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ABSTRACT

Choi, Jungu PhD, Purdue University, August 2019. Toward measurement of Nuclear
Spin-Dependent(NSD) Parity Non-Conserving (PNC) interaction in 133Cs hyperfine
ground states via two-pathway coherent control. Major Professor: D. S. Elliott.

Weak interactions in an atomic system by external electromagnetic fields or nucleon-

nucleon interaction cause perturbations in the wave-function and energy levels of

electrons, which allow for transitions that are otherwise forbidden. Of particular

interest are magnetic dipole (M1) transitions, Stark-induced transitions, and parity

non-conserving (PNC) transitions. The PNC interaction in the hyperfine ground

states is dominantly due to the anapole moment of the nucleus and there has been

up-to-date only one such measurement carried out in any system; the Boulder group’s

ground-breaking measurement of the anapole moment in atomic cesium in 1997. Their

result derived from two different hyperfine transitions, however, did not agree with

the meson-coupling model from high energy physics experiments. Therefore, it is

important to revisit the anapole moment through another method to cross-check

the Boulder group’s measurement. Our goal is to excite the nuclear-spin-dependent

(NSD) PNC ground hyperfine transitions in cesium via radio-frequency (rf) and Ra-

man excitation to directly determine the anapole moment. I present our progress

toward measurement of the NSD transition in an atomic Cs beam geometry. We have

developed a broadband rf cavity resonator to strongly suppress the magnetic dipole

(M1) transition while enhancing the forbidden PNC electric dipole (E1) transition.

We employed an injection locking scheme to generate a pair of phase-coherent Ra-

man lasers far detuned from the cesium D2 line (852 nm) with a 9.2 GHz frequency

difference. I report various measurement data from atomic signal via rf and Raman

excitation. In the next generation of measurements, we will carry out interference
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experiments between rf and Raman transitions by varying the phase relations of the

rf and Raman lasers fields. Finally, based on the measurements, I discuss a novel

robust measurement technique involving interference of the Raman, M1 and EPNC
contributions.
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1. INTRODUCTION

The discovery that the weak interaction does not conserve parity dates back to the

1950s [1, 2]. In an atomic system, this weak interaction allows for weak mixing

of electron orbitals leading to a non-zero weak electric dipole transition amplitude

between states that are otherwise electric dipole forbidden. The term parity non-

conserving (PNC) comes from the fact that the conventional parity selection rules

are broken; parity is conserved when the electron wavefunction transitions from odd

parity to even parity (e.g. S orbital → P orbital) or vice versa. These transitions

via the PNC effect can be divided into nuclear-spin-independent (NSI) and nuclear-

spin-dependent (NSD) interactions. The former is the nucleon-nucleon effect while

the latter is nucleon-electron effect.

The main challenge in measuring the PNC amplitude lies in that the transition

amplitude is usually many orders of magnitude smaller than other transitions such

as electric dipole (E1) allowed transitions, magnetic dipole (M1) transitions and etc.,

which makes the signal extremely susceptible to noise. In this report, I present

our progress toward the measurement of NSD PNC amplitude in the cesium ground

hyperfine states 6S1/2F = 3 ↔ 6S1/2F
′ = 4 along with statistical error analysis in

the interference measurement of Raman and E1 transitions. I also outline a robust

novel measurement technique along with preliminary measurements.

1.1 PNC Measurements in Alkali Metals

Alkali metals are most favorable candidates to measure PNC transitions due to

their hydrogen-like atomic structures that can be theoretically analyzed with rela-

tively high precision. In many-body physics, where more than two particles interact,

theoretical uncertainty arises from the fact that no exact analytical solution exists for
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the atomic structure. For instance, hydrogen should yield minimal theoretical uncer-

tainty because its structure can be precisely solved using separation of variables. The

next hydrogen-like element, lithium, has relatively small uncertainty [3] and as for

heavier alkali metals theoretical uncertainty naturally increases drastically. On the

other hand, heavy atoms are advantageous in that the PNC interaction amplitude

increases as Z3 where Z is the proton number [4]. Cesium is the heaviest stable alkali

metal and thus has been used for PNC measurements with high accuracy [5–8].

Although cesium is a good species for PNC measurements, its lack of more than

one stable isotope makes it somewhat less favorable. For instance, lithium has two

stable isotopes, 6Li and 7Li. Potassium and rubidium also have two stable isotopes,

40K and 41K, and 85Rb and 87Rb, respectively. As it will be explained later, PNC

amplitudes depend on the atomic number Z of the atom as well as the number

of neutrons N . PNC measurements in a chain of isotopes would help reduce this

dependence on the neutron number and therefore may improve the precision of the

measurements further. Most recently, measurements by Antypas et al. [9] in a chain of

even-nucleon Ytterbium isotopes showed such linear dependence of the weak charge on

the number of neutrons. In addition, researchers proposed to artificially synthesize

cesium isotopes to carry out PNC measurements [10]. Some of these radioactive

cesium isotopes include 134Cs, 135Cs, and 137Cs [11]. Despite such interest of PNC

measurements in cesium isotopes within the atomic physics community, no report on

actual measurements of these unstable isotopes has been published yet.

There has been notable development in measurement schemes for PNC transitions

in francium [12–14]. While francium is a radioactive metal with a half-life time on the

order of minutes depending on the isotope, it is the heaviest hydrogen-like metal with

87 protons. A number of different Francium isotopes can be synthesized and trapped

in a MOT for PNC measurements. Ref. [14] reports that the researchers would expect

to trap about 106 atoms in a volume of ∼ 0.1 mm3 at a low temperature (∼ 100 µK).

Preliminary studies were conducted for the anapole moment in francium [15] and

the blue-detuned dipole trap has been developed to trap the francium atoms [16].
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Various spectroscopic measurements have been reported such as isotopic shifts in

the forbidden two-photon transition 7s → 8s [17] and the hyperfine anomaly [18]

from the hyperfine splitting of the 7P1/2 level among different isotopes. Their future

experiments will focus on probing the ground hyperfine structures of 7S1/2 for the

anapole moment and the 7S1/2 → 8S1/2 transition for the weak charge.

1.2 Nuclear-spin-independent (NSI) Transitions

The nuclear-spin-independent (NSI) PNC transitions in atomic systems are mostly

due to the exchange of Z0 bosons between the electrons and the nucleus of the sys-

tem [4]. This interaction can be characterized by the electron axial vector (A) and the

nuclear vector currents (V), which give rise to the weak charge. Albeit other mecha-

nisms such as Z0 exchange between electrons do exist, the dominant contributions to

the NSI PNC amplitudes are from this weak charge. The weak charge of the system,

therefore, quantifies the weak force between the nucleons and the electrons and can

be written as [19],

QW = kEPNC = −N + Z(1− 4sin2θW ) (1.1)

Here, Z and N are the number of protons and the number of neutrons, respectively,

and θW is the Weinberg angle, or the mixing angle. This weak charge is estimated

to be ' −N since sin2θW is close to 1/4. Accurate determination of the weak charge

comes from theoretical calculations of k and experimental measurement of EPNC .

The uncertainty of the weak charge arises from systematic errors in measurements,

as well as limits on theoretical models of the atom. The probing of the weak charge

in atomic measurements may shed light on the weak coupling of elementary particles

in the system and pave the way for physics beyond the standard model. It is notable

that Antypas et al. [9] accurately determined the weak charges across four Ytterbium

isotopes to find linear dependence of the weak charge on the number of neutrons.

Up to this date, the Boulder group’s 6S → 7S measurements in cesium yielded

the lowest experimental uncertainty of 0.35% [6]. Several years after the Boulder
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group’s publication, Madame Bouchiat and colleagues led pump-probe measurements

to revisit the PNC amplitude in cesium [20–22]. However, their experiments did not

reach the Boulder group’s sensitivity level and therefore Wood et al.’s [6] results

still remain an unchallenged milestone in weak PNC measurements. Based on the

Boulder group’s results, Porsev et al. derived the weak charge in Cesium QW =

−73.16(29)exp(20)th by summing all electric dipole transition amplitudes between 6S

and 7S with nP1/2 as intermediate states [23,24]. The uncertainty of the weak charge

in Ref. [23,24] was 0.27%, half the uncertainty reported in previous works [25,26] and

it was a ground-breaking result in that it not only brought the Weinberg angle closer

to the standard model but also it reduced the uncertainty significantly. This result,

however, was disputed by Dzuba et al. in their report [27] in 2012, who claimed that

Porsev et al.’s 2009 and 2010 works may have disregarded non-negligible terms in

their calculations. Dzuba et al. further argued that their renewed calculations made

significant corrections to Porsev et al.’s works and the new uncertainty and deviation

of the weak charge from the standard model should be larger just as in their 2002

work [26].

Nonetheless, among atomic physics theorists, there are still on-going interests in

possible renewed calculations of the weak charge in cesium. Such efforts include

recent projects by the University of Queensland group led by J. S. M. Ginges. In

2017, they employed a single-particle model for the nuclear magnetization for cesium

atoms (as opposed to the traditional sphere model) for high-precision calculation of

the ground hyperfine states [28]. A year later, they proposed a method to remove

the dependence of hyperfine calculations on the nuclear and quantum electrodynamic

effects [29]. Furthermore, these works paved way for more accurate determination of

cesium electronic functions along with precise empirical measurements of hyperfine

coupling constants of high quantum number states such as 7S1/2 [30], 8S1/2 [31–33],

9S1/2, 10S1/2 [34], 11S1/2 [34], and 12S1/2 [35].

In addition, emergence of novel robust and sophisticated techniques with an en-

hanced signal-to-noise ratio for weak measurements showcased in Ref. [37–39] as well
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Fig. 1.1. (From Ref. [36]) The solid curve represents the standard
model (SM) prediction of the effective mixing angle sin2θW with re-
spect to momentum transfer (Q), and the shaded areas represent per-
turbation due to the presence of dark photons (dark Z). (a) The mass
of dark Z = 50 MeV and (b) the masses of dark Z = 100 MeV (blue)
and 200 MeV (Red)

as a series of recent high-precision spectroscopic measurements in atomic cesium such

as the branching ratio of 7S1/2 → 6Pj [40], the lifetime measurement of 7S1/2 [41], and

the absorption measurements of 6S1/2 → 7Pj [42,43] renewed interests in the determi-

nation of the weak charge in cesium within the atomic physics community. Especially,

in addition to new determination of the vector and scalar polarizability [43], more

precise probe of the PNC amplitudes in the 6S1/2 → 7S1/2 is underway [44]. These
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measurements would help further reduce uncertainty in the determination of the weak

charge since the accuracy of the constant k in Eqn. (1.1) depends partially on the

accuracy of measurement data. In addition, another important aspect of precision

PNC measurement is that the weak charge provides a unique probe into dark matter

searches. Under low collision energy conditions, dark boson (Zd), or dark Z, is conjec-

tured to interact with matter via weak interaction, and studies of dark matter would

require higher precision of the structure of heavy atoms [36]. Weak interactions due

to the PNC effect in atoms and molecules are considered low momentum transfer, as

opposed to weak interactions observed in hadron collision experiments. In Fig. 1.1,

the Cs atomic parity violation results (APV in the figure) are plotted at Q = 2.4

MeV/c, which corresponds to approximately h̄/(a0/Z) [45,46]. This value represents

the relation between the electron momentum near the nucleus of the cesium atom.

Green, red, and blue shades in the figure show that the weak interaction of the dark

masses would shift the effective mixing angle (sin2θW ) in the standard model at low

collision energies. Today’s most accurate PNC measurements [6] (APV in the figure)

have uncertainty almost equal to or larger than this shift due to dark Z perturbation.

Therefore, improved PNC measurement with lower uncertainty is necessary to probe

dark matters through weak interaction. In addition, Dzuba et al. [47] calculated

the PNC amplitudes of 6S1/2 → 7S1/2 in cesium in the framework of low-mass (>

109 eV) vector bosons, which along with higher precision measurement data, would

allow for dark matter search across a large mass spectrum. In short, higher precision

measurement in cesium and other alkali-like systems would allow for sensitive probing

of dark matters and other exotic materials.

1.3 Nuclear-spin-dependent (NSD) Transitions

The nuclear-spin-dependent (NSD) PNC transitions arise from neutral weak cur-

rents, the nuclear weak charge from the hyperfine interaction, and the nuclear anapole

moment. The nuclear anapole moment [48], due to parity violating interactions in-
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side the nucleus, is the dominant contribution to NSD PNC transitions in heavy

species [4]. In the atomic nucleus, meson exchange between nucleons leads to PNC

nuclear currents [19, 46, 49–51]. As shown in Fig. 1.2, in classical electromagnetism,

Fig. 1.2. (From Ref. [19]). The classical depiction of an anapole
moment is where the current winds about the toroid coil, resulting
in a circular magnetic field inside. The nucleus of atoms forms an
anapole moment in an analogous way.

an anapole moment is formed by a toroidal coil where the current direction at the

inner radius is opposite to the current direction at the outer radius. Analogously, the

nuclear anapole moment can be formulated as

a = −π
∫
r2j(r)d3r (1.2)

where j(r) is the current vector, which arises from perturbation in the wave-function

of the nucleons due to an unpaired nucleon. Therefore, the nuclear anapole moment

is non-vanishing in systems with an odd number of nucleons. While the nuclear

spin does not flip the sign under the reflection of coordinates, this current vector in

Eqn. (1.2) has parity-odd and leads to toroidal currents in the nucleus. Therefore,

the system forms a nuclear anapole moment in the direction of the nuclear spin I due

to the PNC interaction.

In 1995, Vetter et al. reported the constraints on the nuclear-spin-dependent

(NSD) PNC in thallium vapor by measuring the PNC amplitude through optical

rotation on the 6P1/2 → 6P3/2 magnetic dipole transition and taking the amplitude

difference between the hyperfine levels F = 0 and F = 1. Improved NSD measure-

ments were first reported by the Boulder group in an atomic cesium [6] where Wood
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Table 1.1.
Some of the past calculations of the anapole moment of 133Cs. The
anapole moment constant (κa) from Ref. [52] is notable in that it is
derived from the Boulder group’s experimental measurements.

Year Anapole Moment Constant (κa)

1984 0.25 [49]

1991 0.24 [53]

1994 0.33(analytic), 0.26(numerical) [54]

1997 0.364(62) [52]

et al. measured the difference between two PNC transition amplitudes EPNC/β on the

6S1/2 → 7S1/2 transition in a cesium atomic beam. Here, β is the vector polarizability

of the 6S1/2 → 7S1/2 transition and the two transitions are F = 3 → F ′ = 4 and

F = 4→ F ′ = 3. F designates the hyperfine level and the prime notation denotes the

excited levels. While their measurements of the respective transitions yielded a 0.5%

level uncertainty, the difference between the two amplitudes was only a few percent of

the average of the two amplitudes. This led to a NSD PNC amplitude with a high un-

certainty (∼14%). From this NSD measurement, Flambaum and Murray derived the

anapole moment of cesium with the anapole moment constant κa = 0.364(62) [52].

However, theoretical efforts to explain meson-nucleon couplings in the Donoghue-

Desplanques-Holstein (DDH) model [55] based on the Boulder group’s NSD measure-

ment did not agree well with those of high-energy scattering measurements [19] and

no further report of improved anapole moment in cesium or in any other species has

been published ever since.

The Paris group led by Madame Bouchiat carried out pump-probe pulse mea-

surements in the 6S → 7S transitions in cesium in an effort to improve upon the

Boulder group’s measurements [20–22]. However, as of now, their measurement un-

certainty is still too large to determine the NSD PNC interaction strength and cross-

check the Boulder group’s results. Numerous groups suggested measurement schemes
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[12, 56–60] to revisit the NSD measurement to better understand this discrepancy

between the Boulder group’s NSD measurement and the DDH model. Among these

various schemes the effort led by the TRIUMF collaboration [12] aims to employ an

rf and Raman interference in trapped francium atoms. Our NSD measurement in

cesium also involves a similar technique with an rf cavity and Raman lasers in an

atomic beam geometry. In these schemes, the goal is to excite the ground hyperfine

states via forbidden E1 transition to directly observe the NSD PNC interaction.

Most recently, the Yale group led by D. DeMille demonstrated a highly sensi-

tive method for NSD PNC measurement in the polar molecules 138Ba17F [61, 62]

based on the 2008 proposal [59]. In their experiment, the Yale group created a

beam of 138Ba17F, applied a large dc magnetic field (∼ 0.5T) to bring two ground

electronic state X2Σ to a near-degeneracy, and carried out Stark-PNC interference

measurements. This interference technique was previously showcased in atomic dys-

prosium [63]. As 138Ba has an even number of nucleons, any NSD effect in the 138Ba17F

molecule should be due to 17F, which is expected to be minuscule. The Yale group

noted that their NSD measurement in 138Ba17F yielded a vanishing amplitude and

therefore concluded that the systematic effects have been under control. Their search

for NSD interaction in polar molecules continues in 137Ba17F where 137Ba is expected

to produce a large NSD effect.

1.4 PNC Measurements in Other Species

Efforts to measure PNC amplitudes in various media include Tl [64–66], Bi [67],

Pb [68], Yb [69, 70], and molecules [59]. Based on the calculations with 3% uncer-

tainty in atomic thallium [66], Edwards et al. [65] confirmed the standard model

prediction uncertainty with a similar experimental uncertainty. The PNC transi-

tion was observed on the 6P1/2 → 6P3/2 transition by interfering with the magnetic

dipole transition, where the PNC optical rotational amplitude R = Im(EPNC/M1) =

−(15.68±0.45)×10−8 was obtained. In 1995, Vetter et al. measured the PNC optical
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rotation amplitude within near 1% uncertainty in thallium [64]. This measurement

allowed for calculation of more precise PNC rotation as well as for derivation of the

weak charge QW = −114.2± 3.8. These two experiments in Thallium did not lead to

successful derivation of the anapole moment but the measurements did place a limit

on the NSD PNC rotation in Tl.

A PNC optical rotation in atomic vapor of bismuth was measured by Macpherson

et al. [67] by interfering the PNC interaction with the magnetic dipole interaction

on the 6p3J ′ = 3/2 → 6p3J = 3/2 transition. They obtained the NSI rotation

Ri = (−10.12 ± 0.20) × 10−8 and the NSD rotation RS = (−0.02 ± 0.15) × 10−8.

Due to theoretical uncertainty in the NSD constant, the nuclear anapole moment

could not be derived from the measurements. In atomic lead vapor, a PNC rotation

measurement was carried out by Meekhof et al. [68] on the 3P0 →3 P1 transitions. The

rotation amplitude was found to be R = (−9.86± 0.04± 0.11)× 10−8 where the first

error is statistical and the second error is systematic. But higher precision derivation

could not be made due to the high uncertainty in the theoretical calculations of the

atomic lead structure. The results, however, set constraints on the NSD amplitude

RS/R < 0.02 in lead.

There is on-going interest in heavy ions as candidates to measure PNC interaction.

In the TRIµP facility, Groningen, the Netherlands [71,72] where researchers managed

to generate and trap the ions of radium isotope (209-214). The forbidden transition

7s2S1/2 → 6d2D3/2 in Ra+ is expected to be about 50 times greater than the PNC

amplitude in the 6S → 7S transition in cesium [73]. In addition, trapped Ba+ ions

have been considered a potential candidate for PNC measurement. The M1 moment

measurement in 6S1/2 → 5D3/2 has been proposed by Williams et al. [74] and highly

accurate transition frequency measurements have been carried out in the 5d2D3/2 →

6p2P1/2, 6s2S1/2 → 5d2D3/2 and 6s2S1/2 → 6p2P1/2 transitions of 138Ba+ [75].

David DeMille’s theoretical framework on the possibility of PNC measurements

in atomic ytterbium [70], shows that ytterbium could be a good candidate for PNC

measurements due to a high PNC amplitude, minimal magnetic dipole amplitude
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and a moderate Stark-induced rate. In addition, ytterbium has a number of isotopes

which makes it favorable for high precision PNC measurements. The earlier PNC

measurement on the 6s2 1S0 → 5d6s3D1 transition in an atomic 174Yb beam [69, 76]

showed the PNC amplitude about two orders of magnitude larger than atomic cesium

EPNC/β = 39(4)stat(5)sys mV/cm. Recently, Antypas et al. [9] from the Mainz group

carried out PNC amplitude measurements in the 6s21S0 → 5d6s3D1 transitions in a

chain of even-nucleon ytterbium isotopes. These renewed measurements yielded the

PNC amplitudes -22.81(22) mV/cm in 170Yb, -23.24(10) mV/cm in 172Yb, -23.89(11)

mV/cm in 174Yb, and -24.12(10) mV/cm in 176Yb. The uncertainty is dominated

by statistical errors (∼0.5%) while the systematic effects were under control below

0.25%.

The Yale group’s effort to measure weak interaction in polar molecules based on

Ref. [59,77] is primarily focused on the NSD PNC interaction. Altuntas et al. carried

out preliminary measurements in 138Ba17F using Stark interference and reported that

the molecule had little contribution to the PNC interaction, which is consistent with

the fact that 138Ba has an even number of nucleons. The Yale group’s search for the

NSD PNC interaction would continue in 137Ba17F where the odd number of nucleons in

137Ba would yield a large NSD effect. They noted, however, due to a lower abundance

of 137Ba, the signal-to-noise ratio would be consequentially lower. In addition, a

variation of dc field amplitudes and the velocity distribution of the molecular beam

would contribute to statistical errors and, therefore, their aim for uncertainty is about

10%.

