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ABSTRACT

Elgendy, Omar A. PhD, Purdue University, August 2019. Image Processing for
Quanta Image Sensors. Major Professor: Stanley H. Chan.

Since the birth of charge coupled devices (CCD) and the complementary metal-

oxide-semiconductor (CMOS) active pixel sensors, pixel pitch of digital image sensors

has been continuously shrinking to meet the resolution and size requirements of the

cameras. However, shrinking pixels reduces the maximum number of photons a sensor

can hold, a phenomenon broadly known as the full-well capacity limit. The drop in

full-well capacity causes drop in signal-to-noise ratio and dynamic range.

The Quanta Image Sensor (QIS) is a class of solid-state image sensors proposed

by Eric Fossum in 2005 as a potential solution for the limited full-well capacity prob-

lem. QIS is envisioned to be the next generation image sensor after CCD and CMOS

since it enables sub-diffraction-limit pixels without the inherited problems of pixel

shrinking. Equipped with a massive number of detectors that have single-photon

sensitivity, the sensor counts the incoming photons and triggers a binary response

“1” if the photon count exceeds a threshold, or “0” otherwise. To acquire an image,

the sensor oversamples the space and time to generate a sequence of binary bit maps.

Because of this binary sensing mechanism, the full-well capacity, signal-to-noise ratio

and the dynamic range can all be improved using an appropriate image reconstruc-

tion algorithm. The contribution of this thesis is to address three image processing

problems in QIS: 1) Image reconstruction, 2) Threshold design and 3) Color filter

array design.

Part 1 of the thesis focuses on reconstructing the latent grayscale image from the

QIS binary measurements. Image reconstruction is a necessary step for QIS because

the raw binary measurements are not images. Previous methods in the literature
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use iterative algorithms which are computationally expensive. By modeling the QIS

binary measurements as quantized Poisson random variables, a new non-iterative

image reconstruction method based on the Transform-Denoise framework is proposed.

Experimental results show that the new method produces better quality images while

requiring less computing time.

Part 2 of the thesis considers the threshold design problem of a QIS. A spatially-

varying threshold can significantly improve the reconstruction quality and the dy-

namic range. However, no known method of how to achieve this can be found in

the literature. The theoretical analysis of this part shows that the optimal threshold

should match with the underlying pixel intensity. In addition, the analysis proves the

existence of a set of thresholds around the optimal threshold that give asymptotically

unbiased reconstructions. The asymptotic unbiasedness has a phase transition behav-

ior. A new threshold update scheme based on this idea is proposed. Experimentally,

the new method can provide good estimates of the thresholds with less computing

budget compared to existing methods.

Part 3 of the thesis extends QIS capabilities to color imaging by studying how a

color filter array should be designed. Because of the small pixel pitch of QIS, crosstalk

between neighboring pixels is inevitable and should be considered when designing the

color filter arrays. However, optimizing the light efficiency while suppressing aliasing

and crosstalk in a color filter array are conflicting tasks. A new optimization frame-

work is proposed to solve the problem. The new framework unifies several mainstream

design criteria while offering generality and flexibility. Extensive experimental com-

parisons demonstrate the effectiveness of the framework.
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1. INTRODUCTION

Miniaturization has become the main theme in CCD and CMOS image sensor industry

recently. There are two complementary motives behind miniaturing the pixel size.

First, pixel miniaturization improves the spatial resolution by allowing more pixels for

the same sensor size. High spatial resolution is necessary for obtaining good image

quality, especially in low-light scenarios, and it avoids common artifacts resulting

from scene undersampling. Second, pixel miniaturization allows smaller sensor size

for the same spatial resolution. Sensors with small sensor sizes are particularly useful

for smart phones cameras which have space limitations. As a result, restless effort

has been exerted in image sensor industry to reduce pixel sizes to dimensions even

less than diffraction limit of light. This is facilitated by the continuous improvement

in CMOS fabrication technologies in semiconductor foundries. However, reducing the

pixel size results in decreasing the amount of charge that it can hold before saturating,

which is known formally as the pixel’s full-well capacity (FWC). Reducing FWC, in

turn, leads to a drop in signal-to-noise (SNR) ratio and a drop in dynamic range.

These problems have been a fundamental impediment against pixel miniaturization,

and efficient solutions are still required to overcome it, both on the hardware and

signal processing sides.

This dissertation studies a new type of sensors, called the Quanta Image sensor

(QIS), which is proposed as a potential hardware solution for the previously men-

tioned miniaturization problems. It tackles three signal processing problems which

are essential for the success of QIS hardware solution: Image Reconstruction, Thresh-

old Design and Color Filter Design. This thesis provides solutions for the first two

problems that enhance monochrome image reconstruction for QIS. It also presents so-

lutions for the third problem that improves and facilitates color image reconstruction

for QIS.
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The outline of this introductory chapter is as follows. First, it presents in Sec-

tion 1.1 a quick discussion on the history of photography. Then, it motivates the QIS

solution in Section 1.2 and shows how it evolved over time both in the hardware side

and the signal processing side. Afterwards, it shows in Section 1.3 the motivations for

tackling the image reconstruction, threshold design, and color filter design problems.

Finally, it presents in Section 1.4 the thesis outline and a summary of contributions.

1.1 Photography: From Camera Obscura to Computational Photography

In this section, we will give a quick summary for the history of photography

starting from the camera obscura and ending with the state-of-the-art computational

photography.

1.1.1 Camera Obscura

The ancestor of modern day camera is the Camera Obscura, a Latin name that

means “dark chamber” or the Pinhole Camera. As the name suggests, it comprises

a small dark room with light entering to it through a tiny hole or “aperture” and

reflecting on the opposite wall to show an inverted image of the scene outside (See

Figure 1.1). This idea was discussed as early as the 5th and 4th centuries B.C. by the

Chinese philosopher Mo Ti [1], and the Greek mathematicians Aristotle and Euclid [2],

respectively. However, the first conceptual analysis and experimental realization were

published by the Muslim scientist Alhazen [3] in his book: Book of Optics written in

Cairo during the early 11th century.

The quality of the projected image depends on the pinhole size. Too large pinhole

generates a bright, but blurry image due to geometrical blur, and too small pinhole

leads to a dim blurry image due to diffraction blur. Even at the optimal pinhole size,

the projected image is still dim because of the small pinhole size. Later on, lenses

were deployed to alleviate this trade-off by enlarging the aperture size to absorb more

light while focusing this light to produce sharper images.



3Review. Micrographia of the 21st century 1193

Alhazen’s Camera Obscura

Figure 2. The concept of the camera obscura as perceived a thousand years ago by Alhazen (Ibn
al-Haytham), who coined the term (see text). Note the formation of the inverted image through a
ray diagram. Adapted from Al-Hassani et al. (2006).

Anton van Leeuwenhoek used a simple, one-lens microscope to examine blood,
insects and other objects, and was the first to visualize bacteria, among
other microscopic objects. More than a hundred years later, an experiment by
the physicist, physician and Egyptologist, Thomas Young, demonstrated the
interference of light, an experiment that revolutionized our views on the nature
of light. His double-slit experiment of 1801 performed at the Royal Institution
of Great Britain led to the demise of Newton’s corpuscular theory of light. Of
relevance here is the phenomenon of diffraction due to interferences of waves
(coherence). Much later, such diffraction was found to yield the (microscopic)
interatomic distances characteristic of molecular and crystal structures, as
discovered in 1912 by von Laue and elucidated later that year by W. L. Bragg.

Resolution in microscopic imaging was brought to a whole new level by two
major developments in optical microscopy. In 1878, Ernst Abbe formulated a
mathematical theory correlating resolution to the wavelength of light (beyond
what we now designate the empirical Rayleigh criterion for incoherent sources),
and hence the optimum parameters for achieving higher resolution. At the
beginning of the twentieth century, Richard Zsigmondy, by extending the work of
Faraday and Tyndall, developed the ‘ultramicroscope’ to study colloidal particles;
for this work, he received the Nobel Prize in Chemistry in 1925. Then came
the penetrating developments in the 1930s by Frits Zernike, who introduced
the phase-contrast concept in optical microscopy; he, too, received the Nobel
Prize, in Physics, in 1953. It was understood that the spatial resolution of optical

Phil. Trans. R. Soc. A (2010)

Fig. 1.1. A schematic for the conception of the Camera Obscura by Al-
hazen in his book Book of Optics written in Cairo between years 1011 and
1021. Adapted from [3]

Another important question is: How to make use of the projected image? For a

long time ago, people were using it to observe Sun eclipses without harming the eyes,

and by the 16th century, artists were using it for drawing objects with lots of details

by tracing the projected image on a drawing paper. However, there was a strong

need for saving the projected image. This need was satisfied by invention of chemical

photography.

1.1.2 Chemical Photography

The concept of using chemical compounds to save an image was conceived in

1727 when Schulze discovered that silver nitrate salt is darkened when exposed to

sunlight [4]. This inspired Nièce, a French inventor, in 1816 to use a paper coated with

silver chloride salt to capture images [4, 5]. However, this approach could not store



4

Fig. 1.2. The first permanent photograph captured by Nièce in 1826 at
Saint-Loup-de-Varennes, France [6]

the image permanently. After some trials, he managed to capture the first permanent

image (See Figure 1.2) in 1826 with 8 hours of exposure. It was not until 1839 when

Daguerre presented the first stable photographic process, namely the daguerreotype

process [5], which was commercialized after that. One remaining challenge was to

replicate the images. Talbot solved this problem in 1841 by using papers coated with

silver iodide [5] and Archer improved it in 1851 by allowing multiple copies from a

single negative. However, the negatives required immediate development in no more

than 10 minutes. Maddox solved this problem in 1861 allowing, for the first time,

hand-held cameras.

Modern photography began when Eastman presented the first transparent pho-

tographic film and film roll as a replacement for the photographic plate in 1885 and

1889, respectively. This film comprises a light sensitive material placed on paper,

which is transferred on glass after exposure, and then printed. With some modifica-

tions, Oskar Barnack presented the 35mm film in 1925 [7] which became the standard

film for a long time after that.

On another front, color imaging was first introduced in 1861 when Sutton captured

the first color image using a method proposed by J. C. Maxwell. Sutton captured

three images with red, green and blue filters, then projected them on a screen using
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the same filters to add up giving a color image. Afterwards, the Lumière brothers

invented in 1906 the first practical color photography plate by using a mosaic of three

color filters mounted on a glass layer which is placed under the light sensitive layer.

However, it required longer exposure time because of the decreased light sensitivity

after putting the glass layer. Mannes and Godowsky, Jr. presented in 1935 the first

popular color film: the Kodachrome. However, it could only be processed in Kodak

labs since its processing was too complex for commercial users.

1.1.3 Digital Photography

The era of digital photography started with the conception of the photoelectric

effect: a phenomenon that was first observed by Hertz in 1887, and characterized by

Einstein in 1905 [8] 1. This finding is significant for photography because it shows

that light falling on a matter can alter it properties in a way proportional to the

light intensity. This led to the invention of photodetector that replaces photographic

film by using photodiodes instead of chemical compounds to save the image. This

is advantageous for two main reasons: 1) By resetting the photodetector, we do not

need to replace it after each capture as we do with photographic film, and 2) By

digitization, we have more flexibility to process the captured image.

The first practical realization of this technology was done by at AT&T Bell Labs by

Boyle and Smith in 1968 when they invented an imaging semiconductor circuit: The

Charge-Coupled Device (CCD) [9] 2. A CCD comprises an array of photodetectors and

shift register that works as a conveyor belt. After light exposure, every photodetector

accumulates an electric charge proportional to the light intensity falling onto it, then

the shift register transfer the charges to feed it to a charge amplifier sequentially to

be converted into voltages. On a digital camera, these voltages, which constitutes the

captured image, are digitized and stored in memory.
1Einstein won the Nobel prize in physics for this work in 1921
2Boyle and Smith won the Nobel prize in physics for this work in 2009



6

Another breakthrough in digital photography occured when Eric Fossum and his

team in NASA’s Jet Propulsion Laboratory (JPL) invented the CMOS active pixel

sensor (APS). It quickly became a ubiquitous imaging technology in mobile imaging

for its lower power consumption and smaller size compared to CCD. Also, its com-

patibility with the standard CMOS fabrication technology enabled it to benefit from

Moore’s scaling law by continuously shrinking the pixel size for resolution enhance-

ment. In addition, several on-chip functionalities are added such as Analog-to-Digital

conversion (ADC) and Image signal processors (ISPs) to improve the image quality.

For these reasons, there is a consensus that CMOS image sensor is the second gener-

ation of digital image sensors after CCD.

To enable color imaging on CCD and CMOS image sensors, the most popular

technique is to place a color filter array on top of the sensor so that each pixel gets

color information of the falling light. Color filters are organized in a certain way

so that the captured image is a mosaic pattern of different colors. In 1976, Bayer

proposed the Bayer pattern for color filter arrays. This pattern is a periodic replica

of a 2 × 2 color kernel that comprises 1 red, 2 green and 1 blue color filters, where

the green proportion is more than red and blue proportion because the eye is more

sensitive to light in the green color subband. A color image is reconstructed from the

mosaicked image by a process called demosaicking. The demosaicking process in its

basic form for is an interpolation process that aims at reconstructing the two missing

colors at each pixel.

1.1.4 Computational Photography

In spite of the continuous development in cameras from the camera obscura to

CMOS image sensors, the main idea was similar: light entering through an aperture

and focused on a detector by a lens to form an image. In other words, the traditional

camera performs a passive and conservative sampling of incoming light without any

further processing. With the current advances in fabrication technology, the camera
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can be equipped with more computational power to form a computational camera.

Instead of passively capturing photons, this additional intelligence enables the camera

to compute pictures instead of sensing them [10].

Computational photography has opened the door for numerous ideas and appli-

cations that take advantage of on-chip computations. We will present some represen-

tative ideas for brevity.

• High Dynamic Range Imaging [11,12]: An image with high dynamic range

(HDR) is acquired by combining multiple images with low dynamic range (LDR)

having different exposures. The fusion weights are computed post-capture to

yield a high dynamic range with lots of details in both dark and bright regions

of the image.

• Multi-Aperture Imaging [13]: In contrast to conventional imaging, a point

in the scene is mapped to multiple points on the sensor in multi-aperture imag-

ing by slightly shifting the image sensor away from the focal plane and using

micro-lenses. This leads to multiple sub-images of the scene. An image is recon-

structed by warping the sub-images and combining them. There are two main

benefits behind this architecture. First, it helps in capturing the depth infor-

mation by measuring how certain features are located within the sub-images.

Second, it offers a new method for color imaging by replacing the per-pixel color

filter array with per-aperture color filter array. This method is more robust to

crosstalk as it is restricted to neighboring pixels having the same color. How-

ever, it loses spatial resolution because every point in the scene is sampled by

three apertures having the three color filters.

• Light Field Imaging [14]: In contrast to conventional image which captures

the intensity of light at each pixel, light field imaging aims at capturing the

intensity and the direction of light. This generalizes the image from a 2D

projection of the scene to 4D projection. Using an idea similar to multi-aperture
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imaging and some post-capture computations, this concept can be realized using

the conventional CMOS image sensor.

• Compressive Sensing Imaging [15]: The idea of compressive sensing is to

reconstruct a sparse signal from multiple linear measurements obtained by pro-

jecting the signal using multiple random linear projectors. This enables sam-

pling the scene at sub-Nyquist sampling rates. By leveraging the compressive

sensing concept, a scene can be reconstructed by using different random masks

that obtain random linear measurements of the scene. This reduces the required

resolution of the sensor to even a single pixel.

1.2 Quanta Image Sensor

Quanta Image Sensor (QIS) is a class of solid-state image sensors designed to

solve the miniaturization problems of CMOS sensor and envisioned to be the next

generation imaging device after it. Originally proposed by Eric Fossum in 2005 [16],

the sensor has gained significant momentum in the past decade, both in terms of

hardware design [17–19] and image processing [20–24].

1.2.1 Motivation

The main trend in image sensor industry is Miniaturization. This trend aims at

shrinking the pixel size to improve the sensor resolution for increased image detail, or

to decrease the camera size at the same resolution for increased flexibility. This trend

is shown in the curves of Figure 1.3 [25] which are collected from the specifications of

different cameras during the past years. From the curves in Figure 1.3, we notice that

as the pixel pitch is decreased, the full-well capacity is reduced (Figure 1.3(a).) This,

in turn, causes a drop in signal-to-noise ratio (Figure 1.3(b)) and a drop in dynamic

range (Figure 1.3(c).) Using the current image sensor technology, these fundamental
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(a) Full-Well Capacity vs. Pixel Pitch [25]

(b) SNR vs. Pixel Pitch [25] (c) Dynamic Range vs. Pixel Pitch [25]

Fig. 1.3. As we decrease the pixel pitch, or alternatively the pixel size,
the (a) Full-Well capacity decreases, and this results in a decrease in (b)
SNR, and (c) Dynamic range.

problems are inevitable, and they require sophisticated algorithms to reduce their

effect.

QIS aims at solving these problems by providing a new paradigm in imaging. The

main idea is to allow the pixel size to decrease as much as possible (e.g. 100−200 nm

pitch [26]) to form miniature pixels, called jots, with intentionally low FWC (1−200

photoelectrons [26]). Each jot has sub-electron readout noise (i.e., readout noise with
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standard deviation less than 0.3 electron [27, 28]) which enables it to have single-

photon sensitivity and photon counting capability. The jot counts every incoming

photon and produces a binary response “1” if the photon count exceeds a threshold q,

and “0” otherwise. By making q < FWC, the resulting signal has high SNR because

of its binary nature, and this solves the first miniaturization problem of poor SNR.

Definitely, the binary quantization of photon counts leads to significant distortion

in the output signal. To compensate for this aggressive quantization of light, QIS

oversamples the light signal in space and time by having huge spatial resolution (e.g.,

109 pixels per sensor with 200nm pitch per jot [28]) and huge temporal resolution or

frame rate (e.g., 100k fps as reported in [29]), respectively. As a result, each output

gray-scale pixel is formed by locally processing a 3d spatial-temporal kernel or a

“cubicle” of K ×K × T binary jots, where K is the spatial kernel size and T is the

number of temporal frames. This processing is usually referred to as binning and it is

frequently used in low-light image processing to mitigate noise. By efficient processing

of the cubicle of jots, the output pixel represents the incoming light intensity on these

jots. Figure 1.4 shows the QIS image formation process. The high spatial-temporal

oversampling of QIS increases its dynamic range to levels even higher than CMOS

and CCD, and this solves the second miniaturization problem of low dynamic range.

Another useful property of QIS is its programmability or flexibility. For a fixed

cubicle volume K2T , the cubicle shape can be varied according to the scene allowing

for a spatial-temporal resolution trade-off. For example, a cubicle of K
√
T×K

√
T×1

jots can be used for ultra-fast applications when the resolution is not so critical.

Alternatively, a cubicle of 1×1×K2T jots can be used to obtain high-resolution images

for static scenes. These two scenarios are depicted in Figure 1.5. The cubicle shape

can be adjusted post-acquisition according to the scene properties. This adjustment

can be temporally-varying with frames, or spatially-varying within one frame, or both.
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Fig. 1.4. Image reconstruction of QIS data. Given T binary bit planes
having high resolution M × M , the reconstruction algorithm processes
each K×K×T cubicle of jots to form the N×N gray-scale image shown
on the right, where N =M/K.

(a) 4× 4× 1 reconstruction kernel (b) 1× 1× 16 reconstruction kernel

(c) Moving Fan Image [30] (d) Static High Resolution Image

Fig. 1.5. To improve temporal resolution, a cubicle of 4 × 4 × 1 jots (a)
can be used for ultra-fast applications when the spatial resolution can be
small like image (c). Alternatively, to improve spatial resolution, a cubicle
of 1 × 1 × 16 jots (b) can be used to obtain high-resolution images for
static scenes like image (d)
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1.2.2 Evolution of QIS Concept

QIS belongs to the family of photon-counting devices. These photon-counting de-

vices have been known for a long time. Some better-known examples are the electron-

multiplying charge-coupled device (EMCCD) [31, 32], single-photon avalanche diode

(SPAD) [29, 30, 33], Geiger-mode avalanche photodiode (GMAPD) [34], etc. These

sensors have reached a mature level in their design and fabrication; however, their

applications are limited to scientific and military purposes. On the other hand, QIS

is designed to compete in the commercial market beside its scientific and military

applications.

The concept of QIS was first proposed by Fossum in 2005 as a solution for sub-

diffraction limit pixels. The sensor was called the digital film sensor, and later the

quanta image sensor [35–37]. After the introduction of QIS, researchers in EPFL

developed a similar concept called the Gigavision camera [21, 38, 39], where they

mainly tackled the image reconstruction problem assuming the presence of suitable

hardware. Recently, teams at the University of Edingburgh [30, 33, 40] and EPFL

[41, 42] have made new progresses in QIS using binary single-photon detectors. In

industry, Rambus Inc. (Sunnyvale, CA) has developed binary image sensors for high

dynamic range imaging [43–45]. Table 1.1 lists several recent QIS prototypes that are

available or are currently being developed. As a comparison we also show a Canon

5D Mark III CMOS camera. Among many different features, the most noticeable is

the frame rate. For example, SPS SPAD can be operated at 20k fps. SwissSPAD can

even achieve 156k fps. Both are significantly faster than a standard CMOS camera.

Recently, a startup company [47] has been established to develop and realize

practical prototypes of QIS. Resolution is expected to rise from 1024 × 1024 in [48]

to 10240 × 10240, and total power per bit is expected to be reduced from 16pJ/bit

to 9.9pJ/bit as mentioned in the conference presentation of [48].

Beside alleviating the miniaturization problems, the single-photon sensitivity of

QIS nominates it as a perfect candidate for low-light applications such as astronomy
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Table 1.1.
List of QIS Prototypes and Parameters

Camera
Canon

5D CMOS

EMCCD

[46]

GMAPD

[34]

SPC SPAD

[33]

SwissSPAD

[29]

Fossum

QIS [37]

Price $5, 000 $20, 000 Prototype Prototype Prototype Prototype

Resolution 4096× 2160 1024× 1024 256× 256 320× 240 512× 128 1376× 768

Pixel Pitch (µm) 6.25 13 25 8 24 3.6

Full-well Capacity 69 ke- 80 ke- - 56− 125 e- - 1− 250 e-

Frame Rate (fps) 6 26− 92 8× 103 2× 104 1.56× 105 1× 103

Sensor data rate 88.6 Mbps 0.48 Gbps 0.52 Gbps 1.54 Gbps 10.24 Gbps 1 Gbps

[49], night-vision [50], and medical imaging [51–53]. Also, its huge frame rate allows it

to track ultra-fast objects in low-light with high resolution [54]. Specifically, the high

frame rates of QIS simplify the tracking of fast moving objects because the local shift

in consecutive frames is limited and can be easily estimated. QIS has also been used

for nuclear engineering [55], depth and reflectivity reconstruction [56], and recently

in quantum random number generation used in cryptography [41, 57].

1.3 Motivation

In this section, we show our motivation to study the following image processing

problems for QIS: 1) QIS image reconstruction (Section 1.3.1), 2) QIS threshold design

(Section 1.3.2) and 3) Color filter design for QIS (Section 1.3.3)

1.3.1 QIS Image Reconstruction

To obtain a grayscale image from QIS binary measurements, an image reconstruc-

tion algorithm is required. This algorithm should be extremely fast in order to handle

the high frame rates of QIS. In addition, it should have the flexibility to reconstruct

images with spatially invariant or spatially varying threshold.
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A simple way to reconstruct a grayscale image from the binary frames is digital

integration. Each output gray-scale pixel is formed by simply averaging bits in each

K × K × T cubicle. The quantization threshold q can be fixed for all time frames

[35,38,40,58] or it can be a temporal sequence of decreasing or increasing thresholds

for dynamic range improvement [43–45]. However, this simple averaging approach

requires T to be large enough to have a practical dynamic range. This wastes the

temporal oversampling of QIS. A smart integration technique is proposed in [59,60] as

a solution where the frames are summed in overlapping temporal windows. However,

this overlapping introduces colored noise in the output.

