes communicating with each other through asyn-

chronous message passing.

In cooperative execution environments such as Erlang’s runtime environment, ac-

tors are implemented as large number of concurrent processes that can be active
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1 interface ICallback {

2 void onPaused ();

3 }

4 class App {

5 List callbacks;

6 void register(ICallback cb) {

7 List list = this.callbacks;

8 list.add(cb);

9 }

10 void dispatchPaused () {

11 List list = this.callbacks;

12 for (int i=0;i<list.size ();++i) {

13 ICallback cb = list.get(i);

14 cb.onPaused ();

15 }

16 }

17 }

(a) Framework

18 class MyCallback implements ICallback {

19 void onPaused () {...}

20 }

21 class MyApp extends App {

22 void onCreate () {

23 ICallback mycb = new MyCallback ();

24 this.register(mycb );}

25 }

(b) Application

Fig. 1.4.: Example code illustrating implicit control flow.
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simultaneously [8]. In non-cooperative execution environments such as Java Virtual

Machine [9], instead of directly coupled to threads, actors are implemented in an

message-driven style, with message handlers and messages representing actors and

messages, respectively. In this case, one or more message dispatching threads run-

ning message loops can simulate all actors [10].

Unlike threads where causally related control flows are also textually related, in

message-driven style, control flows are scattered into many cooperatively-triggered

message handling functions, obscuring causal relation among them. This makes it

hard to analyze and debug message-driven programs [10,11].

The Android framework implements the Actor model in such message-driven style

where a message is represented by a Message object. Fig. 1.5 shows the structure of

the Message object and Fig. 1.6 shows two code snippets demonstrating enqueuing

and processing of the Message object, respectively. The “what” field of a Message

object (line 3) records an integer value denoting its message type. This field is written

(line 12) before enqueuing the message and read (line 3) after dequeuing the message

by a handler.

Fig. 1.5 shows the message handling framework of the Android system. Messages

are represented with Message objects. The target field denotes the message handler

and the what field denotes the message type. The message dispatching threads invoke

the loop() method of the Looper class, which dequeues message objects from the

message queue referenced via the mQueue field (line 15) and invokes handle() method

on handlers of these message objects (line 17).

Fig. 1.6 shows a message passing example based on the message handling frame-

work in Fig. 1.5. The schedule() method invokes the send() method to enqueue

a message of type 19 (line 12). The send() method in Fig. 1.5 records the handler

object (an object of the ViewRootHandler class) and the message type (represented

by integer constant 19) with the message object. After dequeuing the message, the

looper invokes the handle() method of the specified handler to dispatch the message

(line 4 in Fig. 1.5).
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public class Message {

Handler target;

int what;

}

public class MessageQueue {

void enqueue(Message m) {...}

Message next() {...}

}

(a) Message and MessageQueue interfaces.

1 abstract class Handler {

2 MessageQueue mQueue;

3 void send(int w) {

4 Message m = new Message ();

5 m.target = this;

6 m.what = w;

7 mQueue.enqueue(m);

8 }

9 abstract void handle(Message m);

10 }

11 public class Looper {

12 MessageQueue mQueue;

13 void loop() {

14 for (;;) {

15 Message m = mQueue.next ();

16 Handler h = m.target;

17 h.handle(m);

18 }

19 }

20 }

(b) Message enqueuing and dispatching framework.

Fig. 1.5.: Messaging framework of Android.
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1 public class ViewRootHandler extends Handler {

2 public void handle(Message m) {

3 int w = m.what;

4 switch (w) {

5 case 19: ... // handling

6 }

7 }

8 }

9 public class ViewRootImpl {

10 ViewRootHandler mHandler;

11 private void schedule () {

12 mHandler.send (19); // sending

13 }

14 }

Fig. 1.6.: Message-handling in Android framework.
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We show that our demand-driven approach to analysis can identify and focus on

part of the program related to message-passing – making message-driven programs

easier to understand and debug (Chapter 8).

The rest of this thesis is organized as follows. Chapter 2 specifies a bytecode-like

example language to present code examples in this dissertation. Chapter 3 surveys

four representative heap analyses to outline the evolutionary path of today’s most

heap analyses. Chapter 4 presents Clipper – an access-path based on-demand heap

analysis to resolve heap-carried data flows. Chapters 5 to 8 describe applications

of Clipper to solve three practical problems in analyses of large scale programs:

resolving implicit control flows introduced by callback mechanism, demand-driven

refinement of points-to analysis, and resolving asynchronous control flows introduced

by message-passing.
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2. EXAMPLE LANGUAGE

We explain our ideas with a simple Java-bytecode-like language (defined in Fig. 2.1)

in which a program is a set of labeled statements stmt. For the rest of this dissertation

we assume the declaration of p is “t p(t0 h0, ..., tk hk){bodyp}”.

class name t ∈ Class object field name f, g ∈ OField
method name p, q ∈Method static field name f,g ∈ SField
variable name x, y, z ∈ V ar formal parameter name h ∈ Param ⊆ V ar
statement label l ∈ Label = N

prog ::= cdecl // program

cdecl ::= class t {fdecl mdecl} // class declaration
fdecl ::= t f // field declaration

mdecl ::= t p(t h) {body} // method declaration
body ::= stmt // method body
stmt ::= l: x = new t | l: x = y | // allocation and assignment

l: x = y.f | l: x.f = y | // object field load and store
l: x = f | l: f = x | // static field load and store
l: goto l′ | l: if b lt lf // branches
l: x = p(y) | l: return x // method call and return
lx: exit // pseudo method exit

Fig. 2.1.: Syntax of a simple bytecode-like language.



12

3. EVOLUTION OF HEAP ANALYSIS TECHNIQUES

3.0.1 Global-Heap-Based Approach

Many analyses resolve heap-carried dependency with global heap models [12]. We

now describe how global-heap-based approaches are limited by their consideration of

unrealizable paths which can lead, e.g., to conservatism in detecting downcast failures.

Typical global heap models include points-to graphs generated by points-to analy-

ses. Within a points-to graph, objects are modeled with global names such as V ecname

and V ecInt denoting the vectors allocated at line 17 and 27, respectively, and Arr

denoting the array allocated at line 4. As an example, Fig. 3.1 shows part of the data

flow generated by a context-insensitive points-to analysis of the example program in

Fig. 1.1. Due to the absence of context, the flows of V ecname and V ecInt merge along

paths a→ c and b→ c respectively, where their own arrays, denoted by the common

name Arr, are modeled as being stored to their arr field, as shown in the generated

points-to graph in the bottom-right corner of Fig. 3.1. Similarly, due to the flow

confluence of these two vectors along paths f → g → l and h→ j → l, and the flow

confluence of the string name and integer 3 along paths e→ g → k and i→ j → k,

both name and 3 are modeled as being stored to Arr at line 11, as shown in the

generated points-to graph.

With the heap modeled globally as a points-to graph, points-to analyses propagate

points-to relations globally, generating global data flows between interfering heap

loads/stores, i.e. loads/stores on the same object. As shown in Fig. 3.2, since V ecInt

flows to Vector.get(i) along the path n → o → p, the array Arr referenced by

V ecInt.arr is loaded at line 8. Hence name and 3, which are stored to the same Arr

at line 11, propagate globally along the arrow z. These values are further returned

to the call site at line 30, causing a (false) downcast failure.
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In an attempt to identify the data flows relevent to the returned value at line 30,

several derivation-based approaches [13, 14] are developed. Such approaches essen-

tially back-trace data flows derived by the points-to analysis, including these global

ones. However, valuable context information is lost when back-tracing these global

flows. For example, assume we back-trace the data flow reaching the cast at line 30.

Along the path r ← z ← m ← l in Fig. 3.2), the tracing reaches the parameter

this of Vector.set(). Because the tracing propagates to Vector.set() along the

global flow o, there is no context information from the trace indicating which call

site the tracing should further propagate up to. Therefore, the tracing has to con-

servatively propagate to all call sites, including the one at line 21 (along arrow g),

which is actually irrelevant to the data flow reaching the cast at line 30. Although

a finer points-to graph generated by a context-sensitive points-to analysis can avoid

such spurious tracing in this example, such solutions can only mitigate the problem

rather than eliminate it, while incurring high overhead.

When tracing interprocedurally, contexts contain valuable information recording

the call sites the tracing was triggered by and will return to. Thus many analyses

try to preserve this information by applying a local heap model [12] where there

is no global data flow. One such analysis is the context-free-language reachability

analysis [5] where the heap is modeled with a context-free language and the context

is modeled with call strings.

3.0.2 The CFL Approach

We now describe how the context-free-language reachability analysis (CFL) [5]

with call-string-based context-sensitivity is limited by its need to truncate call strings

in the presence of recursion, which incurs spurious data flows.

In CFL, a bidirectional data flow is modeled with a string s which is a mixture

of two substrings sF and sC where sF represents part of the flow through the heap

and sC represents the interprocedural part of the flow. For example, the bidirectional
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data flow from variable i2 in Fig. 3.3 is modeled by the string s = “(30·[[i]·[arr·)30 ·

(29·]arr·][i]·)29” where sF = “[[i]·[arr·]arr·][i]” and sC = “(30·)30 · (29·)29”. The symbol

“(30” at arrow a represents a downward data flow from caller to callee at the call site of

line 30. Correspondingly the symbol “)30” at arrow d represents an upward data flow

from callee to caller at the call site of line 30. The symbol “[arr” at arrow c represents

the alias relation between expressions a and this.arr at line 7. Correspondingly

“]arr” at arrow f represents the alias relation between expressions this.arr and a at

line 10.

v_main

i1=3

i2

a

x

d: )30

30: i2=v_main.get(0);

f: ]arr  10: a=this.arr;

ret

b: [[i]  8: return a[i];

c: [arr  7: a=this.arr;

a

g: ][i]

11: a[i]=x;

a: (30

30: i2=v_main.get(0);

e: (29

29: v_main.set(0,i1);
this

h: )29

29: v_main.set(0,i1);

this

Fig. 3.3.: Example of realizable data flow from i2. The nodes represent local variable
values1. Solid/dashed arrows represent forward/backward transitions between values
incurred by the labeled statements.

The combined data flow is realizable only if sF ∈ LF and sC ∈ LC where LF and

LC are two context-free languages defined by the following grammars.

LF → [f LF ]f | [g LF ]g | ... | ε where f, g ∈ Field

LC → (i LC )i | (j LC )j | ... | ε where i and j are call sites

In Fig. 3.3, for example, the string s of the flow consists of sC = “(30·)30 ·(29·)29” ∈

LC and sF = “[[i]·[arr·]arr·][i]” ∈ LF . Hence the flow is realizable.

1Array elements are modeled with a pseudo field denoted by [i] and return statements are modeled
with assignments to the pseudo variable ret.
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A variable may point to certain value if there is a realizable data flow between

them. In Fig. 3.3, for example, i2 may point to “3” because of the realizable data

flow. Given a variable x as a query, the CFL analysis returns all x’s possible values

reachable via realizable data flows.

The language LC essentially encodes contexts with call-strings. As a top-down

approach to interprocedural analysis, call-string-based context representation requires

truncation [15] to stay bounded in the presence of recursive method calls, and this

truncation leads to precision loss. Consider the example in Fig. 3.4. Because of

truncation, the recursive call in the method has the same effect as GOTO, i.e., jumping

to the entry of foo() without extending the call string, and generates spurious data

flows between x and y.

void foo(T x, T y, int c) {

if (c == 0) return;

foo(y, x, c--); // swap x and y

}

Fig. 3.4.: Example code for recursive invocation.

To avoid precision loss from truncation, many interprocedural analyses are summary-

based (also known as functional in [16]) rather than call-string based. One such

approach is FlowDroid [17] – a popular taint analysis tool.

3.0.3 Bottom-Up Summary-Based Approach

We next show bottom-up built method summaries contain excessive side-effects,

that is irrelevant to the flow of interest and incurs unnecessary analysis cost. To

replace call-string based approach with summary-based one, local heap needs to be

modeled separately from contexts, unlike CFL where the sub-string modeling heap

and that modeling context are mixed in the data flow. In [18] and many other

summary-based analysis, local heap is modeled with access paths where each access
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path α is a local variable x followed by a field path δ (written x.δ) and each field path

δ is a (potentially empty) sequence of field names, as defined below:

(concrete) field path δ ∈ ∆ = OField∗ // The empty path is denoted by ε

(concrete) access path α, β, x.δ ∈ AP = V ar ×∆

concatenation · .· : ∆×∆→ ∆ s.t. 〈f1, ..., fm〉.〈g1, ..., gn〉 , 〈f1, ..., fm, g1, ..., gn〉

concatenation · .· : AP ×∆→ AP s.t. 〈r, δ〉.δ′ , 〈r, δ.δ′〉

An access path (e.g. this.arr[i]) represents the memory location to which the

access path evaluates as an expression at runtime. The approach in [18] builds side-

effect summary of each method describing its read and write sets in terms of access

paths rooted in the method’s parameters and returned values as shown in Table 3.1.

Then there is no need to propagate callers’ data flow down to callees, as a callee’s

side-effects are modeled with its summary, and no need to model contexts with call-

strings.

Table 3.1.: Side-effect summaries of Vector’s methods.

Method Read Set Write Set

Vector() ∅ {this.arr}
Vector.get(i) {this.arr, this.arr[i]} ∅
Vector.set(i,x) {this.modCount, this.arr} {this.modCount, this.arr[i]}

However, by building a callee’s side-effect summary in a solely bottom-up way, the

summary has to conservatively include all side-effects of the callee, including those

uninteresting to callers. For example, the access path this.modCount in read/write

sets of Vector.set(i,x) is irrelevant to the flow of i1 at the call site of line 29. To

avoid including irrelevant information in the callee’s summary, on-demand building

of callee’s summary has been proposed. One such approach is FlowDroid [17] – a

popular security analysis tool based on taint analysis.
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3.0.4 The FlowDroid Approach

Next, we discuss FlowDroid – a taint analysis tool implementing an on-demand

summary-based approach to heap analysis. To replace the call-string based approach

with a summary-based one, the heap needs to be modeled separately from contexts,

unlike CFL where the sub-strings modeling heap and that modeling context are mixed

in with the data flow. In FlowDroid and many other summary-based analyses, the

heap is modeled with access paths where each access path α is a local variable x

followed by a field path δ (written x.δ) and each field path δ is a (potentially empty)

sequence of field names, as defined below:

concrete field path δ ∈ ∆ = OField∗ // The empty path is denoted by ε

concrete access path α, β, x.δ ∈ AP = V ar ×∆

An access path (e.g. this.arr[i]) represents the value to which the path evaluates

as an expression at runtime. Given certain method, FlowDroid builds a summary

of it describing tainted output values given certain tainted input value. Both tainted

input and output values are represented by access paths rooted in the method’s

parameters or returned value. In Fig. 3.5b for example, given a tainted input value

x at arrow b′, the execution of set() taints the value this.arr[i] as an output (arrow

f ′). The meaning of the data flows is given in Chapter 4.

Method summaries are context-free, which means a method summary can be

universally applied to any call site of the method, like a function, hence functional.

For example, at the call site of line 29 where i1 is tainted (arrow a in Fig. 3.5a),

applying the summary of set() gives us another tainted value v main.arr[i] at arrow

f . Thus there is no need to maintain contexts when building a method’s summary

and no need to model contexts with call-strings.

Given a tainted source value as a query, FlowDroid returns all tainted sinks

as potential leaks. There is, however, no existing formalization of the semantics

underlying FlowDroid in the literature to verify its soundness. We now formulate
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27: v_main = new Vector();

29: v_main.set(0, i1);

28: i1 = 3;

b: i1

a: i1

g: v_main.arr[i]

f: v_main.arr[i]

(a) Data flow with respect to the query i1.

11: a[i] = x;

10: a = this.arr;

e: this.arr[i]

<set>: this=... x=...

b': x

f': this.arr[i]

d: a[i] c: x

(b) Data flow with respect to the tainted input value x.

Fig. 3.5.: Example illustrating FlowDroid. The solid/dashed arrows are explained
in Chapter 4.
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one below and use it to expose a loophole in the design of FlowDroid as a security

analysis tool (Section 4.0.3).
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4. CLIPPER – A NEW ON-DEMAND HEAP ANALYSIS

4.0.1 A Denotational Semantics for Procedure Alias Effect

With a forward taint analysis and a backward on-demand alias analysis integrated

[17], FlowDroid essentially implements a bidirectional analysis capable of collecting

all alias access paths referring to the tracked value.

Given a semantic domain consisting of all alias classes where an alias class A is a

set of access paths alias with each other, as defined below:

alias class A ∈ AClass = 2AP

concatenation · .· : AClass×∆→ AClass s.t. A.δ , {α.δ | α ∈ A}

concatenation · .· : AClass× 2∆ → AClass s.t. A.D , {α.δ | α ∈ A ∧ δ ∈ D}

The denotational semantics of intraprocedural statements is defined below, where

the effect of each statement stmt is denoted by a function [[stmt]]A ∈ AClass →

AClass extending an alias class A (hence the “A ∪” component) with new may-alias

access paths implied by that statement.

[[l: x = y]]A(A) := A ∪ {y.δ | x.δ ∈ A} ∪ {x.δ | y.δ ∈ A}

[[l: x = y.f ]]A(A) := A ∪ {y.δf | x.δ ∈ A} ∪
⋃
δ′∈δf

{x.δ′ | y.δ ∈ A}

[[l: y.f = x]]A(A) := A ∪ {y.δf | x.δ ∈ A} ∪
⋃
δ′∈δf

{x.δ′ | y.δ ∈ A}

where δf := f.δ and δf :=

{δ
′} if δ = f.δ′

∅ otherwise
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The function δf “cons” the field f to the field path δ (e.g. (arr[i])names =

names.arr[i]) and the inverse function δf returns the tail of the field path δ if its

head matches the field f (e.g. (names.arr[i])names = {arr[i]}). The semantic func-

tions symmetrically apply to access paths rooted at both left- and right-hand sides of

the statements, essentially renders the semantics bidirectional (or flow-insensitive).

The effect summary of a method body, e.g. [[body]]A ∈ AClass → AClass, is

defined by repeatedly applying the extending function [[stmt]]A of each statement

stmt ∈ body, i.e.,

[[body]]A := FIX λd. λA. A ∪
⋃

stmti∈body

d ◦ [[stmti]]
A(A)

Example 1 Given an initial alias class A={retget} within method Vector.get(),

the execution of “return a[i]” generates:1

A1=[[return a[i]]]A(A)=[[retget=a[i]]]A(A)={retget, a[i]}

Similarly the execution of “a=this.arr” further generates:

A2=[[a=this.arr]]A(A1)={retget, a[i], thisget.arr[i]}

Since further iterations add no new alias access paths, the effect summary of exe-

cuting the method is the extended alias class [[bodyget]]
A(A)={retget, a[i], thisget.arr[i]}.

For any statement “l: x=p(y0, . . . , yk)” where the declaration of p is

t p(t0 h0, . . . , tk hk){bodyp}
1method returns are modeled as assignments to variable “ret”
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the following domains and helper functions are defined:

downward visible access paths AP ↓l = x.∆ ∪
⋃

0≤i≤k

yi.∆

upward visible access paths AP ↑p = retp.∆ ∪
⋃

0≤i≤k

hi.∆

downward mapping ·↓lp: AP
↓
l → AP ↑p

s.t. ∀δ ∈ ∆ : x.δ↓lp= retp.δ ∧ ∀i ∈ [0, k] : yi.δ↓lp= hi.δ

upward mapping ·↑lp: AP ↑p → AP ↓l

s.t. ∀δ ∈ ∆ : retp.δ↓lp= x.δ ∧ ∀i ∈ [0, k] : hi.δ↓lp= yi.δ

downward mapping ·↓lp: AClass→ AClass

s.t. ∀A ∈ AClass : A↓lp= map2(·↓lp)(A ∩ AP
↓
l )

upward mapping ·↑lp: AClass→ AClass

s.t. ∀A ∈ AClass : A↑lp= map(·↑lp)(A ∩ AP ↑p )

A method call x=p(y) denotes a function extending the caller’s alias class A with

alias access paths implied by the body of the callee bodyp:

[[l: x=p(y)]]A(A) := A ∪ ([[bodyp]]
A(A↓lp))↑lp

Given a caller alias class A at call site x=p(y), A↓ collects a subset of A visible to

callee (i.e., those access paths rooted at yi and x) and maps the subset to callee’s scope

(i.e., mapping yi.δ to hi.δ and x.δ to retp.δ). Then [[bodyp]]
A(A ↓) returns the effect

summary of callee – an alias class generated by extending A↓. Then ([[bodyp]]
A(A↓))↑

instantiates this callee effect by collects a subset of it visible to the caller (i.e., those

access paths rooted at hi and retp) and maps the subset to caller’s scope (i.e., mapping

hi.δ to yi.δ and retp.δ to x.δ) – a process similar to effect masking [19].

2where map(f)(M) , {f(x) | x ∈M}
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Example 2 Given the caller alias class A = {i2} at line 30 in our example (thus

A↓= {retget}), the effect summary of the callee is

[[bodyget]]
A(A↓) = {retget, a[i], thisget.arr[i]}

as shown in Example 1, and the instantiation of the effect summary is ([[bodyget]]
A(A↓

))↑= {i2, v main.arr[i]}.

In the next section, we propose Clipper – a new on-demand heap analysis based

on this semantics. We then show a loophole in the design of FlowDroid by com-

paring it with Clipper.

4.0.2 A Specification based on Deduction Rules

In this section, a new on-demand heap analysis – Clipper – is specified with a

set of deduction rules encoding FlowDroid’s semantics (Chapter 4). A loophole

that undermine FlowDroid’s soundness as a security analysis tool is exposed by

comparing FlowDroid with Clipper (Section 4.0.3). Handling of static fields and

its generalization are introduced in Section 4.0.4.

