
USING A SCALABLE FEATURE SELECTION APPROACH FOR

BIG DATA REGRESSIONS
by

Qingdong Cheng

A Thesis

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the Degree of

Master of Science

Department of Computer and Information Technology

West Lafayette, Indiana

August 2019

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF COMMITTEE APPROVAL

Dr. Baijian Yang, Chair

Department of Computer and Information Technology

Dr. Dominic Kao

Department of Computer and Information Technology

Dr. Tonglin Zhang

Department of Statistics

Approved by:

Dr. Eric T. Matson

Head of the Graduate Program

iii

Dedicated to my grandfather.

iv

ACKNOWLEDGMENTS

Firstly, I would like to thank my wife Cong for her love, support, and

encouragement. I have been interested in computer science since I was in high school.

Without the encouragement of my wife, I would not have the courage to pursuit the

master’s degree in computer related area. Moreover, I would like to thank my family for

their support. Especially, I would like to thank my son Michael. His birth encouraged me

to apply the master’s program. Also, I would like to sincerely thank my advisor Professor

Baijian Yang for helping me start this master’s program. I also would like to thank

Professor Yang for his continuous support and instruction throughout my master’s study

and the research of the thesis. Last, but not least, my thanks also go to the members of my

major committee, Tonglin Zhang, and Dominic Kao for providing their insightful

comments.

v

TABLE OF CONTENTS

LIST OF TABLES . viii

LIST OF FIGURES . x

LIST OF ABBREVIATIONS . xi

GLOSSARY . xii

ABSTRACT . xiii

CHAPTER 1. INTRODUCTION . 1

1.1 Background . 1

1.2 Problem Statement . 2

1.3 Scope of Problem . 3

1.4 Significance of the Problem . 3

1.5 Statement of Purpose . 4

1.6 Research Questions . 4

1.7 Assumptions . 4

1.8 Limitations . 5

1.9 Delimitations . 5

1.10 Summary . 6

CHAPTER 2. REVIEW OF LITERATURE . 7

2.1 Overview of Big Data . 7

2.1.1 Definition of Big Data . 8

2.1.2 Big Data Analysis . 9

2.2 Feature Selection . 10

2.2.1 Significance of Feature Selection 10

2.2.2 Feature Selection in Big Data 11

2.2.3 Categories of Feature Selection 11

2.3 Logistic Regression . 13

2.4 Tools of Big Data Analysis . 14

2.4.1 Apache Hadoop . 14

2.4.2 Apache Spark . 15

vi

2.5 Optimizations with the Working Sufficient Statistics 17

2.6 Summary . 18

CHAPTER 3. METHODOLOGY . 19

3.1 Hypotheses . 19

3.2 Experiment Environments . 19

3.2.1 Hardware . 20

3.2.2 Software . 21

3.3 Data . 21

3.4 Array of Working Sufficient Statistics and Algorithms 23

3.5 Variables . 26

3.6 Testing Procedures . 26

3.7 Analysis . 27

3.8 Summary . 27

CHAPTER 4. RESULTS AND DISCUSSION 28

4.1 Training Models with Different Number of Features 28

4.1.1 Configuration of Spark Cluster 28

4.1.2 Input Data . 29

4.1.3 Logistic Regression Models 29

4.1.4 Train Multiple Models in One Program 30

4.1.5 Train Multiple Models in Separate Programs 33

4.1.6 Discussion . 35

4.2 Training Logistic Regression Models With Different Ratios of Data and

Memory . 35

4.2.1 Data . 35

4.2.2 The Sub-experiment with 4 GB Memory 36

4.2.3 Sub-experiment with 2 GB Memory 39

4.2.4 Discussion . 43

4.3 Model Evaluation . 43

4.3.1 Discussion . 45

4.4 Summary . 45

vii

CHAPTER 5. CONCLUSIONS . 46

5.1 Future Work . 47

REFERENCES . 48

viii

LIST OF TABLES

3.1 Hardware Configuration of Master Machine 20

3.2 Hardware Configuration of Worker 1 . 20

3.3 Hardware Configuration of Worker 2 . 20

3.4 Software Specification . 21

3.5 Fresco Dataset Information . 22

4.1 Spark Setting Parameters . 28

4.2 Data Information . 29

4.3 Feature Information of the Five Models 30

4.4 Average Training Time of Multiple Models With 4.4 GB Data 30

4.5 Average Training Time of Multiple Models With 10 GB Data 31

4.6 Average Training Time of Multiple Models in Separate Programs With 4.4 GB

Data . 33

4.7 Average Training Time of Multiple Models in Separate Programs With 10 GB

Data . 34

4.8 Input Data Information . 36

4.9 The Spark Setting Parameters for the Experiment with 4 GB Memory 36

4.10 The Ratios of Input Data and Memory . 37

4.11 Average Training Time of Iteration 1 with 4 GB Memory 37

4.12 Average Training Time of Iteration 2 with 4 GB Memory 38

4.13 Average Training Time of Iteration 3 with 4 GB Memory 38

4.14 The Spark Setting Parameters for the Experiment with 2 GB Memory . . . 40

4.15 The Ratios of Input Data and Memory . 40

4.16 Average Training Time of Iteration 1 with 2 GB Memory 40

4.17 Average Training Time of Iteration 2 with 2 GB Memory 41

4.18 The Evaluation Scores of the 9-Feature Model 43

4.19 Evaluation Scores of the 39-Feature Model 43

4.20 Evaluation Scores of the 73-Feature Model 44

4.21 Evaluation Scores of the 112-Feature Model 44

ix

4.22 Evaluation Scores of the Onehot Model 44

x

LIST OF FIGURES

2.1 MapReduce Workflow . 15

2.2 Architecture of Spark . 16

4.1 Training Time of Multiple Model with Input Size of 4.4 GB 31

4.2 Training Time of Multiple Model with Input Size of 10 GB 32

4.3 Training Time of the Five Models with Input Size of 4.4 GB 33

4.4 Training Time of Five Models with Input Size of 10 GB 34

4.5 Average Training Time of Iteration 1 with 4 GB Memory 37

4.6 Average Training Time of Iteration 2 with 4 GB Memory 38

4.7 Average Training Time of Iteration 3 with 4 GB Memory 39

4.8 Average Training Time of Iteration 1 with 2 GB Memory 41

4.9 Average Training Time of Iteration 2 with 2 GB Memory 42

xi

LIST OF ABBREVIATIONS

API Application Programming Interface

HDFS Hadoop Distributed File System

I/O Input/Output

MB Megabyte

OS Operating System

RDD Resilient Distributed Datasets

WSS Working Sufficient Statistics

YB Yottabyte

ZB Zettabyte

xii

GLOSSARY

Apache Spark – Apache Spark an in-memory open-source distributed processing and

analysis framework for solving big data and machine learning problems (Meng et

al., 2016).

Feature Selection – The process of excluding irrelevant variables from a machine learning

model (James, Witten, Hastie, & Tibshirani, 2013).

Logistic Regression – A type of regression analysis that is often utilized to describe the

relationship among a binary dependent variable and one or multiple independent

variables (Morgan & Teachman, 1988).

Regression – Regression analysis is the statistical process that estimate the model among

variables, usually, one dependent variable and multiple independent variables (Yan

& Su, 2009).

xiii

ABSTRACT

Author: Cheng, Qingdong. M.S.
Institution: Purdue University
Degree Received: August 2019
Title: Using a Scalable Feature Selection Approach For Big Data Regressions
Major Professor: Baijian Yang

Logistic regression is a widely used statistical method in data analysis and machine

learning. When the capacity of data is large, it is time-consuming and even infeasible to

perform big data machine learning using the traditional approach. Therefore, it is crucial

to come up with an efficient way to evaluate feature combinations and update learning

models. With the approach proposed by Yang, Wang, Xu, and Zhang (2018), a system can

be represented using small enough matrices, which can be hosted in memory. These

working sufficient statistics matrices can be applied in updating models in logistic

regression. This study applies the working sufficient statistics approach in logistic

regression machine learning to examine how this new method improves the performance.

This study investigated the difference between the performance of this new working

sufficient statistics approach and performance of the traditional approach on Spark’s

machine learning package. The experiments showed that the working sufficient statistics

method could improve the performance of training the logistic regression models when

the input size was large.