Another approach is to formulate image reconstruction as an inverse problem [61],

and use statistical estimation techniques to solve it. Maximum likelihood estimation

(MLE) criterion is used in [20, 21, 39, 62–64], yet the results are noisy because the

problem is ill-conditioned. To produce clean results, Maximum-A-Posterior (MAP)

criterion is used with different priors such as sparsity-based priors [65–67] and total-

variation prior [22]. Except for some simplified assumptions where the MLE problem

gives a closed-form solution [21], iterative techniques are used to solve the inverse

problem such as dynamic programming [65], interior point algorithms [20], gradient

descent [21], simplex search [62], random walks [64], ADMM [22], and unrolled ISTA

iterations implemented by a neural network [66, 67].

On one hand, iterative techniques used to get the MAP estimate are not suitable

for ultra-fast imaging tasks. On the other hand, the fast MLE closed-form solution is

too noisy. Hence, in order for QIS to be a practical competitive for CCD and CMOS,

a fast and efficient image reconstruction algorithm is required. Figure 1.6 shows

reconstructed images by ML criterion [21], MAP criterion in [22], and our proposed

method compared to ground truth. Our proposed method can achieve the best of

two worlds: It can reconstruct a clean image like MAP estimate in short time like

ML estimate.
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(a) ML [21], 22.95 dB, 0.46 sec (b) MAP [22], 40 iter., 28.23 dB, 197 sec

(c) Our method, 29.50 dB, 2.33 sec (d) Ground Truth

Fig. 1.6. Simulated QIS data and the reconstructed gray-scale images
using different reconstruction methods. The results show that our method
reconstructs high quality image in short time. In this experiment, we
spatially oversample each pixel by K = 4 × 4 binary bits and we use
T = 5 independent temporal measurements. Quantization threshold is
fixed to q = 1 in all methods.

1.3.2 QIS Threshold Design

Optimal threshold design for QIS is important as it directly affects the dynamic

range of an image. Figure 1.7 illustrates an example where we simulate the raw binary

data acquired by a QIS using a uniform threshold q. When q is low, most of the bits

in the raw input are “1”. The reconstructed image is therefore an over-exposed image.
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On the other hand, when q is high, most of the bits in the raw input are “0”. The

reconstructed image is then under-exposed. In both cases, it is evident from the

simulation that a uniform threshold has limited performance. A better way is to

allow q to vary spatially so that a pixel (or a group of pixels) has its own threshold

value. The result in Figure 1.7(d) shows the reconstruction result using a spatially

varying threshold obtained from our proposed technique, which is clearly better than

the uniform thresholds.

Existing work on QIS threshold design study can be summarized into three classes

of methods.

• Markov Chain [62]. The Markov Chain method developed by Hu and Lu [62]

is a time-sequential update scheme. A Markov Chain probability is used to

control how the threshold q of each jot should be increased or decreased in

every frame. While the method has provable convergence, the threshold of each

jot has to be updated sequentially in time. In contrast, our proposed method

allows a group of jots to share the same threshold. As a result, our proposed

method has significantly faster rate of convergence.

• Conditional Reset [43–45]. The conditional reset method is a hardware solution

proposed by Vogelsang and colleagues. The idea is to take a sequence of frames

with ascending (or descending) uniform thresholds, and digitally integrate the

sequence to form a gray-scale image. The drawback of the method, besides the

additional hardware cost of the per-pixel reset transistors, is the limited quality

of the reconstructed image. For the same number of frames, our proposed

method produces better images.

• Checkerboard Threshold [6]. This method constructs a checkerboard of thresh-

olds by alternating two threshold values q1 and q2. The optimality criterion of q1
and q2 is based on minimizing the Cramér-Rao lower bound (CRLB) integrated

over a range of light intensities, which is essentially an average case result. Our

proposed method obtains the optimal threshold for each pixel. This per-pixel
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(a) Observed, q = 3 (b) Observed, q = q∗(c) (c) Observed, q = 12

(d) Reconstruction, q = 3 (e) Reconstruction, q = 12

(d) Reconstruction, q = q∗(c) (e) Ground Truth

Fig. 1.7. Simulated QIS data and the reconstructed gray-scale images
using different thresholds. Top row: The binary measurements obtained
using thresholds q = 3, q = q∗(c), and q = 12. Bottom figures: The
maximum likelihood estimates obtained from the binary measurements,
with comparison to the ground truth. The results show that our spatially
varying threshold q∗(c) offers the best reconstruction. In this experiment,
we spatially oversample each pixel by K = 2 × 2 binary bits and we use
T = 25 independent temporal measurements.

optimization has higher reconstruction performance compared to checkerboard

threshold.
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1.3.3 Color Filter Arrays Design

Despite the rapid advancement in QIS hardware [28, 35, 68] and algorithms [21,

23,24,69], all reported findings, to-date, are based on monochromatic data. The first

color QIS imaging is only recently proposed by Gnanasambandam et al. [70], where

they demonstrated how to reconstruct a color image from the sensor with a Bayer

color filter array. In this thesis, we discuss how to design color filter array for better

image acquisition.

A color filter array (CFA) is a mask placed on top of the sensor to select (filter)

wavelengths. As light passes through the color filter array, the resulting image is a

mosaic pattern of the three tri-stimulus RGB colors. Traditionally, CFA is organized

as a periodic replica of a 2D kernel called the color atom. The de-facto color atom

used in the industry is the Bayer pattern [71] because of its simplicity and the readily

available demosaicking algorithms include [72–81]. More sophisticated CFAs have

been proposed [82–92] to improve the Bayer CFA.

When designing a CFA, there are three factors that should be taken into consid-

eration:

• Aliasing: Since color filtering is a sampling process, aliasing happens when

the sampling rate is less than Nyquist. Aliasing causes false color artifacts at

color edges, called the Moirè artifacts [83]. Color filters that are susceptible to

aliasing, such as the Bayer CFA, require sophisticated demosaicking algorithms

to suppress the Moirè artifacts. In contrast, a robust CFA can use simple

demosaicking algorithms.

• Sensitivity: Since CFA is a filter, it blocks part of the incoming light. This

reduces the sensor sensitivity and makes the image more susceptible to noise.

A good CFA design should maximize the sensitivity by allowing transparent or

“panchromatic” color filters that block as few wavelengths as possible.

• Crosstalk: Crosstalk can be either optical or electrical [93]. If not treated,

crosstalk will make colors look pale or de-saturated. Crosstalk desaturation is
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Fig. 1.8. QIS Imaging Model. When the scene image arrives at the
sensor, the CFA first selects the wavelength according to the colors. Each
color pixel is then sensed using a photon-detector and reports a binary
value based on whether the photon counts exceeds certain threshold or
not. The measured data contains three subsampled sequences, each rep-
resenting a measurement in the color channel.

corrected by pixel-wise multiplication of the RGB color vector using a color

correction matrix. However, color correction enhances residual noise in the

image [93, 94]. The situation is worsen in QIS because of its small size.

The three factors above are conflicting: Optimizing one generally degrades the

others. For conventional CMOS image sensors, crosstalk is not severe, and so most

CFA designs in the literature consider aliasing and sensitivity only. The only available

work on QIS color filter array design is by Anzagira and Fossum [93]. However,

aliasing was not adequately handled.

The design framework we propose in this thesis is a unification of several main-

stream CMOS-based color filter arrays. To put our work in the proper context in the

literature, we here list a few of the better known results.

• Spatial CFA Design: By suppressing the Moirè artifacts and crosstalk while

keeping the demosaicing algorithm simple, Lukac and Plataniotis [82] pro-

posed a CFA and compared it with other CFAs using a universal demosaicking

method. However, their work did not provide a mathematical framework to

analyze the CFA optimality.

• Spatio-Spectral CFA Design: Hirakawa and Wolfe [83] proposed a method

through the spatial and spectral domain analysis. Their CFA reduces aliasing
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in the frequency domain, and possesses high sensitivity and numerical stability.

Condat [95] extended the framework by optimizing luminance and chrominance

sensitivity. He defined a new form of orthogonality between chrominance chan-

nels in frequency domain. Hao et al. [86] and Wang et al. [87] proposed a

framework based on symbolic discrete Fourier transform (DFT). Their CFA

maximizes the numerical stability of linear demosaicking process under aliasing

and physical constraints.

• Learning-based CFA Design: By minimizing the average error on a color

dataset, Lu and Vetterli [84] used an iterative algorithm to solve a least squares

CFA design problem. Chakrabarti [96] and Henz et al. [97] proposed to learn

the optimal CFA pattern by using a deep neural network.

Besides these mainstream CFA design frameworks, there are a number of other

CFA designs such as [85,88–92]. On the hardware side, [98] and [99] took into account

that color filter fabrication technology lags the image sensor technology in terms of

miniaturization. They proposed a hardware-friendly CFA assuming the color filter

size is 1.5× pixel size.

1.4 Thesis Outlines and Contributions

The goal of this thesis is three-fold. First, it proposes an efficient and fast QIS

image reconstruction algorithm. This algorithm should have the flexibility to han-

dle spatially-varying threshold, which is the best option according to Section 1.3.2.

Second, it presents an optimal threshold design methodology and provide theoretical

justifications for it. Finally, it presents an optimization framework for CFA design

that encompasses aliasing, sensitivity and crosstalk in a unified model. This is the first

work that incorporates a quantitative crosstalk metric in an optimization framework

for CFA design.

As for QIS image reconstruction, our contributions are summarized as follows.
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• First, we extend the ADMM algorithm proposed in [22] to spatially-varying

threshold. As mentioned in Section 1.3.1, threshold has a critical effect of the

reconstruction quality, where a poorly selected threshold will result in either an

under-exposed image or an over-exposed image. However, most algorithms can

only handle spatially invariant threshold.

• Second, we propose a non-iterative algorithm for reconstructing clean QIS im-

ages in short time. This algorithm is based on a Transform-Denoise framework.

Under certain conditions, the ML solution has a closed-form expression which

requires summing the bits in each cubicle. By observing the distribution of

the summed bits, we can use a suitable variance stabilizing transform to make

the noise spatially-invariance. Hence, we can use any standard image denoising

algorithm to remove this noise before applying the ML expression. Experimen-

tal results shows the effectiveness of our method in terms of quality and speed

compared to other methods.

As for QIS threshold design, we have two major contributions:

• First, we provide a rigorous theoretical analysis of the performance limits of

QIS image reconstruction as a function of the threshold. These results form

the basis of our subsequent discussions of the threshold update scheme. Some

results are known, e.g., the signal-to-noise ratio is a function of the Fisher

Information [6, 64], but a number of new results are shown. In particular, we

show that (i) the maximum likelihood estimate has a closed-form expression

in terms of the incomplete Gamma function, (ii) the oracle threshold can be

derived in closed-form by maximizing the signal-to-noise ratio, and (iii) the

image reconstruction has a phase transition behavior.

• Second, we propose an efficient threshold update scheme based on our theoreti-

cal results. The new scheme is a bisection method which iteratively updates the

threshold without the need of reconstructing the image. By checking whether

the proportion of one’s and zero’s approaches 0.5 in a spatial-temporal cubicle,
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the threshold is guaranteed to be near optimal. Compared to other existing

threshold update schemes such as [62] and [43–45], the new scheme offers sig-

nificantly faster rate of convergence. We also demonstrate how the dynamic

range can be extended for high dynamic range (HDR) imaging.

As for Color filter array design, the main contribution is a general and flexible frame-

work for CFA design. Compared to the existing CFA design framework, the new

framework is able to simultaneously (Section 5.2)

• Improve CFA’s luminance and chrominance sensitivity,

• Reduce aliasing between luminance and chrominance channels,

• Suppress crosstalk between spectral sub-bands, and

• Enforce orthogonality between chrominance channels to permit simple linear

demosaicking.

The design framework is presented in the form of optimization. We have two designs:

A convex optimization and a non-convex optimization. In addition to the formulation,

we also present an algorithm to solve the non-convex optimization. (Section 5.3)

For performance evaluation of different CFAs on QIS images, we propose in Sec-

tion 5.4 a universal demosaicking pipeline. This pipeline comprises a demosaicking

by frequency selection algorithm for removing the CFA masking effect followed by a

color correction step for removing the desaturation effect of crosstalk. Experimental

evaluation on the Kodak and McMaster color datasets shows the robustness of our

proposed CFAs compared to other CFAs in literature.
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2. QIS IMAGING MODEL

In this chapter, we provide an overview of the QIS imaging model. The model has been

previously discussed in several papers, e.g., [21–24]. Readers interested in details can

refer to these papers for further explanations. Without loss of generality, we assume

1-dimensional signals where extension to 2-dimensional signals is straightforward.

2.1 Spatial Oversampling

We denote the discrete version of the light intensity as a vector c = [c0, . . . , cN−1]
T ,

where n = 0, . . . , N −1 specify the spatial coordinates. We assume that cn is normal-

ized to the range [0, 1] for all n so that there is no scaling ambiguity. To model the

actual light intensity, we multiply cn by a constant α to yield αcn, where α > 0 is a

fixed scalar constant.

The continuous version of the light intensity field λ(x) is obtained by convolving

with a non-negative interpolation kernel ϕ(x) as follows

λ(x) =
N

τ

N−1∑
n=0

cnϕ(Nx− n), (2.1)

where τ is the exposure time. Examples of the interpolation kernel include

• Box-car kernel

β(x)
def
=

1, if 0 ≤ x ≤ 1.

0, if otherwise
(2.2)

• Cardinal B-splines

βk(x) =

β ∗ . . . ∗ β︸ ︷︷ ︸
k + 1 times

 (x+
k

2
) (2.3)
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As a sampling device, QIS uses M ≫ N jots to sample the light field intensity

λ(x). The ratio K def
= M/N is known as the spatial oversampling factor. Assume that

the mth jot covers the interval [m
M
, m+1

M
] ⊂ [0, 1] for m ∈ {0, . . . ,M − 1}. Denote by

θm, the total light exposure integrated in the mth jot during exposure time period

[0, τ ]. Hence, we can calculate θm as follows.

θm
def
= α

∫ τ

0

∫ (m+1)/M

m/M

λ(x) dx dt

= ατ⟨λ(x), β(Mx−m)⟩ (2.4)

where β(x) is the box function defined in X, and ⟨., .⟩ represents the standard L2

inner product between two continuous functions f and g, which is defined as ⟨f, g⟩ =∫∞
−∞ f(x)g(x) dx. Substituting (2.1) in (2.4) , we get

θm = ατ

⟨
N

τ

N−1∑
n=0

cnϕ(Nx− n), β(Mx−m)

⟩

= α
N−1∑
n=0

cn ⟨Nϕ(Nx− n), β(Mx−m)⟩

(a)
= α

N−1∑
n=0

cn

⟨
ϕ(x), β

(
M(x+ n)

N
−m

)⟩

= α
N−1∑
n=0

cn ⟨ϕ(x), β (Kx− (m−Kn))⟩

(b)
= α

N−1∑
n=0

cngm−Kn (2.5)

where step (a) is obtained by using the change of variables Nx−n→ x, and step (b)

is obtained by defining the discrete filter

gk
def
= ⟨ϕ(x), β (Kx− k)⟩ . (2.6)

In multi-rate signal processing notation, (2.5) represents K-fold upsampling of a

signal cn followed by filtering with discrete low-pass filter {gk}. In matrix notation,

(2.5) can be rewritten as follows

θ = αGc, (2.7)
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•

•

•

K gk Poisson×

α

cn
θm Ym bm,1

bm,2

bm,T
θ = αGc

Fig. 2.1. Block diagram illustrating the image formation process of QIS.

where θ ∈ RM is the light exposure vector, c ∈ RN is the light intensity vector, and

G ∈ RM×N is a circulant matrix representing the upsampling-filtering process. The

overall process is depicted in the right block in Figure 2.1.

When ϕ(x) = β(x), i.e., the interpolation filter has box-car kernel, the filter {gk} can

be calculated as follows.

gk
def
= ⟨β(x), β (Kx− k)⟩ (2.8)

=

∫ ∞

−∞
β(x)β (Kx− k) dx (2.9)

=


1
K
, if k ∈ {0, 1, . . . , K − 1}

0, if otherwise
(2.10)

which means that {gk} has a box-car kernel that sum to one. In this case, the matrix

G can be defined as

G =
1

K
IN×N ⊗ 1K×1, (2.11)

where 1K×1 is a vector of all ones and ⊗ denotes the Kronecker product. The box-

car kernel assumption is typically reasonable, because on each QIS jot there is a

micro-lens to focus the incident light. Although previous papers, e.g., [21, 22], do

not make such assumption, in this thesis we decide to use the simplified G, for

otherwise the theoretical analysis will become very complicated. Nevertheless, in the

supplementary material we show comparison between a general G and the simplified

G. The performance gap is usually insignificant.
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2.2 Truncated Poisson Process

We assume that the operating speed of QIS is significantly faster than the scene

motion. Therefore, for a given scene c (and also θ), we are able to acquire a set of T

independent measurements. We illustrate this using the T channels in Figure 2.1.

Photons impinge on the m-th jot during the t-th independent measurement ac-

cording to a Poisson process, with mean value equal to the light exposure θm on this

jot, i.e., the photon count Ym,t follows the Poisson distribution:

P(Ym,t = ym,t) =
θ
ym,t
m e−θm

ym,t!
, (2.12)

where m = 0, . . . ,M−1 denotes the m-th jot of the QIS and t = 0, 1, . . . , T−1 denotes

the t-th independent measurement in time. Denoting q ∈ N as the quantization

threshold, the final observed binary measurement Bm,t is a truncation of Ym,t:

Bm,t =

0, if Ym,t < q.

1, if Ym,t ≥ q

The probability mass function of Bm,t is given by

P(Bm,t = bm,t) =


q−1∑
k=0

θkme−θm

k!
, if bm,t = 0,

∞∑
k=q

θkme−θm

k!
, if bm,t = 1.

(2.13)

The goal of image reconstruction is to recover the underlying image c from the

binary measurements B = {Bm,t | m = 0, . . . ,M − 1, and t = 0, . . . , T − 1}. A

pictorial illustration of the reconstruction is shown in Figure 1.4.

2.3 Properties of Truncated Poisson Processes

The probability mass function of Bm,t in (2.13) is Bernoulli. However, the right

hand side of (2.13) involves infinite sums which are difficult to interpret. To simplify
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the equations, we consider the upper incomplete Gamma function Ψq : R+ → [0, 1]

defined in [100] as:

Ψq(θ)
def
=

1

Γ(q)

∫ ∞

θ

tq−1e−tdt, for θ > 0, q ∈ N.

where Γ(q) = (q − 1)! is the standard Gamma function. The incomplete Gamma

function allows us to rewrite the infinite sums in (2.13) using the following identity

[100]:

Ψq(θ) =

q−1∑
k=0

θk

k!
e−θ. (2.14)

Consequently, the probabilities in (2.13) become

P(Bm,t = 0) = Ψq(θm),

P(Bm,t = 1) = 1−Ψq(θm). (2.15)

Example 1 In the special case of q = 1, we obtain:

P(Bm,t = 0) =
1

Γ(1)

∫ ∞

θm

t0e−tdt = e−θm ,

which coincides with the results shown in [21] and [22].

The incomplete Gamma function Ψq(θ) is a decreasing function of θ because the

first order derivative of Ψq(θ) with respect to θ is negative:
d

dθ
Ψq(θ) =

−θq−1e−θ

Γ(q)
< 0, ∀q ∈ N, and θ > 0. (2.16)

The limiting behavior of Ψq(θ) is important. For a fixed q, the function Ψq(θ)→ 1 as

θ → 0 and Ψq(θ) → 0 as θ → ∞. While Ψ−1
q still exists in these situations because

Ψq is monotonically decreasing, for a given z the value Ψ−1
q (z) could be numerically

very difficult to evaluate. To characterize the sets of θ and q that Ψq is (numerically)

invertible, we define the θ-admissible set and the q-admissible set.

Definition 2.3.1 The θ-admissible set and q-admissible set of the incomplete Gamma

function are

Θq
def
= {θ | ε ≤ Ψq(θ) ≤ 1− ε},

Qθ
def
= {q | ε ≤ Ψq(θ) ≤ 1− ε}, (2.17)
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respectively, where 0 < ε < 1
2

is a constant.

More discussions of the incomplete Gamma function can be found in the supplemen-

tary material.

Remark 1 In this thesis, we assume that QIS is noise-free, i.e., the only source of

randomness is the truncated Poisson random variable. In real sensors, there will be

readout noise, photo-response non-uniformity caused by conversion gain variation,

dark count rate (a.k.a. dark current), optical crosstalk and electronic crosstalk. See

[26] for details.

Remark 2 In Chapter 5, we slightly change the notation to avoid ambiguities with

the color filter array model.
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3. QIS IMAGE RECONSTRUCTION

In this chapter, we tackle the QIS image reconstruction problem. First, we present

an iterative approach for obtaining the ML solution in Section 3.1. We also derive

a closed-form expression for the ML solution under certain conditions. Second, we

present in Section 3.2 an iterative image reconstruction algorithm based on the MAP

criterion. Compared to [22], this algorithm is more flexible where it can handle

spatially-varying thresholds. Third, we present in Section 3.3 a fast and accurate

reconstruction approach, which is based on the ML solution and a denoising step

performed an appropriate transform domain.

3.1 Maximum Likelihood Estimation

Given B = {Bm,t | m = 0, . . . ,M − 1, and t = 0, . . . , T − 1}, MLE solves the

following optimization problem:

ĉ
(a)
= argmax

θ=αGc

T−1∏
t=0

M−1∏
m=0

P[Bm,t = 1 ; θm]
bm,t × P[Bm,t = 0 ; θm]

1−bm,t

(b)
= argmax

θ=αGc

T−1∑
t=0

M−1∑
m=0

{
bm,t log(1−Ψq(θm)) + (1− bm,t) logΨq(θm)

}
(c)
= argmin

θ=αGc

F (θ;B) (3.1)

Here, the right hand side of (a) is the likelihood function of a Bernoulli random

variable, (b) follows from taking the logarithm, and (c) follows from defining the

negative log-likelihood function F : R+ × {0, 1}MT → R+ which is written as

F (θ;B)
def
= −

T−1∑
t=0

M−1∑
m=0

{
bm,t log(1−Ψq(θm)) + (1− bm,t) logΨq(θm)

}
(3.2)

In [21], the authors prove that the log likelihood function is concave. Hence,

F (θ,B) is convex in θ, and (3.1) is a convex optimization problem. However, for
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general matrix G, or equivalently a general interpolation kernel ϕ(x), the optimization

problem is not separable in the variables {c0, . . . , cN−1}. Hence, an iterative algorithm

is required to solve it. On the other hand, for G defined in (2.11), the problem is

separable in {c0, . . . , cN−1}, and we can obtain a closed-form expression for the ML

solution. In the next two subsections, we will discuss these two cases in more details.

3.1.1 ADMM Algorithm for Solving MLE

In this subsection we discuss how to solve the MLE problem in (3.1) using the

alternating direction method of multipliers (ADMM) algorithm [101]. Our focus here

is the modification required to accommodate the case of q > 1 and α > 1 for the

original ADMM algorithm presented in [22].

