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Title: Effect of Micromechanics and Electrochemistry on the Galvanic Corrosion of AA7050-7451 

Committee Chair: Michael D. Sangid 

 

The service life of aircraft structure, primarily composed of aluminum alloys, is markedly 

lower when galvanic corrosion is present due to early crack initiation at localized pitting, with the 

likelihood of cracking being higher at pits spanning several microns. To understand the joint effect 

that the mechanical and chemical behavior of AA7050-T7451 have on the evolution of corrosion 

prior and until its transition to cracking, the microstructure, constituent particles, mechanical 

strains, and the corrosion morphology were experimentally characterized using high-resolution 

methods and the mechanical stresses are computationally modeled at the micrometer level using a 

FFT-based crystal plasticity framework.  

 

The material was corroded under both mechanically loaded and unloaded conditions under 

different corrosion intervals to properly capture the evolution of corrosion before, during, and after 

particle fallout. For the events prior to cracking, statistical cross-correlations between the 

mechanical state of the material and the corrosion morphology were performed to understand the 

mechanisms driving corrosion at its various stages. For the cracking event and its subsequent 

growth, the joint analysis of strains and stresses obtained from 3D crystal plasticity models were 

used to calculate Fatigue Indicator Parameters (FIPs) that can quantitatively give an insight of the 

major mechanisms driving crack initiation and growth in pre-corroded materials. The development 

of micromechanical models that account for both the environmental degradation and the 

microstructure in the material allowed to accurately predict the location of crack initiation arising 

from pits, which has been a longstanding problem in the field of corrosion. It is concluded that 

both corrosion growth and its transition to cracking are multivariable events, where corrosion 

growth is jointly driven by the local chemistry and the micromechanics, and crack initiation is 

driven by the coupled interaction between the corrosion geometry and the micromechanics. 
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1. INTRODUCTION 

Localized corrosion is a feature that limits the life of many aircraft components as it is a 

precursor to cracking. For rolled AA7050-T7451, a material regularly used for airframe structures 

given its strength-to-weight ratio, pitting initiates at cathodic particles that corrode the surrounding 

aluminum matrix. While this coupling has been heavily investigated from an electrochemical 

perspective, it is of interest to investigate the mechanical driving mechanisms behind the galvanic 

corrosion process as well as the transition from pitting to cracking. Given the mesoscale size of 

the pit formation, the mechanical behavior of the microstructure must influence corrosion, in 

particular the heterogeneous residual strains and stresses developed when the material undergoes 

mechanical loading. Therefore, this research postulates that the evolution of corrosion and its 

transition to cracking is linked to the mechanical heterogeneity present in the material that may be 

fostering or delaying pitting. This work thus examines the following research questions: 

 

 The effects that both the micromechanics and the local electrochemistry have on localized 

galvanic corrosion. 

 The driving forces behind the various stages of corrosion up to its eventual transition to 

crack initiation. 

 A fuller description of the material behavior at the constituent particles, which are known 

to be a source of pitting. 

 The advantages, limitations, and considerations to make when using computer simulations 

to predict the behavior of a material under corrosion. 

 

To better understand the relationship between galvanic corrosion, the local 

micromechanics, and the local electrochemistry, a series of material characterizations are 

performed over the same region of interest (ROI) on the surface of an AA7050-T7451 specimen.  

The microstructure morphology is characterized via electron backscatter diffraction (EBSD), the 

cathodic particles are located via energy dispersive x-ray spectroscopy (EDX), the residual strains 

are mapped via high resolution digital image correlation (DIC) of a speckle pattern captured before 

and after mechanical loading via Scanning Electron Microscopy (SEM), and the corrosion 
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evolution at the surface is measured via confocal laser scanning microscopy (CLSM). These 

characterizations not only allow for a quantitative analysis of corrosion evolution, but also give 

enough information to generate equivalent elasto viscoplastic computer models solvable via FFT-

based formulations (EVP-FFT) that will help complete the description of the micromechanical 

fields by obtaining the stresses present in the material. 

 

To further investigate the transition from corrosion to cracking, 3D EVP-FFT computer 

simulations of different corroded morphologies are reconstructed from x-ray computer 

tomography (XCT) scans alongside EBSD scans, in an effort to understand why initial cracking 

does not necessarily occur at the deepest pit. The simulations indicate that crack initiation from 

environmentally damaged materials can be reasonably predicted with the fatigue indicator 

parameters calculated from the simulated stresses and strains. In this work an analysis of the 

driving mechanisms behind crack initiation on environmentally degraded AA7050 is performed. 

 

The work presented in this document led to the following research contributions: 

 

 The ability to identify and predict strain localization based on an anisotropic grain structure. 

 Improved strain field predictions based on probabilistic sub-surface reconstructions of the 

characterized surface microstructure. 

 The verification that strain localization is not a sufficient criterion for the development of 

galvanic corrosion. 

 The identification of a correlation between high stress concentration and galvanic corrosion 

under the presence of a cathodic particle. 

 The verification of the ability to predict crack initiation from microstructural attributes, as 

well as the corrosion morphology. Further, the leading mechanisms behind pit-to-crack 

transition in corrosion fatigued materials were identified. 

 

The full study of the galvanic corrosion mechanisms on AA7050 will aid in the 

development of tools that can accurately predict the life of a part servicing under a corrosive 

environment given the morphological, chemical, and microstructural characterization of the 

material.  
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2. LITERATURE REVIEW 

Corrosion in aging aircraft and infrastructure is currently a 20-billion-dollar problem [1], due 

to the increased maintenance hours needed to preserve flight safety in fleets exposed to harsh 

environmental conditions. A teardown analysis of aerospace components has shown that corrosion 

features initiate roughly 80% of observed fatigue cracks [2].  Since there is not a clear 

understanding of the mechanisms driving the transition from corrosion damage to crack initiation, 

the current maintenance and repair protocols are largely focused on the outright removal of 

corrosion upon discovery [3]. This approach has been shown to be cost inefficient, incapable of 

properly removing complex corrosion morphologies, and detrimental to the overall service life of 

components [2][3], due the higher stresses arising from generalized thinning in the material.  

 

Corrosion studies are usually limited to exploring one mechanism at a time, with most research 

focusing solely on either the mechanical or the chemical behavior of the material, while seldom 

studying their joint interaction even when both mechanisms are known to heavily affect corrosion 

during its early stages. To bridge the gap between the mechanical and the chemical studies of 

corrosion evolution up to its transition to crack initiation, this work investigates corrosion mediated 

failure in aluminum alloys by performing joint analyses of the various mechanisms driving the 

early stages of corrosion as well as its transition to cracking across the same region of interest 

using multimodal characterization techniques. 

 

 Corrosion growth and its transition to cracking 

For AA7050, crack initiation occurs at features as small as ~ 50 µm [4], therefore it is 

important to study corrosion during its early stages before it reaches a critical size. Some factors 

affecting corrosion are either mechanical due to their role as stress/strain concentrators, such as 

surface roughness [5] or grain boundary density [6], or electrochemical, such as local Volta 

potential gradients [7], compositional heterogeneities, and the electrochemistry between particles 

[8]. From a mechanical perspective, the residual loads affect the corrosion behavior as they either 

encourage pit growth [9] or retardation [10]. However, most studies relating mechanical 

deformation with localized corrosion only measure the response of the material at the macroscale 
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level [11][12], and the few cases studying localized deformation use x-ray for zones of ~4 µm [13], 

or electron microscopy for zones under ~ 1 µm [14], both of which yield very limited fields of 

view, especially relative to cathodic particles with a diameter of ~10 µm [15].  

 

The geometry of the corrosion pit has been consistently analyzed in an effort to locate any 

possible crack initiation predictors. From a purely geometric point of view the equivalent initial 

flaw size approach (EIFS) [16] has proven useful at studying the transition from corrosion pitting 

to cracking for heavily corroded materials with pits in the order of hundreds of microns. However, 

the EIFS approach is not reliable for pits at the mesoscale given the lack of information on the 

microstructurally small crack behavior [17]. This is further confirmed by geometric studies of the 

corrosion morphology at the mesoscale have showing that the transition from pitting to cracking 

does not necessarily occur at the deepest pit, indicating a strong influence from the local 

microstructure. Even though the corrosion depth does not translate into a crack nucleation 

predictor [4], it has been established that corrosion pits greater than 20 μm – 70 μm have a higher 

probability of evolving into a crack [4][18]. Therefore, it is important to understand the 

mechanisms behind the initiation and growth of corrosion pits at the micrometer scale, i.e. at the 

mesoscale level, before they reach that limiting depth.  

 Electrochemical approach 

Several studies have shown that the difference in potential between the intermetallic particles 

and its surrounding matrix fosters localized corrosion [19], with the initiation and growth of pitting 

corrosion being largely affected by this electrochemical interaction [19][20].  It has been observed 

that, when the intermetallic particles are anodic relative to the matrix, they dissolve and leave a 

cavity in their place. When the particles are cathodic, they dissolve the surrounding matrix thus 

causing trenching attack morphologies that transform into a pit when particle fallout occurs.  

 

For the case of AA7050-T7451, the particles that account for most of the localized corrosion 

initiation at the mesoscale level are the iron-based Al7Cu2Fe particles, which are cathodic relative 

to the surrounding matrix [20][21] and have diameters ranging from 1-40 μm [22][23]. It should 

be noted that fatigue crack initiation for non-corroded samples also happens to occur at large 

particles on the mesoscale level since they act as defects [24], so this specific cathodic particle is 
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of particular interest from both and electrochemical and mechanical perspective. Not only are these 

particles pit initiation points, but also they are responsible for corrosion damage accumulation 

since they tend to cluster along the rolling direction of the material [25]. This means that the 

electrochemical corrosion of these particles nucleate several smaller pits that inevitably coalesce 

into a bigger pit along the rolling direction, which is the reason that the Transverse Short (TS) 

direction of rolled AA7050 consistently shows deeper corrosion pits compared to any other 

direction. This coalescence develops deeper and wider pits that eventually transition into a life 

limiting crack [26] that ultimately shortens the residual life of a component [27]. Some other works 

have studied the surface increase of pitting as a factor relying of increased chemical potentials, 

due to the surface tension inside the ellipsoidal pit [28], however, these studies are limited by 

oversimplified 2D analyses of a corrosion geometry that is actually tortuous in nature. 

 Mechanical approach 

Strain localization is a precursor to material failure that ultimately compromises the structural 

integrity of a component or an entire system. When a material is loaded, the strain is 

accommodated via discrete slip bands, which leads to heterogeneous deformation.  The slip bands 

intensify during cyclic loading, thus potentially leading to fatigue crack initiation [29]. Similarly, 

the role of preexisting stresses on corrosion has been studied macroscopically, either concentrating 

on the instability of the exposed flat surface [30], the change in surface diffusivity [31], the changes 

in the pitting potential [32] and the overall electrochemistry [33]. Additionally, any prior active 

loading may have damaged the protective passive film and increased the susceptibility of the 

material to corrosion. Most notably, it was found that stresses only amplify the corrosion current 

and do not change the shape of the electrochemical potential and that the changes in surface texture 

have varying results in the overall corrosion of the material, especially when taking into account 

localized corrosion product accumulation [32][34]. Additionally, macroscopic plastic deformation 

has been shown in the literature to both increase and decrease the susceptibility to corrosion [35].  

 

The study of corrosion pitting evolution to cracking, however, has been limited to the study 

of its corrosion morphology at a macroscale level. That is, individual specimens are usually 

mechanically studied as a macroscopic notch [36], where a homogenous material is usually 

assumed. Given the fact that the transition from pitting to cracking occurs on the magnitude of 
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tenths of microns [4], the material cannot be considered to be homogenous since the 

aforementioned characteristic length is akin to crossing several grains with varying orientations. 

Therefore, it is necessary to study the acting variables affecting pit growth at a sub grain level, 

which includes the heterogeneity of strains, stresses, the microstructure and the local 

electrochemistry. 

 

The microstructure has been the focus of many studies within the corrosion community, 

mostly qualitatively via electron microscopy and sometimes quantitatively via electron backscatter 

diffraction (EBSD) analysis. Some studies even use the EBSD scans themselves to calculate the 

level of misorientation (MO) within the grains themselves, in an effort to pinpoint the effect that 

defect densities have on corrosion [37], with the constraint of requiring highly accurate HR-EBSD 

scans to properly capture the dislocations occurring in the material. This methodology is also 

limited to capturing geometrically necessary dislocation activity, which is only a partial 

representation of the complex deformation mechanisms on polycrystalline materials. From a 

mechanical perspective the role of the grain boundaries (GBs) has been of particular interest, as 

distinct GBs are prone to pit formation and associated environmental-assisted crack propagation 

[38]. Similarly, the grain sizes in a corroding material tend to be studied as they indirectly measure 

grain boundary densities and their effect on corrosion [39]. Grain boundary densities can either 

increase corrosion resistance by increasing the surface area that in turn creates a larger and more 

resistant oxide film, or decrease the corrosion resistance for situations where the passive film is 

not formed, therefore increasing the surface reactivity from the larger surface area exposed to a 

corrosive environment. In either case, grain boundaries are consistently shown to affect corrosion 

by degrading the grains [40], particularly under stress conditions, and thus are of interest to be 

studied before the corrosion process evolves into a crack. 

 

Most corrosion studies prior to crack nucleation are typically qualitative and emphasize the 

effects that both the microstructure and the mechanical work have on the protective passive layer 

at the surface of the material. The degree of protection that this passive layer has on the material 

has been studied both mechanically and electrochemically, either by identifying how the 

mechanical work physically breaks or compresses the passive layer, or by analyzing the role of the 

accumulation of internal tensile stresses, which increases the potential at the surface, thickens the 
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passive layer, and ultimately increases the level of protection at the surface [41]. However, since 

the increase of potential from residual stresses is magnitudes smaller than the change of potential 

arising from the presence of cathodic particles, the nanometer scale increase of thickness from the 

residual stresses is outweighed by the local presence of the cathodic particles, which break down 

the passive layer given the local depletion of the potential [42]. Once the passive layer is broken 

the local electrochemical attack on the matrix rapidly follows. 

 

When studying the residual strains across length-scales (e.g. Type I - macroscale, Type II – 

grain-scale, and Type III – point scale), most of the available literatures on corroding material 

focuses on Type I, and, with the exception of some Type II studies of single line scan strains across 

shear bands [13], the effects of the Types II + III localized mechanical behavior on corrosion have 

been rarely studied. This is largely due to the difficulty of characterizing Type II + III residual 

strains/stresses at high resolution over large regions of interest (ROI) for mesoscale analysis.  

 Obtaining the mechanical behavior 

There have been recent developments in the materials community, in which full-field strain 

maps have been characterized experimentally and the same ROI is used to instantiate 

computational modeling efforts. For the first scenario, the tracking of high-resolution patterns 

before and after deformation on the surface [43] lead to experimentally acquired deformation 

values that can be used to calculate the local strains in the material. For the second scenario, 

mathematical models have been developed into virtual instances of the microstructure to obtain 

the mechanical response of a given microstructure via constitutive relationships of the flow rule 

and hardening behavior that govern the plastic response of the material. 

2.4.1 Experimental techniques 

To understand the underpinning physics behind strain localization, the scientific community 

usually relies on experimental measurements of strain, for which digital image correlation (DIC) 

has proved to be a good method for full-field surface displacements. DIC is a powerful technique 

for mapping deformation relative to the material’s surface [44] and can be extended to characterize 

strain relative to microstructural features [45][43]. The DIC analysis requires the material surface 

to be patterned with features that can be tracked at the desired scale. Some of the patterning 
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techniques include functionalized particle speckling [46][47], in which the surface is evenly 

patterned with nanoparticles that are chemically bonded onto the surface, or mechanical ones such 

as microstamping [48], in which a flexible transparent material is added on top of the surface and 

patterned via a stamping technique.  These procedures can accurately depict strain localization for 

high-resolution DIC maps. 

2.4.2 Computational techniques 

The use of computer models has also shown potential for obtaining the strain heterogeneity at 

the microstructural level. Obtaining microstructural strains via simulations is appealing, because 

it is relatively inexpensive, fast and provides the opportunity to understand how specific 

parameters affect the overall performance of the material. This is in contrast with experimental 

results that require a varied array of mechanical equipment, training, and specimen preparation. 

By incorporating micromechanical features within simulations, such as the grain orientations and 

morphologies and the constitutive laws governing the material behavior, more accurate 

descriptions of localized plastic flow can be obtained [49]. Crystal Plasticity – Finite Element 

(CPFE) modeling is a technique dating from the early 90’s [50] that is capable of obtaining the 

micromechanical fields arising from the microstructural features by solving for crystalline slip 

activity in a continuum framework [51].  

 

One of the earliest works where the experimentally acquired grain orientations of a specimen 

were used to instantiate a model was done by Becker [52]. In his work the grain orientations 

measured by electron backscatter diffraction (EBSD) were input into a 2D crystal plasticity finite 

element method (CPFEM) polycrystalline model and subjected to uniaxial loading, which was 

shown to generate a non-uniform strain field despite the uniformity of the macroscopic applied 

strain. Moreover, a 3D CPFEM polycrystalline model was presented by Beaudoin et al. [53], for 

which the orientation distribution function was obtained via x-ray diffraction, and parallel 

processing was used to efficiently simulate the full non-uniform deformation of the 3D model. As 

a result, there has been an interest in using CPFEM models for aspects of component analysis [54] 

that can account for the crystallographic orientations and thus improve their ability to predict 

deformation. The challenge remains in maintaining the fidelity of the predicted strain fields while 

keeping the size of the CPFEM model within reasonable computing times.  
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The elasto-viscoplastic fast Fourier transform (EVP-FFT) formulation [55] is an efficient 

alternative to CPFEM, as it is capable of calculating the internal strains of a loaded microstructure, 

based on an iterative method [56] that solves the governing equations in Fourier space, thus 

transforming a convolution problem into a point-wise multiplication operation that can be solved 

in a shorter time. Another benefit is that unlike CPFEM, EVP-FFT is performed on a voxelized 

grid, thus circumventing the need to create a discretized mesh.  One potential drawback of the 

EVP-FFT method is that it is restricted to periodic structures and therefore limits the types of 

geometries that can be analyzed [57]. The EVP-FFT technique has been consistently shown to give 

the same results as CPFE when both analyzing the full micromechanical fields in the material [57] 

and the local fields at regions with high stress concentrations such as crack tips [58]. 

2.4.3 Limitations 

Any method, however, has shown to encounter issues with obtaining a full representation of 

the microstructural behavior, especially when there is only surface data available. As seen by 

Turner et al. [52], the neighboring microstructure of an analyzed surface strongly affects its strain 

field. Therefore, unless the uncertainty of the surrounding microstructure is minimized, the 

accuracy of a simulated strain field will remain unknown. Studies of equiaxed polycrystals have 

shown that accounting for the subsurface microstructure improves the predictive capabilities of 

computer models, since the through-thickness grain assumption tends to over-constrain the 

deformation of grains [59]. Two recent studies have reconstructed subsurface grains via 

differential-aperture X-ray microscopy [60] or by tessellating grains at the subsurface [61]; the 

consensus of these studies is that a subsurface two to three grains deep is sufficient to account for 

the subsurface constraints imposed on the surface. However, these studies are limited to equiaxed 

polycrystals and have not accounted for the subsurface uncertainty for rolled materials with 

elongated grains, which are usually assumed to be perfectly elongated in computer simulations.  

 

The influence of the subsurface uncertainty on the strain distributions has seldom been 

validated with experimentally observed distributions for the same region of interest (ROI).  

One approach for reducing the subsurface uncertainty of the simulation involves the use of 

oligocrystal specimens. These specimens exhibit relatively large grains compared to the thickness 

of the sample, such that the effect of the subsurface microstructure has on the surface is mitigated 
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by its distance from the free surface [62]. Therefore, a better match between CPFEM simulations 

and real material features is observed [63]. The predictive capabilities of oligocrystal CPFEM 

models is further explored by Lim et al. [64] by studying the effects that meshing, slip plane 

activity, and crystal orientation have in predicting the failure location of a specimen subjected to 

large plastic strains. Another approach for improving the modeling of highly anisotropic materials 

with limited information is by generating 3D statistically equivalent virtual microstructures, where 

the statistics necessary to instantiate the virtual microstructure can be directly obtained from 

surface characterizations. 3D virtual reconstructions, which contain more realistic grain 

morphologies than those generated from tessellation, have been used to statistically study the 

micromechanics in anisotropic materials without the need of destructive characterizations [65], 

and therefore show promise in improving the performance of micromechanical models with 

subsurface uncertainty. 

 Predicting corrosion cracking 

The mechanisms behind crack initiation on pristine materials has been thoroughly studied by 

the community both from an experimental and a computational perspective; for a detailed review, 

please refer to [29].  As earlier as 1903, Ewing and Humfrey concluded that fatigue crack initiation 

is mediated from a slip-based damage mechanism [66].   Experimental studies have shown that 

microstructural variables, such as the grain sizes [67] or types of grain boundaries [43][68] affect 

the dislocation activity and subsequently the onset of crack initiation. Engineering alloys are 

tailored with complicated microstructures, in which a collection of attributes determine the crack 

initiation event.  Computational mechanics models allow the analysis of competing mechanisms 

that would be difficult to isolate experimentally, and have been used to address crack initiation 

stemming from rank order based on microstructure ensembles [69], as large as grains in Ni-based 

superalloys [70], rogue grain combinations in Ti alloys [71], and critical pore size in additive 

manufacturing [72], to name a few.  In each of these models, the heterogeneous deformation 

around microstructural attributes leading to strain accumulation results in the crack initiation event.  