Similar to an equivalence class, an alias class can be represented by one of its

members – its representative. Thus the alias class containing an access path α is

denoted by [α]. The membership relation β ∈ [α] is encoded by the fact A(α, β), and

thus the fact A(α, α) holds trivially. According to the semantics defined in Section

4.0.1, an on-demand heap analysis can be specified with deduction rules for inferring

the alias class [α] of certain access path α given as a query, i.e., deriving all facts of

the form “A(α, )”. We call this rule-based on-demand heap analysis Clipper.

In Clipper, program elements are encoded with a set of base facts defined in Fig.

4.1 and a query α is encoded as the initial (trivially holding) fact A(α, α).



26

l:
x

=
y
⇒

A
ss
ig
n

(l
,x
,y

)

l:
x

=
y
.f
⇒

O
L
oa
d
(l
,x
,y
,f

)

l:
x

=
f
⇒

S
L
oa
d
(l
,x
,f

)

l:
x

=
n
ew

t
⇒

A
ll
oc

(l
,x

)

l:
x
.f

=
y
⇒

O
S
to
re

(l
,x
,f
,y

)

l:
f

=
x
⇒

S
S
to
re

(l
,f
,x

)

l:
x

=
p(
y 0
,.
..
,y
k
)
⇒

    V
C
a
ll

(l
,y

0
,p

)
//

v
ir

tu
al

ca
ll

on
re

ce
iv

er
y 0

C
a
ll
A
rg

(l
,i
,y
i)

fo
r

an
y
i
∈

[0
,k

]
//

it
h

ar
gu

m
en

t
is
y i

C
a
ll
R
et

(l
,x

)
//

ca
ll

re
tu

rn
s

va
lu

e
to
x

l:
re

tu
rn
z

in
m

et
h
o
d
p
⇒

A
ss
ig
n

(l
,r
et
p
,z

)
//

m
et

h
o
d

re
tu

rn
s

ar
e

m
o
d
el

ed
as

as
si

gn
m

en
ts

to
va

ri
ab

le
“r
et

”

t
p(
t 0
h

0
,.
..
,t
k
h
k
){
bo
d
y p
}
⇒

P
a
ra
m

(p
,i
,h

i)
fo

r
an

y
i
∈

[0
,k

]

F
ig

.
4.

1.
:

T
h
e

b
as

e
fa

ct
s

re
p
re

se
n
te

d
b
y

th
e

p
ro

gr
am

el
em

en
ts

.

F
or

v
ir

tu
al

ca
ll

s,
th

e
fi

rs
t

ar
gu

m
en

t
y 0

d
en

o
te

s
th

e
re

ce
iv

er
o
n

e.



27

The intraprocedural semantic functions can be encoded with the following rules.

[[l: x = y]]A ⇒

A(α, y.δ) :- A(α, x.δ), Assign(l, x, y).

A(α, x.δ) :- A(α, y.δ), Assign(l, x, y).

(ASSIGN)

[[l: x = y.f ]]A ⇒

A(α, y.δf ) :- A(α, x.δ), OLoad(l, x, y, f).

A(α, x.δ′) :- A(α, y.δ), OLoad(l, x, y, f), δ′∈δf .
(OLOAD)

[[l: y.f = x]]A ⇒

A(α, y.δf ) :- A(α, x.δ), OStore(l, y, f, x).

A(α, x.δ′) :- A(α, y.δ), OStore(l, y, f, x), δ′∈δf .
(OSTORE)

Example 3 The derivation corresponding to the evaluation in Example 1 is shown

in Fig. 4.4b, which can be visualized as data flows in Fig. 4.3b, with each state-

ment representing the firing of the corresponding rule and the incoming/outgoing

flows representing the condition/consequent alias facts of the firing. For example,

the initial alias fact A(ret, ret) triggers the firing of rule OLOAD at line 8, generat-

ing A(ret, a[i]) at arrow c. Similarly, the new fact triggers the firing of rule OLOAD

again at line 7, generating A(ret, this.arr[i]) at arrow d. Another derivation for the

alias of this.arr[i] in Vector.set() is visualized in Fig. 4.3a. As shown in the figure,

derivations are essentially bidirectional.

The encoding of interprocedural semantics with rules entails a more theoretical

construction.

Theorem 4.0.1 Given the complete lattice (L,v,t,u,⊥,>) where L = AClass, v

is ⊆, t is ∪, u is ∩, ⊥ = ∅, > = AP , we have

1. ∀stmt: [[stmt]]A is completely additive, i.e.,

∀A ⊆ AClass: [[stmt]]A(
⊔
A) =

⊔
A∈A

{[[stmt]]A(A)}
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27: v_main =new Vector();

29: v_main.set(0, i1);

28: i1 = 3;

30: i2 =
(Integer)v_main.get(0);

l: i1

f: v_main.arr[i]

a: i2

b: i2

g: v_main.arr[i]

m: v_main.arr[i]

k: i1

e: v_main.arr[i]

(a) The derivation for facts of the form
A(i2, ).

4: a = new Object[10];

5: this.arr = a;

o: a[i]

<init>: this = ...
m': this.arr[i]

n: this.arr[i]

(b) The derivation for facts of the form
A(this.arr[i], ).

Fig. 4.2.: Visualizing derivations as data flows. The derived facts A(α,X) are visu-
alized as arrows labeled by X. Solid and dashed arrows are forward and backward
data flows, respectively.

11: a[i] = x;

h: this.arr[i]

10: a = this.arr;

i: a[i]

j: x

<set>: this=... x=...
g': this.arr[i]

k': x

(a) The derivation for facts of the form
A(this.arr[i], )

7: a = this.arr;

b': ret
8: return a[i];

c: a[i]

d: this.arr[i]

<get>: this = ...
e': this.arr[i]

(b) The derivation for facts of the form
A(ret, )

Fig. 4.3.: Visualizing derivations as data flows. The derived facts A(α,X) are visu-
alized as arrows labeled by X. Solid and dashed arrows are forward and backward
data flows, respectively.
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2. ∀body: [[body]]A is completely additive, i.e.,

∀A ⊆ AClass: [[body]]A(
⊔
A) =

⊔
A∈A

{[[body]]A(A)}

Proof For intraprocedural statements, (1) can be proved via a case-by-case analysis

of the semantic function. For method calls, the proofs of (1) and (2) depend on each

other, hence needs to proceed by coinduction [20].

Assuming (1) holds, the proof of (2) is similar to the one of Lemma 5.44 in [21].

We may first prove Hn⊥ is completely additive, then FIX H = t{Hn⊥ | n ≥ 0} is

completely additive. Then assuming (2) holds, it follows that

[[l: x=p(y)]]A(∪Ai) = (∪Ai) ∪ ([[bodyp]]
A((∪Ai)↓))↑

= (∪Ai) ∪ (∪[[bodyp]]
A(Ai ↓))↑

= (∪Ai) ∪
⋃

([[bodyp]]
A(Ai ↓))↑

=
⋃

Ai ∪ ([[bodyp]]
A(Ai ↓))↑

= ∪ [[x=p(y)]]A(Ai)

This completes the proof.
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Given the complete additivity of [[bodyp]]
A (Theorem 4.0.1), it follows that

[[l: x=p(y)]]A(A)

:= A ∪ ([[bodyp]]
A(A↓))↑

= A ∪ ([[bodyp]]
A({hi.δ | yi.δ ∈ A} ∪ {retp.δ | x.δ ∈ A}))↑

(by definition of A↓)

= A ∪ (
⋃

yi.δ∈A

[[bodyp]]
A({hi.δ}) ∪

⋃
x.δ∈A

[[bodyp]]
A({retp.δ}))↑

(by additivity of [[bodyp]]
A)

= A ∪



{yj.δj | yi.δi ∈ A ∧ hj.δj ∈ [[bodyp]]
A({hi.δi})} (a)

{x.δ | yi.δi ∈ A ∧ retp.δ ∈ [[bodyp]]
A({hi.δi})} (b)

{yi.δi | x.δ ∈ A ∧ hi.δi ∈ [[bodyp]]
A({retp.δ})} (c)

{x.δ2 | x.δ1 ∈ A ∧ retp.δ2 ∈ [[bodyp]]
A({retp.δ1})} (d)

(by definition of A↑)

Each callee-visible access path is a new query to the callee and there are two kinds

– those rooted at parameters hi (cases a and b), and those rooted at returned value

retp (cases c and d). For each query there are two kinds of caller-visible access paths

in the callee effect summary – (1) those rooted at parameters hi (cases a and c); and
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(2) those rooted at returned value retp (cases b and d). There are four cases in total,

which are encoded correspondingly with the following rules:

[[l: x=p(y)]]A ⇒

A(α, yj.δj) :- A(α, yi.δi), CallArg(l, i, yi), CallArg(l, j, yj),

Param(p, i, hi), Param(p, j, hj), A(hi.δi, hj.δj). (a)

A(α, x.δ) :- A(α, yi.δi), CallArg(l, i, yi), CallRet(l, x),

Param(p, i, hi), A(hi.δi, retp.δ). (b)

A(α, yi.δi) :- A(α, x.δ), CallRet(l, x), CallArg(l, i, yi),

Param(p, i, hi), A(retp.δ, hi.δi). (c)

A(α, x.δ2) :- A(α, x.δ1), CallRet(l, x), A(retp.δ1, retp.δ2). (d)

(CALL)

Observation All derived facts are of the form “A(α, )” and all rules are guarded

by existing facts of the form A(α, ) where the first bound argument α is the query

to answer.

Such facts serve a similar role as magic facts implying that “The problem of deter-

mining alias class of α arises” [3]. Given this, the analysis may leverage the magic-sets

approach [3] to build method effect summaries (i.e., alias classes) on demand, by de-

riving facts to answer certain query only. Given a query “α”, the initial magic fact

A(α, α) is added to the derivation. Additional magic facts initiating analysis on

callees are generated by following rules:

l: x=p(y)⇒ A(hi.δi, hi.δi) :- A(α, yi.δi), CallArg(l, i, yi), Param(p, i, hi). (e)

A(retp.δ, retp.δ) :- A(α, x.δ), CallRet(l, x). (f)
(CALL)

Example 4 In the example program, the caller fact A(i2, i2) initiates a magic fact

A(ret, ret) on callee Vector.get() at line 30 by rule CALL(f), as shown by the

derivation in Fig. 4.4a which is visualized by arrows b and b’ in Fig. 4.2. This

callee fact further triggers the derivation of a callee effect summary A(ret, this.arr[i]),
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as shown in Fig. 4.3b. Then rule CALL(c) instantiates the summary and further

derives the caller fact A(i2, v main.arr[i]) as shown by the derivation in Fig. 4.4c

and visualized by arrow e in Fig. 4.2a. According to rule CALL(e), this caller fact

further triggers the analysis of Vector.set() at line 29, as visualized by the arrow

g′. The derived callee summary A(this.arr[i], x) (Fig. 4.3a) is instantiated by rule

CALL(a) to derive another caller fact A(i2, i1), as visualized by arrow k in Fig. 4.2a.

4.0.3 A Loophole in FlowDroid

A comparison between Clipper and FlowDroid reveals a loophole in the lat-

ter. Although based on a flow-insensitive semantics, the goal of FlowDroid is to

implement a flow-sensitive analysis – a forward taint analysis to be specific – with an

on-demand backward alias analysis piggybacked on it. Both forward/backware anal-

yses are implemented in a framework for solving interprocedural finite distributive

subset (IFDS ) problems [22]. One shortcoming of this design is that the alias anal-

ysis is essentially intraprocedural-only because backward interprocedural data flows

from callers to callees are actually propagated by the forward taint analysis, unlike

Clipper where interprocedural data flows can be propagated in both directions – ei-

ther forward through call arguments (by rule CALL(e)) or backward through returned

value (by rule CALL(f)). Our next example in Fig. 4.5 illustrates Clipper has the

ability to handle a case missed by FlowDroid.

In this example, a backward data flow in bar() needs to be triggered by the alias

analysis, as indicated by arrow c’ in Fig. 4.5b. However, because the alias analysis of

FlowDroid triggers forward taint analysis in bar() only, further analysis of bar()

is omitted and the leak at line 4 is missed, leading to a false negative. In contrast, rule

CALL(f) of Clipper will trigger the analysis of bar() by generating the magic fact

A(ret.f.h, ret.f.h). The analysis of bar() reveals the alias fact A(ret.f.h, ret.g.h)

(along the path c′ → d → e → f → g′) within bar() and thus the alias fact

A(w, x.g.h) at the caller which further exposes the leak at arrow h.
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c: x.f.h
1: x = bar();

3: x.f.h = w;

a: w

4: print(x.g.h);

2: w = "secret";

h: x.g.h

b: x.f.h
g: x.g.h

(a) The derivation for facts of the form
A(w, ).

2: y.g = z;

3: return y;

d: y.f.h

f: y.g.h
c': ret.f.h

g': ret.g.h

1: z = y.f;

e: z.h

(b) The derivation for facts of the form
A(ret.f.h, )

Fig. 4.5.: Example illustrating the loophole in FlowDroid. The forward data flows
denoted by solid arrows are implemented by the taint analysis while the backward data
flows denoted by dashed arrows are implemented by the on-demand alias analysis.
The data flows missed by FlowDroid are marked in red.
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The root cause of the problem is the inconsistency between the flow-sensitivity

of the analysis and the underlying semantics, i.e., FlowDroid tries to implement a

flow-sensitive analysis over a flow-insensitive semantics (Section 3.0.4). In Chapter

6 we propose an example application demonstrating a sound way to integrate the

flow-insensitive Clipper into a flow-sensitive analysis.

4.0.4 Static Fields and Jumping

Static fields represent global variables. The original description of FlowDroid han-

dles static field as local variables [17] and load/store on static fields are handled in a

similar way as assigment on local variables given the following generalized notation

of access path:

x.δ, f.δ ∈ AP = (V ar ∪ SField)×∆

where the new form of access path f.δ denotes those rooted at static field f. Then the

semantic functions with respect to load/store on static fields amount to assignment

on global variables:

[[l: x = f]]A(A) := A ∪ {f.δ | x.δ ∈ A} ∪ {x.δ | f.δ ∈ A}

[[l: f = x]]A(A) := A ∪ {f.δ | x.δ ∈ A} ∪ {x.δ | f.δ ∈ A}

Since static fields are globally visible in all methods, the functions A ↓ and A ↑

are extended to:

A↓= {hi.δ | yi.δ ∈ A} ∪ {retp.δ | x.δ ∈ A} ∪ {f.δ | f.δ ∈ A}

A↑= {yi.δ | hi.δ ∈ A} ∪ {x.δ | retp.δ ∈ A} ∪ {f.δ | f.δ ∈ A}

which increase the analysis complexity – more rules to encode [[l: x=p(y)]]A and more

facts derived.
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Observation Different from local variables which only exist in the method where

they are defined, static fields represent global variables which are valid in all methods,

as are the access paths rooted at static fields. This causes a “jumping” effect when

analyzing load/store on static fields – a load/store on static field f may interfere with

any other load/store on f. Thus the task of computing the alias class [x.δ] of a local

query (local-variable-rooted access path like x.δ) can be delegated to computing the

alias class [f.δ] of a global query (static-field-rooted access path like f.δ) by generating

magic facts of the form A(f.δ, f.δ) indicating “the problem of determining alias class

of f.δ arises”, as shown by Rules SLOAD(a) and SSTORE(a) below.

[[l: x = f]]A ⇒

 A(f.δ, f.δ) :- A(α, x.δ), SLoad(l, x, f). (a)

A(f.δ, x.δ) :- A(f.δ, f.δ), SLoad(l, x, f). (b)
(SLOAD)

[[l: f = x]]A ⇒

 A(f.δ, f.δ) :- A(α, x.δ), SStore(l, f, x). (a)

A(f.δ, x.δ) :- A(f.δ, f.δ), SStore(l, f, x). (b)
(SSTORE)

These magic facts trigger further analysis at interfering load/store on f (hence

“jumping”), as shown by Rules SLOAD(b) and SSTORE(b).

Similarly, a magic fact A(f.δ, f.δ) holds at all call sites and hence queries for callee

summaries of the form A(f.δ, β), which should be instantiated at all call sites as shown

below.

l: x=p(y)⇒
. . . (a− f)

A(f.δ, yi.δ
′) :- A(f.δ, hi.δ

′), Param(p, i, hi), CallArg(l, i, yi). (g)

A(f.δ, x.δ′) :- A(f.δ, retp.δ
′), CallRet(l, x). (h)

(CALL)

To skip expensive local propagation of alias facts for scalability, a similar approach

can be generalized to object fields with the notation of access path further generalized

below

x.δ, f.δ, f.δ ∈ AP = (V ar ∪ SField ∪OField)×∆
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Given a relation Jump specifying the set of object fields to be handled like static

fields, the rules corresponding to load/store of object field can be modified as follows:

l: x=y.f ⇒

A(α, y.f.δ) :- A(α, x.δ), OLoad(l, x, y, f),Jump(f). (a)

A(α, x.δ′) :- A(α, y.δ), OLoad(l, x, y, f), δ′∈δf ,Jump(f). (b)

A(f.δ, f.δ) :- A(α, x.δ), OLoad(l, x, y, f),Jump(f). (c)

A(f.δ, x.δ) :- A(f.δ, f.δ), OLoad(l, x, y, f),Jump(f). (d)

(OLOAD2)

l: y.f=x⇒

A(α, y.f.δ) :- A(α, x.δ), OStore(l, y, f, x),Jump(f). (a)

A(α, x.δ′) :- A(α, y.δ), OStore(l, y, f, x), δ′∈δf ,Jump(f). (b)

A(f.δ, f.δ) :- A(α, x.δ), OStore(l, y, f, x),Jump(f). (c)

A(f.δ, x.δ) :- A(f.δ, f.δ), OStore(l, y, f, x),Jump(f). (d)

(OSTORE2)

For fields excluded from the relation Jump, rules OLOAD2(a-b) and OSTORE2(a-

b) handle their loads and store as usual. For fields included in Jump, rules OLOAD2(c-

d) and OSTORE2(c-d) handle their loads and stores like static fields.

Example 5 Given a set of jumping fields Jump = {names} and the access path

v names.arr[i] at the load from the names field at line 23 (arrow d in Fig. 4.7), it

“jumps” to

1. the store at line 18 as derived in Fig. 4.6a and visualized by arrow e in Fig.

4.7;

2. the load at line 20 as derived in Fig. 4.6b and visualized by arrow g in Fig. 4.7.

A field-rooted access path like names.arr[i] essentially over-approximates the set

of variable-rooted ones like x.δ.names.arr[i], had the access path v names.arr[i] been
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propagated locally at line 23. This may introduce spurious facts inferred but will not

affect the soundness of the analysis.

In our experiments, only instance fields defined outside library packages are jumpable

and we identify such library packages with their names, including “java.lang.*” and

“java.util.*”.

4.1 Access Path Abstraction

In real-world object-oriented programs, recursive data structures and abstract

data types are two most commonly used programming constructs. An Abstract Data

Type (ADT ) is an interface specification of classes, i.e., a description of the data

they represent and the permissible operations (i.e., methods) on these data [23]. For

example, the List interface defined in Fig. 4.8, formed by its permissible methods

get() and set(), is an example of an ADT.

interface List {

Object get(int i);

void set(int i, Object x);

}

Fig. 4.8.: Example code for List interface.

Both Vector and LinkedList classes implement these methods and thus the List

interface (Fig. 4.9). Particularly, the linked list implemented by the LinkedList class

is a commonly used recursive data structure.

These two programming constructs pose challenges to scalability of access-path-

based heap model. An access path abstraction mechanism to automatically overcome

these challenges is introduced in the next two sections.
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1 class Vector implements List {...}

2 class Node {Node next; Object e;}

3 class LinkedList implements List {

4 Object get(int i) {

5 Node n = this.head;

6 for(; i>0; i--) {n = n.next;}

7 return n.e;}

8 void set(int i, Object x) {

9 Node n = this.head;

10 for(; i>0; i--) {n = n.next;}

11 n.e = x;}

12 }

13 class AddrBook {

14 List names;

15 AddrBook(boolean useVector) {

16 if(useVector) {this.names = new Vector ();}

17 else {this.names = new LinkedList ();}}

18 }

Fig. 4.9.: Example code for illustrating access path abstraction.

,
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4.1.1 Cyclic Pattern Reduction

Recursive data structures are usually accessed with recursive program constructs

such as loops and recursive method calls. In LinkedList.set() for example, accesses

to list elements start from the head node (line 9) and advance from one node to

its successor in each iteration of the loop (line 10). Such iterations cause access

paths to grow indefinitely (arrow dk in Fig. 4.10), generating an unbounded set

of method summaries {A(x, α) | α ∈ this.head(.next)∗.e}, where the access path

pattern this.head(.next)∗.e represents the infinite set of access paths {this.head.e,

this.head.next.e, this.head.next.next.e, ...}.

9: for(…) n=n.next;

<set>: this=... x=...

8: n=this.head;

a: x

b: x

e: this.head(.next)*.e

f: this.head(.next)*.e

10: n.e=x;

c: n.e

d0: n.next.e
d1: n.next.next.e
...

Fig. 4.10.: Unbounded access paths generated by a loop iteratively.

Accesses to recursive data structures can also be implemented with recursive

method calls. In an alternative linked list implementation in Fig. 4.11, accesses to

list elements are performed by recursively invoking (line 8) an internal setter method

setE() which advance from one node to its successor at line 7. By applying the

generated method summary repeatedly at the recursive call site, the generated ac-

cess paths may grow indefinitely, as shown in Fig. 4.12. The flow path through

the if branch generates the initial summary A(x, n.e) (Fig. 4.12a). Instantiating

this summary at the recursive call in the else branch generates the second summary
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1 class LinkedList {

2 void set(int i, Object x) {

3 Node n = this.head;

4 setE(n,x,i);}

5 void setE(

6 Node n, Object x, int i) {

7 if(i>0) {Node n1 = n.next;

8 setE(n1,x,i-1);}

9 else if(i==0) {n.e = x;}}

10 }

Fig. 4.11.: Traversing recursive data structure via recursive method calls.