Inspecting (3.1), we note that it is an equality constrained optimization. There-

fore, we can formulate its augmented Lagrangian function as

L(c,θ, z̃) = F (θ;B)− z̃T (θ − αGc) +
ρ

2
∥θ − αGc∥2, (3.3)

where z̃ ∈ Rm is the Lagrangian multiplier associated with the constraint θ = αGc,

and ρ > 0 is a non-negative scalar that control the strength of the quadratic penalty

term. By completing squares and using the scaled Lagrangian multiplies z = z̃/ρ,

the augmented Lagrangian can be rewritten as

L(c,θ, z) = F (θ;B) +
ρ

2
∥θ − αGc− z∥2 + ρ

2
||z||2. (3.4)

We can solve the optimization problem via an iterative approach

c(k+1) = argmin
c

L(c,θ(k), z(k)), (3.5a)

θ(k+1) = argmin
θ

L(c(k+1),θ, z(k)), (3.5b)

z(k+1) = z(k) −
(
θ(k+1) − αGc(k+1)

)
. (3.5c)

Since F (θ;B) is convex in θ, convergence of (3.5a)-(3.5c) is guaranteed under ap-

propriate conditions [101]. For notational simplicity, we will drop the iteration index

on solving the c-subproblem in (3.5a) and the θ-subproblem in (3.5b).
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• c-subproblem: By defining the variable c0 = θ − z and dropping terms inde-

pendent of c, we can write the c-subproblem as follows

ĉ = argmin
c

ρ

2
||c0 − αGc||2 (3.6)

which is a quadratic optimization problem. This problem can be solved by setting

the first derivative

∂L
∂c

= −αρGT (c0 − αGc) (3.7)

to zero, and solving for c to get

c =
1

α
(GTG)−1GTc0 (3.8)

• θ-subproblem: This problem is more challenging as it involves the nonlinear

incomplete Gamma function Ψq(θm). Substituting for the negative log-likelihood

function F (θ;B) from (3.2) and eliminating terms independent of θ, solving (3.5b)

is equivalent to solving

min
θ

T−1∑
t=0

M−1∑
m=0

[
ρ

2
(θm − dm)2 − (1− bm,t)log (Ψq(θm))− bm,tlog (1−Ψq(θm))

]
, (3.9)

where d = [d0, . . . , dM−1]
T with d = αGc+ z. By defining the variable

Sm =
T−1∑
t=0

bm,t,

we can rewrite (3.9) as follows.

min
θ

M−1∑
m=0

[
ρ

2
(θm − dm)2 − (T − Sm)log (Ψq(θm))− Smlog (1−Ψq(θm))

]
. (3.10)

To solve (3.10), we recognize that it is a sum of M separable functions. Therefore,

(3.10) is minimized when each individual term in the sum is minimized. The first

order optimality returns us the following result.

Proposition 3.1.1 The optimal solution θm of (3.10) satisfies the equations

ρθm +
e−θmθq−1

m

Γ(q)

T (1− ψq(θm))− Sm

Ψq(θm)(1−Ψq(θm))
= ρdm, ∀Sm ∈ {0, 1, . . . , T}. (3.11)
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Proof By using the first order derivative of Ψq(θm) in (2.16), we can differentiate

the m-th term in (3.10) and set the result to zero to yield (3.11).

From Proposition 3.1.1, it remains to solve (3.11). However, since (3.11) is a

transcendental equation, we must adopt a numerical approach to solve the equation.

Our proposed solution relies on building a look up table (offline) for D + 1 values of

dm distributed uniformly in the interval [dmin, dmax] with a step ∆d = (dmax−dmin)/D.

Then, the solution at any value of d is obtained by a simple linear interpolation.

Remark: Because of the nonlinearity of the incomplete Gamma function Ψq(θ),

when building the look up table a solution may lie in a region close to discontinuity.

To mitigate this issue, we use a bisection to determine an approximate interval in

which the solution must be contained.

dm
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Fig. 3.1. Absolute Residual vs dm ∈ [−4, 4] after substituting with the
obtained root in (3.11). The number of points is D = 104, and T = 5.
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3.1.2 Closed-Form ML Expression for Box-car kernel

Under the box-car interpolation kernel assumption, the MLE problem can be

simplified to obtain a closed-form expression for the ML solution. With the G defined

in (2.11), we can partition B intoN independent blocks {B1, . . . ,BN} where each block

is

Bn
def
= {BKn+k,t | k = 0, . . . , K − 1, t = 0, . . . , T − 1}. (3.12)

In addition, the constraint θ = αGc can be rewritten as

θKn+k =
αcn
K

, ∀n ∈ {0, . . . , N − 1} (3.13)

Then, the pixel ĉn can be estimated according to the following proposition.

Proposition 3.1.2 (Closed-form ML Estimate) For ϕ(x) defined as box-car ker-

nel, the solution of the MLE in (3.1) is given by

ĉn =
K

α
Ψ−1

q

(
1− Sn

KT

)
, ∀n ∈ {0, . . . , N − 1} (3.14)

where Sn
def
=
∑T−1

t=0

∑K−1
k=0 BKn+k,t is the sum of bits in the n-th block Bn.

Proof See Appendix C.1.

It would be instructive to illustrate Proposition 3.1.2 using a figure. Figure 3.2 shows

the case when T = 1, i.e., a single exposure, and K = 16. The 1-bit measurements

are first averaged to compute the number of ones within a block of size K. Then,

applying the inverse incomplete Gamma function Ψ−1
q (·) and a scaling constant K/α

we obtain the solution ĉn.

3.2 Maximum-A-Posterior Solution

Since the ML solution depends solely on input random data, it contains some

randomness which makes the ML solution noisy. This noise is exacerbated when

the combined spatial-temporal oversampling L is not large enough because the noise
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Ψ−1q (·)
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ĉn

Fig. 3.2. Pictorial interpretation of Proposition 3.1.2: Given an array of
1-bit measurements (black = 0, white = 1), we compute the number of
ones within a block of size K. Then the solution of the MLE problem in
(C.3) is found by applying an inverse incomplete Gamma function Ψ−1

q (·)
and a scaling factor K/α.

variance will be significant for small L. This problem can be alleviated by using

our prior knowledge of the attributes of the output image within the Maximum-A-

Posterior (MAP) framework [61]. Denote the negative logarithm of the prior function

as g(c) = −log(p(c)), the MAP estimation problem can be written as

ĉ = argmin
θ=αGc

F (θ;B) + g(c) (3.15)

As for choosing the prior g(c), there are many options that include Gaussian

and non Gaussian Markov random fields [61], sparsity-based priors [102], data-driven

priors learned by neural networks [103], denoising-based priors in the plug-and-play

framework [104]. Here, we use the anisotropic total variation prior [22] for simplicity,

where extension to other priors is straightforward. Denote by D the first order finite

difference operator. Hence, we cab formulate the MAP estimation problem with total

variation prior as follows.

ĉ = argmin
θ=αGc

F (θ;B) + λ||Dc||1, (3.16)

which can be rewritten as follows

ĉ = argmin
θ=αGc
v=Dc

F (θ;B) + λ||v||1. (3.17)
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By completing squares as we did before, we can write the augmented Lagrangian as

follows.

L(c,θ,v, z, r) = F (θ;B) + λ||v||1 +
ρ

2
||θ − αGc− z||2

− ρ

2
||z||2 + γ

2
||v −Dc− r||2 − γ

2
||r||2 (3.18)

where z ∈ RM and r ∈ RN are the scaled Lagrangian variables associated with the

constraints θ = αGc and v = Dc, respectively. ρ and γ are non-negative weights

the control the power of the quadratic penalty terms. Using the ADMM framework,

we can minimize the augmented Lagrangian by solving the following sequence of

subproblems.

c(k+1) = argmin
c

L(c,θ(k),v(k), z(k), r(k)), (3.19a)

θ(k+1) = argmin
θ

L(c(k+1),θ,v(k), z(k), r(k)), (3.19b)

v(k+1) = argmin
v

L(c(k+1),θ(k+1),v, z(k), r(k)), (3.19c)

z(k+1) = z(k) −
(
θ(k+1) − αGc(k+1)

)
. (3.19d)

r(k+1) = r(k) −
(
v(k+1) −Dc(k+1)

)
. (3.19e)

From the convexity of F (θ;B) and the total variation prior, convergence of (3.19a)-

(3.19e) is generally guaranteed [101]. For notational simplicity, we will drop the

superscripts on presenting the solution of each subproblem.

• c-subproblem: By defining the variables c0 = θ − z and c1 = v − r, and

dropping terms independent of c, we can write the c-subproblem as follows.

ĉ = argmin
c

ρ

2
||c0 − αGc||2 + γ

2
||c1 −Dc||2 (3.20)

which can be solved by setting the first derivative to zero and rearranging the terms

to get

ĉ =
(
ρα2GTG+ γDTD

)−1 (
ραGTc0 + γDTc1

)
(3.21)

Since the matrix ρα2GTG + γDTD is circulant as proved in [22], the inversion can

be implemented in the Foruier domain to improve computational efficiency.
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• θ-subproblem: By defining the variable d = αGc + z, we can write the

θ-subproblem as follows.

θ̂ = argmin
θ

ρ

2
||θ − d||2 + F (θ;B) (3.22)

which is the same as the θ-subproblem (3.9) in the ML solution. Hence, it can be

solved in the same way.

• v-subproblem: By defining the variable v0 = Dc + r, we can write the v-

subproblem as follows

v̂ = argmin
v

λ||v||1 +
γ

2
||v − v0||2 (3.23)

Applying the shrinkage formula [61], the solution is

v̂ = sign(v0)max(|v0| − λ/γ, 0) (3.24)

3.2.1 The Plug-and-Play Algorithm [104]

The choice of prior function g(c) affects the reconstruction quality significantly.

To choose priors stronger than the total-variation prior, we use the Plug-and-Play

algorithm [104]. In this approach, the authors noticed that for a general prior g(c),

the v-subproblem is equivalent to a denoising problem of a signal impaired with

additive white Gaussian noise having standard deviation of sqrtλ/γ. Hence, the v-

subproblem can be solved by any standard Gaussian denoiser such as BM3D [105],

Monte-Carlo Non-Local Means [106], a neural network denoiser [107, 108], or even a

combination of Gaussian denoisers [109].

In our problem settings, using the Plug-and-Play approach will only change the

v-subproblem to be just a denoising step as follows

v̂ = Dσ(v0), (3.25)

where D is the selected denoiser, and σ =
√
λ/γ is the noise level. All other sub-

problems will be the same. We can also use a sequence of decreasing noise levels to

guarantee convergence as proved in [110].
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3.3 Transform-Denoise Pipeline

Looking back at the two previous sections, we proposed 1) an iterative image

reconstruction approach for ML or MAP estimation framework, and 2) a fast image

reconstruction approach based on ML closed-form expression under box-car interpola-

tion kernel assumption. Each approach has its pros and cons. The iterative approach

can get a clean reconstructed image if a suitable prior is used in the MAP framework;

however, it is impractical for ultra-fast applications. On the other hand, the closed-

form expression gives an ML estimate in very short time with low computational

complexity; however, the reconstructed image is noisy especially for small combined

oversampling factor L. In this section, we propose an approach that combines the

pros of both techniques.

3.3.1 Related Work in the Literature

The proposed algorithm belongs to a family of methods we call the transform-

denoise methods. The idea of transform-denoise is similar to what we do here: Trans-

form the random variable using a variance stabilizing transform, then denoise using an

off-the-shelf image denoiser. Among the existing transform-denoise methods, perhaps

the most notable work is the one by Makitalo and Foi [111], where they considered the

optimal inverse of the Anscombe Transform for the case of Poisson-Gaussian random

variables. A more recent work by the same research group [112] showed that it is

possible to boost the denoising performance by applying the transform-denoise itera-

tively. We should also mention the work by Foi [113], which considered the modeling

and transformation for clipped noisy images. The problem setting of that work is for

conventional sensors. However, the underlying principle using the transform-denoise

approach is similar to that of QIS.

The closed-form ML expression in subsection 3.1.2 is based on the box-car iterpo-

lation kernel assumption (i.e., G defined in (2.11)). Under this assumption, summing

of the Bernoulli random variables can be thought of performing a spatial-temporal
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“binning” of the pixels. Binning is a common technique in restoring images from

Poisson noise, especially when the signal-to-noise ratio is low [114–116]. Binning can

also be applied together with transform-denoise, e.g., in [112], to achieve improved

results. For QIS, the result of binning is different from that of the Poisson noise, for

the sum of QIS bits leads to a binomial random variables whereas the sum of Poisson

noise leads to a Poisson random variable.

3.3.2 Binomial Anscombe Transform

The MLE solution ĉ = [ĉ0, . . . , ĉN−1]
T computed through Proposition 3.1.2 is

noisy. The reason is that for a relatively small K and T , the randomness in the 1-bit

measurement has not yet been eliminated by the summation in Sn. Therefore, in

order to improve the image quality, additional steps must be taken to improve the

smoothness of the image.

At the first glance, this question seems easy because if one wants to mitigate the

noise in ĉ, then directly applying an image denoising algorithm D to ĉ would be

sufficient, e.g., Figure 3.3(a). However, a short afterthought will suggest that such

approach is invalid for the following reason. For the majority of image denoising

algorithms in the literature, the noise is assumed to be independently and identically

distributed (i.i.d.) Gaussian. In other words, the variance of the noise should be

spatially invariant. However, the resulting random variable ĉ does not have this

property.

Our proposed solution is to apply an image denoiser before the inverse incomplete

Gamma function as shown in Figure 3.3(b). Besides the order of denoising and

Gamma function, we also add a pair of nonlinear transforms T and T −1 before and

after the denoiser D. The reasons of these two changes are based on the following

observations.

Observation 3.3.1 Under box-car kernel assumption, the random variables

{BKn+k,t | k = 0, . . . , K − 1, and t = 0, . . . , T − 1}
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Ψ−1q (·) D

(a) Conventional method

1− Sn

L T D T −1
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α
Ψ−1q (·)

(b) Proposed method

Fig. 3.3. Two possible ways of improving image smoothness for QIS. (a)
The conventional approach denoises the image after ĉn is computed.
(b) The proposed approach: Apply the denoiser before the inverse in-
complete Gamma function, together with a pair of Anscombe transforms
T . The symbol D in this figure denotes a generic Gaussian noise image
denoiser.

are i.i.d. Bernoulli of equal probability P[BKn+k,t = 1] = 1 − Ψq

(
αcn
K

)
for k =

0, . . . , K − 1 and t = 0, . . . , T − 1.

The proof of Observation 3.3.1 follows immediately from the matrix G defined in

(2.11) which corresponds to the box-car kernel. We can divide the M jots into N

groups each having K × T entries. Within the group, the 1-bit measurements are all

generated from the same pixel cn.

The consequence of Observation 3.3.1 is that for a sequence of i.i.d. Bernoulli

random variables, the sum is a Binomial random variable. This is described in Ob-

servation 3.3.2.

Observation 3.3.2 If {BKn+k,t} are i.i.d. Bernoulli random variables with proba-

bility P[BKn+k,t = 1] = 1− Ψq

(
αcn
K

)
for k = 0, . . . , K − 1 and t = 0, . . . , T − 1, then

the sum Sn defined in (C.2) is a Binomial random variable with mean and variance

E[Sn] = L
(
1−Ψq

(αcn
K

))
, Var[Sn] = LΨq

(αcn
K

)(
1−Ψq

(αcn
K

))
.
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Observation 3.3.2 is a classic result in probability. The mean of the Bernoulli random

variables is specified by the incomplete Gamma function Ψq

(
αcn
K

)
, which approaches 1

as K increases. Thus, for fixed T , the probability 1−Ψq

(
αcn
K

)
→ 0 as K →∞. When

this happens, the binomial random variable Sn can be approximated by a Poisson

random variable with mean L
(
1−Ψq

(
αcn
K

))
[117]. However, as T also grows, the

binomial random variable Sn can be further approximated by a Gaussian random

variable due to the Central Limit Theorem. Therefore, for a reasonably large K and

T , the resulting random variable Sn is approximately Gaussian.

The variance of this approximated Gaussian is, however, not constant. The vari-

ance changes across different locations n because Var[Sn] is a function of cn. There-

fore, if we want to apply a conventional image denoiser (which assumes i.i.d. Gaussian

noise) to smooth Sn, we must first make sure that the noise variance is spatially in-

variant. The technique used to accomplish this goal is called the variance stabilizing

transform [118]. In this paper, we use a specific variance stabilizing transform known

as the Anscombe Transform [119]. Anscombe Transform is best known in the image

processing literature for Poisson denoising, where one transforms an observed Pois-

son data to approximately Gaussian with equal variance [111]. For binomial random

variables Sn, the Anscombe Transform and its property are given in Theorem 3.3.1.

Theorem 3.3.1 (Anscombe Transform for Binomial Random Variables) Let

Sn be a binomial random variable with parameters (L, pn), where pn = 1 − Ψq

(
αcn
K

)
and L = KT . Define the Anscombe Transform of Sn as a function T : {0, . . . , L} → R

such that

Zn = T (Sn)
def
=

√
L+

1

2
sin−1

(√
Sn +

3
8

L+ 3
4

)
. (3.26)

Then, the variance of Zn is Var[Zn] =
1
4
+O(L−2) for all n.

Proof The proof of Theorem 3.3.1 is given in the Appendix. It is a simplified version

of a technical report by Brown et al. [120]. The original paper by Anscombe [119]

also contains a sketch of the proof. However, the sketch is rather brief and we believe

that a complete derivation would make this thesis self-contained.
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The implication of Theorem 3.3.1 is that regardless of the location n, the trans-

formed random variable Zn has a constant variance 1
4

when L is large. Therefore,

the noise variance is now location independent and hence a standard i.i.d. Gaussian

denoiser can be used.

Example 2 To provide readers a demonstration of the effectiveness of Theorem 3.3.1,

we consider a checkerboard image of N = 64 pixels with intensity levels c0, . . . , cN−1.

The n-th pixel cn generates K = 100 binary quantized Poisson measurements

{BKn, . . . , BKn+(K−1)}

using α = 100, q = 1, T = 1 (So L = 100). From each of these K measurements we

sum to obtain a binomial random variable Sn =
∑K−1

k=0 BKn+k. We then compute the

variance of Var[Sn] and Var[T (Sn)] using 104 independent Monte Carlo trials. The

results are shown in Figure 3.4, where we observe that Var[Sn] varies with the location

n, and Var[T (Sn)] is nearly constant for all n.

Remark. The inverse Anscombe Transform is

Sn = T −1(Zn) =

(
L+

3

4

)
sin2

 Zn√
L+ 1

2

− 3

8
, (3.27)

which we call it the algebraic inverse. Another possible inverse of the Anscombe

Transform is the asymptotic unbiased inverse [119], defined as

Sn = T −1
unbias(Zn) =

(
1 +

1

2L

)−1
(L+

3

4

)
sin2

 Zn√
L+ 1

2

− 1

8

 . (3.28)

For large L, the difference between the asymptotic unbiased inverse and the algebraic

inverse is small.

Example 3 Table 3.1 shows the PSNR values of the reconstructed images using the

algebraic inverse and the asymptotic unbiased inverse. In this experiment, we con-

sider 10 standard images commonly used in the image processing literature: Baboon,
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Var[Sn] Var[T (Sn)]

Fig. 3.4. Illustration of Anscombe Transform. Both sub-figures contain
N = 64 (8 × 8) pixels c0, . . . , cN−1. For each pixel we generate 100 bi-
nary Poisson measurements and sum to obtain binomial random variables
S0, . . . , SN−1. We then calculate the variance of each Sn. Note the con-
stant variance after the Anscombe Transform.

Barbara, Boat, Bridge, Couple, Hill, House, Lena, Man and Peppers. The sizes of the

images are either 256× 256 or 512× 512. For each image, we set T = 1, q = 1, and

α = K, and vary K = {1, 4, 9, 16, 25, 36, 49, 64}. The results in Table 3.1 indicate that

T −1
unbias is consistently better than T −1 for K > 1, although the difference diminishes

as K grows.

Table 3.1.
PSNR values using algebraic inverse T −1 and asymptotic unbiased in-
verse T −1

unbias. The results are averaged over 10 standard images. In this
experiment, we set T = 1, q = 1, and α = K.

K 1 4 9 16 25 36 49 64

T −1 20.51 23.08 25.00 26.47 27.49 28.40 29.09 29.71

T −1
unbias 19.43 23.64 25.30 26.62 27.57 28.45 29.12 29.73
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4. OPTIMAL THRESHOLD DESIGN: THEORY AND
PRACTICE

In this chapter, we study the QIS threshold design problem. In our theoretical deriva-

tions, we focus on the ML estimate as it provides closed-form expressions under box-

car interpolation kernel assumption. We start in Section 4.1 by studying a theoretical

oracle scenario when the ground truth is assumed to be known. This study form the

basis of our subsequent discussions of the threshold update scheme in Section 4.2

where we tackle the practical case of unknown ground truth.

4.1 Optimal Threshold: Theory

In this section, we tackle the oracle scenario where the ground truth is given.

We start by obtaining in subsection 4.1.1 a closed-form expression of the the ML

estimate’s SNR in terms of the incomplete Gamma function. Then, we derive in

subsection 4.1.2 an expression for the optimal “oracle” threshold that maximizes the

SNR given the ground truth. This oracle threshold provides us with intuition how to

tackle the realistic case when the ground truth is unknown.

4.1.1 Signal-to-Noise Ratio of ML Estimate

In order to determine the optimal threshold, we need to quantify the performance

of the ML estimate. The performance metric we use is the signal-to-noise ratio

of the ML estimate at every pixel ĉn. Considering each ĉn individually is allowed

here because they are independently determined according to (3.14). For notation

simplicity we drop the subscript n in the subsequent discussions.
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Definition 4.1.1 The signal-to-noise ratio (SNR) of the ML estimate ĉ is defined as

SNRq(c)
def
= 10 log10

c2

E[(ĉ− c)2]
, (4.1)

where the expectation is taken over the probability mass function of the binary mea-

surements in (2.15).

The difficulty of working with SNRq(c) is that it does not have a simple closed-

form expression. In view of this, Lu [64] showed that the SNR is asymptotically linear

to the log of the Fisher Information.

Proposition 4.1.1 As KT →∞,

SNRq(c) ≈ 10 log10
(
c2Iq(c)

)
+ 10 log10KT, (4.2)

where Iq(c)
def
= EB

[
−∂2

∂c2
log P(B = b; θ)

]
is the Fisher Information measuring the

amount of information that the random variable B carries about the unknown value

c.

Proof See [64].

While the asymptotic result shown in Proposition 4.1.1 has significantly simplified

the SNR, we still need to determine the Fisher Information. The following proposition

gives a new result of the Fisher Information with arbitrary q.

Proposition 4.1.2 The Fisher Information Iq(c) of the probability mass function in

(2.15) under a threshold q is:

Iq(c) =
( α
K

)2 e−2(αc
K ) (αc

K

)2q−2

Γ2(q)Ψq

(
αc
K

) (
1−Ψq

(
αc
K

)) . (4.3)

Proof See Appendix C.3.

Substituting (4.3) into (4.2), we observe that the SNR can be approximated as

SNRq(c) ≈ 10 log10
KTe−2(αc

K ) (αc
K

)2q
Γ(q)2Ψq

(
αc
K

) (
1−Ψq

(
αc
K

)) , (4.4)
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Fig. 4.1. SNRq(c) for different thresholds q ∈ {1, . . . , 16}. In this experi-
ment, we set α = 400, K = 4, and T = 30. For fixed q, SNRq(c) is always
a convex function.

which is characterized by the unknown pixel value c, the threshold q, the spatial

oversampling ratio K and the number of temporal measurements T . To understand

the behavior of (4.4), we show in Figure 4.1 SNRq(c) as a function of c for different

thresholds q ∈ {1, . . . , 16}. For a fixed q, SNRq(c) is a convex function with a unique

maximum. The goal of optimal threshold design is to determine a q which maximizes

SNRq(c) for a fixed c.

