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ABSTRACT

Chang, Yiyang Ph.D., Purdue University, August 2019. Ensuring Network Designs
Meet Performance Requirements under Failures. Major Professor: Sanjay G. Rao.

With the prevalence of web and cloud-based services, there is an ever growing

requirement on the underlying network infrastructure to ensure that business criti-

cal traffic is continually serviced with acceptable performance. Networks must meet

their performance requirements under failures. The global scale of cloud provider

networks and the rapid evolution of these networks imply that failures are the norm

in production networks today. Unplanned downtime can cost billions of dollars, and

cause catastrophic consequences. The thesis is motivated by these challenges and

aims to provide a principled solution to certifying network performance under fail-

ures. Network performance certification is complicated, due to both the variety of

ways a network can fail, and the rich ways a network can respond to failures. The

key contributions of this thesis are: (i) a general framework for robustly certifying

the worst-case performance of a network across a given set of uncertain scenarios. A

key novelty is that the framework models flexible network response enabled by recent

emerging trends such as Software-Defined Networking; (ii) a toolkit which automates

the key steps needed in robust certification making it suitable for use by a network

architect, and which enables experimentation on a wide range of robust certification

of practical interest; (iii) Slice, a general framework which efficiently classifies failure

scenarios based on whether network performance is acceptable for those scenarios,

and which allows reasoning about performance requirements that must be met over

a given percentage of scenarios. We also show applications of our frameworks in syn-

thesizing designs that are guaranteed to meet a performance goal over all or a desired
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percentage of a given set of scenarios. The thesis focuses on wide-area networks, but

the approaches apply to data-center networks as well.
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1. INTRODUCTION

With the advent of online and cloud-based services, society has become critically

dependent on the Internet for all its needs. The Internet has seen a traffic growth

of more than five orders of magnitude over the past few decades, and the trend is

expected to continue [1]. Not only is the Internet traffic increasing, but also the

expectation on network performance. For example, a recent paper from Google [2]

indicates that not only has traffic increased by 100x over the last five years, but

also bandwidth requirements must be met 99.99% of the time compared to 99% in

the past. The dramatic growth of the Internet traffic and the increasing pressure to

reduce costs have motivated both online service companies [3–5], and more recently,

large ISPs [6,7] to operate networks closer to capacity, in contrast to the 2x–3x over-

provisioned networks in the past. Networks must achieve such performance goals

under uncertainty. Failures of network components are routine [8–12], which can be

caused by software and hardware bugs, configuration errors, and natural disasters

(e.g., Hurricane Sandy). Network traffic patterns can also change significantly.

We refer to the task of certifying whether a network design meets the performance

goal under uncertainty as network performance certification. This thesis solves net-

work performance certification under flexible network response, which is enabled by

Software-Defined Networks (SDNs, Figure 1.1), which can route traffic using global

network-wide views, and with priorities [3,4]. SDNs bring both challenges and oppor-

tunities: SDNs allow network response mechanisms to be expressed as well-defined

optimization problems, but it is challenging to take the flexibility into account when

certifying networks, as we will see later. To the best of the author’s knowledge, this

thesis is the first to propose a principled solution to network performance certification

in an SDN context.
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Legacy network: 
each switch reacts to 
failure on its own; 
locally optimal 

SDN: controller 
makes the 
centralized decisions 
reacting to failures; 
globally optimal

Control plane Data plane

Fig. 1.1.: SDN vs. legacy network.

Unfortunately, many existing approaches to designing networks for failures (i)

only focus on availability [13–17] resulting in poor performance on failures [12, 18];

(ii) only consider a small number of failure states [19–25], and do not scale as the

number of possible failure states increases; or (iii) rely on ad-hoc simulation-based

testing [26, 27]. This thesis is distinguished by the focus on performance, designing

for multiple concurrent failures and designs with provable performance guarantees for

known failures.

The rest of this chapter illustrates the background in the research area of designing

networks resilient to failures in §1.1, recent work and their limitations in §1.2, the

contributions of this thesis in §1.3, and the main results in §1.4. Finally, §1.5 provides

a road map of the whole thesis.
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1.1 Background

Many mechanisms focus on restoring or verifying connectivity but do not address

performance (e.g., congestion, packet losses, and delays) under failures. Researchers

have long recognized the need to recover quickly from network failures and have pro-

posed to do so by moving traffic away from a failed network device or link. For

instance, in Multiprotocol Label Switching (MPLS) settings, two classes of recovery

mechanisms have been explored [13]. In a link-based protection scheme, upon the

failure of a link l, traffic previously on l is rerouted along pre-computed detour paths

that do not include l. In a path-based protection scheme, backup paths are calculated

in advance for traffic from each source s to each destination t, and when a particular

path fails (e.g., an underlying link or node fails), the traffic is diverted to those back-

up paths. Fast recovery mechanisms have also been studied in IP settings [14–17].

Nevertheless, fast recovery schemes are insufficient to prevent congestion (and conse-

quently, packet losses and delays) under failures – e.g., recent work from Microsoft [18]

shows that failures can frequently lead to links getting 10%− 20% more traffic than

their capacity which can negatively impact the performance of demanding applica-

tions such as online retail, Web search, and video streaming.

Many works on resilient network design only consider a small number of failure

states (e.g., single-link or node failures). A comprehensive survey of early work in

the area is provided in [19], while recent representative work includes [20–25]. The

approach in this literature is to arrive at resilient designs by explicitly enumerating all

failure scenarios in the formulation of an optimization problem, which, for example,

may determine how to provision spare capacity to handle those failures. While such

an approach is tractable when the number of possible failure states is small, it does not

scale well for the challenging performance requirements of modern networks that may

experience multiple failures simultaneously [18,28]. The intractability arises from the

fact that naively enumerating failure states leads to a formulation that simultaneously

models exponentially many routing problems, one for each failure state (e.g., for a
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300 link network, 44,850 routing problems must be simultaneously modeled even for

handling all two failure scenarios).

Simulation-based testing is inadequate for designing resilient networks. The state-

of-practice in checking whether networks conform to performance requirements in-

volves simulation-based testing [26, 27]. Unfortunately, the number of scenarios to

consider is prohibitively large even for moderate sized networks. For instance, ver-

ifying that a network with 200 links performs acceptably under all 3 simultaneous

link failures [18,22,28] considering all traffic matrices collected at 10 minute intervals

over a week’s period requires testing over a billion scenarios. Many more tests are

required if partial link failures are also considered. Even if such arduous testing can

provide assurance that a given network design complies with a specific performance

goal, it remains challenging to use such tests for designing networks that meet a per-

formance requirement [29,30]. Given the large space of possible designs and policies,

and since exhaustively testing any one of them is prohibitive, architects today use

ad-hoc design techniques that may lead to overly conservative solutions, or fall short

of meeting performance requirements, and lack provable guarantees.

Besides resilient design, network verification [31–34] has become an important area

of research in recent years. These works seek to verify the correctness of network data-

plane (e.g., connectivity, routing loops, black holes, etc.) and network configuration,

but provide little insight on network performance under failures.

1.2 Recent work and challenges

Researchers have only recently [18, 28] started considering combinatorially many

failure states in designing network mechanisms. While these efforts offer a promising

start, the state-of-the-art in this area is at an early stage. Next, we elaborate on the

challenges that remain, and why these initial efforts have limitations.

R3 [28] considers networks under f simultaneous link failures and attempts to

produce a link-based protection mechanism to ensure that the network is congestion-
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free under all such failures. Unfortunately, R3 only models restricted forms of network

adaptation, and overestimates the impact of failures, as we will see later. On the

other hand, FFC [18], a path protection scheme, only considers traffic recovery called

rescaling, which requires that, upon failure, the source diverts the traffic from failed

paths to other operational paths, and this diversion of traffic is done so that, on the

operational paths, the relative ratio of similar traffic is preserved.

Despite these advances, two challenges remain. First, networks increasingly re-

spond in more flexible ways, further facilitated by the emergence of SDNs [3, 4, 6, 7]

which allow architects more explicit control on how traffic is managed. To the best of

the author’s knowledge, no previous work has provided a solution to certifying net-

work performance under failures with flexible network response. Second, worst-case

design may be unduly conservative since a small number of bad failure scenarios may

be expensive or even infeasible to design for. Further, worst-case approaches do not

provide the architect with an understanding of the distribution of performance across

failure scenarios, and an understanding of which scenarios and what fraction lead to

unacceptable performance.

1.3 Contributions

Motivated by the aforementioned challenges, this thesis makes the following con-

tributions:

• Robust certification with flexible network response. We develop the first general

and formal framework to certify worst-case performance of network across wide

range of scenarios with flexible network response. Our framework combines non-

linear optimization techniques with network-inspired mechanisms to tackle the

intractability of modeling flexible network response. In addition to certifying

a network design, the framework also applies to network synthesis, and we

demonstrate with a link capacity augmentation case study.
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• Generalized robust certification and automation toolkit. Based on the previous

robust certification framework, we generalize it to apply to many more prac-

tical situations: multiple traffic classes with different priorities, richer failure

patterns, routing restriction, and various performance metrics. We also develop

a toolkit to automate the reformulation and linearization process, which is often

cumbersome and error-prone to do manually.

• The Slice framework. We have developed a formal framework certifying net-

work for more general objectives than worst-case performance. The framework

efficiently classifies failure scenarios based on whether the network performs

acceptably, which can later enable designs optimized for a given percentage of

scenarios.

1.4 Results

We evaluate our solutions with multiple real topologies [35] and public traffic

data [36], as well as synthetic traffic data generated using gravity model [37]. The re-

sults show the promise of our approaches. First, the robust certification framework is

effective in reasoning about network performance under uncertainty, while modeling

flexible network response. For instance, when considering f -link failures, our frame-

work achieves better certification bounds than state-of-the-art [28], while surprisingly

matching the optimal in all the experiments for the failure case study. Further, when

considering variable traffic within weighted averages of historical demands, our frame-

work also achieves tighter bounds than existing approaches. Second, the generalized

robust certification framework performs well across various failure models, includ-

ing partial failures and heterogeneous link failures where it continues to match the

optimal. The toolkit we build to automate the critical steps needed by robust cer-

tification performs reasonably well, and solving the automatically generated model

takes 23%−40% of extra time compared to solving the manually generated model for

GEANT, a moderate-size network which has 50 edges. Third, Slice is effective in clas-
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sifying scenarios that can be supported by different routing schemes, revealing large

performance gaps between these routing schemes. Slice also effectively aids design for

more generic objectives than the worst-case, and doing so offers substantial benefits

over worst-case design. For instance, with the GEANT network, existing approaches

are unable to guarantee performance is acceptable for any 2-failure scenario because

of a small number of bad scenarios. In contrast, Slice can handle most 2-failure sce-

narios by discovering which ones to design for. Slice performs well with reasonable

certification time: on a single core 3.00GHz CPU, it takes 2.1 seconds for Slice to

certify a link-based protection design for GEANT, and 80.8 seconds for Deltacom, a

large network with 150 edges.

1.5 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 presents the robust cer-

tification framework to solve the worst-case network performance certification under

failures and various traffic demands. Chapter 3 generalizes Chapter 2 to a variety of

scenarios of practical interest, and presents an automation toolkit that we have devel-

oped. Chapter 4 presents Slice, a framework for analyzing network performance and

designing networks for more general objectives than worst-case performance under

failures. Finally, Chapter 5 summarizes, and discusses future directions.
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2. ROBUST VALIDATION OF NETWORK DESIGNS

UNDER UNCERTAIN DEMANDS AND FAILURES

2.1 Introduction

In designing wide-area networks for ISPs and cloud service providers, it is critical

to ensure predictable performance at acceptable costs. However, achieving this goal

is challenging because links fail (both owing to planned maintenance, and unplanned

events such as fiber cuts and equipment failures) [12, 28, 38], and network traffic is

variable [39] and constantly evolving [12].

Validating that a network can cope with a range of traffic conditions and fail-

ure scenarios is challenging because the number of scenarios to consider are typically

exponentially many, and may even be non-enumerable. For instance, a common

requirement is to verify that a network with N links can service demand for all com-

binations of f simultaneous link failures [18,22,28]. The number of failure scenarios to

consider is
(
N
f

)
for each demand. Further, the set of traffic matrices are not even enu-

merable, so naively considering all traffic matrices and failure scenarios is prohibitive.

There is a huge gap between practice and existing theoretical tools. Oblivious rout-

ing [39–42], and more generally, robust optimization [43,44] allow bounding worst-case

performance across multiple scenarios of interest. However, to ensure tractability of

the problem, these techniques make the conservative assumption that the network

cannot adapt to changes in demands by re-routing traffic [39–42], or admit limited

forms of adaptation [28, 45]. In practice, networks do adapt by re-routing traffic as

demands shift or failures occur, and such adaptation can make network operations

much more efficient. Further, the advent of Software-Defined Networking (SDN)

allows for network-wide optimization, and facilitates the deployment of flexible re-

routing strategies [3, 4].



9

Given the large gap between theory and practice, the process of validating network

designs today is ad-hoc, often requiring extensive simulations, which can be highly

time consuming as well as fall short of guaranteeing provable bounds on network

performance. In this chapter, we take a first step towards tackling this by presenting

a formal framework to provide performance bounds on a network design across a

set of scenarios (demands, failures). The key novelty in our framework is that it

can accommodate a richer set of adaptation mechanisms, used in practice today, for

re-routing traffic on failures and changes in demands.

When flexible routing strategies are considered, providing robust performance

guarantees typically requires solving intractable non-convex (and often non-linear)

optimization problems. We address these difficulties by leveraging cutting-edge tech-

niques in the non-linear optimization literature [46]. An attractive aspect of these

techniques is their generality, which allows them to be applied to a wide range of

network validation problems. We show that these techniques lead to tighter bounds

on the validation problem than existing state-of-the-art approaches in robust opti-

mization, a finding that has applications beyond networking. Further, the bounds are

tight in practical settings of interest - e.g., when demands are expressed as a convex

combination of known historical demands [42]. Finally, we show how the techniques

may be augmented with analysis of individual problem structure to substantially

improve the quality of bounds.

For concreteness, we focus on link utilization, a widely accepted traffic engineering

metric [28, 39, 42], which impacts application latency and throughput. We apply our

framework to two contrasting, yet practical case studies to illustrate key aspects

of our framework. The case studies differ in the type of uncertainty (failures and

demands), and the type of adaptation. Specifically, we consider (i) multi-commodity

flow (MCF) routing [28,39,47] which provides the most flexibility and efficiency, and

(ii) MPLS-style tunneling [4, 48] which has more limited flexibility in routing.

While we focus on validation, our framework can enable the synthesis of designs

with performance guarantees under uncertainty. We demonstrate this by showing how
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our approach can aid operators in determining the most effective ways to augment

link capacities while ensuring acceptable link utilizations under failures.

We evaluate our approach using multiple real topologies [35] and public traffic

data [36]. Our framework performs better than oblivious formulations for both case

studies, while surprisingly matching optimal in all the experiments for the failure case

study. Further, we show our framework aids in (i) identifying bad failure scenarios; (ii)

determining how to best augment link capacity to handle failures; and (iii) evaluating

design heuristics – e.g., we show the potential for poor performance with common

tunnel selection heuristics.

2.2 Motivation

2.2.1 Robust validation applications

A network design consists of (i) invariant parameters, which cannot be changed (or

are costly to change) across failures and/or demands; and (ii) adaptable parameters,

which may be flexibly chosen for any scenario. Our framework ensures that the choice

of invariant parameters is acceptable across a set of demands and/or failures. Below,

we present motivating examples.

Topology Design. In designing network topologies, operators must determine

what links to lease and how much capacity to provision. While the set of links and

their capacities is difficult to change across failures and demands, the network may

adapt by re-routing traffic.

MPLS Tunnel Selection. A common traffic engineering practice is to use tun-

nels (e.g., MPLS [49]) between each ingress and egress switch, to ensure a core net-

work that does not need to run the BGP protocol. In such settings, a light-weight

adaptation mechanism is to switch traffic across k pre-selected tunnels between each

source destination pair, which only involves changing flow tables in appropriate ingress

switches [4, 48]. Changing tunnels is more heavy-weight since the flow tables of in-
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ternal switches also need to be modified. A good choice of pre-selected tunnels can

lower the frequency of changing tunnels in response to fluctuations in demand.

Middlebox placement. Network policy may require that some of the flows tra-

verse a set of middleboxes such as firewalls and intrusion detection systems (IDS) [50,

51]. While the placement of network middleboxes typically occurs over relatively

longer time-scales, traffic may be re-routed to handle normal traffic fluctuations or

failures.

In these examples, the topology itself, and the set of tunnels and placement of

middleboxes as applicable are invariant parameters, while the fraction of traffic sent

along a given tunnel is an adaptable parameter.

Robust validation may be performed at initial design time, as well as in a continual

fashion as the network evolves, and new projections on demands are available. Robust

validation may indicate the network is no longer able to cope with the scenarios of

interest, requiring the operator to consider changes to the design (e.g., by provisioning

more capacity on links). Further, it can provide information on which scenario causes

the network requirements to be violated, and aid in determining design changes to

address the violations.

2.2.2 Robust validation framework

Our framework is closely related to robust optimization. In traditional robust

optimization, input parameters belong to an uncertainty set, and the objective is

minimized across any parameter choice in the set [43, 44]. Further, recourse actions

may be considered that depend on the specific parameter value. In the networking

context, a typical recourse action involves rerouting traffic to handle a change in

traffic matrix or failure. The robust optimization literature considers limited forms

of recourse actions, primarily for tractability reasons, which may lead to more con-

servative estimates of worst-case performance (§2.4.4). In contrast, we model richer
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network adaptation, and tackle the resulting intractable problems. Prior approaches

can be seen as special cases of our more general framework discussed below:

Metrics to capture performance of network design. Our framework can val-

idate a variety of network metrics such as link utilizations, and bandwidth assigned to

latency sensitive flows. For concreteness, in this chapter, we focus on the utilization of

the most congested link (which we will refer to as Maximum Link Utilization (MLU),

a widely used objective function [28, 39, 42]. Though we do not discuss this exten-

sively, our framework also applies to other common metrics of link utilizations (e.g.,

sum of penalties assigned to individual links, where penalties are convex functions

of link utilizations [22, 25, 52]). We focus on utilizations given their extensive use in

the traffic engineering literature, and since they reflect application performance (e.g.,

throughput for bandwidth sensitive applications is inversely related to utilizations).

Characterizing uncertainty in network conditions. We seek to validate that

a network design performs well across demands and failure scenarios of interest. A

typical set of failure scenarios to consider is all simultaneous failures of F or fewer

links [22, 28]. The range of demands may be specified in multiple ways. A common

model is to specify a set of historical traffic matrices, and require that all demands

based on standard prediction models are considered. We formally discuss this model

as well as other models in §2.4.3 and §2.5.2.

Modeling how networks adapt. Networks may respond to failures, and changes

in demand by rerouting traffic in the best possible fashion to keep utilizations low.

This can be achieved by determining the optimal routing (MCF) for a given scenario.

This design point is becoming increasingly practical with the adoption of SDNs, given

that periodic reoptimization for network state is feasible. Other models may allow

adaptation, but with constraints. For instance, in the MPLS tunneling example, the

network may adapt by changing how traffic is split across pre-selected tunnels be-

tween each ingress and egress pair, though the tunnels themselves do not change.

This corresponds well to SDN deployments where only edge routers are SDN en-
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abled [53]. Finally, policy constraints (e.g., a requirement that a set of middleboxes

be traversed) may constrain how networks may adapt [50,51,54].

2.3 Formalizing robust validation

2.3.1 General problem structure

Let X denote the uncertainty set (possibly continuous and non-enumerable) of

demands, or failures over which a given network design must be validated. The

design includes all parameters that must remain invariant with changes in demands

and failures (e.g., network topology, selection of tunnels, placement of middleboxes).

