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ABSTRACT

Eikmeier, Nicole PhD, Purdue University, August 2019. Spectral Properties and Generation of
Realistic Networks. Major Professor: David F. Gleich.

Picture the life of a modern person in the western world: They wake up in the morning and check

their social networking sites; they drive to work on roads that connect cities to each other; they make

phone calls, send emails and messages to colleagues, friends, and family around the world; they use

electricity flowing through power-lines; they browse the Internet, searching for information. All of

these typical daily activities rely on the structure of networks. A network, in this case, is a set of

nodes (people, web pages, etc) connected by edges (physical connection, collaboration, etc). The term

graph is sometimes used to represent a more abstract structure - but here we use the terms graph

and network interchangeably. The field of network analysis concerns studying and understanding

networks in order to solve problems in the world around us. Graph models are used in conjunction

with the study of real-world networks. They are used to study how well an algorithm may do on a

real-world network, and for testing properties that may further produce faster algorithms. The first

piece of this dissertation is an experimental study which explores features of real data, specifically

power-law distributions in degrees and spectra. In addition to a comparison between features of real

data to existing results in the literature, this study resulted in a hypothesis on power-law structure

in spectra of real-world networks being more reliable than that in the degrees. The theoretical

contributions of this dissertation are focused primarily on generating realistic networks through

existing and novel graph models. The two graph models presented are called HyperKron and the

Triangle Generalized Preferential Attachment model. Both of the models incorporate higher-order

structure - leading to more sophisticated properties not examined in traditional models. We use the

second of our models to further validate the hypothesis on power-laws in the spectra. Due to the

structure of our model, we show that the power-law in the spectra is more resilient to sub-sampling.

This gives some explanation for why we see power-laws more frequently in the spectra in real world

data.
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1. INTRODUCTION

The word Network is used widely across many fields, and the popularity of the word is growing.

According to Google’s ngram tool [NGr], the use of the word network nearly doubled between the

years 1980 and 2000. By network, we (and many others) mean a set of relationships between objects

or ideas. For example, a physical network of telephone poles connected by wires. Or a network of

people, connected through work relationships.

As the use of computers has grown, so has their storage and computation abilities. Businesses

are incentivized to record as much data as possible, in order to analyze it for optimizing profits in

the future. For example, a social networking website may run analysis on their stored data in order

to optimize their advertisement placements, thus making the company more money overall. Much of

this type of work falls into the field of network analysis - which is just as it sounds. From a high level

view, there a few primary goals of the research in network analysis: 1) Designing algorithms which

can run efficiently on very large network data; 2) Understanding features, behavior, and structure of

networks which arise from the real world. These two goals are not independent.

Modeling networks (also called graphs) is it’s own subfield of network analysis in which we aim to

construct network models which resemble real world data. Graph modeling works towards both of

the goals mentioned above. One of the things that makes a model useful is the ability to generate

large amounts of synthetic data quickly. This is important where real data is expensive and limited.

The model’s data is then used for testing algorithms, in order to predict how they will behave on

the real data. Furthermore, developing models which obey the properties which occur naturally

provide more realistic studies when using synthetic data in place of real data, since network models

are widely used from industry to medical applications. On the flipside, studying the properties of the

data generated by models may lead to insights into the structure of the real data. Network models

are also used in statistical hypothesis testing [Moreno and Neville, 2013], and for benchmarking high

performance computers [Murphy et al., 2010].

As the techniques for analyzing networks have improved, so has the study of more complex

features of networks. If in the past we were concerned with studying groupings of two objects, now

we are interested in the groupings of three or more objects. Understanding and replicating these

more complex features can be described as higher-order network analysis. Further focus and study

of higher-order features may bring about better understanding of real world data, leading to more

accurate network models [Lambiotte et al., 2019].
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When the work of this thesis began, it started with a question in epidemics. Consider a network

of people (nodes) and their interactions (edges). If disease breaks out in one or more people, we may

ask how to prevent an epidemic from breaking out in the network. One solution to this problem is to

find the people with the biggest influence in the network and quarantine them (remove them and their

edges from the network). Phrased mathematically, this is finding the nodes or edges of a network

with the largest number of length−k walks through them. This problem is easily solved on paper by

computing the Hadamard, or entry-wise, product of Ak and A, and finding the largest entries in the

resulting matrix. But as A becomes large, computing k products of A is not straightforward.

There are two strategies then for this problem. First, we could do the computation of B =

Had(Ak,A) anyway, attempting to be as memory and time efficient as possible. The second option is

to find approximation algorithms to estimate the largest entries of B. One approximation algorithm

involves computing the first components of the singular value decomposition of A, if A has rank

approximately equal to 1 [Mahoney, 2011]. This occurs when the largest degree of a network is much

larger than the rest of the degrees. In other words, this occurs if the degrees follow a power-law

distribution. This led to the question of whether or not to expect real-world data. Chapter 3 details

an empirical study on features of real world networks. In particular, we focus on the existence of

power-laws in degrees and spectra, and find that power-laws are actually more prevalent in the

spectra than in the degrees. We suspect the results of the reliable power-law in the spectra to be a

useful property for characterizing the extremely fast convergence of many matrix-based algorithms

on these types of networks.

Faced with a better understanding of the behavior of networks, the remainder of this thesis is

dedicated to studying and constructing new graph models. In Chapter 4 we present an extension of

a Kronecker model, extended to tensors. Our work makes use of higher-order structure to impose

desirable features in network samples. In Chapter 5, we present another model based on a preferential

attachment scheme, where new nodes form triangular structure with existing nodes. This new model

has a provable power-law distribution in both the degrees and spectra, making it ideal to explore

further the hypothesis garnered from our empirical study. Specifically we wonder whether there

are changes to the presence of power-laws after sub-sampling these networks. It turns out that the

spectral power-laws seem to be much more resilient to perturbation, giving one explanation for why

they appear so frequently in real-world data.

The work of this thesis has been joint work with my adviser David Gleich. The work in Chapter

4 is also joint with Arjun Ramani.
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2. BACKGROUND

In this chapter we will define many terms and ideas which are used throughout the thesis.

2.1 Graphs and Matrices

Let G = (V,E) be an unweighted, undirected graph without any loops. That is, V is a set of

nodes, and E is a set of edges between the nodes. Let |V | = n be the number of vertices and |E| = m

the number of edges of G. The adjacency matrix of G is the symmetric matrix A, where entry

Aij = Aji is equal to 1 if there is an edge between vertices i and j, and 0 otherwise. The degree

of a vertex i, di, is equal to the number of vertices which have an edge connecting to vertex i. Let

dmax be the largest degree. We will occasionally consider directed graphs, which correspond to an

adjacency matrix which is not necessarily symmetric.

The Laplacian of a graph is L = D−A where D is the degree matrix, which is a diagonal matrix

with Dii = di. Notice that the diagonal elements of L are simply the degrees di and the off diagonal

elements are either 0 or −1. It is well known that the eigenvalues of L, 0 = µ1 ≤ µ2 ≤ . . . ≤ µn, are

non-negative.

Any real-valued symmetric matrix has a set of n eigenvalues and an orthogonal set of n eigenvectors.

The eigenvalues of the adjacency matrix range between −dmax and dmax; the eigenvalues of the

Laplacian range from 0 to 2dmax. For a real-valued symmetric matrix, the singular values are the

absolute values of the eigenvalues, so for an adjacency matrix, they range from 0 to dmax. These

topics can be studied further in Golub and Van Loan [2013] for example.

2.2 Graph Modeling

Much of this thesis is on modeling graphs, often called networks in this context. Simple models

such as the configuration model [Bender and Canfield, 1978] and Chung-Lu [Aiello et al., 2000] are

designed to capture the degree distribution of a network, but typically fail to capture any higher-order

pattern such as a clustering coefficient. Conversely, models that are designed to capture arbitrary

features including clustering, such as exponential random graph models, often have exponential

computational complexities due to the difficulty of the sampling procedure [Bhamidi et al., 2011]. See

for instance a recent survey on the difficulty in generating samples of graphs with the same degree
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distribution [Fosdick et al., 2018]. More structural models, such as stochastic block model, are often

designed to test extremely specific hypotheses involving communities and may not be appropriate

as more general models. Pragmatic models such as BTER explicitly place clustering in a carefully

designed pattern [Kolda et al., 2014] at the cost of a larger description of the network. Moreno et al.

[2010] illuminated this issue in Kronecker graphs as well, and propose a mixed model which allows

for more variation. As an area of active work, this gap between network models and real network

data has implications for both studies on the performance of network algorithms when synthetic

graphs are used as benchmarks—is it relevant if an algorithm scales well on an unrealistic model of

networks?—as well as in the space of hypothesis testing on networks where the synthetic graphs are

used as null-models—is it relevant if a feature of a network is a low-probability event with respect to

an unrealistic model?

2.2.1 Sampling Graphs from Probability Matrices

One of the models of interest comes from the class of graph generators that involves sampling

edges from a probability matrix. Examples include the Erdős-Rényi model [Erdős and Rényi, 1959],

Chung-Lu model [Chung and Lu, 2002], Stochastic Block Model [Holland et al., 1983], and the

Kronecker Model [Leskovec et al., 2010, 2005b, Chakrabarti et al., 2004]. This type of generator

starts with a matrix of probabilities, P , with the number of rows and columns equal to the number

of nodes desired in the graph. For each entry i, j of P , set Aij equal to 1 with probability P ij , and

set Aij equal to 0 otherwise. This type of model allows for generating many instances of a graph

from a single generator matrix P .

Kronecker Graph. The HyperKron model which will be presented in Section 4.1 is built

on many of the same motivations of the Kronecker Graph Model [Leskovec et al., 2010, 2005b,

Chakrabarti et al., 2004]. For the Kronecker Graph, let P be an n× n matrix of probabilities called

an initiator matrix, with n small (n between 2-5 is typical). The Kronecker Product of P with itself

is the n2 × n2 matrix constructed by multiplying every entry of P with itself. For example, if P is

the 2× 2 matrix
[
a b
c d

]
, then the Kronecker product P ⊗ P is

P 2 = P ⊗ P =

a · P b · P

c · P d · P

 =

[
aa ab ba bb
ac ad bc bd
ca cb da db
cc cd dc dd

]
.

Define the rth Kronecker product P r : nr × nr to be r Kronecker products of P with itself:

P r = P ⊗ P ⊗ · · · ⊗ P︸ ︷︷ ︸
r times

.

Then P r is the matrix of probabilities used to sample a graph. It is worth being explicit here that

we are abusing notation and use P r to indicate “powering-up” Kronecker products rather than the
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standard notation of “powering-up” by repeated matrix multiplication. We never multiply matrices

and only multiply by Kronecker products.

Kronecker Graph Properties. The Kronecker graph model became popular because of a

number of desirable properties such as skewed degrees [Seshadhri et al., 2013] and similar properties

to real-world networks [Leskovec et al., 2010]. Additionally, storage of the initiator matrix P is

very cheap, at just n2 entries (where n is often taken to be 2). It has been used as a synthetic

generator for parallel graph benchmarks [Murphy et al., 2010] (the Graph500 benchmark). Choosing

parameters in the Kronecker model to fit a given graph has been studied using maximum-likelihood

methods [Leskovec et al., 2010] and method-of-moments estimators [Gleich and Owen, 2012].

2.2.2 Preferential Attachment

Another type of model of interest falls under the term Preferential Attachment. Preferential

attachment (PA) describes a mechanism of graph evolution in which nodes with higher degree tend

to continue gaining neighbors. Consider G0 to be some initial graph at time t = 0. In an evolutionary

graph model, new nodes or edges (or both) are added at each successive time step to generate a

sequence of graphs: G1, G2, . . .. Specifically in PA, at time t we add a new node u to the graph. Also,

choose an existing vertex v from Gt−1 with probability proportional to its degree. Formally, choose

vertex v with probability

γt(v) =
dt−1(v)∑

w∈Vt−1
dt−1(w)

, (2.1)

where dt(w) is the degree of vertex w at time t, and Vt is the set of vertices at time t. Then add an

edge connecting u to v. PA is meant to model the power-law behavior that is often seen in real-world

networks [Faloutsos et al., 1999, Huberman, 2001, Medina et al., 2000], that is a few vertices tend

to have very large degree while most vertices have fairly low degree. (See Section 2.5 for more on

power-laws.)

Preferential attachment as a mechanism for the appearance of power-laws was described by [Yule,

1925], and later applied to networks in [Price, 1976] described as the“rich get richer”. The PA graph

model itself is found in a few different forms. In the model by Barabási and Albert [1999], often

called the BA model, at every new time step, a new vertex is formed with m edges. Each of the

edges is then connected to an existing node chosen using PA, i.e. based on their degrees.

In a slight variation [Chung et al., 2006, Cooper and Frieze, 2001], at each time step t, a new

node is added with probability p. Along with the new node is an edge between the new node and an

existing node picked via PA. With probability 1− p a new edge is added between two existing nodes,

both chosen via PA. These two models generate slightly different distributions, but fundamentally

give very similar graphs.
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2.3 Higher Order Features in Graphs

Recently, there has been interest in higher order network analysis [Yin et al., 2018, Grilli et al.,

2017, Rosvall et al., 2014, Xu et al., 2016, Benson et al., 2016, 2017]. At a high-level, this constitutes

an analysis of network of data in terms of multi-node patterns such as motifs and also in terms of

stochastic processes that depend on more history. One of the earlier motivations for this direction

is the famous paper by Milo on the presence of motifs in real world networks [Milo et al., 2002].

Likewise, there are new models which aim to match these higher order features. For example the

triad formation model described in Section 5.1.2 [Holme and Kim, 2002], and the family of PA

models [Ostroumova et al., 2013] discussed in Chapter 5.

2.4 Clustering

A common graph feature to measure are called the clustering coefficients. The clustering coefficient

for a node u is
2|K3(u)|
|W (u)|

,

where |K3(u)| is the number of triangles for which u is a member, and |W (u)| is the number of

wedges for which u is a member. The average local clustering coefficient is the average over the local

clustering coefficient defined for each node.

The global clustering coefficient is
6|K3|
|W |

,

where |K3| is the number of triangles, and |W | is the number of wedges. This gives a way to measure

how much network nodes tend to form triangles [Watts and Strogatz, 1998].

We can define higher-order clustering coefficients, given by Yin et al. [2018] to be the fraction of

appropriate motifs which are closed. Formally, the l-th order global clustering coefficient is

(l2 + l)|Kl+1|
|Wl|

,

where |Kl+1| is the number of (l + 1)-cliques, and |Wl| is the set of l-wedges. (An l-wedge is a l − 1

clique plus one edge). Similarly, the local clustering coefficient is the average over the local clustering

coefficients for each node: |Kl+1|/|Wl(u)|. Note that our earlier definition of clustering corresponds

with the 2nd order clustering coefficient.

These metrics are used throughout this thesis to compare how well various graph models compare

to real world networks.
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2.5 Power-laws

A set of values x1, . . . , xk satisfies a power-law if it is drawn from a probability distribution

where p(x) ∝ x−α for some α. A set of values satisfies a power-law with a cutoff if p(x) ∝ x−α for

all x ≥ xmin. The second case can be considered to describe a distribution with a power-law tail.

Power-laws appear as linear relationships on a log-log plot because of the equivalent formulation:

log p(y) = −α log y + c.

Traditional methods to test for a power-law fit take advantage of this relationship and find a linear

fit in the log-log plot. Unfortunately this type of graphical method is subject to errors [Goldstein

et al., 2004]. A better methodology is due to Clauset et al. [2009] which uses a maximum likelihood

fitting to determine whether data follows a power-law fit.

There is much debate on the presence of power-laws in real-world data [Broido and Clauset,

2018, Sala et al., 2010b, Kwak et al., 2010, Achlioptas et al., 2005, Gjoka et al., 2010, Meusel

et al., 2015, Schoenebeck, 2013]. The details of why researchers are skeptical on the results on

power-laws is discussed further in section 3.2.4, but include potential biases in sampled or crawled

data. Nevertheless, it is standard practice to assume that power-laws are present in a variety of data.

That is to say, we acknowledge that power-law distributions may appear in the our studied network

data, which may not actually be a part of the ‘true’ data. Yet, this is the data that ultimately we

wish to model and work with.



8

3. EMPIRICAL STUDY OF REAL WORLD NETWORKS 1

Power-laws are a key component in many characterizations of the networks gathered from the world

wide web and other large information sources. These include web-crawls, online social networks,

recommender systems, and many other examples [Faloutsos et al., 1999, Medina et al., 2000, Huberman,

2001]. There are quite a few places that power-laws may arise in the description of these networks.

For instance, the degree distributions of these networks are often observed to have a power-law.

Additionally, the eigenvalues of these networks are often observed to obey a power-law. Power-

laws also arise in other types of structural statistics about the networks [Papalexakis et al., 2016].

Properties of these power-laws are then used to generate realistic synthetic network models [Aiello

et al., 2000, Bonato et al., 2012] and to establish theory about why various algorithms work better

than expected in networks of this type [Kurauskas and Bloznelis, 2013, Gleich and Seshadhri, 2012,

Cooper et al., 2012, Latapy, 2008, Watts, 2003].

Towards these dual goals of building realistic models and generating useful theory, it is useful

to have accurate information about the presence of power-laws in these real-world networks. The

folk-lore about this is that networks have a power-law in their degree distribution with exponent

between 2 and 3 (see, e.g., [Chung et al., 2003b]). This finding does not always hold [Sala et al., 2010a]

and there is even contradictory evidence that these networks have power-law distributions [Broido

and Clauset, 2018, Sala et al., 2010b, Kwak et al., 2010]. Moreover, there is a diverse literature on

the implications of a power-law in the degree distribution for the behavior of the eigenvalues of the

adjacency matrix and Laplacian matrix [Mihail and Papadimitriou, 2002, Chung et al., 2003a, Goh

et al., 2001]. This literature argues that in specific models of a network, a power-law in the degree

distribution implies a power-law in the eigenvalue distribution. It also hypothesizes that this may

hold more broadly outside the specific model.

We revisit many of these empirical findings with the goal of providing new guidance on the

presence of power-laws in three features of real-world networks:

1. the degree distribution;

2. the singular value distribution of the adjacency matrix;

3. the eigenvalue distribution of the Laplacian matrix;

1
This chapter was previously published by the ACM [Eikmeier and Gleich, 2017]
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We built a large collection of real-world networks from the Stanford network analysis project,

Facebook, and various other sources (See Section 3.1 for more about where our data originates.) We

have computed the singular value distribution and Laplacian eigenvalue distribution exactly using a

large cluster of high-performance computers [Gleich, 2019]. To each distribution on each network,

we fit the coefficients of a power-law distribution with cutoff in the tail following the methodology

of Clauset et al. [2009]. (More specifically, we used the implementation by Nepusz [2016], see the

details our methods in Section 3.2). This fitting also included a test of significance, which allows us

to gauge the reliability of the results. We call a power-law fit significant if it passes this test. This

methodology resulted in the following observations.

1. Many networks have a significant power-law in the tail of the degree distribution corresponding

to the largest degree vertices, as well as the singular values of the adjacency matrix, and the

eigenvalues of the Laplacian matrix. (Section 3.3.1)

2. A significant power-law distribution is more likely to occur in the singular values of the adjacency

matrix compared with the degree distribution. This means it is more accurate to assume a

model where the singular values of the adjacency matrix have a power-law compared with the

degree distribution. (Section 3.3.1)

3. A significant power-law distribution in the degrees means there is a high probability for a

significant power-law distribution in the singular values of the adjacency matrix and the

eigenvalues of the Laplacian matrix. The converse does not hold. (Section 3.3.2)

4. The coefficients of these power-laws vary from 2−10 for all three distributions (degrees, adjacency

singular values, and Laplacian eigenvalues). This is a much larger range than has been observed

previously. (Section 3.4.1)

5. The tail of the degree distribution and the Laplacian eigenvalues appear to behave identically

and have essentially the same power-law distribution. That is, the power-law exponent and

cutoff value are almost identical between the fitted distributions. (Section 3.4.1)

6. The region of the distribution where the power-law fits appears to scale as n2/3 for the degrees

and Laplacian eigenvalues and between n2/3 and n1/2 for the singular values. (Section 3.4.3)

7. We use observation 6 to test a number of large networks beyond those used to make observations

1-6 because it shows we would not have to compute the entire singular value and eigenvalue

spectra. We find these observations hold on eight graphs up to 2 magnitudes larger than those

used to form our hypotheses. (Section 3.5)
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Overall, these findings refine our view of the power-laws and their relationships in real-world data

of relevance to the community.

The presence of a power-law distribution in the singular values is an extremely powerful analytic

property for understanding the real-world behavior of many types of matrix-based computations on

large social networks (and why we would expect it to be far better than the worst case scenario). We

believe the observation that the power-law in the singular values of the adjacency matrix is a more

consistently observable feature than the power-law in the degree distribution to be a novel and useful

outcome from this study, which is explored further in Chapter 5.

In comparison with past studies revisiting power-laws in networks [Sala et al., 2010b], our focus

is on the power-laws in the eigenvalues and singular values across a broad spectrum of networks.

Regarding other conjectures and findings about the lack of power-laws in data [Meusel et al., 2015,

Gjoka et al., 2010], we detail a few differences in our methodology in Section 3.2.4.

We provide the results of our power-law fits as well as our analytical tools in the github repository:

https://github.com/eikmeier/powerlaw-spectra.

3.1 Data Sets and Models

Table 3.1 shows a quick view on all of our datasets. We have divided them into a number of

groups based on common types of data. For some types of networks, we have a large number of

samples (Facebook, Erdős, AS, Oregon, P2P), which we expect to be more highly related than

the more general categories, and so these become their own categories. We also investigate four

network models: graphs with a prescribed power-law degree distribution, graphs sampled from the

copying model of graph evolution, graphs sampled from the preferential attachment model, and

graphs sampled from the forest fire process. See 3.1.2 for more information on these models.

3.1.1 Real-world data

The real-world datasets are broken into three categories in Table 3.1 (the fourth cateogry contains

the models). The first category is real-world data where a power-law might be a possibility such as

in collaboration networks, biology networks, citation networks, etc. The second (small) category is a

subset of graphs where we do not expect power-law fits as the data comes from a low-dimensional

space (low-dim). These include road networks and meshes. The third group is a number of sets of

networks that have similar structure.

This large collection of real-world networks comes from a number of publicly available sources,

but primary among them are the SNAP repository [Leskovec, 2016], Pajek collection [Batagelj

https://github.com/eikmeier/powerlaw-spectra
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and Mrvar, 2006], the University of Florida sparse matrix collection [Davis and Hu, 2011], and the

Facebook100 [Traud et al., 2012]. There is overlap and duplication of networks between these groups.

We also used a number of smaller collections of networks. We have attempted to cite a large subset

of the suggested sources for the networks we have used.

Small collections. Fictional social networks [Alberich et al., 2002]; Collaboration [Bonchi et al.,

2012]; Relational (Dictionary) blondel2004-graph-similarity ; Biology [Singh et al., 2008, Klau, 2009];

Technological [(The Cooperative Association for Internet Data Analyais), 2005]; Web [Constantine

and Gleich, 2007]; Low-dim. (Mesh) [Gilbert and Teng, 2002].

Newman’s collection [Newman, 2006, 2001] lesmis [Knuth, 1993]; dolphins [Lusseau et al.,

2003]

Arenas’s collection: Jazz [Gleiser and Danon, 2003], email [Guimerà et al., 2003], PGP [Boguñá

et al., 2004],

SNAP. We used the following networks from SNAP. Collaboration ca-AstroPh, ca-CondMat,

ca-GrQc, ca-HepPh, ca-HepTh [Leskovec et al., 2007]; Social email-Enron, soc-Epinions1, soc-

Slashdot0811, soc-Slashdot0902, wiki-Vote [Leskovec et al., 2009];Web web-NotreDame [Barabási

et al., 1999].

Pajek. We used the following networks from Pajek. Citation Kohonen, Lederberg, patents main,

SciMet, SmaGri, Zewail ; Collaboration geom; Relational CSPhd, EVA; Technological USpow-

erGrid Web California, EPA; Word dictionary28, EAT RS, FA, foldoc, ODLIS, Reuters911, Roget,

Wordnet3.

For the third group, (of sets of similar networks) we provide a bit of detail next. The AS type is

autonomous systems network of routers on the internet, with edges as communications between two

vertices [Leskovec et al., 2005a]. The Oregon graphs are also autonomous systems [Leskovec, 2016].

Each of the Facebook networks are social networks where nodes represent people, and edges are a

“friendship” between two nodes [Traud et al., 2012]. The P2P graphs are peer-to-peer networks from

Gnutella, where nodes are agents and edges are again communication between two nodes [Leskovec

et al., 2007]. Erdős is a collection of networks of Erdős’s co-authors [Batagelj and Mrvar, 2006]

collected over a few years.

3.1.2 Models

We now describe some relevant details about the models as there are often a variety of construction

details that can vary, and we wish to be precise about our methods. Each model has a number of

parameters. We picked parameters to explore a diversity of graphs generated by each model. We did

not find any characteristic behavior in terms of the parameters.



12

Table 3.1.
The types of networks we use in our studies, along with a rough order of
magnitude of the sizes in vertices.

