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ABSTRACT

Pandita, Piyush Ph.D., Purdue University, May 2019. Bayesian Optimal Design of
Experiments for Expensive Black-Box Functions under Uncertainty. Major Professor:
Ilias Bilionis, School of Mechanical Engineering.

Researchers and scientists across various areas face the perennial challenge of

selecting experimental conditions or inputs for computer simulations in order to

achieve promising results. The aim of conducting these experiments could be to study

the production of a material that has great applicability. One might also be interested

in accurately modeling and analyzing a simulation of a physical process through a

high-fidelity computer code. The presence of noise in the experimental observations

or simulator outputs, called aleatory uncertainty, is usually accompanied by limited

amount of data due to budget constraints. This gives rise to what is known as

epistemic uncertainty. This problem of designing of experiments with limited number

of allowable experiments or simulations under aleatory and epistemic uncertainty needs

to be treated in a Bayesian way. The aim of this thesis is to extend and uncover the

state-of-the-art in Bayesian optimal design of experiments where one can optimize and

infer statistics of the expensive experimental observation(s) or simulation output(s)

under uncertainty.
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1. INTRODUCTION

Research groups in academia and industry devote human resources in developing math-

ematical methods and experimental treatments and techniques to tackle challenging

problems in their domain. An output of this expertise being used to solve challenging

problems are high-fidelity computational simulators and expensive experimental rigs.

Since, conducting a single experiment or a single simulation can cost thousands of

dollars or take multiple days one has no option but to optimally allocate their resources.

Design of experiments is an area of research with stakeholders across experimental and

computational science. Examples of interest in identifying optimal budget allocation

policies can be found in areas of computational physics [1], experimental chemistry [2],

financial planning [3], human experiment design [4–6], etc.

The experimental observations are usually contaminated with noise, that may or

may not be heteroscedastic. Similarly, computer simulations are often deterministic but

in some cases the presence of hidden parameters in the model gives rise to stochastic

code output(s). This type of uncertainty is called aleatory uncertainty. Secondly, a

major challenge is posed by the computationally expensive nature of the computer

codes or the experimental setup. This means that the number of code evaluations

are finite. Hence, restricting the use of state-of-the-art conventional optimization

algorithms. Uncertainty in one’s state-of-knowledge due to limited data points is

called epistemic uncertainty.

The researcher might be interested in acquiring information about a part of the

experiment’s observations, optimizing the expensive computer simulator, inferring

the optimal values for the designs/parameters, etc. In the language of uncertainty

quantification, one might be interested in solving an inverse problem, a stochastic

optimization problem, inferring statistics in an uncertainty propagation task, etc.

State-of-the-art methods in optimal design can be broadly divided based on the



2

process of selecting experiments. One can choose to select all the experiments at once

using the alphabetical-optimal designs [7] and their Bayesian counterparts [8]. The

other way to select the experiments is called sequential design of experiments (SDOE).

This way of conducting simulations or experiments has a Bayesian foundation [9–13]

and is consistent with utility theory.

The essence of SDOE methods based on expected improvement [12,14–16], mutual

information [17], maximum entropy [18], etc., is contained in their ability to augment

their state of knowledge during the design of experiments process.

This thesis aims to do the following: a) propose SDOE methods for optimization

of expensive experiments or simulations with single and multiple competing objectives

and b) propose SDOE methods for estimating the statistics of the experiment or

simulation, in scenarios of limited data and under uncertainty. The following sections

highlight some aspects of the contents of this thesis.

1.1 Bayesian global optimization

Design optimization of engineering systems with multiple competing objectives is

a painstakingly tedious process especially when the objective functions are ‘expensive-

to-evaluate’ computer codes with parametric uncertainties. The effectiveness of the

state-of-the-art techniques, like goal programming, goal attainment approach, weighted-

sum method and heuristic methods like genetic algorithms, is greatly diminished mainly

due to the following lacuna: 1) they generate solutions that are not ‘optimal’ and; 2)

they require large number of objective evaluations, which makes them impractical for

realistic problems. Bayesian global optimization (BGO), has been relatively successful

in dealing with the above challenges in solving single-objective optimization problems

and has recently been extended to multi-objective optimization (MOO) [19–21]. BGO

models the objectives via probabilistic surrogates and uses the epistemic uncertainty to

define an information acquisition function (IAF) that quantifies the merit of evaluating

the objective at untried designs. The expensive objective is evaluated at the design
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corresponding to the maximum value of the IAF, and the latest observation is used to

update the surrogate. This iterative process continues until a stopping criterion is

met. The most commonly used IAF is the Expected improvement (EI), which extends

to the Expected improvement over the dominated Hyper volume (EIHV) when solving

MOO problems. Unfortunately, the current versions of EI and EIHV are unable to

deal with parametric uncertainties or uncertainties in measuring the objective(s). This

thesis provides systematic reformulations of EI and EIHV, to deal with the problem

of stochastic BGO in singles-objective and and multiple-objective scenarios, called

extended EI and extended EIHV.

We demonstrate our approach for MOO problems on a real engineering problem

of die pass design for a multi-pass steel wire drawing where the physical process is

represented by an expensive Finite element solver (developed at TRDDC, Pune, India).

The competing objectives in this problem are the ultimate tensile strength and the

strain non-uniform factor of the drawn wire. The reduction ratios and the die angles

at each pass are the design/process variables which have associated uncertainties due

to unavoidable manufacturing tolerances as well as die wear during the process. The

methodology provides flexibility to the designer to design the die parameters while

quantifying the associated uncertainties.

On the selection of multiple experiments

After starting with an initial set of noisy measurements the methodology selects

the experimental condition that maximizes the information acquisition function (IAF).

However, it is infeasible in this problem to conduct just one experiment in one batch,

so the methodology suggests multiple experiments in one batch which is an addendum

of the work done in Chapter 2. This is done by adding to the data set/initial

measurements, a sample from the modeled response surface (GPs) of the outputs

corresponding to the experiment condition selected. This augmented set is used to

run the BGO algorithm to suggest the next condition and the process iterates till



4

the required number of conditions for a batch of experiments to be conducted are

obtained. This methodology shows promising results in a chemical vapor deposition

experiment problem [22] where the quality of Graphene deposited on either side of

copper foil were the objectives of the stochastic MOO problem.

1.2 Bayesian optimal design for inferring statistics

In some problems, dealing with expensive black-box codes, the goal is to sample

regions of design space to estimate the statistics of the code output(s). These statistics

are functions of the code output(s) or experimental observation(s) like the statistical

expectation, variance of the output, probability of taking values lower than a fixed

threshold, etc. These statistics can also include optimization scenarios. This question

is answered via a combination of data-driven modeling and quantification of plausible

gain in information possessed by a hypothetical design or experimental condition.

Towards this goal, we derive an optimal acquisition strategy, named EKLD, for

obtaining the most informative simulations or experiments if one aims to estimate the

value of a function of the expensive objective. This framework guides the designer

towards evaluating the objective function sequentially to acquire information about

any arbitrary quantity of interest to the engineer or scientist. We verify and validate

the proposed methodology by applying it on synthetic test problems of different

dimensionality and multiple number of modes. Comparisons with two classic state-

of-the-art methods show promising results for the EKLD. We then demonstrate our

approach on a real-world wire-manufacturing problem to estimate the statistics of the

total frictional work done in the process.
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2. OPTIMIZING SINGLE-OBJECTIVE BLACK-BOX FUNCTIONS UNDER

UNCERTAINTY

Design optimization under uncertainty is notoriously difficult when the objective func-

tion is expensive to evaluate. State-of-the-art techniques, e.g, stochastic optimization

or sampling average approximation, fail to learn exploitable patterns from collected

data and require an excessive number of objective function evaluations. There is

a need for techniques that alleviate the high cost of information acquisition and

select sequential simulations optimally. In the field of deterministic single-objective

unconstrained global optimization, the Bayesian global optimization (BGO) approach

has been relatively successful in addressing the information acquisition problem. BGO

builds a probabilistic surrogate of the expensive objective function and uses it to

define an information acquisition function (IAF) whose role is to quantify the merit

of making new objective evaluations. Specifically, BGO iterates between making the

observations with the largest expected IAF and rebuilding the probabilistic surrogate,

until a convergence criterion is met. In this work, we extend the expected improvement

(EI) IAF to the case of design optimization under uncertainty wherein the EI policy

is reformulated to filter out parametric and measurement uncertainties. To increase

the robustness of our approach in the low sample regime, we employ a fully Bayesian

interpretation of Gaussian processes by constructing a particle approximation of the

posterior of its hyperparameters using adaptive Markov chain Monte Carlo. We

verify and validate our approach by solving two synthetic optimization problems

under uncertainty and demonstrate it by solving the oil-well-placement problem with

uncertainties in the permeability field and the oil price time series.

The following text is taken from the publication titled: Extending Expected Improve-

ment for High-Dimensional Stochastic Optimization of Expensive Black-Box Functions.
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2.1 Introduction

The majority of stochastic optimization techniques are based on Monte Carlo

sampling, e.g., stochastic gradient descent [23], sample average approximation [24],

and random search [25]. Unfortunately, the advantages offered by these techniques can

be best leveraged [26] only when a large number of objective evaluations is possible.

Therefore, their applicability to engineering design/optimization problems involving

expensive physics-based models or even experimentally measured objectives is severely

limited.

Bayesian global optimization (BGO) has been successfully applied to the field of

single-objective unconstrained optimization. [10,27–32]. BGO builds a probabilistic

surrogate of the expensive objective function and uses it to define an information

acquisition function (IAF). The role of the IAF is to quantify the merit of making new

objective evaluations. Given an IAF, BGO iterates between making the observation

with the largest expected IAF and rebuilding the probabilistic surrogate until a conver-

gence criterion is met. The most commonly used IAFs are the expected improvement

(EI) [9], resulting in a version of BGO known as efficient global optimization (EGO),

and the probability of improvement (PoI) [10]. The operations research literature

has developed the concept of knowledge gradient (KG) [33–36], which is essentially a

generalization of the EI, and the machine learning community has been experimenting

with the expected information gain (EIG) [18,37,38].

BGO is not able to deal with stochastic optimization in a satisfactorily robust way.

In this work, we propose a natural modification of the EI IAF, which is able to filter out

the effect of noise in the objective and, thus, enable stochastic optimization strategies

under an information acquisition budget. We will be referring to our version of EI as

the Extended EI (EEI). Our approach does not suffer from the curse of dimensionality

in the stochastic space, since it represents both parametric and measurement noise in

an equal footing and does not explicitly try to learn the map between the uncertain

parameters and the objective. However, we observed that naive applications of our
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strategy fail to converge in the regime of low samples and high noise. To deal with this

problem, we had to retain the full epistemic uncertainty of the underlying objective

surrogate. This epistemic uncertainty corresponds to the fact that the parameters of

the surrogate cannot be determined exactly due to limited data and/or increased noise.

Ignoring this uncertainty by picking specific parameter values, e.g., by maximizing

the marginal likelihood, typically yields an overconfident, but wrong, surrogate. This

is a known problem in sequential information acquisition literature, first mentioned by

MacKay in [39]. To avoid this issue, we had to explicitly characterize the posterior

distribution of the surrogate parameters by adaptive Markov chain Monte Carlo

sampling. Remarkably, by keeping the full epistemic uncertainty induced by the

limited objective evaluations, we are able to characterize our state of knowledge about

the location of the optimum and the optimal value.

The outline of the chapter is as follows. We start Sec. 2.2 by providing the

mathematical definition of the stochastic optimization problem that is being studied.

In Sec. 2.2.1, we introduce Gaussian process regression (GPR) which is used to

construct a probabilistic surrogate of the map between the design variables and the

objective. In Sec. 2.2.2, we show how the epistemic uncertainty on the location

of the optimum and the optimal value can be quantified. In Sec. 2.2.3, we derive

our extension to EI suitable for stochastic optimization. The numerical results are

presented in Sec. 2.3. In particular, in Sec. 2.3.1 and 2.3.2, we validate our approach

using two synthetic stochastic optimization problems with known optimal solutions

and we experiment with various levels of Gaussian noise, as well as heteroscedastic,

i.e., input dependent, noise. In Sec. 2.3.3, the methodology is used to solve the oil-well

placement problem with uncertainties in soil permeability and the oil price timeseries.

The conclusions are presented in Sec. 2.4.
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2.2 Methodology

We are interested in the following design optimization problem under uncertainty:

x˚ “ arg min
x

Eξ rV px; ξqs , (2.1)

where V px; ξq is the objective function depending on a set of design parameters x and

stochastic parameters ξ. The operator Eξr¨s denotes the expectation over ξ, i.e.,

Eξ rV px; ξqs “

ż

V px; ξqppξqdξ, (2.2)

where ppξq is the probability density function (PDF) of ξ. We will develop a method-

ology for the solution of Eq. (2.1) that addresses the following challenges:

1. The objective is expensive to evaluate.

2. It is not possible to compute the gradient of the objective with respect to x.

3. The stochastic parameters ξ are either not observed directly, or they are so

high-dimensional that learning the dependence of the objective with respect to

them is impossible.

Before we get to the specifics of our methodology, it is worth clarifying a few things

about the data collection process. We assume that we can choose to evaluate the

objective at any design point x we wish. We envision this evaluation to take place as

follows. Behind the scenes, a random variable ξ is sampled from the, unknown, PDF

ppξq, and the function y “ V px; ξq is evaluated. We only see y and not ξ. In this way,

we can obtain an initial data set consisting of observed design points,

x1:n “ tx1 , ¨ ¨ ¨ ,xnu, (2.3)

and the corresponding observed noisy objective evaluations,

y1:n “ ty1 , ¨ ¨ ¨ , ynu. (2.4)
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What can be said about the solution of Eq. (2.1) using only the observed data x1:n

and y1:n? In the language of probability theory [40], we would like to characterize the

probability of a design being optimal conditional on the observations, and similarly for

the optimal objective value. Here probability corresponds to a state of belief and not

to something random. The uncertainty encoded in this probability is epistemic and it

is induced by the fact that inference is based on just n observations. We will answer

this question by making no discounts on the Bayesian nature of Gaussian process

surrogates, see Sec. 2.2.1 and Sec. 2.2.2.

Where should we evaluate the objective next? Of course, looking for an optimal

information acquisition policy is a futile task since the problem is mathematically

equivalent to a non-linear stochastic dynamic programming problem [41,42]. As in

standard BGO, we will rely on a sub-optimal one-step-look-ahead strategy that makes

use of an information acquisition function, albeit we will extend the EI information

acquisition function so that it can cope robustly with noise, see Sec. 2.2.3.

2.2.1 Gaussian process regression

Gaussian process regression [43] is the Bayesian interpretation of classical Kriging

[44,45]. It is a powerful non-linear and non-parametric regression technique that has

the added benefit of being able to quantify the epistemic uncertainties induced by

limited data. We will use it to learn the function that corresponds to the expectation

of the objective fp¨q “ EξrV p¨; ξqs from the observed data x1:n and y1:n.

Expressing prior beliefs

A GP defines a probability measure on the space of meta-models, here fp¨q, which

can be used to encode our prior beliefs about the response, e.g., lengthscales, regularity,

before we see any data. Mathematically, we write:

ppfp¨q|ψq “ GPpfp¨q|mp¨;ψq, kp¨, ¨;ψqq, (2.5)
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where mp¨;ψq and kp¨, ¨;ψq are the mean and covariance functions of the GP, respec-

tively, and ψ is a vector including all the hyperparameters of the model. Following

the hierarchical Bayes framework, one would also have to specify a prior on the

hyperparameters, ppψq.

Note that information about the mean can actually be encoded in the covariance

function. Thus, without loss of generality, in this work we take mp¨;ψq to be identically

equal to zero. In our numerical examples, we will use the squared exponential (SE)

covariance:

kpx,x1;ψq “ s2 exp

#

´
1

2

d
ÿ

i“1

pxi ´ xi
1q
2

`2i

+

, (2.6)

where d is the dimensionality of the design space, s ą 0 and `i ą 0 can be interpreted

as the signal strength of the response and the lengthscale along input dimension i, re-

spectively, and ψ “ ts, `1, . . . , `du. Finishing, we assume that all the hyperparameters

are a priori independent:

ppψq “ ppsq
d
ź

i“1

pp`iq, (2.7)

where

ppsq9
1

s
(2.8)

is the Jeffreys’ prior [46], and

pp`iq9
1

1` `2i
(2.9)

is a log-logistic prior [47].

Modeling the measurement process

To ensure analytical tractability, we assume that the measurement noise is Gaussian

with unknown variance σ2. Note that this could easily be relaxed to a student-t noise,

which is more robust to outliers. The more general case of heteroscedastic, i.e., input-

dependent, noise is an open research problem and beyond the scope of the current
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work. Note, however, that in our numerical examples we observe that our approach is

robust to modest heteroscedasticity levels.

Mathematically, the likelihood of the data is:

ppy1:n|x1:n,θq “ N
`

y1:n

ˇ

ˇ0,Knpψq ` σ
2In

˘

, (2.10)

where N p¨|µ,Σq is the PDF of a multivariate normal random variable with mean

µ and covariance matrix Σ, In P Rnˆn is the identity matrix, Knpψq P Rnˆn is the

covariance matrix,

Knpψq “

¨

˚

˚

˚

˝

kpx1,x1;ψq . . . kpx1,xn;ψq
...

. . .
...

kpxn,x1;ψq . . . kpxn,xn;ψq

˛

‹

‹

‹

‚

, (2.11)

and, for notational convenience, we have defined θ “ tψ, σu. Finally, we need to

assign a prior to σ. We assume that σ is a priori independent of all the variables in ψ

and set:

ppσq9
1

σ
. (2.12)

Posterior state of knowledge

Bayes rule combines our prior beliefs with the likelihood of the data and yields

a posterior probability measure on the space of meta-models. Conditioned on the

hyperparameters θ, this measure is also a Gaussian process,

ppfp¨q|x1:n,y1:n,θq “ GP pfp¨q|mnpx;θq, knpx,x
1;θqq , (2.13)

albeit with posterior mean and covariance functions,

mnpx;θq “ pknpx;ψqqT
`

Knpψq ` σ
2In

˘´1
y1:n, (2.14)



12

and

knpx,x
1;θq “ kpx,x1;ψq

´ pknpx;ψqqT
`

Knpψq ` σ
2IN

˘´1
knpx

1;ψq

(2.15)

respectively, where knpx;ψq “ pkpx,x1;ψq, . . . , kpx,xn;ψqqT , and AT is the transpose

of A. Restricting our attention to a specific design point x, we can derive from

Eq. (3.13) the point-predictive probability density conditioned on the hyperparameters

θ:

ppfpxq|x1:n,y1:n,θq “ N
`

fpxq
ˇ

ˇmnpx;θq, σ2
npx;θq

˘

, (2.16)

where σ2
npx;θq “ knpx,x;θq.

To complete the characterization of the posterior state of knowledge, we need to

express our updated beliefs about the hyperparameters θ. By a standard application

of the Bayes rule, we get:

ppθ|x1:n,y1:nq9 ppy1:n|x1:n,θqppθq, (2.17)

where ppθq “ ppψqppσq. Unfortunately, Eq. (2.17) cannot be computed analytically.

Thus, we characterize it by a particle approximation consisting ofN samples, θ1, . . . ,θN

obtained by adaptive Markov chain Monte Carlo (MCMC) [48]. Formally, we write:

ppθ|x1:n,y1:nq «
1

N

N
ÿ

i“1

δpθ ´ θiq, (2.18)

where δp¨q is Dirac’s delta function. In our numerical results, we use N “ 90 and the

samples are generated as follows: 1) We obtain a starting point for the MCMC chain

by maximizing the log of the posterior Eq. (2.17); 2) We burn 10, 000 MCMC steps

during which the MCMC proposal parameters are tuned; and 3) We perform another

90, 000 MCMC steps and record θ every 1, 000 steps.
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2.2.2 Epistemic uncertainty on the solution of a stochastic optimization

problem

Now, we are in a position to quantify the epistemic uncertainty in the solution of

Eq. (2.1) induced by the limited number of acquired data. Let Qr¨s be any operator

acting on functions fp¨q. Examples of such operators, are the minimum of fp¨q,

Qminrfp¨qs “ minx fpxq, or the location of the minimum, Qargminrfp¨qs “ arg minx fpxq.

Conditioned on x1:n and y1:n our state of knowledge about the value of any operator

Qr¨s is

ppQ|x1:n,y1:nq “ p

ż

p

ż

δ pQ´Qrfp¨qsq ppfp¨q|x1:n,y1:n,θq

dfp¨qqppθ|x1:n,y1:nqdθq,

(2.19)

By sampling M functions, f1p¨q, . . . , fMp¨q from Eq. (3.13) and using Eq. (2.18), we

get the particle approximation:

ppQ|x1:n,y1:nq «
1

NM

N
ÿ

i“1

M
ÿ

j“1

δ pQ´Qrfip¨qsq . (2.20)

Our derivation is straightforward and uses only the product and sum rules of probability

theory. The implementation, however, is rather technical. For more details see the

publications of Bilionis in the subject, [49–53]. In our numerical examples we use

M “ 100.