For any given scenario x ∈ X, the network may adapt by routing traffic appropriately

as described in §2.2.2.

Let y denote the parameters determined by the network when adapting to scenario

x. This includes how traffic is routed – e.g., in the tunneling context, y includes

parameters that capture how traffic must be split across tunnels – though there may

be additional variables determined as we discuss in §2.3.2. Formally, the network

validation problem may be written as:

F ∗ = max
x∈X

min
y∈Y (x)

F (x, y) (2.1)

The inner minimization captures that for any given scenario x ∈ X, the network

determines y in a manner that minimizes an objective function F (x, y) from a set of

permissible strategies Y (x). For the fully flexible routing model, Y (x) corresponds

to strategies permitted by the standard MCF constraints [47], while for routing with

middlebox policies, only strategies that ensure the desired set of middleboxes are

traversed are permitted. The outer maximization robustly captures the worst-case

performance across the set of scenarios X, assuming the network adapts in the best

possible fashion for each x.

In this chapter, we focus on objective functions F (x, y) that minimize the MLU

as discussed in §2.2.2. We refer to (2.1) as the validation problem, since it can be
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used to verify that a chosen design meets a desired utilization goal. For instance,

when applied to topology design, F ∗ > 1 indicates the network is not sufficiently

provisioned to handle all failures and demands of interest.

For any given scenario x, the inner problem is typically easy to solve (a linear

program (LP)), since the network must compute y online to adapt to any failure or

shift in demand. The validation problem is however challenging since exponentially

many (and potentially non-enumerable) scenarios x must be considered.

2.3.2 Concrete validation problems

We next relate the general formulation (2.1) to two concrete case studies, chosen

both for their practical importance and to illustrate key ideas of the framework.

• The first case study validates topology design against failures, with the most

flexible network adaptation.

• The second example validates tunnel selection across variable demands, with

network adaptivity constrained to splitting traffic across pre-selected tunnels.

The examples illustrate the generality of our framework in terms of its ability to

consider both failures and demands (discrete and continuous uncertainty sets), and

different types of adaptivity models (flexible and more constrained). However, our

framework applies to a wider range of applications including simultaneously varying

demands and failures, other adaptation models such as middlebox constraints, and

other ways of combining adaptation models and uncertainty sets (§2.5).

We use the notation x = (xf , xd) where xf denotes a failure scenario and xd denotes

a particular demand, dropping superscripts when the context is clear. Likewise, we

use y = (r, U) where r denotes how traffic is routed, and U denotes utilization metrics

computed as a result. Since our focus is on minimizing MLU, the inner problem may

be expressed as miny∈Y (x) U , with constraints in Y (x) which express the requirement

that the utilization of every link is at most U . We now discuss how constraints Y (x)

are specified for our case studies.
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Fully flexible routing under uncertain failures. Let xfij be a binary variable

which is 1 if link 〈i, j〉 ∈ E (the set of links) has failed, and 0 otherwise. Since we

do not consider variable demands in this case study, we let dit denote the known

demand from source i to destination t. Let rijt denote the total traffic to t carried on

link 〈i, j〉. Let cij denote the capacity of link 〈i, j〉. Then, Y (x) corresponds to the

standard MCF constraints [47], and may be expressed as:

Ucij(1− xfij) ≥
∑

t
rijt 〈i, j〉 ∈ E

∑
j
rijt −

∑
j
rjit =

dit ∀t, i 6= t

−
∑

j djt ∀t, i = t

rijt ≥ 0 ∀i, j, t

(2.2)

The first constraint ensures that (i) the utilization of link 〈i, j〉 is at most U for all

non-failed links; and (ii) no traffic is carried on a failed link. The second constraint

captures flow balance requirements. Specifically, the net outflow from node i to

destination t is the total traffic destined to t when i = t, and dit otherwise.

Tunnel constraints and uncertain demands. Given a set of pre-selected

tunnels, let Tijstk be a binary parameter that denotes whether the link 〈i, j〉 is on

tunnel k for traffic from the source s to destination t. Let xdst denote the total s− t

traffic, and rstk the subset of this traffic on tunnel k. Then, Y (x) may be expressed

as:

Ucij ≥
∑

s,t,k
rstkTijstk 〈i, j〉 ∈ E∑

k
rstk = xdst ∀s, t; rstk ≥ 0 ∀s, t, k

(2.3)

The first constraint ensures that the utilization of every link is bounded by U . The

second constraint captures that the sum of the traffic on all tunnels k for each s− t

pair must add up to the total demand of that pair.
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Y (x) =

(r, U)

∣∣∣∣∣∣∣∣∣
γk(x)U ≥

∑
i∈I βik(x)ri k ∈ K∑

i∈I αij(x)ri ≥ δj(x) j ∈ J

r ≥ 0


F (x, r, U) = U

Fig. 2.1.: General structure of determining routes (r) for scenario x to minimize MLU

(U).

(W ) max
x,v,λ

∑
j∈J

δj(x)vj

s.t.
∑

j∈J
αij(x)vj ≤

∑
k∈K

βik(x)λk i ∈ I∑
k∈K

γk(x)λk = 1

x ∈ X, (vj)j∈J ≥ 0, (λk)k∈K ≥ 0

Fig. 2.2.: General structure of validation problem derived from Figure 2.1 as a single-

stage formulation.

2.3.3 Non-linear reformulation

The validation problem in (2.1) has been represented in a form referred to as a

two-stage formulation (e.g., [45]). In the two-stage problem, the optimal second-stage

variables (y) depend on the first-stage (x). We simplify this problem by re-expressing

it as a single-stage problem, where all the variables are determined simultaneously.

In many network validation problems, including our case studies, the inner prob-

lem miny∈Y (x) F (x, y) is an LP in variable y = (r, U) for a fixed scenario x. This is

reasonable because online adaptations of y must be computationally efficient. Fig-

ure 2.1 shows the general structure of the LP. Notice that the coefficients depend on

scenario x. For example, in the failure validation case study, αij(x), βik(x), and δj(x)
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(F ) max
v,λ,x

∑
t,i 6=t

dit(vit − vtt)

s.t. vit − vjt ≤ λij ∀t, 〈i, j〉 ∈ E∑
〈i,j〉∈E

λijcij(1− xfij) = 1

xf ∈ X; xfij ∈ {0, 1}; λij ≥ 0, 〈i, j〉 ∈ E

(V ) max
v,λ,x

∑
s,t
xdstvst

s.t. vst ≤
∑

〈i,j〉∈E
Tijstkλij ∀s, t, k∑

〈i,j〉∈E
λijcij = 1

xd ∈ X; λij ≥ 0, 〈i, j〉 ∈ E

Fig. 2.3.: Formulations of validation problems for failure case study (F), and tunnel

selection case study (V).

are constants while γk(x) is a linear function of x. For a specific value of x, the inner

problem is an LP.

It is well known that every LP (referred to as a primal form) involving a mini-

mization objective may be converted into an equivalent maximization LP (referred to

as a dual form) which achieves the same objective (assuming the dual is feasible) [55].

The validation problem can then be expressed as a single-stage formulation by:

1. Rewriting miny∈Y (x) F (x, y) as an equivalent maximization problem using LP

duality.

2. Adding the constraints x ∈ X to the dual form to capture the set of demands

or failure scenarios of interest.

Figure 2.2 shows the general structure of the validation problem as a single-stage

formulation. Notice that variables r and U in Figure 2.1 have been replaced by the
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dual variables λ and v. Moreover, x is now a variable since the problem validates

utilization over all uncertain scenarios.

Formulations (F) and (V) in Figure 2.3 capture the validation problem for our

case studies involving failures (2.2) and variable demands (2.3) respectively. At first

glance, both formulations appear non-linear – the objective in (V) involves products

of xd and u variables, while the second constraint of (F) involves a product of vari-

ables xfij and λij. In §2.4.2, we show that (F) can be written as an integer program

(IP) when X is the set of scenarios involving the failure of f or fewer links simulta-

neously. Regardless, both (V) and (F) are hard problems (non-linear non-convex and

IP respectively).

2.4 Making validation tractable

§2.3.3 has shown that the validation problems, including our case studies, are

typically intractable, Given the intractable nature of the problems, we do not solve

them to optimality, rather seek ways to obtain upper bounds on the true optimal of

(2.1). Since the purpose of validation is to ensure a design is acceptable, an upper

bound that satisfies the design criteria is sufficient.

We aim for a general approach to tackle a wide range of validation problems. In the

optimization literature, problems such as (2.1) are referred to as robust optimization

problems and have been tackled mostly for limited adaptations. Instead, we use non-

linear programming techniques, and show they achieve better bounds, a finding that

has applications beyond networking.

We introduce the approach in §2.4.1, and how it applies to our case studies in-

volving failures and variable demands in §2.4.2 and §2.4.3 respectively. Although

our framework is general, analysis of problem structure can substantially improve the

quality of bounds, as we will show for the failure case study in §2.4.2. Finally, in

§2.4.4, we compare our techniques with benchmarks drawn from the network man-
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agement and robust optimization literature, and show that our techniques can obtain

tighter bounds than these approaches.

2.4.1 Relaxing validation problems

Our approach works by relaxing the validation problems into more tractable LPs,

and obtaining an upper bound on the worst-case link utilizations across scenarios.

An optimization problem L is a relaxation of a problem N if every feasible solution

in N can be mapped to a feasible solution in L, and the mapped solution’s objective

value in N is no better than that of its mapping in L.

Reformulation-Linearization Technique (RLT) [46] is a general approach to relax

non-linear integer problems. The technique reformulates the problem by (i) adding

new constraints obtained by taking products of existing constraints; and (ii) lin-

earizing the resulting formulation by replacing monomials with new variables. For

our problem (W), RLT can be constructed as long as αij(x), βik(x) and γk(x) are

polynomial functions.

For example, consider a non-linear optimization problem where the objective is

to minimize xy − x + y subject to the constraints: (i) (x − 2) ≥ 0; (ii) (3 − x) ≥ 0;

(iii) (y − 3) ≥ 0; and (iv) (4 − y) ≥ 0. Products of pairs of constraints are taken

– e.g., the product of constraints (i) and (iii) results in a new derived constraint

(x − 2)(y − 3) ≥ 0, i.e., xy − 3x − 2y + 6 ≥ 0. The product term xy is replaced by

a new variable z. The objective is rewritten as z − x+ y, and the derived constraint

in the previous step expressed as z − 3x − 2y + 6 ≥ 0. The resulting problem is

linear, as it no longer has product terms. However, it is a relaxation in the sense

that constraints (e.g., z = xy) that must be present to accurately capture the original

problem are not included in the new problem.

The above represents the first step in a hierarchy of relaxations and the next steps

involve multiplying more than two constraints and linearizing as discussed above.

Further, the RLT hierarchy can be tightened using convex relaxations of monomials,
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which yield other well known hierarchies. As long as the set of inequalities in the

verification problem define a bounded set, higher levels of this hierarchy of relaxations

converge to the optimal value of the non-linear or integer program [46,56]. Since the

generated LPs can be large (more variables and constraints), we restrict attention to

the first level of this hierarchy. Further, in practice, it often suffices to consider a

subset of products even for the first level, which keeps the complexity of the resulting

program manageable.

2.4.2 Validation across failure scenarios

Here, we discuss the RLT relaxation technique for our failure case study (formula-

tion (F)). For concreteness, we consider all failure scenarios involving the simultaneous

failure of f or fewer links. This failure model is used commonly in practice [28]. We

discuss how to generalize the failure model later (§2.5). Incorporating this model re-

sults in replacing the constraint xfij ∈ X in (F) with the constraints
∑
〈i,j〉∈E x

f
ij ≤ f ,

and xfij ∈ {0, 1}.

Empirically, a simple RLT relaxation of the formulation does not yield a suffi-

ciently tight upper bound to the validation problem. Instead, we reformulate the

validation problem (F), and consequently derive constraints for the RLT relaxation,

as described below:

Reformulating the validation problem. We add variables to (2.2), in a way

that gives more flexibility in choosing solutions, but does not change the optimum.

Adding variables to a primal results in additional constraints to the dual. Conse-

quently, we derive constraints for (F) and the associated RLT relaxation LP, which
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are derived from the LP dual of (2.2), thus improving the bound on utilization.

Specifically, we reformulate (2.2) as follows:

Ucij(1− xfij) + aij ≥
∑

t
rijt 〈i, j〉 ∈ E

∑
j
rijt −

∑
j
rjit =

d
′
it ∀t, i 6= t

−
∑

j d
′
jt ∀t, i = t

rijt, aij ≥ 0 ∀i, j, t

d′it =

dij + aij 〈i, j〉 ∈ E

dij 〈i, t〉 6∈ E

(2.4)

We augment each link 〈i, j〉’s capacity with the extra (variable) slack capacity aij for

which we reserve the capacity along alternate paths in the network. In particular,

the first constraint allows up to aij of the traffic on link 〈i, j〉 to be bypassed on the

associated virtual link without counting it against the utilization of link 〈i, j〉. To

compensate for this, we increase the total traffic that must be routed from i to j by

aij, as indicated by the last constraint. It can be shown that (2.4) achieves the same

optimal as (2.2). Further, because any feasible solution to (2.2) is also feasible to (2.4)

(with slack variables aij being 0), (2.4) is more flexible in that it admits additional

solutions.

Following the procedure outlined in Figures 2.1 and 2.2, this reformulated primal

yields a reformulated validation problem (F’) which consists of (F) with constraints

λij ≤ vij − vjj, ∀〈i, j〉 ∈ E. Then, (F’) simplifies to:

(G) max
∑

i,t
ditvit

vit − vjt ≤ vij ∀t, 〈i, j〉 ∈ E (2.5)∑
〈i,j〉∈E

vijcij(1− xfij) = 1∑
〈i,j〉∈E

xfij = f (2.6)

vit ≥ 0, vtt = 0 ∀i, t (2.7)

xfij ∈ {0, 1}, 〈i, j〉 ∈ E (2.8)
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Proposition 2.4.1 Reformulation (G) achieves the same optimal value as the orig-

inal validation problem (F).

Proof Clearly, the optimal value of (G) is no more than that of (F’) because (G)

has the following additional constraints (i) for all 〈i, j〉 ∈ E, λij = vij, and (ii) and for

all nodes t, vtt = 0. Therefore, we only need to show that the optimal value of (F’)

is no more than that of (G). Let (λ∗, v∗, xf
∗
) be optimal in (F’). Denote by SPit(λ)

the shortest path between i and t with edge-lengths λ. For any path Pit connecting

nodes i and t, it follows from the first constraint in (F) that v∗it − v∗tt ≤
∑
〈i,t〉Pit

λ∗ij

and, so, minimizing rhs over paths yields v∗it − v∗tt ≤ SPit(λ
∗). For any link 〈i, j〉 this

implies that λ∗ij ≤ v∗ij − v∗jj ≤ SPij(λ
∗) ≤ λ∗ij, where the first inequality is from the

slack-induced constraint, the second inequality follows from discussion above, and

the third inequality because 〈i, j〉 is a valid path from i to j. Therefore, equality

holds throughout. Now, consider the solution (v′, xf
∗
) such that v′it = SPit(λ

∗). We

show that this solution is feasible to (G). Clearly, v′it − v′jt ≤ v′ij because the shortest

path from j to t can be augmented with 〈i, j〉 to yield a path from i to t. Next,

because v′ij = SPij(λ
∗) = λ∗ij, where the last equality was shown above, it follows

that
∑
〈i,j〉 v

′
ijcij(1 − xf

∗
ij) = 1. Moreover, v′it = SPit(λ

∗) ≥ 0 because λ∗ij ≥ 0

and, trivially, v′tt = SPtt(λ
∗) = 0. Therefore, (v′, xf

∗
) is feasible to (G). Finally,∑

i,t ditv
′
it =

∑
i,t ditSPit(λ

∗) ≥
∑

i,t dit(v
∗
it − v∗tt), where the equality follows from the

definition of v′ and the inequality by summing products of SPit(λ
∗) ≥ (v∗it− v∗tt) with

dit ≥ 0. Therefore, the optimal value of (G) is at least as large as that of (F’).

The proof shows that an optimal solution of (F’) satisfies vtt = 0, ∀t and vij =

λij, ∀〈i, j〉 ∈ E. The proposition then follows since (F) and (F’) achieve the same

optimal value having been derived respectively from primals (2.2) and (2.4) that

achieve the same optimal.

Although (G) is non-linear because the product vijx
f
ij is in the second constraint,

we note that (G) has a finite objective only if the minimum cardinality edge-cut set
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of the topology contains more than f links, a condition that can be verified in poly-

nomial time [57]. Moreover, we prove in the following proof that if f failures cannot

disconnect the nodes of the network, vij is bounded. Then, standard linearization of

vijx
f
ij that uses bounds on vij and xfij ∈ {0, 1} reduces (G) to a mixed-integer linear

program.

(G) can be formulated as an Integer Program after a polynomial time

verification of graph connectivity:

Proof The objective of (G) is not finite if the minimum edge-cut set contains f or

fewer links, a fact that can be verified in polynomial time [57]. Now consider that the

topology is not disconnected after any simultaneous set of f link failures. We show

that vit ≤ 1
cmin

, where cmin = min〈i,j〉∈E cij. To prove the bounds, let NF denote the

set of links that do not fail when the optimal value of (G) is achieved. For any pair

of nodes i and t, there exists a path (whose edges we denote as P ) on the failure of

this set of links. By adding the first constraint of (G) for all edges along P , vit =∑
〈i,j〉∈P vij ≤

∑
〈i,j〉∈NF vij. From the second constraint of (G),

∑
〈i,j〉∈NF vijcij = 1,

and hence
∑
〈i,j〉∈NF vij ≤ 1/cmin. The bounds follow.

Multiplying the bound constraints 0 ≤ vij ≤ 1
cmin

with xfij and 1 − xfij allows

us to linearize the above mixed-integer non-linear program into an integer program.

This is achieved by replacing vijx
f
ij with a new variable vxfij and observing that it is

automatically constrained to be vijx
f
ij when xfij ∈ {0, 1}.

Relaxing the validation problem. Since the validation problem (G) is still

intractable, we derive its first-level RLT relaxation as follows. First, the binary re-

quirement xfij ∈ {0, 1} is replaced by bound constraints, xfij ≥ 0 and (1 − xfij) ≥ 0.

Next, the product of these bound constraints is taken with (2.5) and (2.7) and the

product of (2.6) and (2.7) is taken. Finally, the nonlinear constraints are relaxed by

introducing vxfiji′j′ to denote vijx
f
i′j′ .
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2.4.3 Validation across traffic demands

We now consider the tunnel selection case study (formulation (V)) and the prob-

lem of verifying utilization against uncertain demands. We discuss two models for

specifying demands, and discuss the RLT relaxations.

Specifying demands. We consider two models:

• Predicted demand: This corresponds to scenarios when demands may be predicted

from past history, a commonly used practice today. Consider optimizing the system

for a set of known historical traffic matrices {dh}h∈H . As observed in [42], many

predictors including the exponential moving average estimate the traffic matrix for

a given interval as a convex combination of previously seen matrices. It may be

desirable to verify the system for the convex hull of {d1, d2, . . . dh}, which ensures

that all such predictors can be serviced with reasonable utilization. Specifically,

this may be modeled by replacing the constraint xd ∈ X in (V) by the constraints

xd =
∑

h∈H xhd
h, xh ≥ 0 and

∑
h∈H xh = 1.

• All demands that can be handled by the topology: It may be desirable to understand

the extent to which a topology must be over-provisioned if a tunneling solution is used

compared to using an optimal MCF solution. This may be modeled by replacing the

constraint xd ∈ X in (V) by the standard MCF constraints with xdst denoting demand

from source s to destination t, and xgijt a flow variable denoting traffic to t on link

〈i, j〉.