,
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<setE>: n=... x=...
a: x

b: x

d: n.e

9: n.e = x;

c: n.e

(a) Generating method summary (x, n.e)
from the if branch.

8: setE(n1,x,i-1);

<setE>: n=... x=...

7: n1 = n.next;

a: x

e: n1.e

f: n.next.e

g: n.next.e

b: x

c: x

d: n1.e

(b) Applying the summary (x, n.e) to the
recursive call within the else branch to
generate new summary (x, n.next.e).

8: setE(n1,x,i-1);

<setE>: n=... x=...

7: n1 = n.next;

a: x

e: n1.next.e

f: n.next.next.e

g: n.next.next.e

b: x

c: x

d: n1.next.e

(c) Applying the summary (x, n.next.e) to the recursive call within the else branch to
generate new summary (x, n.next.next.e).

Fig. 4.12.: Unbounded access paths generated by recursive method calls.
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A(x, n.next.e) (Fig. 4.12b). Instantiating the second summary generates the third

summary A(x, n.next.next.e) (Fig. 4.12c). Repeating the above process generates

the same unbounded set of method summaries {A(x, α) | α ∈ this.head(.next)∗.e}.

next

ε

.head.e

.e

e

head

Fig. 4.13.: Set of field paths encoded as a DFA.

.head .e

.head .next .e

.head .next .e

.head .next .next .e

Fig. 4.14.: String matching example.

δf :=

{
δ2 if f.δ = δ1.δ2 ∧ δ1 ∈ CY C
f.δ otherwise

δf :=


{δ′} if δ = f.δ′

{δ′.δ | f.δ′ ∈ CY C} if ∃δ′ : f.δ′ ∈ CY C
∅ otherwise

Fig. 4.15.: Modified δf and δf to support cycle reduction.

Denoted as a regular expression, the set of field paths head.(next.)∗e can be en-

coded as the deterministic finite automaton (DFA) [24] in Fig. 4.13, where each state

is labeled with one of the field paths it represents.
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9: for(…) n=n.next;

<set>: this=... x=...

8: n=this.head;

a: x

b: x

e: this.head.e

f: this.head.e

10: n.e=x;

c: n.e

d: n.next.e → n.e

Fig. 4.16.: Bounded access paths abstracted via cycle reduction.
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The cyclic pattern “next” in the DFA can be extracted from the aforementioned

set of method summaries {A(x, α) | α ∈ this.head(.next)∗.e}, which implies the alias

relation among the access paths “this.head(.next)∗.e”. Then detecting the cyclic

pattern can be generalized to an approximate string matching problem (also known

as edit distance problem in [25]), where each field path is denoted by a string and each

field in the field path is denoted by a character in the string. As shown in Fig. 4.14,

the inserted part “next” between matching parts constitutes the cyclic pattern. This

inference method is both general and effective. It doesn’t require extra conditions on

the program structure such as reducibility or extra analysis to extract this structure

information with interval analysis. In our experiments, it successfully inferred all

cyclic patterns in the Java Class Library and benchmark programs.

Given a set of cyclic patterns CY C ⊆ ∆#, the original definition of δf and δf in

Section 3.0.4 can be modified to encode the transition relation of the corresponding

DFA (Fig. 4.15), i.e., δ
f−→ δf and ∀δ′ ∈ δf : δ′

f−→ δ. Such DFA-based field path

encoding generates only bounded access paths by reducing cycles automatically, as

shown in Fig. 4.16 where CY C = {next}.

4.1.2 Abstract Data Type Based Reduction

ADT s pose another challenge to the scalability of access-path-based analysis be-

cause the same conceptual reference relation can be encoded by different field paths of

different implementations. In Fig. 4.9, for example, the collection of names referenced

via AddrBook.names could be implemented with either Vector or List. Thus the

conceptual reference relation between the AddrBook object and its name objects could

be encoded with either “names.addr[i]” or “names.head.e”, as shown in Fig. 4.17.

The situation becomes worse in real-world programs due to multiple implementations

of the same interface type and nesting of collection types like Map<String,List>.

The reference relation between List objects and their elements can be modeled

with a pseudo field elem (Pseudo fields are denoted in bold face,) which can be
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implemented as field paths arr[i] (by Vector) or head.e (by LinkedList). These field

paths can be automatically extracted from summaries of implementations of the setter

method List.set(i,x), e.g. A(this.arr[i], x) in Fig. 3.5b and A(x, this.head.e) in

Fig. 4.16.

Similarly for the java.util.Map interface, different field paths implementing the

conceptual reference relation between map objects and their keys and values (modeled

with pseudo fields key and value respectively) can be inferred from implementations

of the setter method Map.put(key,value). The set of abstract fields (OField#) is

defined as the union of these pseudo fields and the real fields (Field) defined above,

i.e., f#, g# ∈ OField# = OField∪{elem,key,value}. Then an abstract field path

is a sequence of such abstract fields, i.e., δ# ∈ ∆# = OField#∗.

The pseudo fields and their alternative implementing field paths can be modeled

by production rules (e.g. elem→ arr[i] | head.e,) which can be encoded as pairs in

a relation called ADT , i.e., (f#, δ#) ∈ ADT ⊆ OField# × ∆# if f# → δ#. In our

example, the inferred ADT relation is {(elem, arr[i]), (elem, head.e)}.

The definition of δ#
f and δ#

f
can be further modified to support field path reduction

with respect to the production rules in ADT :

a: name

22: v_names=this.names;

23: name =
(String) v_names.get(i);

d: v_names.arr[i], 
v_names.head.e

<fetch>: this = ...

e: this.names.arr[i], 
this.names.head.e

c: v_names.arr[i], 
v_names.head.e

b: name

Fig. 4.17.: Multiple access paths caused by ADT.

Fig. 4.19 shows the effects of applying ADT -based reduction on our example

analysis.
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δ#
f :=


δ#

2 if f.δ# = δ#
1 .δ

#
2 ∧ δ

#
1 ∈ CY C

f#.δ#
2 if f.δ# = δ#

1 .δ
#
2 ∧ (f#, δ#

1 ) ∈ ADT
f.δ# otherwise

δ#

f
:=



{δ#′} if δ# = f.δ#′

{δ#
1 .δ

#
2 | (f#, f.δ#

1 ) ∈ ADT} if

{
δ# = f#.δ#

2 and

∃δ#
1 : (f#, f.δ#

1 ) ∈ ADT
{δ#′.δ# | f.δ#′ ∈ CY C} if ∃δ#′ : f.δ#′ ∈ CY C
∅ otherwise

Fig. 4.18.: Modified δ#
f and δ#

f
to support ADT -based reduction.

7: a = this.arr;

a: ret
8: return a[i];

b: a[i]

c: this.arr[i] → this.elem

<get>: this = ...
d: this.elem

4: n=this.head;

5: for(...) n=n.next;

d: this.head.e → this.elem

6: return n.e;

<get>: this = ...

a: ret

b: n.e

c: n.next.e → n.e

e: this.elem

a: name

22: v_names =this.names;

23: name =
(String) v_names.get(i);

d: v_names.elem

<fetch>: this = ...

e: this.names.elem

c: v_names.elem

b: name

Fig. 4.19.: Examples of ADT -based field path reduction.
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4.1.3 Soundness of Access Path Abstraction

Given the definitions of abstract fields and field paths above, we further define:

abstract access path α#, β#, 〈x, δ#〉 ∈ AP# = V ar ×∆#

abstract alias class A# ∈ AClass# = 2AP
#

The semantic function [[·]]# for the abstract denotational semantics of our simple

language can be obtained by replacing δf and δf with δ#
f and δ#

f
defined in Fig.

4.18. An extraction function η : AP → AP# to “extract” the abstract access path

representing a given concrete one can be defined by iteratively applying function δ#
fi

on

each field fi of the concrete access path, i.e η(x.f1.f2...fk−1.fk) = x.((((εfk)fk−1
)...)f2)f1 .

Then a Galois connection (AClass,α,γ, AClass#) can be defined as in [20]:

α(A) = {η(α) | α ∈ A} and γ(A#) = {α | η(α) ∈ A#}

Theorem 4.1.1 [[·]]# is a correct upper approximation of [[·]]A.

Proof A case-by-case analysis of the semantic functions of each statement to verify

that

∀stmt: ∀A#: α([[stmt]]A(γ(A#))) v [[stmt]]#(A#)

Next we give two applications of Clipper.
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5. IMPLICIT CONTROL FLOW ANALYSIS

Event-driven frameworks such as Android1 allow clients to register callbacks for var-

ious events. In Fig. 1.4 for example, the framework defines the “paused” event for

activities. Listeners may be registered by clients for such events via the framework

method App.register(). Clients may customize their own event handling methods

by implementing the interface ICallback.onPaused(). In this example, the client

method MyApp.onCreate() registers a customized listener object of type MyCallback,

which is invoked by the framework at line 14.

For scalability purposes, many static analyses such as FlowDroid abstract the

framework part of the program with a simplified model, and the causal relation be-

tween the registration and the callback is modeled as implicit control flow. In Flow-

Droid, for example, such a causal relation is specified manually as the registration/-

callback pair: App.register()→ ICallback.onPaused().

We propose to infer this causal relation automatically with Clipper, as demon-

strated in Fig. 5.1. A query with respect to the callee’s receiver is issued at each

callback edge (e.g. arrow a in Fig. 5.1) within the call-graph where

• The call site is within the framework part, e.g. line 14;

• The callee is a client-defined method, e.g. MyCallback.onPaused().

Then the alias access paths are propagated until reaching a registration edge (e.g.

arrow k) where

• The call site is within the client part, e.g. line 24;

• The callee is a framework method, e.g. App.register().

1https://www.android.com/
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Hence the registration/callback pair App.register()→ ICallback.onPaused()

is exposed.

For each given client part, the inference analysis implemented will automatically

generate a set of registration/callback pairs potentially used by the client. The auto-

matically generated set of pairs can be used as drop-in replacement of the manually

specified one in FlowDroid. Our experimental results show FlowDroid based

on automatically generated registration/callback pairs achieves the same precision as

the one based on manually specified ones.

5.1 Limitation of EdgeMiner

The implicit control flow analysis is initially inspired by EdgeMiner [26]. Same

as the Clipper based implicit control flow analysis in this chapter, EdgeMiner is

used to infer a set of registration-callback pairs. Different from the Clipper based

approach, EdgeMiner applies a field-insensitive heap model, which is one major

drawback of EdgeMiner’s design. Consider the example program in Fig. 5.2 where

a callback object is register indirectly via a Map object. Hence the callback object is

stored to the Map object via the invocation of method Map.put() at line 16 before the

Map object is stored to the field callbacks via the invocation of method register()

at line 17 as shown in Fig. 5.3.

Due to the field-insensitive model applied by EdgeMiner, it will incorrectly infer

the registration site as the invocation of method Map.put() at line 16 rather than

the invocation of method register() at line 17.

The heap model applied by Clipper is access-path based and hence field-

sensitive, which can correctly handle a senario like this.
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1 class Session {

2 Map callbacks;

3 void register(Map cbs) {

4 this.callbacks = cbs;

5 }

6 void flush() {

7 Map cbs = this.callbacks;

8 Listener cb = cbs.get("flush");

9 cb.onFlush ();

10 }

11 }

12 void main() {

13 Session session = openSession ();

14 Map cbs = new HashMap ();

15 Listener cb = new FlushEventListener ();

16 cbs.put("flush", cb);

17 session.register(cbs);

18 session.beginTransaction ();

19 ...

20 }

Fig. 5.2.: Example code where a field-sensitive heap model is needed for implicit
control flow analysis.
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6. DYNASENS – A DEMAND-DRIVEN POINTS-TO

ANALYSIS

As demonstrated in Section 4.0.3, it is unsound to add flow-sensitivity to an analysis

based on an inherently flow-insensitive semantics. However, if focusing on a program’s

effect as sets of alias classes determined by it, as explained in Section 3.0.4, a heap

analysis like Clipper can be used as a slicing analysis : given a query (access path)

α as the slicing criterion, Clipper generates a slice – a subset of the program’s

elements preserving the program’s effect – the alias class of α. The slice can be used

to refine another flow-sensitive analysis – focusing the latter on the program elements

within the slice – thus forming an iterative analysis as a whole [27].

In this chapter, we present DynaSens – a demand-driven approach to automat-

ically refine a (flow-sensitive) points-to analysis by adjusting its context-sensitivity

with Clipper.

6.0.1 Overview of Parametric Points-to Analysis

Within a points-to graph generated by a points-to analysis, objects are modeled

with global names such as V ecname and V ecInt denoting the vectors allocated at line 17

and 27, respectively, and Arr denoting the array allocated at line 4. As an example,

Fig. 3.1 shows part of the data flow generated by a context-insensitive points-to

analysis of the example program in Fig. 1.1. Due to absence of context, the flows

of V ecname and V ecInt merge along paths a → c and b → c respectively, where their

own arrays, denoted by the common name Arr, are modeled as being stored to their

arr field, as shown in the generated points-to graph in the bottom-right corner of

Fig. 3.1. Similarly, due to confluence of these two vectors along paths f → g → l and

h→ j → l, and confluence of the string name and integer 3 along paths e→ g → k
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and i → j → k, both name and 3 are modeled as being stored to Arr at line 11, as

shown in the generated points-to graph.

Finer points-to graphs can be generated by augmenting data flows with contexts.

Smaragdakis et al. developed a parametric points-to analysis which allow manual

specification of different context sensitivities on different program elements [28], so

that a subset of the program elements are analyzed context-sensitively while the

rest are analyzed context-insensitively. Such configurability comes from a parametric

redesign of the points-to analysis rules and the introduction of two new input relations

to configure these rules. The input relations used to configure the analysis are shown

below:

• ObjectToRefine(lalloc): a set of allocation sites (lalloc) where context sensi-

tivity is enabled.

• SiteToRefine(lcall, p): a set of call edges from call sites (lcall) to callees (p)

where context sensitivity is enabled.

The parametric rule handling object allocation is:

V arPointsTo(x, ctx, l, hctx)← Alloc(l, x).

where hctx =

∗ if l /∈ ObjectToRefine

RecordRefined(l, ctx) if l ∈ ObjectToRefine

where an allocation “l: x = new t” generates an abstract object whose quantifying

context hctx may be context insensitive (denoted by “∗”), or a refined context, com-

puted by the function RecordRefined depending on the configuring input relation

ObjectToRefine.

The parametric rule handling call graph building is:



58

CallGraph(lcall, callerCtx, p, calleeCtx)←

Call(lcall, y0, p), PointsTo(y0, callerCtx, lbase, baseHCtx).

where calleeCtx =


∗ if 〈lcall, p〉 /∈ SiteToRefine

MergeRefined(lbase, baseHCtx, lcall, callerCtx)

if 〈lcall, p〉 ∈ SiteToRefine

where an invocation “lcall: x=p(y)” on the receiver object represented by 〈lbase, baseHCtx〉

generates a call edge to callee p, whose quantifying context calleeCtx may be ei-

ther context-insensitive (denoted by ∗), or refined and computed by the function

MergeRefined, depending on the configuring input relation SiteToRefine.

Smaragdakis et al. [28] uses heuristic rules to populate input relationsObjectToRefine

and SiteToRefine to configure the analysis for better precision and scalability.

We propose to populate these input relations with elements from the slice gen-

erated by Clipper as a slicing analysis so that the configuration is guided by the

demand from certain client analysis.

6.0.2 Populating Input Relations

The configuring input relations ObjectToRefine(l) and SiteToRefine(l, p) of the

parametric points-to analysis can be populated from the analysis result of Clip-

per with the following rules, where CallGraph is generated by a bootstrapping

context-insensitive points-to analysis.

ObjectToRefine(l) :- A(α, x.δ), Alloc(l, x).

SiteToRefine(l, p) :- A(α, yi.δ), CallArg(l, i, yi), CallGraph(l, , p, ).

SiteToRefine(l, p) :- A(α, x.δ), CallRet(l, x), CallGraph(l, , p, ).
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In our example program, given the slicing criteria i2 encoded as a query to Clip-

per, the slice includes the following program elements from Fig. 4.4 (and 4.2) (labels

are denoted by line numbers)

ObjectToRefine ={4, 27, 28}

SiteToRefine ={(27, Vector()), (29, Vector.set()), (30, Vector.get())}

Given the above configuration, the refined points-to analysis is shown in Fig. 6.1.

Since the call site at line 27 is determined to be context-sensitive, the callee Vector()

is specialized with the receiver V ecInt as its context. So is the array ArrInt allocated

within it at line 4. Thus the context-sensitive flows b, c2, and d2 are separated from

the context-insensitive ones a, c1, and d1. Similarly, since the call site at line 29 is

determined to be context-sensitive, Thus the context-sensitive flows j, k2, l2, and m2

are separated from the context-insensitive ones g, k1, l1, and m1. As a result, the

contents of two vectors V ecname and V ecInt are separated in the generated points-to

graph in Fig. 6.2.

6.0.3 Experiment Setting

We give experimental results for the following points-to analyses, named according

to the naming convention in [29]:

Insen The context-insensitive analysis.

2type+1H 2-type-sensitive analysis with a 1-type-sensitive heap [29], which is op-

timized for scalability.

1type1obj+1H 1-type-1-object-sensitive analysis with a 1-object-sensitive heap

[29], which shows the best trade-off between scalability and precision among other

type-sensitive analyses.
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.arr .arr

[i] [i]

Vecname VecInt

Arr

name 3

ArrInt

Fig. 6.2.: Part of points-to graph generated by the refined points-to analysis.
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DynaSens The refined analysis which is selectively context-sensitive on the ele-

ments of the input relations populated by Clipper with respect to certain query.

Furthermore, it is a parametric analysis which can be configured to yield any n-object-

sensitive analysis with an (n-1)-object-sensitive heap (i.e., (n)obj+(n-1)H ) [2]. Such

configurability comes from the following context constructors for (n)obj+(n-1)H :

• RecordRefined(l, ctx) = [ctx[1], ..., ctx[n− 1]

• MergeRefined(lbase, baseHCtx, lcall, callerCtx) =

[lbase, baseHCtx[1], ..., baseHCtx[n− 1]]

where ctx, callerCtx ∈ (Label ∪ {∗})n and baseHCtx ∈ (Label ∪ {∗})n−1 are

sequences of allocation sites and ∗ (a unique constant value), of length n and n − 1

respectively, and ctx[i] (or hctx[i]) is the i-th element of ctx (or hctx), starting with

index 1.

We evaluated DynaSens on Xeon E5-2660 2.6GHz machines with 64GB of RAM

with two clients: (1) downcast safety checking (Section 6.0.4) and (2) copy constant

propagation (Section 6.0.5).

6.0.4 Downcast Safety Checking

The DaCapo benchmark suite [30], v.9.12-bach and v.2006-10-MR2, is used to

test the downcast safety analysis. We analyzed most benchmarks (Table 6.1) used in

previous work [29], ranging in size from 368K to 2324K bytecodes. The jython bench-

mark is excluded because it generates bytecode DynSamically during run-time. The

benchmarks luindex and lusearch are combined into one benchmark lucene because

they are actually two drivers of the same library lucene.

For each downcast site in the benchmark program, the client analysis tries to prove

its safety by configuring the points-to analysis with the result of the slicing analysis

carried out with respect to the downcast. The program elements from the slicing

result are configured with 2obj+1H context-sensitivity. Table 6.2 shows the detailed



63

Table 6.1.: Benchmark characteristics. The Classes and Methods columns show the
number of classes and methods in the benchmark. The Bytecodes column shows the
size of the benchmark in Kbytes. The Queries column shows the number of downcast
sites in the application classes of the benchmark.

Name Classes Methods Bytecodes (Kbyte) Queries

antlr 968 6161 368 127
lucene 1295 8583 485 147
bloat 1189 8979 530 1024

avrora 2306 12005 567 424
sunflow 1812 10610 602 156
chart 2129 18305 1048 551
xalan 2126 15576 893 901
pmd 2202 14852 916 1076
batik 3706 18614 1047 976
fop 5438 37496 2324 1487
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results of our experiments, including the precision and cost metrics. The “reachables”

rows show the number of reachable methods. The “call-graph (K)” rows show the

number of thousands of nodes/edges within the context-sensitive call graph built.

The “safe casts” rows show the number of safe downcasts proven by each points-to

analysis. The greatest numbers are in bold font. The “points-to (K)” rows show

the number of thousands of pairs of a context-sensitive local variable and an object

within the points-to relation built. The “time” rows show the run-time of the (slicing

and) points-to analyses in seconds. The shortest time is underlined.

Precision The precision metric is the number of casts that could be statically

proven safe (the “safe casts” rows in Table 6.2). Thus higher numbers are better

and the best result of each row is emphasized in bold font. As can be seen, Dy-

naSens proves more casts safe than other analyses on most benchmarks (8 out of

10) and is very close to the most precise one on others.

Cost Cost is shown with three metrics: running time, the size of the context-

sensitive call-graph, and size of points-to relation between context-sensitive local

variables and objects. The cost of DynaSens is represented by the average value

measured over all refined analyses for all cast queries. Different from running time

which is an implementation-dependent measurement, the sizes of the context-sensitive

call-graph and points-to relation are implementation-independent. The shortest run-

ning time for each benchmark is underlined in Table 6.2 for clarity.

As can be seen, DynaSens has the desirable feature of low cost: its running

time for any benchmark is close to the context-insensitive one. This advantage is

more salient on large benchmarks where DynaSens incurs the lowest cost among

all context-sensitive analyses. This is because context sensitivity is enabled only on

elements relevant to each query.
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Table 6.2.: Results for downcast safety checking.