1.5 Cesium ground states

This section is devoted to the atomic structure of 133Cesium [78, 79]. Cesium is

the heaviest stable alkali metal with the atomic number Z = 55 and mass of 132.9

u where u is the atomic mass unit. Although cesium has a number of radioactive

isotopes from fission reaction (such as 133Cs and 135Cs), only 133Cs is stable and
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naturally abundant. Cesium has a hydrogen-like structure where the valence shell

(6S1/2) has only one electron with its lower shells completely filled.

Fig. 1.3. Cesium ground state energy level diagram. Due to the
coupling between the electron spin (S) and nuclear spin (I), the ground
state 6S1/2 splits into two hyperfine fine levels with energy separation
corresponding to 9.19 GHz. Green arrows represent the transitions
of interest in the PNC measurement. See text for hyperfine Zeeman
splittings.

Cesium has a nuclear spin of I = 7/2, which gives rise to two hyperfine levels

F = 3 and F = 4 in the 6S1/2 ground state. This coupling is due to the nuclear

magnetic moment µI and the magnetic flux density created by electrons Be. The

nuclear magnetic moment can be expressed as µI = gIµNI where µN is the nuclear

magneton (µN = µB
me

Mp
) and µB is the Bohr magneton. For electrons in an S orbital,

the magnetic flux density is Be = 2
3
µ0M where M is the distribution of magnetization.

Therefore, the hyperfine splitting Hamiltonian is,

Hhfs = −µI ·Be = gIµNI ·
2

3
µ0M = A62S1/2

I · J (1.3)

A62S1/2
is known as the magnetic dipole constant. The energy splitting due to this

Hamiltonian is then,

∆Ehfs =
h̄

2
A62S1/2

〈I · J〉 (1.4)
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Here, the dot product 〈I · J〉 can be expressed as 〈I · J〉 = 1
2
{F (F + 1) − I(I + 1)

−J(J + 1)}. Since Ahfs for hyperfine ground states of cesium is known exactly as

2.2981579425 GHz [79], the energy splittings for the ground states are,

∆Ehfs

h̄
(F = 3) =

1

2
× 2.298 GHz× (−4.5) = −5.1705 GHz (1.5)

∆Ehfs

h̄
(F = 4) =

1

2
× 2.298 GHz× 3.5 = 4.0215 GHz

Note that insignificant digits for A62S1/2
are omitted for simplicity’s sake. The hyper-

fine level F = 3 is shifted down while F = 4 is shifted up, which is shown in Fig. 1.3.

This gives an effective energy shift between the two hyperfine levels of 9.19 GHz.

These hyperfine levels can be further split into Zeeman sub-levels, m = 0,±1,±2,

±3 in F = 3 and m = 0,±1,±2,±3,±4 in F = 4. In the presence of a dc magnetic

field, these Zeeman sub-levels become non-degenerate, with the shift in the energy

level proportional to (−0.35 MHz/G) × m for F = 3 and (0.35 MHz/G) × m for

F = 4. This effect is called Zeeman splitting. The ground state transition frequency

(6S1/2F = 3 → 6S1/2F = 4) is accurately known to be 9.19 GHz. When a dc

magnetic field is applied, the resonant transition frequency for the F = 3,m = 3 →

F = 4,m = 4 transition will become significantly different from the F = 3,m = −3→

F = 4,m = −4 transition. The green arrows in Fig. 1.3 represent these transitions.

For instance, if a dc magnetic field of 10 G is applied along the quantization axis the

resonant frequency of F = 3,m = 3 → F = 4,m = 4 is shifted by 24.5 MHz, while

the resonant frequency of F = 3,m = −3→ F = 4,m = −4 is shifted by -24.5 MHz.

1.6 Current status

The cesium ground hyperfine state NSD measurement is a several-year-long project

initiated recently only a few years ago. Its ultimate goal of observation of a nuclear

anapole moment in the cesium hyperfine state lies in the far future. During my Ph.D.

program, my main commitments towards the NSD measurement include construction



14

of dc and rf apparatus, designing of optical setup, and conducting preliminary mea-

surements to understand how well various experimental parameters are under control.

To summarize notable progress in the experiment so far:

1. An rf cavity with modest power buildup at 9.2 GHz was constructed and char-

acterized using a vector network analyzer (VNA).

2. A mechanical translational system with a resolution of < 1 µm was designed

and tested for precision positioning of the rf cavity.

3. Various coils to generate homogeneous and uniform dc magnetic fields were

constructed and tested that meet the spatial constrain of the vacuum chamber.

4. Moderate power optical pumping enabled preparation of atoms into one extreme

Zeeman sublevel to a high efficiency.

5. Two phase-locked Raman lasers were designed using an injection-locking scheme

based on the rf source that also excites the rf cavity.

6. Preliminary measurements via Raman and rf transitions allowed for formulating

a new interference scheme involving additional excitation pathway.

In addition, we carried out various mathematical analysis to understand the pre-

liminary data, especially off-resonance rf measurements (see Sec. 6.2.2 for detail) and

effects of atomic velocity distribution on rf/optical transitions. These analyses are not

entirely understood in a complete form so we rely partially on numerical calculation

to analyze the data in Sec. 6.

The anapole moment measurement along with the weak charge measurement is

aimed at producing experimental results with lower uncertainty than the Boulder

group reported two decades ago [6]. As noted in Sec. 1.3 and in Ref. [6], the lat-

est measurement of the cesium anapole moment does not agree well with theoretical

predictions and is much larger than the predicted values [19, 52]. The rf excitation

in the ground hyperfine states for the NSD transition measurement would allow for
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independent investigation into this discrepancy between the Boulder group’s measure-

ments and the theory. With a unique measurement technique showcased in previous

works [37–39] and reviewed in detail in Sec. 3.2, the goal of the proposed measurement

is to measure the anapole moment in cesium with less than 3% uncertainty.
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2. WEAK TRANSITIONS

In this section, formalisms for transitions such as the Stark-induced (β), magnetic

dipole (M1), and PNC transitions (EPNC) are presented. In normal dipole-allowed

transitions, the time-dependent Schrödinger’s equation describes the evolution of the

states,
d

dt
|ψ(t)〉 = − i

h̄
H|ψ(t)〉. (2.1)

Here, |ψ(t)〉 is the superposition state of all possible states of the system and H is

the Hamiltonian. The Hamiltonian can be separated into the unperturbed part and

interaction part, H = H0 + H ′. If the system consists of only two states |1〉 and

|2〉, the unperturbed part of the Hamiltonian is H0 = h̄ω1|1〉〈1| + h̄ω2|2〉〈2|. The

transition rate P (t) due to the interaction part, H ′, would be

P (t) ∝ |〈2|H ′|1〉|2 =

∣∣∣∣∫ ψ∗2(r)H ′(r)ψ1(r)d3r

∣∣∣∣2 (2.2)

where H ′ can be described as

H ′E1(r) = e~r · ~E. (2.3)

Here, ~p = −e~r, and hence, is the electric dipole operator.

Weak transitions have interaction Hamiltonians different from the conventional

electric dipole moment and usually many orders of magnitude smaller. In a system

that consists of a number of particles, such as cesium, theoretical calculation of electric

dipole forbidden transitions requires sophisticated methods such as the Hartree-Fock

method [23,27]. In the ground hyperfine state transition driven by a microwave field,

when all weak transitions are present, the total transition amplitude Vweak becomes

the sum of individual weak transition amplitudes,

Vweak = VSt + VM + VPNC (2.4)



17

where VSt is the Stark-induced transition amplitude, VM is the magnetic dipole tran-

sition amplitude, and VPNC is the PNC transition amplitude. These transitions may

interfere with one another coherently.

2.1 Stark-induced Transition

When a dc electric field is applied to the atomic system, the energy levels of the

eigenstates shift due to the dc Stark effect. The Stark shift in the cesium hyperfine

ground states transition is important in that it would affect the accuracy of the cesium

atomic clock [80–84]. Another manifestation of the Stark effect is that, in the presence

of a dc electric field, transitions that are normally forbidden become weakly allowed.

This Stark-induced transition can be represented as [8, 85]

VSt =
∑
n′′

[
〈n′SF ′m′| − e~ε · ~r|n′′P 〉〈n′′P | − e ~E · ~r|nSF ′m′〉

EnS − En′′P

+
〈n′SF ′m′| − e ~E · ~r|n′′P 〉〈n′′P | − e~ε · ~r|nSF ′m′〉

En′S − En′′P

]
. (2.5)

Here, n and n′ are the primary quantum numbers for the initial and excited states,

respectively and for the cesium hyperfine ground state transitions, n = n′ = 6. ~ε is

the rf field and ~E is the dc electric field. Eqn. (2.5) shows that the Stark-induced

transition amplitude varies linearly with respect to the applied dc electric field ~E,

which can be instrumental when interfering VSt with other transitions. Interferences

of the Stark-induced transition are covered in detail in Sec. 4.

Gilbert and Wieman [8] derived these transition amplitudes using reduction of the

matrix elements approach. The Stark-induced transition amplitude in Eqn. (2.5) can

be rewritten as

VSt(F,m;F ′,m′) = [α~E · ~εδF,F ′ + iβ( ~E × ~ε)zCF ′m′

Fm ]δm,m′ +

[±iβ( ~E × ~ε)x − β( ~E × ~ε)y]CF ′m′

Fm δm,m′±1.

(2.6)
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α and β are the scalar and vector polarizabilities of the ground states, respectively,

and CF ′m′
Fm is related to the Clebsch-Gordon coefficient for the transition. Note that

the δ terms in the equation reflect the selection rules. Since F 6= F ′, and hence

δF,F ′ = 0, the first term containing α vanishes. The Stark-induced transition in the

Cs hyperfine ground states therefore depends on β as well as the dc and rf field

polarization. The vector polarizability (β) for this transition has not been calculated

or measured in experiment. β can be expanded as [8, 60,86]

β =
1

6

∑
n

[
r2
n,j

(
1

∆F ′;j=1/2

− 1

∆F ;n,j=1/2

)
+

1

2
r2
n,j′

(
1

∆F ′;j=3/2

− 1

∆F ;n,j=3/2

)]
. (2.7)

Note that Eqn. (2.7) utilizes the reduced dipole matrix elements where rn, j repre-

sents the reduced dipole matrix elements 〈npj||r||6s1/2〉 for the angular momentum

quantum number j = 1/2 or 3/2, and h̄∆F ;n,j terms represent the energy differences

E6s,F − Enpj for the two hyperfine levels F = 3 or 4. Approximation for β can be

made due to the facts that the terms for n = 6 in the summation in Eqn. (2.7) are

dominant and the hyperfine splitting in 6S1/2 is much smaller than the energy of the

6p states [60].

β '
h̄A62S1/2

6

[
|〈6p1/2||r||6s1/2〉|2

(E6s − E6p1/2)
2

+
1

2

|〈6p3/2||r||6s1/2〉|2

(E6s − E6p3/2)
2

]
(2.8)

The hyperfine splitting Ahfs is defined in Sec. 1.5. Given 〈6p1/2||r||6s1/2〉 = 4.5062 a0

and 〈6p3/2||r||6s1/2〉 = 6.3400a0 [87–92] the vector polarizability becomes β ' 0.00346a3
0.

In addition, another selection rule regarding Zeeman sub-levels can simplify Eqn. (2.6)

further. The ground hyperfine transitions of interest are 6S1/2F = 3,m = 3 ↔

6S1/2F = 4,m = 4 and 6S1/2F = 3,m = −3 ↔ 6S1/2F = 4,m = −4. These transi-

tions all involve ∆m = ±1 and for this reason, the term with δm,m′ vanishes. However,

due to various undesired effects such as polarization impurity of the rf field and stray

dc magnetic fields, this term may not completely disappear. Detailed analysis on this

kind of systematic errors can be found in Sec. 6.5.
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2.2 Magnetic Dipole Transition

Transitions excited by magnetic dipole moment have a Hamiltonian

H ′M1 = −µB
h̄

(gs~S + gL~L+ gI~I) · ~B (2.9)

where µB is the Bohr magneton, gs, gL, and gI are the electron spin, electron orbital,

and nuclear g-factors, respectively, and ~B is the rf magnetic field [79]. In the ground

state hyperfine transition, the orbital angular momentum ~L is zero and the spin g-

factor is much larger than the nuclear g-factor; gs can be estimated as ' 2 and gI

was measured to be -0.0004 [93]. The magnetic dipole transition amplitude is

VM1 = 〈6S1/2Fm|µBgs~S · ~B|6S1/2F
′m′〉. (2.10)

Using Eqn. (2.10) and the reduced matrix elements [8], the magnetic dipole transition

amplitude VM can be formulated,

VM1(F,m;F ′,m′) = {(k̂ × ~ε)zδm,m′ + [±(k̂ × ~ε)x + (2.11)

i(k̂ × ~ε)y]δm,m′±1}MCF ′m′

Fm

Here, k̂ and ~ε are the unit vector denoting the direction of the wave propagation

and the electric field of the rf field, respectively, M is the magnetic dipole moment

and the cross product k̂ × ~ε, by Faraday’s law, yields the rf magnetic field. The

ground hyperfine transitions in Cs 6S1/2 are electric dipole forbidden but magnetic

dipole allowed. The hyperfine transition strength excited by an rf magnetic field is, as

shown in Eq. (2.11), proportional to the magnetic field amplitude and the magnetic

dipole moment (M1). This moment is M = µBgS/2c ' µB/c and it is estimated to

be about 2 × 108 times larger than the PNC transition amplitude in the hyperfine

ground states [60, 94]. Therefore, the ground hyperfine state measurement requires

that the unwanted magnetic dipole contribution be minimized (refer to Sec. 4.4).
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2.3 PNC transition

Due to weak interaction between the nucleus and electrons, there exists a non-

vanishing Hamiltonian for even-to-even (e.g. S → S) or odd-to-odd (e.g. P → P )

parity transitions as mentioned in the previous chapter. The formalism in this section

is devoted to 6S → n′S transitions in cesium. The Hamiltonian for PNC interaction

in cesium mainly arises from the mixing of S and P orbitals. This non-zero transition

moment that violates parity can be expressed as [86],

EPNC = 〈n′S|er|nS〉 =
∑
n′′

[
〈n′S|er|n′′P 〉〈n′′P |H ′PNC |nS〉

En − En′′
(2.12)

+
〈n′S|H ′PNC |n′′P 〉〈n′′P |er|nS〉

En′ − En′′

]
whereH ′PNC is the weak electron-nucleus and nucleon-nucleon potential defined as [23,

52],

H ′PNC = −GF√
8
QWγ5ρ(r) +

GF√
2

~γ · ~I
I
κρ(r) (2.13)

Here, GF is the Fermi constant, γ5 is the Dirac matrix, ρ(r) is the proton/neutron

density distribution normalized to unity, QW is the weak charge, which is approx-

imately equal to −N (N is the number of neutrons), I is the nuclear spin, and κ

represents the NSD constant. γ5 and ~γ contain an operator that acts on the elec-

tronic wave function. On the right side of Eqn. (2.13), the first term accounts for

the NSI interactions and is independent of the hyperfine levels of the transition. The

second term is responsible for the NSD interactions and is dependent on the hyperfine

levels.

Furthermore, both NSI and NSD PNC amplitudes are larger for heavier species;

but for different reasons [4]. For the NSI transitions, the term in Eqn. (2.13) grows

roughly as Z3:

1. Assuming the nucleus is point-like, the probability that the valence electron is

at the nucleus grows as Z.
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2. Using the nonrelativistic approach, the electron momentum near the nucleus

increases with a larger number of protons, which accounts for another factor of

Z.

3. The weak charge QW is proportional to the size of nucleus. The greater the

weak charge is, the higher the PNC amplitudes grow.

On top of the Z3 factor, there is also a relativistic effect that contributes. This

relativistic effect increases with a larger Z and therefore the PNC amplitudes grow

faster than Z3. On the other hand, the NSD PNC amplitudes in heavy species grow

roughly as A2/3, where A is the atomic number. As discussed in Sec. 1.3, NSD PNC

amplitudes in heavy species are mostly due to the nuclear anapole moment. The

anapole moment arises from the electromagnetic current density due to the weak

nucleon-nucleon interaction (Ŵ ) [4, 49,50]:

Ŵ =
GF

2
√

2m
g{σṗρ(r) + ρ(r)σṗ} (2.14)

where m, σ, and p represent mass, spin, and momentum of the unpaired nucleon,

ρ(r) is the core density, g contains constants for the meson-nucleon interaction.

In the nucleus, the anapole moment can be expressed as:

a = −π
∫
r2j(r)d3r (2.15)

The solution to the Schrödinger equation with the interaction Hamiltonian from

Eqn. (2.14) can simplify Eqn. (2.15) further:

a =
GFg√

2
ρ0

2πeµ

m

KI

I(I + 1)
〈r2〉 (2.16)

Here, the core density ρ(r) is replaced by an average nuclear density ρ0. The mean

square radius 〈r2〉 can be expressed as 3
5
r2

0A
2/3 where r0 is the radius of nuclei (∼

1.2 fm) and A represents the atom number. Introducing an dimensionless anapole

moment constant κa into Eqn. (2.16):

a =
1

e

G√
2

KI

I(I + 1)
(2.17)
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where κa contains the A2/3 term.

Referring to Wood et al.’s PNC measurements in cesium [6], the two transitions

F = 3 → F ′ = 4 and F = 4 → F ′ = 3 on the forbidden transition 6S1/2 → 7S1/2

both contain NSD and NSI components. By averaging the PNC amplitudes from both

transitions, they were able to determine the weak charge QW . By subtracting one

transition amplitude from the other, they were able to isolate the purely NSD term.

Using the reduced matrix elements, the PNC transition amplitude can be simplified

as

VPNC(F,m, F ′,m′) = [εzδm,m′ + (±εx + iεy)δm,m′±1]iIm(EPNC)CF ′m′

Fm . (2.18)

Like other weak transitions, the PNC transition is governed by the selection rules and

field polarization requirements.

2.4 Electric Quadrupole Transition (E2)

Contribution of the hyperfine interaction to the NSD PNC transition is relatively

small in heavy atoms as discussed in Sec. 1.3. According to Ref. [95], the mixing

of nS1/2 and n′D3/2 states due to this hyperfine interaction leads to weakly allowed

electric quadrupole transition in the cesium hyperfine ground states. This transition

operator is

T0 = a1
~S · ~ε× k̂ + ia2(~S × ~I) · (~ε× k̂) (2.19)

+ia3[(~S · ~ε) · (~I · k̂) + (~S · k̂) · (~I · ~ε)].

where k̂ is the rf field propagation direction, ~S is the spin operator, ~I is the nuclear

spin operator, and a1, a2, and a3 are related to M1, Mhf
1 , and E2. Here, Mhf

1 is the

NSD contribution to the magnetic dipole transition moment. In rough estimate, the

E2 transition becomes allowed in the presence of a non-zero electromagnetic field

gradient. Derevianko [84] calculated the E2 moments in various alkali metals. The

2016 calculations show that the E2 transition amplitude may be even smaller than the
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PNC contributions in an electric standing wave configuration where a field gradient

smaller than 30 V/cm2 can guarantee the atomic clock inaccuracies below 10−16.

2.5 Other transitions

Other possible transitions include higher multipole radiative transitions such as

magnetic quadrupole (M2), electric octupole (E3) [96] and magnetic octupole (M3) [97]

transitions. These transitions are typically a few orders of magnitude smaller com-

pared to the dipole transitions and also obey selection rules that may be different

from the dipole transitions. The transition elements of primary interest are M1,

Stark-induced and PNC transitions in the Cs ground hyperfine state measurements.
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3. TRANSITION INTERFERENCE

In this section, background information on transition interference techniques and two-

pathway coherent control schemes is reviewed. These techniques have demonstrated

the robustness and efficiency in weak transition measurements [12, 38, 39, 60]. The

Stark-induced transition measurements in 6S1/2 → 8S1/2 of a cesium vapor cell [37]

and magnetic dipole transitions in 6S1/2 → 7S1/2 of a cesium beam [38, 39] as well

as the latest proposal to measure the NSD parity violation in Francium [12] involve

similar coherent two-pathway interference techniques.

3.1 Coherent Interferences

One of the earliest demonstrations of coherent transition interference was in mer-

cury vapor where the phase difference between three-photon and five-photon ioniza-

tion led to a sinusoidal variation in the total ionization signal [98]. The two transitions

were observed to constructively and destructively interfere depending on the phase

relations of the respective fields.

As shown in Fig. 3.1(a), it is possible for mercury atoms in the ground state 6s1S0

to get excited to a higher level 6p1P1 by a single photon at 185 nm (u.v. light) or by

three photons at 554 nm (green light). In Fig. 3.1(b), laser light at wavelength 554 nm,

which is highly focused, enters the chamber (1) with a high mercury vapor density

('100 m torr). The highly focused beam results in generation of the ultra-violet

light (185 nm) through a third harmonic process while the fundamental component

remains at 554 nm. The two fields enter the chamber (2), which is filled with Argon

gas whose pressure can be controlled. The refractive index of Argon differs at the two

wavelengths. Therefore, by changing the Argon pressure inside the chamber (2), one



25

Fig. 3.1. (From Ref. [98]) (a) Energy level diagram where a three-
photon (ω) excitation path and a single-photon (3ω) excitation path
are shown. Once the mercury atoms are in the excited state, they
becomes ionized by two-photon (ω) light. (b) Experimental setup for
the coherent interferences in mercury

can vary the relative phase difference between the UV field and visible field leaving

the chamber (2).