Obtaining the RLT relaxation. We obtain the RLT relaxation by taking the

product of (i) inequalities involving v and λ variables with constraints of the form

x ≥ 0; (ii) inequalities involving x variables with constraints of the for λ ≥ 0; (iii)

inequalities involving v or λ with inequalities involving x; and (iv) equalities involving

x variables with v variables.
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2.4.4 Comparisons to alternate approaches

A key novelty of our framework is that it provides theoretical bounds on network

performance across failures/demands, while allowing flexible adaptation. We can

show that each RLT constraint we introduce in the problem makes the adaptations

more flexible in a specific way. In contrast, prior theoretical work has focused on

limited forms of adaptivity and we use them as benchmarks for our RLT relaxation

approach. We show that our approach provides bounds that are at least as tight as

these prior theoretical works, and later show empirically (§2.6) that the bounds are

better in practice.

Oblivious approaches and generalizations. Oblivious routing [39, 42, 58–60]

bounds utilizations across all links for a set of demands, while limiting how the net-

work adapts to any given demand. While oblivious routing has mainly been consid-

ered in the context of MCF [39,42], the oblivious approach applies to other networking

contexts. For instance, in our tunneling case study, an Oblivious Tunneling formula-

tion constrains ystk (traffic on tunnel k from s to t) to be of the form ystk = αstkx
d
st,

where αstk is invariant across demands.

The robust optimization literature has considered a more general form of adap-

tation than an oblivious approach, which can enable tighter bounds on worst-case

link utilization [45]. Here, every variable yi (e.g., each ystk variable in our tunneling

example) that a network determines for a given scenario x, is constrained to have the

form yi = αi0 +
∑

j αijxj where all αij coefficients must be invariant with x. Note

that xj variables capture scenario x (e.g., in our tunneling example, x is a traffic

matrix, and each xj is a cell in the matrix). In optimization terminology, yi is an

affine function of x. Note that an oblivious approach is a special case of affine policies

where many of the α coefficients are zero.

We say the linearity requirement has been met when constraints Y (x), and objec-

tive F (x, y) are linear in (x, y). For example, in the tunneling case study, the con-

straints (2.3) and the objective, U , are linear in U , r, and xd. Further, the conditions
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are satisfied by the original oblivious routing [39,42], and while we do not elaborate,

by other case studies such as routing with middleboxes. When network adaptation

is restricted to affine policies, and the linearity requirement is met, an optimal set

of αij coefficients may be computed efficiently using LP to minimize worst-case link

utilizations [61]. We now state our result:

Proposition 2.4.2 When the linearity requirement is met, an optimal affine policy

can be efficiently computed. Under these circumstances, the first-level RLT relaxation

for a validation problem is at least as tight as the bound from the optimal affine policy.

The proof involves taking duals of the RLT relaxation. We do not elaborate

on the technical details, and focus on the implications for validation. Further, for

predicted demand (§2.4.3), Proposition 2.4.2 already implies that the first-level RLT

can provide as tight a bound as an oblivious approach. However, we have shown a

stronger result:

Proposition 2.4.3 For the predicted demand case, the first-level RLT relaxation is

an exact solution, while the oblivious solution may not always be exact.

Some of our case studies do not satisfy the linearity requirement. In particular,

the requirement is not satisfied for our case study involving failures (2.2) because the

first constraint in (2.2) involves a non-linear term (product of U and x). Under these

circumstances, an optimal affine policy may not be efficiently computable, and is thus

not a viable benchmark. However, our framework is still applicable (as our failure

case study has shown), since it only requires that the weaker condition that Y (x) is

linear in y variables for fixed x needs to be satisfied.

Benchmark for failure case study. R3 [28] tackles the validation problem

under failures, but with the more limited goal of determining whether a network can

handle all failures scenarios without congestion (i.e., whether MLU ≤ 1), and with

restrictions on how the network can adapt. R3 replaces failures with virtual demands

(the traffic to be rerouted on failures) and computes an oblivious protection routing

(MCF) for the virtual demand associated with each link. The formulation is only valid
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when MLU ≤ 1, since the virtual demand on each link is assumed to not exceed the

link capacity. In contrast, our formulation (G), and the associated first-level RLT

relaxation is valid for any MLU, which can aid in tasks such as determining which

failure scenarios are bad when the network is not sufficiently provisioned, and how

best to augment link capacities to handle failures (§2.6.3). When MLU ≤ 1, the

bounds from R3 are conservative for our validation problem owing to the restriction

on adaptations and since the impact of the failures is over-estimated. We have been

able to show:

Proposition 2.4.4 The first-level RLT relaxation of (G) provides at least as tight a

bound as R3, whenever R3 provides a valid bound.

In fact, we can impose similar restrictions as R3 on how traffic is rerouted in response

to failures by appropriately choosing a subset of RLT constraints. Yet, the MLU will

reduce because we optimally chose slack aij instead of assuming it is cij. The proof

of Proposition 2.4.4 considers a special affine policy for y = (r, U, a) in (2.4), where

U does not adapt with x and aij = αijxij. We show that all such policies that yield

U ≤ 1 can be made feasible to R3, and, therefore, the bound for R3 is no better

than the one obtained with this policy restriction. Since RLT encompasses search

over these policies, the result follows. We will show in §2.6 that RLT yields tighter

bounds than R3 whenever the network utilization is less than 1.

2.5 Aiding synthesis and generalizations

§2.4 has shown how our framework applies to two validation case studies. We

next discuss applications to robust design (§2.5.1), and to other validation problems

(§2.5.2).
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2.5.1 Augmenting capacities to bound utilization

To see how our validation framework can help in robust design, consider the prob-

lem of incrementally adding capacity to existing links to ensure all failure scenarios

of interest can be handled (with U ≤ 1), while minimizing the costs of augmented

capacity. We can extend (2.1) to model the capacity augmentation problem as follows:

min
δ≥0

max
xf∈X

min

 ∑
〈i,j〉∈E

wijδij

∣∣∣∣∣∣ (cij + δij)(1− xfij) ≥
∑

t rijt

r is a routing for d


where X is the set of failure scenarios, and δij and wij are respectively the incremental

capacity added to link 〈i, j〉, and the cost per unit capacity. Further, r is a routing for

d if r satisfies the flow balance constraints of an MCF formulation. Then, dualizing the

inner minimization problem results in a two-stage formulation whose inner problem

is an IP since X is a discrete set. However, using the RLT relaxation technique

presented in our framework, we replace the inner problem by an upper-bounding LP

which can be dualized to upper-bound the cost of augmentation. This yields an LP

based approach to conservatively augmenting capacity.

The above discussion also motivates an iterative approach to design. At each

iteration, we solve a capacity augmentation problem considering failure scenarios

identified in earlier rounds. Then, with the new capacities, we solve the failure val-

idation problem to identify additional failure scenarios and iterate. At any stage,

this provides a lower bound on the optimal capacity augmentation. Although the

iterative procedure works well empirically for capacity augmentation, in other robust

design problems, finding the worst uncertainty may be hard and the procedure may

require too many iterations. In contrast, the LP based approach presented above

always yields a conservative robust design quickly.

2.5.2 More general validation problems

In this section, we discuss how our framework can tackle other validation problems

beyond our case studies.
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Routing with middlebox constraints. Our framework may be used to obtain

bounds on MLU when routing is constrained to satisfy middlebox policies [50,51,54].

The requirement that traffic from s to t be routed across a series of middleboxes can

be modeled by associating each flow with a state variable which indicates a given

middlebox has been traversed. The state is modified by each middlebox on the path.

(2.2) is reformulated by introducing variables rijstφ which denote the flow on link

〈i, j〉 from s to t and for packets with state φ, and appropriately modifying the flow

balance equations, and capacity constraints. The validation problem may now be

formulated and solved across failures, or demands using the same approach as our

two case studies.

Simultaneously varying failures and demands. We may desire to ensure

utilizations are acceptable across any combination of failures and demands. This can

be achieved by directly taking (F), and replacing demand variables dst with variables

xdst, and adding constraints for both xd and xf using previously studied models. A

similar RLT relaxation applies in this case as well.

Handling shared risk link groups (SRLGs). We have considered a model

where at most f links fail simultaneously. In practice, multiple links may fail together

(e.g., a fiber cut may impact all links in the affected fiber bundle) [22]. The set of link

groups G is considered, and each group g is associated with a set of links that may fail

together. We introduce variables xfg which indicates whether a particular link group

has failed. The validation problem is modeled by considering formulation (F), and

replacing the constraints xf ∈ X with the constraints xfij = 1−
∏
〈i,j〉∈g,g∈G(1− xfg ),

where all xfij and xfg variables are binary, and
∑

g∈G x
f
g ≤ f . This captures that

link 〈i, j〉 has failed iff any group that it belongs to has failed, and at most f link

groups may fail simultaneously. To eliminate the product terms, the first constraint

can be linearized with the constraints xfij ≥ xfg , 〈i, j〉 ∈ g, g ∈ G, and the constraint

xfij ≤
∑
〈i,j〉∈g,g∈G x

f
g . An RLT relaxation may now be applied as normal. Alternately,

other linearized constraints can be derived from exploiting this relationship within

the RLT scheme that we do not detail.
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Fig. 2.4.: Validation across failure scenarios, comparing RLT and R3, for various

topologies.
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Fig. 2.5.: Latency CDF of different failure scenarios.

2.6 Evaluation

We evaluate the effectiveness of our framework in validating topology design under

failures (§2.6.1), and tunnel selection under variable demands (§2.6.4). We compare

our performance bounds with those obtained using existing approaches. Further, we

show we can (i) identify bad failure scenarios (§2.6.2), (ii) optimally augment network

capacity to handle failures (§2.6.3), and (iii) evaluate common design heuristics for

tunnel selection (§2.6.4).
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Table 2.1.: Topologies

Network Nodes Edges Date Link Capacity

Abilene 11 28 2004 homogeneous

ANS 18 50 2011 homogeneous

GEANT 41 118 2014 heterogeneous

We evaluate our work using real topologies obtained from the Internet Topology-

Zoo [35]. We focus on three topologies: Abilene, ANS and GEANT [62] (Table 2.1),

where Abilene and ANS have homogeneous link capacities, and GEANT has hetero-

geneous link capacities. All our LPs and IPs were run using CPLEX [63] (version

12.5.1.0). Our primary performance metric is MLU (§2.2.2) though we also consider

how MLU impacts latency through emulation on an SDN testbed (§2.6.2).

2.6.1 Validation across failure scenarios

We evaluate the efficacy of our approach for determining MLU across failure sce-

narios, comparing MLU bounds produced by our RLT-based LP (§2.4.2) with (i) the

IP (G) which can determine the optimal MLU value (§2.4.2); and (ii) R3 [28] (§2.4.4),

the best known current approach. (G) is an intractable problem used only for com-

parison, and the running time of both our RLT relaxation and (G) is shown at the

end of this section. We report the MLU returned by the R3 formulation instead of

just the binary decision of whether MLU ≤ 1 used in the original work. Recall R3

only provides valid bounds on MLU when MLU ≤ 1 (§2.4.4). We study failure sce-

narios involving f arbitrary link failures, f ranging from 1 to 3, which practitioners

indicated were important to consider. To ensure connectivity after multiple failures,

we eliminated one-degree nodes from ANS and GEANT topologies, and modeled each

edge as consisting of 2 sub-links of equal capacity for all topologies. The resulting

ANS (GEANT) network has 17 (32) nodes and 96 (200) edges.
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Table 2.2.: Average running time of the RLT scheme and the optimal IP for GEANT.

For the optimal IP, the average running time is computed with instances that com-

pleted in 2 hours.

# of Failures RLT (sec) IP (sec) % IP Completed

1 640.58 60.50 100

2 622.60 394.97 100

3 607.68 3890.16 60

4 598.31 – 0

5 586.79 – 0

We begin by presenting results with the Abilene topology using real traffic data [36].

Figure 2.4a shows the MLU for f = 3, for the RLT and R3 schemes for all traffic

matrices measured on April 15th, 2004, a day which experienced a wide variety of

traffic patterns. The MLU under normal conditions (no failures) is shown as a base-

line. The RLT scheme matches the optimal IP scheme for all traffic matrices, and

hence we do not present the IP scheme. The graph shows that several traffic matrices

stress the network to achieve MLU > 1, indicating it is not provisioned to handle all

three simultaneous link failures. Further, the RLT scheme achieves a tighter bound

than R3 for all cases where MLU ≤ 1, and unlike R3, it can provide valid bounds

even when MLU ≥ 1.

Figure 2.4b presents results for Abilene, but for f = 1 and 2. Again, the optimal IP

is not shown, since RLT matches optimal. The graph shows the MLU is under 1 for all

matrices, indicating the network can handle all possible 2 link failures. Moreover, RLT

achieves a tighter bound on MLU than R3 for all matrices. We repeat the experiments

with ANS and GEANT topologies. Since actual traffic matrices were not available

to us, we generated multiple traffic matrices for each topology using the gravity

model [37]. The traffic matrices were chosen so as to keep the link utilizations between

0.3 and 0.45 under normal conditions. Figures 2.5 presents the normalized MLU for
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R3 and RLT, relative to the optimal IP for each f . Boxplots depict variation across the

matrices. The graph shows that for all f and all traffic matrices, RLT always achieves

a normalized MLU of 1, indicating it always matches optimal. The normalized MLU

with R3 is higher, e.g., ranging from 1.15 to 1.57 for ANS f = 2. Note that results

for R3 are not shown for f = 3 because all traffic matrices with GEANT, and all but

2 matrices with ANS achieved an optimal MLU above 1, indicating the network was

not sufficiently provisioned for them. In contrast, the optimal MLU was under 1 for

f = 1 and 2, for both topologies, and all traffic matrices.

A surprising aspect of our results is that across all topologies and traffic matrices,

the RLT scheme matches the optimal IP. We have also investigated this further for

other synthetic topologies and other settings, and have found RLT to match optimal

across all the examples. We leave to future work further investigation of whether the

first-level RLT in fact can be proven to match the optimal for this case study, or if

counter-examples exist.

Running time. We report the running time (Table 2.2) from experiments with

GEANT, the largest topology in our set, on a machine with 8-core 3.00 GHz Intel

Xeon CPU and 94 GB memory. To create an even larger topology, we modeled each

edge as consisting of 10 sub-links of equal capacity. The resulting network has 32

nodes and 1000 edges. Table 2.2 shows the average running time of RLT and the

optimal IP using 10 traffic matrices generated by the gravity model. Since many IP

instances didn’t finish even after several hours, we set a 2-hour limit to the solver.

Results show that the running time stays stable for RLT, but explodes for the optimal

IP, as the number of failures increases. At f = 3, 40% of the IP instances did not

converge. At f = 4 and 5, none of the IP instances converged, and the gaps1 are

larger than 0.5 in all the cases, indicating that the IP solutions found by the solver

within 2 hours are still far from the optimal.

1gap = (UB - LB) / UB, where UB and LB denote the upper bound and the lower bound of the
optimal objective value.
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2.6.2 Impact of failures on application performance

Our validation framework can be used to identify failure scenarios that result in

high MLU, which could then be emulated on a network testbed to study application

performance metrics such as latency under such scenarios.

Finding bad failure scenarios. In general, it is hard to find failure scenarios

for the original validation problem (G) that result in a high MLU since it is an IP. A

random search is inefficient – e.g., for a certain Abilene traffic matrix, a brute-force

search revealed only 0.05% of 3-failure scenarios achieved MLU > 1, while 0.08%

cases achieved MLU > 0.8.

We use a branch and bound algorithm leveraging our RLT LP relaxation. At each

exploration step, the failure status of a subset of links is fixed at each node (in the

initial step, none of the links are fixed), and the relaxation LP is run to determine

a (possibly fractional) solution that results in the highest MLU for the LP. The link

with the highest fractional failure (say 〈i, j〉) is considered, and the LP is rerun fixing

xfij as each of 0 and 1. Branches where the MLU < 1 are pruned. Of the remaining

candidate unexplored nodes, the node with the highest MLU is visited. Ties are

broken by picking the node at the lowest level in the search tree. The process is
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run until an integral solution is found, and the search procedure could be continued

to determine multiple integral solutions. If the LP relaxation is tight, the search

procedure solves at most as many LPs as the number of edges in the topology to find

a failure scenario that results in the highest MLU, and our empirical experiments

show it takes much fewer steps in practice.

Emulation on an SDN testbed. We emulated the Abilene topology on Mininet [64].

Traffic was generated using the Ostinato traffic generator [65], and an actual Abilene

traffic matrix snapshot. We used the procedure above together with our validation

framework to identify multiple failure scenarios where MLU exceeded 1. Figure 2.6

presents measured Round Trip Time (RTT). Each curve corresponds to a failure sce-

nario, and shows a CDF of the median RTT across all source-destination pairs for

that scenario. The three curves to the right (black) represent failure scenarios iden-

tified by our framework with MLU > 1. To contrast, we show three other randomly

generated 3-link failure scenarios with lower MLU (red, and to the left – note the

curves overlap). The results illustrate that RTTs are significantly higher for the high

MLU scenarios identified by our framework.



36

2.6.3 Deriving valid capacity augmentations

Our robust validation framework also guides operators in how best to augment

link capacities to guarantee MLU < 1 across failure scenarios. As discussed in §2.5,

our framework can be applied in an iterative approach that achieves optimal, or may

be formulated as a single LP that does not guarantee optimality but solves efficiently.

Table 2.3 illustrates the iterative procedure for an Abilene traffic matrix under

three simultaneous link failures. Recall that each iteration consists of (i) a validation

step, which either certifies MLU ≤ 1 for the topology (augmented by capacity in-

crease suggested in prior iteration), or identifies a violating failure scenario; and (ii)

an augmentation step, which identifies minimum capacity augmentation needed to

handle all failure scenarios identified in prior iterations. The procedure terminates

when the validation step certifies MLU ≤ 1. The augmentation step is a small variant

of (2.2). For a given scenario, the capacity augmentation problem is easy to model

and solve as a linear program. Specifically, (2.2) is modified by setting the utilization

bound U = 1, and replacing capacity cij with cij + δij, where δij is the incremental

capacity that must be added to link 〈i, j〉. The objective is
∑

ij wijδij, where wij is

the cost associated with each unit of capacity added to link 〈i, j〉. The formulation is

easily extended to multiple scenarios, by replicating the set of constraints (2.2) mod-

ified as above, for each scenario. Practical cabling constraints that constrain which

links can have their capacity augmented and by how much are easily incorporated by

adding bounds to δij.

We have also formulated the problem as an LP with the stricter requirement

that the RLT relaxation of the validation problem achieves MLU ≤ 1 (§2.5). The

LP achieves the same optimal augmentation as the iterative approach above, which

is not surprising given that in all instances we have tried the integrality gap has

been 1. More generally, the design LP yields an augmentation cost no worse than

αOPT + (α − 1)BASE, where OPT is the optimal augmentation cost, BASE is the

cost of the base network and α is the integrality gap of the RLT relaxation.
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Fig. 2.8.: MLU of RLT framework and Oblivious Tunneling (OBL-TUN) for different

tunnel designs and topologies.

2.6.4 Validation across traffic demands

We next consider how our approach can validate that utilizations are acceptable

across demands, focusing on the tunneling case study. For each topology, we consider

tunnels pre-selected using the following strategies:

Non-robust strategies. These strategies pick tunnels without explicitly consid-

ering tolerance to a range of demands. Specifically, we consider: (i) K-shortest: Here,

the K shortest paths between each source and destination pair are chosen. Prior

works [4, 48] have used this approach to generate an initial candidate set of tunnels,

and [4] ultimately picks a subset in a demand-sensitive manner; (ii) Shortest-Disjoint:

Here, the shortest path is selected. Among other paths, one that overlaps the least

with prior choices is selected in an iterative fashion. Combining path lengths and

disjointness is a natural approach to tunnel selection [66].