Type Description Sizes

Collab. Co-authorship or collaboration networks defined by co-occurrence in author lists 100-100k

Biology Protein-protein interaction networks 100-10k

Citation Citations or references between a set of papers or other objections 1k-230k

Fiction Networks drawn from fictional works 100-20k

Relational A catch-all category for non-specific relational links including recommender system similar-

ities, sports teams, trust networks, and others

100-20k

Social Networks that model social interactions 100-100k

Tech. Edges represent physical infrastructure including routers or power grid 5k-200k

Web Hyperlink networks 1k-300k

Word Various types of associations between words 100-100k

Low-dim Networks with low-dimensional geometry (which should not have power-laws) 100-100k

Facebook The Facebook 100 collection of networks 1k-50k

Erdős 9 collaboration networks centered on Erdős 100-5k

AS (Autonomous systems) A large set of autonomous systems networks 100-25k

Oregon Another set of AS networks 10k-11k

P2P (Peer to peer) networks from Gnutella 1k-100k

RPL (Random power-law) Random networks generated with a prescribed power-law degree

distribution

13k

Copying Networks from the copying model of graph evolution 1k-100k

PA (Preferential attachment) networks 1k-10k

Forest fire Networks generated from a forest-fire process 1k-100k

In the copying model, we start with an initial clique graph and add vertices with the following

process. A vertex arrives and picks a parent vertex uniformly at random. This new vertex then copies

connections from the parent, but makes mistakes with probability α. A mistake drops a possible link.

The graph is always undirected, so nodes can acquire new links via the copying process.

The forest fire model is similar [Leskovec et al., 2007]. We start with an initial clique. A vertex

arrives and picks a parent uniformly at random. This new vertex then explores the local neighborhood

of its parent via a forest-fire process that is akin to a randomly truncated breadth-first search. This

process explores each node in the search frontier with probability q. The new node generates edges

to any node that is explored in the process.

The preferential attachment model is the standard model [Barabási and Albert, 1999] where new

nodes connect to k-nodes chosen with probability proportional to their degree. The random power-law
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models generate a power-law distribution and then sample a graph using the Bayati-Saberi-Kim

routine [Bayati et al., 2010] with this degree distribution (or a slight perturbation necessary to ensure

a graphical sequence).

3.2 The details of our fitting methodology

Our overall methodology is to fit power-law distributions to the degrees, singular values of the

adjacency matrix, and the eigenvalues of the Laplacian matrix. Note that power-laws are not usually

described for a mixture of positive and negative values. For this reason, we look at fitting power-law

distributions to the singular values of the adjacency matrix (rather than the eigenvalues, which may

be negative. See Section 2.1). For each distribution, we seek to estimate the power-law coefficient α

and the cutoff value xmin, as well as a measure of the significance that we will discuss shortly. To

simplify the setting, we consider only undirected, connected graphs without any self-loops. Thus, for

any network with directed edges, we remove the directionality of the relationships, and extract the

largest connected component.

3.2.1 Computing degrees, singular values, and eigenvalues

For each resulting undirected graph, we compute the degree distribution, all of the eigenvalues of

the adjacency matrix (and by taking absolute values, all the the singular values as well), and all of

the eigenvalues of the Laplacian matrix. The degree distribution is straightforward. To compute

the eigenvalues, we used the MRRR algorithm as implemented in ScaLAPACK [Dhillon et al.,

2006, Vömel, 2010], and executed an eigenvalue computation using a cluster of high performance

computers at Sandia National Labs where we could load the entire matrix as a dense matrix and

execute the O(n3) algorithm to find them. The description of these computations in more detail is in

production [Gleich, 2019].

At this point, we have three collections of non-negative values: the degrees, the singular values of

the adjacency matrix, and the eigenvalues of the Laplacian matrix. We remove small elements of the

singular values and eigenvalues because the power-law distributions stated above cannot model values

of 0. More specifically, due to floating point approximation, we remove any value that is smaller than

2−52n.
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3.2.2 Fitting power-law parameters

To fit the power-law parameters, α and xmin, we use the maximum-likelihood algorithm developed

by Clauset et al. [2009]. Using this method is more accurate than the traditional method of fitting

the slope of the log-log plot. More specifically, we use the implementation by Nepusz [2016] that uses

the BFGS algorithm to estimate the parameters. Additionally, this method and software calculates

a goodness-of-fit parameter p that indicates whether the power-law fit is likely to be significant.

This score is based on a randomized procedure. If the value p > 0.1, then this is evidence that the

presence of a power-law is justified. We adopt the term significant to describe power-laws that pass

this threshold.

3.2.3 Exceptions to our methodology

We note that this procedure worked for the vast majority of networks we mentioned in Section 3.1.

All told, we ran these procedures successfully for over 5000 distributions. We were able to fit the

coefficients of the power-law for every single distribution. However, the goodness-of-fit computation

reliably failed for three degree distributions (all synthetic networks); thus, we discarded these results

as we cannot be confident in their significance. This is due to an issue of numerical precision in

the software. Specifically, the implementation by Nepusz [2016] uses the L-BFGS algorithm (see

for example [Nocedal and Wright, 2006]) to estimate the α parameter. It involves the calculation

of the difference between the Hurwitz zeta function at two points, and division. The problem here

is reduced to a classic issue in Numerical Analysis: How to avoid error when your computation

resembles the following:
small− small

small
.

In any case, we still have an extremely large database of results to study.

We also computed clustering coefficients (see Section 2.4 for definitions) for each of the networks

and models. We did not find many instances of power-laws in these distributions.

3.2.4 Limitations

There are two weaknesses with this study that slightly temper our conclusions and we wish

to address them. First, our observations 1-6 from the beginning of this chapter originate with

data up to size 300k vertices, beyond which point it became computationally difficult to compute

entire spectra of the networks. These networks originate from a variety of sources and include

crawled as well as sampled networks. Recently, there have been studies on potential biases in
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power-law observations in networks of crawled data [Achlioptas et al., 2005, Gjoka et al., 2010, Meusel

et al., 2015], which particularly apply to smaller networks. There are instances where the sampling

procedure applied to the network causes properties to emerge that are not present in the underlying

network [Schoenebeck, 2013, Achlioptas et al., 2005]. We agree our methodology cannot distinguish

if the power-law originates due to the network collection methodology or reflects an underlying

phenomenon. Although we note that just because there can be biases with crawling networks doesn’t

mean there will be problems.

To address these limitations, and towards the goal of studying larger networks, we include

experiments on a set of large networks in Section 3.5 to investigate what happens for data two orders

of magnitude larger than what we used to generate our hypotheses. These experiments support our

observations. Furthermore, two of our large networks, cit-Patents and wikipedia are generated from

a network data-dump, rather than a crawl. Additionally, we present new findings on the behavior of

power-laws in sampled networks in Chapter 5.

Second, we wanted to study relationships between these power-laws, which meant we only used

undirected graphs (and removed direction of edges in directed graphs), and we only considered

the largest connected component. For this reason, existing negative results may not be directly

comparable to ours. Meusel et al. for example, find that the degree distribution of a 3.56 Billion

node web graph does not fit a power-law [Meusel et al., 2015]. Nevertheless, our main interest is

not in terms of power-laws in the degrees, but power-laws in the singular values and eigenvalues.

Independent of the results with degree distribution power-laws, the observations about power-laws in

singular values appear to be more robust than within the degrees – which has the potential to better

inform future theoretical models of these networks.

3.3 Presence of Power-Laws

In this section we present the results of the fitting method on our data only in terms of whether

or not the distributions support a power-law hypothesis via the goodness-of-fit test. In subsequent

section, we will study these power-laws in more detail. This section serves to support the first three

findings reported at the beginning of this Chapter.

3.3.1 Many classes of networks have power-laws

First, many networks have a significant power-law in the tail of the degree distribution corre-

sponding to the largest degree vertices, as well as the singular values of the adjacency matrix, and the

eigenvalues of the Laplacian matrix. Table 3.2 lists the types of real-world networks and models that
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Table 3.2.
Presence of power-laws. For each type of real-world network or graph model, we list
the total number of networks, and the number which have significant power-law fits in
the degrees, adjacency singular value, Laplacian eigenvalues, and combinations.

Distribution Combinations All

Num. Degrees Adj.

Sing. vals

Lap.

Eig. vals

Degrees

& Adj.

Degrees

& Lap.

Adj. &

Lap.

Biology 6 4 67% 6 100% 5 83% 4 67% 4 67% 5 83% 4 67%

Citation 6 4 67% 6 100% 5 83% 4 67% 4 67% 5 83% 4 67%

Collab. 13 5 38% 8 62% 5 38% 3 23% 4 31% 3 23% 2 15%

Fiction 3 1 33% 2 67% 0 0% 0 0% 0 0% 0 0% 0 0%

Relational 6 3 50% 3 50% 4 67% 2 33% 3 50% 2 33% 2 33%

Social 9 7 78% 8 89% 6 67% 6 67% 5 56% 5 56% 4 44%

Tech. 4 3 75% 4 100% 2 50% 3 75% 1 25% 2 50% 1 25%

Web 5 4 80% 4 80% 4 80% 3 60% 4 80% 3 60% 3 60%

Word 10 5 50% 9 90% 7 70% 5 50% 4 40% 6 60% 4 40%

Low-dim 2 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%

Facebook 100 74 74% 75 75% 80 80% 56 56% 73 73% 62 62% 56 56%

AS 855 831 97% 847 99% 846 99% 823 96% 824 96% 838 98% 816 95%

P2P 9 1 11% 6 67% 2 22% 1 11% 1 11% 2 22% 1 11%

Erdős 7 1 14% 7 100% 1 14% 1 14% 0 0% 1 14% 0 0%

Oregon 18 15 83% 16 89% 12 67% 13 72% 11 61% 11 61% 10 56%

Copying 163 69 42% 120 74% 81 50% 50 31% 60 37% 60 37% 43 26%

Forest fire 188 130 69% 82 44% 135 72% 59 31% 108 57% 60 32% 49 26%

PA 81 66 81% 68 84% 81 100% 53 65% 66 81% 68 84% 53 65%

RPL 20 17 85% 16 80% 18 90% 15 75% 17 85% 16 80% 15 75%
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were described in the last section. For each type of network, we list the total number of networks and

how many of each have a statistically significant power-law fit in the tail of the degree distribution,

the singular values of the adjacency matrix, and eigenvalues of the Laplacian. We also list how many

networks have a power-law distribution in two or more of those sets.

For example, from Table 3.2 we can see that of the 18 networks in category Oregon, 15 (83%) were

found to have a power-law distribution in the degrees. Out of those with a power-law distribution in

the degrees, 13 also have a power-law distribution in the eigenvalues of the adjacency matrix, which

amounts to 72% of the total 18 networks.

As expected, the low-dimensional networks do not have power-law fits. Other classes with only a

few significant power-law fits in the degrees include: fiction networks, P2P networks and Erdős’s

collaboration networks.

Note that our methodology is not perfectly sensitive as we only identify 85% of the networks with

planted power-law distributions from the RPL experiments.

Note also that networks are far more likely to have significant power-laws in the singular values

of the adjacency matrix than the degrees. Striking examples of this include the P2P and Erdős

classes. Exceptions to this include forest fire networks, and random power-law networks, where this

is almost true. This supports our point that it is more consistently true that real-world networks

have a power-law in their adjacency singular values compared with their degrees. This observation is

much weaker for the Laplacian eigenvalues, for a reason that we will discuss shortly when we analyze

the power-law fits themselves (Section 3.4.1).

3.3.2 Relationships between power-laws

In our second analysis, we study combinations of power-laws. We only do this for classes of

networks where at least 40% of networks had all three power-laws to avoid drawing conclusions from

small sample sizes. This removes the classes: Collaboration, Fiction, Technological, Relational, P2P,

and Erdős. We still include the network models for reference.

We study these relationships in terms of conditional probabilities. Consider the probability that,

given a power-law fit in the degrees, there is a power-law fit in the singular values of the adjacency

matrix; denote this as P[A|D]. In contrast consider the likelihood that given a power-law fit in

the singular values of the adjacency matrix, there is a power-law fit in the degrees. Denote this as

P[D|A]. We use a similar notation regarding the Laplacian eigenvalues.

We list the probabilities in Table 3.3. Observe that P[A|D] is almost always larger than P[D|A]

which is to say that a power-law fit in the tail of the degrees gives a high likelihood for a power-law fit

in the tail of the singular values, but not vice-versa. Similarly P[L|D] is usually larger than P[D|L],
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Table 3.3.
Conditional probabilities that a power-law distribution in one feature gives a
power-law distribution in another. D stands for degrees, A stands for the singular
values of the adjacency matrix, and L stands for eigenvalues of the Laplacian. The first
column for example is the probability that there is a significant power-law distribution in
the singular values of the adjacency matrix given that there is a significant power-law
distribution in the degrees. For the first group of measurements, we combine the data
and compute probabilities in the summary of Other class.

Type P[A|D] P[D|A] P[L|D] P[D|L] P[L|A] P[A|L]

Biology 1.0 0.67 1.0 0.8 0.83 1.0

Citation 1.0 0.67 1.0 0.8 0.83 1.0

Social 0.86 0.75 0.71 0.83 0.62 0.83

Web 0.75 0.75 1.0 1.0 0.75 0.75

Word 1.0 0.56 0.8 0.57 0.67 0.86

Sum. of Other 0.92 0.67 0.88 0.78 0.73 0.89

Facebook 0.76 0.75 0.99 0.91 0.83 0.78

AS 0.99 0.97 0.99 0.97 0.99 0.99

Oregon 0.87 0.81 0.73 0.92 0.69 0.92

Copying 0.72 0.42 0.87 0.74 0.5 0.74

Forest fire 0.45 0.72 0.83 0.8 0.73 0.44

PA 0.8 0.78 1.0 0.81 1.0 0.84

RPL 0.88 0.94 1.0 0.94 1.0 0.89

which means that a power-law fit in the tail of the degrees likely implies a power-law fit in the tail of

the Laplacian eigenvalues. Both of these relationships have been studied in a variety of theoretical

settings in graph models such as the Chung-Lu graphs [Mihail and Papadimitriou, 2002, Chung et al.,

2003b, Elsässer, 2006]. Given the diversity of real-world data explored here, it is reassuring to see

that these theoretical predictions have meaningful real-world evidence.

3.4 Analysis of the Power-Laws

In this section we consider the exponents of the power-law distributions, and we elaborate on

several observations (points 4-6) from the beginning of this chapter. For some of these studies, we

wish to draw conclusions over multiple types of networks. For this reason, we create a new class of
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network called “Other” that consists of the classes Biology, Citation, Social, Web, and Word. (These

are all classes where at least 40% of networks had a significant power-law in all three distributions.

The findings are robust to nearby choices for this 40% threshold and the goal is to exclude classes of

networks that seem to reliably lack power-laws.)

3.4.1 Characteristics of the power-laws

Figure 3.1. Exponents of statistically significant power-law distributions. In
the first column is the exponent for the degree distribution, in the middle column the
exponent in singular values of the adjacency matrix, and in the third column the exponent
for the Laplacian eigenvalues. The top row is of the real networks, while the bottom row
is of the graph models. The class “other” includes all small classes of real-world networks
where power-laws are common (see the text).

The first characteristic of the power-law fits we examine are the exponents α. In Figure 3.1 we

plot the exponents of power-law distributions in the degrees, singular values of the adjacency matrix,

and eigenvalues of the Laplacian matrix. We consider both real world networks and models. We see

that the majority of exponents of the power-law distributions vary from 2−10, and notice particularly

that they are often greater than 3, which is much larger than observed previously (e.g., [Chung et al.,

2003b, Sala et al., 2010a]).
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Figure 3.2. Relationship between power-law in degrees and eigenvalues of the
Laplacian. Given here are networks with statistically significant power-law distributions
in both. Top row: the exponent of the power-law fit in the degrees vs. the exponent of the
power-law fit in the Laplacian eigenvalues. Bottom row: the cutoff of the power-law fit in
the degrees vs. the power-law fit in the Laplacian eigenvalues. On the left are the real
world networks, and on the right are the models. We plot the line y = x on the same axes.
A few networks are outliers from the line: Newman’s netscience, biology (protein-protein)
network dmela, and social network Caltech. We could not find any common features of
these outliers.

Next, we notice that the exponent for power-law of Laplacian eigenvalues is often nearly identical

to the exponent of the power-law of degree. This has been conjectured for a variety of models [Elsässer,

2006]. Figure 3.2 shows the relationship between these power-law fits, which almost perfectly fits to

the line αLaplacian = αdegree, matching the theory well outside of its regime where it should apply.

Furthermore, the values for the cutoff value (xmin) in the degrees and Laplacian eigenvalues are

nearly identical. This is to say that not only do the power-law fits have the same exponent, but

they also fit to the same range of values. Thus, the tail of the degree distribution and the Laplacian

eigenvalues appear to have essentially the same power-law distribution.
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Figure 3.3. Relationship between power-law in degrees and spectra. We also
plot the line αAdj. = 2αDeg. − 1, for comparison with results in the literature. The class
“other” includes all small classes of real-world networks where power-laws are common
(see the text).

Finally, we study the conjecture that the power-law in the adjacency singular values should be

2αdegree−1 when there is a power-law in both [Chung et al., 2003a]. Figure 3.3 shows the relationships

between these exponents. We see no hints of this scaling law in the real-world data. But, both the

random power law graphs and the forest fire graphs show some agreement with this scaling. Thus,

whereas the Laplacian result appears accurate, the adjacency result is not.

3.4.2 Consistency across network samples

Another observation we make is that the power-law distribution in the singular values of the

adjacency matrix often appears to be more consistent when given multiple samples of the same

network. We illustrate this via studying the density of the exponents over instances with multiple

similar types of networks: Facebook, AS, and Oregon (Figure 3.4). We include the models Copying

and PA (preferential attachment) as well. In the Facebook networks, for instance, the degree power-

law exponents vary considerably, whereas the singular value power-law has a sharp distribution about

4. For Oregon and Copying, we see similar behavior. For AS networks, the singular values may have

a slightly larger region, the preferential attachment networks are a counter-example.
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Figure 3.4. Density estimates of the power-law exponent. Considered for five
classes: Facebook, AS, Oregon, Copying, and PA. On the top are the exponents of the
power-law fit in the degree distribution, and on the bottom are the power-law exponents
of the singular values of the adjacency matrix. The singular value exponents are more
consistent in 3 of the 5 types (Facebook, Oregon, Copying), slightly less consistent in one
(AS), and more variable in one (PA).

Figure 3.5. Network size versus size of power-law tail. Log-Log plots of the size
of the network versus the size of the tail in the power-law distributions, (the number

of values greater than xmin). The lines n1/2 and n2/3 are given on the same plot for
reference. On the left are the degree distributions and on the right are the singular value
distributions. The class “other” includes all small classes of real-world networks where
power-laws are common (see the text).

3.4.3 Behavior of the cut-off

Our final observation about the nature of these power-laws reflects the number of entries where

the power-law applies. Recall that xmin is the smallest value contained in the power-law distribution.

Given a cutoff value xmin, we compute the size of the tail of the distribution, i.e., the number of

values larger than xmin. We show the size of the tail relates to the size of the network in Figure 3.5
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for both the degree and singular value power-laws. (The Laplacian power-law will behave almost

identically to the degree power-law based on the discussion in Section 3.4.1).

The size of the tail appears to scale as n2/3 in the degree distribution. A least-squares fit produces

essentially the same result (n0.67). For the singular values tails, the Facebook class shows the same

n2/3 scaling; but the other networks show scaling closer to n1/2. (The least-squares fit chooses n0.51).

Both of these scenarios (n2/3, n1/2) indicate a shrinking fraction of the network where the power-law

applies as the network size increases. However, they also provide useful practical advice about the

region where “large degrees” and “large singular values” lie – which is important to understand for

analyzing algorithms on these networks as well as designing models.

3.5 Large Networks

The networks discussed up to this point have been relatively small, topping out at around 300k

vertices. There is a computational hurdle in computing entire eigenvalue and singular value spectra

for graphs with a million or more vertices in that most approaches need O(n2) memory. The results

from the previous section, however, offers an approach: as discussed in Section 3.4.3, a lower bound

on the number of degrees or singular values we expect to be included in a power-law tail is n(1/2).

This suggests we need not compute all eigenvalues when testing for a power-law distribution.

We considered 8 large graphs from SNAP [Leskovec, 2016], MPI [Mislove et al., 2007], and

Wikipedia, listed in Table 3.4 along with information about the power-laws in the data. The

friendster, orkut, youtube, flickr, livejournal data are all social networks, skitter is a technological

router graph, patents a citation network, wikipedia a web network formed by Wikipedia articles

and their categories where an edge occurs when there is a link between a pair of articles. Note that

wikipedia, and patents are created from database dumps rather than crawls, whereas orkut, youtube,

flickr, livejournal are all crawled. These results support our findings from previous observations: the

singular values of the adjacency matrix are more likely to have a power-law than the degrees. With

regards to the cutoff, the vast majority of values are included in these power-law, with exceptions

noted below. Thus, these results show that hypotheses formed from graphs up to 300k vertices are

also supported on data 100 times larger.

Details of experiment. We chose to restrict our analysis of the large networks to the top n(1/2)

degrees and top n(1/3) singular values due to the computational complexity of testing more, and on

the assumption that both of these regions would contain power-laws if they are present. The top n(1/3)

singular-values of the adjacency matrix of each network were computed using ARPACK [Lehoucq and

Sorensen, 1996] (set to a tolerance of 10−8). A power-law distribution was fit using the plfit method

discussed in Section 3.2.2. In most cases, the cutoff (see Section 3.4.3) included all or nearly all of
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Table 3.4.
Fitting a power-law distribution to large graphs. A power-law was found to be
significant with exponent α if it is labeled α∗, and insignificant if labeled α−. Entries
labeled α� are special cases, and discussed in the text.

Graph Nodes Edges Deg. PL Adj. PL

youtube 1.13M 2.99M 2.5∗ 4.2∗

flickr 1.62M 15.5M 3.89∗ 3.09∗

skitter 1.69M 11.1M 2.25− 3.5∗

orkut 3.1M 117M 2.62∗ 4.76∗

patents 3.76M 16.5M 4.18∗ 5.19∗

livejournal 5.2M 48.9M 3.3∗ 3.55∗

wikipedia 9.47M 107M 2.46∗ 4.03∗

friendster 65.6M 1.8B 10.5� 5.04∗

the data points which we included for testing. Exceptions are the degree distribution of livejournal

and the singular value distribution of flickr, which only included about half of the values. There is

one network, friendster, for which the plfit software fails on the degrees when fitting to a discrete

distribution (see Section 3.2.3 for a short discussion on this). We instead fit friendster to a continuous

distribution. This gives similar parameters to the discrete fitting procedure in the other cases we

evaluated. The friendster network is found to have a significant power-law distribution, but there

are only 45 values greater than xmin.

3.6 Summary

By studying a large number of real world graphs, we find empirical evidence that most real

world graphs have a statistically significant power-law distribution with a cutoff in the singular

values of the adjacency matrix and eigenvalues of the Laplacian matrix in addition to the commonly

conjectured power-law in the degrees. Among these results, power-laws in the singular values appear

more consistently than in the degree distribution. The exponents of the power-law distributions are

much larger than previously observed. We find a surprising direct relationship between the power-law

in the degree distribution and the power-law in the eigenvalues of the Laplacian that was theorized in

simple models but is extremely accurate in practice. We investigate these findings in large networks

by studying the cutoff value itself, which shows a scaling law for the number of elements involved in

these power-laws. Using the scaling law enables us to compute only a subset of eigenvalues of large
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networks, up to tens of millions of vertices and billions of edges, where we find that those too show

evidence of statistically significant power-laws.
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4. THE HYPERKRON GRAPH MODEL 1

While there are many network models (such as those mentioned in the Background of this thesis),

the efficient ones often cannot model arbitrary higher-order interactions such as motifs and their

interactions. Recall that one of the goals of this thesis is to consider higher-order structure, by

which we mean patterns on three or more nodes, when generating models of networks. We believe

higher-order analysis of networks to be a critical step towards better network analysis techniques,

and this thought is supported by recent work [Lambiotte et al., 2019]. It is not obvious how to

generate these types of structures for models based on matrices of probabilities such as Erdős-Rényi,

Chung-Lu, or kernel functions [Hagberg and Lemons, 2015]. The same critique holds for evolutionary

models such as the copying model or forest-fire model.

The primary result of this chapter is a simple and flexible network model that has the ability to

capture a single type of higher-order interaction. We call it the HyperKron model. (This is introduced

formally in Section 4.1.) For arbitrary higher-order interactions, a more appropriate primitive is

hypergraph modeling [Bollobás et al., 2011] to directly model the higher-order interactions—which is

where our inspiration came from. In comparison with many other network models, the key difference

is that the probability model underlying it specifies a distribution on hyperedges rather than edges. To

generate a network, we then associate each hyperedge with a specific network motif (such as a triangle

or feed-forward motif). As we will show, this model exhibits clustering coefficients which can be

closely aligned with real-world data. As might be guessed from the name, the model is a generalization

of the extremely parsimonious Kronecker graph model described in Section 2.2.1 [Leskovec et al.,

2005b, 2010, Seshadhri et al., 2013].

The HyperKron model will rely on the notion of hyperedges. A hyperedge is just a set of vertices.

It generalizes an edge which is just a set of two vertices. In this case all hyperedges in our model will

have the same cardinality, which is often called a regular hypergraph. (For simplicity, we describe

our model where each hyperedge has three vertices.) When we create a graph from a hypergraph in

the HyperKron model, we associate each hyperedge with a motif. For most of this chapter, this motif

is simply a triangle which enables us to analyze some of the model properties. The HyperKron model

is flexible enough to handle other hyperedge structures, as discussed in Section 4.6. Though the

HyperKron model uses the concept of hypergraphs, it is important to note that we are not concerned

with the generation of hypergraphs. We simply use mechanisms to generate hyperedges to impose

1
This chapter was previously published in an abbreviated form by the IEEE [Eikmeier et al., 2018]



27

higher-order structure on a traditional graph. This was used as well in Bollobás et al. [2011] where

they associated hyperedges with triangles. HyperKron is related to another generalization of the

Kronecker Model, RTM [Akoglu et al., 2008], in the sense that it too uses a 3 dimensional tensor,

but RTM does not incorporate higher-order structure like HyperKron.

