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ABSTRACT

Elgendy, Omar A. PhD, Purdue University, August 2019. Image Processing for
Quanta Image Sensors. Major Professor: Stanley H. Chan.

Since the birth of charge coupled devices (CCD) and the complementary metal-
oxide-semiconductor (CMOS) active pixel sensors, pixel pitch of digital image sensors
has been continuously shrinking to meet the resolution and size requirements of the
cameras. However, shrinking pixels reduces the maximum number of photons a sensor
can hold, a phenomenon broadly known as the full-well capacity limit. The drop in
full-well capacity causes drop in signal-to-noise ratio and dynamic range.

The Quanta Image Sensor (QIS) is a class of solid-state image sensors proposed
by Eric Fossum in 2005 as a potential solution for the limited full-well capacity prob-
lem. QIS is envisioned to be the next generation image sensor after CCD and CMOS
since it enables sub-diffraction-limit pixels without the inherited problems of pixel
shrinking. Equipped with a massive number of detectors that have single-photon
sensitivity, the sensor counts the incoming photons and triggers a binary response
“1” if the photon count exceeds a threshold, or “0” otherwise. To acquire an image,
the sensor oversamples the space and time to generate a sequence of binary bit maps.
Because of this binary sensing mechanism, the full-well capacity, signal-to-noise ratio
and the dynamic range can all be improved using an appropriate image reconstruc-
tion algorithm. The contribution of this thesis is to address three image processing
problems in QIS: 1) Image reconstruction, 2) Threshold design and 3) Color filter
array design.

Part 1 of the thesis focuses on reconstructing the latent grayscale image from the
QIS binary measurements. Image reconstruction is a necessary step for QIS because

the raw binary measurements are not images. Previous methods in the literature



xvii

use iterative algorithms which are computationally expensive. By modeling the QIS
binary measurements as quantized Poisson random variables, a new non-iterative
image reconstruction method based on the Transform-Denoise framework is proposed.
Experimental results show that the new method produces better quality images while
requiring less computing time.

Part 2 of the thesis considers the threshold design problem of a QIS. A spatially-
varying threshold can significantly improve the reconstruction quality and the dy-
namic range. However, no known method of how to achieve this can be found in
the literature. The theoretical analysis of this part shows that the optimal threshold
should match with the underlying pixel intensity. In addition, the analysis proves the
existence of a set of thresholds around the optimal threshold that give asymptotically
unbiased reconstructions. The asymptotic unbiasedness has a phase transition behav-
ior. A new threshold update scheme based on this idea is proposed. Experimentally,
the new method can provide good estimates of the thresholds with less computing
budget compared to existing methods.

Part 3 of the thesis extends QIS capabilities to color imaging by studying how a
color filter array should be designed. Because of the small pixel pitch of QIS, crosstalk
between neighboring pixels is inevitable and should be considered when designing the
color filter arrays. However, optimizing the light efficiency while suppressing aliasing
and crosstalk in a color filter array are conflicting tasks. A new optimization frame-
work is proposed to solve the problem. The new framework unifies several mainstream
design criteria while offering generality and flexibility. Extensive experimental com-

parisons demonstrate the effectiveness of the framework.



1. INTRODUCTION

Miniaturization has become the main theme in CCD and CMOS image sensor industry
recently. There are two complementary motives behind miniaturing the pixel size.
First, pixel miniaturization improves the spatial resolution by allowing more pixels for
the same sensor size. High spatial resolution is necessary for obtaining good image
quality, especially in low-light scenarios, and it avoids common artifacts resulting
from scene undersampling. Second, pixel miniaturization allows smaller sensor size
for the same spatial resolution. Sensors with small sensor sizes are particularly useful
for smart phones cameras which have space limitations. As a result, restless effort
has been exerted in image sensor industry to reduce pixel sizes to dimensions even
less than diffraction limit of light. This is facilitated by the continuous improvement
in CMOS fabrication technologies in semiconductor foundries. However, reducing the
pixel size results in decreasing the amount of charge that it can hold before saturating,
which is known formally as the pixel’s full-well capacity (FWC). Reducing FWC, in
turn, leads to a drop in signal-to-noise (SNR) ratio and a drop in dynamic range.
These problems have been a fundamental impediment against pixel miniaturization,
and efficient solutions are still required to overcome it, both on the hardware and
signal processing sides.

This dissertation studies a new type of sensors, called the Quanta Image sensor
(QIS), which is proposed as a potential hardware solution for the previously men-
tioned miniaturization problems. It tackles three signal processing problems which
are essential for the success of QIS hardware solution: Image Reconstruction, Thresh-
old Design and Color Filter Design. This thesis provides solutions for the first two
problems that enhance monochrome image reconstruction for QIS. It also presents so-
lutions for the third problem that improves and facilitates color image reconstruction

for QIS.



The outline of this introductory chapter is as follows. First, it presents in Sec-
tion 1.1 a quick discussion on the history of photography. Then, it motivates the QIS
solution in Section 1.2 and shows how it evolved over time both in the hardware side
and the signal processing side. Afterwards, it shows in Section 1.3 the motivations for
tackling the image reconstruction, threshold design, and color filter design problems.

Finally, it presents in Section 1.4 the thesis outline and a summary of contributions.

1.1 Photography: From Camera Obscura to Computational Photography

In this section, we will give a quick summary for the history of photography
starting from the camera obscura and ending with the state-of-the-art computational

photography.

1.1.1 Camera Obscura

The ancestor of modern day camera is the Camera Obscura, a Latin name that
means “dark chamber” or the Pinhole Camera. As the name suggests, it comprises
a small dark room with light entering to it through a tiny hole or “aperture” and
reflecting on the opposite wall to show an inverted image of the scene outside (See
Figure 1.1). This idea was discussed as early as the 5th and 4th centuries B.C. by the
Chinese philosopher Mo Ti [1], and the Greek mathematicians Aristotle and Euclid [2],
respectively. However, the first conceptual analysis and experimental realization were
published by the Muslim scientist Alhazen [3] in his book: Book of Optics written in
Cairo during the early 11th century.

The quality of the projected image depends on the pinhole size. Too large pinhole
generates a bright, but blurry image due to geometrical blur, and too small pinhole
leads to a dim blurry image due to diffraction blur. Even at the optimal pinhole size,
the projected image is still dim because of the small pinhole size. Later on, lenses
were deployed to alleviate this trade-off by enlarging the aperture size to absorb more

light while focusing this light to produce sharper images.



Alhazen’s Camera Obscura

Fig. 1.1. A schematic for the conception of the Camera Obscura by Al-
hazen in his book Book of Optics written in Cairo between years 1011 and
1021. Adapted from [3]

Another important question is: How to make use of the projected image? For a
long time ago, people were using it to observe Sun eclipses without harming the eyes,
and by the 16th century, artists were using it for drawing objects with lots of details
by tracing the projected image on a drawing paper. However, there was a strong
need for saving the projected image. This need was satisfied by invention of chemical

photography.

1.1.2 Chemical Photography

The concept of using chemical compounds to save an image was conceived in
1727 when Schulze discovered that silver nitrate salt is darkened when exposed to
sunlight [4]. This inspired Niece, a French inventor, in 1816 to use a paper coated with

silver chloride salt to capture images [4,5]. However, this approach could not store



Fig. 1.2. The first permanent photograph captured by Niece in 1826 at
Saint-Loup-de-Varennes, France [6]

the image permanently. After some trials, he managed to capture the first permanent
image (See Figure 1.2) in 1826 with 8 hours of exposure. It was not until 1839 when
Daguerre presented the first stable photographic process, namely the daguerreotype
process [5], which was commercialized after that. One remaining challenge was to
replicate the images. Talbot solved this problem in 1841 by using papers coated with
silver iodide [5] and Archer improved it in 1851 by allowing multiple copies from a
single negative. However, the negatives required immediate development in no more
than 10 minutes. Maddox solved this problem in 1861 allowing, for the first time,
hand-held cameras.

Modern photography began when Eastman presented the first transparent pho-
tographic film and film roll as a replacement for the photographic plate in 1885 and
1889, respectively. This film comprises a light sensitive material placed on paper,
which is transferred on glass after exposure, and then printed. With some modifica-
tions, Oskar Barnack presented the 35mm film in 1925 [7] which became the standard
film for a long time after that.

On another front, color imaging was first introduced in 1861 when Sutton captured
the first color image using a method proposed by J. C. Maxwell. Sutton captured

three images with red, green and blue filters, then projected them on a screen using



the same filters to add up giving a color image. Afterwards, the Lumiere brothers
invented in 1906 the first practical color photography plate by using a mosaic of three
color filters mounted on a glass layer which is placed under the light sensitive layer.
However, it required longer exposure time because of the decreased light sensitivity
after putting the glass layer. Mannes and Godowsky, Jr. presented in 1935 the first
popular color film: the Kodachrome. However, it could only be processed in Kodak

labs since its processing was too complex for commercial users.

1.1.3 Digital Photography

The era of digital photography started with the conception of the photoelectric
effect: a phenomenon that was first observed by Hertz in 1887, and characterized by
Einstein in 1905 [8] !. This finding is significant for photography because it shows
that light falling on a matter can alter it properties in a way proportional to the
light intensity. This led to the invention of photodetector that replaces photographic
film by using photodiodes instead of chemical compounds to save the image. This
is advantageous for two main reasons: 1) By resetting the photodetector, we do not
need to replace it after each capture as we do with photographic film, and 2) By
digitization, we have more flexibility to process the captured image.

The first practical realization of this technology was done by at AT&T Bell Labs by
Boyle and Smith in 1968 when they invented an imaging semiconductor circuit: The
Charge-Coupled Device (CCD) [9] 2. A CCD comprises an array of photodetectors and
shift register that works as a conveyor belt. After light exposure, every photodetector
accumulates an electric charge proportional to the light intensity falling onto it, then
the shift register transfer the charges to feed it to a charge amplifier sequentially to
be converted into voltages. On a digital camera, these voltages, which constitutes the

captured image, are digitized and stored in memory.

!Einstein won the Nobel prize in physics for this work in 1921
2Boyle and Smith won the Nobel prize in physics for this work in 2009



Another breakthrough in digital photography occured when Eric Fossum and his
team in NASA’s Jet Propulsion Laboratory (JPL) invented the CMOS active pixel
sensor (APS). It quickly became a ubiquitous imaging technology in mobile imaging
for its lower power consumption and smaller size compared to CCD. Also, its com-
patibility with the standard CMOS fabrication technology enabled it to benefit from
Moore’s scaling law by continuously shrinking the pixel size for resolution enhance-
ment. In addition, several on-chip functionalities are added such as Analog-to-Digital
conversion (ADC) and Image signal processors (ISPs) to improve the image quality.
For these reasons, there is a consensus that CMOS image sensor is the second gener-
ation of digital image sensors after CCD.

To enable color imaging on CCD and CMOS image sensors, the most popular
technique is to place a color filter array on top of the sensor so that each pixel gets
color information of the falling light. Color filters are organized in a certain way
so that the captured image is a mosaic pattern of different colors. In 1976, Bayer
proposed the Bayer pattern for color filter arrays. This pattern is a periodic replica
of a 2 x 2 color kernel that comprises 1 red, 2 green and 1 blue color filters, where
the green proportion is more than red and blue proportion because the eye is more
sensitive to light in the green color subband. A color image is reconstructed from the
mosaicked image by a process called demosaicking. The demosaicking process in its
basic form for is an interpolation process that aims at reconstructing the two missing

colors at each pixel.

1.1.4 Computational Photography

In spite of the continuous development in cameras from the camera obscura to
CMOS image sensors, the main idea was similar: light entering through an aperture
and focused on a detector by a lens to form an image. In other words, the traditional
camera performs a passive and conservative sampling of incoming light without any

further processing. With the current advances in fabrication technology, the camera



can be equipped with more computational power to form a computational camera.
Instead of passively capturing photons, this additional intelligence enables the camera
to compute pictures instead of sensing them [10].

Computational photography has opened the door for numerous ideas and appli-
cations that take advantage of on-chip computations. We will present some represen-

tative ideas for brevity.

« High Dynamic Range Imaging [11,12]: An image with high dynamic range
(HDR) is acquired by combining multiple images with low dynamic range (LDR)
having different exposures. The fusion weights are computed post-capture to
yield a high dynamic range with lots of details in both dark and bright regions

of the image.

e Multi-Aperture Imaging [13]: In contrast to conventional imaging, a point
in the scene is mapped to multiple points on the sensor in multi-aperture imag-
ing by slightly shifting the image sensor away from the focal plane and using
micro-lenses. This leads to multiple sub-images of the scene. An image is recon-
structed by warping the sub-images and combining them. There are two main
benefits behind this architecture. First, it helps in capturing the depth infor-
mation by measuring how certain features are located within the sub-images.
Second, it offers a new method for color imaging by replacing the per-pixel color
filter array with per-aperture color filter array. This method is more robust to
crosstalk as it is restricted to neighboring pixels having the same color. How-
ever, it loses spatial resolution because every point in the scene is sampled by

three apertures having the three color filters.

o Light Field Imaging [14]: In contrast to conventional image which captures
the intensity of light at each pixel, light field imaging aims at capturing the
intensity and the direction of light. This generalizes the image from a 2D

projection of the scene to 4D projection. Using an idea similar to multi-aperture



imaging and some post-capture computations, this concept can be realized using

the conventional CMOS image sensor.

« Compressive Sensing Imaging [15]: The idea of compressive sensing is to
reconstruct a sparse signal from multiple linear measurements obtained by pro-
jecting the signal using multiple random linear projectors. This enables sam-
pling the scene at sub-Nyquist sampling rates. By leveraging the compressive
sensing concept, a scene can be reconstructed by using different random masks
that obtain random linear measurements of the scene. This reduces the required

resolution of the sensor to even a single pixel.

1.2 Quanta Image Sensor

Quanta Image Sensor (QIS) is a class of solid-state image sensors designed to
solve the miniaturization problems of CMOS sensor and envisioned to be the next
generation imaging device after it. Originally proposed by Eric Fossum in 2005 [16],
the sensor has gained significant momentum in the past decade, both in terms of

hardware design [17-19] and image processing [20-24].

1.2.1 Motivation

The main trend in image sensor industry is Miniaturization. This trend aims at
shrinking the pixel size to improve the sensor resolution for increased image detail, or
to decrease the camera size at the same resolution for increased flexibility. This trend
is shown in the curves of Figure 1.3 [25] which are collected from the specifications of
different cameras during the past years. From the curves in Figure 1.3, we notice that
as the pixel pitch is decreased, the full-well capacity is reduced (Figure 1.3(a).) This,
in turn, causes a drop in signal-to-noise ratio (Figure 1.3(b)) and a drop in dynamic

range (Figure 1.3(c).) Using the current image sensor technology, these fundamental
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Fig. 1.3. As we decrease the pixel pitch, or alternatively the pixel size,
the (a) Full-Well capacity decreases, and this results in a decrease in (b)
SNR, and (c¢) Dynamic range.

problems are inevitable, and they require sophisticated algorithms to reduce their
effect.

QIS aims at solving these problems by providing a new paradigm in imaging. The
main idea is to allow the pixel size to decrease as much as possible (e.g. 100—200 nm
pitch [26]) to form miniature pixels, called jots, with intentionally low FWC (1—200

photoelectrons [26]). Each jot has sub-electron readout noise (i.e., readout noise with
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standard deviation less than 0.3 electron [27,28]) which enables it to have single-
photon sensitivity and photon counting capability. The jot counts every incoming
photon and produces a binary response “1” if the photon count exceeds a threshold ¢,
and “0” otherwise. By making ¢ < FWC, the resulting signal has high SNR because
of its binary nature, and this solves the first miniaturization problem of poor SNR.
Definitely, the binary quantization of photon counts leads to significant distortion
in the output signal. To compensate for this aggressive quantization of light, QIS
oversamples the light signal in space and time by having huge spatial resolution (e.g.,
10° pixels per sensor with 200nm pitch per jot [28]) and huge temporal resolution or
frame rate (e.g., 100k fps as reported in [29]), respectively. As a result, each output
gray-scale pixel is formed by locally processing a 3d spatial-temporal kernel or a
“cubicle” of K x K x T binary jots, where K is the spatial kernel size and T is the
number of temporal frames. This processing is usually referred to as binning and it is
frequently used in low-light image processing to mitigate noise. By efficient processing
of the cubicle of jots, the output pixel represents the incoming light intensity on these
jots. Figure 1.4 shows the QIS image formation process. The high spatial-temporal
oversampling of QIS increases its dynamic range to levels even higher than CMOS
and CCD, and this solves the second miniaturization problem of low dynamic range.
Another useful property of QIS is its programmability or flexibility. For a fixed
cubicle volume KT, the cubicle shape can be varied according to the scene allowing
for a spatial-temporal resolution trade-off. For example, a cubicle of Kv/T x Kv/T x 1
jots can be used for ultra-fast applications when the resolution is not so critical.
Alternatively, a cubicle of 1x1x KT jots can be used to obtain high-resolution images
for static scenes. These two scenarios are depicted in Figure 1.5. The cubicle shape
can be adjusted post-acquisition according to the scene properties. This adjustment

can be temporally-varying with frames, or spatially-varying within one frame, or both.
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Reconstruction

Fig. 1.4. Image reconstruction of QIS data. Given T' binary bit planes
having high resolution M x M, the reconstruction algorithm processes
each K x K x T cubicle of jots to form the N x N gray-scale image shown
on the right, where N = M /K.

(a) 4 x 4 x 1 reconstruction kernel (b) 1 x 1 x 16 reconstruction kernel

(¢) Moving Fan Image [30] (d) Static High Resolution Image

Fig. 1.5. To improve temporal resolution, a cubicle of 4 x 4 x 1 jots (a)
can be used for ultra-fast applications when the spatial resolution can be
small like image (c). Alternatively, to improve spatial resolution, a cubicle
of 1 x 1 x 16 jots (b) can be used to obtain high-resolution images for
static scenes like image (d)
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1.2.2 Evolution of QIS Concept

QIS belongs to the family of photon-counting devices. These photon-counting de-
vices have been known for a long time. Some better-known examples are the electron-
multiplying charge-coupled device (EMCCD) [31, 32], single-photon avalanche diode
(SPAD) [29, 30, 33], Geiger-mode avalanche photodiode (GMAPD) [34], etc. These
sensors have reached a mature level in their design and fabrication; however, their
applications are limited to scientific and military purposes. On the other hand, QIS
is designed to compete in the commercial market beside its scientific and military
applications.

The concept of QIS was first proposed by Fossum in 2005 as a solution for sub-
diffraction limit pixels. The sensor was called the digital film sensor, and later the
quanta image sensor [35-37]. After the introduction of QIS, researchers in EPFL
developed a similar concept called the Gigavision camera [21, 38, 39|, where they
mainly tackled the image reconstruction problem assuming the presence of suitable
hardware. Recently, teams at the University of Edingburgh [30, 33,40] and EPFL
[41, 42] have made new progresses in QIS using binary single-photon detectors. In
industry, Rambus Inc. (Sunnyvale, CA) has developed binary image sensors for high
dynamic range imaging [43-45]. Table 1.1 lists several recent QIS prototypes that are
available or are currently being developed. As a comparison we also show a Canon
5D Mark III CMOS camera. Among many different features, the most noticeable is
the frame rate. For example, SPS SPAD can be operated at 20k fps. SwissSPAD can
even achieve 156k fps. Both are significantly faster than a standard CMOS camera.

Recently, a startup company [47] has been established to develop and realize
practical prototypes of QIS. Resolution is expected to rise from 1024 x 1024 in [48]
to 10240 x 10240, and total power per bit is expected to be reduced from 16pJ/bit
to 9.9pJ/bit as mentioned in the conference presentation of [48].

Beside alleviating the miniaturization problems, the single-photon sensitivity of

QIS nominates it as a perfect candidate for low-light applications such as astronomy



Table 1.1.
List of QIS Prototypes and Parameters
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Canon EMCCD GMAPD | SPC SPAD | SwissSPAD Fossum
Camera

5D CMOS [46] (34] [33] [29] QIS [37]
Price $5,000 $20, 000 Prototype | Prototype Prototype Prototype
Resolution 4096 x 2160 | 1024 x 1024 | 256 x 256 320 x 240 512 x 128 1376 x 768

Pixel Pitch (um) 6.25 13 25 8 24 3.6

Full-well Capacity 69 ke- 80 ke- 56 — 125 e- - 1 —250 e-

Frame Rate (fps) 6 26 — 92 8 x 103 2 x 10* 1.56 x 10° 1x 103

Sensor data rate 88.6 Mbps 0.48 Gbps 0.52 Gbps 1.54 Gbps 10.24 Gbps 1 Gbps

[49], night-vision [50], and medical imaging [51-53]. Also, its huge frame rate allows it
to track ultra-fast objects in low-light with high resolution [54]. Specifically, the high
frame rates of QIS simplify the tracking of fast moving objects because the local shift
in consecutive frames is limited and can be easily estimated. QIS has also been used
for nuclear engineering [55], depth and reflectivity reconstruction [56], and recently

in quantum random number generation used in cryptography [41,57].

1.3 Motivation

In this section, we show our motivation to study the following image processing
problems for QIS: 1) QIS image reconstruction (Section 1.3.1), 2) QIS threshold design
(Section 1.3.2) and 3) Color filter design for QIS (Section 1.3.3)

1.3.1 QIS Image Reconstruction

To obtain a grayscale image from QIS binary measurements, an image reconstruc-
tion algorithm is required. This algorithm should be extremely fast in order to handle
the high frame rates of QIS. In addition, it should have the flexibility to reconstruct

images with spatially invariant or spatially varying threshold.
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A simple way to reconstruct a grayscale image from the binary frames is digital
integration. Kach output gray-scale pixel is formed by simply averaging bits in each
K x K x T cubicle. The quantization threshold ¢ can be fixed for all time frames
[35,38,40,58] or it can be a temporal sequence of decreasing or increasing thresholds
for dynamic range improvement [43-45]. However, this simple averaging approach
requires 17" to be large enough to have a practical dynamic range. This wastes the
temporal oversampling of QIS. A smart integration technique is proposed in [59,60] as
a solution where the frames are summed in overlapping temporal windows. However,
this overlapping introduces colored noise in the output.

Another approach is to formulate image reconstruction as an inverse problem [61],
and use statistical estimation techniques to solve it. Maximum likelihood estimation
(MLE) criterion is used in [20, 21, 39, 62-64], yet the results are noisy because the
problem is ill-conditioned. To produce clean results, Maximum-A-Posterior (MAP)
criterion is used with different priors such as sparsity-based priors [65-67] and total-
variation prior [22]. Except for some simplified assumptions where the MLE problem
gives a closed-form solution [21], iterative techniques are used to solve the inverse
problem such as dynamic programming [65], interior point algorithms [20], gradient
descent [21], simplex search [62], random walks [64], ADMM [22], and unrolled ISTA
iterations implemented by a neural network [66,67].

On one hand, iterative techniques used to get the MAP estimate are not suitable
for ultra-fast imaging tasks. On the other hand, the fast MLE closed-form solution is
too noisy. Hence, in order for QIS to be a practical competitive for CCD and CMOS,
a fast and efficient image reconstruction algorithm is required. Figure 1.6 shows
reconstructed images by ML criterion [21], MAP criterion in [22], and our proposed
method compared to ground truth. Our proposed method can achieve the best of
two worlds: It can reconstruct a clean image like MAP estimate in short time like

ML estimate.



15

(a) ML [21], 22.95 dB, 0.46 sec (b) MAP [22], 40 iter., 28.23 dB, 197 sec

(¢) Our method, 29.50 dB, 2.33 sec (d) Ground Truth

Fig. 1.6. Simulated QIS data and the reconstructed gray-scale images
using different reconstruction methods. The results show that our method
reconstructs high quality image in short time. In this experiment, we
spatially oversample each pixel by K = 4 x 4 binary bits and we use
T = 5 independent temporal measurements. Quantization threshold is
fixed to ¢ = 1 in all methods.

1.3.2 QIS Threshold Design

Optimal threshold design for QIS is important as it directly affects the dynamic
range of an image. Figure 1.7 illustrates an example where we simulate the raw binary
data acquired by a QIS using a uniform threshold ¢. When ¢ is low, most of the bits

in the raw input are “1”. The reconstructed image is therefore an over-exposed image.
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On the other hand, when ¢ is high, most of the bits in the raw input are “0”. The
reconstructed image is then under-exposed. In both cases, it is evident from the
simulation that a uniform threshold has limited performance. A better way is to
allow ¢ to vary spatially so that a pixel (or a group of pixels) has its own threshold
value. The result in Figure 1.7(d) shows the reconstruction result using a spatially
varying threshold obtained from our proposed technique, which is clearly better than
the uniform thresholds.

Existing work on QIS threshold design study can be summarized into three classes

of methods.

o Markov Chain [62]. The Markov Chain method developed by Hu and Lu [62]
is a time-sequential update scheme. A Markov Chain probability is used to
control how the threshold ¢ of each jot should be increased or decreased in
every frame. While the method has provable convergence, the threshold of each
jot has to be updated sequentially in time. In contrast, our proposed method
allows a group of jots to share the same threshold. As a result, our proposed

method has significantly faster rate of convergence.

 Conditional Reset [43-45]. The conditional reset method is a hardware solution
proposed by Vogelsang and colleagues. The idea is to take a sequence of frames
with ascending (or descending) uniform thresholds, and digitally integrate the
sequence to form a gray-scale image. The drawback of the method, besides the
additional hardware cost of the per-pixel reset transistors, is the limited quality
of the reconstructed image. For the same number of frames, our proposed

method produces better images.

o Checkerboard Threshold [6]. This method constructs a checkerboard of thresh-
olds by alternating two threshold values ¢; and ¢». The optimality criterion of ¢
and ¢, is based on minimizing the Cramér-Rao lower bound (CRLB) integrated
over a range of light intensities, which is essentially an average case result. Our

proposed method obtains the optimal threshold for each pixel. This per-pixel



17

(d) Reconstruction, ¢ = ¢*(¢) (e) Ground Truth

Fig. 1.7. Simulated QIS data and the reconstructed gray-scale images
using different thresholds. Top row: The binary measurements obtained
using thresholds ¢ = 3, ¢ = ¢*(¢), and ¢ = 12. Bottom figures: The
maximum likelihood estimates obtained from the binary measurements,
with comparison to the ground truth. The results show that our spatially
varying threshold ¢*(c) offers the best reconstruction. In this experiment,
we spatially oversample each pixel by K = 2 X 2 binary bits and we use
T = 25 independent temporal measurements.

optimization has higher reconstruction performance compared to checkerboard

threshold.
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1.3.3 Color Filter Arrays Design

Despite the rapid advancement in QIS hardware [28,35,68] and algorithms [21,
23,24,69], all reported findings, to-date, are based on monochromatic data. The first
color QIS imaging is only recently proposed by Gnanasambandam et al. [70], where
they demonstrated how to reconstruct a color image from the sensor with a Bayer
color filter array. In this thesis, we discuss how to design color filter array for better
image acquisition.