1

CHAPTER 1. INTRODUCTION

This chapter introduces the relevant background, the research question, the scope,

and the significance of the research problem. This chapter also covers the scope,

assumptions, limitations, and delimitations of the study.

1.1 Background

Machine learning is an important discipline in the area of artificial intelligence.

Machine learning algorithms have great practical value in academia and industry.

Recently, machine learning has been successfully applied to different fields (Angelova,

Krizhevsky, & Vanhoucke, 2015; Ba, Mnih, & Kavukcuoglu, 2014; Frome et al.,

2013). However, with the explosive growth of data all over world nowadays, data has been

accumulated at an unprecedented rate. Approximately, Walmart creates about 2.5

petabytes of data hourly (McAfee, Brynjolfsson, Davenport, Patil, & Barton, 2012). The

term big data was frequently mentioned in various contexts. By 2020, the volume of the

data on earth is expected to reach 44 zettabytes (Zwolenski, Weatherill, et al., 2014).

According to Mills et al. (2012), the exponential growth of data will keep going in the

future. It is an era of data deluge today. There are various distributed file systems and

distributed processing frameworks to solve big data problems, including Storm, Hadoop,

and Spark. However, the scenarios of big data make machine learning much more

challenging than before because it is infeasible to load the data into a system with limited

memory (Yang & Zhang, 2016).

In many fields, such as data mining and document classification, data sets are large

in size, which contain many attributes and records. Therefore, it is inefficient to process

the whole dataset. A big challenge in big data analysis is to handle high-dimensional,

sparse data. For instance, network traffic and large-scale social networks generate

high-dimensional data (Kolda & Sun, 2008). Researchers can eliminate the irrelevant

attributes through attribute selection and increase the effectiveness of the analysis task,

thus improving the accuracy of the model and reducing the running time. Furthermore, as

2

Yang and Zhang (2016) pointed out, no single model fits all scenarios. To evaluate a

model, researchers need to consider many aspects, such as feature selection, training data

and testing data split, and validation. All these imply that the learning process will scan

the data entire sets several times.

1.2 Problem Statement

The traditional approaches of machine learning processing need to go through the

data multiple times. Also, many research questions come from domains with hundreds to

thousands of features (Guyon & Elisseeff, 2003). When the data volume is large, it is not

efficient to perform machine learning tasks with all the features. It is necessary to evaluate

models with different features, due to the following reasons.

• The performance of some learning algorithms will become worse because of

irrelevant or redundant features (Weston et al., 2001).

• The irrelevant features will increase the training samples size.

• Irrelevant features will decrease computational efficiency (Lin, Zhang, & Hung,

2014).

Therefore, it is beneficial to select appropriate features before performing machine

learning model training. Yang and Zhang (2016) have pointed out that the working

sufficient statistics matrices can be used to train logistic regression models. Therefore, it

can overcome the memory barrier when the input size is large. A dataset with large size

can be represented using these relatively small matrices. This study aims to utilize the

matrices of working sufficient statistics on logistic regression in Spark to examine if and

how it will improve the performance.

3

1.3 Scope of Problem

There are different big data processing platforms, including Apache Hadoop,

Apache Spark, Apache Storm, Samza, etc. (Zhao, Chandrashekar, Lee, & Medhi, 2015).

Instead of investigating other distributed computing frameworks, this study will mainly

focus on Apache Spark and only explore how to utilize the approach of arrays of working

sufficient statistics on Apache Spark. Spark is a cluster computing platform for big data

analysis (Zaharia, Chowdhury, Franklin, Shenker, & Stoica, 2010). If the working

sufficient statistics approach can help to improve the performance of logistic regression on

Spark, further research would take other distributed processing frameworks into account.

1.4 Significance of the Problem

In recent years, numerous fields, such as optical observations, optical monitoring,

healthcare, sensors, user data, Internet, and supply chain systems, have produced massive

amounts of data in the past 20 years. The more appropriate description may be infinite

data. Although technology captures and stores enormous quantities of data, one of the

huge challenges is to handle such enormous amounts of data efficiently (Witten, Frank,

Hall, & Pal, 2016). To extract trends from the data and transfer data into information and

knowledge are crucial tasks. When applying machine learning models on these datasets, it

is significant to find an efficient approach to identify appropriate features and accurate

learning models. The conventional way of machine learning processing involves frequent

I/O operations, such as the Hadoop framework, which is extremely time-consuming.

Apache Spark utilizes RDDs, and it improves efficiency compared to the Hadoop

framework. However, since the memory is a limited resource and the size of data is

growing, the conventional logistic regression training approach will become inefficient. If

the working sufficient statistics method can break the memory barrier when training the

logistic regression model with large datasets, big data researchers and practitioners can

perform big data analysis and machine learning on large datasets with limited memory.

4

1.5 Statement of Purpose

This research examines if the new approach based on the arrays of working

sufficient statistics can improve the performance of the learning process of logistic

regression for big data problems. The study will utilize this new approach and compare its

performance with that of the traditional approach on Spark.

1.6 Research Questions

This study investigates and answers the research questions that if the working

sufficient statistics approach could be applied in selecting features and training logistic

regression models, and if this new approach can outperform the existing API in Spark. In

other words, this study is designed to answer the following questions:

1. Could the use of working sufficient statistics improve the efficiency of logistic

regression on Spark?

2. Could the use of working sufficient statistics reduce the memory usage of logistic

regression on Spark?

1.7 Assumptions

The assumptions of the study are the following:

• In the scenario of big data, the memory is too small to load the whole dataset.

• In order to obtain an accurate model, multiple models are trained in a machine

learning process.

• The dataset is appropriate for the logistic regression model.

5

1.8 Limitations

This study includes the following limitations.

• The cluster is running on the Spark cluster that has three machines.

• There are some missing values in the dataset.

• There are some outliers in the dataset, which may make the logistic model unable to

converge.

• The dataset has been normalized using the z-score method. In some features, the

variance of the data is still large.

• The memory of the machines in Spark cluster that was used this study is limited.

• Simulated data is used in experiment 2.

1.9 Delimitations

The delimitations of the study are:

• The version of Spark used in this study is 2.3.2.

• The Spark jobs are all implemented in Scala.

• The Scala version is 2.11.8.

• The Java JDK version is 1.8.0 191.

• There are two worker nodes and one master node in the Spark cluster.

6

1.10 Summary

This chapter focused on the discussion of the background, the research problem,

the significance of the research question, the limitations, and so on. In the next chapter,

the recent work of other researchers on big data analysis and feature selection will be

discussed.

7

CHAPTER 2. REVIEW OF LITERATURE

In this chapter, a literature review on big data, data analysis methods, and data

analysis tools is provided. This chapter also offers a review of recent work on feature

selection.

2.1 Overview of Big Data

Data is considered as a crucial resource in the information age. Especially, big data

is important in industry. In industry, the demand for data scientists is increasing. In the

past 20 years, data has been growing faster and faster. According to International Data

Corporation IDC (Gantz & Reinsel, 2011), data generated and copied in 2011 exceeds 1.8

ZB, which is nine times the data growth in the past five years and will increase at a rate of

doubling every two years. Therefore, the field of big data research has captured interests

from both industries and academia (Dubey, Gunasekaran, Childe, Wamba, &

Papadopoulos, 2016). For example, reports from industry and public media, such as

Economists, New York Times, US National Public Radio, are flooded with relevant

information on big data. Government departments set up major projects to accelerate the

development of big data. Therefore, the era of big data has come (Gupta & Rani, 2018).

Before the era of big data, people work hard to extract information and draw a conclusion

based on small data (James et al., 2013). The big data can offer more in-depth insights

and broader scale understandings (Sagiroglu & Sinanc, 2013). People in various fields are

making informed decisions by analyzing big data. If you can effectively manage big data,

you can bring tremendous changes to many areas, such as science and environmental

modeling, health care, and energy protection. The research report of McKinsey shows that

the potential value of global personal location information data has reached 700 billion,

and it can reduce the cost of product development and assembly by more than 50%

(Manyika et al., 2011).

8

2.1.1 Definition of Big Data

The definition of big data presents a trend of diversification, and it is even more

difficult to reach consensus. Essentially, big data means large volumes of data. Also, big

data has other characteristics. Many pieces of literature defined big data. The following

definitions are important.