Remark 3 The SNRq(c) in (4.4) can also be derived from a concept in the device

literature called the exposure-referred SNR [26]. See Supplementary Material for

discussions.

4.1.2 Oracle Threshold

We now discuss the optimal threshold design in the oracle setting. We call the

result oracle because the optimal threshold depends on the unknown pixel intensity

c. The practical threshold design scheme will be discussed in Section 4.2.
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Using the definition of the signal-to-noise ratio, the optimal threshold is deter-

mined by maximizing SNRq(c) with respect to q:

q∗ = argmax
q∈N

SNRq(c) = argmax
q∈N

log(c2Iq(c)). (4.5)

The second equality follows from Proposition 4.1.1. Substituting (4.3) yields an ex-

pression of the right hand side of (4.5). To further simplify the expression we derive

the following lower bound.

Proposition 4.1.3 The function log(c2Iq(c)) is lower bounded as follows.

log(c2Iq(c)) ≥ 2
(
log 2− αc

K
+ q log

αc

K
− log Γ(q)

)
︸ ︷︷ ︸

def
=Lq(c)

.

Proof See Appendix C.4.

Using this lower bound, we can derive the optimal threshold q as follows 1.

Proposition 4.1.4 The optimal threshold q∗(c) is

q∗(c) = argmax
q∈N

Lq(c) =
⌊αc
K

⌋
+ 1, (4.6)

where ⌊·⌋ denotes the flooring operator that returns the largest integer smaller than

or equal to the argument.

Proof See Appendix C.5.

The result of Proposition 4.1.4 is important as it states that the oracle threshold

is exactly the same as the light intensity αc/K. The flooring operation and the

addition of a constant 1 are not crucial here because they are only used to ensure

that q is an integer. In [62], a special where α = 1 was demonstrated experimentally.

Proposition 4.1.4 now provides a theoretical justification.
1Straightly speaking, the result shown in Proposition 4.1.4 is a “near-optimal” result because we
are minimizing the lower bound. From our experience, the gap between the near-optimality and the
exact optimality is typically insignificant.
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4.2 Optimal Threshold: Practice

The oracle threshold derived in the previous section provides a theoretical founda-

tion but is practically infeasible as it requires knowledge of the ground truth c. In this

section, we present an alternative solution by relaxing the optimality criteria. Our

strategy is to consider a set of thresholds which are close to the oracle threshold q∗(c),

and show that they are asymptotically unbiased when the number of observed bits

approaches infinity (subsection 4.2.1). This result will allow us to characterize the

estimate ĉ (subsection 4.2.2). We will then show that there exists a phase transition

region where the asymptotic unbiasedness is maintained as q stays within a certain

range around q∗(c), and is lost rapidly as q falls outside this range (subsections 4.2.3

and 4.2.4). Based on these observations, we will present a practical threshold update

scheme (subsection 4.2.5). Finally, we discuss in subsection 4.2.6 how the threshold

adaptation helps in extending the sensor’s dynamic range for high dybnamic range

imaging followed by some hardware considerations in subsection 4.2.7

4.2.1 Asymptotic Unbiasedness

In order to derive an alternative threshold that does not require the ground truth,

we start by reconsidering the ML estimate ĉ in Proposition 3.1.2. For a spatial-

temporal block B = {Bk,t | 0 ≤ k < K−1, 0 ≤ t < T −1}, the ML estimate ĉ satisfies

the condition

Ψq

(
αĉ

K

)
= 1− S

KT
, (4.7)

where S =
∑

k,tBk,t is the sum of bits in B. The right hand side of this equation is

an important quantity. We denote it as

γq(c)
def
= 1− S

KT
. (4.8)

In the device literature (e.g., [26]), the term 1− γq(c) is known as the bit-density as

it is the proportion of ones in B. Note that γq(c) is a random variable because S is
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the sum of KT i.i.d. random binary bits. Therefore, if we want to understand (4.7),

we must first derive the the mean and variance of γq(c).

Proposition 4.2.1 The mean and variance of γq(c) are

E[γq(c)] = Ψq

(αc
K

)
, and

Var[γq(c)] =
1

KT
Ψq

(αc
K

) [
1−Ψq

(αc
K

)]
, (4.9)

respectively.

Proof See Appendix C.6.

We can now look at the asymptotic behavior of γq(c) to see if it offers any insight

about the optimal threshold. Applying the strong law of large number to S/KT , we

can show that as KT →∞,

γq(c) = 1− S/KT a.s.→ 1− E[Bk,t] = Ψq(αc/K). (4.10)

Going back to (4.7)-(4.8), the ML estimate ĉ should have the expectation:

E[ ĉ ] (a)
=
K

α
E
[
Ψ−1

q (γq(c))
] (b)→ K

α
Ψ−1

q Ψq

(αc
K

)
(c)
= c. (4.11)

where (a) follows from the definition of ĉ, (b) follows from (4.10), and (c) holds

because Ψq and Ψ−1
q cancels each other.

What is the implication of (4.11)? It shows that the ML estimate ĉ is asymp-

totically unbiased. That is, as the number of independent measurements grows, the

estimate ĉ approaches to the ground truth c. In other words, as long as KT is large

enough, the random variable ĉ would be an accurate estimate of the ground truth.

How can this be used to determine the threshold q? Let us look at Qθ.

4.2.2 Set of Admissible Thresholds Qθ

The result in (4.7)-(4.11) shows that for a given S (or equivalently γq(c)), the ML

estimate can be found by

ĉ =
K

α
Ψ−1

q (γq(c)) . (4.12)
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When this happens, the ĉ given by (4.12) is asymptotically unbiased. However, the

inversion Ψ−1
q is not always allowed. There is a set of q’s that can make Ψq invertible,

which is defined as Qθ in Definition 2.3.1. The following proposition relates Qθ to

γq(c).

Proposition 4.2.2 Let 0 < δ < 1 be a constant. Then, for any

q ∈ Qθ
def
=

{
q
∣∣∣ 1− (δ

2

) 1
KT

≤ Ψq(θ) ≤
(
δ

2

) 1
KT

}
, (4.13)

the random variable γq(c) will not attain 0 or 1 with probability at least 1− δ, i.e.,

P[0 < γq(c) < 1] > 1− δ.

In this case, the ML estimate ĉ is uniquely defined by (4.12).

Proof See Appendix C.7.

Before we proceed, let us look at some rough magnitude of the parameters in the

following example.

Example 4 Let the ground truth pixel value be c = 0.5. The sensor parameters are

set as T = 50, K = 4, α = 300. For a constant δ = 2 × 10−4, the tolerance level is

ε = 1− (δ/2)1/KT = 0.045. Therefore, as long as q ∈ {q | 0.045 ≤ Ψq(θ) ≤ 1− 0.045},

which is the set {q | 28 ≤ q ≤ 48}, the probability that γq(c) equals to 0 or 1 is upper

bounded by δ = 2× 10−4.

4.2.3 Gap between Qθ and q∗

The result in the previous subsection shows that as long as q ∈ Qθ, the ML

estimate is asymptotic unbiased. However, how is a q ∈ Qθ compared to the oracle

threshold q∗? We answer this question in three parts.

First, does an asymptotically unbiased estimate maximize the SNR? The an-

swer is no, because Proposition 4.1.4 states that if q∗ is the optimal threshold, then
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Fig. 4.2. Phase transition of the ML estimate and its relationship to the
average bit density 1−E[γq(c)]. The red region is where it is impossible to
recover c, whereas the green region is where we can have perfect recovery.

SNRq∗(c) ≥ SNRq(c) for any q ̸= q∗. Therefore, moving from the exact optimal q∗ to

an asymptotically unbiased threshold is a relaxation of the optimality criteria.

If asymptotic unbiasedness is a relaxed optimality criteria, how much SNR drop

will there be if we choose a q ∈ Qθ but not necessarily q = q∗? We show in Figure 4.2

the plot of a typical experiment with setup discussed in Example 4. As shown in

the figure, the green zone is the set Qθ = {q | 28 ≤ q ≤ 48}, or equivalently

Qθ = {q | 0.045 ≤ Ψq(θ) ≤ 0.9955}. For any q in this Qθ, the reconstruction has a

SNR at least 30dB. If we further tighten Qθ so that Qθ = {q | 35 ≤ q ≤ 42}, or

equivalently Qθ = {q | 0.25 ≤ Ψq(θ) ≤ 0.6}, the SNR stays in the range 36.15dB ≤

SNRq(c) ≤ 36.65dB, which is reasonably narrow.

How tight should Qθ be? Ideally we want Qθ to be as tight as possible. But

knowing the fact that the incomplete Gamma function has a rapid transition (See
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the black line in Figure 4.2), Qθ can be much wider. In fact, we can choose Qθ such

that 1− γq(c) stays close to 0.5, so that we are guaranteed to obtain a near optimal

threshold. From an information theoretic point of view, 1 − γq(c) ≈ 0.5 is where

the bit density attains the maximum information — if q is too high then most bits

become 0 whereas if q is too low then most bits become 1. It is maximum when q

leads to 50% zeros and 50% ones. 2

4.2.4 Phase Transition Phenomenon

We can now point out a very interesting phenomenon in Figure 4.2. In the upper

plot of Figure 4.2 we show two sets of curves: blue curves (solid and dotted), and black

curves (solid and dotted). The blue curves represent the ratio E[ ĉ ]/c, and the black

curves represent the average bit density 1− E[γq(c)]. For both sets of curves, we use

dotted lines to illustrate the Monte-Carlo simulation using 10,000 random samples,

where each sample refers to a spatial-temporal block Bn containing KT = 200 binary

bits. Notice that these dotted lines overlap exactly with their expectations, and hence

(4.7)-(4.11) are valid.

Let us take a closer look at the blue curve E[ ĉ ]/c. Let Qθ = {q | qL ≤ q ≤ qH},

where qL and qH are the smallest and the largest integers in Qθ respectively. There

are three distinct phases:

• When q < qL, the threshold is low and so most bits become 1. Therefore, γc(q)→ 0

and hence ĉ→∞. Thus, E[ ĉ ]/c→∞ as q decreases.

• When q > qH , the threshold high and so most bits become 0. Therefore, γc(q)→ 1

and hence ĉ→ 0. Thus, E[ ĉ ]/c→ 0 as q increases.

• When qL ≤ q ≤ qH , the ML estimate ĉ is asymptotically unbiased. Therefore,

E[ ĉ ]/c = 1.
2The exact optimal value of 1− γq(c) at q∗ is slightly lower than 0.5 due to the nonlinearity of the
Gamma function. See Supplementary Material for additional discussion.
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Algorithm 1 Bisection Threshold Update Scheme
Initial thresholds qA and qB such that 1− γqA > 0.5 and 1− γqB < 0.5.

Compute qM = ⌈(qA + qB)/2⌉, where ⌈·⌉ denotes the ceiling operator.

while |γqM − 0.5| < tol do

If γqM < 0.5, then set qA = qM . Else, set qB = qA.

Compute qM = ⌈(qA + qB)/2⌉.

end while

return qM

Essentially, Figure 4.2 demonstrates a phase transition behavior of the threshold.

Such phase transition exists because Ψq is only invertible when q ∈ Qθ.

4.2.5 Bisection Threshold Update Scheme

Now we present a practical threshold update scheme. As we discussed in Section

IV.C, the oracle threshold q∗ can be obtained when bit density γq(c) is close to 0.5.

Therefore, a practical procedure to determine q is to sweep through a range of q until

the bit density reaches 0.5. To achieve this objective, we propose a bisection method

illustrated in Figure 4.3 and Algorithm 1. Starting with initial thresholds qA and qB,

we check whether the bit density satisfies 1− γqA > 0.5 and 1− γqB < 0.5. If this is

the case, then we find a mid point qM = (qA + qB)/2 and check whether 1 − γqM is

greater or less than 0.5. If 1− γqM > 0.5, we replace qA by qM , otherwise we replace

qB by qM . The process repeats until 1− γqM is sufficiently close to 0.5.

In our proposed threshold update scheme, we assume that the image has been

partitioned into N blocks {Bn | n = 0, . . . , N − 1}. Each Bn contains KT binary

bits and is used to estimate one pixel value cn. This setting results in N different

thresholds, one for every pixel. To generalize the setting, it is also possible to allow

multiple pixels to share a common threshold. Figure 4.4 shows an example. The

advantage of sharing a threshold for multiple pixels is that circuits associated with
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Fig. 4.3. The proposed bisection update scheme adjusts the threshold
q such that the bit density 1 − γq(c) approaches 0.5. The upper graph
illustrates the bisection steps. Bottom row shows cropped patches from
reconstructed images using threshold maps at different iterations and the
PSNRs.

the sensor can be simplified. In terms of performance, since neighboring pixels are

typically correlated, sharing the threshold causes little drop in the resulting SNR.

The price that the proposed bisection algorithm has to pay is the number of

frames it requires to determine a good q. For every evaluation of γqM , the sensor has

to physically acquire one frame and compute the bit density in each of the N blocks.
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Fig. 4.4. Concept of shared thresholds. (Left) binary measurements,
spatial oversampling K = 3× 3, Temporal oversampling T = 5 . (Right)
Threshold map, one threshold value is shared by 6× 6 jots.

Therefore, the more bisection steps we need, the more frames that the sensor has

to physically acquire. The rate of convergence of the proposed method and existing

methods will be compared in the experimental results in Chapter 5.

4.2.6 Extension to High Dynamic Range

While QIS is a photon counting device, it is designed to count a few photons

to keep the full-well capacity small, e.g. 20 photoelectrons as reported in [121].

Therefore, for practical imaging tasks, we need to extend the dynamic range for QIS.

There are two ways to enable dynamic range extension:

• Bright Scenes: Reduce Duty Cycle. In the signal processing block diagram

shown in Figure 2.1, we can replace the constant α by a fraction as ατ , where

0 ≤ τ ≤ 1 determines the ratio between the actual integration time and the

readout scan time. It can also be referred to the shutter duty cycle because the

shutter is opened to collect photons during this proportion of time [122]. For

very bright scenes, a low duty cycle will prevent QIS from saturating early.
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• Dark Scenes: Multiple Measurements. For dark scenes, multiple measurements

can be taken to ensure enough photons over the measurement period. This,

however, is different from conventional HDR imaging. In conventional HDR

imaging, the multiple shots are taken at different shutter speeds, e.g., 1/8192,

1/2048, 1/512, 1/128, 1/32, 1/8, 1/2 seconds [123], which is redundant. QIS’s

multiple shot functions more similar to burst photography [124]. The amount

of acquisition time is significantly less than the conventional HDR imaging.

These two methods can be used for any threshold scheme, including ours and

others. The benefit of using our proposed threshold scheme is that it supports a

much wider dynamic range extension. In Figure 4.5, we illustrate the total dynamic

range that can be covered using 4 multiple measurements at duty cycles τ = 1,

τ = 0.2, τ = 0.04, and τ = 0.008. The maximum threshold level is qmax = 25, and

the minimum threshold level is qmin = 1. It can be seen from the figure that with the

optimal threshold q∗, the dynamic range is significantly more than the non-optimal

ones. In particular, we observe a 16dB and a 54dB improvement compared to qmin = 1

and qmax = 25, respectively. Experimental results will be shown in Chapter 5

4.2.7 Hardware Consideration

Concerning the hardware implementation, we anticipate that future QIS will be

equipped with per-pixel FPGAs to perform the proposed threshold update scheme.

On-sensor FPGA is an actively developing technology. For example, MIT Lincoln

Lab’s digital focal plane array can achieve on-sensor image stabilization and edge

detection [125] . For QIS threshold update, the complexity is low because we are only

counting the number of ones in the bisection. More specifically, in order to perform

the bisection, we only need K additions to compute
∑K−1

k=0 bKn+k,t; one comparison∑K−1
k=0 bKn+k,t ≥ 0.5; one addition and one multiplication (with a constant 0.5) to

update the threshold qM = ⌈(qA + qB)/2⌉. The dominating factor here is the K

additions, which can be implemented efficiently by shifting bits in a buffer.
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Fig. 4.5. SNR in dB vs. exposure θ for HDR imaging mode obtained by
fusion of frames with shutter duty cycles τ ∈ {1, 0.2, 0.04, 0.008}. Three
scenarios are shown: constant threshold with q = 1 (black), q = 25 (red)
and an optimal spatially varying threshold (blue).

We should also point out that the proposed bisection method can be flexibly

adjusted spatially and temporally for different hardware configurations. For example,

we can use a spatial-temporal window 4×4×1 for low-resolution high-speed imaging,

or 1× 1× 16 for high-resolution low-speed imaging. This flexibility offers additional

advantages of QIS over conventional CCD and CMOS cameras.
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5. COLOR FILTER ARRAYS FOR QUANTA IMAGE
SENSORS

This chapter presents an optimization-based framework to design color filter arrays

for very small pixels. The new framework unifies several mainstream color filter ar-

ray design frameworks by offering generality and flexibility. Compared to the existing

frameworks which can only handle one or two design criteria, the new framework can

simultaneously handle luminance gain, chrominance gain, cross-talk, anti-aliasing,

manufacturability and orthogonality. Extensive experimental comparisons demon-

strate the effectiveness and generality of the framework.

We start by providing a background and describing the notations of the imaging

model in Section . Then, we present in Section the design criteria used for obtaining

an efficient CFA. Afterwards, we solve the CFA design problem in Section 5.3. Finally,

we present in Section 5.4 a universal demosaicking algorithm that can do demosaicking

for any color filter array.

5.1 Background and Notations

The design of a robust CFA involves multiple objectives in terms of signal sen-

sitivity, color aliasing, cross-talk, and manufacturability. To facilitate readers to

understand the design framework, in this section we introduce a few notations and

terminologies. We will start in Section 5.1.1 by describing the image formation using

a CFA, then we discuss CFA in different domains in Sections 5.1.2 and 5.1.3. After-

wards, in Section 5.1.4, we define the optimization variables to simplify the design

framework.
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5.1.1 Color Image Formation

Consider a color image imrgb of size H × W . We denote the normalized light

intensities in the red, green and blue channels for the (m-th,n-th) pixel of the color

image as

imrgb(m,n) =


imr(m,n)

img(m,n)

imb(m,n)

 , (5.1)

where m ∈ {0, . . . , H − 1}, n ∈ {0, . . . ,W − 1}.

Color Filtering: To obtain color, we place a color filter on top of each jot to collect

light for one of the RGB colors. The CFA is a periodic pattern of the same resolution

of imrgb, defined as

crgb(m,n) =


cr(m,n)

cg(m,n)

cb(m,n)

 , (5.2)

where cr(m,n), cg(m,n), cb(m,n) ∈ [0, 1] are the opacity rates for the red, green and

blue pixels, respectively. For example, a red color filter is defined as crgb(m,n) =

[1, 0, 0]T as it only passes the red color. The light exposure on the QIS after passing

through the CFA is denoted as θ(m,n), which is a linear combination of the tri-

stimulus colors:

θ(m,n) = αcrgb(m,n)
T imrgb(m,n)

= α
∑

i∈{r,g,b}

ci(m,n) imi(m,n).
(5.3)

Here, α is a positive scalar representing the sensor gain factor.

Photon Arrival. The photon arrival is modeled as a Poisson process. Let Y ∈ NHW

be a vector of non-negative random integers denoting the number of photons arriving

at QIS jots according to the light exposure θ. Then, the probability of observing a

photon count Ym = ym is

P(Ym = ym) =
θymm e−θm

ym!
. (5.4)
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In this work, we assume single-bit QIS [26] that quantizes the photon counts by QIS

jots to a binary values B ∈ {0, 1}HW with Bm = 1 if Ym ≥ q and Bm = 0 if Ym < q,

where q > 0 is a threshold. The probability of observing Bm = bm is

P(Bm = bm) = Ψq(θm)
1−bm (1−Ψq(θm))

bm , (5.5)

where Ψq(.) is the incomplete Gamma function [69].

Temporal Oversampling. With frame rates that reach 1000 fps, QIS is able to

catch the scene movement by taking T temporal samplings for the same scene. This

allows us to utilize multiple independent measurements over time to improve the

statistics and decrease noise. Hence, for every jot with light exposure θm, we have a

set of T independent binary measurements Bm = {bm,0, . . . , bm,T−1}.



61

︸
︷︷

︸
C
ol
or

F
il
te
r
A
rr
ay

︸
︷︷

︸
R
G
B

C
ol
or

A
to
m

︸
︷︷

︸
L
u
m
a/
C
h
ro
m
a
C
ol
or

A
to
m

W

H

c
rg

b

M

Nh
rg

b

=

[ 0
1

0
0] .R

h
r

+
[ 1

0
0

1] .G

h
g

+
[ 0

0
1

0

] .B

h
b

T

1
√

3

[
1

+
1

+
1

1

] .L

h
l

+

1
√

6

[
2

−
1

−
1

2

] .α

h
α

+

1
√

2

[
0

+
1

−
1

0

] .β

h
β

F F F

1
√

3

[ 4
0

0
0] .L

h̃
l

+

1
√

6

[ 2
0

0
6

] .α

h̃
α

+

1
√

2

[ 0
−
2

2
0

] .β

h̃
β

L
:

α
:

β
:

π
0

−
π

π 0

−
π

︸
︷︷

︸
L
u
m
a/
C
h
ro
m
a
S
p
ec
tr
u
m

Fi
g.

5.
1.

O
ur

te
rm

in
ol

og
y

ill
us

tr
at

ed
on

th
e

Ba
ye

r
C

FA
ex

am
pl

e.
T

he
bu

ild
in

g
un

it
of

a
C

FA
is

a
co

lo
r

at
om

.
A

tr
an

sfo
rm

at
io

n
T

is
ap

pl
ie

d
to

th
e

co
lo

ra
to

m
to

tr
an

sfo
rm

it
fro

m
th

e
ca

no
ni

ca
lR

G
B

co
lo

rs
pa

ce
to

a
lu

m
a/

ch
ro

m
a

co
lo

r
sp

ac
e

to
sim

pl
ify

th
e

de
sig

n
pr

oc
es

s.
Fo

ru
ie

r
tr

an
sfo

rm
is

ap
pl

ie
d

af
te

rw
ar

ds
to

ob
ta

in
th

e
co

lo
r

at
om

sp
ec

tr
um

in
th

e
lu

m
a/

ch
ro

m
a

sp
ac

e.



62

5.1.2 Color Filter Array Analysis in Different Color Spaces

Since the CFA crgb(m,n) is a periodic pattern, it is sufficient to use a color atom

as the optimization variable when designing the CFA. The color atom takes the form

hrgb(m,n) =


hr(m,n)

hg(m,n)

hb(m,n)

 , (5.6)

where each of hr, hg and hb is an M × N array. For instance, the GRBG Bayer

pattern has the following color atom (when M = N = 2):

hr =

0 1

0 0

 , hg =
1 0

0 1

 , hb =
0 0

1 0

 ,
because the Bayer pattern has one red pixel and one blue pixel located at two opposite

diagonals, and two green pixels located in the remaining two positions. Figure 5.1

illustrates the idea.