A color filter array (CFA) is a mask placed on top of the sensor to select (filter)
wavelengths. As light passes through the color filter array, the resulting image is a
mosaic pattern of the three tri-stimulus RGB colors. Traditionally, CFA is organized
as a periodic replica of a 2D kernel called the color atom. The de-facto color atom
used in the industry is the Bayer pattern [71] because of its simplicity and the readily
available demosaicking algorithms include [72-81]. More sophisticated CFAs have
been proposed [82-92] to improve the Bayer CFA.

When designing a CFA, there are three factors that should be taken into consid-

eration:

o Aliasing: Since color filtering is a sampling process, aliasing happens when
the sampling rate is less than Nyquist. Aliasing causes false color artifacts at
color edges, called the Moiré artifacts [83]. Color filters that are susceptible to
aliasing, such as the Bayer CFA, require sophisticated demosaicking algorithms
to suppress the Moire artifacts. In contrast, a robust CFA can use simple

demosaicking algorithms.

o Sensitivity: Since CFA is a filter, it blocks part of the incoming light. This
reduces the sensor sensitivity and makes the image more susceptible to noise.
A good CFA design should maximize the sensitivity by allowing transparent or

“panchromatic” color filters that block as few wavelengths as possible.

« Crosstalk: Crosstalk can be either optical or electrical [93]. If not treated,

crosstalk will make colors look pale or de-saturated. Crosstalk desaturation is



!

Scene Color Selection Photon Counting Measured Photon Counts

Fig. 1.8. QIS Imaging Model. When the scene image arrives at the
sensor, the CFA first selects the wavelength according to the colors. Each
color pixel is then sensed using a photon-detector and reports a binary
value based on whether the photon counts exceeds certain threshold or
not. The measured data contains three subsampled sequences, each rep-
resenting a measurement in the color channel.

corrected by pixel-wise multiplication of the RGB color vector using a color
correction matrix. However, color correction enhances residual noise in the

image [93,94]. The situation is worsen in QIS because of its small size.

The three factors above are conflicting: Optimizing one generally degrades the
others. For conventional CMOS image sensors, crosstalk is not severe, and so most
CFA designs in the literature consider aliasing and sensitivity only. The only available
work on QIS color filter array design is by Anzagira and Fossum [93]. However,
aliasing was not adequately handled.

The design framework we propose in this thesis is a unification of several main-
stream CMOS-based color filter arrays. To put our work in the proper context in the

literature, we here list a few of the better known results.

o Spatial CFA Design: By suppressing the Moire artifacts and crosstalk while
keeping the demosaicing algorithm simple, Lukac and Plataniotis [82] pro-
posed a CFA and compared it with other CFAs using a universal demosaicking
method. However, their work did not provide a mathematical framework to

analyze the CFA optimality.

« Spatio-Spectral CFA Design: Hirakawa and Wolfe [83] proposed a method
through the spatial and spectral domain analysis. Their CFA reduces aliasing
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in the frequency domain, and possesses high sensitivity and numerical stability.
Condat [95] extended the framework by optimizing luminance and chrominance
sensitivity. He defined a new form of orthogonality between chrominance chan-
nels in frequency domain. Hao et al. [86] and Wang et al. [87] proposed a
framework based on symbolic discrete Fourier transform (DFT). Their CFA
maximizes the numerical stability of linear demosaicking process under aliasing

and physical constraints.

o Learning-based CFA Design: By minimizing the average error on a color
dataset, Lu and Vetterli [84] used an iterative algorithm to solve a least squares
CFA design problem. Chakrabarti [96] and Henz et al. [97] proposed to learn

the optimal CFA pattern by using a deep neural network.

Besides these mainstream CFA design frameworks, there are a number of other
CFA designs such as [85,88-92]. On the hardware side, [98] and [99] took into account
that color filter fabrication technology lags the image sensor technology in terms of
miniaturization. They proposed a hardware-friendly CFA assuming the color filter

size is 1.5 x pixel size.

1.4 Thesis Outlines and Contributions

The goal of this thesis is three-fold. First, it proposes an efficient and fast QIS
image reconstruction algorithm. This algorithm should have the flexibility to han-
dle spatially-varying threshold, which is the best option according to Section 1.3.2.
Second, it presents an optimal threshold design methodology and provide theoretical
justifications for it. Finally, it presents an optimization framework for CFA design
that encompasses aliasing, sensitivity and crosstalk in a unified model. This is the first
work that incorporates a quantitative crosstalk metric in an optimization framework
for CFA design.

As for QIS image reconstruction, our contributions are summarized as follows.
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o First, we extend the ADMM algorithm proposed in [22] to spatially-varying
threshold. As mentioned in Section 1.3.1, threshold has a critical effect of the
reconstruction quality, where a poorly selected threshold will result in either an
under-exposed image or an over-exposed image. However, most algorithms can

only handle spatially invariant threshold.

e Second, we propose a non-iterative algorithm for reconstructing clean QIS im-
ages in short time. This algorithm is based on a Transform-Denoise framework.
Under certain conditions, the ML solution has a closed-form expression which
requires summing the bits in each cubicle. By observing the distribution of
the summed bits, we can use a suitable variance stabilizing transform to make
the noise spatially-invariance. Hence, we can use any standard image denoising
algorithm to remove this noise before applying the ML expression. Experimen-
tal results shows the effectiveness of our method in terms of quality and speed

compared to other methods.
As for QIS threshold design, we have two major contributions:

o First, we provide a rigorous theoretical analysis of the performance limits of
QIS image reconstruction as a function of the threshold. These results form
the basis of our subsequent discussions of the threshold update scheme. Some
results are known, e.g., the signal-to-noise ratio is a function of the Fisher
Information [6,64], but a number of new results are shown. In particular, we
show that (i) the maximum likelihood estimate has a closed-form expression
in terms of the incomplete Gamma function, (ii) the oracle threshold can be
derived in closed-form by maximizing the signal-to-noise ratio, and (iii) the

image reconstruction has a phase transition behavior.

o Second, we propose an efficient threshold update scheme based on our theoreti-
cal results. The new scheme is a bisection method which iteratively updates the
threshold without the need of reconstructing the image. By checking whether

the proportion of one’s and zero’s approaches 0.5 in a spatial-temporal cubicle,
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the threshold is guaranteed to be near optimal. Compared to other existing
threshold update schemes such as [62] and [43-45], the new scheme offers sig-
nificantly faster rate of convergence. We also demonstrate how the dynamic

range can be extended for high dynamic range (HDR) imaging.

As for Color filter array design, the main contribution is a general and flexible frame-
work for CFA design. Compared to the existing CFA design framework, the new

framework is able to simultaneously (Section 5.2)
o Improve CFA’s luminance and chrominance sensitivity,
e Reduce aliasing between luminance and chrominance channels,
e Suppress crosstalk between spectral sub-bands, and

» Enforce orthogonality between chrominance channels to permit simple linear

demosaicking.

The design framework is presented in the form of optimization. We have two designs:
A convex optimization and a non-convex optimization. In addition to the formulation,
we also present an algorithm to solve the non-convex optimization. (Section 5.3)

For performance evaluation of different CFAs on QIS images, we propose in Sec-
tion 5.4 a universal demosaicking pipeline. This pipeline comprises a demosaicking
by frequency selection algorithm for removing the CFA masking effect followed by a
color correction step for removing the desaturation effect of crosstalk. Experimental
evaluation on the Kodak and McMaster color datasets shows the robustness of our
proposed CFAs compared to other CFAs in literature.

The work in this thesis has resulted in the following publications:

« O. A. Elgendy, and S. H. Chan, “Color Filter Arrays for Quanta Image Sen-

sors,” submitted to IEEE Transactions on Computational Imaging, June 2019.

o A. Gnanasambandam, O. A. Elgendy, J. Ma, and S. H. Chan, “Megapixel

Photon-Counting Color Imaging using Quanta Image Sensor,” Optics Fxpress,
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vol. 27, no. 12, pp. 17298-17310, June 2019. [Online]. Available: https:

//www.osapublishing.org/oe/abstract.cfm?uri=oe-27-12-17298

« O. A. Elgendy, and S. H. Chan, “Optimal Threshold Design for Quanta Image
Sensor,” IEEE Transactions on Computational Imaging, vol. 4, no. 1, pp. 99-

111, March 2018.

o S. H. Chan, O. A. Elgendy, and X. Wang, “Images from Bits: Non-iterative
Image Reconstruction for Quanta Image Sensors,” MDPI Sensors Special Issue
on Photon-Counting Image Sensors, vol. 16, no. 11, November 2016, Article
number: 1961. [Online]. Available: https://www.mdpi.com/1424-8220/16/
11/1961

« O. A. Elgendy, and S. H. Chan, “Image reconstruction and threshold design
for quanta image sensors,” in Proceedings of the 2016 IEEE International Con-

ference on Image Processing (ICIP’16), Phoenix, AZ, USA, 2016, pp. 978-982.
In parallel to the work done in this thesis, we worked on the following publications:

o J. H. Choi, O. A. Elgendy, and S. H. Chan, “Optimal Combination of Image
Denoisers,” IEEFE Transactions on Image Processing, Early Access, March 2019.

o J. H. Choi, O. A. Elgendy, and S. H. Chan, “Image Reconstruction for
Quanta Image Sensors using Deep Neural Networks,” in Proceedings of the

2018 IEEFE International Conference on Acoustics, Speech and Signal Process-
ing (ICASSP’18), Calgary, AB, 2018, pp. 6543-6547

o S. H. Chan, X. Wang, and O. A. Elgendy, “Plug-and-Play ADMM for Image
Restoration: Fixed Point Convergence and Applications,” IEEE Transactions

on Computational Imaging, vol. 3, no. 1, pp. 84-98, March 2017.
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2. QIS IMAGING MODEL

In this chapter, we provide an overview of the QIS imaging model. The model has been
previously discussed in several papers, e.g., [21-24]. Readers interested in details can
refer to these papers for further explanations. Without loss of generality, we assume

1-dimensional signals where extension to 2-dimensional signals is straightforward.

2.1 Spatial Oversampling

We denote the discrete version of the light intensity as a vector ¢ = [y, . .., cy_1]7,
where n = 0, ..., N — 1 specify the spatial coordinates. We assume that ¢, is normal-
ized to the range [0, 1] for all n so that there is no scaling ambiguity. To model the
actual light intensity, we multiply ¢, by a constant « to yield ac,, where a > 0 is a
fixed scalar constant.

The continuous version of the light intensity field A\(x) is obtained by convolving

with a non-negative interpolation kernel ¢(z) as follows

=

Az) =

g cndp(Nz —n), (2.1)

3
I
o

where 7 is the exposure time. Examples of the interpolation kernel include

e Box-car kernel
1, fo<x<1.

Blx) = (2.2)
0, if otherwise
o Cardinal B-splines
k
Br(x)=|B*...xf (x+§) (2.3)

k 4+ 1 times
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As a sampling device, QIS uses M > N jots to sample the light field intensity
A(z). The ratio K M /N is known as the spatial oversampling factor. Assume that
the mth jot covers the interval [#+, 1] C [0,1] for m € {0,..., M — 1}. Denote by
0., the total light exposure integrated in the mth jot during exposure time period
[0, 7]. Hence, we can calculate 6, as follows.

def T (m+1)/M
O = a/ / Az) dz dt
0 m/M

= art(\(z), 5(Mz —m)) (2.4)

where 3(z) is the box function defined in X, and (.,.) represents the standard L2
inner product between two continuous functions f and g, which is defined as (f, g) =

[Z f(z)g(z) dz. Substituting (2.1) in (2.4) , we get

0, = ar <g N: end(Nz —n), B(Mz — m)>
- aN n (NG(Nz — ), B(Mz — m)
e (s (M5 -m))
- aN 6 (0(2), B Kz — (m — Kn)))
® Nol Cn G (2.5)

where step (a) is obtained by using the change of variables Nx —n — x, and step (b)

is obtained by defining the discrete filter

def
gk = (¢(x), B (Kz —k)) . (2.6)
In multi-rate signal processing notation, (2.5) represents K-fold upsampling of a
signal ¢, followed by filtering with discrete low-pass filter {gx}. In matrix notation,
(2.5) can be rewritten as follows

0 = aGec, (2.7)
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Fig. 2.1. Block diagram illustrating the image formation process of QIS.

where 8 € RM is the light exposure vector, ¢ € R is the light intensity vector, and
G € RM*N ig a circulant matrix representing the upsampling-filtering process. The
overall process is depicted in the right block in Figure 2.1.

When ¢(z) = B(x), i.e., the interpolation filter has box-car kernel, the filter {gx} can

be calculated as follows.

def

gr = (B(x), B (Kz —k)) (2.8)

=/ B(x)B (Kz — k) dx (2.9)

) ® it ke {0,1,..., K —1} (2.10)
0, if otherwise

which means that {gx} has a box-car kernel that sum to one. In this case, the matrix

G can be defined as

1
G = EINXN ® 1rxi, (2.11)

where 1, is a vector of all ones and ® denotes the Kronecker product. The box-
car kernel assumption is typically reasonable, because on each QIS jot there is a
micro-lens to focus the incident light. Although previous papers, e.g., [21,22], do
not make such assumption, in this thesis we decide to use the simplified G, for
otherwise the theoretical analysis will become very complicated. Nevertheless, in the
supplementary material we show comparison between a general G and the simplified

G. The performance gap is usually insignificant.
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2.2 Truncated Poisson Process

We assume that the operating speed of QIS is significantly faster than the scene
motion. Therefore, for a given scene ¢ (and also @), we are able to acquire a set of T’
independent measurements. We illustrate this using the 7" channels in Figure 2.1.

Photons impinge on the m-th jot during the ¢-th independent measurement ac-
cording to a Poisson process, with mean value equal to the light exposure 6,, on this

jot, i.e., the photon count Y,,; follows the Poisson distribution:

gyt g=0m
PVt = Ymi) = — (2.12)

m,t-

where m =0, ..., M —1 denotes the m-th jot of the QISand ¢t = 0, 1,...,T—1 denotes
the t-th independent measurement in time. Denoting ¢ € N as the quantization

threshold, the final observed binary measurement B, is a truncation of Y, ;:

0, lf Ym,t < q.
Bmt -

)

17 lf Ym,t Z q

The probability mass function of B,,; is given by

= 0k e—0m .
Z mk‘! y if bm,t = 0,
P(Bimt = byy) = k=0 . o (2.13)
S e i by, =1

k=q

The goal of image reconstruction is to recover the underlying image ¢ from the
binary measurements B = {B,; | m = 0,...,.M — l,and ¢t = 0,...,7 — 1}. A

pictorial illustration of the reconstruction is shown in Figure 1.4.

2.3 Properties of Truncated Poisson Processes

The probability mass function of B,,,; in (2.13) is Bernoulli. However, the right

hand side of (2.13) involves infinite sums which are difficult to interpret. To simplify
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the equations, we consider the upper incomplete Gamma function ¥, : RT — [0, 1]

defined in [100] as:

o L[
v,(6) d:f@/a 117 et for 0 >0, ¢ € N.

where I'(¢) = (¢ — 1)! is the standard Gamma function. The incomplete Gamma
function allows us to rewrite the infinite sums in (2.13) using the following identity

[100]:
g—1 9]{;

\Ijq(e) = Z He

k=0

- (2.14)
Consequently, the probabilities in (2.13) become

P(Bm,t = 0) = \PQ(em)a

P(Bpy=1)=1— U, (6,). (2.15)

Example 1 In the special case of ¢ = 1, we obtain:
1 (e}
P(B,,: =0) = —/ tPe~tdt = e m,
t I'(1) J,,

which coincides with the results shown in [21] and [22].

The incomplete Gamma function ¥, (6) is a decreasing function of § because the
first order derivative of W,(#) with respect to 6 is negative:
d —g11et
—V,(0) = ———
a1 ® I'(q)
The limiting behavior of W, (6) is important. For a fixed ¢, the function ¥,() — 1 as

<0, VgeN, and 0> 0. (2.16)

0 — 0 and W (#) — 0 as § — co. While W still exists in these situations because
VU, is monotonically decreasing, for a given z the value \I/(;l(z) could be numerically
very difficult to evaluate. To characterize the sets of 6 and ¢ that ¥, is (numerically)

invertible, we define the 0-admissible set and the ¢-admissible set.

Definition 2.3.1 The #-admissible set and g-admissible set of the incomplete Gamma
function are

0, £ {0 <w,(0) <1-¢},

QY igle<u,(0)<1-¢}, (2.17)
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respectively, where 0 < € < % s a constant.

More discussions of the incomplete Gamma function can be found in the supplemen-

tary material.

Remark 1 In this thesis, we assume that QIS is noise-free, i.e., the only source of
randomness is the truncated Poisson random wvariable. In real sensors, there will be
readout noise, photo-response non-uniformity caused by conversion gain variation,
dark count rate (a.k.a. dark current), optical crosstalk and electronic crosstalk. See

[26] for details.

Remark 2 In Chapter 5, we slightly change the notation to avoid ambiguities with

the color filter array model.
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3. QIS IMAGE RECONSTRUCTION

In this chapter, we tackle the QIS image reconstruction problem. First, we present
an iterative approach for obtaining the ML solution in Section 3.1. We also derive
a closed-form expression for the ML solution under certain conditions. Second, we
present in Section 3.2 an iterative image reconstruction algorithm based on the MAP
criterion. Compared to [22], this algorithm is more flexible where it can handle
spatially-varying thresholds. Third, we present in Section 3.3 a fast and accurate
reconstruction approach, which is based on the ML solution and a denoising step

performed an appropriate transform domain.

3.1 Maximum Likelihood Estimation

Given B = {Bp; | m =0,...,M —1l,and t = 0,...,T — 1}, MLE solves the

following optimization problem:

-1 M-1
e argmax H H P[Bys = 1; 0,,]" X P[Bpy = 0; 0,,) 7ot
8=aGc =0 m=0
T-1M—1
D argmax Y3 {bm,t log(1 — Uy (6)) + (1 — byy) log \pq(em)}
0=aGc =0 m=0
© argmin F(6; B) (3.1)
0=aGc

Here, the right hand side of (a) is the likelihood function of a Bernoulli random
variable, (b) follows from taking the logarithm, and (c) follows from defining the

negative log-likelihood function F : R* x {0, 1}MT — R* which is written as

T-1M-1

F(6;B)< -3 %" {bm log(1 — Ty(6,)) + (1 — byy) log qu(em)} (3.2)

t=0 m=0
In [21], the authors prove that the log likelihood function is concave. Hence,

F(0,B) is convex in 6, and (3.1) is a convex optimization problem. However, for
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general matrix G, or equivalently a general interpolation kernel ¢(z), the optimization
problem is not separable in the variables {cy, ..., cy_1}. Hence, an iterative algorithm
is required to solve it. On the other hand, for G defined in (2.11), the problem is
separable in {cg,...,cy_1}, and we can obtain a closed-form expression for the ML

solution. In the next two subsections, we will discuss these two cases in more details.

3.1.1 ADMM Algorithm for Solving MLE

In this subsection we discuss how to solve the MLE problem in (3.1) using the
alternating direction method of multipliers (ADMM) algorithm [101]. Our focus here
is the modification required to accommodate the case of ¢ > 1 and o > 1 for the
original ADMM algorithm presented in [22].

Inspecting (3.1), we note that it is an equality constrained optimization. There-

fore, we can formulate its augmented Lagrangian function as
L(c,0,%) = F(6; B) — 27(6 — aGe) + gne — aGe|?, (3.3)

where z € R™ is the Lagrangian multiplier associated with the constraint 8 = aGe,
and p > 0 is a non-negative scalar that control the strength of the quadratic penalty
term. By completing squares and using the scaled Lagrangian multiplies z = z/p,

the augmented Lagrangian can be rewritten as
_ _ P 2 P 2
E(C,O,z)—F(O,B)+§\|0—0zGc—z|| —{—§Hz|| : (3.4)

We can solve the optimization problem via an iterative approach

") = argmin £(c, 8%, 2®), (3.5a)

0*+) = argmin  L£(c*D, 0, 20, (3.5b)
0

SkH1) (k) _ <9(k+1) — aGC(k+1)) , (3.5¢)

Since F'(0; B) is convex in 6, convergence of (3.5a)-(3.5¢) is guaranteed under ap-
propriate conditions [101]. For notational simplicity, we will drop the iteration index

on solving the e-subproblem in (3.5a) and the @-subproblem in (3.5b).
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e c-subproblem: By defining the variable ¢y = @ — z and dropping terms inde-

pendent of ¢, we can write the c-subproblem as follows

~

€ = argmin cho — aGcl|? (3.6)

which is a quadratic optimization problem. This problem can be solved by setting

the first derivative

oL

e = —apG*(cy — aGe) (3.7)

to zero, and solving for ¢ to get
1
= a(GTG)_lGTCO (38)

e O-subproblem: This problem is more challenging as it involves the nonlinear
incomplete Gamma function ¥, (6,,). Substituting for the negative log-likelihood
function F(0; B) from (3.2) and eliminating terms independent of 8, solving (3.5b)

is equivalent to solving

min Z Z [ )2 = (1 = byny)log (Vg (6,)) — bmilog (1 — \yq(em))], (3.9)

t=0 m=0

where d = [dy, . ..,dy1]T with d = aGc + z. By defining the variable

we can rewrite (3.9) as follows.

min Z [ — (T = Sp)log (¥y(6,,)) —smlogu—qfq(em))]. (3.10)

To solve (3.10), we recognize that it is a sum of M separable functions. Therefore,
(3.10) is minimized when each individual term in the sum is minimized. The first

order optimality returns us the following result.

Proposition 3.1.1 The optimal solution 6,, of (3.10) satisfies the equations

eiemeg;l T(l — @Z}q(gm)) — Sm

Pt ) Ty(Bm) (1 Uy(Br))

= pdy, VS, €{0,1,...,T}. (3.11)
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Proof By using the first order derivative of ¥,(6,,) in (2.16), we can differentiate
the m-th term in (3.10) and set the result to zero to yield (3.11). [

From Proposition 3.1.1, it remains to solve (3.11). However, since (3.11) is a
transcendental equation, we must adopt a numerical approach to solve the equation.
Our proposed solution relies on building a look up table (offline) for D 4 1 values of
d,, distributed uniformly in the interval [dpin, dmax] With a step Ad = (dmax — dmin)/ D.
Then, the solution at any value of d is obtained by a simple linear interpolation.

Remark: Because of the nonlinearity of the incomplete Gamma function ¥, (6),
when building the look up table a solution may lie in a region close to discontinuity.
To mitigate this issue, we use a bisection to determine an approximate interval in

which the solution must be contained.

1071
— S, =0
—8,=1
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Fig. 3.1. Absolute Residual vs d,, € [—4,4] after substituting with the
obtained root in (3.11). The number of points is D = 10* and T = 5.
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3.1.2 Closed-Form ML Expression for Box-car kernel

Under the box-car interpolation kernel assumption, the MLE problem can be
simplified to obtain a closed-form expression for the ML solution. With the G defined
in (2.11), we can partition B into N independent blocks {B, ..., By } where each block
is

B, € {Brpsry | k=0,... K —1t=0,...,T—1}. (3.12)

In addition, the constraint 8 = aGc¢ can be rewritten as

acy,

9Kn+k: 7, Vn € {O,,N—l} (313)
Then, the pixel ¢, can be estimated according to the following proposition.

Proposition 3.1.2 (Closed-form ML Estimate) For ¢(x) defined as boz-car ker-
nel, the solution of the MLE in (3.1) is given by

K S.
C,=—U1tl1-=2 N -1 14
b=y (1= 7)o e 0N =) (3.14)
where S, i) tT:_Ol £<:—01 Bty is the sum of bits in the n-th block B,,.
Proof See Appendix C.1. [ |

It would be instructive to illustrate Proposition 3.1.2 using a figure. Figure 3.2 shows
the case when T' = 1, i.e., a single exposure, and K = 16. The 1-bit measurements
are first averaged to compute the number of ones within a block of size K. Then,
applying the inverse incomplete Gamma function \I/q’l(-) and a scaling constant K/«

we obtain the solution ¢,.

3.2 Maximum-A-Posterior Solution

Since the ML solution depends solely on input random data, it contains some
randomness which makes the ML solution noisy. This noise is exacerbated when

the combined spatial-temporal oversampling L is not large enough because the noise
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Fig. 3.2. Pictorial interpretation of Proposition 3.1.2: Given an array of
1-bit measurements (black = 0, white = 1), we compute the number of
ones within a block of size K. Then the solution of the MLE problem in
(C.3) is found by applying an inverse incomplete Gamma function \If(;l(-)
and a scaling factor K/a.

variance will be significant for small L. This problem can be alleviated by using
our prior knowledge of the attributes of the output image within the Maximum-A-
Posterior (MAP) framework [61]. Denote the negative logarithm of the prior function
as g(c) = —log(p(c)), the MAP estimation problem can be written as
c =argmin F(0; B) + ¢(c) (3.15)
0=aGc
As for choosing the prior g(c), there are many options that include Gaussian
and non Gaussian Markov random fields [61], sparsity-based priors [102], data-driven
priors learned by neural networks [103], denoising-based priors in the plug-and-play
framework [104]. Here, we use the anisotropic total variation prior [22] for simplicity,
where extension to other priors is straightforward. Denote by D the first order finite
difference operator. Hence, we cab formulate the MAP estimation problem with total
variation prior as follows.
¢ = argmin F (0; B) + \||Dcl|1, (3.16)
0=aGc
which can be rewritten as follows
¢ = argmin F (0; B) + \||v|}s. (3.17)

0=aGec

v=Dc
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By completing squares as we did before, we can write the augmented Lagrangian as

follows.
L(c,0,v,z,7)=F(0; B) + \|v||; + gl\@ —aGe — z|)?
= LIzl + Sl = De—r|P = J|irl? (3.18)
where z € RM and » € RY are the scaled Lagrangian variables associated with the
constraints @ = aGc and v = Dc, respectively. p and v are non-negative weights

the control the power of the quadratic penalty terms. Using the ADMM framework,

we can minimize the augmented Lagrangian by solving the following sequence of

subproblems.
Y = argmin  L(c, 0P, v® 20 k) (3.19a)
O+ — arg;nin LD g, v® 20 p0), (3.19b)
v — argmin  L£(cFHD, 9*HD g, 20 p(K)) (3.19c¢)
2+ — z(k;)— (0(k+1) — ozG’c(k“)) : (3.19d)
pt) = k) (p(H) — Dty (3.19¢)

From the convexity of F'(6; B) and the total variation prior, convergence of (3.19a)-
(3.19¢) is generally guaranteed [101]. For notational simplicity, we will drop the
superscripts on presenting the solution of each subproblem.

e c-subproblem: By defining the variables ¢g = @ — z and ¢, = v — r, and

dropping terms independent of ¢, we can write the c-subproblem as follows.
~ Y 2 7 2
€ = argmin §||co —aGcl||” + §||cl — Dc|| (3.20)

which can be solved by setting the first derivative to zero and rearranging the terms

to get
¢ = (po’G"G +~yD" D) - (paG" ey +vD"¢y) (3.21)

Since the matrix pa?GT G + yD' D is circulant as proved in [22], the inversion can

be implemented in the Foruier domain to improve computational efficiency.
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e O-subproblem: By defining the variable d = aGe + z, we can write the

O-subproblem as follows.
6 = argmin gHO—dHZ—i—F(H; B) (3.22)
)

which is the same as the @-subproblem (3.9) in the ML solution. Hence, it can be
solved in the same way.
e v-subproblem: By defining the variable vo = Dec + r, we can write the v-

subproblem as follows

~ . v 2

v = argmin )\||v|]1—|—§||v—v0]| (3.23)
Applying the shrinkage formula [61], the solution is

v = sign(vp) max(|vg| — A/v,0) (3.24)

3.2.1 The Plug-and-Play Algorithm [104]

The choice of prior function g(c) affects the reconstruction quality significantly.
To choose priors stronger than the total-variation prior, we use the Plug-and-Play
algorithm [104]. In this approach, the authors noticed that for a general prior g(c),
the w-subproblem is equivalent to a denoising problem of a signal impaired with
additive white Gaussian noise having standard deviation of sqrtA/+. Hence, the v-
subproblem can be solved by any standard Gaussian denoiser such as BM3D [105],
Monte-Carlo Non-Local Means [106], a neural network denoiser [107,108], or even a
combination of Gaussian denoisers [109].