In the report of IDC in 2011, big data was defined like this (Gantz & Reinsel,

2011): big data technology extracts meaningful information from large-scale data. There

are four notable features defined in this definition, namely volume, variety, velocity, and

veracity. The use of the “4Vs” definition is also extensive. The volume of data generated

every day is massive. Every day, roughly 2.5 quintillion bytes of data were generated

(Ganz, Barnaghi, & Carrez, 2013). Variety means that the data sources are various.

Wearable devices, mobile phones, tablets, and healthcare devices, etc. are all possible data

points. The velocity is the measure of the rate of the data generated in various sources.

This unique characteristic is not only being limited to how fast the data coming in but also

how fast the data flow. For example, a regular car can have more than 100 sensors. All

these sensors are generating data constantly. Data is generated and stored in databases

every second. Therefore, the traditional systems may not be able to analyze the data that is

in motion (Katal, Wazid, & Goudar, 2013). The veracity describes the quality of the data.

Most likely, there are some bad values in the data, for example, some values from

malfunctional sensors.

In 2011, McKinsey’s researchers (Manyika et al., 2011) proposed a new

definition. Big data is a data set that is too large to store, manage, and analyze. This

definition is not an objective definition. There is no description of any metrics related to

big data. However, the definition includes an evolutionary perspective (from a time and

cross-domain perspective) that illustrates what kind of dataset can be considered as big

data.

9

The NIST believes that big data means that the volume, the velocity of acquisition,

or the representation of data limits the ability to analyze and process data using existing

methods (Cooper & Mell, 2012). It is necessary to use horizontal expansion mechanisms

to improve the processing efficiency. Besides, there are many big data platforms for big

data analysis. The big data framework is a distributed processing and analysis software

library and algorithms for solving big data problems, such as Apache Spark, and Apache

Kafka.

2.1.2 Big Data Analysis

In all digitized data of human beings, only a tiny part of numerical data has been

well analyzed and mined, using methods such as regression, classification, and clustering.

Large-scale Internet companies have conducted a preliminary analysis of semi-structured

data, such as web page indexing and social data. It is difficult to analyze unstructured data

effectively, such as voice, pictures, and video, which account for nearly 60% of the total.

Therefore, the development of big data analysis technology needs to solve the problems in

two directions. The first is to conduct a highly efficient and in-depth analysis of structured

and semi-structured data and to mine tacit knowledge, such as web pages composed of

natural language texts. The second is to analyze unstructured data, transform vast amounts

of complex, multi-source speech, image, and video data into machine-recognizable,

semantically explicit information, and then extract useful information from it.

There are two technical routes for data analysis. One is to establish mathematical

models by using prior knowledge to analyze data, and the other is to build artificial

intelligence systems and use a large amount of sample data for training so that machines

can obtain the ability to extract knowledge from data instead of humans. Unstructured

data, which is the main part of big data, is often difficult to be processed using traditional

approaches. Researchers need to mine the hidden knowledge hidden in the data. It is

almost impossible to build a mathematical model for analysis by hand. The analysis of big

data through artificial intelligence and machine learning technology has been considered

by the industry to have a good prospect. According to the hierarchical nature of the human

10

brain’s cognitive process, researchers proposed to increase the layer of artificial neural

networks and the number of neuron nodes, increase the scale of machine learning, and

build a deep neural network that can improve the training effect (Dahl, Yu, Deng, &

Acero, 2011). Their proposal was confirmed by the follow-up experiments. The artificial

intelligence technology, which has been quiet for many years, has once again become a

hot spot in data analysis technology, which has caused great interests in the industry and

academia.

2.2 Feature Selection

As one of the common dimension reduction methods, feature selection is a crucial

research field in pattern recognition. It refers to selecting a subset of features from full set

that optimizes an evaluation criterion. The main task of feature selection is to select

features to represent the system effectively.

2.2.1 Significance of Feature Selection

In general, feature selection is a searching optimization problem. For feature sets

whose size is n, the search space consists of 2n−1 possible states. In the real world, when

the number of features is huge, it will be impracticable to conduct an exhaustive search

because the amount of calculation is too large. Therefore, selecting features from the data

sets is a crucial and essential procedure in big data analysis. The purpose of feature

selection is to ensure the model constructed by the selected optimal feature subsets having

an approximate or even better prediction accuracy compared to the one without feature

selection. Feature selection can improve the generalization ability (Abe, 2010) and

computational efficiency of the model (Vafaie & De Jong, 1993). The performance of

some learning algorithms became worse because of irrelevant or redundant features

(Weston et al., 2001). The number of training samples required for most learning

algorithms increases dramatically with increasing irrelevant features (Jain & Zongker,

1997). Therefore, selecting good features not only reduces computational complexity,

11

improves prediction accuracy, but also helps with finding a more accurate algorithm

model. The emergence of large-scale data processing problems, such as information

retrieval, and genetic analysis (Xing, Jordan, Karp, et al., 2001), makes feature selection

more important in data processing and machine learning.

2.2.2 Feature Selection in Big Data

With the development of various technologies, the data scale has exploded. The

data volume of the data centers has reached ZB, YB level (Matsuoka et al., 2014). Most

of the data is unstructured data (Sivarajah, Kamal, Irani, & Weerakkody, 2017). Also,

high dimensionality could be an important feature of these data. For instance, an

email-spam filtering task can have 1013 unique features (Weinberger, Dasgupta,

Attenberg, Langford, & Smola, 2009). It is common that there are over 20,000 or more

potential features in biological data sets (Hua, Tembe, & Dougherty, 2009). Collecting

storage is only the first step of big data application, how to process the stored data,

predicting the future, and providing strong support for business decision-making and

scientific research are the big challenges of big data. The high dimensionality makes the

process of big data require massive memory and computational cost in training. At the

same time, it reduces the generalization ability due to the issue of curse of dimensionality

(Donoho et al., 2000). Dimensionality reduction is an important pre-processing step for

high-dimensional data. Feature selection and feature extraction are common methods for

dimensionality reduction. Feature selection is the main data dimension reduction method

because of its high interpretability.

2.2.3 Categories of Feature Selection

According to Guyon and Elisseeff (2003), there are three categories in the methods

of feature selection: wrapper, filter, and embedded method. The wrapper method relies on

specific machine learning algorithms for feature selection. It considers the system as a

black box. It trains the learner directly with the selected features and evaluates the

12

selected features based on the learner’s performance. The wrapper method iteratively

evaluates the selected feature subset to obtain the best set. The brute-force nature

determines that it is compute-intensive. The wrapper method is not as efficient as the filter

method regarding computational efficiency, but the size of the selected subset of

optimization features is relatively small, which is very beneficial to identify the key

features and to simplify the structure of decision-making machine.

The difference between the wrapper method and filter method is whether the

evaluation of the subset of optimized features uses the learning algorithm used in the

construction of the decision machine. In the filter method, the ideas of multiple disciplines

such as statistics and information theory are used to evaluate the predictive ability of every

feature according to the intrinsic characteristics of data set. Several features with better

ranking constitute a feature subset (Zhou, Wang, & Dougherty, 2004). The filter method

usually selects a subset of features that are better predictive based on feature evaluation

criteria. One of the main problems is that it does not guarantee selecting a smaller

optimized feature subset, especially when the association between features and classifiers

is strong. Therefore, even if the method can find an optimized subset that satisfies the

condition, the subset will be larger and will contain some obvious noise features. A

significant advantage of this approach is that it can quickly eliminate a portion of

irrelevant noise features.

Since filter and wrapper are two complementary methods, many scholars have

proposed a combined feature selection algorithm that combines these two approaches.

The first step is to use the filter method for feature pre-selection, eliminating some

unrelated features, and reducing dataset dimensions. Further, the second step is to perform

feature selection on pre-selected feature sets using the wrapper method.

The embedded method combines feature selection with the process of training.

The learning and feature selection are combined. The embedded method takes advantage

of the available data. The other advantage of embedded method is that it may find the

solution faster because it does not retrain a predictor from beginning for each selected

subset.