Each of these fatigue crack initiation studies have demonstrated the prognosis capabilities towards 

the concept of a digital twin; yet the number of papers that predict fatigue crack initiation from the 

microstructural attributes in a corroded environment are scarce.   
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The study of pit-to-crack transition has been mostly studied via continuum mechanics, where 

the existing pits are modeled as pre-existing cracks [73] that need to surpass other competing 

mechanisms, such as pit growth rate, for crack initiation to occur. Most of these analyses are 

constrained to a 2D study of the corrosion geometry that oversimplifies the corrosion tortuosity, 

and the few mechanical studies of 3D corrosion morphologies only analyze single pits with an 

ellipsoidal geometry [74]. Since the mechanical study of corrosion is limited by the 

characterization and modeling of corrosion over large surfaces, the pit-to-crack transition is often 

studied via statistics where the distributions of the size and geometry present in the material are 

obtained from the characterization of a much smaller region [75].  

 

One of the largest limitations of the current pit-to-crack studies is the size of the pits that can 

be evaluated with these type of methods. While the continuum mechanics approach from the 

current methods is suitable for the large corrosion pits usually found during maintenance, smaller 

pits in the order of tens of microns have been observed to nucleate cracking [27], with the life 

limiting corrosion features being capable to be as small as 20 μm deep [18], thus the initiation 

point for fatigue will not necessarily occur at the largest or deepest observable pit. Since cracking 

forms at a very localized region within the pit instead of at the periphery of the corrosion damage, 

at this length scale we need to account for the microstructural mechanisms fostering damage, 

namely the slip activity active in the material that is known to affect cracking in pristine materials 

[76], since the study of the geometry alone is insufficient [26]. In other words, pit-to-crack 

transition requires a joint analysis of the irregular pit geometry, the microstructure in the material, 

and any constituent particles that may affect the micromechanics leading to crack nucleation 

[77][78]. 

 

To study pit-to-crack transition at the micrometer length scale, there is a need to perform high-

resolution characterizations of the material over a large area such that a reasonable number of pits 

are properly captured. X-ray computer tomography (XCT) [79] is capable of capturing the full 

tortuosity of corrosion [74] as well as the shapes and location of the Al7Cu2Fe particles [80] over 

regions spanning millimeters with resolutions up to half a micrometer. The higher resolution of 

XCT characterization allows to spatially locate cracking, both its initiation and growth, within the 

3D corroded morphology [81], which gives it a great advantage over the traditional surface 
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roughness characterizations, for which the location of crack initiation is not a straightforward 

process.  

 

The characterizations from XCT can be directly used as input in computer models [82] that 

can yield the micromechanical fields present in the material. These micromechanical fields, in turn, 

can be used to compute well known crack initiation metrics that are based on localized slip activity 

[83]. These crack initiation metrics, commonly known as Fatigue Indicator Parameters (FIP), are 

able to reflect the driving forces behind crack formation for a wide array of loading conditions and 

for different types of microstructures [84]. Most importantly, FIPs are a good metric for crack 

nucleation in models where the micromechanics are affected by additional microstructural features 

such as constituent particles [85]. Therefore, the onset of crack nucleation can be analyzed 

quantitatively given a holistic approach that accounts for the multiple variables behind failure in 

environmentally damaged materials.  
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3. METHODS 

 Material 

The 7000x series of aluminum alloys, notably AA7050-T7451, is commonly used in high 

performance components that require high strength and durability, and as such is commonly found 

in aerospace applications, particularly in airframes where high tension and compressive loads are 

present. Under these loading conditions not only is the material required to be nominally strong, 

but also to remain reliable during the projected life cycle of the component, including its exposure 

to environmental degradation. Even though AA7050-T7451 is one of the most corrosion resistant 

aluminum alloys, its life is conditioned by corrosion pitting that develops on saline environments, 

as pits are the main source of cracks. As such, there is an invested interest in studying the 

mechanisms behind corrosion growth and cracking for one of the strongest, lightest, and most used 

materials used in the aerospace industry. In the present work, a commercial plate of a rolled 

aluminum alloy AA7050-T7451, was used to machine all specimens studied, thus leading to the 

study of a highly anisotropic microstructure.  

 

It should be noted that AA7050-T7451 exhibits a local electrochemical behavior arising from 

secondary phase particles, such as Al7Cu2Fe, Mg2Si, Al2CuMg, AlCuFeMnSi or MgZn2. At the 

mesoscale level, the particles present in the material are the cathodic Al7Cu2Fe particles and the 

anodic Mg2Si particles. Since the Mg2Si particles are known to have a lower volume content in 

AA7050-T7451, the main focus of the local electrochemical studies will focus on the cathodic 

Al7Cu2Fe particle. 

 

 Surface Topology Characterization 

To ensure a high resolution characterization of the surface roughness generated from corrosion, 

Confocal Laser Surface Microscopy (CLSM) was used, a technique that allows the 3D 

characterization of surfaces from a grayscale stack of confocal images spaced evenly in the z 

direction. To minimize noise and maximize signal intensity, the pinhole size needs to be reduced 

such that it only captures the first dark ring of the diffraction pattern surrounding the laser point, 

in order to block any light that was out of focus. This is controlled by setting a capture radius of 1 
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Airy Unit (AU), with an Airy Unit defined as the distance from the center of the major light 

intensity peak to the first minimum. The ROI can be segmented into areas if a larger area needs to 

be analyzed. The first and last slices on the grayscale z-stacked images is manually determined by 

checking the highest and lowest points captured by the grayscale intensities in the ROI.  

 

For the work presented in this document, CLSM was performed using a Zeiss LSM 880 

upright Confocal Microscope with a 561 nm laser wavelength, a Plan Apochromatic 10x/0.45 

objective, a step size of 1 μm in the z-direction, and a resolution of 0.10 μm in the x-y directions. 

A high resolution was achieved by using a slow dwell time of 2 μsec/pixel during scanning, which 

also meant that the characterization of the ROI was sufficient to quantify the corrosion around the 

particles. Finally, to maximize the grayscale gradient of the confocal images, the laser was set to 

25% intensity, with an optical gain of 633, a digital offset of 0, and a digital gain of 1.  

 

A MATLAB code was developed to reconstruct the surface from the grayscale stacked images, 

where the topographic height was calculated based on a procedure proposed by [86] with the main 

Eq. 3.1 being: 

ℎ(𝑥𝑖 , 𝑦𝑗) = 𝑑𝑧
∑ 𝐼(𝑥𝑖,𝑦𝑗,𝑧𝑘)𝑧𝑘𝑧𝑘∈𝐹𝑊𝐻𝑀

∑ 𝐼(𝑥𝑖,𝑦𝑗,𝑧𝑘)𝑧𝑘∈𝐹𝑊𝐻𝑀
      (3.1) 

 

where ℎ(𝑥𝑖 , 𝑦𝑗) is the topographic height, 𝐼(𝑥𝑖 , 𝑦𝑗 , 𝑧𝑘) is the image intensity for each pixel, 𝑑𝑧 is 

the step size on z, 𝑧𝑘 is the stack number, and 𝐹𝑊𝐻𝑀 is the full width at half maximum (the width 

of the Gaussian distribution of 𝐼(𝑥𝑖 , 𝑦𝑗 , 𝑧𝑘) at 0.5𝐼𝑚𝑎𝑥). To account for global surface evolution 

the profiles were offset such that the tallest feature on Day 01 became the zero-reference point and 

the subsequent corrosion profiles were offset by ∆ℎ𝑛+1 between Day n and Day n+1, such that: 

 

∆ℎ𝑛+1 = 〈max(ℎ𝑛) − max(ℎ𝑛+1)〉 + 〈ℎ𝑛+1
̅̅ ̅̅ ̅̅ − ℎ𝑛

̅̅ ̅〉                           (3.2) 

 

for which 〈∙〉 are the Macaulay brackets, (i.e. 〈𝑥〉 = 𝑥 if 𝑥 > 0, and 0 otherwise). The first half of 

Eq. 3.2 ensures that the evolution of the deepest features either keeps growing deeper or remains 

the same. The second half of Eq. 3.2 ensures the proper description of surface recession where 
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material addition is not possible. Finally, to account for variations in flatness the slope of the 

surface was calculated and removed from the reconstructed maps.  

 Microstructural Characterization 

Electron backscatter diffraction (EBSD) is a material characterization technique capable of 

capturing individual grain orientations, local texture, spatial orientation correlations, and the 

phases present in the material. To achieve the mirror-like surface necessary for EBSD 

characterization, the surface of each specimen needs to be incrementally ground from a 400 grit 

sandpaper (21.8 μm particle diameter) down to a 1200 grit sandpaper (2.5 μm particle diameter), 

to remove any machining marks such that no significant scratches could be observed at a 

magnification of 10x. Afterwards it needs to be gently polished in a series of short 30s exposures 

to a NAPPAD cloth with distilled water and various suspensions from 15 μm alumina down to a 

0.05 μm colloidal silica suspension. It should be noted that the final polishing with colloidal silica 

needs to be done during intervals to improve the kikuchi patterns while at the same time 

minimizing any surface deformation and preventing any particle fallout.  

 

To remove any leftover silica on the surface, the specimens need to be cleaned with a fresh 

NAPPAD cloth containing only distilled water, with frequent rinsing of the cloth using fresh 

distilled water. To remove any other contaminants, each specimen needs to be sonicated with a 

Sper Scientific ultrasonic cleaner using isopropyl alcohol, acetone, and methanol (in that order). 

For each cleaning agent, the specimen can be sonicating for 360 s, after which it has to be taken 

out, rinsed with a fresh batch of the cleaning agent, and dried with compressed air. Extreme care 

needs to be taken to not touch the specimen with bare hands or dirty utensils. SEM scanning can 

be performed prior to EBSD scanning for a final evaluation of the surface quality. 

 

All EBSD scans of AA7050 on the present document are performed using a 25 kV accelerating 

voltage, a spot size of 5, 21 mm working distance, 500x magnification, and a 70-degree tilt. The 

EBSD setup used a gain of 14.08, a black level of 3.86, 82.55 ms exposure time, and a step size of 

1.50 μm. Afterwards, the built-in EDAX OIM Analysis software was used to perform noise 

cleanup of the raw orientation datasets via a 2-pixel step erosion-dilation process and removal of 

bad data points, where a point is considered to be bad if its confidence index is below 0.1 and its 
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angle relative to its neighbors surpasses 5°. This bad data removal also removes any orientations 

scanned at the cathodic particles and replaces them with the surrounding matrix orientation, 

especially since the particles usually cover a couple of voxels and they tend to contain noise around 

them on the EBSD scans. Finally, each orientation file is processed via the MTEX toolbox [87] 

for additional analysis of the orientation data.  

 Particle Characterization 

Energy Dispersive X-ray Spectroscopy (EDS) it a chemical characterization technique 

capable of locating spatially the distribution and location of the different elements present in the 

material. This technique stimulates the emission of characteristic x-rays that can be measured by 

an energy dispersive spectroscoper and subsequently can pinpoint spatially the elemental 

composition in the material. In the present work EDS is used to characterize the constituent 

particles present in AA7050-T7451, namely the cathodic particle Al7Cu2Fe which is highlighted 

in EDS by spatially pinpointing the copper-rich and iron-rich zones of the material. All EDS scans 

are performed using a FEI Quanta 3D FEG Dual-beam SEM with 30 kV accelerating voltage, spot 

size of 4, 10 mm working distance, 700x magnification, and 0.4 μm/pixel resolution able to 

spatially particles. It should be noted that the Mg2Si anodic constituent particles present in 

AA7050-T7451 can be also located via EDS but, given their lower content on AA7050 and their 

smaller size, no anodic particles were found on the ROIs studied and therefore were out of the 

scope of this document.  

 Strain Characterization 

Digital Image Correlation is a nondestructive technique capable of characterizing strain in 

materials by tracking a pattern placed at the surface of the material before after deformation occurs. 

For DIC surface strain characterization, the substrate must be patterned with features that will 

allow strain measurements at the desired resolution. To obtain high-resolution strain maps 

necessary to capture the intragranular strain localization, the surface needs to be patterned with 

either microstamping techniques or via placement nanoparticles such as the ones developed by 

titanium or gold suspensions [88], particularly if it is of interest to resolve the strain around the 

Al7Cu2Fe particles. For a proper characterization of the surface, the speckling needs to be 
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homogeneous throughout the ROI, which can be verified via a SEM scanning of the surface prior 

to testing. To perform DIC, the nanoparticle speckling at the surface is imaged ex-situ via SEM 

before and after the specimen experiences loading. Afterwards, DIC can performed on each pair 

of undeformed/deformed images using VIC-2D [44], resulting in a full map of in-plane strains at 

the surface. 

 

Finally, to remove any potential distortions of the strain fields due to electromagnetism present 

during acquisition of the SEM images, the DIC strain maps need to corrected following a distortion 

correction protocol developed in house and described in [89], in which a certified grid is scanned 

alongside with the specimen during every SEM image acquisition. By fitting a response surface 

on the quantified distortion of the grid, the inherent spatial distortion and magnification uncertainty 

can be identified and removed from the raw strain maps from DIC. This results in more reliable 

strain field mapping with an uncertainty kept below 0.1% strain. The final corrected strain field 

maps can be then used for micromechanical analysis of the material.  

 Crystal Plasticity Simulations 

To fully understand the mechanisms that drive localized corrosion, a more complete 

description of the micromechanical state relative to the microstructure is needed, as the strains 

alone are not a definite indicator of the regions that are prone to pitting corrosion. Therefore, it is 

necessary to also obtain the stress distributions in the material. To characterize the grain-level 

stresses, an analogous crystal plasticity computer model of the microstructure is necessary, such 

that, once macroscopically calibrated to the average specimen response and microscopically 

validated to the experimental strain observations, can be used to obtain the full stress distribution. 

 

To obtain a complete mechanical description of the material studied at the mesoscale, An 

EVP-FFT formulation was used to model the behavior of FCC polycrystals under uniaxial loading 

[55] based on the original formulation by Moulinec and Suquet [56]. This formulation relates the 

viscoplastic strain rate 𝜀̇𝑝𝑙 with the stress 𝜎(𝑥) at a single crystal material point 𝑥 as: 

 

𝜀̇𝑝𝑙(𝑥, 𝜎) = 𝛾0̇ ∑ 𝑀𝛼(𝑥)𝑁
𝛼=1 (

|𝑀𝛼(𝑥):𝜎(𝑥)|

𝜏0
𝛼(𝑥)

)
𝑛

𝑠𝑔𝑛(𝑀𝛼(𝑥): 𝜎(𝑥))  (3.3) 
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where 𝛾0̇ is the reference shear rate, 𝜏0
𝛼(𝑥) is the Critical Resolved Shear Stress (CRSS), which 

gets incrementally updated due to strain-hardening, 𝑛 is the stress exponent, 𝑀𝛼 is the Schmid 

Tensor, and 𝑁 is the total number of active slip systems with each slip system denoted with an 

index of 𝛼. Using an Euler implicit time discretization scheme and Hooke’s law, the stress in 

material point 𝑥 and time 𝑡 + ∆𝑡 becomes: 

 

  𝜎(𝑥) = 𝐶(𝑥) ∶  𝜀𝑒𝑙(𝑥)     (3.4) 

where: 

 

𝜀𝑒𝑙(𝑥) = 𝜀(𝑥) − 𝜀𝑝𝑙,𝑡(𝑥) − 𝜀̇𝑝𝑙(𝑥, 𝜎)∆𝑡             (3.5) 

 

with the supraindex t indicating field values evaluated at time t. Here 𝜎(𝑥) is the Cauchy stress 

tensor, 𝐶(𝑥) is the elastic stiffness tensor; 𝜀(𝑥), 𝜀𝑒𝑙(𝑥), 𝜀𝑝𝑙(𝑥) are the total, elastic and plastic 

strain tensors, and 𝜀̇𝑝𝑙(𝑥) is the plastic strain-rate tensor given by Eq. (1). The inverse relation of 

Eq. (3) becomes: 

 

𝜀(𝑥, 𝜎) = 𝐶−1(𝑥) ∶  𝜎(𝑥) + 𝜀𝑝𝑙,𝑡(𝑥) + 𝜀̇𝑝𝑙(𝑥, 𝜎)∆𝑡             (3.6) 

 

Separately, the stress tensor can be rewritten by adding and subtracting the reference medium 

stiffness 𝐶𝑖𝑗𝑘𝑙
𝑜  multiplied by the the displacement gradient tensor 𝑢𝑘,𝑙(𝑥) as: 

 

  𝜎𝑖𝑗(𝑥) = 𝐶𝑖𝑗𝑘𝑙
𝑜 𝑢𝑘,𝑙(𝑥) + 𝜎𝑖𝑗(𝑥) − 𝐶𝑖𝑗𝑘𝑙

𝑜 𝑢𝑘,𝑙(𝑥)   (3.7) 

 

Given the polarization field 𝜑𝑖𝑗(𝑥) = 𝜎𝑖𝑗(𝑥) − 𝐶𝑖𝑗𝑘𝑙
𝑜 𝜀𝑘𝑙(𝑥), Eq. (5) is rearranged as: 

 

   𝜎𝑖𝑗(𝑥) = 𝐶𝑖𝑗𝑘𝑙
𝑜 𝑢𝑘,𝑙(𝑥) + 𝜑𝑖𝑗(𝑥)          (3.8)  

 

where 𝜀𝑘,𝑙(𝑥) = (𝑢𝑘𝑙(𝑥) + 𝑢𝑘𝑙(𝑥))/2. Deriving Eq. (6) and adding equilibrium (𝜎𝑖𝑗,𝑗 = 0): 
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       𝐶𝑖𝑗𝑘𝑙
𝑜 𝑢𝑘,𝑙𝑗(𝑥) + 𝜑𝑖𝑗,𝑗(𝑥) = 0     (3.9) 

Gives a partial differential equation (PDE) that can be solved in a periodic unit cell under 

strain 𝐸 = 〈𝜀(𝑥)〉 via the Green’s function method, such that the displacement gradient can then 

be obtained as a convolution in real space:  

 

𝑢𝑘,𝑙(𝑥) = ∫ 𝐺𝑘𝑖,𝑗𝑙(𝑥 − 𝑥′)𝜑𝑖𝑗,𝑗(𝑥′)𝑑𝑥′
𝑅3    (3.10) 

 

where 𝐺𝑘𝑚(𝑥 − 𝑥′) is the Green’s function associated with the displacement field 𝑢𝑘(𝑥). After 

integrating Eq.(8) by parts such that �̃�𝑖,𝑗(𝑥) = ∫ 𝐺𝑖𝑘,𝑗𝑙(𝑥 − 𝑥′)𝜑𝑘𝑙(𝑥′)𝑑𝑥′
𝑅3 , the problem can be 

solved in the Fourier space as a product instead of an integral, thus shortening the computational 

time required for the simulation, i.e.  

 

     �̂�𝑖,𝑗(𝑥) = Γ̂ijkl(𝜉)�̂�𝑘𝑙(𝜉)     (3.11) 

 

where the Green operator Γ̂ijkl(𝜉)  is only a function of stiffness and frequency (Γ̂ijkl(𝜉) =

−𝜉𝑗𝜉𝑙[𝐶𝑖𝑗𝑘𝑙
𝑜 𝜉𝑗𝜉𝑙]

−1
). Therefore, the strain field becomes: 

 

𝜀𝑖𝑗(𝑥) = 𝐸𝑖𝑗 + 𝐹𝑇−1(𝑠𝑦𝑚(Γ̂ijkl(𝜉))�̂�𝑘𝑙(𝜉))                 (3.12) 

 

Where the symbol “^” indicates a Fourier transform and 𝜉 is a frequency of Fourier space. This 

strain field (Eq. 3.12) is replaced in Eq. (Eq. 3.6) and solved at every point to obtain a new guess 

for the stresses, using an iterative process that seeks a compatible macroscopic strain and an 

equilibrated stress fields [57]. Also, this formulation allows the use of different microscopic 

hardening laws without changing the main algorithm. For modeling of AA7050 the Generalized 

Voce Hardening Law was used: 

 

𝜏(Γ) = 𝜏𝑜 + (𝜏1 + 𝜃1Γ) [1 − 𝑒
−

Γθ0
𝜏1 ]    (3.13) 
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where 𝜏0 and  𝜃0 are the initial yield stress and hardening rate, respectively, and 𝜏1 and  𝜃1 are the 

parameters that describe the asymptotic behavior of the material. For the elasto viscoplastic 

modeling of AA7050, these parameters were obtained given an initial guess from the macroscopic 

stress-strain curve that characterizes the material through the Taylor factor [90] and a final manual 

fitting. For all specimens modeled in this document, the AA7050 material is modeled with the 

parameters shown in Table 3.1 and Table 3.2, where the Voce hardening parameters were 

obtained in Chapter 4 from the stress strain curves of the TL-LT-TS specimens shown in Fig 4.4. 

For large EVP-FFT models, the parallelization method described in Error! Reference source not 

found. can be used to achieve convergence under reasonable computer times. 