In our problem settings, using the Plug-and-Play approach will only change the

v-subproblem to be just a denoising step as follows
v = D,(vy), (3.25)

where D is the selected denoiser, and o = \/A/7 is the noise level. All other sub-
problems will be the same. We can also use a sequence of decreasing noise levels to

guarantee convergence as proved in [110].
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3.3 Transform-Denoise Pipeline

Looking back at the two previous sections, we proposed 1) an iterative image
reconstruction approach for ML or MAP estimation framework, and 2) a fast image
reconstruction approach based on ML closed-form expression under box-car interpola-
tion kernel assumption. Each approach has its pros and cons. The iterative approach
can get a clean reconstructed image if a suitable prior is used in the MAP framework;
however, it is impractical for ultra-fast applications. On the other hand, the closed-
form expression gives an ML estimate in very short time with low computational
complexity; however, the reconstructed image is noisy especially for small combined
oversampling factor L. In this section, we propose an approach that combines the

pros of both techniques.

3.3.1 Related Work in the Literature

The proposed algorithm belongs to a family of methods we call the transform-
denoise methods. The idea of transform-denoise is similar to what we do here: Trans-
form the random variable using a variance stabilizing transform, then denoise using an
off-the-shelf image denoiser. Among the existing transform-denoise methods, perhaps
the most notable work is the one by Makitalo and Foi [111], where they considered the
optimal inverse of the Anscombe Transform for the case of Poisson-Gaussian random
variables. A more recent work by the same research group [112] showed that it is
possible to boost the denoising performance by applying the transform-denoise itera-
tively. We should also mention the work by Foi [113], which considered the modeling
and transformation for clipped noisy images. The problem setting of that work is for
conventional sensors. However, the underlying principle using the transform-denoise
approach is similar to that of QIS.

The closed-form ML expression in subsection 3.1.2 is based on the box-car iterpo-
lation kernel assumption (i.e., G defined in (2.11)). Under this assumption, summing

of the Bernoulli random variables can be thought of performing a spatial-temporal
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“binning” of the pixels. Binning is a common technique in restoring images from
Poisson noise, especially when the signal-to-noise ratio is low [114-116]. Binning can
also be applied together with transform-denoise, e.g., in [112], to achieve improved
results. For QIS, the result of binning is different from that of the Poisson noise, for
the sum of QIS bits leads to a binomial random variables whereas the sum of Poisson

noise leads to a Poisson random variable.

3.3.2 Binomial Anscombe Transform

The MLE solution ¢ = [¢y,...,¢cn_1]7 computed through Proposition 3.1.2 is
noisy. The reason is that for a relatively small K and T, the randomness in the 1-bit
measurement has not yet been eliminated by the summation in S,. Therefore, in
order to improve the image quality, additional steps must be taken to improve the
smoothness of the image.

At the first glance, this question seems easy because if one wants to mitigate the
noise in ¢, then directly applying an image denoising algorithm D to ¢ would be
sufficient, e.g., Figure 3.3(a). However, a short afterthought will suggest that such
approach is invalid for the following reason. For the majority of image denoising
algorithms in the literature, the noise is assumed to be independently and identically
distributed (i.i.d.) Gaussian. In other words, the variance of the noise should be
spatially invariant. However, the resulting random variable ¢ does not have this
property.

Our proposed solution is to apply an image denoiser before the inverse incomplete
Gamma function as shown in Figure 3.3(b). Besides the order of denoising and
Gamma function, we also add a pair of nonlinear transforms 7 and 7! before and
after the denoiser D. The reasons of these two changes are based on the following

observations.

Observation 3.3.1 Under boz-car kernel assumption, the random variables

{BKn+k,t|k:()7"'7K_17 Cbndt:O,,T—l}
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(a) Conventional method

(b) Proposed method

Fig. 3.3. Two possible ways of improving image smoothness for QIS. (a)
The conventional approach denoises the image after ¢, is computed.
(b) The proposed approach: Apply the denoiser before the inverse in-
complete Gamma function, together with a pair of Anscombe transforms
T. The symbol D in this figure denotes a generic Gaussian noise image
denoiser.

are i.i.d. Bernoulli of equal probability P[Bxpip: = 1] = 1 — U, (%) for k =
0,...,K—1landt=0,...,T—1.

The proof of Observation 3.3.1 follows immediately from the matrix G defined in
(2.11) which corresponds to the box-car kernel. We can divide the M jots into N
groups each having K x T entries. Within the group, the 1-bit measurements are all
generated from the same pixel c,.

The consequence of Observation 3.3.1 is that for a sequence of i.i.d. Bernoulli
random variables, the sum is a Binomial random variable. This is described in Ob-

servation 3.3.2.

Observation 3.3.2 If {Bgnirt} are i.i.d. Bernoulli random variables with proba-
bility P[Bgptrr = 1] =1 -, (%) fork=0,..., K—1andt=0,...,T —1, then

the sum S, defined in (C.2) is a Binomial random variable with mean and variance

E[S,] = L (1 _ (%)) , Var[S,] = LU, (%) (1 ~ v, (%)) .
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Observation 3.3.2 is a classic result in probability. The mean of the Bernoulli random

QCn

K

variables is specified by the incomplete Gamma function ¥, ( ), which approaches 1

as K increases. Thus, for fixed T, the probability 1 -V, (%) — 0as K — 0o. When
this happens, the binomial random variable S, can be approximated by a Poisson

random variable with mean L (1 -, (%)) [117]. However, as T also grows, the
binomial random variable S,, can be further approximated by a Gaussian random
variable due to the Central Limit Theorem. Therefore, for a reasonably large K and
T, the resulting random variable S,, is approximately Gaussian.

The variance of this approximated Gaussian is, however, not constant. The vari-
ance changes across different locations n because Var[S,] is a function of ¢,. There-
fore, if we want to apply a conventional image denoiser (which assumes i.i.d. Gaussian
noise) to smooth S,,, we must first make sure that the noise variance is spatially in-
variant. The technique used to accomplish this goal is called the variance stabilizing
transform [118]. In this paper, we use a specific variance stabilizing transform known
as the Anscombe Transform [119]. Anscombe Transform is best known in the image
processing literature for Poisson denoising, where one transforms an observed Pois-

son data to approximately Gaussian with equal variance [111]. For binomial random

variables S, the Anscombe Transform and its property are given in Theorem 3.3.1.

Theorem 3.3.1 (Anscombe Transform for Binomial Random Variables) Let

Sy be a binomial random variable with parameters (L, p,), where p, =1 — ¥, (%)

and L = KT. Define the Anscombe Transform of S, as a function T : {0,...,L} - R

such that
def 1 . Sn + 3

Then, the variance of Z, is Var[Z,] = 3 + O(L™?) for all n.

Proof The proof of Theorem 3.3.1 is given in the Appendix. It is a simplified version
of a technical report by Brown et al. [120]. The original paper by Anscombe [119]
also contains a sketch of the proof. However, the sketch is rather brief and we believe

that a complete derivation would make this thesis self-contained. [ |
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The implication of Theorem 3.3.1 is that regardless of the location n, the trans-
formed random variable Z,, has a constant variance 71; when L is large. Therefore,
the noise variance is now location independent and hence a standard i.i.d. Gaussian

denoiser can be used.

Example 2 To provide readers a demonstration of the effectiveness of Theorem 3.3.1,
we consider a checkerboard image of N = 64 pizels with intensity levels ¢y, ..., cn_1.

The n-th pixel ¢, generates K = 100 binary quantized Poisson measurements

{Brn, .-+ Brn+(xk-1)}

using o =100, ¢ =1, T =1 (So L = 100). From each of these K measurements we
sum to obtain a binomial random variable S,, = kK:Bl By We then compute the
variance of Var[S,] and Var[T(S,)] using 10* independent Monte Carlo trials. The
results are shown in Figure 3.4, where we observe that Var[S,| varies with the location

n, and Var[T (S,)] is nearly constant for all n.

Remark. The inverse Anscombe Transform is

3 Zy, 3
S, =T YZ,) = (L + Z) sin? | —— | — =, (3.27)
JL+t) 8
which we call it the algebraic inverse. Another possible inverse of the Anscombe

Transform is the asymptotic unbiased inverse [119], defined as

1\~ 3 Zn 1

Sn = Trnbias(Zn) = (1 + ﬁ) (L + Z) sin? | —— ] —=|.  (3.28)
NIERY

For large L, the difference between the asymptotic unbiased inverse and the algebraic

inverse is small.

Example 3 Table 3.1 shows the PSNR values of the reconstructed images using the
algebraic inverse and the asymptotic unbiased inverse. In this experiment, we con-

sider 10 standard images commonly used in the image processing literature: Baboon,
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Var|[S,] Var[T (5y)]

Fig. 3.4. Illustration of Anscombe Transform. Both sub-figures contain
N = 64 (8 x 8) pixels ¢,...,cy_1. For each pixel we generate 100 bi-
nary Poisson measurements and sum to obtain binomial random variables
So, ..., Sn_1. We then calculate the variance of each S,,. Note the con-
stant variance after the Anscombe Transform.

Barbara, Boat, Bridge, Couple, Hill, House, Lena, Man and Peppers. The sizes of the
images are either 256 x 256 or 512 x 512. For each image, we set T =1, ¢ =1, and
a =K, andvary K ={1,4,9,16,25,36,49,64}. The results in Table 3.1 indicate that
TL s consistently better than T~ for K > 1, although the difference diminishes

unbias

as K grows.

Table 3.1.
PSNR values using algebraic inverse 7! and asymptotic unbiased in-

verse 7;;&1&5. The results are averaged over 10 standard images. In this

experiment, weset T'=1, ¢ =1, and a = K.
‘ K ‘ 1 4 9 16 25 36 49 64
T-1 12051 23.08 25.00 26.47 27.49 28.40 29.09 29.71
-l 19.43 23.64 25.30 26.62 27.57 2845 29.12 29.73

unbias
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4. OPTIMAL THRESHOLD DESIGN: THEORY AND
PRACTICE

In this chapter, we study the QIS threshold design problem. In our theoretical deriva-
tions, we focus on the ML estimate as it provides closed-form expressions under box-
car interpolation kernel assumption. We start in Section 4.1 by studying a theoretical
oracle scenario when the ground truth is assumed to be known. This study form the
basis of our subsequent discussions of the threshold update scheme in Section 4.2

where we tackle the practical case of unknown ground truth.

4.1 Optimal Threshold: Theory

In this section, we tackle the oracle scenario where the ground truth is given.
We start by obtaining in subsection 4.1.1 a closed-form expression of the the ML
estimate’s SNR in terms of the incomplete Gamma function. Then, we derive in
subsection 4.1.2 an expression for the optimal “oracle” threshold that maximizes the
SNR given the ground truth. This oracle threshold provides us with intuition how to

tackle the realistic case when the ground truth is unknown.

4.1.1 Signal-to-Noise Ratio of ML Estimate

In order to determine the optimal threshold, we need to quantify the performance
of the ML estimate. The performance metric we use is the signal-to-noise ratio
of the ML estimate at every pixel ¢,. Considering each ¢, individually is allowed
here because they are independently determined according to (3.14). For notation

simplicity we drop the subscript n in the subsequent discussions.



45

Definition 4.1.1 The signal-to-noise ratio (SNR) of the ML estimate ¢ is defined as

def c?

SNR,(c¢) = 10log;, E[e— o) (4.1)

where the expectation is taken over the probability mass function of the binary mea-

surements in (2.15).

The difficulty of working with SNR,(c) is that it does not have a simple closed-
form expression. In view of this, Lu [64] showed that the SNR is asymptotically linear
to the log of the Fisher Information.

Proposition 4.1.1 As KT — oo,

SNR,(c) &~ 10logy, (¢*I,(c)) + 10log,y KT, (4.2)

Oc?

where 1,(c) YKy [*aQIOg P(B = b; 9)} is the Fisher Information measuring the
amount of information that the random variable B carries about the unknown value

c.
Proof See [64]. u

While the asymptotic result shown in Proposition 4.1.1 has significantly simplified
the SNR, we still need to determine the Fisher Information. The following proposition

gives a new result of the Fisher Information with arbitrary q.

Proposition 4.1.2 The Fisher Information I,(c) of the probability mass function in
(2.15) under a threshold q is:

aye e (%) (ag)*?
10 = (%) Taw 0w ) 9
Proof See Appendix C.3. [ |

Substituting (4.3) into (4.2), we observe that the SNR can be approximated as

SNR,(c) ~ 101 KTe %) (50)" 4.4
o= 0B S, () (- 0 (7)) .
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Fig. 4.1. SNR,(c) for different thresholds ¢ € {1,...,16}. In this experi-
ment, we set « = 400, K =4, and T' = 30. For fixed ¢, SNR,(c) is always
a convex function.

which is characterized by the unknown pixel value ¢, the threshold ¢, the spatial
oversampling ratio K and the number of temporal measurements 7. To understand
the behavior of (4.4), we show in Figure 4.1 SNR,(c) as a function of ¢ for different
thresholds ¢ € {1,...,16}. For a fixed ¢, SNR,(c) is a convex function with a unique
maximum. The goal of optimal threshold design is to determine a ¢ which maximizes

SNR,(c) for a fixed c.

Remark 3 The SNR,(c) in (4.4) can also be derived from a concept in the device
literature called the exposure-referred SNR [26]. See Supplementary Material for

discussions.

4.1.2 Oracle Threshold

We now discuss the optimal threshold design in the oracle setting. We call the
result oracle because the optimal threshold depends on the unknown pixel intensity

c. The practical threshold design scheme will be discussed in Section 4.2.
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Using the definition of the signal-to-noise ratio, the optimal threshold is deter-
mined by maximizing SNR,(c) with respect to ¢:
¢" = argmax SNR,(c) = argmax log(c*I,(c)). (4.5)
geN geN
The second equality follows from Proposition 4.1.1. Substituting (4.3) yields an ex-
pression of the right hand side of (4.5). To further simplify the expression we derive

the following lower bound.

Proposition 4.1.3 The function log(c*I,(c)) is lower bounded as follows.

K K

v~

log(c*I,(c)) > 2 <log2 -y qlog ac log F(q)).

def
=Lq(c)

Proof See Appendix C.4. [ ]

Using this lower bound, we can derive the optimal threshold ¢ as follows .

Proposition 4.1.4 The optimal threshold q*(c) is

¢ (c) = arqggaw L,(c) = {%CJ +1, (4.6)

where |-| denotes the flooring operator that returns the largest integer smaller than

or equal to the argument.
Proof See Appendix C.5. [ ]

The result of Proposition 4.1.4 is important as it states that the oracle threshold
is ezactly the same as the light intensity ac/K. The flooring operation and the
addition of a constant 1 are not crucial here because they are only used to ensure
that ¢ is an integer. In [62], a special where o = 1 was demonstrated experimentally.

Proposition 4.1.4 now provides a theoretical justification.

!Straightly speaking, the result shown in Proposition 4.1.4 is a “near-optimal” result because we
are minimizing the lower bound. From our experience, the gap between the near-optimality and the
exact optimality is typically insignificant.
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4.2 Optimal Threshold: Practice

The oracle threshold derived in the previous section provides a theoretical founda-
tion but is practically infeasible as it requires knowledge of the ground truth c. In this
section, we present an alternative solution by relaxing the optimality criteria. Our
strategy is to consider a set of thresholds which are close to the oracle threshold ¢*(c¢),
and show that they are asymptotically unbiased when the number of observed bits
approaches infinity (subsection 4.2.1). This result will allow us to characterize the
estimate ¢ (subsection 4.2.2). We will then show that there exists a phase transition
region where the asymptotic unbiasedness is maintained as ¢ stays within a certain
range around ¢*(c), and is lost rapidly as ¢ falls outside this range (subsections 4.2.3
and 4.2.4). Based on these observations, we will present a practical threshold update
scheme (subsection 4.2.5). Finally, we discuss in subsection 4.2.6 how the threshold
adaptation helps in extending the sensor’s dynamic range for high dybnamic range

imaging followed by some hardware considerations in subsection 4.2.7

4.2.1 Asymptotic Unbiasedness

In order to derive an alternative threshold that does not require the ground truth,
we start by reconsidering the ML estimate ¢ in Proposition 3.1.2. For a spatial-
temporal block B = {B;|0 <k < K—1,0 <t < T —1}, the ML estimate ¢ satisfies
the condition ~

v, (%) —1- % (4.7)
where S = Zk,t By, is the sum of bits in B. The right hand side of this equation is

an important quantity. We denote it as

def S

Yole) =1 - KT (4.8)

In the device literature (e.g., [26]), the term 1 — v,(c) is known as the bit-density as

it is the proportion of ones in B. Note that v,(c) is a random variable because S is
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the sum of KT i.i.d. random binary bits. Therefore, if we want to understand (4.7),

we must first derive the the mean and variance of 7,(c).

Proposition 4.2.1 The mean and variance of v,(c) are

ac
El(c)] = ¥, (%), and
1 ac ac
Varl,(e)] = ==, (%) [1 =¥, (%)) (49)
respectively.
Proof See Appendix C.6. [ ]

We can now look at the asymptotic behavior of 7,(c) to see if it offers any insight
about the optimal threshold. Applying the strong law of large number to S/KT, we

can show that as KT — oo,
Y,(c) =1—S/KT 31 —E[By,] = V,(ac/K). (4.10)
Going back to (4.7)-(4.8), the ML estimate ¢ should have the expectation:

B[] ¥ gxa [0, (1,(c))] Y gxpglmq (%) 9. (4.11)

where (a) follows from the definition of ¢, (b) follows from (4.10), and (c) holds
because ¥, and \Ifq_l cancels each other.

What is the implication of (4.11)? It shows that the ML estimate ¢ is asymp-
totically unbiased. That is, as the number of independent measurements grows, the
estimate ¢ approaches to the ground truth c. In other words, as long as KT is large
enough, the random variable ¢ would be an accurate estimate of the ground truth.

How can this be used to determine the threshold ¢? Let us look at Q.

4.2.2 Set of Admissible Thresholds Qg

The result in (4.7)-(4.11) shows that for a given S (or equivalently v,(c)), the ML

estimate can be found by

. (7a(c)) - (4.12)
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When this happens, the ¢ given by (4.12) is asymptotically unbiased. However, the
inversion \I’;1 is not always allowed. There is a set of ¢’s that can make ¥, invertible,

which is defined as Qp in Definition 2.3.1. The following proposition relates Qy to

Yq(C)-

Proposition 4.2.2 Let 0 < § < 1 be a constant. Then, for any

g€ Q déf{q’l— (g)KlTSKIfq(@)g (g)KlT} (4.13)

the random variable ~,(c) will not attain 0 or 1 with probability at least 1 — 0, i.e.,
Pl0 < v,(c) < 1] > 1—0.

In this case, the ML estimate ¢ is uniquely defined by (4.12).

Proof See Appendix C.7. [ |

Before we proceed, let us look at some rough magnitude of the parameters in the

following example.

Example 4 Let the ground truth pizel value be ¢ = 0.5. The sensor parameters are
set as T =50, K =4, a = 300. For a constant 6 = 2 x 107%, the tolerance level is
e=1—(0/2)YKT =0.045. Therefore, as long as q € {q]0.045 < ¥,(0) < 1—0.045},
which is the set {q | 28 < q < 48}, the probability that v,(c) equals to 0 or 1 is upper
bounded by 6 = 2 x 1074,

4.2.3 Gap between Q, and ¢*

The result in the previous subsection shows that as long as ¢ € Qy, the ML
estimate is asymptotic unbiased. However, how is a ¢ € Qy compared to the oracle
threshold ¢*? We answer this question in three parts.

First, does an asymptotically unbiased estimate maximize the SNR? The an-

swer is no, because Proposition 4.1.4 states that if ¢* is the optimal threshold, then



ol

\ g€
1 q¢
08 ——Exact E[¢]/c
’ — =Monte-Carlo E[¢]/c
0.6 —Exact 1 — E[y,(c)]
— =Monte-Carlo 1 — E[y,(c)]
0.4
0.2
0 ]
10 20 30 40 50 60 70 80 90 100
Threshold ¢
40 -
30
M
e
E 90
aet
7
10
0 J

10 20 30 40 50 60 70 80 90 100
Threshold ¢

Fig. 4.2. Phase transition of the ML estimate and its relationship to the
average bit density 1—E[v,(c)]. The red region is where it is impossible to
recover ¢, whereas the green region is where we can have perfect recovery.

SNR,+(¢) > SNR,(c) for any g # ¢*. Therefore, moving from the exact optimal ¢* to
an asymptotically unbiased threshold is a relaxation of the optimality criteria.

If asymptotic unbiasedness is a relaxed optimality criteria, how much SNR drop
will there be if we choose a ¢ € Qy but not necessarily ¢ = ¢*? We show in Figure 4.2
the plot of a typical experiment with setup discussed in Example 4. As shown in
the figure, the green zone is the set Qp = {q | 28 < ¢ < 48}, or equivalently
Qy = {q|0.045 < V¥ (f) < 0.9955}. For any ¢ in this Qp, the reconstruction has a
SNR at least 30dB. If we further tighten Qg so that Qp = {q | 35 < ¢ < 42}, or
equivalently Qp = {¢]0.25 < ¥,(f) < 0.6}, the SNR stays in the range 36.15dB <
SNR,(c) < 36.65dB, which is reasonably narrow.

How tight should Qp be? Ideally we want Qp to be as tight as possible. But

knowing the fact that the incomplete Gamma function has a rapid transition (See
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the black line in Figure 4.2), Qp can be much wider. In fact, we can choose Qp such
that 1 — 7,(c) stays close to 0.5, so that we are guaranteed to obtain a near optimal
threshold. From an information theoretic point of view, 1 — v,(c) ~ 0.5 is where
the bit density attains the maximum information — if ¢ is too high then most bits
become 0 whereas if ¢ is too low then most bits become 1. It is maximum when ¢

leads to 50% zeros and 50% ones. 2

4.2.4 Phase Transition Phenomenon

We can now point out a very interesting phenomenon in Figure 4.2. In the upper
plot of Figure 4.2 we show two sets of curves: blue curves (solid and dotted), and black
curves (solid and dotted). The blue curves represent the ratio E[¢]/c, and the black
curves represent the average bit density 1 — E[y,(c)]. For both sets of curves, we use
dotted lines to illustrate the Monte-Carlo simulation using 10,000 random samples,
where each sample refers to a spatial-temporal block B,, containing K'T' = 200 binary
bits. Notice that these dotted lines overlap exactly with their expectations, and hence
(4.7)-(4.11) are valid.

Let us take a closer look at the blue curve E[¢]/c. Let Qp = {q¢ | q» < q < qu},
where q;, and gy are the smallest and the largest integers in Qy respectively. There

are three distinct phases:

e When ¢ < gz, the threshold is low and so most bits become 1. Therefore, v.(q) — 0
and hence ¢ — co. Thus, E[¢]/c — oo as ¢ decreases.

e When g > gy, the threshold high and so most bits become 0. Therefore, v.(q) — 1
and hence ¢ — 0. Thus, E[¢]/c — 0 as ¢ increases.

e When ¢g; < ¢ < gy, the ML estimate ¢ is asymptotically unbiased. Therefore,
E[c]/c = 1.

2The exact optimal value of 1 — v,(c) at ¢* is slightly lower than 0.5 due to the nonlinearity of the
Gamma function. See Supplementary Material for additional discussion.
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Algorithm 1 Bisection Threshold Update Scheme
Initial thresholds g4 and gp such that 1 —~,, > 0.5 and 1 — v, < 0.5.

Compute ¢y = [(ga + g5)/2], where [-] denotes the ceiling operator.
while |v,,, — 0.5] < tol do

If v,,, < 0.5, then set g4 = qur. Else, set g = qa.

Compute gy = [(ga + qB)/2].
end while

return q,

Essentially, Figure 4.2 demonstrates a phase transition behavior of the threshold.

Such phase transition exists because ¥, is only invertible when ¢ € Q.

4.2.5 Bisection Threshold Update Scheme

Now we present a practical threshold update scheme. As we discussed in Section
IV.C, the oracle threshold ¢* can be obtained when bit density v,(c) is close to 0.5.
Therefore, a practical procedure to determine ¢ is to sweep through a range of ¢ until
the bit density reaches 0.5. To achieve this objective, we propose a bisection method
illustrated in Figure 4.3 and Algorithm 1. Starting with initial thresholds ¢4 and ¢z,
we check whether the bit density satisfies 1 —~,, > 0.5 and 1 — v, < 0.5. If this is
the case, then we find a mid point gy = (ga + ¢p)/2 and check whether 1 —~,,, is
greater or less than 0.5. If 1 —~,,, > 0.5, we replace g4 by ¢, otherwise we replace
gs by qu. The process repeats until 1 — ~,,, is sufficiently close to 0.5.

In our proposed threshold update scheme, we assume that the image has been
partitioned into N blocks {B,, | n = 0,..., N — 1}. Each B,, contains KT binary
bits and is used to estimate one pixel value ¢,. This setting results in N different
thresholds, one for every pixel. To generalize the setting, it is also possible to allow
multiple pixels to share a common threshold. Figure 4.4 shows an example. The

advantage of sharing a threshold for multiple pixels is that circuits associated with
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Fig. 4.3. The proposed bisection update scheme adjusts the threshold
g such that the bit density 1 — v,(c) approaches 0.5. The upper graph
illustrates the bisection steps. Bottom row shows cropped patches from

reconstructed images using threshold maps at different iterations and the
PSNRs.

the sensor can be simplified. In terms of performance, since neighboring pixels are

typically correlated, sharing the threshold causes little drop in the resulting SNR.
The price that the proposed bisection algorithm has to pay is the number of

frames it requires to determine a good ¢. For every evaluation of ~,,,, the sensor has

to physically acquire one frame and compute the bit density in each of the N blocks.
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Fig. 4.4. Concept of shared thresholds. (Left) binary measurements,
spatial oversampling K = 3 x 3, Temporal oversampling "= 5 . (Right)
Threshold map, one threshold value is shared by 6 x 6 jots.