13

2.3 Logistic Regression

Regression analysis is a type of statistical method that predicts one or more

response variables based on predictor variables. Regression analysis can also be used to

evaluate the effects of explanatory variables on response variables, often to explain the

effect of a linear function of a set of variables on a response variable. Linear regression

models and logistic regression models are basic statistical methods. Linear regression

aims to find a model between explanatory variables and outcome variables and utilize it to

make predictions (Gandomi & Haider, 2015). Logistic regression, is a common tool to

predict the probability of binary classification problems(Minka, 2003), because it

generates probabilities in the range of [0,1] (Kleinbaum, Dietz, Gail, Klein, & Klein,

2002).

The following equation can be used to express logistic regression model:

p̂ = hθ (x) = σ(θ T ·x) (2.1)

The σ(·) in eq. 2.1 can be expressed as the following equation:

σ(t) =
1

1+ exp(−t)
(2.2)

The binary classification prediction can be expressed as equation 2.3:

ŷ =

0 ifp̂ < 0.5,

1 ifp̂≥ 0.5.
(2.3)

There are multiple methods to compute logistic regressions, such as NewtonRaphson,

iteratively re-weighted least square methods (IRWLS), and Fisher-scoring, etc. (Yang et

al., 2018).

14

2.4 Tools of Big Data Analysis

This section provides a discussion about two tools of big data analysis, Apache

Hadoop, and Apache Spark.

2.4.1 Apache Hadoop

Apache Hadoop is a famous software framework for distributed data processing.

This framework mainly implements a programming paradigm: MapReduce. With this

programming paradigm, developers can easily develop distributed applications. The

Hadoop platform includes MapReduce, Hadoop Distributed File System (HDFS), and

other related projects such as Hive, HBase, and more. MapReduce is a programming

model that is widely used in the processing of large-scale data. With this software

framework, developers can quickly write distributed applications. Today, the framework

has been widely used in tasks such as log analysis and massive data sorting. The

MapReduce programming model utilizes a traditional algorithm paradigm, which is called

“divide and conquer”. The divide-and-conquer method divides the complex problem into

several similar sub-problems until the sub-question is small enough to directly yield the

result, and the final result obtained by re-aggregating the intermediate data is the solution

to the original problem. In Hadoop, the steps for divide and conquer are implemented in

Mapper and Reducer, respectively. Figure 2.1 illustrates the workflow of MapReduce in

Hadoop. Hadoop MapReduce adopts a master-slave structure. A Hadoop cluster may

include three types of nodes, which are master nodes, worker nodes, and client nodes. The

master is the only manager in the entire cluster. The main tasks are task scheduling and

status monitoring. Workers are responsible for calculating work and task status responses.

The client nodes are neither master nodes nor worker nodes. The client nodes load data

and submit the jobs to the cluster. In Map phase, master nodes split the input data and

15

divide the original problem into multiple similar sub-problems, and then hand the split

data and tasks to the worker nodes for calculation. In Reduce phase, master nodes collect

the intermediate results calculated by the worker nodes and aggregate them into the final

result.

Figure 2.1. MapReduce Workflow

2.4.2 Apache Spark

Besides Hadoop, Spark is another distributed cluster computing framework for

data analysis. The disadvantage of MapReduce in Apache Hadoop is that intermediate

results need to be written to an external stable storage system if the computational jobs

would like to reuse the intermediate results. This will incur a large number of network

transmissions, disk I/O operations, and serialization, which makes the calculations

inefficient. To tackle this problem, researchers have proposed different frameworks.

Zaharia et al. (2012) suggested using resilient distributed datasets (RDDs) to enable

in-memory computations over a large cluster. With the help of RDDs, Spark can quickly

16

process queries and return analysis results in real time. Compared to Hadoop, the same

algorithm runs ten times to 100 times faster in Spark (Zaharia et al., 2010). Spark is

technically compatible with the Hadoop storage layer APIs and can access HDFS, HBase,

and SequenceFile.

Figure 2.2. Architecture of Spark

Spark is designed for specific types of workloads in cluster computing.

Specifically, Spark is suitable for the workloads that reuse working data sets between

parallel operations, for example, machine learning tasks.

There are three characteristics in Spark’s computing architecture.

First, Spark is a light weight cluster computing framework. Spark applies Scala to

its program architecture. Scala’s multi-paradigm programming language feature provides

concurrency, extensibility, and support for programming paradigms.

Second, Spark includes data flow computing and interactive computing in the big

data domain. Spark can interact with HDFS to get the data files. The iteration in Spark,

memory computing, and interactive computing provides a good framework for data

mining and machine learning.

17

Last but not least, Spark has a good fault tolerance mechanism. Spark uses RDDs,

which are represented as a Scala object distributed over a set of nodes. In the set of

read-only objects, these collections are resilient, ensuring that if part of the data is lost, it

can be reconstructed.

2.5 Optimizations with the Working Sufficient Statistics

When the dataset is too large to be held in RAM, it is hard to perform data

analysis. In Spark, if there is not enough room in RAM to hold the data, the data is spilled

to hard drives. This approach could ensure Spark to compute dataset that is larger than the

memory. However, it will compromise the performance of the computation because the

data needs to be read back to the primary again in the end. To overcome these challenges,

Yang et al. (2018) proposed an innovative approach to perform logistic regressions in big

data. Conventionally, to select appropriate features and obtain an accurate model, multiple

models need to be trained and evaluated. The data set needs to be scanned many times.

Disk I/O operations are extremely expensive, especially in the big data scenarios.

Therefore, reducing the disk I/O operations is crucial to big data analysis. When a dataset

is much larger than the memory, a row-by-row fashion of updating the model is feasible in

big data scenario.

In the study of Yang et al. (2018), they have proved that they could get an optimal

prediction accuracy at the second iteration, which means that the whole data only needs to

be scanned twice. The data will be read row by row. The large dataset can be represented

by several small enough matrices that can be loaded into memory. Thus, even when the

original dataset is larger than the memory of the computer, it is possible to perform the

computation. Even when multiple feature subsets need evaluation, the disk I/O will not be

the bottleneck of the process. Their result demonstrates that if the working sufficient

statistics of a dataset is fetched, the computation of updating the logistic regression model

is efficient.

18

2.6 Summary

In this chapter, a detailed literature review about big data, big data analysis, the

significance of feature selection, different categories of feature selection approaches,

feature selection in big data, logistic regression, Apache Hadoop, Apache Spark,

optimizations with the array of working sufficient statistics is provided. The next chapter

provides an introduction and discussion of the methodology of this study.

19

CHAPTER 3. METHODOLOGY

This chapter introduces the hypotheses and provides discussions about experiment

environment, input data, working sufficient statistics and related logistic regression

algorithms, testing procedures, and analysis procedures.

3.1 Hypotheses

The following are the null hypotheses and the alternative hypotheses of this study:

H0:

• The use of working sufficient statistics algorithm does not improve the

speed of feature selection and model updating in logistic regressions in

Spark.

• The use of working sufficient statistics algorithm does not reduce the

memory usage of feature selection and model updating in logistic

regressions in Spark.

Hα :

• The use of working sufficient statistics algorithm does improve the speed

of feature selection and model updating in logistic regressions in Spark.

• The use of working sufficient statistics algorithm does reduce the

memory usage of feature selection and model updating in logistic

regressions in Spark.

3.2 Experiment Environments

This section introduces the hardware environment and software environment of

this research.

20

3.2.1 Hardware

Generally, as a distributed cluster-computing framework, a Spark cluster with

more computers is more computationally powerful than the one with less computers. In

industries, many companies have already applied Spark in production. The numbers of

worker nodes in their Spark clusters are even more than 1,000. In this study, due to limited

resources, the cluster used for the experiment consists of three machines: one master

node, and two worker nodes. The detailed hardware specifications of three computers are

listed in the following tables.

Table 3.1. Hardware Configuration of Master Machine

Component Hardware Configuration

CPU Intel Core i7-3770 3.4GHz
RAM DDR3 16GB
Hard Drive 1TB 7200 rpm

Table 3.2. Hardware Configuration of Worker 1

Component Hardware Configuration

CPU Intel Core Q8400 2.66GHz
RAM DDR3 4GB
Hard Drive 250GB 5400 rpm

Table 3.3. Hardware Configuration of Worker 2

Component Hardware Configuration

CPU Intel Core Q8400 2.66GHz
RAM DDR3 4GB
Hard Drive 250GB 5400 rpm

21

3.2.2 Software

Ubuntu 16.04.6 was installed on the three machines. Apache Spark 2.3.2 was

installed and set up with the default settings on the three machines. Apache Hadoop 3.1.1

was installed and set up with the default settings on the three machines. Besides, all the

Spark jobs were implemented in Scala. The matrix and vector computation operations

were written using breeze package. The version of Scala was 2.11.8. The version

1.8.0 191 of Java JDK was installed on the three machines. The dataset was preprocessed

using Python.