While the primal RGB color is common for making the CFA, it would be more

convenient if the colors are decorrelated. To this end, we change the image represen-

tation from the canonical RGB basis to an orthornormal basis using a transformation

matrix [95, 126]:

T =


1/
√
3 1/

√
3 1/

√
3

−1/
√
6 2/

√
6 −1/

√
6

1/
√
2 0 −1/

√
2

 . (5.7)

This transformation maps an RGB image imrgb to an image imlαβ = [iml, imα, imβ]
T

as follows (we drop the spatial indices (m,n) for simplicity)

imlαβ =


iml

imα

imβ

 = T


imr

img

imb

 =


(imr + img + imb) /

√
3

(−imr + 2img + imb) /
√
6

(imr − imb) /
√
2

 ,
where iml is a luminance (luma) component that contains the high frequency com-

ponents such as edges and textures, whereas imα and imβ are chrominance (chroma)

components that carry the color information.
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Since T is orthonormal (i.e., T TT = I), we can rewrite the sampling process in

(B.8) in the luma/chroma space:

θ(m,n) = αcrgb(m,n)
T T TT imrgb(m,n)

= αclαβ(m,n)
T imlαβ(m,n)

= α
∑

i∈{l,α,β}

ci(m,n) imi(m,n), (5.8)

where cl(m,n), cα(m,n) and cβ(m,n) are the luma/chroma representation of the

CFA, with

clαβ(m,n) = T crgb(m,n). (5.9)

The luma/chroma representation of the CFA has a corresponding color atom hl(m,n),

hα(m,n) and hβ(m,n). For instance, the luma/chroma color atom of the GRBG Bayer

pattern is

hlαβ(m,n) =


hl(m,n)

hα(m,n)

hβ(m,n)

 , (5.10)

where the individual components are

hl =
1√
3

1 1

1 1

 , hα =
1√
6

 2 −1

−1 2

 , hβ =
1√
2

 0 1

−1 0

 .
Remark 4 In principle, there are are infinite choices for the luma/chroma basis

T . We choose the one in (5.7) because it makes the components of natural images

statistically independent in the first order approximation.

5.1.3 Color Filter Array in Fourier Space

When analyzing the aliasing effects of the CFAs, we need to transform the color

atom into the Fourier domain. For simplicity, we represent the Fourier transform of

a signal by putting a tilde on top of the symbol, e.g., h F→ h̃. The 2D discrete Fourier

transform (DFT) of the i-th color atom is

h̃i(u, v) =
M−1∑
m=0

N−1∑
n=0

hi(m,n)e
−j2π(mu

M
+nv

N ) (5.11)
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h̃i =



δ00 δ01 δ02

δ10 δ11 δ12

δ20 δ21 δ22


 Vec
→ h̃i =




δ00

δ10

δ20

δ01

δ11

δ21

δ02

δ12

δ22




•
δ21

•
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•
δ11

•
δ20

•
δ00

•
δ10

•
δ22

•
δ02

•
δ12

−π
−2π

3
0

2π

3
π

−π

−2π

3

0

2π

3

π

Fig. 5.2. The Fourier representation of an arbitrary 3 × 3 color atom i.
From left to right: The atom representation, the vector representation
and the 2D frequency plane representation. Notice that the frequency
plane is divided into 9 regions of size 2π/3, and the spectrum comprises
pure sinusoids placed at (2πu

3
, 2πv

3
) ∀u, v ∈ {0, 1, 2}.

where u ∈ {0, . . . ,M − 1}, v ∈ {0, . . . , N − 1}.

For example, the discrete Fourier transform of the luma/chroma color atoms in

(5.10) are

h̃l =
1√
3

4 0

0 0

 , h̃α =
1√
6

2 0

0 6

 , h̃β =
1√
2

0 −2
2 0

 .
Here, we observe that the Fourier transform of the color atom has the same size as

the original color atom. The luminance channel has only one baseband components

at (0, 0), whereas the α chrominance channel has one baseband component and a

component at (π, π). The β chrominance channel has two components at (0, π) and

(π, 0). Figure 5.2 illustrates how these frequency locations are identified from a 3× 3

color atom.

While the Fourier transform of the color atom is useful, for demosaicing we also

need to analyze the spectrum of the entire CFA. As shown in by Hao et al. [86], the
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Fourier transform of the entire CFA can be written in terms of the Fourier transform

of the color atoms:

c̃i(ω) =
M−1∑
u=0

N−1∑
v=0

h̃i(u, v)δ (ω − ω(u, v)) , (5.12)

where i ∈ {l, α, β}, ω is the 2D angular frequency, and

ω(u, v) =

(
2πu

M
,
2πv

N

)
∀
u ∈ {0, . . . ,M − 1}

v ∈ {0, . . . , N − 1}
. (5.13)

is the (u-th,v-th) 2D angular frequency. It is worth noting that the Fourier transform

of the CFA comprises pure sinusoids of amplitudes h̃i(u, v). These sinusoids are

placed at MN discrete 2D frequencies ω(u, v) that divide the 2D frequency plane

[−π, π] × [−π, π] into MN equal regions. Therefore, the spectrum of the mosaicked

image θ̃(ω) can be written as

θ̃(ω) = F

 ∑
i∈{l,α,β}

ci imi

 =
∑

i∈{l,α,β}

c̃i(ω)⊛ ĩmi(ω)

=
∑

i∈{l,α,β}

M−1∑
u=0

N−1∑
v=0

h̃i(u, v) ĩmi(ω − ω(u, v)), (5.14)

where ⊛ is the standard 2D convolution operator. Having the spectrum of the mo-

saicked image θ̃(ω), we can now discuss the optimization variables in our problem.

5.1.4 Design Variables

To formulate the CFA design problem as an optimization problem, we define the

following variables. We denote hr, hg and hb the vectorized representations of the

red, green and blue color atoms, respectively. To ensure physical realizability, we

require hr, hg, hb ∈ [0, 1]K×1, where K def
= MN , and we stack all design variables into

one long vector

x =


hr

hg

hb

 ∈ R3K×1.
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The design variable x is related to the vectorized RGB and luma/chroma color atoms

as 
hr

hg

hb

 =


Zr

Zg

Zb

x and


hl

hα

hβ

 =


Z l

Zα

Zβ

x,

where the Z matrices are defined by (5.7) as

Zr = [I,0,0] Z l = [I, I, I]/
√
3,

Zg = [0, I,0] and Zα = [−I, 2I,−I]/
√
6,

Zb = [0,0, I] Zβ = [I,0,−I]/
√
2.

Given the design variable x, we also need to analyze its spectrum. We write the

2D Fourier transform equation (5.11) as a matrix-vector product by using the Fourier

transform matrix F ∈ CK×K . Hence, the vectorized spectra of the luma/chroma color

atoms can be written in terms of x as

h̃i = Fhi = FZix, i ∈ {l, α, β}. (5.15)

where h̃i ∈ CK×1, for i ∈ {l, α, β}. The relation between the matrix and the vector

forms of the Fourier transform is:

h̃i(u, v) = vec−1(h̃i) (5.16)

where h̃i(u, v) is the Fourier coefficient.

5.2 Design Criteria

We now present the design criteria. Our criteria unify the three major approaches

in the literature: (i) Sensitivity of luma/chroma channels to noise by Condat [95]; (ii)

Aliasing between different color components in the frequency domain by Hirakawa

and Wolfe [83]; (iii) Crosstalk between neighboring pixels in the spatial domain by

Anzagira and Fossum [93]. Note that the first two criteria were developed for CMOS,

whereas the third criterion was developed for QIS. The proposed framework integrates
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all these criteria into a unified formulation. Table 5.1 summarizes the difference

between this paper and the previous works.

In the following subsections, we present the design criteria and express them in

terms of matrix-vectors for the optimization framework in Section IV.
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+ + =
F
→

π0−π
−π

0

π

l

α

β

Red Mask Green Mask Blue Mask Color Atom

Fig. 5.3. A 4 × 4 CFA generated by our design framework. Luminance
sensitivity γl and chrominance sensitivity γc are maximized to improve ro-
bustness to noise (Section III-A). No chrominance components (α or β) are
modulated on the vertical and horizontal frequency axes (Section III-B)
to mitigate aliasing with the luminance component l. The total variation
of the red, green and blue masks is upper-bounded by TVmax to mitigate
crosstalk (Section III-C).

5.2.1 Luminance and Chrominance Sensitivity

Definition 5.2.1 The luminance sensitivity γl and the chrominance sensitivity γc of

a CFA with color atom {hl,hα,hβ} of size M ×N are defined as

γl
def
=

1

K
||h̃l||2, and γc

def
=

1

K
min

(
||h̃α||2, ||h̃β||2

)
. (5.17)

where K =MN is a normalization factor.

Intuitively, the luminance and chrominance sensitivity are measures of the signal

power that can be transmitted through the color filter. A more transparent color

filter allows more light to pass through, and hence the signal power is higher. This

is reflected by the magnitudes ∥h̃i∥2 for i ∈ {l, α, β}, which according to Parseval’s

Theorem they are equivalent to ∥hi∥2.

The following proposition shows how can we compute γl and γc in terms of the

optimization vector x.

Proposition 5.2.1 For a CFA with color atoms represented by the vector x, the

luminance and chrominance sensitivity can be calculated as

γl(x) =
1

K
1TZ lx = bTx

γc(x) = min
(√

xTQαx,
√

xTQβx
)
,

(5.18)
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where b = 1
K
ZT

l 1, Qα = ZT
αZα and Qβ = ZT

βZβ.

Proof See Appendix A.

The luminance sensitivity and the chrominance sensitivity cannot be arbitrarily

chosen. One practical consideration is to ensure uniform noise power across the luma

channel so that the denoising procedure can be simplified (because the noise will be

i.i.d.). Thus, the luminance color atom hl should be constant, i.e., hl(m,n) = c,∀m,n,

where c is a positive constant. Taking Fourier transform, this means that h̃l comprises

only one impulse at baseband h̃l(0, 0), and no impulses at all other frequencies. In

vector form, we need

h̃l − diag(e1)h̃l = 0, (5.19)

where e1 = [1, 0, . . . , 0]T is the standard basis. Putting in terms of the optimization

variable x, we have a constraint.

Proposition 5.2.2 (Uniform Luminance Constraint) If a CFA has a uniform

luminance sensitivity, then x needs to satisfy

(I − diag(e1))FZ l x = 0. (5.20)

Proof Using (5.15), substitute h̃l = FZ lx into (5.19).

Similarly, we can impose a constraint to the chrominance channel. For chromi-

nance, we require that the color filter passes the same amount of red, green, and blue

so that the primary colors have uniform sensitivity [89, 95]. This leads to∑
m,n

hr(m,n) =
∑
m,n

hg(m,n) =
∑
m,n

hb(m,n)

Putting into vector form, we have the following constraint.

Proposition 5.2.3 (Uniform Chrominance Constraint) If a CFA has a uni-

form chrominance sensitivity, then x needs to satisfy
uT

R − uT
G

uT
R − uT

B

uT
G − uT

B

x = Ux = 0, (5.21)
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where uR
def
= [1T ,0T ,0T ], uR

def
= [0T ,1T ,0T ], and uR

def
= [0T ,0T ,1T ].

5.2.2 Anti-Aliasing

In the frequency domain, the luminance controls the baseband whereas the chromi-

nance controls the sideband of the spectrum. To minimize spectral interference, aka

aliasing, it is necessary to modulate the chrominance as far as possible from the base-

band. However, the luminance has approximately a diamond shape since it has large

frequency components at (±π, 0) and (0,±π). Therefore, to mitigate aliasing, we

should avoid modulating the chrominance on vertical and horizontal axes. Figure 5.5

shows a 4 × 4 CFA obtained by our framework. In this example, no chrominance

components are modulated on the vertical and horizontal frequency axes.

The anti-aliasing requirement can be formulated as forcing the Fourier coefficients

of the chrominance color atoms at (±π, v) and (u,±π) to zero for all u and v. This

translates to chrominance color atom whose first column and first row are zeroed

out (See Figure 5.2). In terms of our design variable x, we require the following

constraint.

Proposition 5.2.4 (Anti-aliasing Constraint) The chrominance in the vertical

and horizontal directions must be set to 0. Hence, x must satisfyW α

W β

x = Wx = 0 (5.22)

where W α and W β are the matrices formed by choosing the rows in FZα and FZβ,

respectively, that correspond to the vertical and horizontal frequency components, i.e.,

rows in the set {0, 1, . . . ,M − 1} ∪ {M, 2M, . . . , (N − 1)M}.

To quantify the amount of aliasing for every CFA, we define the following aliasing

criterion.
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Definition 5.2.2 For a CFA, aliasing between luminance and chrominance channels

is measured by

Jl
def
=

1

HW

∫
[−π,π)2

(Sl(ω)Sα(ω) + Sl(ω)Sβ(ω)) dω, (5.23)

where Sl, Sα and Sβ denote the power spectral density of the luminance channel iml

and the two chrominance channels imα and imβ, respectively.

5.2.3 Crosstalk

Crosstalk is caused by the leakage of electrical and optical charge from a pixel

to its adjacent pixels [93, 127]. Crosstalk leads to color de-saturation. To model

crosstalk, we follow [93] by defining three scalars αr, αg, and αb representing the

proportion of leaked charges to neighboring pixels. These three scalars then form a

crosstalk kernel,

gi =


0 αi/4 0

αi/4 1− αi αi/4

0 αi/4 0

 , i ∈ {r, g, b}, (5.24)

which can be considered as a spatial lowpass filter of the mosaicked image. Applying

the crosstalk kernel to the CFA is equivalent to a spatially invariant convolution

hctki = gi ⊛ hi, i ∈ {r, g, b},

where hctki denotes the effective CFA in the presence of crosstalk.

The effect of crosstalk is more severe when the adjacent colors are different. For

example, in Figure 5.4, the red and blue pixels are surround by 8 neighbors of different

colors and the green pixels are surrounded by 4 neighbors of different colors. This

is equivalent to saying that there is a red pixel having a value 1 and is surrounded

by pixels having the value 0. Using similar argument, we can see that if the color

atoms have more rapid changes of colors, then the resulting CFA is more susceptible

to crosstalk.
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(a) Red Channel (b) Green Channel (c) Blue Channel

Fig. 5.4. Crosstalk in Bayer Color Atom. Each color pixel leak some of
its charge to its horizontal and vertical neighbors. Amount of leakage is
parametrized by the positive scalars αr, αg and αb.

We propose to quantify the variation of the color atoms (and hence crosstalk) is

by means of measuring the total variation of the color atom. The total variation is a

proxy of the complexity of the color filter array. A color filter array with high total

variation means a more complicated pattern and so it is more susceptible to crosstalk.

Our total variation is defined as follows.

Definition 5.2.3 (Total Variation) For a CFA defined by the color atoms hr, hg

and hb, the weighted total variation is defined as

TV(x)
def
=

∑
i∈{r,g,b}

αi∥Dhi∥1 =
∑

i∈{r,g,b}

αi∥DZrx∥1 (5.25)

where D
def
= [Dx,Dy]

T is an operator that computes the vertical and horizontal deriva-

tives with circular boundary conditions, and αi is the leakage factor defined in the

crosstalk kernel in (B.14).

To control the amount of variations in the CFA (so that we can limit the amount

of crosstalk), we upper bound the total variation by a scalar TVmax. This leads to

the following constraint.
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Proposition 5.2.5 (Crosstalk Constraint) The crosstalk is limited by upper-bounding

the total variation metric TV(x):

TV(x) =
∑

i∈{r,g,b}

αi||DZrx||1 ≤ TVmax. (5.26)

Figure 5.5 shows two CFAs proposed in literature. The first one, proposed in [86]

is more robust to aliasing than the second one proposed in [93]. This is because the

chrominance channels are modulated at high frequencies which are far from baseband

luminance. However, [93] is more robust to crosstalk than [86] because the color atom

have less variation in colors. We can also see this in the total variation values (0.413

compared to 0.263). This trade-off constitutes a gap in literature: Color filter designs

can improve robustness of either aliasing or crosstalk, but not for both. Our proposed

design framework allows us to optimize them simultaneously.
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5.2.4 Condition Number

When designing a color filter array, one should also be aware of the simplicity of

the demosaicking algorithm. Since the luminance/chrominance transformation, color

filtering and crosstalk are all linear processes, we can represent them by an overall

color acquisition matrix A. To demosaic the image, in principle we need to invert

the A matrix. To avoid the amplification of the estimation error of luminance and

chrominance channels, the condition number of A should be minimized for numerical

stability. This metric was discussed in [86], but the authors considered the condition

number of the luminance/chrominance transformation matrix T only. In our case,

we generalize this metric by taking the color filtering and crosstalk into account as

well.

To represent the image acquisition in frequency domain as a linear process, we

assume the crosstalk kernels for red, green and blue pixels are the same gr = gg = gb.

Define the following frequency domain variables:

ĩmrgb =


ĩm

T

r

ĩm
T

g

ĩm
T

b

 , H̃ = [h̃l, h̃α, h̃β], and G̃ = diag(g̃) (5.27)

where g̃
F← g is the vectorized version of the M ×N discrete Fourier transform of the

crosstalk kernel g. Hence, the mosaicked image θ̃ can be written as

θ̃ = G̃H̃T ĩmrgb = Aĩmrgb (5.28)

where we define the color acquisition matrix as A
def
= G̃H̃T . Denote by κ(A) the

condition number of A, i.e.,

κ(A) = cond(A) ∈ [1,∞] (5.29)

Low values of κ(A) imply stable demosaicking process that involves mild amplification

of estimation errors in the luminance and chrominance components.
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5.2.5 Orthogonality of Chrominance Channels

When designing a CFA, one should take into consideration of the complexity of

the demosaicking process. Recall (5.14) where we show that

θ̃(ω) =
∑

i∈{l,α,β}

M−1∑
u=0

N−1∑
v=0

h̃i(u, v) ĩmi(ω − ω(u, v)).

This is a modulation of the signal by a modulating frequency ω(u, v). Therefore,

to reconstruct the signal, one approach is to demodulate by shifting the channels

to the baseband by multiplying pure sinusoids and then applying a lowpass filter

[95]. Demodulation can be done efficiently if there is orthogonality between the

channels. Following the literature, our optimization takes into account of two forms

of orthogonality.

• Total Orthogonality [86] and [83]: The idea is to make one chroma channel

zero and the other non-zero at any (u, v). For example, h̃α(u, v) = 0.9 and

h̃β(u, v) = 0.

• Quadrature Orthogonality [95]: The idea is to make one chroma channel real

and the other imaginary at any (u, v), i.e., the two channels are modulated by

a frequency ω(u, v) but in quadrature phase. Translating the spatial domain,

this means that

hα(m,n) = γc
√
2 cos

ω(u, v)T

m
n

− ϕ
 (5.30a)

hβ(m,n) = γc
√
2 sin

ω(u, v)T

m
n

− ϕ
 (5.30b)

where m ∈ {0, . . . ,M−1}, n ∈ {0, . . . , N−1}, and ϕ is the phase angle. In this

way, the two channels can be easily separated during the demosaicking process

using the orthogonality of cosine and sine functions.

We formulate the orthogonality criteria as a penalty function that is a surrogate

of both approaches.
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Definition 5.2.4 (Orthogonality Penalty) For a CFA having chrominance chan-

nels with spectra h̃α(ω) and h̃α(ω), the orthogonality penalty is defined as

ρ(hα,hβ)
def
=

M∑
u=0

N∑
v=0

(
|ℜh̃α(u, v)|+ |ℜh̃β(u, v)|

)
+

M∑
u=0

N∑
v=0

(
|ℑh̃α(u, v)|+ |ℑh̃β(u, v)|

)
(5.31)

which can be written as a function in x as follows

ρ(x) = (∥ℜFZαx∥1 + ∥ℜFZβx∥1)

+ (∥ℑFZαx∥1 + ∥ℑFZβx∥1) (5.32)

Looking at the first summation in (5.31), we notice that for every 2D frequency

(u, v), the term |ℜh̃α(u, v)| + |ℜh̃β(u, v)| is the ℓ1-norm of a 2-dimensional vector

[ℜh̃α(u, v),ℜh̃β(u, v)]T . Therefore, minimizing this ℓ1-norm promotes either one of the

components to zero (or both). Similar argument applies for the imaginary components

in the second summation. As a result, the total variation can be regarded as a proxy

to the orthogonality condition.

5.3 Formulation of Optimal CFA Design Problem

Using the variables and constraints defined in the previous section, we present

two different optimization formulations of the CFA design problem in this section:

(i) A non-convex formulation that integrates all the above information into a single

optimization, and (ii) convex relaxation that makes the problem more tractable.
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5.3.1 Non-Convex CFA Design

The non-convex CFA optimization puts all the objectives and constraints defined

in the previous section into a single optimization problem. This gives us

maximize
x

γc(x) + λlγl(x)− λρρ(x) (5.33)

subject to

x ∈ [0, 1]3L (Realizability) (a)

(I − diag(e1))FZ l x = 0 (Proposition 5.2.2) (b)

Ux = 0 (Proposition 5.2.3) (c)

Wx = 0 (Proposition 5.2.4) (d)

TV(x) ≤ TVmax (Proposition 5.2.5) (e)

where λl and λρ are the regularization parameters controlling the relative weights of

the luminance sensitivity and the orthogonality penalty. The penalty function ρ(x)

is added to the objective with a negative sign so that it is minimized. By lower

bounding γc(x) with a constant τ , we can rewrite (5.33) as

maximize
x,τ

τ + λlγl(x)− λρρ(x) (5.34)

subject to

x ∈ [0, 1]3L (Realizability) (a)

(I − diag(e1))FZ l x = 0 (Proposition 5.2.2) (b)

Ux = 0 (Proposition 5.2.3) (c)

Wx = 0 (Proposition 5.2.4) (d)

TV(x) ≤ TVmax (Proposition 5.2.5) (e)

xTQαx ≥ τ 2 (Proposition 5.2.1) (f)

xTQβx ≥ τ 2 (Proposition 5.2.1) (g)

In this optimization problem, the objective and constraints are convex except for

(5.34)(f) and (5.34)(g). This is because these inequalities include convex quadratic

form in the “≥” side, where convexity comes from the fact that Qα and Qβ are

positive semidefinite matrices. Hence, the optimization problem is non-convex.
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Algorithm 2 Successive Convex Approximations
Require: Initial guess x(0), k = 0.

while γc not converge do

Replace the quadratic terms xTQαx and xTQβx in inequalities (5.34)(f-g) by

their first order Taylor approximations around x(k):

xTQαx ≈ x(k)TQαx
(k) + 2(x− x(k))Qαx

(k) ≥ τ 2

xTQβx ≈ x(k)TQβx
(k) + 2(x− x(k))Qβx

(k) ≥ τ 2

Solve the convex approximation of (5.34) to get γ(k)c

k = k + 1

end while

return x

5.3.2 Solving the Optimization

While problem (5.34) is non-convex, we can find a local minimum by successive

convex approximations [128]. The idea of successive convex approximation is to re-

place the quadratic terms in the non-convex constrains (5.34)(f) and (5.34)(g) by

first order approximations around the initial guess x(0). Since the quadratic form

is convex, its first order approximation constitutes a lower bound. Hence, we are

replacing the non-convex constraints (5.34)(f) and (5.34)(g) with convex but tighter

constraints that limit the feasible set of x. The algorithm repeats until τ converges

to a fixed-point, which is the final chrominance sensitivity.

The overall algorithm is summarized in Algorithm 2. Figure 5.6 shows the con-

vergence of Algorithm 2 for designing a 4 × 4 color atom. We notice the monotonic

increase of τ until it converges to a fixed point. Since the original problem is non-

convex, solution to the problem could be a local minimum depending on how the

initialization is done. In practice, we solve the problem for multiple instances with

different randomly generated initial guesses which approximately cover the design
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Fig. 5.6. Convergence of Algorithm 1 for 4× 4 color filter design.

space (e.g., using the Latin hypercube sampling [129]), and pick the best solution

among them.