One of the challenges with this model is that an exact and efficient sampling procedure for the

desired hyperedge probability distribution is non-trivial to create. The Kronecker model, for instance,

has historically been only approximately generated [Moreno et al., 2014]. The situation is even more

complex for the HyperKron model and we need to employ techniques including multidimensional

Morton codes in order to generate these graphs in time proportional to the number of edges. (Our

procedure is explained in Section 4.3).

An advantage to working with the HyperKron model is it admits an analytical characterization of

simple properties. We show, for instance, the number of hyperedges that share an edge (Section 4.4.3).

This enables us to get accurate estimates of the number of edges the resulting model has for sparse

graphs (Section 4.4.4).

Our work also continues to evolve the space of Kronecker models. In fact, our HyperKron model is

fairly easy to combine with the majority of other ideas that have been proposed to extend Kronecker

models. It would be easy, for instance, to adapt the mKPGM model [Moreno et al., 2010] to our

setting as it simply involves a deterministic choice for some of the early tensors. Likewise, the MAG

model uses a set of Kronecker models to handle attributed graphs [Kim and Leskovec, 2010].

We conclude the technical portion of this chapter with case-studies on the HyperKron model. We

show that the HyperKron model, when using a 3 node motif, generates substantial triadic clustering

in fitting real-world network data, far beyond what is possible with Kronecker models (Section 4.5.1).

We also illustrate the same generated graphs lack clustering structure in four cliques that is present

in real-world networks. We finally show that the model is flexible enough to model other types of

interactions including directed and signed interactions when the motif associated with the hyperedge

is one of the coherent-feed forward motifs (Section 4.6).

4.1 Kronecker products of tensors

The HyperKron Model mimics the ideas of the original Kronecker Model, introduced in Sec-

tion 2.2.1. The difference is that instead of starting with a matrix and Kronecker-powering it to get

a large matrix of probabilities corresponding to edges, we start with a tensor and Kronecker-power it

to get a massive tensor of probabilities corresponding to hyperedges. For the sake of simplicity in

our discussion and analysis, we consider hyperedges with up to three nodes (3d tensors) although
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the ideas extend beyond this setting. To generate a graph, we then associate the hyperedge with a

triangle. The set-up extends to other motifs on three nodes as discussed in Section 4.6.

In more detail, start with a 3 dimensional initiator tensor, P , with dimensions n× n× n. Just

like in the Kronecker model, the value of n should be small, between 2 to 5. For example take a

2× 2× 2 symmetric initiator tensor:

b c

c d
a b

b c
(4.1)

Note that symmetric in the case of a tensor means any permutation of indices has the same value.

P 112 = P 121 = P 211. The entries of P should be probability values. (Again, the model is not

restricted to symmetric tensors, it merely simplifies the exposition.)

The Kronecker product of tensors, P ⊗ P , works just like the Kronecker product of matrices:

every element gets multiplied by every other element giving way to a n2 × n2 × n2 tensor [Phan

et al., 2012, Akoglu et al., 2008]. In the example above, P 2 = P ⊗ P has dimension 4× 4× 4

bb bc cb cc

bc bd cc cd

cb cc db dc

cc cd dc dd

ba bb ca cb

bb bc cb cc

ca cb da db

cb cc db dc

ab ac bb bc

ac ad bc bd

bb bc cb cc

bc bd cc cd

aa ab ba bb

ab ac bb bc

ba bb ca cb

bb bc cb cc
(4.2)

And the third Kronecker product, P 3 has dimension n3 × n3 × n3(8× 8× 8).

bbb bbc bcb bcc cbb cbc ccb ccc

bbc bbd bcc bcd cbc cbd ccc ccd

bcb bcc bdb bdc ccb ccc cdb cdc

bcc bcd bdc bdd ccc ccd cdc cdd

cbb cbc ccb ccc dbb dbc dcb dcc

cbc cbd ccc ccd dbc dbd dcc dcd

ccb ccc cdb cdc dcb dcc ddb ddc

ccc ccd cdc cdd dcc dcd ddc ddd

bba bbb bca bcb cba cbb cca ccb

bbb bbc bcb bcc cbb cbc ccb ccc

bca bcb bda bdb cca ccb cda cdb

bcb bcc bdb bdc ccb ccc cdb cdc

cba cbb cca ccb dba dbb dca dcb

cbb cbc ccb ccc dbb dbc dcb dcc

cca ccb cda cdb dca dcb dda ddb

ccb ccc cdb cdc dcb dcc ddb ddc

bab bac bbb bbc cab cac cbb cbc

bac bad bbc bbd cac cad cbc cbd

bbb bbc bcb bcc cbb cbc ccb ccc

bbc bbd bcc bcd cbc cbd ccc ccd

cab cac cbb cbc dab dac dbb dbc

cac cad cbc cbd dac dad dbc dbd

cbb cbc ccb ccc dbb dbc dcb dcc

cbc cbd ccc ccd dbc dbd dcc dcd

baa bab bba bbb caa cab cba cbb

bab bac bbb bbc cab cac cbb cbc

bba bbb bca bcb cba cbb cca ccb

bbb bbc bcb bcc cbb cbc ccb ccc

caa cab cba cbb daa dab dba dbb

cab cac cbb cbc dab dac dbb dbc

cba cbb cca ccb dba dbb dca dcb

cbb cbc ccb ccc dbb dbc dcb dcc

abb abc acb acc bbb bbc bcb bcc

abc abd acc acd bbc bbd bcc bcd

acb acc adb adc bcb bcc bdb bdc

acc acd adc add bcc bcd bdc bdd

bbb bbc bcb bcc cbb cbc ccb ccc

bbc bbd bcc bcd cbc cbd ccc ccd

bcb bcc bdb bdc ccb ccc cdb cdc

bcc bcd bdc bdd ccc ccd cdc cdd

aba abb aca acb bba bbb bca bcb

abb abc acb acc bbb bbc bcb bcc

aca acb ada adb bca bcb bda bdb

acb acc adb adc bcb bcc bdb bdc

bba bbb bca bcb cba cbb cca ccb

bbb bbc bcb bcc cbb cbc ccb ccc

bca bcb bda bdb cca ccb cda cdb

bcb bcc bdb bdc ccb ccc cdb cdc

aab aac abb abc bab bac bbb bbc

aac aad abc abd bac bad bbc bbd

abb abc acb acc bbb bbc bcb bcc

abc abd acc acd bbc bbd bcc bcd

bab bac bbb bbc cab cac cbb cbc

bac bad bbc bbd cac cad cbc cbd

bbb bbc bcb bcc cbb cbc ccb ccc

bbc bbd bcc bcd cbc cbd ccc ccd

aaa aab aba abb baa bab bba bbb

aab aac abb abc bab bac bbb bbc

aba abb aca acb bba bbb bca bcb

abb abc acb acc bbb bbc bcb bcc

baa bab bba bbb caa cab cba cbb

bab bac bbb bbc cab cac cbb cbc

bba bbb bca bcb cba cbb cca ccb

bbb bbc bcb bcc cbb cbc ccb ccc (4.3)
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4.2 The Symmetric HyperKron Model with Triangles

Given an n× n× n initiator tensor P of probabilities, construct the rth Kronecker Product of P ,

P r = P ⊗ P ⊗ · · · ⊗ P︸ ︷︷ ︸
r times

.

Then P r is of dimension nr × nr × nr. Note that if P is symmetric then so is P r. Generate a set of

hyperedges where we include hyperedge (i, j, k) with probability P r
ijk. For each generated hyperedge,

insert three undirected edges (i, j), (j, k), and (i, k). Duplicate edges are coalesced into a single edge.

This results in an undirected graph on nr vertices. The values of i, j, k need not be unique, so that

we may just place an edge (or a loop). An example of the result is show in Figure 4.1. Because we

insert undirected edges, it makes the most sense to consider this model with symmetric tensors, in

this case, we can restrict our generation to cases where i ≤ j ≤ k (for instance) to minimize the

number of duplicates.

The model allows placing triangles with repeated indices, i.e. edges. This is realistic for a real

world network, because we would expect some nodes to join the network with only 1 neighbor. That

being said, in most cases, we expect that all nodes in the final graph are members of triangles. This

is due to the fact that every edge (i, j) has nk opportunities to be placed.

Instead of inserting 3 undirected edges for each generated hyperedge, we could insert some

combination of directed or weighted edges between the three relevant nodes. An application using

directed and signed edges is explored in Section 4.6.

4.3 Efficient Generation

A simple algorithm to generate a HyperKron model is to explicitly generate the tensor P r and

then to explicitly sample Bernoulli random variables (coin-flips) for each entry in the tensor. If

N = nr is the dimension of the tensor, this is an O(N3) algorithm, and will not enable us to efficiently

generate realistically large networks. Consequently, we seek a more efficient algorithm.

The ideal case for a generation algorithm is that we should do O(m) or O(m logN) work where

m is the number of edges in the output. Note that r = logN . We will show how to get an O(mr2)

method, which can be achieved by adapting the idea of grass hopping from our recent paper on

generating graphs from matrices of probabilities [Ramani et al., 2017]. (This paper is written with a

tutorial style and provides a gentle introduction to many of the topics from this section for those

unfamiliar.)

Historically, sampling Kronecker graphs was done using a ball-dropping approach [Leskovec et al.,

2005b, Seshadhri et al., 2013] that inserted edges one at a time by simulating where a ball-dropped
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Figure 4.1. An example graph generated with the HyperKron model. Symmetric
initiator a=0.8, b=0.115, c=0.215, d=0.61 was used with r = 7 (only the large component
is shown). Note the presence of individual edges not involved in triangles.

through successive initiator matrices would land. This gives an O(mr) algorithm, at the cost of

an approximate distribution. A faster method to generating an exact Kronecker graph was finally

achieved when Moreno et al. [2014] showed that a Kronecker matrix is comprised of a small number

of Erdős-Rényi regions and illustrated a way to efficiently sample edges within these regions.

Our approach is also based on the idea of looking at the Erdős-Rényi regions within the Kronecker-

powered tensor P r. Recall that an Erdős-Rényi graph is sampled from a matrix where every edge

has the same probability of occurring. Define an Erdős-Rényi region as a set of entries in P r where

all the probability values are the same. For instance, note that the probability ab occurs multiple

times in (4.2). Edges in these regions can be generated by a waiting time, geometric variable, or

grass-hopping method [Fan et al., 1962, Batagelj and Brandes, 2005, Hagberg and Lemons, 2015,

Ramani et al., 2017]. That is, sample a geometric random variable to find the gap between successive

edges. Thus, the method only does work proportional to the number of edges within the region.

What is difficult is to identify where these Erdős-Rényi regions occur and then how to map from

these regions back to entries in P r.

In the remainder of this section, we show (i) that the number of Erdős-Rényi blocks is sufficiently

small that this approach will work given that we have to at least look at each block – this analysis will

show that the number of such blocks is the number of length r mulettisets of integers {0, . . . , n3 − 1};

(ii) how to sample edges in a multiplication table view of the repeated Kronecker product by grass-
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hopping (that is, sampling geometric random variables) and unranking multiset permutations; and

(iii) how to identify entries in P r by translating the multiplication table indices through a Morton

code procedure. The final algorithm is given in Figure 4.2 for reference. Note that our procedure

discussed in this section assumes a general initiator tensor P that need not be symmetric.

The HyperKron sampling algorithm.

· For each length-r multiset of {0, 1, . . . , n3 − 1} (call it s)

· Compute the probability p for region s

· Let t be the total length of the region s

· Set the index I to −1

· While the index I is less than t

· Sample a geometric rand. var. with probability p

· Increment the index I by the sample

· If the index I is still less than t

· Identify the multiset permutation p for I

· Compute the multiplication table index J for p

· MortonDecode(J, n, n, n) gives a hyperedge in P r

Figure 4.2. Pseudocode for fast hyperedge sampling algorithm on a Hyper-
Kron model. An implementation is at www.cs.purdue.edu/homes/dgleich/codes/

hyperkron

4.3.1 A small number of Erdős-Rényi blocks

First, we show that there are fewer than O(N) Erdős-Rényi regions in the graph. (If not, then

this procedure would have trouble efficiently generating sparse graphs where m = O(N).) Let the

initiator tensor P be n× n× n, and let r be the number of HyperKron products, so that there are

N = nr nodes in the graph. Notice that each probability value in P r is the product of r values from

P . Entries of P can appear more than once in the product, and the entries of P r are only unique

up to permutation (that is, the multiplication of these probabilities from P is commutative). Thus,

the total number of unique probability values in P r is n3 multi-choose r:
(
n
3
+r−1
r

)
. We will show

that this term goes to O(rn
3−1) as r grows, which is less than the O(nr) nodes of the graph. The

statement and proof follow closely from a similar result in [Ramani et al., 2017].

Lemma 4.3.1 Let P be of dimension n× n× n, and let r be the number of HyperKron products.

Then the number of Erdős-Rényi regions in P r is less than O(N) = O(nr).

www.cs.purdue.edu/homes/dgleich/codes/hyperkron
www.cs.purdue.edu/homes/dgleich/codes/hyperkron
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Proof First consider n as a parameter. Sterling’s approximation gives
(
r+n

3−1
r

)
≤
(
e(r+n

3−1)
r

)r
.

If r ≥ e(n3 − 1) then we have at most (e+ 1)r regions. In other words, we have the inequality when

e+ 1 ≤ n. So it remains to show the result for n = 2 and n = 3.

We will show that
(
r+n

3−1
r

)
≤ 2k for n = 2. Consider the equality

(
r+n

3−1
r

)
=
(r+n3−1

n
3−1

)
=
(
r+7

7

)
.

When r = 20,
(
r+7

7

)
= 880, 030 and 2r = 1, 048, 576. Using induction, we’ll show that

(
r+8

7

)
≤ 2r+1.(

r + 8

7

)
=

(r + 8)(k + 7)(r + 6)

7!

=
r + 5

r + 5
· (r + 8)(r + 7)(r + 6)

7!

=
r + 8

r + 1

(
r + 5

7

)
≤ 2 · 2r = 2r+1

The last statement holds when r ≥ 6.

A similar argument holds when n = 3. The remaining thing to consider is the behavior as r

increases. (
r + n3 − 1

r

)
=

(r + n3 − 1)!

r!(n3 − 1)!

= O

(
(r + n3 − 1)!

r!

)
= (r + n3 − 1)n

3−1

because n is a constant. Taking logarithm of both sides,

log

(
r + n3 − 1

r

)
≤ (n3 − 1)logr + n3 − 1

≤ (n3 − 1) log r + (n3 − 1) log n3 − 1.

The last inequality holds if r ≥ 2 and n3 − 1 ≥ 2. Finally, exponentiating both sides, as k goes to

infinity this term goes to rn
3−1 which is less than the number of nodes.

4.3.2 Multiplication tables and HyperKron tensors

How can we distinguish each of the Erdős-Rényi regions? Each region is identifiable by its unique

product of elements from P r, a probability value. Let us order these probability values. To that end,

first number the entries of P 0 through n3 − 1. Then when writing an entry of P r, associate each

element in the product with the sequence of r integers. For example, if P is 2× 2× 2 as in (4.1),

map each of the 8 entries to an index between 0 and 7. Probability ada in P 3 would be mapped to

070, where a = 0 and d = 7.

It isn’t obvious how to easily identify each of the locations of ada in P 3. (Or more generally,

elements in P r.) We first solve an easier problem and then later determine how to translate back to P r.
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If we re-order the entries of P 3 so that ada = 070 occurred exactly in locations [0, 0, 7], [0, 7, 0], [7, 0, 0],

then the locations would be very easy to find—they are just the permutations of [070].

We will call this re-ordering a multiplication table. Define v = vec(P ) to be the initiator tensor

as a length-n3 vector proceeding in a column-major fashion, e.g. the vectorized version of (4.1) is

[a, b, b, c, b, c, c, d]. Define a r-dimensional multiplication table:

M(i, j, . . . , k︸ ︷︷ ︸
r indices

) = vivj · · · vk︸ ︷︷ ︸
r terms

. (4.4)

For instance, M(0, 0, 7) = M(0, 7, 0) = M(7, 0, 0) = aad. Note that a HyperKron tensor P r is always

3-dimensional, while a multiplication table is r-dimensional.

The start of our strategy is: for each unique probability in P r, given by a multiset of indices

as in Section 4.3.1, “grass-hop” sample through the locations in the multiplication table where the

probability is all the same. We will see how to do this efficiently next in Section 4.3.3, and finally see

how to convert between entries of the multiplication table M and P r in Section 4.3.4.

4.3.3 Grass-Hopping Kronecker Tensors

Given an Erdős-Rényi region in P r or M , we now discuss how to “grass-hop” within that region

to find successive hyperedges. (For Kronecker graphs, see the treatment in Ramani et al. [2017]).

Let us say that our Erdős-Rényi region corresponds with a probability which is mapped to indices

p = v(i1)v(i2) · · · v(ir) where v = vec(P ) as described in Section 4.3.2. Recall that each of the

elements of v are mapped to a numerical index between 0 and n3− 1. As established in Section 4.3.2,

the locations of p in the r-dimensional multiplication table correspond exactly with permutations of

i1, i2, . . . , ir. Note that these are permutations of multisets, or sets in which elements can occur more

than once. We label each permutation lexicographically from 0 to t− 1 where

t =
m!

a1!a2! . . . ar!

is the number of permutations of the multiset i1, . . . , ir, m is the cardinality of the multiset, and ai

is the number of times that the ith element appears.

The idea for generation then, is that we can easily identify indices between 0 and t− 1 where

edges occur because each hyperedge occurs with the same probability p. As previously hinted, this is

done by sampling a geometric random variable to compute the gap until the next edge (hence we

“grass-hop” from edge-to-edge). See the discussions in Ramani et al. [2017], Fan et al. [1962], Batagelj

and Brandes [2005], and Hagberg and Lemons [2015] for more about this technique.

Given the indices where hyperedges occurred, we then need to map them to entries of the

multiplication table. This can be done by unranking multiset permutations [Knuth, 1997, Bonet,
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2008]. We wish to order the multi-set permutations, in order to grass-hop among them. To determine

this ordering on multiset permutations, we can use the ranking and unranking on combinatorial

enumeration as described in [Bonet, 2008].

For example, suppose that the Erdős-Rényi region corresponds to a probability with indices

[0, 1, 1, 2]. The permutations of this multiset are (lexicographically):

[0, 1, 1, 2]→ 0 [0, 2, 1, 1]→ 2 . . . [2, 2, 0, 1]→ 10

[0, 1, 2, 1]→ 1 . . . . . . [2, 2, 1, 0]→ 11
(4.5)

The unranking of this multiset corresponds to taking one of the indices 0, . . . , 11 and generating

the corresponding permutation. This step can be done in time O(r2) without any precomputation.

The inverse of this process is called ranking : finding the index associated with a permutation of a

multiset. The details of this process is not difficult to understand, and can be found in our online

code and in Ramani et al. [2017].

We now can use a geometric random variable to repeatedly “hop” to the next successful hyperedge,

through the labels 0 through (the number of permutations -1), until the end is reached. This gives a

list of entries in the Multiplication table.

4.3.4 Morton Codes

The last detail is how to map between the r-dimensional multiplication table entry and the

3-dimensional HyperKron tensor P r. The relationship between their locations depends on Morton

codes as was described for the case of matrices [Ramani et al., 2017]. We extend that analysis to the 3-

dimensional HyperKron tensor. A Morton code reflects a particular way of ordering multidimensional

data. Because of its shape for a matrix, it is sometimes called a “Z-order.” For a 3d space (such as a

tensor), the order is given by a more complicated structure illustrated in Figure 4.3. The particular

relationship we use is established by the following theorem.

Theorem 4.3.1 Let P r be an n× n× n tensor, and v be the column major representation of P .

Consider an element in the vectorized multiplication table

v ⊗ v ⊗ . . .⊗ v︸ ︷︷ ︸
r times

with index (p1, p2, . . . , pr). Let I be the lexicographical index of the element (p1, p2, . . . , pr). Then the

base 3-dimensional Morton Decoding of I in base r provides the row, column, and slice indices of an

element in

P ⊗ P ⊗ . . .⊗ P︸ ︷︷ ︸
r times
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with the same value. Converting the row, column, and slice indices by using Morton ordering, we can

build a permutation matrix Mn,r, and we can write

vec(P ⊗ P ⊗ . . .⊗ P︸ ︷︷ ︸
r times

) = Mn,r(v ⊗ v ⊗ . . .⊗ v︸ ︷︷ ︸
r times

)

Proof See Ramani et al. [2017] for the proof for the 2-dimensional Morton decoding. The key idea

for the proof is that we can induct over r and show that given that it works for r = 1 (trivially) and

given that it works for (p1, . . . , pr), then the Morton code including pr+1 will “zoom in” on the right

region of the full tensor P r.

For brevity, we will write P⊗r = P ⊗ P ⊗ · · · ⊗ P︸ ︷︷ ︸
r times

and v⊗r = v ⊗ v ⊗ · · · ⊗ v︸ ︷︷ ︸
r times

be defined in the

same way. (In the rest of this chapter we simply used P r instead of P⊗r, but we wish to use the

same notation between P and v. ) In the proof, we will show that the Morton code for I gives

the correct row, column, and slice indices for P⊗r. The resulting permutation matrix follows by

converting those indices to a column-major index and building the full permutation matrix. We will

prove this statement by induction on the power of the Kronecker tensor product, r.

Base case: For the base case, r = 1. This means that P⊗r is the initiator tensor. Then the

equality is vec(P ) = Mn,1 which gives Mn,1 to be the identity.

Inductive step: Assume that Mn,r is the correct map. This means that we can find the correct

row, column, and slice indices, (Rr, Cr, Sr) for a given index of the r dimensional multiplication table

(p1, p2, . . . , pr).

Let (p1, p2, . . . , pr, pr+1) be an index in v⊗r+1. Then by the assumption, (p1, p2, . . . , pr) is an

index in v⊗r where the Morton code correctly gives the correct row, column, and slice values in

P⊗r : (Rr, Cr, Sr). To understand the next step, it will be helpful to keep in mind the structure of

P⊗r+1. Each slice i is of the form:
P 11iP

⊗r P 12iP
⊗r · · · P 1niP

⊗r

P 21iP
⊗r P 22iP

⊗r · · · P 2niP
⊗r

...
...

. . .
...

P n1iP
⊗r P n2iP

⊗r · · · P nniP
⊗r

 (4.6)

Then the row, column, and slice values for (r1, r2, . . . , rk, rk+1) are

Rr+1 = Rr + (pr+1 mod n)nr

Cr+1 = Cr + (
⌊pr+1

n

⌋
mod n)nr

Sr+1 = Sr + (

⌊
pr+1

n2

⌋
mod n)nr

(4.7)

So far in this inductive step, we have found the row, column, and slice index which corresponds to a

multiplication table index. Now we must show that the Morton decoding process gives the same
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Figure 4.3. 3-dimensional Morton Codes. Starting from the left, a 2× 2× 2 tensor,
a 4× 4× 4 tensor, and an 8× 8× 8 tensor. Image obtained from Hoedt [2012] and used
with permission.

correct row, column, and slice index. Lets say that the multiplication table index (p1, p2, . . . , pr), has

lexicographical index Ir. Then we need to find the lexicographical index Ir+1 which corresponds to

(p1, p2, . . . , pr, pr+1). This update comes from the fact that the lexicographical index is calculated by

converting the multiplication table index from base n3 to base 10:

Ir+1 = Ir + pr+1(n3)r (4.8)

Finally, we need to show that Ir+1 maps correctly to Rr+1, Cr+1, and Sr+1. We’ll use the following

equalities:

pr+1 =
⌊pr+1

n

⌋
n+ (pr+1modn)pr+1 =

⌊
pr+1

n2

⌋
n2 + (pr+1modn2) (4.9)

which comes from the division and remainder theorem when calculating pr+1/n and pr+1/n
2. Substi-

tuting these into equation (4.8) gives

Ir+1 = Ir +
⌊pr+1

n

⌋
n3r+1 + (pr+1 modn)n3r

= Ir +
⌊pr+1

n

⌋
n3r+1 +

(⌊
pr + 1

n2

⌊
mod n

)
n3r+2 +

(
(pr+1modn

2) mod n
)3r

Thus, the Morton decoding of Ir+1 is equivalent to decoding Ir and adding on the digits for the row,

column and slice indices. This finished the proof.

4.3.5 Runtime performance

We implemented the generation procedure (Figure 4.2) in the Julia language with a goal towards

optimizing easy-to-avoid computational overhead. The resulting program, which is available from

www.cs.purdue.edu/homes/dgleich/codes/hyperkron, generates hyperedges at about 1,000,000

per second on a single-thread of modern desktop computer. We evaluated the scalability of the

code up to 20 million edges in three scenarios. All three scenarios use a 2 × 2 × 2 symmetric

www.cs.purdue.edu/homes/dgleich/codes/hyperkron
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initiator tensor P . This gives four parameters a, b, c, d as in equation (4.1). In the first case, we set

a = 0.05, b = 0.3, c = 0.4, and choose d such that the expected number of hyperedges ((a+3b+3c+d)r)

is 5 times the number of nodes. (For reference, when r = 10 then d = 0.199 and when r = 20

then d = 0.018.) In the second case, we set a = 0.9, b = 0.3, d = 0.0 and choose c such that

the expected number of hyperedges is 10 times the number of nodes. In the third case, we set

a = 0.3, c = 0.3, d = 0.1 and choose b so there are 20 times the number of hyperedges as nodes. The

time it takes to generate graphs as r varies from 10 to 20 is shown in Figure 4.4. Although the

theoretical scaling of our procedure is O(mr2), we observe linear scaling in this regime because the

r2 work can be done efficiently within an array of 4r bytes that typically fits in L1 cache. Hence, it

operates faster than many other steps of the algorithm. The slopes of the lines in Figure 4.4 are

approximately 0.09, 0.11 and 0.15 for avgdeg = 5, 10, and 20 respectively.