3φ2 − φ1 =
6πl∆ρ

λ
(n554 − n185) (3.1)

Here, φ1 and φ2 are the phases of the UV field and visible light, respectively. l is the

length of the beam path, λ is the corresponding wavelength for ω, ∆ρ is change in

the gas pressure, and n554 and n185 are the refractive index of argon at 554 nm and

185 nm, respectively. Hence, change in the argon pressure in the chamber (2) would

lead to change in the relative phase difference between the two lasers.

The chamber (3) is filled with mercury vapor with a low density (2-3 m torr), where

photo-ionization of mercury atoms takes place. The overall transition probability is

then:

W ∝ 2π

h̄
|µEuveiφ1 + µ(3)(Eviseiφ2)3|2 (3.2)

Here µ and µ(3) are the transition moments for the single and three photon transitions,

respectively. From the equation above, it can be seen that a change in the phase

difference between the two fields would lead to respective change in the transition

rate.
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Fig. 3.2. (From Ref. [98]) The photo-ionization signal of mercury
atoms versus the relative phase difference between the lasers with
mercury vapor pressure of 2-3 m torr.
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3.2 Improvement of Signal-to-Noise Ratio

Gunawardena and Elliott showcased one of the earliest two-color coherent control

schemes with cw light to measure Stark-induced transitions 6S1/2 → 8S1/2 in a cesium

vapor cell [37]. They excited the transition via a two-photon path at 822 nm and a

single-photon path at 411 nm and, by interfering the two transitions, observed signif-

icant enhancement in the signal-to-noise ratio of the weak transition. Here, the 822

nm laser excites the strong two-photon transition and the 411 nm laser excites atoms

by the weak Stark-induced transition. The total transition rate can be described as,

Fig. 3.3. (From Ref. [37]). The interference between the two-photon
(822 nm) and the one photon (411 nm) transitions

W ∝
∣∣∣µ(ω)(Eωeiφ

ω

)2 + µ(2ω)E0E
2ωeiφ

2ω
∣∣∣2 (3.3)

Here, µ(ω) and µ(2ω) and φω and φ2ω are the transition moments and the phases for the

two-photon and weak transitions, respectively. E0 is the dc electric field amplitude for

the Stark-induced transition. The two-photon transition is the dominant transition

(µ(ω) � µ(2ω)). Eq. (3.3) can be expanded as,

W ∝
∣∣µ(ω)(Eω)2

∣∣2 +
∣∣µ(2ω)E0E

2ω
∣∣2 + 2Re

[
µωµ∗(2ω)E0(E2ω)∗(Eω)2ei∆φ

]
(3.4)

The second term on the right-hand-side of Eq. (3.4) containing (µ2ω)2 is much smaller

than the other terms so that it can be neglected. Then, the transition amplitude
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becomes linearly dependent on the applied dc field (E0) and sinusoidally varying

with respect to the phase difference ∆φ.

Various sources of noise were identified by collecting photons from the interaction

region with a photomultiplier tube (PMT); the dark current (when no lasers are

present) and noise due to scattering photons. It was noted that for weak transitions

the dark current, or background noises, is the dominant source of noise and adding

the strong two-photon laser with a sufficiently large number of atoms can improve

the signal-to-noise ratio. For the case of the direct excitation in the absence of the

two-photon laser, the signal-to-noise ratio is,

S

N
=

NW√
NW + 2ND

(3.5)

Here, NW is the photon count from the weak Stark-induced interaction and ND is the

dark noise. When the two-photon laser is present, the signal-to-noise ratio becomes,

S

N
=

2
√
NTPNW√

NTP +NW +ND +NSC

(3.6)

where NTP is the photon count from the two photon transition and NSC is the number

of scattered photons.

In weak measurements, where NW is several orders of magnitude smaller than the

strong transition photon count NTP, the signal-to-noise ratio in the absence of the

strong two-photon laser is substantially compromised by the background noise as it

becomes S/N ' NW/
√

2ND. On the other hand, in the presence of the two-photon

laser, the signal-to-noise ratio becomes S/N ' 2
√
NW which is the shot-noise limit

of the photo-detection. In our laboratory, we apply this technique to our on-going

weak measurements including the cesium ground hyperfine state experiments [60]

and optical measurements [44]. Especially, I outline our group’s scheme to revisit the

cesium 6S → 7S transitions in the next section.
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Fig. 3.4. The experimental setup from Ref. [6]. A similar setup will
be used for PNC measurements in our laboratory (see Sec. 5).

3.3 Recent Developments in Cesium Parity Violation

The Boulder group’s measurements in cesium in 1997 are the most precise atomic

PNC measurements to this date with an experimental uncertainty of 0.35% [6, 99].

Atomic theorists are, however, yet to reach an agreement on the weak charge based on

this work. Porsev et al. reported QW (133Cs) = −73.16(29)exp(20)theory in 2009 [23],

the value which is in great agreement with the standard model prediction and has

significantly lower uncertainty than previously reported. This report was later dis-

puted by Dzuba et al. in Ref. [27] in 2012 where the authors cited a correction to the

value from Ref. [23].

The Boulder group spent years to understand and minimize systematic errors in

the experimental setup and obtained 350 hours worth of data collected over several

months. Our experimental setup is in many ways influenced by the Boulder group’s

setup shown in Fig. 3.4 where the atomic beam geometry allows for sequential inter-

actions of the atoms with respective fields. More details on the experimental setup

are discussed in Sec. 5. The Boulder group excited the 6S → 7S PNC transition with

a 540 nm dye laser via Stark-induced and PNC transitions. The power buildup cavity

with high finesse (∼ 100, 000) formed by two power buildup cavity (PBC) mirrors in
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Fig. 3.4 not only boosts the weak electric dipole interactions but also strongly sup-

presses the magnetic dipole (M1) transition. The two transitions are 90 degrees out

of phase so the laser polarization was set elliptical to achieve a non-vanishing ratio of

VPNC/VSt. They observed the transition rate W ∼ |VSt +VPNC|2. This transition rate,

thus, depends on the applied dc electromagnetic field, and the polarization of the

laser. The Boulder group employed the reversal technique where they varied the field

polarization, the dc field direction, and the optical pumping scheme and averaged the

PNC amplitudes from all these measurements.

A few years after the Boulder group’s PNC work in cesium, the Paris group led

by Madame Bouchiat produced new PNC measurements in cesium [20] employing a

pump-probe polarization rotation technique based on Ref. [5]. Unlike the Boulder

group’s atomic beam measurements [6], the Paris group used a vapor cell and pulsed

lasers to excite the atoms via forbidden PNC transition and probe the excitation

by a probe pulse. The probe pulse would exit the vapor cell with slightly rotated

polarization due to gain asymmetry. A high power pulse (1 mJ energy with a 15 ns

width) allowed for rapid excitation with little spontaneous decay. The Paris group

explains that stimulated emission method could enhance a signal-to-noise ratio far

better than the fluorescence method used in their previous experiment [100].

Fig. 3.5. A diagram from Ref. [20] depicting the Paris group’s pump-
probe polarization rotation measurements for the cesium PNC ampli-
tude in the 6S → 7S transition.
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In 2003, their experiments yielded θPNCexp (µ rad) = 1.082 ± 0.091(stat), which

translates to about 9% statistical uncertainty. The results are in agreement with

the standard model prediction and hence validated the Paris group’s method for

the cesium PNC measurement. However, this experimental setup initially had a

few disadvantages over the atomic beam geometry such as reflection on the vapor

cell window, temperature instability, and an imperfect co-propagation angle between

the pump and probe pulses, which led to noise in the measurements. Shortly after

their initial measurements, the Paris group improved on various sources of noise [22]

and produced new PNC results ImEPNC
1 /β = −1.538 ± 0.040 mV/cm with a 2.6%

statistical uncertainty [21, 22]. The Paris group’s results did not have high enough

precision to produce a nuclear anapole moment value. Although they announced

their plans to improve upon measurement precision [101], they have not published

any more PNC results so far.

The two-pathway coherent technique described in Sec. 3.2 requires mainly varying

of the phase relations between the strong and weak transitions, and also makes signal

detection far less sensitive to background noise. This could potentially reduce errors

dramatically in weak transition measurements. Recently, Antypas and Elliott show-

cased the two-pathway coherent control technique to measure the magnetic dipole

(M1) amplitude on the 6S → 7S transition by interfering a strong two-photon tran-

sition at 1079 nm with weak transitions at half the wavelength [38,39]. The 1079 nm

laser with high intensity is frequency-doubled, and is sent along with the fundamental

to the interaction region for two-photon excitation. The 539.5 nm laser excites the

weak transitions, the magnetic dipole (M1) and the Stark-induced (β) transitions.

These two transitions contribute to the total excitation in quadrature. The M1 tran-

sition moment has been calculated accurately [102–104] and the Stark-induced (β)

transition in 6S → 7S has been measured [105] and calculated [106] β = 26.99 (5) a3
0

within good precision (though, more recent measurements suggest β=27.139 (42) a3
0).

Interference of the Stark-induced and M1 transitions can be observed by varying the

applied dc electric field amplitude as the Stark-induced transition increases with a
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Fig. 3.6. The experimental setup from Ref. [38, 39] for the magnetic
dipole (M1) moment measurement in the 6S → 7S transition using
the two-pathway coherent control technique.

higher dc electric field amplitude (Edc). By rough estimate, the Stark-induced tran-

sition rate can become a few orders of magnitude stronger than M1 when a moderate

(100 V/cm) dc electric field is applied. In Ref. [38, 39], Antypas and Elliott note

that careful attention was paid to suppress any small stray dc electric fields that may

obscure the M1 transition.

The total excitation rate can be described as,

W = |V2P |2 +K(Edc)cos(∆φ+ δ(Edc)). (3.7)

Here, V2P represents the strong two-photon transition rate, K(Edc) is the modulated

signal amplitude, ∆φ is the phase difference between the two-photon and one-photon

transitions, and the δ(Edc) is the phase shift. The modulated signal amplitude term

K(Edc) is

K(Edc) ∝ |V2P |ε(539.5nm)
√
M2

1 + (βEdc)2, (3.8)

where ε(539.5nm) is the field amplitude of the 539.5 nm light. The terms inside the

radical square root in Eqn. (3.8) represent the quadrature interference of the M1 and
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β transition amplitudes. The phase difference ∆φ can be controlled by adjusting

angle θ of the optical flat as shown in Fig. 3.6.

By collecting the data for a few different M1 transitions in 6S → 7S over sev-

eral hours of data collection time, Antypas and Elliott obtained the ratio M1/β =

−29.55(11). Although Bennett’s measurement of the magnetic dipole moment on the

6S → 7S transition with M1/β = −29.48(7) has slightly higher precision [107], Anty-

pas and Elliott’s M1 measurements [38, 39] clearly demonstrated the robustness and

flexibility of the two-pathway coherent control technique in weak transition measure-

ments. Though, it remains a challenge to apply the two-pathway coherent excitation

technique for PNC measurements where a power buildup cavity must support a dual-

wavelength mode. For the NSD experiments in cesium [60], and francium [12] this

technique will be utilized for high precision PNC measurements in hyperfine ground

states.

Lastly, our group began developing a novel PNC experiment using two-color co-

herent control in a cesium vapor cell [44]. This approach is similar to the Paris

Fig. 3.7. Figure from Ref. [44]. The proposed measurement involv-
ing two-color (green and infrared) CW excitation of the forbidden
6S1/2 → 7S1/2 transition and probing of the gain via 7S1/2 → 6PJ
(black dotted).

group’s experiments [5, 20–22, 101] in that we exploit a dense vapor cell for higher

excitation signal and that we use an additional laser to probe the PNC excitation
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(black-dotted in Fig. 3.7). Our technique differs from the Paris group’s approach in

that we use two-color CW excitation of the forbidden 6S → 7S transition with two

sets of counter-propagating lasers (at 539.5 nm and 1079 nm) and that the probe laser

is also CW. The Paris group’s pulse experiments benefited from high energy delivered

by short pulses, hence high excitation rates and suppressed spontaneous decay, but

suffered from various systematic effects including reflection, noise at the polarimeter,

and contributions of M1 transition. In addition, data collection time would be longer

in CW experiments while pulsed measurements are limited by pulse-repetition rates.

Fig. 3.8. Figure from Ref. [44]. The proposed measurement geometry
where two sets of counter-propagating lasers (green and red) are fo-
cused into a cesium vapor cell. The field plates inside the vapor cell
create a uniform dc electric field.

Fig. 3.8 shows a experimental geometry including the laser polarization and prop-

agation directions and applied dc electromagnetic fields. It is also important to note

that we apply a dc magnetic field to lift the non-degeneracy so that the probe laser

can couple a specific transition |7S1/2 F
′,m′〉 → |6PJ F,m〉. The observable in this

process is a linear gain rather than polarization rotation as in the Paris group’s ex-

periment. With realistic parameters, vapor cell temperature of ∼180◦C, the two

photon laser power ∼5 W and the green laser power ∼3 W, and a moderate probe

beam intensity, we estimated that this experimental geometry can potentially yield a

0.6
√
t(s) sensitivity.
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4. INTERFERENCE IN CESIUM GROUND HYPERFINE

TRANSITIONS

In this chapter, interference among various transition amplitudes in Cesium hyper-

fine ground states is reviewed. Among the hyperfine ground state transitions are the

Raman transition (VRaman), the Stark-induced transition (VSt), the magnetic dipole

transition (VM), and the PNC transition (VPNC). The V notations represent transi-

tion amplitudes. The Raman transition is excited by two Raman lasers, both detuned

from the D2 resonant line (852 nm) while the three weak interactions are excited solely

by the rf fields. Depending on the rf field polarization, and the amplitude and direc-

tion of the dc electromagnetic fields, the transitions interfere differently. Successful

schemes should isolate two transitions by eliminating contributions from any other

transition, and should allow for varying the degree of the interference by control of

variables such as the phase, and the dc field amplitude and direction. For instance,

we proposed in Ref. [60] an experimental geometry for the interference between the

PNC and Stark-induced transitions EPNC/β. However, recently we decided to go with

another interference scheme that may be more advantageous without β contributions.

Although we still believe EPNC/β has interesting merits (see Appendix. A for detail),

we will focus on the current scheme that does not involve any dc electric fields.

4.1 Field orientations

We designed an experimental geometry such that we can observe excitation of one

transition via different pathways. This would allow for varying controllable parame-

ters to interfere these transitions as showcased in previous weak measurements (e.g.

Refs. [37, 38]). The diagram in Fig. 4 summarizes our experimental geometry. The

Raman lasers and rf fields that maintain coherent phase relations with one another
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Fig. 4.1. An abbreviated energy diagram for Cs hyperfine ground
state transitions 6S1/2F = 3 → 6S1/2F = 4. Atoms are prepared in
the initial state (F = 3,m = +3) by optical pumping and get excited
to the final state (F = 4,m = +4) by Raman lasers (red) and the
microwave field (green).

excite a ∆m = ±1 transition. For the Raman interaction, two lasers one with a

polarization direction parallel to the applied dc magnetic field (z-direction), and the

other with a polarization direction perpendicular to z.

As shown in Fig. 4, the z-polarized laser couples the 6S1/2 F = 4 m = 4 →

6P3/2 F = 4 m = 4 transition, and the x-polarized laser couples the 6S1/2 F = 3 m =

3→ 6P3/2 F = 4 m = 4. Both lasers need to be sufficiently detuned (∼ 1 GHz) from

the resonant frequency so that atoms would not get excited to the 6P3/2 levels. For this

second laser, it may inadvertently excite the 6S1/2 F = 3 m = 3→ 6P3/2 F = 4 m = 2

transition, but the detuning from the resonant line should suppress any excitation of

this transition.

ΩRaman ∝
ER1E∗R2

∆
=

1

∆
E1E∗2 exp

[
− i(ω1 − ω2)t+ i(k1 − k2)y

]
(4.1)

Although a large detuning may help prevent direct excitation of atoms to 6P3/2, it

also weakens the strength of the Raman transition. More importantly, in order to

have good phase relations across the interaction region, the two Raman lasers need to

propagate in the same direction and completely overlap one another, hence keeping

exp
[
i(k1 − k2)y

]
uniform. More detail on the Raman lasers can be found in Sec. 5.2.



37

Fig. 4.2. The field orientations for the EPNC measurement. The prop-
agation direction of the Cs atomic beam is ~z. The dc magnetic field
(B0) is in the z-direction, the Raman lasers (not shown) propagate in
the y-direction, where one Raman laser is polarized in the x-direction,
the other Raman laser is polarized in the z-direction. The rf fields
propagate in the ±y-direction.

The rf field orientations are chosen such that the PNC and M1 transition ampli-

tudes are both non-vanishing and 90◦ out of phase with one another. Referring to

Eqns. (2.11) and (2.18), this can be realized by having the rf field linearly polarized

in the x-direction. These equations then become:

VM1 ' {i(k̂ × ~ε)y}MCF ′m′

Fm (4.2)

VPNC ' (±εx)iIm(EPNC)CF ′m′

Fm (4.3)

Note that the term (k × ~ε) should vanish in the geometry shown in Fig. 4.1. How-

ever, due to a tight focusing effect, the cavity mode supports large magnitude hrfy

fields as will be discussed in Sec. 6. Moreover, we concluded in Ref. [60] that this

hrfy field should have a net zero excitation rate across the interaction region but we

recently found out this field’s yield a non-zero value at off-resonance. The reason for

the approximation sign (') in Eqns. (4.2) and (e4.3) is because small polarization

impurity and stray fields may cause error in the signal amplitudes. Other sources of

error include non-zero contributions due to the hrfz component and non-uniform stray

dc magnetic fields. These errors can be sufficiently reduced as rigorously shown in

Sec. 4.4 and Sec. 6.5.
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4.2 Raman and Weak Transitions

In this section, we discuss a measurement scheme exploiting inference between

the strong and weak transitions. For simplicity, the system will be treated as a two-

level system isolated from all other Zeeman sublevels. The state of the atoms can be

written as,

ψ(t) = ci(t)ψie
−iωit + cf (t)ψfe

−iωf t (4.4)

where ci(t) and cf (t) are time-varying probability amplitudes of the initial (6S1/2 F =

3 m = 3) and the final (6S1/2 F = 4 m = 4) states, respectively. When the atoms

interact with the Raman and rf fields, the Hamiltonian becomes, H = H0 + V . Here

V is an interaction Hamiltonian containing the sum of all transition amplitudes,

V = VRaman + VM1 + VPNC (4.5)

under the assumption that all other undesired transition amplitudes are sufficiently

suppressed. When the rf fields are resonant to the ground hyperfine transition, the

VM1 term vanishes. We are putting forth effort to understand off-resonant interaction

where VM1 does not vanish, which we detail in Sec. 6.4. In this section, we work out

the interference scheme under resonant conditions.

When the atoms leave the interaction region, the population in the final state

(= |cf (t)|2) becomes,

|cf (∞)|2 = sin2

(∣∣∣∣∣∑
i

Θi

∣∣∣∣∣
)

(4.6)

Here, Θi is the integrated interaction strengths of any of the individual interactions,

Θi =

∫ ∞
−∞

Ωi(t)dt (4.7)

Ωi(t) represents the Rabi frequency of individual interaction. The Rabi frequency

relates to the transition amplitude as Ωi(t) = Vi(t)/h̄. In addition, the Rabi frequency

is time-varying because the atoms interact with the Raman and rf fields as they move

across the interaction region. In other words, with a given velocity v, the interaction
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strength that the atoms experience can be represented as integration over distance

rather than over time.

Θi =
1

v

∫ ∞
−∞

Ωi(z)dz (4.8)

Fig. 4.3 shows the numerical calculation for the probability amplitude of the initial

and final states as the atoms experience the Raman and rf fields sequentially. The

Fig. 4.3. Figure from Ref. [60]. The evolution of the probability am-
plitude for the initial ci(z) and the final cf (z) states as the atoms
pass through the interaction region. (a) The Raman and weak tran-
sitions are in phase with one another, and (b) the Raman and weak
transitions are out of phase with one another.

Raman lasers, located at z = −4 cm, have a beam width of about wRaman ∼ 0.5

cm and the rf fields, located at z = 0 cm, with a beam width about wrf ∼ 2.5 cm.

The velocity of the atoms is 270 m/s for this calculation. The peak Rabi frequencies

of the Raman and the weak transitions are ΩR = 23.9 ms−1 and ΩW = 0.61 ms−1,
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respectively. The plots were obtained by evaluating the time-dependent Schrödinger

equation in Eqn. (2.1) with ψ(t) from Eqn. (4.4),

d

dt
|ψ(t)〉 = − i

h̄
H|ψ(t)〉 (4.9)

Here, H is the interaction Hamiltonian and is equivalent to H = V/h̄ from Eqn. (4.5).

Assuming there is no decay or dephasing mechanism in either the initial or the final

state, the population in the respective states is |ci(∞)|2 and |cf (∞)|2. In Fig. 4.3(a),

the Raman and weak fields are in phase with one another and therefore they both

contribute to the excitation of the atoms. In Fig. 4.3(b), the Raman and weak fields

are out of phase with one another and while the Raman lasers contribute to the exci-

tation, the weak transitions cause the population to move back to the initial state. By

changing the phase difference between the two excitation mechanisms in a finer way,

the final state population will modulate sinusoidally as shown in Fig. 4.4. One can

Fig. 4.4. The sinusoidal modulation of the final state population with
respect to the phase difference between the Raman and rf fields.

determine the weak transition strength from the modulation amplitude in the figure.