2.2.3 Extended expected improvement function

The classic definition of expected improvement, see [9], relies on the observed

minimum ỹn “ min1ďiďn yi. Unfortunately, this definition breaks down when yi is
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noisy. To get a viable alternative, we have to filter out this noise. To this end, let us

define the observed filtered minimum conditioned on θ:

m̃npθq “ min
1ďiďn

mnpxi;θq, (2.21)

where mnpx;θq is the posterior mean of Eq. (5.12). Using m̃npθq, the improvement

we would get if we observed fpxq at design point x is:

Ipx, fpxq;θq “ maxt0, m̃npθq ´ fpxqu. (2.22)

This is identical to the improvement function formulated in Sequential kriging opti-

mization (SKO) [54]. However, the EEI retains the full epistemic uncertainty unlike

SKO, which relies on a point estimate to the hyper-parameters. Since we don’t know

fpxq or θ, we have to take their expectation over our posterior state of knowledge,

see Sec. 3.2.1,

EEInpxq “ p

ż ż

Ipx, fpxq;θqppfpxq|x1:n,y1:n,θqdfpxq

ppθ|x1:n,y1:nqdθq,

(2.23)

where ppfpxq|x1:n,y1:n,θq and ppθ|x1:n,y1:nq are given in Eq. (5.15) and Eq. (2.17),

respectively. The inner integral can be carried out analytically in exactly the same

way as one derives the classic expected improvement. To evaluate the outer integral,

we have to employ the particle approximation to ppθ|x1:n,y1:nq given in Eq. (2.18).

The end result is:

EEInpxq «
1

N

N
ÿ

i“1

rσnpx;θiqφ

ˆ

m̃npθiq ´mnpx;θiq

σnpx;θiq

˙

`pm̃npθiq ´mnpx;θiqqΦ

ˆ

m̃npθiq ´mnpx;θiq

σnpx;θiq

˙

s.

(2.24)

Algorithm 3 demonstrates how the derived information acquisition criterion can be

used in a modified version of BGO to obtain an approximation to Eq. (2.1). Note that
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instead of attempting to maximize EEInpxq over x exactly, we just search for the most

informative point among a set of nd randomly generated test points. In our numerical

examples we use nd “ 1, 000 test points following a latin hypercube design [55].

Algorithm 1 The Bayesian global optimization algorithm with the Extended expected
improvement function

Require: Observed inputs x1:n, observed outputs y1:n, number of candidate points
tested for maximum EEI at each iteration nd, maximum number of allowed
iterations S, EEI tolerance ε.

1: sÐ 0.
2: while s ă S do
3: Construct the particle approximation to the posterior of θ, Eq. (2.18).
4: Generate a set of candidate test points x̂1:nd , e.g., via a latin hypercube

design [55].
5: Compute EEI on all of the candidate points x̂1:nd using Eq. (2.24).
6: Find the candidate point x̂j that exhibits the maximum EEI.
7: if EEIn`spxjq ă ε then
8: Break.
9: end if
10: Evaluate the objective at x̂j measuring ŷ.
11: x1:n`s`1 Ð x1:n`s Y tx̂ju.
12: y1:n`s`1 Ð y1:n`s Y tŷu.
13: sÐ s` 1.
14: end while

2.3 Numerical Results

We validate our approach, see Sec. 2.3.1 and 2.3.2, using two synthetic stochastic

optimization problems with known optimal solutions. To assess the robustness of

the methodology, we experiment with various levels of Gaussian noise, as well as

heteroscedastic, i.e., input dependent, noise. In Sec. 2.3.3, we solve the oil-well

placement problem with uncertainties in soil permeability and the oil price timeseries.

Note that all the parameters required by our method, e.g., covariance function, priors

of hyperparameters, MCMC steps, have already been introduced in the previous
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Figure 2.1. One-dimensional synthetic example (spxq “ 0.1, n “ 5). Subfigure (a)
depicts our initial state of knowledge about the true expected objective (dotted red
line) conditioned on n “ 5 noisy observations (black crosses). Subfigure (b), shows a

histogram of the predictive distribution of the optimal design x˚.

paragraphs and they are the same for all examples. The only thing that we vary is

the initial number of observations n.

2.3.1 One-dimensional synthetic example

Consider the one-dimensional synthetic objective:

V px, ξq “ 4
`

1´ sin
`

6x` 8e6x´7
˘˘

` spxqξ, (2.25)
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Figure 2.2. One-dimensional synthetic example (spxq “ 0.1, n “ 5). The dashed
red line in Subfigure (b) marks the real optimal value.

for x P r0, 1s, where ξ is a standard normal and for the noise standard deviation, spxq,

we will experiment with spxq “ 0.01, 0.1, 1, and the heteroscedastic spxq “
`

x´3
3

˘2
.

Here, EξrV px, ξqs is analytically available and it is quite trivial to find that this

function has two minima exhibiting the same objective value.

Fig. 2.1 (a) and (b) visualize the posterior state of knowledge along with the EEI

(dashed purple line) as a function of x and the epistemic uncertainty on the location

of the optimal design, respectively, for spxq “ 0.01 when n “ 5. In Fig. 2.1 (a),

the solid blue line is the median of the predictive distribution of the GP and the
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Figure 2.3. One-dimensional synthetic example (n “ 10).

shaded blue area corresponds to a 95% prediction interval. Fig. 2.2 (a) and (b)

depict the maximum EEI and the evolution of the 95% predictive bounds for the

optimal objective value (PBOO), respectively, as a function of the iteration number.

Fig. 2.3 (a) and (b) show the evolution of the PBOO for (spxq “ 0.01) and (spxq “ 0.1)

respectively and Fig. 2.3 (a) and (b) show the evolution of the PBOO for (spxq “ 1)

and (spxq “
`

x´3
3

˘2
) respectively.

As expected, the larger the noise the more iterations are needed for convergence.

In general, we have observed that the method is robust to noise as soon as the initial
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number of observations is not too low. For example, the case spxq “ 1 fails to converge

to the truth, if one starts from less than five initial observations.
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Figure 2.4. One-dimensional synthetic example (n “ 10).

2.3.2 Two-dimensional synthetic example

Consider the two-dimensional function [56]:

V px; ξq “ 2`
px2 ´ x

2
1q

2

100
` p1´ x1q

2
` 2p2´ x2q

2

`7 sinp0.5x2q sinp0.7x1x2q ` spxqξ,

(2.26)
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for x P r0, 5s2, ξ a standard normal, and spxq “ 0.01, 0.1, 1, or the heteroscedastic

spxq “ px2´x1
3
q2. As before, the expectation over ξ is analytically available. It can

easily be verified that the objective exhibits three minima two of which are suboptimal.
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Figure 2.5. Two-dimensional synthetic example (n “ 20).

Fig. 3.3 (a) and (b) show the PBOO for (spxq “ 0.01) and (spxq “ 0.1) and

Fig. 2.6 (a) and (b) show the PBOO for (spxq “ 1) and (spxq “
`

x2´x1
3

˘2
), respectively,

as a function of the number of iterations. As before, the larger the noise the more

iterations are required for convergence. The observed spikes are caused by the limited

data used to build the surrogate. In particular, the model is “fooled” to believe that

the noise is smaller than it actually is and, as a result, it becomes more certain about
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the solution of the optimization problem. As more observations are gathered though,

the model is self-corrected. This is a manifestation of the well known S-curve effect

of information acquisition [41, Ch. 5.2]. The existence of this effect means, however,

that one needs to be very careful in choosing the stopping criterion.
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Figure 2.6. Two-dimensional synthetic example (n “ 20).

2.3.3 Oil well placement problem

During secondary oil production, water (potentially enhanced with chemicals or

gas) is injected into the reservoir through an injection well. The injected fluid pushes
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the oil out of the production well. The oil well placement problem (OWPP) involves

the specification of the number and location of the injection and production wells,

the operating pressures, the production schedule, etc., that maximize the net present

value (NPV) of the investment. This problem is of extreme importance for the oil

industry and an active area of research. Several sources of uncertainty influence the

NPV, the most important of which are the time evolution of the oil price (aleatoric

uncertainty) and the uncertainty about the underground geophysical parameters

(epistemic uncertainty).

We consider an idealized 2D oil reservoir over the spatial domain Ω “ r0, 356.76s ˆ

r0, 670.56s (measured in meters). The four-dimensional design variable x “ px1, x2, x3, x4q

specifies the location of the injection well px1, x2q, in which we pump water (w), and

the production well px3, x4q, out of which comes oil (o) and water. Letting xs P Ω

denote a spatial location, we assume that the permeability of the ground is an isotropic

tensor,

Cpxs; ξcq “ egpxs;ξcqcpxsqI3, (2.27)

where cpxsq is the geometric mean (assumed to be the first layer of the x-component

of the SPE10 reservoir model permeability tensor [57]), gpxs; ξcq is the truncated,

at 13, 200 terms, Karhunen-Loève expansion of a random field with exponential

covariance function of lengthscale ` “ 10 meters and variance 10, see [58], and ξc is a

(13, 200)-dimensional vector of standard normal random variables. Four samples of

the permeability field are depicted in Fig. 2.7.

Given the well locations x and the stochastic variables ξc, we solve a coupled

system of time-dependent partial differential equations (PDEs) describing the two-

phase immiscible flow of water and oil through the reservoir. The solution is based

on a finite volume scheme with a 60ˆ 220 regular grid. The form of the PDEs, the

required boundary and initial conditions, as well as the details of the finite volume

discretization are discussed in [59]. The parameters of the model that remain constant

are as follows. The water injection rate is 9.35 m3{day, the connate water saturation

is swc “ 0.2, the irreducible oil saturation is sor “ 0.2, the water viscosity is set
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Figure 2.7. OWPP: Samples from the stochastic permeability model (in
logarithmic scale) defined in Eq. (2.27).
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to µw “ 3 ˆ 10´4 Pa ¨ s, the oil viscosity to µo “ 3 ˆ 10´3 Pa ¨ s, the soil porosity

is 10´3, the timestep used is δt “ 0.1 days, and operations last T “ 2, 000 days.

From the solution of the PDE system, we obtain the oil and water extraction rates

qopt; x, ξcq and qwpt; x, ξcq, respectively, where t is the time in days and the units of

these quantities are in m3{day.
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Figure 2.8. OWPP: Samples from the stochastic oil price model.

The oil price is modeled on a daily basis as So,t “ So,0e
Wt , where So,0 “ $560.8{m3,

and Wt is a random walk with a drift:

Wt`1 “ Wt ` µ` αξo,t, (2.28)

where the µ “ 10´8, α “ 10´3, and ξo,t are independent standard normal random

variables. Fig. 2.8 visualizes four samples from the oil price model. Since the process

runs for T “ 2, 000 days, we can think of So,t as a function of the 2, 000 independent

identically distributed random variables ξo “ tξo,1, . . . , ξo,T u, i.e., So,t “ So,tpξoq. For

simplicity, we take the cost of disposing contaminated water is constant over time
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S´w,t “ $0.30{m3. Assuming a discount rate r “ 10% and risk neutrality, our objective

is to maximize the NPV of the investment. Equivalently, we wish to minimize:

V px; ξq “ 10´6
2,000 days

ÿ

t“1

“

Sw,tqpt; x, ξcq ´ So,tpξoqqopt; x, ξcq
‰

p1` rq´t{365 days,

(2.29)

where ξ “ tξc, ξou, and the units are in million dollars.

Fig. 2.9 (a) shows the evolution of the PBOO as a function of the iterations of our

algorithm for the case of n “ 20 initial observations. Note that in this case, we do not

actually know what the optimal value of the objective is. In subfigures (b) and (c) of

the same figure, we visualize the initial set of observed well pairs and the well pairs

selected for simulation by our algorithm (where the blue ‘x’ stands for the injection

well, the red ‘o’ for the production well) respectively. Our algorithm quickly realizes

the wells that are two close together are suboptimal and that it seems to favor wells

that are located at the bottom right and top right corners. Note that the noise in this

case is moderate, albeit heteroscedastic.

2.4 Conclusions

We constructed an extension to the expected improvement which makes possible

the application of Bayesian global optimization to stochastic optimization problems. In

addition, we have shown how the epistemic uncertainty induced by the limited number

of simulations can be quantified, by deriving predictive probability distributions for

the location of the optimum as well as the optimal value of the problem. We have

validated our approach with two synthetic examples with known solution and various

noise levels, and we applied it to the challenging oil well placement problem. The

method offers a viable alternative to the sampling average approximation when the

cost of simulations is significant. We observe that our approach is robust to moderate

noise heteroscedasticity. There remain several open research questions. In our opinion,
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Figure 2.9. OWPP (n “ 20).

the most important direction would be to construct surrogates that explicitly model

heteroscedasticity and use them to extend the present methodology to robust stochastic

optimization and, subsequently, to multi-objective stochastic optimization.
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3. OPTIMIZING MULTI-OBJECTIVE BLACK-BOX FUNCTIONS UNDER

UNCERTAINTY

Design optimization of engineering systems with multiple competing objectives is a

painstakingly tedious process especially when the objective functions are expensive-

to-evaluate computer codes with parametric uncertainties. The effectiveness of the

state-of-the-art techniques is greatly diminished because they require a large number

of objective evaluations, which makes them impractical for problems of the above

kind. Bayesian global optimization (BGO), has managed to deal with these challenges

in solving single-objective optimization problems and has recently been extended to

multi-objective optimization (MOO). BGO models the objectives via probabilistic

surrogates and uses the epistemic uncertainty to define an information acquisition

function (IAF) that quantifies the merit of evaluating the objective at new designs.

This iterative data acquisition process continues until a stopping criterion is met. The

most commonly used IAF for MOO is the expected improvement over the dominated

hypervolume (EIHV) which in its original form is unable to deal with parametric

uncertainties or measurement noise. In this chapter, we provide a systematic refor-

mulation of EIHV to deal with stochastic MOO problems. The primary contribution

of this chapter lies in being able to filter out the noise and reformulate the EIHV

without having to observe or estimate the stochastic parameters. An addendum of

the probabilistic nature of our methodology is that it enables us to characterize our

confidence about the predicted Pareto front. We verify and validate the proposed

methodology by applying it to synthetic test problems with known solutions. We

demonstrate our approach on an industrial problem of die pass design for a steel wire

drawing process.
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The following text is taken from the publication titled: Stochastic multi-objective

optimization on a budget: Application to multi-pass wire drawing with quantified

uncertainties.

3.1 Introduction

The goal of this paper is to derive a sequential information acquisition methodol-

ogy that aims at efficiently discovering the Pareto set of a stochastic MOO problem.

Stochastic MOOs are characterized by uncertain objective measurements, i.e., for a

fixed design, repeated measurements of the objectives may vary. When the objectives

are the outcomes of an experiment, this randomness may be due to manufacturing

imperfections, operational uncertainties, wear and tear of the specimen, sensor malfunc-

tion, etc. When the objectives depend on a simulation model, then this randomness

may be induced by uncertainty in the model parameters, e.g., boundary/initial condi-

tions, parameters of constitutive relations, or artifact geometries. In the latter case,

the designer chooses probability distributions for all uncertain parameters in an effort

to accurately describe their state of knowledge about the artifact.

MOO techniques based on evolutionary algorithms [60], e.g., the strength Pareto

evolutionary algorithm [61], the non-dominated sorting genetic algorithm II (NSGA-

II) [62], require a significant number of objective evaluations, especially when coupled

with a sample average approximation [25] to estimate the stochastic objectives. Other

popular techniques like goal programming [63,64] that involve a slight modification

of the original MOO objectives face shortcomings [65] like selecting the relative

importance of the objectives, or requiring the designer to have prior information about

discontinuities in the objective space.

Bayesian global optimization (BGO) [9, 66] is a class of black-box optimization

algorithms that can operate under a limited objective evaluation budget. BGO models

the objectives using probabilistic surrogates, e.g., Gaussian process regression, and

exploits the epistemic uncertainty to select which experiments/simulations to perform.
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The latter is typically done by maximizing an information acquisition function (IAF)

which quantifies the value of evaluating the objective at a specific design. The choice

of the IAF depends on the details of the underlying optimization task. One of the

most popular IAFs is the expected improvement (EI) [9, 54,67–69]. The EI balances

the exploration-exploitation trade-off better than other popular IAFs such as the

probability of improvement (PI) or the upper confidence bound (UCB) [10]. Keane [70]

extended the original version of EI to MOO by deriving the expected improvement over

the dominated hypervolume (EIHV). The EIHV evaluates the expected improvement

in the volume of the attained set induced by a hypothetical observation at an untried

design. [21] derived a closed form representation which made the evaluation of EIHV

computationally efficient. Research in EIHV has been gaining momentum over the

past few years [71–73], but it has not yet been extended to cover the case of stochastic

multi-objective optimization.

In this chapter, we propose an extension to the EIHV suitable for stochastic MOO,

which is the main contribution of this paper. We will be referring to the proposed

methodology as the extended EIHV (EEIHV). Our proposal is a generalization of the

extended expected improvement (EEI), which we developed in Chapter 1., to deal

with stochastic single-objective optimization. The methodology relies on building

probabilistic surrogates of the objectives and uses the EEIHV IAF to quantify the

merit of evaluating the expensive stochastic computer code at a new design. Leveraging

the work done in [19] allows quantification of the uncertainty about the estimated PF

at each stage/iteration.

The above methodology is applied to solve a multi-pass steel wire manufacturing

problem under uncertainty. The competing objectives in this problem are the ultimate

tensile strength (UTS) and the strain non-uniformity factor (SNUF) of the drawn

wire. A finite element (FE) solver (developed at Tata Consulatancy Services (TCS),

Pune, India) generates these objectives. The reduction ratios and the die angles at

each pass are the design/process variables which have associated uncertainties due to

unavoidable manufacturing tolerances as well as die wear during the process.
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The outline of the chapter is as follows. At the very beginning, Sec. 3.2 by provides

the mathematical definition of the stochastic MOO optimization problem that we are

studying. In Sec. 3.2.1, we introduce Gaussian process regression (GPR) which is used

to construct the probabilistic surrogates of the map between the design variables and

the objectives. In Sec. 3.2.3, we derive our extension to EIHV suitable for stochastic

multi-objective optimization. The numerical results are presented in Sec. 3.3. In

particular, in Sec. 3.3.2 and 3.3.3, we validate our approach using two synthetic

stochastic MOO problems with known analytical expressions, and we experiment with

varying levels of stochasticity (to represent noisy measurements). In Sec. 3.4, the

methodology is used to solve the wire drawing problem. The conclusions are presented

in Sec. 3.5.

3.2 Methodology

Let X denote the set of feasible designs and pΩ,F ,Pq be a probability space.

We assume that X is a closed and bounded set of a Euclidean space. We have

m stochastic quantities of interest (QoIs) which we represent as Borel-measurable

functions oi : X ˆ Ω Ñ R, i “ 1, . . . ,m. Our goal is to find designs x P X that

maximize the expectations of these QoIs over ω P Ω, i.e., we wish to maximize

Oipxq :“ Eroipx, ωqs :“
ş

oipx, ωqdPpωq. We say that x P X dominates x1 P X, and

write x ě x1, if and only if

Oipxq ě Oipx
1
q, @i “ 1, . . . ,m. (3.1)

We say that x strictly dominates x1, and write x ą x1 if and only if x ě x1 and there

exists i P t1, . . . ,mu such that Eroipx, ωqs ą Eroipx1, ωqs.

We wish to characterize the set of optimal designs, otherwise known as the Pareto-

efficient frontier, induced by the preference relation ‘ě’. In words, the Pareto-efficient

frontier, PO, is the set of achievable objectives that are not dominated. Since PO has

Lebesgue measure zero, working with it directly is problematic. Instead, we will work
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with the attained set, AO, which is defined as the set of achievable objectives that are

strictly dominated. PO is simply part of the boundary of AO.

We now proceed to the exact mathematical definition of AO and, subsequently, PO.

At first glance, our definitions may seem unnecessarily complex. The benefit of such

a rigorous approach is that it highlights the dependence of these quantities on the

objectives O. Explicitly denoting this dependence will help us appreciate the nature

of our approximation to the Pareto frontier when O is replaced by a Gaussian process

surrogate.

Select a point r “ pr1, . . . , rmq P Rm for which we have minxPX Oipxq ě ri. Since

X is compact, such a point exists if Oipxq is continuous. r is known as the reference

point. Consider the vector valued function O : X Ñ Rm defined by O “ pO1, . . . , Omq.

O just joins all the expected objectives in a vector. The image OrXs of X under O,

defined by

OrXs “ ty P Rm : Dx P X,y “ Opxqu ,

is the set of all achievable objectives. We do not know exactly how OrXs looks like.

However, exploiting the definition of the reference point, we see that OrXs is fully

contained in the m-dimensional cone rr,8s :“ ˆmi“1rri,8q, i.e.,

OrXs Ă rr,8q.

Consider any subset B of rr,8q. We define the attained set of B, denoted by ArBs,

to be the set of points in rr,8q that are dominated by B, i.e.,

ArBs :“ ty P rr,8q : Dy1 P B,y1 ě yu , (3.2)

where y1 ě y corresponds to element-wise comparison. The attained set of our

multi-objective problem is just:

AO :“ ArOrXss. (3.3)
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Finally, we define the Pareto frontier of B, denoted by P rBs, to be the set of points

in B that are not dominated by any other point in B, i.e.,

P rBs :“ ty P B : ty1 P B : y1 ě yu “ Hu . (3.4)

But we can get the Pareto frontier of B directly from the boundary of its attained set.