Metrics Insen 2type+1H 1type1obj+1H DynaSens (2obj+1H)

a
n
tl

r
reachables 3333 3293 3293 3333

call-graph (K) 3/22 10/45 14/100 4/24
points-to (K) 266 400 585 286

safe casts 0/127 42/127 44/127 65/127
time (sec) 19 23 34 1+19

lu
ce

n
e

reachables 4590 4498 4489 4590
call-graph (K) 5/22 18/79 26/162 6/24
points-to (K) 482 791 1413 559

safe casts 0/147 85/147 111/147 104/147
time (sec) 28 43 58 3+32

b
lo

a
t

reachables 5537 5395 5388 5531
call-graph (K) 6/41 27/192 40/308 12/85
points-to (K) 1437 1992 3078 1721

safe casts 0/1024 85/1024 114/1024 220/1024
time (sec) 42 56 78 15+49

av
ro

ra

reachables 8560 8494 8493 8560
call-graph (K) 9/37 39/140 53/225 11/42
points-to (K) 1715 1758 2326 1719

safe casts 0/424 99/424 100/424 130/424
time (sec) 44 56 73 5+44

su
n

fl
ow

reachables 5233 4997 4985 5232
call-graph (K) 5/22 18/67 27/175 7/26
points-to (K) 536 637 1410 624

safe casts 0/156 83/156 85/156 88/156
time (sec) 32 34 55 4+36

ch
ar

t

reachables 8546 8327 8300 8546
call-graph (K) 9/42 45/196 91/651 13/62
points-to (K) 3207 3354 10311 3242

safe casts 0/551 180/551 270/551 265/551
time (sec) 75 98 183 6+80

x
al

an

reachables 9708 9114 9089 9708
call-graph (K) 10/58 55/677 129/1729 15/111
points-to (K) 2118 4403 16888 2246

safe casts 0/901 194/901 311/901 323/901
time (sec) 66 140 400 6+73

p
m

d

reachables 10558 10219 10193 10554
call-graph (K) 11/56 124/569 158/1031 35/148
points-to (K) 3591 4112 7065 4505

safe casts 0/1076 175/1076 249/1076 292/1076
time (sec) 118 158 332 9+139

b
at

ik

reachables 11210 10993 10988 11205
call-graph (K) 11/61 82/1737 110/2139 20/306
points-to (K) 2501 7194 10126 3479

safe casts 0/976 266/976 306/976 353/976
time (sec) 100 383 391 14+152

fo
p

reachables 27331 26315 26280 27272
call-graph (K) 28/190 194/3710 329/6646 61/800
points-to (K) 19549 22854 47296 20491

safe casts 0/1487 329/1487 455/1487 567/1487
time (sec) 433 753 1308 20+558
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6.0.5 Copy Constant Propagation

Each handler is designed to handle a pre-defined set of message types. Thus

sending a message to a handler not designed to handle its message type is a design

bug. Running a demand-driven copy constant propagation [31, 32] at the reading of

the what field (line 3) to enumerate all possible message types read by the handler

is an approach to detect such bugs statically. Such a client analysis is evaluated in

Section 6.0.5.

The copy constant propagation analysis is part of a tool developed to statically

analyze the Android framework. Because constants are propagated through the heap,

the effectiveness of the bug detection depends on precise points-to information. Since

building precise points-to information requires deep context-sensitivity, which poses

a significant challenge to the scalability of the analysis on large code base like the

Android framework as illustrated in Section 1.1. To solve this problem we initiate

Clipper at the reading of the what field (e.g. with the query access path i at line 3

in Fig. 1.6) to identify the relevant program elements and to handle them context-

sensitively for precision, and handle the rest of the framework context-insensitively

for scalability.

In this experiment, the package “android.os” (where the relevant library classes

“android.os.Message” and “android.os.Handler” are defined) is added to the list

of library packages to prevent jumping, as explained in Section 4.0.4.

We tested DynaSens on Android framework version 2.3.7 r1 (introduced in Sec-

tion 1.1) with a harness generated with Droidel [33]. The precision is measured as

the number of safe handlers, i.e., all possible message types handled are defined for

the handler. Variants of DynaSens configured with context-sensitivities of depths

up to 4 are tested. The results are presented in Table 6.3. Unlike the uniformly

context-sensitive analyses in previous work [2], whose cost grows exponentially in

context depth, all cost metrics of DynaSens grow much more slowly because of its

accurate selective context sensitivity. Meanwhile, the precision continues to improve
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as the context depth becomes deeper, and all message handling sites are proven safe

at depth 4, which would be intractable using a uniformly context sensitive analysis.
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7. DYNASHAPE – A DEMAND-DRIVEN SHAPE

ANALYSIS

Besides points-to analysis, Clipper can also be applied as a slicing analysis to more

sophiscated and costly heap analyses such as shape analysis [34] to make the later

demand-driven and hence precise as well as scalable.

In this chapter, the shape analysis based on the Localized-heap Store-Less (LSL)

semantics [12] (Section 7.1) is taken as an example to demonstrate utility of Clip-

per as a slicing analysis. The demand-driven variation of shape analysis called Dy-

naSens is introduced in Section 7.2. The soundness of applying Clipper as a slicing

analysis to the LSL-semantics based shape analysis is proved in Section 7.3.

7.1 The LSL Semantics

In traditional semantics, a memory heap is modeled as a graph where objects are

represented as nodes and variables and fields are represented as edges. Such a model

is called store-based heap model [12]. Different from traditional semantics, the LSL

semantics is based on the storeless heap model [35] where an object is represented

with an alias class, i.e. a set of access paths alias with each other, and a heap is

represented with a set of objects disjoint with each other, i.e. a partition of all access

paths within the heap, as defined in Fig. 7.1.

Example 6 Fig. 7.2a shows a store-based model of the heap at certain execution state

of the program in Fig. 7.3. Objects A, B, and C are modeled as nodes. Variables

a1, b1, and c are modeled as arrows. Fields f and g are modeled as arrows between

objects. In the corresponding storeless model of Fig. 7.2b, Objects are modeled as

sets of heap access paths through which the objects are reached. For example, in the
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alias partition π,Π ∈ APart ⊂ 2AClass

s.t. ∀A1, A2 ∈ π : A1 ∩ A2 6= ∅ ⇒ A1 = A2

alias class selector [·]π :
⋃

π → π for any π ∈ APart

s.t. ∀α ∈
⋃

π : α ∈ [α]π ∈ π

object or garbage (alias class) o ∈ Obj , AClass

garbage ∅
object o ∈ Obj , Obj \ {∅}
heap with garbage (alias partition) H ∈ Heap , APart

heap without garbage H ∈ Heap , APart ∩ 2Obj

Fig. 7.1.: The storeless heap model.
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store-based model of Fig. 7.2a, Object A is reached via the access paths a1, b1.f , and

c.g.f . Hence A is represented by {a1, b1.f, c.g.f} in Fig. 7.2b.

B

b1

A

a1

C

c
fg

(a) Store-based heap.

A = {a1, b1.f, c.g.f}
B = {b1, c.g}
C = {c}

(b) Storeless heap.

Fig. 7.2.: Example of store-based and storeless heap model.

The intraprocedural LSL semantics is introduced next. The example program in

Fig. 7.3 and an execution trace in Fig. 7.4 is used to illustrate the intraprocedural

transition rules. Without loss of generality, the execution of each assignment implic-

itly nullifies its left-hand side before running the assignment itself, i.e. “x.f = y;” is

executed as “x.f = null;x.f = y;”.

class A {

int i;

}

class B {

A f,g;

}

class C {

B h;

}

1 void foo(A a1, B b1) {

2 b1.f = a1;

3 C c = new C();

4 c.h = b1;

5 B b2 = c.g;

6 A a2 = new A();

7 b2.f = a2;

8 }

Fig. 7.3.: Example code for illustrating intraprocedural LSL.

In the original LSL semantics [12], an execution state σ is represented by a pair

〈l, H〉 consisting of the current statement label l and the current heap H. To help
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Statement Store-Based Heap Storeless Heap

σ1 2: b1.f = a1; B

b1

A

a1
A→ {a1}
B → {b1}

σ2 3: c = new C(); B

b1

A

a1
f A→ {a1, b1.f}

B → {b1}

σ3 4: c.h = b1; B

b1

A

a1

C

c
f

A→ {a1, b1.f}
B → {b1}
C = {c}

σ4 5: b2 = c.h; B

b1

A

a1

C

c
fh

A→ {a1, b1.f, c.h.f}
B → {b1, c.h}
C = {c}

σ5 6: a2 = new A(); B

b1,b2

A

a1

C

c
fh

A→ {a1, b1.f, c.h.f}
B → {b1, b2, c.h}
C = {c}

σ6 7: b2.f = a2; A8

a2

B

b1,b2

A

a1

C

c
fh

A→ {a1, b1.f, c.h.f}
B → {b1, b2, c.h}
A8 = {a2}
C = {c}

σ7 8: exit; A8

a2

B

b1,b2

A

a1

C

c
h

f
f

A→ {a1}
B → {b1, b2, c.h}
A8 = {a2, b1.f, b2.f, c.h.f}
C = {c}

Fig. 7.4.: An execution trace of the program in Fig. 7.3. The upper part of each
storeless heap encodes the Tran component and the lower part encodes the Gen
component. For simplicity, the parameters of the Tran component are omitted, i.e.
A = {a1} → {a1, b1.f} is encoded as A→ {a1, b1.f}
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explaining the semantics, the current heap H is divided into two parts – the object

transformer Tran and the generated object set Gen, as defined in Fig. 7.5.

For objects that already exist at the entry of the current method, the object trans-

former Tran maps their representation at the entry to their current representation.

On the other hand, the generated object set Gen contains the objects created during

the execution of the current method, i.e. those objects that do not exist at the entry

of the current method.

object transformer:

Tran ∈ Transformer = H→ H′ for any H,H′ ∈ Heap
generated object set: Gen ∈ Generated = Heap

state: σ, 〈l, T ran,Gen〉 ∈ Σ = Label × Transformer ×Generated
transition · −→ · : Σ→ Σ

Fig. 7.5.: Execution state and transition of the LSL semantics.

Example 7 In the execution trace of Fig. 7.4, Objects A and B are initially repre-

sented as {a1} and {b1}, respectively, in the storeless heap. Within the heap at line

5, these objects are represented as {a1, b1, f, c.h.f} and {b1, c.h}, respectively. Hence

the Tran component at line 5 is
{
{a1} → {a1, b1, f, c.h.f}, {b1} → {b1, c.h}

}
. Since

the object C does not exist at the entry of the current method, the Gen component at

line 5 is
{
{c}
}

.

The current heap H can be obtained by combining the Tran component and the

Gen component, i.e. H = image(Tran) ∪Gen.

The intraprocedural transition rule is given in Fig. 7.6 where each intraprocedural

statement is modeled by the successor function succ(·) which, given the current state

σ, returns a 3-tuple 〈l′, tran, gen〉 consisting of

1. l′: The label of the next statement to execute;
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2. tran: An object transformer that maps the representation of each object in

current state to its representation in the successor state;

3. gen: A set of objects generated by current statement.

Example 8 In the execution trace of Fig. 7.4, the statement “4: c.h = b1; ” at the

state σ3 is modeled by succ(σ3) = {〈l′, tran, gen〉} where
l′ = 5

tran =
{
{a1, b1.f} → {a1, b1.f, c.h.f}, {b1} → {b1, c.h}, {c} → {c}

}
gen = {}

Hence 

Tran′ = tran ◦ Tran

= tran ◦
{
{a1} → {a1, b1.f}, {b1} → {b1}

}
=

{
{a1} → {a1, b1.f, c.h.f}, {b1} → {b1, c.h}

}
Gen′ = gen ∪map(tran)(Gen)

= gen ∪map(tran)(
{
{c}
}

)

=
{
{c}
}

The transition rules for most intraprocedural statements are the same as the

definition in the original LSL semantics. The object transformer tran for heap store

statement “y.f = x” needs more explanation as this is where cycles can be created.

For example, a cycle is created after executing “y.f = x” in the heap of Fig. 7.7b.

Only two kinds of objects are affected by executing “y.f = x”:

1. The object [x]H , i.e. the object N1;

2. Those objects that are reachable from [x]H , e.g. the objects N2 and A.

Only [x]H needs to be considered because given an object o ∈ H reachable from

[x]H , i.e. o = A ∪
⋃
{[x]H .δ}, the new representation of o after executing “y.f = x”
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intraprocedural state Σi , {〈li, T rani, Geni〉 ∈ Σ | stmtl is intraprocedural}
right-regularity closure ρc(·) : AClass→ AClass

s.t. ∀A ∈ AClass : ρc(A) = A ∪
⋃
{α.(δ)∗ | α, α.δ ∈ A}

successor function succ ∈ Σi → 2Label×Transformer×Generated

s.t. ∀〈l, T ran,Gen〉 ∈ Σi : 〈l′, tran, gen〉 ∈ succ(〈l, T ran,Gen〉)⇔
let H = image(Tran) ∪Gen in

∧



l′ =



l′ if l: goto l′

lt if l: if b lt lf ∧ True v [[b]](H)

lf l: if b lt lf ∧ False v [[b]](H)

lx l: return z

l+1 otherwise

tran =



λo ∈ H. o \ x.∆ if l: x = null

λo ∈ H. o ∪ {x.δ | y.δ ∈ o} if l: x = y

λo ∈ H. o ∪ {ret.δ | z.δ ∈ o} if l: return z

λo ∈ H. o ∪ {x.δ | y.f.δ ∈ o} if l: x = y.f

λo ∈ H. o \ [y]H .f.∆, ∅〉 if l: y.f = null

λo ∈ H. o ∪
⋃
{ρc([y]H .f ∪ [x]H).δ | x.δ ∈ o}

if l: y.f = x

λo ∈ H. o otherwise

gen =


{
{x}
}

if l: x = new t

∅ otherwise


stmtl is intraprocedural

♦


〈l′, tran, gen〉 ∈ succ(〈l, T ran,Gen〉)
Tran′ = tran ◦ Tran
Gen′ = gen ∪map(tran)(Gen)

INTRA
〈l, T ran,Gen〉 −→ 〈l′, T ran′, Gen′〉

Fig. 7.6.: Intraprocedural LSL semantics.
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is tran(o) = A ∪
⋃
{[x]H′ .δ} where H ′ is the new representation of the heap after

executing “y.f = x”.

To model the effect of “y.f = x” on [x]H , the set of access path [y]H .f =

{y.f, x.f.f} is joined with [x]H = {x}, yielding {y.f, x.f.f, x} ⊆ [x]H′ . According

to right-regularity of storeless heap [36], both x, x.f.f ∈ [x]H′ implies that

{y.f, x.f.f, x}(.f.f)∗ ⊆ [x]H′

as imposed by the right-regularity closure ρc in Fig. 7.6. In this case,

ρc({y.f, x.f.f, x}) = {x(.f.f)∗, y.f(.f.f)∗}

.

class N {

N f;

A g;

}

(a) Definition of class N.

N2
y

AN1
g

f

x
f

(b) Store-based heap. The dashed
arrow is the field to be added by
“y.f = x”.

N1 = {x}
N2 = {y, x.f}
A = {x.g}

(c) Storeless heap before executing “y.f = x”.

N1 = {x(.f.f)∗, y.f(.f.f)∗}
N2 = {y, x(.f.f)∗.f, y.f(.f.f)∗.f}
A = {x(.f.f)∗.g, y.f(.f.f)∗.g}

(d) Storeless heap after executing “y.f = x”.

Fig. 7.7.: Example of cycle created by heap store “y.f = x”.

The interprocedural LSL semantics is introduced next. The example program in

Fig. 7.8 and execution traces in Fig. 7.9, 7.10, 7.11, 7.12, 7.13, and 7.14 are used to

illustrate the interprocedural transition rules.
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1 void main() {

2 A am0 = new A();

3 B bm1 = foo1(am0);

4 A am1 = bm1.f;

5 int i1 = am1.i;

6 B bm2 = new B();

7 A am2 = new A();

8 bm2.f = am2;

9 foo2(bm2);

10 int i2 = am2.i;

11 A am3 = bm2.g;

12 int i3 = am3.i;

13 }

14 B foo1(A aa1) {

15 B bb1 = new B();

16 bb1.f = aa1;

17 bb1.g = aa1;

18 bar(bb1 , 0, 1);

19 return bb1;

20 }

21 void foo2(B bb2) {

22 A aa3 = new A();

23 bb2.g = aa3;

24 bar(bb2 , 2, 3);

25 }

26 void bar(B b, int j1 , int j2) {

27 A a1 = b.f;

28 a1.i = j1;

29 A a2 = b.g;

30 a2.i = j2;

31 }

Fig. 7.8.: Example code for illustrating interprocedural LSL.

Statement Store-Based Heap Storeless Heap

σ1 2: am0 =new A();

σ2 3: bm1 =foo1(am0); A2

am0

A2 = {am0}

σ3 4: am1 =bm1.f; 1A2B15

bm1
if,g

am0 1 = {am0.i, bm1.f.i, bm1.g.i}
A2 = {am0, bm1.f, bm1.g}
B15 = {bm1}

σ4 5: i1 =am1.i; 1A2B15

bm1
if,g

am0,am1 1 =

{
am0.i, am1.i,
bm1.f.i, bm1.g.i

}
A2 = {am0, am1, bm1.f, bm1.g}
B15 = {bm1}

σ5 6: bm2 =new B(); 1A2B15

bm1
if,g

am0,am1 i1 1 =

{
am0.i, am1.i,
bm1.f.i, bm1.g.i

}
A2 = {am0, am1, bm1.f, bm1.g}
B15 = {bm1}

Fig. 7.9.: An example trace of main().
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Statement Store-Based Heap Storeless Heap

σ5 6: bm2 =new B();

σ6 7: am2 = new A(); B6

bm2

B6 = {bm2}

σ7 8: bm2.f = am2;

A7

B6

bm2

am2

A7 = {am2}
B6 = {bm2}

σ8 9: foo2(bm2);

A7

B6

bm2 f

am2

A7 = {am2, bm2.f}
B6 = {bm2}

σ9 10: i2 = am2.i;

3

A7

B6

bm2 f

g A22

am2

2
i

i

2 = {am2.i, bm2.f.i}
3 = {bm2.g.i}
A7 = {am2, bm2.f}
A22 = {bm2.g}
B6 = {bm2}

σ10 11: am3 = bm2.g;

3

A7

B6

bm2 f

g A22

am2

2
i

i

i2 2 = {am2.i, bm2.f.i, i2}
3 = {bm2.g.i}
A7 = {am2, bm2.f}
A22 = {bm2.g}
B6 = {bm2}

σ11 12: i3 = am3.i;

3

A7

B6

bm2 f

g A22

am2

am3

2
i

i

i2 2 = {am2.i, bm2.f.i, i2}
3 = {am3.i, bm2.g.i}
A7 = {am2, bm2.f}
A22 = {am3, bm2.g}
B6 = {bm2}

σ12 13: exit;

3

A7

B6

bm2 f

g A22

am2

am3

2
i

i

i3

i2 2 = {am2.i, bm2.f.i, i2}
3 = {am3.i, bm2.g.i, i3}
A7 = {am2, bm2.f}
A22 = {am3, bm2.g}
B6 = {bm2}

Fig. 7.10.: An example trace of main() (continued). Part of the heap generated in
Fig. 7.9 is omitted.
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Statement Store-Based Heap Storeless Heap

σ13 15: bb1 = new B(); A2

aa1

A2 → {aa1}

σ14 16: bb1.f = aa1; A2B15

bb1 aa1
A2 → {aa1}
B15 = {bb1}

σ15 17: bb1.g = aa1; A2B15

bb1
f

aa1
A2 → {aa1, bb1.f}
B15 = {bb1}

σ16 18: bar(bb1, 0, 1); A2B15

bb1
f,g

aa1
A2 → {aa1, bb1.f, bb1.g}
B15 = {bb1}

σ17 19: return bb1; 1A2B15

bb1
if,g

aa1 A2 → {aa1, bb1.f, bb1.g}
1 = {aa1.i, bb1.f.i, bb1.g.i}
B15 = {bb1}

σ18 20: exit; 1A2B15

bb1,ret
if,g

aa1
A2 →

{
aa1, bb1.f, bb1.g,
ret.f, ret.g

}
1 =

{
aa1.i, bb1.f.i, bb1.g.i,
ret.f.i, ret.g.i

}
B15 = {bb1, ret}

Fig. 7.11.: An example trace of foo1(A aa1).
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Statement Store-Based Heap Storeless Heap

σ19 27: a1 = b.f; A2B15

b
f,g

0

1

j1

j2

0→ {j1}
1→ {j2}
A2 → {b.f, b.g}
B15 → {b}

σ20 28: a1.i = j1; A2B15

b
f,g

a1 0

1

j1

j2

0→ {j1}
1→ {j2}
A2 → {a1, b.f, b.g}
B15 → {b}

σ21 29: a2 = b.g; A2B15

b
f,g

a1 0i

1

j1

j2

0→ {a1.i, b.f.i, b.g.i, j1}
1→ {j2}
A2 → {a1, b.f, b.g}
B15 → {b}

σ22 30: a2.i = j2; A2B15

b
f,g

a1,a2 0i

1

j1

j2

0→ {a1.i, a2.i, b.f.i, b.g.i, j1}
1→ {j2}
A2 → {a1, a2, b.f, b.g}
B15 → {b}

σ23 31: exit; A2B15

b
f,g

a1,a2 0

i 1

j1

j2

0→ {j1}
1→ {a1.i, a2.i, b.f.i, b.g.i, j2}
A2 → {a1, a2, b.f, b.g}
B15 → {b}

Fig. 7.12.: An example trace of bar(B b, int j1, int j2).
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Statement Store-Based Heap Storeless Heap

σ24 22: aa3 = new A();

A7

B6

bb2 f
A7 → {bb2.f}
B6 → {bb2}

σ25 23: bb2.g = aa3;

A7

B6

bb2 f

A22

aa3

A7 → {bb2.f}
B6 → {bb2}
A22 = {aa3}

σ26 24: bar(bb2, 2, 3);

A7

B6

bb2 f

g A22

aa3

A7 → {bb2.f}
B6 → {bb2}
A22 = {aa3, bb2.g}

σ27 25: exit;

3

A7

B6

bb2 f

g A22

aa3

2
i

i

A7 → {bb2.f}
B6 → {bb2}
2 = {bb2.f.i}
3 = {aa3.i, bb2.g.i}
A22 = {aa3, bb2.g}

Fig. 7.13.: An example trace of foo2(B bb2).
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Statement Store-Based Heap Storeless Heap

σ28 27: a1 = b.f;
3

A7

B6

b f

g A22

2

j2

j1 2→ {j1}
3→ {j2}
A7 → {b.f}
A22 → {b.g}
B6 → {b}

σ29 28: a1.i = j1;
3

A7

B6

b f

g A22

a1

2

j2

j1 2→ {j1}
3→ {j2}
A7 → {a1, b.f}
A22 → {b.g}
B6 → {b}

σ30 29: a2 = b.g;
3

A7

B6

b f

g A22

a1

2
i

j2

j1 2→ {a1.i, b.f.i, j1}
3→ {j2}
A7 → {a1, b.f}
A22 → {b.g}
B6 → {b}

σ31 30: a2.i = j2;
3

A7

B6

b f

g A22

a1

a2

2
i

j2

j1 2→ {a1.i, b.f.i, j1}
3→ {j2}
A7 → {a1, b.f}
A22 → {a2, b.g}
B6 → {b}

σ32 31: exit;
3

A7

B6

b f

g A22

a1

a2

2
i

i

j2

j1 2→ {a1.i, b.f.i, j1}
3→ {a2.i, b.f.i, j2}
A7 → {a1, b.f}
A22 → {a2, b.g}
B6 → {b}

Fig. 7.14.: Another example trace of bar(B b, int j1, int j2).
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The LSL semantics is a natural (or big-step) one, i.e. each transition from a state

at certain call site to another state at the corresponding return site is essentially an

instantiation of certain exit trace of the callee, as specified in Fig. 7.15. An execution

trace is a sequence of transitions where for each transition except the last one, the

target of the transition is the source of the next transition, as define below. An exit

trace is a trace where the target of the last transition is certain state at the exit

statement “l: exit”.

trace σ0 −→ σ1 −→ · · · −→ σk ∈ Trace

exit trace Tracex , {σe −→ · · · −→ 〈lx, T ranx, Genx〉 ∈ Trace | lx: exit}

Example 9 The execution traces in Fig. 7.12 and 7.14 are two exit traces of the

bar() method. The execution trace in Fig. 7.11 is an exit trace of the foo1()

method and the execution trace in Fig. 7.13 is an exit trace of the foo2() method.