Table 3.4. Software Specification

Software Version

OS Ubuntu 16.04.6
Spark 2.3.2
Hadoop 3.1.1
Scala 2.11.8
Java 1.8.0

3.3 Data

This study investigated a high performance computing dataset, Fresco: Open

Source Data Repository for Computational Usage and Failures, a dataset of

high-performance computing data collected from Purdue’s Central Computing Clusters

from March 2015 to June 2017 (Saurabh Bagchi, 2018). Fresco is a data repository of

performance data for high-performance computing jobs that are submitted to Purdue

University’s Conte cluster, which consists of 580 nodes. There are around 16 tables

recording performance parameters of each job’s execution on an individual node. Due to

the limited time, this study only investigated five tables that were possibly related to a

job’s failure, which were accounting, CPU, mem, process, and block. The detail

descriptions of these tables are listed in Table 3.5.

22

Table 3.5. Fresco Dataset Information

Table Description

Accounting
Accounting logs from job scheduler, i.e., jobID,
Exit status, start time, end time, nodes and cores

Mem
Memory usage per node, i.e., total memory,

memory used, FilePages, PageTables, writeback

Process
Process statistics per node, i.e., context switches,

processes, 1/5/15 minute load average

CPU
CPU statistics per node, i.e., time in user mode,

time in system mode, time in I/O wait

Block
Block device statistics, i.e., wait time for all requests,

sectors read, wait time for read requests

There are some outliers in some features. Some features with large standard

deviations were normalized. It is recommended to normalized the data before computing,

because the training model is difficult to converge when the standard deviations of the data

are large. Specifically, during the matrix computation, NaN errors can occur when

inverting matrices with large standard deviations. The data was normalized using z-score,

as following equation 3.1.

x∗i =
xi−µ

σ
(3.1)

where µ is the mean of each feature, xi is feature value of the ith observation, and σ is the

standard deviation of each feature. After normalization, the data becomes the z-score.

The dataset was downloaded to the local server. The size of the original dataset

was 252GB. Before performing the experiments, the data had been preprocessed. All the

entries with missing values or invalid fields had been removed from the dataset. In the

CPU, Block, Mem, and Process table, most of the jobs have more than one entries. The

data were collected every five minutes. The longer the job ran, the more data it generated.

23

The maximum and minimum were calculated to combine all the information into one row.

After preprocessing, the size of the whole dataset was about 4.4 GB. The cleaned data and

simulated data was saved on HDFS. There were 694 columns including onehot encoding

on the 580 nodes. There were 986,374 jobs in the dataset.

The size of cleaned data of Fresco dataset was only 4.4 GB. In this study, I was

also interested in examining the performance of the two methods when the input size was

much larger than the memory capacity of Spark cluster. Therefore, I generated three

simulated data files (10 GB, 16GB, 28GB). All the features except the Exit status were a

result of the diversion of two random numbers in the range of 5 to 15. The Exit status is 1

or 0 with equal possiblility.

3.4 Array of Working Sufficient Statistics and Algorithms

In statistics, the following equation expresses the logistic regression model:

hθ (x) = σ(θ T ·x) (3.2)

After initial computation, several iterations are needed to compute the logistic

regression. In the iterative process, specifically, in the i+1 iteration, β , σ2 , and V can be

calculated using the following equations:

β
(i+1) = {S(i)

xx }−1s(i)xz (3.3)

{σ 2}(i+1) =
1
n
{s(i)zz −{ si

xz}T{S(i)
xx }−1s(i)xz } (3.4)

V(i+1) = (XT W(i)X)−1 (3.5)

In logistic regression, the model is only related with

C(y,X) = (cyy,cxy,Cxx) (3.6)

24

where cyy is a real number, Cxy is a vector of p-dimension, and Cxx is a matrix of

dimensions p∗ p (Yang et al., 2018). C(y,X) is the working sufficient statistics. When

the p is not large, a single computer can load C(y,X) into memory and perform all the

remaining computations in memory. The data was split into training data and test data.

Similarly, the working sufficient statistics for testing data can be expressed as the

following equation.

C(z,W) = (czz,cwz,Cww) (3.7)

The algorithm of computing C(y,X), β̂ , and σ̂2 is shown in Algorithm 3.1.

25

Algorithm 3.1 Algorithm for Computing of β̂ and σ̂2

Input: each row of input data

Output: : β̂ , σ̂2

1: function COMPUTE(data)

2: First Iteration:

3: Initialize s(0)zz , s(0)xz , and S(0)
xx with zeros

4: for all row in dataset do

5: Initialize z(0)j and w(0)
j

6: Compute s(0)zz = s(0)zz + w(0)
j {z

(0)
j }2

7: Compute s(0)xz = s(0)xz + w(0)
j {z

(0)
j }x j

8: Compute S(0)
xx = s(0)xx + w(0)

j xixT
j

9: end for

10: Compute β (1), σ2(1), and V(1) by equation 3.3, equation 3.4, and equation 3.5

11: Iterative Computation:

12: Initialize s(i)zz , s(i)xz , and S(i)
xx with zeros

13: for all jth row in dataset do

14: Compute s(i)zz = s(i)zz + w(i)
j {z

(i)
j }2

15: Compute s(i)xz = s(i)xz + w(i)
j {z

(i)
j }x j

16: Compute S(i)
xx = s(i)xx + w(i)

j x jxT
j

17: end for

18: Compute β (i+1), σ2(i+1) , and V(i+1) by equation 3.3, equation 3.4, and equation

3.5

19: Iterate step 10 to step 18 until convergence

20: Return the value of β̂ and σ̂2

21: end function

26

There are three major procedures in algorithm 3.1. The first procedure is from line

1 to line 10. This procedure calculates the β (1). The time complexity of the first procedure

is O((p+1)2). The second procedure is from line 11 to line 18. The task of this procedure

calculates the β̂ and σ̂2. The time complexity of the second procedure is the same as the

first procedure, which is also O((p+1)2). The last procedure is to generate the final value

of β̂ and σ̂2, which is O(1) in space complexity.

Based on the previous analysis, the space complexity of Algorithm 3.1 is

O((p+1)2). In reality, p is far less than n. Therefore, there is no memory barrier for this

algorithm. Even when the dataset is huge, the exact value of β̂ and σ̂2 can be computed

by Algorithm 3.1. As long as the data is stored in hard drives, we can read the data in a

row-by-row fashion, and obtain the logistic regression model using Algorithm 3.1. This

algorithm can be applied to the distributed cluster-computing systems, such as Spark,

Hadoop, and other systems.

3.5 Variables

The independent variables are the logistic regression methods, including working

sufficient statistics method and Spark official logistic regression method from Spark ML

package, number of features, size of memory, and size of data input. The dependent

variable is the performance of Spark, i.e., running time and usage of memory.

3.6 Testing Procedures

The implementation of Spark jobs was developed on a local machine and fully

tested before performing the experiments. After onehot encoding on the 580 nodes, the

total number of features was over 700. It is not feasible and not necessary to perform a

complete search on all these features. After filtering out irrelevant features, there were 694

27

features in total in the dataset. To test the hypotheses, the working sufficient statistic

approach and the Spark logistic regression API were compared in the experiments. In the

experiments, both the working sufficient statistics model and the Spark logistic regression

model were trained and evaluated on Spark. Two experiments were performed as follows.

The first experiment was implemented to investigate the efficiency of two methods

about updating several models. In the experiment, five models with a different number of

features were trained. The data of two methods, including running time and memory

usage, was collected and analyzed. This experiment also investigated if increasing the

feature size could improve the predictability of logistic regression models.

To compare the memory usage of two methods, the second experiment was

performed under different ratios of memory and input size. The memory usage of the

cluster was set to 2 GB for each worker node, which is 4 GB in total for the cluster. The

size of the input data was in the range of 784 MB to 28 GB.