5.3.3 Convex CFA Design

The relaxation from non-convex to convex can be done by explicitly forcing part

of the chrominance components to zero. Specifically, we modulate the chrominance

channels on the same frequency ω(u, v) = (2πu
M
, 2πv

N
) using the quadrature orthogo-

nality mentioned in (5.30). In terms of x, these two equations can be written as:

Zαx = γcxc, Zβx = γcxs (5.35)

where xc and xs are constant vectors that represent the vectorized version of the

cosine and sine signals on the right hand side of (5.30a) and (5.30b), respectively, i.e.,

xc = vec

√2 cos
ω(u, v)T

m
n

− ϕ
M−1,N−1

m=0,n=0

 (5.36a)

xs = vec

√2 sin
ω(u, v)T

m
n

− ϕ
M−1,N−1

m=0,n=0

 (5.36b)
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Since we explicitly choose the modulation frequencies of chrominance channels man-

ually, we can drop the aliasing constraint in Proposition 5.2.4. However, we still need

the uniform luminance and chrominance constrains in Propositions 5.2.2 and 5.2.3.

Moreover, since the luminance and chrominance gains are adversarial, the objective

of this formulation is to maximize their weighted sum. To this end, the problem is

written as:

maximize
x,γc

γc + λlγl(x) (5.37)

subject to

x ∈ [0, 1]3L (Realizability) (a)

(I − diag(e1))FZ l x = 0 (Proposition 5.2.2) (b)

Ux = 0 (Proposition 5.2.3) (c)

TV(x) ≤ TVmax (Proposition 5.2.5) (d)

Zαx− γcxc = 0 (e)

Zβx− γcxs = 0 (f)

In our terminology, the optimization problem of [95] is obtained from (5.37) by remov-

ing the crosstalk constraint (5.37)(d). Hence, our optimization limits the search space

of the optimization in [95] to get CFAs that have acceptable crosstalk performance.

Figure 5.7 shows two color atoms obtained using the convex and non-convex

formalizations. In the convex formulation, we select the modulation frequency to

be ω0 = [π, π] and the phase that maximizes γc at this frequency is found to be

ϕ = π/12. Then, we solve the problem to get (γl, γc, TV ) = (0.573, 0.08, 0.263). As

for the non-convex formulation, we let the optimization to choose modulation frequen-

cies subject to crosstalk and aliasing constraints. Solving the non-convex formulation

yields (γl, γc, TV ) = (0.573, 0.09, 0.263). We notice that the non-convex formula-

tion achieves higher chrominance sensitivity because of its flexibility in choosing the

modulation frequencies.
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L

α, β

L

αβ

βα

(a) Convex Formulation (b) Non-Convex Formulation

γc(x) = 0.08 γc(x) = 0.09

Fig. 5.7. 4×4 color atoms and corresponding spectra obtained using con-
vex and non-convex formulations. Spectra are obtained from mosaicking
the “Bikes” image in Kodak color dataset by the color atoms. Both have
the same luminance sensitivity γl(x) = 0.577 and same Total variation
TV (x) = 0.263.

5.4 Universal Demosaicking

In this section, we present a universal demosaicking algorithm which can be used

to all CFAs presented in this paper. Our algorithm comprises two main parts: (i) a

demosaicking step to remove the color filtering effect (Section 5.4.2) and (ii) a color

correction step to mitigate the crosstalk effect (Section 5.4.3).

5.4.1 Special Consideration for QIS.

Before we talk about the demosaicking algorithm, we should briefly discuss the

photon statistics of QIS. In CMOS, the measured voltage can be modeled as a nom-

inate value corrupted by i.i.d. Gaussian noise. In QIS, previous work showed that

the measured photon counts follow a truncated Poisson process [24]. When averaging

over a number of temporal frames, the truncated Poisson becomes a Binomial [69].

If the photon count is sufficiently high, this binomial will approximately approaching
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to a Gaussian. Applying the law of large numbers on the distribution of B in (5.5),

the average is
1

T

T−1∑
t=0

bm,t
a.e.−→ E[Bm] = 1−Ψq(θm),

and the maximum-likelihood estimate of the signal is

θm = Ψ−1
q

(
1− 1

T

T∑
t=1

bm,t

)

As discussed in [69], we can regard this equation as a tone-mapping of the photon

counts. We regard θm as the m-th pixel of the mosaicked image generated by the

CFA. The goal of demosaicing is to reconstruct a color image from θm.

5.4.2 Demosaicking by Frequency Selection

Our demosaicking algorithm is based on frequency selection [73]. It generalizes

[74] as it works for any CFA as long as it satisfies the orthogonality constraints in

Section 5.2.5

The key idea of the algorithm is to shift every chrominance channel to the base-

band by multiplying with its carrier, then use a low-pass filter to reconstruct it. For

chrominance components that are replicated over distinct carriers, we combine them

by simple averaging. After obtaining the α and β chrominance channels, they are

re-modulated to their original positions and subtracted from the mosaicked image to

obtain the luminance channel. This process is summarized in Algorithm 3 for a spe-

cial case of a CFA that has strictly one replica of the α and β chrominance channels.

It is also illustrated by Figure 5.8. Extension of the algorithm to the general case is

straightforward.

To apply Algorithm 3 on CFAs proposed in [86], [93] and [98], they must satisfy

the orthogonality constraints in Section 5.2.2. However, this is not satisfied with our

choice of the luminance/chrominance basis defined by T in (5.7). Hence, we use for

every CFA the transformation matrix T that makes its luminance and chrominance

channel orthogonal. To ensure fairness, we normalize the matrix rows to unity so
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Fig. 5.8. Illustration of Algorithm 3 of demosaicking by frequency selec-
tion for a special case of a CFA that has strictly one replica of the α and β
chrominance channels. Variable on the figure are defined in Algorithm 3.

that all luminance and chrominance have the same noise power. The transformation

matrices are provided in the supplementary.

5.4.3 Color Correction

The demosaicking algorithm in Algorithm 3 does not take into account of the

crosstalk effect. Like most of the mainstream image and signal processing (ISP)

pipelines, we reduce the cross-talk via a color correction step.

Given the demosaicked color pixel îm(m,n), the color correction multiplies îm(m,n)

by a 3× 3 matrix M such that M îm(m,n) is the color-corrected pixel. The matrix

M is learned by comparing a measured color pixel to a known color chart value.

Mathematically, suppose we have K measured color pixels forming a 3 × K matrix

QFalse, and a corresponding true color values forming another 3×K matrix QGT, we

can estimate M by solving

M = argmin
M

ϵc(M ) subject to Mu = u (5.38)
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Algorithm 3 Demosaicking by Frequency Selection
Require: The image θ which is mosaicked by a CFA of size M × N as defined in

(5.8), a luminance/chrominance transformation matrix T , a low-pass filter g, a

scalar K def
= MN and a scalar r =

2 if ω = (π, π)

1 otherwise
.

Ensure: α and β chrominance channels are modulated on carriers ω(u1, v1) and

ω(u2, v2), respectively.

1) Reconstruct the α chrominance channel

α(m,n) = (θ(m,n)c1(m,n))⊛ g(m,n)

where

c1(m,n) =
K

|a1|
cos

ω(u1, v1)
T

m
n

+ ∠a1


and a1 = h̃α(u1, v1)

2) Reconstruct the β chrominance channel

β(m,n) = (θ(m,n)c2(m,n))⊛ g(m,n)

where

c2(m,n) =
K

|a2|
cos

ω(u2, v2)
T

m
n

+ ∠a2


and a2 = h̃β(u2, v2)

3) Reconstruct the luminance channel

L(m,n) = θ(m,n)− α(m,n)b1(m,n)− β(m,n)b2(m,n)

where

b1(m,n) =
2|a1|2

rK2
c1(m,n) and b2(m,n) =

2|a2|2

rK2
c2(m,n)

return [R,G,B]T = T−1[L,α,β]T
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Before Color Correction After Color Correction

Fig. 5.9. Effect of color correction on retaining vivid image colors.

where ϵc(M ) = Tr
{
(MQFalse −QGT)

T (MQFalse −QGT)
}

is the color error. u
def
=

[0.95, 1, 1.0889]T is the white point for D65 illuminant. To minimize the noise amplifi-

cation, it is advised to add regularization when estimating M [130]. Since a standard

color chart comprises 24 color patches, we can estimate the noise by computing the

norm of covariance matrix of every color patch, and get the average value over the

24 color patches. Hence, the optimization problem is rewritten as

M = argmin
M

ϵc(M) + κ
24∑
i=1

||Cov(MQ
(i)
False)||

2
2

subject to Mu = u (5.39)

where Q
(i)
False represents the pixels of the ith color patch, and κ is a positive scalar

that controls the noise amplification effect. By varying κ, we can draw a tradeoff

curve between color reproduction accuracy and noise amplification.

Figure 5.9 shows reconstructed images before and after color correction. In this

figure, the crosstalk parameters are (αr, αr, αr) = (0.23, 0.15, 0.1). We can see the

effect of color correction in the more saturated red and yellow feathers and in the

green leaves in the background.
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6. EXPERIMENTAL EVALUATION

In this chapter, we present our experimental results for the QIS image reconstruction

and threshold design problems. On the image reconstruction side, we study the

convergence of ADMM algorithm in Section 6.1, then we present in Section 6.2 a

comparison between our proposed Transform-Denoise algorithm and other algorithms.

For performance evaluation, we use the peak signal-to-noise ratio (PSNR) for assessing

the reconstruction quality, and we use the elapsed CPU time as a proxy for assessing

the computational complexity. On the threshold design side, we evaluate our proposed

threshold update scheme by comparing it with existing methods. We consider two

evaluation metrics: (1) convergence rate of the threshold update methods; (2) quality

of the reconstructed images. For regular imaging experiments, we use our own Purdue

dataset comprising 77 images captured by a Canon EOS Rebel T6i camera. For HDR

imaging experiments, we use the HDR-Eye dataset by Nemoto et al. [131, 132].

6.1 Convergence of ADMM Reconstruction Algorithm

In this experiment, we test the convergence of the ADMM algorithm used to get

the ML solution (subsection 3.1.1) and the MAP solution (Section 3.2). We choose

the MAP solution with TV prior because we can calculate the objective function

since the prior term is explicitly defined (||Dc||1). We could not do that with the

Plug-and-Play algorithm because the prior term is implicitly defined by the denoiser

D. QIS simulation parameters are q = 1, K = 4, T = 5, and α = 2K2.

We assume the interpolation filter {gk} has a box-car kernel. As a result, we

can use the ML closed-form in Proposition 3.1.2 which gives the exact unique ML

solution that the ADMM algorithm must converge to (because the problem is convex).

Table 6.1 shows the reconstruction PSNR and CPU time of the ML solution obtained
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by applying the ADMM algorithm with ρ = 10 (ML-ADMM) and that obtained by

the closed-form expression (ML-CF). Compared to ML-ADMM that can compute an

approximate ML estimate in 196 seconds using 40 ADMM iterations 1, the closed-form

expression can compute the exact ML estimate in a fraction of second.

Table 6.1.
Reconstruction PSNR in dB and CPU time in seconds for ML solution.
Both values are averaged on 77 images in our dataset.

Algorithm ML-ADMM ML-CF

PSNR (dB) 21.99 22.02

CPU Time (Sec) 196.24 0.46

Figure 6.1 shows the convergence of the ML-ADMM algorithm and the MAP-

TV-ADMM algorithm with for TV prior. For both algorithms ρ = 10, and for

the MAP-TV-ADMM algorithms (λ, γ) = (5, 35) which are obtained by exhaustive

search on a grid of possible values. The optimization criterion of this exhaustive

search is the PSNR after 40 iteration. We notice that both algorithms converge to

a unique solution, where the MAP-ADMM algorithm has a slower convergence rate.

In addition, the reconstruction PSNR increases slowly with iterations in the MAP-

TV-ADMM case to reach a value higher than the ML-ADMM solution by 6.7 dB.

Figure 6.2 shows the reconstructed images using the ML Closed-Form expression,

the ML-ADMM estimate, and the MAP-TV-ADMM estimate. We notice that the

ML-CF and ML-ADMM images are nearly the same, and the MAP-TV-ADMM image

is better than both of them.
1Theoretically, the exact ML estimate is obtained if we run the ADMM algorithms for large number
of iterations until the likelihood function converges with a sufficiently high numerical precision.
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Fig. 6.1. Simulated QIS data and the reconstructed gray-scale images
using different reconstruction methods.

(a) 21.27 dB (b) 21.25 dB (c) 27.97 dB

Fig. 6.2. Reconstructed Images using ML closed-form (a) and ML ADMM
algorithm (b) are nearly the same. The image reconstituted using MAP-
TV ADMM algorithm (c) is better than both.

6.2 Image Reconstruction Performance

In this experiment, we compare between our Transform-Denoise (TD) algorithm

and other algorithms. For performance evaluation, we compute the reconstruction

PSNR and CPU time averaged on 77 images in our dataset. QIS simulation param-

eters are q = 1, K = 4, T = 5, and α = 2K2

As mentioned before, the pure ML solution is not useful because it is too noisy,

and a denoising step is necessary as the TD algorithm suggests. In this experiment,
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we try two different denoisers in our TD algorithm: 1) a learning-based denosier [133]

which is based on the training of a deep convolutional neural network (CNN), and 2)

the BM3D denoiser [105].

We compare the TD algorithms with three different MAP solutions obtained by

different priors: 1) MAP solution with total-variation prior [22] (MAP-TV), 2) MAP

solution with BM3D denoiser prior (MAP-TV), and 3) MAP solution with CNN

denoiser prior. The MAP-TV solution is obtained by applying 40 iterations of the

ADMM algorithm; whereas the MAP-BM3D and MAP-CNN solutions are obtained

by applying 40 iterations of the Plug-and-Play algorithm. For all MAP solutions,

the value of ρ = 10, and the values of γ and λ are obtained by exhaustive search on

a grid of possible values. The optimization criterion of this exhaustive search is the

PSNR after 40 iteration. The optimized parameters are (λ, γ) = (5, 35) for MAP-TV,

(λ, γ) = (2, 70) for MAP-BM3D, and (λ, γ) = (5, 60) for MAP-CNN.

Table 6.2.
Reconstruction PSNR in dB and CPU time in seconds for MAP solution
and the TD solutions. Both values are averaged on 77 images in our
dataset.

Algorithm MAP-TV [22] MAP-BM3D TD-BM3D MAP-CNN TD-CNN

PSNR (dB) 28.55 29.71 30.43 30.04 30.29

CPU Time (Sec) 197.47 524.67 6.87 267.71 2.33

As shown in Table 6.2, the TD algorithm achieves the best reconstruction quality

in terms of PSNR in much less time than the iterative ADMM and Plug-and-Play

algorithms. This is intuitive because the TD algorithm in non-iterative and other

algorithms are iterative. We emphasize that ADMM and Plug-and-Play algorithms

can obtain better PSNR than these values if we run them for more than 40 iterations

or if we fine tune the parameters λ, γ, and ρ by exhaustive search on a fine grid

of suggested parameters. On the other hand, the TD algorithm is parameter-free

because the noise level after Anscombe transformation is fixed and known.
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Figure 6.3 and Figure 6.4 show reconstructed image by different algorithms com-

pared to the ground truth. We notice that the TD algorithm achieves the highest

visual quality compared to other algorithms. It is worth noting that the TD-CNN

algorithm can reconstruct more details than the TD-BM3D algorithm. This is at-

tributed to the high learning capacity of CNNs which is trained on dataset comprising

thousands of images. This leads to more powerful prior term compared to BM3D.

6.3 Convergence of The Threshold Update Scheme

We compare the proposed threshold update scheme with the Markov Chain (MC)

adaptation proposed by Hu and Lu [62]. The Markov Chain adaptation models the

threshold as a variable with 2L states. These 2L states can be regarded as 2L steps

before reaching to the next threshold level. The probability of changing from one

state to another is controlled by a parameter 1 − β with 0 < β < 1. When a bit

arrives, the state will be updated (increased or decreased) or will remain unchanged.

Once the state is increased by 2L times, the threshold will be increased by one.

When comparing Markov Chain adaptation with the proposed bisection algo-

rithm, one should be aware of the difference between the two methods. Markov

Chain adaptation is a per-jot update scheme whereas the proposed bisection algo-

rithm is a per-pixel update scheme. For a pixel with K × K jots, Markov Chain

adaptation needs K2 iterations to update the threshold sequentially. In contrast,

the proposed bisection algorithm updates a common threshold for all K2 jots simul-

taneously. Thus in practice our bisection algorithm is significantly less complex to

implement in hardware than the Markov Chain. In order to take the different forms

of updates into account, we treat the K2 iterations of Markov Chain adaptation as

one “major iteration” and compare it with the one bisection step of the proposed

algorithm.

The first comparison we make is to check the threshold at different jots. Figure 6.5

shows the results of three typical runs with underlying optimal thresholds q∗ = 1, 8, 16.
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(a) Ground Truth (b) MAP-TV [22], 40 iter., 28.22 dB, 194 sec

(c) MAP-BM3D, 28.62 dB, 515 sec (d) TD-BM3D, 29.72 dB, 7 sec

(e) MAP-CNN, 29.20 dB, 265 sec (f) TD-CNN, 29.77 dB, 2.4 sec

Fig. 6.3. Simulated QIS data and the reconstructed gray-scale images
using different reconstruction methods.
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(a) Ground Truth (b) MAP-TV [22], 40 iter., 21.99 dB, 195 sec

(c) MAP-BM3D, 27.44 dB, 515 sec (d) TD-BM3D, 28.17 dB, 6 sec

(e) MAP-CNN, 28.01 dB, 269 sec (f) TD-CNN, 28.53 dB, 2 sec

Fig. 6.4. Simulated QIS data and the reconstructed gray-scale images
using different reconstruction methods.
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Fig. 6.5. Convergence of the threshold at 3 jots. Each curve is averaged
over 100 random samples. The red curve indicates the proposed bisection
method. The black curves are the Markov chain adaptation [62] with
β = 0.25. Note that one major iteration of Markov Chain adaptation
corresponds to K2 sequential updates, and one major iteration of the bi-
section method corresponds to a single update to K2 jots simultaneously.

In this experiment, we generate 100 random binary blocks of size K×K and estimate

the threshold at each major iteration. We report the average of these 100 estimates

to minimize the randomness of the data. The results show that one iteration of the

proposed bisection algorithm works as good as the K2 iterations of the Markov Chain

adaptation. In some cases, Markov Chain tends to oscillate whereas the bisection

result is stable.

The second comparison we make is to check how close the estimated threshold is

compared to the optimal threshold. The optimal threshold q∗ is obtained using the

oracle scheme. In Figure 6.6, we plot the mean squared error between the estimated
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Fig. 6.6. Mean square error between the estimated threshold and the
ideal oracle threshold. Each curve is averaged over 50 random samples
and 77 images. The red curve indicates the proposed bisection method.
The black curves are the Markov chain adaptation [62] with β = 0.25.

threshold and the oracle threshold. For fairness, we show the results of the MSE

averaged over the 77 images of our dataset, and 50 random samples per image. One

threshold is shared by K×K jots, and each K×K jots correspond to one pixel. The

result is consistent with the ones shown in Figure 6.5.

6.4 Influence of QIS Threshold on Image Reconstruction Quality

The convergence comparison in the previous subsection is only useful to compare

threshold update methods that actually return a threshold. In the QIS literature,

there are methods that implicitly update the threshold, e.g., the conditional reset

method [45]. For comparison with these methods, we have to compare the quality of

the image reconstructed from the binary raw data. The image reconstruction is done

using the closed-form ML estimate in Proposition 3.1.2.
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In this experiment, we fix the spatial over-sampling factor as K = 4, and number

of temporal frames as T = 13. The maximum threshold level is set as qmax = 16 to

ensure that it is realistic for today’s QIS, and α = 15K2.

We consider three classes of methods:

• Uniform Threshold. Uniform threshold is commonly used in the device liter-

ature [20–22]. A uniform threshold is a single threshold applied to all pixels

in the image. In this experiment, we consider the following choices of uniform

thresholds: q = 1, q = 5, q = 10 and q = 16.

• Conditional Reset [45]. Conditional reset counts the number of photons and

is reset when it is above the threshold. The threshold in conditional reset is

sequentially increasing or decreasing. The reconstructed image is obtained by

digitally integrating the raw binary frames.

• Proposed Method. As we discussed in Section 4.2.5, the proposed method can

be implemented to let multiple pixels share a common threshold. Thus, in this

experiment we consider three sharing strategies: (1) Share a threshold between

a neighborhood of K × K jots (i.e., one threshold for one pixel); (2) Share a

threshold between a neighborhood of K2×K2 jots (i.e., one threshold for K×K

pixel); (3) Share a threshold between a neighborhood of 2K2 × 2K2 jots (i.e.,

one threshold for 2K × 2K pixels).

The result of the experiment is shown in Table 6.3. The PSNR values reported are

averaged over 77 images in our dataset. Each image generates 50 random realizations,

and the PSNR of an image is averaged over these 50 random realizations to minimize

the randomness. As shown in the table, while conditional reset generally performs

better than a uniform threshold, it performs significantly worse than the proposed

threshold update scheme.
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Table 6.3.
Average PSNR and Standard deviation of 77 recovered images using dif-
ferent Q-maps and 50 random samples.

Configuration
Average

PSNR
Std

Uniform Threshold

q = 1 10.30 0.01

q = 5 28.80 0.04

q = 10 23.22 0.02

q = 16 12.95 0.01

Conditional Reset [45]
Ascending q sequence 23.77 0.52

Descending q sequence 24.95 0.53

Proposed Method

2K2 × 2K2 30.14 0.06

K2 ×K2 31.18 0.06

K ×K 32.78 0.02

Fig. 6.7. Bracketed images with different exposure settings. From Left to
Right: −2.7,−2, −1.3, −0.7, 0, 0.7, 1.3, 2, and 2.7 EV.

6.5 Influence of QIS Threshold on HDR Imaging

Since QIS does not have sufficient full well capacity to accumulate photons for

HDR imaging, we apply the dynamic range extension method discussed in Sec-

tion 4.2.6. When different threshold schemes are used, the reconstructed HDR images

will be affected. The objective of this experiment is to evaluate the influence of the

threshold in HDR imaging.
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q = 1, PSNR = 17.94 dB q = 16, PSNR = 20.77 dB Proposed, PSNR = 31.46 dB

Fig. 6.8. The reconstructed HDR images using different thresholds. See
supplementary material for additional results.

In this experiment, we consider the HDR-Eye image dataset [131, 132]. Each

HDR image in this dataset contains 9 images acquired at different exposure settings

(−2.7,−2, −1.3, −0.7, 0, 0.7, 1.3, 2, and 2.7 EV). A snapshot of these images are

shown in Figure 6.7. From each exposure, we simulate the photon counts resulting

from the luminance channel. The sensor gain is set as α = K2(qmax − 1) to en-

sure proper number of photons, where K = 4 × 4 = 16 and qmax = 16. On the

reconstruction side, we reconstruct the 9 images using the ML solution presented in

Proposition 3.1.2. Tone mapping and exposure fusion [12] are applied to the 9 images

to generate an HDR image. As a reference, we apply the same tone mapping and

fusion algorithm to the 9 ground truth images. PSNR between the reference and

the estimated is then recorded. QIS simulation parameters are K = 4, T = 13 ,

qmax = 16, and α = 15K2.