The concatenation of traces in Fig. 7.9 and 7.10 is an exit trace of the main() method.

Given a state 〈lc, T ranc, Genc〉 at certain call site lc: x=p(y0, . . . , yk) where the

declaration of p is “t p(t0 h0, . . . , tk hk){bodyp}”, the part of the heap visible to the

callee consists of those objects reachable from arguments y0, . . . , yk, as specified by

the passed part Hpassed in Fig. 7.15. The argument objects [yi]Hc are mapped to

{hi} which act as base objects of callee’s heap. Each object oc ∈ Hpassed needs to

be “rebased” to map to callee’s heap space, as specified by the operator · ↓ which

consists of the bindargs operator and the sub(·) operator defined below.

sub(·) : (H → AClass)→ Obj → Obj for certain H ∈ Heap

s.t. ∀bind ∈ H → AClass, o ∈ Obj :

sub(bind)(o) ,
⋃
o′∈H

⋃
{bind(o′).δ | δ ∈ ∆ ∧ o′.δ ⊆ o}
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

lc: x=p(y0, . . . , yk)
the declaration of p is “t p(t0 h0, . . . , tk hk){bodyp}”

♠



le is the entry label of p
Hc = image(Tranc) ∪Genc
Hargs = {[yi]Hc | 0 ≤ i ≤ k, [yi]Hc 6= ∅}
bindargs = λoarg ∈ Hargs. {hi.ε | 0 ≤ i ≤ k, yi ∈ oarg}
·↓= λoc ∈ Hpassed.sub(bindargs)(o

c)

Hpassed = {oc ∈ Hc | ∃oarg ∈ Hargs, δ ∈ ∆ : oarg.δ ⊆ oc}
He = map(·↓)(Hpassed)
Trane = λoe ∈ He. oe

Gene = ∅
〈le, T rane, Gene〉 −→ · · · −→ 〈lx, T ranx, Genx〉 ∈ Tracex

♣



lr = lc + 1
Hx = image(Tranx) ∪Genx
Hparams = map(·↓)(Hargs)
Hcp = {ocp ∈ Hpassed | ∃z /∈ y, δ ∈ ∆ : z.δ ∈ ocp}
Hcpl = map(·↓)(Hcp) // cut-point labels

Hxroot = ∪


{oxret = [retp.ε]Hx}
Hxparams = map(Tranx)(Hparams)

Hxcp = map(Tranx)(Hcpl)

Bypass = λo ∈ Obj.{x.δ ∈ o | ∀δ1.δ2 = δ : x.δ1 /∈
⋃
Hpassed}

bindcp = λocp ∈ Hcp.(ocp ↓)
bindret = λox ∈ Hxroot.

∪


{x.ε | ox = oxret} (a)⋃{ Bypass ◦ bind−1

args(o
e) |

oe ∈ Hparams ∧ Tranx(oe) = ox

}
(b)⋃{ Bypass ◦ bind−1

cp (oe) |
oe ∈ Hcpl ∧ Tranx(oe) = ox

}
(c)

·↑= λox ∈ Hx.⋃
oxroot∈Hxroot

{⋃
ρc(sub(bindret)(o

xroot)).δ

∣∣∣∣ oxroot.δ ⊆ ox
}

tran = λoc ∈ Hc.

{
oc if oc ∈ Hc \Hpassed

Tranx(oc ↓)↑ if oc ∈ Hpassed

gen = map(·↑)(Genx)
Tranr = tran ◦ Tranc
Genr = gen ∪map(tran)(Genc)

INTER
〈lc, T ranc, Genc〉 −→ 〈lr, T ranr, Genr〉

Fig. 7.15.: Interprocedural LSL semantics.
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Intuitively, for any object oc ∈ Hpassed, if [yi]Hc .δ ⊆ oc, then {hi}.δ ∈ oc ↓, i.e. the

δ part is “rebased” from the old “base” [yi]Hc (i.e. the argument object) to the new

“base” {hi} (i.e. the parameter object).

Example 10 In the trace of Fig. 7.10 for example, given the state σ8 at the call

site “9: foo2(bm2)”, Hpassed – the part of the heap visible and hence passed to the

callee – consists of objects B6 and A7, i.e. those objects reachable from the call

argument “bm2”. On the other hand, objects B15, A2, and 1 (omitted in Fig. 7.10

but shown in Fig. 7.9) are not reachable from the call argument “bm2” and hence

not part of Hpassed. The argument object B6 = {bm2} is mapped to {bb2} where

“bb2” is the parameter of method foo2(B bb2). The object A7 = {am2, bm2.f}

is “rebased” to {bb2.f}. Hence the heap at the entry of the callee foo2(B bb2) is

He =
{
{bb2.f}, {bb2}

}
.

Given an exit trace of the callee, the instantiation of the exit trace at the call site

requires more explanation. Only three kinds of root objects (Hxroot) within the heap

at the exit state (the state 〈lx, T ranx, Genx〉 where lx: exit) need to be mapped back

to the heap space of the caller:

1. Those objects reachable from callee parameters;

2. Those objects reachable from returned variable ret;

3. Those objects reachable from cut-point-labels [12] defined below.

Definition 7.1.1 (Cut-Point and Cut-Point-Label) Given a state 〈lc, T ranc, Genc〉

at certain call site lc: x=p(y0, . . . , yk), a cut-point is an object ocp ∈ Hpassed which is

also reachable from the non-argument variables. The set of cut-points is denoted Hcp.

A cut-point-label ocpl ∈ He satisfies ocpl = ocp ↓ for certain cut-point ocp ∈ Hcp. The

set of cut-point-labels is denoted Hcpl.

Example 11 In the trace of Fig. 7.10 for example, given the state σ8 at the call

site “9: foo2(bm2)”, The object A7 = {am2, bm2.f} is reachable from non-argument
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variable “am2” and hence a cut-point. Thus the object {am2, bm2.f} ↓= {bb2.f} in

the callee’s heap space is a cut-point-label.

Similar to the design of ·↓, where each object oc ∈ Hpassed is “rebased” to map to

callee’s heap space, in the design of · ↑, each object ox ∈ Hx is “rebased” to map to

caller’s heap space. There are three kinds of new/old “base” pairs

1. The old “base” is [ret]Hx and the new “base” is {x} (case (a) of bindret);

2. The old “base” is [hi]Hx and the new “base” is [yi]Hc (case (b) of bindret);

3. The old “base” is Tranx(ocpl) and the new “base” is ocp where ocp is a cut-point

and ocpl is the corresponding cut-point-label, i.e. ocpl = ocp ↓ (case (c) of bindret).

The effect of a method call can be modeled by the following two functions:

1. tran: An object transformer that maps the representation of each object in the

heap Hc of the state before the method call to its representation in the heap

Hr of the state after the method call;

2. gen: A set of objects generated by the callee.

Example 12 Given the state σ2 at the call site “3: bm1=foo1(am0)” in the trace of

Fig. 7.9 and an exit trace σ12 −→ · · · −→ σ17 of the callee foo1(A aa1) in Fig. 7.11,

the method call can be modeled bytran =
{
{am0} → {am0, bm1.f, bm1.g}

}
gen =

{
{am0.i, bm1.f.i, bm1.g.i}, {bm1}

}
Hence

Tranr = tran ◦ Tranc = tran ◦ {} = {}

Genr = gen ∪map(tran)(Genc)

= gen ∪map(tran)(
{
{am0}

}
)

=
{
{am0.i, bm1.f.i, bm1.g.i}, {am0, bm1.f, bm1.g}, {bm1}

}
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Similarly, given the state σ8 at the call site “9: foo2(bm2)” in the trace of Fig.

7.10 and an exit trace σ23 −→ · · · −→ σ26 of the callee foo2(B bb2) in Fig. 7.13, the

method call can be modeled bytran =
{
{am2, bm2.f} → {am2, bm2.f}, {bm2} → {bm2}

}
gen =

{
{am2.i, bm2.f.i}, {bm2.g.i}, {bm2.g}

}
Hence

Tranr = tran ◦ Tranc = tran ◦ {} = {}

Genr = gen ∪map(tran)(Genc)

= gen ∪map(tran)(
{
{am2, bm2.f}, {bm2}

}
)

=
{
{am2.i, bm2.f.i}, {bm2.g.i}, {bm2.g}, {am2, bm2.f}, {bm2}

}
The senario where cycles are created by method calls needs furthur explanation. If

cycles are created when merging the instantiation of callee’s heap with caller’s heap,

only the root objects (Hxroot) need to be considered because these objects are the

new “bases” on which all callee’s objects are “rebased”, as specified in ·↑.

For example, a cycle is created after executing “x = p(y1, y2)” in the heap of Fig.

7.16a. By imposing the right-regularity closure ρc on root objects (N1 and N2 in this

example), all callee’s objects reachable from the root objects are well-represented, as

shown in Fig. 7.16d.

Example 13 content...

7.2 DynaShape

Since the LSL heap model is also access-path based, it is natural to apply Clip-

per as a slicing analysis to implement a demand-driven shape analysis based on LSL

semantics. The demand-driven shape analysis specified here is called DynaShape.
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N2
y2

AN1
g

f

y1
f

(a) Store-based heap. The dashed
arrow is the field to be added by
“x = p(y1, y2)”.

X p(N h1, N h2) {

h2.f = h1;

...

}

(b) Definition of method p.

N1 = {y1}
N2 = {y1.f, y2}
A = {y1.g}

(c) Storeless heap before
executing “x = p(y1, y2)”.

N1 = {y1(.f.f)∗, y2.f(.f.f)∗}
N2 = {y1(.f.f)∗.f, y2, y2.f(.f.f)∗.f}
A = {y1(.f.f)∗.g, y2.f(.f.f)∗.g}

(d) Storeless heap after executing “x = p(y1, y2)”.

Fig. 7.16.: Example of cycle created by method call “x = p(y1, y2)”.
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Assume a shape analysis is needed to track flow of values, which is a typical

demand in many analyses such as Typestate analysis [37]. One major challenge in such

analyses is tracking data flow through the heap precisely. Although shape analyses

can model the heap precisely, it is unnecessary (and expensive) to analyze the whole

program exhaustively.

Example 14 In the program of Fig. 7.8 it is unnecessary to analyze statements

handling variable j2 in method bar() to track the values flow to variable i2 in method

main(). On the other hand, aliasing poses challenges when deciding which part of

the program is omittable. For example, in the program of Fig. 7.8 it is necessary to

analyze statements handling variable j2 in method bar() to track the values flow to

variable i1 in method main() due to aliasing.

Such nuance caused by aliasing can be detected and handled precisely by Clipper,

as shown by the slicing result in Fig. 7.17 and 7.18. In the slicing analysis with respect

to i1 in Fig. 7.17a 7.17b 7.17c 7.17d, statements related to both variables j1 and j2

in method bar() are included in the generated slice (Fig. 7.17c and 7.17d). On the

other hand, in the slicing analysis with respect to i2 in Fig. 7.18a 7.18b 7.17c, only

statements related to variable j2 in method bar() are included in the generated slice

(Fig. 7.17d).

Given a slice Slice ∈ 2Label (i.e. part of the target program encoded as a set of

statement labels) generated with respect to certain slicing criteria α, a parametric

shape analysis parameterized with respect to Slice (as specified in Fig. 7.19) can be

tailored to focus on statements in Slice only and ignore the rest.

If a statement is in Slice, the statement is handled normally according to Lsl

semantics (rules INTRAS+ and INTERS+). Otherwise, the statement is handled as

a no-op (rules INTRAS− and INTERS−).

Example 15 Given the slice with respect to i1 in method main() (Fig. 7.17a 7.17b)

7.17c 7.17d), the tailored execution traces are those in Fig. 7.9 7.11 7.12.
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4: am1 = bm1.f;

5: i1 = am1.i;

a: i1

2: am0 = new A();

3: bm1 = foo1(am0);

b: am1.i

c: bm1.f.i

v: am0.i

d: ret.f.i

u: aa1.i

(a) The derivation for facts of
the form A(i2, ) on main().

<entry>: aa1=...

18: bar(bb1, 0, 1);

g: b.f.i
(or o: b.g.i)

k: j1
(or s: j2)

15: bb1 = new B();

16: bb1.f = aa1;

19: return bb1;
d: ret.f.i

17: bb1.g = aa1;

m: aa1.i

n: bb1.g.i

t: aa1.i

u: aa1.i

l: bb1.f.ie: bb1.f.i

f: bb1.f.i

(b) The derivation for facts of the form
A(ret.f.i, ) on foo1().

g: b.f.i <entry>: b=...,
j1=..., j2=...

27: a1 = b.f;

h: b.f.i

28: a1.i = j1;

i: a1.i

j: j1

k: j1

(c) The derivation for facts of
the form A(b.f.i, ) on bar().

o: b.g.i <entry>: b=...,
j1=..., j2=...

29: a2 = b.g;

p: b.g.i

30: a2.i = j2;

q: a2.i

r: j2

s: j2

(d) The derivation for facts of
the form A(b.g.i, ) on bar().

Fig. 7.17.: Running Clipper with i1 as the slicing criteria.
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8: bm2.f = am2;

9: foo2(bm2);

10: i2 = am2.i;

c: am2.ib: am2.i

a: i2

e: bb2.f.i

6: bm2 = new B();

7: am2 = new A();

d: bm2.f.i

l: bm2.f.i

(a) The derivation for facts of
the form A(i2, ) on main().

e: bb2.f.i
<entry>: bb2=...

24: bar(bb2, 2, 3);

f: bb2.f.i

g: b.f.i

k: j1

(b) The derivation for facts of the form
A(bb2.f.i, ) on foo2().

Fig. 7.18.: Running Clipper with i2 as the slicing criteria.
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l ∈ Slice

{
stmtl is intraprocedural
♦

INTRAS+

σ=〈l, T ran,Gen〉 S−→ 〈l′, T ran′, Gen′〉

l /∈ Slice


stmtl is intraprocedural
l′ ∈ succ(σ)
Tran′ = Tran
Gen′ = Gen

INTRAS−

σ=〈l, T ran,Gen〉 S−→ 〈l′, T ran′, Gen′〉
(a) Intraprocedural transitions.

lc ∈ Slice


lc: x=p(y0, . . . , yk)
the declaration of p is “t p(t0 h0, . . . , tk hk){bodyp}”
♠
〈le, T rane, Gene〉 S−→ · · · S−→ 〈lx, T ranx, Genx〉 ∈ Tracex
♣

INTERS+

〈lc, T ranc, Genc〉 S−→ 〈lr, T ranr, Genr〉

lc /∈ Slice


lc: x=p(y0, . . . , yk)
lr = lc + 1
Tranr = Tranc

Genr = Genc

INTERS−

〈lc, T ranc, Genc〉 S−→ 〈lr, T ranr, Genr〉
(b) Interprocedural transitions.

Fig. 7.19.: DynaShape analysis.
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Given the slice with respect to i2 in method main() (Fig. 7.18a 7.18b) 7.17c), the

tailored execution traces are those in Fig. 7.20. Compared with the complete traces

in Fig. 7.10 7.13 7.14, the tailored ones are much simplified.

Statement Store-Based Heap Storeless Heap

σ5 6: bm2 =new B();

σ33 7: am2 = new A(); B6

bm2

B6 = {bm2}

σ34 8: bm2.f = am2; A7B6

bm2 am2
A7 = {am2}
B6 = {bm2}

σ35 9: foo2(bm2); A7B6

bm2 am2
f A7 = {am2, bm2.f}

B6 = {bm2}

σ36 10: i2 = am2.i; A7B6

bm2 am2

2
if

2 = {am2.i, bm2.f.i}
A7 = {am2, bm2.f}
B6 = {bm2}

σ37 13: exit; A7B6

bm2 am2

2
if

i2 2 = {am2.i, bm2.f.i, i2}
A7 = {am2, bm2.f}
B6 = {bm2}

σ38 24: bar(bb2, 2, 3); A7B6

bb2
f A7 → {bb2.f}

B6 → {bb2}

σ39 25: exit; A7B6

bb2

2
if

A7 → {bb2.f}
B6 → {bb2}
2 = {bb2.f.i}

σ40 27: a1 = b.f; A7B6

b

2
f

j1 2→ {j1}
A7 → {b.f}
B6 → {b}

σ41 28: a1.i = j1; A7B6

b a1

2
f

j1 2→ {j1}
A7 → {a1, b.f}
B6 → {b}

σ42 31: exit; A7B6

b a1

2
if

j1 2→ {a1.i, b.f.i, j1}
A7 → {a1, b.f}
B6 → {b}

Fig. 7.20.: A tailored trace focusing on data flow to i2.
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bm2bm1 am0, am1, bm1.f, bm1.g am2, bm2.f am3, bm2.g

bb2bb1 aa1, bb1.f, bb1.g bb2.f aa3, bb2.g

b a1, b.f a2, b.g

Fig. 7.21.: Part of the alias partition built from bottom up according to the program
of Fig. 7.8. The arrows represent instantiation of callee’s alias classes in caller’s alias
partition.

7.3 Soundness of Clipper as a Slicing Analysis

A proof of the soundness of Clipper as a slicing analysis with respect to the LSL

semantics is given in this section. The proof is outlined as follows: Given a program,

the deduction rules of Clipper essentially build alias classes (encoded as an alias

relation in Section 7.3.1) from bottom up with respect to the call graph. An instru-

mented small-step LSLI semantics is given (in Section 7.3.2), which augment the

execution state with an alias partition Π (i.e. a set of alias classes) maintained from

top down with respect to the call graph. The augmented alias partition summarizes

the alias classes inferred by Clipper from bottom up. The initial alias partition Π0

is the top one (i.e. at the entry method, typically main()) built from bottom up

by Clipper. This chapter tries to prove the invariance that at any time during the

execution of a program, the current heap H is over-approximated by the current alias

partition Π.

Example 16 Fig. 7.21 shows some of the alias partitions built by Clipper from

bottom up. Starting from the top-level alias partition of method main(), the alias

partitions built from top down by the LSLI semantics is shown in Fig. 7.22. It is

verifiable that any heap occured in the traces of Fig. 7.9 7.10 7.11 7.13 7.12 7.14 is

over-approximated by the corresponding partition in Fig. 7.22.
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bm2bm1 am0, am1, bm1.f, bm1.g am2, bm2.f am3, bm2.g

bb2bb1 aa1, bb1.f, bb1.g bb2.f aa3, bb2.g

b a1, b.f a2, b.gb a1, a2, b.f, b.g

Fig. 7.22.: Part of the alias partition built from top down according to the program
of Fig. 7.8. The arrows represent instantiation of caller’s alias classes in callee’s alias
partition.
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7.3.1 Clipper as a Deductive System for Alias Relations

The fact A(α, β) derived by Clipper, previously interpreted as “β belongs to the

alias class of α” (i.e. β ∈ [α]), can also be intepreted as “α and β are aliases for each

other” (i.e. 〈α, β〉 ∈ R for an alias relation R defined below)

alias relation (on AP ) R ∈ ARel = 2AP×AP

s.t. R is closed under reflexivity, symmetry, and transitivity.

Therefore given a program prog, Clipper can also be encoded as a set of alias

facts and rules [[prog]]R for deriving a set of alias relations R (one for each method),

as shown in Fig. 7.23.