Robust strategies. We also consider a heuristic called Robust, which derives

tunnels by decomposing the optimal oblivious routing [67]. To generate a set of

tunnels by decomposing the optimal oblivious routing, a derived graph is considered

which has the same nodes and edges as the original topology, but with each edge

having a weight equal to the flow from the oblivious routing. The widest path (the

path with the highest bottleneck link capacity) is chosen as a tunnel. The bottleneck

capacity of this path is now decremented from all other edges on this path in the de-
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rived graph. This procedure is repeated until k tunnels are obtained. Since oblivious

routing derives an MCF that performs well across all demands, tunnels derived from

such a flow have the potential to perform well across demands.

For each tunnel selection approach, our goal is to determine MLU with an adaptive

strategy, where traffic is split optimally across tunnels for each demand by solving

(2.3). Since the associated validation problem is non-linear, we obtain bounds on

MLU using (i) our RLT-based framework and (ii) an Oblivious Tunneling formulation

(abbreviated as OBL-TUN) which minimizes MLU across all demands under the

constraint that the fraction of traffic on each tunnel cannot vary with demand (§2.4.4).

While both the RLT framework and OBL-TUN provide upper-bounds on the actual

MLU, our framework can also be used to derive a lower bound. Specifically, we

solve (V) after fixing the demand to the worst-performing demand for the RLT (or

oblivious) relaxation. While this already provides a lower bound, we improve the

initial lower bound using a local search procedure on (V), which involves alternating

minimization on (v, λ) and xd. These are tractable problems since (V) is linear if

either (v, λ) or xd are fixed.

Results. We evaluate a total of six schemes, combining our three tunnel selection

heuristics with the two ways to obtaining bounds on MLU. For the set of demands,

we consider all demands that can be routed with given capacities (§2.4.3). An MLU

higher than 1 indicates the amount of over-provisioning required if tunneling were

used to support all demands that the topology could handle with MCF routing.

Figures 2.8a, 2.8b and 2.8c present the MLU across all traffic demands for each

of three strategies and three topologies, and different number of selected tunnels (K).

Each cross shows the upper bound determined by OBL-TUN, while the vertical bar

shows the upper and lower bounds obtained with our RLT-based framework. For

GEANT, our current RLT implementation had a high memory requirement that can

be addressed using standard decomposition techniques [68] in the future – hence we

only report upper bounds achieved by OBL-TUN.
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Table 2.3.: Iterative optimal capacity augmentation for Abilene (Figure 2.7). Each

row shows MLU and counter example generated by the validation step, and the total

capacity that must be added across all links as per the augmentation step to address

all prior counter-examples. H (F) indicates one (both) sub-link(s), (each initially 5

Gbps) associated with the edge fails.

Step Counter Examples MLU Total New Capacity

1 (1, 10, H), (2, 9, F ) 1.274 2.744 Gbps

2 (2, 9, H), (1, 10, F ) 1.274 5.488 Gbps

3 (9, 8, H), (10, 7, F ) 1.217 7.653 Gbps

4 (10, 7, H), (9, 8, F ) 1.217 9.818 Gbps

5 (0, 2, H), (1, 10, F ) 1.192 11.743 Gbps

6 (1, 0, H), (1, 10, F ) 1.071 12.452 Gbps

7 (7, 6, H), (8, 5, F ) 1.006 12.509 Gbps

8 (8, 5, H), (7, 6, F ) 1.006 12.566 Gbps

9 – 1.000 –

Several points can be made. First, our RLT framework often obtains tighter upper

bounds than OBL-TUN strengthening Proposition 2.4.2. For example, for Abilene

with K = 2, and Shortest-Disjoint tunnel selection, the upper bounds with OBL-

TUN and the RLT framework are 3 and 2.4 respectively. Second, by providing lower

bounds as well, our framework can exactly solve the non-linear problem (V) in quite

a few cases. For instance for Abilene and the K-shortest heuristic, a single horizontal

line is shown for K = 3 and higher, indicating that our framework can determine the

optimal MLU.

Third, through a combination of lower and upper bounds, our framework can

provide valuable insights on tunnel selection heuristics used by system practitioners.

For example, for K-shortest K = 6, not only does our framework determine exact

MLU, but also the MLU is the same as OBL-TUN. This indicates that when tun-
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nels are selected using K-shortest, adapting how traffic is split across tunnels with

demand performs no better than a non-adaptive approach. The trend is particularly

pronounced for GEANT where our framework indicates the lower-bounds on MLU

are higher than 16 even for K = 6, and very close to the oblivious solution. While

recent work has suggested picking the K shortest tunnels and then picking a subset

in a demand-sensitive manner [4], this result shows the possibility for this heuristic

to perform poorly under certain demand patterns. The Shortest-Disjoint heuristic

performs much better for Abilene and ANS, but performs poorly for GEANT – for

K = 6, the lower bound is 7.05, close to the MLU of 7.59 with an oblivious approach.

While the non-robust design strategies perform poorly, Robust performs much bet-

ter. The benefits are particularly stark for GEANT, e.g., for K = 6, the MLU ranges

between 1.54 and 2.05. We have also experimented with robust tunnels and predicted

demands obtained from real traffic matrices that are scaled so as to stress the Abi-

lene network. The RLT framework achieves the optimal MLU (Proposition 2.4.3).

OBL-TUN however results in MLU that is 6.84 times worse than optimal. Overall,

these results show the value of our RLT-based framework.

2.7 Related work

Like work on network verification (e.g., [31, 32]), robust validation ensures that

network designs meet operator intent. While verification efforts have focused on

correctness of the network data-plane, and switch configurations, robust validation

is an early attempt at verifying quantifiable network properties. Our framework

complements topology synthesis tools [29] by allowing specification of robust design

requirements, and providing the underlying optimization substrate.

Prior work on traffic engineering has focused on adaptive settings [69, 70] or has

derived a robust routing that optimizes for multiple demands assuming that the

routing does not change across demands [23, 39, 42, 71]. Robust routing schemes

include oblivious schemes which do not use prior traffic data (e.g., [23,39]), that route
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based on multiple historical traffic matrices (e.g., [71]), and those that combine these

techniques [42]. Oblivious schemes arose from pioneering work in the theoretical

computer science community [40, 41]. In contrast, we obtain worst-case utilization

bounds for network designs, where topology and tunnels are invariant, but routing

may adapt in practical yet richer ways. It has been shown that adaptive tunnels

may, in the worst-case, not benefit much relative to oblivious routing [67]. Instead,

we show that provable gains are achieved for specific topologies which have also been

observed in practice [72].

Several works have looked at traffic engineering in the presence of failures [18,22,

23, 28], and we have extensively compared our work with [28]. [22, 23] studied par-

tial adaptation to failures as a way to balance flexible adaptation with the cost for

adaptation. [18] optimizes bandwidth assignments to flows, guaranteeing that no con-

gestion occurs with failures. While we do not elaborate, this model can be expressed

using our framework. Prior work [25] developed ways to choose OSPF weights which

are robust to single link failures. In contrast, we allow flexible adaptation, minimize

MLU, and aid robust design of networks that cope well with failures.

Many recent works have looked at how traffic must be routed in the presence of

middleboxes (e.g., [50, 51, 54]). There is a growing trend for virtualization of mid-

dleboxes, which may allow placements to change on the fly [51, 73]. Our framework

can accommodate problems that adapt routing to handle uncertain demands/failures

while satisfying middlebox constraints both for fixed placements, and when allowing

placements to adapt along with routing.

Beyond networking, the complexity status of robust optimization formulations has

been investigated and tractable formulations derived for various special cases [43,44].

Recent literature has considered limited adaptability in robust binary programming

applications including supply chain design and emergency route planning [74,75]. In-

stead, our work considers more general forms of adaptivity, focuses on the networking

domain, and brings relaxation hierarchies from non-convex optimization to bear on

robust optimization problems.
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2.8 Conclusions

In this chapter, we have made three contributions. First, we have presented

a general framework that network architects can use to validate that their designs

perform acceptably across a (possibly exponential and non-enumerable) set of failure

and traffic scenarios. Second, by explicitly modeling richer ways in which networks

may adapt to failures, and traffic patterns, we have obtained tighter bounds on MLU

than current theoretical tools, which consider more limited forms of adaptation for

tractability reasons. Third, we have demonstrated the practical applicability of our

framework. While the first-level RLT can provably solve the validation problem

for predicted demand, surprisingly, it also determines optimal MLU for for all our

experiments with the failure case study. Empirical results confirm that our techniques

consistently out-perform oblivious methods that can be unduly conservative. Finally,

our framework can enable operators to understand performance under failures, guide

incremental design refinements, and shed new light on commonly accepted design

heuristics. Our initial results encourage us to explore larger networks, study the

quality of bounds on other validation problems, and consider network design more

extensively in the future.
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3. GENERALIZED ROBUST NETWORK VALIDATION

In the previous chapter, we conducted two case studies in robust network validation:

f simultaneous link failures and variable demands. In this chapter, we will explore

a wider set of case studies, including shared-risk link group (SRLG) failure, hetero-

geneous link failure, partial link failure, route restriction, and multiple traffic classes.

In the wide-area network context, the common sources of failures are IP links, IP

routers, and optical related failures [8–10, 76]. The last two categories can simulta-

neously impact multiple links, and constitute an SRLG [8, 22]. Failures of different

SRLGs are typically independent [8]. Partial link failures may impact part of the

capacity of an IP link, and may occur because each IP link is usually provisioned

as multiple sub-links with different failure modes (e.g., attached to different router

line cards). Finally, failure probabilities may vary across devices and links [8–11,76],

owing to the underlying technology, whether a link is terrestrial or trans-oceanic, and

possibly age of equipment. We will detail the modeling of different failure patterns

in §3.1.

In practice, certain routing in a network may not be allowed. For instance, in a

network comprising of core routers and edge routers, network architects may impose

a policy that traffic sourced from edge router s and destined to edge router t must

not traverse a third edge router, i.e., traffic entering into an edge router from core

routers must not go back to core routers. We will illustrate how to integrate route

restrictions into modeling network response in §3.1.

Additionally, previous network response model focuses on using the utilization of

the most congested link (i.e., Maximum Link Utilization, or MLU) as the performance

metric, and the traffic matrix belongs to a single traffic class, whereas in this chapter

we discuss the network performance using a throughput metric that we define later.

To study all these variants of network robust validation, we propose a generalized
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network model (§3.1), which is capable of describing the aforementioned different

failure patterns, route restriction, and multiple traffic classes, in a single model.

The previous chapter also leaves two questions open: (i) How effective is robust

validation in providing tight bounds under different failure and traffic models? (ii)

Deriving RLT is manual and error-prone. Can the process of conducting RLT be

automated to enable experiments on richer case studies? This chapter resolves these

two questions in the following sections.

3.1 Network model

Recall that in §2.3.1, we define a robust network validation problem as the follow-

ing, where X denotes the uncertainty set, Y (x) denotes the network adaptation. i.e.,

the routing permitted, and F (x, y) stands for the performance metric. Note that we

use min max here (compared to max min in the previous chapter), because we now

optimize for throughput performance metric instead of MLU in the previous chapter.

F ∗ = min
x∈X

max
y∈Y (x)

F (x, y) (3.1)

To study robust network validation problem under richer failure patterns, route

restriction, and multiple traffic classes, we propose a generalized network model called

Generalized Maximum Concurrent Flow (GenMaxCF). It is a generalization of the

well-known Maximum Concurrent Flow (MaxCF) model [77]. The MaxCF problem

maximizes throughput (the ratio of the flow between a pair of entities to the predefined

demand for that pair, which must be the same for all pairs), subject to capacity

constraints. In this chapter, we focus on the GenMaxCF model because it provides

more flexibility in terms of how traffic can be routed, captures richer failure models

of interest to practitioners, and is feasible in SDNs which allow for flexible response.

We show the difference between GenMaxCF and the network models in the previous

chapter in Table 3.1. Moreover, we will illustrate that GenMaxCF provides tighter

bounds than the network model in the previous chapter in Section 3.1.1.
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Table 3.1.: Differences between Generalized Maximum Concurrent Flow (Gen-

MaxCF) model and model (F) (§2.3.3).

Network models GenMaxCF Model (F), §2.3.3

Uncertainty set (Partial) link failure, SRLG, Link failure

or heterogeneous link failure

Adaptation Edge-core Multi-commodity

route restriction flow

Metric Throughput Utilization of

most congested link

Number of traffic classes Multiple Single

3.1.1 Generalized Maximum Concurrent Flow model

Given demands for a set of traffic classes, GenMaxCF models network response as

seeking to determine how to route each flow, so all traffic of higher priority classes can

be accommodated, while maximizing the fraction of demand for a lower priority class

that can be met. This models SDN controllers [3, 4] that prioritize latency-sensitive

traffic and throttle elastic traffic.

Consider a network with link set E, where each link 〈i, j〉 has nij units of band-

width with each unit having capacity cij. Assume xfij (≤ nij) units of that link have

failed. Further, let there be M classes of traffic, where dkst denotes the total traffic

from source s to destination t for class k (lower k denotes higher priority). The net-

work determines rijt (the traffic destined to t over link 〈i, j〉 across all classes and

sources) so that the highest fraction, Z, of class k traffic is handled besides all traffic
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from higher priority classes. The network thus solves maxy=(r,Z)∈Y (x) Z, where Y (x)

is as below:

cij(nij − xfij) ≥
∑

t,〈i,j,t〉∈S

rijt ∀〈i, j〉 ∈ E

∑
j,〈i,j,t〉∈S

rijt −
∑

j,〈j,i,t〉∈S

rjit ≥
M−1∑
k=1

dkit + ZdMit ∀i, t, i 6= t

rijt ≥ 0 ∀〈i, j, t〉 ∈ S

(3.2)

The first constraint models that traffic on a link does not exceed capacity (ac-

counting for failures). The second constraint models flow balance. The set S captures

routing restrictions that limit links 〈i, j〉 which can carry traffic destined to t. For

instance, consider backbone routers in a PoP, connected by a set of edge routers.

Typically, traffic from a core router i is forwarded to an edge router j only if j is the

destination. The model may return a negative Z if traffic of classes M − 1 and lower

cannot be handled. The formulation may be iteratively used with a binary search

procedure to identify the lowest priority class that can be handled.

Reformulation. Applying the similar reformulation technique described in §2.4.2,

we reformulate GenMaxCF introducing variables to model capacity reservation along

alternate routes for links that may fail. Then we dualize the modified model resulting

in the following non-linear minimization problem:

(R) min
v,x

∑
〈i,j〉∈E

vijcij(nij − xfij)−
∑
t

∑
i,i 6=t

M−1∑
k=1

dkitvit

s.t.
∑
t,i 6=t

dMit vit = 1

vit − vjt ≤ vij ∀〈i, j, t〉 ∈ S

vit ≥ 0 ∀i, t, i 6= t

x ∈ X

(3.3)

Here, we use x to denote failure variables associated with links, and more generally

SRLGs. Further, v are dual variables, and x ∈ X represents a set of constraints that

model the failure set X, which we detail in Table 3.2.
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Table 3.2.: Constraints for various failure models.

Homogeneous link
∑
〈i,j〉∈E x

f
ij = f

model; f links fail xfij ∈ {0, 1} 〈i, j〉 ∈ E

Heterogeneous link
∑

ij x
f
ij ≤ fk 〈i, j〉 ∈ Lk,

model; L link 1 ≤ k ≤ L

categories; fk links xfij ∈ {0, 1} 〈i, j〉 ∈ E

fail in category Lk

SRLG model
∑

k∈G x
g
k = f

f SRLG failures xgk ≤ xfij k ∈ G, 〈i, j〉 ∈ gk∑
k∈G,〈i,j〉∈gk x

g
k ≥ xfij

xgk, x
f
ij ∈ {0, 1} g ∈ G, 〈i, j〉 ∈ E

Partial link failure model
∑
〈i,j〉∈E x

f
ij = f

f units fail across links xfij ∈ [0, nij], x
f
ij ∈ Z 〈i, j〉 ∈ E

Table 3.3.: Edge-core route restriction

Name Definition

E Set of all links

V Set of all nodes

I Set of core (internal) nodes

S1 = {(i, j, t)|(i, j) ∈ E, t ∈ V, i 6= t}

S2 = {(i, j, t)|(i, j) ∈ E, i ∈ I, j ∈ V − I, t ∈ V, j 6= t}

S = S1 − S2: The set of (i, j, t) where (i, j) is allowed to carry traffic to t

Route restriction. Generally, route restriction can be expressed by the set of all

permissible 〈i, j, t〉 pairs (set S in model (R)). For example, edge-core network routing

restriction described in the beginning of this chapter is illustrated in Table 3.3.



48

Intractability of network validation. We first show that the problem of deter-

mining whether all scenarios in an uncertainty set X achieve acceptable performance

when a centralized scheme is used (i.e., model (F) in §2.3.3) is NP-complete, a previ-

ously open problem [28].

Proposition 3.1.1 Consider that the network response for any failure scenario is an

optimal multi-commodity flow that minimizes MLU. Then the problem of determining

whether the worst-case MLU over all f link failure scenarios is less than U t (the

desired performance threshold) is NP-complete.

Proof sketch. The proof involves a reduction from the Cardinality Maximum Flow

Network Interdiction Problem (CMFNIP) [78], where an enemy moves as much of a

single commodity as possible from a node s to t in a network where edge 〈i, j〉 has

capacity cij. An interdictor must decide whether there is a collection of R arcs in

the network such that breaking them will ensure that enemy cannot transmit more

than M flow. The CMFNIP problem is known to be NP-hard by a reduction from

the MAX CLIQUES problem [78].

Proof First, the problem (that we denote as RV) is in NP. Given a particular f

link failure scenario, MLU can be checked to not exceed U t by solving an LP, in

polynomial-time, on a reduced graph with corresponding links deleted.

To show that RV is NP-hard, we reduce, to an instance of RV, the Cardinal-

ity Maximum Flow Network Interdiction Problem (CMFNIP) [78], where an enemy

moves as much of a single commodity as possible from a node s to t in a network

where edge 〈i, j〉 has capacity cij. An interdictor must decide whether there is a

collection of R arcs in the network such that breaking them will ensure that enemy

cannot transmit more than M flow. The CMFNIP problem is known to be NP-hard

by a reduction from the MAX CLIQUES problem [78].

Our reduction relies on the simple fact that scaling all the demands in a network

increases the utilization of links by the same factor. Given a CMFNIP instance, we

construct an instance of RV on the same graph where each edge retains the same
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capacity, but the demand between s and t is scaled down to 1 while demand between

remaining nodes is set to zero. Then, based on the observation above, the CMFNIP

instance admits a flow of M if and only if the MLU of the corresponding RV instance,

with R failures, is at most 1
M

. Therefore, to solve the CMFNIP instance it suffices to

check the latter condition.

We next present results that shed light on the tractability of (R). We denote by

RMH the special case of R with f homogeneous link failures and MaxCF, a special

case of GenMaxCF as network response. We have the following result.

Lemma 3.1.1 Determining whether the worst-case throughput of RMH < Z is NP-

complete.

We omit proofs, but note that this claim follows since the throughput metric is the

reciprocal of the utilization metric. We next present a stronger result for the SRLG

model, where a failure results in all associated links of a group failing. We denote R

with f group failures and MaxCF recourse as RMS.

Proposition 3.1.2 Finding whether the optimal value of RMS < Z is NP-complete

even for the special case of a two-node undirected graph with parallel links.

Proof The proof follows by a reduction from the set-cover problem. First, the

decision problem is in NP. Given a particular k-group failure scenario, we consider

the graph obtained by deleting links in all the groups, determine the MCF using a

polynomial time algorithm, and verify that RMS < Z.

To show it is NP-hard, we do a reduction from the set cover problem. Given a set

of elements {1, 2, . . . n} called the universe N , and a collection S of subsets of this

set, the set cover problem seeks to find if there exists a cover C such that C ⊆ S,

|C| ≤ k, and the union of all sets within C is N .