10 12 14 16 18 20
r

10 2

10 1

100

101

tim
e 

(s
)

avgdeg=5
avgdeg=10
avgdeg=20

Figure 4.4. Time taken to generate hyperedges for a HyperKron model. As r
grows, the time shows linear scaling in 2r. The average degree is the expected number of
hyperedges per node. See Section 4.3.5 for more about the choice of parameters.

4.4 HyperKron Properties

Next we discuss analytic results and features of the HyperKron model. We compute various

expected properties of the model such as the number of hyperedges that share an edge and practical

estimates of the total number of generated edges. We also show that the model has non-trivial

clustering for a wide set of parameters.
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4.4.1 Summation Formulas

Many of the quantities we analytically compute require the following summation formulas. Define∑∗
to be a summation over all combinations of indicated indices except when two or more have

the same value. While it will be easy to write down formulas relating to the model in terms of
∑∗

,

it is easier to sum over the original
∑

. So here we present formulas that relate the two. Further

explanation for these formulas can be found in Gleich and Owen [2012].∑
ij

∗
fij =

∑
ij

fij −
∑
i

fii

∑
ijk

∗
fijk =

∑
ijk

fijk −
∑
ij

(fijj + fiji + fiij) + 2
∑
i

fiii

4.4.2 Exact Expectation of Edges

First note that the actual number of edges is

E =
1

2

∑
ij

∗
Aij (4.10)

where A is the symmetric adjacency matrix and
∑∗

is defined in Section 4.4.1. Let Fijt =

Bernoulli(P r
ijt), so Fijt is 1 with probability P r

ijt and 0 otherwise. The probability that Aij = 1 is

equal to the probability that any of the Bernoulli samples Frst contain the indices i and j.

Now define a random variable, Xij , for the number of successful trials of Fijt for all t and

permutations. Note Xij ∈ {0, 1, 2, · · · }, and we can calculate the probability of edge (i, j) as the

probability that Xij is greater than or equal to 1. Xij =
∑
t(Fijt +Fitj +Fjit +Fjti +Ftij +Ftji) =

6
∑
t Fijt. Then we can calculate the expected value for each entry of A.

E[Xij ] = 6
∑
t

E[Fijt] = 6
n∑
t=1

Pijt

E(Aij) = P(Xij ≥ 1) = 1− P(Xij = 0) = 1−
n∏
t=1

P(Fijt = 0) = 1−
n∏
t=1

(1− P r
ijt)

Then the expected number of edges in the graph is the sum over all entries in the adjacency matrix.

We divide by two since the summation counts each edge twice.

2E(E) =
∑
ij

∗
E(Aij) =

∑
ij

[
1−

n∏
t=1

(1−P r
ijt)
]
−
∑
i

[
1−

n∏
t=1

(1−P r
iit)
]

The very last equality comes from Section 4.4.1. This formula, unfortunately, is not computationally

helpful.
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4.4.3 Duplicate Edges Motif

Next we explicitly compute the expected number of duplicate edges placed in the HyperKron

model, which we will put to use for a computationally efficient approximation to the number of edges

in Section 4.4.4. We expect to see duplicates if two hyper-edges are dropped with a single repeated

edge. The number of such features in the model is the sum over all hyper-edges which share an

edge,
∑
k1k2

∗
(
∑
ij
∗
P r
ijk1

P r
ijk2

). We split the sums in this way because k1 6= k2 and i 6= j, but other

equalities among indices can occur. Using the relationships in Section 4.4.1,

4 · duplicates =
∑
k1k2

∗

∑
ij

∗
P r
ijk1

P r
ijk2


=
∑
ijk1k2

P r
ijk1

P r
ijk2
−
∑
ik1k2

P r
iik1

P r
iik2
−
∑
ijk1

(P r
ijk1

)2 +
∑
ik1

(Piik1)2

The factor of 4 is due to counting {{ijk1}, {ijk2}} 4 times.

We can derive formulas for each of these sums in terms of the values of P . The formulas will be

based off of a 2× 2× 2 non-symmetric initiator matrix, hence is more general than the HyperKron

paradigm we’ve presented. It is easily adjusted to the symmetric case.

b1 b2

b3 b4a1 a2

a3 a4

We will show how to derive the summation for arguably the most difficult of those presented here,

due to the 4 summation indices. The others are similar and we give their values in Eq. (4.11).

Lemma 4.4.1 Let the entries of the initiator tensor P be

P 111 = a1 P 121 = a2 P 211 = a3 P 221 = a4

P 112 = b1 P 122 = b2 P 212 = b3 P 222 = b4
, then

∑
ijk1k2

P r
ijk1

P r
ijk2

= [(a1 + b1)2 + (a2 + b2)2 + (a3 + b3)2 + (a4 + b4)2]r

Proof. We proceed inductively. If r = 1, then P r = P is the initiator tensor, then the indices

i, j, k1, k2 all range between 1-2, and we can easily write out the sum:∑
ijk1k2

P ijk1
P ijk1k2

= (a1 + b1)2 + (a2 + b2)2 + (a3 + b3)2 + (a4 + b4)2
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Assume the formula for r − 1, we use P r = P ⊗ P r−1 to get:∑
ijk1k2

P r
ijk1

P r
ijk2

=
∑
ijk1k2

(
P ijk1

⊗ P r−1
ijk1

)(
P ijk2

⊗ P r−1
ijk2

)

=
∑
ijk1k2

P ijk1
P ijk2

 ∑
ijk1k2

P r−1
ijk1

P r−1
ijk2


= [(a1 + b1)2 + (a2 + b2)2 + (a3 + b3)2 + (a4 + b4)2]

· [(a1 + b1)2 + (a2 + b2)2 + (a3 + b3)2 + (a4 + b4)2]r−1

= [(a1 + b1)2 + (a2 + b2)2 + (a3 + b3)2 + (a4 + b4)2]r

4.4.4 Approximate Expectation of Edges

The formula for edges presented in Section 4.4.2 is exact in expectation, but it is computationally

expensive. We instead offer an approximation for the number of edges that is appropriate when there

aren’t too many hyperedges. Our estimate comes from the basic idea that 3 times the number of

hyper-edges dropped in the model, with small adjustments, should be a good estimate on the total

number of edges assuming a sparse set of hyperedges. So to be more precise, our estimate is 3 times

the number of 3-edges dropped plus 2 times the number of two-edges dropped minus duplicates

expected at random (Section 4.4.3).

The number of 3-edges dropped is number of hyper-edges dropped with unique indices. This

quantity is just the sum over P r:

6 · 3-edges =
∑
ijk

∗
P r
ijk =

∑
ijk

P r
ijk −

∑
ij

(P r
ijj + P r

jij + P r
jji) + 2

∑
i

P r
iii

The factor of 6 is because there are six permutations of (i, j, k).

The number of 2-edges dropped is the number of hyper-edges dropped with a repeated index,

which is exactly the end pieces of the formula above:

2 · 2-edges =
∑∗

ij
(P r

ijj + P r
jij + P r

jji) =
∑
ij

(P r
ijj + P r

jij + P r
jji)− 3

∑
i

P r
iii

The factor of 2 is for counting (i, j) twice.
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Figure 4.5. Two hyperedges which share an edge.

One of the sums from the duplicates formula is explicitly calculated in Section 4.4.3, and given

the same setup as in lemma 4.4.1 the remaining sums can be found in similar fashion:∑
ijk(P r

ijk)m = (am1 + am2 + am3 + am4 + bm1 + bm2 + bm3 + bm4 )r∑
ijk P

r
iijP

r
iik = ((a1 + b1)2 + (a4 + b4)2)r∑

ij(P
r
ijj)

m = (am1 + bm2 + am3 + bm4 )r∑
ij(P

r
iji)

m = (am1 + am2 + bm3 + bm4 )r∑
ij(P

r
iij)

m = (am1 + bm1 + am4 + bm4 )r∑
i(P

r
iii)

m = (am1 + bm4 )r

(4.11)

So all together, the estimate for the number of edges is

E(E) = 3(3-hyperedges) + 2(2-hyperedges)− duplicates

= 1/2(a1 + a2 + a3 + a4 + b1 + b2 + b3 + b4)r + 1/2(a1 + b2 + a3 + b4)r

+ 1/2(a1 + a2 + b3 + b4)r + 1/2(a1 + b1 + a4 + b4)r − 2(a1 + b4)r

− 1/4
(

(a1 + b1)2 + (a2 + b2)2 + (a3 + b3)2 + (a4 + b4)2
)r

+ 1/4(a2
1 + a2

2 + a2
3 + a2

4 + b21 + b22 + b23 + b24)r

+ 1/4((a1 + b1)2 + (a4 + b4)2)r − 1/4(a2
1 + b21 + a2

4 + b24)r

(4.12)

To verify that the estimate (4.12) is accurate, we test the expected edges count against the true

number of edges generated in HyperKron models with the same parameters used as in the experiment

in Section 4.3.5. The true number of edges compared to the estimate is presented in Figure (4.6).

If you look closely, particularly for small r, (4.12) is not exact. Nevertheless, it is quite accurate.

It is important to note that (4.12) will not work for all choices of parameters, particularly those

that result in dense graphs. For example, choosing parameters a, b, c, d = (0.99, 0.43, 0.4, 0.009) with

r = 13 leads to an average of 4 million edges generated in a HyperKron graph, while the expected

edge count from (4.12) is only 1.98 million. Nonetheless, it is still very useful when fitting sparse

real-data to have a way to predict the number of edges which will appear in the HyperKron model.
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Figure 4.6. Expected number of edges in the HyperKron model. The true number
of edges generated in the model versus the count from (4.12). See Section 4.3.5 for more
about the choice of parameters and average degree.
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4.4.5 Extra Formulas

Similar to equation 4.11, other counts the tensors can be made. For fun I computed a few more

and record them here.∑
ij P

r
iijP

r
iii = (a2

1 + a1b1 + a4b4 + b24)r∑
ij P

r
ijiP

r
iii = (a2

1 + a1a2 + b3b4 + b24)r∑
ij P

r
ijjP

r
iii = (a2

1 + a1b2 + a3b4 + b24)r∑
ij P

r
ijiP

r
iij = (a2

1 + a2b1 + a4b3 + b24)r∑
ij P

r
ijiP

r
ijj = (a2

1 + a2b2 + a3b3 + b24)r∑
ij P

r
iijP

r
ijj = (a2

1 + a2b1 + a4b3 + b24)r∑
ijk P

r
iiiP

r
ijk = (a2

1 + a1b1 + a1a2 + a1b2 + a3b4 + b3b4 + a4b4 + b24)2∑
ijk P

r
iijP

r
iki = ((a1 + b1)(a1 + a2) + (a4 + b4)(b3 + b4))r∑

ijk P
r
ijiP

r
iki = ((a1 + a2)2 + (b3 + b4)2)r∑

ijk P
r
ijkP

r
iji = (a2

1 + a1b1 + a2
2 + a2b2 + b23 + a3b3 + a4b4 + b24)r∑

ijk P
r
ijkP

r
iki = (a2

1 + a1a2 + a2b1 + a2b2 + a3b3 + a4b3 + b3b4 + b24)r∑
ijk P
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ijj = (a2

1 + a1b1 + b22 + a2b2 + a2
3 + a3b3 + a4b4 + b24)r∑

ijk P
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1 + a1a2 + b1b2 + b22 + a2
3 + a3a4 + b3b4 + b24)r∑

ijk P
r
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r
iij = (a2
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r
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3 + a3a4 + b3b4 + b24)r∑

ijk P
r
ijjP

r
ikk = ((a1 + b2)2 + (a3 + b4)2)r∑

ijk P
r
ijiP

r
ikk = ((a1 + a2)(a1 + b2) + (a3 + b4)(b3 + b4))r∑

ijk P
r
iijP

r
ikk = ((a1 + b1)(a1 + b2) + (a3 + b4)(a4 + b4))r∑

ijktP
r
ijkP

r
ijt = ((a1 + b1)2 + (a2 + b2)2 + (a3 + b3)2 + (a4 + b4)2)r
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4.4.6 Non-trivial Clustering

Next we present the case the HyperKron model allows for generating models with significant

clustering even with few edges. This is an improvement over the original Kronecker model, which

we compare to here and explore further in Section 3.2.2. We use the global clustering coefficient,

which was explained in 2.4. We generate the HyperKron model for fixed a and d parameters, using

r = 10. Figure 4.7 demonstrates that for varying all values of b and c the global clustering is always

above 0.05, and is often much larger. It is large initially because all edges are in triangles. As the

network becomes denser (b, c get larger), then wedges emerge causing the coefficient to drop. Finally,
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as the network becomes quite dense, these wedges combine into triangles. But throughout, clustering

remains. This is significant because we can still achieve good clustering with sparse networks (the

real-world behavior) with the HyperKron model.

In comparison, global clustering coefficients for varying parameters in the Kronecker model are

in Figure 4.8. Note first that the y-axis is on a different scale. Second, notice that we use larger

parameters for d, in order to find larger global clustering coefficients. The parameters for which the

clustering coefficients are greater than 0.05 are all large, resulting in Kronecker graphs which will be

quite dense. This makes the parameters not very useful to model real world data.
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Figure 4.7. Global clustering coefficients of the HyperKron model. The coeffi-
cients vary with changing HyperKron parameters. Here r = 10.

4.5 Fitting HyperKron to Real Data

We demonstrate now that the HyperKron model can be fit to real-world data by hand-tuning the

coefficients. Four real-world networks were chosen: email comes from Arena’s collection, and is a list

of email exchanges between members of the University Rovira i Virgili with 1133 nodes [Guimerà

et al., 2003]; Villanova62 (7772 nodes) and MU68 (15k nodes) come from the Facebook 100 data

set [Traud et al., 2012] where nodes represent people and edges are friendships; and homo is a biology

network of protein interactions with 8887 nodes [Singh et al., 2008].

To fit real-world data to our HyperKron model, we choose to fit the model to just the set of

triangles in the network as this is the natural structure for HyperKron to generate. (See Section 4.5.3

where we consider the full network.) Fitting the coefficients to a symmetric HyperKron model with
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Figure 4.8. Global clustering coefficients of the Kronecker model. Coefficients
vary with changing Kronecker parameters. r = 10.

a 2 × 2 × 2 initiator matrix (four parameters) was done by hand. See our choices a, b, c, and d in

Table 4.1.

For comparison, we fit the same data sets to the Kronecker model as well using the method-of-

moments [Gleich and Owen, 2012] (called KGMoment in the table) and maximum likelihood [Leskovec

et al., 2010] (called KGFit in the table). (These methods often picked different r.) For reference, we

also fit those models to the full edge data in addition to the extracted triangle data. While there are

other models that would also capture clustering [Kolda et al., 2014, Newman, 2009], these require far

more parameters and so we don’t compare against them.

4.5.1 Clustering Coefficients

The traditional global clustering coefficient and the average local clustering coefficient are both

described in Section 2.4. One of the biggest improvements of the HyperKron model over other

graph models such as the original Kronecker model, is the ability to capture clustering in the model.

Regardless of using the full data, or restricted triangle data, the Kronecker models do not capture

clustering properties as closely as the HyperKron model does (see Table 4.1).

There remain properties of the real-world networks that HyperKron does not possess. For instance,

the HyperKron model lacks higher-order clustering. We use the methodology and code presented

in Yin et al. [2018] to compute higher order clustering coefficients, described in Section 2.4. We find
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that the HyperKron model does not display clustering in terms of four cliques, five cliques, or six

cliques (3rd, 4th, and 5th order) and the coefficients for higher orders are small, as seen in Table 4.2.

4.5.2 Skewed Degrees

Another desirable property that the HyperKron model preserves is a highly skewed degree

distribution. That is, there are a few nodes with very large degree, with the average degree being

much smaller. Figure 4.9 shows the degree distributions in log-scale for two of the networks:

Villanova62, and MU78, along with their HyperKron fits. We also show Loess smoothed estimates to

show broader properties.

There are two notable behaviors in the HyperKron degree distribution. First, there are two “tails”

in nodes with lower degree. The tail with larger counts are nodes with even degree. They occur in

higher frequency since the model most often adds two neighbors to a node at once when we add

triangles. Conversely, the tail with smaller counts are nodes with odd degree, since a single edge is

placed infrequently. Second, the HyperKron model shows an interesting pattern in the high-degree

vertices. This is a known problem with Kronecker models and occurs in the original version as well.

The peaks can be smoothed out in the Kronecker model by perturbing the probability matrix as

demonstrated in Seshadhri et al. [2013]. We implemented a similar procedure which we explain next.

4.5.3 Improvements to the model

We made several tweaks to the HyperKron generation to address these issues. First of all, we

add a noise parameter to the HyperKron model in a generalization of the method in Seshadhri et al.

[2013]. Recall that the probability of placing a particular hyperedge is the multiplication of r entries

of the initiator tensor, P . To incorporate noise we perturb each of the r tensors involved in the

Kronecker product with two noise parameters, µi, νi, in the following way. Instead of using the tensor

in (4.1), for each level i = 1, 2, . . . r we use

P i =

 a− 3aµi

a+d −
3aνi
a+d b+ µi b+ µi c+ νi

b+ µi c+ νi c+ νi d− 3dµi

a+d −
3dνi
a+d

 , (4.13)

where µi, νi are uniformly randomly sampled within an appropriate range, [−σ, σ] and σ ≤ min(b, c)

(akin to the case for Kronecker in Seshadhri et al. [2013]). For each noisy P i, the sum of the entries

is equal to the sum of the entries of P (that is, a+ 3b+ 3c+ d). Using these added noise parameters,

we fit HyperKron to the set of edges involved in triangles, using the same initiator parameters as

before.
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Table 4.1.
Fitting real world data to the HyperKron model. Note that the only model
presented here with non-trivial global and local clustering are the HyperKron (HKron)
fits. See the text for some of the details. We list the number of nodes, number of edges,
global clustering coefficient, mean-local clustering coefficient, and the size of the largest
connected component.

global local lcc

Network name edges clust clust size

email full 5451 0.166 0.220 1133

KGFit: (.9538, .6196, .1463) r = 11 4941 0.032 0.060 1803

KGMoment: (1.0, 0.5241, 0.2990), r = 11 5945 0.035 0.031 1351

email triangles 4229 0.232 0.366 837

HKron: (0.999, 0.31, 0.2, 0.0001), r = 10 4546 0.140 0.346 735

KGFit: (.9036, .6946, .2056), r = 10 4736 0.052 0.076 949

KGMoment: (1.0, 0.5132, 0.2688), r = 11 4651 0.034 0.032 1393

homo full 33k 0.070 0.133 8887

KGFit: (.9895, .5569, 0.1147), r = 14 34k 0.013 0.025 6547

KGMoment: (1.0, 0.5676, 0.0759), r=14 33k 0.015 0.033 6333

homo triangles 19k 0.141 0.264 3783

HKron: (0.8, 0.115, 0.15, 0.83), r = 12 19k 0.101 0.164 4072

KGFit: (.9487, .6416, .1832), r = 12 20k 0.027 0.048 3194

KGMoment: (1.0, 0.5227, 0.0882), r=14 20k 0.013 0.022 4502

Villanova62 full 315k 0.166 0.235 7755

KGFit: (.9999, .7064, .388), r = 13 326k 0.056 0.064 8187

KGMoment: (1.0, 0.696, 0.4086), r = 13 326k 0.054 0.059 8185

Villanova62 triangles 311k 0.168 0.258 7476

HKron: (0.9, 0.4, .24, .001), r = 13 306k 0.111 0.265 7944

KGFit: (0.9999, .7058, .3865), r = 13 322k 0.055 0.064 8187

KGMoment: (1.0, 0.6965, 0.4054), r = 13 323k 0.054 0.059 8186

MU78 full 649k 0.152 0.214 15k

KGFit: (.996, .675, .3992), r = 14 690k 0.034 0.037 16k

KGMoment: (1.0, 0.6305, 0.4790), r = 14 672k 0.028 0.026 16k

MU78 triangles 637k 0.155 0.240 15k

HKron: (0.9, 0.42, 0.20, 0.001), r = 14 625k 0.097 0.295 16k

KGFit: (0.9993, 0.6721, 0.3973), r = 14 675k 0.037 0.034 16k

KGMoment: (1.0, 0.6311, 0.4745), r = 14 661k 0.028 0.026 16k
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Table 4.2.
Higher order global clustering coefficients of the HyperKron model.

Network name 3rd 4th 5th

email triangles 0.137 0.156 0.223

HKron: (0.999, 0.31, 0.2, 0.0001), r = 10 0.065 0.045 0.033

homo triangles 0.113 0.184 0.261

HKron: (0.8, 0.115, 0.15, 0.83), r = 12 0.002 0.0 0.0

Villanova62 triangles 0.109 0.115 0.131

HKron: (0.9, 0.4, .24, .001), r = 13 0.050 0.037 0.031

MU78 triangles 0.137 0.164 0.175

HKron: (0.9, 0.42, 0.20, 0.001), r = 14 0.052 0.040 0.033
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Figure 4.9. HyperKron preserves highly skewed degree distribution. Though
the distribution is skewed, there is notable behavior which is discussed in the text.
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The second adjustment that is to also account for the set of remaining edges (those not involved

in triangles). We fit this residual set of edges to a Kronecker model using the method of moments

in Gleich and Owen [2012], with an added noise parameter as in Seshadhri et al. [2013]. Note that

when we add the Kronecker graph to the HyperKron graph, many of the edges overlap. So finally, we

add in an Erdős-Rényi graph with an expected number of edges set to add enough edges to get back

to the number of edges of the original graph. Adding on additional edges in these ways is natural, as

both the Kronecker and Erdős-Rényi graphs can be derived from subsets of the HyperKron tensor

where two indices are equal. That is, we can view these as instances of sums of HyperKron models.

Let us elaborate on this point. Consider the following initiator Kronecker matrix, and it’s second

power:

P =

a b

b c

 ,P 2 =


aa ab ba bb

ac ad bc bd

ca cb da db

cc cd dc dd


Next consider the following symmetric HyperKron initiator tensor:

P =

 a b b c

b c c d

 ,
and it’s 2nd power:

P 2 =


aa ab ba bb ab ac bb bc ba bb ca cb bb bc cb cc

ab ac bb bc ac ad bc bd bb bc cb cc bc bd cc cd

ba bb ca cb bb bc cb cc ca cb da db cb cc db dc

bb bc cb cc bc bd cc cd cb cc db dc cc cd dc dd

 .

Each element which has two indices equal is bold in P 2. Notice that if the expectation of an edge

in P 2 is E, then the expectation of that edge from the bold items in P 2 is 3E. For example, the

expectation of placing edge (1, 2) in P 2 is

P 2
21 + P 2

12 = ac+ ab.

And in P 2 it is

P 2
112 + P 2

121 + P 2
211 + P 2

122 + P 2
212 + P 2

221 = 3ac+ 3ab.

This shouldn’t be surprising Given edge indices (i, j), the number of times it appears in P k is the

number of multiset permutations of i, j of length 3, which is 6 total. So, we can think of a graph

generated by a Kronecker model as a subset of edges generated from a HyperKron model.

To summarize, given a real-world network the overall procedure for this improved fitting is:

1. Determine which edges are involved in triangles, and which are not.
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2. Fit the set of triangles to a perturbed HyperKron model.

3. Fit the set of edges which are not involved in triangles to a perturbed Kronecker model.

4. After generating samples of each of these, and adding them together, bring the total number of

edges up to the correct expected number of edges by adding in an Erdős-Rényi sample.
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Figure 4.10. Improved degree distribution in HyperKron. Improvements to the
HyperKron model eliminates two-tailed behavior and almost entirely removes oscillation
and improves the fit to data. See the text for details.

Figure 4.10 gives the degree distributions of the full original network data in log-scale, along

with the improved fitting. For Villanova62, the HyperKron noise (σ) was set to 0.15, and the

Kronecker noise was set to 0.1. For MU78 the HyperKron noise was set to .2 and the Kronecker

noise was set to 0.05. The two tailed behavior is eliminated by fitting to the non-triangle edges, and

the oscillation behavior is almost entirely removed by the noise. In both cases, the fittings retain

non-trivial clustering coefficients.
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4.6 Model flexibility

Thus far, HyperKron was described in a setting where triangles are associated with each generated

hyperedge. As we have seen, this is an appropriate choice for settings where we expect 2nd order

(triangle-based) clustering in undirected networks. There are more complex types of network data,

and we now show that the HyperKron model is also relevant for these more interesting data.

Figure 4.11. HyperKron fit to yeast network. On the left, a network drawing of the
nodes involved in the feed forward loops in S. cerevisiae. Green edges denote promotion
(positive sign) and orange edges denote repression (negative sign). On right, a network
drawing of the HyperKron model described in the text.

For instance, the S. cerevisiae transcription regulatory network is a directed, signed graph that

describes promotion or repression of gene expression in the common yeast organism. Coherent

feed-forward loops are an important higher-order structure in this network [Milo et al., 2002]. We

extract all nodes involved in coherent feed forward loops, leaving a network with 61 nodes and 108

directed, signed edges (92 positive, 16 negative). By manually tweaking entries to get the number of

edges to match, we generated HyperKron model using a 2× 2× 2 tensor with parameters:

P 111 = 0.14 P 121 = 0.25 P 211 = 0 P 221 = 0.45

P 112 = 0.55 P 122 = 0 P 212 = 0.31 P 222 = 0.06

and r = 7. We associated each hyperedge with one of the four coherent feed-forward loops based on

a biased random choice. More specifically:

• the type 1, all positive motif, had probability 1/2
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• the type 2 motif had probability 1/4

• the type 3 and 4 motifs had probability 1/8

See Milo et al. [2002] for more about these types. The probabilities were chosen in this way because

the real network doesn’t have any type 3 and 4 feed-forward loops. When we assemble the motifs

placed via these hyperedges into a network, any two motifs that share an edge with the same direction

will be coalesced by summing the signs. The largest connected component of the resulting network

had 69 nodes and 108 directed, signed edges (90 positive, 18 negative).