Since an alias relation is an equivalence relation (i.e. is reflexive, symmetric, and

transitive), an alias relation R can be equivalently encoded as an alias partition (via

the operator Π(·) defined below) and vise versa [38].

Π(·) : ARel→ APart

s.t. ∀R ∈ ARel : Π(R) , {{β | 〈α, β〉 ∈ R} | α ∈ AP}

Hence

∀Rp ∈ R : ∀〈α, β〉 ∈ Rp :


[α]Π(Rp) = [β]Π(Rp)

α ∈ [β]Π(Rp)

β ∈ [α]Π(Rp)

Proposition 7.3.1 For any program prog and the set of alias relations R derived

from [[prog]]R, any Rp ∈ R is closed under right-regularity, i.e.,

∀Rp ∈ R, δ ∈ ∆ : ∀〈α, β〉 ∈ Rp : 〈α.δ, β.δ〉 ∈ Rp
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let EQ = ∪


⋃
Rp∈R

{Rp(x.δ, x.δ) | x ∈ V arp ∧ δ ∈ ∆} // reflexivity

{R(α, β) :- Rp(β, α)} // symmetry

{R(α1, α3) :- R(α1, α2), R(α2, α3)} // transitivity

in

[[prog]]R = EQ ∪ [[cdecl1, ..., cdeclk]]
R = EQ ∪

⋃
1≤i≤k

[[cdecli]]
R

[[cdecl]]R = [[class t {fdecl mdecl1, ...,mdeclk}]]R =
⋃

1≤i≤k

[[mdecli]]
R

[[mdecl]]R = [[t p(t h) {stmt1, ..., stmtk}]]R =
⋃

1≤i≤k

[[stmti]]
R

[[stmt]]R =

{Rp(x.δ, y.δ) | δ ∈ ∆} if stmt is l:x = y in method p
{Rp(x.δ, y.f.δ) | δ ∈ ∆} if stmt is l:x = y.f in method p
{Rp(x.δ, y.f.δ) | δ ∈ ∆} if stmt is l:y.f = x in method p

∪


{Rq(yi.δ1, yj.δ2) :- Rp(hi.δ1, hj.δ2) | 0 ≤ i, j ≤ k}
{Rq(yi.δ1, x.δ2) :- Rp(hi.δ1, z.δ2) | 0 ≤ i ≤ k}
{Rq(x.δ1, x.δ2) :- Rp(retp.δ1, retp.δ2)}

if

{
stmt is l:x=p(y0, . . . , yk) in method q

declaration of p is “t p(t0 h0, . . . , tk hk){bodyp}”

∅ otherwise

Fig. 7.23.: Basic facts and derivation rules for defining alias relation R.
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Proof For any Rp ∈ R and any pair of access paths 〈α, β〉 ∈ Rp, there is a derivation

tree Tree consisting of a set of basic facts and derivations from which the alias fact

Rp(α, β) is derived. A derivation represents an instantiation of certain derivation rule.

Next the operator ·.· is defined as below:

∀Rp ∈ R and α, β ∈ AP and δ ∈ ∆ : Rp(α, β).δ , Rp(α.δ, β.δ)

∀Rp, Rq ∈ R and α1, α2, β1, β2 ∈ AP and δ ∈ ∆ :

(Rp(β1, β2) :- Rq(α1, α2)).δ , Rp(β1.δ, β2.δ) :- Rq(α1.δ, α2.δ)

∀Rp ∈ R and α1, α2, α3 ∈ AP and δ ∈ ∆ :

(Rp(α1, α3) :- Rp(α1, α2), Rp(α2, α3)).δ ,

Rp(α1.δ, α3.δ) :- Rp(α1.δ, α2.δ), Rp(α2.δ, α3.δ)

From the definition of [[·]]R, it follows that

∀δ ∈ ∆ :



∀Rp ∈ R and α, β ∈ AP : Rp(α, β) ∈ [[prog]]R ⇒ Rp(α, β).δ ∈ [[prog]]R

∀Rp, Rq ∈ R and α1, α2, β1, β2 ∈ AP and rule ∈ [[prog]]R :

Rq(β1, β2) :- Rp(α1, α2) instantiates rule⇒

(Rq(β1, β2) :- Rp(α1, α2)).δ instantiates rule

∀Rp ∈ R and α1, α2, α3 ∈ AP and rule ∈ [[prog]]R :

Rp(α1, α3) :- Rp(α1, α2), Rp(α2, α3) instantiates rule⇒

(Rp(α1, α3) :- Rp(α1, α2), Rp(α2, α3)).δ instantiates rule

It follows that for any δ ∈ ∆, ·.δ is a homomorphism, i.e., for any alias fact Rp(α, β)

derivable by Tree, Rp(α.δ, β.δ) is also derivable by Tree′ = {elem.δ | elem ∈ Tree}.

Hence any Rp ∈ R is closed under right-regularity.
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Corollary 7.3.2 Given alias relations R derived from [[prog]]R of program prog,

∀Rp ∈ R,A ∈ AClass : ∀A′ ∈ Π(Rp) : A ⊆ A′ ⇒ ρc(A) ⊆ A′

Proof It follows from the right-regularity of R that

∀α ∈ AP, δ ∈ ∆ : 〈α, α.δ〉 ∈ Rp

⇒ 〈α.δ, α.δ.δ〉 ∈ Rp

⇒ 〈α.δ.δ, α.δ.δ.δ〉 ∈ Rp

⇒ . . .

⇒ α.(δ)∗ ∈ [α]Π(Rp)

In the next section, the LSL semantics will be augmented with the alias relations

R inferred by Clipper to prove the invariance mentioned at the beginning of this

chapter.

7.3.2 LSLI – An Instrumented Small-Step LSL Semantics

In this section, a small-step (or stack-based) semantics LSLI augmented with

the alias relations R inferred by Clipper will be used to prove the soundness of

Clipper as a slicing analysis for the LSL semantics. There are two reasons to

choose a small-step (or stack-based) semantics:

1. Interprocedural transitions (e.g. those from call sites of callers to entries of

callees and those from exits of callees to return sites of callers) are well-defined

in small-step semantics;

2. Stacks impose constraints on the structure of realizable traces, as defined in

Fig. 7.26 and 7.27.
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Therefore, two additional components are added to a LSL state σ to form a LSLI

state σ̂ – an alias relation R inferred by Clipper and a stack of pending call states

S, as defined in Fig. 7.24.

LSLI stack: S ∈ Stack = (Label × Transformer ×Generated× ARel)∗

LSLI state: σ̂, 〈l, T ran,Gen,R, S〉 ∈ Σ̂ =

Label × Transformer ×Generated× ARel × Stack

Fig. 7.24.: Execution state of the LSLI semantics.

The transition rules of LSLI semantics are specified in Fig. 7.25.

The intraprocedural transition rule (rule INTRAI) of the LSLI semantics are

almost the same as that of the LSL semantics. The interprocedural transition rule of

the LSL semantics is devided into two small-step style transition rules (rule CALLI

and RETURNI) of the LSLI semantics.

The call rule CALLI pushes the current state onto the stack and compute the

entry state 〈le, T rane, Gene〉 and alias relation Rd for the callee. The entry state

〈le, T rane, Gene〉 is computed in the same way as the LSL semantics while alias

relation Rd for the callee is computed by first instantiating the alias relation Ru of

the caller at the callee (Rd ↓lcp ), then extending it with the alias relation inferred by

Clipper from bottom up (Rd ↓lcp ∪Rp), and finally close it according to reflexivity,

symmetry, transitiviy and right-regularity (ρrstc(R
u ↓lcp ∪Rp)).

Example 17 Given the caller alias relation (encoded as an alias partition) Π(Ru) ={
{bb1}, {aa1, bb1.f, bb1.g}

}
in Fig. 7.22 for example, at the call site “18: bar(bb1,0,1)”

in method foo1() of Fig. 7.8, the callee alias relation Rd is computed as follows:

Π(Rd ↓lcp ) =
{
{b}, {b.f, b.g}

}
Π(ρrstc(R

u ↓lcp ∪Rp)) =
{
{b}, {a1, a2, b.f, b.g}

}
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
stmtl is intraprocedural
σ = 〈l, T ran,Gen〉
♦

INTRAI

〈l, T ran,Gen,R, S〉 I−→ 〈l′, T ran′, Gen′, R, S〉
(a) Intraprocedural LSLI semantics.

·↓lp: ARel→ ARel for any invocation l:x=p(y0, . . . , yk)

s.t. ∀R ∈ ARel : R↓lp= {〈α↓lp, β ↓lp〉 | 〈α, β〉 ∈ R ∧ α, β ∈ AP
↓
l }

ρrstc(·) : 2AP×AP → ARel

s.t. ∀B ∈ 2AP×AP : ρrstc(B) is the reflexivity, symmetry, transitivity, and

right-regularity closure [36] of B. (Thus B ⊆ ρrstc(B) ∧ ρrstc(B) ∈ ARel)

(b) Helper functions for LSLI method call semantics.


lc: x=p(y0, . . . , yk)
the declaration of p is “t p(t0 h0, . . . , tk hk){bodyp}”
♠
Rd = ρrstc(R

u ↓lcp ∪Rp)
Sd = Su.〈lc, T ranc, Genc, Ru〉

CALLI

〈lc, T ranc, Genc, Ru, Su〉 I−→ 〈le, T rane, Gene, Rd, Sd〉
(c) LSLI method call semantics.



lx: exit
Sd = Su.〈lc, T ranc, Genc, Ru〉
lc: x=p(y0, . . . , yk)
the declaration of p is “t p(t0 h0, . . . , tk hk){bodyp}”
♠
♣

RETURNI

〈lx, T ranx, Genx, Rd, Sd〉 I−→ 〈lr, T ranr, Genr, Ru, Su〉
(d) LSLI method return semantics.

Fig. 7.25.: LSLI semantics.
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The return rule RETURNI pops the pending call state from the stack and merge

the call state with callee’s return state in the same way as the LSL semantics.

Before continuing the proof, an over-approximating ordering · v · among parti-

tions is defined below:

over-approximating ordering v ∈ 2APart×APart

s.t. ∀π1, π2 ∈ APart : π1 v π2 if and only if ∀A1 ∈ π1 : ∃A2 ∈ π2 : A1 ⊆ A2

For any two partitions π1 and π2, π1 v π2 if and only if π2 is coarser than π1, i.e.

∀A1 ∈ π1 : ∃A2 ∈ π2 : A1 ⊆ A2. Furthermore, a coarsening function d·eπ2 between

two partitions π1 v π2 can be defined as follows:

coarsening function d·eπ2 : π1 → π2 for any π1, π2 ∈ APart s.t. π1 v π2

s.t. ∀A1 ∈ π1 : A1 ⊆ dA1eπ2 ∈ π2

Next Proposition 7.3.3 indicates that intraprocedural transitions (rule INTRA)

preserve the over-approximating relation between the heap H and certain alias re-

lation R subsuming the alias relation Rq inferred by Clipper from bottom up, i.e.

Rq ⊆ R.

Proposition 7.3.3 Given alias relations R derived from [[prog]]R of certain program

prog, at any transition of rule INTRAI in Fig. 7.25a where stmtl is in method q, the

following condition

Rq ⊆ R ∧H = image(Tran) ∪Gen v Π(R)

implies that ∀〈l′, tran, gen〉 ∈ succ(〈l, T ran,Gen〉):

∀o ∈ H : tran(o) ⊆ doeΠ(R) (7.1)

gen(σ) v Π(R) (7.2)
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Proof A case-by-case analysis of stmt:

1. Case “l: x = null” – Condition 7.1 holds because no new access path is added

to any object o ∈ H. Condition 7.2 holds because gen(σ) is ∅.

2. Case “l: x = new t” – Condition 7.1 holds because tran is an identity function.

Condition 7.2 holds because {x} ⊆ [x]Π(R).

3. Case “l: x = y” (or “l: return z” which is handled as “l: ret = z”)

For any object o ∈ H and for any δ ∈ ∆ s.t. y.δ ∈ o:

x.δ ∈ [y.δ]Π(R) // [[l:x = y]]R

It follows that

{x.δ | y.δ ∈ o} ⊆ [y.δ]Π(R) = doeΠ(R)

Thus

tran(o) = o ∪ {x.δ | y.δ ∈ o} ⊆ doeΠ(R)

and Condition 7.1 holds.

Condition 7.2 holds because gen(σ) is ∅.

4. Case “l: x = y.f”

For any object o ∈ H and for any δ ∈ ∆ s.t. y.f.δ ∈ o:

x.δ ∈ [y.f.δ]Π(R) // [[l:x = y.f ]]R

It follows that

{x.δ | y.f.δ ∈ o} ⊆ [y.f.δ]Π(R) = doeΠ(R)

Thus

tran(o) = o ∪ {x.δ | y.f.δ ∈ o} ⊆ doeΠ(R)
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and Condition 7.1 holds.

Condition 7.2 holds because gen(σ) is ∅.

5. Case “l: y.f = null” Condition 7.1 holds because no new access path is added

to any object o ∈ H. Condition 7.2 holds because gen(σ) is ∅.

6. Case “l: y.f = x”



[y]H ⊆ [y]Π(R) // precondition

⇒ [y]H .f ⊆ [y.f ]Π(R) // right-regularity

= [x]Π(R) // [[l:y.f = x]]R

[x]H ⊆ [x]Π(R) // precondition

⇒ [y]H .f ∪ [x]H ⊆ [x]Π(R)

⇒ ρc([y]H .f ∪ [x]H) ⊆ [x]Π(R) // Corollary 7.3.2

⇒ ∀δ ∈ ∆ : ρc([y]H .f.δ ∪ [x]H) ⊆ [x.δ]Π(R) // right-regularity

⇒ ∀o ∈ H : o ∪
⋃
{ρc([y]H .f ∪ [x]H).δ | x.δ ∈ o} ⊆ doeΠ(R)

Thus Condition 7.1 holds.

Condition 7.2 holds because gen(σ) is ∅.

7. Case “l: goto l′” or “l: if b lt lf” Condition 7.1 holds because tran is an identity

function. Condition 7.2 holds because gen(σ) is ∅.

Next Proposition 7.3.4 indicates that call transitions (rule CALLI) preserve the

over-approximating relation between the caller heap Hc and certain caller alias rela-

tion Ru subsuming the caller alias relation Rq inferred by Clipper from bottom up,

i.e. Rq ⊆ Ru.
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Proposition 7.3.4 Given alias relations R derived from [[prog]]R of program prog,

at any transition of rule CALLI in Fig. 7.25c where lc: x=p(y0, . . . , yk) is in method

q, the following condition

Rq ⊆ Ru ∧Hc = image(Tranc) ∪Genc v Π(Ru)

implies

∀yi.δi ∈ AP : [yi.δi]Hc exists =⇒ [yi.δi]Hc ↓⊆ [yi.δi ↓l
c

p ]Π(Rd) (7.3)

He v Π(Rd) (7.4)

Proof Because

∀oc ∈ Hpassed : ∀yi.δi, yj.δj ∈ oc : 〈yi.δ1, yj.δ2〉 ∈ Ru // precondition

⇒ ∀oc ∈ Hpassed : ∀yi.δi, yj.δj ∈ oc : 〈hi.δ1, hj.δ2〉 ∈ Rd // Rd = ρrstc(R
u ↓lcp ∪Rp)

⇒ ∀yi.δi ∈ AP : [yi.δi]Hc exists =⇒ [yi.δi]Hc ↓⊆ [yi.δi ↓l
c

p ]Π(Rd)

condition 7.3 holds.

Condition 7.4 follows from condition 7.3.

Lemma 7.3.5 Given alias relations R derived from [[prog]]R of program prog, at any

transition of rule CALLI in Fig. 7.25c where lc: x=p(y0, . . . , yk) is in method q and

Rq ⊆ Ru, the following implication holds

∀α, β ∈ AP ↑p : 〈α, β〉 ∈ Rd =⇒ 〈α↑lcp , β ↑l
c

p 〉 ∈ Ru



106

Proof For any α, β ∈ AP ↑p such that 〈α, β〉 ∈ Rd, there exists a sequence (〈αi, α′i〉)ki=1

such that

∧



α1 = α (a)

α′k = β (b)

〈αi, α′i〉 ∈ Rp for 1 ≤ i ≤ k (c)

〈α′i, αi+1〉 ∈ Ru ↓lcp for 1 ≤ i ≤ k − 1 (d)

It follows that ∀i ∈ [1, k] : αi, α
′
i ∈ AP ↑p because of (d) and hence there exists another

sequence (〈αi ↑l
c

p , α
′
i ↑l

c

p 〉)ki=1 such that

∧

〈αi ↑
lc

p , α
′
i ↑l

c

p 〉 ∈ Rq ⊆ Ru for 1 ≤ i ≤ k // condition (c) and definition of R

〈α′i ↑l
c

p , αi+1 ↑l
c

p 〉 ∈ Ru for 1 ≤ i ≤ k − 1 // condition (d)

⇒〈α1 ↑l
c

p , α
′
k ↑l

c

p 〉 ∈ Ru // by transitivity

⇒〈α↑lcp , β ↑l
c

p 〉 ∈ Ru // condition (a) and (b)

The following Proposition 7.3.6 and Corollary 7.3.7 indicate that return transitions

(rule RETURNI) preserve the over-approximating relation between the caller heap

Hc and certain caller alias relation Ru subsuming the caller alias relation Rq inferred

by Clipper from bottom up (i.e. Rq ⊆ Ru) if the callee object transformer Tranx

preserves the over-approximating relation between the callee heap He and the callee

alias relation Rd (condition (c)) and the callee generated object set Genx is over-

approximated by the callee alias relation Rd (condition (d)).
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Proposition 7.3.6 Given alias relations R derived from [[prog]]R of program prog,

at any transition of rule RETURNI in Fig. 7.25d where lc: x=p(y0, . . . , yk) is in

method q, the following condition

∧



Hc = image(Tranc) ∪Genc v Π(Ru) (a)

Rq ⊆ Ru (b)

∀oe ∈ He : Tranx(oe) ⊆ doeeΠ(Rd) (c)

Genx v Π(Rd) (d)

implies

∀ox ∈ Hx : ∃Au ∈ Π(Ru) : ox ↑⊆ Au (7.5)

∀i ∈ [0, k] and δ ∈ ∆ : [yi.δi]Hc exists =⇒ Tranx([hi.δi]He)↑⊆ [yi.δi]Π(Ru) (7.6)

Proof For any ox ∈ Hx, ·↑ maps the following two kinds of access paths to caller

[retp]Hx .δ′ ⊆ ox for oxret = [retp]Hx

Tranx([hi.δ]He).δ′ ⊆ ox for [hi.δ]He ∈ Hparams ∪Hcpl
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It follows thatH
e v Π(Rd) // Proposition 7.3.4

Hx = image(Tranx) ∪Genx v Π(Rd) // condition (c) and (d)

⇒∀i ∈ [0, k] and δ ∈ ∆ :

hi.δ ∈ d[hi.δ]HeeΠ(Rd) = dTranx([hi.δ]He)eΠ(Rd) // condition (c)

⇒∀i ∈ [0, k] and δ, δ′ ∈ ∆ :

Tranx([hi.δ]He).δ′ ⊆ ox ⇒ hi.δ.δ
′ ∈ doxeΠ(Rd) // right-regularity of Rd

⇒∀α ∈ {hi.δ.δ′ | Tranx([hi.δ]He).δ′ ⊆ ox} : α ∈ doxeΠ(Rd)

⇒∀α ∈ {retp.δ′ | retp.δ′ ∈ ox} ∪ {hi.δ.δ′ | Tranx([hi.δ]He).δ′ ⊆ ox} : α ∈ doxeΠ(Rd)

⇒∀α, β ∈ {retp.δ′ | retp.δ′ ∈ ox} ∪ {hi.δ.δ′ | Tranx([hi.δ]He).δ′ ⊆ ox} : 〈α, β〉 ∈ Rd

⇒∀α, β ∈ {x.δ′ | retp.δ′ ∈ ox} ∪ {yi.δ.δ′ | Tranx([hi.δ]He).δ′ ⊆ ox} :

〈α, β〉 ∈ Ru // condition (b) and Lemma 7.3.5

⇒∀α, β ∈ {x.δ′ | retp.δ′ ∈ ox} ∪
⋃
{[yi.δ]Hc .δ′ | Tranx([hi.δ]He).δ′ ⊆ ox} :

〈α, β〉 ∈ Ru // condition (a) and right-regularity of Ru

⇒∃Au ∈ Π(Ru) : ox ↑⊆ Au // by definition of ·↑

Hence condition 7.5 holds.

Given [yi.δi]Hc exists, it follows that



∀α, β ∈ {x.δ′ | retp.δ′ ∈ Tranx([hi.δi]He)}∪⋃
{[yj.δj]Hc .δ′ | Tranx([hj.δj]He).δ′ ⊆ Tranx([hi.δi]He)} :

〈α, β〉 ∈ Ru // derived above

yi.δi ∈
⋃
{[yj.δj]Hc .δ′ | Tranx([hj.δj]He).δ′ ⊆ Tranx([hi.δi]He)}

⇒Tranx([hi.δi]He)↑⊆ [yi.δi]Π(Ru) // by definition of ·↑

Hence condition 7.6 holds.
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Corollary 7.3.7 Given alias relations R derived from [[prog]]R of program prog, at

any transition of rule RETURNI in Fig. 7.25d where lc: x=p(y0, . . . , yk) is in method

q, the following condition

∧



Hc = image(Tranc) ∪Genc v Π(Ru)

Rq ⊆ Ru

∀oe ∈ He : Tranx(oe) ⊆ doeeΠ(Rd)

Genx v Π(Rd)

implies

∀oc ∈ Hc : tran(oc) ⊆ doceΠ(Ru) (7.7)

gen v Π(Ru) (7.8)

Proof To prove condition 7.7, two cases need to be considered.