The Boulder group’s PNC measurements [6] were observation of direct excitation

of weak PNC and Stark transitions. As discussed in Sec. 3.2, small signal ampli-

tudes (e.g. from weak transition measurements) are susceptible to background noise.

The coherent control technique can improve the detection efficiency significantly as

demonstrated in previous experiments (e.g. Refs. [37, 38]).
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Lastly, the TRIUMF collaboration’s plans [12] to measure the EPNC involve direct

observation of the PNC and Raman interference. Traditionally, PNC measurements

require another weak transition (e.g. PNC vs Stark: EPNC/β). Since excitation

rate via PNC and Stark-induce transitions are both proportional to the electric field

amplitude, measuring the ratio eliminates the necessity of precise knowledge of the

field amplitudes. Instead, the TRIUMF collaboration measured and estimated the

field amplitude inside the power buildup cavity [108], which will be used to find

EPNC from the observable VPNC in the francium MOT. Using a method similar to

the TRIUMF collaboration’s, we can determine the rf field amplitudes that atoms

experience in the interaction region. This would allow for direct interference of the

PNC transition with Raman excitation to measure the NSD interaction strength.

4.3 Weak Transition Interference

By expanding Eqn. (4.6), the population in the final state can be expressed as [60],

|cf (∞)|2 = sin2(|ΘRam|) + sin(2|ΘRam|) (4.10)

×sin
[
|ΘSt + ΘM + ΘPNC |cos(∆φ+ δφ(Ez))

]
where ∆φ = φrf − φRam is the variable phase difference between the Raman and rf

fields and δφ(Ez) = tan−1(EPNC/βE0
z ) is a phase shift introduced by the interference

between the PNC and the Stark-induced transitions. Although our group initially

proposed to interfere Stark-induced and PNC transitions [60], we abandoned this

approach for a PNC and M1 interference scheme. Detailed information on the Stark

vs PNC measurements is found in Appendix. A. With no applied dc electric field, we

have ΘSt = 0 and φ(Ez) = 0.

Using Eqn. (4.8)

|ΘM1 + ΘPNC | =
1

v

∣∣∣∣∫ ∞
−∞

[
ΩM1(z) + ΩPNC(z)

]
dz

∣∣∣∣ (4.11)

one can interfere the M1 and PNC transitions by varying the rf frequency. We need,

however, further mathematical analysis to put the interference in a more concrete
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form. From VM1 in Eqn. (4.2) and VPNC in Eqn. (4.3), it is obvious that VM1 and

VPNC are 90◦ out of phase with one another. This means the two contributions add

in quadrature. Furthermore, in a near-resonant condition with a small non-zero rf

detuning, the EPNC transition amplitude decreases with a higher detuning while the

M1 transition amplitude increases.

In addition, in order to maximize the interference signal in the resonant condi-

tion, it is optimal to excite a π/4 Raman transition. Then, the first term on the right

hand side of Eqn. 4.10 would become 0.5 and the modulation term would be max-

imum. However, since our new scheme exploits interference between the PNC and

M1 transitions with a non-zero rf detuning, the Raman transition would become no

longer two-photon resonant. Eqn. (4.10) needs to be modified to reflect the non-zero

detuning and a π/4 Raman transition may no longer be optimal for maximal inter-

ference. We can either change the Raman laser intensities for a different condition

that optimizes the interference or simply apply corrections to the Raman transition

accounting for the two-photon detuning.

4.4 M1 Suppression

Although we plan to observe M1 excitation with the hrfy field as discussed in

Sec. 4.3, we need to suppress any excitation due to the hrfz field that can introduce

undesired contributions. The hrfz field can excite both ∆m = 0 and ∆m = ±1

transitions. As compared to the PNC contribution, the magnetic dipole transition

amplitude is several orders of magnitude larger M1/EPNC ∼ 2× 108 so that a small

magnetic dipole contribution can obscure the PNC signal. Therefore, we want the

atomic beam to pass through the hrfz node, which coincides with the εrfx anti-node.

The standing wave patterns with the relative position of the atomic beam are shown

in Fig. 4.5. The NSD measurement project in francium atoms led by the TRIUMF

collaboration [12] describes a similar cavity geometry to suppress these unwanted M1

contributions.
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Fig. 4.5. Figure from Ref. [60]. The hyperfine ground state transition
is excited by a standing wave inside a cavity resonator. The atoms
pass through the anti-node (node) of the electric (magnetic) field.

At the magnetic field node, the electric field (εrf) is maximum, and the magnetic

field (hrf) vanishes. So the PNC transition amplitude here would be largest and

the magnetic dipole transition amplitude would be minimal. However, due to the

finite thickness of the atomic beam, atoms that pass through off the node would

experience a non-negligible magnetic field amplitude. By placing the atomic beam

precisely at the node, the magnetic field contributions on the left and right sides

would have the opposite signs. In other words, if such perfect symmetry can be

achieved, atoms passing slightly left and right of the node would experience the same

excitation rate with the opposite sign of phase accumulation. In the interaction

frame with only rf fields, complete suppression of M1 excitation due to hrfz in an

atomic beam is impossible. In a MOT, on the other hand, Gomez et al. [12] from

the TRIUMF collaboration claim that the trapping lasers would oscillate the trapped

francium atoms back and forth about the node at about a kHz frequency, and the

net excitation would average out.

A different technique would be required to sufficiently suppress the M1 contribu-

tion in an atomic beam geometry. Here, the Raman lasers first excite a π/4 transition

before the rf interaction. Since the Raman lasers are traveling waves, the laser phase

would vary along the laser propagation direction (y). If we let the center of the atomic

beam be y = 0, the atoms slightly left and right of y = 0 by δy would accumulate a
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phase term eikRδ̇y and e−ikRδ̇y, respectively, where kR is the wave vector for the Raman

lasers. As the atoms enter the rf interaction region, where the hrfz node is at y = 0,

the atoms passing exactly at the center would experience zero excitation and accumu-

late no phase. The atoms slightly left of the node may further accumulate eiφM while

those slightly right of the node may accumulate the same phase with the opposite

sign e−iφM . This would yield zero M1 contributions overall since on the average all

atoms will effectively have resulted in π/4 transitions. This technique would require

extremely fine positioning of the atoms to the magnetic field node. We discuss the

high resolution transitional stage in Sec. 5.4.

In addition, unlike the spherical cavity geometry in Ref. [12], the field patterns in

our rf cavity are uniform along the vertical direction (x) so that we do not need very

fine adjustment of the atomic beam in the vertical direction. Some other factors that

may prevent perfect M1 suppression include beam divergence and asymmetry of the

atomic beam. Lastly, dc stray fields can also introduce noise to the atomic signals as

will be discussed in Sec. 6.5.

4.5 Stark-Induced and M1 Transitions

The vector polarizability β in the ground hyperfine states has not been measured

or theoretically calculated. Although one can reasonably estimate β using Eqn. (2.7)

in Sec. 2.1, measurement of β in interference with another transition would further

benefit the understanding of cesium properties. The M1 transition in the ground

hyperfine states has been widely studied as explained in Sec. 2.2 and measurement

of M1/β would yield an interesting result to determine the vector polarizability in

the ground hyperfine states. For such measurement, field orientations from those

discussed in Sec. 4.1 may be required and new selection rules may apply. Either off-

resonant M1 excitation with hrfy or resonant M1 excitation with hrfz can interfere with

the Stark-induced transition. If the latter is chosen, the M1 suppression technique

outlined in Sec. 4.4 should be modified that magnetic dipole contributions should
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not be completely suppressed. Or, one may intentionally introduce homogeneous

magnetic fields perpendicular to the quantization axis of the atomic beam, or pass

the atomic beam through slightly off the node of the magnetic standing wave inside

the cavity. This idea is not our high priority agenda but we may plan and design a

feasible geometry for M1/β in the future.
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5. EXPERIMENTAL SETUP

In this section, the experimental setup for the Cs ground hyperfine state transition

measurements is detailed. The experiment is conducted in a vacuum system where

Fig. 5.1. A compact diagram of the experimental setup inside the
vacuum chamber for the Cs ground hyperfine state transitions. This
setup allows for interfering the Raman lasers with weak transitions
EPNC and M1 in particular. Other apparatus such as Earth magnetic
field canceling coils and the translational stage are omitted in the
diagram.

the pressure inside the vacuum chamber nears ' 5×10−5 torr. In the oven adjacent to

the vacuum chamber, the Cs atoms are heated to over 120◦C. The cesium atoms then

form a stream of an atom beam and escapes through a nozzle between the oven and

the vacuum chamber. An aluminum aperture with a circular hole (∼1 mm diameter)

allows the atom beam to become narrower. We estimate that the density of the atom

beam is about 109 cm−3 at the operating temperature. We developed coils (circular
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Fig. 5.2. The picture of the vacuum chamber and the oven. Cs atoms
are placed in the oven in the red circle and heated up to 120◦C. The
cesium atoms then escape into the adjacent vacuum chamber in a
beam. The vacuum chamber has a few Helmholtz coils around to
cancel out Earth magnetic fields and inside the vacuum chamber, the
gas pressure is about 5× 10−5 torr.
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Fig. 5.3. The final experimental setup inside the vacuum chamber
for the Cs ground hyperfine state transitions. The optical pumping
region (mid left) has a small set of coils while the interaction region
has coils with a much larger size. See Sec. 5.5 for more detail.

rings in Fig. 5.1 and Helmholtz coils in Fig. 5.3) for dc magnetic fields in the pumping

and interaction (Raman + rf transitions) regions.

5.1 Sequential Interactions

Unlike the PNC measurement scheme in a MOT system [12], the atomic beam

geometry has a great advantage in sequential measurements; that is, instead of car-
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rying out measurements by carefully controlling the timing of the fields (preparation

lasers, Raman lasers, and microwave fields), all fields can be applied in a CW manner,

while the interaction time is governed by the velocities of the atoms. Errors arising

from the velocity distribution of atoms are discussed in detail in Section 6.5. Once Cs

atoms enter the vacuum chamber, they are prepared in the Zeeman hyperfine sublevel

6S1/2 F = 3 m = +3 by optical pumping beams. The optical pumping scheme in

this experiment is very similar to the ones described in Ref. [107,109,110]. Atoms are

initially populated in all hyperfine ground Zeeman sublevels with equal probability.

In order to prepare the atoms in the F = 3,m = 3 sublevel, one needs to empty out

all population in the F = 4 level and transfer all population in F = 3 to one Zee-

man sublevel. Since the latter would contribute to populating the F = 4 level, both

processes must happen simultaneously. Two lasers, namely hyperfine and Zeeman

pumping lasers, are used to serve these purposes.

1. Optical Pumping Laser 1 (Hyperfine Pumping):

Tuned to the resonant transition of 6S1/2F = 4→ 6P3/2F
′ = 3, this linearly

polarized laser excites +σ and −σ transitions in the presence of a dc magnetic

field that is parallel to the quantization axis. Due to the higher branching ratio

of decay from 6P3/2F
′ = 3 to 6S1/2F = 3 than from 6P3/2F

′ = 3 to 6S1/2F = 4,

a few cycles of this transition would empty out the F = 4 hyperfine level.

2. Optical Pumping Laser 2 (Zeeman Pumping):

Tuned to the resonant transition of 6S1/2F = 3 → 6P3/2F
′ = 3, this cir-

cularly polarized laser excites +σ transitions in the presence of a dc magnetic

field that is parallel to the propagation direction of the laser. Use of a +σ

transition laser would result in atoms moving to higher magnetic sub-levels.

This is called Zeeman pumping and when the atoms reach the highest magnetic

sub-level m = 3 there is no higher magnetic sub-level so the atoms would either

cycle back and forth between 6S1/2F = 3,m = 3 and 6P3/2F
′ = 4,m′ = 4 or a
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Table 5.1.
Various Zeeman sub-levels where the cesium atoms can be prepared
using different optical pumping schemes and the corresponding tran-
sitions to be used for detection.

Hyperfine-Zeeman sub-level Transition

F = 3,m = 3 F = 3,m = 3→ F ′ = 4,m′ = 4

F = 4,m = 4 F = 4,m = 4→ F ′ = 5,m′ = 5

F = 3,m = −3 F = 3,m = −3→ F ′ = 4,m′ = −4

F = 4,m = −4 F = 4,m = −4→ F ′ = 5,m′ = −5

fraction of them would decay to the 6S1/2F = 4 states, which then gets emptied

out by Optical Pumping Laser 1.

It is important to note that due to the two optical pumping lasers coupling to the same

hyperfine level 6P3/2 F = 3, coherent population trapping (CPT) may occur [111],

which could possibly prevent atom-light interaction. This CPT issue was addressed

in Ref. [112] where the authors conclude that about a 0.5 G of applied magnetic field

can sufficiently shift Zeeman sublevels to prevent any CPT effect in the cesium D2

line. Similarly, a number of different optical pumping configurations will be used

to prepare the atoms in other hyperfine-Zeeman sub-levels listed in Table. 5.1. The

optical pumping lasers will be polarized differently. The pumping efficiency can be

estimated using either Raman or rf excitation of ∆m=0 transitions. Such transition

has a very small linewidth so that by sweeping the rf field frequency ∆m=0 transitions

(m=0, ±1, ±2, ±3) can be individually resolved. Fig. 5.4(a) shows no Zeeman

pumping to an extreme subelevel while Fig. 5.4(b) shows a good pumping efficiency

where most population appears to be in one extreme Zeeman sublevel (m = 3). In

addition to ∆m=0 transitions, our rf apparatus also excites ∆m=±1 transitions and

such excitation is shown as double peaks in Fig 5.4. These transition peaks will be

important in measurement of PNC interaction in the ground hyperfine states.
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Once the atoms are prepared in one hyperfine Zeeman sublevel, they interact with

the Raman lasers as shown in Fig. 5.1. Since the hyperfine ground states 6S1/2F = 3

and 6S1/2F = 4 are both long-lived, it is not necessary to have the rf and Raman laser

fields overlap for coherent control of the interference between them. For convenience

and a flexible experimental setup, the atoms interact with the Raman lasers first and

then subsequently interact with the rf fields.

The interaction time of the atoms with the Raman lasers depends on the beam

width of the Raman laser and the velocity of the atoms. The Raman laser beams

need to be relatively large such that the atomic beam with a finite height (∼ 1 mm)

should experience a uniform Raman field strength. A Raman beam size of 0.5 cm is

chosen for this reason. With good beam collimation, there should be very little phase

variation across the phase front. The radial phase of the wave goes as,

φ(r) = −j kr2

2R(y)
(5.1)

where k is the wave propagation number, r is the distance from the center of the

beam, and R(y) is the radius of curvature of the beam. For the Raman lasers, k is

2π/λ where λ = 3.26 cm and R ∼ 1 m for well-collimated beams. With the Raman

beam width wRaman ∼ 0.5 cm, this phase term φ(r) becomes negligible.

Once the atoms finish interacting with the Raman lasers, they enter into the cavity

resonator where the atoms are excited by the rf fields via weak transitions. The rf

field phase is uniform on the rf phase front because of the field uniformity in the

x-direction and the radial phase being negligible for the same reason as the Raman

beam radial phase. Although the rf interaction is much weaker than the Raman

excitation, the width of the rf fields is much larger (wrf ∼ 2.5) cm, and therefore the

atoms interaction time is much longer.

Finally, after the atoms exit the cavity, the population in the 6S1/2 F = 4 m = 4

state is detected by a few cycles of the transition 6S1/2 F = 4 m = 4 → 6P3/2 F =

5 m = 5 excited by a circular polarized detection laser (not shown in Fig. 5.1). This

cycling technique was pioneered by the Boulder group for the purpose of weak signal

detection [6, 109]. Wood et al. noted that as compared to the method of collecting
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Fig. 5.4. The optical pumping efficiency can be expressed as the
ratio of the population in the target Zeeman sublevel to the total
population. (a) All population in F=4 is emptied and distributed in
the F=3 hyperfine levels. Because the Zeeman laser is absent, the
F=3 Zeeman sublevels have symmetric population distribution. (b)
When the Zeeman laser with circular polarization interacts with the
atoms, the atoms migrate to an extreme Zeeman sublevel. This figure
shows about 90% population prepared in the m=+3 level.
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fluorescence previously used for PNC measurements, this cycling excitation technique

can allow for scattering far more photons (∼250 per atom) and rendering the photo

detector far less susceptible to the background noise.

5.2 Raman lasers

As described in Sec. 4.1, the Raman lasers should have coherent phase relations

with one another. The two lasers must also have a frequency difference equal to

the hyperfine ground state transition frequency (∼ 9.19 GHz) in order to excite

a two-photon resonant Raman transition. Details about laser-locking mechanisms

are extensively covered in literature (for instance Refs. [110, 113, 114] and references

therein). In particular, we chose the injection locking scheme where a portion of the

reference laser power is injected into a “slave” laser diode to achieve phase locking (e.g.

Refs. [115–121]). There are other phase-locking schemes, especially ones involving

phase-lock loop (PLL) as showcased in Refs. [122, 123]. However, such PLL designs

often require an rf reference frequency that is different from the frequency difference

of the two lasers [123]. In our rf and Raman interference scheme, the rf reference

should have the same frequency as the frequency difference of the two Raman lasers.

This feature can be easily accomplished in a injection-locking configuration.

5.2.1 Optical injection locking

Optical injection locking is a versatile technique widely used for various applica-

tions. Especially, when low-noise, narrow-linewidth, and low-power reference laser

is injected into a high-power broadband noisy laser diode, the latter would produce

high output power with as little frequency noise as the reference laser. For instance,

a laser diode in an ECDL configuration usually has a linewidth less than 1 MHz while

bare laser diodes often have a tens of megahertz linewidth. When a small portion of

reference laser (ECDL) power is injected into a bare diode laser, the frequency noise

of the latter would become significantly suppressed and emit light with a linewidth as
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narrow as that of the reference laser. From now on, this reference laser will be called

the master laser while the bare diode lasers that lock onto the master laser will be

referred to as slave Lasers.

Fig. 5.5. The injection locking scheme involving an ECDL (master)
laser and a bare (slave) diode laser. O.I. is an optical isolator, B.S. is a
beam splitter, H.W.P. is a half-wave plate, and P.S. is a phase-shifter.

Fig. 5.5 is a diagram depicting a simple injection locking scheme. The optical

isolator (O.I.) of the master laser has an input polarizer set at vertical polarization.

The input light would be rotated 45◦ by the Faraday rotator in the O.I. Then, this

45◦ polarization is reversed back to vertical polarization through the half-wave-plate

(H.W.P.) placed immediately afterwards. The O.I. for the slave laser, on the other

hand, has an input polarizer that transmits light at 45◦ polarization and its output

beam becomes polarized horizontally. This arrangement can be easily made by phys-

ically rotating the input plarizer to a 45◦ angle and aligning the output polarizer to

the horizontal axis. The H.W.P. placed before the O.I. of the slave laser rotates the

slave light to 45◦ polarization, which would allow for maximum transmittance of the

slave laser power through the O.I.

Here, the optical isolator for the slave laser serves two purposes; it blocks any

light reflected back to the slave that can potentially destabilize the slave laser; in

addition, through its escape window, a portion of master laser power (polarized per-

pendicular to the slave laser output) can be transmitted to injection-lock the slave

diode. The H.W.P. placed before the escape window of the slave laser controls the
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polarization of the injected master laser power, which determines how much power

gets transmitted/rejected through the escape window. It is reported in Ref. [121] that

high master power injection can improve the frequency range over which the master

laser can securely lock the slave. However, too much injection power can potentially

damage the slave laser diode. The ideal amount of injection power is a small fraction

of the output power at the operating current. Our laser diodes (OSRAM SPL TR85)

produce about 80 mW (with ∼150 mA of injection current) and we chose about ∼200

µW master laser power to feed into the slave laser diode.

In order to verify a stable injection locking mechanism, we can carry out a similar

test that is used for testing a Littrow configuration. It is well-known that at the

threshold current the output power of laser diode jumps by several times in the

Littrow configuration when the first order diffracted beam gets fed directly into the

laser diode. The same can be observed in the master-slave injection locking. At the

threshold current (∼50 mA), the slave laser produces about ∼ 300 µW output power.

As 200 µW of master laser power is injected into the slave laser, the slave laser output

power suddenly jumps over ten times. This boost in the output power can be further

optimized by improving the alignment and slightly tuning the temperature of the

slave laser diode.

Once the lasers are phase-locked, changing the slave diode current or temperature

would unlock the master and slave lasers because it would lead to another mode

of the slave laser becoming dominant. One may fine-tune the temperature or the

injection current of the slave laser diode (or both) to bring the slave laser back to a

phase-lock with the master laser. In other words, even though enough master laser

power is injected into the slave laser, the master-slave locking can still be poor due

to a bad current/temperature combination for the slave laser. In such a poor locking

condition, the slave laser would not lase at the same frequency as the master laser

and its phase noise would be much greater than that of the master laser. Fig. 5.6(a)

depicts a case where the dominant mode of the slave laser does not match the injected

master laser. As one tunes the slave laser slightly by means of the injection current
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Fig. 5.6. A Fabry-Perot spectrum depicting the slave laser when a por-
tion of master laser power is injected. The free spectral range (FSR)
here is 1.5 GHz. (a) The blue and red curves represent the mode
patterns for the slave and injected master lasers, respectively. When
the master-slave locking is poor, the spectrum shows two distinct sets
of modes. (b) When the master-slave phase-lock is optimal, the slave
laser would behave like the master laser (e.g. the same frequency and
low level of phase noise). See the text for details.
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or the temperature, the red peaks in Fig. 5.6 start to grow bigger and eventually

become as large as the blue peaks. At this point, the master and slave lasers start

to phase-lock and when the two are fully locked, the Fabry-Perot spectrum would

become one clean curve as shown in Fig. 5.6(b).