We show graph drawings of the two networks in Figure 4.11 The real network has 38 coherent

feed forward loops and 2 incoherent feed forward loops. The HyperKron model has 36 coherent

feed forward loops and 1 incoherent feed forward loop. Note that the presence of incoherent feed

forward loops is an emergent behavior because we only ever generated coherent loops. In this case,

we might ask if finding 2 incoherent feed forward loops in the real network is likely to occur or not.

By generating 10000 instances of our model, we find at least 2 incoherent feed forward loops around

1006 times (roughly 10%). Consequently, the presence of these two loops in the real data could easily

have occurred by chance.

4.7 Summary

Graph models have long been used in lieu of real data which can be expensive and hard to come

by. A common class of models constructs a matrix of probabilities, and samples an adjacency matrix

by flipping a weighted coin for each entry. Examples include the Erdős-Rényi model, Chung-Lu

model, and the Kronecker model. In this chapter we presented the HyperKron Graph model: an

extension of the Kronecker Model, but with a distribution over hyperedges. We prove that we can

efficiently generate graphs from this model in order proportional to the number of edges times a

small log-factor, and find that in practice the runtime is linear with respect to the number of edges.

We illustrate a number of useful features of the HyperKron model including non-trivial clustering and

highly skewed degree distributions. Finally, we fit the HyperKron model to real-world networks, and

demonstrate the model’s flexibility with a complex application of the HyperKron model to networks

with coherent feed-forward loops.
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5. THE TRIANGLE GENERALIZED PREFERENTIAL

ATTACHMENT MODEL

As introduced in Section 2.2.2, the idea of preferential attachment (PA) has a lengthy history in

explaining “rich-get-richer” models [Yule, 1925, Price, 1976]. In the context of networks, a preferential

attachment model suggests that when agents join a network, they form links to existing nodes with

large degrees. These models offer a simple local rule that helps explain the presence of highly-skewed

or power-law degree distributions in real-world networks [Barabási and Albert, 1999]. While a

simple and compelling mathematical model, there are weaknesses in the relationship between PA

models and real-world data. One of the most striking is the lack of clustering in PA network models.

Consequently, there has been a line of work on generalized PA models that include ways to address

the lack of clustering. First, Holme and Kim [Holme and Kim, 2002] proposed a triangle PA model,

where agents arrive and link to a node based on its degree and also link to a neighbor of that node

to form a triangle. Later, Ostroumova [Ostroumova et al., 2013] generalized a family of PA models

and showed that they had power-law degree distributions and high-clustering.

The work here follows in this vein, although we adapt a slightly different notion of a triangle PA

model that builds on a recent proposal to show how preferential attachment could give a power-law

with any exponent [Avin et al., 2017]. The specific Triangle Generalized Preferential Attachment

model we use has two slightly different forms as explained in Section 5.3. The two forms are used to

greatly simplify the analysis of the resulting properties. We do not believe there to be qualitative

differences between them. Formally, we show that these models have a power-law in the degree

distribution (Theorem 5.4.1, Corollary 5.5.2) as well as a power-law in the eigenvalues of the adjacency

matrix (Theorem 5.4.2).

We also find empirically that our TGPA model has higher-order clustering in terms of higher-order

clique closures [Yin et al., 2018] that is characteristic of real-world data (Section 4.5.1).

Our interest in the TGPA model stems from the findings on the reliable presence of power-laws in

the eigenvalue spectrum of the adjacency matrix [Eikmeier and Gleich, 2017], presented in Chapter 3.

Recall that we found that real-world networks of a variety of types were more likely to have a

statistically significant power-law in the eigenvalues of the adjacency matrix than in the degree

distribution. This observation presents a simple question, might this behavior be expected in light of

how real-world network data are collected? To be specific, real-world network data reflect two types

of sampling artifacts. They are often built from a process run on a larger dataset. Consider how
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web and social networks are often crawled by programs that use breadth-first or related crawling

strategies. Second, the crawled data itself represents a sample of some underlying (and unknown)

latent network [Schoenebeck, 2013]. Again, note that the social links on networks such as Facebook

and Twitter only represent a sample of some unobserved true social network. Because of the way

that individuals join these networks, forest-fire models are often used to simulate this type of artifact.

Consequently, we study how often samples of TGPA models have statistically significant power

laws in their degrees and eigenvalues (Section 5.7). These results (Figure 5.2) offer compelling evidence

that the eigenvalues of the adjacency matrix robustly indicate the presence of a power-law, with more

reliability than the degrees. It should be noted that the presence (or lack thereof) of power-laws in

real world data has been often debated [Meusel et al., 2015, Gjoka et al., 2010, Broido and Clauset,

2018]. For that reason, we study models where they are unambiguously present. Although other

PA models have the needed property of power-laws in both spectra and degrees, we find that the

differences in behavior between the sampled eigenvalues and degrees are less clear than in TGPA.

In summary, the primary contributions of this chapter are:

1. We extend the results presented on the Generalized Preferential Attachment Model (in [Avin

et al., 2017]), to show the eigenvalues follow a power-law distribution. (Section 5.2)

2. We present the Triangle Generalized Preferential Attachment Model (TGPA): A model which

imposes higher order structure directly into the network. (Section 5.3)

3. We conduct extensive analysis of TGPA to show that the degrees follow a power-law distribution

with an exponent which can range between (1,∞) (Section 5.5), and that the eigenvalues follow

a power-law distribution. (Section 5.4)

4. We use TGPA to support a conjecture on why power-laws are observed more often in spectra

of networks, and study the results of perturbing the TGPA model. (Section 5.7)

5.1 Related Work

5.1.1 Generalized Preferential Attachment

The Generalized Preferential Attachment Model (GPA) was defined by Avin et al. [2017]. In this

model, in addition to adding new vertices and edges, there is also an option in each time step of

adding a new component. Furthermore, the parameters may change over time, if desired. Start with

an arbitrary initial non-empty graph G0. For time t ≥ 1, the graph Gt is constructed by performing

either a node event with probability pt ∈ [0, 1], an edge event with probability rt ∈ [0, 1 − pt], or

a component event with probability qt = 1− pt − rt. In a node event, a new vertex v is added to

the graph, along with an edge (u, v) where u is chosen from Gt−1 with probability γt(u). In an
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edge event, a new edge (u,w) is added, with u and w both nodes in Gt−1, and they are chosen with

probability γt(u) · γw(u). And in a component event, two new nodes v1, v2 are added along with edge

(v1, v2). Exactly one edge is added at each time step, so the number of edges in Gt is equal to e0 + t.

An example GPA graph is shown in Figure 5.1.

The key difference of this model defined by Avin et al. [2017] over the PA model discussed in

Section 2.2.2 is the ability to add new components to the graph. To elaborate, in a traditional PA

model, the graph at every time step is one large connected component. In GPA, at some time steps

new small components will be created. Depending on the parameters of the model, much of the graph

may still end up in one large component by the end of the graph evolution, but there is opportunity

for different structure. In Avin et al. [2017], it is proved that the degree distribution follows a

power-law. In Section 5.2 we further prove that the eigenvalues follow a power-law distribution.

We will also work with a slight variation of the GPA model, along the lines of the alternate

version of the PA model defined in Flaxman et al. [2005], Barabási and Albert [1999] and discussed

in Section 2.2.2. Start with an empty graph. At time t = 1, 2, . . . do one of the following: With

probability p add a new vertex vt and an edge from vt to some other vertex in u where u is chosen

with probability

Pr[u = vi] =


dt(vi)
2t−1 , if vi 6= vt

1
2t−1 , if vi = vt

; (5.1)

And with probability 1− p add two new vertices and an edge between them. For some constant m,

every m steps contract the most recent m vertices added through the PA step to form a super vertex.

Notice that equation (5.1) is not quite the same as γt in equation (2.1). equation (5.1) allows for

nodes to be added with self loops. In both versions loops are allowed in the edge step. Regardless,

the allowance of self loops has little effect as the graph becomes large, and we remove all self-loops in

our final graph for experimental analysis.

5.1.2 Triad Formation

Holme and Kim [2002] introduced a Triad Formation step into the BA version of the PA model

(see Section 2.2.2). To be more specific, each time step t has two pieces. First, conduct a PA step in

which a new vertex v is added and an edge (v, u) is added with probability given in equation (5.1).

Second, with probability pt add another edge which will create a triangle. In the case that the edge

will be added, choose a neighbor of u, u2 uniformly at random and add edge (v, u2). As described in

Section 2.2.2, this model also contracts every m steps, for some constant m.

An example network sample is shown in Figure 5.1 under ‘Holme’. The average number of triad

closures per added vertex is mt = (m− 1)pt. It is shown in Holme and Kim [2002] that the network



57

GPA TGPA(p,r,q)

Holme TGPA(p,q)

Figure 5.1. Example TGPA networks compared to existing models. Each graph
has 50 nodes. The top two figures were generated using p = 0.8, r = 0.1, q = 0.1. The
graphs on the bottom were generated using m = 2, and TGPA(p, q) used p = 0.85. See
the text for the details on these parameters.

follows a power-law in the degrees with an exponent of 3, and has clustering coefficients which can be

tuned by the parameter mt. Our model incorporates something very similar to this triad formation,

but with less regular structure due to an added component step, and with a larger range of possible

power-law exponents. See Sections 5.3, 5.5.

5.2 Eigenvalue Power-law in GPA

In this section, we present results for the Generalized Preferential Attachment model presented

in [Avin et al., 2017] and discussed in Section 5.1.1. Our result relates to the distribution of the

eigenvalues of a graph formed in the model. Note that in order to get our desired result that the

eigenvalues follow a power-law distribution (Theorem 5.2.2), we also prove that the degree distribution

has a power-law distribution (Theorem 5.2.1). The degree power-law was already proven in [Avin
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et al., 2017], but the version of our proof is useful in order to obtain Theorem 5.2.2. The results

presented here and the proofs follow closely those presented in Flaxman et al. [2005].

We use the variation of the GPA model which has the parameter m, for the number of nodes

which contract together. (See Section 5.1.1.) In Lemma 5.2.1, we prove a helpful bound on the degree

of a node at any time. The proof steps of Lemma 5.2.1 are nearly identical to those in Flaxman et al.

[2005], except that a factor of p appears early on, because the probability of a node s increasing in

degree at time t is p · dt(s)/(2t− 1). In Lemma 5.2.2, we prove a bound on how much a set of nodes

will increase in degree over time. Again, the difference in this proof versus the one in Flaxman et al.

[2005] is the probability of a node increasing in degree, which adds a p factor to the analysis and

result.

Theorem 5.2.1 is a bound on the largest degrees. The factor of tp/2 in Theorem 5.2.1 implies a

power-law distribution in the largest degrees with exponent β = (2 + p)/p. This is calculated using a

martingale argument, as described in van der Hofstad [2016] for instance. β comes from solving

p

2
=

1

β − 1

Notice that depending on the value chosen for p, we can obtain a power-law fit with exponents

ranging between 3 and ∞. The statement of Theorem 5.2.1 also uses the phrase whp. What we

mean by this is that as t→∞, the probability of the result occurring goes to 1.

The final result,Theorem 5.2.2, relates maximum eigenvalues and maximal degrees in the GPA

model. It is similar to results found in Mihail and Papadimitriou [2002], Chung et al. [2003a,b],

Flaxman et al. [2005]. It says that if the degrees follows a power-law with exponent β, then the

spectra follows a power-law as well. As t goes to infinity, the exponent of the spectral power-law

will be 2β − 1, as argued in Chung et al. [2003a]. Again, the proofs of both of these theorems are

structurally very similar to the ones in Flaxman et al. [2005], with the added p parameter.

Fix parameter p. Denote Gmt as the Generalized Preferential Attachment Graph at time t with

contractions of size m.

Lemma 5.2.1 Let dt(s) be the degree of vertex s in Gt, for any time t after s has been added to the

graph. Let a(k) = a(a+ 1)(a+ 2) · · · (a+ k − 1) be the rising factorial function. Let s′ be the time at

which node s arrives in the graph. Then for any positive integer k,

E[(dt(s))
(k)] ≤ (2m)(k)2pk/2

(
t

s′

)pk/2
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Proof Denote Gmt as the graph at time t with contractions of size m. Let Zt = dmt (s) be the degree

of vertex s at time t, and Yt an indicator for the event that the edge added at time t is incident to s.

Then we can write the expectation of Zt in terms of Zt−1:

E[Z
(k)
t ] = E[E[(Zt−1 + Yt)

(k)]|Zt−1]

= E
[
Z

(k)
t−1

(
1− p · Zt−1

2t− 1

)
+ (Zt−1 + 1)(k)

(
p · Zt−1

2t− 1

)]
= E[Z

(k)
t−1]

(
1 +

pk

2t− 1

) (5.2)

where the last equality is an easy algebra step. Apply this relationship iteratively, down to the time

when node s was added (recall we denoted that time as s′). Also note that the degree of s at time s′

is bounded by 2m (if all m edges were added as self loops). Thus:

E(Z
(k)
t ) =

t∏
t
′
=s
′

(
1 +

pk

2t′ − 1

)
≤ (2m)(k)

t∏
t
′
=s
′
+1

(
1 +

pk

2t′ − 1

)
(5.3)

Use 1 + x ≤ ex to write the product as a sum, and bound the sum with an integral:

t∑
t
′
=s
′
+1

1

t′ − 1/2
≤
∫ t

x=s
′

1

x− 1/2
dx = log

t− 1/2

s′ − 1/2
. (5.4)

So finally,

E(Z
(k)
t ) ≤ (2m)(k)

(
t− 1/2

s′ − 1/2

)pk/2
= (2m)(k)

(
t

s′

)pk/2(
2− 1/t

2− 1/s′

)pk/2
≤ (2m)(k)

(
t

s′

)pk/2
2pk/2.

(5.5)

Now define a supernode to be a collection of nodes viewed as one. The degree of a supernode is

the sum of the degrees of the vertices in the supernode.

Lemma 5.2.2 Let S = (S1, S2, . . . , Sl) be a disjoint collection of supernodes at time t0. Assume

that the degree of Si at time t0 is dt0(Si) = di. Let t be a time later than t0. Let pS(r; d, t0, t) be

the probability that each supernode Si has degree ri + di at time t. Let d =
∑l
i=1 di, r =

∑l
i=1 ri. If

d = o(t1/2) and r = o(t2/3), then

pS(r; d, t0, t) ≤

(
l∏
i=1

(
ri + di − 1

di − 1

))(
t0 + 1

t

)pd/2
exp

{
2 + t0 −

pd

2
+

3pr

tp/2

}

Proof Let τ (i) = (τ
(i)
1 , . . . , τ (i)

ri
), where τ

(i)
j is the time when we add an edge incident to Si and

increase the degree of Si from di + j − 1 to di + j. Define τ = (τ0, τ1, . . . , τr+1) to be the ordered
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union of τ (i), with τ0 = t0 and τr+1 = t. Let p(τ ; d, t0, t) be the probability that supernodes Si

increase in degree at exactly the times specified by τ between time t0 and t.:

p(τ ; d, t0, t) =

(
l∏
i=1

ri∏
k=1

p
di + k − 1

2τ
(i)
k − 1

)
for each supernode

Si, the prob. of τ

aligning with τ
(i)

.

 r∏
k=0

τk+1−1∏
j=τk+1

(
1− p d+ k

2j − 1

)
for each timestep inbetween the

relevant ones, the probability

of picking any edge outside of

S1, . . . , Sl.

=

(
l∏
i=1

(ri + di − 1)!

(di − 1)!

)(
r∏

k=1

p

2τk − 1

)
exp


r∑

k=0

τk+1−1∑
j=τk+1

log

(
1− p

(
d+ k

2j − 1

))

(5.6)

Now we can bound the inner most sum of the exponential term.

τk+1−1∑
j=τk+1

log

(
1− p

(
d+ k

2j − 1

))
≤

τk+1−1∑
j=τk+1

log

(
1− p(d+ k)

2j

)
(5.7)

which is less than or equal to∫ τk+1

τk+1

log

(
1− p(d+ k)

2x

)
dx = −τk+1 log(2τk+1) + (τk + 1) log(2τk + 2)

+ 1/2(2τk+1 − p(d+ k)) log(2τk+1 − p(d+ k))

− 1/2(2τk + 2− p(d+ k)) log(2τk + 2− p(d+ k)).

(5.8)

Note that τ0 = t0 and τr+1 = t. We can write

r∑
k=0

∫ τk+1

τk+1

log

(
1− p(d+ k)

2x

)
dx = A+

r∑
k=1

Bk (5.9)

where

A = (t0 + 1) log(2t0 + 2)− 1/2(2t0 + 2− pd) log(2t0 + 2− pd)

− t log(2t) + 1/2(2t− p(d+ r)) log(2t− p(d+ r))
(5.10)

and

Bk = τk log(1 + 1/τk) + log(2τk + 2)− 2− p
2

log(2τk + p− p(d+ k))

+ 1/2(2τk + 2− p(d+ k)) log

(
1− 2− p

2τk + 2− p(d+ k)

)
.

(5.11)

We will bound each of A and Bk, starting with Bk. Since 1 + x ≤ ex, τk log(1 + 1/τk) ≤ 1,

and 1
2 (2τk + 2− p(d+ k)) log

(
1− 2−p

2τk+2−p(d+k)

)
≤ −1 + p/2. Rearranging the other two terms of

equation (5.11) and combining with these inequalities we get

Bk ≤
p

2
log(2τk + 2)− 2− p

2
log

(
1− p(d+ k) + 2− p

2τk + 2

)
+
p

2
. (5.12)
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Now rearranging terms of A from equation (5.10),

A = −(t0 + 1) log

(
1− pd

2t0 + 2

)
+
pd

2
log (2t0 + 2− pd)

+ t log

(
1− p(d+ r)

2t

)
− p(d+ r)

2
log(2t− p(d+ r))

eA =

(
1− pd

2t0 + 2

)−(t0+1)

(2t0 + 2− pd)pd/2
(

1− p(d+ r)

2t

)t
(2t− p(d+ r))

−p(d+r)
2

=

(
1− pd

2t0 + 2

)−(1− pd
2(t0+1)

)(t0+1)(
1− p(d+ r)

2t

)t− p(d+r)
2
(
t0 + 1

t

) pd
2

(2t)
−pr
2 .

(5.13)

Using the bound 1− x ≤ e−x−x
2
/2 for 0 < x < 1,(

1− p(d+ r)

2t

)t−p(d+r)/2

≤ exp

{
−p(d+ r)

2
+
p2(d+ r)2

8t
+
p3(d+ r)3

16t2

}
(5.14)

Putting the bounds on A and Bk together, we get

eA+
∑
Bk ≤

(
1− pd

2t0 + 2

)−(1− pd
2(t0+1)

)(t0+1)

exp

{
−p(d+ r)

2
+
p2(d+ r)2

8t
+
p3(d+ r)3

16t2

}

×
(
t0 + 1

t

)pd/2
(2t)−pr/2

r∏
k=1

((
1− p(d+ k) + 2− p

2τk + 2

)−(2−p)/2

(2τk + 2)p/2
)
epr/2.

(5.15)

Using

err(r, d, t0, t) =

(
1− pd

2t0 + 2

)−(1− pd
2(t0+1)

)(t0+1)

exp

{
−pd

2
+
p2(d+ r)2

8t
+
p3(d+ r)3

16t2

}
, (5.16)

we can write equation (5.15) as

err(r, d, t0, t)

(
t0 + 1

t

) pd
2

(2t)
−pr
2

r∏
k=1

(1− p(d+ k) + 2− p
2τk + 2

)−(2−p)
2

(2τk + 2)
p
2

 . (5.17)

So we finally finish with the bound on p(τ ; d, t0, t) by substituting equation (5.15) into equation (5.6):

p(τ ; d, t0, t) ≤

(
l∏
i=1

(ri + di − 1)!

(di − 1)!

)
err(r, d, t0, t)

(
t0 + 1

t

) pd
2

(2t)
−pr
2

×
r∏

k=1

(1− p(d+ k) + 2− p
2τk + 2

)−(2−p)
2

(2τk + 2)
p
2

p

2τk − 1

 ,

(5.18)

which can be re-arranged as

=

(
l∏
i=1

(ri + di − 1)!

(di − 1)!

)
err(r, d, t0, t)

(
t0 + 1

t

)pd/2
(2t)−pr/2

×
r∏

k=1

(
p(2τk + p− p(d+ k))−(2−p)/2

(
1 +

3

2τk − 1

))
.

(5.19)
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Now, we will sum p(τ ; d, t0, t) over all ordered choices of τ .

p(r; d, t0, t) ≤
∑

τ
(1)
,...,τ

(l)

p(τ ; d, t0, t)

≤
(

r

r1, . . . , rl

) ∑
t0+1≤τ1<...<τr≤t

l∏
i=1

(ri + di − 1)!

(di − 1)!
err(r, d, t0, t)

(
t0 + 1

t

) pd
2

× (2t)
−pr
2 p

r∏
k=1

(2τk + p− p(d+ k))−(2−p)/2
(

1 +
3

2τk − 1

)

= r!

(
l∏
i=1

(
ri + di − 1

di − 1

))
err(r, d, t0, t)

(
t0 + 1

t

)pd/2
(2t)−pr/2

×
∑

t0+1≤τ1<...<τr≤t

p

r∏
k=1

(2τk + p− p(d+ k))−(2−p)/2
(

1 +
3

2τk − 1

)

(5.20)

Now let τ ′k = τk − dp(d+ k)/2e. Since d ≥ 1 and k ≥ 1, we have 2dp(d+ k)/2e ≥ 2. So, the last term

in equation (5.20) is less than or equal to

∑
(t0−pdd/2e+1)≤τ ′1≤...≤τ

′
r≤(t−pd(d+r)/2e)

(
p

r∏
k=1

(2τ ′k + p)−(2−p)/2
(

1 +
3

2τ ′k + 1

))

≤ p

r!

 t−pd(d+r)/2e∑
τ
′
=(t0−pdd/2e+1)

(
2τ ′ + p)−(2−p)/2 + 3(2τ ′ + 1)−(4−p)/2

)r

≤ p

r!

(∫ t−p(d+r)/2

0

(
(2x+ p)−(2−p)/2 + 3(2x+ 1)−(4−p)/2

)
dx

)r
≤ p

r!

(
1

p
(2t− p(d+ r) + p)p/2 − p(p−2)/2 − 3

2− p
(2t− p(d+ r) + 1)−(2−p)/2 +

3

2− p

)r
≤ p

r!

(
1

p
(2t− p(d+ r) + p)p/2 + 3

)r
=
p

r!

(
1

p
(2t)p/2

(
1− p(d+ r)− p

2t

)p/2(
1 +

3p

(2t− p(d+ r) + p)p/2

))r

≤ 1

r!
(2t)pr/2

(
1− p(d+ r)− p

2t

)pr/2
︸ ︷︷ ︸
≤exp{− rp(p(d+r)−p)

4t }

(
1 +

3p

(2t− p(d+ r) + p)p/2

)r
︸ ︷︷ ︸

≤exp

{
3pr

(2t−p(d+r)+p)
p/2

}
,

(5.21)

where the last inequalities come from 1 + x ≤ ex. So finally,

pS(r; d, t0, t) ≤

(
l∏
i=1

(
ri + di − 1

di − 1

))
err(r, d, t0, t)

(
t0 + 1

t

)pd/2
× exp

{
−rp((d+ r)− p)

4t
+

3pr

(2t− p(d+ r) + p)p/2

}
.
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Since d = o(t1/2) and r = o(t2/3),

err(r, d, t0, t)exp

{
−rp((d+ r)− p)

4t
+

3pr

(2t− p(d+ r) + p)p/2

}

≤
(

1− pd

2(t0 + 1)

)−(1+pd/2(t0+1))(t0+1)

exp

{
1− pd

2
− r2

8t
+

3pr

tp/2

}

≤ e(t0+1)

since x
−x ≤ e

exp

{
1− pd

2
+

3pr

tp/2

}
= exp

{
2 + t0 −

pd

2
+

3pr

tp/2

}
This concludes the proof.

Theorem 5.2.1 Let m, k be fixed positive integers, and let f(t) be a function with f(t) → ∞ as

t→∞. Let ∆1 ≥ ∆2 ≥ . . . ≥ ∆k denote the degrees of the k highest degree vertices of Gmt . Then

tp/2

f(t)
≤ ∆1 ≤ t

p/2f(t) and
tp/2

f(t)
≤ ∆i ≤ ∆i−1 − t

p/2f(t)

for i = 1, 2, . . . , k with high probability (whp).

Proof Partition the vertices into those added before time t0, before time t1, and after t1, with

t0 = log log log f(t), t1 = log log f(t). We will argue about the maximum degree vertices in each set.

Claim 5.2.1 In Gmt , the degree of the supernode of vertices added before time t0 is at least t
1/3
0 tp/2

whp.

Proof Consider all vertices added before time t0 as a supernode. Let A1 denote the event that this

supernode has degree less than t
1/3
0 tp/2 at time t. We will use Lemma 5.2.2 with l = 1, and d = 2t0

(because the supernode has all edges at time t0).

Pr[A1] ≤
t
1/3
0 t

p/2−2t0∑
r1=0

(
r1 + 2t0 − 1

2t0 − 1

)(
t0 + 1

t

)pd/2
e2+t0−pd/2+3pr/t

p/2

≤
t
1/3
0 t

p/2−2t0∑
r1=0

(
t
1/3
0 tp/2 − 1

2t0 − 1

)
By substituting

r1 = t
1/3
0 t

p/2

(
t0 + 1

t

)pt0
e2+t0−pt0+3pt

1/3
0 −6pt0/t

p/2

because r = r1 and d = 2t0

= (t
1/3
0 tp/2 − 2t0)

(t
1/3
0 tp/2 − 1)!