1. First consider the case where oc ∈ Hc \Hpassed. It follows that

tran(oc) = oc ⊆ doceΠ(Ru)

2. Next consider the case where oc ∈ Hpassed. Then there exists yi.δi ∈ oc. It

follows that

tran(oc) = Tranx([hi.δi]He)↑⊆ [yi.δi]Π(Ru) = doceΠ(Ru)

Hence condition 7.7 holds.

Condition 7.8 follows from the definition of gen and condition 7.5.

The same-level realizable paths (SLRPs) are defined as in [22]. Note: An SLRP starts

at an entry state 〈le, T rane, Gene, R, S〉.
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path ρ, σ̂0
I−→ σ̂1

I−→ · · · I−→ σ̂k ∈ Path = (
I−→ )∗

empty path σ̂ ∈ Path0 ⊂ Path

path length | · | : Path→ N

s.t. ∀ρ ∈ Path : |ρ| =

{
0 if ρ ∈ Path0

|σ̂0
I−→ · · · I−→ σ̂k|+ 1 if ρ = σ̂0

I−→ · · · I−→ σ̂k
I−→ σ̂k+1

same-level realizable path s ∈ SLRP ⊂ Path

s.t. s ∈ SLRP if

∨



s = 〈le, T rane, Gene, R, S〉 // s is empty

s = 〈le, T rane, Gene, R, S〉 I−→ · · · I−→ 〈l, T ran,Gen,R, S〉
I−→ 〈l′, T ran′, Gen′, R, S〉 ∧
〈le, T rane, Gene, R, S〉 I−→ · · · I−→ 〈l, T ran,Gen,R, S〉 ∈ SLRP ∧
stmtl is intraprocedural

s = 〈leq , T raneq, Geneq, Ru, Su〉 I−→ · · · I−→ 〈lcq , T rancq, Gencq, Ru, Su〉
I−→ 〈lep, T ranep, Genep, Rd, Sd〉 I−→ · · · I−→ 〈lxp, T ranxp, Genxp, Rd, Sd〉
I−→ 〈lrq , T ranrq, Genrq, Ru, Su〉 ∧
〈leq , T raneq, Geneq, Ru, Su〉 I−→ · · · I−→ 〈lcq , T rancq, Gencq, Ru, Su〉 ∈ SLRP ∧
lcq : x=p(y0, . . . , yk) ∧
〈lep, T ranep, Genep, Rd, Sd〉 I−→ · · · I−→ 〈lxp, T ranxp, Genxp, Rd, Sd〉 ∈ SLRP ∧
lxp: exit

Fig. 7.26.: Definiton of same-level realizable path (SLRP).
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Example 18 In Fig. 7.11 and 7.12 for example, the following traces are SLRPs

σ̂13
I−→ · · · I−→ σ̂15

σ̂13
I−→ · · · I−→ σ̂16

I−→ σ̂19
I−→ · · · I−→ σ̂23

I−→ 17

σ̂19
I−→ · · · I−→ σ̂22

where σ̂i = 〈li, T rani, Geni, R, S〉 i.e. extending σi = 〈li, T rani, Geni〉 with proper

R and S.

In Fig. 7.13 and 7.14 for example, the following traces are SLRPs

σ̂24
I−→ · · · I−→ σ̂26

σ̂24
I−→ · · · I−→ σ̂26

I−→ σ̂28
I−→ · · · I−→ σ̂32

I−→ 27

σ̂28
I−→ · · · I−→ σ̂31

Next Proposition 7.3.8 indicates that SLRPs preserve the over-approximating

relation between the heap He and certain alias relation R subsuming the alias relation

Rq inferred by Clipper from bottom up (i.e. Rq ⊆ R).

Proposition 7.3.8 Given alias relations R derived from [[prog]]R of program prog

and any SLRP s = 〈le, T rane, Gene, R, S〉 I−→ · · · I−→ 〈l, T ran,Gen,R, S〉 from an

entry state of any method q, the following condition

∧



He = dom(Trane) v Π(R) (a)

∀oe ∈ He : Trane(oe) = oe (b)

Gene = ∅ (c)

Rq ⊆ R (d)
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implies

∀oe ∈ He : Tran(oe) ⊆ doeeΠ(R) (7.9)

Gen v Π(R) (7.10)

Proof We proceed by well-founded induction on s.

1. First consider the base case where s is empty, i.e. s = 〈le, T rane, Gene, R, S〉

Because

∀oe ∈ He : Tran(oe) = Trane(oe) = oe ⊆ doeeΠ(R)

condition 7.9 holds.

Condition 7.10 holds because Gen = Gene = ∅.

2. Next consider the inductive case where

∀s′ ∈ SLRP :

∧

|s
′| < |s|

s′ starts from an entry state satisfying conditions (a) and (b)

=⇒ conditions 7.9 and 7.10 hold on s′

Two cases need to be considered:

(a) First consider the case

s = 〈le, T rane, Gene, R, S〉 I−→ · · · I−→ 〈l, T ran,Gen,R, S〉
I−→ 〈l′, T ran′, Gen′, R, S〉



113

where

∧

〈l
e, T rane, Gene, R, S〉 I−→ · · · I−→ 〈l, T ran,Gen,R, S〉 ∈ SLRP

stmtl is intraprocedural

Because

Let σ = 〈l, T ran,Gen〉 in

∀oe ∈ He : Tran(oe) ⊆ doeeΠ(R) // induction hypothesis

⇒∀oe ∈ He :

Tran′(oe) = tran(Tran(oe)) ⊆ dTran(oe)eΠ(R) = doeeΠ(R)

// Proposition 7.3.3

condition 7.9 holds.

Because

Let σ = 〈l, T ran,Gen〉 in
∀o ∈ Gen : ∃A ∈ Π(R) : o ⊆ A // induction hypothesis

⇒ ∀o ∈ Gen : tran(o) ⊆ doeΠ(R) // Proposition 7.3.3

∀o ∈ gen(σ) : ∃A ∈ Π(R) : o ⊆ A // Proposition 7.3.3

⇒∀o′ ∈ Gen′ : ∃A ∈ Π(R) : o′ ⊆ A

condition 7.10 holds.

(b) Next consider the case

s = 〈leq , T raneq, Geneq, Ru, Su〉 I−→ · · · I−→ 〈lcq , T rancq, Gencq, Ru, Su〉
I−→ 〈lep, T ranep, Genep, Rd, Sd〉 I−→ · · · I−→ 〈lxp, T ranxp, Genxp, Rd, Sd〉
I−→ 〈lrq , T ranrq, Genrq, Ru, Su〉
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where

∧



〈leq , T raneq, Geneq, Ru, Su〉 I−→ · · · I−→ 〈lcq , T rancq, Gencq, Ru, Su〉 ∈ SLRP

lcq : x=p(y0, . . . , yk)

〈lep, T ranep, Genep, Rd, Sd〉 I−→ · · · I−→ 〈lxp, T ranxp, Genxp, Rd, Sd〉 ∈ SLRP

lxp: exit

It follows that

∀o
e
q ∈ He

q : Trancq(o
e
q) ⊆ doeqeΠ(Ru) // induction hypothesis

∀ocq ∈ Gencq : ∃Au ∈ Π(Ru) : ocq ⊆ Au // induction hypothesis

⇒ Hc
q = image(Trancq) ∪Gencq v Π(Ru)

⇒ He
p v Rd // Proposition 7.3.4

Rp ⊆ Rd // by definition of Rd

⇒

∀o
e
p ∈ He

p : Tranxp(o
e
p) ⊆ doepeΠ(Rd)

∀oxp ∈ Genxp : ∃Ad ∈ Π(Rd) : oxp ⊆ Ad

// induction hypothesis

⇒

∀o
c
q ∈ Hc

q : tranl
c
q(ocq) ⊆ docqeΠ(Ru) (c)

∀orq ∈ genl
c
q : ∃Au ∈ Π(Ru) : orq ⊆ Au (d)

// Corollary 7.3.7

Because

∀oeq ∈ He
q :

Tranrq(o
e
q) = tranl

c
q(Trancq(o

e
q)) ⊆ dTrancq(oeq)eΠ(Ru) = doeqeΠ(Ru)

condition 7.9 holds.



115

Because
∀ocq ∈ Gencq : ∃Au ∈ Π(Ru) : ocq ⊆ Au // induction hypothesis

⇒ ∀ocq ∈ Gencq : tranl
c
q(ocq) ⊆ docqeΠ(Ru) // condition (c)

∀orq ∈ genl
c
q : ∃Au ∈ Π(Ru) : orq ⊆ Au // condition (d)

⇒∀orq ∈ Genrq = genl
c
q ∪map(tranlcq)(Gencq) : ∃Au ∈ Π(Ru) : orq ⊆ Au

condition 7.10 holds.

The realizable paths are defined as in [22].

realizable path r ∈ RP ⊂ Path

s.t. r ∈ RP if

∨



r = 〈l0, T ran0, Gen0, R0, S0〉 // r is empty

r = 〈l0, T ran0, Gen0, R0, S0〉 I−→ · · · I−→ 〈l, T ran,Gen,R, S〉
I−→ 〈l′, T ran′, Gen′, R, S〉 ∧
〈l0, T ran0, Gen0, R0, S0〉 I−→ · · · I−→ 〈l, T ran,Gen,R, S〉 ∈ RP ∧
stmtl is not l: exit

r = 〈l0, T ran0, Gen0, R0, S0〉 I−→ · · · I−→ 〈lcq , T rancq, Gencq, Ru, Su〉
I−→ 〈lep, T ranep, Genep, Rd, Sd〉 I−→ · · · I−→ 〈lxp, T ranxp, Genxp, Rd, Sd〉
I−→ 〈lrq , T ranrq, Genrq, Ru, Su〉 ∧
〈l0, T ran0, Gen0, R0, S0〉 I−→ · · · I−→ 〈lcq , T rancq, Gencq, Ru, Su〉 ∈ RP ∧
lcq : x=p(y0, . . . , yk) ∧
〈lep, T ranep, Genep, Rd, Sd〉 I−→ · · · I−→ 〈lxp, T ranxp, Genxp, Rd, Sd〉 ∈ SLRP ∧
lxp: exit

Fig. 7.27.: Definition of realizable path (RP).
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Example 19 In Fig. 7.11 and 7.12 for example, the following traces are RPs

σ̂13
I−→ · · · I−→ σ̂15

σ̂13
I−→ · · · I−→ σ̂16

I−→ 19
I−→ 20

σ̂19
I−→ · · · I−→ σ̂22

where σ̂i = 〈li, T rani, Geni, R, S〉 i.e. extending σi = 〈li, T rani, Geni〉 with proper

R and S.

In Fig. 7.13 and 7.14 for example, the following traces are RPs

σ̂24
I−→ · · · I−→ σ̂26

σ̂24
I−→ · · · I−→ σ̂26

I−→ σ̂28
I−→ · · · I−→ σ̂30

σ̂28
I−→ · · · I−→ σ̂31

Next Proposition 7.3.9 indicates that RPs preserve the over-approximating rela-

tion between the heap H0 and certain alias relation R0 subsuming the alias relation

Rmain inferred by Clipper from bottom up (i.e. Rmain ⊆ R0).

Proposition 7.3.9 Given alias relations R derived from [[prog]]R of program prog

and any RP r = 〈l0, T ran0, Gen0, R0, S0〉 I−→ · · · I−→ 〈l, T ran,Gen,R, S〉 from an

initial state of the entry method main the following condition

∧



H0 = dom(Tran0) v Π(R0) (a)

∀o0 ∈ H0 : Tran0(o0) = o0 (b)

Gen0 = ∅ (c)

Rmain ⊆ R0 (d)
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implies

He = dom(Tran) v Π(R) (7.11)

∀oe ∈ He : Tran(oe) ⊆ doeeΠ(R) (7.12)

Gen v Π(R) (7.13)

Proof We proceed by well-founded induction on r.

1. First consider the base case where r is empty, i.e.

r = 〈l0, T ran0, Gen0, R0, S0〉

Because He = H0 v Π(R0) = Π(R), condition 7.11 holds.

Because

∀oe ∈ He = H0 :

Tran(oe) = Tran0(oe) = oe ⊆ doeeΠ(R0) = doeeΠ(R)

condition 7.12 holds.

Condition 7.13 holds because Gen = Gen0 = ∅.

2. Next consider the inductive case where

∀r′ ∈ RP :

∧

|r
′| < |r|

r′ starts from an initial state satisfying conditions (a)-(d)

=⇒ conditions 7.11, 7.12, and 7.13 hold on r′

Three cases need to be considered:
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(a) First consider the case

r = 〈l0, T ran0, Gen0, R0, S0〉 I−→ · · · I−→ 〈l, T ran,Gen,R, S〉
I−→ 〈l′, T ran′, Gen′, R, S〉

where

∧

〈l
0, T ran0, Gen0, R0, S0〉 I−→ · · · I−→ 〈l, T ran,Gen,R, S〉 ∈ RP

stmtl is intraprocedural

Because

Let σ = 〈l, T ran,Gen〉 in

He = dom(Tran′) = dom(tran ◦ Tran) = dom(Tran) v Π(R)

condition 7.11 holds.

Because

∀oe ∈ He : Tran(oe) ⊆ doeeΠ(R) // induction hypothesis

⇒Let σ = 〈l, T ran,Gen〉 in

∀oe ∈ He :

Tran′(oe) = tran(Tran(oe)) ⊆ dTran(oe)eΠ(R) = doeeΠ(R)

// Proposition 7.3.3

condition 7.12 holds.
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Because

Let σ = 〈l, T ran,Gen〉 in
∀o ∈ Gen : ∃A ∈ Π(R) : o ⊆ A // induction hypothesis

⇒ ∀o ∈ Gen : tran(o) ⊆ doeΠ(R) // Proposition 7.3.3

∀o′ ∈ gen(σ) : ∃A ∈ Π(R) : o′ ⊆ A // Proposition 7.3.3

⇒∀o′ ∈ Gen′ = gen(σ) ∪map(tran)(Gen) : ∃A ∈ Π(R) : o′ ⊆ A

condition 7.13 holds.

(b) Next consider the case

r = 〈l0, T ran0, Gen0, R0, S0〉 I−→ · · · I−→ 〈lcq , T rancq, Gencq, Ru, Su〉
I−→ 〈lep, T ranep, Genep, Rd, Sd〉

where

∧

〈l
0, T ran0, Gen0, R0, S0〉 I−→ · · · I−→ 〈lcq , T rancq, Gencq, Ru, Su〉 ∈ RP

lcq : x=p(y0, . . . , yk)

Because

Hc = image(Tranc) ∪Genc v Π(Ru) // induction hypothesis

⇒He = dom(Trane) v Π(Rd) // Proposition 7.3.4

⇒∀oe ∈ He : Trane(oe) = oe ⊆ doeeΠ(Rd)

conditions 7.11 and 7.12 hold.

Condition 7.13 holds because Gene = ∅.
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(c) Next consider the case

r = 〈l0, T ran0, Gen0, R0, S0〉 I−→ · · · I−→ 〈lcq , T rancq, Gencq, Ru, Su〉
I−→ 〈lep, T ranep, Genep, Rd, Sd〉 I−→ · · · I−→ 〈lxp, T ranxp, Genxp, Rd, Sd〉
I−→ 〈lrq , T ranrq, Genrq, Ru, Su〉

where

∧



〈l0, T ran0, Gen0, R0, S0〉 I−→ · · · I−→ 〈lcq , T rancq, Gencq, Ru, Su〉 ∈ RP

lcq : x=p(y0, . . . , yk)

〈lep, T ranep, Genep, Rd, Sd〉 I−→ · · · I−→ 〈lxp, T ranxp, Genxp, Rd, Sd〉 ∈ SLRP

lxp: exit

Because

Hc
q = image(Trancq) ∪Gencq v Π(Ru) // induction hypothesis

⇒He
q = dom(Tranrq) = dom(tranl

c
q ◦ Trancq) = dom(Trancq) v Π(Ru)

// Corollary 7.3.7

condition 7.11 holds.

Because

∀oeq ∈ He
q : Trancq(o

e
q) ⊆ doeqeΠ(Ru) // induction hypothesis

⇒∀oeq ∈ He
q :

Tranrq(o
e
q) = tranl

c
q(Trancq(o

e
q)) ⊆ dTrancq(oeq)eΠ(Ru) = doeqeΠ(Ru)

// Corollary 7.3.7

condition 7.12 holds.
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Because
∀ocq ∈ Gencq : ∃Au ∈ Π(Ru) : o ⊆ A // induction hypothesis

⇒ ∀ocq ∈ Gencq : tranl
c
q(ocq) ⊆ docqeΠ(Ru) // Corollary 7.3.7

∀orq ∈ genl
c
q : ∃Au ∈ Π(Ru) : orq ⊆ Au // Corollary 7.3.7

⇒∀orq ∈ Genrq = genl
c
q ∪map(tranlcq)(Gencq) : ∃Au ∈ Π(Ru) : orq ⊆ Au

condition 7.13 holds.

Corollary 7.3.10 (Soundness of Clipper as a Slicing Analysis) Given alias re-

lations R derived from [[prog]]R of program prog and any RP

r = 〈l0, T ran0, Gen0, R0, S0〉 I−→ · · · I−→ 〈l, T ran,Gen,R, S〉

from an initial state of the entry method main, the following condition

∧



l0 is the entry label of main

H0 = dom(Tran0) = ∅ (a)

∀o0 ∈ H0 : Tran0(o0) = o0 (b)

Gen0 = ∅ (c)

R0 = Rmain (d)

implies

He = dom(Tran) v Π(R) (7.14)

∀oe ∈ He : Tran(oe) ⊆ doeeΠ(R) (7.15)

Gen v Π(R) (7.16)
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Proof Because

∧



H0 = dom(Tran0) v Π(R0) // condition (a)

∀o0 ∈ H0 : Tran0(o0) = o0 // condition (b)

Gen0 = ∅ // condition (c)

Rmain ⊆ R0 // condition (d)

conditions 7.14, 7.15, and 7.16 hold according to Proposition 7.3.9.
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8. ASYNCHRONOUS CONTROL FLOW ANALYSIS

As illustrated in Section 1.4, in asynchronous messaging, control flows are scattered

into many cooperatively-triggered message handling functions, obscuring causal rela-

tion among them.

For example, Fig. 8.1 shows part of an (contrived) app leveraging the asyn-

chronous messaging framework of Android (Fig. 1.5). In this framework, a mes-

sage can be denoted by the values of its fields target and what. For example,

{target = Foo, what = 1} is such a message in Fig. 8.1 where a handler object

of type Foo is denoted by its type Foo.

When handling message {target = Foo, what = 1} at line 26, another message

{target = Bar, what = 1} is enqueued at line 33. When further handling message

{target = Bar, what = 1} at line 45, another message {target = Foo, what = 2} is

enqueued at line 56. Similarly, when handling message {target = Foo, what = 2}

and {target = Bar, what = 2} (at lines 27 and 46, respectively), two more messages

{target = Bar, what = 2} and {target = Foo, what = 1} are further enqueued (at

lines 37 and 52, respectively).

The message enqueuing operations imply the causal relation among the corre-

sponding message handling operations, as shown in Fig. 8.2 where the nodes denotes

message handling operations of the corresponding messages and the edges denotes

message enqueuing operations representing the causal relation between the source

and target messages.

In this chapter, a modular shape analysis is designed and specified (Section 8.1)

to build an asynchronous control flow graph capturing such implicit causal realtion

among these message handling functions (Section 8.2).
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21 class Foo extends Handler {

22 static final Foo INSTANCE = new Foo();

23 void handle(Message m) {

24 int w = m.what;

25 switch (w) {

26 case 1: handleFoo1 (); break;

27 case 2: handleFoo2 (); break;

28 ...

29 }

30 }

31 void handleFoo1 () {

32 Handler h = Bar.INSTANCE;

33 h.send (1);

34 }

35 void handleFoo2 () {

36 Handler h = Bar.INSTANCE;

37 h.send (2);

38 }

39 }

40 class Bar extends Handler {

41 static final Bar INSTANCE = new Bar();

42 void handle(Message m) {

43 int w = m.what;

44 switch (w) {

45 case 1: handleBar1 (); break;

46 case 2: handleBar2 (); break;

47 ...

48 }

49 }

50 void handleBar1 () {

51 Handler h = Foo.INSTANCE;

52 h.send (2);

53 }

54 void handleBar2 () {

55 Handler h = Foo.INSTANCE;

56 h.send (1);

57 }

58 }

Fig. 8.1.: Example code for asynchronous messaging.



125

{target=Foo,what=1} {target=Bar, what=1}

{target=Foo,what=2} {target=Bar, what=2}

Fig. 8.2.: Asynchronous control flow graph of the example in Fig. 8.1. The nodes
denotes message handling operations of the corresponding messages and the edges
denotes message enqueuing operations representing the causal relation between the
source and target messages.
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8.1 ModShape

In this section, a modular shape analysis called ModShape is specified as an

equation system. The fixed point of the equation system is a pair consisting of a heap

invariance denoting the set of all possible message generated by the program and a

trace invariance denoting the set of all possible execution traces of the program [39,40].

To specify ModShape, two new statements – pack and unpack – are introduced

below:

stmt ::= . . . | l: pack(x) | l: x = unpack()

In the asynchronous messaging example, the pack statement abstracts the message

enqueuing operation, i.e. the invocation of MessageQueue.enqueue(), to extract the

shape of the message object being enqueued. Dually, the unpack statement abstracts

the message dequeuing operation, i.e. the invocation of MessageQueue.next(), to

merge the shape of certain enqueued message into the current state σ. Fig. 8.3

shows the source code rewritten from that of Android’s messaging framework with

the invocation mQueue.enqueue(m) replaced by pack(m) (at line 7) and the invocation

m=mQueue.next() replaced by m=unpack() (at line 15).

A message shape is defined as a packed heap. A packed heap consists of packed

objects only and all access paths within the representation of a packed object are

rooted at a pseudo header variable hdr [39] (as defined in Fig. 8.4).