One may verify the stable locking in a few different ways; for instance, when the

master and slave lasers are fully locked, the wavemeter readings for the both lasers

should be the same. In addition, if the frequency of the master laser changes, the

frequency of the slave laser should follow the same change. The simplest way to check

this is to slightly tune the master laser using a dc PZT voltage and observe shift in

the Fabry-Perot spectrum of the slave laser accordingly. Lastly, there is a frequency

range over which the slave laser can lock itself onto the master laser frequency. In

a stable locking condition, this range can be larger than 1 GHz. One may try to

slightly change the injection current or the temperature of the slave laser and verify

that the Fabry-Perot spectrum of the slave laser remains unchanged over about a 1

GHz current/temperature tuning range.

5.2.2 Current modulation injection locking scheme

In order to generate a pair of phase-locked lasers separated by a few gigahertz, the

injection locking scheme can be utilized in addition to direct current modulation of

the slave laser. This method was first demonstrated over a decade ago (e.g. Ref. [116–

119]) and most recently [121] the Shanxi University group claimed to have achieved

stable phase locking with over a 9 GHz modulation frequency. This method is cost-

effective over those involving an acousto optic phase modulator [116], an electro optic

phase modulator [120], and rf beatnote generation [122,123].
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It is well known that direct current modulation of a laser diode would produce

sidebands in its frequency spectrum just as in acousto/electro optic (AO/EO) phase

modulation.

E(t) = E0e
iωt (5.2)

Emod(t) = E0e
iωt+iβsin(Ωt) (5.3)

= E(t)
+∞∑

k=−∞

Jk(β)eikΩt (5.4)

Eqn. (5.4) shows such phase modulation via AO/EO or direct current modulation.

Here ω is the laser frequency, β is the index of modulation, Ω is the modulation

frequency, and Jn is the Bessel function of the first kind. A few gigahertz of phase

modulation can be easily achieved using a commercial AO/EO. On the other hand,

one may directly modulate the laser diode current by combining dc and rf current us-

ing a bias-tee (e.g. Mini-circuits ZX85-12G-S+). The higher the rf current amplitude

is the greater the modulation index (β) becomes. However, too much rf current may

damage the diode. About 10-20 dBm modulation is good enough for low-to-medium

power laser diodes.

In the direct current modulation scheme, since the laser diode current would have

an rf component, one must solder the anode and ground leads of the laser diode

directly onto the core and shielding of an rf frequency compatible cable, respectively,

such as an SMA RG cable. It is important to verify that the frequency bandwidth

of the rf cables is greater than the operating rf frequency and also to make sure

that it is physically vibrationless [124, 125]. For instance, an RG-174 cable has a

frequency bandwidth of several GHz and its highly flexible dielectric material cause

little vibration in the assembly. A direct current modulation setup is shown in Fig. 5.7

where an RG-176 cable is used to deliver dc and rf current to the laser diode. Here,

the unshielded length of the cable is kept as short as possible to prevent any rf power

loss. Successful current modulation can be verified in a transmittance spectrum of a

Fabry-Perot interferometer where sidebands would appear to the right and left of the

main peaks at a frequency equal to the modulation frequency apart.
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Fig. 5.7. A diagram depicting a simple assembly for direct current
modulation of a laser diode. A bias-Tee combines rf and dc currents
and its output is directly fed to the laser diode through an SMA cable
(e.g. RG-176).
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Once current modulation of the slave laser is successfully carried out, a sideband

of the slave laser can be locked onto the master laser frequency via injection locking

from Fig. 5.5. That is, the “bare diode” in the figure is now replaced with an rf

modulated laser diode in Fig. 5.7. One can optimize the master-slave alignment by

applying a threshold current to the slave laser diode and observe a large boost in

the output power of the slave laser as discussed in Sec. 5.2.1. Here, there are a few

different locking possibilities.

1. The master laser may lock onto non-dominant modes of the slave laser, leading

to its dominant mode to be far detuned from the master laser frequency.

2. The master laser may lock onto the carrier frequency component of the slave

laser resulting in the master and slave lasers lasing at the same frequency.

3. The master laser may lock onto a sideband of the slave laser resulting in the

carrier frequency component of the slave laser detuned from the master laser

frequency by the modulation frequency.

4. The master laser may have non-negligible power in non-dominant modes and

one of these modes may lock onto the carrier frequency component of the slave

laser.

If one can achieve the third case above, the master and slave lasers would be phase-

locked with a frequency difference equal to the rf modulation frequency. Such scheme

has been demonstrated in numerous projects (e.g. Refs. [117, 119, 121]). Here, in

order to increase the chance for the master laser to lock onto a slave laser sideband,

a few conditions need to be satisfied:

i) First, if the sideband frequency of the slave laser coincides closely to that of

the master laser, it becomes more likely that the master laser locks onto the

sideband. The slave laser (bare diode) can be fine-tuned by changing the tem-

perature and injection current. However, it often becomes very difficult to get

a bare diode to lase at a certain frequency due to a mode hop. If the laser diode
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does not lase near the master laser frequency, one may need to use an extreme

temperature tuning option or use another laser diode that is more stable at the

frequency.

ii) Second, one must achieve a modulation index with enough rf power to have a few

percent of optical power in the sideband. In general, a higher modulation index

would help stable locking of the master laser to the sideband but too high a

modulation index would decrease the power of the carrier frequency component

(this can be shown from Eqn. 5.4).

iii) Lastly, increasing injected master power laser can help the injection locking sub-

stantially as discussed in Sec. 5.2.1. However, this condition may also increase

the chance for unwanted locking possibilities (e.g. a non-dominant mode of the

master laser locking onto the carrier frequency component of the slave laser).

Therefore, while the two conditions above are absolute necessity, increasing

injected master power laser should be a least priority option.

5.2.3 Cascaded injection locking scheme

While the sideband injection locking scheme with a few gigahertz current modula-

tion described in Sec. 5.2.2 has been demonstrated with great stability (e.g. Refs. [117,

119]), there has been only one project [121] that showcased injection locking with high

frequency (∼10 GHz) modulation. The Shanxi group further carried out coherent

population trapping measurements (e.g. Refs. [126, 127]) using such locking scheme.

We reproduced their work and noticed that such high frequency operation requires

high rf power and that the master-slave lock at ∼ 9.2 GHz was not as stable as we

had hoped.

Other groups (e.g. Ref. [118]) suggested a two-slave-laser-injection-locking scheme

to achieve a pair of phase-locked lasers separated by a large frequency difference.

Ringot et al. [118] proposed to modulate the injection current of the master laser

at 4.6 GHz and have one slave laser locked onto the -1 sideband of the master laser
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and the other slave laser onto the +1 sideband. This configuration would yield two

slave lasers mutually phase-locked whose frequencies are 9.2 GHz apart. This scheme,

however, is fundamentally different from others (e.g. Refs. [117,119,121]) in that the

current of the reference laser (master) is modulated rather than the slave laser. Since

our scheme requires a stable frequency locking mechanism (e.g. locking to a saturated

absorption line) for the master laser, we try to avoid direct modulation of the master

laser current.

In order to generate a pair of phase-locked Raman lasers at 9.2 GHz apart, we

chose a hybrid of the setups demonstrated in Refs. [116,117,119,120]. Here, we have

an “intermediate” slave laser that acts as a second seed laser for another slave laser.

Fig. 5.8 represents such injection-locking setup. We confirmed that the direct current

modulation of a slave laser diode at 4.6 GHz followed by injection locking of the master

laser onto one of the sidebands produce very stable phase-locking as demonstrated in

Ref. [119]. The carrier frequency component of the slave laser (Slave 1 from Fig. 5.8)

would be 4.6 GHz away from the master laser frequency, which coincides with the

-1 (+1) sideband of the slave laser. Then, a small portion of Slave 1 output power

is injected to Slave 2. Via current and temperature tuning, Slave 2 can be locked

onto the +1 (-1) sideband of Slave 1. One may lock the master laser to a saturated

absorption line of 6S1/2F = 4→ 6P3/2F
′ = 3, 4, 5 (6S1/2F = 3→ 6P3/2F

′ = 2, 3, 4).

Stable phase-locking between two lasers at different frequencies can be verified

from beat note measurement. Once the two lasers are phase-locked, any frequency

shift due to phase noise in one laser causes exactly the same phase fluctuation in

the other laser, leading to a very narrow linewidth beatnote. In Fig. 5.8, output of

Raman Lasers 1 and 2 can be combined using a beam-combiner and their beatnote

can be measured using a fast-photodetector (e.g. Hamamatsu G4176-01). Then, the

output of the fast-photodetector is monitored by a high-resolution low-bandwidth

spectrum analyzer (e.g. E4448a). Fig. 5.9 shows such beatnote measurement after

successful phase-locking of the Raman lasers at a 9.1926 GHz frequency difference.

The linewidth (-3 dB from the peak) was about 10 Hz, which was limited by the
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Fig. 5.8. The injection locking scheme involving one master laser and
two slave lasers to generate phase-locked Raman lasers. The master
laser is in an external-cavity-diode-laser (ECDL) configuration while
the slave lasers are free-running bare diodes. A small portion of master
laser power (∼ 300 µW) is injected into Slave 1 while a portion of Slave
1 power (∼ 300 µW) is injected into Slave 2. O.I. is an optical isolator,
A.O.M. is an acousto-optic modulator, S.A.S. is saturation absorption
spectroscopy, B.S. is a beam splitter, H.W.P. is a half-wave plate, and
P.S. is a phase-shifter.

scanning rate of the spectrum analyzer. One may set the resolution bandwidth (Res

BW) of E4448a as low as ∼ 1 Hz to obtain a beatnote signal with a higher resolution.

The AO in Fig. 5.8 allows for creating +1 (-1) diffracted beams at a few hundred

megahertz (∼ 160 MHz) higher (lower) than the input light. One of the diffracted

beams can be used to lock the master to the saturated absorption spectrum (SAS),

which results in a 160 MHz detuning for the zeroth order beam. That is, if +1 (-1)

diffracted beam is locked to the SAS, the zeroth-order beam would have a detuning 160

MHz below (above) the absorption line. The choice between the +1 and -1 diffracted

beams depends on the master laser frequency although other parameters such as

polarization and selection rules may play a small role. If the master laser frequency

is close to 6S1/2F = 4 → 6P3/2F
′ = 3, 4, 5 (6S1/2F = 3 → 6P3/2F

′ = 2, 3, 4), it
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Fig. 5.9. The 9.2 GHz signal generated by beating two Raman lasers
and detected by a fast-photodetector (Hamamatsu G4176-01). The
width of the beatnote is limited only by the bandwidth of the spectrum
analyzer (∼ 10 Hz).

would be advantageous to use the -1 (+1) diffracted beam to lock the master laser

to the 6S1/2F = 4 → 6P3/2F
′ = 5 (6S1/2F = 3 → 6P3/2F

′ = 2) transition. Such

locking scheme in yellow (green) arrows in Fig. 5.10(a). It is important to note the

selection rules in this scheme. For instance, if the -1 diffracted beam of the master

laser is locked to the 6S1/2F = 4 → 6P3/2F = 5 transition, for the slave laser, the

6S1/2F = 3→ 6P3/2F = 5 transition is forbidden. Therefore, the intermediate levels

that participate in the Raman transitions are 6P3/2F=3 and F=4.

On the other hand, one may lock the master laser to an SAS cross-over peak

that lies in the mid-point of two hyperfine levels, leading to a detuning from the

resonant lines without external phase modulation. Fig. 5.10 shows the hyperfine level

splittings taken from Ref. [79]. There are a couple of important criteria to consider

in this scheme. First, in the cesium 6P3/2 levels, the cross-peak that gives the biggest

detuning from resonance is the midpoint between the F=4 and F=5 levels. When

locked to this transition, the master and slave lasers would be detuned about 125
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Fig. 5.10. Raman lasers coupling the ground hyperfine levels. The
energy level splittings are from Ref. [79]. (a) A scheme involving
external phase modulation via an AO or an EO to lock the lasers at
frequencies below (green) and above (yellow) the resonant lines. (b)
A scheme where lasers are locked to SAS cross-over peaks without
any external phase modulation.
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MHz from resonant lines. Considering the natural linewidth of the 6P3/2 state is

∼5.2 MHz [79], this detuning is over 20 times greater. However, other contributions

such as power and transition broadening mechanisms can lead to an incoherent loss.

In addition, a simplified equation for the Raman transition rate (ΩR) can be

expressed as:

ΩR =
∑
n

ΩM,nΩ∗S,ne
iφR

2∆n

(5.5)

Here, n is any intermediate level that contributes to the Raman transition and φR

represents the Raman transition phase. Note that the master and slave Rabi fre-

quencies would vary with the matrix element that is dependent on the hyperfine and

magnetic quantum numbers. This equation assumes that the system consists of only

two stable ground levels and that there is neither direct excitation to the upper level

nor any loss of coherence in the ground states. This condition holds true if atoms

are prepared into one extreme Zeeman sublevel and the laser polarizations are well-

characterized. In addition, there should be a sufficient detuning from the 6P3/2 lines

as compared to the master and slave Rabi frequencies and the collision loss in the

atomic system should be negligible.

The rf source for current modulation, shown as an oscillator in Fig. 5.8, needs to

be the same source that excites the weak transitions in the ground hyperfine states.

This is an important condition because the phase relations between the Raman lasers

and the rf fields need to be coherently maintained and controlled. In our experimental

setup, since the current modulation frequency is 4.6 GHz, we need a frequency doubler

(e.g. Minicircuits ZX90-2-50-S+) to generate 9.2 GHz signal for the rf transition in

the ground hyperfine states. Output signals of a frequency doubler would consist

of the fundamental (4.6 GHz) and harmonics (9.2 GHz and 13.8 GHz). The only

component that would contribute to the ground hyperfine transition is 9.2 GHz since

all other signals are far detuned. However, a harmonic at 13.8 GHz has a substantial

amplitude so we decided to suppress the unwanted signals using filters. We placed

a high pass filter (e.g. Minicircuits VHF-8400+) to remove the 4.6 GHz signal and

a low pass filter (e.g. Miniciruits VLF-8400+) for the 13.8 GHz component. This
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setup would allow for maintaining good phase relations between the rf and Raman

transitions.

In order to observe interference between the rf and Raman excitation, one should

be able to vary the phase of one transition relative to the other. For instance, the

Raman transition rate expressed in Eqn. (5.5) carries the phase term eiφR , which is

due to the product of the master laser phase and the slave laser phase conjugate.

That is:

eiφR = ei(kM ·r+φM )e−i(kS ·r+φS) (5.6)

= ei(kM ·r−kS ·r)ei(φM−φS) (5.7)

Here, kM and kS are the wavenumbers for the master and slave lasers, respectively, and

the fast-varying term eiωRt is omitted. Since the master and slave laser are phase-

locked to one another, the term ei(φM−φS) becomes simply eiφrf (the rf field phase

term). Therefore, the Raman transition phase can be varied by either changing the

term ei(kM ·r−kS ·r) or the phase of the rf modulation field. It is convenient to change r by

changing the optical path of either master/slave laser. This idea was demonstrated in

previous measurements (e.g. Refs. [37,39,98]). In our experiment, an optical window

is placed in the path of a slave laser (or Raman Laser 2 in Fig. 5.8) to vary its optical

path r. In fact, the window can be placed immediately after the optical isolator of

any of the three lasers.

As in Fig. 5.8, the master laser is constructed in the external-cavity-diode-laser

(ECDL) configuration while the slave lasers are free-running bare diodes. Fig. 5.11

shows the ECDL assembly for the master laser. It consists of the laser diode, a

grating on a mount, a piezoelectric transducer for the control of the grating angle,

and thermo-electric cooler (TEC). The current and temperature of the laser diodes

are controlled to a 0.01 mA and 10 mK accuracy, respectively. Technical details on

the ECDL configuration can be found in Ref. [128]. Here, we made sure that the

free spectral range (FSR) of the external cavity does not coincide with the hyperfine

splitting of the ground states of cesium (∼ 9.2 GHz). If its FSR becomes close to



68

Fig. 5.11. The external-cavity-diode-laser (ECDL) assembly for one
of the Raman lasers. The laser diode in the red circle and the grating
on the mount form an external cavity. The length of the cavity can
be controlled by applying a dc voltage to the piezoelectric transducer
(PZT), which causes the grating mount to rotate.

9.2 GHz, the master laser may contain non-negligible power in non-dominant modes,

which can excite unwanted transitions.

Fig. 5.12 shows the double-pass configuration to induce a phase shift in one of the

lasers. The double-pass geometry helps minimize displacement of the beam. The in-

coming beam is near-incident to Mirror 1. The small angle between the incoming and

reflected beams allow for separating the reflected beam as shown in the figure. The

window (Edmund Optics 84-461) has a 12.5 mm diameter and 2 mm thickness with

λ/10 surface flatness. It has NIR I (600 nm to 1050 nm) anti-reflection coating with

about 0.5% reflection at 850 nm. We attached the window to a Thorlabs Galvonome-

ter (e.g. GVS011) that rotates when current is applied. The Galvonometer circuit

is configured such that when one volt is applied to the circuit, the resulting current

would rotate the window about 1◦. We use a triangle wave to scan the applied voltage

from 0 to 15 V that allows for up to 15◦ rotation.
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Fig. 5.12. The double-pass configuration to induce a phase-shift in
the slave laser. See text for more detail.

Fig. 5.13. The final Raman laser setup to generate a pair of phase-
locked 852 nm lasers separated at 9.2 GHz. M: Master Laser, S1:
Slave Laser 1, and S2: Slave Laser 2.
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Lastly, Fig. 5.13 shows the final setup with three lasers (M is Master Laser in the

ECDL configuration while S1 and S2 are free-running bare laser diodes). An optical

phase-shift setup (not shown in the figure) is in the beam path of Slave Laser 2. The

Raman lasers (Raman 1: Master Laser and Raman 2: Slave Laser 2) get coupled into

polarization maintaining (PM) fibers (OZ Optics LPC-01-850-5) with about a 40%

efficiency where the efficiency is defined as percentage of the coupled power over the

input power. Using the fiber couplers, we transfer the Raman laser power to the other

optical table close to the vacuum chamber. Then, we combine the Raman lasers and

expand both beams to 1 cm diameter for experiment.

5.3 Parallel Plate Transmission Line (PPTL)

In this section, the structure of the parallel plate transmission line (PPTL) is

analyzed in detail. As shown in Fig. 5.14, the PPTL is formed by two copper plates

that allows for transmission of TEM fields. The width (w) of each plate is 7.5 cm,

and the separation (h) between the plates is 1 cm, which gives the characteristic

impedance of the transmission line Z0 ' η0(h/w) = 50.3 Ω. Here, η0 is the intrinsic

impedance of vacuum. Two reflectors with a radius of curvature about ∼12 cm form

an open rf cavity as shown in Fig. 5.14. The cavity is then fed by two SMA rf cables

with the shielding of the cable soldered to the copper plate while the core lead extends

into the cavity. We decided that the rf field coupling into the cavity is most efficient

when the length of the core lead extension is about ∼0.5 cm.

One can characterize such passive rf devices using a vector network analyzer

(VNA) that returns frequency-dependent parameters such as reflection and transmis-

sion coefficients. Details of VNA operations can be found in Appendix. B. Fig. 5.15

shows the VNA measurements of the scattering parameters for the rf cavity. While

the measured values are the magnitudes, the VNA can also measure the phase of the

scattering parameters, from which the complex values can be derived. The rf cavity

will be excited via rf feed into the two ports. It is important that power buildup due



71

Fig. 5.14. The structure of an rf cavity formed by two parallel copper
plates or PPTL (in the figure, the top copper plate is omitted to show
the inside). The PPTL structure supports propagation of a TEM
mode around 9.2 GHz. Microwave fields propagate in the horizontal
±y-direction and are fed from both ends of the PPTL. Copper cylin-
drical reflectors form a cavity resonator for moderate power build-up
in the interaction region.

to one port is exactly the same as that due to the other port. The symmetry between

the two ports can be verified when two conditions meet:

1. The reflections at both ports have the same magnitudes (|S11| = |S22|).

2. The magnitudes of the transmission coefficients must be the same (|S12| = |S21|).

Note that the phase of the scattering parameters can always be adjusted using an rf

phase shifter (e.g. Fairview SMP2018).

In the VNA measurements, we performed a frequency scan from 6 GHz to 12 GHz.