 

 

Table 3.1 Voce Hardening Parameters 

0 θ0 1 θ1 

135.8337 3061.5587 8.4697 167.586 

Table 3.2 Elastic parameters for matrix and particles 

AA7050 Matrix 
C11 C12 C44 

111.2 57.4 26.4 

Al7Cu2Fe Particles 
Modulus E Poisson μ 

160.2 0.33 

 

 Crack Nucleation Metrics 

Fatigue Indicator Parameters (FIPs) are metrics capable of capturing the onset of crack 

nucleation given the slip activity in the material. In the present work, eight different FIPs [85][92] 

were calculated from the micromechanical fields calculated from the EVP-FFT simulations. The 

first four parameters studied: Slip System (SS), Slip Plane (SP), Accumulated Slip (AS) and 

Opening Plane (OP), evaluate the maximum accumulated shear strain per slip system or plane; 

whereas the last four parameters: Slip System Energy Density (SSED), Slip Plane Energy Density 

(SPED), Accumulated Slip Energy Density (ASED) and Opening Plane Energy Density (OPED) 
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are the energetic counterparts for the first four parameters that represent the dissipated energy in 

the slip system or plane. These FIPs are described in Eq. 3.14 to Eq. 3.21 as:  

 

 𝑆𝑆 = max
𝛼

|Γ𝛼|      (3.14) 

 𝑆𝑃 = max
𝑝

∑ |Γ𝑝
𝛼|𝑁

𝛼=1      (3.15) 

 𝐴𝑆 = ∑ |Γ𝛼|𝑁
𝛼=1      (3.16) 

 𝑂𝑃 = max
𝑝

∑ |Γ𝑝
𝛼| (1 + 𝑘

〈𝜎𝑛
𝑝

〉

𝜎𝑌
)

𝑁𝑠
𝛼=1    (3.17) 

 𝑆𝑆𝐸𝐷 = max
𝛼

|τ𝛼Γ𝛼|     (3.18) 

 𝑆𝑃𝐸𝐷 = max
𝑝

∑ |τ𝑝
𝛼Γ𝑝

𝛼|𝑁
𝛼=1     (3.19) 

 𝐴𝑆𝐸𝐷 = ∑ |τ𝛼Γ𝛼|𝑁
𝛼=1      (3.20) 

 𝑂𝑃𝐸𝐷 = max
𝑝

∑ |τ𝑝
𝛼Γ𝑝

𝛼| (1 + 𝑘
〈𝜎𝑛

𝑝〉

𝜎𝑌
)

𝑁𝑠
𝛼=1   (3.21) 

 

Where τ is the resolved shear stress, Γ is the accumulated plastic shear strain, 𝛼 is the slip system 

number, 𝑝 is the index of each slip plane, 𝑁𝑠  is the number of slip systems associated with a 

particular slip plane 𝑝, 𝑁 is the total number of slip systems , 𝑘 is a scaling factor set to 0.5 as seen 

in [93], 〈𝜎𝑛
𝑝〉 is the opening stress normal to the slip plane 𝑝, 𝜎𝑌 is the yield stress (460MPa), and 

〈∙〉 are the Macaulay brackets where 〈𝑥〉 = 𝑥 if 𝑥 ≥ 0, and 〈𝑥〉 = 0 if 𝑥 < 0. 
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The experimental work in this chapter was performed by Dr. Alberto Mello, and the EVP-FFT 

models were performed by the author. A complete description of this chapter can be found in: A.W. 

Mello, A. Nicolas, R.A. Lebensohn, M.D. Sangid, Effect of microstructure on strain localization in 

a 7050 aluminum alloy: Comparison of experiments and modeling for various textures, Mater. Sci. 

Eng. A. 661 (2016) 187–197. doi:10.1016/j.msea.2016.03.012.   

 

4. EFFECT OF MICROSTRUCTURE ON STRAIN LOCALIZATION 

 Introduction 

It is necessary to investigate the material deformation at the microscale level by means of 

experimental analyses and material modeling. To investigate polycrystalline deformation at this 

level, non-destructive techniques such as non-contact Digital Image Correlation – Electron 

Backscatter Diffraction (DIC-EBSD) are necessary to identify spatial maps of strain heterogeneity 

[1][94][43][95], using different patterning methodologies [96][88][97] that can resolve strain 

down to a slip level resolution. To model polycrystalline deformation, Elasto Viscoplastic – Fast 

Fourier Transform (EVP-FFT) simulations capable of yielding a micro-mechanical response from 

a macroscopic load are necessary. As seen by Zhao et al. [62] the micro-texture influences strain 

heterogeneity, being the subsurface microstructure a source of discrepancy between observations 

and predictions [52][98]. Thus, olygocrystals show a better match because of their lower 

subsurface uncertainty [63]. Therefore, it is of interest to investigate rolled Al7050 for different 

material orientations both via experiments and simulations. 

 Materials and Methods 

4.2.1 Material 

A plate of rolled AA7050-T7541 [99] was used to machine three specimens parallel to the 

rolling direction (L-T), perpendicular to the rolling direction and aligned with the long direction 

(T-L); and perpendicular to the rolling direction and aligned with the short direction (T-S), as 

shown in Fig 4.1. The geometry of the specimen was adapted from the ASTM E8 standard [100] 

taking into account the size of the surface to be analyzed.
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Fig 4.1 Specimen geometry and orientations from AA 7050-T7451 plate (dimensions in mm) 

with length of 48 mm and thickness of 1.6 mm. 

 

4.2.2 Experimental Procedures 

The specimens were polished using a 1200 grit sand paper followed by 0.05 μm blue 

colloidal silica until a mirror-like surface was obtained. Afterwards two 800 μm by 600 μm regions 

of interest (ROI) were delimited using fiducial markings [101] as depicted in Fig 4.2 using a LECO 

Microhardness Tester LM247AT and forces of 1N and 0.5N for the bigger and smaller indents, 

respectively. 

 

Fig 4.2 Delimited area for EBSD and DIC analysis. 

 

EBSD characterization of the microstructure was performed, finding an average grain size 

of 80 μm and a range between 30 to 500 μm. A reusable micro stamp designed for DIC reference 
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patterning [102] was applied. The stamping process involves generating a master via lithography 

with a 10 μm base-element size speckle pattern and imprinting it into a castable material that 

polymerizes without shrinking nor bonding to the master [103], with the full protocol being 

described by Cannon et al. [48]. The resulting speckle pattern shown in Fig 4.3 was used to stamp 

all AA 7050-T7451 specimens.  

 

 

Fig 4.3 Area of interest viewed at 20x in optical microscope, 10 μm pattern 

 

Six specimens, two for each direction (L-T, T-L, T-S), were loaded up to tensile rupture to 

determine mechanical properties from the stress-strain curves shown in Fig 4.4. All tension tests 

were performed in a 6.7 kN Mark-10 ESM-1500 Force Test Stand at a rate of 2 mm/min. A 

dedicated Epsilon extensometer Model 3542 was used to measure strain. The stress-strain results 

exhibit very similar mechanical properties in the three tested directions, with the final elongation 

being smaller for the L-T specimen due to the material plastic deformation in the longitudinal 

direction during the rolling process. 
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Fig 4.4 Stress-strain curves – AA 7050-T7451 

 Results 

4.3.1 Experimental Strain Field Mapping 

For a full-field strain measurement of the ROI, DIC [43][101][44] was performed using 

the stamping protocol described above, along with grain morphology characterization via EBSD 

seen on Fig 4.5. The average grain sizes for the L-T, T-L, and T-S specimens were 88, 79, and 59 

μm, respectively, with the T-S specimen exhibiting smaller grains due to grain elongation being 

perpendicular to the plane. The Taylor factor was ~2.44 due to texture from rolling. Some 

constituent particles, possibly a combination of MgZn2, AI7Cu2Fe, Al2CuMg, and Mg2Si [104], 

may have been identified as small grains on the EBSD scans on Fig. 5 due to their FCC crystal 

structure similarity to AA7050, but the Inverse Pole Figure (IPF) coloring do not represent their 

actual crystal orientation since their composition was not identified. 
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Fig 4.5 Inverse Pole Figure for: (a) L-T, (b) T-L, and (c) T-S. 

 

All three specimens were loaded to 3% axial strain and unloaded to an unstressed condition. 

Vic-2D was used to perform DIC [44] for all specimens with a subset of 56 μm (about the size of 

the average grain) and a step of 3 μm. The localized residual strains are a result of strain 

accommodation due to crystal anisotropy, therefore the making overall mechanical response 

orientation dependent [105]. A sensitivity analysis on the subset size was performed to avoid strain 

dipoles [49][106]. 

 

For the L-T specimen the loading axial strain was 3.11%, reaching 427 MPa. Fig 4.6 shows 

the residual axial, transverse, and in-plane shear strain maps, εxx, εyy, and εxx, with the grain 

boundaries superimposed. For the T-L specimen the loading axial strain was 3.12%, reaching 489 

MPa, with Fig 4.7 showing in-plane strains along with the grain boundaries colored according to 

the misalignment angle. Some isocurves are seen along low-angle grain boundaries (15º) on Fig 
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4.7a.  For the T-S specimen the final total axial strain was 3.10%, reaching 488 MPa. The strains 

are shown on Fig 4.8 and exhibit the largest strain variations, possibly due to the need for a finer 

speckle size that can better resolve sub-grain strains. All maps show regions with a much higher 

strain than the average value that can facilitate crack nucleation. 

 

 

Fig 4.6 Specimen L-T residual (a) εxx strain field w/avg. strain = 2.44%; (b) εyy strain field 

w/avg. strain = -0.75%; and (c) εxy strain field w/avg. strain = -0.15%. 
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Fig 4.7 Specimen T-L residual (a) εxx strain field w/avg. strain = 2.41%; (b) εyy strain field 

w/avg. strain = -1.02%; and  (c) εxy strain field w/avg. strain = 0.05%. 
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Fig 4.8 Specimen T-S residual (a) εxx strain field w/avg. strain = 2.26%; (b) εyy strain field 

w/avg. strain = -1.18%; and (c) εxy strain field w/avg. strain = -0.20%. 

 

4.3.2 Simulations 

The EBSD orientation data files were used as input files for the simulations. DREAM3D 

[107] was used to appropriately convert the hexagonal gridded data into a square-gridded format 

within an h5ebsd file, rotate the Euler frame 90° about the <001> to match the spatial frame, and 

correct any bad data point encountered (confidence index below 0.2 and local misorientation angle 

above 5°). The final simulation files contain the orientation angles, the spatial locations, the grain 
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ID, and the phase id number. A macroscopic strain rate along the x-direction was imposed while 

allowing the other components to adjust for stress-free conditions. 

 

The final simulation sizes for each specimen was (i) T-L = 232x190x1 voxels = 

1000x700x3.7 μm; (ii) L-T = 361x290x1 voxels =  938x754x2.6 μm, and (iii) T-S = 372x297x1 

voxels = 967x772x2.6 μm. To ensure a 2n geometry required for FFT, extra gas phase and material 

were added at the boundaries. The grains were assumed to be infinitely columnar so the thickness 

was left as 1 infinitely periodic voxel to ensure a plane strain model. A summary of the elastic and 

plastic material parameters used to model AA7050 can be seen in Table 3.1 and Table 3.2, where 

the parameters used to model the plastic behavior in the Voce Hardening Law were iteratively 

obtained by matching the EVP-FFT macroscale stress strain curve with the curve experimentally 

observed on the TS-TL-LT specimens.  

 

 Discussion 

Fig 4.9 shows both the simulated and experimental strain field maps for all three specimens. 

The comparison shows that he simulations do not capture the exact heterogeneous strain 

distributions at the microstructural features as represented in the DIC-EBSD experiments, 

especially for the L-T and T-S specimens. However, they correctly predict the statistical strain 

distributions for each crystallographic texture, as seen on Fig 4.10. Both figures show that low 

macroscopic loadings may create high local plastic strains prone to failure. 

 

The possible sources for the discrepancy between simulated and experimental strains are 

explained as follows: (i) the boundary conditions may be different, since the simulation applies a 

uniform strain rate on the entire material whereas in reality this is only applied to the grips of the 

specimens (ii) the unknown subsurface has a considerable effect on the surface strain response [52] 

and therefore the columnar assumption needs further study, possibly by using oligocrystals [98][63] 

(iii) the physics of the constitutive equations used in the materials models is incomplete, especially 

when using such a simple hardening law for which the resulting slip system activity can vary 

drastically [108], and (iv) the resolution from the 10 μm-pattern DIC is limited. Given that the 

discrepancy between experimental and modeled strains is lowest for the TS specimen, it is possible 

that the mechanism dominating the discrepancy between the strains is the subsurface 
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microstructure, since the TS orientation has the lowest subsurface uncertainty due to the elongated 

nature of the grains. Chapter 5 analyzes in further detail the role of subsurface uncertainty on the 

spatial and statistical prediction of strains.  

 

 

Fig 4.9 Simulation (left) vs. experimental (right) results for (a) L-T, (b) T-L, and (c) T-S 

specimens. 
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Fig 4.10 Histograms of axial plastic strain distribution for (a) L-T, (b) T-L, and (c) T-S. 

 

 Conclusion 

Micro-stamping is very effective for DIC, being the 10 μm base pattern sufficient for grain 

level resolution of strains. The resulting strain field maps show that the strain varies according to 

the microstructure. There is a tendency for the axial strain to form isocurves perpendicular to the 

load of the elongated T-L grains.  

 

The EVP-FFT simulations predict reasonably well the statistical nature of the strain fields, as 

the maximum microstructural strains were roughly double the macroscopic residual plastic strains, 

which could be useful on the material design that may experience failure below the yield point. 

However, EVP-FFT could not accurately predict the heterogeneous strain fields at each 

microstructural feature. 
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The experimental testing and characterization in this chapter was performed by Dr. Alberto Mello, 

with the development of the cast material being performed by Dr. Sun and Dr. Johnson. The 

reconstruction and modeling was performed by the author. Full details of this chapter can be found 

in: A. Nicolas, A.W. Mello, Y. Sun, D.R. Johnson, M.D. Sangid, Reconstruction Methods and 

Analysis of Subsurface Uncertainty for Anisotropic Microstructures, Mater. Sci. Eng. A. (2019) 

Accepted. 

 

5. SUBSURFACE UNCERTAINTY FOR ANISOTROPIC 

MICROSTRUCTURES 

 Introduction 

To characterize the mechanical behavior of materials, the scientific community usually relies 

on experimental measurements, such as the ones obtained from DIC, as well as crystal plasticity 

computer models, which can obtain the mechanical heterogeneity at the microstructural level. 

Either method, however, has shown to encounter issues with obtaining a full representation of the 

microstructural behavior, especially when there is only surface data available. As seen by Turner 

et al. [52], the neighboring microstructure of an analyzed surface strongly affects its strain field. 

Therefore, unless the uncertainty of the surrounding microstructure is minimized, the accuracy of 

a simulated strain field will remain unknown. One approach for reducing the subsurface 

uncertainty is by generating 3D statistically equivalent virtual microstructures, where the statistics 

necessary to instantiate the virtual microstructure can be directly obtained from surface 

characterizations.  

 

In this chapter, we propose a subsurface reconstruction methodology that allows us to 

investigate the effect of the subsurface uncertainty on the modeling of a rolled AA7050-T451 

specimen in the transverse short direction (TS) by characterizing its surface response via DIC and 

comparing the results with two types of EVP-FFT models: a 2D plane strain model without any 

subsurface information, and a full 3D model with a statistically reconstructed subsurface 

microstructure. Additionally, a case study is performed on a material with a through-thickness 

grain structure, thus reducing the subsurface uncertainty, where no subsurface reconstruction is 

performed and for which the 2D plane strain model should be sufficient.
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 Materials and Methods 

5.2.1 Specimen Characterization 

A tensile specimen of AA7050-T4751 was machined in the transverse-short direction (T-

S), thus aligning the elongated grains along the thickness of the specimen, where the subsurface 

uncertainty can be considered to be low. The geometry was the same one described in Chapter 4. 

As a case study of a microstructure with minimized subsurface uncertainty, a second variant of 

AA7050 was produced via directional casting to generate verifiable through-thickness grains, with 

cold work performed on the material to emulate the wrought processing of rolled AA7050. Full 

details of this material can be found in Appendix A. For the rolled TS AA7050 specimen a 300 

μm x 400 μm ROI was delimited at the center of the specimen by adding fiducial markers via 

microhardness indents (LECO LM247AT). Afterwards, the specimen was thoroughly cleaned in 

acetone and methanol in a sonicator for 3 minutes each. The ROI was then characterized via EBSD.  

5.2.2 DIC Experimental Procedure 

DIC was performed using nanoparticle patterning of titanium [46] at the surface of the 

specimen. A full description of the speckling procedure is available in [47]. To ensure a high-

resolution characterization, the ROI was also subdivided into 9 regions with a 20% surface overlap 

and separately scanned via SEM using a 10 kV voltage, a spot size of 4, a 10 mm working distance, 

and a 700x magnification. Each scan had a resolution of 14.5 pixels per µm. DIC was then 

performed on each of the 9 regions using a subset size of 111 pixels (7.7 μm) and a step size of 2 

pixels (0.14 μm). Afterwards, the DIC maps were corrected for distortion following the correction 

protocol described on [89]. The final strain map of the ROI composed of nine strain datasets 

stitched after correlation are shown in Fig 5.1. The tensile experiment was conducted at room 

temperature (23 °C) in a 6.7 kN electromechanical Mark-10 ESM-1500 Force Test Stand. The 

force indicator has a ±0.1% of full scale accuracy with a resolution of 5 N. The cross head 

displacement has a travel resolution of 0.02 mm, and the tests were conducted at 2 mm/min. An 

Epsilon extensometer Model 3542 was used to measure strain. The targeted strain, 3%, was chosen 

to ensure that the material was loaded beyond the elastic-plastic transition and significant strain 

localization occurred.  
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Fig 5.1 View of the titanium speckle patterning tracked before and after deformation (left) and 

the resulting full axial strain map (right) after stitching the 9 regions together after DIC. 

5.2.3 Crystal Plasticity Simulations 

The surface EBSD scans were used to instantiate two types of EVP-FFT models: one 

without subsurface reconstruction, therefore limiting the simulation to a 2D model, and one with 

a 3D subsurface microstructure statistically reconstructed from the EBSD data.  The modeling of 

both types of microstructures will help understand two main points: a) how the subsurface 

uncertainty affects the discrepancies between the simulations and experiments and b) the potential 

of statistical subsurface reconstructions as a tool to improve microstructural models. 

5.2.3.1 Preprocessing of EBSD orientation Data 

The square grid data from the EBSD orientation file was preprocessed with DREAM3D 

[107] to remove noise in the data. The optimal microstructure representation is obtained from the 

EBSD scan when a point is cleaned if both the confidence index is below 0.2 and the misorientation 

angle relative to at least six of its 8 voxel neighbors surpasses 5°. For all simulations, the spacing 

between data points was indicated by the step size from the EBSD scan. Next, the data file was 

imported into an h5 file, and the Euler frame was rotated 90° about the <001> to match the spatial 

frame. The final orientation file contained the grain orientation (in Euler angles), the spatial 

locations, the grain ID, and the phase to which every spatial point belongs. 
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5.2.3.2 Subsurface Reconstruction Methodology 

To reconstruct a subsurface that can properly represent the geometry and the orientation 

distribution of the AA7050 samples in the TS orientation of the rolled plate, an algorithm capable 

of extracting information directly from the EBSD surface scan was developed. The full algorithm 

can be found in Appendix B. An overview of the subsurface reconstruction procedure can be seen 

in Fig 5.2. 

 

Fig 5.2 Visual overview of the subsurface reconstruction algorithm. First the EBSD 

characterization is used as input to directly reconstruct the subsurface geometry (a-c). Then 

tessellated grains are generated (d-e) based on spatial distances observed for this material from 

EBSD characterization of orthonormal sections [110]. A final smoothing is performed (f) to 

improve the grain morphology. 

 

For the first step to reconstruct a statistically equivalent subsurface, the grains part of the 

EBSD characterization were allowed to grow into the subsurface a distance based on the equivalent 

radius of the grain of interest with a stereological factor of 4/π, which has been shown to be a 

reasonable scaling value from 2D to 3D [109]. Next, tessellations of randomly generated grain 

seed points were generated underneath the extruded grains. The seed points were spatially 

positioned to maintain the statistical grain aspect ratio. These length-to width grain size ratios were 
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statistically obtained from surface EBSD scans of rolled AA7050-T7451 along the rolling 

direction (LT), across the rolling direction (TL), and transverse to the rolling direction (TS) 

obtained on a previous study of the same material [110].  

 

The third step involved statistically equivalent grain orientations for the grain seed points 

from the surface EBSD characterization via the StatsGenerator command in DREAM3D [107]. 

This ensures that the texture present on the specimen is preserved in the model.  As a fourth and 

final step, the entire microstructure, excluding the EBSD surface, was further refined via an 

erosion-dilation smoothing algorithm to remove the unnaturally sharp grain boundaries generated 

from the extrusion and tessellation of grains. This type of reconstruction allows for a direct spatial 

comparison between the strain distributions at the surface of the 3D simulation and the 

experimental strains observed in the material, which is very advantageous since the user is not 

limited to purely statistical comparisons to assess the performance of the computer model. 

5.2.3.3 2D and 3D modeling 

To examine the effect of the subsurface uncertainties on the modeling results, as well as 

the performance of the proposed reconstruction methodology, one 2D model and two 3D 

subsurface reconstructions were generated for the same EBSD scan.  Each 3D subsurface 

reconstruction contained the same surface microstructure, but the subsurface microstructure 

exhibited different grain morphologies and orientations.  Each microstructure was used as input 

for EVP-FFT modeling [55], and a gas phase was added on the free boundaries to ensure stress 

free surfaces, including a gas layer at the surface of the model. Regions of the EBSD scan outside 

the ROI were included in the simulations until a size of 2q was reached, where q is a positive 

integer to satisfy the FFT periodicity requirements, as seen in Fig 5.3. Neither of these extra phases 

outside the ROI was considered for the strain map comparisons. For all three simulations, the 

minimum size needed for a representative simulation of the strains at the surface was found to be 

512 x 512 x n voxels, where n is the subsurface depth that was reconstructed. It is important to 

note that the periodic nature of the FFT formulation will perceive the 2D model size as 512 x 512 

x infinity voxels therefore making it a plane strain model. It should be noted that the results from 

extruded models with a free surface converged towards the plane strain results, since the plane 
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strain approach restricts the out-of-plane movement. Parallelization was used as well as the 

material properties described in Table 3.1 and Table 3.2. 