Therefore, the more bisection steps we need, the more frames that the sensor has
to physically acquire. The rate of convergence of the proposed method and existing

methods will be compared in the experimental results in Chapter 5.

4.2.6 Extension to High Dynamic Range

While QIS is a photon counting device, it is designed to count a few photons
to keep the full-well capacity small, e.g. 20 photoelectrons as reported in [121].
Therefore, for practical imaging tasks, we need to extend the dynamic range for QIS.

There are two ways to enable dynamic range extension:

e Bright Scenes: Reduce Duty Cycle. In the signal processing block diagram
shown in Figure 2.1, we can replace the constant « by a fraction as a7, where
0 < 7 < 1 determines the ratio between the actual integration time and the
readout scan time. It can also be referred to the shutter duty cycle because the
shutter is opened to collect photons during this proportion of time [122]. For

very bright scenes, a low duty cycle will prevent QIS from saturating early.
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e Dark Scenes: Multiple Measurements. For dark scenes, multiple measurements
can be taken to ensure enough photons over the measurement period. This,
however, is different from conventional HDR imaging. In conventional HDR
imaging, the multiple shots are taken at different shutter speeds, e.g., 1/8192,
1/2048, 1/512, 1/128, 1/32, 1/8, 1/2 seconds [123], which is redundant. QIS’s
multiple shot functions more similar to burst photography [124]. The amount

of acquisition time is significantly less than the conventional HDR imaging.

These two methods can be used for any threshold scheme, including ours and
others. The benefit of using our proposed threshold scheme is that it supports a
much wider dynamic range extension. In Figure 4.5, we illustrate the total dynamic
range that can be covered using 4 multiple measurements at duty cycles 7 = 1,
7=0.2,7=0.04, and 7 = 0.008. The maximum threshold level is qu.x = 25, and
the minimum threshold level is ¢,;, = 1. It can be seen from the figure that with the
optimal threshold ¢*, the dynamic range is significantly more than the non-optimal
ones. In particular, we observe a 16dB and a 54dB improvement compared to g, = 1

and gunax = 25, respectively. Experimental results will be shown in Chapter 5

4.2.7 Hardware Consideration

Concerning the hardware implementation, we anticipate that future QIS will be
equipped with per-pixel FPGAs to perform the proposed threshold update scheme.
On-sensor FPGA is an actively developing technology. For example, MIT Lincoln
Lab’s digital focal plane array can achieve on-sensor image stabilization and edge
detection [125] . For QIS threshold update, the complexity is low because we are only
counting the number of ones in the bisection. More specifically, in order to perform
the bisection, we only need K additions to compute Zi:ol bKn+kt; ONE comparison

fz_ol bin+kt > 0.5; one addition and one multiplication (with a constant 0.5) to

update the threshold ¢y = [(ga + ¢)/2]. The dominating factor here is the K
additions, which can be implemented efficiently by shifting bits in a buffer.



S7

60 -
—_—g=17=1 —q=257=1 —q*(c),7=1
----- qg=1,7=0.2 ——m g =25,7=0.2 - q*(c),7=0.2

BOL e g=1,7=0.04 q=257=0.04 o q*(c), 7 =0.04
-==-qg=1,7=0.008 ---q=25,7=0.008 ——¢*(c),7 =0.008
s (=1, Overall SNR s ¢ = 25, overall SNR mmmmm ¢*(c), overall SNR

SNR,(c)

-30 | | R R N T ‘ H::=Hm i, .
1072 107! 10° 10! 102 10° 10*

Fig. 4.5. SNR in dB vs. exposure 6 for HDR imaging mode obtained by
fusion of frames with shutter duty cycles 7 € {1,0.2,0.04,0.008}. Three
scenarios are shown: constant threshold with ¢ = 1 (black), ¢ = 25 (red)
and an optimal spatially varying threshold (blue).

We should also point out that the proposed bisection method can be flexibly
adjusted spatially and temporally for different hardware configurations. For example,
we can use a spatial-temporal window 4 x 4 x 1 for low-resolution high-speed imaging,
or 1 x 1 x 16 for high-resolution low-speed imaging. This flexibility offers additional
advantages of QIS over conventional CCD and CMOS cameras.
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5. COLOR FILTER ARRAYS FOR QUANTA IMAGE
SENSORS

This chapter presents an optimization-based framework to design color filter arrays
for very small pixels. The new framework unifies several mainstream color filter ar-
ray design frameworks by offering generality and flexibility. Compared to the existing
frameworks which can only handle one or two design criteria, the new framework can
simultaneously handle luminance gain, chrominance gain, cross-talk, anti-aliasing,
manufacturability and orthogonality. Extensive experimental comparisons demon-
strate the effectiveness and generality of the framework.

We start by providing a background and describing the notations of the imaging
model in Section . Then, we present in Section the design criteria used for obtaining
an efficient CFA. Afterwards, we solve the CFA design problem in Section 5.3. Finally,
we present in Section 5.4 a universal demosaicking algorithm that can do demosaicking

for any color filter array.

5.1 Background and Notations

The design of a robust CFA involves multiple objectives in terms of signal sen-
sitivity, color aliasing, cross-talk, and manufacturability. To facilitate readers to
understand the design framework, in this section we introduce a few notations and
terminologies. We will start in Section 5.1.1 by describing the image formation using
a CFA, then we discuss CFA in different domains in Sections 5.1.2 and 5.1.3. After-
wards, in Section 5.1.4, we define the optimization variables to simplify the design

framework.
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5.1.1 Color Image Formation

Consider a color image im,g of size H x W. We denote the normalized light
intensities in the red, green and blue channels for the (m-th,n-th) pixel of the color
image as

im,(m,n)
im, ,(m,n) = im,(m,n) | , (5.1)
imy(m, n)
where m € {0,...,H—1}, ne€{0,..., W —1}.
Color Filtering: To obtain color, we place a color filter on top of each jot to collect
light for one of the RGB colors. The CFA is a periodic pattern of the same resolution
of im, g, defined as
cr(myn)
Crgp(m,n) = | cy(m,n) | , (5.2)
cp(m,n)
where ¢,(m,n), cg(m,n), c,(m,n) € [0, 1] are the opacity rates for the red, green and
blue pixels, respectively. For example, a red color filter is defined as ¢,z (m,n) =
[1,0,0]7 as it only passes the red color. The light exposure on the QIS after passing
through the CFA is denoted as #(m,n), which is a linear combination of the tri-

stimulus colors:

0(m,n) = ac,g(m,n) im,,(m,n)

5.3
=« Z ci(m,n)im;(m,n). (53)
ie{r,g,b}
Here, « is a positive scalar representing the sensor gain factor.
Photon Arrival. The photon arrival is modeled as a Poisson process. Let Y € NAW

be a vector of non-negative random integers denoting the number of photons arriving
at QIS jots according to the light exposure 8. Then, the probability of observing a

photon count Y,, = v, is
9%;”6_9”
P(Yn = ym) = T (5.4)
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In this work, we assume single-bit QIS [26] that quantizes the photon counts by QIS
jots to a binary values B € {0, 1}V with B,, =1ifY,, > ¢and B,, =0if Y, < g,

where ¢ > 0 is a threshold. The probability of observing B,,, = b,, is
P(By = b)) = Uy(0n) 70 (1 — 0,y (6,0))"" (5.5)

where U, (.) is the incomplete Gamma function [69].

Temporal Oversampling. With frame rates that reach 1000 fps, QIS is able to
catch the scene movement by taking 7" temporal samplings for the same scene. This
allows us to utilize multiple independent measurements over time to improve the
statistics and decrease noise. Hence, for every jot with light exposure 6,,, we have a

set of T independent binary measurements B,,, = {bm0, .-, bm1r-1}-



61

"90eds ewOIYD /eUN]

oY) ur wmnijpoads woje I0[02 9} Urelqo 0} spremioye pordde st uriojsuer) IomiIo sseo0ixd usisop oy) Aprpdurs oy soeds
I0[0D BUWIOIYD /eWN] ® 01 9oRdS I0[0D L)Y [BIIUOURD S} WOIJ 1 ULIOJSURI} 0} WOJR I0[00 o1} 0} parjdde st 7, uoreuLIOjSURI)
oldwexe Y ) IoArg o) UO pojeIsnl ASo[oururie) I “1°G "Sq

Y woje I0[0d ® SI YD ® JO jun Sup[mq oy,

wmyadg ewoy)) /ewn |

Q%J

To
1+

]

WOy I0[0)) RUWIOIY)/eun T

'

woyy 10[0) oY

ARITY I9Y1] 10[0))

o
0

T 1
o -

l_l

T |
— O

S
L 1

P

IO ol

=

]|
|
]
||
]
|
]
|

H

~ANNENENE

B
(>}



62

5.1.2 Color Filter Array Analysis in Different Color Spaces

Since the CFA ¢,4(m,n) is a periodic pattern, it is sufficient to use a color atom

as the optimization variable when designing the CFA. The color atom takes the form

hegy(m,n) = | hy(m,n)| (5.6)

where each of h,, hy and hy is an M x N array. For instance, the GRBG Bayer

pattern has the following color atom (when M = N = 2):

because the Bayer pattern has one red pixel and one blue pixel located at two opposite
diagonals, and two green pixels located in the remaining two positions. Figure 5.1
illustrates the idea.

While the primal RGB color is common for making the CFA, it would be more
convenient if the colors are decorrelated. To this end, we change the image represen-
tation from the canonical RGB basis to an orthornormal basis using a transformation
matrix [95, 126]:

1/vV3 1/V/3 1/V3
T=|-1/v6 2/v/6 —1/V6]- (5.7)
/vV2 0 —1/V2
This transformation maps an RGB image im,,, to an image imy,5 = [imy, im,, img]*

as follows (we drop the spatial indices (m,n) for simplicity)

imy im, (im, + imy + imy) /3
imyes = |im, | =T |im, | = |(—im, 4 2im, + imy) /6|
img imy, (im, — imy) /v/2

where im; is a luminance (luma) component that contains the high frequency com-
ponents such as edges and textures, whereas im,, and img are chrominance (chroma)

components that carry the color information.
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Since T is orthonormal (i.e., T*T = I), we can rewrite the sampling process in

(B.8) in the luma/chroma space:
0(m,n) = ac,g(m,n)’ TTT im, 4 (m,n)
= acias(m,n)’ imy,s(m,n)

=« Z ci(m,n)im;(m,n), (5.8)

i€{l,a,B}
where ¢;(m,n), co(m,n) and cg(m,n) are the luma/chroma representation of the

CFA, with
Ciop(m,n) =T c.g(m,n). (5.9)
The luma/chroma representation of the CFA has a corresponding color atom hy(m, n),

ho(m,n) and hg(m,n). For instance, the luma/chroma color atom of the GRBG Bayer

pattern is
hy(m,n)
Riasg(m,n) = | ho(m,n)| (5.10)
hg(m,n)
where the individual components are
hl:ill,hQZLQ_l,h5:L01

V311 1 V6 |1 2 V2 |21 0

Remark 4 In principle, there are are infinite choices for the luma/chroma basis
T. We choose the one in (5.7) because it makes the components of natural images

statistically independent in the first order approzimation.

5.1.3 Color Filter Array in Fourier Space

When analyzing the aliasing effects of the CFAs, we need to transform the color
atom into the Fourier domain. For simplicity, we represent the Fourier transform of
a signal by putting a tilde on top of the symbol, e.g., h Z h. The 2D discrete Fourier

transform (DFT) of the i-th color atom is
M—1N-1

hi(u,0) = 30 57 hi(m,n)e 2 (54 F) (5.11)

m=0 n=0
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Fig. 5.2. The Fourier representation of an arbitrary 3 x 3 color atom 1.
From left to right: The atom representation, the vector representation
and the 2D frequency plane representation. Notice that the frequency
plane is divided into 9 regions of size 27/3, and the spectrum comprises

pure sinusoids placed at (%%, %) Vu,v € {0, 1,2}.

where u € {0,...,.M — 1}, v € {0,...,N — 1}.
For example, the discrete Fourier transform of the luma/chroma color atoms in

(5.10) are
~ 1 (4 0 ~ 1 |2 0f ~ 1 |0 =2

h':_ s oy — — = ,h:_
T V30 o Velo sl " V22 o

Here, we observe that the Fourier transform of the color atom has the same size as
the original color atom. The luminance channel has only one baseband components
at (0,0), whereas the a chrominance channel has one baseband component and a
component at (m, 7). The  chrominance channel has two components at (0,7) and
(m,0). Figure 5.2 illustrates how these frequency locations are identified from a 3 x 3
color atom.

While the Fourier transform of the color atom is useful, for demosaicing we also

need to analyze the spectrum of the entire CFA. As shown in by Hao et al. [86], the
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Fourier transform of the entire CFA can be written in terms of the Fourier transform

of the color atoms:

1N

Gi(w) = i Z_:%i(u,vﬁ (w — w(u,v)), (5.12)

v

where i € {l,, B}, w is the 2D angular frequency, and

2mu 27TU) vuG{O,...,M—l}

wm’v):(V’W ve{0,...,N—1} (513

is the (u-th,v-th) 2D angular frequency. It is worth noting that the Fourier transform
of the CFA comprises pure sinusoids of amplitudes Ei(u,v). These sinusoids are
placed at M N discrete 2D frequencies w(u,v) that divide the 2D frequency plane
[—7, 7] X [=m, 7] into M N equal regions. Therefore, the spectrum of the mosaicked

image 0(w) can be written as

ie{l,a,8} i€{l,a,8}
M—-1N-1

= D> D> hlww) imi(w — w(u,v)), (5.14)

€{l,a,8} u=0 v=0
where ® is the standard 2D convolution operator. Having the spectrum of the mo-

saicked image f(w), we can now discuss the optimization variables in our problem.

5.1.4 Design Variables

To formulate the CFA design problem as an optimization problem, we define the
following variables. We denote h,, h, and h; the vectorized representations of the
red, green and blue color atoms, respectively. To ensure physical realizability, we
require h,., hg, hy, € [0, 1]KX1, where K % M N , and we stack all design variables into

one long vector

r = hg ERgKXl.
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The design variable x is related to the vectorized RGB and luma/chroma color atoms

hr Z’I‘ hl Zl
h,| = |Z,|x and |h,| = |Z,| T
hb Zb hg Zﬁ

where the Z matrices are defined by (5.7) as

Z,=[I,0,0] Z,=[I,1,1]/V3,
Z,=10,1,00 and Z,=[-I,2I,—1]/V6,
Z,=10,0,1 Zs=1[1,0,—1]/V2.

Given the design variable x, we also need to analyze its spectrum. We write the
2D Fourier transform equation (5.11) as a matrix-vector product by using the Fourier
transform matrix F € CX*X . Hence, the vectorized spectra of the luma/chroma color

atoms can be written in terms of @« as
h;=Fh;=FZzx, i< {l,a B} (5.15)

where h; € CK *1 for i € {l,a, B}. The relation between the matrix and the vector

forms of the Fourier transform is:

hi(u,v) = vec ' (h;) (5.16)

where h;(u,v) is the Fourier coefficient.

5.2 Design Criteria

We now present the design criteria. Our criteria unify the three major approaches
in the literature: (i) Sensitivity of luma/chroma channels to noise by Condat [95]; (ii)
Aliasing between different color components in the frequency domain by Hirakawa
and Wolfe [83]; (iii) Crosstalk between neighboring pixels in the spatial domain by
Anzagira and Fossum [93]. Note that the first two criteria were developed for CMOS,

whereas the third criterion was developed for QIS. The proposed framework integrates
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all these criteria into a unified formulation. Table 5.1 summarizes the difference
between this paper and the previous works.
In the following subsections, we present the design criteria and express them in

terms of matrix-vectors for the optimization framework in Section IV.
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Red Mask Green Mask Blue Mask Color Atom

Fig. 5.3. A 4 x 4 CFA generated by our design framework. Luminance
sensitivity v, and chrominance sensitivity 7. are maximized to improve ro-
bustness to noise (Section IT1I-A). No chrominance components (« or ) are
modulated on the vertical and horizontal frequency axes (Section III-B)
to mitigate aliasing with the luminance component [. The total variation
of the red, green and blue masks is upper-bounded by TV ., to mitigate
crosstalk (Section III-C).

5.2.1 Luminance and Chrominance Sensitivity

Definition 5.2.1 The luminance sensitivity 7, and the chrominance sensitivity . of
a CFA with color atom {h;, hy, hg} of size M x N are defined as

def 1 ]. i ~ ~
IRz, and . % —min (|[Rallz, sl |2 (5.17)

where K = M N s a normalization factor.

Intuitively, the luminance and chrominance sensitivity are measures of the signal
power that can be transmitted through the color filter. A more transparent color
filter allows more light to pass through, and hence the signal power is higher. This
is reflected by the magnitudes ||k for i € {I,a, 8}, which according to Parseval’s
Theorem they are equivalent to ||h;||.

The following proposition shows how can we compute v; and 7, in terms of the

optimization vector @

Proposition 5.2.1 For a CFA with color atoms represented by the vector x, the

luminance and chrominance sensitivity can be calculated as

1
wWz)=—-1"Zx =b"x

K (5.18)

= min (W, ./chQBzc) ,
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where b= +2Z['1, Q, = ZLZ, and Qs = Z} Z ;.
Proof See Appendix A. [ |

The luminance sensitivity and the chrominance sensitivity cannot be arbitrarily
chosen. One practical consideration is to ensure uniform noise power across the luma
channel so that the denoising procedure can be simplified (because the noise will be
i.i.d.). Thus, the luminance color atom h; should be constant, i.e., h;(m,n) = ¢,VYm,n,
where cis a positive constant. Taking Fourier transform, this means that 7Ll comprises
only one impulse at baseband El(O, 0), and no impulses at all other frequencies. In
vector form, we need

h, — diag(e1)h; = 0, (5.19)
where e; = [1,0,...,0]” is the standard basis. Putting in terms of the optimization

variable x, we have a constraint.

Proposition 5.2.2 (Uniform Luminance Constraint) If a CFA has a uniform

luminance sensitivity, then x needs to satisfy
(I — diag(er))FZ,xz = 0. (5.20)
Proof Using (5.15), substitute hy = FZx into (5.19). u

Similarly, we can impose a constraint to the chrominance channel. For chromi-
nance, we require that the color filter passes the same amount of red, green, and blue

so that the primary colors have uniform sensitivity [89,95]. This leads to

Zhr(m,n) = Zhg(m,n) = Zhb(m,n)

Putting into vector form, we have the following constraint.

Proposition 5.2.3 (Uniform Chrominance Constraint) If a CFA has a uni-

form chrominance sensitivity, then x needs to satisfy

up — ug
T T
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def

where ug £ [17,07,07], ug £ [07,17,07], and up < |

07,07, 17).

5.2.2 Anti-Aliasing

In the frequency domain, the luminance controls the baseband whereas the chromi-
nance controls the sideband of the spectrum. To minimize spectral interference, aka
aliasing, it is necessary to modulate the chrominance as far as possible from the base-
band. However, the luminance has approximately a diamond shape since it has large
frequency components at (£m,0) and (0, £7m). Therefore, to mitigate aliasing, we
should avoid modulating the chrominance on vertical and horizontal axes. Figure 5.5
shows a 4 x 4 CFA obtained by our framework. In this example, no chrominance
components are modulated on the vertical and horizontal frequency axes.

The anti-aliasing requirement can be formulated as forcing the Fourier coefficients
of the chrominance color atoms at (+m,v) and (u, £7) to zero for all v and v. This
translates to chrominance color atom whose first column and first row are zeroed
out (See Figure 5.2). In terms of our design variable @, we require the following

constraint.

Proposition 5.2.4 (Anti-aliasing Constraint) The chrominance in the vertical

and horizontal directions must be set to 0. Hence, x must satisfy
x=Wz=0 (5.22)
Wi

where W, and W g are the matrices formed by choosing the rows in FZ, and FZg,
respectively, that correspond to the vertical and horizontal frequency components, i.e.,

rows in the set {0,1,..., M — 1} U{M,2M,... (N —1)M}.

To quantify the amount of aliasing for every CFA, we define the following aliasing

criterion.
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Definition 5.2.2 For a CFA, aliasing between luminance and chrominance channels

s measured by
J = —— (Si(w)Su(w) + Si(w)Ss(w)) dw, (5.23)

where Sy, So and Sg denote the power spectral density of the luminance channel imy

and the two chrominance channels im, and img, respectively.

5.2.3 Crosstalk

Crosstalk is caused by the leakage of electrical and optical charge from a pixel
to its adjacent pixels [93,127]. Crosstalk leads to color de-saturation. To model
crosstalk, we follow [93] by defining three scalars o, a4, and o, representing the
proportion of leaked charges to neighboring pixels. These three scalars then form a

crosstalk kernel,

9= |a;/4 1—a; o;/4],i€{r g,b}, (5.24)
0 «w/4 O

which can be considered as a spatial lowpass filter of the mosaicked image. Applying

the crosstalk kernel to the CFA is equivalent to a spatially invariant convolution
W™ = g; @ hi, i € {r,g,b},

where h$% denotes the effective CFA in the presence of crosstalk.

The effect of crosstalk is more severe when the adjacent colors are different. For
example, in Figure 5.4, the red and blue pixels are surround by 8 neighbors of different
colors and the green pixels are surrounded by 4 neighbors of different colors. This
is equivalent to saying that there is a red pixel having a value 1 and is surrounded
by pixels having the value 0. Using similar argument, we can see that if the color
atoms have more rapid changes of colors, then the resulting CFA is more susceptible

to crosstalk.
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NN

(a) Red Channel (b) Green Channel (c) Blue Channel

t

Fig. 5.4. Crosstalk in Bayer Color Atom. Each color pixel leak some of
its charge to its horizontal and vertical neighbors. Amount of leakage is
parametrized by the positive scalars o, oy and .

We propose to quantify the variation of the color atoms (and hence crosstalk) is
by means of measuring the total variation of the color atom. The total variation is a
proxy of the complexity of the color filter array. A color filter array with high total
variation means a more complicated pattern and so it is more susceptible to crosstalk.

Our total variation is defined as follows.

Definition 5.2.3 (Total Variation) For a CFA defined by the color atoms h,, h,

and hy, the weighted total variation is defined as

def
TV(z) = Y oi|Dhili= Y  o|DZx| (5.25)
ie{r,g,b} i€{r,g,b}
where D % [D., D,|" is an operator that computes the vertical and horizontal deriva-
tives with circular boundary conditions, and oy is the leakage factor defined in the

crosstalk kernel in (B.14).

To control the amount of variations in the CFA (so that we can limit the amount
of crosstalk), we upper bound the total variation by a scalar TV ... This leads to

the following constraint.
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Proposition 5.2.5 (Crosstalk Constraint) The crosstalk is limited by upper-bounding

the total variation metric TV (x):

TV(z)= > aillDZx||y < TVinax. (5.26)

ie{r,g,b}

Figure 5.5 shows two CFAs proposed in literature. The first one, proposed in [86]
is more robust to aliasing than the second one proposed in [93]. This is because the
chrominance channels are modulated at high frequencies which are far from baseband
luminance. However, [93] is more robust to crosstalk than [86] because the color atom
have less variation in colors. We can also see this in the total variation values (0.413
compared to 0.263). This trade-off constitutes a gap in literature: Color filter designs
can improve robustness of either aliasing or crosstalk, but not for both. Our proposed

design framework allows us to optimize them simultaneously.
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5.2.4 Condition Number

When designing a color filter array, one should also be aware of the simplicity of
the demosaicking algorithm. Since the luminance/chrominance transformation, color
filtering and crosstalk are all linear processes, we can represent them by an overall
color acquisition matrix A. To demosaic the image, in principle we need to invert
the A matrix. To avoid the amplification of the estimation error of luminance and
chrominance channels, the condition number of A should be minimized for numerical
stability. This metric was discussed in [86], but the authors considered the condition
number of the luminance/chrominance transformation matrix 7" only. In our case,
we generalize this metric by taking the color filtering and crosstalk into account as
well.

To represent the image acquisition in frequency domain as a linear process, we
assume the crosstalk kernels for red, green and blue pixels are the same g, = g, = gs.
Define the following frequency domain variables:

~T
im,

— —~T ~

im, g, = |im, | , H = [hy, ha, hg], and G = diag(g) (5.27)

—~T
im,

where g z g is the vectorized version of the M x N discrete Fourier transform of the

crosstalk kernel g. Hence, the mosaicked image 0 can be written as

6 = GHTim,,, = Aim,,, (5.28)

def

where we define the color acquisition matrix as A © GHT. Denote by r(A) the

condition number of A, i.e.,
k(A) = cond(A) € [1, ] (5.29)

Low values of k(A) imply stable demosaicking process that involves mild amplification

of estimation errors in the luminance and chrominance components.
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5.2.5 Orthogonality of Chrominance Channels

When designing a CFA, one should take into consideration of the complexity of

the demosaicking process. Recall (5.14) where we show that

M—-1N-1

Ow)= > > ) hi(u,v) imi(w — w(u,v)).

i€{l,a,B8} u=0 v=0
This is a modulation of the signal by a modulating frequency w(u,v). Therefore,
to reconstruct the signal, one approach is to demodulate by shifting the channels
to the baseband by multiplying pure sinusoids and then applying a lowpass filter
[95]. Demodulation can be done efficiently if there is orthogonality between the
channels. Following the literature, our optimization takes into account of two forms

of orthogonality.

« Total Orthogonality [86] and [83]: The idea is to make one chroma channel
zero and the other non-zero at any (u,v). For example, Ea(u,v) = 0.9 and

%5(% v) =0.

o Quadrature Orthogonality [95]: The idea is to make one chroma channel real
and the other imaginary at any (u,v), i.e., the two channels are modulated by
a frequency w(u,v) but in quadrature phase. Translating the spatial domain,

this means that

m

ho(m,n) = 7.v2cos [ w(u,v)” — ¢ (5.30a)
n

hs(m,n) = 7.v/2sin | w(u,v)" . o) (5.30b)
n

where m € {0,...,M —1}, n €{0,..., N —1}, and ¢ is the phase angle. In this
way, the two channels can be easily separated during the demosaicking process

using the orthogonality of cosine and sine functions.

We formulate the orthogonality criteria as a penalty function that is a surrogate

of both approaches.
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Definition 5.2.4 (Orthogonality Penalty) For a CFA having chrominance chan-
nels with spectra fla(w) and fLa(w), the orthogonality penalty is defined as

M
p(ho, hp) :“’fz

NgE

<]9%h u, )| + |Rhs(u, U)])

IS
<
O

M=1
Mz

n (y%?ia(u, )| + [Shs(u, v)|> (5.31)

o
o

u=u v=

which can be written as a function in x as follows

p() = (|RFZ x|, + [|RFZg||,)

+ (ISFZoz| + |SFZsx||,) (5.32)

Looking at the first summation in (5.31), we notice that for every 2D frequency
(u,v), the term |[Rhq(u,v)| + |Rhg(u,v)| is the £1-norm of a 2-dimensional vector
[Rho(u,v), %ﬁﬁ(u, v)]T. Therefore, minimizing this £;-norm promotes either one of the
components to zero (or both). Similar argument applies for the imaginary components
in the second summation. As a result, the total variation can be regarded as a proxy

to the orthogonality condition.