The result of this experiment is shown in Figure 6.8. With the proposed threshold

update scheme, the reconstructed images achieve the highest PSNR value and visual

quality. When q = 1, which is too low, the image appears under-exposed. When

q = 16, which is too high, the image appears over-exposed. The spatially varying

property of the proposed method mitigates the issue by allowing multiple thresholds.

In practice, one would typically add image denoisers to handle the randomness in

the ML estimate and potentially other types of noise. This can be done using methods
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such as [24]. In HDR literature, there are also optical approaches that reduce the

number of exposures, e.g., [134, 135]. These techniques are complementary to QIS,

because QIS is a sensor of similar functionality of a CMOS. Thus optical techniques

can always be added.

In this section, we present CFAs obtained using our optimization framework in

Section 6.6. Afterwards, we evaluate the performance of different CFAs using the uni-

versal demosaicking algorithm proposed in Section 5.4. First, using the Macbeth color

chart, we show the noise-color trade-off of our robust CFAs comparsed to others in

Section B.4. Second, we show in Section B.3 a quantitative and qualitative compari-

son of the reconstruction performance of all CFAs on Kodak [136] and McMaster [137]

color datasets.

6.6 Proposed Solutions of CFA Design Problem

We focus on the non-convex formulation (5.34) since it is more flexible than the

convex formulation (5.37). We set the parameters of (5.34) as λc = 10 and λρ = 0.02.

We run multiple instances of Algorithm 2 (2000 instances) using different random

initializations for the color atoms x(0). Then, we pick the solution with the highest

chrominance sensitivity. To ensure that the initial guess spans the feasible set of x,

we use uniform Latin hypercube sampling of the domain [0, 1]3L.

Figure 6.9 shows our proposed CFAs and their accompanied spectra compared

to other CFAs in the literature. For every CFA, we compute 1) the luminance and

chrominance gains (γl and γc) in (5.17) to measure robustness to noise, 2) the to-

tal variation metric TV (x) (Proposition 5.2.5) to measure robustness to crosstalk,

and 3) the aliasing metric Jl in (5.23) to measure robustness to aliasing, and the

condition number κ(A) defined in Section 5.2.4. To calculate the aliasing metric

for [83], [86], [93] and [98], we use the transformation matrices that make the lumi-

nance and chrominance channels orthogonal as mentioned in Section 5.4.2. Results

are summarized in Table B.1.
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• 4 × 4: Among all 4 × 4 CFAs in Table B.1, [86] is the most robust CFA to

aliasing, but the least robust to crosstalk; whereas RGBCWY [93] is the most

robust to crosstalk, but it is not as robust to aliasing. Our CFA achieves the

best of both worlds by having the same total-variation like RGBCWY, and

good aliasing metric. Moreover, it has the lowest condition number.

• 3 × 3: Compared to [98], our CFA has less aliasing. The high aliasing metric

of [98] is attributed to its design which overlooks frequency domain aliasing.

• 3× 2: Compared to [95], our CFA is more robust to crosstalk and aliasing.

• 4× 2: Compared to [83], our CFA has higher chrominance sensitivity and it is

more robust to crosstalk.
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6.7 Macbeth ColorChecker Reconstruction

In this experiment, we simulate the performance of different CFAs in reconstruct-

ing the Macbeth ColorChecker image. Pixel response is determined using the incident

photon flux of D65 light and the spectral reflectance of Macbeth ColorChecker inte-

grated over the visible light spectrum. QIS parameters and primary color filters are

taken from [93]. For every CFA, we generate mosaicked images under two scenarios:

1) crosstalk kernels with leakage factors (αr, αg, αb) = (0, 0, 0), i.e., no crosstalk, and

2) crosstalk kernels with leakage factors (αr, αg, αb) = (0.45, 0.30, 0.20) as suggested

by [93]. For fairness of comparison, we use Algorithm 3 for demosaicking all CFAs in-

cluding RGBCY and RGBCWY CFAs proposed in [93]. Color correction with white

balance is performed after color demosaicking for the crosstalk case for removing the

crosstalk effect.

We use the following metrics [93] to evaluate the CFAs:

• Sensitivity metamerism index (SMI) which measures the drop in color reproduc-

tion accuracy due to crosstalk. It is obtained as a function of the CIEDE2000

color error metric which is obtained by calculating the mean square color dif-

ference in the CIELAB color space.

• Luminance SNR (YSNR) which measures the visual noise of luminance channel

as defined in ISO 12232 [138].

Table B.1 shows these metrics for different CFAs with and without crosstalk. Our

CFAs achieve higher color reproduction accuracy compared to others since they are

optimized for crosstalk. This gain in color accuracy happens by trading the noise

performance as observed by the drop of YPSNR metric.

6.8 Natural Color Image Reconstruction

In this experiment, we evaluate the performance of different CFAs for natural

color image reconstruction. To this end, we use Kodak and McMaster color datasets
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to generate 42 mosaicked images according to QIS model. QIS parameters are taken

as (q, α, T ) = (1, 2, 1000), and two scenarios are assumed: 1) No crosstalk, and 2)

Moderate crosstalk with leakage factors (αr, αg, αb) = (0.23, 0.15, 0.10). The low pass

filter in Algorithm 3 is chosen as 21× 21 Gaussian with standard deviation σ = 21/3

and multiplied by a hamming window to mitigate the windowing effect.

Table B.1 and shows the average color PSNR values on the 42 images. Our CFAs

achieve better quality for the crosstalk case. Visually, our CFAs obtain color images

with less aliasing artifacts and better details as shown in Figure B.3.



107

4
×
4

︷
︸︸

︷
3
×
3

︷
︸︸

︷
3
×
2

︷
︸︸

︷
4
×
2

︷
︸︸

︷

G
ro

un
d

Tr
ut

h

RG
BC

Y
[9

3]
:
25

.5
1
dB

[8
6]

:
2
6
.6
8
dB

[9
8]

:
2
6
.6
1
dB

[9
5]

:
2
6
.5
3d

B
[8

3]
:
2
6.
1
3d

B

RG
BC

W
Y

[9
3]

:
25
.1
9d

B
O

ur
s:

2
7
.2
6d

B
O

ur
s:

2
7.
1
9d

B
O

ur
s:

2
6
.5
5
dB

O
ur

s:
2
6
.7
8
dB

Fi
g.

6.
11

.
R

ec
on

st
ru

ct
ed

co
lo

r
im

ag
es

fro
m

th
e

Q
IS

m
ea

su
re

m
en

ts
.

Ea
ch

su
bfi

gu
re

sh
ow

s
th

e
re

su
lt

us
in

g
a

pa
rt

ic
ul

ar
co

lo
r

fil
te

r
ar

ra
y

de
sig

n.



108

7. CONCLUSION AND FUTURE DIRECTIONS

We studied three important problems related to QIS: 1) image reconstruction, 2)

threshold design and 3) color filter array design. On the image reconstruction side,

we proposed a non-iterative algorithms which can obtain a clean reconstruction with

a significantly less computational complexity than existing work in literature. On

the threshold design side, we proposed a practical threshold update scheme that can

adapt the threshold to the incoming light both in space and time, i.e., it obtains a

temporally-spatially-varying threshold. This scheme is based on a rigorous theoretical

analysis for the reconstruction performance limits. As for the color filter array design,

presented a general and flexible optimization framework to design color filter arrays for

QIS. Our framework unifies the CMOS-based color filter array designs and extends to

QIS. The color filter arrays designed by our framework are robust to crosstalk between

the primary color channels, robust to aliasing between the luminance and chrominance

channels, and are robust to noise. Experimental results show the effectiveness of our

proposed methods compared to existing work in literature.

To achieve a practical and useful realization of QIS, several theoretical and tech-

nological issues require more exploration. The first challenge is to extend our QIS

solutions to work with multi-bit QIS where the photon counts are quantized to a

digital number with shallow bit-depth in the range 2−6 bits. The second challenge is

to obtain a fast QIS color image reconstruction scheme. Another important challenge

is the handling of the binary data coming out from QIS. For a QIS with gigajots

or more, read out at 1000 fps, the output data rate exceeds 1 Tb/s [28]. Efficient

algorithms are crucial to handle this tremendous data rate efficiently. We discuss

these issues in the next three sections in more details.
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7.1 Extension to Multi-bit QIS

Multi-bit QIS uses an analog-to-digital (ADC) converter with shallow bit depth

(2− 6 bits) to quantize the photon counts. Compare to single-bit QIS, mutli-bit QIS

allows capturing brighter scenes with the same integration time before saturating the

pixel. However, this requires more complicated read-out circuit because the output

data rate will be multiplied by the number of ADC bits.

On the signal processing side, QIS measurements still follow quantized Poisson

process, but the quantization threshold in this case is q = 2n − 1, where n is the

number of ADC bits. Denote the QIS measurement of one jot by X, then we can

write the distribution as follows:

X ∼ clip (Poisson(λ), q) , (7.1)

where the probability mass function of X is defined as

pX(x) =


λxe−λ

x!
, x < q

1−Ψq(λ), x ≥ q

(7.2)

For this random variable, we can compute its expectation as follows.

E[X] =

q−1∑
x=0

x
λxe−λ

x!
+ q (1−Ψq(λ)) (7.3)

According to the value of n, we have two cases:

• Single-Bit QIS, q = 1: The expectation have a closed-form as we proved in

Chapter 3:

E[X] = 1−Ψq(λ) (7.4)

Thus, given a sample of T realizations of X: {x1, . . . , xT}, the maximum like-

lihood estimate of the expectation is the sample mean since the distribution is

Bernoulli, which is an exponential distribution [61].

1

T

T∑
t=1

xt
MLE
≈ E[X] = 1−Ψq(λ) (7.5)
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Then, we can compute the latent light intensity λ by solving the equation

1−Ψqmax(λ) =
1
T

∑T
t=1 xt to get closed-form expression for λ

λ = Ψ−1
q

(
1− 1

T

T∑
t=1

xt

)
(7.6)

In terms of image processing, this non-linear expression acts as a tone-mapping

function that correct the contrast of the image obtained by averaging T QIS

frames 1
T

∑T
t=1 xt.

• Multi-Bit QIS, q ∈ {3, 7, 15, 31, . . .}: The expectation does not have a closed-

form expression.

E[X] =

q−1∑
x=0

x
λxe−λ

x!
+ q (1−Ψq(λ))

def
= f(λ) (7.7)

Given a sample of T realization of X, the sample mean is an approximation for

the expectation; though, it is not the maximum likelihood estimate anymore

because the distribution does not belong to the exponential family.

1

T

T∑
t=1

xt ≈ E[X] = f(λ) (7.8)

Then, we can get λ by applying the inverse function f−1 using a look-up table

λ = f−1

(
1

T

T∑
i=1

xi

)
(7.9)

This inverse function acts as a tone mapping function. Without it (assuming

E[X] = λ), there is an error in the image contrast.

7.2 Fast Color QIS Image Reconstruction

One of the fastest methods for color image reconstruction is the demosaicking

by frequency selection [73, 74, 78]. This method is fast because it requires simple

multiplication operation for demodulation of chrominance channels and spatially-

invariant filtering process for selecting specific channels at the baseband or passband.
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In [95], the author tackles joint image denoising and demosaicking for images im-

paired with AWGN. He first reconstruct clean chrominance channels by demodulation

to the baseband followed by low-pass filtering which is estimated in the least-square

sense by minimizing the reconstruction error on a training dataset. After subtracting

the re-modulated clean chrominance channels from the mosaicked image, the resid-

ual noise in the luminance channel is still AWGN. Hence, any off-the-shelf Gaussian

denoiser can be used for luminance denoising.

For QIS, a similar approach to [95] can be used for fast reconstruction of color

images. However, we should take care of the quantized Poisson noise model here,

where there exist some open questions: Can we still find a better way to estimate

or to learn the best low-pass filter for obtaining clean chrominance channels? After

subtracting the chrominance channel from the mosaicked image, what is the noise

model in the resulting luminance channel?

7.3 Handling the QIS Output Data

QIS outputs binary data at a huge data rate that can easily reach 1 Tb/sec.

Transferring these binary measurements to an on-chip processor is not an easy task

at all. The situation becomes worse if we do not quantize the photon counts because

each photon count will need more than 1 bit to be represented, i.e., if each photon

is represented by 4 bits, the data rate will be 1 Tb/sec. Nevertheless, this concern

seems very legitimate because of this intuitive question: If QIS can count photons,

why it throws away this invaluable information by an aggressive binary quantization?

Photons are very valuable. However, QIS is forced to take this direction to decrease

the output data rate.

A potential solution for decreasing the QIS data rate, in case of binary quantiza-

tion, is to use Source Coding. Source coding is a well-established information theory

problem which has been studied extensively for more than 60 years after the seminal

work of Claude Shannon [139].
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In the QIS case, we have cubicles of Bernoulli random variables with spatially

variant Bernoulli parameter p, i.e., each cubicle of random variables has its own p

which depends on the incoming light intensity on that cubicle. Specifically, p is related

to the light exposure θm on the m-th jot according to (2.15) as follows: p = 1−Ψq(θm).

In information theory literature, an important definition is the ϵ-typical set which is

defined in the following proposition

Proposition 7.3.1 For a sequence of n i.i.d. random variables X1, . . . , Xn with

probability mass function pX(x), the set of all sequences (x1, . . . , xn) ∈ Rn
x such that

2−n(H(X)+ϵ) ≤ p(x1, . . . , xn) ≤ 2−n(H(X)−ϵ) (7.10)

is called the ϵ-typical set A(n)
ϵ , where H(X) is the entropy of the random variable X

in bits.

A well-known result in information theory information theory is that the proba-

bility of the ϵ-typical set is close to one for sufficiently large n, i.e., p(A(n)
ϵ ) = 1 − ϵ.

In other words, if we denote by n = K2T the number of jots in a QIS cubicle, as

n increase, most probably we will observe the realizations (x1, . . . , xn) that belongs

to A
(n)
ϵ . This result is very useful because it means that we can only encode the

sequences that belong to A
(n)
ϵ , and ignore all other less probable sequences. This

will decrease the number of bits required to represent the cubicle to be less than n

(or equal to n in the worst case). The cardinality of A(n)
ϵ is satisfies the following

inequality:

|A(n)
ϵ | ≤ 2n(H(x)+ϵ) (7.11)

Hence, we need n(H(x)+ϵ) to represent the sequences in A(n)
ϵ . For a Bernoulli random

variable with parameter p, the entropy H(X) is calculated as

H(x) = −p log2(p)− (1− p) log2(1− p) (7.12)

Figure 7.1 shows the variation of number of bits required to represent A(n)
ϵ . As p

goes away from the point p = 0.5, we can achieve better compression. In QIS, p is
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Fig. 7.1. Number of bits required to represent sequences {x1, . . . , xn} that
belong to the ϵ-typical set, where ϵ is a sufficiently small positive number

obtained from the light intensity by this equation p = 1−Ψq(θ). Therefore, if we have

an initial estimate for the light intensity in each cubicle, we can efficiently compress

the QIS data rate.
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A. SUPPLEMENTARY MATERIAL FOR CHAPTER 4

This supplementary appendix provides the following additional information for Chap-

ter 4

• Derivation of SNRq(c) from exposure-referred SNR,

• Properties of the incomplete Gamma function,

• Comparison with the threshold design scheme by Yang [6],

• Phase transition under different configurations,

• Influence of Non-Boxcar Kernel G, and

• Additional results for HDR image reconstruction.

A.1 Derivation of SNRq(c) from exposure-referred SNR

In the literature of QIS devices, one metric to quantify the image quality is the

exposure-referred signal-to-noise [26]. In image processing, however, exposure-referred

SNR is not commonly used. The goal of this section is to show that the SNR we

showed in the main article is equivalent to the exposure-referred SNR.

F (.)

•

•

•

Poisson
θ

Input

Y

BK−1,T−1

B0,1

B0,0

+
S

Output

Fig. A.1. Block diagram illustrating a QIS with input-output relation
output = F (input)
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To understand the exposure-referred SNR, we have to first understand two com-

mon ways of defining a signal to noise ratio. Consider the truncated Poisson part of

the QIS model shown in Figure A.1. The input to this model is the over-sampled

measurement θ. The truncated Poisson process can be considered as a black box

function F which takes an input θ and generates an output S, defined as

S =
T−1∑
t=0

K−1∑
k=0

Bk,t, (A.1)

where Bn = {Bk,t | k = 0, 1, . . . , K − 1, t = 0, 1, . . . , T − 1} is the spatial-temporal

block containing all binary bits corresponding to θ. As shown in the main article, the

mean and variance of S are

E[S] = KT (1−Ψq(θ)), Var[S] = KTΨq(θ)(1−Ψq(θ)), (A.2)

respectively.

The first notion of signal-to-noise, which is the one used in CCD and CMOS, is

called the output-referred SNR. SNROR is defined as the ratio between the output

signal and the photon shot noise. Referring to Figure A.1, this is

SNROR =
output signal

noise =
E[S]√
Var[S]

=

√
KT

1−Ψq(θ)

Ψq(θ)
. (A.3)

However, SNROR fails to work for QIS because the shot noise is arbitrarily small if

all bits are 1 or 0. In [26], Fossum called it squeezing of the noise. If we plot SNROR

as a function of θ, then we observe that SNROR approaches to infinity as θ grows.

The second notion of signal-to-noise, which is a modification of SNROR, is the

exposure-referred SNR. SNRER is the ratio between the exposure signal θ and the

exposure-referred noise. This noise is defined as [26]:

Exposure-referred noise =
dθ

dE[S]
√

Var[S]

The factor dθ
dE[S] can be considered as the “inverse” transfer function from the output

to the input. dθ
dE[S] can be determined by taking derivative of the expectation in (A.2)

with respect to E[S]
dE[S]
dE[S]

=
dKT (1−Ψq(θ))

dE[S]
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Fig. A.2. Comparison of the SNRs for q ∈ {1, . . . , 16}. In this experiment,
we fix α = 400, K = 4, and T = 30.

Using chain rule, we observe that

1 = −KT d

dθ
Ψq(θ)

dθ

dE[S]

Since d
dθ
Ψq(θ) =

−e−θθq−1

Γ(q)
, it holds that

1 = −KT
(
−e−θθq−1

Γ(q)

)
dθ

dE[S]

Hence,
dθ

dE[S]
=

Γ(q)

KTe−θθq−1

The exposure-referred SNR is defined as

SNRER =
exposure signal

exposure-referred noise

=
θ√

Var[S] dθ
dE[S]

=
e−θθq

Γ(q)

√
KT

Ψq(θ)
(
1−Ψq(θ)

) .
Taking logarithm shows that SNRER is identical to the SNR derived from the Fisher

Information shown in the main article.
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A.2 Properties of the incomplete Gamma function

In the main article, we used the incomplete Gamma function for QIS analysis. In

this section, we provide more details about the properties of the incomplete Gamma

function.

First, we recall that the normalized upper incomplete Gamma function Ψq : R+ → [0, 1]

is defined as

Ψq(θ)
def
=

1

Γ(q)

∫ ∞

θ

tq−1e−tdt, for θ > 0, q ∈ N. (A.4)

where Γ(q) = (q − 1)! is the standard Gamma function.

In this equation, we note that Ψq(θ) depends on two variables: q and θ.

• As a function of θ. As we showed in the main article, Ψq(θ) is a monotonically

decreasing function of θ because the derivative is negative:

d

dθ
Ψq(θ) =

−θq−1e−θ

Γ(q)
< 0.

However, Ψq(θ) is very close to 1 when θ is small, and is very close to 0 when θ is

large. Therefore, there exists a range of θ in which Ψq(θ) can attain a reasonably

good inverse. We define this set as the θ-admissible set

Θq
def
= {θ | ε ≤ Ψq(θ) ≤ 1− ε}, (A.5)

for any fixed q and a tolerance level ε. An illustration of Θq is shown in Fig-

ure A.3.

• As a function of q. The incomplete Gamma function Ψq(θ) can also be considered

as a function of q. In this case, Ψq(θ) is only defined for integer values of q. We

illustrate the behavior of Ψq(θ) as a function of q in Figure A.3. The set of q in

which Ψq(θ) is sufficiently away from 0 and 1 is defined as the q-admissible set.

Qθ
def
= {q | ε ≤ Ψq(θ) ≤ 1− ε}. (A.6)
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Fig. A.3. Ψq(θ) as a function of θ and q. In defining, Qθ and Θq, we set
ϵ = 0.01.

A.3 Comparison with the threshold design scheme by Yang [6]

In this section, we compare our threshold scheme with the one in [6].

First, we recall that the optimality of our method is based on a lower-bound Lq(c)

for the per-pixel SNR:

q∗(c) = argmax
q∈N

SNRq(c) ≈ argmax
q∈N

Lq(c) =
⌊αc
K

⌋
(A.7)

Therefore, the optimal threshold is a function of c, which changes in space and in

time.

In contrast, [6] uses a checkerboard pattern by alternating two thresholds (q∗1,

q∗2). These two thresholds are obtained by maximizing the Cramér-Rao lower bound

(CRLB) over a range of light intensity values [cmin, cmax]:

(q∗1, q
∗
2) = argmin

1≤q1,q2≤qmax

∫ cmax

cmin

CRLB(q1, q2, c) dc. (A.8)

As a result, the threshold is optimal in the average sense. To compare the two

approaches, we followed the same steps in [6] to obtain CRLB(q1, q2, c) for a checker-

board pattern in terms of Ψq(c) as follows

CRLB(q1, q2, c) =
2∑

i=1

α2

2K

e−2θθ(2(qi−1))

Γ(qi)2Ψqi(θ) [1−Ψqi(θ)]
(A.9)
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where θ = αc/K. Using the parameters α = K(qmax−1), qmax = 16, K = 4, and using

trapezoidal technique for numerical integration over c, we obtain that q∗1 = 4 and

q∗2 = 12. Figure A.4 shows the reconstructed images using uniform threshold maps

with thresholds q ∈ {1, 5, 8, 10, 15}, the checkerboard threshold map in [6] with q∗1 = 4

and q∗2 = 12, and the oracle threshold map obtained by (A.7). In this experiment, our

proposed method achieves 28.15 dB, which is 0.83 dB higher than the checkerboard

pattern.
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A.4 Phase transition under different configurations

In the main article, we showed the phase transition behavior of the ML estimate

using K = 4, T = 50, and δ = 2 × 10−4. In this section, we study the effect of

changing K, T , and δ on the phase transition region width.

As a function of T . Figure A.5-Figure A.6 illustrate the phase transition be-

havior when T = 10, 25, 50, and 100. As T increases, the width of the green region

increases. However, if we fix the range of the bit density 1−E[γq(c)], we observe that

the SNR does not vary significantly even as T changes.

As a function of K. The spatial oversampling K affects both the threshold

q∗(c) = ⌊αc/K⌋+1 and the phase transition width. Figure A.7(a) illustrates the be-

havior of the threshold q∗ as a function of K. As K increases, q∗ decreases. However,

the optimal q∗ still stays within the set Qθ.

As a function of δ. The constant δ is used to define the set Qθ:

Qθ
def
=

{
q
∣∣∣ 1− (δ

2

) 1
KT

≤ Ψq(θ) ≤
(
δ

2

) 1
KT

}
. (A.10)

The constant δ is the tolerance level. When δ increases, the size of the set Qθ should

also increase. This result is shown in Figure A.7(b).

Using the closed form expression of the average bit density 1 − Ψq(θ), we can

calculate the average bit density at the optimal threshold q∗ = ⌊θ⌋ + 1, which is

shown in Figure A.8. We notice that as long as θ ≥ 1, the average bit density is

between 0.264 and 0.630. Within this range, we observe from Figure A.5-Figure A.6

that the SNR does not vary significantly if the estimated threshold is deviated from

the optimal threshold. This observation relaxes the requirement of the bisection

method from obtaining the exact optimal threshold to obtaining a threshold that

make the bit density equal to 0.5. Since 0.5 ∈ [0.264, 0.630], we guarantee to achieve

an SNR which is sufficiently close to the optimal SNR.