(2t0 − 1)!(t
1/3
0 tp/2 − 2t0)!

(
t0 + 1

t

)pt0
e

2+t0(1−p)+3pt
1/3
0 − 6pt0

t
p/2

≤ t1/30 tp/2
(t

1/3
0 tp/2)2t0−1

(2t0 − 1)!

(
t0 + 1

t

)pt0
e2+t0(1−p)+3pt

1/3
0 −6pt0/t

p/2

≤ t2t0/30

e2t0−1

(2t0 − 1)2t0−1

since 1/x! ≤ ex/xx

(t0 + 1)pt0e2+t0(1−p)+3pt
1/3
0 −6pt0/t

p/2

≤ e1+(3−p)t0+3pt
1/3
0 −6pt0/t

p/2

(2t0 − 1)t0(4/3−p)−1

(5.22)

which goes to 0 as t goes to infinity. Thus A1 does not hold with high probability, and the claim is

proved.
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Claim 5.2.2 In Gmt , no vertex added after time t1 has degree exceeding t−2
0 tp/2 whp.

Proof Let A2 denote the event that some vertex added after time t1 has degree exceeding t−2
0 tp/2.

Pr[A2] ≤
t∑

s=t1

Pr[dt(s) ≥ t
−2
0 tp/2] =

t∑
s=t1

Pr[(dt(s))
(l) ≥ (t−2

0 tp/2)(l)] ≤
t∑

s=t1

t2l0 t
−lp/2E[(dt(s))

(l)]

by Markov

=

t∑
s=t1

t2l0 t
−lp/2(2m)(l)2lp/2

(
t

s

)lp/2
by Lemma 5.2.1

= 2lp/2(2m)(l)t2l0

∫ t

t1−1

x−lp/2 dx

(5.23)

We compute the integral in equation (5.23),∫ t

t1−1

x−lp/2 dx =
x−lp/2+1

−lp/2 + 1

∣∣∣∣∣
t

t1−1

= (−lp/2 + 1)−1
(
t−lp/2+1 − (t1 − 1)−lp/2+1

)
(5.24)

We want to choose l so that −lp/2 + 1 is less than 0. So choose l > 2/p. Then the integral in

equation (5.24) is less than or equal to (lp/2− 1)−1(t1 − 1)−lp/2+1, and plugging in the computation

from equation (5.24) into equation (5.23),

Pr[A2] ≤ 2lp/2(2m)(l)t2l0

(lp/2− 1)(t1 − 1)lp/2−1
(5.25)

which goes to 0 as t increases.

Claim 5.2.3 In Gmt , no vertex added before time t1 has degree exceeding t
1/6
0 tp/2 whp.

Proof Let A3 denote the event that some vertex added before time t1 has degree exceeding t
1/6
0 tp/2.

Using the exact argument as in Claim 5.2.2, Pr[A3] goes to 0 as t increases.

Claim 5.2.4 The k highest degree vertices of Gmt are added before time t1 and have degree ∆i

bounded by t−1
0 tp/2 ≤ ∆i ≤ t

1/6
0 tp/2

Proof First lets summarize the results of the last three claims:

• Bound on degrees of vertices added after time t1: t−2
0 tp/2

• Bound on degrees of vertices added before time t1: t
1/6
0 tp/2

• Sum of all degrees added before time t0 is at least: t
1/3
0 tp/2

So the upper bound of the claim is immediately clear from the second item. Suppose that the lower

bound does not hold. Then one of the top k vertices has degree less than t−1
0 tp/2 and the total degree

of vertices added before time t0 is bounded by

(k − 1)t
1/6
0 tp/2︸ ︷︷ ︸

largest possible degrees

of (k − 1) vertices

+

(
t0
m
− k + 1

)(
t−1
0 tp/2

)
︸ ︷︷ ︸

largest possible degrees

of remaning vertices

≤ kt1/60 tp/2 + t0(t−1
0 tp/2)

= kt
1/6
0 tp/2 + tp/2 = tp/2(kt

1/6
0 + 1) ≤ tp/2(2kt

1/6
0 ) ≤ tp/2t1/30 .

(5.26)
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Finally, since we have the lower bound, and we know that tp/2/t0 ≥ t
p/2/t20, then none of the largest

degree vertices could be added after time t1.

Claim 5.2.5 The k highest degree vertices of Gmt have ∆i ≤ ∆i−1 − t
p/2

f(t) whp.

Proof Let A4 denote the event that there are two vertices among the first t1 time steps with degrees

exceeding t−1
0 tp/2 and within tp/2/f(t) of each other. Let

pl,s1,s2 = Pr
[
dt(s1)− dt(s2) = l | A3

]
, for |l| ≤ tp/2/f(t),

where A3 means the opposite of event A3 from Claim 5.2.3. Then

Pr
[
A4|A3

]
≤

∑
1≤s1<s2≤t1

t
p/2

/f(t)∑
l=−tp/2/f(t)

pl,s1,s2 (5.27)

Now

pl,s1,s2 ≤
t
1/6
0 t

p/2∑
r1=t

−1
0 t

p/2

2t1∑
d1,d2=1

p(s1,s2) ((r1, r1 − l); (d1, d2), t1, t)
Notation from Lemma 5.2.2.

(5.28)

Using Lemma 5.2.2,

≤
t
1/6
0 t

p/2∑
r1=t

−1
0 t

p/2

2t1∑
d1,d2=1

(
r1 + d1 − 1

d1 − 1

)(
r1 − l + d2 − 1

d2 − 1

)(
t1 + 1

t

) p(d1+d2)

2

e

{
2+t1−

p(d1+d2)

2 +
3p(r1−l)

t
p/2

}

(5.29)

≤ t1/60 tp/2
2t1∑

d1,d2=1

(
t
1/6
0 tp/2 + d1 − 1

d1 − 1

)(
t
1/6
0 tp/2 − l + d2 − 1

d2 − 1

)(
t1 + 1

t

) p(d1+d2)

2

e

{
2+t1−

p(d1+d2)

2 +
3pt

1/6
0 t

p/2

t
p/2

}

≤ t1/60 tp/2
2t1∑

d1,d2=1

(
2t

1/6
0 tp/2

d1 − 1

)(
2t

1/6
0 tp/2

d2 − 1

)(
t1 + 1

t

) p(d1+d2)

2

e2+t1+3pt
1/6
0

≤ t1/60 tp/2
2t1∑

d1,d2=1

(2t
1/6
0 tp/2)d1+d2−2(t1 + 1)2pt1t−p(d1+d2)/2e2+t1+3pt

1/6
0

= t−p/2t
1/6
0 (2t1)224t1t

2t1/3
0 (t1 + 1)2pt1e2+t1+3pt

1/6
0

(5.30)

Denote the last equation as h(t) and note h(t) is a polynomial in log(f(t)) times a factor of t−p/2.

Then going back to equation (5.27),

Pr
[
A4|A3

]
≤
(
t1
2

)
2
tp/2

f(t)
h(t) =

(
t1
2

)
2

poly(log(f(t)))

f(t)
(5.31)

which goes to 0 as t increases. This concludes the proof of this final claim.

And this concludes the proof of the theorem.
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Theorem 5.2.2 Let k be a fixed integer, and let f(t) be a function with f(t)→∞ as t→∞. Let

λ1 ≥ λ2 ≥ . . . ≥ λk be the k largest eigenvalues of the adjacency matrix of Gt. The for i = 1, . . . , k,

we have λi = (1 + o(1))∆
1/2
i , where ∆i is the ith largest degree.

We will show, that with high probability, G contains a star forest F , with stars of degree

asymptotic to the maximum degree vertices of G. Then we show that G\F has small eigenvalues.

Then we can use Rayleigh’s principle to say that the large eigenvalues of G cannot be too different

than the large eigenvalues of F .

Proof Let Si be the vertices added after time ti−1 and at or before time ti, for t0 = 0, t1 = t1/8, t2 =

t9/16, t3 = t. Let G = Gt. We start by finding bounds on the degrees of G.

Claim 5.2.6 For any ε > 0, and any f(t) with f(t)→∞ as t→∞ the following holds whp: for all

s with f(t) ≤ s ≤ t, for all vertices v ∈ Gs, if v was added at time r, then ds(v) ≤ sp/2+εr−p/2.

Proof

Pr
[
∪ts=f(t) ∪

s
r=1

{
dms (r) ≥ sp/2+εr−p/2

}]
≤

t∑
s=f(t)

s∑
r=1

Pr
[
dms (r) ≥ sp/2+εr−p/2

]

=

t∑
s=f(t)

s∑
r=1

Pr
[
(dms (r))(l) ≥ (sp/2+εr−p/2)(l)

] (5.32)

which is bounded using Markov:

≤
t∑

s=f(t)

s∑
r=1

s−l(p/2+ε)rpl/2E
[
(dms (r))(l)

]
which we can bound using Lemma 5.2.1

≤
t∑

s=f(t)

s∑
r=1

s−l(p/2+ε)rlp/2(2m)(l)2lp/2
(s
r

)lp/2
= (2m)(l)2lp/2

t∑
s=f(t)

s1−εl

Take l ≥ 3/ε. Then we can bound the sum by an integral,

t∑
s=f(t)

s1−εl ≤
∫ ∞
f(t)−1

x1−εl dx =
1

2− εl
x2−εl

∣∣∣∣∞
f(t)−1

=
1

εl − 2
(f(t)− 1)2−εl

(5.33)

which goes to zero as t increases, since l ≥ 3/ε.

Claim 5.2.7 Let S′3 be the set of vertices in S3 that are adjacent to more than one vertex of S1 in

G. Then |S′3| ≤ t
7p/16 with high probability.

Proof Let B1 be the event that the conditions of Claim 5.2.6 hold with f(t) = t2 and ε = 1/16.

Then for a vertex v ∈ S3 added at time s, the probability that v picks at least one neighbor in S1 is

less than or equal to ∑
w∈S1

ds(w)

2s− 1
≤
∑
w∈S1

sp/2+ε

2s− 1
=
t1s

p/2+ε

2s− 1
(5.34)
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So, the probability of having two or more neighbors in S1 can be bounded by,

Pr [ |N(v) ∩ S1| ≥ 2 |B1] ≤

(
t1s

p/2+ε

2s− 1

)2

·
(
m

2

)
≤ m2t1/4s(−15+8p)/8 (5.35)

Let X denote the number of v ∈ S3 adjacent to more than one vertex of S1. Then

E[X|B1] ≤
t∑

t2+1

m2s(−15+8p)/8t1/4 ≤ m2t1/4
∫ t

t2

x(−15+8p)/8 dx

= m2t1/4
[

8

−7 + 8p
x(−7+8p)/8

∣∣∣∣t
t2

]
≤ 8m2t1/4

−7 + 8p
t(−7+8p)/8

(5.36)

Then by Markov,

Pr
[
X ≥ t7p/16|B1

]
≤ E[X|B1]

t7p/16
≤ 8m2

8p− 7

tp−5/8

t7p/16
=

8m2

8p− 7

t−5/8

t−9p/16
(5.37)

And t
−5/8

t
−9p/16 = t

9p/16

t
5/8 ≤ t

9/16

t
5/8 which goes to zero.

Let F ⊆ G be the star forest consisting of edges between S1 and S3\S
′
3.

Claim 5.2.8 Let ∆1 ≥ ∆2 ≥ . . . ≥ ∆k denote the degrees of the k highest degree vertices of G. Then

λi(F ) = (1− o(1))∆
1/2
i .

Proof Denote K1,di
to be a star of degree di. Let H be the star forest H = K1,d1

∪ . . . ∪K1,dk

with d1 ≥ d2 ≥ . . . ≥ dk. Then for i = 1, . . . , k, λi(H) = d
1/2
i . So it will be sufficient to show that

∆i(F ) = (1− o(1))∆i(G). Claim 5.2.4 shows that the k highest degree vertices G are added before

time t1. So these vertices are all in F . The only edges to those vertices that are not in F are those

added before time t2 and those incident to S′3.

By Theorem 5.2.1 we can choose f(t) such that, ∆1(Gmt2 ) ≤ tp/22 f(t) ≤ t7p/16. Also by Theorem

5.2.1, ∆i(G) ≥ tp/2/ log t. Finally, Claim 5.2.7 says that |S′3| ≤ t7p/16 whp. And so, with high

probability,

∆i(F ) ≥ ∆i(G)− t7p/16 −mt7p/16 ≥ tp/2

log t
− t7p/16(1 +m) =

tp/2

log t

[
1− t7p/16(1 +m)

log t

tp/2

]
=
tp/2

log t

[
1− (1 +m)

log t

tp/2−7p/16

]
=
tp/2

log t

[
1− (1 +m)

log t

tp/16

]
= (1− o(1))∆i(G)

(5.38)

Let H = G\F . Denote AG,AF and AH to be the adjacency matrices for graphs G,F and H. In

the following claim, we’ll show that λ1(AH) is o(λk(AF )). Consider the fact that if A and A + E

are symmetric n× n matrices, then λk(A) + λn(E) ≤ λk(A) + λ1(E) (see for instance theorem 8.1.5

in Golub and Van Loan [2013]). That implies that for any subspace L,

max
x∈L,x6=0

xTAGx

xTx
= max

x∈L,x6=0

xTAFx

xTx
±O

(
max
x 6=0

xTAHx

xTx

)
.
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That will be enough to finish the proof because by Rayleigh’s Principle [Golub and Van Loan, 2013],

λi(AG) = λi(AF )(1± o(1)).

Claim 5.2.9 λ1(AH) ≤ 6mt15/64 whp.

Proof Let Hi denote the subgraph of H induced by Si, and let Hij denote the subgraph of H

containing only edges with one vertex in Si and the other in Sj . That is, write AH in the following

way:

AH =


H1 H12 H13

H21 H2 H23

H31 H32 H3


We will use this to bound the maximal eigenvalue of AH as

λ1(AH) = λ1



H1 H12 H13

H21 H2 H23

H31 H32 H3




≤ λ1(H1) + λ1(H2) + λ1(H3) + λ1(H12) + λ1(H23) + λ1(H13).

(5.39)

Note that the maximum eigenvalue of a graph is at most the maximum degree of a graph. By Claim

5.2.6 with f(t) = t1 and ε = 1/64,

λ1(H1) ≤ ∆1(H1) = max
v≤t1
{dmt1 (v)} ≤ tp/2+ε

1 ≤ t33/512

λ1(H2) ≤ ∆1(H2) ≤ max
t1≤v≤t2

{dmt2 (v)} ≤ tp/2+ε
2 /t

p/2
1 ≤ t233/1024

λ1(H3) ≤ ∆1(H3) ≤ max
t2≤v≤t3

{dmt3 (v)} ≤ tp/2+ε
3 /t

p/2
2 ≤ t15/64

(5.40)

To bound λ1(Hij), start with m = 1. For i < j, this implies that each vertex in Sj has at most one

edge in Hij , i.e. Hij is a star forest. Then we have a bound on Hij by Claim 5.2.8. For m > 1, let

G′ be one of our generated graphs with t edges and m = 1. Think now of contracting vertices in G′

(only the ones added using preferential attachment) into a single vertex. We can write AG in terms

of A′G: AG = CTA′GC, where C is a contraction matrix with t rows and the number of columns

equal to the number of vertices in AG (at most t/m). The ith column is equal to 1 at indices j in

which (i, j) are identified. Similarly, we can write Hij in terms of H ′ij .

Note that if y = Cx, then yTy = xTCTCx, where CTC is a diagonal matrix with 1′s and m′s

on the diagonal. So xTx ≤ yTy ≤ mxTx.

λ1(Hij) = max
x6=0

xTHijx

xTx
= max

x6=0

xTCTH ′ijCx

xTx
= max

x6=0,y=Cx

yTH ′ijy

xTx

= max
x 6=0,y=Cx

myTH ′ijy

mxTx
≤ max

x6=0,y=Cx

myTH ′ijy

yTy

(5.41)



69

Now using Claim 5.2.6 with f(t) = t1 and ε = 1/64,

∆1(H ′12) = max
v≤t2
{d′t2(v)} ≤ tp/2+ε

2 ≤ t297/1024

∆1(H ′23) = max
t1≤v≤t3

{d′t3(v)} ≤ tp/2+ε
3 /t

p/2
1 ≤ t29/64

(5.42)

Finally, all edges in H ′13 are between S1 and S′3, so Claim 5.2.7 shows ∆1(H ′13) ≤ tp−9/16 ≤ t7/16

whp. Putting together equations (5.41) and (5.42), we get λ1(Hij) ≤ mλ1(H ′ij) ≤ m∆1(H ′ij)
1/2 ≤

mt15/64. And so we get the final bound,

λ1(AH) ≤
3∑
i=1

λ1(Hi) +
∑
i<j

λ1(Hij) ≤ 6mt15/64

This shows that λi(AH) is o(λk(AF )), which implies λi(AG) = λi(AF )(1± o(1)).

5.3 TGPA

In this section we present our model which we call Triangle Generalized Preferential Attachment

(TGPA). This model is motivated by the purpose of adding higher order structure into the resulting

graph as discussed in Section 2.3, and the recent paper by Avin et al. [2017] which shows a model

of preferential attachment with any power-law exponent (section 5.1.1). We present two different

versions of the model. The first, in Section 5.3.1 follows the PA model as described by Barabási

and Albert [1999], Flaxman et al. [2005], and the second in Section 5.3.2 follows the PA model as

described in Chung et al. [2006], Avin et al. [2017]. Though these models are not the same, they

share similar properties. In Sections 5.4 and 5.5 we’ll see each formulation is useful for the analysis

of the models.

5.3.1 TGPA(p, q)

Start with an empty graph. At time t = 1, 2, . . . do one of the following:

1. (node event) With probability p, add a new vertex vt, and an edge from vt to some other vertex

u where u is chosen with probability

Pr[u = vi] =


dt(vi)
4t−2 , if vi 6= vt

2
4t−2 , if vi = vt

(5.43)
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Then pick a neighbor of u, call it w, and also add an edge from vt to w. We pick w with the

following probability:

Pr[w = vi] =


# edges between u,w

dt−1(u) , if vi 6= u

2·# self-loops of u
dt−1(u) , if vi = u

(5.44)

2. (component event) With probability q = 1− p add a wedge to the graph (3 new nodes with 2

edges)

3. For some constant m, every m steps contract the most recently added vertices through the

preferential attachment steps (in step 1) to form a super vertex.

Note that vertex w (chosen in step 1) is also chosen via preferential attachment. The probability

of picking w is the probability of picking u as a neighbor of w times the probability of picking w.

Pr[w = vi] =

∑
u∈N(w) dt−1(u)

4t− 2
· num edges between u,w

dt−1(u)
=
dt(w)

4t− 2

5.3.2 TGPA(pt, rt, qt)

Start with a graph with e0 edges. At time t = 1, 2, . . . do one of the following:

1. (node event) With probability pt, add a new vertex vt, and an edge from vt to some other

vertex u where u is chosen with probability given in Equation 5.43. Then pick a neighbor of u,

call it w, and also add edge an edge from vt to w. We pick w with the probability given in

Equation 5.44.

2. (wedge event) With probability rt add a wedge to the graph by picking two nodes using

preferential attachment: v1, v2. Pick the third node uniformly from neighbors of v1, call it w.

Add edges (v1, v2) and (v1, w).

3. (component event) With probability qt add a wedge to the graph (3 new nodes with 2 edges).

5.4 Analysis of TGPA(p, q)

In this section we present results on the degrees and spectra of the TGPA(p, q) model. The proofs

follow very closely from the proofs of the results presented in Section 5.2. The primary difference is

the probability of adding a node at any time, which results in a p term in the results instead of p/2.

With analysis as in Section 5.2, by solving a martingale equation we get power-laws with exponent

1 + p

p
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which ranges between (1,∞). Fix parameter p. Denote Gmt (p, q) as the Triangle Generalized

Preferential Attachment Graph at time t with contractions of size m.

Lemma 5.4.1 Let dt(s) be the degree of vertex s in Gt, for any time t after s has been added to the

graph. Let a(k) = a(a+ 2)(a+ 4) · · · (a+ k − 2) be a modified rising factorial function. Let s′ be the

time at which node s arrives in the graph. Then for any positive integer k,

E[(dt(s))
(k)] ≤ (4m)(k)2pk

(
t

s′

)pk
Proof Denote Gmt as the graph at time t with contractions of size m. Let Zt = dmt (s) be the degree

of vertex s at time t. Let Yt be an indicator for the event that only one edge added at time t is

incident to s, and let Xt be an indicator variable for the event that both of the edges added at time

t are incident to s. First, let’s calculate the probability of placing exactly one edge incident to node

s at time t:

p


dt(s)

4t− 2

(
1− 2(num of self loops)

dt(s)

)
probability of picking s first, and then

not picking it second

+

∑
u∈N(s),u6=s dt(u)

4t− 2

(
num edges btwn u, s

dt(u)

)
probability of not picking s first, but pick-

ing a neighbor, and then picking s second


= p

[
dt(s)

2t− 1
− 2(num self loops)

2t− 1

]
.

Also the probability of placing two (both) edges incident to node s at time t:

p
dt(s)

4t− 2
· Pr [picking it second | picked it first] =

dt(s)

4t− 2
· 2(num self loops)

dt(s)
=

num self loops

2t− 1
.
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Then we can write the expectation of Zt in terms of Zt−1 using the above calculations:

E[Z
(k)
t ] = E[E[(Zt−1 + Yt + 2Xt)

(k)]|Zt−1]

= E
[
(Zt−1 + 2)(k)p ·

(
num self loops

2t− 1

)
+ (Zt−1 + 1)(k)p ·

(
dt(s)

2t− 1
− 2(num self loops)

2t− 1

)
+Z

(k)
t−1

(
1− p dt(s)

2t− 1
+ p

num self loops

2t− 1

)]
≤ E

[
(Zt−1 + 2)(k)p ·

(
num self loops

2t− 1

)
+ (Zt−1 + 2)(k)p ·

(
dt(s)

2t− 1
− 2(num self loops)

2t− 1

)
+Z

(k)
t−1

(
1− p dt(s)

2t− 1
+ p

num self loops

2t− 1

)]
= E

[
(Zt−1 + 2)(k)p ·

(
dt(s)

2t− 1
− num self loops

2t− 1

)
+ Z

(k)
t−1

(
1− p dt(s)

2t− 1
+ p

num self loops

2t− 1

)]
= E

[
Z

(k)
t−1

(
1− p Zt−1

2t− 1
+ p

num self loops

2t− 1
+
Zt−1 + k

Zt−1

(
p
Zt−1

2t− 1
− pnum self loops

2t− 1

))]
= E

[
Z

(k)
t−1

(
1− pZt−1 − num self loops

2t− 1
+
Zt−1 + k

Zt−1

(
p
Zt−1 − num self loops

2t− 1

))]
≤ E

[
Z

(k)
t−1

(
1− pZt−1 − num self loops

2t− 1
+ p

Zt−1 + k

2t− 1

)]
= E

[
Z

(k)
t−1

(
1 +

p

2t− 1
(k + num self loops)

)]
.

Now if k ≥ num self loops we can move on to:

E[Z
(k)
t ] ≤ E

[
Z

(k)
t−1(1 +

2pk

2t− 1
)

]
(5.45)

Apply this relationship iteratively, down to the time when node s was added (recall we denoted that

time as s′). Also note that the degree of s at time s′ is bounded by 4m (if all m edges were added as

self loops). Thus:

E(Z
(k)
t ) =

t∏
t
′
=s
′

(
1 +

2pk

2t′ − 1

)
≤ (4m)(k)

t∏
t
′
=s
′
+1

(
1 +

2pk

2t′ − 1

)
(5.46)

Use 1 + x ≤ ex to write the product as a sum, and bound the sum with an integral:

t∑
t
′
=s
′
+1

1

t′ − 1/2
≤
∫ t

x=s
′

1

x− 1/2
dx = log

t− 1/2

s′ − 1/2
. (5.47)

So finally,

E(Z
(k)
t ) ≤ (4m)(k)

(
t− 1/2

s′ − 1/2

)pk
= (4m)(k)

(
t

s′

)pk/2(
2− 1/t

2− 1/s′

)pk
≤ (4m)(k)

(
t

s′

)pk
2pk.

(5.48)
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Lemma 5.4.2 Let S = (S1, S2, . . . , Sl) be a disjoint collection of supernodes at time t0. Assume

that the degree of Si at time t0 is dt0(Si) = di. Let t be a time later than t0. Let pS(r; d, t0, t) be

the probability that each supernode Si has degree ri + di at time t. Let d =
∑l
i=1 di, r =

∑l
i=1 ri. If

d = o(t1/2) and r = o(t2/3), then

pS(r; d, t0, t) ≤

(
l∏
i=1

(
ri + di − 1

di − 1

))(
t0
t− 1

)pd
exp

{
3 + 2t0 − pd+

19pr

4tp

}
Proof Let τ (i) = (τ

(i)
1 , . . . , τ (i)

ri
), where τ

(i)
j is the time when we add an edge incident to Si and

increase the degree of Si from di + j − 1 to di + j. Note that we could have repeated times in τ (i).