5.3 Formulation of Optimal CFA Design Problem

Using the variables and constraints defined in the previous section, we present
two different optimization formulations of the CFA design problem in this section:
(i) A non-convex formulation that integrates all the above information into a single

optimization, and (ii) convex relaxation that makes the problem more tractable.
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5.3.1 Non-Convex CFA Design

The non-convex CFA optimization puts all the objectives and constraints defined

in the previous section into a single optimization problem. This gives us

maximize Ye(@) + M) — App(x) (5.33)
subject to

x € (0,13 (Realizability) (a)

(I — diag(e1))FZ,z =0 (Proposition 5.2.2) (b)

Uz =0 (Proposition 5.2.3) (c)

Wx =0 (Proposition 5.2.4) (d)

TV(x) < TVinax (Proposition 5.2.5) (e)

where A\; and A, are the regularization parameters controlling the relative weights of
the luminance sensitivity and the orthogonality penalty. The penalty function p(x)
is added to the objective with a negative sign so that it is minimized. By lower

bounding v.(x) with a constant 7, we can rewrite (5.33) as

maximize T + Ayi(x) — App(x) (5.34)
subject to

x € [0,13F (Realizability) (a)

(I —diag(e;))FZ,x =0 (Proposition 5.2.2) (b)

Uz =0 (Proposition 5.2.3) (c)

Wx =0 (Proposition 5.2.4) (d)

TV(z) < TViax (Proposition 5.2.5) (e)

z'Q x > 7° (Proposition 5.2.1) (f)

z'Qux > 7° (Proposition 5.2.1) (g)

In this optimization problem, the objective and constraints are convex except for
(5.34)(f) and (5.34)(g). This is because these inequalities include convex quadratic
form in the “>” side, where convexity comes from the fact that @, and Q; are

positive semidefinite matrices. Hence, the optimization problem is non-convex.
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Algorithm 2 Successive Convex Approximations

Require: Initial guess ), k = 0.
while ~,. not converge do
Replace the quadratic terms 7 Q_x and wTQBm in inequalities (5.34)(f-g) by

their first order Taylor approximations around a*):

z'Q.x ~ zM7Q z™ + 2(x — 2*)Q 2™ > r*

' Qux ~ a:(k)TQﬁac(k) +2(x — m(k))Qﬁaz(’“) > 72

Solve the convex approximation of (5.34) to get 'yék)

k=k+1
end while

return «

5.3.2 Solving the Optimization

While problem (5.34) is non-convex, we can find a local minimum by successive
convex approximations [128]. The idea of successive convex approximation is to re-
place the quadratic terms in the non-convex constrains (5.34)(f) and (5.34)(g) by
first order approximations around the initial guess (®). Since the quadratic form
is convex, its first order approximation constitutes a lower bound. Hence, we are
replacing the non-convex constraints (5.34)(f) and (5.34)(g) with convex but tighter
constraints that limit the feasible set of . The algorithm repeats until 7 converges
to a fixed-point, which is the final chrominance sensitivity.

The overall algorithm is summarized in Algorithm 2. Figure 5.6 shows the con-
vergence of Algorithm 2 for designing a 4 x 4 color atom. We notice the monotonic
increase of 7 until it converges to a fixed point. Since the original problem is non-
convex, solution to the problem could be a local minimum depending on how the
initialization is done. In practice, we solve the problem for multiple instances with

different randomly generated initial guesses which approximately cover the design
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Fig. 5.6. Convergence of Algorithm 1 for 4 x 4 color filter design.

space (e.g., using the Latin hypercube sampling [129]), and pick the best solution

among them.

5.3.3 Convex CFA Design

The relaxation from non-convex to convex can be done by explicitly forcing part

of the chrominance components to zero. Specifically, we modulate the chrominance

2mu  27v

> n~) using the quadrature orthogo-

channels on the same frequency w(u,v) = (

nality mentioned in (5.30). In terms of @, these two equations can be written as:
Z,x =&, ZzxT ="YXy (5.35)

where x. and x, are constant vectors that represent the vectorized version of the

cosine and sine signals on the right hand side of (5.30a) and (5.30b), respectively, i.e.,

( M—1,N=1)
m
x, = vec{ V2cos [ w(u,v)’ — ¢ (5.36a)
L " m=0,n=0 )
( M—1,N-1)
m
x, = vec { V2sin | w(u,v)” — ¢ (5.36Db)
n

\ m=0,n=0 )
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Since we explicitly choose the modulation frequencies of chrominance channels man-
ually, we can drop the aliasing constraint in Proposition 5.2.4. However, we still need
the uniform luminance and chrominance constrains in Propositions 5.2.2 and 5.2.3.
Moreover, since the luminance and chrominance gains are adversarial, the objective

of this formulation is to maximize their weighted sum. To this end, the problem is

written as:
maximize 7. + Ny () (5.37)
T, Ye

subject to
x € (0,13 (Realizability) (a)
(I — diag(ey))FZ,z =0 (Proposition 5.2.2) (b)
Uz =0 (Proposition 5.2.3) (c)
TV(x) < TViax (Proposition 5.2.5) (d)
Z,x —yex. =0 (e)
Zsx —y.xys =0 (f)

In our terminology, the optimization problem of [95] is obtained from (5.37) by remov-
ing the crosstalk constraint (5.37)(d). Hence, our optimization limits the search space
of the optimization in [95] to get CFAs that have acceptable crosstalk performance.
Figure 5.7 shows two color atoms obtained using the convex and non-convex
formalizations. In the convex formulation, we select the modulation frequency to
be wy = [m, 7] and the phase that maximizes 7. at this frequency is found to be
¢ = w/12. Then, we solve the problem to get (7v;,7., TV) = (0.573,0.08,0.263). As
for the non-convex formulation, we let the optimization to choose modulation frequen-
cies subject to crosstalk and aliasing constraints. Solving the non-convex formulation
yields (y,7.,TV) = (0.573,0.09,0.263). We notice that the non-convex formula-
tion achieves higher chrominance sensitivity because of its flexibility in choosing the

modulation frequencies.
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(a) Convex Formulation (b) Non-Convex Formulation

Ye(z) = 0.08 Ye() = 0.09

Fig. 5.7. 4 x 4 color atoms and corresponding spectra obtained using con-
vex and non-convex formulations. Spectra are obtained from mosaicking
the “Bikes” image in Kodak color dataset by the color atoms. Both have
the same luminance sensitivity () = 0.577 and same Total variation
TV (x) = 0.263.

5.4 Universal Demosaicking

In this section, we present a universal demosaicking algorithm which can be used
to all CFAs presented in this paper. Our algorithm comprises two main parts: (i) a
demosaicking step to remove the color filtering effect (Section 5.4.2) and (ii) a color

correction step to mitigate the crosstalk effect (Section 5.4.3).

5.4.1 Special Consideration for QIS.

Before we talk about the demosaicking algorithm, we should briefly discuss the
photon statistics of QIS. In CMOS, the measured voltage can be modeled as a nom-
inate value corrupted by i.i.d. Gaussian noise. In QIS, previous work showed that
the measured photon counts follow a truncated Poisson process [24]. When averaging
over a number of temporal frames, the truncated Poisson becomes a Binomial [69].

If the photon count is sufficiently high, this binomial will approximately approaching
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to a Gaussian. Applying the law of large numbers on the distribution of B in (5.5),

the average is

1

?Z bt~ E[Bp] =1 — Uy (6,,),

and the maximume-likelihood estimate of the signal is

1 T
em — \11;1 (1 — T E bm,t)
t=1

As discussed in [69], we can regard this equation as a tone-mapping of the photon
counts. We regard 6,, as the m-th pixel of the mosaicked image generated by the

CFA. The goal of demosaicing is to reconstruct a color image from 6,,.

5.4.2 Demosaicking by Frequency Selection

Our demosaicking algorithm is based on frequency selection [73]. It generalizes
[74] as it works for any CFA as long as it satisfies the orthogonality constraints in
Section 5.2.5

The key idea of the algorithm is to shift every chrominance channel to the base-
band by multiplying with its carrier, then use a low-pass filter to reconstruct it. For
chrominance components that are replicated over distinct carriers, we combine them
by simple averaging. After obtaining the o and [ chrominance channels, they are
re-modulated to their original positions and subtracted from the mosaicked image to
obtain the luminance channel. This process is summarized in Algorithm 3 for a spe-
cial case of a CFA that has strictly one replica of the o and 8 chrominance channels.
It is also illustrated by Figure 5.8. Extension of the algorithm to the general case is
straightforward.

To apply Algorithm 3 on CFAs proposed in [86], [93] and [98], they must satisfy
the orthogonality constraints in Section 5.2.2. However, this is not satisfied with our
choice of the luminance/chrominance basis defined by T in (5.7). Hence, we use for
every CFA the transformation matrix T' that makes its luminance and chrominance

channel orthogonal. To ensure fairness, we normalize the matrix rows to unity so
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Fig. 5.8. Hlustration of Algorithm 3 of demosaicking by frequency selec-
tion for a special case of a CFA that has strictly one replica of the o and 3
chrominance channels. Variable on the figure are defined in Algorithm 3.

that all luminance and chrominance have the same noise power. The transformation

matrices are provided in the supplementary.

5.4.3 Color Correction

The demosaicking algorithm in Algorithm 3 does not take into account of the
crosstalk effect. Like most of the mainstream image and signal processing (ISP)
pipelines, we reduce the cross-talk via a color correction step.

Given the demosaicked color pixel i/r\n(m, n), the color correction multiplies i/r\n(m, n)
by a 3 x 3 matrix M such that M l/r\n(m, n) is the color-corrected pixel. The matrix
M is learned by comparing a measured color pixel to a known color chart value.
Mathematically, suppose we have K measured color pixels forming a 3 x K matrix
Qraise, and a corresponding true color values forming another 3 x K matrix Qgp, we

can estimate M by solving

M = arg mA;In €.(M) subject to Mu = u (5.38)
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Algorithm 3 Demosaicking by Frequency Selection

Require: The image @ which is mosaicked by a CFA of size M x N as defined in
(5.8), a luminance/chrominance transformation matrix T, a low-pass filter g, a

def 2 fw=(mmn)
scalar K = M N and a scalar r = .

1 otherwise

Ensure: « and 8 chrominance channels are modulated on carriers w(uy,v;) and
w(ug, v2), respectively.

1) Reconstruct the o chrominance channel
a<m7 n) = (6<TTI,, n)cl (m> n)) ® g(m7 n)

where

K m
ci1(m,n) = ol cos | w(ug,v)” + ZLay

n

and a; = %a(ul,vl)

2) Reconstruct the 8 chrominance channel
5(771, Tl) = (Q(m, Tl)CQ(TTL, n)) ® g(ma Tl)

where

K m
ca(m,n) = ol cos | w(ug,vs)” + Zas

n

and ay = Eg(uQ, Vs)

3) Reconstruct the luminance channel
L(m,n) = 0(m, n) — a(m, n)by(m, n) — B(m, n)bs(m, n)

where
2laq|?
bl (m7 n) = 7’|’}(1|2

return [R,G, B|T = Tﬁl[Ly o, 8"

2 2
c1(m,n) and by(m,n) = |;§|2
r

ca(m,n)
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Before Color Correction After Color Correction

Fig. 5.9. Effect of color correction on retaining vivid image colors.

where e.(M) = Tr {(MQFalse — Qurp)' (MQpy.. — QGT)} is the color error. u %
[0.95,1,1.0889]7 is the white point for D65 illuminant. To minimize the noise amplifi-
cation, it is advised to add regularization when estimating M [130]. Since a standard
color chart comprises 24 color patches, we can estimate the noise by computing the
norm of covariance matrix of every color patch, and get the average value over the

24 color patches. Hence, the optimization problem is rewritten as

24
B . (4) 2
M = argmine.(M) + kY |ICov(MQr)ll3

=1

subject to Mu = u (5.39)

where an)lse represents the pixels of the ¢th color patch, and x is a positive scalar
that controls the noise amplification effect. By varying x, we can draw a tradeoff
curve between color reproduction accuracy and noise amplification.

Figure 5.9 shows reconstructed images before and after color correction. In this
figure, the crosstalk parameters are (., ., ) = (0.23,0.15,0.1). We can see the
effect of color correction in the more saturated red and yellow feathers and in the

green leaves in the background.
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6. EXPERIMENTAL EVALUATION

In this chapter, we present our experimental results for the QIS image reconstruction
and threshold design problems. On the image reconstruction side, we study the
convergence of ADMM algorithm in Section 6.1, then we present in Section 6.2 a
comparison between our proposed Transform-Denoise algorithm and other algorithms.
For performance evaluation, we use the peak signal-to-noise ratio (PSNR) for assessing
the reconstruction quality, and we use the elapsed CPU time as a proxy for assessing
the computational complexity. On the threshold design side, we evaluate our proposed
threshold update scheme by comparing it with existing methods. We consider two
evaluation metrics: (1) convergence rate of the threshold update methods; (2) quality
of the reconstructed images. For regular imaging experiments, we use our own Purdue
dataset comprising 77 images captured by a Canon EOS Rebel T6i camera. For HDR
imaging experiments, we use the HDR-Eye dataset by Nemoto et al. [131,132].

6.1 Convergence of ADMM Reconstruction Algorithm

In this experiment, we test the convergence of the ADMM algorithm used to get
the ML solution (subsection 3.1.1) and the MAP solution (Section 3.2). We choose
the MAP solution with TV prior because we can calculate the objective function
since the prior term is explicitly defined (||Dcl|;). We could not do that with the
Plug-and-Play algorithm because the prior term is implicitly defined by the denoiser
D. QIS simulation parameters are ¢ = 1, K =4, T =5, and a = 2K?2,

We assume the interpolation filter {gx} has a box-car kernel. As a result, we
can use the ML closed-form in Proposition 3.1.2 which gives the exact unique ML
solution that the ADMM algorithm must converge to (because the problem is convex).

Table 6.1 shows the reconstruction PSNR and CPU time of the ML solution obtained
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by applying the ADMM algorithm with p = 10 (ML-ADMM) and that obtained by
the closed-form expression (ML-CF). Compared to ML-ADMM that can compute an
approximate ML estimate in 196 seconds using 40 ADMM iterations *, the closed-form

expression can compute the exact ML estimate in a fraction of second.

Table 6.1.
Reconstruction PSNR in dB and CPU time in seconds for ML solution.
Both values are averaged on 77 images in our dataset.

Algorithm ML-ADMM ML-CF
PSNR (dB) 21.99 22.02
CPU Time (Sec) 196.24 0.46

Figure 6.1 shows the convergence of the ML-ADMM algorithm and the MAP-
TV-ADMM algorithm with for TV prior. For both algorithms p = 10, and for
the MAP-TV-ADMM algorithms (\,7y) = (5,35) which are obtained by exhaustive
search on a grid of possible values. The optimization criterion of this exhaustive
search is the PSNR after 40 iteration. We notice that both algorithms converge to
a unique solution, where the MAP-ADMM algorithm has a slower convergence rate.
In addition, the reconstruction PSNR increases slowly with iterations in the MAP-

TV-ADMM case to reach a value higher than the ML-ADMM solution by 6.7 dB.

Figure 6.2 shows the reconstructed images using the ML Closed-Form expression,
the ML-ADMM estimate, and the MAP-TV-ADMM estimate. We notice that the
ML-CF and ML-ADMM images are nearly the same, and the MAP-TV-ADMM image
is better than both of them.

ITheoretically, the exact ML estimate is obtained if we run the ADMM algorithms for large number
of iterations until the likelihood function converges with a sufficiently high numerical precision.
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Fig. 6.1. Simulated QIS data and the reconstructed gray-scale images
using different reconstruction methods.

() 21.27 dB (b) 21.25 dB () 27.97 dB

Fig. 6.2. Reconstructed Images using ML closed-form (a) and ML ADMM
algorithm (b) are nearly the same. The image reconstituted using MAP-
TV ADMM algorithm (c) is better than both.

6.2 Image Reconstruction Performance

In this experiment, we compare between our Transform-Denoise (TD) algorithm
and other algorithms. For performance evaluation, we compute the reconstruction
PSNR and CPU time averaged on 77 images in our dataset. QIS simulation param-
etersare ¢ =1, K =4, T =5, and a = 2K?

As mentioned before, the pure ML solution is not useful because it is too noisy,

and a denoising step is necessary as the TD algorithm suggests. In this experiment,
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we try two different denoisers in our TD algorithm: 1) a learning-based denosier [133]
which is based on the training of a deep convolutional neural network (CNN), and 2)
the BM3D denoiser [105].

We compare the TD algorithms with three different MAP solutions obtained by
different priors: 1) MAP solution with total-variation prior [22] (MAP-TV), 2) MAP
solution with BM3D denoiser prior (MAP-TV), and 3) MAP solution with CNN
denoiser prior. The MAP-TV solution is obtained by applying 40 iterations of the
ADMM algorithm; whereas the MAP-BM3D and MAP-CNN solutions are obtained
by applying 40 iterations of the Plug-and-Play algorithm. For all MAP solutions,
the value of p = 10, and the values of v and A are obtained by exhaustive search on
a grid of possible values. The optimization criterion of this exhaustive search is the
PSNR after 40 iteration. The optimized parameters are (A, 7y) = (5,35) for MAP-TV,
(A7) = (2,70) for MAP-BM3D, and (A, ) = (5,60) for MAP-CNN.

Table 6.2.
Reconstruction PSNR in dB and CPU time in seconds for MAP solution
and the TD solutions. Both values are averaged on 77 images in our
dataset.

Algorithm MAP-TV [22] MAP-BM3D TD-BM3D MAP-CNN TD-CNN

PSNR (dB) 28.55 29.71 30.43 30.04 30.29
CPU Time (Sec) 197.47 524.67 6.87 267.71 2.33

As shown in Table 6.2, the TD algorithm achieves the best reconstruction quality
in terms of PSNR in much less time than the iterative ADMM and Plug-and-Play
algorithms. This is intuitive because the TD algorithm in non-iterative and other
algorithms are iterative. We emphasize that ADMM and Plug-and-Play algorithms
can obtain better PSNR than these values if we run them for more than 40 iterations
or if we fine tune the parameters A, 7, and p by exhaustive search on a fine grid
of suggested parameters. On the other hand, the TD algorithm is parameter-free

because the noise level after Anscombe transformation is fixed and known.
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Figure 6.3 and Figure 6.4 show reconstructed image by different algorithms com-
pared to the ground truth. We notice that the TD algorithm achieves the highest
visual quality compared to other algorithms. It is worth noting that the TD-CNN
algorithm can reconstruct more details than the TD-BM3D algorithm. This is at-
tributed to the high learning capacity of CNNs which is trained on dataset comprising

thousands of images. This leads to more powerful prior term compared to BM3D.

6.3 Convergence of The Threshold Update Scheme

We compare the proposed threshold update scheme with the Markov Chain (MC)
adaptation proposed by Hu and Lu [62]. The Markov Chain adaptation models the
threshold as a variable with 2% states. These 2% states can be regarded as 2 steps
before reaching to the next threshold level. The probability of changing from one
state to another is controlled by a parameter 1 — 8 with 0 < § < 1. When a bit
arrives, the state will be updated (increased or decreased) or will remain unchanged.
Once the state is increased by 2% times, the threshold will be increased by one.

When comparing Markov Chain adaptation with the proposed bisection algo-
rithm, one should be aware of the difference between the two methods. Markov
Chain adaptation is a per-jot update scheme whereas the proposed bisection algo-
rithm is a per-pizel update scheme. For a pixel with K x K jots, Markov Chain
adaptation needs K? iterations to update the threshold sequentially. In contrast,
the proposed bisection algorithm updates a common threshold for all K? jots simul-
taneously. Thus in practice our bisection algorithm is significantly less complex to
implement in hardware than the Markov Chain. In order to take the different forms
of updates into account, we treat the K? iterations of Markov Chain adaptation as
one “major iteration” and compare it with the one bisection step of the proposed
algorithm.

The first comparison we make is to check the threshold at different jots. Figure 6.5
shows the results of three typical runs with underlying optimal thresholds ¢* = 1, 8, 16.



(e) MAP-CNN, 29.20 dB, 265 sec (f) TD-CNN, 29.77 dB, 2.4 sec

Fig. 6.3. Simulated QIS data and the reconstructed gray-scale images
using different reconstruction methods.
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(e) MAP-CNN, 28.01 dB, 269 sec (f) TD-CNN, 28.53 dB, 2 sec

Fig. 6.4. Simulated QIS data and the reconstructed gray-scale images
using different reconstruction methods.
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Fig. 6.5. Convergence of the threshold at 3 jots. Each curve is averaged
over 100 random samples. The red curve indicates the proposed bisection
method. The black curves are the Markov chain adaptation [62] with
B = 0.25. Note that one major iteration of Markov Chain adaptation
corresponds to K? sequential updates, and one major iteration of the bi-
section method corresponds to a single update to K? jots simultaneously.

In this experiment, we generate 100 random binary blocks of size K x K and estimate
the threshold at each major iteration. We report the average of these 100 estimates
to minimize the randomness of the data. The results show that one iteration of the
proposed bisection algorithm works as good as the K? iterations of the Markov Chain
adaptation. In some cases, Markov Chain tends to oscillate whereas the bisection
result is stable.

The second comparison we make is to check how close the estimated threshold is
compared to the optimal threshold. The optimal threshold ¢* is obtained using the

oracle scheme. In Figure 6.6, we plot the mean squared error between the estimated
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Fig. 6.6. Mean square error between the estimated threshold and the
ideal oracle threshold. Each curve is averaged over 50 random samples
and 77 images. The red curve indicates the proposed bisection method.
The black curves are the Markov chain adaptation [62] with 5 = 0.25.

threshold and the oracle threshold. For fairness, we show the results of the MSE
averaged over the 77 images of our dataset, and 50 random samples per image. One
threshold is shared by K x K jots, and each K X K jots correspond to one pixel. The

result is consistent with the ones shown in Figure 6.5.

6.4 Influence of QIS Threshold on Image Reconstruction Quality

The convergence comparison in the previous subsection is only useful to compare
threshold update methods that actually return a threshold. In the QIS literature,
there are methods that implicitly update the threshold, e.g., the conditional reset
method [45]. For comparison with these methods, we have to compare the quality of
the image reconstructed from the binary raw data. The image reconstruction is done

using the closed-form ML estimate in Proposition 3.1.2.
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In this experiment, we fix the spatial over-sampling factor as K = 4, and number
of temporal frames as T" = 13. The maximum threshold level is set as ¢ua.x = 16 to
ensure that it is realistic for today’s QIS, and o = 15K2.

We consider three classes of methods:

o Uniform Threshold. Uniform threshold is commonly used in the device liter-
ature [20-22]. A uniform threshold is a single threshold applied to all pixels
in the image. In this experiment, we consider the following choices of uniform

thresholds: ¢ =1, ¢ =5, ¢ = 10 and ¢ = 16.

« Conditional Reset [45]. Conditional reset counts the number of photons and
is reset when it is above the threshold. The threshold in conditional reset is
sequentially increasing or decreasing. The reconstructed image is obtained by

digitally integrating the raw binary frames.

o Proposed Method. As we discussed in Section 4.2.5, the proposed method can
be implemented to let multiple pixels share a common threshold. Thus, in this
experiment we consider three sharing strategies: (1) Share a threshold between
a neighborhood of K x K jots (i.e., one threshold for one pixel); (2) Share a
threshold between a neighborhood of K2 x K? jots (i.e., one threshold for K x K
pixel); (3) Share a threshold between a neighborhood of 2K? x 2K? jots (i.e.,
one threshold for 2K x 2K pixels).

The result of the experiment is shown in Table 6.3. The PSNR values reported are
averaged over 77 images in our dataset. Each image generates 50 random realizations,
and the PSNR of an image is averaged over these 50 random realizations to minimize
the randomness. As shown in the table, while conditional reset generally performs
better than a uniform threshold, it performs significantly worse than the proposed

threshold update scheme.
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Table 6.3.
Average PSNR and Standard deviation of 77 recovered images using dif-
ferent Q-maps and 50 random samples.

Average
Configuration Std

PSNR
qg=1 10.30 0.01
q=>5 28.80 0.04

Uniform Threshold

qg=10 23.22 0.02
qg=16 12.95 0.01

Ascending ¢ sequence 23.77 0.52

Conditional Reset [45]
Descending ¢ sequence 24.95 0.53

2K? x 2K? 30.14 0.06
Proposed Method K? x K? 31.18 | 0.06
K x K 32.78 0.02

om T T am . i e
§g g g i HE ‘Alll 4 { |

Fig. 6.7. Bracketed images with different exposure settings. From Left to
Right: —2.7,—2, —1.3, —0.7, 0, 0.7, 1.3, 2, and 2.7 EV.

6.5 Influence of QIS Threshold on HDR Imaging

Since QIS does not have sufficient full well capacity to accumulate photons for
HDR imaging, we apply the dynamic range extension method discussed in Sec-
tion 4.2.6. When different threshold schemes are used, the reconstructed HDR images
will be affected. The objective of this experiment is to evaluate the influence of the

threshold in HDR imaging.



¢=1, PSNR = 17.94 dB q=16, PSNR =20.77dB  Proposed, PSNR = 31.46 dB

Fig. 6.8. The reconstructed HDR images using different thresholds. See
supplementary material for additional results.

In this experiment, we consider the HDR-Eye image dataset [131,132]. Each
HDR image in this dataset contains 9 images acquired at different exposure settings
(—2.7,—2, —1.3, —0.7, 0, 0.7, 1.3, 2, and 2.7 EV). A snapshot of these images are
shown in Figure 6.7. From each exposure, we simulate the photon counts resulting
from the luminance channel. The sensor gain is set as a = K?(guax — 1) to en-
sure proper number of photons, where K = 4 x 4 = 16 and ¢ua.x = 16. On the
reconstruction side, we reconstruct the 9 images using the ML solution presented in
Proposition 3.1.2. Tone mapping and exposure fusion [12] are applied to the 9 images
to generate an HDR image. As a reference, we apply the same tone mapping and
fusion algorithm to the 9 ground truth images. PSNR between the reference and
the estimated is then recorded. QIS simulation parameters are K = 4, T = 13 |
Jmax = 16, and o = 15K2.

The result of this experiment is shown in Figure 6.8. With the proposed threshold
update scheme, the reconstructed images achieve the highest PSNR value and visual
quality. When ¢ = 1, which is too low, the image appears under-exposed. When
q = 16, which is too high, the image appears over-exposed. The spatially varying
property of the proposed method mitigates the issue by allowing multiple thresholds.

In practice, one would typically add image denoisers to handle the randomness in

the ML estimate and potentially other types of noise. This can be done using methods
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such as [24]. In HDR literature, there are also optical approaches that reduce the
number of exposures, e.g., [134,135]. These techniques are complementary to QIS,
because QIS is a sensor of similar functionality of a CMOS. Thus optical techniques
can always be added.

In this section, we present CFAs obtained using our optimization framework in
Section 6.6. Afterwards, we evaluate the performance of different CFAs using the uni-
versal demosaicking algorithm proposed in Section 5.4. First, using the Macbeth color
chart, we show the noise-color trade-off of our robust CFAs comparsed to others in
Section B.4. Second, we show in Section B.3 a quantitative and qualitative compari-
son of the reconstruction performance of all CFAs on Kodak [136] and McMaster [137]

color datasets.