3.7 Analysis

The processing time was measured in the code of Spark job. The data of all

submitted Spark jobs was recorded and stored in log files. The Spark web interface also

shows the processing time, memory usage, core number, error logs, and other information

of each finished job. The results were then compared and analyzed to accept or reject the

null hypotheses. All the Spark jobs were repeated three times to make sure results of the

experiments were reliable. The averages were calculated and used for analysis.

3.8 Summary

In this chapter, a discussion of the methodology of the study was provided. The

hardware and software environments of the research were discussed in detail. The chapter

also introduced the details of the dataset, testing procedures, and analysis. In the next

chapter, the results of the experiments and discussion of the research were provided.

28

CHAPTER 4. RESULTS AND DISCUSSION

This chapter provides the results of several different experiments and the

discussion of the results.

4.1 Training Models with Different Number of Features

To obtain an optimal machine learning model, it is necessary to train multiple

models and choose the best model from them. In this section, five models were designed

and trained using both working sufficient statistic method and Spark logistic regression

method to compare the performance of the two methods.

4.1.1 Configuration of Spark Cluster

In this experiment, the configuration of the Spark cluster was set to the same. The

detail specification is shown in Table 4.1.

Table 4.1. Spark Setting Parameters

Information Value

Cluster configuration 1 master, 2 worker nodes

Total executor memory 4 GB

Driver memory 2 GB

Total executor cores 8

29

4.1.2 Input Data

There were two input files in this experiment. The first input file was a 4.4 GB file

in the format of CSV. The other one was a 10 GB CSV file. The data was split into two

parts: training data and test data. The ratio of training data and test data was 6 : 4. When

the size of the input files varied, the memory setting of the Spark cluster stayed the same.

The information of input data is listed in Table 4.2.

Table 4.2. Data Information

Information Input File 1 Input File 2

Input data fresco onehot.csv onehot 10G.csv

File size 4.4 GB 10 GB

Feature number 693 693

Entries 986374 986374

Training test ratio 6 : 4 6 : 4

4.1.3 Logistic Regression Models

In this experiment, five models with a different combination of features were

constructed. There were 693 features in the dataset. The first model consisted of nine

features, which were selected from the process table, including ctxt, process, load 1,

load 5, load 15, nr running, user, nice, and system. The second model did not include

maximums and minimums. The third model consisted of only minimums and maximums

from the five tables. The fourth model included all the features except the 580 onehot

encoding features. The last model consists of all 693 features, which was called onehot

model. The detailed information of the five models are shown in Table 4.3.

30

Table 4.3. Feature Information of the Five Models

Model Features

9-feature 9 features from process

39-feature
39 features without minimums, maximums,

and one-hot encoding

73-feature
73 features, including minimums

and maximums

112-feature
112 features without one-hot encoding

on nodes

onehot
693 features including 580 features of

one-hot encoding on nodes

4.1.4 Train Multiple Models in One Program

To compare the performance difference between the two methods, the

aforementioned five models were trained and tested. The results are listed in the following

tables and figures.

Table 4.4. Average Training Time of Multiple Models With 4.4 GB Data

Method 9-feature 39-feature 73-feature 112-feature onehot Total

WSS 324.50 155.15 134.35 136.90 482.98 1233.89

Spark 114.07 119.41 132.38 132.79 173.86 672.50

31

Figure 4.1. Training Time of Multiple Model with Input Size of 4.4 GB

As shown in Figure 4.1, when the number of feature in a model increased, the

training time went up both for the working sufficient statistics method and the Spark API.

It is expected because more features require more computations. However, the training

time of the working sufficient statistics method grew faster than the Spark API method

when the input data was 4.4 GB. This result indicated that the working sufficient statistics

method did not outperform the Spark API when the input data was relatively small. One

possible reason might be that the working sufficient statistics method involves many

matrix and vector computations, such as matrix product operation and matrix inverse

calculation.

Table 4.5. Average Training Time of Multiple Models With 10 GB Data

Method 9-feature 39-feature 73-feature 112-feature onehot Total

WSS 483. 97 144.81 138.54 126.1 542.96 1436.37

Spark 133.81 155.76 141.88 154.22 1514.69 2100.35

32

Figure 4.2. Training Time of Multiple Model with Input Size of 10 GB

As shown in Figure 4.2, in the case of 10 GB input size, when the number of

features grew, both the working sufficient statistics method and the Spark API method

needed more training time. However, the running time of Spark’s logistic regression

method increased faster than the working sufficient statistics method. The Spark’s logistic

regression method needed to load the full dataset into RAM. When the size of input was

larger than RAM, the data was swap in/out the memory, which was time-consuming.

Although the working sufficient statistics method also needed more time on models with

more features, the growth of the training time was not related to the growth of the input

data size.

One interesting thing is that, in the working sufficient statistics method, the

training time of model with nine features was longer than the ones with 39 features, 73

features, and 112 features. For example, when the input size was 10 GB, the training time

of the 9-feature model was 783.04 seconds. The training time of the 39-feature model was

213.25 seconds. This was due to the cache mechanism of Spark. The 9-feature model was

the first model that was trained in our experiment. After the 9-feature model was trained,

the dataset was cached in memory by Spark. The subsequent models took advantage of

the cached data and needed a shorter training time than the 9-feature model.

33

4.1.5 Train Multiple Models in Separate Programs

When the input size is huge, it is not feasible to train multiple models in a single

program. Due to the limited memory resource, in this study, one model was trained each

time. In this subsection, five models were trained and tested separately. The results are

shown in the following tables and figures.

Table 4.6. Average Training Time of Multiple Models in Separate Programs With 4.4 GB
Data

Method 9-feature 39-feature 73-feature 112-feature onehot Total

WSS 100.37 138.22 134.97 152.41 492.91 1018.88

Spark 48.59 100.31 99.87 114.15 118.14 481.06

Figure 4.3. Training Time of the Five Models with Input Size of 4.4 GB

34

Table 4.7. Average Training Time of Multiple Models in Separate Programs With 10 GB
Data

Method 9-feature 39-feature 73-feature 112-feature onehot Total

WSS 511.65 761.66 412.21 792.16 1381.3 3858.99

Spark 226.89 318.81 273.87 399.59 4672.29 5891.46

Figure 4.4. Training Time of Five Models with Input Size of 10 GB

When five models were trained separately, the training time grew when the number

of features increased. When the models were trained separately, the training time of the

9-feature model was not longer than the models with more features.

35

4.1.6 Discussion

In this section, the experiment showed that the working sufficient statistics method

could update multiple models with shorter time compared to the Spark’s API when the

input size was large. It is meaningful to reduce the training time because the best model is

often obtained by training multiple models.

4.2 Training Logistic Regression Models With Different Ratios of Data and Memory

In this experiment, I investigated if the algorithm performed well with different

sizes of the input datasets. In the two sub-experiments, the total memory of the Spark

cluster was set to 2GB and 4GB, respectively.

4.2.1 Data

There were four different input files with different sizes, ranging from 784MB to

28GB. The ratio of data and memory is defined using the following equation.

DataMemoryRatio =
InputDataSize

SparkMemorySize
(4.1)

The details of the four input files are listed in Table 4.8. The input files with 9 GB,

16 GB, and 28 GB were simulated data.

36

Table 4.8. Input Data Information

Input Size Entries

784 MB 986374

9 GB 16186378

16 GB 27713654

28 GB 51713653

4.2.2 The Sub-experiment with 4 GB Memory

In this sub-experiment, the memory of executors in Spark was set to 4 GB in total.

The details of the configuration of Spark cluster is shown in the following table.

Table 4.9. The Spark Setting Parameters for the Experiment with 4 GB Memory

Information Value

Cluster configuration 1 master, 2 worker nodes

Total executor memory 4 GB

Driver memory 2 GB

Total executor cores 8

The ratios of data and memory are listed in Table 4.10.

37

Table 4.10. The Ratios of Input Data and Memory

Input Size 784 MB 9 GB 16 GB 28 GB

Ratio 0.19 2.25 4 7

The results of the experiment with 4 GB memory setting are shown in the

following tables and figures.