For the reflection coefficients (|S11| and |S22|), there are dips near 6.67 GHz, 7.94 GHz,

9.20 GHz, and 10.47 GHz. The transmission coefficients (|S12| and |S21|) have peaks

at these frequencies. These measurement results show that the rf cavity supports a

resonant mode at 9.2 GHz and that the mode patterns excited from either port would

be symmetric (i.e. |S11| = |S22| and |S12| = |S21|). However, at higher frequencies,

for instance near 10.47 GHz, the curves show significant differences especially in the

reflection coefficients.
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Fig. 5.15. Measurements of the magnitudes of the two-port scattering
parameters. See text for detail.
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The rf source is the same low-noise rf signal synthesizer that provides 4.6 GHz

signal for the Raman laser. The rf field has to be frequency-doubled using a frequency

doubler (e.g. Minicircuits ZX90-2-50-S+). Then, unwanted components (4.6 GHz and

13.8 GHz) have to be filtered out with a low pass (Miniciruits VLF-8400+) and a

high pass (Miniciruits VHF-8400+) filter. Then, the 9.2 GHz signal gets split into

two branches and each branch gets amplified with a broadband high power amplifier

(e.g. Minicircuits ZVE-3W-183+) with the maximum output of about 3 W. Fig. 5.14

shows such rf cavity fed by two antennae.

Our rf cavity is distinct from other projects [12,129,130] in that cylindrical reflec-

tors (unlike spherical ones) support mode patterns that are uniform along the vertical

direction. In addition, while the TRIUMF collaboration [12, 108] proposed to excite

the rf cavity by feeding rf power from horn antennae, we chose to use monopole-like

antennae (as shown in Fig. 5.14), which result in a far lower Q factor because of the

ohmic loss at the antennae. The measured loaded Q factor (approximated from VNA

measurements) is about 200 at 9.2 GHz and the unloaded Q factor, which is more

important in determining the power buildup factor, should be somewhat higher.

We created pads on the upper and bottom copper plates of the rf cavity to create

a uniform dc potential gradient as we outlined in Ref. [60]. Application of uniform

dc fields in the interaction region would allow for weak excitation via Stark-induced

transition. We provide the details in Appendix. A. However, when we constructed

the pads on the upper and bottom plates of the rf cavity, with all pads connected via

high frequency capacitors, both loaded Q factor and magnitudes of the transmission

coefficients (based on VNA measurements) decreased significantly. We ran numer-

ical simulations to understand effect of removing small copper lines on the cavity

power buildup. We found that because the gaps between pads now restrict rf sur-

face current, the power buildup would decrease substantially as observed in the VNA

measurements. We decided to place more capacitors to allow for flow of rf surface

current between the gaps but realized that the loss in the capacitors due to their

own poor Q factor at 9.2 GHz did not noticeably improve the performance of the rf
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cavity. In the end, we decided not to place the pads on the copper plates and work

with the geometry without segments. This means we may no longer take advantage

of Stark vs PNC interference. We can either use a direct Raman vs PNC interference

as proposed in the TRIUMF collaboration’s francium project [12] or we can exploit

other type of interference possibly involving an M1 transition. The latter is discussed

in later sections.

The final experimental setup is summarized in Fig. 5.16. The rf source (Berkeley

Nucleonics 845) provides stable low-noise rf power at 4.6 GHz. This rf signal is split

into two in an rf power splitter, where one rf branch goes to the slave laser for current

modulation (more details in Sec. 5.2), and the other gets split into two branches in

another power splitter. These two rf powers get amplified in power amplifiers and

get fed into the rf cavity. The phase shifters (Fairview SMP2018) allow for balancing

any phase difference between the two branches. In addition, variable attenuators

are placed to ensure the two rf powers have about equal amplitudes. We placed

circulators (Fairview SFC0712) to prevent any reflected or transmitted rf power of

the other port from damaging the amplifiers. These circulators allow for rf power to

flow in one direction while any reverse flow is rejected and dissipated in a 50 Ω load

(Fairview ST1850). This setup would allow rf power with equal amplitude and phase

exciting the cavity from both ports.

By feeding rf fields from both ports of the cavity, the standing wave can be cre-

ated [60],

εrf
x (y, z) = εrf

+(y, z) + εrf
−(y, z) (5.8)

hrf
z (y, z) =

1

η0

(εrf
+(y, z)− εrf

−(y, z)) (5.9)

Here, we have,

εrf
± = εrf

0,±

√
w0

w(y)

{
∓ i
[
ky − η(y)

]
− z2

[
1

w2(y)
+

ik

2R(y)

]}
(5.10)

Due to the radius of curvature of the reflectors, the modal patterns would have inten-

sity focused near the center along the y-direction. The parameter w0 is the focused
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Fig. 5.16. A block diagram showing our instrumentation to feed rf
power into the two ports of the rf cavity (PPTL). CM: copper mirror,
FM: frequency multiplier (X2). For the more recent setup (updated
from the previous configuration [60]), we replaced the 9.2 GHz source
with a 4.6 GHz one and placed a frequency doubler (FM) between the
two power splitters. Also, omitted in the diagram are rf filters and
attenuators.
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width where the intensity falls down to 1/e2 of the maximum, w(y) is the beam width

a distance y from the focus, defined as w(y) = w0

√
(1 + (y/y0)2), y0 is the confocal

parameter, defined as y0 = πw2
0/λ. R(y) is the radius of curvature of the wavefronts

R(y) = y
[
1 + (y0/y)2

]
and η(y) is the slow phase shift (the Guoy phase) through the

focal region η(y) = 1
2
tan−1(y/y0). If the cavity length (l) is an odd multiple of half

the wavelength, the electric field anti-node would form in the center and if the cavity

is near confocal (R = l), the beam radius at the reflectors is minimized. And the

cavity length needs to be slightly different from the radius of curvature of the reflec-

tors so that the beam size at the focal length would remain small while improving

the selectivity of the cavity modes. For the radius of curvature R = 12 cm and the

cavity length l = 11.9 cm, the free spectral range (FSR) of the cavity resonator would

be c/2l = 1.26 GHz, and the beam radius at the focus would be 2.50 cm. Referring

to the scattering parameters measurements in Fig. 5.15, the FSR of the rf cavity is

indeed about 1.26 GHz.

5.4 Translational Stage

Previously, our group explored various ideas of remotely moving the rf cavity

inside the vacuum chamber so that the atomic beam path closely coincides with the

magnetic field node [60]. For instance, we considered placing PZTs near the reflectors

to adjust the positions in a fine manner. This method would also shift the resonant

frequency of the cavity. Therefore, in the final design, we decided to fix the positions

of the reflectors (and thus the resonant frequency is fixed) and move the whole cavity

about the atomic beam path. We used a vacuum compatible epoxy glue to affix the

reflectors to the bottom copper plate and installed a fine resolution (∼30 nm) long

travel range (2 inches) motor (Newport Picomotor 8303) to move the resonator back

and forth.

Fig. 5.17 shows the final setup for the rf cavity, the platform and the motor. The

cavity length (the distance from one reflector to the other) is the same as in Fig. 5.14
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Fig. 5.17. (Top) A diagram depicting the rf cavity and a simplified
drawing of the Newport motor (8303) sitting on an aluminum plat-
form. (Bottom) A photo of the final design including the rf cavity,
the motor and the platform.

but the upper and bottom copper plates are extended about a few centimeters to

place an aperture to attach the motor shaft. The push or pull operations for the

motor can be remotely controlled by computer software provided by Newport. Here,

the motor shaft has a metallic-ball-shaped tip, which is ideal for push operation, while

the pull operation can be impeded by friction. We realized that friction between the

bottom plate of the rf cavity and the aluminum platform makes the pull motion of

the shaft even more difficult. We ameliorate this problem by placing Mylar tape on

the platform and the bottom copper place. We ran a series of rigorous tests to ensure

a good positioning resolution (details can be found in Appendix. C).

5.5 DC Magnetic Field Requirements

Since this experiment requires well-characterized dc magnetic fields in the pump-

ing, interaction, and detection regions, we built sets of coils to create uniform dc field

patterns in the respective regions while minimizing stray fields. The biggest challenge
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here is that each region requires different dc magnetic field configurations. Referring

to Fig. 5.1, we need a dc magnetic field in the direction of the lasers in the pumping

region. Immediately after the optical pumping, the atoms interact with the Raman

lasers and rf fields where we need uniform dc magnetic fields over an approximately

10 cm region. Then, in the detection region, we need a field setup different from the

interaction region. To summarize these requirements:

1. Pumping Region: a dc magnetic field (∼2 G) in the y-direction for a high

efficiency pumping.

2. Interaction (Raman + rf) Region: a uniform homogeneous dc magnetic field (∼

5 G) in the z-direction to set quantization axis for Raman and rf transitions.

Stray fields must be suppressed to a < 0.1% level.

3. Detection Region: a dc field sufficiently large (∼1 G) in the direction perpen-

dicular to the detection laser propagation direction.

Among these, the second requirement poses the greatest challenge in that one

would need large apparatus to generate uniform and homogeneous fields over a long

distance (e.g. Ref. [131]). Therefore, we had to design field coils that meet the

spatial constraint of our vacuum chamber while maintaining good uniformity and

homogeneity. Detailed information about the coils can be found in the Appendix.D.

For the pumping region, we designed square (one side ∼ 10 cm) Helmholtz coils

separated by about 10 cm. For the interaction region, we built two sets of square

(one with 27 cm and the other 24 cm) Helmholtz coils over ∼ 20 cm distance. The

inner set of coils were placed about ∼ 5 cm apart from one another while the outer

set of coils were about ∼ 15 cm apart.

Note that an additional coil was constructed in the pumping region to cancel out

any Bz generated in the interaction region that may enter into the pumping region.

We had sufficient space between the pumping and interaction region (∼ 20 cm) so

that atoms experiencing the change in the dc magnetic field direction from ~y to ~z

can follow the change adiabatically as explained in Ref. [99]. Lastly, we use the short
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distance from the detection region to the last outer coil of the interaction region to

our benefit. That is, although the dc mangetic field (Bz) in the interaction region

decays down away from the last outer coil, the fluorescence detector is located close

enough such that there is still a non-trivial amount of Bz field in this region. This

field allows for σ+ and σ− transitions for the detection laser.
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6. MEASUREMENTS AND ANALYSIS

In this section, we present rf and Raman measurement data from the ground hy-

perfine states and detailed analysis. The ultimate goal for the ground hyperfine

measurement is to interfere the forbidden rf transition with the strong optical exci-

tation to determine the PNC amplitude in the ground hyperfine states as outlined

in Sec. 3. Although we have designed and built an experimental setup to observe

interference by inducing phase shift in a Raman laser (refer to Sec. 5.2), as of now,

we have not observed clear evidence of interference between rf and optical transitions.

As we further investigate possible causes for absence of the interference, one of the

likely causes is non-trivial decoherence in the Raman transition.

In addition, while we utilized M1 transitions as a means to calibrate field patterns

of rf cavity modes, we discovered that strong off-resonance excitation is made possible

by a rf magnetic field component that we had not expected in our 2016 proposal [60].

Since the linewidth of the ground hyperfine transition is very narrow, we had ruled

out any off-resonant excitation. However, measurement results yielded a signal that

resembles “double peaks” where a minimum happens at resonance and has maxima

at off-resonance frequencies. Details of off-resonance measurements can be found in

Sec. 6.2.2. This discovery opened the door to a new scheme that can exploit the

off-resonant excitation for more robust interference measurement.

6.1 Ground Hyperfine State Transitions

In this section, we present theoretical analysis and measurement data in a three-

level cesium atomic system coupled by Raman lasers and rf fields. Such system can

be prepared by optical pumping in cesium. For instance, the cesium atoms can be

pumped into either 6S1/2 F = 3 m = ±3 or 6S1/2 F = 4 m = ±4 as discussed
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Fig. 6.1. A three level system coupled by Raman lasers (red) and rf fields (green).

in Sec. 5.1. These levels can be |1〉 or |3〉 in Fig. 6.1. The upper level |2〉 can be

6P3/2 F = 3 m = ±3, 6P3/2 F = 4 m = ±3, or even 6P3/2 F = 4 m = ±4.

This all depends on the polarization of the Raman lasers. In addition, as long as

the Raman lasers have a detuning much larger than the natural linewidth of the

upper state (∆ � Γ) and the applied dc magnetic field strong enough to shift the

Zeeman sublevels sufficiently, the cesium atoms become a closed three-level system

as in Fig. 6.1 (note that the rf frequency should be adjusted to compensate for the

Zeeman shift).

The time-dependent wavefunction of this system can be expressed as:

ψ(t) = C1(t)e−iω1t|1〉+ C2(t)e−iω2t|2〉+ C3(t)e−iω3t|3〉 (6.1)

And the Schrödinger equation:

i
dψ(t)

dt
= (H0 + V )ψ(t) (6.2)

Here H0 and V are non-interaction and interaction Hamitonians, respectively:

H0 = ω1|1〉〈1|+ ω2|2〉〈2|+ ω3|3〉〈3| (6.3)

V =
1

2
(ΩR1|1〉〈2|+ Ω∗R1|2〉〈1|+ ΩR2|3〉〈2|+ (6.4)

Ω∗R2|2〉〈3|+ Ωrf |1〉〈3|+ Ω∗rf |3〉〈1|)

Here, Ωn represents the Rabi frequencies for transitions shown in Fig. 6.1. Using the

rotating wave approximation (RWA) and introducing new parameters c1, c2, and c3
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for the probability amplitudes (refer to Appendix. E for more detail), the system can

be described by the following set of equations:

iċ1 =
1

2
(Ω
′

R1c2 + Ω
′

rfc3) (6.5)

iċ2 =
1

2
Ω
′∗
R1c1 + ∆c2 +

1

2
Ω
′∗
R2c3 (6.6)

iċ3 =
1

2
(Ω
′

R2c2 + Ω
′∗
rfc1) (6.7)

Ω
′
n represents the slow-varying part of the Rabi frequency Ωn. If excitation to the

upper state (|2〉) is negligible, ċ2 = 0, and Eqn. (6.5-6.7) get reduced to:

iċ1 = −|Ω
′
R1|2

4∆
c1 −

(
Ω
′
R1Ω∗

′
R2

4∆
− 1

2
Ω
′

rf

)
c3 (6.8)

iċ3 = −
(

Ω
′
R2Ω∗

′
R1

4∆
− 1

2
Ω
′∗
rf

)
c1 −

|Ω′R2|2

4∆
c3 (6.9)

Eqn. (6.8-6.9) show the system has an effective Hamiltonian:

Ĥe =
1

2

 − |Ω
′
R1|

2

2∆
−Ω

′
R1Ω∗

′
R2

2∆
+ Ω

′

rf

−Ω
′
R2Ω∗

′
R1

2∆
+ Ω

′∗
rf − |Ω

′
R2|

2

2∆

 (6.10)

The off-diagonal elements in the effective Hamiltonian (Eqn. 6.10) clearly shows the

Raman transition term

(
−Ω

′
R1Ω∗

′
R2

2∆

)
interfering with the rf transition term

(
Ω
′

rf

)
. The

rf field transition in this section focuses on magnetic dipole (M1) excitation while in

the future our studies will extend to the PNC interaction. These equations will be

used to verify our experimental data onward.

6.2 Excitation via rf Transitions

In this section, we present rf measurement data and analysis without the Raman

excitation. We found in our previous work [60] that the rf fields inside the PPTL

consist of three main components. These electromagnetic field patterns are shown

in Fig. 6.2 (refer to ). The rf electric field (εrfx ) excites the E1-forbidden 6S1/2 F =

3↔ 6S1/2 F = 4 transition while the rf magnetic components hrfy and hrfz excite the

M1 transitions. As discussed in Sec. 2, the E1 transition amplitude is several orders
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(a) (b) (c)

Fig. 6.2. Figure from Ref. [60]. Color maps of (a) Re[εrf
x (y, z)], (b)

Im[hrf
z (y, z)], and (c) Im[hrf

y (y, z)] for the lowest-order mode sup-
ported by the r.f. cavity. Units for εrf are V/m, for hrf are A/m.

of magnitudes smaller than the M1 transition in the cesium ground hyperfine states,

which makes it impossible to observe the E1 transition without interference with a

stronger transition.

6.2.1 Resonant Transition

In our experimental setup the quantization axis is set in the z-direction with an

applied Bz field. Therefore, the hrfz field excites ∆m=0 transitions while hrfy field

excites ∆m = ±1 transitions. Assuming that Bz in the interaction region is reason-

ably uniform and that dc stray fields (Bx and By) are well-suppressed, transitions

due to hrfz and hrfy fields can be separated by the Zeeman shift. For instance, in the

presence of a ∼5 G dc magnetic field, the 6S1/2 F = 3 m = 3↔ 6S1/2 F = 4 m = 4

(∆m=+1) transition frequency is about 1.75 MHz higher than that of the 6S1/2 F =

3 m = 3 ↔ 6S1/2 F = 4 m = 3 (∆m=0) transition. In the absence of dc magnetic

field, contributions due to these fields are not resolved and the rf scanning about 9.2

GHz would yield only one peak as shown in Fig. 6.3. In fact, plots like Fig. 6.3 may

serve as test of how well stray fields including the Earth magnetic fields have been

suppressed. The linewidth of the peaks in the figure is mainly due to the transit-time

broadening, which can be estimated from the figure to be approximately 10 kHz.
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Fig. 6.3. Atomic signal due to M1 excitation in the absence of dc
magnetic fields. The rf frequency was scanned from 9.19630 GHz to
9.19640 GHz. One frequency scan corresponds to the interval shown
in a yellow double-headed arrow.

Other minor broadening effects include Doppler-effect due to atom beam divergence.

Since the beam width of the rf field patterns is about 2.5 cm as discussed in Sec. 5.3

and the average velocity of atoms is 200 m/s, theoretically, transit broadening would

yield several kHz of line broadening, which is consistent with the measurements.

Once a dc magnetic field is applied in the z-direction, the peak gets split and

individual Zeeman transitions (∆m=0 and ∆m=±1) resolved. Fig. 6.5 shows a similar

spectrum collected in the presence of Bz ∼1 G. Note that the optical pumping lasers

prepare the atoms in the extreme Zeeman sublevel 6S1/2 F = 3 m = 3 so that the

dominant transitions are 6S1/2 F = 3 m = 3 → 6S1/2 F = 4 m = 3 (∆m=0) and

6S1/2 F = 3 m = 3 → 6S1/2 F = 4 m = 4 (∆m=+1). As we previously concluded

in Ref. [60], ∆m = ±1 transitions due to hrfy at resonant frequencies would vanish.

However, these transitions have non-zero contributions at off-resonant frequencies as

will be demonstrated in Sec. 6.2.2.

The ∆m = 0 transitions can serve as useful means to map out the rf field pat-

terns inside the cavity as well as to verify the uniformity of applied dc magnetic
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fields. Previously, rf electromagnetic field amplitudes estimated in a vapor cell from

the frequency response of pump-probe ac Stark shift and electromagnetically induced

transparency (EIT) measurement [132–136]. Researchers discuss splitting of probe

absorption peaks in alkali media when rf traveling wave fields couple the same upper

level to a high-quantum-number Rydberg state. Since this splitting is proportional

to the rf field amplitude, one can measure the ac Stark shift of the probe absorp-

tion to determine the rf field amplitude. In addition, other approaches to estimate

rf electromagnetic field amplitudes include research projects involving atomic Rabi

resonances in the cesium ground hyperfine states [137–140]. The main observable in

these works is absorption of a weak probe field coupling 6S1/2 → 6P3/2 in the presence

of modulated rf fields coupling the cesium ground hyperfine states.

In our experiment, it is important to understand the field patterns inside the

cavity to verify that the cavity supports a proper mode. As discussed in Sec. 5.4,

the translational stage we have developed has a great positioning resolution. By

measuring the excitation rate with respect to the rf cavity position, we were able to

roughly map out the hz field patterns. Our approach is similar to other techniques

[137–140] in that the ultimate observable is the Rabi frequency from which the rf field

amplitude can be determined.

Fig. 6.4 shows our measurements of spatial dependent ∆m = 0 excitation due to

the hrfz . Near y = 0, the excitation rate should be non-zero but minimal (due to a fi-

nite thickness of the atom beam) because here is where the magnetic field node occurs.

About λrf/4 away from the node (λrf ∼ 3.26 cm), we obtained maximum excitation

signals. The sinusoidal variation with respect to the position is consistent with numer-

ical calculations of hrfz excitation rate (plotted in red asterix in Fig. 6.4). However,

the measured minimum is somewhat greater than the theoretical minimum. There

are a few factors that could have contributed to this deviation of the measurements

from theory. For instance, atom beam velocity distribution may have contributed to a

higher excitation rate near the node. The Bz field might have not been as uniform as
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Fig. 6.4. Spatial dependent atomic excitation (∆m = 0) due to the
hrfz field. The measurements (blue) show the hrfz node (minimum)
and antinodes (maxima). Both theory (red) and measurements (blue)
show sinusoidal variation of excitation rate although their agreement
is poor at the node (at 0 mm).)
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expected. Or even stray field (Bx and By) contributions might have been non-trivial.

These are areas we need to improve on for future measurements.

6.2.2 Off-resonant Transitions

The curve in Fig. 6.5 was taken near the hrfz node. At this location, although the

field amplitude should be small, the M1 transition is quite strong and we observed

a large ∆m=0 signal (the middle peak). In addition, we noticed that “double peak”

signal appeared near the 6S1/2 F = 3 m = 3 → 6S1/2 F = 4 m = 4 (∆m=+1)

transition frequency (on the right). In Ref. [60], we concluded that at the exact

6S1/2 F = 3 m = 3→ 6S1/2 F = 4 m = 4 transition frequency, the hrfy contributions

should vanish due to Faraday’s law. In fact, as shown in Fig. 6.5, at the exact

transition frequency, the excitation is almost zero. However, as the rf frequency is

detuned away from resonance, sharp peaks appeared.