6.6 Proposed Solutions of CFA Design Problem

We focus on the non-convex formulation (5.34) since it is more flexible than the
convex formulation (5.37). We set the parameters of (5.34) as A, = 10 and A\, = 0.02.
We run multiple instances of Algorithm 2 (2000 instances) using different random
initializations for the color atoms x(®). Then, we pick the solution with the highest
chrominance sensitivity. To ensure that the initial guess spans the feasible set of @,
we use uniform Latin hypercube sampling of the domain [0, 1]3~.

Figure 6.9 shows our proposed CFAs and their accompanied spectra compared
to other CFAs in the literature. For every CFA, we compute 1) the luminance and
chrominance gains (y; and 7.) in (5.17) to measure robustness to noise, 2) the to-
tal variation metric TV (z) (Proposition 5.2.5) to measure robustness to crosstalk,
and 3) the aliasing metric J; in (5.23) to measure robustness to aliasing, and the
condition number k(A) defined in Section 5.2.4. To calculate the aliasing metric
for [83], [86], [93] and [98], we use the transformation matrices that make the lumi-
nance and chrominance channels orthogonal as mentioned in Section 5.4.2. Results

are summarized in Table B.1.
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4 x 4: Among all 4 x 4 CFAs in Table B.1, [86] is the most robust CFA to
aliasing, but the least robust to crosstalk; whereas RGBCWY [93] is the most
robust to crosstalk, but it is not as robust to aliasing. Our CFA achieves the
best of both worlds by having the same total-variation like RGBCWY, and

good aliasing metric. Moreover, it has the lowest condition number.

3 x 3: Compared to [98], our CFA has less aliasing. The high aliasing metric

of [98] is attributed to its design which overlooks frequency domain aliasing.
3 x 2: Compared to [95], our CFA is more robust to crosstalk and aliasing.

4 x 2: Compared to [83], our CFA has higher chrominance sensitivity and it is

more robust to crosstalk.
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6.7 Macbeth ColorChecker Reconstruction

In this experiment, we simulate the performance of different CFAs in reconstruct-
ing the Macbeth ColorChecker image. Pixel response is determined using the incident
photon flux of D65 light and the spectral reflectance of Macbeth ColorChecker inte-
grated over the visible light spectrum. QIS parameters and primary color filters are
taken from [93]. For every CFA, we generate mosaicked images under two scenarios:
1) crosstalk kernels with leakage factors (a;, oy, ap) = (0,0, 0), i.e., no crosstalk, and
2) crosstalk kernels with leakage factors (o, ay, o) = (0.45,0.30,0.20) as suggested
by [93]. For fairness of comparison, we use Algorithm 3 for demosaicking all CFAs in-
cluding RGBCY and RGBCWY CFAs proposed in [93]. Color correction with white
balance is performed after color demosaicking for the crosstalk case for removing the
crosstalk effect.

We use the following metrics [93] to evaluate the CFAs:

o Sensitivity metamerism index (SMI) which measures the drop in color reproduc-
tion accuracy due to crosstalk. It is obtained as a function of the CIEDE2000
color error metric which is obtained by calculating the mean square color dif-

ference in the CIELAB color space.

o Luminance SNR (YSNR) which measures the visual noise of luminance channel

as defined in ISO 12232 [138].

Table B.1 shows these metrics for different CFAs with and without crosstalk. Our
CFAs achieve higher color reproduction accuracy compared to others since they are
optimized for crosstalk. This gain in color accuracy happens by trading the noise

performance as observed by the drop of YPSNR metric.

6.8 Natural Color Image Reconstruction

In this experiment, we evaluate the performance of different CFAs for natural

color image reconstruction. To this end, we use Kodak and McMaster color datasets
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to generate 42 mosaicked images according to QIS model. QIS parameters are taken
as (¢,a,T) = (1,2,1000), and two scenarios are assumed: 1) No crosstalk, and 2)
Moderate crosstalk with leakage factors (o, oy, ap) = (0.23,0.15,0.10). The low pass
filter in Algorithm 3 is chosen as 21 x 21 Gaussian with standard deviation o = 21/3
and multiplied by a hamming window to mitigate the windowing effect.

Table B.1 and shows the average color PSNR values on the 42 images. Our CFAs
achieve better quality for the crosstalk case. Visually, our CFAs obtain color images

with less aliasing artifacts and better details as shown in Figure B.3.
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7. CONCLUSION AND FUTURE DIRECTIONS

We studied three important problems related to QIS: 1) image reconstruction, 2)
threshold design and 3) color filter array design. On the image reconstruction side,
we proposed a non-iterative algorithms which can obtain a clean reconstruction with
a significantly less computational complexity than existing work in literature. On
the threshold design side, we proposed a practical threshold update scheme that can
adapt the threshold to the incoming light both in space and time, i.e., it obtains a
temporally-spatially-varying threshold. This scheme is based on a rigorous theoretical
analysis for the reconstruction performance limits. As for the color filter array design,
presented a general and flexible optimization framework to design color filter arrays for
QIS. Our framework unifies the CMOS-based color filter array designs and extends to
QIS. The color filter arrays designed by our framework are robust to crosstalk between
the primary color channels, robust to aliasing between the luminance and chrominance
channels, and are robust to noise. Experimental results show the effectiveness of our
proposed methods compared to existing work in literature.

To achieve a practical and useful realization of QIS, several theoretical and tech-
nological issues require more exploration. The first challenge is to extend our QIS
solutions to work with multi-bit QIS where the photon counts are quantized to a
digital number with shallow bit-depth in the range 2 — 6 bits. The second challenge is
to obtain a fast QIS color image reconstruction scheme. Another important challenge
is the handling of the binary data coming out from QIS. For a QIS with gigajots
or more, read out at 1000 fps, the output data rate exceeds 1 Th/s [28]. Efficient
algorithms are crucial to handle this tremendous data rate efficiently. We discuss

these issues in the next three sections in more details.
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7.1 Extension to Multi-bit QIS

Multi-bit QIS uses an analog-to-digital (ADC) converter with shallow bit depth
(2 — 6 bits) to quantize the photon counts. Compare to single-bit QIS, mutli-bit QIS
allows capturing brighter scenes with the same integration time before saturating the
pixel. However, this requires more complicated read-out circuit because the output
data rate will be multiplied by the number of ADC bits.

On the signal processing side, QIS measurements still follow quantized Poisson
process, but the quantization threshold in this case is ¢ = 2" — 1, where n is the
number of ADC bits. Denote the QIS measurement of one jot by X, then we can

write the distribution as follows:
X ~ clip (Poisson(A), q), (7.1)
where the probability mass function of X is defined as

px(z) = (7.2)
- \IJQ(A)v x> q

For this random variable, we can compute its expectation as follows.
~1

X =Y oM (- w,) (7.3)

x!
=0

Q

According to the value of n, we have two cases:

o Single-Bit QIS, ¢ = 1: The expectation have a closed-form as we proved in
Chapter 3:
EX]=1-Y,\) (7.4)

Thus, given a sample of T' realizations of X: {z1,...,z7}, the maximum like-
lihood estimate of the expectation is the sample mean since the distribution is

Bernoulli, which is an exponential distribution [61].

% > R =1 - v, (7.5)
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Then, we can compute the latent light intensity A by solving the equation

11—, (\)=% Zthl x; to get closed-form expression for A

. | «
A=, <1 - th> (7.6)

In terms of image processing, this non-linear expression acts as a tone-mapping
function that correct the contrast of the image obtained by averaging T QIS

1 T
frames =, , x.

o Multi-Bit QIS, ¢ € {3,7,15,31,...}: The expectation does not have a closed-

form expression.

q—1 _
NeA def

+q (1= W,(N)

fF) (7.7)

z!

Given a sample of T realization of X, the sample mean is an approximation for
the expectation; though, it is not the maximum likelihood estimate anymore

because the distribution does not belong to the exponential family.

= w ~E[X] = () (7.8)

Then, we can get A by applying the inverse function f~! using a look-up table

A= f! (% Z; :c) (7.9)

This inverse function acts as a tone mapping function. Without it (assuming

E[X] = X), there is an error in the image contrast.

7.2 Fast Color QIS Image Reconstruction

One of the fastest methods for color image reconstruction is the demosaicking
by frequency selection [73,74,78|. This method is fast because it requires simple
multiplication operation for demodulation of chrominance channels and spatially-

invariant filtering process for selecting specific channels at the baseband or passband.
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In [95], the author tackles joint image denoising and demosaicking for images im-
paired with AWGN. He first reconstruct clean chrominance channels by demodulation
to the baseband followed by low-pass filtering which is estimated in the least-square
sense by minimizing the reconstruction error on a training dataset. After subtracting
the re-modulated clean chrominance channels from the mosaicked image, the resid-
ual noise in the luminance channel is still AWGN. Hence, any off-the-shelf Gaussian
denoiser can be used for luminance denoising.

For QIS, a similar approach to [95] can be used for fast reconstruction of color
images. However, we should take care of the quantized Poisson noise model here,
where there exist some open questions: Can we still find a better way to estimate
or to learn the best low-pass filter for obtaining clean chrominance channels? After
subtracting the chrominance channel from the mosaicked image, what is the noise

model in the resulting luminance channel?

7.3 Handling the QIS Output Data

QIS outputs binary data at a huge data rate that can easily reach 1 Tbh/sec.
Transferring these binary measurements to an on-chip processor is not an easy task
at all. The situation becomes worse if we do not quantize the photon counts because
each photon count will need more than 1 bit to be represented, i.e., if each photon
is represented by 4 bits, the data rate will be 1 Tbh/sec. Nevertheless, this concern
seems very legitimate because of this intuitive question: If QIS can count photons,
why it throws away this invaluable information by an aggressive binary quantization?
Photons are very valuable. However, QIS is forced to take this direction to decrease
the output data rate.

A potential solution for decreasing the QIS data rate, in case of binary quantiza-
tion, is to use Source Coding. Source coding is a well-established information theory
problem which has been studied extensively for more than 60 years after the seminal

work of Claude Shannon [139].
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In the QIS case, we have cubicles of Bernoulli random variables with spatially
variant Bernoulli parameter p, i.e., each cubicle of random variables has its own p
which depends on the incoming light intensity on that cubicle. Specifically, p is related
to the light exposure 6, on the m-th jot according to (2.15) as follows: p = 1—W,(6,,).
In information theory literature, an important definition is the e-typical set which is

defined in the following proposition

Proposition 7.3.1 For a sequence of n i.i.d. random wvariables Xy,..., X, with

probability mass function px(x), the set of all sequences (x1,...,x,) € RY such that
<plar, ... @,) < 27079 (7.10)

is called the e-typical set Ag"), where H(X) is the entropy of the random variable X

in bits.

A well-known result in information theory information theory is that the proba-
bility of the e-typical set is close to one for sufficiently large n, i.e., p(AE")) =1-—ce
In other words, if we denote by n = K?T the number of jots in a QIS cubicle, as
n increase, most probably we will observe the realizations (xy,...,x,) that belongs
to AE"). This result is very useful because it means that we can only encode the
sequences that belong to AE"), and ignore all other less probable sequences. This
will decrease the number of bits required to represent the cubicle to be less than n
(or equal to n in the worst case). The cardinality of A™ s satisfies the following
inequality:

Hence, we need n(H (x)+¢€) to represent the sequences in A" For a Bernoulli random

variable with parameter p, the entropy H(X) is calculated as

H(z) = —plogy(p) — (1 —p)logy(1 —p) (7.12)

Figure 7.1 shows the variation of number of bits required to represent A™ . As D

goes away from the point p = 0.5, we can achieve better compression. In QIS, p is
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0.8n

0.6n

0.4n

0.2n

Number of bits requred to represent A"

P

Fig. 7.1. Number of bits required to represent sequences {z1, ..., z,} that
belong to the e-typical set, where € is a sufficiently small positive number

obtained from the light intensity by this equation p = 1—W (). Therefore, if we have

an initial estimate for the light intensity in each cubicle, we can efficiently compress

the QIS data rate.



REFERENCES



1]

[12]

[13]

114

REFERENCES

J. Needham, Science and Civilisation in China, vol.4, Physics and Physical
Technology, Part 1, Physics. New York, USA: Cambridge University Press,
1962.

J. Campbell, Film and Cinema Spectatorship: Melodrama and Mimesis, 1st ed.
Cambridge, UK: Polity Press, 2005.

S. T. S. Al-Hassani, 1001 inventions: Muslim heritage in our world, E. Wood-
cock and R. Saoud, Eds. Manchestar, UK: Foundation for Science, Technology
and Civilisation, 2006.

C. Sutton, “The impossibility of photography,” New Scientist, pp. 40—43, De-
cember 1986, no. 1540 1541.

R. Zakia and L. Stroebel, The Focal Encyclopedia of Photography, 3rd ed.
Boston: Focal Press, 1993.

F. Yang, “Bits from photons: Oversampled binary image acquisition,” Ph.D.
dissertation, Ecole Polytechnique Fédérale De Lausanne, 2012.

L. Day and I. McNeil, Biographical Dictionary of the History of Technology.
Routledge, 1996.

A. Einstein, “On a heuristic point of view concerning the production and trans-
formation of light,” Annalen der Physik, pp. 1-18, 1905.

W. Boyle, “Nobel Lecture: CCD-—An extension of man’s view,” Review of
Modern Physics, vol. 82, pp. 2305-2306, August 2010. [Online|. Available:
https://link.aps.org/doi/10.1103/RevModPhys.82.2305

B. Hayes, “Computing science: Computational photography,” American Scien-
tist, vol. 96, no. 2, pp. 94-98, 2008.

P. Debevec and J. Malik, “Recovering high dynamic range radiance maps
from photographs,” in ACM Transactions on Graphics - Proceedings of ACM
SIGGRAPH 2008 Classes, ser. SIGGRAPH ’08. New York, NY, USA: ACM,
2008, pp. 31:1-31:10. [Online|. Available: http://doi.acm.org/10.1145/1401132.
1401174

T. Mertens, J. Kautz, and F. V. Reeth, “Exposure fusion,” in Proceedings of
the 15th Pacific Conference on Computer Graphics and Applications (PG’07),
Maui, HI, October 2007, pp. 382-390.

K. Fife, A. El Gamal, and H. . P. Wong, “A multi-aperture image sensor with
0.7pmpixels in 0.11pgm CMOS technology,” IEEE Journal of Solid-State Clir-
cuits, vol. 43, no. 12, pp. 2990-3005, Dec 2008.



[14]

[15]

[16]

[19]

[20]

23]

[24]

[25]

115

M. Levoy, “Light fields and computational imaging,” Computer, vol. 39, no. 8,
pp. 46-55, August 2006.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly,
and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEFE
Signal Processing Magazine, vol. 25, no. 2, pp. 83-91, March 2008.

E. R. Fossum, “What to do with sub-diffraction-limit (SDL) pixels?—A proposal
for a gigapixel digital film sensor (DFS),” in Proceedings of the 2005 IEEE

Workshop on Charge-Coupled Devices and Advanced Image Sensors, Karuizawa,
Japan, September 2005, pp. 214-217.

J. Ma, D. Hondongwa, and E. R. Fossum, “Jot devices and the quanta image
sensor,” in Proceedings of the 2014 IEEFE International Electron Devices Meeting
(IEDM), San Francisco, CA, December 2014, pp. 10.1.1-10.1.4.

J. Ma and E. R. Fossum, “A pump-gate jot device with high conversion gain for
a quanta image sensor,” IEEE Journal of the Electron Devices Society, vol. 3,
no. 2, pp. 73-77, March 2015.

J. Ma, L. Anzagira, and E. R. Fossum, “A 1 pum-pitch quanta image sensor
jot device with shared readout,” IEEE Journal of the Electron Devices Society,
vol. 4, no. 2, pp. 83-89, March 2016.

F. Yang, Y. M. Lu, L. Sbaiz, and M. Vetterli, “An optimal algorithm
for reconstructing images from binary measurements,” in Proceedings of the
ISE&T/SPIE Electronic Imaging Conference on Computational Imaging VIII,
vol. 7533, San Jose, CA, January 2010, pp. 75330K-75330K-12. [Online].
Available: http://dx.doi.org/10.1117/12.850887

, “Bits from photons: Oversampled image acquisition using binary Poisson
statistics,” IEEE Transactions on Image Processing, vol. 21, no. 4, pp. 1421-
1436, April 2012.

S. H. Chan and Y. M. Lu, “Efficient image reconstruction for gigapixel quantum
image sensors,” in Proceedings of the 2014 IEEE Global Conference on Signal
and Information Processing (GlobalSIP), Atlanta, GA, December 2014, pp. 312—
316.

O. A. Elgendy and S. H. Chan, “Image reconstruction and threshold design
for quanta image sensors,” in Proceedings of the 2016 IEEE International Con-
ference on Image Processing (ICIP’16), Phoenix, AZ, September 2016, pp.
978-982.

S. H. Chan, O. A. Elgendy, and X. Wang, “Images from bits: Non-
iterative image reconstruction for quanta image sensors,” MDPI Sensors,
vol. 16, no. 11, November 2016, article number: 1961. [Online]. Available:
http://www.mdpi.com/1424-8220,/16,/11/1961

R. N. Clark, “Digital Camera Reviews and Sensor Performance Summary,”
http://www.clarkvision.com/articles/digital.sensor.performance.summary/,
October 2016, accessed: 2019-04-15.



[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[36]

[37]

116

E. R. Fossum, “Modeling the performance of single-bit and multi-bit quanta
image sensors,” IEEE Journal of the Electron Devices Society, vol. 1, no. 9, pp.
166-174, September 2013.

N. Teranishi, “Required conditions for photon-counting image sensors,” IEFE
Transactions on Electron Devices, vol. 59, no. 8, pp. 2199-2205, August 2012.

E. R. Fossum, J. Ma, and S. Masoodian, “Quanta image sensor: concepts
and progress,” in Proceedings of the SPIE Commercial + Scientific Sensing
and Imaging Conference on Advanced Photon Counting Techniques X, vol.
9858, Baltimore, MD, May 2016, pp. 985804-985804-14. [Online|. Available:
http://dx.doi.org/10.1117/12.2227179

I. M. Antolovic, S. Burri, C. Bruschini, R. Hoebe, and E. Charbon, “Nonuni-
formity analysis of a 65k pixel CMOS SPAD imager,” IEEE Transactions on
Electron Devices, vol. 63, no. 1, pp. 57-64, January 2016.

N. A. W. Dutton, I. Gyongy, L. Parmesan, S. Gnecchi, N. Calder, B. R. Rae,
S. Pellegrini, L. A. Grant, and R. K. Henderson, “A SPAD-based QVGA image
sensor for single-photon counting and quanta imaging,” IFEFE Transactions on
Electron Devices, vol. 63, no. 1, pp. 189-196, January 2016.

J. Hynecek, “Impactron-a new solid state image intensifier,” IEEE Transactions
on Electron Dewvices, vol. 48, no. 10, pp. 2238-2241, October 2001.

M. S. Robbins and B. J. Hadwen, “The noise performance of electron multiply-
ing charge-coupled devices,” IEEE Transactions on FElectron Devices, vol. 50,
no. 5, pp. 1227-1232, May 2003.

N. A. W. Dutton, I. Gyongy, L. Parmesan, and R. K. Henderson, “Single
photon counting performance and noise analysis of CMOS SPAD-based image
sensors,” MDPI Sensors, vol. 16, no. 7, July 2016, article number: 1122.
[Online]. Available: http://www.mdpi.com/1424-8220/16/7/1122

B. F. Aull, D. R. Schuette, D. J. Young, D. M. Craig, B. J. Felton, and
K. Warner, “A study of crosstalk in a 256 x 256 photon counting imager based
on silicon Geiger-mode avalanche photodiodes,” IEEFE Sensors Journal, vol. 15,
no. 4, pp. 2123-2132, April 2015.

E. R. Fossum, “The Quanta Image Sensor (QIS): Concepts and Challenges,”
in  Proceedings of the OSA Technical Digest (CD), Optical Society of
America. Toronto, Canada: Optical Society of America, July 2011, paper
JTuEl. [Online]. Available: http://www.osapublishing.org/abstract.cfm?URI=
ISA-2011-JTuE1

J. Ma and E. R. Fossum, “Quanta image sensor jot with sub 0.3e- r.m.s. read
noise and photon counting capability,” IEEE Electron Device Letters, vol. 36,
no. 9, pp. 926-928, September 2015.

S. Masoodian, A. Rao, J. Ma, K. Odame, and E. R. Fossum, “A 2.5 pj/b binary
image sensor as a pathfinder for quanta image sensors,” IEFE Transactions on
Electron Devices, vol. 63, no. 1, pp. 100-105, January 2016.



[38]

[39]

[40]

[41]

[42]

[43]

[44]

117

L. Sbhaiz, F. Yang, E. Charbon, S. Susstrunk, and M. Vetterli, “The gigavision
camera,” in Proceedings of the 2009 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP’09), Taipei, Taiwan, April 2009,
pp. 1093-1096.

F. Yang, L. Sbaiz, E. Charbon, S. Siisstrunk, and M. Vetterli, “On
pixel detection threshold in the gigavision camera,” in Proceedings of the
ISET/SPIE Electronic Imaging Conference on Digital Photography VI, vol.
7537, San Jose, CA, January 2010, pp. 75370G—75370G-8. [Online]. Available:
http://dx.doi.org/10.1117/12.840015

N. A. W. Dutton, L. Parmesan, A. J. Holmes, L. A. Grant, and R. K. Hen-
derson, “320 x 240 oversampled digital single photon counting image sensor,”
in Proceedings of the 2014 Symposium on VLSI Clircuits Digest of Technical
Papers, Honolulu, HI, June 2014, pp. 1-2.

S. Burri, Y. Maruyama, X. Michalet, F. Regazzoni, C. Bruschini, and
E. Charbon, “Architecture and applications of a high resolution gated SPAD
image sensor,” Optics Ezxpress, vol. 22, no. 14, pp. 17573-17589, July
2014. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=
0e-22-14-17573

I. M. Antolovic, S. Burri, R. A. Hoebe, Y. Maruyama, C. Bruschini, and
E. Charbon, “Photon-counting arrays for time-resolved imaging,” MDPI Sen-
sors, vol. 16, no. 7, June 2016, article number: 1005.

T. Vogelsang and D. G. Stork, “High-dynamic-range binary pixel processing
using non-destructive reads and variable oversampling and thresholds,” in Pro-
ceedings of the 2012 IEEE Sensors Conference, Taipei, Taiwan, October 2012,

pp. 14.

T. Vogelsang, M. Guidash, and S. Xue, “Overcoming the full well capacity limit:
high dynamic range imaging using multi-bit temporal oversampling and condi-

tional reset,” in Proceedings of the 2013 International Image Sensor Workshop
(IISW), Snowbird Resort, UT, June 2013.

T. Vogelsang, D. G. Stork, and M. Guidash, “Hardware validated unified model
of multibit temporally and spatially oversampled image sensors with conditional

reset,” Journal of Electronic Imaging, vol. 23, no. 1, p. 013021, February 2014.
[Online]. Available: http://dx.doi.org/10.1117/1.JEI.23.1.013021

“Andor ixon ultra 888 specifications,” {http://www.andor.com/cameras/
ixon-emccd-camera-series}, accessed: 2017-11-21.

“Gigajot Technology LLC,” http://www.gigajot.tech, accessed: 2019-04-09.

S. Masoodian, J. M. D. Starkey, Y. Yamashita, and E. R. Fossum, “A 1mjot
1040fps 0.22e-rms stacked BSI quanta image sensor with cluster-parallel read-
out,” in Proceedings of the 2017 International Image Sensor Workshop (IISW),
Hiroshima, Japan, May 2017, pp. 230-233.

G. Grubbs, R. Michell, M. Samara, D. Hampton, and J.-M. Jahn, “A
synthesis of star calibration techniques for ground-based narrowband electron-
multiplying charge-coupled device imagers used in auroral photometry,” Journal



[50]

[51]

[52]

[53]

[57]

[58]

[59]

118

of Geophysical Research: Space Physics, vol. 121, no. 6, pp. 5991-6002, 2016,
2015JA022186. [Online|. Available: http://dx.doi.org/10.1002/2015JA022186

P. Seitz and A. J. Theuwissen, Single-photon imaging.  Springer Science &
Business Media, 2011, vol. 160.

L. Liang, H. Shen, P. D. Camilli, and J. S. Duncan, “A novel multiple hypothesis
based particle tracking method for clathrin mediated endocytosis analysis us-

ing fluorescence microscopy,” IEEFE Transactions on Image Processing, vol. 23,
no. 4, pp. 1844-1857, April 2014.

L. H. C. Braga, L. Gasparini, L. Grant, R. K. Henderson, N. Massari, M. Peren-
zoni, D. Stoppa, and R. Walker, “A fully digital 8 x 16 SiPM array for PET
applications with per-pixel TDCs and real-time energy output,” IEEE Journal
of Solid-State Circuits, vol. 49, no. 1, pp. 301-314, January 2014.

S. P. Poland, N. Krstaji¢, J. Monypenny, S. Coelho, D. Tyndall, R. J. Walker,
V. Devauges, J. Richardson, N. Dutton, P. Barber, D. D. Li, K. Suhling, T. Ng,
R. K. Henderson, and S. M. Ameer-Beg, “A high speed multifocal multiphoton
fluorescence lifetime imaging microscope for live-cell FRET imaging,”
Biomedical Optics Express, vol. 6, no. 2, pp. 277-296, February 2015. [Online].
Available: http://www.osapublishing.org/boe/abstract.cfm?URI=boe-6-2-277

I. Gyongy, T. A. Abbas, N. A. Dutton, and R. K. Henderson, “Object tracking
and reconstruction with a quanta image sensor,” in Proceedings of the 2017
International Image Sensor Workshop (IISW), Hiroshima, Japan, May 2017,
pp. 242-245, paper R22.

L. J. Meng, “An intensified EMCCD camera for low energy Gamma ray imaging
applications,” IEEFE Transactions on Nuclear Science, vol. 53, no. 4, pp. 2376—
2384, August 2006.

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K.
Goyal, F. N. C. Wong, and J. H. Shapiro, “Photon-efficient imaging with
a single-photon camera,” Nature Communications, vol. 7, June 2016, article
number: 12046. [Online|. Available: http://dx.doi.org/10.1038 /ncomms12046

E. Amri, Y. Felk, D. Stucki, J. Ma, and E. R. Fossum, “Quantum random
number generation using a quanta image sensor,” MDPI Sensors, vol. 16, no. 7,
June 2016, article number: 1002.

S. Masoodian, Y. Song, D. Hondongwa, J. Ma, K. Odame, and E. R. Fos-
sum, “Early research progress on quanta image sensors,” in Proceedings of the
2013 International Image Sensor Workshop (IISW), Snowbird Resort, UT, June
2013.

I. Gyongy, N. A. Dutton, L. Parmesan, A. Davies, R. Saleeb, R. Duncan,
C. Rickman, P. Dalgarno, and R. K. Henderson, “Bit-plane processing tech-
niques for low-light, high speed imaging with a spad-based qis,” in Proceedings
of the 2015 International Image Sensor Workshop (IISW), Vaals, The Nether-
lands, June 2015, pp. 1-4.