Table 4.11. Average Training Time of Iteration 1 with 4 GB Memory

Method 784M 9G 16G 28G

WSS 43.17 329.46 1287.56 2342.53

Spark 13.56 343.09 1161.1 2218.75

Figure 4.5. Average Training Time of Iteration 1 with 4 GB Memory

38

Table 4.12. Average Training Time of Iteration 2 with 4 GB Memory

Method 784M 9G 16G 28G

WSS 39.97 823.87 656.3 2753.96

Spark 18.84 976.94 779.13 2662.7

Figure 4.6. Average Training Time of Iteration 2 with 4 GB Memory

Table 4.13. Average Training Time of Iteration 3 with 4 GB Memory

Method 784M 9G 16G 28G

WSS 34.81 479.33 391.14 1742.61

Spark 17.59 999.17 886.9 3152.41

39

Figure 4.7. Average Training Time of Iteration 3 with 4 GB Memory

As the figures denoted, when the input data grew, both methods needed more time

to train the models, especially when the input data size was 28 GB. In other words, when

the ratio of data and memory was 14, the training time grew rapidly. However, the running

time of Spark API grew faster than the working sufficient statistics method.

4.2.3 Sub-experiment with 2 GB Memory

To enlarge the ratio of data and memory, the total executor memory of Spark

cluster was set to 2GB. The details of the configuration of Spark cluster is shown in the

following table.

40

Table 4.14. The Spark Setting Parameters for the Experiment with 2 GB Memory

Information Value

Cluster configuration 1 master, 2 worker nodes

Total executor memory 2 GB

Driver memory 2 GB

Total executor cores 8

The ratios of data and memory are listed in following table:

Table 4.15. The Ratios of Input Data and Memory

Input Size 784 MB 9 GB 16 GB 28 GB

Ratio 0.38 4.5 8 14

The results of the experiment with 2 GB memory setting are shown in the

following tables and figures.

Table 4.16. Average Training Time of Iteration 1 with 2 GB Memory

Method 784M 9G 16G 28G

WSS 33.23 690.34 617.18 1002.38

Spark 17.8 580.25 796.79 1300.1

41

Figure 4.8. Average Training Time of Iteration 1 with 2 GB Memory

Table 4.17. Average Training Time of Iteration 2 with 2 GB Memory

Method 784M 9G 16G 28G

WSS 6.61 351.16 496.58 1059.37

Spark 13.26 742.67 814.97 1761.2

42

Figure 4.9. Average Training Time of Iteration 2 with 2 GB Memory

When the memory size of cluster was set to 2 GB and the input size was 28 GB,

the Spark cluster could only run two iterations. During the third iteration, the Spark job

was killed due to a timeout exception when running the Spark’s logistic regression

method. A possible reason is that the workload was overly large for the Spark cluster.

When the workload was too heavy in Spark, the timeout exception could happen. When

the memory size of executors was low, the Garbage Collection system might keep the

Spark system very busy, which increased the workload. In this case, the ratio of data and

memory was 14. When the input data size was 14 times larger than the memory size of

Spark cluster, the Spark cluster might throw exceptions.

43

4.2.4 Discussion

In this section, the experiment reflected the advantage of the working sufficient

statistics method over the Spark API. The working sufficient statistics method requires

less computing memory and runs more efficiently. Although computers nowadays are

equipped with large memory, it is valuable to perform classification task with less

memory. After all, in the big data era, the data grows exponentially.

4.3 Model Evaluation

The section looks into the accuracy and other performance metrics of the

algorithm. Accuracy, precision, recall, and F1 are frequently used metrics for model

evaluation.

The evaluation scores of different models of experiment 1 are shown in the

following tables.

Table 4.18. The Evaluation Scores of the 9-Feature Model

Method Accuracy Precision Recall F1

WSS 84.64% 84.64% 99.97% 91.67%

Spark API 84.61% 84.64% 99.93% 91.65%

Table 4.19. Evaluation Scores of the 39-Feature Model

Method Accuracy Precision Recall F1

WSS 84.67% 84.61% 97.94% 91.60%

Spark API 84.62% 84.62% 99.98% 91.67%

44

Table 4.20. Evaluation Scores of the 73-Feature Model

Method Accuracy Precision Recall F1

WSS 85.23% 84.61% 97.94% 90.79%

Spark API 84.61% 84.61% 99.97% 91.66%

Table 4.21. Evaluation Scores of the 112-Feature Model

Method Accuracy Precision Recall F1

WSS 86.47% 84.61% 96.26% 90.06%

Spark API 84.87% 84.61% 99.40% 91.41%

Table 4.22. Evaluation Scores of the Onehot Model

Method Accuracy Precision Recall F1

WSS 86.91% 84.68% 96.19% 90.07%

Spark API 86.16% 84.68% 96.21% 90.08%

As shown in the tables, the accuracy of the working sufficient statistics method

was higher than the Spark API method. The recall and F1 score of the working sufficient

statistics method were slightly lower than the Spark’s API. Increasing the number of

features in the models increased the accuracy of the models.

45

4.3.1 Discussion

As a logistic regression model, it is crucial that it can predict and classify correctly.

According to the evaluation scores in this section, the working sufficient statistics method,

has a higher accuracy score compared to the Spark existing API. The recall and F1 scores

of the working sufficient statistics method were slightly lower than the Spark’s API. In

general, the two methods have their strengths in terms of evaluation. However, when the

evaluation scores of the two methods are close, the working sufficient statistics method is

able to perform the task with less memory and less time.

More interestingly, the working sufficient statistics method updates a model by

reading the dataset with a row-by-row fashion. For one dataset, the obtained model and

the working sufficient statistics can be saved. When there is new data, the model can be

updated by just reading the new data row-by-row. This advantage makes this method

suitable for processing steaming data. However, for the Spark API, updating a model with

new data needs to go through the whole dataset, both the previous data and the new data.

4.4 Summary

In this chapter, the experiments were presented, including the input data, the ratios

of data and memory, and the Spark cluster configuration. The results of the experiments

were presented and discussed. The working sufficient statistic method and the official

logistic regression method from Spark machine learning package were compared and

evaluated. The working sufficient statistics method is faster than the Spark logistic

regression method when updating multiple models at once. In the second experiment, the

working sufficient statistics method outperforms the Spark API when the input size is

much larger than the memory of Spark cluster. The next chapter presents the conclusions

of the study.

46

CHAPTER 5. CONCLUSIONS

This thesis investigated and compared two logistic regression approaches for big

data problems, which are the working sufficient statistics based logistic regression method

and the Spark official logistic regression method. According to the results in Chapter 4,

the two null hypotheses can be rejected. The following alternate hypotheses are accepted:

• The use of the working sufficient statistics algorithm does improve the speed of

feature selection and model updating in regressions in Spark.

• The use of the working sufficient statistics algorithm does reduce the memory usage

of feature selection and model updating in regressions in Spark.

Based on the results and discussion in Chapter 4, the following conclusions could

be drawn:

• When the input size is large, the working sufficient statistics approach is able to

perform feature selection and logistic regression tasks faster than the Spark’s

logistic regression API.

• The working sufficient statistics algorithm requires less memory than the Spark’s

existing logistic regression API. The working sufficient statistics method updates

the logistic regression model by reading the data row-by-row. Therefore, its

memory consumption is not affected greatly by the size of the input file. However,

for the Spark’s API, when the input data is greatly larger than RAM, the Spark job

could be killed due to out of memory error. When the input size is equal to or

smaller than the memory, the Spark’s API can provide better performance than the

working sufficient statistics method. When the size of input is much larger than the

memory capacity of the Spark cluster, the working sufficient statistics approach can

offer better performance than the existing Spark API. Although computers are

equipped with larger and larger memory today and data centers consist of hundreds

of computers, it is not efficient to train a model using the existing approach when

the input data is extremely large.

47

• There is another scenario where the new approach can shine. The training results of

the working sufficient statistics approach can be merged without too much effort.

When the new data comes in, the Spark’s logistic regression API has to retrain the

model with all the data, which is time-consuming and resource-consuming. The

working sufficient statistics approach can update the matrices of working sufficient

statistics by only reading the new data. Therefore, this method can be utilized in the

scenarios that the data grows constantly and the model needs to be updated when

the new data comes in.

5.1 Future Work

In the future, the researcher will keep working on optimizing the working

sufficient statistics algorithm. When the feature number of the logistic regression model is

large, the training time grows rapidly. To perform the training tasks efficiently, it is

necessary to further reduce the running time for the large matrices computation.