Specifically, it is easy to prove that P rBs is the top right boundary of ArBs, i.e.,

P rBs “ BArBsz Ymi“1 tr` tpmax
yPB

yiqeiu, (3.5)

where ei is the standard basis function of Rm pertaining to the i-th dimension. The

Pareto front of our multi-objective problem is just:

PO :“ P rOrXss. (3.6)

Assume that we can choose to measure the QoIs at any design point x P X we

wish, albeit only a limited number of times n. Such measurements take place as

follows. When we request information about x, a latent process samples an unobserved

ω P Ω according to the probability measure P, and we observe a noisy version of the

QoIs y “ po1px, ωq, . . . , ompx, ωqq. This setup is general enough to account for both

simulation-based and experiment-based QoIs.

Assume that we have queried the information source at n design points.

x1:n “ px1, . . . ,xnq P X
n, (3.7)

and that we have made the following noisy observations:

y1:n “ py1, . . . ,ynq. (3.8)

We address two problems:
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1. What is our state of knowledge about the true Pareto-efficient frontier PO given

the observations px1:n,y1:nq?

2. How should we select x1:n so that we come as close as possible to discovering

the true Pareto-efficient frontier PO?

In the language of probability theory [40], the former problem seeks to characterize the

probability (a state of belief) of a design being optimal conditional on the observations.

The uncertainty encoded in this probability is epistemic and it is induced by the

fact that inference is based on just a small number of observations. We address

this problem by leveraging the Bayesian nature of Gaussian process surrogates, see

Sec. 3.2.1. Looking for an optimal information acquisition policy that solves the

latter problem is a mathematically intractable task since the problem is equivalent

to a non-linear stochastic dynamic program [41, 42]. We rely on a myopic/greedy

one-step-look-ahead strategy (which is sub-optimal) by extending the definition of the

standard EIHV, see Sec. 3.2.3, so that it can cope robustly with noise.

3.2.1 Gaussian process regression

Gaussian process (GP) regression [43] is the Bayesian interpretation of classical

Kriging [44,45]. It is a powerful non-linear and non-parametric regression technique

that is able to quantify the epistemic uncertainty induced by limited data. We use

GP regression to model our state of knowledge about the objectives, i.e., Oipxq “

Eroipx, ωqs, i “ 1, . . . ,m, as induced by a set of n observations px1:n,y1:nq. The

methodology applies to each i “ 1, . . . ,m independently. For simplicity, we will write

fpxq for Oipxq and y1:n for yi,1:n “ pyi1, . . . , yinq.

Expressing prior beliefs

Let pΩe,F e,Peq be the probability space corresponding to our epistemic uncer-

tainty. Note that this is different from pΩ,F ,Pq which is associated with the problem
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uncertainty. A GP f epx, ωeq is a pΩe,F e,Peq-random field indexed by x P X with

Gaussian finite dimensional distributions. That is, for any x1:n P X
n the random

vector f e1:n :“ pf epx1, ω
eq, . . . , f epxn, ω

eqq follows a multivariate Gaussian. The inter-

pretation is as follows. Nature has chosen a reality ωe P Ωe, i.e., fp¨q ” f ep¨, ωeq, that

we cannot directly observe. pΩe,F e,Peq models our prior state of knowledge about

this reality, in the sense that for all B P F e the probability that we give to ωe P B is

PerBs “
ş

B
dPepωeq.

A GP is characterized by a mean and a covariance function. Without loss of

generality, we may assume that the mean function is zero, since the covariance can

always be modified to include a non-zero mean trend. Mathematically, we write:

f e|θe „ GPp0, kq, (3.9)

where k : X ˆX ˆΘe Ñ R is a covariance function parameterized by the epistemic

random variable θe : Ωe Ñ Θe. According to the definition of the GP, our a priori

beliefs about the values f e1:n are captured by:

f e1:n|x1:n, θ
e
„ N p0, kpx1:n, θ

e
qq, (3.10)

where N pλ,Σq denotes the multivariate Gaussian distribution with mean λ and

covariance matrix Σ, for all x11:n1 P X
n1 we define kpx1:n,x

1
1:n1 , θ

eq to be the nˆn1 matrix

with pi, jq element kpxi,xj, θ
eq, and kpx1:n, θ

eq :“ kpx1:n,x1:n, θ
eq is the covariance

matrix. In our numerical examples, we use the Matern(ν “ 3
2
) [43] covariance:

kpx,x1, θeq “ s2

˜

exp

$

&

%

´

g

f

f

e3
d
ÿ

j“1

pxj ´ xj 1q
2

`2j

,

.

-

¸˜

1`

g

f

f

e3
d
ÿ

j“1

pxj ´ xj 1q
2

`2j

¸

, (3.11)

where d is the dimensionality of the design space, s ą 0 and `j ą 0 can be interpreted

as the signal strength of the response and the lengthscale along input dimension j,

respectively, and θe “ ps, `1, . . . , `dq P Rd
`.
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Modeling the measurement process

In general, the noise that contaminates the measurement y is heteroscedastic, i.e.,

input-dependent. However, we approximate this noise as Gaussian with a fixed, but

unknown, variance ν2. Despite this fact, we observe numerically that the GP can still

estimate the optimization objectives, i.e., expectation of y, when the noise to signal

ratio is not too big. The likelihood of the model is:

ppy1:n|x1:n, θ
e
q “ N

`

y1:n|0, kpx1:n, θ
e
q ` ν2In

˘

, (3.12)

where In P Rnˆn is the identity matrix, kpx1:n, θ
eq is as in Eq. (3.10), and, for notational

convenience, we have re-defined θe Ð pθe, νq.

Posterior state of knowledge about the objectives

Bayes rule combines our prior beliefs with the data and yields a posterior probability

measure on the space of meta-models. Conditioned on the hyperparameters θe, this

measure is also a GP,

f e|x1:n, y1:n, θ
e
„ GP pµn, knq , (3.13)

where the posterior mean and covariance functions are

µnpx; θeq “ knpx,x1:n, θ
e
q
“

kpx1:n, θ
e
q ` ν2In

‰´1
y1:n, (3.14)

and

knpx,x
1, θeq “ kpx,x1, θeq

´knpx,x1:n, θ
eq rkpx1:n, θ

eq ` σ2Ins
´1
knpx1:n,x, θ

eq
(3.15)
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respectively. Restricting our attention to a specific design point x, we can derive from

Eq. (3.13) the point-predictive PDF conditioned on the hyperparameters θe:

f epxq|x1:n, y1:n, θ
e
„ N

`

µnpx; θeq, σ2
npx; θeq

˘

, (3.16)

where predictive variance is σ2
npx; θeq “ knpx,x; θeq.

The hyper-parameters of the covariance function are estimated by maximizing

the likelihood ppy1:n|x1:n, θ
eq with respect to θe. To avoid numerical instabilities, one

typically works with the logarithm of the likelihood:

Lpθeq “ ´1

2
y1:n

T
“

kpx1:n, θ
e
q ` ν2In

‰´1
y1:n

´
1

2
log det

“

kpx1:n, θ
e
q ` ν2In

‰

´
n

2
log 2π. (3.17)

This maximization problem is solved using the BFGS algorithm [74]. To account for

the positivity constraints we simply optimize with respect to the logarithms of the

hyperparameters. The solution of this optimization problem, denoted by θ̂e, is known

as the maximum likelihood estimate (MLE) of θe. For notational convenience, in what

follows we are not going to be explicitly indicating the dependence of µn and kn on

θe. Instead it will be understood that µnpxq ” µnpx, θ̂
eq, knpx,x

1q ” knpx,x
1, θ̂eq, and

σnpxq ” σnpx, θ̂
eq.

3.2.2 Characterization of the Pareto-efficient frontier using limited data

What is our state of knowledge about the true Pareto-efficient frontier PO given

n ď N observations px1:n,y1:nq? Let f e “ pf e1 , . . . , f
e
mq be the GPs representing our

state of knowledge about each one of the m objectives. Our state of knowledge about

the relation ‘ě’ is now captured by the random relation ‘ěe’, namely x ěe x1 if and

only if f epxq ě f epx1q. Our state of knowledge about the attained set AO of Eq. (3.3)

is given by the random set Arf erXss. Similarly, our state of knowledge about the

Pareto front PO of Eq. (3.6) is represented by the random set P rf erXss.
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The first step is to derive summary statistics of Arf erXss that can be used to

visualize our epistemic uncertainty about it. Following [19, 75], we achieve this

by estimating the Vorob’ev expectation and deviation of the random set Arf erXss.

Towards this end, we introduce the attainment function and its upper level sets. The

attainment function aen : rr,8q Ñ r0, 1s is defined to be the conditional probability,

given px1:n,y1:nq, that a vector of objectives y P rr,8q can be attained, i.e., we define

aenpyq :“ Pe rtωe P Ωe : y P Arf eωerXssu |x1:n,y1:ns , (3.18)

where f eωep¨q “ pf e1 p¨, ω
eq, . . . , f emp¨, ω

eqq. For β P r0, 1s, the upper level sets of the

attainment function,

Qe
n,β :“ ty P rr,8q : aenpyq ě βu , (3.19)

are known as the β-quantiles of Arf erXss. Intuitively, Qe
n,β˚ can be seen as the set of

objectives that are considered achievable with probability greater than or equal to β.

The conditional Vorob’ev expectation [76] of Arf erXss is defined to be the β˚-quantile

Qe
n,β˚ for which:

λpQe
n,βq ď Ee rλ pArf erXssq |x1:n,y1:ns ď λpQe

n,β˚q, @β P rβ
˚, 1s, (3.20)

where λ is the Lebesgue measure on Rm. In words, Qe
n,β˚ is the β-quantile that has

the same Lebesgue measure as the conditional expectation of the Lebesgue measure

of the attained set. Intuitively, Qe
n,β˚ and its top right boundary are our expectations

about the attained set AO and PO, respectively, after observing px1:n,y1:nq.

Now, we are in a position to quantify our uncertainty about PO. Consider the

symmetric difference Qe
n,β˚4Arf erXss between the set Qe

n,β˚ and Arf erXss defined by

Qe
n,β˚4Arf erXss :“

`

Qe
n,β˚ Y Arf

e
rXss

˘

z
`

Qe
n,β˚ X Arf

e
rXss

˘

. (3.21)
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That is, a point y belongs in Qe
n,β˚4Arf erXss only if it belongs to exactly one of

these sets. Such points appear in the top right corner of rr,8q and are candidate

points for the Pareto front. Therefore, we quantify our uncertainty about PO through

the symmetric deviation function den : rr,8q Ñ r0, 1s defined as the conditional

probability that a vector of objectives y P rr,8q belongs to the symmetric difference

Qe
n,β˚4Arf erXss, i.e.,

denpyq “ Pe
“

y P Qe
n,β˚4Arf erXss|x1:n,y1:n

‰

. (3.22)

Unfortunately, it is not possible to characterize aenpyq, Q
e
n,β˚ , and denpyq exactly.

The difficulty arises from the fact that X may be infinite dimensional. To overcome

this obstacle, we use a Monte Carlo (MC) approach. Let pΩ̃, F̃ , P̃q be a new probability

space associated with the MC approximation uncertainty. Let X̃s : Ω̃ Ñ X ñ, collec-

tively denoted by X̃1:S “ pX̃1, . . . , X̃Sq, be independent identically distributed (iid)

random variables in pΩ̃, F̃ , P̃q with values in X ñ. For each one, we have X̃s :“ x̃1,1:ñ :“

px̃s,1, . . . , x̃s,ñq The specific distribution of these variables is not important as soon

they cover X. For convergence, it suffices to make all the x̃s,i, s “ 1, . . . , S, i “ 1, . . . , ñ

iid with a support that covers X. In our numerical examples, we take all these random

variables to be independently uniform. Conditional on each X̃s, define the epistemic

random variable F̃ e
s P Rmñ associated with the values of the objectives on X̃s. That

is, F̃ e
s :“ f̃ es,1:m,1:ñ :“ pf̃ es,1,1:ñ, . . . , f̃

e
s,m,1:ñq, with f̃s,i,1:ñ :“ pf ei px̃s,1q, . . . , f

e
i px̃s,ñqq P Rñ.

Note that, since we constructed each one of the GPs representing the objectives inde-

pendently, we have that f̃ es,i,1:ñ, s “ 1, . . . , S, i “ 1, . . . ,m are independent. Making use

of the posterior GP representing our state of knowledge about f ei pxq, see Eq. (3.13),

we get that, conditional on x̃1:ñ and px1:n, yi,1:nq, f̃
e
s,i,1:ñ is normally distributed:

f̃ es,i,1:ñ|x̃s,1:ñ,x1:n, yi,1:n „ N pµi,npx̃s,1:ñq, ki,npx̃s,1:ñqq , (3.23)

where µi,npxq and ki,npx,x
1q are the posterior mean and posterior covariance functions

(µnpxq and knpx,x
1q) of Sec. 3.2.1, respectively, if we make the substitution y1:n Ð yi,1:n.
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Using F̃ e
s , and the definition in Eq. (3.2) we denote the sampled attained set by ArF̃ e

s s

and the corresponding sampled Pareto front by P rF̃ e
s s. Now we can compute the

empirical attainment function ãeS,ñ,n : rr,8q Ñ r0, 1s:

ãeS,ñ,npyq “
1

S

S
ÿ

s“1

1ArF̃ es spyq, (3.24)

where 1Bpyq is the characteristic function of the set B. Using ãeS,ñ,npyq we can obtain

estimates of the β-quantiles, say Q̃e
S,ñ,n,β. Just like [19], estimates of the β-quantiles

can be used within a bisection algorithm to estimate the Vorob’ev expectation Q̃e
S,ñ,n,β˚ .

Finally, we compute the empirical symmetric deviation function:

d̃eS,ñ,npyq “
1

S

S
ÿ

s“1

1Q̃S,ñ,n,β˚4ArF̃ es spyq, (3.25)

which is an estimate of denpyq. In our numerical examples (in which m “ 2) we

represent ãeS,ñ,npyq and d̃eS,ñ,npyq on a 64 ˆ 64 grid defined on ˆmi“1rri, uis, where

u “ pu1, . . . , umq P Rm is a point of the design space with ui ě maxxPX Oipxq, i “

1, . . . ,m. For larger number of objectives m ą 3, more sophisticated techniques must

be developed in order to overcome the curse of dimensionality. From the law of large

numbers, we have that

lim
SÑ8

lim
ñÑ8

ãeS,ñ,n “ aen, (3.26)

lim
SÑ8

lim
ñÑ8

d̃eS,ñ,n “ den. (3.27)

We also expect that the attainment function aen will converge to the characteristic

function of the attained set AO as nÑ 8 on a set of design points that becomes dense.

The exact nature of the latter convergence is beyond the scope of the present work.
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3.2.3 Extended expected improvement over dominated hypervolume

Given our current state of knowledge about PO, how should we select the next

observation x? We derive a myopic one-step-look-ahead strategy that attempts

to sequentially maximize the expected improvement in the volume of the attained

set. Specifically, we define the extended expected improvement over the dominated

hypervolume (EEIHV) as the expectation of the change in the Lebesgue measure of

the attained set conditional on a hypothetical observation. Mathematically, we define

for x P X:

EEIHVpxq “ Ee
”

Ee
“

λ pArf erXssq
ˇ

ˇx,y,x1:n,y1:n

‰

´Ee
“

λ pArf erXsq |x1:n,y1:n

‰

ˇ

ˇ

ˇ
x,x1:n,y1:n

ı

,
(3.28)

where the outer expectation is over our state of knowledge about the hypothetical

measurement y induced by the GPs of Sec. 2.2.1:

ppy|x,x1:n,y1:nq “

m
ź

i“1

N pyi|µi,npxq, σ2
i,npx; θeq ` ν2q, (3.29)

where µi,np¨q “ µi,np¨; θ
e
i q and σ2

i,np¨q “ σ2
i,np¨; θ

e
i q are the posterior predictive mean and

variance of the GP f ei pertaining to objective i “ 1, . . . ,m, see Eq. (5.15). Our myopic

strategy is outlined in Algorithm 3.

Eq. (3.28) is analytically intractable and must be approximated using the sampling

methods of Sec. 3.2.2. This is computationally inefficient because it does not allow

the use of gradient-based optimization algorithms such as BFGS. To overcome this

difficulty, we derive an approximation that will allow us to make use of the analytical

formulas derived by [21]. We have:

Ee
“

λ pArf erXssq
ˇ

ˇx1:n,y1:n

‰

ě Ee
“

λ pArf erx1:nssq |x1:n,y1:n

‰

« λ pArµnrx1:nssq .
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The first row inequality comes from x1:n Ă X implying f erx1:ns Ă f erXs which, in

turn, yields Arf erx1:nss Ă Arf erXss. For the approximation in the second row, start

by noticing that z “ f erx1:ns conditioned on x1:n and that y1:n follows a multivariate

Gaussian, see Eq. (3.13). Then, take the Taylor expansion of λpArzsq about z “ z0 “

µnpx1:nq :“ pµ1,npx1:nq, . . . , µm,npx1:nqq. The zero order term is the constant you see

above, i.e., λ pArµnrx1:nssq. The expectation of the first order term vanishes and we

ignore second and higher order terms. Thinking in the same way, we can get:

Ee
“

λ pArf erXssq
ˇ

ˇx,y,x1:n,y1:n

‰

ě Ee
“

λ pArf erx1:n Y txussq
ˇ

ˇx,y,x1:n,y1:n

‰

« λ
`

Arµn,px,yqrx1:n Y txuss
˘

,

where µn,px,yq is the posterior mean after seeing the hypothetical observation px,yq.

Finally, we approximate the expectation over the hypothetical measurement as:

Ee
”

λ
`

Arµn,px,yqrx1:n Y txuss
˘

ˇ

ˇ

ˇ
x,x1:n,y1:n

ı

«

Ee
”

λ
`

Arµn,px,fepxqqrx1:n Y txuss
˘

ˇ

ˇ

ˇ
x,x1:n,y1:n

ı

.

To see why this is possible, note that y “ f epxq ` ν2ε where ε is Gaussian with zero

mean and unit covariance, take the Taylor expansion of the integrand in the first line

about ε “ 0, and keep only the zero order term (the expectation of the first order

term vanishes). Putting everything together, we get the (approximate) inequality:

EEIHVpxq ě̃ EEIHVpxq

:“ Ee
”

λ
`

Arµn,px,fepxqqrx1:n Y txuss
˘

ˇ

ˇ

ˇ
x,x1:n,y1:n

ı

´λ pArµnrx1:nssq .

(3.30)

The inequality is approximate because the first term on the right hand side is approxi-

mately greater than the second one. The accuracy is again second order and proving

it requires taking the Taylor expansion of the integrand of the first term with respect

to z ” f epxq about z “ z0 ” µnpxq.
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The important observation here is that the lower bound to EEIHV, i.e., EEIHV

on right hand side of Eq. (3.30), is similar to the original EIHV of [21] with a few key

differences. Specifically, EEIHV has the same analytical form as EIHV if in EIHV

(i) we replace the observed targets with their projections to the posterior mean, i.e.,

if we work with the denoised measurements instead of the noisy ones; and (ii) we

remove the noise variance from the predictive distribution of the GP. Therefore, the

analytical formula for the calculation of EIHV found in [21] applies to EEIHV subject

to the aforementioned substitutions. In all our numerical examples, we use EEIHV.

We maximize the lower bound over x using BFGS with multiple random restarts.

Algorithm 2 Information acquisition strategy for discovering the Pareto-frontier.

Require: Initially observed designs x1:n; Initial objective measurements y1:n; number
of restarts of EEIHV optimization nd; maximum number of allowed information
source queries Nmax; EEIHV tolerance δ ą 0.

1: while n ă Nmax do
2: Train the GP for each objective as described in Sec. 2.2.1.
3: Find xn`1 “ arg maxxPX EEIHVpxq using nd random restarts of BFGS.
4: if EEIHVpxn`1q ă δ then
5: Break.
6: end if
7: Evaluate the objectives at xn`1 measuring yn`1.
8: x1:n`1 Ð px1:n,xn`1q.
9: y1:n`1 Ð py1:n,yn`1q.
10: nÐ n` 1.
11: end while

3.3 Numerical Results

In Sec. 3.3.1 we use a synthetic example to visualize some of the concepts used

through out this section. In Sections 3.3.2 and 3.3.3, we validate our approach

using two synthetic stochastic optimization problems with known optimal solutions.

To assess the robustness of the methodology, we experiment with various levels of

stochasticity which causes the resultant noise in the outputs. In Sec. 3.4, we solve the

steel wire drawing problem with uncertainties in the incoming wire diameters and the
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die angles at each pass. In all the problems the objectives are scaled by subtracting

and dividing by the emprical mean and standard deviation, respectively.

1.0 0.5 0.0 0.5

Objective 1

1.0

0.5

0.0

0.5

O
bj

ec
tiv

e 
2

(a)

Figure 3.1. A synthetic example of the template followed throughout the paper
depicting the Pareto front and the representation of the uncertainty around the

Pareto front.