Define τ = (τ0, τ1, . . . , τr+1) to be the ordered union of τ (i), with τ0 = t0 and τr+1 = t. Again,

there may be up to two moves per time-step. Let p(τ ; d, t0, t) be the probability that supernodes Si

increase in degree at exactly the times specified by τ between time t0 and t. Define all time-steps

to be T := {t0, t1, t1, t2, t2, . . . , tr, tr}. Time steps involving the sets Si we defined to be τ . So the

remaining time-steps are T − τ . Then

p(τ ; d, t0, t) ≤

(
l∏
i=1

ri∏
k=1

2p
di + k − 1

4τ
(i)
k − 2

)
for each supernode

Si, the prob. of τ

aligning with τ
(i)

.


r∏

k=0

∏
j∈T−τ
j≥τk
j<τk+1

(
1− 2p

d+ k

4j − 2

)
for each timestep inbetween the

relevant ones, the probability

of picking any edge outside of

S1, . . . , Sl.

=

(
l∏
i=1

(ri + di − 1)!

(di − 1)!

)(
r∏

k=1

p

2τk − 1

)
exp


r∑

k=0

∑
j∈T−τ
j≥τk
j<τk+1

log

(
1− p

(
d+ k

2j − 1

))

(5.49)

Now we can bound the inner most sum of the exponential term.

∑
j∈T−τ
j≥τk
j<τk+1

log

(
1− p

(
d+ k

2j − 1

))
≤ 2

τk+1−1∑
j=τk+1

log

(
1− p(d+ k)

2j

)
(5.50)

which is less than or equal to

2

∫ τk+1

τk+1

log

(
1− p(d+ k)

2x

)
dx = −2τk+1 log(2τk+1) + 2(τk + 1) log(2τk + 2)

+ (2τk+1 − p(d+ k)) log(2τk+1 − p(d+ k))

− (2τk + 2− p(d+ k)) log(2τk + 2− p(d+ k)).

(5.51)

Note that τ0 = t0 and τr+1 = t. We can write

r∑
k=0

∫ τk+1

τk+1

log

(
1− p(d+ k)

2x

)
dx = A+

r∑
k=1

Bk (5.52)
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where

A = 2(t0 + 1) log(2t0 + 2)− (2t0 + 2− pd) log(2t0 + 2− pd)

− 2t log(2t) + (2t− p(d+ r)) log(2t− p(d+ r))
(5.53)

and

Bk = 2τk log(1 + 1/τk) + 2 log(2τk + 2)− (2− p) log(2τk + p− p(d+ k))

+ (2τk + 2− p(d+ k)) log

(
1− 2− p

2τk + 2− p(d+ k)

)
.

(5.54)

We will bound each of A and Bk, starting with Bk. Since 1 + x ≤ ex, 1τk log(1 + 1/τk) ≤ 2, and

(2τk+2−p(d+k)) log
(

1− 2−p
2τk+2−p(d+k)

)
≤ p−2. Rearranging the other two terms of equation (5.54)

and combining with these inequalities we get

Bk ≤ p log(2τk + 2)− (2− p) log

(
1− p(d+ k) + 2− p

2τk + 2

)
+ p. (5.55)

Now rearranging terms of A from equation (5.53),

A = −2(t0 + 1) log

(
1− pd

2t0 + 2

)
+ pd log (2t0 + 2− pd)

+ 2t log

(
1− p(d+ r)

2t

)
− p(d+ r) log(2t− p(d+ r))

eA =

(
1− pd

2t0 + 2

)−2(t0+1)

(2t0 + 2− pd)pd
(

1− p(d+ r)

2t

)2t

(2t− p(d+ r))−p(d+r)

=

(
1− pd

2t0 + 2

)−2(1− pd
2(t0+1)

)(t0+1)(
1− p(d+ r)

2t

)2t−p(d+r)(
t0 + 1

t

)pd
(2t)−pr.

(5.56)

Using the bound 1− x ≤ e−x−x
2
/2 for 0 < x < 1,(

1− p(d+ r)

2t

)2t−p(d+r)

≤ exp

{
−p(d+ r) +

p2(d+ r)2

4t
+
p3(d+ r)3

8t2

}
(5.57)

Putting the bounds on A and Bk together, we get

eA+
∑
Bk ≤

(
1− pd

2t0 + 2

)−2(1− pd
2(t0+1)

)(t0+1)

exp

{
−p(d+ r) +

p2(d+ r)2

4t
+
p3(d+ r)3

8t2

}

×
(
t0 + 1

t

)pd
(2t)−pr

r∏
k=1

((
1− p(d+ k) + 2− p

2τk + 2

)−(2−p)

(2τk + 2)p
)
epr.

(5.58)

Using

err(r, d, t0, t) =

(
1− pd

2t0 + 2

)−2(1− pd
2(t0+1)

)(t0+1)

exp

{
−pd+

p2(d+ r)2

4t
+
p3(d+ r)3

8t2

}
, (5.59)

we can write equation (5.58) as

eA+
∑
Bk ≤ err(r, d, t0, t)

(
t0 + 1

t

)pd
(2t)−pr

r∏
k=1

((
1− p(d+ k) + 2− p

2τk + 2

)−(2−p)

(2τk + 2)p
)
.

(5.60)
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So we finally finish with the bound on p(τ ; d, t0, t) by substituting equation (5.60) into equation (5.49):

p(τ ; d, t0, t) ≤

(
l∏
i=1

(ri + di − 1)!

(di − 1)!

)
err(r, d, t0, t)

(
t0 + 1

t

)pd
(2t)−pr

×
r∏

k=1

((
1− p(d+ k) + 2− p

2τk + 2

)−(2−p)

(2τk + 2)p
p

2τk − 1

)
,

(5.61)

which can be re-arranged as

=

(
l∏
i=1

(ri + di − 1)!

(di − 1)!

)
err(r, d, t0, t)

(
t0 + 1

t

)pd
(2t)−pr

×
r∏

k=1

(
p(2τk + p− p(d+ k))−(2−p)

(
2τk + 5 +

9

2τk − 1

))
.

(5.62)

Now, we will sum p(τ ; d, t0, t) over all ordered choices of τ .

p(r; d, t0, t) ≤
∑

τ
(1)
,...,τ

(l)

p(τ ; d, t0, t)

≤
(

r

r1, . . . , rl

) ∑
t0+1≤τ1<...<τr≤t

l∏
i=1

(ri + di − 1)!

(di − 1)!
err(r, d, t0, t)

(
t0 + 1

t

)pd

× (2t)−prp

r∏
k=1

(2τk + p− p(d+ k))−(2−p)
(

2τk + 5 +
9

2τk − 1

)

= r!

(
l∏
i=1

(
ri + di − 1

di − 1

))
err(r, d, t0, t)

(
t0 + 1

t

)pd
(2t)−pr

×
∑

t0+1≤τ1<...<τr≤t

p

r∏
k=1

(2τk + p− p(d+ k))−(2−p)
(

2τk + 5 +
9

2τk − 1

)
(5.63)
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Now let τ ′k = τk − dp(d+ k)/2e. Since d ≥ 1 and k ≥ 1, we have 2dp(d+ k)/2e ≥ 2. So, the last term

in equation (5.63) is less than or equal to∑
(t0−pdd/2e+1)≤τ ′1≤...≤τ

′
r≤(t−pd(d+r)/2e)

(
p

r∏
k=1

(2τ ′k + p)−(2−p)
(

2τ ′k + 5 +
9

2τ ′k + 1

))

≤ p

r!

 t−pd(d+r)/2e∑
τ
′
=(t0−pdd/2e+1)

(
9(2τ ′ + p)−(3−p) + (2τ ′k + 5)(2τ ′k + p)−(2−p)

)r

≤ p

r!

(∫ t−p(d+r)/2

0

(
9(2x+ p)−(3−p) + (2τ ′k + 5)(2x+ 1)−(2−p)

)
dx

)r
≤ p

r!

(
9

2(2− p)p2−p +
5

(1− p)p1−p +
2

(1− p)p
(2t− p(d+ r) + 1)p

)r
≤ 2p

r!(1− p)p2−p

(
19

4
+ (2t− p(d+ r) + p)p

)r
=

2

r!(1− p)p1−p

(
(2t)p

(
1− p(d+ r)− p

2t

)p(
1 +

19p

4(2t− p(d+ r) + p)p

))r
≤=

2

r!(1− p)p1−p (2t)pr
(

1− p(d+ r)− p
2t

)pr
︸ ︷︷ ︸
≤exp{− pr(p(d+r)−p)

2t }

(
1 +

19p

4(2t− p(d+ r) + p)p

)r
︸ ︷︷ ︸

≤exp
{

19pr

4(2t−p(d+r)+p)
p

}
,

(5.64)

where the last inequalities come from 1 + x ≤ ex. So finally,

pS(r; d, t0, t) ≤

(
l∏
i=1

(
ri + di − 1

di − 1

))
err(r, d, t0, t)

(
t0 + 1

t

)pd
× exp

{
−pr((d+ r)− p)

2t
+

19pr

4(2t− p(d+ r) + p)p

}
.

Since d = o(t1/2) and r = o(t2/3),

err(r, d, t0, t)exp

{
−rp((d+ r)− p)

2t
+

19pr

4(2t− p(d+ r) + p)p

}
≤
(

1− pd

2(t0 + 1)

)−2(1−pd/2(t0+1))(t0+1)

exp

{
1− pd− r2

4t
+

19pr

4tp

}

≤ e2(t0+1)

since x
−x ≤ e

exp

{
1− pd+

19pr

4tp

}
= exp

{
3 + 2t0 − pd+

19pr

4tp

}
This concludes the proof.

Theorem 5.4.1 Let m, k be fixed positive integers, and let f(t) be a function with f(t) → ∞ as

t→∞. Let ∆1 ≥ ∆2 ≥ . . . ≥ ∆k denote the degrees of the k highest degree vertices of Gmt . Then

tp

f(t)
≤ ∆1 ≤ t

pf(t) and
tp

f(t)
≤ ∆i ≤ ∆i−1 − t

pf(t)

for i = 1, 2, . . . , k whp.
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The factor of tp in Theorem 5.4.1 implies a power-law distribution with exponent α = (1 + p)/p.

This can be seen by using a martingale argument, which has been done a number of times. See for

instance [van der Hofstad, 2016]. Notice that depending on the value chosen for p, we can obtain a

power-law fit with exponents ranging between 2 and ∞.

Proof Partition the vertices into those added before time t0, before time t1, and after t1, with

t0 = log log log f(t), t1 = log log f(t). We will argue about the maximum degree vertices in each set.

Claim 5.4.1 In Gmt , the degree of the supernode of vertices added before time t0 is at least t
(1−p)/2
0 tp

whp.

Proof Consider all vertices added before time t0 as a supernode. Let A1 denote the event that this

supernode has degree less than t
(1−p)/2
0 tp at time t. We will use Lemma 5.4.2 with l = 1, and d = 4t0

(because the supernode has all edges at time t0).

Pr[A1] ≤
t
(1−p)/2
0 t

p−4t0∑
r1=0

(
r1 + 4t0 − 1

4t0 − 1

)(
t0 + 1

t

)pd
e3+2t0−pd+19pr/4t

p

≤
t
(1−p)/2
0 t

p−4t0∑
r1=0

(
t
(1−p)/2
0 tp − 1

4t0 − 1

)
By substituting

r1 = t
(1ip)/2
0 t

p

(
t0 + 1

t

)4pt0

e
3+2t0−4pt0+(19/4)pt

1/3
0 − 19pt0

t
p

because r = r1 and d = 4t0

= (t
(1−p)/2
0 tp − 4t0)

(t
(1−p)/2
0 tp − 1)!

(4t0 − 1)!(t
(1−p)/2
0 tp − 4t0)!

(
t0 + 1

t

)4pt0

e
3+2t0(1−2p)+(19/4)pt

1/3
0 − 19pt0

t
p

≤ t(1−p)/20 tp
(t

(1−p)/2
0 tp)4t0−1

(4t0 − 1)!

(
t0 + 1

t

)4pt0

e3+2t0(1−2p)+(19/4)pt
1/3
0 −19pt0/t

p

≤ t2(1−p)t0
0

e4t0−1

(4t0 − 1)4t0−1

since 1/x! ≤ ex/xx

(t0 + 1)4pt0e3+2t0(1−2p)+(19/4)pt
1/3
0 −19pt0/t

p

≤ e2+2t0(3−2p)+(19/4)pt
1/3
0 −19pt0/t

p

(4t0 − 1)2t0(1−p)−1

(5.65)

which goes to 0 as t goes to infinity. Thus A1 does not hold with high probability, and the claim is

proved.

Claim 5.4.2 In Gmt , no vertex added after time t1 has degree exceeding t−2
0 tp whp.

Proof Let A2 denote the event that some vertex added after time t1 has degree exceeding t−2
0 tp.

Pr[A2] ≤
t∑

s=t1

Pr[dt(s) ≥ t
−2
0 tp] =

t∑
s=t1

Pr[(dt(s))
(l̄) ≥ (t−2

0 tp)(l̄)] ≤
t∑

s=t1

t2l0 t
−lpE[(dt(s))

(l̄)]

by Markov

=

t∑
s=t1

t2l0 t
−lp(4m)(l̄)2lp

(
t

s

)lp
by Lemma 5.4.1

= 2lp(4m)(l̄)t2l0

∫ t

t1−1

x−lp dx

(5.66)
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We compute the integral in equation (5.66),

∫ t

t1−1

x−lp dx =
x−lp+1

−lp+ 1

∣∣∣∣∣
t

t1−1

= (−lp+ 1)−1
(
t−lp+1 − (t1 − 1)−lp+1

)
(5.67)

We want to choose l so that −lp + 1 is less than 0. So choose l > 1/p. Then the integral in

equation (5.67) is less than or equal to (lp − 1)−1(t1 − 1)−lp+1, and plugging in the computation

from equation (5.67) into equation (5.66),

Pr[A2] ≤ 2lp(4m)(l̄)t2l0

(lp− 1)(t1 − 1)lp−1
(5.68)

which goes to 0 as t increases.

Claim 5.4.3 In Gmt , no vertex added before time t1 has degree exceeding t
(1−p)/4
0 tp whp.

Proof Let A3 denote the event that some vertex added before time t1 has degree exceeding t
(1−p)/4
0 tp.

Using the exact argument as in Claim 5.4.2, Pr[A3] goes to 0 as t increases.

Claim 5.4.4 The k highest degree vertices of Gmt are added before time t1 and have degree ∆i

bounded by t−1
0 tp ≤ ∆i ≤ t

(1−p)/4
0 tp

Proof First lets summarize the results of the last three claims:

• Bound on degrees of vertices added after time t1: t−2
0 tp

• Bound on degrees of vertices added before time t1: t
(1−p)/4
0 tp

• Sum of all degrees added before time t0 is at least: t
(1−p)/2
0 tp

So the upper bound of the claim is immediately clear from the second item. Suppose that the lower

bound does not hold. Then one of the top k vertices has degree less than t−1
0 tp and the total degree

of vertices added before time t0 is bounded by

(k − 1)t
(1−p)/4
0 tp︸ ︷︷ ︸

largest possible degrees

of (k − 1) vertices

+

(
t0
m
− k + 1

)(
t−1
0 tp

)
︸ ︷︷ ︸

largest possible degrees

of remaning vertices

≤ kt(1−p)/40 tp + t0(t−1
0 tp)

= kt
(1−p)/4
0 tp + tp = tp(kt

(1−p)/4
0 + 1) ≤ tp(2kt(1−p)/40 ) ≤ tpt(1−p)/20 ,

(5.69)

which contradicts the third bulleted item. Finally, since we have the lower bound, and we know that

tp/t0 ≥ t
p/t20, then none of the largest degree vertices could be added after time t1.

Claim 5.4.5 The k highest degree vertices of Gmt have ∆i ≤ ∆i−1 − t
p

f(t) whp.
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Proof Let A4 denote the event that there are two vertices among the first t1 time steps with degrees

exceeding t−1
0 tp and within tp/f(t) of each other. Let

pl,s1,s2 = Pr
[
dt(s1)− dt(s2) = l | A3

]
, for |l| ≤ tp/f(t),

where A3 means the opposite of event A3 from Claim 5.4.3. Then

Pr
[
A4|A3

]
≤

∑
1≤s1<s2≤t1

t
p
/f(t)∑

l=−tp/f(t)

pl,s1,s2 (5.70)

Now

pl,s1,s2 ≤
t
(1−p)/4
0 t

p∑
r1=t

−1
0 t

p

4t1∑
d1,d2=1

p(s1,s2) ((r1, r1 − l); (d1, d2), t1, t)
Notation from Lemma 5.4.2.

(5.71)

Using Lemma 5.4.2,

≤
t
(1−p)/4
0 t

p∑
r1=t

−1
0 t

p

4t1∑
d1,d2=1

(
r1 + d1 − 1

d1 − 1

)(
r1 − l + d2 − 1

d2 − 1

)(
t1 + 1

t

)p(d1+d2)

× e
{

3+2t1−p(d1+d2)+
19p(r1−l)

4t
p

} (5.72)

≤ t(1−p)/40 tp
4t1∑

d1,d2=1

(
t
(1−p)/4
0 tp + d1 − 1

d1 − 1

)(
t
(1−p)/4
0 tp − l + d2 − 1

d2 − 1

)(
t1 + 1

t

)p(d1+d2)

× e

{
3+2t1−p(d1+d2)+

19pt
(1−p)/4
0 t

p

4t
p

}

≤ t(1−p)/40 tp
4t1∑

d1,d2=1

(
2t

(1−p)/4
0 tp

d1 − 1

)(
2t

(1−p)/4
0 tp

d2 − 1

)(
t1 + 1

t

)p(d1+d2)

× e3+2t1+(19/4)pt
(1−p)/4
0

≤ t(1−p)/40 tp
4t1∑

d1,d2=1

(2t
(1−p)/4
0 tp)d1+d2−2(t1 + 1)8pt1t−p(d1+d2)e3+2t1+(19/4)pt

(1−p)/4
0

= t−pt
(1−p)/4
0 (4t1)228t1t

2t1(1−p)
0 (t1 + 1)8pt1e3+2t1+(19/4)pt

(1−p)/4
0

(5.73)

Denote the last equation as h(t) and note h(t) is a polynomial in log(f(t)) times a factor of t−p.

Then going back to equation (5.70),

Pr
[
A4|A3

]
≤
(
t1
2

)
2
tp

f(t)
h(t) =

(
t1
2

)
2

poly(log(f(t)))

f(t)
(5.74)

which goes to 0 as t increases. This concludes the proof of this final claim.

And this concludes the proof of the theorem.

Theorem 5.4.2 Let k be a fixed integer, and let f(t) be a function with f(t)→∞ as t→∞. Let

λ1 ≥ λ2 ≥ . . . ≥ λk be the k largest eigenvalues of the adjacency matrix of Gt. The for i = 1, . . . , k,

we have λi = (1 + o(1))∆
1/2
i , where ∆i is the ith largest degree.
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In the analysis of this proof, we will need to restrict p to be greater than 9/32. This comes in

Claim 5.4.7. This restricts the power of the exponent in the power-law to be between 2 and 5. We

will show, that with high probability, G contains a star forest F , with stars of degree asymptotic to

the maximum degree vertices of G. Then we show that G\F has small eigenvalues. Then we can

use Rayleigh’s principle to say that the large eigenvalues of G cannot be too different than the large

eigenvalues of F .

Proof Let Si be the vertices added after time ti−1 and at or before time ti, for t0 = 0, t1 = t1/8, t2 =

t9/16, t3 = t. Let G = Gt. We start by finding bounds on the degrees and co-degrees of G.

Claim 5.4.6 For any ε > 0, and any f(t) with f(t)→∞ as t→∞ the following holds whp: for all

s with f(t) ≤ s ≤ t, for all vertices v ∈ Gs, if v was added at time r, then ds(v) ≤ sp+εr−p.

Proof

Pr
[
∪ts=f(t) ∪

s
r=1

{
dms (r) ≥ sp+εr−p

}]
≤

t∑
s=f(t)

s∑
r=1

Pr
[
dms (r) ≥ sp+εr−p

]

=

t∑
s=f(t)

s∑
r=1

Pr
[
(dms (r))(l̄) ≥ (sp+εr−p)(l̄)

] (5.75)

which is bounded using Markov:

≤
t∑

s=f(t)

s∑
r=1

s−l(p+ε)rplE
[
(dms (r))(l̄)

]
which we can bound using Lemma 5.4.1

≤
t∑

s=f(t)

s∑
r=1

s−l(p+ε)rlp(4m)(l̄)2lp
(s
r

)lp
= (4m)(l)2lp

t∑
s=f(t)

s1−εl

Take l ≥ 3/ε. Then we can bound the sum by an integral,

t∑
s=f(t)

s1−εl ≤
∫ ∞
f(t)−1

x1−εl dx =
1

2− εl
x2−εl

∣∣∣∣∞
f(t)−1

=
1

εl − 2
(f(t)− 1)2−εl

(5.76)

which goes to zero as t increases, since l ≥ 3/ε.

Claim 5.4.7 Let S′3 be the set of vertices in S3 that are adjacent to more than one vertex of S1 in

G. Then |S′3| ≤ t
2p−9/16 with high probability.

Proof Let B1 be the event that the conditions of Claim 5.4.6 hold with f(t) = t2 and ε = 1/16.

Then for a vertex v ∈ S3 added at time s, the probability that v picks at least one neighbor in S1 is

less than or equal to
2
∑
w∈S1

ds(w)

4s− 2
≤
∑
w∈S1

sp+ε

2s− 1
=
t1s

p+ε

2s− 1
(5.77)
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So, the probability of having two or more neighbors in S1 can be bounded by,

Pr [ |N(v) ∩ S1| ≥ 2 |B1] ≤

(
t1s

p+ε

2s− 1

)2

·
(

2m

2

)
≤ m2t1/4s(16p−15)/8 (5.78)

Let X denote the number of v ∈ S3 adjacent to more than one vertex of S1. Then

E[X|B1] ≤
t∑

t2+1

m2s(−15+16p)/8t1/4 ≤ m2t1/4
∫ t

t2

x(−15+16p)/8 dx

= m2t1/4
[

8

−7 + 16p
x(−7+16p)/8

∣∣∣∣t
t2

]
≤ 8m2t1/4

−7 + 16p
t(−7+16p)/8

(5.79)

Then by Markov,

Pr
[
X ≥ t2p−9/16|B1

]
≤ E[X|B1]

t2p−9/16
≤ 8m2

16p− 7

t2p−5/8

t2p−9/16
=

8m2

16p− 7

t−5/8

t−9/16
(5.80)

And t
−5/8

t
−9/16 = t

9/16

t
10/16 which goes to zero.

Let F ⊆ G be the star forest consisting of edges between S1 and S3\S
′
3.

Claim 5.4.8 Let ∆1 ≥ ∆2 ≥ . . . ≥ ∆k denote the degrees of the k highest degree vertices of G. Then

λi(F ) = (1− o(1))∆
1/2
i .

Proof Denote K1,di
to be a star of degree di. Let H be the star forest H = K1,d1

∪ . . . ∪K1,dk

with d1 ≥ d2 ≥ . . . ≥ dk. Then for i = 1, . . . , k, λi(H) = d
1/2
i . So it will be sufficient to show that

∆i(F ) = (1− o(1))∆i(G). Claim 5.4.4 shows that the k highest degree vertices G are added before

time t1. So these vertices are all in F . The only edges to those vertices that are not in F are those

added before time t2 and those incident to S′3.

By Theorem 5.4.1 we can choose f(t) such that, ∆1(Gmt2) ≤ tp2f(t) ≤ t7p/16. Also by Theorem

5.4.1, ∆i(G) ≥ tp/ log t. Finally, Claim 5.4.7 says that |S′3| ≤ t7p/16 whp. And so, with high

probability,

∆i(F ) ≥ ∆i(G)− t7p/16 −mt7p/16 ≥ tp

log t
− t7p/16(1 +m) =

tp/2

log t

[
1− t7p/16(1 +m)

log t

tp

]
=

tp

log t

[
1− (1 +m)

log t

tp−7p/16

]
=

tp

log t

[
1− (1 +m)

log t

t9p/16

]
= (1− o(1))∆i(G)

(5.81)

Let H = G\F . Denote AG,AF and AH to be the adjacency matrices for graphs G,F and H. In

the following claim, we’ll show that λ1(AH) is o(λk(AF )). Consider the fact that if A and A + E

are symmetric n× n matrices, then λk(A) + λn(E) ≤ λk(A) + λ1(E) (see for instance theorem 8.1.5

in Golub and Van Loan [2013]). That implies that for any subspace L,

max
x∈L,x6=0

xTAGx

xTx
= max

x∈L,x6=0

xTAFx

xTx
±O

(
max
x 6=0

xTAHx

xTx

)
.
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That will be enough to finish the proof because by Rayleigh’s Principle [Golub and Van Loan, 2013],

λi(AG) = λi(AF )(1± o(1)).

Claim 5.4.9 λ1(AH) ≤ 6mt29/64 whp.

Proof Let Hi denote the subgraph of H induced by Si, and let Hij denote the subgraph of H

containing only edges with one vertex in Si and the other in Sj . That is, write AH in the following

way:

AH =


H1 H12 H13

H21 H2 H23

H31 H32 H3


We will use this to bound the maximal eigenvalue of AH as

λ1(AH) = λ1



H1 H12 H13

H21 H2 H23

H31 H32 H3




≤ λ1(H1) + λ1(H2) + λ1(H3) + λ1(H12) + λ1(H23) + λ1(H13).