 

 

Fig 5.3 Schematic and boundary conditions (BCs) for the EVP-FFT model. The additional 

material outside the ROI prevents edge effects on the modeling results. 

 Results 

Strain maps produced by the experiments and simulations, on the same surface microstructure 

with different subsurface instantiations, were generated and compared.  The strain maps were 

displayed in terms of the maximum principal shear strain, which has been shown in literature to 

be a good representative of the physical basis for deformation from DIC results [96]. The local 

principal shear strain was determined by Eq. 5.1:   

 

                                               
𝛾𝑚𝑎𝑥

2
 = √(

𝜀𝑥𝑥−𝜀𝑦𝑦

2
)

2
+ (

𝛾𝑥𝑦

2
)

2
     (5.1) 
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Fig 5.4 Simulated (a,c,d) and experimental DIC (b) residual principal shear strain field maps for 

an AA7050 specimen in the TS orientation of the rolled plate after applying 3% strain and 

unloading. Simulation (a) is modeled without the subsurface microstructure and simulations (c,d) 

are modeled with subsurface reconstructions. 

 

Fig 5.4 shows the in-plane resolved shear strain maps for a specimen extracted from the 

rolled plate of AA7050 in the TS orientation obtained from experimental DIC, one 2D simulation 

without subsurface reconstruction, and two 3D simulations with statistical subsurface 

reconstructions. Each subsurface reconstruction has different subsurface morphologies and 

orientations, yet are statistically representative of the characterized microstructure. The 2D model 

shows high strain values localized over fairly large regions, especially when compared with the 

3D models with a subsurface reconstruction, which show better distributed strains with sparse 

strain localizations.  
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Fig 5.5 Cumulative distribution function plots for (a) the axial strains, 𝜀𝑥𝑥, and (b) the maximum 

in-plane shear strains, 𝛾𝑚𝑎𝑥. While all models capture the observed uniaxial strain, when 

analyzing the worst-case deformation scenario via the in-plane principal shear strains, the 

addition of a subsurface reconstruction improves the predictions. 

 

Fig 5.5 shows a statistical comparison between modeled and experimental strains. The models are 

shown to properly capture uniaxial strains, which is reasonable since the EVP-FFT results were 

calibrated to match the macroscopic uniaxial deformation. On the other hand, the maximum in-

plane shear strain, an important metric for the local deformation in the material, is heavily over-

predicted by the 2D model. The prediction only improves when a 3D subsurface reconstruction is 

added to the model.  

 

Therefore, as a conservative approach, the maximum in-plane shear strain is further studied 

spatially. A good prediction of this metric ensures that the overall deformation of the material has 

been properly captured, which includes the axial strains. To perform a spatial comparison between 

experiments and simulations, the maximum in-plane shear strain field was tracked grain by grain 

and the grain average values were plotted for each simulation. The centers of the ellipses represent 

the average strain and the size of the horizontal and vertical axes for each ellipse represents the 

standard deviation inside the grain for the experimental and simulation strain values, respectively.  
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Fig 5.6 Maximum in-plane shear strain grain-by-grain comparison between experiment and 

simulations with subsurface reconstructions (second and third rows). The 2D model case in the 

first row assumes a purely elongated structure. 

 

Fig 5.6 shows a grain-by-grain comparison of the experimental and simulated maximum 

shear strains, as well as the geometry of the models with and without subsurface reconstructions. 

The grain-by-grain analysis reveals an over-prediction of the maximum in-plane strains for the 2D 

model (row 1) and a closer prediction of surface strains from the 3D models with subsurface 

reconstruction (row 2 and row 3).   
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When measuring the goodness-of-fit, R2 [111], of the plotted average maximum in-plane shear 

strain values relative to the 𝑓(𝑥) = 𝑥 line for the specimen from the TS orientation of the rolled 

AA7050 plate, the 2D model exhibits an R2 = 0.62. On the other hand, the 3D models with 

subsurface reconstruction show a value of R2 = 0.76 for reconstruction 1 and of R2 = 0.75 for 

reconstruction 2. In this work, a good fitness of value R is considered to be anything above 0.75, 

meaning that 75% of the variance is related. The goodness-of-fit values show that the addition of 

a statistically equivalent subsurface microstructure noticeably improves the prediction of the strain 

distributions on the grain scale. 

 Discussion 

The results show that minimizing the subsurface uncertainty is indeed playing a key part in 

bridging the gap between the strain results for the experiments and simulations, even for the highly 

elongated microstructures indicative of rolled materials in which the 2D microstructures and plane 

strain assumptions are usually deemed to be a reasonable assumption given the highly elongated 

grains. It should be noted that the plane strain results converge towards the models of an extruded 

grain morphology with a free surface. We further discuss the degree of agreement in the model 

strain response, as well as the mechanisms behind this behavior. Fig 5.5 and Fig 5.6 show a 

significant improvement of strain predictions for the models with a subsurface reconstruction. 

While there is still some over-prediction of the in-plane shear strains, it is significantly less than 

the case for the 2D model without any subsurface reconstruction. This is possibly due to the role 

of the subsurface microstructure in providing additional degrees of freedom that can help the grains 

at the surface to accommodate deformation.  

 

Also, the subsurface grain morphology is relatively insensitive to the degree of match between 

the simulations and the experiment at the surface.  Reconstruction 2 underwent an additional level 

of grain boundary smoothing, as compared with Reconstruction 1, yet both simulations with 

subsurface reconstructions exhibit evenly distributed strains and equally matched the strain 

magnitudes to those of the experiment, as both have an R2 value of roughly 0.75. It seems that as 

long as the subsurface is accounted for, the EVP-FFT simulation yields improved results, both 

spatially and statistically, when compared to the experimental strain field obtained from DIC.  
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To further understand the role of the subsurface uncertainty, a material with minimized 

subsurface uncertainty was developed, in which the specimens exhibited a through thickness grain 

structure. This material, further described as through-thickness cast AA7050, was then analyzed 

as a case study in the same manner as the rolled TS AA7050 specimen.  Two specimens were 

manufactured from standard AA7050 using a directional casting methodology, please refer to 

Appendix A for the processing and characterization details. The through thickness grain structure 

was verified via EBSD characterization of the front and back surfaces of the specimens. When 

modeling the cast AA7050 material, only the EBSD scans of the front faces of the specimens were 

used to construct the EVP-FFT simulation models. Similarly, to the 2D model, without subsurface 

reconstruction, each cast specimen is modeled as a 2D extrusion, where in this case the highly 

elongated nature of the grains is no longer an assumption but a verified characteristic of the 

material morphology. The material parameters were obtained from the macroscopic stress-strain 

curve, which exhibited the same elastic response of rolled AA7050 but a different plastic response 

due to the limited degrees of freedom of perfectly elongated grains. The elastic parameters were 

the same ones used to model rolled AA7050 (Table 3.1), and the Voce hardening parameters 

changed to 0 = 142.5 MPa, 1 = 12 MPa, θ0 = 30, and θ1 = 5 to comply with the macroscopic 

response. 

 

When analyzing the maximum in-plane shear strain in the material (Eq. 5) after deformation 

and subsequently unloading the sample, the model of the casting is observed to accurately predict 

the shear distributions and magnitudes, as seen in Fig 5.7 and in Fig 5.8. The grain-by-grain 

analysis shows a R2 = 0.88 for specimen 1 and a R2 = 0.78 for specimen 2. For such a material, the 

movement of the through-thickness grains is very limited in the out-of-plane direction and 

therefore the 2D model is better for capturing the actual response of the material. The constraints 

of a through-thickness grain structure also explain the high levels of shear strains localization 

compared to that of the rolled microstructure, as there are no additional subsurface grains in the 

cast materials that allows for strain redistribution. This has an important implication, since it means 

that as long as the subsurface is properly accounted for either by reconstruction or by a full 

knowledge of the subsurface microstructure, simulations can inexpensively provide a description 

of localized strain and potentially define the sites of crack initiation. Finally, to analyze the effect 

of the grain morphology and the texture of the material on the surface strains, additional 
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reconstruction instances of the rolled AA7050 specimen were generated, with some 

reconstructions containing the same grain morphology but different grain orientations, and some 

reconstructions containing the same grain orientations but different grain morphologies. All 

reconstructions yielded similar results to the ones observed in Fig 5.4, Fig 5.5 and Fig 5.6, with 

no appreciable difference arising from the grain morphology or texture. Therefore, it can be 

surmised that the main mechanism behind the improvement of mechanical predictions is the 

additional degrees of freedom that the subsurface provides to the surface grains, even if said grains 

are known to be elongated. 

 

The results confirm that the subsurface uncertainty is a strong factor affecting the strain 

distributions of not only equiaxed microstructures [59][60][61] but also heavily elongated and 

textured microstructures, and therefore needs to be taken into account for improved reliability of 

simulation results. Furthermore, the proposed subsurface reconstruction methodology provided a 

reasonable method for minimizing the subsurface uncertainties and improving the predictions of 

the mapped surface strain fields on standard materials, with the advantage of allowing direct spatial 

comparisons between the observed strains in the material and the model instantiation. 
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Fig 5.7 Simulated and experimental (DIC) residual principal shear strain 𝛾max field maps for the 

AA7050 cast samples with through thickness grain structure, specimen 1 (row 1) and specimen 2 

(row 2) after 1% strain. 

 

Fig 5.8 Maximum in-plane shear strain grain-by-grain comparison between experiment and 

simulation for AA7050 cast samples with through-thickness grains. 
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 Conclusion 

The subsurface uncertainty of materials plays an important role in the discrepancy observed 

between the surface strain results from DIC experiments and simulations for which only the 

surface microstructure is known.  However, it is usually assumed to play a less significant effect 

for materials with elongated grain morphologies. To investigate the extent to which the subsurface 

uncertainty of rolled materials affects the predictive capabilities of their respective computer 

models, two materials have been characterized and simulated: rolled plate of AA7050 with 

specimens taken from the TS orientation for which only the statistics of the subsurface morphology 

are known and cast specimens AA7050 material exhibiting a through thickness grain structure 

with minimized subsurface uncertainty. All computer models were done with a high voxel 

resolution and sufficient material padding to prevent any effects from the periodic boundary 

conditions. The experimental strain characterizations were performed with high resolution 

patterning and a distortion correction protocol to minimize characterization errors.  Given the 

results from the characterizations and simulations of these two sets of specimens, the significant 

contributions of this study are summarized as follows: 

 

 The EVP-FFT simulation of a 2D representation for the TS orientation from rolled plate of 

AA7050 material, without subsurface reconstruction, over-predicts the maximum in-plane 

shear strains at the surface. However, when adding a 3D statistically representative subsurface 

reconstruction to the model, the prediction of the shear strains is greatly improved.  The 

improvement is due in part to a redistribution of strain and additional degrees of freedom to 

allow for out-of-plane movement of the surface grains.  Hence, the addition of the statistically 

equivalent subsurface reconstruction effectively reduces the subsurface uncertainty in the 

surface strain response by ensuring that a minimum of 75% of the strains are replicated by the 

model.  

 A full subsurface reconstruction methodology has been developed, in which the main source 

of information is based on information provided by the EBSD surface characterization. This 

reconstruction methodology not only creates a reasonable microstructure both in terms of grain 

morphology and orientation, but also allows for a one-to-one spatial comparison between 

surface strain characterization and the results from the reconstructed model. 
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 The EVP-FFT simulation of AA7050 samples fabricated with a through thickness grain 

structure, thereby minimizing the subsurface uncertainty, predicts the strain distributions at the 

surface reasonably well.  From the results of the set of simulations in this study, the 

experimental strain distributions are more accurate from models with more reliable 

instantiations of the true subsurface microstructure of the material.
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The experimental DIC and EDS characterization in this chapter was performed by Dr. Alberto 

Mello, whereas the EBSD and CLSM characterizations, as well as all the data analysis were 

performed by the author. A complete description of this chapter can be found in: A. Nicolas, A. 

Mello, M. Sangid, The effect of strain localization on galvanic corrosion pitting in AA7050, 

CORROSION. (2018). doi:10.5006/2729. 

6. EFFECT OF RESIDUAL STRAIN LOCALIZATION ON CORROSION 

 Introduction 

AA7050-T7451 is commonly used in airframe applications where high tension and 

compressive loads are present [112] and its life is conditioned by corrosion pitting that develops 

on saline environments, as pits are the main source of cracks [27]. As a result, there is an interest 

to understand the mechanisms behind corrosion pitting and its eventual transition to cracking 

[113][114][26]. For aluminum alloys, particularly the 7xxx series, pitting originates at the cathodic 

Al7Cu2Fe particles that are [115], due to the galvanic coupling with the anodic matrix [116][21]. 

The anisotropy of the rolled material aligns these particles with the rolling direction (L), thus 

causing pitting on the transverse short (TS) plane [22], therefore making the TS orientation the 

one of interest [25]. 

 

Since crack initiation occurs at pits as small as ~ 50 µm [4], it is important to study corrosion 

during its early stages before it reaches a critical size. From a mechanical perspective, the residual 

loads affect the corrosion behavior as they either encourage pit growth [9] or retardation [10]. 

However, most studies spatially relating mechanical deformation with localized corrosion only 

measure the response of the material at the macroscale level [11][12], and the few cases studying 

localized deformation use x-ray for zones of ~4 µm [13], or electron microscopy for zones under 

~ 1 µm [14], both of which yield small fields of view, with larger windows requiring low-resolution 

techniques that prevent the mechanical study of cathodic particles with diameters of ~10 µm [15].  

 

As a result, little is known regarding the effect that the deformation and the microstructure 

have on corrosion at the mesoscale level. There is a need to examine large areas spanning several 

particles by characterizing the microstructure, the micromechanical fields, and the galvanic 

corrosion of a large ROI with known particle locations using high-resolution methods [43][117]. 

To capture the early stages of corrosion, the surface topology is measured every day for a total of 

20 days of saline solution exposure. Using the quantitative results from these characterization 

procedures, the driving mechanisms behind galvanic corrosion are also investigated.
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 Materials and Methods 

6.2.1 Specimen Characterization 

A tensile specimen with the geometry described in Chapter 4 was machined in the TS 

direction from a rolled AA7050 plate. The microstructure, the particles, the residual strain fields, 

and the corroded surface were characterized over a 300 µm x 400 µm ROI at the center of the 

sample. The TS specimen was polished down to a mirror-like surface and the ROI was delimited 

via fiducial marking with two larger marks added on the lower left as visual aid. EBSD was done 

on the ROI using 25 kV and a spot size of 5, and the resulting IPF map in Fig 6.1a yielded an 

average grain diameter of 35 µm. The characterization of the Al7Cu2Fe particles was done via EDS, 

yielding the resulting map in Fig 6.1b was in agreement with both SEM maps at the ROI and 

literature [15][117]. The mean and maximum particle diameter were 2.56 µm and 9.34 µm, 

respectively.  

 

 

Fig 6.1 Characterization of a) the microstructure, b) the cathodic Al7Cu2Fe particles, c) the 

residual strain response and d) the surface roughness from corrosion (displayed for 10 days of 

corrosion on 3.5% NaCl solution). 
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To resolve sub-micron strains, a titanium nano-particle patterning methodology [46] was 

used to track deformation after a 2% tensile load with a residual strain of 1.56%. As with previous 

experiments, the loading rate was 2 mm/min and an extensometer was. The ROI was divided into 

9 regions and separately scanned via SEM before and after deformation using 10 kV and a spot 

size of 4. The distortion correction protocol was used [89] and DIC was performed for each section 

with a subset size of 6.8 μm (111 pixels) and a step of 0.2 μm (3 pixels). The DIC outputs were 

stitched together for a full strain field view of the ROI, as shown in Fig 6.1c for εxx. 

6.2.2 Galvanic Corrosion Assessment 

After the strain field characterization, the specimen was gently polished to remove the 

titanium speckling. The specimen was then subjected to galvanic corrosion by coupling it to a 

SS316L cathode and submerging it in 0.6 M saline solution for 24 h periods, for a total duration 

of 20 days (480h). After each 24 h period, the sample was taken out of the solution, submerged in 

nitric acid (HNO3) for ~10s to remove any corrosion product, cleaned with water, isopropyl alcohol, 

acetone, and methanol, and characterized for spatial pitting via CLSM (561 nm laser, 1μm z-step 

size, a 10x/0.45 objective) and SEM imaging (5.0 kV and a spot size of 3.0). To ensure a high 

resolution characterization of the surface roughness via CLSM, the pinhole size was adjusted to 

maximize the signal-to-noise ratio and the ROI was segmented into 20 areas. The characterized 

surface is shown in Fig 6.1d and exhibits localized pitting after 10 days of corrosion. All surface 

maps reconstructions of the corroded surface were quantitatively verified via lower-resolution 

optical profilometry and qualitatively verified using higher-resolution SEM imaging. Proper 

storage in-between characterizations ensured that the specimen remained dry and mechanically 

unaffected, therefore preventing any changes on the local electrochemistry and the local mechanics. 

Immediately prior to subsequent corrosion submersions, the specimen was cleaned a second time 

using the procedure described previously. 

 Results 

The SEM scans in Fig 6.2 show the evolution of corrosion every 5 days. Since the fiducial 

marks can still be seen after 20 days of corrosion, the surface seems to experience diffusion-

controlled dissolution of the surface. Intergranular corrosion is not observed, and pitting is 

noticeable very early in the experiment with some areas corroding faster and wider than others. 
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The CLSM characterization in Fig 6.3 shows that corrosion becomes significant at Day 10 with 

pits being about 10 µm deeper than the surface, with a pit near the center exhibiting a sizable 

growth at Day 15 onwards.  

 

 

Fig 6.2 Overview of corrosion evolution within the ROI via SEM imaging, every 5 days. 

 

Fig 6.3 Overview of surface roughness evolution within the ROI via CLSM, every 5 days. 
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To track the behavior of areas affected by the local galvanic coupling, the ROI was 

segmented into particles and matrix using the EDX map seen in Fig 6.2b as a baseline 

segmentation mask. To ensure the proper separation of the areas affected by the local 

electrochemistry, the mask was dilated outwardly from the perimeter of the particles into the 

matrix with a threshold radius equal to the mean particle radius, 1.28 µm, based on a sensitivity 

analysis. This new mask was used to segment the axial strain map seen in Fig. 24c. The CDF in 

Fig 6.4 indicates that particles have a low average strain but higher localized strains than the matrix. 

This is because the particles barely deform and instead transfer loads to the surrounding matrix. 

 

 

Fig 6.4 CDF comparison of the axial strain in the matrix (black) versus the axial strain at the 

particles (red). 

 

Particles 1, 2, and 3 with an equivalent diameter of 7.46 µm, 8.34 µm, and 8.10 µm and a 

maximum local strain of 3%, 4%, and 7%, respectively, were tracked via SEM every day to 

pinpoint particle fallout, thus delimiting the days when the local electrochemical reaction between 

the particle and the matrix contributes to corrosion. Fig 6.5, Fig 6.6, and Fig 6.7 show the evolution 

of particle 1, 2 and 3, with fallout occurring at Day 09, Day 08, and Day 05. These figures also 

show that corrosion on particle 1 and 2 does not significantly evolve after fallout, unlike particle 

3 which evolves into a giant pit dominating the corrosion profile. 
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Fig 6.5 Corrosion evolution of particle 1 during 20 days of corrosion. 

 

Fig 6.6 Corrosion evolution of particle 2 during 20 days of corrosion. 
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Fig 6.7 Corrosion evolution of particle 3 during 20 days of corrosion. 

 Discussion 

As shown in  
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Fig 6.8, the pit at particle 3 that dominates the corrosion profile originally exhibited heavily 

localized strains as seen in Fig 6.9. This particle exhibits a maximum strain of 14% at the crack 

due to particle cracking (Fig. 32c), which diminishes down to 6% moving away from the crack. 

This localized strain is ~4x higher than the 1.6% macroscopic average residual strain of the 

specimen. The corrosion pit shows a final depth of ~34 µm on Day 20.  
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Fig 6.8 Overview of the worst pit after 20 days of corrosion, relative to a) the overall ROI, b) the 

surface topology (zoom-in region from (a)), and c) SEM imaging. 

 



72 

 

 

 

 

Fig 6.9 Overview of heavy pitting particle a) before loading, b) after loading (w/crack), and c) 

with localized strain. 
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To investigate how strain correlates to corrosion, the residual strains obtained from DIC 

for the entire ROI, shown in Fig 6.1c, were spatially compared to the surface topology maps for 

the entire ROI via a point-by-point statistical analysis to outline any trends between both 

parameters. Both maps contained a resolution of 0.12 µm over the 300 µm x 400 µm ROI. A 

principal component analysis (PCA) was performed using R [118] to determine the most 

representative variables from all the in-plane residual strains present in the material after loading 

to 2% strain and unloading, εxx, εyy, εxy, ε1, ε2 and the failure-prediction strains εvm and 𝛾max [96] 

The PCA analysis found that the longitudinal strain, εxx, and the shear strain, εxy, jointly covered 

~86% of the data variation, thus capturing the shape and distribution of the data cloud. Therefore, 

only εxx and εxy are necessary during correlations.  