Given an instance of the set-cover problem, we construct an instance of the failure

group problem as follows. Consider a topology with two nodes A and B, and n edges

between them, with each link corresponding to one element in N . Each edge has
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capacity c, and there is unit demand between the nodes. Further, for each subset

Si in S, define a failure group Gi which consists of all the links corresponding to Si.

Then, we show that a cover C with |C| ≤ k exists iff the topology can be disconnected

under k simultaneous group failures (i.e., its utilization exceeds 1/c under failure).

Let’s assume a cover with |C| ≤ k exists. The failure of all corresponding groups

would disconnect the above topology. To prove the reverse direction, let’s say the

topology gets disconnected under the simultaneous failure of k groups. Take the

corresponding sets in S. Their union is N , and the sets would constitute a valid

cover.

Since (R) is intractable, we obtain a conservative (lower) bound by relaxing it into

a linear program (LP) obtained by multiplying pairs of constraints and replacing the

non-linear terms with new variables (§2.4.1, the first level of the RLT relaxation [46]).

Next, we discuss how to improve bound quality by augmenting (R) with bound con-

straints on v variables and their products with constraints involving xf .

Tightening bound quality. The intractability of (R) guided us in deriving

even better bounds. For instance, for special graph constructions inspired by the NP-

hardness proof of deterministic interdiction [79], we observed larger than expected

gaps between the relaxation for RMH and its true optimal. We discuss the details in

the case study later this section. To address this, we show the following.

Proposition 3.1.3 Augmenting RMH with the constraint vit ≤ 1/d1min ∀i, t, i 6= t,

where d1min = mini,t{d1it | ∀d1it > 0} does not alter its optimal value.

When dlit > 0, the bound on vit follows from the first constraint in (R). When

there is a single traffic class, we show that if, dlit = 0, and the optimal vit violates

the bound, there exists an alternate optimal solution that satisfies the constraint.

Finally, we show that RMH along with the constraints in Proposition 3.1.3, yields

a relaxation that (i) provides tighter bounds relative to RMH for the special graph

constructions (see the case study later); and (ii) works well in practice (see §2.6).
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With an augmentation, Proposition 3.1.3 can generalize to models with two traffic

classes, which we omit the proof.

Case study: topologies where the augmenting constraint is necessary.

As discussed in Proposition 3.1.3, augmenting RMH with an extra constraint tightens

the bound quality. In this section, we demonstrate the necessity of the augmenting

constraint in a set of specially constructed topologies, which is first described in [79].

The series of topologies are generated with two parameters, κ and µ [79]. An

example of the topology when κ = 2 and µ = 4 is shown in Figure 3.1. We have

experimented the model (R) both with and without the augmenting constraint on

various settings of κ and µ and different number of link failures, using a traffic matrix

with only s sending a unit flow to t. The result is shown in Table 3.4. We observe

that for the topology with κ = 1 and µ = 1, even the results obtained with model

(R) without the extra bounding constraint match the optimal. For the topology with

κ = 2 and µ = 4, starting from 2 link failures, the results obtained with model (R)

without the bounding constraint are zeros, i.e., the relative gap is in fact infinity

compared to the optimal value. Instead, augmenting model (R) with the bounding

constraint tightens the bound quality to matching the optimal in all the cases except

f = 5, where the optimal throughput is 4, and (R) with the augmenting constraint

achieves 3. This case study demonstrates the effectiveness of tightening model (R)

with the bounding constraint described in Proposition 3.1.3.

3.2 Toolkit

We have shown that GenMaxCF is a general network response model which applies

to various failure models and network adaptations. Since the relaxation process will

differ for each combination of failure model and network adaptation policy, it then

becomes critical to automate the relaxation process, i.e., to automate RLT. We build

a toolkit which highlights the following features: (i) automating the RLT process

for different failure models and route restriction policies; (ii) providing user-friendly
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Fig. 3.1.: An example of the topology when κ = 2 and µ = 4 (Figure 1 in [79]).

Table 3.4.: Throughput obtained with model (R), with and without the augmenting

constraint in Proposition 3.1.3.

κ µ Number of failure Optimal value With bound Without bound

1 1 0 2 2 2

1 1 1 1 1 1

2 4 0 70 70 70

2 4 1 54 54 54

2 4 2 38 38 0

2 4 3 22 22 0

2 4 4 6 6 0

2 4 5 4 3 0

APIs; and (iii) supports higher level of RLT. The toolkit is developed in Python
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Table 3.5.: APIs provided by the toolkit

Definition Effect

RLT reformulate(model, constr pairs, constraints) Linearize and relax model

Linearize(expr) Linearize the expression

leveraging the framework of Pyomo [80], but note that the idea of RLT automation

is general and does not depend on specific programming languages or software.

3.2.1 APIs

We design user-friendly APIs, which take users’ non-linear models as the inputs,

and output the linearized and relaxed models using RLT (§2.4.1). The API definition

is presented in Table 3.5. The users only need to call RLT reformulate on their

original non-linear models and will get the linearized and relaxed models processed

by RLT. We rely on users to provide the original non-linear model complying with

model (R), an array of constraint pairs which need to be taken products, and an

array of all original constraints. The model provided by the user should comply to a

canonical form: (i) all constraints must be written in the form of left hand side ≥ 0;

(ii) bounding constraints for all variables must be explicit. For instance, for a binary

variable x, we must put both the bounding constraints x ≥ 0 and x ≤ 1 explicitly in

the model, which can later be used in RLT. The APIs can also perform higher level

of RLT in addition to the first level. For instance, the model could have constraints

containing terms with degrees higher than two (e.g., x2y − x− y − 1 ≥ 0).
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For concreteness, we present the following code snippet to illustrate how users

can leverage these APIs to reformulate a simple non-linear model described in Equa-

tion 3.4.

min
x,y

xy − x+ y

s.t. 0 ≤ x ≤ 3

0 ≤ y ≤ 4

(3.4)

# Based on Python 2.7 and Pyomo 5.0

# Package importing omitted

# Original model definition is omitted. Assume we get an object called

# ‘instance’, which carries all the variables, constraints, and

# the objective of the formulation.

# Do RLT relaxation

all_constraints = [instance.eq1, instance.eq2,

instance.eq3, instance.eq4]

constr_pairs = [

(instance.eq1, instance.eq3),

(instance.eq1, instance.eq4),

(instance.eq2, instance.eq3),

(instance.eq2, instance.eq4)]

rlt.RLT_Reformulate(instance, constr_pairs, all_constraints)

# Create a solver

opt = SolverFactory(solver)

results = opt.solve(instance)

print results

In the code snippet, we can see that users only need to add a few extra lines to

define the constraint pairs which they request to take products, and reformulation
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Fig. 3.2.: The process of RLT.

and linearization are done with the simple API call of RLT Reformulate. Under the

hood, the rlt module conducts RLT process as depicted in Figure 3.2.

3.2.2 RLT automation implementation details

The key to RLT automation is how to efficiently multiply two constraints, because

constraint multiplication may need to be performed millions of times during an RLT

process. We refer to the vector formed by all the coefficients of a constraint left-

hand-side expression as coefficient vector, and the vector formed by all the terms as

term vector. Each constraint’s left-hand-side can be viewed as the inner product of

coefficient vector (vc) and term vector (vt). When we multiply two constraints, we

actually perform vector multiplication. For instance, say we multiply x + 5 ≥ 0 and

y − 3 ≥ 0. The coefficient vector of the first constraint is v1c = [1, 5], and the term

vector is v1t = [x, 1]. The coefficient vector of the second constraint is v2c = [1,−3], and

the term vector is v2t = [y, 1]. The product of these two constraints is
∑

i,jM
c
ijM

t
ij ≥ 0,

where M c = (v1c )
Tv2c , M

t = (v1t )
Tv2t . This mathematical view is useful in improving

the performance of RLT automation, because the essence of constraint multiplication

is matrix multiplication, and all techniques that accelerates matrix multiplication can

be applied to accelerate RLT automation.
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We also need to maintain a symbol mapping from all the non-linear terms to

linearized new terms. For instance, product of two terms v and x is mapped to a new

linear term vx. When handling terms with degrees higher than 2, to avoid repetition,

we need to first sort the symbol characters, and then look up the mapping. For

instance, both the product of x and xy, and the product of x2 and y should be

mapped to a new linearized term xxy.

Limitations. From the example above we can see that the RLT automation

toolkit is powerful: it takes the original optimization model defined by users, together

with a few extra lines defining the constraint pairs to be multiplied, and will generate

the model processed by RLT. Since this RLT automation implementation is mainly for

a proof-of-concept, the major limitation is in scalability. The current implementation

based on Python and Pyomo can scale up to a network with close to a hundred

nodes and edges on a single 128GB memory machine. The networks beyond this

size result in larger memory consumption which our servers cannot hold in a single

machine. In the future, we can improve the scalability in the following potential

ways: (i) Python and Pyomo by default does not optimize in memory usage. An

alternative way of implementation may scale better, e.g., C and Gurobi C APIs;

(ii) current implementation handles each constraint separately instead of grouping

them when it is possible, e.g., xij ≥ 0, i, j ∈ {0, 1, . . . , 9} are actually treated as

100 constraints, and the product of xij ≥ 0 and yij ≥ 0, i, j ∈ {0, 1, . . . , 9} needs

10,000 multiplications. Instead, we can leverage the constraint structure to do a

symbolic constraint multiplication which will save large amount of computations and

memory usage. For instance, in the example above, only one symbolic multiplication

is needed to obtain xijyi′j′ ≥ 0, i, j, i′, j′ ∈ {0, 1, . . . , 9}; (iii) for even larger or more

complicated networks, we can leverage distributed systems like MapReduce to perform

constraint multiplication in a distributed fashion, because constraint multiplication

has no correlation and can be done in parallel. However, note that all the relaxed

constraints need to be reduced to one machine and solved in a single model, which may
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sooner become a computation and memory bottleneck than performing constraint

multiplication.

3.3 Evaluation

In this section, we evaluate the quality of bounds obtained with model (R) together

with various failure models (Table 3.2), and the performance of RLT automation,

using real topologies (Table 2.1) and synthetic traffic matrices generated from gravity

model [37].

3.3.1 Quality of bounds for various failure models

Even though as we have shown in the case study (§3.1.1), model (R) plus the

augmenting constraint may still have a gap from the optimal in some specially con-

structed topologies, the quality of bounds generated in practical topologies is surpris-

ingly good. The results match exactly the optimal except SRLG failure model. We

will next focus on how to certify SRLG failures, and potential approaches to bridge

the gap.

3.3.2 Certifying SRLG failures

SRLGs typically occur owing to backbone router and/or optical equipment fail-

ures. Since we do not have access to failure data on how IP links map to the optical

segments, we focus on backbone router failures. Mimicking realistic backbone network

settings [5], we create a richer topology by (i) replicating the core network constitut-

ing two parallel networks; and (ii) connecting each edge router to two core routers in

each replica.

The relaxations exhibited a significant gap when determining worst-case perfor-

mance across all possible f SRLG failures for some of our topologies. The gap man-

ifested even with a simple topology comprising a replicated hexagon core network,
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with three edge routers. Investigating further, we were able to devise a way to re-

duce this gap. Specifically, we (i) limited the total number of SRLG failures in each

topology replica to f1 and f2, where f1 + f2 = f ; (ii) introduced constraints of the

form
∑

k∈G1
xgk = f1, and

∑
k∈G2

xgk = f2, where G1 and G2 respectively denote the

SRLGs corresponding to router failures in each of the topology replicas; and (iii)

took products of these constraints with constraints involving dual variable v in (R).

This approach completely eliminated the gaps for the hexagon construct, and signif-

icantly reduced them for our real topologies. For example, for the extended Abilene

topology with 1 or 2 SRLG failures, there was no gap. For 3 simultaneous SRLG

failures, the optimal Z was 0.9924, while our relaxation gave a conservative estimate

of 0.9887. While this requires solving a series of LPs, for practical f , the number

of possible splits (f1, f2) after eliminating symmetries is small. We note that this

bound can be achieved using an IP with a few binary variables modeling the binary

expansion of f1, f2. For example, the binary expansion of f1 can be described as

f1 = 1 + 21b1 + 22b2 + . . . with binary variables b, and similarly for f2.

3.3.3 RLT automation performance

Here we compare the performance of certifying GEANT networks with automated

and manual RLT processes under different number of link failures. The CPU time

is measured on a single-threaded 3.00GHz CPU. The result is shown in Figure 3.3,

and we have the following observation: the performance of automated RLT is close

to that of manual RLT, though automated RLT is about 23% to 40% slower. The

performance hit of automated RLT is due to the following reasons: (i) automated RLT

takes extra time to generate the relaxed constraints through constraint multiplication

compared to manual RLT, which already contains those relaxed constraints input

manually. The number of newly generated relaxed constraints is O(|E|2|V |), i.e., the

larger the topology, the longer it takes in generating these constraints automatically.

(ii) Our RLT automation implementation is based on Pyomo, which is an extra layer
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Fig. 3.3.: CPU Time comparison between automated and manual RLT under 1 to 3

link failures for GEANT network.

of indirection before solving the model in optimization solvers (e.g., Gurobi). On

the contrary, the manual RLT model is directly implemented with Gurobi APIs.

Therefore, the efficiency of algorithms and data structures in Pyomo will impact

the performance of the automated RLT. To sum up, we have achieved reasonable

performance for a proof-of-concept automated RLT implementation, and there are

opportunities to further improve the performance leveraging the approaches described

in §3.2.2.
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4. SLICE: ANALYZING AND PROTECTING NETWORK

PERFORMANCE UNDER FAILURES

4.1 Introduction

With the increasing adoption of online and cloud-based services, there is an ever

growing requirement on the underlying network infrastructure to ensure that business-

critical applications continually operate with acceptable performance [26, 27]. Typi-

cally, these requirements are expressed as service level objectives (SLO) [81]. SLOs

not only require network connectivity, but also require that the promised bandwidth

between data-center sites is available [2]. Networks must meet their performance

objectives while coping with significant uncertainty in their operations. The global

scale and rapid evolution of networks imply that failure is the norm in both cloud

provider [2, 10–12] and ISP [8, 9] settings, and the complexity of failures is on the

rise [12]. Failures occur due to both natural factors (hardware/software failures, or

natural disasters [82]) and maintenance operations, and often involve multiple con-

current events [12,83].

Recent trends exacerbate the challenges in planning networks for uncertainty.

First, the increasing pressure to reduce costs, and the dramatic growth in traffic has

motivated both online service companies [3–5], and more recently, large ISPs [6,7] to

operate networks closer to capacity, in contrast to the highly over-provisioned nature

of networks in the past. Second, performance requirements are getting increasingly

stringent. For instance, a recent paper from Google [2] indicates that not only has

traffic increased by 100x over the last five years, but also bandwidth requirements

must be met 99.99% of the time compared to 99% in the past.

The process of designing networks [29, 30] for such uncertainty, and certifying

a network can tolerate a desired set of failures often requires extensive simulations
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[26, 27]. Unfortunately, the space of possible designs is large, and exhaustive testing

requires considering combinatorially many failure scenarios [18,28,84]. Consequently,

architects today use ad-hoc techniques to verify compliance and to design networks,

which may fall short of meeting performance requirements.

Motivated by these challenges, recent works have explored the use of robust ap-

proaches where the primary goal is to optimize the worst-case performance of a net-

work across a range of possible failure scenarios [18, 22, 28, 84]. Unfortunately, while

an important first step, worst-case design may be unduly conservative since a small

number of bad failure scenarios may be expensive or even infeasible to design for.

Further, worst-case approaches do not provide the architect with an understanding

of the distribution of performance across failure scenarios, and an understanding of

which scenarios and what fraction lead to unacceptable performance.

In this chapter, we present Slice, a formal framework for analyzing network per-

formance (whether bandwidth requirements are met), and designing networks, for

more general objectives than worst-case performance under failures. Specifically, we

make the following contributions:

Failure classification. Slice classifies failure scenarios based on whether perfor-

mance is acceptable or not. Slice efficiently handles the multitude of possible scenarios

through a novel divide-and-conquer algorithm that partitions scenarios into sets, and

analytically classifies entire sets as a whole. A highlight is that the algorithm com-

pactly represents scenarios with acceptable performance as the union of a relatively

small number of sets when possible, which can aid design.

Efficiently analyzing diverse network response. We have designed Slice for

networks with (i) protection routing schemes, where local mechanisms are used to

quickly reroute traffic on link failures [22,28]; and (ii) an ideal centralized scheme [3,

4, 7] that optimizes traffic for each scenario. While protection routing schemes are

reflective of performance achievable by a network in practice, the centralized mech-

anism establishes the best achievable performance. We develop an combinatorial

polynomial-time algorithm to classify scenarios for protection routing schemes. For
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centralized schemes, we show that the problem is intractable resolving an open ques-

tion [28,84]. Yet, we improve existing techniques to achieve better efficiency.

Generalized performance analysis under failure. Slice can certify that per-

formance is acceptable for a desired percentage of scenarios, and generate performance

profiles, i.e., determine the percentage of scenarios for which network performance

(e.g., the fraction of lower priority traffic that can be sustained) reaches various

thresholds. Further, Slice’s classification algorithm may be combined with sampling

techniques to scale to larger networks. The hybrid approach gains efficiency by lim-

iting sampling to specific failure sets, and providing a better classification of failure

scenarios.

Designing for more general objectives than worst-case. Existing works [18,

28, 84] design networks to perform acceptably over all scenarios involving f or fewer

simultaneous failures. Slice supports design for most rather than all such scenarios.

Doing so may be necessary since design for the worst case can lead to unacceptable,

or overly conservative performance for the vast majority of scenarios. Yet, deciding

which subset of combinatorially many failure scenarios to design for is challenging.

We demonstrate Slice’s ability to aid with such design problems in the context of

protection routing. Slice’s approach involves classifying failure scenarios that can

be handled by a centralized mechanism, and restricting protection routing design

to these scenarios. We develop generalizations of the protection routing model that

supports design for arbitrary sets of scenarios while providing theoretical guarantees.

Finally, we show how the compact representation of promising scenarios found by

Slice’s divide-and-conquer approach makes design tractable.

We evaluate Slice using multiple real network topologies with failure models in-

spired by studies on ISP and cloud provider networks [8–10,12]. Our results show that

(i) Slice is effective in classifying scenarios that can be supported by both protection

routing, and centralized mechanisms, revealing large gaps in the set of scenarios that

can be handled by the mechanisms; (ii) Slice effectively aids design for more generic

objectives than the worst-case, and doing so offers substantial benefits over worst-
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case design. Specifically, Slice leads to the design of new protection routing schemes

that outperform existing ones, while achieving performance comparable to centralized

mechanisms; and (iii) Slice performs well with reasonable certification time. Valida-

tions over an SDN testbed demonstrate the benefits of Slice’s approach. Overall the

results show the promise of Slice.

4.2 Slice network model

In this section, we discuss the performance metrics Slice analyzes, and how Slice

models failures and network behavior.

Performance model. The primary performance metric that we consider in this

chapter is ensuring that the promised bandwidth requirements between every pair

of sites can be sustained. We focus on this metric given its common use in network

SLOs [2]. Much of our analysis is based on the utilization of the most congested link

(henceforth referred to as Maximum Link Utilization or MLU). The network meets

its requirements if MLU < 1. We also consider contexts with multiple traffic classes

where the goal is to meet all traffic of higher priority classes (e.g., latency sensitive

traffic), and as much of the lower priority (e.g., bulk transfer) traffic as possible.

Slice focuses on whether desired performance can be achieved in the steady state in

any scenario. While Slice does not model transient network performance, Slice can

analyze routing schemes [18,28] that respond fast to failures.