I. Gyongy, A. Davies, N. A. Dutton, R. Duncan, C. Rickman, R. K. Henderson,
and P. Dalgarno, “Smart-aggregation imaging for single molecule localization
with SPAD cameras,” Scientific Reports, vol. 6, November 2016, article number:
37349.



[61]

[62]

[63]

[64]

[65]

119

C. A. Bouman, “Model based image processing,” 2013, [Online]. Available:
https://engineering.purdue.edu/~bouman /publications/pdf/MBIP-book.pdf.

C. Hu and Y. M. Lu, “Adaptive time-sequential binary sensing for high
dynamic range imaging,” in Proceedings of the SPIE Defense, Security,
and Sensing Conference on Advanced Photon Counting Techniques VI,
vol. 8375, Baltimore, MD, May 2012, pp. 83750A—1. [Online|. Available:
http://dx.doi.org/10.1117/12.919597

F. Yang and M. Vetterli, “Oversampled noisy binary image sensor,” in Proceed-
ings of the 2013 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP’13), Vancouver, BC, Canada, May 2013, pp. 2060-2064.

Y. M. Lu, “Adaptive sensing and inference for single-photon imaging,” in Pro-
ceedings of the 2013 47th Annual Conference on Information Sciences and
Systems (CISS), Baltimore, MD, March 2013, pp. 1-6.

F. Yang, L. Sbaiz, E. Charbon, S. Stsstrunk, and M. Vetterli, “Image recon-
struction in the gigavision camera,” in Proceedings of the 2009 IEEE 12th In-

ternational Conference on Computer Vision Workshops (ICCV Workshops),
Kyoto, Japan, September 2009, pp. 2212-2219.

T. Remez, O. Litany, and A. Bronstein, “A picture is worth a billion bits:
Real-time image reconstruction from dense binary threshold pixels,” in Proceed-
ings of the 2016 IEEFE International Conference on Computational Photography
(ICCP), Evanston, 1L, May 2016, pp. 1-9.

O. Litany, T. Remez, and A. Bronstein, “Image reconstruction from dense bi-
nary pixels,” December 2015, [Online|. Available: http://arxiv.org/abs/1512.
01774.

E. R. Fossum, J. Ma, S. Masoodian, L. Anzagira, and R. Zizza,
“The quanta image sensor: Every photon counts,” MDPI Sensors,
vol. 16, no. 8, August 2016, article number: 1260. [Online]. Available:
http://www.mdpi.com/1424-8220,/16/8 /1260

O. A. Elgendy and S. H. Chan, “Optimal threshold design for quanta image
sensor,” IEEE Transactions on Computational Imaging, vol. 4, no. 1, pp. 99—
111, March 2018.

A. Gnanasambandam, O. A. Elgendy, J. Ma, and S. H. Chan, “Megapixel
photon-counting color imaging using quanta image sensor,” March 2019, [On-
line]. Available: https://arxiv.org/abs/1903.09036.

B. E. Bayer, “Color imaging array,” USA Patent US3971065A, 1976.

H. S. Malvar and R. Cutler, “High-quality linear interpolation for demosaicing
of Bayer-patterned color images,” in Proceedings of the 200/ IEEE International
Conference on Acoustics, Speech, and Signal Processing, vol. 3, Montreal, Que.,
Canada, May 2004, pp. iii-485.

D. Alleysson, S. Susstrunk, and J. Herault, “Linear demosaicing inspired by the
human visual system,” IEEE Transactions on Image Processing, vol. 14, no. 4,
pp. 439449, April 2005.



[74]

[75]

[76]

[85]

120

E. Dubois, “Frequency-domain methods for demosaicking of Bayer-sampled
color images,” IEFE Signal Processing Letters, vol. 12, no. 12, pp. 847-850,
Dec 2005.

K. Hirakawa and T. W. Parks, “Adaptive homogeneity-directed demosaicing
algorithm,” IEEE Transactions on Image Processing, vol. 14, no. 3, pp. 360—
369, March 2005.

E. Dubois, “Filter Design for Adaptive Frequency-Domain Bayer Demosaick-
ing,” in Proceedings of the 2006 International Conference on Image Processing
(ICIP’06), Atlanta, GA, October 2006, pp. 2705-2708.

B. Leung, G. Jeon, and E. Dubois, “Least-squares luma—chroma demultiplexing

algorithm for Bayer demosaicking,” IEEFE Transactions on Image Processing,
vol. 20, no. 7, pp. 1885-1894, July 2011.

G. Jeon and E. Dubois, “Demosaicking of noisy Bayer-sampled color images
with least-squares luma-chroma demultiplexing and noise level estimation,”
IEEFE Transactions on Image Processing, vol. 22, no. 1, pp. 146-156, Jan 2013.

J. T. Korneliussen and K. Hirakawa, “Camera processing with chromatic aber-
ration,” IEEFE Transactions on Image Processing, vol. 23, no. 10, pp. 4539-4552,
Oct 2014.

M. Gharbi, G. Chaurasia, S. Paris, and F. Durand, “Deep joint demosaicking
and denoising,” ACM Transactions on Graphics - Proceedings of ACM
SIGGRAPH Asia 2016, vol. 35, no. 6, pp. 191:1-191:12, Nov. 2016. [Online].
Available: http://doi.acm.org/10.1145/2980179.2982399

H. Tan, X. Zeng, S. Lai, Y. Liu, and M. Zhang, “Joint demosaicing and denois-
ing of noisy Bayer images with ADMM,” in Proceedings of the 2017 IEEFE Inter-
national Conference on Image Processing (ICIP’17), Beijing, China, September
2017, pp. 2951-2955.

R. Lukac and K. N. Plataniotis, “Color filter arrays: design and performance
analysis,” IFEE Transactions on Consumer Electronics, vol. 51, no. 4, pp.
1260-1267, November 2005.

K. Hirakawa and P. J. Wolfe, “Spatio-spectral color filter array design for opti-
mal image recovery,” IEEE Transactions on Image Processing, vol. 17, no. 10,
pp. 1876-1890, Oct 2008.

Y. M. Lu and M. Vetterli, “Optimal color filter array design: quantitative
conditions and an efficient search procedure,” in Proceedings of the IS&IT/SPIE
Electronic Imaging Conference on Digital Photography V, vol. 7250, San
Jose, CA, January 2009, pp. 7250 — 7250 — 8. [Online]. Available:
https://doi.org/10.1117/12.807598

L. Condat, “Color filter array design using random patterns with
blue noise chromatic spectra,” Image and Vision Computing, vol. 28,
no. 8, pp. 1196 — 1202, August 2010. [Online]. Available:  http:
/ /www .sciencedirect.com /science/article/pii/S0262885609002741



[36]

[87]

[90]

[91]

[95]

[96]

121

P. Hao, Y. Li, Z. Lin, and E. Dubois, “A geometric method for optimal design
of color filter arrays,” IEEE Transactions on Image Processing, vol. 20, no. 3,
pp- 709-722, March 2011.

J. Wang, C. Zhang, and P. Hao, “New color filter arrays of high light sensi-
tivity and high demosaicking performance,” in Proceedings of the 2011 IEFEE
International Conference on Image Processing (ICIP’11), Brussels, Belgium,
September 2011, pp. 3153-3156.

A. Chakrabarti, W. T. Freeman, and T. Zickler, “Rethinking color cameras,”
in Proceedings of the 2014 IEEFE International Conference on Computational
Photography (ICCP), Santa Clara, CA, May 2014, pp. 1-8.

P. Amba, J. Dias, and D. Alleysson, “Random color filter arrays are better
than regular ones,” Color and Imaging Conference, vol. 2016, no. 1, pp.
294-299, 2016. [Online]. Available: https://www.ingentaconnect.com/content/
ist/cic/2016,/00002016/00000001 /art00052

C. Bai, J. Li, Z. Lin, and J. Yu, “Automatic design of color filter arrays in the
frequency domain,” IEEE Transactions on Image Processing, vol. 25, no. 4, pp.
1793-1807, April 2016.

J. Li, C. Bai, Z. Lin, and J. Yu, “Automatic design of high-sensitivity color filter
arrays with panchromatic pixels,” IFEEE Transactions on Image Processing,
vol. 26, no. 2, pp. 870-883, Feb 2017.

J. Li, C. Bai, Z. Lin, and J. Yu, “Optimized color filter arrays for sparse
representation-based demosaicking,” IFEE Transactions on Image Processing,
vol. 26, no. 5, pp. 2381-2393, May 2017.

L. Anzagira and E. R. Fossum, “Color filter array patterns for small-pixel
image sensors with substantial cross talk,” Journal of the Optical Society
of America A, vol. 32, no. 1, pp. 28-34, January 2015. [Online|. Available:
http://josaa.osa.org/abstract.cfm?URI=josaa-32-1-28

C. Chao, H.-Y. Tu, K.-Y. Chou, P.-S. Chou, F.-L. Hsueh, V. Wei, R.-J. Lin,
and B.-C. Hseih, “Crosstalk metrics and the characterization of 1.1 pm-pixel
cis,” in Proceedings of International Image Sensor Workshop (IISW), Hokkaido,
Japan, June 2011, p. R7.

L. Condat, “A new color filter array with optimal properties for noiseless and
noisy color image acquisition,” IEEE Transactions on Image Processing, vol. 20,
no. 8, pp. 2200-2210, Aug 2011.

A. Chakrabarti, “Learning sensor multiplexing design through back-
propagation,” in Advances in Neural Information Processing Sys-
tems 29 (NIPS 2016), D. D. Lee, M. Sugiyama, U. V.
Luxburg, I. Guyon, and R. Garnett, Eds. Curran Associates, Inc.,
2016, pp. 3081-3089. [Online]. Available:  http://papers.nips.cc/paper/
6251-learning-sensor-multiplexing-design-through-back-propagation.pdf

B. Henz, E. S. L. Gastal, and M. M. Oliveira, “Deep joint design
of color filter arrays and demosaicing,” Computer Graphics Forum,
vol. 37, mno. 2, pp. 389-399, May 2018. [Online|. Available: https:
//onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13370



[98]

[99]

[100]

101]

[102]

[103]

[104]

[105]

[106]

107]

[108]

109]

122

H. Biay-Cheng, H. Siddiqui, J. Luo, G. Todor, and A. Kalin, “New color filter
patterns and demosaic for sub-micron pixel arrays,” 2015.

H. Siddiqui, K. Atanassov, and S. Goma, “Hardware-friendly universal demo-
saick using non-iterative map reconstruction,” in Proceedings of the 2016 IEEE
International Conference on Image Processing (ICIP’16), Phoenix, AZ, Sept
2016, pp. 1794-1798.

M. Abramowitz and 1. A. Stegun, Handbook of Mathematical Functions: with
Formulas, Graphs, and Mathematical Tables.  Courier Corporation, 1964,
no. H5.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimiza-
tion and statistical learning via the alternating direction method of multipliers,”
Foundations and Trends in Machine Learning, vol. 3, no. 1, pp. 1-122, January
2011.

M. Elad and M. Aharon, “Image denoising via sparse and redundant repre-
sentations over learned dictionaries,” IFEFE Transactions on Image Processing,
vol. 15, no. 12, pp. 3736-3745, December 2006.

L. Zhang and W. Zuo, “Image restoration: From sparse and low-rank priors to
deep priors [lecture notes|,” IEEE Signal Processing Magazine, vol. 34, no. 5,
pp. 172-179, September 2017.

S. V. Venkatakrishnan, C. A. Bouman, and B. Wohlberg, “Plug-and-Play pri-
ors for model based reconstruction,” in Proceedings of the 2013 IEEE Global
Conference on Signal and Information Processing (GlobalSIP’13), Austin, TX,
December 2013, pp. 945-948.

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse
3-D transform-domain collaborative filtering,” IEEE Transactions on Image
Processing, vol. 16, no. 8, pp. 2080-2095, August 2007.

S. H. Chan, T. Zickler, and Y. M. Lu, “Monte Carlo non-local means: Random
sampling for large-scale image filtering,” IEFE Transactions on Image Process-
ing, vol. 23, no. 8, pp. 3711-3725, August 2014.

K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a gaussian de-
noiser: Residual learning of deep CNN for image denoising,” IEEE Transactions
on Image Processing, vol. 26, no. 7, pp. 3142-3155, July 2017.

K. H. Jin, M. T. McCann, E. Froustey, and M. Unser, “Deep convolutional
neural network for inverse problems in imaging,” IEFE Transactions on Image
Processing, vol. 26, no. 9, pp. 4509-4522, September 2017.

F. Heide, M. Steinberger, Y.-T. Tsai, M. Rouf, D. Pajkak, D. Reddy,
O. Gallo, J. Liu, W. Heidrich, K. Egiazarian, J. Kautz, and K. Pulli,
“FlexISP: A flexible camera image processing framework,” ACM Transactions
on Graphics - Proceedings of ACM SIGGRAPH Asia 2014, vol. 33,
no. 6, pp. 231:1-231:13, November 2014. [Online|. Available:  http:
//doi.acm.org/10.1145/2661229.2661260



[110]

[111]

[112]

[113]

114]

[115]

[116]

[117)
[118]
[119]

[120]

[121]

[122]

[123]

123

S. H. Chan, X. Wang, and O. A. Elgendy, “Plug-and-play ADMM for image
restoration: Fixed-point convergence and applications,” IEEE Transactions on
Computational Imaging, vol. 3, no. 1, pp. 84-98, March 2017.

M. Makitalo and A. Foi, “Optimal inversion of the generalized anscombe trans-
formation for Poisson - Gaussian noise,” IEEFE Transactions on Image Process-
ing, vol. 22, no. 1, pp. 91-103, January 2013.

L. Azzari and A. Foi, “Variance stabilization for noisy+estimate combination
in iterative Poisson denoising,” IFEE Signal Processing Letters, vol. 23, no. 8,
pp. 1086-1090, August 2016.

A. Foi, “Clipped noisy images: Heteroskedastic modeling and practical denois-
ing,” Signal Processing, vol. 89, no. 12, pp. 2609-2629, December 2009.

J. Salmon, Z. Harmany, C. Deledalle, and R. Willet, “Poisson noise reduction
with non-local PCA,” Journal of Mathematical Imaging and Vision, vol. 48,
no. 2, pp. 279-294, February 2014.

Z. T. Harmany, R. F. Marcia, and R. M. Willet, “This is SPIRAL-TAP:
sparse Poisson intensity reconstruction algorithms: Theory and practice,” IEFE
Transactions on Image Processing, vol. 21, no. 3, pp. 1084-1096, September
2011.

A. Rond, R. Giryes, and M. Elad, “Poisson inverse problems by the Plug-and-
Play scheme,” Journal of Visual Communication and Image Representation,
vol. 41, no. Supplement C, pp. 96-108, September 2016. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1047320316301985

A. Leon-Garcia, Probability, Statistics, and Random Processes for Electrical
Engineering. Pearson Prentice Hall, 2008.

L. Wasserman, All of nonparametric statistics. New York, USA: Springer-
Verlag, 2006.

F. J. Anscombe, “The transformation of Poisson, binomial and negative-
binomial data,” Biometrika, vol. 35, no. 3-4, pp. 246254, 1948.

L. Brown, T. Cai, and A. DasGupta, “On selecting a transformation : with ap-
plications,” [Online|. Available: http://www.stat.purdue.edu/~dasgupta/vst.
pdf.

J. Ma, D. Starkey, A. Rao, K. Odame, and E. R. Fossum, “Characterization of
quanta image sensor pump-gate jots with deep sub-electron read noise,” IEEE
Journal of the Electron Devices Society, vol. 3, no. 6, pp. 472-480, November
2015.

E. R. Fossum, “Multi-bit quanta image sensors,” in Proceedings of the 2015
International Image Sensor Workshop (IISW), Vaals, The Netherlands, June
2015, pp. 292-295.

I. Sprow, D. Kuepper, Z. Baranczuk, and P. Zolliker, “Image quality assessment
using a high dynamic range display,” in Proceedings of the 12th Congress of the
International Colour Association, Newcastle Gateshead, UK, July 2013, p. 307—
310.



124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]
[132]

[133]

134]

[135]

[136]

124

S. Hasinoff, D. Sharlet, R. Geiss, A. Adams, J. T. Barron, F. Kainz, J. Chen,
and M. Levoy, “Burst photography for high dynamic range and low-light
imaging on mobile cameras,” ACM Transactions on Graphics - Proceedings of
ACM SIGGRAPH Asia 2016, vol. 35, no. 6, pp. 192:1-192:12, November 2016.
[Online]. Available: http://www.hdrplusdata.org/hdrplus.pdf

K. I. Schultz, M. W. Kelly, J. J. Baker, M. H. Blackwell, M. G. Brown, C. B.
Colonero, C. L. David, B. M. Tyrrell, and J. R. Wey, “Digital-pixel focal plane
array technology,” Lincoln Laboratory Journal, vol. 20, no. 2, pp. 36-51, 2014.

Y. Hel-Or, “The canonical correlations of color images and their use for demo-
saicing,” HP Laboratories Israel, Tech. Rep. HPL-2003-16/R1, 2004.

K. Hirakawa, “Cross-talk explained,” in Proceedings of the 2008 15th IEEE
International Conference on Image Processing (ICIP°08), San Diego, CA, Oc-
tober 2008, pp. 677-680.

Z. Opial, “Weak convergence of the sequence of successive approximations
for nonexpansive mappings,” Bulletin of the American Mathematical Society,
vol. 73, no. 4, pp. 591-597, 1967.

M. Stein, “Large sample properties of simulations using latin hypercube
sampling,” Technometrics, vol. 29, no. 2, pp. 143-151, 1987. [Online]. Available:
https://amstat.tandfonline.com/doi/abs/10.1080/00401706.1987.10488205

T. Yap-Peng and A. Tinku, “Method for color correction with noise
consideration,” in Proceedings of the SPIE FElectronic Imaging Conference on
Color Imaging: Device-Independent Color, Color Hardcopy, and Graphic Arts
V, vol. 3963, San Jose, CA, December 1999, pp. 3963 — 3963 — 9. [Online].
Available: https://doi.org/10.1117/12.373413

“HDR-eye dataset,” http://mmspg.epfl.ch/hdr-eye, accessed: 2019-04-09.

H. Nemoto, P. Korshunov, P. Hanhart, and T. Ebrahimi, “Visual attention
in LDR and HDR images,” in Proceedings of the 9th International Workshop
on Video Process. and Quality Metrics for Consumer Electronics (VPQM),
Chandler, AZ, February 2015.

K. Zhang, W. Zuo, G. Wangmeng, S. Gu, and L. Zhang, “Learning deep CNN
denoiser prior for image restoration,” in Proceedings of the IEEE 2017 Confer-
ence on Computer Vision and Pattern Recognition, Honolulu, HI, July 2017,
pp- 3929-3938.

S. K. Nayar and T. Mitsunaga, “High dynamic range imaging: spatially varying
pixel exposures,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, vol. 1, Hilton Head Island, SC, June 2000, pp. 472-479
vol.1.

C. Aguerrebere, A. Almansa, J. Delon, Y. Gousseau, and P. Muse, “A Bayesian
hyperprior approach for joint image denoising and interpolation, with an appli-
cation to HDR imaging,” IEEFE Transactions on Computational Imaging, vol. 3,
no. 4, pp. 633-646, December 2017.

“Kodak color dataset,” http://rOk.us/graphics/kodak/, accessed: 2019-04-12.



[137]

[138]

[139)]

125

Z. Lei, W. Xiaolin, B. Antoni, and L. Xin, “Color demosaicking by local
directional interpolation and nonlocal adaptive thresholding,” J. FElectron.
Imaging, vol. 20, no. 2, pp. 1 — 17 — 17, April 2011. [Online|. Available:
https://doi.org/10.1117/1.3600632

ISO, “Photography—digital still cameras—determination of exposure index, ISO
speed ratings, standard output sensitivity, and recommended exposure index,”
ISO 12232:2006 (International Organization for Standardization), Geneva,
Switzerland, 2006.

C. E. Shannon, “A mathematical theory of communication,” Bell System Tech-
nical Journal, vol. 27, no. 3, pp. 379-423, July 1948.



APPENDICES



126

A. SUPPLEMENTARY MATERIAL FOR CHAPTER 4
This supplementary appendix provides the following additional information for Chap-
ter 4

o Derivation of SNR,(c) from exposure-referred SNR,

o Properties of the incomplete Gamma function,

o Comparison with the threshold design scheme by Yang [6],

e Phase transition under different configurations,

o Influence of Non-Boxcar Kernel G, and

o Additional results for HDR image reconstruction.

A.1 Derivation of SNR,(c) from exposure-referred SNR

In the literature of QIS devices, one metric to quantify the image quality is the
exposure-referred signal-to-noise [26]. In image processing, however, exposure-referred
SNR is not commonly used. The goal of this section is to show that the SNR we

showed in the main article is equivalent to the exposure-referred SNR.

D N

| . |
| o’ |[Br-171 |
L \
\ ‘ S
0 } '(’_______Y _______ ) \\, Bo,1 I Output
} ﬂ—[Poisson]—[ B }\
Input | I\ J /I 0,0 ()
[ - \
\

N e e

Fig. A.1. Block diagram illustrating a QIS with input-output relation
output = F(input)
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To understand the exposure-referred SNR, we have to first understand two com-
mon ways of defining a signal to noise ratio. Consider the truncated Poisson part of
the QIS model shown in Figure A.1. The input to this model is the over-sampled
measurement #. The truncated Poisson process can be considered as a black box

function F' which takes an input # and generates an output S, defined as

S=>"> B, (A.1)

where B, = {By: | k=0,1,...,K —1, t =0,1,...,T — 1} is the spatial-temporal
block containing all binary bits corresponding to #. As shown in the main article, the

mean and variance of S are
E[S] = KT(1 —¥,(0)), Var[S]=KTV,(0)(1—¥,(6)), (A.2)

respectively.
The first notion of signal-to-noise, which is the one used in CCD and CMOS, is
called the output-referred SNR. SNRoR is defined as the ratio between the output

signal and the photon shot noise. Referring to Figure A.1, this is

output signal  E[S] KTl —¥,(0)
noise - /Var[S] T,(0)

However, SNRog fails to work for QIS because the shot noise is arbitrarily small if

SNRog =

(A.3)

all bits are 1 or 0. In [26], Fossum called it squeezing of the noise. If we plot SNRog

as a function of 6, then we observe that SNRor approaches to infinity as 6 grows.
The second notion of signal-to-noise, which is a modification of SNRgg, is the

exposure-referred SNR. SNRgg is the ratio between the exposure signal 6 and the

exposure-referred noise. This noise is defined as [26]:

de
Exposure-referred noise = S| / Var[S]

The factor ﬁﬁq} can be considered as the “inverse” transfer function from the output

to the input. ﬁﬁ@] can be determined by taking derivative of the expectation in (A.2)

with respect to E[S]
dE[S] dKT (1—V,(0))
dE[S] dE[S]
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Fig. A.2. Comparison of the SNRs for ¢ € {1,...,16}. In this experiment,
we fix a =400, K =4, and T = 30.

Using chain rule, we observe that

d df
1=—-KT—V,00)—=

df ol )dE[S]
Since LW, (0) = _e;?g)qfl, it holds that

—6_96‘7_1> df

1=—-KT
( I(q) /) dE[S]
Hence,
db I'(q)

dE[S] ~ KTe 9011
The exposure-referred SNR is defined as

exposure signal

SNRggr =

exposure-referred noise

0

\/Var[S]#fS]

B e 004 KT
['(q) \Pq(e)(l - \Ijq(@) '
Taking logarithm shows that SNRgg is identical to the SNR derived from the Fisher

Information shown in the main article.
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A.2 Properties of the incomplete Gamma function

In the main article, we used the incomplete Gamma function for QIS analysis. In
this section, we provide more details about the properties of the incomplete Gamma
function.

First, we recall that the normalized upper incomplete Gamma function ¥, : Rt — [0, 1]

is defined as

of 1 ® el —
U,.(0) d:fm/e tile~tdt, foré >0, ¢ € N. (A.4)

where I'(¢) = (¢ — 1)! is the standard Gamma function.

In this equation, we note that ¥,(f) depends on two variables: ¢ and 6.

« As a function of 6. As we showed in the main article, ¥,(¢) is a monotonically

decreasing function of # because the derivative is negative:

d —g1-1et
Ly )= "2 <.
A VP R

However, W,(#) is very close to 1 when 6 is small, and is very close to 0 when 0 is
large. Therefore, there exists a range of 6 in which ¥, (6) can attain a reasonably

good inverse. We define this set as the f-admissible set
O, = {0] < W,(0) <1-¢}, (A.5)
for any fixed ¢ and a tolerance level . An illustration of ©, is shown in Fig-

ure A.3.

 Asa function of ¢. The incomplete Gamma function ¥,(#) can also be considered
as a function of ¢. In this case, ¥, (6) is only defined for integer values of q. We
illustrate the behavior of ¥, (6) as a function of ¢ in Figure A.3. The set of ¢ in
which U, (0) is sufficiently away from 0 and 1 is defined as the g-admissible set.

Q0 {q|e < (0)<1—¢}. (A.6)
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Fig. A.3. ¥,(0) as a function of § and ¢. In defining, Qy and O,, we set
e = 0.01.

A.3 Comparison with the threshold design scheme by Yang [6]

In this section, we compare our threshold scheme with the one in [6].
First, we recall that the optimality of our method is based on a lower-bound L,(c)

for the per-pixel SNR:

¢"(c) = argmax SNR,(c) =~ argmax L,(c) = L%J (A.7)
qeN qeN K

Therefore, the optimal threshold is a function of ¢, which changes in space and in
time.

In contrast, [6] uses a checkerboard pattern by alternating two thresholds (¢,
¢5). These two thresholds are obtained by maximizing the Cramér-Rao lower bound

(CRLB) over a range of light intensity values [¢min, Cmax):

(¢},43) = argmin / CRLB(q1, 0, ¢) de. (A8)

1<q1,92<@max Cmin

As a result, the threshold is optimal in the average sense. To compare the two
approaches, we followed the same steps in [6] to obtain CRLB(q1, ¢z, ¢) for a checker-
board pattern in terms of ¥,(c) as follows

o2 o—200(2(a;~1))

2K T(:)* W4, (6) [1 = Wy, (6)]

2
CRLB(q1,q2,¢) = Z (A.9)
i=1
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where 6 = ac/ K. Using the parameters @ = K (¢max 1), ¢max = 16, K = 4, and using
trapezoidal technique for numerical integration over ¢, we obtain that ¢f = 4 and
¢; = 12. Figure A.4 shows the reconstructed images using uniform threshold maps
with thresholds g € {1, 5, 8,10, 15}, the checkerboard threshold map in [6] with ¢; = 4
and g3 = 12, and the oracle threshold map obtained by (A.7). In this experiment, our
proposed method achieves 28.15 dB, which is 0.83 dB higher than the checkerboard

pattern.
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A.4 Phase transition under different configurations

In the main article, we showed the phase transition behavior of the ML estimate
using K = 4, T = 50, and 6 = 2 x 10~ In this section, we study the effect of
changing K, T', and ¢ on the phase transition region width.