 

Gaussian Process (GP) modeling [119] was used to infer a surface response of corrosion 

given localized strains, such that corrosion=f(εxx,εxy). GP modeling takes into account spatial 

cross-correlations (the effect that the neighbors have on a point) by using covariance function 

kernels, which is of paramount importance for studying heavily localized data, like pitting.  Since 

the characterization maps each contain over 9 million points, a special GP model utilizing 

Stochastic Variational Inferences (SVI) specifically designed for big datasets was used [120] 

alongside dataset batching and parallel solving. Any values beyond ±3σ were removed (~1000 

points) to ensure a normal distribution and keep the allowable data ranges reasonable during fitting 

iterations. A Matérn 5/2 covariance kernel was used, along with a learning step rate of 0.2, 100 

inducing inputs, and a batch size of 20,000. The GP-SVI results are shown in Fig 6.10.  

 

The GP fitted response shows that high corrosion levels occur at the mean values of strain, 

εxx and εxy, with values of 1.6% and 0%, respectively, meaning that pure axial strain coupled with 

no shear strain exhibits higher corrosion. The GP response also shows that in general high strains 

do not translate into high corrosion levels and that their relationship does not change over time. 

Even high strains arising from a particle does not translate to any enhanced corrosion, as seen 

during the evolution study of particles 1 and 2 in Fig 6.5 and Fig 6.6, both of which contained high 

strains in the periphery, yet they did not evolve into a significant pit. On the other hand, the axial 

strain at the particle that generated the dominating pit seen in  



74 

 

 

 

 

 

 

 

Fig 6.8 was ≥6%, almost twice the +3σ strain (3.5%) which meant its exclusion from the 

GP modeling. It should be noted that GP studies that included the information from this particle 

showed no difference from the results plotted in Fig 6.10, albeit they required more computational 

power. This was the only particle excluded since the rest had strains within ±3σ. It is also likely 

that the cracking is the source of the localized pitting seen during the early corrosion days. 
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Fig 6.10 Corrosion trends relative to the longitudinal strain, εxx, and the shear strain, εxy, fit using 

Gaussian process modeling. The maximum corrosion values converge around the average strain 

values. 

 

Particles 2 and 3 were part of the GP modeling and did not exhibit significant pitting. They 

developed pit growth when present, which slowed down after fallout. Since their cavities seem to 

blend with the matrix, a study of the difference between corrosion at the matrix and the particles 

is necessary. Fig 6.11 shows a comparison of corrosion at the matrix (black) and the particles (red), 

using the segmentation procedure described previously during the strain study shown in Fig 6.4. 

It can be seen that at Day 03 both zones exhibit similar corrosion values, with corrosion at the 

particles growing deeper until all particles have fallen out (Day 09). After fallout the difference 

diminishes but corrosion at the particles remains deeper than the matrix, as seen in Day 12, Day 

15, and Day 18. In other words, the particles leave cavities that corrode deeper than the average 
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matrix; however, the rate at which each grows varies, thus making necessary to identify the 

mechanisms behind the variations. 

 

 

Fig 6.11 CDF comparisons of the corrosion on the matrix (black) versus corrosion at the particles 

(red). The mean corrosion near the intermetallic particles is deeper than at the matrix, especially 

after the particles fallout (day 09). 

 

One postulated mechanism behind the rate of corrosion is the available surface area exposed 

to the electrolytes [121], which can be investigated by looking at the preexisting large voids on the 

lower right of the ROI (Figs. 25 and 26). These voids show slow corrosion, especially when 

compared to the particles, showing that although the exposed surface area affects corrosion, it has 

a slower corrosion rate relative to other mechanisms. Therefore, pitting happens at particles with 

accelerated growth up to particle fallout. Without the local electrochemical coupling between the 

cathodic particles and the matrix, the surface roughness and the high residual strains from cracking 

are the mechanisms driving localized corrosion. It is also possible that the interruption of the 

experiment may be affecting the rate of corrosion pitting, therefore on Chapter 7 and additional 

analysis of the effect that the interruption has on the corrosion response is performed. 
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 Conclusion 

 For strain values within ±3σ, the localized corrosion is independent from localized strains, and 

higher levels of strain do not translate into deeper corrosion pits. This has been verified by the 

surface response from GP modeling. 

 A region with maximum strain caused by a particle that was cracked during loading exhibited 

accelerated pit growth, which eventually dominated the corrosion profile of the ROI.  At this 

location, the strain values were much greater than +3σ. 

 Cathodic particles have been verified to be the main source of corrosion pitting, which is 

statistically significant compared to the corrosion at the matrix. The evolution of pits is initially 

driven by the electrochemical interaction between the particle and the matrix and after particle 

fallout, corrosion is driven by both the diffusion-driven dissolution of the surface and the 

extreme residual strains from the cracking of the particle.  
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The mechanical testing in this chapter as well as the EBSD scans were performed by Dr. Alberto 

Mello, with the rest of the characterizations, modeling, and data analyses being performed by the 

author. A complete description of this chapter can be found in: A. Nicolas, A.W. Mello, M.D. 

Sangid, Relationships between microstructure and micromechanical stresses on local pitting 

during galvanic corrosion in AA7050, Corr. Sci. (2019). Accepted.   

 

7. EFFECT OF STRESS CONCENTRATION RELATIVE TO THE 

MICROSTRUCTURE ON CORROSION 

 Introduction 

The role of preexisting stresses on corrosion has also been studied macroscopically, 

however, given the varied results observed in literature [35], a properly controlled experiment is 

needed to ascertain the role of plastic deformation and the associated stress state at the appropriate 

scale, to avoid gross homogenization. As seen in Chapter 4, for 2.5D simulations of different 

orientations of rolled AA7050 material, the TS direction yielded more accurate results relative to 

experimental measurements due to the minimized subsurface uncertainty. In Chapter 6 it was 

found that the evolution of pitting is initially driven by the electrochemical interaction between the 

cathodic particles and the matrix, and once all particles experience fallout, pitting is driven by both 

the dissolution of the surface and the extreme values of the residual strains from particle cracking. 

The quantitative comparisons of the local residual strains and the corrosion morphology 

demonstrated that, for the material in general, the corrosion mechanism is not directly related with 

the local stored residual strains. However, it is well known that an actively loaded component may 

be subject to stress-enhanced corrosion, which leads to the question if corrosion pitting could be a 

stress-driven mechanism. In other words, galvanic corrosion may be affected by the active 

dislocation accumulation in the material instead of just the residual plasticity.  

 

This chapter investigates stress-driven corrosion on a AA7050-T7451 specimen under 

constant loading at different corrosion exposure periods. The different exposure times as well as 

the cleanup protocols are designed to give a full understanding of the effect that both particle 

fallout and passive layer disruption have on pitting. Before corrosion, the microstructure, strains, 

and particles are characterized via EBSD, DIC, and EDS, respectively. To obtain the stresses an 

EVP-FFT model is generated from the EBSD characterizations, where the subsurface uncertainty 

is minimized as described in Chapter 5. This chapter will provide a more complete view of the 

effect that the local microstructure and mechanical behavior of the material has on corrosion.
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 Materials and Methods 

7.2.1 Materials 

Three specimens 1.25 mm thick were cut in the TS direction via electro-discharge 

machining (EDM) and polished down to 800 grit using SiC paper to prevent any stress 

concentrations from an uneven surface. A new geometry was designed according to ASTM E8 

[100] tensile standards with a gauge size of 20 x 5 x 1.25 mm and an overall specimen length of 

90 mm. A 300 μm x 400 μm ROI was delimited at the center of the specimen via fiducial marking. 

As a visual orientation aid, two larger marks were placed at the lower left corner of the ROI. The 

microstructural characterization of the ROI was performed via EBSD. Additional specimen 

preparation was performed immediately before EBSD scanning. First, the specimens were slightly 

polished for an extra 30 s with 0.05 μm colloidal silica to remove the oxide layer. Afterwards, the 

surface was cleaned with distilled water on a NAPPAD cloth to remove the leftover silica.  

7.2.2 Microstructure and Particle Characterization 

Once the specimen was cleaned and placed inside the SEM chamber, the ROI was located 

via the fiducial markings and EBSD scanning was performed. The final Inverse Pole Figure (IPF) 

maps along with the grain boundaries are shown in Fig 7.1 for each of the three specimens. EDS 

was used to spatially locate the Al7Cu2Fe cathodic particles in the ROI. The mean and maximum 

particle diameters for all three specimens were 1.66 μm and 12.1 μm, respectively. 

 

Fig 7.1 Inverse Pole Figure (IPF) orientation maps for a) Specimen 1, b) Specimen 2, and c) 

Specimen 3 on the TS direction, with the rolling direction being perpendicular to the page. The 

upper right arrow shows the loading direction.  
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7.2.3 Experimental Procedures 

7.2.3.1 Mechanical Procedures 

DIC was performed using gold nanoparticle (AuNP) speckling of the surface with an 

average diameter of 100 nm, following the procedure in [88]. SEM imaging of the ROI with AuNP 

speckling was performed with a 5 kV accelerating voltage, a spot size of 2, and a 5 mm working 

distance. Three cathodic particles per specimen inside the ROI were scanned at 10,000x 

magnification, with an extra (fourth) particle being scanned within Specimen 2 at 4,000x 

magnification, since the particle partially fell out of the matrix and is surrounded by a larger cavity.  

A total of 10 particles were studied overall. Each ROI was segmented into 9 separate subsections 

with a 20% overlap and scanned at 1,500x. Stitching of the 9 speckled subsections was manually 

performed twice for each specimen: from left to right, and from right to left to improve DIC at the 

edges of the subsections. 

 

All specimens were loaded to 2.5% total strain at a rate of 0.15 mm/min and elastically 

unloaded to nominally zero applied load, using a servo-hydraulic load frame with MTS 647 

hydraulic wedge grips. The macroscopic strain was measured with an Epsilon extensometer Model 

3542.  Fig 7.2 shows the resulting macroscopic stress-strain curves for all three TS specimens. The 

deformed AuNP speckle patterns of all 10 cathodic particles and 3 full ROIs were scanned ex-situ 

via SEM using the same scanning settings discussed above and were used for DIC using a window 

subset of 35 pixels (1.2 μm) and a step size of 2 pixels (70 nm) for the particles, and a subset of 71 

pixels (5 μm) and a step size of 2 pixels (140 μm) for the ROI subsections. Afterwards the 

distortion correction protocol described in [89] was applied. The final corrected strain field maps 

for the ROI and particles of each Specimens 1, 2, and 3 can be seen in Fig 7.3, Fig 7.4, and Fig 

7.5, respectively.  
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Fig 7.2 Macroscopic stress-strain curves for all three TS specimens after being loaded to 2.5% 

total strain and unloaded with 1.8% macroscopic residual strain.  

 

 

Fig 7.3 Experimental residual strains for the axial direction (εxx [%]) for Specimen 1 obtained via 

DIC at 1,000x. The ROI (a) averages to 1.8% strain, which is the macroscopic residual strain of 

the specimen. The smaller speckle pattern at 15,000x allows higher resolution analysis of strains 

around the particles (b, c, and d).  
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Fig 7.4 Experimental residual strains for the axial direction (εxx [%]) for Specimen 2 obtained via 

DIC at 1,500x. The ROI (a) averages to 1.8% strain. Due to polishing before speckling 

(necessary to remove the oxide layer), Particle 2 (c) experienced partial fallout, hence the cavity 

observed.  

 

Fig 7.5 Experimental residual strains for the axial direction (εxx [%]) for Specimen 3 obtained via 

DIC at 1,500x. The ROI (a) averages to 1.9% strain which is the macroscopic residual strain of 

the specimen. Particle 2 (c) exhibits cracking at the neighboring matrix along with slip system 

activation emanating from said cracks. 
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To ensure that during corrosion only the cathodic particles and the matrix are interacting 

with the corroding environment, the AuNP particles were removed from the surface by polishing 

the surface of each specimen with 0.05 μm colloidal silica for 1 minute and rinsing them with 

distilled water. The complete removal of the gold speckling was confirmed with optical 

microscopy at 20x. 

7.2.3.2 Electrochemical Analysis 

To study stress-mediated localized corrosion of the pre-strained and mapped specimens, it 

was necessary to corrode the material under maximum loading, which required designing a special 

chamber that allowed for corrosion of only the gauge section while applying an external load on 

the specimen. This chamber was limited by two factors: i) fitting a piece of stainless steel inside 

the chamber to act as a cathode in the closed system with the anodic aluminum, covering only the 

gauge section of the specimen and ii) the need to measure the current/voltage daily without 

interrupting the corrosion experiment. The final design utilized a 0.51 mm diameter SS316L wire 

protruding out of one wall of an 8 mm x 12.8 mm x 9 mm plastic chamber, while connected to a 

SS316L, M6 screw inside the chamber with a surface area of ~12.57 mm. The design of this 

chamber permitted an externally couple of the AA7050 specimen to the steel screw via the steel 

wire, while measuring the current/voltage of the specimen, where the multimeter closes the loop 

by being in constant contact with both the steel wire and the AA7050 specimen. The chamber was 

filled with aerated 3.5 wt.% (0.6 M) NaCl solution at 5.6 pH, which remained at that constant pH 

since the chamber was continuously filled with fresh saline solution at all times. It should be noted 

that the stainless steel cathode is not required for corrosion to occur; however, it is necessary for a 

realistic representation of the environmental exposure usually encountered in AA7050 frames. 

 

To statically load the specimens for long periods of time, a 6.7 kN electromechanical Mark-

10 ESM-1500 force test stand was used. This force indicator has a ±0.1% accuracy with a 

resolution of 5 N.  Each sample was reloaded to their peak stress, as observed in Fig 7.2 (455 MPa 

for Specimen 1, 508 MPa for Specimen 2, and 506 MPa for Specimen 3). Once the material was 

reloaded back to peak stress, the sample was held in displacement control. Slight stress relaxation 

was observed during the hold time, which was nominally 5% load drop throughout the corrosion 

schedule.  The load was monitored throughout the test and, if the stress dropped below the initial 
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yield point of the material of 443 MPa (as seen in the mean yield stress TS values found in [110]) 

the experiment was reloaded back to the target stress by a control system. The final assembly of 

the chamber and the specimen can be seen in Fig 7.6. 

 

Fig 7.6 Overview of the corrosion chamber used to corrode the gauge section of the TS 

specimens. A multimeter was used at the beginning and end of the experiment to measure 

current/voltage.  

 

Chapter 6 displayed particle fallout occurring around day 8 of corrosion, which 

corresponded to a highly localized corrosion morphology. Therefore, to investigate the corrosion 

of AA7050 around particle fallout, three different specimens were subjected to different corrosion 

intervals that revealed the behavior of the material up to particle fallout at Day 8. To investigate 

the effect that the removal of both the corrosion products and the passive layer have on the 

evolution of corrosion, two specimens were cleaned after reaching their targeted interruption 

schedule of the corrosion experiment with nitric acid (HNO3) for 10s, followed by an ultrasonic 

cleaner using distilled water, isopropyl alcohol, acetone, and methanol to reset any built up passive 

layer/corrosion product, whereas one specimen was left to corrode uninterruptedly for the entire 

corrosion experiment. All specimens experienced ultrasonic cleaning twice: once before any 

surface characterization, and again immediately prior to being loaded in the corroding chamber. 
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A total of three specimens, Specimen 1, 2 and 3, were corroded for a total of 6, 7, and 8 

days, respectively, with Specimen 1 experiencing an interruption at Day 2 and Specimen 2 

experiencing an interruption at Day 5. That is, Specimen 1 was corroded without interruption under 

constant loading for 2 days (aiming for analysis before particle fallout), Specimen 2 was corroded 

without interruption for 5 days (aiming for an imminent particle fallout), and Specimen 3 was 

corroded without interruption for 8 days (aiming for analysis after particle fallout) which was the 

day when material failure occurred on Specimen 3. To investigate the differences between 

interrupted and uninterrupted corrosion of AA7050, Specimens 1 and 2 were reloaded and exposed 

to corrosion for a second time until material failure occurred, which happened at Day 6 for 

Specimen 1 and at Day 7 for Specimen 2. It should be noted that all specimens failed in the 

corroded region inside the chamber but outside the ROI, thus not affecting the subsequent 

characterization. A summary of the corrosion lengths per specimen can be seen in Fig 7.7. 

 

 

Fig 7.7 Summary of corrosion lengths per specimen, showing interrupted corrosion for Specimen 

1 and Specimen 2, and uninterrupted corrosion for Specimen 3. Particle fallout tends to occur 

around Day 5, as seen in Chapter 6. 

 

After each corrosion period, the surface was cleaned via sonicating and its morphology 

was characterized both qualitatively and quantitatively via SEM and CLSM [122]. For the 

qualitative characterization, SEM was performed using a FEI Nova NanoSEM 630 microscope 

with a 15 kV accelerating voltage, a spot size of 3, 5 mm working distance, no tilt, a 700x 

magnification for the ROI and a 15,000x magnification for the particles (except the particle that 

had experienced fallout prior to loading corrosion within Specimen 2, which was scanned under 

10,000x magnification). For the quantitative characterization, CLSM was performed using a Zeiss 

LSM 880 upright Confocal Microscope with a 561 nm laser wavelength, a Plan Apochromatic 

Specimen	1
1 2 3 3 4 5 6 6

Specimen	2
1 2 3 3 4 5 6 6 7 7

Specimen	3
1 2 3 3 4 5 6 6 7 7 8 8

1 2 4 5 7 8

Corrosion	Days
3 6

→	Specimen	was	unloaded,	cleaned	and	

characterized	via	SEM/CLSM.
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10x/0.45 objective, a step size of 1 μm in the z-direction, and a resolution of 0.10 μm in the x-y 

directions.  

 

7.2.4 Simulation Procedures 

The surface orientation files obtained via EBSD, along with the constituent particles 

characterized via EDS were used as input to create analogous EVP-FFT models for all three 

specimens. The gridification and the matching of the grain orientation coordinate system and 

spatial coordinate systems of the EBSD data was performed using DREAM3D [107], where the 

grain orientation coordinate system was rotated 90° about the <001> direction to match the spatial 

frame. The spacing between data points in the computer models was delimited by the EBSD scan 

step size of 1.5 μm. The final surface data containing the grains, the different phases, and the Euler 

angles was exported into a single h5 file per specimen.  

 

An equivalent 3D subsurface microstructure with elongated grains was statistically 

reconstructed with the methodology described previously in Chapter 5. Statistically equivalent 

3D particles are randomly added to the subsurface reconstruction, both within the grains and at the 

grain boundaries, following their aspect ratios, major axis dimension, and space distributions, 

where the particles have a tendency to cluster in the rolling direction [22], based on an 

experimental dataset of particles in AA7050 measured from an XCT study [80]. Following the 

aspect ratios in [80], where the space distributions were delimited by enforcing distances between 

the ellipsoid centroids, the surface particles characterized via EDS were allowed to grow into the 

material in an elongated manner. The final particle volume fraction of both the EDS elongated 

particles and the statistically reconstructed particles was ~0.7% of the full reconstruction, which 

was enforced to match the experimentally observed volume fraction of XCT. A full view of a 3D 

microstructure with statistically reconstructed subsurface grains and particles can be observed in 

Fig 7.8. 

 

Finally, a dummy gas phase was added to all surfaces not subjected to macroscopic loading 

to decouple the material from the periodic boundary condition. The surfaces onto which the 

loading conditions were applied had extra solid material added to comply with the periodicity 
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requirements. The entire microstructure was then modeled via EVP-FFT following the loading 

history of the experiments, where specimens were macroscopically loaded to 2.5% strain, unloaded 

to near zero macroscopic stress corresponding to ~1.8% strain, and reloaded back up to ~2.5% 

strain. The AA7050 matrix was modeled elasto-plastically and the particles were modeled as 

purely elastic using the isotropic material properties from [117], since the Al7Cu2Fe particles are 

brittle. A summary of the elastic and plastic material parameters for both the matrix and the 

particles can be seen in Table 3.1 and Table 3.2. Each virtual microstructure was defined by a 512 

x 512 x 64 voxel (1 voxel = 1.5 μm) computer model and simulated using the EVP-FFT 

parallelization method. 

 

Fig 7.8 EVP-FFT reconstruction for Specimen 1, with statistically equivalent subsurface grains 

reconstructed from the original experimental orientation map (unique colored 1102 grains total) 

[123] and statistically equivalent cathodic particles (plotted in black) reconstructed from the 

microtomography data from [80].  

 Results 

7.3.1 Corrosion Morphology Results 

The SEM scans shown in Fig 7.9, Fig 7.10, and Fig 7.11 depict the evolution of corrosion 

at the tracked particles for Specimens 1, 2 and 3, respectively, alongside the initial microstructure 

and the types of grain boundaries (in terms of misorientation angle) present near the particles 

before they were exposed to a corrosive environment. Although each specimen experiences 
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different corrosion periods, all specimens exhibit corrosion at grain boundaries as well as 

electrochemical attack at the cathodic particles. This is in contrast with previous results showing 

that no significant grain boundary corrosion was present when a pre-strained specimen was 

corroded in unloaded condition [123]. 

 

 

Fig 7.9 Corrosion overview of particles studied for Specimen 1. Intergranular corrosion and 

incomplete fallout is observed.  