In recent years, edge computing is emerging dramatically (Satyanarayanan,

2017). In edge computing, the data is stored and processed in the edge nodes, which are

close to the edge devices (Shi, Cao, Zhang, Li, & Xu, 2016). The edge nodes may be far

away from each other. They could not be combined together as a cluster. The computing

resource is limited in the edge nodes. Our approach may be applied in edge computing.

48

REFERENCES

Abe, S. (2010). Feature selection and extraction. In Support vector machines for pattern

classification (pp. 331–341). Springer.

Angelova, A., Krizhevsky, A., & Vanhoucke, V. (2015). Pedestrian detection with a

large-field-of-view deep network. In 2015 ieee international conference on

robotics and automation (icra) (pp. 704–711).

Ba, J., Mnih, V., & Kavukcuoglu, K. (2014). Multiple object recognition with visual

attention. arXiv preprint arXiv:1412.7755.

Cooper, M., & Mell, P. (2012). Tackling big data. In Federal computer security managers

forum (pp. 728–729).

Dahl, G. E., Yu, D., Deng, L., & Acero, A. (2011). Context-dependent pre-trained deep

neural networks for large-vocabulary speech recognition. IEEE Transactions on

audio, speech, and language processing, 20(1), 30–42.

Donoho, D. L., et al. (2000). High-dimensional data analysis: The curses and blessings of

dimensionality. AMS math challenges lecture, 1(32), 375.

Dubey, R., Gunasekaran, A., Childe, S. J., Wamba, S. F., & Papadopoulos, T. (2016). The

impact of big data on world-class sustainable manufacturing. The International

Journal of Advanced Manufacturing Technology, 84(1-4), 631–645.

Frome, A., Corrado, G. S., Shlens, J., Bengio, S., Dean, J., Mikolov, T., et al. (2013).

Devise: A deep visual-semantic embedding model. In Advances in neural

information processing systems (pp. 2121–2129).

Gandomi, A., & Haider, M. (2015). Beyond the hype: Big data concepts, methods, and

analytics. International journal of information management, 35(2), 137–144.

49

Gantz, J., & Reinsel, D. (2011). Extracting value from chaos. IDC iview, 1142(2011),

1–12.

Ganz, F., Barnaghi, P., & Carrez, F. (2013). Information abstraction for heterogeneous

real world internet data. IEEE Sensors Journal, 13(10), 3793–3805.

Gupta, D., & Rani, R. (2018). A study of big data evolution and research challenges.

Journal of Information Science, 0165551518789880.

Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection.

Journal of machine learning research, 3(Mar), 1157–1182.

Hua, J., Tembe, W. D., & Dougherty, E. R. (2009). Performance of feature-selection

methods in the classification of high-dimension data. Pattern Recognition, 42(3),

409–424.

Jain, A., & Zongker, D. (1997). Feature selection: Evaluation, application, and small

sample performance. IEEE transactions on pattern analysis and machine

intelligence, 19(2), 153–158.

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical

learning (Vol. 112). Springer.

Katal, A., Wazid, M., & Goudar, R. (2013). Big data: issues, challenges, tools and good

practices. In 2013 sixth international conference on contemporary computing (ic3)

(pp. 404–409).

Kleinbaum, D. G., Dietz, K., Gail, M., Klein, M., & Klein, M. (2002). Logistic

regression. Springer.

Kolda, T. G., & Sun, J. (2008). Scalable tensor decompositions for multi-aspect data

mining. In 2008 eighth ieee international conference on data mining (pp.

363–372).

50

Lin, K. C., Zhang, K. Y., & Hung, J. C. (2014). Feature selection of support vector

machine based on harmonious cat swarm optimization. In 2014 7th international

conference on ubi-media computing and workshops (pp. 205–208).

Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., & Byers, A. H.

(2011). Big data: The next frontier for innovation, competition, and productivity.

Matsuoka, S., Sato, H., Tatebe, O., Koibuchi, M., Fujiwara, I., Suzuki, S., . . . others

(2014). Extreme big data (ebd): Next generation big data infrastructure

technologies towards yottabyte/year. Supercomputing frontiers and innovations,

1(2), 89–107.

McAfee, A., Brynjolfsson, E., Davenport, T. H., Patil, D., & Barton, D. (2012). Big data:

the management revolution. Harvard business review, 90(10), 60–68.

Meng, X., Bradley, J., Yavuz, B., Sparks, E., Venkataraman, S., Liu, D., . . . others (2016).

Mllib: Machine learning in apache spark. The Journal of Machine Learning

Research, 17(1), 1235–1241.

Mills, S., Lucas, S., Irakliotis, L., Rappa, M., Carlson, T., & Perlowitz, B. (2012).

Demystifying big data: a practical guide to transforming the business of

government. TechAmerica Foundation, Washington.

Minka, T. P. (2003). A comparison of numerical optimizers for logistic regression.

Unpublished draft, 1–18.

Morgan, S. P., & Teachman, J. D. (1988). Logistic regression: Description, examples, and

comparisons. Journal of Marriage and Family, 50(4), 929–936.

Sagiroglu, S., & Sinanc, D. (2013). Big data: A review. In 2013 international conference

on collaboration technologies and systems (cts) (pp. 42–47).

Satyanarayanan, M. (2017). The emergence of edge computing. Computer, 50(1), 30–39.

51

Saurabh Bagchi, R. K. R. K. S. H. C. E. C. S., Todd Evans. (2018). Fresco: Job failure

and performance data repository from purdue university.

https://www.rcac.purdue.edu/fresco.

Shi, W., Cao, J., Zhang, Q., Li, Y., & Xu, L. (2016). Edge computing: Vision and

challenges. IEEE Internet of Things Journal, 3(5), 637–646.

Sivarajah, U., Kamal, M. M., Irani, Z., & Weerakkody, V. (2017). Critical analysis of big

data challenges and analytical methods. Journal of Business Research, 70,

263–286.

Vafaie, H., & De Jong, K. (1993). Robust feature selection algorithms. In Proceedings of

1993 ieee conference on tools with al (tai-93) (pp. 356–363).

Weinberger, K., Dasgupta, A., Attenberg, J., Langford, J., & Smola, A. (2009). Feature

hashing for large scale multitask learning. arXiv preprint arXiv:0902.2206.

Weston, J., Mukherjee, S., Chapelle, O., Pontil, M., Poggio, T., & Vapnik, V. (2001).

Feature selection for svms. In Advances in neural information processing systems

(pp. 668–674).

Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2016). Data mining: Practical machine

learning tools and techniques. Morgan Kaufmann.

Xing, E. P., Jordan, M. I., Karp, R. M., et al. (2001). Feature selection for

high-dimensional genomic microarray data. In Icml (Vol. 1, pp. 601–608).

Yan, X., & Su, X. (2009). Linear regression analysis: theory and computing. World

Scientific.

Yang, B., Wang, M., Xu, Z., & Zhang, T. (2018). Streaming algorithm for big data

logistic regression. In 2018 ieee international conference on big data (big data)

(pp. 2940–2950).

52

Yang, B., & Zhang, T. (2016). A scalable feature selection and model updating approach

for big data machine learning. In 2016 ieee international conference on smart

cloud (smartcloud) (pp. 146–151).

Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., . . . Stoica, I.

(2012). Resilient distributed datasets: A fault-tolerant abstraction for in-memory

cluster computing. In Proceedings of the 9th usenix conference on networked

systems design and implementation (pp. 2–2).

Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., & Stoica, I. (2010). Spark:

Cluster computing with working sets. HotCloud, 10(10-10), 95.

Zhao, S., Chandrashekar, M., Lee, Y., & Medhi, D. (2015). Real-time network anomaly

detection system using machine learning. In 2015 11th international conference

on the design of reliable communication networks (drcn) (pp. 267–270).

Zhou, X., Wang, X., & Dougherty, E. R. (2004). Nonlinear probit gene classification

using mutual information and wavelet-based feature selection. Journal of

Biological Systems, 12(03), 371–386.

Zwolenski, M., Weatherill, L., et al. (2014). The digital universe: Rich data and the

increasing value of the internet of things. Australian Journal of

Telecommunications and the Digital Economy, 2(3), 47.