3.3.1 Correspondence between nomenclature and visualizations

Fig. 3.1 uses an m “ 2 synthetic example to help us visualize and name some of the

concepts used throughout this section. The dark blue staircase is an approximation

of the true PO, generated by taking the empirical Pareto frontier of sample averaged

objective measurements at a large number of designs. The figure also shows a

scatter plot of the denoised measurements µnpx1:nq (green dots), and as well as the

corresponding empirical Pareto frontier P rµnrx1:nss (green line). The red dot marks

the denoised measurement made at the design xn`1 that maximizes EEIHVpxq. The

red line is the top right boundary of the Vorob’ev expectation of Arf erXss conditioned

on the observed data px1:n,y1:nq, i.e., it is our expectation about P rf erXss conditioned

on our current state of knowledge. The gray contours show to the symmetric deviation

denpyq of Arf erXss which corresponds to our uncertainty about P rf erXss.
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3.3.2 Two-dimensional synthetic example

Consider the two-dimensional synthetic multi-objective problem taken from [77]

which has been slightly modified for our use here:

o1px, ωq “ ´

ˆ

b2 ´
5.1

4π2
b1

2
`

5

π
b1 ´ 6

˙2

´ (3.31)

10

„ˆ

1´
1

8π

˙

cospb1q ` 1



,

o2px, ωq “
a

|p10.5´ b1q||pb1 ` 5.5q||pb2 ` 0.5q| (3.32)

1

30

ˆ

b2 ´
5.1

4π2
b1

2
´ 6

˙2

1

3

„ˆ

1´
1

8π

˙

cospb1q ` 1



,

b1px, ωq “ 15px1 ` sξpωqq ´ 5, (3.33)

b2px, ωq “ 15px2 ` sξpωqq, (3.34)

for x “ px1, x2q P X “ r0, 1s2. The pΩ,P,Fq random variable ξ is standard normal,

i.e., ξ „ N p0, 1q. The parameter s controls the standard deviation of the noise

infused by ξ. Notice that even though ξ is normal, the measured objectives oipx, ωq

are not normally distributed due to the non-linearities. That is the statistics of the

measurement process do not match our assumptions in Sec. 2.2.1. We do this on

purpose. In real applications the statistics of the measurements process are not known

and we would like to investigate to what extent the normality assumption produces

robust results.

To validate our methodology, we must first estimate accurately the true PO. We

achieve this by finding the empirical Pareto frontier of a large number of designs

(10000) while approximating Oipxq “ Eroipx, ωqs with 100 Monte Carlo samples. In

this example, we aim to maximize the two objectives.

We start with n “ 20 random initial observations and we add an additional 100

measurements selected according to Algorithm 3. Fig. 3.2 depicts our final state of
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Figure 3.2. Two-dimensional synthetic example for starting from n “ 20 initial
measurements. Subfigures (a) (s “ 0.01), (b) (s “ 0.03), (c) (s “ 0.05),

and (d) (s “ 0.1), depict our state of knowledge about the final P rf erx1:nss after 100
measurements selected using Algorithm 3.

knowledge about P rf erx1:nss for increasing noise levels s “ 0.01, 0.03, 0.05, and 0.1.

Another graphic that appears on this figure is the line joining the large yellow dots.

These points represent the Pareto frontier obtained by a sampling average of the

objectives at the Pareto optimal designs found by the methodology after the fixed

number of iterations, i.e., an estimation of P rOrx1:Nmaxss which is to be contrasted to

P rµNmaxrx1:Nmaxss. This Pareto frontier is a representation of the quality of the solution

obtained by the methodology. With low levels of stochasticity the methodology neatly

approximates the noise in the outputs as Gaussian, shown in Fig. 3.2 (a) and (b).
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With an increase in the value of the stochasticity parameter, s, the final Pareto frontier

obtained starts diverging from PO, shown in Fig. 3.2 (c) and (d). In Fig. 3.2 (c) and

(d), the methodology ends up exploiting the area near the two ends of the observed

P rOrx1:Nmaxss only, and not the whole PO which is possibly a manifestation of the

methodology not being able to estimate and filter out the excessive non-Gaussian noise

in these cases. The contours of the symmetric deviation (which can be understood as

the probability of a particular set of objective values being achievable conditional on

the observations made thus far) do reinforce greater knowledge about the plausibility

of the achievable values even in regions which tend to dominate the approximated

Pareto frontier. This means that with more simulations the methodology should

eventually discover more Pareto efficient solutions across the complete boundary of

the approximated Pareto frontier. So, the symmetric deviation allows the decision

maker to realize the potential value that lies in doing further simulations.

3.3.3 Six-dimensional synthetic example

Consider the following test objective functions from [78]:

o1px, ωq “
1

2
px1 ` sξ1pωqqp1` gq, (3.35)

o2px, ωq “
1

2
p1´ px1 ` sξ1pωqqqp1` gq, (3.36)

g “ 100

„

5`
ÿ

iPt2,¨¨¨ ,6u

ppxi ` sξipωqq ´ 0.5q2

´ cosp2πppxi ` sξipωqq ´ 0.5qq



, (3.37)

for x P X “ r0, 1s6, where ξi „ N p0, 1q, i “ 1, . . . , 6 are independent. As before, the

expected objectives are not analytically available. We use the same approximation

technique as in the previous example to estimate the ground truth of PO for this test

problem. Fig. 3.3 depicts our final state of knowledge about P rf erx1:nss for increasing

noise levels s “ 0.01, 0.03, 0.05, and 0.1. As before, the larger the noise the harder it
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Figure 3.3. Six-dimensional synthetic example starting from (n “ 40) initial
measurements. Subfigures (a) (s “ 0.01), (b) (s “ 0.03), (c) (s “ 0.05),

and (d) (s “ 0.1), depict our state of knowledge about the final P rf erx1:nss after 100
measurements selected using Algorithm 3.
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is for the methodology to discover PO, the true Pareto frontier. In general, as can be

seen in Fig. 3.3 the method is robust to noise as long as the noise is reasonably low for

the given number of initial measurements. The powerfulness of the methodology can

be observed through Fig. 3.3 (a) and (b) , where the final P rf erx1:nss contains points

that dominate the P rOrx1:Nmaxss, when the noise parameter has relatively low values.

The method, as expected, discovers very few points on PO as the noise increases to

s “ 0.1 as can be seen in (d) of Fig. 3.3.

3.4 Wire drawing problem

The wire drawing process is designed to achieve the desired final diameter and

mechanical properties such as ultimate tensile strength (UTS) and ductility through

cold reduction of a larger diameter wire. The desired wire properties depend on

applications – for example, high torsional ductility is required for application in tires,

high strength wires used in machine tools for metal cutting. A typical reduction of

the cross section the wire, based on the final properties required would be in the

range of 70-90 percent and this is achieved by reducing the wire diameter in a number

of passes. Each pass involves drawing through a conical die and the sequence of

reductions and corresponding die angles at each pass would play an important role

on the final properties as well as performance of operations. Here we consider a

wire drawing process having a fixed number of passes (8 passes). An finite element

analysis (FEA) based simulator, developed for an industrial operation was used to

simulate this process. This wire drawing simulator includes wire deformation, heat

generation and dissipation in the wire as well as dies, cooling of wire on the cooling

drum and in the atmosphere and is based on large deformation theory. The model

considers the process to be axisymmetric. The multi-pass drawing effect is modeled by

considering carryover effect of previous pass such as residual stress, plastic strain and

temperature. The FEA is done using four noded isoparametric elements. A penalty

parameter approach is used for modeling the contact between the wire and the dies.
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The simulator takes the input as wire material properties, input wire diameter, die

pass schedule (reduction and die angle at each pass), wire drawing speed, cooling

conditions, friction, etc.; and predicts the internal stress and strains in the wire and

the die, load on each die and the drum, temperature of the wire and the die, properties

indicative of final wire mechanical properties – UTS representing strength and strain

non-uniformity factor (SNUF) representing relative ductility.

The plastic deformation across the cross section of the final wire should be as

uniform as possible for enhanced ductility. The UTS is primarily governed by the total

reduction but the non-uniform deformation has a significant secondary role on the

final UTS. To understand this uniformity, the plastic strain distribution is modeled

and is represented as SNUF. SNUF is a ratio of difference between the peak and

average strain to average strain. Besides the properties of the drawn wire, process

defects such as wire burst during drawing process is an important aspect to consider

as central burst is highly undesired since it leads to wire breakage during drawing

process and this effect is modeled through the measurement of triaxiality by a factor

called the hydraulic failure factor (HFF). The coefficient of friction is assumed to be

constant throughout the process. Here, we have the UTS and the SNUF as the two

competing objectives for the process.

The design variables for this problem are the die angles (one at each pass) and the

incoming wire diameter (implicit in the reduction ratio) at each pass. The outgoing

wire diameter at a pass is same as the incoming wire diameter for the next pass. The

incoming wire diameter dj and the reduction ratio prrjq for a pass j are related by

the formula given in (3.38).

rrj “ 1´
d2j`1
d2j

(3.38)

For this problem we take the case of drawing an 8mm wire into a 3mm wire Fig. 3.4.

So, with the overall reduction ratio (and the incoming wire diameter for the first pass)

fixed, the problem becomes that of two objectives with 15 design parameters (8 die

angles and 7 incoming wire diameters). We apply our methodology to the wire drawing

problem and demonstrate its ability to deal with the problem of stochasticity in the
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Figure 3.4. WMP: The wire manufacturing process with the depiction of the
sources of uncertainty, ie. the incoming wire diameter dj and the die angle αj, at an

individual pass j.
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objectives induced by our inability to fully control the design parameters, to obtain a

set of Pareto optimal solutions. This uncertainty can be understood as the ubiquitous

effect of the continuous wear and tear on the die which would cause the process to

deviate from delivering ideal (no noise) outputs. Also, in any manufacturing process

the tolerances need to be accounted for as the procured dies themselves would not

have exact dimensions as required. The design space has been bounded by choosing a

suitable range for design variables as follows:

1. For i “ 1, . . . , 7, xi P r0, 1s represent the incoming wire diameters.

2. For i “ 1, . . . , 8, xi`7 P r0, 1s represent the die angles.

Specifically, we assume that when we try to implement a process with design x,

what we actually get is a process with design x ` Sξ, where ξ „ N p015, I15q and

S “ diagps1, . . . , s15q where si “ 0.05, @i P r1, 7s and si “ 0.1, @i P r8, 15s. The

above space X “ r0, 1s15 is a scaled representation of the real space for simplification

purposes. The random vector from the real space X “ r7.2, 7.5sˆr6.6, 6.9sˆr5.8, 6.1sˆ

r5.1, 5.4s ˆ r4.4, 4.7s ˆ r3.9, 4.2s ˆ r3.3, 3.6s ˆ r8, 14s8, can be obtained by rescaling the

random vector from the scaled space by using a simple linear transformation. The

noisy objectives considered here are:

o1px, ωq “ ´SNUF px` Sξpωqq , (3.39)

o2px, ωq “ UTF px` Sξq . (3.40)

The optimization problem involves maximizing the UTS and minimizing the SNUF.

For simplifying the problem to the requirements of our code and software we convert it

to an equivalent maximization problem where we maximize the UTS and maximize the

negative of the SNUF. We consider a scenario with 15 initial observations of the MOO

problem and limit our computational budget to allow for 50 additional simulations to

be carried out sequentially.
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Figure 3.5. WMP: The P rf erx1:nss for the inital observations using Eq. (5.12).
Objective 1 is the -SNUF and Objective 2 is the UTS.
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Fig. 3.5 shows the projected initial observations for the problem. We scale the

measurements obtained by subtracting and dividing by the empirical mean and

standard deviation just as in the case of the test function discussed above. This is

done to maintain consistency with the assumption 3.2.1 of a zero mean (standard

normal) GP for computational flexibility.

A key aspect of quantifying our knowledge about the state of the objectives is

the Vorob’ev expectation which is computed by obtaining by sampling the design

space X. However, it must be noted that in this case with 15 dimensions, it becomes

very difficult to cover the whole design space as a result of which certain designs

picked by the algorithm, end up outside the sampled designs. The overarching effect

of this can be seen in Fig. 3.6 (a), where the Vorob’ev expectation can be seen lying

below the points in the top left corner picked by the methodology. To circumvent this

issue, we augment the set of sampled designs with the designs at which we have made

observations. This provides a clearer picture, Fig. 3.6 (b), of the state as it reinforces

the information obtained thus far while quantifying our beliefs about the state of the

Pareto-efficient frontier.
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Figure 3.6. WMP: The P rf erx1:nss. Subfigures (a) with the random sample design
space, (b) after adding the observed designs to the sampled design space.

Fig. 3.7 depicts the state of the problem after the fiftieth iteration. Since, we

do not have the computational resources to obtain P rOrx1:Nmaxss for comparison, we
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sample average the value of the objectives, 100 times, corresponding to the final Pareto

designs as shown in Fig. 3.6. This averaging gives us an estimate of the approximate

true state of the Pareto-efficient frontier after the computational budget has been

exhausted.
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Figure 3.7. WMP: The P rf erx1:nss after 50 additional measurements along with
the sampled averaged approximation of P rOrx1:Nmaxss represented by the yellow line.

Objective 1 is the -SNUF and Objective 2 is the UTS.

3.5 Conclusions

We constructed an extension to the EIHV information acquisition function which

makes possible the application of BGO to stochastic multi-objective black-box op-

timization problems. In addition to the above, we have shown how the epistemic

uncertainty induced by the limited number of simulations can be quantified and used,

to represent the uncertainty around the PF at each stage. We have validated our

approach by applying it on two, slightly modified to include stochastic parameters,

synthetic test functions with known Pareto frontiers. Furthermore, we applied our

method on the challenging steel wire drawing problem under parametric uncertainty

in a scenario of simulation based design. The method offers a viable alternative

to the state-of-the-art evolutionary optimization algorithms which rely heavily on

sample averaging and are unaffordable under a limited budget scenario. Moreover, the
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proposed extension to EIHV gives acceptable results under cases of moderate levels of

noise with limited number of initial observations. There remain several open research

questions. The most pressing direction to look in would be the efficient treatment of

stochastic multi-objective problems under unknown and expensive constraints under

a scenario of constrained computational resources.
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4. BAYESIAN OPTIMAL DESIGN OF EXPERIMENTS FOR INFERRING THE

STATISTICAL EXPECTATION OF A BLACK-BOX FUNCTION

Bayesian optimal design of experiments (BODE) has been successful in acquiring

information about a quantity of interest (QoI) which depends on a black-box function.

BODE is characterized by sequentially querying the function at specific designs se-

lected by an infill-sampling criterion. However, most current BODE methods operate

in specific contexts like optimization, or learning a universal representation of the

black-box function. The objective of this chapter is to design a BODE for estimating

the statistical expectation of a physical response surface. This QoI is omnipresent

in uncertainty propagation and design under uncertainty problems. Our hypothesis

is that an optimal BODE should be maximizing the expected information gain in

the QoI. We represent the information gain from a hypothetical experiment as the

Kullback-Liebler (KL) divergence between the prior and the posterior probability dis-

tributions of the QoI. The prior distribution of the QoI is conditioned on the observed

data and the posterior distribution of the QoI is conditioned on the observed data and

a hypothetical experiment. The main contribution of this chapter is the derivation of

a semi-analytic mathematical formula for the expected information gain about the

statistical expectation of a physical response. The developed BODE is validated on

synthetic functions with varying number of input-dimensions. We demonstrate the

performance of the methodology on a steel wire manufacturing problem.

The following text is taken from the publication titled: Bayesian Optimal Design

of Experiments For Inferring The Statistical Expectation Of A Black-Box Function.
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4.1 Introduction

Engineering problems require either computationally intensive computer codes [11]

or expensive physical experiments [79]. With insufficient information about the ana-

lytic dependence of the physical response on the design parameters or experimental

conditions, the engineer needs scores of physical response evaluations to make decisions

with confidence. To overcome this issue, researchers have developed design of experi-

ments (DOE) techniques that attempt to select the maximally informative physical

response evaluations within a given budget [80–82]. Classical DOE techniques generate

a single batch design [83] and, thus, they face several shortcoming in case of functions

with local features, e.g., discontinuities, or sharp non-linearities [8]. Sometimes the

DOE obtained can be equally spaced when the context requires more samples from

certain regions of the domain. Such scenarios require a sequential DOE (SDOE)

approach.

SDOE uses past observations to decide the next evaluation point [84, 85]. Over

the past two decades, SDOE has been used in several applications spanning both

physical experiments [79, 86–89] and computer simulations [12, 90–92]. One of the

most theoretically sound SDOEs is Bayesian optimal design of experiments (BODE).

Under BODE, one models the physical response using a statistical surrogate and

selects the next evaluation point by attempting to maximize the expected value of

information. The newly acquired information is used to condition one’s belief about

the physical response using Bayes’ rule. The process is repeated until the marginal

value of information is negative. The exact definition of the value of information

depends on one’s goals. For example, one could be interested in optimizing an

objective [9, 14,15,30,66,93–100], learning an accurate representation of the physical

response [13,101–105] or estimating the probability of a rare event [106,107].

Instead of the value of information, several BODE approaches attempt to maximize

the information gain about a quantity of interest (QoI). The information gain can

be quantified through the Kullback-Leibler divergence (KLD) [55,108] (also known
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as relative entropy). Over the years, KLD has been used to quantify information

gain [109] about the objective function, from a hypothetical experiment (an untried

design). The efficacy of the KLD has been extended and demonstrated on various

applications including the sensor placement problem [96,110], surrogate modeling [111–

113], learning missing parameters [114], optimizing an expensive physical response [18],

calibrating a physical model [115,116], reliability design [117,118], efficient design space

exploration [119], probabilistic sensitivity analysis [120], portfolio optimization [3],

neural-network hyperparameter tuning [121].

Despite the significant progress, deriving BODE methods for new objectives remains

a non-trivial task. In particular, there are no BODE methods for efficiently propagating

input uncertainties through a physical response surface, e.g., estimating the statistical

expectation, the variance, or higher order statistics of a physical quantity of interest.

Uncertainty propagation is particularly important for characterizing the robustness

of a simulation/experiment and, thus, being able to do it efficiently is essential for

robust design. To address this need, the objective of this chapter is to develop a

BODE methodology for estimating the statistical expectation of the physical response.

The technical details of our approach are as follows. Much like the majority of the

work in BODE, we use Gaussian process (GP) surrogates to emulate the physical

response [122]. The expected information gain from a hypothetical experiment is

defined to be the KLD between one’s prior and posterior probability densities on the

statistical expectation of the physical response. To derive analytical expressions of the

prior and the posterior of this quantity of interest, we use the standard expressions for

the mean and covariance of a GP conditioned on data. The EKLD of the statistical

expectation of the physical response comes out to be an analytically tractable function

which alleviates the need for sample averaging.

The outcomes of this chapter can be enumerated as follows: (a) The derivation

of semi-analytical expressions for the expected information gain in one’s state of

knowledge about the statistical expectation of an expensive-to-evaluate physical

response; (b) The numerical investigation of the performance of the resulting BODE
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using synthetic examples; (c) Numerical comparisons to uncertainty sampling; (d) The

application of the new scheme to solve an uncertainty propagation problem involving

a steel wire manufacturing process simulated using finite elements; and (e) A freely

available PYTHON implementation of our methodology1.

The chapter is organized as follows: Sec. 4.2 describes in detail the methodology

used, including GP regression Sec. 4.2.1 and the EKLD Sec. 4.2.2. The results obtained

for four synthetic examples have been presented in Sec. 4.3. We compare the above

proposed BODE methodology with uncertainty sampling which is a common design of

experiments method used in practical engineering scenarios in Sec. ??. The steel wire

manufacturing problem is briefly explained and treated with the proposed methodology

in Sec. 4.3.5. We summarize the nuances of the methodology including its weaknesses

and comment on future research directions in Sec. 4.4.

4.2 Methodology

Throughout the paper we represent the various elements of our state of knowledge

and objective as follows:

1. Xn are the n designs at which the simulation/experiment has been conducted,

i.e., Xn “ tx1, ¨ ¨ ¨ ,xnu.

2. Yn are the values of the physical response at the corresponding n designs, i.e.,

Yn “ ty1, ¨ ¨ ¨ , ynu.

3. Collectively, we represent all observed data by Dn = {Xn, Yn}.

4. A hypothetical untried design is denoted by x̃.

5. A hypothetical observation at x̃ is denoted by ỹ.

Let x be a random variable with probability density function (PDF) ppxq. Without

loss of generality, we will assume that ppxq is the uniform PDF supported on the

1https://github.com/piyushpandita92/bode

https://github.com/piyushpandita92/bode
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d-hypercube X “ ˆdk“1r0, 1s. The true physical response f is assumed to be a squared

integrable function of x P X , i.e., f P L2pX q, where

L2
pX q “

"

f : X Ñ R
ˇ

ˇ

ˇ

ˇ

ż

X
f 2
pxqppxqdx ă 8

*

. (4.1)

The QoI that we want to discover through the sequential design of experiments is the

statistical expectation of the physical response. Mathematically,

Qrf s “

ż

X
fpxqppxqdx. (4.2)

This QoI is a bounded linear functional, an observation that leads to analytical

progress. At each stage of the SDOE, we will update our beliefs about Qrf s in a

Bayesian way, quantifying the epistemic uncertainty induced by limited data at the

same time. The above QoI can also be approached using Quadrature methods [2,123],

however we restrict the focus of this work to sequential experiment design. We will

select the new experiment by maximizing the expected information gain for Qrf s.

4.2.1 Surrogate modeling

GP regression is a very popular non-parametric Bayesian regression technique. It

allows one to express their prior beliefs about the underlying response surface, but

it also quantifies epistemic uncertainty induced by limited observations. Here, we

describe the GP regression very briefly. More details can be found in [43].