Modeling failures and uncertainty. In Slice, each scenario represents the

network experiencing a given demand, and zero or more simultaneous failures. In

the wide-area context, the common sources of failures are IP links, IP routers, and

optical related failures [8–10,76]. The last two categories can simultaneously impact

multiple links, and constitute a shared-risk link group (SRLG) [8, 22]. Partial link

failures may impact part of the capacity of an IP link, and may occur because each

IP link is usually provisioned as multiple sub-links with different failure modes (e.g.,

attached to different router line cards). Each failure itself could correspond to an
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SRLG, IP link or a partial link failure (§4.3.5). Beyond failures, Slice is designed to

work with other forms of uncertainty regarding network state such as traffic demand

that can be modeled, or conservatively estimated using a discrete distribution (§4.3.5).

Modeling diverse network response schemes. Slice models diverse ways in

which networks may respond to failures while taking performance into account. For

concreteness, we focus on (i) an ideal centralized approach that achieves the best

possible performance under failures by optimally re-routing traffic; and (ii) a link-

based protection scheme that ensures the network is congestion-free on failures (e.g.,

[28]). Though we do not consider in this chapter, Slice can also analyze path-based

protection schemes (e.g., [18]) as we discuss in §4.6. By modeling ideal centralized

response, Slice allows architects to compare the performance achieved by a specific

routing algorithm with the performance that the network is intrinsically capable of

achieving.

4.2.1 Generalized protection routing model

We next discuss Slice’s model for link-based protection, which generalizes the

state-of-the-art scheme [28].

With link-based protection, traffic on a link l is re-routed upon its failure, along

pre-computed detour paths. To achieve this, an offline procedure is used, which for

each link l = 〈i, j〉, reserves bypass capacity, not used until l fails, along paths that

are disjoint from l and can carry flow from i to j. When l fails, the network uses this

reserved capacity to re-route the traffic on l and executes an efficient online procedure

to compute the changes required should another failure occur.

Consider a network with nodes V and edges E for a traffic matrix d. We present

below an offline linear program (LP) that determines an optimal protection routing

when the network must be protected against all possible scenarios in a set (henceforth
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referred to as an SSet) X. The relevant parameters and variables are defined in

Table 4.1, The LP minimizes the MLU U across all the scenarios in X.

(H) min
r,p,a,U

U

s.t. rst is a unit flow from s to t. ∀s, t ∈ V

pl is a flow of al from i to j. ∀l ∈ E, l = 〈i, j〉

∀x ∈ X, e ∈ E,∑
s,t

dstrst(e) +
∑
l∈E

xlpl(e) ≤ Uce(1− xe) + aexe (4.1)

ae ≥ 0 ∀e ∈ E; U ≥ 0

The LP solves the variables r, p, and a, where r represents routing under normal

condition, p represents protection routing, and a represents reserved capacity. Note

that the routes protecting against the failure of e should not traverse itself, i.e.,

pe(e) = 0. The first two constraints which capture standard flow balance constraints

for rst and pl are detailed as the following. rst is a unit flow from s to t. Note that

we define e = 〈i′, j′〉, and use notation rst(e) and rst(i
′, j′) interchangeably.

∀i′ ∈ V,

∑
j′;〈i′,j′〉∈E

rst(i
′, j′)−

∑
j′;〈j′,i′〉∈E

rst(j
′, i′) =


1 i′ = s

0 i′ 6= s, i′ 6= t

−1 i′ = t

rst(i
′, j′) ≥ 0 ∀i′, j′; 〈i′, j′〉 ∈ E

(4.2)

Similarly, we can define pl by a simple rewriting of (4.2): replacing rst(i
′, j′) with

pl(i
′, j′), replacing the right-hand-side of the flow balance equation with al, 0, and

−al, and replacing (s, t) with l = 〈i, j〉. (4.1) captures the capacity and reservation

constraints of all links must be met under all possible failures x ∈ X. The two

terms on the left-hand-side indicate the total traffic that link e must carry, which

includes (i) the traffic under normal conditions; and (ii) the excess traffic owing to
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other link failures. The right-hand-side captures (i) link e carries at most Uce traffic

when e is operational; and (ii) when e fails (xe = 1), a reserved capacity of at most

ae is available along bypass paths. As presented, (4.1) is enumerated over all possible

scenarios, leading to exponential possible constraints. Instead, similar to [18,28], (4.1)

is reformulated by relaxing the integrality requirements on x variables, and leveraging

LP duality.

Converting (H) to an LP with duality. A key difficulty in translating (H) into

an LP is that the obvious strategy would create one constraint per failure scenario.

This is not scalable since X may have exponentially many failure scenarios. Instead,

this is tackled by equivalently rewriting the capacity constraints as

max
x∈X

∑
l∈E

xlql(e) ≤ Uce −
∑
s,t

dstrst(e) ∀e ∈ E (4.3)

where qe(e) = Uce− ae, and ql(e) = pl(e), l 6= e. Each of these constraints is reformu-

lated by (i) relaxing the integrality requirements on x variables, resulting in an LP;

(ii) expressing the left-hand-side as a minimization problem leveraging LP duality.

When X has integral corner points, we can relax the integrality of x variables with-

out affecting the maximum. Then, we take the dual of the resulting maximization

problem. If X is modeled using m constraints, this adds only m variables and E con-

straints to the problem for each e ∈ E, in contrast to the obvious strategy mentioned

above. For the procedure DoAllCertify(A), discussed in §4.3, the above property is

true on every set A that this procedure is called on.

Generalizations over state-of-the-art. Instead of ae, R3 [28] reserves a ca-

pacity of ce and expresses the right-hand-side of (4.1) as Uce by assuming that

Ucexe ≤ cexe, which holds only if U ≤ 1. As a result, R3’s formulation is only

valid if U ≤ 1, an issue that does not arise with (H), and is conservative relative to

(H) since it fixes the reserved capacity at ce instead of choosing it optimally. For

instance, for the Abilene network [85], and an example traffic matrix [36], the MLU

with R3 when protecting against all two failure scenarios (each failure impacting 50%

of link capacity) is 0.56. In contrast, the MLU with (H) is 0.12 (the optimal achiev-

able if the network could respond ideally). (H) allows us to determine the fraction
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Table 4.1.: Symbol table.

Symbol Definition

ce Capacity of link e

dst Traffic from s to t

al Reserved bypass capacity for link l

xe Failure status of link e

rst(e) Fraction of s to t traffic on link e (no failure)

pl(e) Reservation on link e to handle link l failure

of traffic that may be carried across all failure scenarios, since this shares an inverse

relation with U . We have also generalized R3 to design for more general failure sets

and not just scenarios involving f simultaneous failures (§4.3.4), and have developed

a variant of (H) which allows reasoning about multiple classes of traffic (§4.4.4).

4.3 Slice design

In this section, we present a design of Slice. We begin with an algorithm that

allows Slice to efficiently classify scenarios into those that perform acceptably and

those that do not (§4.3.1). The algorithm is generic to any form of network response

but relies on oracle procedures. We discuss the design of these oracle procedures for

protection routing and centralized mechanisms in §4.3.2 and §4.3.3, respectively. We

then discuss how Slice enables design for more general objectives than the worst-case

(§4.3.4), and other generalizations (§4.3.5).

4.3.1 Classifying scenarios compactly

We discuss Slice’s classification algorithm which generates a compact representa-

tion of scenarios with acceptable performance as the union of a relatively small number

of sets when possible. A naive approach is to enumerate all scenarios. This is compu-
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Algorithm 1: Slice classification.

Function Slice( target)

SSets ←− [Ff , Ff−1, . . . , F1, F0]

pass set, fail set←− ∅, ∅

while SSets do

A←− SSets.pop()

Classify(A, pass set, fail set, SSets)

Function Classify(A, pass set, fail set, SSets)

if DoAllCerify(A) then

pass set.add(A)

else if DoAllViolate(A) then

fail set.add(A)

else

A1, A2, . . . , An ←− Partition(A)

SSets.extend([A1, A2, . . . , An])
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tationally prohibitive given the large number of scenarios, and results in acceptable

scenarios being represented as the union of a large number of sets which impacts the

tractability of design (§4.3.4). Instead, Slice employs a divide-and-conquer algorithm

(Algorithm 1), that classifies an entire set of scenarios to the extent possible, and

when necessary, partitions the set further.

Let A represent an SSet. Slice uses the oracle procedures DoAllCertify(A) and

DoAllViolate(A) which respectively determine whether all scenarios in A meet or

violate the performance requirements. Ideally the procedures are exact (i.e., they

return True if and only if all scenarios meet or violate requirements). For tractability,

Slice only requires exactness when the SSet consists of a single scenario, and permits

false negatives otherwise. Specifically, if A consists of multiple scenarios. DoAllCer-

tify(A) may return False even if all scenarios certify, but must return True only if the

condition is met. Likewise, DoAllViolate(A) may return False even when all scenarios

violate the requirements.

If either procedure returns True, the status of SSet A is resolved. In general,

neither of these procedures may return True, since performance may be acceptable

for some scenarios in A, but unacceptable for others, and since the procedures may

have false negatives. In such a case, the algorithm partitions A further into two or

more disjoint and complementary subsets using the procedure Partition(A), and the

process is repeated on each smaller SSet. The algorithm converges since the oracle

procedures must be exact for SSets containing single scenarios.

For concreteness, considering the link failure model (more general failure models

are discussed in §4.3.5), Slice begins by creating SSets of the form F0, F1, . . . , Ff ,

where Fm comprises all failure scenarios with exactly m links failed. At any stage,

Slice picks an SSet whose status is not yet resolved. For i < j, Slice explores Fi before

Fj, because scenarios in Fi are more likely to occur and have acceptable performance.

If performance is neither certifiable nor violating for the chosen Fm, the Partition

oracle procedure chooses a link l, and partitions Fm into two subsets: (i) scenarios

with exactly m links failed including l and (ii) remaining scenarios. We discuss how
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to find a good choice of l later. If necessary, each subset is partitioned further by

fixing the status of additional links. The process continues until all scenarios in Fm

are classified, after which Slice similarly handles Fm+1. The algorithm terminates

when all scenarios with f or fewer failures have been classified, or earlier if the goal

is to check that a desired percentage of scenarios certify (§4.3.5). Figure 4.1 in §4.4.1

illustrates an example search tree generated by Slice classifying a 2-failure SSet.

We present a theoretical bound on the number of SSets inspected by the algorithm,

which impacts its performance.

Proposition 4.3.1 Assume that there are s violating scenarios within Ff , where Ff

are scenarios that have f failures, and that DoAllCertify(A) is exact (i.e., no false

negatives). Then, Slice solves at most 2sE + 1 nodes while exploring Ff , where E is

the number of branching variables, which is the number of links if branching is on link

state.

Proof sketch. Assume a set of 0-1 points (failure scenarios with f failures),

C, form the corner points of a set defined by linear constraints and the set V of

0-1 points (violating scenarios) has cardinality s. Consider the divide-and-conquer

approach used by Slice. Since an LP could be solved at the parent node, there are

no siblings that only contain scenarios outside of V . Hence, at any level there are

at most s nodes that contain scenarios in V , and s siblings that do not contain such

scenarios. Including the root node, there are a total of 2sE+ 1 nodes. The argument

can also be extended to address partial failures, where each link 〈i, j〉 may be viewed

as consisting of nij sub-links, any of which could fail leading to partial capacity loss.

The only difference is that there may be more siblings that do not contain scenarios

in V . In this case, the tree may contain at most 1 + s
∑
〈i,j〉(1 + nij) nodes.

4.3.2 Tailoring Slice for protection schemes

We next discuss how the oracle procedures described above are realized for link

protection schemes. Consider a protection routing with parameters r∗, p∗, and a∗ that
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achieves utilization U∗ derived using (H) for an SSet X (§4.2.1). We use the ∗ notation

to refer to a specific protection routing rather than variables to be determined. Slice

may be used to determine scenarios for which the MLU is under a desired threshold

U t for this routing. For example, U∗ maybe unacceptably high, and an architect may

wish to determine a subset of X for which a tighter U t threshold can be met.

DoAllCertify(A). The procedure determines whether the performance for pro-

tection routing (r∗, p∗, a∗) is acceptable for all scenarios in an SSet A. This requires

verifying the capacity constraint (4.1) holds for (r∗, p∗, a∗) for every link e and every

failure scenario x ∈ A, and for threshold U t.

Performing this check requires iterating over every x ∈ A, possibly exponentially

many scenarios. A potential approach to tackle this certification is to solve (H) but

with p, r, and a fixed at p∗, r∗, and a∗ and the failure set limited to only include

scenarios in A. However, doing so would require solving an LP for each SSet inspected

by Slice during the divide-and-conquer procedure.

Instead, to understand Slice’s approach, note that the capacity constraint (4.1)

can be equivalently rewritten as:

max
x∈A

∑
l∈E

xlq
∗
l (e) ≤ U tce −

∑
s,t

dstr
∗
st(e) ∀e ∈ E (4.4)

where q∗e(e) = U∗ce − a∗e, and q∗l (e) = p∗l (e), l 6= e. Slice certifies the above for

each edge individually by exploiting two observations: (i) x is the only variable in

(4.4); and (ii) the maximum is obtained by fixing those xl as 1, whose associated

coefficients ql(e) are the highest, and permissible for A. Doing so also determines the

worst scenario x that results in the highest utilization for e.

Motivated by these observations, Slice simply sorts ql(e) for each e and finds

the appropriate worst failure scenario. Further, for efficiency, sorting is only per-

formed once for each edge across all SSets in the divide-and-conquer procedure rather

than for each SSet. With this, the worst-case time complexity of the algorithm is

O(|E|2log(|E|) + K|E|2), where |E| is the number of edges, and K is the number

of nodes visited by Slice. For protection routing, the oracle procedure is tight, and
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hence the bound on K shown in Proposition 4.3.1 is guaranteed to hold. While al-

ready promising, several optimizations can further reduce running time. For instance,

for each SSet, only those edges must be certified that have not already been certified

at an ancestor node.

DoAllViolate(A). Slice determines whether all scenarios violate by checking the

contrary, i.e., whether there exists x ∈ A for which performance is acceptable. To

check this, Slice solves the following feasibility LP derived from (H):

min
x

1

s.t.
∑
s,t

dstr
∗
st(e) +

∑
l∈E

xlp
∗
l (e) ≤ ce(1− xe) + a∗exe ∀e ∈ E

x ∈ A

All scenarios in an SSet violate iff no feasible solution exists, in which case, Slice need

not further explore that SSet. In contrast to the LP for worst-case performance, this

LP is small and accounts for less than 1% of Slice’s running time.

Finding link to fix at each step. If the network does not perform acceptably in

all scenarios within SSet A, Slice partitions A into scenarios where link l fails (denoted

by A1), and where it does not (A0). The choice of l only impacts the performance of

the classification algorithm and not its correctness. Ideally, Slice may pick l such that

one of the nodes A0 or A1 is found acceptable or violating so that the remaining node

is the only one needing further exploration. Therefore, as a heuristic, Slice computes∑
e∈E′ ql(e) for each link l, where E ′ is the set of edges for which (4.4) is violated,

and picks l for which the sum is the largest, and whose failure status is not already

fixed in A. The intuition is to pick l that is part of the bad scenarios for many highly

utilized edges e.

4.3.3 Tailoring Slice for centralized response

We next consider how Slice models and analyzes networks when they use a cen-

tralized scheme to respond to failures. While Slice can work with any centralized
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scheme that responds optimally to failures, for concreteness, we focus on the case

where a network may optimally re-route traffic to minimize the MLU by solving a

multi-commodity flow (MCF) problem. While a centralized scheme may not neces-

sarily be able to respond quickly since it takes time to compute and reroute traffic

optimally, and to update router configurations, it provides a benchmark for compar-

ison with other schemes. Slice only requires that (i) the network re-optimizes when

performance may otherwise be violated, and not on each failure event or demand

shift; and (ii) the network makes sufficient changes to achieve acceptable perfor-

mance (rather than all changes to meet the optimal). We discuss how Slice realizes

the oracle procedures (§4.3.1) for centralized response:

DoAllCertify(A). We have shown that, in §3.1, the problem of determining

whether the worst-case MLU over all f link failure scenarios is less than U t (the

desired performance threshold) when a centralized scheme is used is NP-complete.

Given the intractability, Slice obtains a conservative upper bound U b on the worst-

case MLU across all scenarios in A, and verifies if U b < U t. This guarantees that

DoAllCertify(A) only returns True when all scenarios have an MLU lower than U t,

although there may be false negatives which is acceptable (§4.3.1). Slice obtains

U b by designing the optimal protection routing for A using the LP (H) and using

the resulting MLU. This is acceptable since for every scenario, a protection routing

achieves the same or worse MLU than a centralized mechanism.1 Finally, if A is a

singleton set, Slice runs an MCF which is exact. This ensures the algorithm converges

and the final classification is correct (§4.3.1).

An alternate approach to bounding worst-case MLU involves an LP relaxation

strategy suggested in [84]. While [84] produces provably tighter bounds than (H),

the LP is larger. We use (H) for obtaining bounds since it is computationally faster.

Further, our empirical experiments have shown (H) matches the optimal in all prac-

1In §4.3.2, a given protection routing (not necessarily designed for A) is certified for A. In contrast,
here the worst-case MLU of an optimal protection routing designed for A is used as a conservative
estimate of performance with a centralized approach.
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tical instances in our context. The choice is not integral to Slice, which is a general

framework that allows for different bounding strategies.

DoAllViolate(A). Like in §4.3.2, Slice determines whether all scenarios violate

by solving an LP (4.5) to determine if there exists any scenario x ∈ A for which

a feasible solution can be found such that the capacity constraints of all non-failed

edges are met, and no failed link carries traffic. Slice checks the contrary to determine

if any scenario x ∈ A can be certified by solving the following LP.

min
r,x

1

s.t. rst is a unit flow from s to t. ∀s, t ∈ V∑
s,t

dstrst(e) ≤ ce(1− xe) ∀e ∈ E

x ∈ A ∀e ∈ E

(4.5)

The LP checks if there is a feasible multi-commodity flow r from s to t such that the

capacity constraints of all non-failed edges are met, and no failed link carries traffic,

with the integrality requirements on x relaxed.

Partitioning strategy. If Slice is unable to certify A, it partitions A further.

To decide which link to fix to obtain this partition, we compute
∑

emexl(e), where

xl(e) indicates if l is present in the worst-case failure scenario for edge e, and me

is a measure that relates to how utilized edge e is in the worst-case scenario. Both

xl(e) and me are obtained as dual solutions from the LP reformulation of (H). The

intuition behind the heuristic is to fix a link l that is part of the bad scenarios for

many highly utilized edges e.

4.3.4 Design with excluded scenarios

Existing worst-case design approaches [18,28,84] only consider SSets that include

all f or fewer simultaneous failures. In the context of protection routing, consider that

the MLU with (H) is greater than 1 for such an SSet, indicating that it is infeasible to

protect against all such scenarios. An architect today has no recourse but to restrict
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design to scenarios with f − 1 or fewer simultaneous failures. We discuss how Slice

can design for general SSets (e.g., a set with most f failure scenarios handled and

only some excluded). The key questions are (i) determining which scenarios to design

for and exclude; and (ii) how to design a protection routing with a set of scenarios

excluded. We discuss each in turn.

Determining which scenarios to design for. To appreciate the complexity

of the problem, for a network with E links, there are
(
E
f

)
scenarios involving f link

failures, and 2(E
f ) possible failure scenario sets to consider (e.g., for a network with

300 links, there are 44850 2-failure scenarios, and 244850 possible sets of 2-failure

scenarios). The design of an implementable protection routing involves finding a set

among these possible sets (ideally, with cardinality as large as possible) for which (H)

can find a congestion-free routing.

Observe that any set for which a protection routing design is feasible must nec-

essarily exclude all scenarios that have unacceptable performance with Centralized

(since a protection routing approach can perform no better than Centralized, and

since including a single bad scenario can make protection routing design infeasible).

Unfortunately, by Proposition 3.1.1, discovering even one scenario that has unac-

ceptable performance with Centralized is NP-complete, let alone discovering all such

scenarios.