As a function of T. Figure A.5-Figure A.6 illustrate the phase transition be-
havior when T = 10, 25,50, and 100. As T increases, the width of the green region
increases. However, if we fix the range of the bit density 1 —E[y,(c)], we observe that
the SNR does not vary significantly even as T' changes.

As a function of K. The spatial oversampling K affects both the threshold
¢*(c) = |ac/K | + 1 and the phase transition width. Figure A.7(a) illustrates the be-
havior of the threshold ¢* as a function of K. As K increases, ¢* decreases. However,
the optimal ¢* still stays within the set Qy.

As a function of §. The constant J is used to define the set Qp:

Q, & {q - (g)K <0, (0) < (g)K} (A.10)

The constant 9 is the tolerance level. When ¢ increases, the size of the set Qy should
also increase. This result is shown in Figure A.7(b).

Using the closed form expression of the average bit density 1 — U,(6), we can
calculate the average bit density at the optimal threshold ¢* = |6 + 1, which is
shown in Figure A.8. We notice that as long as # > 1, the average bit density is
between 0.264 and 0.630. Within this range, we observe from Figure A.5-Figure A.6
that the SNR does not vary significantly if the estimated threshold is deviated from
the optimal threshold. This observation relaxes the requirement of the bisection
method from obtaining the exact optimal threshold to obtaining a threshold that
make the bit density equal to 0.5. Since 0.5 € [0.264,0.630], we guarantee to achieve
an SNR which is sufficiently close to the optimal SNR.

Controlling # > 1 can be achieved by tuning the constant . Tuning « can be
hardware-implemented by increasing the exposure period. Intuitively what 6 > 1

requires is that the average number of impinging photons per jot must be at least



one.
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If 6 is less than one, then most bits will become zeros. Increasing exposure

period (i.e., increasing «) will ensure sufficient number of photons.
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Fig. A.5. Phase transition for T'= 10 and T' = 25. SNR range is shown for
average bit density 1 —E[y,(c)] in the range [0.264, 0.630]. For all cases, we

set 0 =2 x 1074 and K = 4.

\ qE€EQ
1 q¢Q
08 Exact B[¢]/c
: — -Monte-Carlo E[¢]/c
0.6 Exact 1 — Ely,(c)]
— ~Monte-Carlo 1 — E[,(c)]
0.4
0.2 \
0 i |
10 20 30 40 50 60 70 80 90 100
Threshold ¢
40 -
30
20
10
0 i ]
10 20 30 40 50 60 70 80 90 100

Threshold ¢

(a) T = 50, SNR € [36.15,36.80]

SNR in dB

0.8
0.6
0.4
0.2

qE€EQ

q¢Q

Exact E[¢]/c

— =Monte-Carlo E[¢]/c

Exact 1 — Ely,(c)]
— -Monte-Carlo 1 — E[y,(c)]
10 20 30 E 40 50 60 70 80 90 100
7(c) Threshold ¢
10 20 30 40 50 60 70 80 90 100

Threshold ¢

(b) T = 100, SNR € [39.35, 39.82]

Fig. A.6. Phase transition for 7' = 50 and 7" = 100. SNR range is shown
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A.5 Influence of Non-Boxcar Kernel G

In this section, we discuss the boxcar kernel assumption in QIS model, i.e., G =

%I NxN @ lgy1. We also study the effect of assuming a general kernel G on our

results.
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On QIS, we typically assume that there are micro-lenses on top of each jot or a
group of jots. These micro-lenses ensure that the incident light converges onto the
sensing site with no (or very minor) interference with adjacent jots or groups. As a
result, we can model the incoming light using the boxcar kernel. This assumption
is perhaps strong in some perspective, but it allows us to significantly simplify the
theory and offer efficient implementations.

What if there is a mismatch between the physical model (e.g., using B-spline or
Gaussian kernel G)) and the reconstruction (e.g., using boxcar)? To see the effect of

this mismatch on the reconstruction quality, we conduct two sets of experiments.

o 1D Signal: We consider a 1D signal with 10 coefficients. These 10 coefficients
are modulated with boxcar kernels and B-spline kernels to generate two sets
of incident light. On the QIS simulator, we set the spatial and temporal over-
sampling factors as K = 9 and T" = 30, respectively. Then we use the oracle
threshold map for quantization. To reconstruct the images, we use boxcar kernel
for both cases so that we have one matching case and one mismatching case.
Figure A.9 shows the reconstructed signals. As expected, when the forward
model matches with the reconstruction model, the reconstructed image has the

highest PSNR. However, the gap between the cases are not significant.

e 2D Signal: Figure A.10 shows a 2D example. Similar to the 1D case, boxcar
kernel leads to the best reconstruction but its gap with the other cases are not

significant.

The reader might think why we do not use B-spline on the reconstruction so that
it will match with the forward model? In principle this is doable, but we need an
iterative algorithm to compute the ML estimate such as gradient descent as reported
in [6]. In contrast, the boxcar assumption allows us to use a closed-form ML estimate,

which is practically much more affordable.
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(d) Cubic B-spline, PSNR= 32.15 dB
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A.6 Supplementary HDR results

In this section, we show more results for HDR image reconstruction using our
method compared to the fixed threshold approach. Figure A.11 show reconstructed
HDR images using adapted Q-map by the bisection algorithm, and fixed Q-maps
with low threshold (¢ = 1) and high threshold (gmax = 16). The spatial and temporal

oversampling factors are K = 4, and T' = 13, respectively. Sensor gain is o =

K2/<Qmax - 1)
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B. SUPPLEMENTARY MATERIAL FOR CHAPTER 5

This supplementary report provides the following additional information for Chapter 5

Color Image Reconstruction using ADMM

Color-Noise Trade-off

An ITterative Demosaicking Algorithm using ADMM

Luminance/Chrominance Transformation Matrices of Other CFAs

B.1 Luminance/Chrominance Transformation Matrices of Other CFAs

Algorithm IT in the main manuscript performs demosaicking by frequency selection

with the assumption of orthogonality. However, the CFAs proposed in [86], [93]

and [98] do not satisfy the orthogonality constraint with our choice of T' [95]. In

this section, we derive for every CFA the transformation matrix T that makes its

luminance and chrominance channel orthogonal so that we can apply Algorithm II.

Following the symbolic DFT method in [86], the frequency structure of RGBCY

CFA proposed in [93] has the following form:

3B4+10G+3R 2R—2B B-2G+R
L | 2r-28  B-20+R 0
16| B_2G+R 0 2G-B—R
| 2R-28  B-2G+R 0

2R - 2B

B-2G+ R
0

B—QG-I—R_

Hence, we can choose the luminance/chrominance transformation as

h

3 10

3 R

3 10 3

1
1 G <—>TRGBCY=—6 1 =2 1

2| |B

2 0 =2

(B.1)
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As a result, the frequency structure is orthogonal where every chrominance component
is modulated on distinct carrier as shown in Figure B.1 and shown in the following

matrix representation

L  «
L]0 a “ (B.3)
16 |, o ’
a 0 «

To ensure fairness between different CFAs, we normalize the matrix rows to unity
so that all luminance and chrominance have the same noise power. To this end, the

transformation matrix of RGBCY CFA can be written as

3 10 3
V118 118 V118

Trepov = | = 2 & (B.4)
1 0 =1
V2 V2

Similarly, we can do the same steps for RGBCWY CFA in [93] to obtain the following

transformation matrix.

13 2 13
V822 /822 /822

Trepowy = | &= 2 & (B.5)
1 0 =1
V2 V2

As for Bayer CFA, and the CFA in [98], we use the following transformation matrix

12 1
V6 V6 V6
— |1 =2
TBayer - 76 76 76 (BG)
1 g =L
V2 V2
Finally, for the CFA in [86], we use the following transformation matrix
2 3 3
V22 V22 V22
_ -1 1
T=\|0 % % (B.7)
-2 1 1
V6 V6 V6
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Fig. B.1. Frequency structure of RGBCY CFA [93] using the lumi-
nance/chrominance transformation (B.3)

B.2 TIterative Demosaicking Algorithm using ADMM
In the main manuscript, we modeled the color filter sampling by the following
equation:

0(m,n) = ac,g(m,n)’ im,g(m,n)

=« Z ci(m,n)im;(m,n).

ie{r,g,b}

(B.8)

To write this equation in matrix form, we stack the vectorized color channels of the
latent image im; in long 3HW x 1 vector, and the mosaic channel 6 in long HW x 1

vector as follows:
vec(im,.)

im &' vec(im,) and 0% vec(6). (B.9)
vec(imy)

We define the sampling matrix C & [C,,C,,C,) € [0,1]TV3HW " where C; def

diag(vec(c;)), Vi € {r, g,b}. Then, the color filter sampling can be written as:

0 = oC'im. (B.10)
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By recalling the forward model (B.10), we can write the inverse problem for obtaining

the latent color image im from the light exposure on QIS 0 as follows
im = arg min [|aC im — 6||; + Ag(im), (B.11)

where C' is the color filter sampling operator. The first term in the cost function is
a data-fidelity term that forces im to agree with the measurements y. The second
term is a regularization term to improve the conditioning of our ill-posed problem. A\
is a positive scalar that controls the amount of regularization.

To solve the inverse problem (B.11), we may use any optimization toolbox since
it is convex. Here, we report our results using the Plug-and-Play (PnP) ADMM
algorithm [110], which has demonstrated effectiveness in image restoration tasks.
Starting from an initial guess im®, the PnP ADMM algorithm iteratively updates

its estimate via two steps:

Demosaicking Module:
im* ) = (02CTC + pI) " (aCTy + p(v™ — u™)), (B.12)

Denoising Module:
o) = D, (im D 4+ 4 ®), (B.13)

and updates the Lagrange multiplier by u®*t1) = u® — (im**+) — p*+1))  For
additional details on PnP ADMM, we refer the readers to, e.g., [110]. Here, p is
an internal parameter that controls the convergence. The operator D is an off-the-
shelf image denoiser, e.g., BM3D in our experiments. The subscript \/p denotes
the denoising strength, i.e., the hypothesized “noise variance”. The inversion in the
demosaicking module is performed in closed form because CTC' exhibits a block
diagonal structure.

The optimization problem in (B.11) does not take into account of the crosstalk
effect. ! Like most of the mainstream image and signal processing (ISP) pipelines,

we reduce the cross-talk via a color correction step.

In principle we can incorporate the crosstalk kernel into the C matrix but then C will have a
complicated structure which does not allow simple inversion.



145

ADMM

( )

Demosaicking

b (4 _ 0 im[ Color |imcc
B O I = 0 =

Denoising

Fig. B.2. Block diagram of our reconstruction method. Given QIS binary
frames b, we obtain an approximately clean estimate for QIS light exposure
0. Afterwards, we apply an iterative ADMM algorithm for demosaicking.
Finally, we do color correction to remove the crosstalk effect.

B.3 Color Image Reconstruction using ADMM

In this experiment, we perform color image reconstruction using the 24 and 18
color images in Kodak and McMaster datasets, respectively. QIS parameters are ¢ =
1,a=2,and T = 1000. Color filtering is obtained using the proposed CFAs and other
arrays proposed in literature [83,86,87,95,98|. For every CFA, we generate mosaicked
images under two scenarios: 1) crosstalk kernels with leakage factors (o, oy, ap) =
(0,0,0), i.e., no crosstalk, and 2) crosstalk kernels with leakage factors (o, ay, o) =
(0.23,0.15,0.10). Color correction is performed for the second scenario to remove
crosstalk color de-saturation effect. For both scenarios, we apply 300 iterations of the
Plug-and-Play ADMM algorithm for image demosaicking with BM3D denoising prior
and p = 1.

Different CFAs have different convergence properties according to the condition
number of their corresponding masking matrix C'. Therefore, we perform fine-tuning
for the A parameter for every CFA and every color image. Specifically, we run the
ADMM algorithm for 50 iterations using A € {0.005,0.01,0.015,0.02,0.025,0.03} and
pick the A that obtains the best color-PSNR. For McMaster dataset, we do the same
fine-tuning, except that we run the ADMM algorithm for 100 iterations.

The last four columns in Table B.1 show the median PSNR of the 24 and 18 color

images in Kodak and McMaster datasets, respectively. The scenarios of crosstalk and
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Table B.1.
Reconstruction quality measured by median PSNR on Kodak and McMas-

ter color datasets.

Sipe CFA Pattorn CPSNR-McM CPSNR-Kodak
w/o Ctk w/ Ctk | w/o Ctk w/ Ctk

Hao et al. [86] 21.69 26.81 27.92 29.68

4x4| RGBCWY [93] 30.07 2086 | 3114  30.80
Ours 29.94 29.90 31.25 30.45

Cheng et al. [98] 29.39 29.11 29.50 28.52

I Ours 30.78 30.13 31.32 31.00
Condat [95] 31.13 30.57 33.29 32.59

X Ours 28.37 32.03 33.22 32.68
Hirakawa-Wolfe [83] 26.49 30.23 31.59 31.28

X Ours 26.72 30.70 32.04 32.01

no crosstalk are denoted in the table as “w/ Ctk” and “w/o Ctk”, respectively. We
notice that our proposed CFAs achieves higher PSNR compared to other CFAs when
crosstalk exists. This is attributed to their improved robustness to crosstalk compared
to other arrays. Figure B.3 shows crops of reconstructed images using different CFAs.

Images that are captured using our proposed CFAs show good amount of details, and

good color fidelity.
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B.4 Color-Noise Trade-off

In this experiment, we compare the trade-off between noise amplification and color
accuracy of our proposed CFAs and other CFAs in literature. To do so, we use the
Macbeth color chart that comprises 24 color patches. The forward model consists
of illumination using D65 light and mosaicking using a CFA and crosstalk using the

crosstalk kernels:

g9 = CJ{Z/4 1—041' @1/4 y 1€ {r,g,b}, <B14)
0 /4 0

with (o, oy, ap) = (0.45,0.30,0.20) as suggested in [93]. QIS parameters are ¢ =
1, « = 2 and T' = 1000. We use Algorithm II for demosaicking with frequency
selection. The low pass filter is m x m Gaussian having standard deviation o =
m/3 and multiplied by a Hamming window to eliminate windowing effect. Since
the ground truth color values of Macbeth color chart are known, we compute the
color correction matrix M by solving the following regularized linear least squares

optimization problem with white balance constraint:

24
o 0 2
M = arg min (M) + HZ ||Cov(M Qrase) |2

i=1
subject to

Mu=wu (B.15)

where e.(M) = Tr {(MQFalse - QGT)T (MQp,. — QGT)} is the color error. Qg

and Qqp are 3 X K matrices containing the measured color values and the corre-
sponding ground truth color values of K pixels. w dof [0.95,1,1.0889]7 is the white
point for D65 illuminant.

To draw the noise-color trade-off curve, we vary the parameter x in (B.15) from
0 to 10'° on the log-scale. Color error is quantified with the CIEDE2000 metric
which is obtained by calculating the mean square color difference in the CIELAB
color space [93]. Visual noise is measured by the YSNR metric as defined in ISO
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12232 [93]. To ensure that we obtain the best possible performance of every CFA and
k, we repeat Algorithm II with different sizes of the low pass filter m € {15,17,...,25}
and pick the value that maximizes YSNR and minimizes color error. Since YSNR
should be increased and color error should be decreased, the tradeoff curve is better
when it is shifted to upper left.

Figure B.4 shows the trade-off curves for the proposed CFAs and other CFAs.
Our 4 x 4 CFA is better than other 4 x 4 CFAs for almost all values of k. Our 3 x 3
CFA achieves lower color error compared to [98]. As for 4 x 2 CFAs, our CFA is
better than [83] if we restrict to small color error. However, if we allow larger color
error, then [83] is better. For the 3 x 2 case, Condat CFA [95] is better than hours
for values of kappa > 0, but our CFA achieves better performance on natural images

as mentioned in Experiment 3 in the main manuscript.
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Fig. B.4. Color-Noise trade-off for different CFAs. Demosaicking is per-
formed using Algorithm II. s in (B.15) is varied from 0 to 10%.
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C. PROOFS
C.1 Proof of Proposition 3.1.2

By using the partitioning in (3.12) and substituting with the constraint from

(3.13), we can decompose (3.1) into a triple sum formula:

T-1N-1K-1 e e
c= argmax {bKnHm log (1 -7, <7n>> (1 = brnirs)log ¥, < K")} ,
t=0 n=0 k=0
(C.1)
Let B, ¢ def {bnt:- - brny(—1)} be defined as the n-th block of the t-th frame, and
T-1K-1
Sn d:ef bKn+k,t (02)
t=0 k=0

be defined as the sum of the bits (i.e., the number of one’s) in B, ;. Then, (C.1)

becomes
c= argmax ]:;_:S” log (1 -, (%)) + (L —5,)log ¥, (i?z) : (C.3)

where L = KT. By observing (C.3), we notice that it can be decomposed into N

subproblems as follows.

¢, = argmax S, log (1 -, <%>) + (L —S,)log ¥, (acn> , (C.4)
cn K K
where n € {0,..., N —1}. By setting the first derivative to zero, we can obtain ¢, as

follows.

( Se  L-6, ) (_ge‘*&” (%)q*) B
L=, () W (%) K (g

Since the second bracket is non-zero, we can divide both sides by it and rearrange

ac S,
\J (_">:1__”_
"\ K L

the terms to get
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which can be solved in ¢, using the inverse incomplete Gamma function to give:

. K__ Sy
cn:qu1<1—f), n=0,...,N —1, (C.5)

C.2 Proof of Theorem 3.3.1

For notational simplicity we drop the subscript n. Our goal is to show that if

X ~ Binomial(L, p), then the transformed variable

T(X):,/H%sm—l( ‘}L(ig) (C.6)

has a variance Var[T(X)] = 1 + O(L™2). To this end, we first consider the function
Q such that

QX)=T(X) - L+181n V/D-

Since Var[Q(X) + ¢] = Var[Q(X)] for any ¢, by letting ¢ = —/L + $sin™" /p we
observe that showing Theorem 2 is equivalent to showing Var[Q(X)] = 1 + O(L7?).
To show the desired result, we note that for any « and [, the arcsin function has

the property that

sinta —sin™! 4 =sin~ (a\/ 1—p52—-038v1— oﬂ) i

def X+3
L+3 )

O(X) = /L + %sinl (\/(1 T F — /(1= F)) . (C.7)

There are two terms in this equation. The first term /L 4 3 can be expanded (using

Define F' = and substitute a = VF, 3 = /D, it follows that

Taylor expansion) to its first second order as

L+%=\/E(1+%>%=x/f(1+i+(’)( )).

The arcsin function can be expanded to its second order as

w3 3w 5WT
_1 wo
W=Ww- 6 * 40 * 112

+ ...,
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for W= +/(1—p)F —+/p(1 - F).
We next consider the standardized binomial random variable by defining
of X —1L
y & 2P (C.8)

VIp(1=p)

Then, by Lemma 1, it follows that

W =+/(1-p)F—+/p(l-F)
Y (G- D@Y2-3) 16V 16Y%p - 6Y 4 0V

— + + O(L™?).
2L 16L+/p(1—p) 96L2p(1 — p) (L)
Therefore,
1 72 w3 5
gm:ﬁ1+ﬁ+mL) Wt ==+ 0(7)
=ay+ a1y + aY? + azY? + O(Y?),
where
_ __ 3(2p-1) 1, 1 3
a0 = 164/Lp(1—p)’ =5 T30~ Bipi—p)
2p—1 __ 16p*>—16p+6

N R R0 Z (D
Since the first four moments of Y are

2p—1 1—6p(1—

EY] =0, E[Y!) =1 E')= -2 =7

we conclude that

Var[Q(X)] = a?Var[Y] + a2Var[Y?] + 2a,a,Var[Y?] + 2a;a3Var(Y*)
1

= a] — a3 + 2a1a:E[Y?] + (2a1a3 + a3)E[Y?] = 1 + O(L™?).

Lemma 1 Let F = Xtg and Y = —2=L2_ It holds that

L+ Ir(—p)
VA= p)F = /p(1—p)+ (1-p)Y  I—p(6p+2(1—pY?-3)

I 16L/p
. (1 - p)Y(ﬁp - 2<1 - p)Y2 + 3) + O(L_2) (C 9)
32pL2 ' '

B pY  /p(—6p+2pY? +3)
\/p(l_F)_\/p(l_p>_2\/z_ 16L\/1Tp
_ pY (6p + 2pY2§— 9) + O(L_Q). (C.10)
32(1 —p)L>
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Proof Note that Y = \/% is equivalent to X =Y \/Lp(1 — p) + Lp. Thus, F
p{L—=p

can be expressed in terms of Y as

(Y\/WLJ?:);LI’) T <Y\/]¥+p+8%> (H%)_l'

F =

For large L, we have % < 1. Thus, by expanding (1 + %)_1 we have

F = (Y\/p—(lL_p) +p+8%) (1—%+O(L‘2)) =p(l+En),

3 3
1—-p Y 17 % p 3Y 9
FE, = — — +O(L™*).
! p VL L \1-pari (™)

By expanding /1 + E7, we arrive at

B, E? EB
\/F—\/]3\/1+E1—\/13(1+71—§1+1—é+(9(13f)).

where

Multiplying both sides by /1 — p and substituting for E; yields

(1-pY VI—p(6p+2(1-p)Y¥*-3)

V(L =p)F =+/p(1-p)+

2L 16L./p
_ (1 - p)Y(6p - 2(1 - p)Y2 + 3) + O(sz)
32pL3 '

The proof of the second equality can be done by expressing 1 — F' in terms of Y as

1-F= <_y p(lL—P)+(1—p)+8iL> (1+%)_ :

_ (-y ZM+<1—p>+i> (1—3+0(L—2)) (1 —p)(1+ ),

8L 4L

3
p Y 1781y 1—p3Y L
By = — — + 4/ — =+ O(L7?).
T \N1i-»vI L V5 az TOUT)

By expanding /1 + FE5, we arrive at

where

2 3
\/l—F:\/l—p\/1+E2:\/1—p(1+%—&+E2

Ly 4
2 S5 +(9(E2)) |



Multiplying both sides by ,/p and substituting for £ yields

pY V/P(—6p + 2pY? +3)

B pY (6p + 2pY? —9)

— +O(L7?).
32(1 —p)L>

C.3 Proof of Proposition 4.1.2

The Fisher Information metric is defined as:

-
I,(c) © Ep [a—Zbg P(B =b;0, q)] ,
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(C.11)

where § = ac/K. Using the chain rule, we can derive the Fisher Information as

follows

I,(c) = (%)21[33 {%log P(B = b; Q,q)] :

The expectation can be calculated as follows

a2 [—0?

I(e) = (3) [Wlog P(B = 1:9, q)] P(B = 1;6,q)
2 [ —H?

+ (%) [Wlog P(B = O;H,Q)} P(B =0;0,q)

Using (2.16) to differentiate the 1st term, we get:

T Mg B(B = 1:60.9) = ©10g (1 - 0,(6))
_ R(1-9,09) - R*/T(q)

[(g) (1~ ¥,(6))°

where R = e~ %0771 and R’ = OR/06. Similarly, the second term is

?

2 2

0 0

_ R,(0) + RY/T(q)
L(g) (T,(0)°

(C.12)

(C.13)

(C.14)

(C.15)
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Substitute (C.14) and (C.15) in (C.13) yields
ey RT(Q)(1-0,0) - B
L0 = (%) |- v
R'T(q)V,(0) + R2]
[2(q)W,(0)

< o )2 e—2992q—2
K/ Tq) W, (0) (1 — Wy(0)
C.4 Proof of Proposition 4.1.3

The lower bound is obtained by observing that the product ¥ () (1 — ¥,(9))
attains its maximum value when W, (0) = 1/2. Substituting with the upper bound

Wy (0) (1 =W, (0)) < 1/4, we get:

) e 2 6—299211—2
log(c"ly(c)) = log { (%) T2(q) W, (0) (1 — U,()) }
e—2002q
[2(q)W,(0) (1 — 0,(0))
4e—209%
I2(q)
= 2log2 — 26 + 2qlog 0 — 21logI'(q)

= log

> log

=2 (logZ— %—l—qlog% —logF(q)) :

C.5 Proof of Proposition 4.1.4

Using the definition of Gamma function I'(q) = (¢—1)! and 6 = ¢, we can rewrite

the lower bound in Proposition 4.1.3 as follows.

L,(c) =2(log2 — 6+ qlogf — log(q — 1)!)

q—1
=2 (10g2—0—|— (g — 1)10g0+10g0—10ng>
k=1

q—1
=2 <1og2 -0+ Zlog((‘)/k) + log@)

k=1
The only dependence on ¢ is in the second term, so we take a closer look at it. When

g —1 < |#], all summands log(f/k) are positive because k < |#]|. Hence, the total
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sum increases by increasing ¢. On the other hand, when ¢ — 1 > |6, we start to add
negative summands log(f/k) because k > 6. Therefore, the total sum decreases on

increasing ¢ — 1 over |#]. Thus, maximum is obtained at ¢ = |0] +1 = |$¢] + L.

C.6 Proof of Proposition 4.2.1

By definition, § & 7!

f:_ol By, is the summation of KT independent i.i.d.
Bernoulli random variables. Therefore, S is a binomial random variable with param-
cters n & KT and p &1 — U(ac/K). The mean and variance of a binomial random

variable is E[S] = np, and Var[S]| = np(1 — p). Therefore, we have

El(e) =1- o) = w, (%), and

e gl = 553 - s, (59) 10, (5)

C.7 Proof of Proposition 4.2.2

The probability P[0 < 7,(¢c) < 1] can be evaluated by checking the complement
when 7,(c) =0 or 7,(c) = 1:

P[0 < 74(c) <1] =1 =Plyg(c) = 0] = Plyg(c) = 1]
=1-P[S=0] - P[S = KT]
(@)
= 1= (0)"" — [1— Ty (6)]",
where (a) follows from the fact that S, which is a sum of i.i.d. Bernoulli random

variables, is a binomial random variable.

Let 0 < < 1. If

then we have
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Thus, it holds that

1=V ()5 —[1— U (0)]*" >1—6.

C.8 Proof of Proposition 5.2.1

Since the luminance channel comprises only one baseband component in the fre-

quency domain, the luminance gain in the amplitude of this component, i.e.,

1 ~ 1 ~
2= Fllhdlls = T/R20,0) 40+ .. +0

1~
=—h .
I Z(Oa O)

Substituting in the DFT equation with u = v = 0, we get

M—-1N-1

W) = 7 33 hulm.n)

m=0 n=0
1

1
g z]_Thl = leZlm == bTCII,

where b & %1TZl. As for the chrominance gain ., by squaring the definition in
(5.17), we get
1 . ~ ~
Yel@)? = —smin (|[Ral . 1Rl ) (C.16)
(@ .
= min (||half3, [lhsll2)

= min (|| Z,x]2, ]| Zsz]2) = min (27 Q.z, 27 Qsx) ,

def

where (a) follows from Parseval theorem, and Q, = o

z'Z7, and Qs = ZgZB are two

positive semidefinite matrices.
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