In order to understand these peaks, we revisited Eqn. (6.5-6.7). We simplify these

equations with the Raman lasers absent:

ċ1 = −i∆rf

2
c1 − iΩ

′∗
rfc3 (6.11)

ċ3 = −iΩ′rfc1 + i
∆rf

2
c3 (6.12)

Here, we reformulated the rotating wave approximation to account for a non-zero

detuning for the rf transition. Assuming the rf electric field εrfx is perfectly symmetric

and Gaussian, we use the Maxwell’s equation to estimate the hrfy amplitude across the

interaction region. Fig. 6.6(a) shows the εrfx and hrfy amplitude profiles. We carried

out numerical calculations for Eqn. (6.11-6.12)) to solve for excitation rate due to hrfy

with various detunings.

For the calculations, we used Eqn. (2.9) for the Rabi frequency of the rf transition

due to the hrfy component. Then, we numerically integrated the differential equations

using the hrfy from the Maxwell’s equations. Here, we assumed that the population is

initially prepared in the |1〉 level. We repeated the calculations for various detunings

and plotted the final population in the |2〉 state in Fig. 6.6(b). The calculations
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Fig. 6.5. Atomic signal due to M1 excitation in the presence of Bz ∼
1 G. Individual ∆m=0 and ∆m = ±1 peaks are resolved. However,
because the optical pumping lasers prepare atoms into the 6S1/2 F =
3 m = 3 sublevel only two transitions have strong signal.
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Fig. 6.6. (a) Amplitudes of εrfx and hrfy across the interaction region.
Here, we assume a perfectly symmetric and Gaussian εrfx amplitude.
(b) 6S1/2 F = 3 m = 3 → 6S1/2 F = 4 m = 4 (∆m=+1 transition)
as the rf frequency is detuned from resonance. The blue curve shows
theoretical calculations while the asterix are measurement data.

(blue curve) show good agreement with measurements of the 6S1/2 F = 3 m = 3 →

6S1/2 F = 4 m = 4 transition (black asterix). Some deviation of the measurement

data from the calculations can be attributed to divergence, slight misalignment of

the rf cavity, or stray dc magnetic field contributions. Note that the excitation rate

should be minimal when the detuning is zero and the measurements show that at

resonance the hrfy contribution vanishes as expected [60]. The double peak signal we

observed in the M1 measurements in Fig. 6.5 could potentially be useful for a novel

interference technique involving PNC and M1 transitions. This idea is discussed in

Sec. 6.4.

6.3 Rabi Flopping

In closed ground hyperfine transitions, where decoherence is negligible, one may

map out sinusoidal variation of excitation rate from one state to another as function

of interaction time. In cold atoms, it is routine practice to vary pulse width of Raman

or rf fields to observe oscillation of population between two ground spin states (e.g.
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Fig. 6.7. The measured excitation rate with respect to rf input power.
In the beam geometry where atoms have a large velocity distribution,
rf excitation reaches a saturation limit as rf input power increase.
The measurements show the signal reaching the saturation limit more
quickly than theory predicts.
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Ref. [78]). Measurement of such population oscillation (often referred to as Rabi

oscillation) can show the closed system has minimal decoherence. In this section,

we carry out ground state excitation via M1 and Raman transitions in an effort to

observe Rabi oscillation in the cesium atomic beam. In our experimental geometry,

however, it is difficult to control the interaction time since the interaction time is

governed by the beam velocity and the width of the rf or Raman fields. Instead, we

can control the field amplitudes by attenuating the rf or optical fields.

Fig. 6.7 shows the excitation rate with respect to input rf power. The hrfz field

excites strong ∆m=0 M1 transitions. Since we are primarily interested in high ex-

citation rates to observe Rabi oscillation, measurements were carried out in a region

away from the hrfz field node. As the rf power is swept from -40 dBm to 10 dBm, it

appears that the excitation rate reaches a saturation level and as we applied higher

rf power (even up to 20 dBm), the excitation rate stayed unchanged. We believe this

is due to an averaging effect from a large atomic velocity distribution. That is when

the rf power is sufficiently high, some atoms may experience a π
2

transition while

some may experience less. Some may experience π transition and return back to the

original state. When the rf power is low, no atoms would experience near π/2 exci-

tation so the signal among atoms with different velocities contribute constructively.

The signal would peak at a moderate rf power when a majority of atoms experience

near π/2 transitions. When the rf power increases far beyond this point, atoms that

experienced near π/2 transitions with a moderate rf power now experience transitions

that are greater than π/2, which leads to decrease in signal.

We detail our theoretical analysis for such saturation effect. In a two-level lossless

system where population in a stable initial state gets excited to the other state, the

population transfer rate (|1〉 → |3〉 in Fig. 6.1) can be expressed as:

P|1〉→|3〉(t) =
|Ωrf |2

Ω2
sin2

(
1

2
Ωt

)
(6.13)
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Here, Ω is the effective Rabi frequency
(

Ω =
√

∆2
rf + Ω2

rf

)
. The velocity distribution

of cesium atoms is:

f(v) =

(
2πkT

m

)− 3
2

v3exp

(
−mv

2

2kT

)
(6.14)

In the equation above, T=393 K (or 120◦C), k is the Boltzmann constant, and m is

the atomic mass of cesium (∼ 2.23×10−25 kg). The velocity distribution of cesium

atoms at this temperature is plotted in Fig. 6.9. The interaction time t in Eqn. (6.13)

can be expressed as t = w/v where w is the beam width of hrfz . We use this relation

and the resonant condition (∆rf = 0) to integrate the excitation rate P|1〉→|3〉(v)f(v)dv

over all velocities:

Θrf =

∫ ∞
0

P|1〉→|3〉(v)f(v) dv (6.15)

In Fig. 6.7 we plot calculated excitation rates with respect to rf power using

Eqn. (6.15). While in the low rf power regime, theory predicts slow increase in the

excitation rate as reflected in the measurements, the measurement data did not show

a sharp decline in the excitation signal after rf power higher than -10 dBm is applied

as theory predicted. Another notable discovery is that the calculations did show

the population excitation rate reached a constant value after a sufficiently high rf

power as in the experiment. However, this value from the calculations was somewhat

lower than what we observed. We believe this discrepancy arose from various factors

including slight misalignment of the rf cavity, beam divergence, and possibly nonlinear

effect.

We also carried out similar measurements to observe change in Raman transition

rates as we vary optical power. In our scheme, the master and slave lasers have about

the saturation intensity for the cesium D2 line (∼ 2 mW with a ∼0.5 cm beam radius).

We use the AO to set a detuning of about ∼160 MHz. The lasers are expanded to ∼ 1

cm diameter and overlap one another inside the vacuum chamber. Their polarizations

were set such that we can observe the 6S1/2 F = 3 m = 3 → 6S1/2 F = 4 m = 4

(∆m = +1) transition. We placed a half-wave-plate before the polarizer of one of

the lasers. This allows for stably controlling optical power transmitted through the

polarizer. Our measurement results are shown in Fig. 6.8.
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Fig. 6.8. The Raman excitation rate versus the Rabi frequency. While
theoretical calculations (blue curve) show some sinusoidal oscillations
in the signal as Rabi frequency increases, the measurements show slow
increase of signal to a maximum value. The dark state (D.S.) estimate
(yellow curve) represents numerical calculations taking into account
decay loss from the upper state 6P3/2.
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We worked out a theoretical model for the Raman transition in the cesium atomic

beam in a way similar to the calculations for the rf transition. We replaced Ωrf

with the Rabi frequency of the Raman transition given their detuning and intensity.

We also set a smaller value for the interaction time for the Raman transition than

the rf excitation to reflect the 1 cm beamwidth of the lasers. Theoretical calculations

(blue curve) in the figure show the Raman excitation should peak at moderate optical

power and reach a saturation limit at higher power due to the velocity distribution of

atoms just like in the rf transitions we discussed earlier. Unfortunately, measurements

showed a “damped” characteristic where the Raman signal slowly grew when we

increase the optical power of one of the lasers.

We believe such discrepancy is mainly due to phenomenological loss caused by

an insufficient detuning from 6P3/2. We carried out a different analysis where we

assumed excitation to the upper state is non-negligible. Instead of using the effective

Hamiltonian from Eqn. (6.10), we solved Eqns. (6.5-6.7) taking into account decay

from the |2〉 state. The results are shown as a yellow curve (dark state estimate)

in Fig. 6.8 that are somewhat in agreement with the measurement data. This is

convincing evidence that phenomenological decay is not insignificant with a 160 MHz

detuning. Furthermore, this kind of loss would lead to decoherence in the system and

may cause the atoms to recede into dark states [111]. This problem can be addressed

by replacing the AO with a high frequency EO to increase the Raman laser detuning

from the upper state. We plan to carry out improved Raman transition measurements

in a near future.

6.4 Interference and Future Plans

We have presented measurements of rf and Raman transitions. From these re-

sults, we identified areas that require improvement and better understanding. On the

other hand, these preliminary results also helped us develop a novel idea that can be

potentially beneficial for future weak transition measurements in the cesium ground
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hyperfine states. In this section, we present a new measurement method involving

interference of Raman, M1 and PNC transitions. Note that our previous strategy

was to interfere Raman, Stark, and PNC transitions [60], which was discarded after

preliminary testing as explained in Sec. 5.3. The current setup involves direct in-

terference of the Raman and PNC transitions just like the TRIUMF collaboration’s

francium experiment [12]. However, this direct interference scheme has two nontrivial

challenges:

1. Since the observable is the interaction strength |Θ|2 = |
∫ τ

0
Ω(t)dt|2 (τ is the

interaction time), one must accurately know the field amplitude in order to find

the forbidden dipole moment strength.

2. Although Raman transition amplitudes can be easily measured from the popu-

lation transfer rate from one state to the other, the coherence formed by Raman

lasers depends on various parameters (e.g. detuning and laser intensities) and

cannot be directly measured.

For the first challenge, one may resort to the approaches showcased in various

rf field measurement projects in applied physics community [137–140]. In addition,

the TRIUMF collaboration carried out Teflon bead testing [108] from which they

determined rf electric field strength within a good degree of confidence. The second

challenge would require additional interference measurements (e.g. Raman vs M1).

Due to these challenges, researchers would opt for interference of transitions within

the same color like EPNC/β because the observable of such ratio has a numerator

and a denominator both dependent on the field profile, and thus, canceling out the

dependence.

Our new scheme would add M1 contributions to PNC and Raman interference

with the hope that this would unburden us from accurately mapping out rf field

profiles. The new observable would be EPNC/M1 where M1 in the cesium ground

hyperfine transition is accurately known [79]. The hrfy and εrfx fields both excite the

6S1/2 F = 3 m = ±3 ↔ 6S1/2 F = 4 m = ±4 transitions. We interfere EPNC and
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M1 by varying the rf field detuning. At a frequency close to the resonant frequency,

the excitation via E1 transition becomes weaker while the M1 contribution becomes

stronger. The Raman lasers would interfere with the E1 and M1 transitions for a high

signal-to-noise ratio as discussed in Sec. 3.2. This idea will be further explored with

rigorous mathematical analysis (e.g. Ref. [141, 142]) when we have fully addressed

the issues from the individual rf and Raman measurements.

6.5 Error Analysis

We are currently making improvement to the rf and Raman transition for future

interference measurements outlined in Sec. 6.4. In this section, we detail error analysis

for the geometry along with results from numerical modeling. The largest error in

the ground hyperfine state experiment is an undesired contribution of the magnetic

dipole transition to the EPNC signal. As mentioned in Sec. 4.4, this magnetic dipole

transition amplitude cannot be completely suppressed but can be sufficiently reduced.

In addition, stray dc magnetic fields, Bx and By, in the interaction region would

contribute to M1 excitation. The M1 contributions due to the dc and rf magnetic

fields can be written as,

VM = η0M

{
hrf
z C

F ′m′

Fm +
∑
±

[
∓ hrf

x + ihrf
y

]
×
[(∓B0

x + iB0
y

B0
z

)
(6.16)

CF ′m±1
Fm CF ′m±1

F ′m

gF ′
+

(±B0
x + iB0

y

B0
z

)
CFm∓1
Fm CF ′m

Fm∓1

gF ′

]}
ei(ω

rf t−ky−φrf)

If all dc stray fields are zero, it can be shown from Eqn. (6.16) that only the hrf
z term

will contribute to excitation in the hyperfine ground states.

The stray fields B0
x and B0

y would allow the rf field and Raman lasers to excite

∆m = 0 transitions but B0
x and B0

y can be reduced to 0.1% of B0
z in the experimental

setup. Thanks to the Zeeman shift in the hyperfine Zeeman magnetic sublevels, the

∆m = 0 transition would be detuned by a few MHz. This detuning is far greater

than the transition linewidth of the ground hyperfine transition (∼ 10 kHz) [60] and,

therefore, the ∆m = 0 transition would be reduced. The total signal will consist
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of EPNC and magnetic dipole contributions. The PNC transition strength can be

evaluated by integrating EPNC
∫∞
−∞ εx(z)dz/h̄v, which is about 5.6 × 10−6 where the

Gaussian rf electric field εz(z) has the peak amplitude of 250 V/cm. This is the PNC

contribution to one atom going through the exact center of the interaction region. The

extent of the magnetic dipole contributions in the ∆m = +1 transition is evaluated

here and verified that its strength is insignificant.

As discussed in Sec. 5.3, careful alignment of the rf cavity in the atomic beam

path would suppress the magnetic dipole contributions substantially. In this section,

we use more rigorous analysis to show that the magnetic dipole contributions will be

negligible even with imperfect alignment. The second column of Table. 6.1 shows the

path integral at the center of the cavity where all magnetic fields average out due

to symmetry. In reality, a little beam divergence (∼ m rad) may steer some atoms

from the straight path through the rf cavity. We used COMSOL Multiphysics for

the evaluation of various contributions (see Appendix. F for detail). We carried out

a number of path integrals along the vicinity of the interaction region (1 mm by 1

mm region) to accurately evaluate the interaction strength . We also calculated the

root-mean-square of the field integral for hrfz and hrfy along the interaction region. If

M1 excitation due to these root-mean-square (rms) of magnetic field integrals is far

less than the PNC excitation strength, we can conclude that the undesired magnetic

dipole contributions to the total signal would be negligible. The rms values of these

integrals and the standard deviations are tabulated in the third column and fourth

column, respectively. Assuming that a total number of N = 3× 1012 atoms interact

with the rf fields, the magnetic dipole contributions found in the fifth column seem far

smaller than the PNC contribution. Therefore, we believe our experimental geometry

can successfully reduce the unwanted M1 transition to a fraction of PNC interaction

strength.

Referring to the table, the rms value of the path integral of h′′z (∼ 0.1A) is larger

than any other values. However, its overall contribution to the signal is less than

0.1% of the PNC amplitude (∼ 5.6 × 10−6). The biggest contribution is due to h′′y
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Table 6.1.
Estimates of potential contributions to the atom signal due to mag-
netic dipole interactions. For comparison, the amplitude of the PNC-
induced term |ΘPNC| is EPNC

∫
ε′x(z)dz/h̄v, which we evaluate as

5.6 × 10−6. We have organized these terms by those that add in
phase to the EPNC term, followed by those that add in quadrature to
the EPNC term. In the second column, we list the average value of
field component, averaged over the interaction region, which is zero
for each component. In the third column, we list the r.m.s. value of
the field component. In the right column, we list the contribution of
this term. All magnetic dipole contributions are suppressed to less
than 0.2% of the EPNC term.

Comp.
∫
hi(z)dz

[∫
hi(z)dz

]
rms

Magnetic Dipole Contribution [ΘM]rms/
√
N

Magnetic dipole contributions in phase with EPNC

h′′x 0 40 µA η0M
[∫
h′′x(z)dz

]
rms

/h̄v
√
N 8× 10−9

h′y 0 7 nA η0M
[∫
h′y(z)dz

]
rms

/h̄v
√
N 2× 10−12

h′′z 0 0.1 A η0M
[∫
h′′z(z)dz

]
rms

/h̄v
√
N × (B0

x/B
0
z ) 2× 10−9

h′z 0 8 nA η0M
[∫
h′z(z)dz

]
rms

/h̄v
√
N × (B0

y/B
0
z ) 2× 10−16

Magnetic dipole contributions in quadrature with EPNC

h′x 0 5 nA η0M
[∫
h′x(z)dz

]
rms

/h̄v
√
N 1× 10−12

h′′y 0 50 µA η0M
[∫
h′′y(z)dz

]
rms

/h̄v
√
N 1× 10−8

h′z 0 8 nA η0M
[∫
h′z(z)dz

]
rms

/h̄v
√
N × (B0

x/B
0
z ) 2× 10−16

h′′z 0 0.1 A η0M
[∫
h′′z(z)dz

]
rms

/h̄v
√
N × (B0

y/B
0
z ) 2× 10−9

with about 0.2% of the PNC amplitude. This contribution is still reasonably small

that it will not significantly affect the total signal.

6.6 Data collection

Referring to Fig. 4.4 in Sec. 4.2 and Eqn. (4.10) in Sec. 4.3, the excitation rate

due to the weak transitions is proportional to the modulated amplitude from the
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Fig. 6.9. Figure from Ref. [60]. The velocity distribution of a Cs
atomic beam at 120◦C. The peak velocity is 270 m/s and the standard
deviation is 106 m/s.

rf and Raman interference. The population in either initial (6S1/2 F = 3) or final

(6S1/2 F = 4) state is detected by the fluorescing scheme as discussed in Sec. 5.1.

When the Raman and rf fields are in phase with one another, the total excitation

rate becomes |cf (∞)|2 = 1
2

+ |ΘPNC|. When they are out of phase, the excitation rate

becomes |cf (∞)| = 1
2
− |ΘPNC|. If these excitation counts are denoted as N+ and N−

respectively, then ΘPNC is

ΘPNC =
N+ −N−
N+ +N−

(6.17)

If the uncertainty of N+ and N− is σN = 1/
√
N , the uncertainty for the PNC tran-

sition is then,

σPNC =

√(
∂ΘPNC

∂N+

)2

σ2
N +

(
∂ΘPNC

∂N−

)2

σ2
N (6.18)

Evaluating Eqn. (6.18), one can arrive at σPNC = 1/
√

8N . The goal for measure-

ment uncertainty is about 3% and this can be achieved by collecting data from

N = 1/8σ2
PNC = 3 × 1012. Given the density of the cesium beam is ρCs = 109 cm−3,

the data collection time should be [60]

T =
2N

σbeamvρCs

(6.19)

where σbeam is the area of the beam cross section (∼1 mm by 1 mm). This estimated

data collection time T is about 22 seconds with the given parameters.
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In addition, due to a large velocity distribution of atoms at 120◦C as shown in

Fig. 6.9, the atoms would experience a Doppler broadening of ∆vD = ν0∆vt/c, where

ν0 = 9.2 GHz is the transition frequency, vt ∼ 0.7 m/s is the transverse velocity

spread of the atomic beam, and c is the speed of light in vacuum. The total transition

broadening as the atoms pass through the interaction region during a finite time is

∼ v/2πwrf = 10 kHz, which is much smaller than the Zeeman splitting. In addition,

atoms and field interaction time will have a distribution; those moving faster than

the mean speed will experience a shorter interaction time while slower atoms will

experience a longer time. Any decrease or increase in ΘRam will reduce the total

signal as can be shown in Eqn. (4.10). The total signal reduction over the velocity

distribution is about 23% but its effect on the signal quality is negligible.
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7. CONCLUSIONS

The focus of our proposal [60] and the purpose of preliminary results presented here

are to guide future NSD measurements in an atomic cesium beam to determine the

anapole moment with less than 3% uncertainty. Unlike the measurements by the

Boulder group [6], we plan to observe the PNC transitions in the ground hyperfine

states with Raman and rf fields. Various calculations [94,143] indicate that the PNC

transition amplitude in the cesium ground hyperfine states will be about twice larger

than the PNC amplitude in the optical 6S1/2 → 7S1/2 transitions. In addition, the

Boulder group’s measurements of the NSD amplitude yielded a large uncertainty

(∼14%) due to the small magnitude of the NSD contributions in the optical tran-

sitions. We believe that direct probing of the NSD transitions would yield a much

lower uncertainty and serve as an independent check of the nuclear anapole moment

against high energy physics measurements [19,51].

Recently, there have been a few notable reports of PNC measurements in Yb [9], Fr

(e.g. Ref. [108]) and polar molecules [61,62]. Such efforts in heavy species are aimed

to better understand the nature of weak interaction within the nucleus. Especially,

Antypas et al.’s measurements across a chain of ytterbium isotopes [9] demonstrated

linear dependence of the PNC amplitude on the neutron number. There have been

no NSD measurements for the anapole moment in any species ever since the Boulder

group’s cesium measurement [6], however. So the 1997 results with a 14% uncertainty

and significant deviation from the high energy physics measurements still remain the

only atomic and molecular measurements to date.

In addition, as demonstrated in previous measurements (e.g. Refs. [37,38,110]) the

two-pathway coherent control technique can improve the efficiency of the detection

system and reduce its susceptibility to background noise. In our experiment, we

adopt the two-color excitation idea by interfering the strong Raman transition with
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the weak rf excitation. We have successfully created phase-locked Raman lasers with a

9.2 GHz frequency difference using a geometry modified from the traditional current-

modulation injection locking scheme (e.g. Refs. [119,121]). We have constructed and

characterized an rf cavity to support moderate power buildup of rf standing-wave

fields at 9.2 GHz.