 

Specimen 1 in Fig 7.9, which was corroded initially for 2 days, shows slight intergranular 

corrosive attack, which becomes severely pronounced after another 4 days of corrosion. The matrix 

also shows signs of localized attack from the cathodic particles after only 2 days of corrosion. 

However, once the specimen was subjected to an additional 4 days of corrosion, not only are the 

particles exhibiting degradation thus revealing lower portions of their elongated geometry, but also 

the surface recession of the matrix starts to reveal underlying cathodic particles, which can be 

observed by the sudden appearance of a new particle located on the lower right section of the 
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image for Particle 2. Since the particles are still present in the material, localized corrosion is still 

taking place after 6 days of corrosion, as can be seen in the image for Particle 3. It should be noted 

that Particles 1 and 2 are located at a grain boundary, and Particle 3 is located inside a large grain. 

None of these particles, however, were located at or near low-angle or coincident site lattice 

boundaries. 

 

 

Fig 7.10 Corrosion overview of particles studied for Specimen 2. Intergranular corrosion is 

observed, along with a smoother corrosion and complete particle fallout.  

 

Specimen 2 in Fig 7.10, which was corroded initially for 5 days, shows significant 

intergranular corrosion attack with very slight increases in depth after being exposed to another 2 

days of corrosion. After 5 days of uninterrupted corrosion, all the studied particles have 

experienced fallout, leaving localized corrosion features of varying depths. The former location of 

Particle 1 and Particle 3, which were located inside fairly large grains, can be pinpointed by the 

shallow cavities in the center of each image, both of which exhibit slight roughness in their inner 

surface. After 2 more days of corrosion, the only appreciable difference observed is the smoothing 

of these inner surfaces, as well as the slight growth of the small cavities in the vicinity of the 

particles. Particle 3, which had experienced partial fallout even before exposure to corrosion, due 
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to the polishing and cleaning of the material, shows a complete disappearance of any leftover 

particle fragments after 5 days of corrosion, leaving behind a large cavity with a complex 

morphology. After being exposed to another 2 days of corrosion, the cavity shows slight growth 

as well as smoothing of its inner surface. It is interesting to observe that the intergranular corrosion 

near or inside this cavity becomes much more pronounced and would potentially aid in the 

degradation of their respective grains. Particle 2, which was located on a low-angle grain boundary 

(<15° misorientation), not only evolves into a deep corrosion pit after 5 days of corrosion, but also 

develops intragranular cracking of the adjacent grains. After 2 additional corrosion days, the pit 

from this particle is observed to significantly grow both in depth and in width, with erosion of the 

grain boundary becoming clearly distinguishable. 

 

 

Fig 7.11 Corrosion overview of particles studied for Specimen 3. Not only is complete fallout 

observed but, also heavy pitting and grain degradation is observed on all particles.  

 

Finally, Specimen 3 in Fig 7.11, which was corroded continuously for 8 days, exhibits 

pitting from the cathodic particles as the dominating corrosion mechanism, as well as intergranular 

corrosion attack. All three particles have evolved into very large pits, with Particle 3 even showing 

grain degradation arising from the original pit where its corrosion morphology matches the length 

of the large center grain observed in the IPF orientation map. The pit from Particle 1 also has 

indications of coalescence with another pit on its left, which is shown by a black localized cavity 

elongating under the left edge of the pit. Particle 1 was located inside a large grain whereas 
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Particles 2 and 3 were located at a grain boundary. Only high-angle grain boundaries were 

observed at the studied particles. It should be noted that the corrosion damage arising from these 

particles span several grains and is shown to have a different type of morphology relative to the 

other two specimens. 

 

 

Fig 7.12 Corrosion surface morphology characterization using CLSM for each specimen’s ROI 

after the specified corrosion length. The early destruction of the oxide layer enables more 

extensive grain degradation (Specimens 1 and 2). 

 

When analyzing the entire ROI for each specimen, different types of corrosion 

morphologies are observed. Fig 7.12  shows the corrosion morphologies characterized via CLSM 

after each corrosion period, with each corrosion schedule having been chosen to identify the 

differences in interrupted and uninterrupted corrosion. The largest contrast observed is that after 6 

days of interrupted corrosion, Specimen 1, asides from showing moderate pitting from the cathodic 

particles, exhibits large sections of grain degradation, where fallout of grain fragments have led to 

large zones with a sizeable amount of material removed. In contrast, for 8 days of uninterrupted 

corrosion, Specimen 3 shows deep localized pitting from the cathodic particles, with no observable 

grain degradation at the ROI.  Although both specimens show corrosion depths beyond 30 μm, the 

morphologies look markedly different. Similarly, for 7 days of interrupted corrosion, Specimen 2 
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shows mostly pitting-based corrosion, albeit there are some regions that start to exhibit grain 

degradation on the upper right of the ROI. This marked difference in corrosion morphology may 

have been affected by the removal of the protective passive layer and corrosion products for 

Specimen 1 and Specimen 2 due to the cleanup of the material in-between interrupted corrosion 

schedule, which is in contrast with the unaffected passive layer and corrosion products that 

Specimen 3 developed during its uninterrupted corrosion time. 

7.3.2 Mechanical Results 

To ensure that the stresses obtained via EVP-FFT modeling reasonably represent the 

mechanical behavior of the material under constant loading, the strains need to be calculated and 

validated with the actual experimental results. Fig 7.13 shows such validation of the residual strain 

characterizations after each specimen was loaded up to 2.5% and unloaded, with the final results 

from the SEM-DIC characterization being observed on the left column and the analogous EVP-

FFT model results being observed on the right column of Fig 7.13. The simulated strain 

distributions, not only show similar magnitudes when compared to the experimental strain maps, 

but also exhibit spatial matching of the regions of strain localization.  

 

The EVP-FFT strain results for Specimen 1 shows the strain accumulation is concentrated 

on the lower right of the ROI, which is validated by the experimental SEM-DIC strain map, albeit 

at a slightly lower resolution due to the lower magnification used during SEM image acquisition 

for Specimen 1. The EVP-FFT strain results for Specimen 2 capture the diagonal strain localization 

across the ROI from the upper left to the lower right. Similarly, the EVP-FFT strain results for 

Specimen 3 capture the diagonal lower left to upper right strain, along with the large strain 

concentrations on the upper right corner of the ROI. In each of the specimens, the 45° banding is 

conducive to the macroscopic plane of maximum shear, based on uniaxial loading, while 

displaying localization around distinct microstructural features.  With an acceptable accuracy, 

where both the distribution, the spatial trends, and the magnitudes are captured by the model, these 

strain field maps validate that the mechanical heterogeneity of the material is properly captured by 

the 3D EVP-FFT modeling based on the grain orientation maps used as input.  
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Fig 7.13 Comparison of the experimental and simulated residual strain distributions for each 

specimen after loading to 2.5% strain and subsequent unloading to ~1.8% strain. All models 

capture the strain patterning, thus validating their ability to capture localized mechanical 

behavior. 

 

The stress results from modeling the material under constant loading, where each virtual 

microstructure is reloaded back to 2.5% strain, can be seen in Figure 14. At this state, Specimen 

1, 2, and 3 have an average macroscopic axial stress of 451 MPa, 463 MPa, and 439 MPa, 

respectively, with localized axial stresses being as low as ~300 MPa or as high as ~600MPa. The 
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regions with highly concentrated stresses are zones in the material that may be more prone to 

failure and therefore considered as potential “hotspots”. All stress field maps show heterogeneity 

around the cathodic particles, which are modeled as an elastic, brittle medium. Heterogeneity can 

also be observed at the grain boundaries, to the point that the microstructure morphology can be 

discerned by the steep gradients throughout the stress field maps. Finally, larger grains without 

particles present exhibit intragranular stress heterogeneity, due to the surrounding microstructure 

specifically the anisotropic, adjacent grains. 

 

 

Fig 7.14 Simulated stress distributions for all specimens after loading to 2.5% strain, unloading 

to 1.8% strain, and reloaded again to 2.5% strain. The stresses tend to cluster within the grains. 

The particles are modeled under a purely elastic condition, thus redistributing loads on the 

surrounding matrix.  

 Discussion 

Three different mechanisms were observed in the corrosion evolution of the specimens: 

intergranular corrosion, corrosion from cathodic particles, and grain degradation. Looking at the 

final depths of intergranular corrosion for all three specimens (Fig 7.12), it seems that the 

mechanism of intergranular corrosion behaves similarly for both interrupted and uninterrupted 

corrosion under constant stress. However, the other two mechanisms exhibit different severities 

depending on the corrosion duration and the interruption schedule of the experiment. The fact that 

the specimens with interrupted corrosion show a mixed corrosion morphology, whereas the 

uninterrupted specimen shows clear localized pitting, indicates that the interaction between these 

two mechanisms are affected by the presence, or absence thereof, of protective layers like 

corrosion product buildup or a thicker passive layer.  
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To better understand the interaction of these mechanisms, it is necessary to examine the 

evolution of corrosion with and without the removal of the passive layer. Specimen 1, after two 

days, shows that localized corrosion initiated at the cathodic particles and was on par with the 

depths of intergranular corrosion. Specimen 2, after 5 days, exhibits marked intergranular 

corrosion as well as localized pitting with varying depths, all of which originate from the cathodic 

particles. Specimen 3, after 8 days, shows a morphology entirely dominated by localized pitting 

from the particles, with the intergranular corrosion still being discernible. It is reasonable to 

surmise that pitting corrosion is the leading mechanism when the material develops a passive layer 

at the surface. This could be possibly explained by the fact that, whereas the passive layer (and 

possibly some slight corrosion product buildup) is protecting the majority of the matrix, at the 

particle interface exposed to saline solution, the passive layer is chemically broken by the particle 

itself and offers no protection from the localized reaction taking place, which is in agreement with 

studies of the change in corrosion morphologies due to passive layer breakdown at the particle 

[124][125] and accumulation of corrosion product [34]. This would result in the sharp pitting 

corrosion morphology observed after 8 uninterrupted days of corrosion. 

 

When studying the morphologies captured after interruption of the corrosion experiments, 

an entirely different corrosion evolution occurs. For the examined ROIs for Specimen 1 and 

Specimen 2, not only is the intergranular corrosion more prominent after being subjected to 

corrosion for the second time, but also grain degradation is observed to take place. Interestingly, 

although Specimen 1 was exposed to a shorter corrosion period (6 days) than Specimen 2 (7 days), 

the degradation observed was more severe for Specimen 1. It is likely that, whereas Specimen 2 

had 5 days to develop a more resistant and thicker layer of both passive alumina and corrosion 

product, Specimen 1 barely developed a layer on the first 2 days of uninterrupted corrosion. 

Therefore, the earlier destruction of the layer may have allowed for the full interaction between 

intergranular corrosion and cathodic corrosion to drive the material degradation and weaken it 

sufficiently for grain fragmentation and fallout to occur. This could be confirmed by the fact that 

Specimen 2, albeit shows initial stages of grain degradation on the upper right region of the ROI, 

has not yet experienced grain fallout at a larger scale. Therefore, a high likelihood exists that 

Specimen 2 would show more severe grain degradation similarly to Specimen 1, if it were left to 

corrode under constant loading for a longer period of time. 
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It is also of interest to analyze the mechanical behavior of the material at the cathodic 

Al7Cu2Fe particles. Fig 7.3, Fig 7.4, and Fig 7.5, show that Al7Cu2Fe cathodic particles exhibit a 

very stiff behavior, with no deformation occurring within the particle and with mechanical 

heterogeneities being observed in the surrounding matrix, due in part to the load partitioning 

between the particle and matrix. It can also be observed that the mechanical heterogeneity 

surrounding the particles complies with both the near 45° banding corresponding with the 

macroscopic shear plane and with the surrounding microstructure. Therefore, it was confirmed that 

the analogous EVP-FFT stress distributions accurately describe the mechanical behavior of the 

particles and thus properly capture the mechanical heterogeneities around the particles, as seen in 

Fig 7.14.  

 

The actual values as well as their location relative to each other can be used to pinpoint any 

trends between the local mechanical state and the local corrosion in the material that may further 

provide understanding of the effect that both the stresses and strains have on corrosion. To locate 

the most representative variables of the mechanical condition of the material, a Principal 

Component Analysis (PCA) was performed using R [118] for the in-plane laboratory frame 

coordinate system (CSYS) stress components under constant loading Sxx, Syy, and Sxy. Additionally, 

some laboratory CSYS stresses typically used in literature as failure indicators were used, namely 

the principal components SI, SII, the Von Mises component Svm, and the in-plane max shear 

component Smax [96]. PCA revealed that the most representative variables that best capture the 

mechanical condition of the material are limited to two: the axial stress Sxx and the shear stress Sxy, 

which map onto the 1st and 2nd axis of the data cloud, respectively. The cumulative projected inertia 

was 70%, which means that the 1st and 2nd axes of the PCA jointly capture 70% of the variance in 

the data cloud. These two variables will be further used to find trends between the micromechanical 

behavior of the material and the localized corrosion. 

 

To locate trends between the datasets, Gaussian Process (GP) modeling [119] was used to 

fit a surface response of corrosion given the localized stresses or strains, such that corrosion = f(Sxx, 

Sxy).  Covariance function kernels were used to perform multivariate spatial correlations such that 

the correlation analysis not only compares values that are superimposed on an exact location, but 
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also compares values in the near vicinity of the queried location. This spatial cross-correlation is 

necessary to be included during GP fitting because both the corrosion morphology studied as well 

as the mechanical heterogeneity has been shown to be heavily localized in clusters. 

 

To ensure a one-to-one comparison between datasets, all available data were resized to have 

the same resolution. Therefore, all other datasets were resized via bilinear interpolation such that 

each 300 x 400 μm map had a resolution of 0.1 μm, matching the resolution of CLSM. This resulted 

in each dataset containing ~12 million points, which in turn required specialized Gaussian Process 

methods capable to process large data under reasonable computational times. GP-SVI [120] was 

therefore used to fit a response surface of the datasets, an explanation of its fast computational 

abilities described in [123]. For the stress versus corrosion surface fittings, a Matérn 5/2 covariance 

function kernel was used, with a learning step rate of 0.15, a learning momentum of 0.59, 50 

inducing inputs, and a mini-batch size of 20,000, and a local kernel noise variance of 1 Pa.  

 

Fig 7.15 shows the fit surface response of corrosion = f(Sxx, Sxy) for the entire ROIs at 

different corrosion durations, where about 1500 datapoints beyond 3σ were filtered as outliers to 

improve the data ranges onto which GP-SVI will attempt to fit the surface response. The contour 

lines correspond to the fit surface and the multicolored scatter corresponds to the input data. GP-

SVI provides evidence of a good correlation, which is indicated in this case when the fit surface 

highlights areas of high stress corresponding to locations with high response values. That is, if the 

surface fits high corrosion values to stresses above the mean macroscopic stress, then it is 

concluded that corrosion is a function of stress. Since Fig 7.15 shows all fit surfaces converging 

towards the mean macroscopic stresses, it can be concluded that for the material in general (for 

the full ROI), there is no correlation between mechanical stress and corrosion depths at any point 

during the evolution of corrosion. However, this may not be the case for zones where the cathodic 

particles affect the material.  
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Fig 7.15 Gaussian Process (GP) fitting for the ROI. To find correlations between computed stress 

(axial and shear) and corrosion, a surface is fitted (contour plot) to locate trends. No correlation 

between high stresses and corrosion is observed. 

  

To evaluate the joint chemical and mechanical effect that the cathodic particles have on the 

corrosion evolution of the material, GP-SVI fitting was performed in the vicinity near each of the 

particles studied. A visual description of the data thresholding procedure around the particles can 

be observed in Fig 7.16.  

 

Fig 7.16 Thresholding metric at the particles, showing Particle 3 of Specimen 1 as an example. 

The maximum particle diameter is used (12.1 μm) to threshold the data surrounding the particles.  
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These thresholded datasets in the vicinity of the cathodic particles yield the fit response 

surfaces observed in Fig 7.17, which show fitting of high corrosion values onto high stresses well 

above the mean macroscopic stress for all stages of corrosion. Particle 2 of Specimen 1 shows that 

high levels of axial and shear stress correlate with the localized corrosion developed before particle 

fallout, regardless of passive layer removal. Particle 2 of Specimen 2, which experienced 

particularly deep localized corrosion from the joint effect of the particle and the low-angle grain 

boundary, shows that only high axial stresses correlate to corrosion with no significant change 

after the removal of the passive layer corresponding to the interrupted corrosion schedule. Particle 

3 of Specimen 3, which shows the final stages of localized corrosion where grain fragmentation 

and fallout occurs even with an unaffected passive layer, sharply exhibits both high axial and shear 

stresses correlating with high corrosion values. Since all 10 particles exhibited such a trend with 

varying degrees of sharpness, as can be seen in Fig 7.18, it can be concluded that the localized 

corrosion at particles is affected by the local mechanical state of the material, which means that 

the electrochemical degradation of the matrix is further enhanced by high stresses in the material. 

 

 

Fig 7.17 GP fitting was performed on the data surrounding the particles, and a clear trend 

between high axial stresses and corrosion was observed for each particle.  
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Fig 7.18 Gaussian Process (GP) fitting response showing corrosion trends relative to the axial 

stress Sxx and the shear stress Sxy. For all but two particles and none of the ROIs, the maximum 

values (depicted by a + symbol) converge around high stress values, thus showing a statistically 

significant correlation between high strains and deeper corrosion profiles on regions affected by 

the local electrochemistry.  
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Fig 7.19 Gaussian Process (GP) fitting response showing corrosion trends relative to the axial 

strain εxx and the shear strain εxy. For all particles and all ROIs, the maximum values (depicted 

by a + symbol) converge around the average strain values, thus showing no statistically 

significant correlation between high strains and deeper corrosion profiles.  

 

 



102 

 

 

Finally, to investigate whether the residual strains are now able to predict localized 

corrosion under constant loading, especially when compared to the previous study where the 

residual strains did not correlate to the depth of corrosion for an unloaded material [123], GP-SVI 

modeling was performed on experimental residual strains captured in the laboratory CSYS via 

SEM-DIC such that corrosion = f(Exx, Exy). The same parameters used for the stress versus 

corrosion surface fittings described previously were used, with a new learning step rate of 0.015 

and a new local kernel noise variance of 1e-6 to fit the smaller strain magnitudes. No correlations 

between strain values and corrosion depths were observed for the full ROI analyses, nor at the 

cathodic particles, as seen in Fig 7.19. It should be noted that no particles exhibited cracking in 

any of the three specimens. This therefore cements the idea that localized corrosion is not a residual 

strain-driven mechanism but rather an active stress-driven mechanism accelerating corrosion at 

the cathodic particles.  

 Conclusion 

This work presents a thorough investigation of the joint effect that the mechanical and chemical 

behavior of the material had on the evolution of its corrosion morphology relative to the 

microstructural features prior to its transition into crack formation. Given previous studies, it was 

hypothesized that corrosion may be a stress-driven mechanism, i.e. local pitting is accelerated by 

heterogeneous stresses forming relative to microstructural features. Therefore, three TS AA7050-

T7451 specimens had their microstructure, chemical composition, and residual strains spatially 

characterized and then subjected to corrosion under constant loading. After various periods of 

corrosion, the specimens were unloaded and their corrosion morphology was characterized both 

quantitatively and qualitatively for the entire ROIs and 10 individual particles. The corrosion 

arising from the cathodic particles, the grain boundaries, and the degradation of grains were 

captured. These corrosion morphology maps were then spatially cross-correlated with computed 

stresses, obtained from analogous 3D EVP-FFT models, via GP-SVI modeling. From these 

procedures, the following conclusions were obtained: 

 

 Localized pitting corrosion was dictated by the presence of cathodic particles.  Further, grain 

boundaries, especially at low-angle grain boundaries, adjacent to the particles are more prone 

to localized pitting corrosion. On the other hand, most pits generated from particles inside 
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grains (exposed on the free surface during surface characterization) do not experience 

significant growth after particle fallout. 

 High levels of axial, tensile stresses near the cathodic particles accelerated localized corrosion.  

These heterogeneous stresses developed due to the anisotropic behavior of the grains within 

the polycrystalline aggregate. 

 Concentrated stresses above the mean macroscopic stress magnitude are an indicator of 

localized corrosion at the cathodic particles but are not an indicator of corrosion of the overall 

material. On the other hand, localized strains are not an indicator of corrosion neither for the 

overall material nor for the cathodic particles. Strain is not a state variable to indicate the degree 

of plasticity, and thus cannot be used as a descriptor for the susceptibility of corrosion. 

 For similar corrosion periods, uninterrupted corrosion exhibits significant pitting, whereas 

interrupted corrosion exhibits grain degradation. The removal of the passive layer and 

corrosion products during interrupted corrosion due to surface cleanup allowed for earlier 

interactions of the mechanical and electrochemical behavior of the material that jointly 

enhanced corrosion. 
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The experimental characterization in this chapter as well the post-mortem location of crack 

initiation was performed by Dr. Noelle Co and Dr. James Burns at University of Virginia, while 

the data post processing, 3D microstructure instantiations of the material, EVP-FFT modeling, and 

data analyses were performed by the author. A complete description of the chapter can be found 

in: A. Nicolas, N.E.C. Co, J.T. Burns, M.D. Sangid, Predicting Crack Initiation from Coupled 

Microstructure and Corrosion Morphology Effects, Submitted to Engineering Fracture Mechanics 

(2019). 