Prior Gaussian process

We model our prior beliefs about the physical response using a zero mean GP. The

covariance function is defined by a radial basis function (RBF), also known as squared

exponential. Mathematically,

f „ GPp0, kq, (4.3)
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where

kpx,x1q “ kpx,x1;ψq “ s2 exp

#

´
1

2

d
ÿ

j“1

pxj ´ xj
1q
2

`2j

+

. (4.4)

The covariance function defined in Eq. (4.4) encodes our prior beliefs about the

smoothness and magnitude of the response. The symbol `j ą 0 in Eq. (4.4) is the

lengthscale of the j-dimension of the input space. This parameter quantifies the

correlation between the function values at two different inputs. The s2 in Eq. (4.4)

is the signal strength of the GP. It incorporates the scale of the response. These

parameters are the hyper-parameters of the covariance function and we will denote

them by ψ, i.e., ψ “ ts2, `1, ¨ ¨ ¨ , `du. A nonzero mean function can always be included

with only minor modifications in what follows.

The data likelihood

The likelihood of the data Yn a multivariate Gaussian. The mean vector of this

Gaussian distribution is the vector of function output values fn “ tfpx1q, . . . , fpxnqu

at observed designs. The covariance matrix can be computed using the structure

defined in Eq. (4.4). The observations are assumed to be contaminated with Gaussian

noise with variance σ2. This noise variance is could will be very small relative to

the signal strength in the case of computer simulation design. We augment the

vector of hyper-parameters to include this additional parameter to get θ “ tψ, σ2u.

Mathematically, the likelihood of the observed data is:

ppYn|Xn,θq “ N pYn|0,Kn ` σ
2Inq, (4.5)

where Kn is a n ˆ n covariance matrix defined according to Eq. (4.4), i.e., Knij “

kpxi,xjq.
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Training the hyper-parameters

Typically, the hyper-parameter values are fitted to the observed data by maximizing

the likelihood of Eq. (4.5). However, this process may result in overfitting which is

particularly problematic in the context of SDOE. In this work, we opt for a fully

Bayesian treatment [124] which is more robust. We assume that the hyperparameters

are a priori independent following an exponential prior distribution on the lengthscales

and Gamma prior distribution on the signal strength. Since we do not treat noisy

problems in this work, we fix the variance of the likelihood probability to 1e-6 which

is a reasonably small value. Bayes’ rule allows yields the hyperparameter posterior:

ppθ|Dnq9ppYn|Xn,ψqppψq. (4.6)

Here, we employ a parallel-chain Markov chain Monte Carlo (MCMC) algorithm with

an affine invariance sampler to sample from the posterior. More details on the inner

workings of the MCMC algorithm can be found in [125]. The code for this MCMC

algorithm is available online.2

Making predictions

Conditioned on the hyperparameters, our state of knowledge about f is also

characterized by a GP:

f |Dn,θ „ GPpf |mn, knq, (4.7)

where

mnpxq “ pknpxqq
T
`

Kn ` σ
2In

˘´1
Yn, (4.8)

with

αn “ pKn ` σ
2Inq

´1Yn, (4.9)

2https://github.com/dfm/emcee

https://github.com/dfm/emcee


63

is the posterior mean function, and

knpx,x
1
q “ kpx,x1q ´ pknpxqq

T
`

Kn ` σ
2In

˘´1
knpx

1
q, (4.10)

with knpxq “ pkpx,x1q, . . . , kpx,xnqq
T , is the posterior covariance function. In partic-

ular, at an untried design point x̃ the point-predictive posterior probability density of

ỹ “ fpx̃q conditioned on the hyperparameters is:

ppỹ|x̃,Dn,θq “ N
`

ỹ
ˇ

ˇmnpx̃;θq, σ2
npx̃;θq

˘

, (4.11)

where σ2
npx̃;θq “ knpx̃, x̃;θq. Finally, the point-predictive posterior PDF of ỹ “ fpx̃q

is:

ppỹ|x̃,Dnq “

ż

ppỹ|x̃,Dn,θqppθ|Dnqdθ. (4.12)

The latter is, of course, not analytically available, but one can derive sampling average

approximations using the MCMC samples from ppθ|Dnq.

4.2.2 Sequential design of experiments using the expected information

gain

Given Dn observations, our state of knowledge about the QoI Qrf s is given by:

ppq|θ,Dnq “ E rδ pq ´Qrf sq|θ,Dns , (4.13)

where δp¨q is Dirac’s delta function and the expectation is over the function space

measure defined by the posterior GP, see Eq. (4.7). The uncertainty in ppq|Dnq

represents our epistemic uncertainty induced by the limited number of observations in

Dn. Now suppose that we did an experiment at x̃ and observed the output ỹ. The
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posterior GP measure would become ppq|Dn, x̃, ỹq and, thus, our state of knowledge

about Qrf s would be:

ppq|θ,Dn, x̃, ỹq “ E rδ pq ´Qrf sq|θ,Dn, x̃, ỹs . (4.14)

According to information theory, the information gained through the hypothetical

experiment px̃, ỹq conditioned on the hyperparameters, say Gpx̃, ỹ;θq is given by the

KLD between ppq|θ,Dn, x̃, ỹq and ppq|θ,Dnq. Mathematically, it is:

Gpx̃, ỹ;θq “

ż 8

´8

ppq|θ,Dn, x̃, ỹq log
ppq|θ,Dn, x̃, ỹq

ppq|θ,Dnq
dq. (4.15)

The expected information gain of the hypothetical experiment, say Gpx̃q, is obtained

by taking the expectation of Gpx̃, ỹq over our current state of knowledge. Specifically,

Gpx̃q “

ż 8

´8

ż 8

´8

Gpx̃, ỹ;θqppỹ|θ, x̃,Dnqppθ|Dnqdỹdθ. (4.16)

We pick the next experiment by solving:

xn`1 “ arg max
x̃

Gpx̃q. (4.17)

In the rest of this section, we derive analytical approximations of ppq|θ,Dnq (Sec. 5.2.3),

ppq|θ,Dn, x̃, ỹq (Sec. 5.2.3), Gpx̃, ỹ;θq (Sec. 5.2.3), and a sampling average approxi-

mation for Gpx̃q (Sec. 5.2.3).

Quantification of the current state of knowledge about QoI

We now derive an analytical approximation of our current state of knowledge

about the QoI, i.e., ppq|θ,Dnq. Since the QoI Qrf s, Eq. (5.3), is linear and the
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point predictive PDF of y “ fpxq is Gaussian, Eq. (5.15), ppq|θ,Dnq is Gaussian. In

particular, it is easy to show that:

ppq|θ,Dnq “ N
`

q
ˇ

ˇµ1, σ
2
1

˘

. (4.18)

The mean µ1 is given by:

µ1 :“ ErQrf s|θ, Dns

“ E
“ş

X fpxqppxqdx
ˇ

ˇθ, Dn

‰

“
ş

X E rfpxq|θ, Dns ppxqdx

“
ş

X mnpxqppxqdx

“ εTnαn,

(4.19)

where αn is defined in Eq. (5.13) and each component of εn P Rn is given by:

εni “ εpxiq

:“
ş

X kpxi,xqppxqdx

“ s2
`

π
2

˘
d
2
śd

k“1

!

`k

”

erf
´

1´xik?
2`k

¯

´ erf
´

´
xik?
2`k

¯ı)

,

(4.20)

with erf being the error function, and xik the k-th component of the observed input

xi. The variance σ2
1 is given by:

σ2
1 :“ ErQ2rf s|θ, Dns ´ pErQrf s|θ, Dnsq

2

“ Erp
ş

X fpxqppxqdxq
2||θ, Dns ´ µ1

2

“ Er
ş

X fpxqppxqdx
ş

X fpx
1qppx1qdx1||θ, Dns ´ µ1

2

“
ş

X
ş

X Erfpxqfpx1q|θ, Dnsppxqppx
1qdxdx1 ´ µ1

2

“
ş

X
ş

X rknpx,x
1q `mnpxqmnpx

1qsppxqppx1qdxdx1 ´ µ1
2

“
ş

X
ş

X knpx,x
1qppxqppx1qdxdx1

“ σ2
0 ´ ε

T
n pKn ` σ

2q
´1
εn,

(4.21)
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where

σ2
0 “

ş

X
ş

X kpx,x
1qppxqppx1qdxdx1

“ s2
śd

k“1p2`
2
k

?
πq

#

´1?
π
` 1?

π
exp

´

´1
2`2k

¯

`

1?
2`k

erf
´

1?
2`k

¯

+

.

(4.22)

Quantification of the hypothetical state of knowledge about QoI

To derive an analytical approximation of our hypothetical state of knowledge about

the QoI, i.e., ppq|θ,Dn, x̃, ỹq, we proceed as in Sec. 5.2.3, but with the remark that

the posterior GP after adding the hypothetical observation will have mean function:

µ̃n`1pxq “ µnpxq ` knpx, x̃q
ỹ ´ µnpx̃q

knpx̃, x̃q ` σ2
, (4.23)

and covariance function:

k̃n`1px,x
1
q “ knpx,x

1
q ´

knpx, x̃qknpx̃,x
1q

knpx̃, x̃q ` σ2
. (4.24)

We get,

ppq|θ,Dn, x̃, ỹq “ N pq|µ2px̃, ỹq, σ
2
2px̃qq. (4.25)

The mean µ2px̃, ỹq is:

µ2px̃, ỹq :“ ErQrf s|θ, Dn, x̃, ỹs

“
ş

X µ̃n`1pxqdx

“ µ1 `
νpx̃q

knpx̃,x̃q`σ2 pỹ ´ µnpx̃qq

(4.26)

with

νpx̃q :“ εpx̃q ´ εTn
`

Kn ` σ
2
˘´1

knpx̃q, (4.27)
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where εpx̃q as in Eq. (4.20) but with xi replaced by x̃. Using the expression for the

posterior covariance from Eq. (4.24) one can simplify σ2
2px̃q similar to the derivation

in Eq. (5.36) to get:

σ2
2px̃q :“ ErQ2rf s|θ, Dn, x̃, ỹs ´ pErQrf s|θ, Dn, x̃, ỹq

2

“
ş

X
ş

X k̃n`1px,x
1qppxqppx1qdxdx1

“ σ2
1 ´

ν2px̃q
knpx̃,x̃q`σ2 .

(4.28)

Quantification of the expected information gain about the QoI

Since both Eq. (5.34) and Eq. (4.25) are Gaussian, the KL divergence between

the hypothetical and the current state of knowledge about the QoI conditional on the

hyper-parameters, Gpx, ỹ;θq of Eq. (5.31), is analytically tractable [126], i.e.,

Gpx, ỹ;θq “ log
´

σ1
σ2px̃q

¯

`
σ2
2px̃q

2σ2
1
`
pµ2px̃,ỹq´µ1q

2

2σ2
1

´ 1
2
. (4.29)

Furthermore, Gpx, ỹ;θq is a quadratic function of ỹ, and ppỹ|x̃,θ,Dnq is Gaussian,

see Eq. (5.15). Thus, we can analytically integrate ỹ out to obtain:

Gpx̃;θq “
ş8

´8
Gpx̃, ỹ;θqppỹ|x̃,θ,Dnqdỹ

“ log
´

σ1
σ2px̃q

¯

` 1
2
σ22px̃q
σ12

´ 1
2

`1
2

vpx̃q2

σ2
1pσ

2
npx̃q`σ

2q
,

(4.30)

Finally, we take the expectation of Gpx̃;θq over the posterior of the hyperparam-

eters, ppθ|Dnq of Eq. (4.6), using the MCMC samples
 

θpsq
(S

s“1
collected with the

procedure described in [125,127].

This yields:

Gpx̃q “
ş

Gpx̃;θqppθ|Dnqdθ

« 1
S

řS
s“1G

`

x̃;θpsq
˘

.
(4.31)
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Maximizing the expected information gain about the QoI

At each stage of our BODE algorithm, we optimize the EKLD Gpx̃q using Bayesian

global optimization (BGO) based on the augmented expected improvement (AEI) [15].

This choice takes into account the noisy nature of the approximation of Eq. (5.41),

and it reduces the computational time compared to a brute force or a multistart-and-

gradient-based-optimization approach. See Algorithm 3 for pseudocode. In all our

experiments, irrespective of the dimensionality, we use Tn “ 20 BGO iterations to

optimize the EKLD.

Algorithm 3 Optimize the EKLD using BGO with AEI.

Require: Initial number of EKLD evaluations Ti; maximum number of EKLD eval-
uations Tn; number of candidate designs nd for BGO; MCMC samples from the

posterior of the hyperparameters
 

θpsq
(S

s“1
; stopping tolerance γi ą 0.

1: Evaluate Gpx̃q using Eq. (5.41) at Ti random points to generate training data,

X̃Ti “ tx̃1, . . . , x̃Tiu and GTi “

!

G̃1 “ Gpx1q, . . . , G̃Ti “ GpxTiq
)

, for BGO.

2: tÐ ti.
3: while t ă Tn do
4: Fit a standard GP on the input-output pairs X̃t-G̃t using maximum likelihood

to approximate Gpx̃q.
5: Generate a set of candidate test points X̂nd “ tx̂1, . . . , x̂ndu using Latin

Hypercube Sampling (LHS) [55].
6: Compute the AEI of all of the candidate points in X̂nd .
7: Find the candidate point x̂j that exhibits the maximum AEI.
8: if If the maximum AEI is smaller than γi then
9: Break.
10: end if
11: Use Eq. (5.41) to evaluate Gpx̃q at x̂j measuring Ĝj “ Gpx̂jq.
12: x̃t`1 Ð x̂j.

13: G̃t`1 Ð Ĝj.
14: Xt`1 Ð X̃t Y tx̃t`1u.
15: Gt`1 Ð Gt Y tG̃t`1u.
16: tÐ t` 1.
17: end while
18: return arg max

X̃Tn

G̃Tn .
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4.2.3 Selecting the Initial Set of Designs

In most literature, as a rule of thumb, 10d number of initial samples are used.

We resort to using lesser number of initial data points to test the performance of the

methodology when it starts from the low-sample regime. Readers interested in the

problem of the optimal selection of initial data size can refer to the work of Sòbester

et. al. [128] where the authors discuss the problem in the context of optimization.

The problem of selecting an optimal number of initial points is beyond the scope of

the work presented here.

4.2.4 Selecting the Covariance kernel

Selecting the form of the covariance kernel is the problem of optimal model selection

which is a challenging problem in itself. However, optimal model selection is not the

focus of this work. For consistency across the results for different problems, throughout

this work, we use the squared exponential (RBF) covariance kernel for GP regression

modeling.

4.2.5 Complete BODE framework

In Algorithm 4, we provide pseudocode implementation of the proposed BODE

framework. The algorithm stops when a predetermined number of experiments have

been performed. Alternatively, one could stop the algorithm when the expected

information gain is below a threshold.

4.3 Numerical Results

We apply the methodology on two one-dimensional mathematical functions (syn-

thetic examples), a three-dimensional problem, and a five-dimensional problem. For

the first two synthetic examples the input domain simply becomes r0, 1s whereas for

the third synthetic example the input domain is r´2, 6s3. The inputs for the five
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Algorithm 4 Bayesian optimal design of experiments maximizing the expected
information gain about the statistical expectation of a physical response.

Require: Initially observed inputs Xni ; initially observed outputs Yni ; maximum
number of allowed experiments N .

1: nÐ ni.
2: while n ă N do
3: Sample from the posterior of the hyperparameters, Eq. (4.6), to obtain

 

θpsq
(S

s“1
.

4: Find the next experiment xn`1 using Algorithm 3 to solve Eq. (4.17).
5: Evaluate the objective at xn`1 measuring yn`1 “ fpxn`1q.
6: Xn`1 Ð Xn Y txn`1u.
7: Yn`1 Ð Yn Y tyn`1u.
8: tÐ t` 1.
9: end while

dimensional numerical example lie in the hyper-cube r0, 1s5. The number of initial

data points is denoted by ni. The number of initial data points is taken as low as

possible for the numerical examples. In most literature, as a rule of thumb, 10d

number of initial samples are used. We resort to using lesser number of initial data

points to test the performance of the methodology when it starts from the low-sample

regime. Readers interested in the problem of the optimal selection of initial data size

can refer to the work of Sòbester et. al. [128] where the authors discuss the problem

in the context of optimization. The problem of selecting an optimal number of initial

points is beyond the scope of the work presented here.

4.3.1 Synthetic example no. 1

Consider the function

fpxq “ 4
`

1´ sin
`

6x` 8e6x´7
˘˘

, (4.32)
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defined on r0, 1s. This function is smooth throughout its domain, but it exhibits two

local minima. We will apply our methodology to estimate the statistical expectation:

Qrf s “

ż 1

0

fpxqdx.

The true value of Qrf s is analytically available, Qrf s “ ´1.3599. We apply our

methodology to this problem starting from ni “ 3 and sample a total of N “ 28 points.

The number of MCMC chains for the results shown below is six, and the number of

steps per chain is 500. For further details on the MCMC part of training the GP, we

refer the readers to [125,127].

Figs. 4.1 (a) and (b) show the initial and final state of Algorithm 4. The thick blue

line represents the true function f , Eq. (4.32). The black crosses are the observed data

at the given stage. In subfigure (a), the next experiment selected by maximizing the

EKLD, see Algorithm 3, is corresponds to the purple diamond. The mean of the GP

fit to the expected information gain Gpx̃q constructed by BGO in Algorithm 3. The

predictive mean of the EKLD is shown by the dotted light blue line. This dotted line

represents the response surface of the EKLD after the BGO has ended and the red

shaded area around it represents the uncertainty (2.5 percentile and 97.5 percentile)

around it. As expected, the mean of the EKLD is very small or close to zero at

points where experiments have been performed. Thus, the point selected by the

methodology (purple diamond) is located in the input space where the EKLD has high

mean. The posterior mean of the GP of the black-box function is represented by the

dashed bottle-green line. The bottle-green shaded area represents the uncertainty (2.5

percentile and 97.5 percentile) around it. The final set of inputs, space-filling, selected

by the methodology can be seen in Fig. 4.1 (b). Fig. 4.1 (c) shows the ppq|Dnq plotted

against the number of data samples while showing convergence towards the true value

of Qrf s. The gradual reduction of predictive uncertainty of Qrf s from the initial to

the final stage of the algorithm is seen in Fig. 4.1 (c).
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(a)

(b)

(c)

Figure 4.1. One-dimensional synthetic example (ni “ 3). Subfigures (a) and (b)
show the state of the function (1st iteration) at the start and the end (15th iteration)
of the algorithm. Subfigure (c) represents the convergence to the true expectation of

the function and the reduction in uncertainty about the QoI after the end of the
algorithm.
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4.3.2 Synthetic example no. 2

We consider the following Gaussian mixture function to test and validate our

methodology further.

fpxq “ 1?
2πs1

exp
!

´
px´m1q

2

2s12

)

` 1?
2πs2

exp
!

´
px´m2q

2

2s22

)

,
(4.33)

where m1 “ 0.2 and s1 “ 0.05, m2 “ 0.8 and s2 “ 0.05. As can be seen from

Eq. (4.33), the function is a sum of probability densities of two Gaussian distributions.

The notoriety of the function lies in two relatively sharp but smaller areas of high

magnitude. The true value of Qrf s is analytically available, Qrf s “ 2.0. We apply

our methodology to this problem starting from ni “ 3 and sample another 25 points.

The final state of sampling can be seen in Fig. 4.2 (b), which shows a fairly equally

spaced spread of designs. It is important to note that Fig. 4.2 (b) can mislead the

reader into perceiving the sampling to be less dense in the areas where the function is

sharply peaked. This is an illusion due to the starkly varying ordinates of the sampled

points near the peaks of the function. The convergence of the estimated mean to the

true value of Qrf s and the reduction in uncertainty around the Qrf s can be seen in

Fig. 4.2 (c).

In Fig. 4.2 (a) and (b), the EKLD is shown by the dotted line and the true function

is shown by the dashed red line. The solid line represents the mean of the GP model

and the orange shaded areas around it represent the 2.5th and the 97.5th percentile

of the GP. We plot the relative maximum mean EKLD as a function of the number of

samples in Fig. 4.3 for both the synthetic functions. This relative maximum EKLD

is the ratio of the maximum predictive mean of the EKLD for the current iteration

and the overall maximum predictive mean of the EKLD obtained across all iterations.

The plots in Fig. 4.3 show a characteristic typical of BODE functions i.e. of increasing

in magnitude for the first few iterations and then falling sharply. This predicted mean

value of the EKLD asymptotically goes to zero for both the synthetic functions here.
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(a)

(b)

(c)

Figure 4.2. One-dimensional synthetic example (ni “ 3). Subfigures (a) and (b)
show the state of the function at the start (1st iteration) and the end (25th iteration)
of the algorithm. Subfigures (c) represents the convergence to the true expectation of

the function and the reduction in uncertainty about the QoI after the end of the
algorithm.
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The number of MCMC chains for the results shown below is six, and the number of

steps per chain is 500.

(a)

(b)

Figure 4.3. One-dimensional synthetic examples. Subfigures (a) and (b) show the
predictive mean of the EKLD, for synthetic example no. 1 (ni “ 3) and synthetic

example no. 2 (ni “ 4) respectively.