(5.82)

Note that the maximum eigenvalue of a graph is at most the maximum degree of a graph. By Claim

5.4.6 with f(t) = t1 and ε = 1/64,

λ1(H1) ≤ ∆1(H1) = max
v≤t1
{dmt1 (v)} ≤ tp+ε1 ≤ t65/512

λ1(H2) ≤ ∆1(H2) ≤ max
t1≤v≤t2

{dmt2 (v)} ≤ tp+ε2 /tp1 ≤ t
457/1024

λ1(H3) ≤ ∆1(H3) ≤ max
t2≤v≤t3

{dmt3 (v)} ≤ tp+ε3 /tp2 ≤ t
29/64

(5.83)

To bound λ1(Hij), start with m = 1. For i < j, this implies that each vertex in Sj has at most one

edge in Hij , i.e. Hij is a star forest. Then we have a bound on Hij by Claim 5.4.8. For m > 1, let

G′ be one of our generated graphs with t edges and m = 1. Think now of contracting vertices in G′

(only the ones added using preferential attachment) into a single vertex. We can write AG in terms

of A′G: AG = CTA′GC, where C is a contraction matrix with t rows and the number of columns

equal to the number of vertices in AG (at most t/m). The ith column is equal to 1 at indices j in

which (i, j) are identified. Similarly, we can write Hij in terms of H ′ij .

Note that if y = Cx, then yTy = xTCTCx, where CTC is a diagonal matrix with 1′s and m′s

on the diagonal. So xTx ≤ yTy ≤ mxTx.

λ1(Hij) = max
x6=0

xTHijx

xTx
= max

x6=0

xTCTH ′ijCx

xTx
= max

x6=0,y=Cx

yTH ′ijy

xTx

= max
x 6=0,y=Cx

myTH ′ijy

mxTx
≤ max

x6=0,y=Cx

myTH ′ijy

yTy

(5.84)



83

Now using Claim 5.4.6 with f(t) = t1 and ε = 1/64,

∆1(H ′12) = max
v≤t2
{d′t2(v)} ≤ tp+ε2 ≤ t37/64

∆1(H ′23) = max
t1≤v≤t3

{d′t3(v)} ≤ tp+ε3 /tp1 ≤ t
29/64

(5.85)

Finally, all edges in H ′13 are between S1 and S′3, so Claim 5.4.7 shows ∆1(H ′13) ≤ tp−9/16 ≤ t7/16

whp. Putting together equations (5.84) and (5.85), we get λ1(Hij) ≤ mλ1(H ′ij) ≤ m∆1(H ′ij)
1/2 ≤

mt29/64. And so we get the final bound,

λ1(AH) ≤
3∑
i=1

λ1(Hi) +
∑
i<j

λ1(Hij) ≤ 6mt29/64

This shows that λi(AH) is o(λk(AF )), which implies λi(AG) = λi(AF )(1± o(1)).

5.5 Analysis of TGPA(pt, rt, qt)

Consider TGPA(pt, rt, qt), which was described in Section 5.3.2. The parameters pt, rt, qt can

change over time, though we will restrict the ways in which the parameters can evolve in Section 5.5.2.

5.5.1 Recursive relation for mk,t

Recall that mk,t is the number of nodes at time t with degree k. We wish to write down a

relationship for mk,t+1 in terms of mk
′
,t for k′ ≤ k. Recall also that the number of edges at time t is

et = e0 + 2t, and the total sum of degrees at any time t is 2et. Note that for this reason we need

only focus on mk,t for 1 ≤ k ≤ 2et.

Let Ft denote the σ-algebra generated by the graphs G0, G1, . . . , Gt (Ft holds the history of

events up until time t). Fix k ≥ 2. Since 0 ≤ dt+1(v)− dt(v) ≤ 4 for every node v and time t, we

have

E[mk,t+1|F ] =
∑

{v:k−4≤dt(v)≤k}

P[dt+1(v) = k]. (5.86)

Recall γt(v) from Equation 2.1. Denote θt(v) as 2 times the number of self loops in which v is

involved divided by
∑
w∈Vt−1

dt−1(w). (i.e. the proportion of edges which are self loops on v). If

dt+1(v) = 4, then there are at most 5 possible values for dt(v) when k ≥ 4:

1. dt(v) = k. In this case there must have either been a node event not involving v (this occurs

with probability pt+1(1−2γt+1(v)+θt+1(v))), or a wedge event not involving v (with probability

rt+1(1− γt+1(v))(1− 2γt+1(v) + θt+1(v))), or a component event (with probability qr+1).
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2. dt(v) = k − 1. In this case there must have either been a node event where v is involved as the

first node (probability pt+1 · γt+1(v) · (1− θt+1(v))), or where v is involved as the second node

(probability pt+1(γt+1(v)− θt+1(v))), or a wedge event in which v is involved as the first node

(with probability rt+1(γt+1(v)− γt+1(v)2 − θt+1(v) + γt+1(v) · θt+1(v))) or as the third node

(probability rt+1(1− γt+1(v))(γt+1(v)− θt+1(v))).

3. dt(v) = k − 2. In this case there must have either been a node event in which v is picked as

both nodes involved (with probability pt+1 · θt+1(v)) or there must have been a wedge event in

which v is involved as the second node (with probability rt+1 · θt+1(v)(1− γt+1(v))) or as the

first and third nodes (with probability rt+1 · γt+1(v)(1− γt+1(v) + θt+1(v))).

4. dt(v) = k − 3. In this case there must have been a wedge event where v was involved as the

first and second nodes or there was a wedge event where v was involved as the second and third

nodes (these events occur in combination with probability 2rt+1γt+1(v)(γt+1(v)− θt+1(v) ) ).

5. dt(v) = k − 4. In this case there must have been a wedge event where v is picked for all three

wedges, which happens with probability rt+1 · γt+1(v) · θt+1(v)

Let αk,t = k/(2et). Then for every v such that dt(v) = i, γt+1(v) = αi,t. Define

Ak,t = pt+1,k(1− 2αk,t + θt+1(v)) + rt+1(1− αk,t)(1− 2αk,t + θt+1(v)) + qt+1,

Bk,t = 2pt+1(αk,t − θt+1(v)) + 2rt+1(1− αk,t)(αk,t − θt+1(v)),

Ck,t = pt+1θt+1(v) + rt+1(αk,t − α
2
k,t + θt+1(v)),

Dk,t = 2rt+1αk,t(αk,t − θt+1(v)), and Ek,t = rt+1αk,tθt+1(v).

Then Ak,t + Bk,t + Ck,t +Dk,t + Ek,t = 1 and Ak,t, Bk,t, Ck,t, Dk,t, Ek,t ≥ 0 for every 0 ≤ k ≤ 2et.

Also, by equation 5.86, for every k ≥ 4

E[mk,t+1|F ] = mk,tAk,t +mk−1,tBk−1,t +mk−2,tCk−2,t

+mk−3,tDk−3,t +mk−4,tEk−4,t.
(5.87)

And for remaining values of k we have

E[m3,t+1|F ] = m3,tA3,t +m2,tB2,t +m1,tC1,t

E[m2,t+1|F ] = m2,tA2,t +m1,tB1,t + pt+1 + qt+1

E[m1,t+1|F ] = m1,tA1,t + 2qt+1.

(5.88)
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Define

Xk,t =



mk−1,tBk−1,t +mk−2,tCk−2,t +mk−3,tDk−3,t +mk−4,tEk−4,t k ≥ 4

m2,tB2,t +m1,tC1,t k = 3

m1,tB1,t + pt+1 + qt+1 k = 2

2qt+1 k = 1

(5.89)

Then equations 5.87 and 5.88 can be re-written as

E[mk,t+1] = E[mk,t] ·Ak,t + E[Xk,t] (5.90)

5.5.2 Power-law in TGPA(pt, rt, qt)

The following lemma is presented in Avin et al. [2017] and is a quick generalization of a result

in Chung et al. [2006].

Lemma 5.5.1 ([Avin et al., 2017]) Suppose that a sequence satisfies the recurrence relation at+1 =

(1 − bt/(t + t1))at + ct for t ≥ t0. Furthermore, let {st} be a sequence of real numbers with

lim
t→∞

st/st+1 = 1, dt = t(1− st/st+1), lim
t→∞

bt = b, lim
t→∞

ct · t/st = c, lim
t→∞

dt = d, and b+ d > 1. Then

lim
t→∞

at/st exists and lim
t→∞

at/st = c/(b+ d).

The following theorem and corollary prove that TGPA(pt, rt, qt) has a power-law in the degree

distribution, which we can analyze.

Theorem 5.5.1 Consider TGPA(pt, rt, qt). Let yt = pt + 3qt. Assume that lim
t→∞

yt = y < 3,∑∞
t=1 yt = ∞, and lim

t→∞
t · yt+1/

∑t
j=1 yj = Γ > 0. Then letting β = 1 + 2Γ/(3 − y), the limit

Mk = lim
t→∞

E[mk,t]/E[nt] exists for every k ≥ 1 and

Mk =
Γ

Γ + 3/2− y/2

k−1∏
j=1

j

j + β
.

Proof This proof will be an induction on k. For k = 1 we use Lemma 5.5.1 setting (t1, st, at, bt, ct) =

(e0,E[nt],E[m1,t], et(1− A1,t), yt+1). Using Equation 5.90, this gives the limits b = 3/2− y/2, and

c = d = Γ, which concludes the base case. Now assume the Theorem holds for k− 1, we now prove it

for k. Again use Lemma 5.5.1, this time with (t1, st, at, bt, ct) = (e0,E[nt],E[mk,t], Bk−1,t E[mk−1,t] +

Ck−1,t E[mk−2,t] +Dk−3,t E[mk−3,t] +Ek−4,t E[mk−4,t]). Then we get d = Γ, b = k · (3/2− y/2), and

using the inductive hypothesis,

c = lim
t→∞

ct · t
st

= (k − 1)

(
3

2
− y

2

)
Mk−1.
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Therefore Mk exists and

Mk =
(k − 1)(3/2− y/2)Mk−1

k(3/2− y/2) + Γ
=

k − 1

k − 1 + β
Mk−1.

The proof of the following corollary follows exactly from [Avin et al., 2017].

Corollary 5.5.1 Under the assumptions in Theorem 5.5.1, Mk is proportional to k−β.

Finally, we can state which power-law exponents are obtainable.

Lemma 5.5.2 For any x ∈ (1,∞), there exists a choice of pt, rt, qt such that in TGPA(pt, rt, qt)

the resulting network follows a power-law in the degree distribution with exponent β = x.

Proof We can use three separate cases:

1. For x ∈ (5/3,∞), setting yt = 3− 2/(x− 1) gives exponent β = 1 + 2/(3− (3− 2/(x− 1))) = x.

2. For x ∈ (1, 5/3), set yt = t3/2(x−5/3). Then

Γ = lim
t→∞

yt+1 · t∑t
j=1 yj

= lim
t→∞

(t+ 1)3/2(x−5/3) · t∑t
j=1(j3/2(x−5/3))

= lim
t→∞

·t3/2x−3/2∫ t
j=0

j3/2(x−5/3)dj

= lim
t→∞

(3/2x− 3/2)t3/2x−3/2

j3/2x−3/2|tj=0

= 3/2x− 3/2

Then β = 1 + (2Γ)/(3− y) = 1 + 2(3/2x− 3/2)/(3− 0) = x.

3. For x = 5/3, set yt = 1/ ln(t+ 2) for every t. Then we have

Γ = lim
t→∞

yt+1 · t∑t
j=1 yj

= lim
t→∞

t/ ln(t+ 3)∑t
j=1 1/ ln(j + 2)

= lim
t→∞

t/ ln(t+ 3)

t/ ln t
= 1

Then TGPA(pt, rt, qt) follows a power law degree distribution with exponent β = 1+2Γ/(3−y) =

1 + 2/(3− 0) = 5/3.

For a final analysis, we show that the component portion is necessary to obtain the full power-law

exponent range (1,∞). Lemma 5.5.3 comes directly from Avin et al. [2017].

Lemma 5.5.3 ( Avin et al. [2017]) Assume lim
t→∞

yt = y and lim
t→∞

yt+1 · t/
∑t
j=1 jj = Γ. Then

for y > 0 we have Γ = 1, and for y = 0 we have Γ ≤ 1.

Corollary 5.5.2 Consider TGPA(pt, rt, qt). Assume that lim
t→∞

qt = 0, lim
t→∞

yt = y, and yt+1t/∑t
j=1 yj = Γ > 0. Then the resulting graph follows a power law degree distribution with exponent

β ∈ (1, 3].

Proof By Corollary 5.5.1, TGPA(pt, rt, qt) follows a power-law in the degree distribution with

exponent β = 1+2Γ/(3−y) > 1. By Lemma 5.5.3, for 0 < y ≤ 1, we have β = 1+2/(3−y) ∈ (5/3, 3]

and for y = 0 we have β = 1 + 2Γ/3 ≤ 5/3.
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5.6 Significant Clustering coefficients

Table 5.1.
Clustering coefficients in TGPA model. TGPA is able to generate data with much
larger clustering coefficients, compared to GPA.

Network name edges global

clust

local clust HO global HO local

Auburn (18k vertices) 974k 0.137 0.223 0.107 0.172

TGPA(18k,0.987,10,150): 640k 0.25 0.22 0.118 0.03

GPA(18k,0.001,0.999,2): 906k 0.021 0.030 0.005 0.014

Berkeley (13k vertices) 852k 0.114 0.207 0.0876 0.156

TGPA(13k,0.99, 10, 58) 502k 0.104 0.185 0.034 0.025

GPA(13k,0.001,0.999,2) 502k 0.024 0.034 0.005 0.015

Princeton (7k vertices) 293k 0.237 0.164 0.091 0.146

TGPA(7k,0.987,10,100): 207k 0.298 0.251 0.148 0.053

GPA(7k,0.001,0.999,2): 255k 0.038 0.054 0.009 0.025

We analyzed 3 networks from the Facebook 100 dataset [Traud et al., 2012], each of which is a

set of users at a particular university. We computed the global clustering coefficient, average local

clustering coefficient, and higher-order clustering coefficients (see Section 2.4 for the definitions of

these coefficients).

To fit the TGPA(p, q) model (Section 5.3.1) to the real world networks, we noted that the

average degree of our model, the total degrees divided by the number of nodes, is approximately

(2m(1−p)+2m)/(m(1−p)+1). Choosing the average degree gives a relationship between parameters

m and p. We tested various sets of parameters to obtain the best possible fit. We started both

TPGA and GPA with a k-node clique. Table 5.1 lists the parameters we chose for the TGPA model

as TGPA(n, p, k,m), which produces an n node graph starting from a k node clique. For comparison

we also fit the GPA model (Section 5.1.1). The parameters in Table 5.1 are GPA(n, p, r, k). Notice

that TGPA maintains much more significant clustering coefficients across all measures.
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5.7 The Eigenvalue Power-law is robust

As discussed at length already, preferential attachment has long been used to describe the reason

why we find power-law distributions in the degrees of real world networks. There are many other

empirical and theoretical studies on the presence of power-laws in spectra [Chung et al., 2003a,

Goh et al., 2001, Mihail and Papadimitriou, 2002, Eikmeier and Gleich, 2017]. Given that many

real-world networks should have power-laws in both the eigenvalues and the degrees, this suggests

that one should be easier and more reliable to detect than the other. Chapter 3 [Eikmeier and Gleich,

2017] gives evidence that power-laws are more likely to be present in the spectra than in degree

distributions. An explanation for this observation may come from the way in which we obtain data,

rather than a true feature of the data itself. Consider for a moment that the “real data” that is used

in so many studies is not the full set of data. Instead, due to sampling or missing data the “real

data” is actually some perturbation of the true set. If the underlying graph has both a power-law in

the degrees and eigenvalues, then it is possible this observation just reflects the robustness of the

eigenvalue power-law to the type of network sampling that occurred. There are many methods of

sampling graphs and studying properties of sampled graphs is a well-studied field [Leskovec and

Faloutsos, 2006, Stumpf and Wiuf, 2005, Stumpf et al., 2005, Lovász et al., 1993, Lee et al., 2006,

Ebrahimi et al., 2017, Schoenebeck, 2013].

Because the TGPA model produces graphs with reliable power-law exponents in both the degrees

and spectra, as well as clustering, (Sections 5.5, 5.4) this makes it a good model to study this potential

effect. Of course, TGPA isn’t the only model with power-laws in both the degrees and eigenvalues,

as we’ve proved about the GPA model in this chapter. We generated 35 TGPA graphs of size 5000

with theoretical degree power-law exponents between 2− 5, and separately 35 GPA graphs with the

same parameters. For each graph, we detect that it has a statistically significant power-laws in both

the degrees and spectra. The distributions were tested for power-laws using the method of Clauset

et al. [2009]. We then perturbed each of the networks in three ways: In the first method we sampled

random sets of edges of the graphs; in the second method we did a depth first search, starting at a

random seed node; and third we did a forest fire sampling procedure from a random seed node (at

each time step a fire “spreads” to each neighbor with some probability based on a burn rate). In

each case, we ran the perturbation until a certain percentage of the nodes were obtained. And in

each case we did the perturbation 50 times.

The results of this experiment on the TGPA model are shown in violin plots in Figure 5.2. Notice

that the degree plots have a much larger spread in most cases, and the spectra almost always retains

its power-law. Random edge sampling appears to be the only case where the degree power-law may
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be argued to remain more intact, but then again sampling random edges is the least natural of the

three.

When trying the same experiment on PA models, we don’t see as much variation between the

degrees and spectra. See Figure 5.3 for an example of the forest fire sampling procedure. The other

sampling procedures give similar results. We believe that the local structure of TGPA is necessary to

see the effects of sampling.

We additionally ran the same sampling experiment on a citations network which comes from [Leskovec

et al., 2005a]. HEP-PH is a network of citations between papers in high energy physics with 34k

nodes and 421k edges. We symmetrized the dataset, and found it to have a statistically significant

power-law in both the degrees and spectra. Figure 5.4 shows the results of sub-sampling using the

three same methods used previously. Note that there is no distribution in this case (no violin plot),

since we are sampling only one graph. In all three sampling procedures, the spectra retained always

retained the power-law (50 out of 50 sampled networks), while the degree distribution of the sampled

networks retains a power-law much less frequently.

5.8 Summary

Preferential attachment models are a common class of graph models which have been used to

explain why power-law distributions appear in the degree sequences of real network data. One of

the things they lack, however, is higher-order network clustering, including non-trivial clustering

coefficients. In this chapter we presented a specific Triangle Generalized Preferential Attachment

Model (TGPA) that, by construction, has nontrivial clustering. We further prove that this model has

a power-law in both the degree distribution and eigenvalue spectra. We use this model to investigate

further the finding that power-laws are more reliably observed in the eigenvalue spectra of real-world

networks than in their degree distribution (from Chapter 3). One conjectured explanation for this is

that the spectra of the graph is more robust to various sampling strategies that would have been

employed to collect the real-world data compared with the degree distribution.

Consequently, we generate random TGPA models that provably have a power-law in both, and

sample subgraphs via forest fire, depth-first, and random edge models. We find that the samples

show a power-law in the spectra even when only 30% of the network is seen. Whereas there is a large

chance that the degrees will not show a power-law. Our TGPA model shows this behavior much

more clearly than a standard preferential attachment model. This provides one possible explanation

for why power-laws may be seen frequently in the spectra of real world data.
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Figure 5.2. Power-law in spectra is more robust to sampling. 35 TGPA graphs
with power-law exponents between 2-5, sub-sampled in various ways. On the left, the
graphs were sampled using a forest fire search on a random seed node; in the middle a
depth first search on a random seed node; and on the right, the graphs were perturbed
by sampling random edges. Note that when there appears to be no violin plot (e.g. most
spectra in DFS) that means 100% of the sampled graphs had significant power-laws. The
horizontal lines give the median.
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Figure 5.3. Forest Fire Sampling graphs generated using the preferential at-
tachment model.

Figure 5.4. Effects of Sampling a Real World Network. When running the same
sampling experiment on a real world dataset, we see similar results as on the TGPA
model.
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6. CONCLUSIONS AND FUTURE WORK

The foundation of this thesis was borne from the question: How well do features touted in graph

models actually fit to real-world networks? A power-law in the degree distribution of a network was one

of the hallmarks of the early study on web graphs and other types of information networks [Barabási

and Albert, 1999]. This initial focus on power-laws then led to a number of theoretical studies about

the presence of power-laws in other features of the network including the singular value distribution

and Laplacian eigenvalues [Chung et al., 2003a, Elsässer, 2006, Mihail and Papadimitriou, 2002]

– as well as work critical of this finding [Achlioptas et al., 2005]. In the start of this thesis, we

have conducted a wide-ranging evaluation of these conjectured relationships and discovered that:

(i) the presence of a power-law in the largest singular values is more reliable than power-laws in

the degree distribution; (ii) this power-law often applies to at least n(1/2) largest singular values,

and for some classes of networks, up to n(2/3). Moreover, we find compelling empirical evidence of

the relationships from Elsässer [2006], which posits that the Laplacian eigenvalues and the degree

distribution should have similar power-law exponents and behavior. Finally, we found that empirical

power-law exponents are far larger than previously discussed, which may impact how we create

random networks for statistical tests on networks and the applicability of existing results on power-law

graphs (e.g. [Kurauskas and Bloznelis, 2013, Gleich and Seshadhri, 2012, Cooper et al., 2012, Latapy,

2008, Watts, 2003]).

Following the empirical study, we offer an updated Kronecker model and an updated Preferential

attachment model. Both proposals maintain desirable features of their predecessors while offering

new advantages, particularly through their use of higher-order structure.

When it comes to graph modeling, there is no model which is suited to every situation. Just

as data comes in all different forms, graph models emphasize varying aspects of real world data.

One thing that graph models must feature is usability, that is they must be efficient enough to

generate instances of large networks. Näıvely implemented, our HyperKron model would be extremely

inefficient to generate. We proved that the HyperKron model can be generated efficiently, and

validated the run-time via experimentation. It is also easy to simulate in parallel – you can parallelize

over the Erdős-Rényi regions, for instance. HyperKron associates hyper-edges with motifs, hence

is particularly useful to model data with inherent motif structure (such as triangles). It is even

flexible enough to model directed, signed motifs, as we showed the C. Servisae example. It is not

obvious how to generate these types of structures for models based on matrices of probabilities such
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as Erdős-Rényi, Chung-Lu, or kernel functions [Hagberg and Lemons, 2015]. The same critique holds

for evolutionary models such as the copying model or forest-fire model. HyperKron is also well suited

to model graphs with significant clustering coefficients (as is the case is much of real-world data).

Our novel Triangle Preferential Attachment model also posses significant clustering coefficients,

over traditional Preferential Attachment models. It directly incorporates a triangle structure into the

generation process. It also has a provable power-law distribution in both the degrees and eigenvalues

(something that HyperKron lacks, as well as others models Holme and Kim [2002], Lattanzi and

Sivakumar [2009]).

That said, there are other types of network models that possess clustering. Newman [2009]

studied a configuration model that incorporated the triangle degree of each node. Kolda et al. [2014]

proposed the BTER model that has large clustering coefficients and a reasonable match. These

are both excellent models with clustering, but is unclear how to incorporate more complex types of

structure such as signs into these models. Likewise, models that randomly generate points for each

node and then connect nearby nodes based on a metric space are often known to have non-trivial

local clustering [Bonato et al., 2012, Jacob and Mörters, 2015]. However, these models tend to be

unrealistically dense if the geometry is not sufficiently high dimensional, at which point you lose local

clustering.

Since the Triangle Generalized Preferential Attachment model has provable power-laws in both

the degrees and eigenvalues, it makes it an ideal scenario to explore further these distributions. We

showed that the spectra is far more stable to network sampling than the degrees in this model, as

hypothesized in the study of real-world data. We provide this experiment as evidence for one possibly

reason why we may see power-law distributions in the spectra of real networks more often than in

the degrees.

There are a number of open avenues to extend the work of this thesis. In the HyperKron model

for example, we were able to hand tune parameters in Section 3.2.2, by getting the number of edges

to match. However it would be nice to have an automated fitting technique similar to Gleich and

Owen [2012] or Leskovec et al. [2010]. As discussed in Section 4.4, there are a number of duplicate

edges placed in the HyperKron model, which makes it difficult to estimate features of HyperKron, so

this area remains one of our most important next steps.

Another extension to the study of HyperKron is to fit the model to data sets with larger motifs,

using 4th and 5th order tensors. We also illustrated the lack of higher-order clustering in the

HyperKron models. We believe this aspect is a feature of the model as it enables testing specific

sources of clustering structure. For instance, if the goal is to test hypotheses about 2nd order

clustering structure in the network, then the lack of higher-order structure is useful. Additionally, the

HyperKron model would also extend to larger size motifs such a four-clique and five-cliques through
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a suitable adaptation of the HyperKron sampling procedure to 4th and 5th order tensors. These

models will exhibit higher-order clustering. We also plan to explore these settings in the future.

Another area of open research is to study further generalizations of higher-order preferential

attachment graphs. More interestingly, it would be beneficial explore further the results on per-

turbation of graphs to the degree and eigenvalue distributions. We wonder if there may be some

local properties of real-world graphs (or the TGPA model specifically) that can be used analyze the

stability of these distributions.
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the MRRR algorithm. ACM Trans. Math. Softw., 32(4):533–560, December 2006. ISSN 0098-3500.
doi: 10.1145/1186785.1186788.

Roozbeh Ebrahimi, Jie Gao, Golnaz Ghasemiesfeh, and Grant Schoenbeck. How complex conta-
gions spread quickly in preferential attachment models and other time-evolving networks. IEEE
Transactions on Network Science and Engineering, 4(4):201–214, 2017.

Nicole Eikmeier and David F. Gleich. Revisiting power-law distributions in spectra of real world
networks. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’17, pages 817–826, New York, NY, USA, 2017. ACM. ISBN
978-1-4503-4887-4. doi: 10.1145/3097983.3098128. URL http://doi.acm.org/10.1145/3097983.

3098128.

Nicole Eikmeier, Arjun S. Ramani, and David F. Gleich. The HyperKron graph model for higher
order features. In 2018 IEEE International Conference on Data Mining (ICDM), pages 941–946.
IEEE, 2018.

Robert Elsässer. Toward the eigenvalue power law. In International Symposium on Mathematical
Foundations of Computer Science, pages 351–362. Springer, 2006.
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