 

8. FATIGUE CRACK INITIATION FROM CORROSION 

 Introduction 

Since the maintenance of aging aircraft subjected to environmental degradation is limited 

by the understanding of the mechanisms driving the pit-to-crack transition, the development of 

digital twins has great potential of reducing costs given its surgical approach towards the 

maintenance and repair needs of each component [126], where the environmental history, the 

loading history, and the microstructure can be used as input for the proper prediction of damage.  

 

In this chapter, our main goal is to couple the experimental crack initiation and the 

microstructure features into the CP models of corroded materials. The joint effect that the corrosion 

topology, the constituent particles, and the microstructure has on the crack initiation of pre-

corroded AA7050 is studied by instantiating a full 3D EVP-FFT model from experimental XCT 

and EBSD characterizations. The resulting micromechanical field is used to calculate FIPs, which 

are used to predict the crack initiation location in the material. This chapter has five main goals: 

 

1. Develop a procedure for building an equivalent multivariable computer model that can 

account for the multiple variables driving cracking and can be used for digital twins. 

2. Evaluate the different FIPs available in the literature and determine the metric that best 

represents the driving force for fatigue crack initiation from corrosion damage. 

3. Evaluate the overall distribution of the FIPs in the reconstructed model as well as their 

ability to predict the location of crack initiation. 

4. Determine the level of significance of the different factors contributing onto the predictive 

capabilities of FIP distributions (microstructure vs geometry vs particles). 

 

This chapter gives a better insight of the driving mechanisms behind environmentally assisted 

crack initiation and improves the current approach on the fracture mechanics of corroded materials. 
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 Materials and Methods 

8.2.1 Material and corrosion protocols 

The material and corrosion protocols were performed by our collaborators Prof. James T. 

Burns and Dr. Noelle E. Co at University of Virginia in Charlottesville, VA. Four AA7050 

specimens were machined parallel to the rolling direction of the plate (LT) and centered at a 

through-thickness (t) location of t/8. The specimens had a 7.6 mm thickness, uniform gage length 

of 20.96 mm, and reduced gage width of 7.60 mm, and were polished down to a 600 grit finish. 

To investigate the effect of corrosion morphology on crack initiation, two different corrosion 

protocols were applied on the LS surface of the specimens. The first protocol aimed to achieve a 

discrete pitting (DP) morphology with isolated small pits, while the second protocol aimed to 

create a fissure (FIS) morphology with larger coalesced pits. For DP two specimens, named as D1 

and D2, were held at -700 mVSCE using a potentiostat and exposed to 0.5M NaCl +NaAlO2 

solution for 1.5h where the pH was adjusted to 8 by adding NaAlO2. For FIS two specimens, 

named as F1 and F2, were exposed to 1M NaCl + 0.022M AlCl3 + 0.05M K2S2O8 solution for 

168h (7 days) while inside a relative humidity chamber. A full description of the corrosion chamber 

setup and the chemistry behind the electrolytes can be found in [26] and [127]. Once the specimens 

were corroded, their surfaces were cleaned with HNO3 and ultrasonic cleaning using deionized 

water, acetone, and methanol. 

 

All specimens were subjected to fatigue cycling after being exposed to corrosion. The 

maximum stress applied was 200MPa with a frequency of 20 Hz and a fatigue loading ratio R of 

0.5. All fatigue tests were performed in a high relative humidity RH of 90% up to failure. To 

characterize the location of crack initiation, fractography was performed on the post-mortem 

cracked surface of the lower section of each specimen using a FEI Quanta 650 Scanning Electron 

Microscope (SEM) with a working distance of 10-15 mm, accelerating voltage of 10 kV, spot size 

of 4, and a magnification of 100x-250x. Marker bands were also generated at the cracked surface 

by following the protocol developed in [17] and [128]. The first marker band, generated after 

~5000 cycles, was located <10 μm away from the crack initiation point. This initial marker band, 

alongside with fractography, helped locate the crack initiation point in each specimen. 
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8.2.2 Experimental characterization 

Similarly, the experimental characterization was performed by our collaborators Prof. 

James T. Burns and Dr. Noelle E. Co at University of Virginia in Charlottesville, VA. After fatigue 

testing, each section of the fractured specimens was subjected to XCT to characterize both the 3D 

corrosion geometry and the Al7Cu2Fe constituent particles. An Xradia MicroXCT-200 microscope 

was used with the following parameters: 80KV source voltage, 8 source power, 100μA current, 

25-30 mm source-sample distance, and 17-25 mm detector-sample distance. Each section was 

rotated 180° around the L-direction. Based on the size of the region of interest (ROI) desired for 

each specimen, imaging was performed using a either 2x magnification with 2 μm pixel resolution 

or a 10x magnification with 0.7 μm pixel resolution. Additional details of the XCT scanning can 

be found in [129]. The final image stacks were post-processed to remove noise arising from center 

shift and beam hardening using the TXRM reconstruction program, sectioned to cover only a 

region of interest (ROI) around the known crack initiation points capable of covering the most 

significant corrosion features, and reconstructed into the final 3D geometry using the Avizo 

software [130]. The final solid 3D volumes had a resolution of 1.5μm for specimen D2, 1.6μm for 

specimens D1 and F2, and of 3μm for specimen F1. 

 

To characterize the microstructure in each specimen, EBSD was performed on the cracked 

surface of the lower section by our collaborators at University of Virginia. To obtain the mirror-

like finish necessary for EBSD, the surface was polished down to a 1200 grit, followed by a 

NAPPAD cloth with a sequence of diamond suspensions down to 0.25 μm. Afterwards the 

specimen was sonicated with acetone and methanol. An FEI Quanta 650 FE-SEM was used with 

the following acquisition settings: 20kV accelerating voltage, 10-15mm working distance, 250x 

magnification, spot size 4, step size 1μm, and 70° tilt. Only specimen F1 was scanned using a 100x 

magnification given its larger ROI. Any noise present in the EBSD scan was removed with 

standard filters available in the HKL Channel 5 Tango software. The final Inverse Pole Figure 

(IPF) map of the material in the TS direction is shown in Fig 8.2b. Given the elongated nature of 

the grains inside rolled materials, perfectly elongated grains were assumed for all specimen 

reconstructions. 
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8.2.3 Segmentation of microstructure and crack plane features 

To properly characterize the Al7Cu2Fe constituent particles, the sectioned grayscale image 

stack was post-processed with an algorithm developed in-house at the ACME laboratory in Purdue 

University. This algorithm first blurs the 3D image stack sufficiently to remove all particles and 

leave just the grayscale background characterizing the matrix via pixel-wise adaptive low-pass 

Wiener filter [131]. Afterwards it subtracts the blurred 3D stack from the original 3D stack, thus 

leaving only pixels with intensity outliers. To ensure that only the brighter pixels are captured, 

only the pixels with intensity 𝐼  higher than 1 standard deviation S (𝐼 ≥ 𝐼 ̅ + 1𝑆𝐼 ) are retained. 

Finally, slight erosion/dilation is performed on the 3D segmented particles to both remove single-

pixel particles and improve the connectivity inside each particle. This algorithm also allows for 

verification of the matrix segmentation performed by Avizo by capturing the darker pixels 

characterizing the gas phase in the blurred 3D stack where 𝐼 ≤ 𝐼 ̅ − 1𝑆𝐼. 

 

Once both the AA7050 matrix and the Al7Cu2Fe particles were segmented, the lower and 

the upper sections of each specimen were aligned such that the overall distance between the 

cracked surfaces was minimized ( ∑(𝑧𝑖
𝑢𝑝𝑝𝑒𝑟

− 𝑧𝑖
𝑙𝑜𝑤𝑒𝑟) → 0, ∀ 𝑧𝑖

𝑢𝑝𝑝𝑒𝑟
> 𝑧𝑖

𝑙𝑜𝑤𝑒𝑟) where 𝑧 is the height 

of each point 𝑖 within the crack surface studied. Since the cracked surfaces experienced plasticity, 

elastic recovery, and other degradation during the cracking and final failure process [132], the 

cracked surfaces did not have a perfect fit with each other. Therefore, even after performing 

distance minimization between the cracked surfaces, gaps were present between the reconstructed 

sections, which needed to be filled appropriately with a solid phase, as seen in Fig 8.1a.  

 

To ensure that the corrosion front was preserved and not inadequately filled by a solid 

phase, only the points in the upper surface that had a close neighbor with a point in the lower 

surface were allowed to be connected by a matrix phase: 𝑑𝑧𝑖 = 𝑧𝑖
𝑢𝑝𝑝𝑒𝑟 − 𝑧𝑖

𝑙𝑜𝑤𝑒𝑟 ≤  𝑑𝑧̅̅ ̅̅ + 3𝑆𝑑𝑧. In 

this equation 𝑑𝑧̅̅ ̅ is the average of the height differences 𝑑𝑧𝑖, and 𝑆𝑑𝑧 is the respective standard 

deviation. This allowed the sections to be properly connected by a solid phase while preserving 

the corrosion topography, as seen in Fig 8.1b. The geometry of the corrosion topography was 

further verified with optical microscopy images and white light interferometry images of the 

corroded surface prior to fatigue loading [132]. Afterwards, an equivalent crack plane was 

calculated by averaging the lower and upper cracked surfaces, such that the points in the crack 
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plane were always in the middle of the cracked surfaces, such that 𝑧𝑖
𝐶𝑟𝑎𝑐𝑘𝑃𝑙𝑎𝑛𝑒 = (𝑧𝑖

𝑢𝑝𝑝𝑒𝑟
+

𝑧𝑖
𝑙𝑜𝑤𝑒𝑟)/2. Finally, to ensure a proper representation of the material, the filled mid-section was 

further populated with statistically reconstructed particles, as seen in Fig 8.1c, where the statistics 

of both particle sizes and volume were directly obtained from the experimentally obtained XCT 

particles in the lower and upper sections of the specimen.  

 

The particle volume fraction observed in both the lower and upper sections was enforced 

in the statistically reconstructed particles. To ensure that the crack plane properly represented the 

corrosion geometry, the corrosion front profile observed via fractography was enforced on the 

crack plane, as seen in Fig 8.2a. This ensured the minimization of geometric uncertainty in the 

material reconstruction in this critical plane of interest.  

 

 

Fig 8.1 Geometry reconstruction from the post0mortem XCT specimen scans. (a) The specimen 

halves were aligned to minimize their vertical separation and according to the corrosion front, 

after which (b) the middle section was filled and the crack plane was calculated. (c) The middle 

section was further populated with cathodic particles statistically reconstructed from the 

experimental characterization. 

 

The microstructural data inside each 3D reconstruction consisted of grain orientations 

extruded in the L direction, as seen in Fig 8.2c. The final IPF maps for all specimens can be 

observed in Fig 8.3, for which the average grain sizes were as follows: 35.73 μm for D1, 36.61 μm 

for D2, 52.04 μm for F1, and 55.4 μm for F2. All specimens exhibited an aspect ratio of 2 – 2.5 in 
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the TS plane. It should be noted that the EBSD scans plotted in this figure are just the subsection 

covering the ROI reconstructed from XCT.  

 

Fig 8.2 Post-mortem characterizations of (a) the corrosion front profile, and (b) the grain 

orientations at the crack plane. Both (a) and (b) are needed to create (c) the final 3D 

reconstruction containing both the corrosion topography and the local grain structure. The 

experimentally observed crack initiation point is signaled by a white arrow.  

 

Fig 8.3 EBSD orientation scans for discrete pitting specimens (a) D1, (b) D2, and for fissure 

corrosion specimens (c) F1 and (d) F2.  
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8.2.4 Models and simulation 

The 3D reconstructions from XCT and EBSD were input into one single data structure that 

contained both the corrosion geometry and the microstructure, as seen in Fig 8.4, with the 

resolution of all structures being limited by the XCT reconstructions. Each reconstruction was used 

as input for EVP-FFT, where each simulation was loaded up to 3% strain (530 MPa), past the 

yielding point in the material, to ensure the activation of plasticity in the microstructure. Only 

macroscopic strain along the L-direction was enforced. 

 

To ensure periodicity the material was padded on the L direction until a size of 2q was 

reached, where q is a positive integer. To prevent both any artificial stress concentrations from the 

periodic boundary condition, as well as preventing corrosion features from acting as artificial 

corner notches, each reconstruction was padded with a solid phase on all sides, except for the 

corroded surface, which was padded with a dummy gas phase. A sensitivity analysis indicated that 

a minimum padding of 32 voxels was necessary. The final sizes of each EVP-FFT model were as 

follows:  340 x 240 x 640 voxels for specimen D1 (1 voxel = 1.6 μm), 368 x 256 x 640 voxels for 

specimen D2 (1 voxel = 1.5 μm), 392 x 176 x 256 voxels for specimen F1 (1 voxel = 3 μm), and 

368 x 368 x 640 voxels for specimen F2 (1 voxel = 1.6 μm). All models were run via parallelization 

to achieve convergence under reasonable computational times [91]. Each specimen required 7-10 

h of runtime using 6 HP nodes with two 10-core Intel Xeon-E5 processors and 64 GB of memory. 

 

Fig 8.4 Full 3D reconstructions and mean crack planes for discrete pitting (D1, D2) and fissure 

corrosion (F1, F2) specimens. Unique grain IDs colors are plotted on each crack plane.  
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8.2.5 Crack Nucleation from Corrosion 

 

Fig 8.5 Comparison of the eight different Fatigue Indicator Parameters (FIP) in the crack plane 

of discrete pitting specimen D1. The (d) opening plane energy density FIP is used in further 

evaluations as a predictor of crack initiation. The experimentally observed crack initiation point 

is signaled by a white arrow.  

 

The FIPs described in the Methodology section were analyzed. As seen in Fig 8.5, there 

are no significant differences between all eight FIPs. Therefore, a single FIP was sufficient to 

analyze the crack nucleation event on pre-corroded materials. Now, given that energy dissipation 

metrics are more sensitive to the crystallographic behavior in the material [133] and that the OPED 

parameter has been shown to contain the highest amount of mutual information between all FIPs 

Error! Reference source not found., all subsequent crack initiation studies were performed using 

the energy-based OPED parameter. 

 

To properly capture the length-scale of the micromechanical fields driving crack initiation 

and to remove any artificially high values from the calculated FIPs due to the Gibb’s effect, several 

non-local regularization schemes were performed in the FIP voxel values. As seen in Fig 8.6, three 

non-local averaging schemes were used: averaging around each point (Fig 8.6a), averaging per 

slip band (Fig 8.6b) and averaging per grain (Fig 8.6c). The latter two, averaging per slip band 

and averaging per grain, have been used previously in literature [134] to perform microstructurally 
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sensitive averaging on equiaxed grains. The more refined metric, averaging around each point, is 

known to adequately smooth out extreme values while at the same time preserving slip-based 

heterogeneity [72].  

 

 

Fig 8.6 Schematic of different averaging metrics: (a) averaging around each point with 

subsections being set irrespective of the average grain size (b) averaging per slip bands with the 

slip band length being the average grain diameter, and (c) averaging by grain. All averaging 

methods are done per voxel, where the value of the selected voxel is the average between itself 

and the neighbors per grain/band/point region.  

 

 

When analyzing the averaged FIP distributions at the corrosion front, the averaging around 

each point metric was the most suitable for preserving the hotspots that may indicate crack 

nucleation zones since it preserves the length-scale of the micromechanical fields within the grains, 

as seen in Fig 8.7. Sensitivity analyses performed on each specimen allowed to obtain the optimal 

averaging volume necessary when averaging around each point: 16 x 16 x 2 voxels for D1, 8 x 8 

x 2 voxels for D2, 20 x 20 x 2 voxels for F1, and 8 x 8 x 2 voxels for F2.  
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Fig 8.7 Comparison of the Opening Plane Energy Density distributions, before and after 

averaging, in the crack plane of discrete pitting specimen D1. The distributions of (a) the voxel 

value are averaged (b) around each point, (c) per slip band, and (d) per grain. (e) shows a 

quantitative comparison of the distributions (a, c, d, e) along the experimental corrosion topology 

A-A’.  

 Results and Discussion 

The highest values of the  non-local averaged FIP were used to evaluate the locations with 

the highest likelihood to nucleate a crack, in both the 3D corrosion geometry and the 2D crack 

plane. Fig 8.8 shows that, for the 3D corrosion geometry analysis, the location of crack initiation 

predicted by the highest FIP value does not coincide with the location experimentally observed 

during post-mortem fractography studies. In fact, for each specimen reconstruction, the maximum 

FIP value places the crack initiation point at regions away from the middle section of the material. 

However, when analyzing other regions with relatively high FIPs, it was found that all crack 

initiation points are located within the five highest FIP values in each reconstruction. For the crack 

initiation points in the discrete pitting specimens, D1 was predicted by the third highest value (129 

MJ/m3) and D2 was predicted by the fifth highest value (55 MJ/m3). For the crack initiation points 

in the fissure corrosion specimens, F1 was predicted by the fourth highest value (89 MJ/m3) and 

F2 was predicted by the third highest value (153 MJ/m3). All of these values, while not being the 

absolute hotspot, are statistical extremes lying outside 3 standard deviations of the FIP 

distributions, where the average FIP value across all specimens was found to be 𝑂𝑃𝐸𝐷̅̅ ̅̅ ̅̅ ̅̅  = 22 MJ/m3, 
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the standard deviation was 𝑆𝑂𝑃𝐸𝐷 = 10 MJ/m3, and consequently the ±3𝑆𝑂𝑃𝐸𝐷 bounding values 

were between 0 and 52 MJ/m3 across all specimens. For D1, F1, and F2, the calculated FIP value 

(OPED) corresponding to the location of experimentally observed crack initiation were +6 

standard deviations beyond the average value (6𝑆𝑂𝑃𝐸𝐷 = 82 MJ/m3). It can be surmised that the 

FIPs statistically capture the regions with a higher probability of failure.  

 

 

Fig 8.8 Crack initiation predictions in the entire morphology given the highest value of the 

opening plane energy density (averaged around points), for discrete pitting specimens (a) D1 (b) 

D2 , and for fissure corrosion specimens (c) F1 and (d) F2. The experimentally observed crack 

initiation point is signaled by a white arrow.  

 

On the other hand, when analyzing the averaged FIPs at the 2D projection of the crack 

plane, Fig 8.9 shows that the highest FIP values accurately predict the location of the 

experimentally observed crack initiation points for the fissured specimens F1 and F2, but not for 

the discrete pitting specimens D1 and D2.  
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Fig 8.9 Crack initiation predictions in the crack planes given the highest value of the opening 

plane energy density (averaged around points), for the discrete pitting specimens (a) D1 (b) D2, 

and the fissure corrosion specimens (c) F1 and (d) F2. The experimentally observed crack 

initiation point is signaled by a white arrow.  

 

The discrepancy in crack initiation predictions between the full 3D geometry analysis and 

the 2D crack plane analysis is mainly due to the increased level of microstructural uncertainty at 

the spatial points away from the crack plane. This increased uncertainty is due to the fact that the 

assumption of perfectly elongated grains is only suitable for spatial points close to the 

characterized crack plane [110].  In other words, the actual grain orientations away from the middle 

section have a larger degree of uncertainty, which in turn means that the calculated 

micromechanical response in the farther points have a higher degree of error than the points located 

at the crack plane. Conversely, the spatial points at the crack plane have the lowest level of 

microstructural uncertainty, thus becoming the region with the best capability of predicting crack 

initiation from calculated FIP values. 

 

When analyzing the crack prediction results at the crack plane, it is noted that the FIPs are 

capable of predicting crack initiation at the heavily corroded FIS specimens, but not at the slightly 

corroded DP specimens. This may be due to the micromechanical effect that the Al7Cu2Fe 
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constituent particles may have on the less corroded DP specimens, for which pit coalescence and 

particle fallout has not significantly occurred, especially when compared to the fissured specimens, 

meaning that there may still be some particles present ahead of the corrosion front [17]. Therefore, 

to study the role of the constituent particles in the prediction of crack initiation, several large-sized 

particles were placed ahead of corrosion front on both a FIS specimen and a DP specimen. As seen 

in Fig 8.10, several particles with an average diameter size of 10 μm were placed ahead of the 

corrosion front of specimens D1 and F2. The crack prediction results from the modeling of 

particles ahead of the corrosion front were then compared with the results from the modeling of 

randomly instantiated particles.  

 

 

Fig 8.10 Crack initiation predictions given two types of particles locations: (a, c) random, and (b, 

d) ahead of the corrosion front, for (a, b) discrete pitting specimen D1 and (c, d) fissure corrosion 

specimen F2. The opening plane energy density distributions were averaged around each point. 

The experimentally observed crack initiation point is signaled by a white arrow.  

 

It was observed in Fig 8.10 that, while the presence of the particles has a slight effect on 

the local micromechanics of the material (slightly increasing the values, as seen in Fig 8.10c and 

Fig 8.10d, or changing altogether the predicted location of crack initiation, as seen in Fig 8.10a 

and Fig 8.10b), the placement of particles at the corrosion front does not improve the ability of 

FIPs to predict crack initiation.  
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This may be due to the smaller mechanical impact that the 10 μm Al7Cu2Fe particles may 

have relative to larger features such as the grains (30 – 120 μm) and the corroded geometry (30 – 

150 μm), therefore making the particles a secondary mechanism behind the mechanical and 

geometric heterogeneity in the material. It should be noted that other studies have shown a much 

larger influence of the particles on the mechanical effect in corroded materials, for which the sizes 

are comparable to other micromechanical features in the material [135]. Additionally, the non-

local regularization schemes further reduce the mechanical heterogeneity produced around the 

particles, especially since the radius of influence around the particles (10 μm = 6 voxels) has a 

similar or smaller size than the averaging volumes used. Furthermore, the resolution of the 

tomography reconstructions may have an effect on the modeling ability to predict crack initiation. 