4.3.3 Synthetic example no. 3

We consider the following three dimensional function from [129] to test and validate

our methodology further.

fpxq “ 4px1 ` 8x2 ´ 8x22 ´ 2q2 ` p3´ 4x2q
2

`16
?
x3 ` 1p2x3 ´ 1q2. (4.34)
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The major difference between this function Eq. (4.34) and the the first two synthetic

examples is the dimensionality of the problem. The true value of Qrf s is analytically

available, Qrf s “ ´0.7864. We apply our methodology to this problem starting from

ni “ 2 and sample another 30 points. Fig. 4.4 (b) shows that the methodology started

with a highly uncertain estimate of the true value and eventually converged to a sharp

peaked Gaussian distribution around the true value. The approximation to Qrf s

at each stage of the algorithm is shown in Fig. 4.4 (b). The gradual reduction in

uncertainty around Qrf s also can be seen in Fig. 4.4 (b). Fig. 4.4 (a) demonstrates

how the relative EKLD fluctuates while seemingly approaching zero.

(a)

(b)

Figure 4.4. Three-dimensional synthetic example (ni “ 2). Subfigure (a) shows
the decay of the EKLD from the 1st iteration to the end of the 30th iteration of the

algorithm. Subfigures (b) show the convergence to the true value of the QoI
respectively.



77

4.3.4 Synthetic example no. 4

The following five dimensional function is taken from [130].

fpxq “ 10 sinpπx1x2q ` 20px3 ´ 5q2 ` 10x4 ` 5x5. (4.35)

This function Eq. (4.35) is reasonably high-dimensional and challenging due to the

non-linear input-output relation. The true value of Qrf s is analytically available,

Qrf s “ 0.3883. We apply our methodology to this problem starting from ni “ 20 and

sample another 45 points. Fig. 4.5 (a) demonstrates how the mean of the relative

EKLD tends to approach zero by the end of the sampling process. The iteration-wise

convergence of the Qrf s to its true value is shown in Fig. 4.5 (b). Fig. 4.5 (b) can

present an illusion to the reader as it shows that the mean of the QoI is very close to

the true value at the start of sampling. This is misleading because of the relatively

large variance around the mean which means that the methodology is not confident

of being close to the true value. As a result of this it can be seen, in the subsequent

iterations, that the mean of the QoI goes to either side of the true value with a gradual

decrease in variance. This might happen due to the methodology discovering different

modes of the underlying function. As more data are accumulated, the uncertainty

around the estimate decreases.

4.3.5 Wire drawing problem

The wire drawing process aims to achieve a required reduction in the cross section

of the incoming wire, while aiming to monitor or optimize the mechanical properties

of the outgoing wire. The incoming wire is passed through a series of dies (8 dies)

to achieve an overall reduction in wire diameter. Each pass reduces the cross section

of the incoming wire. The wire drawing process here is represented by an expensive

computer code of which only a small number of evaluations are possible. The frictional

work per Tonne (FWT) is one of the outputs of the expensive code. Large deformation
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(a)

(b)

Figure 4.5. Five-dimensional synthetic example (ni “ 20). Subfigure (a) shows the
decay of the EKLD from the 1st iteration to the end of the 45th iteration of the

algorithm. Subfigure (b) shows convergence to the true value of the QoI.
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theory is used to model the wire deformation, heat generation and dissipation in

the wire and the dies at each pass, cooling of wire on the cooling drum and in the

atmosphere. The model considers the process to be axisymmetric. The multi-pass

drawing effect is modeled by considering carryover effect of previous pass such as

residual stress, plastic strain and temperature. The FEA is done using four noded

isoparametric elements. The contact between the wire and the dies is modeled using

a penalty parameter approach. The statistical expectation value of the FWT is of

importance for various stakeholders as the work done by the friction on the passing

wire determines the power consumed, the wear on the final wire, etc. The FWT is the

aggregate of the frictional work done at each pass. In our problem, we consider the die

angle as design variables for each pass. The outgoing diameters at each pass are fixed

to reasonable values. Thus, we deal with a total of 8 design variables. We start the

methodology with 20 initial data points and add another 80 samples. We approximate

the true value of the expectation of FWT, by averaging the outputs at 6,000 designs

generated by Latin-hypercube sampling (LHS), as QrFWT s « 0.2694. The results in

Fig. 4.6 show the gradual convergence of the methodology’s mean estimate of the QoI

towards the approximated true value. Fig. 4.6 (a) shows the mean and variance of

the expectation of FWT as the mean approaches the approximate true value while

the variance around it decreases gradually. The reduction in variance around the QoI

from the start of the sampling to the end can be seen in Fig. 4.6 (b). This is intuitive

as the number of collected samples increases, the variance around the QoI decreases.

The comparison of the performance of the EKLD to that of the US is seen in Fig. 4.6

(c). The mean of the statistical expectation value of FWT for the EKLD converges to

the approximate true value as more samples are added, while that for the US makes

gradual drifts either side of the approximate true value. The US requires more samples

to approach the approximate true value. This difference may be explained by the

context specific functional form of the derived EKLD compared to the agnostic US

which, although is a reduced form of the KLD in the design variables, seems to be

slower in higher dimensions.
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(a)

(b)

Figure 4.6. Wire drawing problem (ni “ 20) after 80 iterations.
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4.3.6 Comparison with Uncertainty Sampling

As a demonstration of the performance of the methodology in contrast to a

ubiquitous state-of-the-art sampling technique, namely uncertainty sampling (US),

the methodology is tested on the synthetic examples given in Sec. 4.3.1, Sec. 4.3.2,

Sec. 4.3.3 and Sec. 4.3.4. The uncertainty sampling technique works on the principle

of reducing the uncertainty around the predictive response surface. Interestingly it

has been shown that maximizing the information gain in the parameters reduces to

uncertainty sampling under certain assumptions [101]. Moreover, US, in its functional

form, as an IAF is agnostic to the context (QoI) in the problem. Hence, it serves as an

ideal benchmark to compare with the EKLD. An explanation of the US methodology

is as follows. The methodology selects a design with the maximum magnitude of

predictive variance and follows this procedure until it sequentially acquires the required

number of samples. The surrogate modeling process for the US works the same way

as for the EKLD. The overall algorithm remains the same as Algorithm 4, but for the

change in the sampling criterion.

The convergence to the QoI for the synthetic example in Sec. 4.3.1 and Sec. 4.3.2

is seen in Fig. 5.10 (a) and Fig. 5.10 (b) respectively. Overall, the two methodologies

converge to the true value within reasonable time of one another. With the two peaked

one-dimensional function of Sec. 4.3.2, the EKLD takes more iterations to converge as

seen in Fig. 5.10 (b). The US can be seen as being quicker in reaching very close to the

true value of the QoI compared to the EKLD for the synthetic example no. 2 whereas

EKLD takes slightly fewer iterations to estimate the true statistical expectation value

for synthetic example no. 1.

As the complexity of the problems increases, convergence for the EKLD becomes

quicker compared to US as shown in Fig. 5.10 (a), (b) and (c). With the three-

dimensional problem Fig. 5.10 (c), the mean estimate of the QoI for the EKLD

converges after 20 samples have been collected. For the same problem, US takes

almost 30 samples to converge. This saving of almost 10 samples could be useful in
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engineering problems where each sample is collected at the expense of thousands of

dollars of effort or a computational burden of multiple days.

For the five-dimensional synthetic example, Fig. 5.11 (b) shows how the EKLD

starts to approach the true value of the QoI as the number of iterations increases,

whereas US tends to shows jaggedness in its patterns of convergence. After 65 samples

have been collected US shows convergence, but convergence can be seen for the EKLD

as early as the addition of the 45th sample. This observation is further strengthened

by looking at the decay of the EKLD in Fig. 4.5 (b). The comparison in Fig. 5.11 (b)

highlights the capability of the methodology to infer the QoI in a limited number of

iterations. This is useful in the context of problems with expensive black-box functions

where each evaluation of the expensive function has a very high cost. Moving on to the

wire-problem in Fig. 5.11 (b), it can be seen that the convergence to the approximate

true value is achieved by the EKLD and US albeit with more samples for US.

Another important feature of the comparisons in Fig. 5.10 and Fig. 5.11 is the

faster reduction in the uncertainty for EKLD compared to US. This observation hints

at the faster convergence of the EKLD across all numerical examples. For expensive

problems, with very high-dimensional parameter, space reduced-order model based

techniques [131] need to be used for the context of inferring the statistical expectation

of the black-box function. Approaching such problems is beyond the scope of this

work.

4.3.7 Insight into EKLD

We summarize our thoughts and observations, based on the above experiments, as

follows:

1. We observe that EKLD and US exhibit similar behavior in low-dimensions, but

that EKLD is clearly better in higher-dimensions both in terms of point-wise

estimation error and reduction in epistemic uncertainty. For one-dimensional
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(a)

(b)

(c)

Figure 4.7. Subfigures (a), (b), and (c) show the comparison of the EKLD to
uncertainty sampling, for synthetic example nos. 1, 2, and 3 respectively.
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(a)

(b)

Figure 4.8. Subfigures (a) and (b) show the comparison of the EKLD to
uncertainty sampling, for synthetic example no.4 and the wire-drawing problem

respectively.
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problems, US took fewer samples to converge to the true value in one of the

numerical examples.

2. The EKLD quantifies the information gain in the statistical expectation whereas

US quantifies the information gain in the parameters (design variables in this

work) while selecting the most informative experiment. More work needs to be

done to truly analyze and point out the difference between the two methodologies.

The use of non-stationary GPs is a natural way to fully test the merits and

pitfalls of the two methodologies, as it would results in locally adapted designs.

3. The number of initial data points differs for each of the above toy problems.

This is done on purpose to test the limits of the methodology for examples of

varying dimensionality. Thus far the experiments do not reveal a concrete rule for

choosing the number of initial data points. However, starting the methodology

with too few points can lead to delayed convergence. As a rule of thumb 5d

number of initial points would be considered enough to start the methodology.

4. It is also observed that the MCMC samples needed to approximate the EKLD

using sample averaging can cause numerical issues. If the MCMC samples are

selected from a very short ensemble of chains, the EKLD will be noisy. This

would need a more rigorous treatment, than the AEI-based BGO, to optimize

the EKLD. To circumvent this issue we do not start the MCMC from scratch

at iteration. Instead we use the last particle of the trace from the previous

iteration to initialize the MCMC for a given iteration. This results in shorter

thermalization times for the MCMC.

5. The MCMC details for each problem are in similar vein. The results presented

above mention the number of chains and the number of steps per chain for

each problem. We observe that the emcee [127] MCMC sampler performs well

consistently with a reasonable number of chains and number of steps per chain.

One of the requirements of the emcee sampler is that the number of chains
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should be greater than or equal to twice the number of hyper-parameters of

the GP model. Thus, the number of chains grows as the dimensionality of the

problem increases leading to increased computational cost.

4.4 Conclusions

We presented a methodology for designing experiments to infer the value of a

particular QoI, the statistical expectation of a physical response. The methodology

leverages the expected KL divergence to compute the information gain in the QoI,

from a hypothetical design. The work presented in this chapter is different from

previous work done in sequential design of experiments using KL divergence as it

quantifies the information gain in the QoI, instead of the information gain in the

model parameters. The analytical tractability of the final expressions derived for the

expected KL divergence, for learning the statistical expectation of a physical response,

obviates computational hurdles induced by sample averaging.

One weakness of our methodology is the assumption that the covariance function

of the GP model is stationary. The modeling of the hyperparameters of the GP should

instead be based on a non-stationary covariance function for more locally adapted

designs. However, the problem of implementing a non-stationary GP is not trivial.

Another area of limited research is the selection of number of initial data points, i.e.,

before starting sequential design of experiments. A vast majority of literature on

BODE uses ad hoc criteria for selection of this initial DOE. We accept that this is an

open problem and more work is needed in this direction to ensure optimal allocation of

budget. In similar vein, the methodology can be well extended to design experiments

to infer generic statistics or quantities of interest which depend on a noisy black-box

function. Some of these challenges are addressed in the next chapter.
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5. BAYESIAN OPTIMAL DESIGN OF EXPERIMENTS TO INFER STATISTICS

OF BLACK-BOX FUNCTIONS

Estimating statistical quantities of interest (QoIs), that are non-linear functions of

an expensive black-box computer code or a laboratory experiment, is a challenging

problem. Traditional methods are either context specific or require hundreds of

thousands of evaluations of the black-box code. Bayesian optimal design of experiments

(BODE) is a family of methods that define an optimal design of experiments under

different contexts such as optimizing the black-box objective, estimating the statistical

expectation of the black-box objective, inferring the response surface of the black-box

objective, etc. in a limited number of function evaluations or laboratory experiments.

Under BODE methods, sequential design of experiments (SDOE) accomplishes this

task by selecting an optimal sequence of experiments. SDOE methods use data-driven

probabilistic surrogate models that emulate the expensive black-box function and

quantify one’s current state-of-knowledge. Probabilistic predictions from the surrogate

model are used to compute an information-criterion that quantifies the plausible

information gain (IG) in a hypothetical experiment. The next experiment is selected

by maximizing this IG. In this chapter, we extend a Kullback-Liebler (KL) divergence

based BODE heuristic, which has been previously applied to the case of inferring the

statistical expectation, to estimate generic QoIs. The computation of the information

gain in a hypothetical experiment is done using numerical approximation via sample

averaging. This is done by averaging over samples of the QoI and a hypothetical

value of the physical response at the hypothetical design, both of which are obtained

using the probabilistic surrogate model. Surrogate models, commonly vanilla Gaussian

process (GP) based, often fall short in capturing inconspicuous characteristics of the

underlying physical process such as spatially-varying smoothness, discontinuities and

hetereoscedastic noise. We model the black-box physical response as fully-Bayesian
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non-stationary GP (FBNSGP) probabilistic models. This FBNSGP model does not

require one to have strong assumptions on the smoothness and scale of the underlying

function as it infers local estimates of these properties as functions of the input. This

NSGP model does not require one to have strong assumptions on the smoothness

and scale of the underlying function. We demonstrate the performance of the BODE

methodology on four numerical examples and a practical engineering problem of steel

wire manufacturing. The final BODE algorithm is tested for convergence and analyzed

on different criteria like the final set of designs obtained, the QoI, etc. We make

comparisons to two traditional methods used in SDOE namely, expected improvement

(EI), and uncertainty sampling (US).

5.1 Introduction

Researchers and scientists often simulate real-world physical phenomena as com-

puter codes [11] or laboratory experiments [79]. The use of sophisticated mathematical

models or advanced laboratory equipment makes the simulators near precise. This

accuracy comes at either a huge computational cost attached to the computer code or

painful logistic overheads with the laboratory experiment. As a result, the number

of simulations or experiments that can be queried is finite. Another important facet

of such expensive codes is that they are almost always handled in a non-intrusive

manner. This is because most of these codes and test-rigs, in research groups and

laboratories across the globe, are outcomes of years of expertise and insight. So, the

task at hand is to optimally allocate one’s available budget while acquiring informa-

tion about a quantity of interest (QoI) resulting from the simulation or experiment.

The researcher might be interested in augmenting their state-of-knowledge about

statistics of the physical response being simulated, like the maximum value of the

physical response [11, 17, 18], the statistical expectation or other percentiles of the

code output [132], etc.
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When applied to black-box expensive simulators, traditional design of experiments

(DOE) methods usually face two major hurdles: a) they require hundreds of thousands

of expensive simulations, and b)they require gradients of the simulator. Modern

Bayesian methods, in the paradigm of Bayesian Optimal Design of Experiments

(BODE), used in the design of computer experiments require few evaluations of

the simulator and are gradient-free. Among BODE methods, sequential design of

experiments (SDOE) methods [9, 14, 15, 30, 93, 94, 133] like expected improvement

(EI), probability of improvement (PI), uncertainty sampling (US), random sampling

(RS), entropy search, are well-suited to task of designing experiments under a limited

budget. However, there are very few methods that are agnostic to the context of the

SDOE problem. For example, the expected improvement (EI) [32, 134, 135] is used

when the designer is interested in the optimal value of the parameter or design. The

uncertainty sampling (US) [101] is a BODE heuristic derived from maximizing the

information gain in the parameters. In practice US sequentially reduces the epistemic

uncertainty in the physical response and results in learning the response surface.

The common SDOE methods use probabilistic surrogate models [136,137], called

emulators, to model the expensive simulator. Probabilistic predictions of the physical

response from this surrogate model are used to compute an information gain criterion

arbitrary design or experiment possesses. The solution of this optimization problem is

the design at which the experiment or simulation is to be performed. This sequence

continues until one exhausts the available budget unless a predefined stopping criterion

is met. A common assumption made by surrogates, like commonly used Gaussian

Process Regression (GPR) [122], about the physical response is that it has constant

smoothness and constant signal strength across the input domain. This assumption

can have ill-effects on the modeling and the subsequent sequential design process when

the underlying function has discontinuities or sharp changes in smoothness as shown

in [138,139].

In recent years, the use of the KLD has been extended and demonstrated on

various applications including the sensor placement problem [96,110,140], surrogate
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modeling [111–113], learning missing parameters [114], optimizing an expensive phys-

ical response [18], calibrating a physical model [115, 116], reliability design [117],

efficient design space exploration [119], probabilistic sensitivity analysis [120], portfolio

optimization [3], neural-network hyperparameter tuning [121] and human experiment

design [141].

In this chapter, we extend the Kullback-Leibler divergence (KLD) [55, 108] to

quantify the information gain in the QoI to select the next experiment or design. The

information gain is the KLD from the posterior probability distribution to the prior

probability distribution on the statistical QoI. The expected information gain is made

numerically tractable using Monte Carlo (MC) sample averaging. This MC estimate of

the information gain is called the Expected KLD (EKLD) throughout this paper. In

addition to this, we define a fully Bayesian non-stationary Gaussian process (FBNSGP)

surrogate, building on the work done in [138, 139, 142, 143], to model the physical

response. This surrogate model allows the scientist’s expertise to be incorporated,

as prior knowledge, in the surrogate model at the highest hierarchical level of the

parameterization. Previous work done in developing non-stationary emulators for such

problems include the Treed GP model of Grammacy et. al. [144], the GP-experts

based model of Rasmussen et.al. [145], point estimates of local smoothness based

non-stationary GP modeling by [146] and [147].

The aim of this work is two-fold: a) to examine the performance of the EKLD

in SDOE for arbitrary statistics of the black-box code output, b) to compare and

contrast the convergence of the EKLD to state-of-the-art methods. We comment on

the pros and cons of the derived estimator of the information gain qualitatively and

quantitatively in the sections that follow. A free version of the implementation of the

methodology in the PYTHON programming language is under preparation.

We perform experiments on synthetic examples with varying characteristics such

as the no. of input dimensions, no. of initial samples, and levels of smoothness.

Comparison to state-of-the-art BODE methods namely, US and EI, are presented
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in different contexts. We apply the proposed information gain based BODE on a

problem of steel wire manufacturing.

The chapter is organized as follows: The details of our methodology can be found

in 5.2, our main results on synthetic examples are in 5.3, comparison studies are in

5.4, and the conclusions follow in 5.6.

5.2 Methodology

Consider the following situation faced by a scientist working on a laboratory

experiment or an expensive black-box computer simulation:

1. Set of n conditions or inputs, i.e., Xn.

2. Set of n outputs, i.e., Yn.

3. Data set Dn “ tXn,Ynu.

4. A plausible next experiment or simulation, i.e., x̃.

5. A plausible observation at x̃, i.e., ỹ.

Let x be a random variable with probability density function (PDF) ppxq. Without

loss of generality, we will assume that ppxq is the uniform PDF supported on the

d-hypercube X “ ˆdk“1r0, 1s. The true physical response f is assumed to be a squared

integrable function of x P X , i.e., f P L2pX q, where

L2
pX q “

"

f : X Ñ R
ˇ

ˇ

ˇ

ˇ

ż

X
f 2
pxqppxqdx ă 8

*

. (5.1)

Mathematically, we define a QoI for our purposes as:

Q : L2
Ñ R (5.2)
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for example,

Qrf s “

ż

fpxqppxqdx, (5.3)

the statistical expectation which happens to be a bounded linear functional. In this

work, we aim to estimate Qrf s where Qr¨s is any operator on our function fp¨q. We

define the restricted input space as, X “ ˆdk“1rxu,k,xl,ks. Without loss of generality,

the same becomes X “ ˆdk“1r0, 1s in this paper.

At each stage of SDOE, we will update our beliefs about Qrf s in a Bayesian

way [148], quantifying the epistemic uncertainty induced by limited data at the same

time. We will select the new experiment by maximizing the expected information gain

for Qrf s.

5.2.1 Surrogate Modeling

Numerous surrogate modeling techniques are used in problems where a black-

box expensive function is used to model a physical process. For a comprehensive

perspective, on such techniques, we refer the readers to [43, 136, 149]. Gaussian

process (GP) regression [43, 150] is a commonly used non-parametric probabilistic

surrogate modeling technique. Recent advances in GP regression have seen methods

to tackle input-dependent noise [16], incorporating local properties while modeling

smoothness [146,147,151] of the underlying physical response.