Example 20 The packed heap corresponding to the message {target = Bar, what =

1} is shown in Fig. 8.5.

A packed heap is extraced from certain state σ via the pack operation Pack(·, ·, ·)

defined in Fig. 8.6. The pack operation Pack(·, ·, ·) takes three parameters: an

unpacked heap to extract the packed heap from, a local variable x, and a shape rim

R representing a set of field paths such that all rim objects (i.e. objects [x.δ]H for

certain δ ∈ R) and all intermediate objects (i.e. objects [x.δ1]H for certain δ1.δ2 ∈ R)

are included in the packed heap.
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1 abstract class Handler {

2 MessageQueue mQueue;

3 void send(int w) {

4 Message m = new Message ();

5 m.target = this;

6 m.what = w;

7 pack(m); // mQueue.enqueue(m);

8 }

9 abstract void handle(Message m);

10 }

11 public class Looper {

12 MessageQueue mQueue;

13 void loop() {

14 for (;;) {

15 Message m = unpack (); // mQueue.next();

16 Handler h = m.target;

17 h.handle(m);

18 }

19 }

20 }

Fig. 8.3.: Rewritten code of Android’s messaging framework.

pseudo header variable hdr ∈ V ar

packed object õ ∈ Õbj = 2hdr.∆ \ {∅}

packed heap H̃ ∈ H̃eap ⊂ 2Õbj

s.t. ∀õ1, õ2 ∈ H̃ : õ1 ∩ õ2 6= ∅ ⇒ õ1 = õ2

Fig. 8.4.: Header variable, packed object, and packed heap.

Message Bar

1

target

what

h

w

hdr

(a) Store-based heap.

Message = {hdr}
Bar = {hdr.target}

1 = {hdr.what}

(b) Storeless heap.

Fig. 8.5.: Packed heap of the message {target = Bar, what = 1}.
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shape rim R ∈ Rim = 2∆

pack operation Pack(·, ·, ·) : Heap× V ar ×Rim→ H̃eap

s.t. ∀H ∈ Heap, x ∈ V ar,R ∈ Rim :

Pack(H, x,R) ,

let

{
Hpack = {[x.δ1]H | δ1.δ2 ∈ R}
pack = λo ∈ Hpack.{hdr.δ | x.δ ∈ o}

in

map(pack)(Hpack)

Fig. 8.6.: Shape rim and pack operation.



129

Example 21 In the example program of Fig. 8.1, when handling the message {target =

Foo, what = 1} in method handleFoo1(), another message {target = Bar, what =

1} is enqueued, as shown in Fig. 8.7. Applying the pack operation Pack(·, ·, ·) to the

state at line 7 generates the packed heap in Fig. 8.5.

Statement Store-Based Heap Storeless Heap

σ1 32: h = Bar.INSTANCE

σ2 33: h.send(1)
Bar

h

Bar = {h}

σ3 4: m = new Message()

Bar

1

this

w

Bar = {this}
1 = {w}

σ4 5: m.target = this

Message Bar

1

this

w

m Message = {m}
Bar = {this}
1 = {w}

σ5 6: m.what = w

Message Bar

1

target this

w

m Message = {m}
Bar = {m.target, this}
1 = {w}

σ6 7: pack(m)

Message Bar

1

target

what

this

w

m Message = {m}
Bar = {m.target, this}
1 = {m.what, w}

Fig. 8.7.: Example illustrating packing.

Locally, the pack statement has no effect on the current execution state, as indi-

cated by the definition of the pack transition ·
Mpack−−−−→ · shown in Fig. 8.8. Different

from [39], ownership transfer is not handled in ModShape. Instead, it is assumed

that ownership transfer is implemented properly in the target program.

Given certain packed heap H̃, an unpack statement x = unpack() unpacks H̃

by replacing the pseudo header variable hdr within the representation of the packed
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pack transition ·
Mpack−−−−→ · ,

{
〈
〈l, T ran,Gen〉, 〈l+1, T ran,Gen〉

〉
| l: pack(x)}

Fig. 8.8.: Pack transition of ModShape analysis.
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objects from H̃ with variable x on the left hand side of the unpack statement, as

specified in Fig. 8.9.

unpack transition ·
Munpack(·)
−−−−−−→ · : H̃eap→ Σ× Σ

s.t. ∀H̃ ∈ H̃eap : ·
Munpack(H̃)
−−−−−−−→ · ,

〈
〈l, T ran,Gen〉, 〈l+1, T ran,Gen′〉

〉
|

l: x = unpack() ∧
let unpack = λõ ∈ H̃.{x.δ | hdr.δ ∈ õ} in

Gen′ = Gen ∪map(unpack)(H̃)


Fig. 8.9.: Unpack transition of ModShape analysis.

Example 22 At line 15 of the example program in Fig. 8.1, the packed message in

Fig. 8.5 is unpacked by replacing the pseudo header variable hdr within the packed

message with variable m. For example, the representation of the Message object is

transformed from {hdr} to {m} and the representation of the Bar object is trans-

formed from {hdr.target} to {m.target}.

Statement Store-Based Heap Storeless Heap

σ1 15: m = unpack()

σ2 16: h = m.target

Message Bar

1

target

what

m Message = {m}
Bar = {m.target}
1 = {m.what}

σ3 17: h.handle(m)

Message Bar

1

target

what

hm Message = {m}
Bar = {m.target, h}
1 = {m.what}

Fig. 8.10.: Example illustrating unpacking.

For other intraprocedural statements, the transition relation · Mintra−−−−→ · is the same

as LSL semantics, as defined in Fig. 8.11.
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intraprocedural transition · Mintra−−−−→ · ,
{
〈
〈l, T ran,Gen〉, σ′

〉
| stmtl is intraprocedural ∧ 〈l, T ran,Gen〉 −→ σ′}

Fig. 8.11.: Other intraprocedural transition of ModShape analysis.
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Similar to the LSL semantics, the interprocedural transition relation · Minter(t̃r
x
)−−−−−−−→ ·

corresponding to certain exit trace t̃r
x

of the callee is defined as an instantiation of

t̃r
x

at all possible call sites, as shown in Fig. 8.12.

ModShape trace t̃r, σ0
M−→ σ1

M−→ · · · M−→ σk ∈ T̃ race

where σ
M−→ σ′ is one of



σ
Mintra−−−−→ σ′

σ
Minter(t̃r

x
)−−−−−−−→ σ′ for certain t̃r

x ∈ T̃ race
x

σ
Mpack−−−−→ σ′

σ
Munpack(H̃)
−−−−−−−→ σ′ for certain H̃ ∈ H̃eap

ModShape empty trace σ ∈ T̃ race
0

⊂ T̃ race

ModShape exit trace T̃ race
x

,

{σe M−→ · · · M−→ 〈lx, T ranx, Genx〉 ∈ T̃ race | lx: exit}

interprocedural transition · Minter(·)−−−−−→ · : T̃ race
x

→ Σ× Σ

s.t. ∀t̃rx ∈ T̃ race
x

: · Minter(t̃r
x
)−−−−−−−→ · ,

〈
〈lc, T ranc, Genc〉, 〈lr, T ranr, Genr〉

〉
|

lc: x=p(y0, . . . , yk) ∧
the declaration of p is “t p(t0 h0, . . . , tk hk){bodyp}” ∧
♠ ∧
t̃r

x
= 〈le, T rane, Gene〉 −→ · · · −→ 〈lx, T ranx, Genx〉 ∧

♣


Fig. 8.12.: Interprocedural transition of ModShape analysis.

The ModShape analysis computes two invariances: a trace invariance TI which

is a set of ModShape traces and a packed heap invariance HI which is a set of

packed heaps, as defined in Fig. 8.13.

Next, a top-down mapping function · ⇓ is defined in Fig. 8.14 to help specifying

the equation system of the ModShape analysis. Given a state 〈lc, T ranc, Genc〉 at

the call site lc: x=p(y0, . . . , yk), 〈lc, T ranc, Genc〉 ⇓ returns the state at the entry of

the callee according the interprocedural LSL semantics defined in Fig. 7.15.
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trace invariance TI ∈ TraceInv = 2T̃ race

packed heap invariance HI ∈ HeapInv = 2H̃eap

Fig. 8.13.: Trace invariance and packed heap invariance.

call state Σc , {〈lc, T ranc, Genc〉 ∈ Σ | lc: x=p(y0, . . . , yk)}
top-down mapping ·⇓: Σc → Σ

s.t. ∀〈lc, T ranc, Genc〉 ∈ Σc :

〈lc, T ranc, Genc〉⇓,

let


lc: x=p(y0, . . . , yk)

the declaration of p is “t p(t0 h0, . . . , tk hk){bodyp}”
♠

in

〈le, T rane, Gene〉

Fig. 8.14.: Domains and helper functions of the ModShape analysis.
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The ModShape equation system corresponding to a givan program prog and

shape rim R is defined with a function FR
prog which takes a trace invariance TI and

packed heap invariance HI and return a new trace invariance TI ′ and packed heap

invariance HI ′, as defined in Fig. 8.15.

Given certain program prog and shape rim R, let FR
prog(TI,HI) = 〈TI ′, HI ′〉 where

TI ′ = ∪



{σ0} (a){
σe

M−→ · · · M−→ σ
Mintra−−−−→ σ′ |

σe
M−→ · · · M−→ σ ∈ TI ∧ σ

Mintra−−−−→ σ′

}
(b)

σe
M−→ · · · M−→ σc

Minter(t̃r
x
)−−−−−−−→ σr |

t̃r
x

= σe
M−→ · · · M−→ 〈lx, T ranx, Genx〉 ∈ TI ∧

lx: exit ∧

σc
Minter(t̃r

x
)−−−−−−−→ σr


(c)

 σe
M−→ · · · M−→ σ

Mpack−−−−→ σ′ |
σe

M−→ · · · M−→ σ ∈ TI ∧ σ
Mpack−−−−→ σ′

 (d)σe M−→ · · · M−→ σ
Munpack(H̃)
−−−−−−−→ σ′

σe
M−→ · · · M−→ σ ∈ TI ∧

H̃ ∈ HI ∧ σ
Munpack(H̃)
−−−−−−−→ σ′

 (e){
〈lcq , T rancq, Gencq〉⇓

σeq
M−→ · · · M−→ 〈lcq , T rancq, Gencq〉 ∈ TI ∧

lcq : x=p(y0, . . . , yk)

}
(f)

HI ′ =

H̃
σe

M−→ · · · M−→ 〈l, T ran,Gen〉 ∈ TI ∧
l: pack(x) ∧

4

{
H = image(Tran) ∪Gen ∧
H̃ = Pack(H, x,R)


Fig. 8.15.: Equation system of the ModShape analysis.

The new trace invariance TI ′ consists of the six kinds of traces:

1. The empty trace consisting of the initial execution state σ0 (case (a) of FR
prog);

2. Traces obtained by extending existing traces in TI with intraprocedural tran-

sitions · Mintra−−−−→ · (case (b) of FR
prog);
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3. Traces obtained by extending existing traces in TI with interprocedural tran-

sitions · Minter(t̃r
x
)−−−−−−−→ · corresponding to certain exit trace t̃r

x
in TI (case (c) of

FR
prog);

4. Traces obtained by extending existing traces in TI with transitions ·
Mpack−−−−→ ·

corresponding to pack statements (case (d) of FR
prog);

5. Traces obtained by extending existing traces in TI with transitions ·
Munpack(H̃)
−−−−−−−→

· unpacking certain packed heap H̃ in HI (case (e) of FR
prog);

6. The empty trace consisting of the callee entry state 〈lcq , T rancq, Gencq〉 ⇓ with

respect to the caller state 〈lcq , T rancq, Gencq〉 at lcq : x=p(y0, . . . , yk) reachable via

certain trace in TI (case (f) of FR
prog).

The new packed heap invariance HI ′ is obtained by extracting packed heap from

all states 〈l, T ran,Gen〉 at “l: pack(x)” reachable via certain trace in TI.

The least fixed point of FR
prog is denoted by lfp(FR

prog) = 〈TIRprog, HIRprog〉.

8.2 Asynchronous Control Flow Analysis

In asynchronous messaging, handling certain messages could cause more messages

being handled. For example, Fig. 8.16 shows execution traces of the program in Fig.

8.1. In these traces, the handling of message {target = Bar, what = 1} leads to the

enqueuing of message {target = Foo, what = 2}, causing the latter to be handled

asynchronously. Such causal relation between the handling of different messages can

be modeled as a directed graph called asynchronous control flow graph (ACFG).

The nodes within an ACFG corresponds to packed heaps encoding messages and the

edges between nodes denote that the handling of the source message enqueues (and

thus causes the handling of) the target message, as shown in the example ACFG in

Fig. 8.2.
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Statement Store-Based Heap Storeless Heap

σ4 43: w = m.what

Message Bar

1

target

what

thism Message = {m}
Bar = {m.target, this}
1 = {m.what}

σ5 44: switch(w)

Message Bar

1

target

what

this

w

m Message = {m}
Bar = {m.target, this}
1 = {m.what, w}

σ6 45: handleBar1()

Message Bar

1

target this

w

m Message = {m}
Bar = {m.target, this}
1 = {m.what, w}

σ7 51: h = Foo.INSTANCE

σ8 52: h.send(2)
Foo

h

Foo = {h}

σ9 4: m = new Message()

Foo

2

this

w

Foo = {this}
2 = {w}

σ10 5: m.target = this

Message Foo

2

this

w

m Message = {m}
Foo = {this}
2 = {w}

σ11 6: m.what = w

Message Foo

2

target this

w

m Message = {m}
Foo = {m.target, this}
2 = {w}

σ12 7: pack(m)

Message Foo

2

target

what

this

w

m Message = {m}
Foo = {m.target, this}
2 = {m.what, w}

Fig. 8.16.: Example illustrating asynchronous control flow analysis. The thick lines
separate different traces.
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An ACFG is encoded as a set of such edges between source/target messages, i.e.

ACFG ∈ 2H̃eap×H̃eap

Example 23 The asynchronous call graph of Fig. 8.2 generated by the program in

Fig. 8.1 is denoted by

ACFG =



〈{target = Foo, what = 1}, {target = Bar, what = 1}〉,

〈{target = Bar, what = 1}, {target = Foo, what = 2}〉,

〈{target = Foo, what = 2}, {target = Bar, what = 2}〉,

〈{target = Bar, what = 2}, {target = Foo, what = 1}〉


.

Given a program prog and shape rim R outlining the shape of the messages, an

ACFG can be extracted from the trace invariance computed by the ModShape anal-

ysis. To achieve that, an intermediate result called enqueuing summary (the Enq

defined below) is computed first via the equation system in Fig. 8.17.

Enq ∈ 2{〈l,T ran,Gen〉 | l: pack(x) ∨ l: x=p(y0,...,yk)}×H̃eap

An enqueuing summary is a set of 〈execution state, packed heap〉 pairs where a

pair of the form 〈〈l, T ran,Gen〉, H̃〉 indicates that the statement stmtl extracts and

enqueues a message denoted by the packed heap H̃ from the current execution state

〈l, T ran,Gen〉. The statement stmtl could be a pack statement “l: pack(x)” that

extracts and enqueues the message directly (case (a) of GR
prog) or a call statement

“l: x=p(y0, . . . , yk)” that extracts and enqueues the message indirectly via the pack

statements within the (transitively) invoked callees (case (b) of GR
prog).

The least fixed point of GR
prog is denoted by lfp(GR

prog) = EnqRprog.

Example 24 In the execution traces of Fig. 8.16, the pack statement at line 7 directly

extracts and enqueues the message {target = Foo, what = 2} from current state σ12.
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Given certain program prog and message shape rim R, let GR
prog(Enq) = Enq′ where

Enq′ =

∪



〈〈l, T ran,Gen〉, H̃〉
σe

M−→ · · · M−→ 〈l, T ran,Gen〉 ∈ TIRprog ∧
l: pack(x) ∧
4

 (a)



〈σcq , H̃〉 |
σep

M−→ · · · M−→ σ1
p
M−→ σ2

p ∈ TIRprog ∧
〈σ2

p, H̃〉 ∈ Enq ∧
6 ∃〈lp, T ranp, Genp〉 ∈ σep

M−→ · · · M−→ σ1
p : lp: x = unpack() ∧

σeq
M−→ · · · M−→ 〈lcq , T rancq, Gencq〉 ∈ TIRprog ∧

lcq : x=p(y0, . . . , yk) ∧
σep = 〈lcq , T rancq, Gencq〉⇓


(b)

Fig. 8.17.: Equation system of enqueuing summary.
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Hence 〈σ12, {target = Foo, what = 2}〉 ∈ EnqRprog. It follows that the method call (at

line 45) of current method indirectly extracts and enqueues the same message from the

state σ6. Hence 〈σ6, {target = Foo, what = 2}〉 ∈ EnqRprog. Transitively the method

call (at line 17 of Fig. 8.3) also indirectly extracts and enqueues the same message

from the state σ3 of Fig. 8.10. Hence 〈σ3, {target = Foo, what = 2}〉 ∈ EnqRprog.

Given certain program prog and message shape rim R, the asynchronous control

flow graph ACFGR
prog can be extracted from the trace invariance TIRprog and enqueuing

summary EnqRprog, i.e. an asynchronous control flow edge 〈H̃, H̃ ′〉 ∈ ACFGR
prog if there

is a trace t̃r ∈ TIRprog along which an unpack statement dequeuing and unpacking a

packed message heap H̃ leads to a pack statement extracting and enqueuing a packed

message heap H̃ ′, as specified in Fig. 8.18.

Given certain program prog and message shape rim R, let

ACFGR
prog =〈H̃, H̃
′〉

σe
M−→ · · · M−→ 〈l, T ran,Gen〉 M−→ σ1

M−→ · · · M−→ σ2 ∈ TIRprog ∧
〈σ2, H̃

′〉 ∈ EnqRprog ∧
6 ∃〈l3, T ran3, Gen3〉 ∈ σ1

M−→ · · · M−→ σ2 : l3: x = unpack() ∧
4


Fig. 8.18.: Asynchronous control flow analysis.

Example 25 In the execution trace of Fig. 8.10, the unpack statement at line 15

dequeues and unpacks the message {target = Bar, what = 1} and the following

call statement at line 17 indirectly extracts and enqueues the message {target =

Foo, what = 2}, as illustrated in Example 24. Hence the asynchronous control flow

edge 〈{target = Bar, what = 1}, {target = Foo, what = 2}〉 ∈ ACFGR
prog, as shown

in Fig. 8.2.

An evaluation of ModShape for asynchronous control flow analysis is able to

build an asynchronous control flow graph consisting of 52 nodes (message types)

within two minutes from the Android framework of version 2.3.7 r1.
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9. RELATED WORK

Sridharan et al. [5] also proposed a demand-driven approach to points-to analysis. Dif-

ferent from DynaSens where Clipper is used as a slicing analysis to refine context-

sensitivity of the points-to analysis, in their approach context and heap are both mod-

eled with context-free languages (CFL) and thus resorts to over-approximation when

handling recursive method invocations. As explained in Section 3.0.2, this approach

suffers from precision loss.

Rountev et al. [41] addressed the scalability challenge for interprocedural distribu-

tive environment (IDE ) dataflow problems on large libraries with pre-computed li-

brary summary information. Although the authors claim that the proposed approach

reduces significantly the cost of whole-program IDE analyses, their approach is essen-

tially based on a context-insensitive heap model where objects are approximatelyax

modeled with their types - leading to precision loss when tracking data flows through

the heap. The demand-driven approach implemented with Clipper is based on a

storeless heap model where objects are precisely modeled with alias classes of access

paths capable of tracking data flows through the heap without loss of precision.

Cunningham et al. [11] proposed the Explicit Event Library called libeel which

provides a unified interface for registering, canceling, and dispatching callbacks. This

design simplified the task of implicit control flow analysis because callback registra-

tions can only be carried out by invoking this interface where the registered callback

methods are explicitly specified. In most real-world programs, callback registrations

can be carried out by many different customized interfaces or as side effects of any

interfaces provided by the framework. The implicit control flow analysis implemented

with Clipper is more generally applicable to almost all existing frameworks.
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10. SUMMARY

The traditional model of homogeneous whole-program analysis has several limita-

tions that make it unsuitable for real-world programs built on large scale frameworks.

Particularly, the imprecision in resolving heap-carried dependency hindered the ap-

plication of precise but expensive analyses to these programs. The research impact of

such analyses can be broadened significantly if this limitation is resolved. As a step

towards achieving this goal, in this thesis we proposed a slicing method for resolving

heap-carried dependency and three client analyses demonstrating how to employ such

dependence information to build precise and scalable client analyses.

Our slicing method (Chapter 4) is access path and tabulation based. Access path

based heap abstraction strikes a balance between scalability and precision, both are

necessary to extract useful information from large scale programs to bootstrap expen-

sive client analyses. Tabulation based approach is necessary to handle interprocedural

data flow without precision loss, especially in the presence of recursive invocations.

One application of our slicing method, the demand-driven refinement of points-to

analysis (Chapter 6), provides a long due solution to the dilemma of trade-off be-

tween precision and scalability in context-sensitive points-to analysis. By identifying

a subset of the program elements relevant to the flow of interest, our slicing analysis

can automatically improve the precision of the points-to analysis by keeping more

context information on these elements, as well as the scalability of it by keeping less

context information on others.

Another application of the slicing method to identify the callback method (or

registration call site) with respect to certain registration call site (or callback method),

presented in Chapter 5, provides a tool to help programmer understand the interaction

between the framework and application plug-ins and to extract a concise but precise
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model of the framework to improve the scalability when analyzing the application

plug-ins and the extracted framework model as a whole.

The third application of the slicing method enables certain flow sensitive shape

analysis on large scale program frameworks to resolve causal relations among messages

introduced by asynchronous message passing (Chapter 8). These causal relations

capture control flows implicitly, which are necessary for works on data race detection,

type-state verification, etc.
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