Slice’s classification algorithm with Centralized when run to completion deter-

mines the set (say L) that excludes only those failures that perform unacceptably

with Centralized. When design is viable for L (which interestingly has always been

the case in our evaluations), it is guaranteed to be the set with maximum cardinality

for which protection routing is viable. More generally, Slice classification may be con-

tinued with an updated lower threshold (say 0.9U∗). The insight is that considering

scenarios which are comfortably handled by Centralized could identify a failure set

that is amenable to a protection routing. The threshold can be iteratively reduced if

needed. For larger topologies, the classification algorithm may be terminated earlier

when it identifies a sufficiently large subset of L that meets the architect goals.
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Protection routing design with excluded scenarios. Even if a heuristic

were to identify which scenarios to exclude, it is unclear how to use LP (H) to design

for an SSet X that excludes some scenarios with f failures. One approach is to

add constraints which indicate that certain failure scenarios cannot be part of the

optimal solution. For instance, to eliminate the failure scenario x = (1, 0, 1, 1) (which

indicates the failure of the first, third and fourth links), a constraint could be added

to X of the form x1 + (1−x2) +x3 +x4 ≤ 3. Unfortunately, the resulting formulation

is conservative. because in this representation, all the corner points of X are not

failure scenarios. Instead, we represent X as the union of multiple SSets Ai (i.e.,

X = ∪i=1
m Ai), with each Ai itself expressible as an intersection of multiple SSets

expressible using linear constraints. LP (H) is modified by replicating (4.1) m times,

once for each Ai. Recall that Slice’s classification produces the set of certifiable

scenarios in a union representation. It is feasible to show that when a protection

routing is designed for an X represented as a union of SSets produced by Slice, LP

(H) is a tighter formulation (i.e., it will find a protection routing with MLU under

1 when one exists for that set of scenarios provided reservations are made a priori),

since the corner points in X represent failure scenarios.

Importance of Slice’s compact representation. When designing for X =

∪i=1
m Ai, since Equation (4.1) of LP (H) is replicated m times for each of these sets,

and since the reformulation after dualization (Equation (4.3)) has |E| constraints for

each edge e, the resulting formulation has O(m|E|2) constraints in the modified (H).

An attractive aspect of Slice is that it naturally aggregates failure scenarios into sets,

each of which is guaranteed to admit a protection routing, while keeping m small.

A naive alternative which exhaustively enumerates all scenarios using Centralized to

determine which ones certify, would lead to a much larger m with one failure set for

each certifiable scenario.
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Table 4.2.: Example SSets for various failure models.

Homogeneous link
∑
〈i,j〉∈E x

f
ij = f

model; f links fail xfij ∈ {0, 1} 〈i, j〉 ∈ E

Heterogeneous link
∑

ij x
f
ij ≤ fk 〈i, j〉 ∈ Lk,

model; L link 1 ≤ k ≤ L

categories; fk links xfij ∈ {0, 1} 〈i, j〉 ∈ E

fail in category Lk

SRLG model
∑

k∈G x
g
k = f

f SRLG failures xgk ≤ xfij k ∈ G, 〈i, j〉 ∈ gk∑
k∈G,〈i,j〉∈gk x

g
k ≥ xfij

xgk, x
f
ij ∈ {0, 1} g ∈ G, 〈i, j〉 ∈ E

Partial link failure model
∑
〈i,j〉∈E x

f
ij = f

f units fail across links xfij ∈ [0, nij], x
f
ij ∈ Z 〈i, j〉 ∈ E

4.3.5 Generalizations and extensions

Checking if sufficient scenarios certify. The algorithm in §4.3.1 is easily

adapted to certify that a fraction p of scenarios (say all simultaneous f link failures)

certify. The algorithm starts with an SSet that represents all such scenarios, and

terminates when the count of certifiable scenarios exceeds a fraction p of the total, or

violating scenarios exceeds 1− p.

Slice summarizes network performance across failures that occur with different

probability using a metric that we refer to as ProbCS which captures the probability

of scenarios for which the steady state performance of the network is acceptable. Slice

is general and works with any oracle that provides the probability of each SSet.

Slice probability model. We present a formal argument to show Slice can

work with any general oracle that provides the probability of each SSet. Let F(x)

denote a metric of congestion the network faces (e.g., the minimum MLU) under

failure scenario x. Now, let χ be a random failure scenario drawn from X, the set
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of all failure scenarios, with a given probability distribution. Then, for the random

variable F(χ), which measures network congestion for randomly drawn scenario χ,

we are interested in the probability of the level-set, F(χ) ≤ U∗, where U∗ is a given

threshold congestion, typically chosen as 1 or below when MLU is the metric chosen

to capture congestion. We call the set of failure scenarios in which congestion does not

exceed the given threshold as the set of certifiable scenarios and denote the occurrence

of such a scenario as the event C. The complement of C, the set of violating scenarios,

is denoted as B.

Let the current SSet A be partitioned into {A1 | . . . | An} so that
∑n

i=1 P (Ai) =

P (A). We are interested in estimating P (C∩A) and P (B∩A). Since A1, . . . , An form

a partition of A, for any event Y , and in particular for C and B, we have P (Y ∩A) =

P (Y | A)P (A) =
∑n

i=1 P (Y | Ai)P (Ai). To bound P (Y ∩ A), we approximate the

right-hand-side of the above equivalence. To do so, assume that we have available

two index sets I, J ⊆ {1, . . . , n} so that, for all i ∈ I, P (Y | Ai) = 1, and, for

i ∈ J , P (Y | Ai) = 0. Then,
∑

i 6∈J P (Ai) ≥ P (Y ∩ A) =
∑

i∈I P (Ai) +
∑

i 6∈I∪J P (Y |

Ai)P (Ai) ≥
∑

i∈I P (Ai). With a sufficiently fine partition, I ∪ J = ∅, since individual

failure scenarios are either certifiable or violating. For such a partition, the upper

bound matches P (Y ∩ A) exactly.

Since the above treatment applies when Y = C or Y = B, it yields lower as well as

upper bounds on the probability of certifiable and violating scenarios. Applying the

bounding argument with Y = C, an element i ∈ I if P (C | Ai) = 1, which occurs if

and only if the performance of all scenarios in Ai is acceptable (i.e., F(x) ≤ U∗, ∀x ∈

Ai). Likewise, i ∈ J if P (C | Ai) = 0, which occurs if and only if no scenario has

acceptable performance (i.e., 6 ∃x ∈ Ai, F(x) ≤ U∗). Note that the above treatment

is general, and works for any general oracle that can provide the necessary P (Ai).

Slice can handle correlated failures if the joint failure probability is provided, along

with the probability of each failure occurring by itself. Pragmatically, an architect

typically models failures as independent events, where an event may correspond to the

failure of an SRLG, an IP link, or a sub-link. If failure probabilities are homogeneous,
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the probability of each FSSet is computed using a binomial distribution. When

probabilities vary, Slice categorizes failure events into classes, where probabilities of

events in the same class are the same, and appropriately adapts the SSet probability

computations.

In performing such certification, Slice may terminate the classification algorithm

at an intermediate state, and use a sampling algorithm to test unclassified scenarios.

Consider the null hypothesis (H0) that the network does not perform acceptably for a

fraction p of scenarios. The alternative hypothesis (Ha) is that the network performs

acceptably for a fraction pa of scenarios (pa > p0). Slice tests n samples and uses a

one-sided one-proportion test [86] to determine whether the null hypothesis can be

rejected. n is chosen such that (i) the probability of Type I error (i.e., rejecting H0

when it is true) is less than α; and (ii) the probability of Type II error (i.e., failing to

reject H0 when Ha is true) is less than β, where α and β are parameters. The sample

size depends on p0, pa, α and β (detailed later). If Slice is able to identify a fraction

z of scenarios as having acceptable performance, then, p0 and pa in the sample size

calculations are respectively replaced by p0−z
1−z , and pa−z

1−z , which can significant reduce

the number of samples required.

Sample size determination. In the sampling algorithm used by Slice, computing

the exact sample size requires an iterative procedure using a binomial distribution.

However, under typical conditions, the distribution of possible values of p̂ (the fraction

of cases the network performs acceptably) is approximately a normal curve (by central

limit theorem), with mean the population proportion (p) of interest, and standard

deviation
√

p(1−p)
n

, where n is the number of tested samples. The sample size is

estimated using this approximation. Specifically, we find p̂ and sample size n such

that (p̂−p0)
√
n√

p0(1−p0)
= zα and (p̂−pa)

√
n√

pa(1−pa)
= −zβ, where zα and zβ are the critical z-scores

to ensure that probability of Type I error < α and that of Type II error ≤ β, and p0

and pa are as defined in §4.3.5.

Note that a normal approximation can slightly underestimate the actual sample

size obtained by exact calculation, but since we do not deal with large deviations,
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this difference turns out to be usually small. If this approximation error is to be

eliminated, exact calculation is preferable because the upper bound obtained via

Chernoff’s Theorem tends to be conservative.

Handling diverse failure models. Slice has been integrated with diverse failure

models including (i) Homogeneous link model, where all links have the same downtime

probabilities; (ii) Heterogeneous link model, where links belong to L classes, with links

in the same class having the same downtime probabilities; (ii) SRLG model, where a

network comprises G groups, with links belonging to one or more groups. The failure

of a group implies all links belonging to that group fail, and if a link fails, at least

one group to which the link belongs fails; and (iii) Partial link failure model, where

units of a link can fail independent of one another.

A key difference across the models is how the initial SSets are generated. Table 4.2

shows initial SSets and associated constraints for each model. Note the partial link

failure model uses integer variables xfij instead of binary variables, while the SRLG

model uses new binary variables xgk indicating if the SRLG corresponding to group

k has failed. The algorithms also involve other minor changes - e.g., in the partial

model, if SSet Ai must be further partitioned, we fix a link 〈i, j〉 as before, but create

nij + 1 partitions, each corresponding to a different number of units of link 〈i, j〉 that

fail.

Multiple traffic demands. While we have focused on failure uncertainty, we

next discuss how Slice tackles the case, where demand is also uncertain and can take

one of h values, say di for i ∈ {1, . . . , h}. Here, each di is a traffic matrix consisting

of traffic between all node-pairs. The uncertainty set X now consists of scenarios

specified jointly by the current network failure state and traffic. For continuous

demands (such as the convex hull of a set of discrete demands), we partition possible

demands into regions, and, associate each region with a demand that dominates all

the demands in that region. For instance, if, within a region, the demand for a node-

pair (s, t) varies between dlst and dhst, with dlst < dhst, then, in the dominating demand,

we assign the (s, t) demand at its highest possible value dhst. When the resulting
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Table 4.3.: Topologies used in evaluations.

Network Number of Nodes Number of Edges

Abilene 11 14

GEANT 32 50

Deltacom 103 151

ION 114 135

discrete approximation is used, the performance profiles generated with Slice are a

conservative estimate of true network capability. This estimate can be improved by

approximating the demand distribution more closely using a finer partition of the

demand set.

4.4 Evaluations

Our evaluations shows the effectiveness of Slice in (i) classifying failure scenarios

(§4.4.1); (ii) analyzing metrics beyond worst-case performance for protection routing

and centralized schemes (§4.4.2); (iii) enabling better designs by judiciously excluding

failure scenarios (§4.4.3); (iv) generalizing to multiple traffic classes (§4.4.4); and (v)

ensuring acceptable computation time (§4.4.5).

Topologies evaluated. Table 4.3 summarizes the topologies used in our eval-

uations. We select one moderate-size network, GEANT, and two large networks,

Deltacom and ION, from the Internet Topology Zoo [85]. One-degree nodes in the

topologies are recursively removed so that the networks are not disconnected with a

single link failure. We use the gravity model [37] to generate traffic matrices with

MLU in the range [0.6, 0.65] across the topologies. GEANT has links ranging from

1 to 100 Gbps. Link capacities for Deltacom and ION are unavailable, and we use

uniform capacities.
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Failure models. We model each link with its capacity split evenly across k sub-

links that fail independently. k = 1 denotes full link failures, and k > 1 denotes partial

link failures (§4.3.5). We summarize network performance across failure classes using

the ProbCS metric (§4.3.5) which is sensitive to the probability of different failure

scenarios. Prior network failure studies [8–10, 12] indicate that the vast majority

of links have 3 9s or 4 9s of uptime. We primarily conduct our evaluations with a

conservative model which we refer to as HomogFM3, where all sub-links have 3 9s of

reliability, and the failure of sub-links is treated as independent events. We have also

considered multiple models based on [9,10] that capture heterogeneity in link failure

probabilities, and differ in the fraction of links with 3 9s and 4 9s of reliability.

Slice implementation. We implement Slice in Python, and use Gurobi 8.0 [87]

to solve LPs. We implement the classification algorithm described in §4.3.1, and

oracle procedures described in §4.3.2 and §4.3.3. Starting with the base case where

the design is tested against fixed numbers of failures, we dynamically derive and

add constraints to fix failure states of links. When analyzing large networks such

as Deltacom and ION with Centralized, we use the hybrid approach (§4.3.5) that

combines classification with Slice and sampling. By default, we switch to sampling

after the classification step certifies that the network achieves at least a ProbCS of

2 9s (0.99). The unclassified SSets are then sampled in the same proportion as their

probabilities, with both Type I error (α) and Type II error (β) under 1%. We use

pa = 0.9995 for a ProbCS of 3 9s, and pa = 0.99995 for 4 9s.

4.4.1 Illustrating classification with Slice

Figure 4.1 illustrates the results obtained by running Slice’s classification algo-

rithm (§4.3.1) with Centralized for GEANT, k = 2. Each tree node represents an

SSet, with the root node representing all scenarios involving the simultaneous failure

of 2 sub-links. Each node is annotated with the MLU of the worst-case scenario (a

value under 1 indicates all scenarios corresponding to that node are certifiable), and
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Fig. 4.1.: Slice’s failure classification.

the return value (Yes or No) of DoAllV iolate(). For example, Slice is neither able

to certify all scenarios corresponding to the root node (MLU = 1.25), nor determine

they all violate (‘N’). Slice partitions the corresponding SSet into complementary

and disjoint subsets that differ based on the status of link 15 (the link is chosen as

described in §4.3.3). Notice that there are 3 possible states, corresponding to the

number of sub-links of link 15 that fail (0, 1, or 2). The algorithm terminates by

classifying all scenarios (1,275 in total) into six SSets (leaves of the tree). Blue nodes

marked with “P” represent the certified SSets. Red nodes marked with “F” repre-

sent the violating SSets. Each certified node is also annotated with the number and

percentage of certified scenarios. For instance, the leftmost leaf node corresponds to

a single certifiable SSet that captures 92.2% of the scenarios. This ability to compact

certifiable scenarios into a small number of SSets aids design with Slice as we discuss

later.

4.4.2 Insights from Slice’s failure analysis

Does design for f failures suffice? The existing approach to analyzing and

designing resilient networks is to consider worst-case performance over all scenarios



84

involving up to f simultaneous failures [18, 28, 84], for a specific routing mechanism.

In the context of protection routing, when LP (H) is used for GEANT, the MLU

is under 1 for f = 1, indicating the resulting routing (which we term PR-Worst(1))

meets the promised bandwidth for single link failures. However, the MLU exceeds 1

for f = 2. While this indicates that it is infeasible to handle all two failure scenarios,

the generated routing (which we term PR-Worst(2)) maximizes the fraction of traffic

that can be delivered across the scenarios.

Figure 4.2 presents insights gleaned from Slice’s general analysis framework that

considers performance across scenarios, and provides comparisons with the ideal ap-

proach, Centralized. The figure shows the percentage of 1-, 2-, and 3-link failure

scenarios for which the promised bandwidth requirements is met (MLU < 1) for the

three schemes as determined by Slice. All schemes can handle all single failures. While

Centralized can handle practically all 2- and 3-link failure scenarios, both PR-Worst

schemes can only handle a much smaller subset of these scenarios. PR-Worst(2) per-

forms poorly because it optimizes for the worst-case under 2-link failures, and cannot

control the performance of the remaining scenarios. PR-Worst(1) performs better,

but still incurs a large gap relative to Centralized because it does not explicitly design

for any 2-link scenario. The results highlight (i) the importance of Slice’s generalized

analysis, and (ii) that when design is restricted to worst-case over f failures, there is

no choice of f leading to good performance.

Analysis across topologies. Since failures may occur with different frequency

(e.g., single link failures occur more frequently than two link failures), we summa-

rize results with Slice across multiple topologies using the ProbCS metric and the

HomogFM3 failure model (§2.6).

We set ProbCS targets of 90%, 99%, 99.9%, and 99.99% (1 9 to 4 9s), and use

Slice to check if the targets can be met. For PR-Worst, we consider the largest f for

which LP (H) is able to find a protection routing, but always use an f of at least

1. Figure 4.3 shows the maximum number of 9s that can be certified with PR-Worst

and Centralized for each topology and different k. The figure reveals a big gap in the
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Fig. 4.2.: Worst-case design effectiveness.

Fig. 4.3.: Probability of scenarios for which network performance is acceptable under

various settings.

ProbCS achieved by PR-Worst and Centralized for all topologies and settings except

GEANT k = 1. For Deltacom k = 1, PR-Worst is unable to protect against any

single failure and cannot achieve even a single 9, while Centralized certifies 2 9s. For

k = 2, both PR-Worst and Centralized achieve higher 9s than k = 1 indicating that

the benefits of reducing the impact of failures with larger k outweighs the concern

that the network is more likely to be in a failure state. However, the performance

gap between PR-Worst and Centralized persists.

We have also considered models that capture heterogeneity in link failure proba-

bilities, and differ in the fraction of links with 3 9s and 4 9s of reliability. Our results
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Fig. 4.4.: Efficacy of Slice generated designs in (a) tackling more failure scenarios;

and (b) improving ProbCS.

indicate that a gap persists between PR-Worst and Centralized across all models,

though both schemes achieve a higher ProbCS as more links are upgraded to 4 9s.

4.4.3 Design with excluded scenarios

We now evaluate the potential for bridging the large gap between PR-Worst and

Centralized shown in §4.4.2 with Slice. The approach (named PR-Slice) is to design

for a selected set of scenarios rather than for all f simultaneous failures.

Recall that PR-Slice classifies failure scenarios that certify with Centralized, and

designs a protection routing considering only these scenarios (§4.3.4). To illustrate

for GEANT k = 2, consider Figure 4.1 where Slice has classified 2-failure scenarios

into three SSets (comprising 1272 scenarios) that certify, and other failed scenarios

to be excluded. A new protection routing is designed for a union of these three

SSets (besides SSets corresponding to no failure and all single failures) using our

modifications to LP (H) (§4.3.4). Figure 4.4a shows the benefits of PR-Slice for

GEANT k = 2. While PR-Worst can only certify 86.7% of 2-failure scenarios, PR-

Slice is explicitly designed for all two or fewer failure scenarios except for 3 violating

ones, and can handle 99.8% of 2-failure scenarios.
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Slice vs. naive alternatives. Recall that LP (H) augmented for the union of

m SSets has O(m|E|2) constraints (§4.3.4). Owing to Slice’s compact representation

of scenarios that certify, m = 3 suffices for 2-failure scenarios. In comparison, a naive

approach of exhaustively enumerating and checking all scenarios with Centralized is

not only time-consuming but would have m = 1272, resulting in a much harder to

solve design LP with orders of magnitude more constraints. Another naive alternative

is to randomly exclude, say q% of the scenarios. First, it is unclear how to compactly

represent such a set to ensure a tractable design LP. Second, it is not clear what q

to choose. Third, even if q were heuristically chosen, the probability of picking an

acceptable set that excludes all three scenarios that perform poorly with Centralized

is low. For example, if q = 1%, there are 3.5×1030 possible sets of candidate 2-failure

scenarios for GEANT, and only a fraction of 8.29×10−7 of these sets is acceptable. In

contrast, Slice not only finds such a set, but also the one with maximum cardinality

that only excludes the violating scenarios (§4.3.4).