GPs that incorporate effects of local features are broadly known as non-stationary

GPs (NSGP). This is because a GP, with a zero mean, can be fully specified by a

covariance function which defines a functional relationship between the responses

across the input domain. Vanilla implementations of GPs often use a stationary kernel

to define the covariance function. Commonly used kernel functions in GPs are Radial

Basis Function (RBF) kernels, Matern class of kernels, Exponential, etc. For a detailed

discussion of covariance kernels we refer the reader to Chapters 4 and 5 of [43].
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In NSGP surrogate models, the major difference is the choice of the so-called non-

stationary covariance kernel. A stationary kernel is one whose functional formulation

has only the Eucledian distance between two inputs conditioned on a single set of

constant hyperparameters. However, in a non-stationary kernel, the hyperparameters

themselves become functions of the input values. Thus, with a non-stationary kernel

which has all the properties required to simulate a GP, see Chapter 4 of [43], one can

recover the same prior and posterior beliefs over the black-box function as in the case

of stationary GPs. In this work, we model the black-box function as a fully-Bayesian

NSGP.

We perform fully-Bayesian inference using Hamiltonian Monte Carlo (HMC) [152–

154] to generate samples from the posterior distribution of the hyperparameters of the

NSGP model. The application of HMC has been demonstrated in the works of Kramer

et. al. [155] and Girolami et. al. [156]. Recent advancements in HMC methods include

the works of [157,158]. The following sections have the necessary details of our NSGP

modeling process.

Modeling prior beliefs

We represent our prior beliefs about the black-box function as a zero mean GP

which, mathematically, corresponds to the following:

f „ GP p0, kq (5.4)

Since a GP can be fully specified by a covariance kernel we resort to incorporating the

local properties of the input domain in the functional form of the stationary covariance

kernel used in the vanilla GP. Building on the work done in [146,147,159] we model this
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spatial covariance with the functional form used by Heinonen et. al. [138]. This results

in a covariance function that has the following form for a d-dimensional input-space:

kpx,x
1

q “ kpx,x
1

q “

d
ź

i“1

sipxiqsipx
1

iq

d

lipxiqlipx
1

iq

l2i pxiq ` l
2
i px

1

iq
exp

ˆ

´
pxi ´ x

1

iq
2

l2i pxiq ` l
2
i px

1

iq

˙

. (5.5)

The covariance kernel in Eq. (5.5) has point estimates of the lengthscale and the

signal-strength in each dimension. Thus, having the ability to model input-dependent

smoothness and variance. In our work we model the sip¨qs and lip¨qs in Eq. (5.5) as

functions of the inputs by modeling the logarithms of sip¨qs and lip¨qs as stationary

GPs. The hyperparameters of these GPs have prior probability distributions, usually

non-informative, that allow the scientist to encode specific information about the

function at the root of the model. Mathematically, this means:

log si „ GP pm̂s,ip¨q, k̂s,ip¨, ¨qq (5.6)

and,

log li „ GP pm̂l,ip¨q, k̂l,ip¨, ¨qq (5.7)

The covariance kernel of these GPs has the following form:

k̂px, x
1

q “ k̂px, x
1

; ψ̂q “ ŝ2 exp´
px´ x1q2

2l̂2
. (5.8)

The kernel in Eq. (5.8) has two hyperparameters, i.e. ŝ and l̂. These hyperparameters

can either be estimated at the beginning of the algorithm or can be optimized over

a range of values via grid search. Differentiating our work from that of Heinonen

et. al. [138], we employ a fully-Bayesian Hamiltonian Monte Carlo (FBHMC) [154]

based scheme to obtain samples from the posterior of these hyperparameters. Thus,

the hyperparameters at the root of the surrogate model can be chosen according

to the prior beliefs of the scientist. The hyperparameters of each kernel and the

mean function modeling the signal-strength GP and the lengthscale GP will be
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denoted by the vector ψ̂s,i and ψ̂l,i respectively for the ith input dimension. The

FBHMC also includes inferring the latent values of training points for these latent

GPs modeling the input dependent signal-strength and lengthscale in each dimension.

Thus, we denote all the hyperparameters of our NSGP model at any stage by θ, where

θ “ t ˆpψs,1, ψ̂l,iq, ¨ ¨ ¨ , pψ̂s,d, ψ̂l,dqu. More details of the HMC sampling can be found

in [154]. We shall describe in detail how prior beliefs, called hyperpriors, on all the

hyperparameters in θ are chosen in later sections.

Modeling observed data

The likelihood probability of the observed data Yn is modeled as a multivariate

Gaussian, the mean of which is the vector of function values fn = fpx1, ¨ ¨ ¨ , fpxnqq.

The covariance can be computed using the formulation in Eq. (5.5). The observations

are presumed to be contaminated with noise denoted by σ2. In this work, we assume

the computer simulations to be very accurate and fix the value of σ2 to 1e-6. The

likelihood can be represented as follows:

ppYn|Xn;θq “ N pYn|0,Kn ` σ
2Inq, (5.9)

where an element of Kn is obtained as Knij “ kpxi,xjq based on Eq. (5.5).

Inferring hyperparameters

The structure of NSGP modeling described in Sec. 5.2.1 requires one to simulate

values of θ from the posterior state of knowledge on θ. Unfortunately, this is not

possible directly because the posterior of θ is known only upto a proportionality

constant as:

ppθ|Yn,Xnq9ppYn|θqppθq. (5.10)

This situation is frequently encountered in surrogate modeling and is approached

through different techniques depending on the scenario. Since we approach the SDOE
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problem in the low-sample regime, it makes complete sense to infer θ using a Bayesian

approach. This often corresponds to obtaining samples from the stationary distribution

of θ using Markov chain Monte Carlo methods. One such method that has gained

popularity owing to its fast convergence rates is Hamiltonian Monte Carlo (originally

Hybrid Monte Carlo). We use the methodology implemented by [154], available as

open source software, to model the NSGP for this work. More development on HMC

methods is an ongoing process with more intelligent versions being proposed in recent

times.

Hyperpriors

Prior probability distributions ppθq on the hyperparameters θ are chosen to be

largely uninformative in our work. For all the latent GPs we place a Gp1, 1q, Gamma

distribution, prior on their lengthscales and the signal-strengths.

The process of selecting a combination of hyperpriors includes choosing between a

set of hyperpriors for each mean constant. The subtle differences arise mainly due to

the dimensionality of the problem. This aspect is elucidated further in Sec. 5.3.

Making predictions

Conditioned on the hyperparameters, our state of knowledge about f is also

characterized by a GP:

f |Dn,θ „ GPpf |mn, knq, (5.11)

where

mnpxq “ pknpxqq
T
`

Kn ` σ
2In

˘´1
Yn, (5.12)

with

αn “ pKn ` σ
2Inq

´1Yn, (5.13)
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is the posterior mean function, and

knpx,x
1
q “ kpx,x1q ´ pknpxqq

T
`

Kn ` σ
2In

˘´1
knpx

1
q, (5.14)

with knpxq “ pkpx,x1q, . . . , kpx,xnqq
T , is the posterior covariance function. In partic-

ular, at an untried design point x̃ the point-predictive posterior probability density of

ỹ “ fpx̃q conditioned on the hyperparameters is:

ppỹ|x̃,Dn,θq “ N
`

ỹ
ˇ

ˇmnpx̃;θq, σ2
npx̃;θq

˘

, (5.15)

where σ2
npx̃;θq “ knpx̃, x̃;θq. Finally, the point-predictive posterior PDF of ỹ “ fpx̃q

is:

ppỹ|x̃,Dnq “

ż

ppỹ|x̃,Dn,θqppθ|Dnqdθ. (5.16)

5.2.2 Karhunen-Loève expansion of a NSGP

We seek a Karhunen-Loève expansion (KLE) of the posterior NSGP to obtain

samples of f . Eventually each of these samples of f will contribute to the quantification

of our state of knowledge about the QoI, Qr¨s, that we seek to infer. The KLE [160]

of the posterior NSGP is:

fpx; ξ,θq “ mnpx;θq `
8
ÿ

i“1

ξi
a

λn,iφn,ipx;θq, (5.17)

where mnpx;θq is simply the posterior predictive mean of the function, Eq. (5.15).

The random variables ξ are independent identically distributed (iid) standard normal.

We truncate Eq. (5.17) at order W ,

fpx; ξ,θq « mnpx;θq `
W
ÿ

i“1

ξi
a

λn,iφn,ipx;θq. (5.18)
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The scalars λn,i’s and functions φn,ipx;θqs are the eigenvalues and eigenfunctions of

the posterior covariance function constructed using the quadrature given in Section

2.8.1 of [161]. More details about the same can be found in [161]. The number of terms,

W , is determined by specifying the percentage β of the total sum of the eigenvalues

to be retained as follows:
W
ÿ

i“1

λn,i “ β

8
ÿ

i“1

λn,i. (5.19)

The use of KLE is motivated by its optimality in the mean squared sense [162,163].

This means that the truncated KLE converges in L2pX q as W Ñ 8. Intuitively, the

more correlated the physical response, the fewer the number of non-zero eigenvalues,

λn,is in Eq. (5.18), required.

For our experiments we take the value of β equal to 0.95, i.e., the truncated KLE

explains 95% of the total variance of the posterior GP.

Conditioning the state-of-knowledge on a hypothetical observation

Now, consider an untried design x̃ and a hypothetical observation at x̃ denoted by

ỹ. The point distribution of ỹ conditioned on ξ is a Gaussian distribution with the

noise variance σ2 of the NSGP.

ppỹ|x̃, ξ,Dn;θq “ N pỹ|mnpx̃;θq `
W
ÿ

i“i

ξi
a

λn,iφn,ipx̃;θq, σ2
q. (5.20)

Deriving the posterior of ξ conditional on the Dn, x̃ and ỹ by completing the squares,

results in the following:

ppξ|x̃, ỹ,Dn;θq9ppỹ|ξ, x̃,Dn;θqppξq

ñ ppξ|x̃, ỹ,Dn;θq “ N pξ|µ̃p, Σ̃pq,

(5.21)
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where,

µ̃p “ Σ̃pa
T

ˆ

ỹ ´mnpx̃q

σ2

˙

, (5.22)

Σ̃p “

ˆ

IW ` aTa
1

σ2

˙´1

, (5.23)

with,

a “
”

a

λn,1φn,1px;θq, ¨ ¨ ¨ ,
a

λn,Wφn,W px;θq
ı

, (5.24)

The Sherman-Morrison formula [164] allows us to express the posterior covariance of

ξ from Eq. (5.23) as:

Σ̃p “ IW ´
aTa

σ2 ` aaT
, (5.25)

where a is a row vector as defined in Eq. (5.24). An element of the posterior covariance

matrix of ξ can be expressed as:

Σ̃p,ij “ δij ´

a

λn,i
a

λn,jφn,ipxqφn,jpxq

σ2 `
řW
i“1p

a

λn,iφn,ipxqq2
, (5.26)

where δij is the Kronecker delta. Simplifying the notation, we define:

µ̃p “ µ̃cp

ˆ

ỹ ´mnpx̃;θq

σ2

˙

, (5.27)

where,

µ̃cp “ Σ̃pa
T . (5.28)

Obtaining samples of the QoI

A sample of ξ from the independent multivariate normal distribution allows one

to sample f |Dn;θ using the truncated expansion in Eq. (5.18). This is all we need to

obtain a priori samples of the Qrf s.
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With a sample of ξ from ppξ|x̃, ỹ,Dn;θq one can sample f |Dn, x̃, ỹ;θ using the

same construction as in Eq. (5.18) albeit with posterior ξ. This allows one to obtain a

posteriori samples of the Qrf s. These a priori and a posteriori samples of the Qrf s

will be used in the following section while estimating the information gain in the Qrf s.

5.2.3 Sequential design of experiments using the expected information

gain

Given the observed data, Dn, our state of knowledge about the QoI Qrf s can be

written as follows:

ppQ|θ,Dnq “ E rδ pQ´Qrf sq|θ,Dns , (5.29)

where δ is Dirac’s delta function and the expectation is over the function space measure

defined by the posterior GP, see Eq. (5.11). The uncertainty in ppQ|Dnq represents

our epistemic uncertainty induced by the limited number of observations in Dn. Now

consider the hypothetical output ỹ at a hypothetical experiment x̃. With the posterior

GP measure denoted by ppQ|Dn, x̃, ỹq, our state of knowledge becomes:

ppQ|θ,Dn, x̃, ỹq “ E rδ pQ´Qrf sq|θ,Dn, x̃, ỹs . (5.30)

The information gained through the hypothetical experiment px̃, ỹq conditioned on

the hyperparameters, say Gpx̃, ỹ;θq is given by the KLD between ppQ|θ,Dn, x̃, ỹq and

ppQ|θ,Dnq. Mathematically, it is:

Gpx̃, ỹ;θq “

ż 8

´8

ppQ|θ,Dn, x̃, ỹq log
ppQ|θ,Dn, x̃, ỹq

ppQ|θ,Dnq
dQ. (5.31)
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The expected information gain of the hypothetical experiment, say Gpx̃q, is obtained

by taking the expectation of Gpx̃, ỹq over our current state of knowledge. Specifically,

Gpx̃q “

ż 8

´8

ż 8

´8

Gpx̃, ỹ;θqppỹ|θ, x̃,Dnqppθ|Dnqdỹdθ. (5.32)

The next experiment or simulation is selected by solving:

xn`1 “ arg max
x̃

Gpx̃q. (5.33)

Quantification of the current state of knowledge about QoI

We now derive a sample averaged (SA) estimator of our current state of knowledge

about the QoI, i.e., ppQ|θ,Dnq. Since the QoI, Eq. (5.3), is not always linear we

resort to a Gaussian approximation to our state of knowledge about Q. This means

that going forward we will approximate ppQ|θ,Dnq and ppQ|θ,Dn, x̃, ỹq as Gaussian

distributions. If ppQ|θ,Dnq is approximated by a Gaussian distribution N pµ1, σ
2
1q

then we can write:

ppQ|θ,Dnq « N
`

Q
ˇ

ˇµ1, σ
2
1

˘

. (5.34)

Samples of Q, denoted by q, can be easily obtained by substituting samples of ξ in

Eq. (5.18). Using these samples, the unbiased estimators for the mean and variance of

the Gaussian approximation can be written as:

µ1 “ 1
M

řM
i“1 qi, (5.35)

and,

σ2
1 “ 1

M´1

řM
i“1pqi ´ µ1q

2, (5.36)

where qis are samples of Q from ppQ|θ,Dnq.
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Quantification of the hypothetical state of knowledge about QoI

Proceeding with the same spirit as above we derive an estimator of our hypothetical

state of knowledge about the QoI, i.e., ppQ|θ,Dn, x̃, ỹq, we get:

µ2px̃, ỹq “ 1
M

řM
i“1 qi, (5.37)

and the variance σ2
2px̃, ỹq is given by:

σ2
2px̃, ỹq “ 1

M´1

řM
i“1pqi ´ µ2px̃, ỹqq

2, (5.38)

where qis are M samples of Q from ppQ|θ,Dn, x̃, ỹq. These samples of Q can be easily

obtained by substituting samples of ξ from its posterior distribution i.e. Eq. (5.21) in

Eq. (5.20).

Quantification of the expected information gain about the QoI

Since both ppQ|θ,Dnq and ppQ|θ,Dn, x̃, ỹq are Gaussian, the KL divergence be-

tween the hypothetical and the current state of knowledge about the QoI conditional

on the hyper-parameters, Gpx, ỹ;θq of Eq. (5.31), has a functional form [126], i.e.,

Gpx̃, ỹ;θq “ log
´

σ1
σ2px̃,ỹq

¯

`
σ2
2px̃,ỹq

2σ2
1
`
pµ2px̃,ỹq´µ1q

2

2σ2
1

´ 1
2
. (5.39)

Since ppỹ|x̃,θ,Dnq is Gaussian, see Eq. (5.15) we can sample average out ỹ to obtain:

Gpx̃;θq “
ş8

´8
Gpx̃, ỹ;θqppỹ|x̃,θ,Dnqdỹ

« 1
B

řB
b“1Gpx̃, ỹ

b;θq,
(5.40)
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Finally, we take the expectation of Gpx̃;θq over the posterior of the hyperparameters,

ppθ|Dnq of Eq. (5.10), using the MCMC samples
 

θpsq
(S

s“1
collected with the procedure

described in [154]. This yields:

Gpx̃q «
ş

Gpx̃;θqppθ|Dnqdθ

« 1
S

řS
s“1G

`

x̃;θpsq
˘

.
(5.41)

For most of our numerical experiments we fix the values of M , B and S to 50 each.

Maximizing the EKLD defined in Eq. (5.33) might ideally need a multi-start-

optimization algorithm, but we resort to a Bayesian global optimization algorithm

(see Algorithm 5), same as in Chapter 4 to maximize the EKLD. In our experiments,

we use Tn “ 30 BGO iterations to optimize the EKLD for one-dimensional functions.

For multi-dimensional functions Tn “ 40 BGO iterations are used to optimize the

EKLD.

5.2.4 Quantities of interest

The framework described in the previous sections is applied to infer the following

statistics, Qrf s, of the function:

1. statistical expectation denoted by Erf s

2. statistical variance denoted by Vrf s

3. kth percentile denoted by Pkrf s

4. maximum scalar value denoted by maxrf s

5. minimum scalar value denoted by minrf s

The methodology is compared to the uncertainty sampling (US) for the first three

Qrf ss and compared to the classic expected improvement (EI) for the last two Qrf ss.
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Algorithm 5 Optimize the EKLD using BGO with AEI.

Require: Initial number of EKLD evaluations Ti; maximum number of EKLD eval-
uations Tn; number of candidate designs nd for BGO; MCMC samples from the

posterior of the hyperparameters
 

θpsq
(S

s“1
; stopping tolerance γi ą 0.

1: Evaluate Gpx̃q using Eq. (5.41) at Ti random points to generate training data,

X̃Ti “ tx̃1, . . . , x̃Tiu and GTi “

!

G̃1 “ Gpx1q, . . . , G̃Ti “ GpxTiq
)

, for BGO.

2: tÐ ti.
3: while t ă Tn do
4: Fit a standard GP on the input-output pairs X̃t-G̃t using maximum likelihood

to approximate Gpx̃q.
5: Generate a set of candidate test points X̂nd “ tx̂1, . . . , x̂ndu using Latin

Hypercube Sampling (LHS) [55].
6: Compute the AEI of all of the candidate points in X̂nd .
7: Find the candidate point x̂j that exhibits the maximum AEI.
8: if If the maximum AEI is smaller than γi then
9: Break.
10: end if
11: Use Eq. (5.41) to evaluate Gpx̃q at x̂j measuring Ĝj “ Gpx̂jq.
12: x̃t`1 Ð x̂j.

13: G̃t`1 Ð Ĝj.
14: Xt`1 Ð X̃t Y tx̃t`1u.
15: Gt`1 Ð Gt Y tG̃t`1u.
16: tÐ t` 1.
17: end while
18: return arg max

X̃Tn

G̃Tn .

5.3 Numerical Results

We present results for the methodology’s performance on two one-dimensional

mathematical functions, a three-dimensional problem, and a five-dimensional problem.

The input domain for the first two synthetic examples is r0, 1s whereas for the third

synthetic example the input domain is r´2, 6s3. The input space for the five dimensional

synthetic example no. becomes the hyper-cube r0, 1s5. The number of initial data

points is denoted by ni.

The prior distributions for the one-dimensional functions are chosen as follows: a)

the mean function on the log-lengthscale GP is fixed to a negative integer constant.



105

Algorithm 6 Bayesian optimal design of experiments maximizing the expected
information gain a statistical QoI of a physical response.

Require: Initially observed inputs Xni ; initially observed outputs Yni ; maximum
number of allowed experiments N .

1: nÐ ni.
2: while n ă N do
3: Sample from the posterior of the hyperparameters, Eq. (5.10), to obtain

 

θpsq
(S

s“1
.

4: Find the next experiment xn`1 using Algorithm 5 to solve Eq. (5.33).
5: Evaluate the objective at xn`1 measuring yn`1 “ fpxn`1q.
6: Xn`1 Ð Xn Y txn`1u.
7: Yn`1 Ð Yn Y tyn`1u.
8: tÐ t` 1.
9: end while

The reason behind it is that we wish to encode prior information about the lengthscale

taking values as low as of the order of 1e-1. Thus, defining a lower bound or threshold

on the point estimates of the lengthscale values. In this work, this constant mean

function is fixed at -2 for one-dimensional problems. For higher dimensional problems,

this constant is fixed to 0. b) for the signal-strength we choose a Gaussian prior,

N p0, 4q, on the mean function of the log-signal-strength GP for the one-dimensional

problems. c) for the multi-dimensional problems we fixed the mean function to a value

of 0.

Another technique to choose these prior distributions could be the Bayesian

information criterion (BIC) [165]. Under the BIC combinations of prior distributions

on the hyperparameters are compared against each other based on value of the data

likelihood and a penalty criterion which is a function of the number of data and

parameters. Since, the number of data and parameters would be the same, the BIC

would boil down to maximizing the likelihood. We look to choose the priors based

on some basic intuition about GPs and some prior knowledge about the function.

The same prior distributions are used for all one-dimensional functions. We do this

because we wish to test a set of non-informative priors that can be used across different

problems without the need for any user intervention. The number of HMC samples
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for each problem is fixed at 11,500, from which the first 1500 samples are discarded.

For further details on the HMC part of training the NSGP, we refer the readers

to [153,166].