We also put great effort into generating uniform homogeneous dc magnetic fields

in the regions where we prepare atoms, excite them via optical and rf transitions, and

detect their fluorescent signals. A huge challenge in our experiment, as opposed to

all-optical experiments, is that the beam width of rf fields is much greater (∼ 2.5 cm)

than that of optical fields and that the rf and Raman interaction regions are separated

by a few centimeters. We need to maintain uniform homogeneous dc magnetic fields

over a large region.

Our preliminary measurement results from rf and Raman interaction shed light on

areas for improvement for future generation of cesium beam NSD measurement. For

instance, in order to minimize any incoherent loss, we would need a larger detuning for

the Raman lasers. The measurement results showed there seemed to be substantial

excitation of atoms to the upper state by the Raman lasers with only a ∼ 200 MHz

detuning. This problem can be addressed by increasing the detuning with a high

frequency EO. Our resonant rf measurements indicate that although we were able to

map out spatially varying atomic transition rates by translating the rf cavity there was

higher excitation near the field node than the theoretic model predicted. There are a

few factors that could have contributed to the discrepancy including dc stray fields,

imperfect alignment of the rf apparatus, and any possible non-linear effects. These

contributions need to be under strict control as we try to minimize any excitation via

hrfz fields.

In addition, we found out the atomic velocity distributions cause the transfer

probability between two ground hyperfine states to reach a limit after sufficiently high

rf (or optical) power is applied. If all atoms had the same velocity, and the system were

totally lossless, increasing the Rabi frequency would change the population transfer
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rate from 0 to π/2 and back to 0. We discovered that atoms would experience

averaging effect where some atoms get excited at high rates and some at low rates

due to atomic velocity distributions.

Lastly, while we predicted in Ref. [60] that there would be a vanishing contribution

of hrfy at resonant frequency due to the Faraday’s law, the measurements showed

this field component led to strong transition rates at slightly off-resonance. Based

on this finding, we have started to develop a new RF/Raman interference scheme to

determine the EPNC/M1 ratio. This idea would require further rigorous mathematical

analysis (e.g. Ref. [141,142]) to understand the system interacting with time-varying

fields at an arbitrary detuning.
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A. STARK-INDUCED TRANSITION INTERFERENCE

In this appendix, we present a measurement scheme to determine EPNC/β from

Ref. [60]. Although this approach may yield interesting results, as we started building

and testing rf apparatus, we noticed that adding dc bias pads on the bottom and top

plates of the PPTL (see Sec. 5.3 for detail) would significantly compromise the rf

power buildup. However, we may revisit this geometry once we can get a high power

rf amplifier. For EPNC/β measurements in the Cs ground hyperfine states, specific

field orientations (in Fig. A.1) are chosen to control and observe interference among

the Raman, Stark-induced, and PNC transitions.

We excite a ∆m = ±1 Raman transition by polarizing one Raman laser in the z-

direction while polarizing the other Raman laser in the x-direction just as in Sec. 4.3.

The rf cavity from Sec. 5.3 has to be modified where dc bias pads are created by

segmenting the top and bottom plates as shown in Fig. A.2. The rf cavity supports

x

y

z

k

E0

B0

beam
atomic 
Cs 

ε
rf

Fig. A.1. Figure from Ref. [60]. The experimental geometry for EPNC
measurement is the same as the one depicted in Fig. 4.1 except that
a dc electric field E0 has been added.
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Fig. A.2. Figure from Ref. [60]. The rf cavity with dc bias pads to
create a uniform dc electric field in the interaction region. These pads
allow for interference measurement between PNC and Stark-induced
transitions.
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εrfx , hrfy and hrfz fields at 9.2 GHz, which leads to Stark-induced and PNC transition

amplitudes:

VSt '
[
± iβ( ~E × ~ε)x − β( ~E × ~ε)y

]
CF ′m′

Fm (A.1)

VPNC ' (±εx + iεy)iIm(EPNC)CF ′m′

Fm (A.2)

Although M1 transitions dominate in the ground hyperfine states, under the reso-

nant condition M1 excitation can be significantly suppressed as discussed in Sec. 4.4.

Therefore, only VSt and VPNC become the relevant transitions in this scheme. The

excitation rate via ground hyperfine transitions can be expressed as:

|cf (∞)|2 = sin2

(∣∣∣∣∣∑
i

Θi

∣∣∣∣∣
)

(A.3)

If the rf electric field is polarized in the x-direction, the Stark-induced transi-

tion amplitude would become VSt '
[
− β( ~E × ~ε)y

]
CF ′m′
Fm and the PNC amplitude

VPNC ' ±iIm(EPNC)εxC
F ′m′
Fm . We use the approximation notation (') because

small polarization impurity and stray fields may cause error in the signal amplitudes.

Eqn. A.3 can be expanded as follows:

|cf (∞)|2 = sin2(|ΘRam|) + sin(2|ΘRam|) (A.4)

×sin
[
|ΘSt + ΘPNC |cos(∆φ+ δφ(Ez))

]
Here, we assume that M1 contributions (ΘM) have been sufficiently suppressed.

We then use Eqn. (4.8) for Stark-induced and PNC interference,

|ΘSt + ΘPNC | =
1

v

∣∣∣∣∫ ∞
−∞

[
ΩSt(z) + ΩPNC(z)

]
dz

∣∣∣∣ (A.5)

With VSt from Sec. 2.1 and VPNC from Sec. 2.3, Eqn. (A.5) can be modified as,

|ΘSt + ΘPNC | =
1

h̄v
|βE0

z ∓ iIm(EPNC)|CF ′m′±1
F ′m

∫ ∞
−∞

εrf
x (z)dz (A.6)

assuming the dc electric field is uniform. In reality, the dc field will vary to a certain

degree but this variation is not significant to introduce large errors [60]. On the right-

hand-side of Eqn. (A.6), the Gaussian integral yields the interaction strength and the

quadrature interference is evident in the term |βE0
z ∓ iIm(EPNC)|,

|βE0
z ∓ iIm(EPNC)| =

√
(βE0

z )
2 + |EPNC |2 (A.7)
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If the interaction strength of the Raman lasers (ΘRam) is equal to π/4, the term

sin(2|ΘRam|) in Eqn. (4.10) becomes 1, thus, maximizing the modulated signal. With

a low applied dc electric field, the term EPNC dominates the modulated signal. On

the other hand, if one applies a large dc electric field, the modulation amplitude

would increase linearly with the dc electric field amplitude. From this relation and

by varying the applied dc field, the ratio EPNC/β can be obtained.

Based on the estimated value of β from Sec. 2.1 and EPNC from Sec. 2.3, this ratio

is approximately EPNC ∼ 27 V/cm. Therefore, in order to observe the EPNC and β

interference within good precision, control of the dc electric field strength of a range

from 0 V/cm to several times the ratio EPNC/β ∼ 27 V/cm is required. As it will be

explained in Sec. 5.3, a uniform dc electric field of ∼ 100 V/cm can be achieved in

the experimental setup.

Next, we show in Fig. A.3 2D simulation results for dc potential along the inter-

action region when the pads biased with dc voltages. This geometry would result in a

dc electric field along the atom beam propagation direction (z). Fig. A.4 shows the dc

electric fields when dc voltages are applied from 0 V to 1000 V in an increment of 100

V from the left-most pad to the right-most one. The blue solid curve in Fig. A.4 is the

normalized Gaussian profile representing the rf electric field. Based on the numerical

simulations, we concluded that the stray fields (black dotted) are negligible and the

variation of the dc electric field (Ez) is well-controlled.
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Fig. A.3. The 2D color map representing the dc potential distribution
in the cross-section of the PPTL. The pads are dc-biased from 0 V to
1000 V in an increment of 100 V. The horizontal axis is the z-direction
and the vertical axis is the x-direction.

Fig. A.4. Field profiles of E0
z (z) (red dashed) and E0

x(z) (black dot-
ted) each normalized to the maximum of E0

z (z) at the center of the
region between the parallel plates. Also shown is the Gaussian rf field
amplitude, εrfx (0, z) (blue solid).
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B. SCATTERING PARAMETERS

Fig. B.1. A diagram of a two-port cavity with Vn,+ representing the
incident voltage while Vn,− is the reflected one.

In this appendix, we detail the scattering parameter measurements with a VNA.

For a passive device like our rf cavity from Sec. 5.3, we carry out two-port measure-

ments summarized in the diagram in Fig. B.1. Assuming the device fully operates in

a linear regime, the input and reflected voltages at each port hold the relations:

V1,− = S11V1,+ + S12V2,+ (B.1)

V2,− = S21V1,+ + S21V2,+ (B.2)

Here, Sxy are the scattering parameters for the passive device. V1,± represents the

input (+) and reflected (−) voltages at Port 1, while V2,± represents the input (+)

and reflected (−) voltages at Port 2. As Vn,± values are complex, the scattering

parameters Sxy should also be complex. The VNA returns the magnitude and the

phase of these parameters.

Technical details about VNA operations can be found in textbooks (e.g. Ref. [144])

and in device operation manuals. We only provide a concise summary of how these

scattering values are measured. Since Eqns. (B.1) and (B.2) are linear equations, one

can set any values to the input voltages and measure the reflected and transmitted
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voltages. For instance, V1,+ is set to a finite value and V2,+ to zero and S11 can be

measured from the ratio V1,−/V1,+. For S12, V1,+ is set to zero and the ratio V1,−/V2,+

is measured, and so on. In addition, one can determine the symmetry of passive

Fig. B.2. Comparison between the measurements (solid) and simu-
lated (dotted) scattering parameters.

devices from scattering parameter measurements. Here, we say a two-port device is

symmetric if excitation via one port yields the same mode patterns as when the cavity

is excited via the other port. We check such symmetry from how well the S12 and S21

parameters overlap. For instance, Fig. 5.15 shows a clear overlap of |S12| and |S21|.

As for the reflections at each port, S11 and S22 may not have the same magnitude for

two possible reasons. First, the cavity geometry favor excitation via one port over

the other. For instance, in Fig. 5.14 if one antenna is closer to a reflector than the

other antenna, they may yield different reflection coefficients. Second, if the coaxial

feed lines have a slightly different length VNA measurements would return different

reflection coefficients. The first issue is more critical than the second since it implies

a geometric non-symmetry. The latter issue can be simply addressed by placing an

attenuator and a phase shifter.
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In addition, we simulated our rf cavity using the frequency-domain analysis in

COMSOL Multiphysics. We assigned lumped ports at the end of the rf coaxial

feed. While sweeping the frequency, we excited the cavity through one port (e.g.

V1,+ = 1V ) while we assigned no excitation to other port (e.g. V2,+ = 0V ). We then

calculated the reflected voltages at the source port and the transmitted voltages at

the other port. This setup allows for determining the Sxy of the system just as in the

measurements. The simulated results are shown as dotted curves in Fig. B.2. Note

that our measurements in Fig. 5.15 showed a great symmetry in the reflection and

transmission. Therefore, when we compare simulated results with measurements, we

only show S11 and S12 assuming a good symmetry. Fig. B.2 shows great agreement

between measurements and calculations over a large range.
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C. TRANSLATIONAL STAGE

As discussed in Sec. 5.3, precise positioning of the rf cavity is critical because in the

NSD measurements, we need to place the rf cavity such that the atom beam path

coincides with the rf magnetic field node. In addition, position-dependent atomic

excitation measurements presented in Sec. 6.2.1 would require precise translational

positioning of the rf cavity over a few centimeters. We tested the translational stage

rigorously to confirm its resolution in displacing of the rf cavity. Such testing requires

that we measure the displacement over a large number of steps in order to verify:

1. The displacement is linearly proportional to the number of steps the motor takes.

2. Each step roughly corresponds to the resolution specified in the manual.

A few uncontrollable factors may contribute to this testing such as friction between

the motor shaft and the aperture. Since motor operation is very slow, we believe

these factors do not play a big role in the positioning resolution.

Fig. C.1 shows the measurement of the cavity position while performing the pull

operation of the picomotor. Initially, the rf cavity is placed about 3 cm away from a

reference point. We performed the pull operation about 75 times where each time the

motor moved 20,000 steps. We measured the displacement each time with precision

calipers (∼ 10 µm). The picomotor was able to travel about the rf wavelength at

9.2 GHz (∼3.26 cm). Despite potentially irregular friction on the aluminum platform

and the copper plate, the position measurement appears fairly linear as shown in

the figure. We also note that there were some human errors from measuring the

displacement with calipers.

We have concluded from the linear fit of Fig. C.1 that each step of the motor

moves about 20 nm consistently. This value is somewhat different from the push

operation where a similar test confirmed that the motor pushes about 30 nm each
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Fig. C.1. The plot of cavity position versus steps moved by the picomotor.

step. We concluded that this difference is due to the fact that the shaft design of the

picomotor is less advantageous for pull operation. Nonetheless, consistency of its pull

operation performance of 20 nm each step over one wavelength convinced us that the

picomotor can reliably position the rf cavity.
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D. DC MAGNETIC FIELD COILS

In this appendix, we detail the Helmholtz coil designs for dc magnetic field genera-

tion in the pumping and interaction regions. We ordered aluminum U-channels (e.g.

McMaster-Carr 9001K58), measured them out and cut them into four as shown in

Fig. D.1. Then, with aluminum brackets (e.g. McMaster-Carr 2313N37) to hold the

U-channel pieces together, we wound 26 AWG magnetic wire (e.g. Digi-Key 1175-

1712-ND) around the U-channel pieces. About 160 magnetic wire windings in two

layers would yield ∼ 20 Ω of resistance.

Fig. D.1. The U-channel pieces for Helmholtz coils.

We designed aluminum bases to secure the coils in place. We use two different

sets of coils in the interaction region. The first set is 8.83 in. by 8.83 in. while the

second set is 9.96 in. by 9.96 in. The latter ones would be placed close to one another
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with two aluminum bases shown in Fig. D.2 supporting them. The smaller set of

Fig. D.2. An aluminum base to secure a set of coils next to one another.

coils would be placed farther apart sandwiching the larger set of coils within. An

Fig. D.3. An aluminum base to secure one individual coil.

aluminum base to secure the smaller coils is shown in Fig. D.3. All these bases can

be clamped down onto the bottom of the vacuum chamber. As discussed in Sec. 5.5,

we built these large coils for uniform homogeneous dc fields over a long distance (∼

10 cm). Their sizes require bulky bases like ones shown in the figures above to firmly
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hold the coils in place. Much smaller coils such as those in the pumping region can

be placed on a simple platform with four rods supporting each corner.

Fig. D.4. A 3D diagram showing the arrangement for the dc magnetic field coils.

Fig. D.4 shows the placement and relative sizes of the dc magnetic field coils in

our experimental setup. The first three coils on the left generate a dc field in the

x-direction (or y according to the orientations in Fig. 4.1). The four coils on the

right generate a magnetic field in the y-direction (or z). These coils are connected to

a low-noise power supply (e.g. Keysight KT-E36313A-DC) with a voltage (current)

resolution of 1 mV (10 uA).

The field simulation results are shown in Fig. D.5. As discussed in Sec. 5.5, our

experiment requires the By (Bz = Bx = 0) field in the pumping region and the Bz

(Bx = By = 0) field in the interaction region. The simulated results show our coil

setup would generate a homogeneous magnetic field (Bz) with good uniformity and

low stray field contributions (By/Bz, Bx/Bz < 0.001).
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Fig. D.5. Simulation results showing the magnetic fields in the pump-
ing, interaction and detection regions. The field orientation is the
same as in Fig. 4.1.
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E. ROTATING WAVE APPROXIMATION (RWA)

Here, we derive the three-level system interacting with rf and Raman lasers (in

Fig. 6.1) using the rotating wave approximation (RWA). The wave function of the

system is:

ψ(t) = C1(t)e−iω1t|1〉+ C2(t)e−iω2t|2〉+ C3(t)e−iω3t|3〉 (E.1)

And the Schrodinger’s equation:

i
dψ(t)

dt
= (H0 + V )ψ(t) (E.2)

We rewrite the non-interaction (H0) and interaction (V ) Hamiltonians here:

H0 = ω1|1〉〈1|+ ω2|2〉〈2|+ ω3|3〉〈3| (E.3)

V =
1

2
(ΩR1|1〉〈2|+ Ω∗R1|2〉〈1|+ ΩR2|3〉〈2|+ (E.4)

Ω∗R2|2〉〈3|+ Ωrf |1〉〈3|+ Ω∗rf |3〉〈1|)

Inserting the wave function (Eqn. (E.1) into the Schrodinger’s equation (Eqn. (E.2),

one arrives at three equations:

iĊ1e
−iω1t =

1

2
(ΩR1C2e

−iω2t + ΩrfC3e
−iω3t) (E.5)

iĊ2e
−iω2t =

1

2
(Ω∗R1C1e

−iω1t + Ω∗R2C3e
−iω3t) (E.6)

iĊ3e
−iω3t =

1

2
(ΩR2C2e

−iω2t + Ω∗rfC1e
−iω1t) (E.7)

Now, one can multiply Eqn. (E.5) by eiω1t, Eqn. (E.8) by eiω2t and Eqn. (E.5) by eiω3t.

Then, taking into account the fast-varying part of the Rabi frequencies (i.e. Ωn =

Ω
′
ne
iωnt), Eqn.(E.5-E.7) become:

iĊ1 =
1

2
(Ω
′

R1C2e
−i∆t + Ω

′

rfC3) (E.8)

iĊ2 =
1

2
(Ω
′∗
R1C1e

i∆t + Ω
′∗
R2C3) (E.9)

iĊ3 =
1

2
(Ω
′

R2C2e
−i∆t + Ω

′∗
rfC1) (E.10)
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Now, we use the rotating wave approximation and introduce new variables c1, c2 and

c3 such that:

C1 = c1 (E.11)

C2 = c2e
i∆t (E.12)

C3 = c3 (E.13)

Inserting c1, c2, and c3 into Eqns. (E.8-E.10), one can arrive at a set of equations:

iċ1 =
1

2
(Ω
′

R1c2 + Ω
′

rfc3) (E.14)

iċ2 =
1

2
Ω
′∗
R1c1 + ∆c2 +

1

2
Ω
′∗
R2c3 (E.15)

iċ3 =
1

2
(Ω
′

R2c2 + Ω
′∗
rfc1) (E.16)
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F. NUMERICAL SIMULATION

We carried out rf and dc field calculations inside the PPTL rf resonator in COMSOL

Multiphysics. For rf field calculations, we used the eigen-frequency and frequency

domain modules to study mode patterns and Q factor. For dc field calculations,

we carried out simulations in 2D (for electric fields) and 3D (for magnetic fields)

geometries with the electrostatic module. These numerical simulations allowed for

studying effects due to stray fields and misalignment of the cavity resonator. More

importantly we were able to numerically integrate the rf magnetic field (hrfy and hrfz )

contributions along the atomic beam path in the interaction region.This approach not

only guided us in estimating the total contributions of the Stark-induced and PNC

transitions but also calculating how well unwanted M1 contributions are suppressed

inside the rf cavity. We published detailed error analysis in Ref. [60] and tabulated

it in Sec. 6.5.

In the simulation model, we used copper sheets of thickness greater than a few skin

depths were used to ensure good reflection off the top and bottom plates. The cavity

reflectors had the parameters specified in Sec. 5.3 (w = 7.5 cm, h = 1 cm, Rcurv =

12 , and lcav = 11.9 cm). Once we built the 3D model, we added fine meshes of

tetrahedrons inside the rf cavity. Especially, thousands of more data points were

added in the interaction region as shown in Fig. F.1. The bar-like shape shown in

Fig. F.1(b) represents these fine mesh-points and these points make up a small volume

that the atomic beam would occupy. Creating these very fine meshes would allow for

accurate calculation of field patterns in the interaction region.

In order to estimate the interaction strengths, we integrated the electromagnetic

field strength along the fine meshes. In the absence of these fine mesh structure,

one would rely on interpolation schemes to estimate the fields along the interaction

region. Such interpolation would lead to significant error. As the PNC transitions via
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Fig. F.1. Additional mesh-points assignment for rf field simulations.
It allows for calculation of interaction strength in the interaction re-
gion with far less numerical error than the traditional interpolation
schemes.

εrf in the ground hyperfine states are several orders of magnitudes smaller than the

M1 transitions, accurate integration is required to demonstrate sufficient suppression

of unwanted hrf contributions in the interaction region. In other words, any small

interpolation error can throw the calculations way off. The addition of extra mesh-

points as shown in Fig. F.1 yields far less numerical error and does not require much

additional computational memory. Lastly, for dc electric field analysis (Fig. A.3), very

fine 2D mesh points were added near the interaction region for accurate calculation

of the dc potential.

In order to find the cavity length that supports 9.2 GHz resonance in COMSOL,

we adjusted the length of the cavity by one tenth of a millimeter at a time until

the simulation returned symmetric mode patterns. Each time we changed the cavity

length, we performed a small frequency sweep about 9.2 GHz. We found that when

the length is 11.87 cm, the power buildup of the cavity was the largest and the

cavity mode patterns appeared symmetric. In addition, we studied effects of possible

misalignment on the frequency response of the rf cavity. We modeled the cavity with

slightly misaligned top and bottom plates. Such misalignment (<1◦) seems to have
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negligible effect on the power buildup factor although the resonant frequency would

shift.