Larger design study. We consider Deltacom k = 2 for which PR-Worst achieves

a ProbCS of only a single 9, far short of the 4 9s achieved by Centralized (Figure 4.3).

We ran Slice classification on 2-failure scenarios to identify promising scenarios for the

design. Slice identified 6 SSets that compactly captured 11,465 2-failure scenarios, and

determined 11 violating 2-failure scenarios. We found that design for these scenarios

results in a protection routing that achieves a 2 9s target (an already significant

improvement over PR-Worst). We explored the feasibility of doing even better by

running the classification algorithm on 3-failure scenarios terminating when sufficient

scenarios to meet a 3 9s target are identified. Slice identified 5 SSets representing

466,899 3-failure scenarios. We next design a protection routing for the union of the

5 promising 3-failure sets, 6 promising 2-failure sets, and 2 SSets each representing

single and no failure scenarios. Figure 4.4a shows that the generated PR-Slice certifies

99.9% of 2-failure scenarios (matching Centralized) and 99.6% of 3-failure scenarios.

In contrast, PR-Worst certifies only 46.1% of 2-failure cases, and no 3-failure case.
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Fig. 4.5.: Percentage of certified 2-failure scenarios, obtained with different schemes

for a range of scale factors of lower priority traffic in GEANT k = 2.

Impact on ProbCS metric. Figure 4.4b shows that PR-Slice achieves signifi-

cantly higher ProbCS than PR-Worst in all cases. The gap with Centralized indicates

even further room for improvement, which can potentially be bridged by running

Slice’s classification of scenarios with Centralized even further. For instance, for the

Deltacom k=2 example described above, running Centralized until more 3-failure and

possibly some 4-failure scenarios are classified may help to identify more promising

scenarios that can be considered when designing a protection routing. Overall, the re-

sults show Slice’s ability to improve design quality by judiciously excluding violating

scenarios rather than considering the worst-case.

4.4.4 Design with multiple traffic classes

So far, we have focused on a single traffic class where the goal is to meet the

entire bandwidth requirement. We show Slice’s generality by considering a context

with multiple traffic classes where the architect wishes to meet all high priority, and

as much of the low priority traffic as possible.

Designing a protection routing for multiple traffic classes involves minor changes

to LP (H) and is presented below. Let dh and dl represent high and low priority traffic

matrices, with dhst and dlst representing the relevant traffic from s to t. The formulation

determines the largest Z such that the network can handle a traffic matrix D where

Dst is dhst +Zdlst (i.e., the network can carry all high priority traffic, and a fraction Z
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of low priority traffic). Z ≥ 1 indicates all low priority traffic can be carried. Setting

dh to zero produces the special case where there is a single class of traffic, when Z

would share an inverse relationship with the MLU metric. The protection routing has

parameters (rh, rl, p, a), where rh and rl represent flows corresponding to high and

low priority traffic from s to t. The formulation is similar to (H) except that rlst only

need carry a fraction Z of the dlst traffic, however link capacity constraints must be

strictly met.

(G) max
rh,rl,p,a,Z

Z

s.t. rhst is a flow of dhst from s to t. ∀s, t ∈ V

rlst is a flow of Zdlst from s to t. ∀s, t ∈ V

pl is a flow of al from i to j. ∀l ∈ E, l = 〈i, j〉∑
s,t

rhst(e) +
∑
s,t

rlst(e) +
∑
l∈E

xlpl(e)

≤ ce(1− xe) + aexe ∀x ∈ X, e ∈ E

ae ≥ 0 ∀e ∈ E

Z ≥ 0

Certifying a given protection routing has a minor change from §4.3.2. Consider

that the routing (rh∗, rl∗, p∗, a∗) achieves Z∗ with (G) when designed for a given set of

failures X. To verify the fraction of scenarios for which a target Zt can be achieved,

we adopt a similar procedure to §4.3.2 except that instead of (4.4), we verify the

slightly modified capacity constraint below:

max
x∈A

∑
l∈E

xlq
∗
l (e) ≤ ce −

∑
s,t

(rh∗st (e) + rl∗st(e)
Zt

Z∗
) ∀e (4.6)

where q∗e(e) = ce − a∗e, and q∗l (e) = p∗l (e), l 6= e. This simply indicates that the

capacity constraint must be met, but with rl∗ rescaled for Zt rather than the originally

designed Z∗.

The two-class LP determines a protection routing that handles all high-priority

traffic and the low-priority traffic scaled by a factor Z, while maximizing Z. We
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refer to Z as the scale factor, with Z ≥ 1 indicating the entire low priority traffic is

handled. We refer to PR-Worst(f) as a protection routing derived from this two-class

LP when protecting against all simultaneous failures involving f or fewer links. As

before PR-Slice is obtained by (i) using Slice to classify scenarios that obtain a Z ≥ 1

with Centralized; and (ii) using the two-class LP to design with the set so obtained.

We modified Slice’s classification algorithm to generate performance profiles, i.e.,

determine the fraction of scenarios that achieve different Z thresholds for the schemes

above. Given multiple scale factors, Z1 < Z2 < · · · < Zm, the algorithm classifies

scenarios to determine which of them meet the most relaxed Z1 threshold. Violating

SSets are not further inspected, but certifying SSets are explored further to verify if

the more strict Z2 threshold is met. The process continues until eventually the Zm

threshold is considered.

Figure 4.5 shows the results obtained by analyzing various schemes with Slice for

GEANT k = 2 for 2-failure scenarios. We split the original traffic matrix into two

classes with high and low priority. For each cell we assign a random fraction of it

to the high-priority traffic class, and the rest to the low-priority one. Each curve

corresponds to one scheme, and shows the fraction of 2-failure scenarios that can

attain a particular Z. The top-most curve shows the ideal Centralized scheme, which

can attain Z of 1 for over 99% of the scenarios. PR-Slice achieves a performance

profile nearly as good as Centralized. While it degrades moderately for the most

stringent performance thresholds (Z = 1.4 and 1.6), we note that an architect could

use Slice to generate new protection routings optimized for these thresholds if this is

desirable. The two PR-Worst schemes perform poorly, with no scenario achieving a

Z of 1 where all low priority traffic could be carried. Note that PR-Worst(2) matches

Centralized and performs slightly better than PR-Slice for the worst-case (achieving

a Z of 0.42) but this comes at the expense of performance for the vast majority of

scenarios.
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Fig. 4.6.: Certification time of Slice with PR-Worst.

4.4.5 Certification time with Slice

In this section, we discuss the running time with Slice to certify both the protection

routing and centralized schemes. We report the total CPU time on a 3.00GHz Intel

Xeon E5-2623 machine using a single-threaded implementation.

Protection routing. Figure 4.6 reports certification time for both Slice’s sorting

approach and an LP approach (§4.3.2) that we refer to as Sorting and LP. We focus

on k = 2 settings since they involve more scenarios and take longer than k = 1. For

each topology and scheme, we measure the certification time for multiple ProbCS

targets ranging from 1 9 to 4 9s, and present the largest time (e.g., it takes longer to

certify 4 9s than 1 9, but detecting 4 9s violates may be faster than certifying 1 9).

We make the following observations. First, Sorting outperforms LP in all settings.

The benefits are significant for larger networks, where we needed to terminate the

experiments with LP after 6 hours. For Deltacom, Sorting is two orders of magnitude

faster. For ION, while Sorting certifies 4 9s within 33 minutes, 3 9s is less than a

minute. LP could not even certify 3 9s after 6 hours. ION takes much longer to certify

than Deltacom despite similar network sizes. This is because ION certifies 4 9s, and

a larger number of scenarios need to be considered, whereas Deltacom certifies 1 9

and violates 2 9s, requiring fewer scenarios to be checked.

Centralized schemes. Certifying Centralized takes longer because even the task

of certifying a single SSet is NP-complete (Proposition 3.1.1). Despite this, Slice only

takes 87.2 seconds for the moderately sized GEANT network running the classification
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Fig. 4.7.: Throughput and loss rate across UDP flows with PR-Slice (top) PR-Worst

(bottom) on testbed.

algorithm to completion. For larger topologies, recall that we run the classification

algorithm until 2 9s are certified, and then switch to sampling (§2.6). Using this

hybrid approach, Slice performs acceptably, taking 2.1 hours and 0.9 hours to certify

4 9s for Deltacom and ION, respectively. We have also run experiments comparing

the hybrid approach to sampling alone. While the hybrid approach classifies all two

sub-link failure scenarios, sampling only classifies about 83% for both topologies. Fur-

ther, unlike sampling, the hybrid approach can group scenarios into compact SSets,

necessary for tractable protection routing design. The hybrid approach achieves a

speed-up of 2.8x for ION, and 1.3x for Deltacom. Finally, we note that Slice is rel-

atively unoptimized. There are multiple ways to reduce certification time with Slice

in the future, such as running the bounding LP (H) only at some nodes, and reusing

the parameters computed at an ancestor node at some descendant nodes.

4.5 Validations on SDN testbed

In this section, we validate the effectiveness of PR-Slice in protecting against a

wider range of failure states than PR-Worst using SDN testbed experiments. The
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experiments also show that our generalizations to existing protection routing models

(§4.2.1) is practically realizable.

Emulation setup and protection routing implementation. We conduct

emulations using Mininet 2.2 and OpenVSwitch 2.10. Both normal (r) and pro-

tection routing (p) variables require each router to forward traffic to a destination

with multiple next hops. We achieve this leveraging the select group table feature in

OpenFlow 1.5 using multiple buckets with different weights in a group table entry.

OpenVSwitch’s internal hashing method guarantees that packets belong to a single

flow map to the same forwarding path.

Initial flow rules for normal and protection routing are installed by a central

controller. When a link 〈i, j〉 fails, the head (i) and tail (j) switches are responsible

for pushing and popping a unique MPLS label (say lij) encoding the failure. All

the switches forward the labeled packets based on flow rules pre-installed by the

controller that translate the appropriate protection routing variables p. Packets may

carry stacked labels if they encounter multiple failed links along the path. Failure

information of 〈i, j〉 is also propagated to the controller which adjusts the protection

routing parameters p and a to p′ and a′ to ensure that the protection routing for

any subsequent failure 〈u, v〉 does not use either 〈i, j〉 or 〈u, v〉. Since this update is

only to protect against future failures, it is acceptable to involve the controller in this

operation. We omit the details regarding the adjustments, but we remark that the

new variables are efficiently computable.

Experimental results. We compare the performance of PR-Slice and PR-Worst

by emulating Abilene k = 1 on the testbed for a matrix where the traffic is dominated

by a source destination pair. It is infeasible to design a protection routing with PR-

Worst to protect against all 2-failure scenarios, since the graph may get disconnected

on a few of these failure scenarios (and LP (H) is infeasible to solve). Hence, we design

PR-Worst for all single failures. For PR-Slice, we design the protection routing for the

union of the SSets corresponding to 0-failure, 1-failure and all 2-failure SSets which

can achieve an MLU under 1 with Centralized (20 SSets representing 93% of 2-failure
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scenarios in all) as described in §4.3.4. The MLU with LP (H) for the union of sets is

0.9, indicating all these scenarios can be tackled but the network may operate close

to saturation on some of them.

We create 30 UDP flows between the source and the destination, and split the

demand uniformly across the flows. Note that any flow is hashed to one path con-

stantly, but multiple flows may be hashed to different paths following the routing

parameters. The rate is set to the maximum possible given the system resources

of the host machine, and link capacities are proportionally scaled down. Figure 4.7

presents the throughput and packet loss rate measured at the destination on the fail-

ure of two links e1 and e2 (highlighted by the circles), occurring 30 seconds apart.

Figure 4.7 (top) shows the result for PR-Slice. Notice that each failure event leads to

a transient impact on throughput and loss rate, though performance quickly recovers

after protection routing is activated.

Figure 4.7 (bottom) shows the result for PR-Worst. While it can handle the first

failure, there is complete packet loss after the second failure, because PR-Worst is

restricted to design for single failure scenarios. In this example, PR-Worst resulted in

e1 and e2 mutually using each other to protect against their respective failures, which

is sufficient to guard against a single but not two failures. PR-Slice prevents this by

using more diverse paths to protect e1 and e2.

Like [28], it is possible for PR-Slice to suffer transient loops when links fail near

simultaneously. For instance, in the example above, each of e1 and e2 may partially use

each other to protect against their respective failures. However, the final protection

variables are correctly restored based on the sequence of failures observed by the

controller using the adjustments described above. In contrast, PR-Worst is unable to

eventually recover. In practice, other mechanisms may be needed for recovery such as

a re-execution of LP (H), which may take several minutes, and necessitate significant

traffic re-routing beyond diverting traffic on e1 and e2.
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4.6 Related work

The closest related works to Slice are R3 [28], FFC [18], and robust validation [84].

FFC [18] is a path-based protection mechanism. When a particular path fails, traffic

is redistributed by the source of the failed path to surviving paths. FFC assigns

bandwidth to flows so the assignment can be handled under any scenario involving

up to f link and fn node failures. Robust validation [84] determines the worst-case

performance for a given set of demands or failures if the network responded optimally

for each scenario (i.e., if the Centralized scheme is used). Slice is a general framework

that applies to all of these schemes by supporting failure classification, certification,

performance profiles, and design for more general objectives than the worst case.

While we have already discussed how Slice applies to R3 and Centralized, Slice also

applies to FFC. For instance, considering all f failures with FFC may be conservative,

and Slice can aid FFC to exclude failure scenarios, which may lead to a design with

higher bandwidth assignment. The ideas in §4.3.4 can also be extended to allow FFC

to design for arbitrary SSets.

Much earlier work on resilient network design has either (i) only focused on avail-

ability [13–17] resulting in poor performance on failures [12]; or (ii) only consid-

ered robust design for a small number of failure states (e.g., single-link or node fail-

ures) [19–25]. Our research considers performance (not just availability), and scales

to consider the combinatorially many failure states arising from multiple concurrent

failures.

Determining optimal ways to route traffic in a demand-invariant manner while

minimizing MLU has been well studied [23,39,42,71]. These works could be viewed as

providing guarantees on worst-case network performance, assuming adaptation is not

permissible. Semi-oblivious traffic engineering [88] picks paths in a demand-invariant

manner, but allows flexibility in how traffic is routed across tunnels.

Slice can complement and aid topology synthesis tools [29]. Much recent progress

has been made on ensuring the correctness of network configurations, and the control
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and data plane [31, 32, 89–91]. While we share similar inspiration, our focus is on

performance properties, an area that has only started receiving attention (e.g., [92]).

Slice simultaneously handles discovery and exclusion of scenarios unlike prior work

in the optimization community that focuses solely on excluding a pre-specified list of

scenarios [93].

4.7 Conclusions

We have argued that when analyzing and designing networks for failures, con-

sidering worst-case performance across scenarios is insufficient. We have presented

Slice, a formal framework that supports failure classification, and generalized analysis

and design, which can work with both centralized schemes and protection routing.

For Deltacom k = 2, Slice’s analysis reveals that PR-Worst only handles 46.1% of

2-failure scenarios and no 3-failure scenario. In contrast, PR-Slice (synthesized using

Slice) can support nearly all 2- and 3-failure scenarios (closely matching Centralized).

For the two traffic class model, Slice’s analysis shows that PR-Worst carries less than

80% of low priority traffic in all 2-failure scenarios. In contrast, PR-Slice can handle

all low priority traffic (besides high priority traffic) in all but three 2-failure scenarios,

while modestly impacting performance for one case. Slice has reasonable computation

time owing to its techniques for efficient failure classification. Emulation experiments

show the benefits of PR-Slice are realizable in practice.
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5. CONCLUSIONS AND FUTURE DIRECTIONS

5.1 Conclusions

Robust certification is the first framework to certify worst-case performance of

network across wide range of scenarios with flexible network response. Leverag-

ing cutting-edge techniques from non-linear optimization community, together with

network-inspired mechanisms, we have shown that the robust certification framework

can achieve performance bounds dominating state-of-the-art [28], and these bounds

surprisingly match the optimal for many practical networks we have experimented.

We have generalized the robust certification framework to apply to many more

practical situations, such as multiple traffic classes with different priorities, richer

failure patterns, routing restriction, and various performance metrics. To study the

bound quality of these generalizations, as well as to automate the cumbersome manual

process of relaxation and linearization, we have developed a toolkit which makes the

robust certification framework more accessible to users. The bounds for different

variants all match the optimal for the networks in our context, except for SRLG

failure model. In a proof-of-concept implementation, the automation takes less than

40% extra running time for GEANT network (50 edges), compared to the running

time of the same model with linearization and relaxation conducted manually.

Further, we have presented Slice, a general framework for certifying network per-

formance objective beyond the worst-case. Slice can efficiently classify failure scenar-

ios based on their performance, and can analyze the performance of given routing

designs. Analysis enabled by Slice reveals large performance gaps between central-

ized network response and protection routing designed for the worst-case. Exploiting

the analysis result from Slice’s classification algorithm, we can provide a better pro-

tection routing design for a percentage of failure scenarios, which achieves close to
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optimal performance, for both moderate-size and large networks. Slice has reasonable

certification time: on a single-threaded 3.00GHz CPU, it takes 2.1 seconds for Slice

to analyze a protection routing design for GEANT, and 80.8 seconds for Deltacom

(150 edges). While Slice could take longer for Centralized, many opportunities for

optimization exist in the future as discussed below.

Overall, we have shown the potential of network performance certification with

formal and quantitative approaches.

5.2 Future directions

This thesis takes the first step in certifying network performance goals under

failures with a principled approach, and there are many potential directions down the

road. We will elaborate on three facets: scalability of Slice, network synthesis, and

latency certification.

Scalability of Slice. As we have elaborated in §4, Slice’s classification algorithm

plays a vital role in performance analysis and protection routing design, and there

is much room for further optimization when Slice is used with Centralized. Also,

since the performance of classification algorithm is no worse than the enumeration

approach, we can trade the bound quality of DoAllCertify(), a key procedure in the

classification algorithm dominating the running time, for the computation efficiency.

For example, assuming we use the RLT approach described in §2 to realize DoAllCer-

tify(), instead of applying a full-blown cross product of all constraint pairs, we can

take a subset of all the constraint products in order to improve the solving efficiency

of the relaxed model, with the price of possible compromise on bound quality. As

another example, we can use a specific protection routing to serve as DoAllCertify()

of the centralized scheme, exploiting the fact that a specific protection routing always

gives the same or more conservative bounds than the DoAllCertify() implemented in

§4.3.3.
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Network synthesis. In both robust certification and Slice, we have shown two

concrete examples where our frameworks apply to network synthesis: (i) designing a

plan of link capacity augmentation with least cost so that the new design certifies a

given worst-case performance target; (ii) designing a protection routing for a percent-

age of failure scenarios so that the new routing handles more failure scenarios than a

design merely optimizing the worst-case performance. The next intriguing question is

that whether we can build a framework to generalize a series of design problems. One

possible solution is to add a third design stage to the robust certification problem,

and use approaches similar to robust certification to reformulate, relax, and solve

for performance bounds. Synthesis is clearly a more difficult problems to solve than

certification, and there are challenges which need further investigation: (i) since the

inner stages need to remain simple, we have to use the relaxed formulation for the

second stage. Will this degrade the bound quality of the final relaxation? (ii) Does

first-level RLT still suffice?

Latency certification. Latency is a major concern in many business-critical ap-

plications today. It would be of great value and interest if we had a formal approach

to quantitatively certifying whether a network routing design meets the latency re-

quirement under failures. One question here is what is a reasonable metric for latency,

i.e., how to accurately represent the latency in a network? It may be as simple as

the aggregation of number of hops from source to destination, or we have to consider

the impact of queuing on each links by modeling deterministically or statistically the

queuing behaviors, assuming the characteristics of queues are known for each link.

Our approach may also need to be informed by empirical validations to make sure

the latency validation results reflect real-world considerations.
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