Whereas for the fissured specimens the resolution is large enough the capture the tortuosity in the 

larger geometric features, this may not be the case for the lesser corroded discrete pitting specimens, 

for which the resolution may need to be higher for it to properly capture the smaller geometric 

features present in the corroded surface. 

 

Finally, it should be noted that asides from the uncertainty that arises from the columnar 

microstructure assumption, there are additional sources of uncertainty that may affect the final 

modeling results in the material. One of the principal uncertainty sources is the relatively simple 

hardening law, e.g. the Voce hardening law, used in the CP modeling of the material, which 

isotropically hardens each slip system equally at a material point. However, the fact that there are 

only four parameters in this relatively simple hardening law lowers the uncertainty that may arise 

from the fitting of these parameters [136]. Another source of uncertainty is the uniform boundary 

condition applied to all EVP-FFT models. While the specimens themselves were exposed to a 

uniform load at the grips, the actual boundary conditions in the reconstruction are heterogeneous 

and are dictated by the unknown neighboring grains. Any improvement of the crystal plasticity 

models would require prior knowledge of the stresses that the neighboring grains apply on the 

studied grains [137]. However, while the addition of more realistic boundary conditions can 

improve the overall representation and accuracy of the crystal plasticity model, its effect is more 

pronounced on the individual voxel values near the applied boundary conditions [91]. The effect 

of the boundary conditions is minimized when the region of interest is located three grains away 

from the applied boundary conditions, meaning that if the material is sufficiently padded the results 
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will remain unaffected [91].   All in all, even though the uncertainty has been minimized for most 

of the variables affecting the modeling results in the reconstructed specimens, there will always be 

an innate amount of uncertainty that may have propagated through the various steps leading to the 

final micromechanical fields [136]. This therefore has an impact on the determination of a single 

critical FIP value that can be used as a threshold for determining the onset of crack initiation, as it 

relies heavily on the uncertainty present in the model. As such, the determination of a critical FIP 

value is unique for each reconstruction. 

 Conclusions 

XCT and EBSD characterizations have been used as input for EVP-FFT simulations, in order 

to obtain the micromechanical fields at the corrosion topography and calculate the FIPs to predict 

crack initiation in the corroded material. It has been concluded that: 

 

 It is possible to generate highly detailed crystal plasticity models of corroded materials that 

can take into account the multiple mechanisms driving crack initiation. These simulations 

provide a definitive step towards prognosis of the remaining life of corroded materials 

subjected mechanical loading. 

 There is no marked difference between the various FIP metrics analyzed. Each of these FIP 

metrics benefited from the use of a non-local averaging schemes, to regularize spuriously high 

calculations at individual material points and provide a means of a characteristic length-scale 

for crack initiation 

 Crack initiation is properly captured by extreme FIP values within the full 3D distribution of 

the material. In fact, all experimentally observed sites for crack initiation were at locations 

where the FIP values were, in general, at least six standard deviations greater than the average 

value. When analyzing the crack plane, which has the lowest microstructural uncertainty, the 

highest FIP value in the distribution is able to predict crack initiation for the fissured specimens. 

 The prediction of crack initiation by FIPs coincides with the experimentally observed crack 

initiation points in the material, with the best results arising from the fissure corrosion 

specimens since the model instantiations were able to fully capture their pronounced corrosion 

tortuosity. the current results suggest that the FIP values are a reasonable metric for prognosis 

activities for the site of crack initiation. 
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 The microstructure and the corrosion topography play a vital role in the crack initiation of the 

material. The constituent particles play a lesser role. 
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9. CONCLUSIONS AND FUTURE WORK 

 Conclusion 

The objective of this thesis was to identify the driving forces behind the galvanic corrosion 

process as well as its transition to cracking, by studying from both an experimental and 

computational perspective different mesoscale variables such as the microstructure, the local 

micromechanics, the presence of cathodic particles, as well as the corrosion morphology. To do 

so, several high-resolution experimental techniques such as DIC, EBSD, CLSM, EDS, and XCT 

were performed for the same regions of interest, which was large enough to cover a representative 

amount of the microstructure. To obtain the full description of the micromechanical fields, a 

parallel version of the EVP-FFT solver was implemented alongside with a subsurface 

minimization technique. This thesis was divided into four parts: 

 

1. Investigated polycrystalline deformation for different orientations of AA7050. 

2. Developed a subsurface reconstruction methodology capable of minimizing the 

subsurface uncertainty in crystal plasticity models of surface characterizations. 

3. Analyzed the effect of different experimental and computed variables on corrosion 

growth such as strains, stresses, particles, and microstructure. 

4. Studied the mechanisms behind crack initiation via modeling of pre-corroded materials, 

where FIP crack nucleation metrics were used to predict cracking.  

 

The results from part 1 (Chapter 4) demonstrated that EVP-FFT was capable of 

statistically capturing the micromechanical heterogeneity experimentally observed in the material, 

with the spatial distribution being best captured by the TS orientation due to its low subsurface 

uncertainty. As a result, the TS orientation was studied on the subsequent parts, and the importance 

for a subsurface minimization methodology was highlighted. As a result, a subsurface 

reconstruction methodology was developed in part 2 (Chapter 5), where the statistics from surface 

characterizations are directly used to create a subsurface microstructure that complies with both 

the orientation distributions and the microstructural geometry present in anisotropic materials such 
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as rolled AA7050. This reconstruction methodology showed a marked improvement in capturing 

the spatial distributions of the micromechanical fields.  

 

Given the new capability of spatially capturing stresses and strains, part 3 could be 

performed. In part 3, the driving forces behind corrosion were studied under both a strain mediated 

environment (Chapter 6) and a stress mediated environment (Chapter 7), where the stresses in 

Chapter 7 were obtained via EVP-FFT modeling. In both cases, GP-SVI was utilized to locate 

the main variables driving corrosion. For strain mediated corrosion, the material has high residual 

strains and low residual stresses, whereas for stress mediated corrosion, the material has both high 

active strains and high active stresses, as seen in Fig 9.1.  

 

Fig 9.1 Loading description of strain-mediated corrosion, where only residual strains are present, 

and stress-mediated corrosion, where both strains and stresses are active in the material. 

 

The results from strain mediated corrosion in Chapter 6 showed that the early stages of 

corrosion growth are driven by the local electrochemistry between the particles and the matrix, 

and after particle fallout corrosion is driven by both the dissolution of the surface and the presence 

of extreme residual strains arising from particle cracking. When studying the overall material, the 

statistical analyses via GP-SVI showed that in general corrosion is independent from localized 

strains. The results from stress mediated corrosion in Chapter 7 showed that localized stresses are 
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an indicator of localized corrosion at the cathodic particles but not at the overall material, with the 

early breakage of the protective layer formed by the passive alumina and the corrosion product 

buildup accelerating the degradation in the material. Therefore, it is concluded that corrosion is a 

multivariable mechanism driven by the local electrochemistry, the breakage of the protective layer, 

and the local stresses. Physically speaking, the stresses are an indicator of elongated atomic bonds 

that may facilitate electrochemical interactions with the environment, whereas strains are mainly 

an indicator of prior dislocation activity.  It should be noted that strain is a relative term and not 

an internal state variable of the material.  Hence, the high strain values do not translate in a 

facilitation of electrochemical interactions. While the residual strains are due to additional 

dislocation content, generally speaking, the continuum description of the stress field around 

dislocation (s) is(are) an order of magnitude lower that the stresses obtained from an actively 

loaded material.  Hence, the residual strains do not play a significant role in the environmental 

degradation of the material. 

 

For the study of fatigue crack initiation in part 4, a multivariable 3D reconstruction of pre-

corroded materials containing information about the microstructure, the corrosion morphology, 

and the cathodic particles was generated from different types of corrosion morphologies, as seen 

in Chapter 8. EVP-FFT was used to model the multivariable reconstructions and the resulting 

micromechanical fields were used to calculate FIPs. High FIP values were capable of predicting 

crack initiation points, with the best crack initiation predictions occurring at the crack plane of the 

fissure corrosion specimens. Upon examination of the different mechanisms affecting crack 

initiation, it was concluded that the microstructure and the corrosion topography play a vital role 

in crack initiation with the constituent particles playing a less significant role, and that the 

predictions would improve if a) the characterization uncertainty away from the crack plane was 

minimized and b) if the resolution of the reconstructions was more refined so that the finer 

corrosion morphologies as well as the smaller cathodic particles could be better captured. 

 

Overall, this thesis concludes that both corrosion growth and its transition to fatigue crack initiation 

are driven by mechanics that are acting simultaneously, where the local electrochemistry and 

micromechanics play a key role, and that there is a great opportunity for improving the design, 
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manufacturing, and repair processes in environmentally degraded materials by studying corrosion 

from a multivariable perspective. 

 Recommendations 

Given the results obtained in the present document, the following recommendations are suggested 

for any related work: 

 

1. The use of 3D microstructural characterizations of the material will not only expedite the 

ability to capture both statistically and spatially the micromechanical fields in crystal 

plasticity models, but also validate the effect that the subsurface uncertainty has on such 

an anisotropic material. 

2. For stress mediated corrosion studies, in situ characterizations of the material when 

exposed to a corrosive environment may aid in more reliable characterizations of the 

evolution of corrosion as it will prevent the disruption of the acting chemistry that occurs 

when the specimens are removed from the corroding environment and cleaned. 

3. An analysis of the effect that the corrosion intervals have on the evolution of localized 

corrosion may be useful in determining an optimal experimental schedule, such that the 

evolution of pitting can be properly captured without having to perform excessive 

characterization of the material which in turn requires additional specimen preparation and 

instrument availability. 

4. For the analysis of pit-to-crack transition, the reconstructions may profit from XCT 

characterizations of the corrosion morphology prior to fatigue testing as well as full 3D 

microstructure characterizations such that the uncertainty arising from the reconstruction 

techniques are minimized. The location of crack initiation can be further located by early 

characterization of the crack when it is opened. 

 Future Work 

For materials exposed to environmental degradation, crack growth is a mechanism of interest. The 

FIPs distributions calculated to study crack on pre-corroded materials can be further used to predict 

crack growth rates as well as its preferred direction by correlating FIP densities with the marker 
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bands that were experimentally generated at the cracked surface of each specimen. In partnership 

with the Burns Research Group at University of Virginia, the FIP distributions will be analyzed 

relative to the marker bands to elucidate the role of the microstructure, the geometry of the crack, 

and the presence of the cathodic particles, on the growth of a crack exposed to a corrosive 

environment. 

 

Fig 9.2 Future work: study of crack growth in AA7050 exposed to a corrosive environment using 

FIP densities and the location of marker bands. 
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APPENDIX A. FABRICATION OF SPECIMENS WITH THROUGH 

THICKNESS GRAIN STRUCTURE 

To create specimens with a through thickness grain size to mimic columnarity, albeit in an 

approximate fashion, a plate of standard AA7050 material was melted to cast the material. The 

experimental setup used to obtain the directionally solidified microstructure is shown in Fig. A1, 

following the methodology discussed in [138][139]. An alumina crucible of 70 mm diameter was 

wrapped with a thermal insulator and the entire assembly was heated to 800 °C in a box furnace. 

The AA7050 stock was melted and heated to 850 °C (210 °C superheat) in a clay-graphite crucible 

using an open-air induction furnace.  The heated mold assembly was then removed from the 

furnace and placed on a 40 mm thick copper chill plate. The molten aluminum was poured into the 

heated mold. The setup was designed to maximize the temperature gradient in the vertical direction 

between the cold plate and hot molten metal, and minimize the gradient in the transverse direction.  

Thus, the material would directionally solidify forming long dendrites vertically within the mold. 

The objective is to have specimens cut perpendicular to the dendrite formation to achieve 

specimens with through thickness grain structure. 

 

 

Fig A.3 Schematic for casting AA7050 

 

The casting was removed from the mold.  One side of the sectioned block was polished 

and etched, and the unidirectional preference of grains and dendrites was visually verified to be in 

the longitudinal direction.  After identifying the longitudinal preference of the grains, two blocks 

were cut and treated to heat treatment condition T7451, with the rolling direction along the 
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orientation of the elongated dendrites.  Specimens were then machined from the final blocks.  To 

ensure that the through-thickness grain microstructure was completely accommodated into the 

stress relieved condition of T7451 (a treatment that requires pre-deformation), the specimens were 

subjected to a 2% axial cold work. 

 

For these through-thickness cast AA7050 specimens with average planar grain size of ~106 

μm, a ROI of 1,600 μm x 1,200 μm was delimited at the center to assure the characterization of a 

significant number of grains. For a precise match of the areas of interest between the front and 

back sides of the through-thickness cast AA7050 specimens, a transparent mask was used to 

determine the center of the gage section. During this process, both the specimen and mask were 

flipped for indentation on the specimen’s backside.   

 

To quantify the through-thickness condition on the AA7050 specimens, EBSD was 

performed on the front and back, as shown in Fig. A2. The back face EBSD inverse pole figure 

was flipped vertically for comparison with respect to the same direction. The lattice orientations 

were also mirrored to coincide with the same view as the front face. The grains were numbered 

from one to nine for grains that could be identified in the front and back of the specimen (Fig. A2), 

covering the extended area of interest of 1,600 μm x 1,200 μm in the front, and a larger area on 

the back to facilitate the grain identification. It is observed that at least 70% of the grains resolved 

by EBSD on the front side could be identified on the backside, for the specimen shown. The result 

is also coherent with the sequence of grain identifications numbers as marked on the front- and 

back-sides. The difference between the front and back faces shows that the material is not perfectly 

columnar. All of the cast specimens selected for testing exhibited the same characteristics, having 

>70% of the grains going completely through the thickness. This result was considered satisfactory 

for the purpose of the case study. Constituent particle distribution and void content of the fabricated 

columnar specimens are consistent with that of rolled plate AA7050-T7451.   

. 
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Fig A.4 Schematics of the EBSD characterization from a specimen (a) front and (b) back face, 

and their respective inverse pole figures. 

 

To obtain a through-thickness grain structure of the fabricated AA7050 samples required 

that this material had a relatively large grain size.  For DIC analysis of this large grain structure,  

a micro stamping procedure was used since it provides a repeatable, high-resolution, patterning 

method capable of covering large surface areas in which a stamp surface pattern is replicated on 

the material’s surface [48]. To create the flexible micro textured stamps, a binary image with 

randomly distributed features was generated. The pattern distribution was designed such that: (i) 

The speckle population is set to be between 21-26% of the covered area and (ii) no more than two 

features can be connected side by side. Once the reference image was designed, the pattern was 

replicated using electron-beam lithography for generating the stamp master [103].  

 

A flexible casting material able to conform to sub-micron features was selected to be 

vacuum cast to the master. It should be noted that the castable material must polymerize without 

shrinking, to guarantee that precise micro textures are replicated. In the present case study, we 

used a stamp with 2 μm features to allow a sub grain spatial strain resolution. To improve the 

adhesion of the photoresist during the stamping process, a primer was applied beforehand. For the 

present case study, we used MicroChem Corp MCC Primer 80/20, based on a combination of 20% 

HMDS (Hexamethyldisilazane) and 80% PM Acetate (1-Methoxy-2- propanol acetate). The 

primer was cured for 3 minutes at 115 °C on a hot plate. To create the visible pattern elements on 

the surface, we used micro-deposit Shipley 1805 photoresist. The photoresist was dropped on the 

specimen surface to be patterned and the stamp was pressed on the top. A pressure of 28 kPa was 
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applied on the stamp for 3 minutes at 115 °C. After 3 minutes, the pressure was removed and the 

stamp was peeled from the specimen. After checking the pattern for consistency, the specimen was 

ready for use in the tensile DIC experiment.  

 

The through-thickness AA7050 specimens were deformed to slightly above 1% total strain 

and unloaded, so that the material was mechanically deformed past the yield point of the material. 

It should be noted that the through-thickness cast AA7050 samples exhibit a lower 0.2% offset 

yield stress of 356 MPa, below the 440 MPa reported for conventional AA7050-T7451 in the TS 

direction [110]. This is explained by the significantly larger grain size in these samples and the 

through-thickness grains not offering the same 3D constraints that are customary in the bulk 

material. As a consequence, the Voce hardening parameters (Eq. 4) were recalibrated to 

macroscopic stress-strain curves for these specimens, where τ0 = 142.5 MPa, τ1 = 12 MPa, θ0 = 30 

MPa, and θ1 = 5 MPa. 
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APPENDIX B. RECONSTRUCTION ALGORITHM 

1. READ H5 microstructure file with FeatureIDs and EulerAngles (from DREAM3D) 

2. SET final depth n for 3D reconstruction 

3. SET stereological growth factor growthdepth = 4/pi  

GEOMETRIC RECONSTRUCTION 

4. GET spatial sizes x and y from FeatureIDs 

5. CREATE list of entire 3D spatial coordinates allcoords of size x*y*n 

6. CREATE extruded grains ExtrudedFIDs of depth n from 2D FeatureIDs data 

7. CREATE zero array FinalFIDs of size [x y n] 

Surface Stereological Projection 

FOR grain = 1 : length(FeatureIDs)  

a. FIND 2D spatial grain centroid centroid for grain 

b. FIND 2D equivalent grain radius radius for grain 

c. SELECT 3D coordinates from allcords where ExtrudedFIDs == grain 

d. WRITE selected 3D coordinates as eachgraincoords 

e. CALCULATE distances drange between eachgraincoords and centroid 

i. This step finds euclidean distances, limited by the extruded grain 

f. RESELECT 3D coordinates from eachgraincoords via stereological factor 

i. drange ≤ radius*growthdepth  (4r/pi) 

g. REWRITE reselected 3D coordinates as eachgraincoords 

h. SET FinalFIDs == grain where points belong to eachgraincoords 

END 

Subsurface Tessellation 

8. SET number of seed points nseeds for subsurface tessellation (nseeds =1000) 

9. SELECT 3D coordinates from allcoords where FinalFIDs == 0 (no defined grain) 

10. WRITE selected 3D coordinates as synthcoords 

11. SELECT randomly nseed coordinates from synthcoords 

12. WRITE selected 3D coordinates as seedpoints 

13. REWRITE z portion of seedpoints to enforce average grain length seen on TL 

14. CALCULATE k-nearest neighbor in seedpoints for each synthcoords and WRITE as 
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a. synthgrainmap = knnsearch(seedpoints,synthcoords,'K',1) 

b. This is the main step behind tessellation. 

15. GET next available grain ID for tessellating grains g = max(FeatureIDs)+1 

FOR spoint = 1:length(seedpoints) 

a. SELECT coordinates from synthcoords where synthgrainmap == spoint 

b. WRITE selected coordinates as eachsynthcoords 

c. SET FinalFIDs == g + spoint where points belong to eachsynthcoords 

END 

Grain Boundary Smoothing Algorithm 

This is a standalone algorithm that can be skipped if the tessellation geometry is acceptable 

16. LOAD FinalFIDs data 

17. CREATE zero array grainIDnew of size(FinalFIDs) 

18. SELECT level of smoothing s = 1…5; 

19. CREATE smoothing kernel sphere kernelsphere of diameter s 

a. kernelsphere = strel(sqrt(X.^2 + Y.^2 + Z.^2) <=s)  

20. OBTAIN grain boundaries as binary GB 

21. DILATE binary grain boundaries GB using kernelsphere 

22. ERODE binary grain boundaries GB using kernelsphere 

23. RESELECT FinalFIDs using GB as mask and WRITE to grainIDnew 

24. SET grainIDnew == 0 where points belong to dilated GB 

25. CALCULATE Euclidean distances ECL inside dilated GBs ; grainIDnew == 0 

  FOR stepcount = 1 : max(ECL) 

i. FIND locations borderlocs were ECL == 0 (locations bordering grains) 

  FOR loc = 1 : length(borderlocs) 

a. FIND all FinalFIDs values neighboring loc (grainID_loc) 

b. SELECT max(grainID_loc) 

c. SET grainIDnew(loc) == max(grainID_loc) 

  END 

   

ii. RECALCULATE Euclidean distances ECL  
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  IF ECL is empty 

i. STOP loop; grainIDnew is fully populated with smoothed grains 

  END 

26. REPLACE first slice on grainIDnew with original EBSD slice in FinalFIDs 

27. RENAME grainIDnew as FinalFIDs and WRITE to output 

Orientation Reconstruction - Creating Statistical Orientations 

28. OPEN Dream3D 

29. READ H5 file containing sizes, orientations, ratios, etc. (from Dream3D) 

30. CREATE statistical orientations datafile using StatsGenerator command 

31. CLOSE Dream3D 

Assigning Orientations 

32. READ CSV datafile containing statistical orientations 

33. CREATE extruded orientation FinalEuler of depth n from 2D EulerAngles data 

a. FinalEuler is of size [x y n 3] 

34. GET randomly nseed orientations from CSV orientation list (rEuler_Tess) 

a. rEuler_Tess is of size [nseed 3] 

35. GET all grain IDs belonging to tessellated grains (GrainIDs_Tess) 

FOR ii = 1 : length(GrainIDs_Tess) 

a. SELECT a statistically equivalent orientation t_euler == rEuler_tess(ii) 

b. SELECT coordinates from allcoords where FinalFIDs == GrainIDsTess(ii)     

c. WRITE selected 3D coordinates as eachgraincoords 

d. SET FinalEuler == t_euler where points belong to eachgraincoords 

END 

36. SAVE FinalFIDs. Output is a matrix of size [x y n 1] 

37. SAVE FinalEuler Output is a matrix of size [x y n 3] 
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