We mentioned in the previous section that the values of the number of posterior

samples of θ, denoted by S, number of samples of ỹ denoted by B and the number

of samples of the Q denoted by M are fixed at 50. This is done to ensure a default

setting for the different controls of the algorithm irrespective of the function or the QoI

being inferred. In some cases, for some QoIs like the estimating the 2.5th percentile,

or inferring the minimum or maximum values of a multi-modal function the default

settings are changed to obtain smooth convergence results which can be explained

better. However, we do ensure the settings remain same for the ELKD and other

methods in comparison studies in all cases.

5.3.1 Synthetic example no. 1

Consider the following function:

fpxq “ 4
`

1´ sin
`

6x` 8e6x´7
˘˘

, (5.42)

defined on r0, 1s. This function is smooth throughout its domain, but it exhibits

two local minima. We will apply our methodology to estimate the QoIs in Sec. 5.2.4

including the case of inferring the 2.5th percentile of the function. The true values of

the five Qrf ss enumerated in Sec. 5.2.4 are:

1. Erf s “ ´1.36

2. Vrf s “ 0.30

3. maxrf s “ ´0.40

4. minrf s “ ´2.00

5. P97.5rf s “ ´1.99
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We apply our methodology to this problem starting from ni “ 3 and sample a

total of N “ 18 points.

(a) (b)

(c) (d)

(e)

Figure 5.1. One-dimensional synthetic example (ni “ 3) shows the state of the
function at the end (15th iteration) of the algorithm for inferring: Subfigures (a)

Erf s, (b) Vrf s, (c) maxrf s, (d) minrf s, and (e) P2.5rf s.

Fig. 5.1 shows the final state of designs for the different Qrf ss. The thick blue line

represents the true function f , Eq. (5.42). The black crosses are the observed data

at the final stage. In subfigure (a), the next experiment selected by maximizing the
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EKLD, see Algorithm 3, corresponds to the purple diamond. The mean of the GP

fit to the expected information gain Gpx̃q constructed by BGO in Algorithm 3. The

predictive mean of the EKLD is shown by the dotted light blue line. This dotted line

represents the response surface of the EKLD after the BGO has ended and the red

shaded area around it represents the uncertainty (2.5 percentile and 97.5 percentile)

around the mean. As expected, the mean of the EKLD is very small or close to zero

at points where experiments have been performed. Thus, the point selected by the

methodology (purple diamond) is located in the input space where the EKLD has

high mean. The posterior mean of the GP of the black-box function is represented by

the dashed bottle-green line. The bottle-green shaded area represents the uncertainty

(2.5 percentile and 97.5 percentile) around it.

The inferred lengthscale and signal-strength GPs are shown in 5.3 (b) and (c)

respectively for the case of inferring the statistical expectation. These plots simply

show the posterior mean using each of the S posterior samples. The lengthscale is

larger in the region r0, 0.6s compared to r0.6, 1s. This can be understood by comparing

the waviness of the function in these regions. Similarly, the inferred signal-strength

has higher absolute value corresponding to those taken by f . With limited data,

fully-Bayesian HMC allows one to obtain such estimates of uncertainty around the

inferred value of lengthscale and signal-strength. Other approaches which come at a

lower computational cost, like maximum a posteriori (MAP) or maximum likelihood

estimate (MLE) would need a significantly larger number of training points to infer

meaningful point estimates for the lengthscale and the signal-strength. In the low-

sample regime the MAP estimate for the hyperparameters are prone to mislead the

methodology either by selecting a single sample i.e. a local optima of the posterior of

the hyperparameters. Multiple optimization restarts for MAP and MLE approaches

might be beneficial but only slightly unless the number of restarts is of the order of

100. This usually increases the computational burden without making the solution

significantly better. The fully-Bayesian approach used here makes a compelling case
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to infer the lengthscale and signal-strength GPs under epistemic uncertainty albeit at

a higher computational cost.

(a) (b)

(c) (d)

(e)

Figure 5.2. One-dimensional synthetic example (ni “ 3) shows the convergence of
EKLD to the true value of Q for inferring: Subfigures (a) Erf s, (b) Vrf s, (c)

maxrf s, (d) minrf s, and (e) P2.5rf s.
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(a) (b)

(c)

Figure 5.3. One-dimensional synthetic example (ni “ 3) shows the statistics of the
FBNSGP at the the 12th iteration of the sampling where: Subfigure (a) shows the

state of the sampling, (b) shows the inferred point estimates of the lengthscale
and (c) shows the inferred point estimates of the signal-strength.
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5.3.2 Synthetic example no. 2

We consider the following Gaussian mixture function to test and validate our

methodology further.

fpxq “ 1?
2πs1

exp
!

´
px´m1q

2

2s12

)

` 1?
2πs2

exp
!

´
px´m2q

2

2s22

)

,
(5.43)

where m1 “ 0.2 and s1 “ 0.05, m2 “ 0.8 and s2 “ 0.05. As can be seen from Eq. (5.43),

the function is a sum of probability densities of two Gaussian distributions. The

function has two narrow areas of high magnitude. The true value of the Qrf ss are

analytically available, and take the following values:

1. Erf s “ 2.00

2. Vrf s “ 7.28

3. maxrf s “ 8.00

4. minrf s “ 0.00

5. P97.5rf s “ 7.91

We use the same hyperpriors for this problem as in example no. 1. The inferred

signal-strength and lengthscale can be seen in Fig. 5.6 for iteration no. 22 of sampling.

The lengthscale values in Fig. 5.6 (b) show high values in the middle region of the input

space and lower values in the areas where the input value is 0.2 and 0.8 respectively.

This behavior of the inferred lengthscale GP is in concurrence with the true function

being inferred in Fig. 5.6 (a) where the methodology has almost learned the true

function. The lengthscale values should be small as the waviness is high in areas of

the two sharp peaks in the function. Similarly, the lengthscale values should be high

where the function is very smooth or in other words flat. The inferred signal-strength,

shown in Fig. 5.6 (c), also corresponds to the scalar value of the true function in the

corresponding regions of the input space.
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For this problem, the methodology starts with ni “ 5 and samples another 25

points. The final state of sampling for each Qrf s can be seen in Fig. 5.4. The final

states show the different sets of designs obtained for different QoIs. The convergence

of the estimated mean to the true value for each Qrf s and the reduction in uncertainty

around the Qrf s can be seen in Fig. 5.5.

(a) (b)

(c) (d)

(e)

Figure 5.4. One-dimensional synthetic example (ni “ 5) shows the state of the
function at the end (25th iteration) of the algorithm for inferring: Subfigures (a)

Erf s, (b) Vrf s, (c) maxrf s, (d) minrf s, and (e) P97.5rf s.
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(a) (b)

(c) (d)

(e)

Figure 5.5. One-dimensional synthetic example (ni “ 5) shows the convergence of
EKLD to the true value of Q for inferring: Subfigures (a) Erf s, (b) Vrf s, (c)

maxrf s, (d) minrf s, and (e) P97.5rf s.
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(a) (b)

(c)

Figure 5.6. One-dimensional synthetic example (ni “ 5) shows the statistics of the
FBNSGP at the the 22nd iteration of the sampling where: Subfigure (a) shows the

state of the sampling, (b) shows the inferred point estimates of the lengthscale
and (c) shows the inferred point estimates of the signal-strength.
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5.3.3 Synthetic example no. 3

Consider the following three-dimensional function from [129] to test our methodol-

ogy further.

fpxq “ 4px1 ` 8x2 ´ 8x22 ´ 2q2 ` p3´ 4x2q
2

`16
?
x3 ` 1p2x3 ´ 1q2. (5.44)

One difference between this function Eq. (5.44) and the the first two synthetic

examples is the dimensionality of the problem. This is crucial because the NSGP

modeling framework is expected to behave in a slightly different manner in multiple

input dimensions. Unlike the one-dimensional synthetic examples discussed above,

we proceed forward with a constant zero mean function of the GPs that model the

logarithms of the lengthscale and the signal-strength. We also find this to be consistent

with the BIC model selection at the beginning of the SDOE. An intuitive explanation

about this different behaviour of lengthscale values in higher dimensions is given

in [167]. The true values of the Qrf ss, analytically available, are:

1. Erf s “ ´0.7864

2. Vrf s “ 0.0209

3. maxrf s “ ´0.0575

4. minrf s “ ´0.9999

5. P2.5rf s “ ´0.9899

We apply our methodology to this problem starting from ni “ 10 and sample

another 40 points. Fig. 5.7 (b) shows that the methodology started with a highly

uncertain estimate of the true value and eventually converged to a sharp peaked

Gaussian distribution around the true value. The approximation to each Qrf s at each

stage of the algorithm is shown in Fig. 5.7. The gradual reduction in uncertainty

around each Qrf s also can be seen in Fig. 5.7.
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(a) (b)

(c) (d)

(e)

Figure 5.7. Three-dimensional synthetic example (ni “ 10) shows the convergence
of EKLD to the true value of Q for inferring: Subfigures (a) Erf s, (b) Vrf s, (c)

maxrf s, (d) minrf s, and (e) P2.5rf s.
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5.3.4 Synthetic example no. 4

The following five-dimensional function is taken from [130].

fpxq “ 10 sinpπx1x2q ` 20px3 ´ 5q2 ` 10x4 ` 5x5. (5.45)

This function Eq. (5.45) is reasonably high-dimensional and challenging due to the

non-linear input-output relation. The true values of the Qrf ss, analytically available,

are:

1. Erf s “ 0.3882

2. Vrf s “ 1.0896

3. maxrf s “ 2.4941

4. minrf s “ ´1.5906

5. P2.5rf s “ ´1.2782

We apply our methodology to this problem starting from ni “ 10 and sample another

60 points for inferring Erf s and Vrf s. For inferring the 2.5th percentile Fig. 5.8(e) of

f we start with 10 initial points and collect another 60 samples. In the cases shown

in Fig. 5.8 (c) and (d) for inferring maxrf s and minrf s respectively, the methodology

starts with 20 initial points and samples another 50 points using the EKLD. The

iteration-wise convergence of the Qrf ss to the respective true value is shown in Fig. 5.8.

Along expected lines, as more samples are collected by the EKLD, the uncertainty

around the mean of Qrf s reduces. This uncertainty becomes negligible around the

50th sample mark for each of the five Qrf ss in Fig. 5.8.

5.3.5 Wire drawing problem

This problem is a special case of the wire problem discussed in Sec. 4.3.5 as

the number of passes in this case are five instead of eight. Rest of the technical
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(a) (b)

(c) (d)

(e)

Figure 5.8. Five-dimensional synthetic example (ni “ 10) shows the convergence of
EKLD to the true value of Q for inferring: Subfigures (a) Erf s, (b) Vrf s, (c)

maxrf s, (d) minrf s, and (e) P2.5rf s.



119

regarding the micro-structure modeling using FEM remain the same as in Sec. 4.3.5.

The iteration-wise convergence of the Qrf ss to the respective true value is shown in

Fig. 5.9. It is interesting to note the noise in the convergence for QoIs no.3 and no.4 in

Fig. 5.9 (c) and (d). This is because the number of samples M needed to approximate

to QoIs at each iteration for cases where a global minima is located in a small region

becomes very high. One way around this could be to take more M samples albeit at a

very high computational cost. For the QoIs no.1, no.2 and no.5 we have convergence

as the number of samples reaches 30.

The true values of the Qrf ss, analytically available, are:

1. Erf s “ ´2.2402

2. Vrf s “ 0.1805

3. maxrf s “ ´0.8136

4. minrf s “ ´3.5724

5. P2.5rf s “ ´3.027

We apply our methodology to this problem starting from ni “ 10 and sample another

60 points for inferring the different QoIs. The iteration-wise convergence of the Qrf ss

to the respective true value is shown in Fig. 5.9. Along expected lines, as more samples

are collected by the EKLD, the uncertainty around the mean of Qrf s reduces. This

uncertainty becomes negligible around the 30th sample mark for each of the five Qrf ss

in Fig. 5.9.

5.4 Comparison studies

We compare the EKLD to two classic SDOE methods, namely uncertainty sampling

(US) and expected improvement (EI). This is done in order to ascertain to some extent

the convergence pattern of the EKLD. A comparison with US when the QoI is the

mean or the variance or an extreme percentile of the function is done. This is because
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(a) (b)

(c) (d)

(e)

Figure 5.9. Wire-drawing problem (ni “ 10) shows the convergence of EKLD to
the true value of Q for inferring: Subfigures (a) Erf s, (b) Vrf s, (c) maxrf s, (d)

minrf s, and (e) P2.5rf s.
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US is agnostic to the QoI unlike EI which is used for comparison when the QoI is the

minimum or the maximum of the function.

The comparison studies show mixed results. For the one-dimensional function in

Fig. 5.1 (a) and (b), the EKLD and US appear to converge to the true value at almost

the same number of samples for inferring the statistical expectationFig. 5.10 (a) and

varianceFig. 5.10 (b) of f . However, the EKLD converges sooner for inferring the

2.5th percentile of f . The EI and the EKLD show similar trends on converging to the

truth for synthetic example no.1 when the QoI is the maximum Fig. 5.10 (c) and the

minimum Fig. 5.10 (d) of f .

For the one-dimensional function in Sec. 5.3.2 the US and EKLD converge at

around the same stage of sampling which is clearly seen in Fig. 5.11.

The three-dimensional function in Sec. 5.3.3 is a problem with multiple dimensions.

The EKLD converges sooner compared to the US for inferring the expectation, variance

and the 2.5th percentile when a total of 40 additional samples are collected. In the

optimization scenarios the EKLD comes close to convergence for estimating the

maximum value of f , whereas the EI is unable to estimate this value even after 40

iterations of the SDOE algorithm. Estimating the minimum of f , throws up results

that put the EKLD and EI at the same level of performance.

The five-dimensional problem in Sec. 5.3.4 shows similar results as for the three-

dimensional problem in the comparison study of the EKLD with US while inferring

the statistical expectation, variance, and the 2.5th percentile of f . EKLD converges

sooner, near the 35 sample mark compared to the US which takes almost 50 samples

to converge, for the three QoIs. The optimization cases in Fig. 5.8 (c) and (d) and

Fig. 5.13 (c) and (d) provide similar convergence results for the EKLD and EI, with

both methods converging at almost the same number of samples.

Comparison studies for the wire-drawing problem show a slightly mixed pattern

of convergence with the EKLD and US taking almost same number of samples for

inferring the three QoIs on which they are compared. Whereas for the optimization

cases both EKLD and EI seem to be slow in identifying the true minimum of f as can
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be seen in Fig. 5.9 (d) and Fig. 5.14 (d) respectively. Estimating the maximum value

takes fewer samples for the EI compared to the EKLD shown in Fig. 5.14 (c) and

Fig. 5.9 (c) respectively. Thus, results for the wire problem are not sufficient to draw

a conclusion about the performance of the EKLD when compared to EI for inferring

minrf s and maxrf s. The next step will be to run the methodologies for more number

of iterations in order to establish convergence.

(a) (b)

(c) (d)

(e)

Figure 5.10. Comparison studies for example no.1. Subfigures (a), and (b),
convergence of US for Erf s and Vrf s. Subfigures (c), and (d), convergence of EI for

maxrf s and minrf s. Subfigure (e), convergence of US for inferring P2.5rf s.
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(a) (b)

(c) (d)

(e)

Figure 5.11. Comparison studies for example no.2. Subfigures (a), and (b),
convergence of US for Erf s and Vrf s. Subfigures (c), and (d), convergence of EI for

maxrf s and minrf s. Subfigure (e), convergence of US for inferring P97.5rf s.

5.5 Useful findings and insights

We highlight some salient features of EKLD and its comparison studies with US

and EI below.
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(a) (b)

(c) (d)

(e)

Figure 5.12. Comparison studies for example no.3. Subfigures (a), and (b),
convergence of US for Erf s and Vrf s. Subfigures (c), and (d), convergence of EI for

maxrf s and minrf s. Subfigure (e), convergence of US for inferring P2.5rf s.
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(a) (b)

(c) (d)

(e)

Figure 5.13. Comparison studies for example no.4. Subfigures (a), and (b),
convergence of US for Erf s and Vrf s. Subfigures (c), and (d), convergence of EI for

maxrf s and minrf s. Subfigure (e), convergence of US for inferring P2.5rf s.
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(a) (b)

(c) (d)

(e)

Figure 5.14. Comparison studies for the wire-drawing problem. Subfigures (a), and
(b), convergence of US for Erf s and Vrf s. Subfigures (c), and (d), convergence of EI

for maxrf s and minrf s. Subfigure (e), convergence of US for inferring P2.5rf s.
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1. The derived estimator for EKLD samples the next point in a region of high

uncertainty and/or high posterior mean of Qrf s.

2. The point mentioned above also means that the EKLD, similar to the EI,

balances the exploration-exploitation trade-off.

3. The EKLD performs better or equally good when compared to US and EI for

the respective QoIs.

4. Some initial calibration needs to be done to select hyperpriors especially in the

one-dimensional problems, where some functions can be explained better by a

certain combination of hyperpriors. In the synthetic examples presented here

we use uninformative priors for all hyperparameters. A default setting for the

hyperpriors has been chosen which remains the same for all problems with one

input. Similarly, a default setting for the hyperpriors for problems in multiple

inputs is demonstrated with promising results.

5. The FBNSGP framework enables incorporation of point estimates of local smooth-

ness and signal-strength even in low-sample regime. For the one-dimensional

synthetic examples the inferred input-dependent lengthscales and signal-strengths

have been shown. The inferred values of the lengthscale and signal-strength

across the input space have been sampled for each of the S posterior samples

of θ. This allows us to quantify the epistemic uncertainty around the point

estimates of the lengthscale and the signal-strength across the input space.

6. High input-dimensionality will pose certain challenges for the EKLD. Since,

training the NSGP model involves inferring 3 parameters each for the lengthscale

and signal-strength GPs per input dimension. This means that at every stage of

model training, 6d number of hyperparameters need to be inferred. This task

becomes computationally cumbersome when one is faced with problems greater

than single-digit input dimensions.
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7. This research shows how some critical statistics can be inferred with fully-

Bayesian quantification of epistemic uncertainty for problems of different dimen-

sions and input-dependent lengthscales and signal-strengths. This nuance of the

proposed methodology is highly useful in designing simulations and experiments

that take multiple days to finish.

8. An interesting point that we have not covered is the application of the EKLD

framework mentioned above to suggesting multiple simulations or experiments

at each iteration. This scheme, if extended from the current EKLD, holds great

promise because this would enable practical use of computational or laboratory

resources. Secondly, it might also be cheaper to suggest multiple experiments in

one iteration for problems in dimensions greater than five.

5.6 Conclusions

We derive an estimator to quantify the information gain in a hypothetical exper-

iment when a scientist wishes to estimate a QoI which depends on some output of

the experiment. The information gain is the Kullback-Leibler divergence between

a prior state of knowledge about the QoI and a posterior state of knowledge about

the QoI. This methodology is augmented by a robust and flexible response surface

modeling approach. The fully Bayesian non-stationary Gaussian process surrogate

model allows the user to incorporate prior knowledge about the input-dependent

smoothness and variance of the underlying physical response. The performance of

the SDOE heuristic is demonstrated on four numerical examples and an engineering

problem of eight input dimensions. The convergence tests for different numerical

examples and the engineering problem have been compared to state-of-the-art methods

namely uncertainty sampling, expected improvement and probability of improvement.

These state-of-the-art SDOE methods are commonly suited for certain QoIs which is

further highlighted by the comparison tests. The derived SDOE heuristic converges at

the same level or better as the other methods for problems which differ on accounts of
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dimensionality and context. More work can be done on the presented methodology to

suggest multiple experiments or designs at a single iteration, thereby allowing parallel

use of laboratory or computational resources. This direction of research rhymes well

with the spirit of batch optimization [168] and parallel data acquisition.
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6. SUMMARY

We are at a stage where designing experiments to optimize expensive black-box

functions can be treated for single (SOO in Chapter 2.) and multi objective (MOO in

Chapter 2.) scenarios. The methodologies proposed in Chapters 2. and 3. also enable

the quantification of uncertainty about the optimal designs in a SOO problem and

around the Pareto Frontier in a MOO problem. An extension to the methodology in

Chapter 3., suggesting multiple experiments or batch design has been demonstrated on

a problem of chemical vapor deposition for Graphene manufacturing in a collaborative

work [22,89,169].

In Chapters 4. and 5., we derive an estimator for quantifying the information gain

(IG) in a hypothetical experiment to design experiments for estimating QoIs that are

statistics of the expensive experiment or simulation. This IG is the KL divergence

from the posterior probability distribution to the prior probability distribution of the

statistical QoI.

The derived estimator of the EKLD IAF has been used for SDOE in Chapters 4.

and 5. on synthetic functions and the wire-drawing problem. The performance of this

estimator demonstrates convergence to the ground truth values of the statistical QoI

being inferred using only a finite number of simulations. Comparisons with US and EI

for different QoIs yield mixed results. However, a general takeaway is that the EKLD

performs better than US and EI with increasing dimensionality of the input space.

An important lacuna in SDOE is the scalabilty of the method to very high input

dimensions and large data. Our formulation suffers tremendously as the dimensionality

increases beyond single digits. More work in the area of extending the use of EKLD

to higher dimensions in necessary. Further work on deriving theoretical guarantees

for the derived EKLD estimator holds high potential. Suggesting multiple points for
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batch design, especially needed for experimental problems, is another direction in

which the derived EKLD estimator can be extended.
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