Controlling θ ≥ 1 can be achieved by tuning the constant α. Tuning α can be

hardware-implemented by increasing the exposure period. Intuitively what θ ≥ 1

requires is that the average number of impinging photons per jot must be at least
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one. If θ is less than one, then most bits will become zeros. Increasing exposure

period (i.e., increasing α) will ensure sufficient number of photons.
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Fig. A.5. Phase transition for T = 10 and T = 25. SNR range is shown for
average bit density 1−E[γq(c)] in the range [0.264, 0.630]. For all cases, we
set δ = 2× 10−4, and K = 4.
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Exact 1− E[γq(c)]
Monte-Carlo 1− E[γq(c)]

Threshold q
10 20 30 40 50 60 70 80 90 100

S
N
R

in
d
B

0

10

20

30

40

q∗(c)

(a) T = 50, SNR ∈ [36.15, 36.80] (b) T = 100, SNR ∈ [39.35, 39.82]

Fig. A.6. Phase transition for T = 50 and T = 100. SNR range is shown
for average bit density 1−E[γq(c)] in the range [0.264, 0.630]. For all cases,
we set δ = 2× 10−4, and K = 4.
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A.5 Influence of Non-Boxcar Kernel G

In this section, we discuss the boxcar kernel assumption in QIS model, i.e., G =

1
K
IN×N ⊗ 1K×1. We also study the effect of assuming a general kernel G on our

results.
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On QIS, we typically assume that there are micro-lenses on top of each jot or a

group of jots. These micro-lenses ensure that the incident light converges onto the

sensing site with no (or very minor) interference with adjacent jots or groups. As a

result, we can model the incoming light using the boxcar kernel. This assumption

is perhaps strong in some perspective, but it allows us to significantly simplify the

theory and offer efficient implementations.

What if there is a mismatch between the physical model (e.g., using B-spline or

Gaussian kernel G) and the reconstruction (e.g., using boxcar)? To see the effect of

this mismatch on the reconstruction quality, we conduct two sets of experiments.

• 1D Signal: We consider a 1D signal with 10 coefficients. These 10 coefficients

are modulated with boxcar kernels and B-spline kernels to generate two sets

of incident light. On the QIS simulator, we set the spatial and temporal over-

sampling factors as K = 9 and T = 30, respectively. Then we use the oracle

threshold map for quantization. To reconstruct the images, we use boxcar kernel

for both cases so that we have one matching case and one mismatching case.

Figure A.9 shows the reconstructed signals. As expected, when the forward

model matches with the reconstruction model, the reconstructed image has the

highest PSNR. However, the gap between the cases are not significant.

• 2D Signal: Figure A.10 shows a 2D example. Similar to the 1D case, boxcar

kernel leads to the best reconstruction but its gap with the other cases are not

significant.

The reader might think why we do not use B-spline on the reconstruction so that

it will match with the forward model? In principle this is doable, but we need an

iterative algorithm to compute the ML estimate such as gradient descent as reported

in [6]. In contrast, the boxcar assumption allows us to use a closed-form ML estimate,

which is practically much more affordable.
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A.6 Supplementary HDR results

In this section, we show more results for HDR image reconstruction using our

method compared to the fixed threshold approach. Figure A.11 show reconstructed

HDR images using adapted Q-map by the bisection algorithm, and fixed Q-maps

with low threshold (q = 1) and high threshold (qmax = 16). The spatial and temporal

oversampling factors are K = 4, and T = 13, respectively. Sensor gain is α =

K2/(qmax − 1).
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B. SUPPLEMENTARY MATERIAL FOR CHAPTER 5

This supplementary report provides the following additional information for Chapter 5

• Luminance/Chrominance Transformation Matrices of Other CFAs

• An Iterative Demosaicking Algorithm using ADMM

• Color Image Reconstruction using ADMM

• Color-Noise Trade-off

B.1 Luminance/Chrominance Transformation Matrices of Other CFAs

Algorithm II in the main manuscript performs demosaicking by frequency selection

with the assumption of orthogonality. However, the CFAs proposed in [86], [93]

and [98] do not satisfy the orthogonality constraint with our choice of T [95]. In

this section, we derive for every CFA the transformation matrix T that makes its

luminance and chrominance channel orthogonal so that we can apply Algorithm II.

Following the symbolic DFT method in [86], the frequency structure of RGBCY

CFA proposed in [93] has the following form:

1

16


3B + 10G+ 3R 2R− 2B B − 2G+R 2R− 2B

2R− 2B B − 2G+R 0 B − 2G+R

B − 2G+R 0 2G−B −R 0

2R− 2B B − 2G+R 0 B − 2G+R

 (B.1)

Hence, we can choose the luminance/chrominance transformation as
L

α

β

 =
1

16


3 10 3

1 −2 1

2 0 −2



R

G

B

↔ T RGBCY =
1

16


3 10 3

1 −2 1

2 0 −2

 (B.2)
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As a result, the frequency structure is orthogonal where every chrominance component

is modulated on distinct carrier as shown in Figure B.1 and shown in the following

matrix representation

1

16


L β α β

β α 0 α

α 0 −α 0

β α 0 α

 (B.3)

To ensure fairness between different CFAs, we normalize the matrix rows to unity

so that all luminance and chrominance have the same noise power. To this end, the

transformation matrix of RGBCY CFA can be written as

T RGBCY =


3√
118

10√
118

3√
118

1√
6

−2√
6

1√
6

1√
2

0 −1√
2

 (B.4)

Similarly, we can do the same steps for RGBCWY CFA in [93] to obtain the following

transformation matrix.

T RGBCWY =


13√
822

22√
822

13√
822

1√
6

−2√
6

1√
6

1√
2

0 −1√
2

 (B.5)

As for Bayer CFA, and the CFA in [98], we use the following transformation matrix

T Bayer =


1√
6

2√
6

1√
6

1√
6

−2√
6

1√
6

1√
2

0 −1√
2

 (B.6)

Finally, for the CFA in [86], we use the following transformation matrix

T =


2√
22

3√
22

3√
22

0 −1√
2

1√
2

−2√
6

1√
6

1√
6

 (B.7)
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Fig. B.1. Frequency structure of RGBCY CFA [93] using the lumi-
nance/chrominance transformation (B.3)

B.2 Iterative Demosaicking Algorithm using ADMM

In the main manuscript, we modeled the color filter sampling by the following

equation:

θ(m,n) = αcrgb(m,n)
T imrgb(m,n)

= α
∑

i∈{r,g,b}

ci(m,n) imi(m,n).
(B.8)

To write this equation in matrix form, we stack the vectorized color channels of the

latent image imi in long 3HW × 1 vector, and the mosaic channel θ in long HW × 1

vector as follows:

im def
=


vec(imr)

vec(img)

vec(imb)

 and θ
def
= vec(θ). (B.9)

We define the sampling matrix C
def
= [Cr,Cg,Cb] ∈ [0, 1]HW×3HW , where Ci

def
=

diag(vec(ci)),∀i ∈ {r, g, b}. Then, the color filter sampling can be written as:

θ = αC im. (B.10)
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By recalling the forward model (B.10), we can write the inverse problem for obtaining

the latent color image im from the light exposure on QIS θ as follows

îm = argmin
im
||αC im− θ||22 + λg(im), (B.11)

where C is the color filter sampling operator. The first term in the cost function is

a data-fidelity term that forces îm to agree with the measurements y. The second

term is a regularization term to improve the conditioning of our ill-posed problem. λ

is a positive scalar that controls the amount of regularization.

To solve the inverse problem (B.11), we may use any optimization toolbox since

it is convex. Here, we report our results using the Plug-and-Play (PnP) ADMM

algorithm [110], which has demonstrated effectiveness in image restoration tasks.

Starting from an initial guess im(0), the PnP ADMM algorithm iteratively updates

its estimate via two steps:

Demosaicking Module:

im(k+1) = (α2CTC + ρI)−1(αCTy + ρ(v(k) − u(k))), (B.12)

Denoising Module:

v(k+1) = Dλ/ρ(im(k+1) + u(k)), (B.13)

and updates the Lagrange multiplier by u(k+1) = u(k) − (im(k+1) − v(k+1)). For

additional details on PnP ADMM, we refer the readers to, e.g., [110]. Here, ρ is

an internal parameter that controls the convergence. The operator D is an off-the-

shelf image denoiser, e.g., BM3D in our experiments. The subscript λ/ρ denotes

the denoising strength, i.e., the hypothesized “noise variance”. The inversion in the

demosaicking module is performed in closed form because CTC exhibits a block

diagonal structure.

The optimization problem in (B.11) does not take into account of the crosstalk

effect. 1 Like most of the mainstream image and signal processing (ISP) pipelines,

we reduce the cross-talk via a color correction step.
1In principle we can incorporate the crosstalk kernel into the C matrix but then C will have a
complicated structure which does not allow simple inversion.
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Fig. B.2. Block diagram of our reconstruction method. Given QIS binary
frames b, we obtain an approximately clean estimate for QIS light exposure
θ. Afterwards, we apply an iterative ADMM algorithm for demosaicking.
Finally, we do color correction to remove the crosstalk effect.

B.3 Color Image Reconstruction using ADMM

In this experiment, we perform color image reconstruction using the 24 and 18

color images in Kodak and McMaster datasets, respectively. QIS parameters are q =

1, α = 2, and T = 1000. Color filtering is obtained using the proposed CFAs and other

arrays proposed in literature [83,86,87,95,98]. For every CFA, we generate mosaicked

images under two scenarios: 1) crosstalk kernels with leakage factors (αr, αg, αb) =

(0, 0, 0), i.e., no crosstalk, and 2) crosstalk kernels with leakage factors (αr, αg, αb) =

(0.23, 0.15, 0.10). Color correction is performed for the second scenario to remove

crosstalk color de-saturation effect. For both scenarios, we apply 300 iterations of the

Plug-and-Play ADMM algorithm for image demosaicking with BM3D denoising prior

and ρ = 1.

Different CFAs have different convergence properties according to the condition

number of their corresponding masking matrix C. Therefore, we perform fine-tuning

for the λ parameter for every CFA and every color image. Specifically, we run the

ADMM algorithm for 50 iterations using λ ∈ {0.005, 0.01, 0.015, 0.02, 0.025, 0.03} and

pick the λ that obtains the best color-PSNR. For McMaster dataset, we do the same

fine-tuning, except that we run the ADMM algorithm for 100 iterations.

The last four columns in Table B.1 show the median PSNR of the 24 and 18 color

images in Kodak and McMaster datasets, respectively. The scenarios of crosstalk and
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Table B.1.
Reconstruction quality measured by median PSNR on Kodak and McMas-
ter color datasets.

Size CFA Pattern
CPSNR-McM CPSNR-Kodak

w/o Ctk w/ Ctk w/o Ctk w/ Ctk

4× 4

Hao et al. [86] 21.69 26.81 27.92 29.68

RGBCWY [93] 30.07 29.86 31.14 30.80

Ours 29.94 29.90 31.25 30.45

3× 3
Cheng et al. [98] 29.39 29.11 29.50 28.52

Ours 30.78 30.13 31.32 31.00

3× 2
Condat [95] 31.13 30.57 33.29 32.59

Ours 28.37 32.03 33.22 32.68

4× 2
Hirakawa-Wolfe [83] 26.49 30.23 31.59 31.28

Ours 26.72 30.70 32.04 32.01

no crosstalk are denoted in the table as “w/ Ctk” and “w/o Ctk”, respectively. We

notice that our proposed CFAs achieves higher PSNR compared to other CFAs when

crosstalk exists. This is attributed to their improved robustness to crosstalk compared

to other arrays. Figure B.3 shows crops of reconstructed images using different CFAs.

Images that are captured using our proposed CFAs show good amount of details, and

good color fidelity.
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B.4 Color-Noise Trade-off

In this experiment, we compare the trade-off between noise amplification and color

accuracy of our proposed CFAs and other CFAs in literature. To do so, we use the

Macbeth color chart that comprises 24 color patches. The forward model consists

of illumination using D65 light and mosaicking using a CFA and crosstalk using the

crosstalk kernels:

gi =


0 αi/4 0

αi/4 1− αi αi/4

0 αi/4 0

 , i ∈ {r, g, b}, (B.14)

with (αr, αg, αb) = (0.45, 0.30, 0.20) as suggested in [93]. QIS parameters are q =

1, α = 2 and T = 1000. We use Algorithm II for demosaicking with frequency

selection. The low pass filter is m × m Gaussian having standard deviation σ =

m/3 and multiplied by a Hamming window to eliminate windowing effect. Since

the ground truth color values of Macbeth color chart are known, we compute the

color correction matrix M by solving the following regularized linear least squares

optimization problem with white balance constraint:

M = argmin
M

ϵc(M) + κ
24∑
i=1

||Cov(MQ
(i)
False)||

2
2

subject to

Mu = u (B.15)

where ϵc(M) = Tr
{
(MQFalse −QGT)

T (MQFalse −QGT)
}

is the color error. QFalse

and QGT are 3 × K matrices containing the measured color values and the corre-

sponding ground truth color values of K pixels. u
def
= [0.95, 1, 1.0889]T is the white

point for D65 illuminant.

To draw the noise-color trade-off curve, we vary the parameter κ in (B.15) from

0 to 1010 on the log-scale. Color error is quantified with the CIEDE2000 metric

which is obtained by calculating the mean square color difference in the CIELAB

color space [93]. Visual noise is measured by the YSNR metric as defined in ISO
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12232 [93]. To ensure that we obtain the best possible performance of every CFA and

κ, we repeat Algorithm II with different sizes of the low pass filterm ∈ {15, 17, . . . , 25}

and pick the value that maximizes YSNR and minimizes color error. Since YSNR

should be increased and color error should be decreased, the tradeoff curve is better

when it is shifted to upper left.

Figure B.4 shows the trade-off curves for the proposed CFAs and other CFAs.

Our 4× 4 CFA is better than other 4× 4 CFAs for almost all values of κ. Our 3× 3

CFA achieves lower color error compared to [98]. As for 4 × 2 CFAs, our CFA is

better than [83] if we restrict to small color error. However, if we allow larger color

error, then [83] is better. For the 3 × 2 case, Condat CFA [95] is better than hours

for values of kappa > 0, but our CFA achieves better performance on natural images

as mentioned in Experiment 3 in the main manuscript.
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(a) 4× 4 (b) 3× 3

(c) 3× 2 (d) 4× 2

Fig. B.4. Color-Noise trade-off for different CFAs. Demosaicking is per-
formed using Algorithm II. κ in (B.15) is varied from 0 to 1010.
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C. PROOFS

C.1 Proof of Proposition 3.1.2

By using the partitioning in (3.12) and substituting with the constraint from

(3.13), we can decompose (3.1) into a triple sum formula:

ĉ = argmax
c

T−1∑
t=0

N−1∑
n=0

K−1∑
k=0

{
bKn+k,t log

(
1−Ψq

(αcn
K

))
+ (1− bKn+k,t) logΨq

(αcn
K

)}
,

(C.1)

Let Bn,t
def
= {bKn,t, . . . , bKn+(K−1),t} be defined as the n-th block of the t-th frame, and

Sn
def
=

T−1∑
t=0

K−1∑
k=0

bKn+k,t (C.2)

be defined as the sum of the bits (i.e., the number of one’s) in Bn,t. Then, (C.1)

becomes

ĉ = argmax
c

N−1∑
n=0

Sn log
(
1−Ψq

(αcn
K

))
+ (L− Sn) logΨq

(αcn
K

)
, (C.3)

where L = KT . By observing (C.3), we notice that it can be decomposed into N

subproblems as follows.

ĉn = argmax
cn

Sn log
(
1−Ψq

(αcn
K

))
+ (L− Sn) logΨq

(αcn
K

)
, (C.4)

where n ∈ {0, . . . , N − 1}. By setting the first derivative to zero, we can obtain ĉn as

follows. (
Sn

1−Ψq

(
αcn
K

) − L− Sn

Ψq

(
αcn
K

))(− α
K

e−
αcn
K

(
αcn
K

)q−1

Γ(q)

)
= 0.

Since the second bracket is non-zero, we can divide both sides by it and rearrange

the terms to get

Ψq

(αcn
K

)
= 1− Sn

L
.
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which can be solved in cn using the inverse incomplete Gamma function to give:

ĉn =
K

α
Ψ−1

q

(
1− Sn

L

)
, n = 0, . . . , N − 1, (C.5)

C.2 Proof of Theorem 3.3.1

For notational simplicity we drop the subscript n. Our goal is to show that if

X ∼ Binomial(L, p), then the transformed variable

T (X) =

√
L+

1

2
sin−1

(√
X + 3

8

L+ 3
4

)
(C.6)

has a variance Var[T (X)] = 1
4
+O(L−2). To this end, we first consider the function

Q such that

Q(X) = T (X)−
√
L+

1

2
sin−1√p.

Since Var[Q(X) + c] = Var[Q(X)] for any c, by letting c = −
√
L+ 1

2
sin−1√p we

observe that showing Theorem 2 is equivalent to showing Var[Q(X)] = 1
4
+O(L−2).

To show the desired result, we note that for any α and β, the arcsin function has

the property that

sin−1 α− sin−1 β = sin−1
(
α
√

1− β2 − β
√
1− α2

)
.

Define F def
=

X+ 3
8

L+ 3
4

, and substitute α =
√
F , β =

√
p, it follows that

Q(X) =

√
L+

1

2
sin−1

(√
(1− p)F −

√
p(1− F )

)
. (C.7)

There are two terms in this equation. The first term
√
L+ 1

2
can be expanded (using

Taylor expansion) to its first second order as√
L+

1

2
=
√
L

(
1 +

1

2L

) 1
2

=
√
L

(
1 +

1

4L
+O(L−2)

)
.

The arcsin function can be expanded to its second order as

sin−1W = W +
W 3

6
+

3W 5

40
+

5W 7

112
+ . . . ,
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for W =
√

(1− p)F −
√
p(1− F ).

We next consider the standardized binomial random variable by defining

Y
def
=

X − Lp√
Lp(1− p)

. (C.8)

Then, by Lemma 1, it follows that

W =
√

(1− p)F −
√
p(1− F )

=
Y

2
√
L
+

(2p− 1)(2Y 2 − 3)

16L
√
p(1− p)

+
−16Y 3p2 + 16Y 3p− 6Y 3 + 9Y

96L
3
2p(1− p)

+O(L−2).

Therefore,

Q(X) =
√
L

(
1 +

1

4L
+O(L−2)

)(
W +

W 3

6
+O(W 5)

)
= a0 + a1Y + a2Y

2 + a3Y
3 +O(Y 5),

where

a0 = − 3(2p−1)

16
√

Lp(1−p)
, a1 =

1
2
+ 1

8L
− 3

32Lp(1−p)

a2 =
2p−1

8
√

Lp(1−p)
, a3 =

16p2−16p+6
96Lp(1−p)

.

Since the first four moments of Y are

E[Y ] = 0, E[Y 2] = 1, E[Y 3] = − 2p− 1√
Lp(1− p)

, E[Y 4] = 3 +
1− 6p(1− p)
Lp(1− p)

,

we conclude that

Var[Q(X)] = a21Var[Y ] + a22Var[Y
2] + 2a1a2Var[Y

3] + 2a1a3Var(Y
4)

= a21 − a22 + 2a1a2E[Y 3] + (2a1a3 + a22)E[Y 4] =
1

4
+O(L−2).

Lemma 1 Let F =
X+ 3

8

L+ 3
4

and Y = X−Lp√
Lp(1−p)

. It holds that

√
(1− p)F =

√
p(1− p) + (1− p)Y

2
√
L
−
√
1− p(6p+ 2(1− p)Y 2 − 3)

16L
√
p

− (1− p)Y (6p− 2(1− p)Y 2 + 3)

32pL
3
2

+O(L−2). (C.9)

√
p(1− F ) =

√
p(1− p)− pY

2
√
L
−
√
p(−6p+ 2pY 2 + 3)

16L
√
1− p

− pY (6p+ 2pY 2 − 9)

32(1− p)L 3
2

+O(L−2). (C.10)
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Proof Note that Y = X−Lp√
Lp(1−p)

is equivalent to X = Y
√
Lp(1− p) + Lp. Thus, F

can be expressed in terms of Y as

F =

(
Y
√
Lp(1− p) + Lp

)
+ 3

8

L+ 3
4

=

(
Y

√
p(1− p)

L
+ p+

3

8L

)(
1 +

3

4L

)−1

.

For large L, we have 3
4L
≪ 1. Thus, by expanding

(
1 + 3

4L

)−1 we have

F =

(
Y

√
p(1− p)

L
+ p+

3

8L

)(
1− 3

4L
+O(L−2)

)
= p (1 + E1) ,

where

E1 =

√
1− p
p

Y√
L
−

3
4
− 3

8p

L
−
√

p

1− p
3Y

4L
3
2

+O(L−2).

By expanding
√
1 + E1, we arrive at

√
F =

√
p
√

1 + E1 =
√
p

(
1 +

E1

2
− E2

1

8
+
E3

1

16
+O(E4

1)

)
.

Multiplying both sides by
√
1− p and substituting for E1 yields

√
(1− p)F =

√
p(1− p) + (1− p)Y

2
√
L
−
√
1− p(6p+ 2(1− p)Y 2 − 3)

16L
√
p

− (1− p)Y (6p− 2(1− p)Y 2 + 3)

32pL
3
2

+O(L−2).

The proof of the second equality can be done by expressing 1− F in terms of Y as

1− F =

(
−Y
√
p(1− p)

L
+ (1− p) + 3

8L

)(
1 +

3

4L

)−1

.

=

(
−Y
√
p(1− p)

L
+ (1− p) + 3

8L

)(
1− 3

4L
+O(L−2)

)
= (1− p) (1 + E2) ,

where

E2 = −
√

p

1− p
Y√
L
−

3
4
− 3

8(1−p)

L
+

√
1− p
p

3Y

4L
3
2

+O(L−2).

By expanding
√
1 + E2, we arrive at

√
1− F =

√
1− p

√
1 + E2 =

√
1− p

(
1 +

E2

2
− E2

2

8
+
E3

2

16
+O(E4

2)

)
.
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Multiplying both sides by √p and substituting for E2 yields

√
p(1− F ) =

√
p(1− p)− pY

2
√
L
−
√
p(−6p+ 2pY 2 + 3)

16L
√
1− p

− pY (6p+ 2pY 2 − 9)

32(1− p)L 3
2

+O(L−2).

C.3 Proof of Proposition 4.1.2

The Fisher Information metric is defined as:

Iq(c)
def
= EB

[
−∂2

∂c2
log P(B = b; θ, q)

]
, (C.11)

where θ = αc/K. Using the chain rule, we can derive the Fisher Information as

follows

Iq(c) =
( α
K

)2
EB

[
−∂2

∂θ2
log P(B = b; θ, q)

]
. (C.12)

The expectation can be calculated as follows

Iq(c) =
( α
K

)2 [−∂2
∂θ2

log P(B = 1; θ, q)

]
P(B = 1; θ, q)

+
( α
K

)2 [−∂2
∂θ2

log P(B = 0; θ, q)

]
P(B = 0; θ, q) (C.13)

Using (2.16) to differentiate the 1st term, we get:

∂2

∂θ2
log P(B = 1; θ, q) =

∂2

∂θ2
log (1−Ψq(θ))

=
R′(1−Ψq(θ))−R2/Γ(q)

Γ(q) (1−Ψq(θ))
2 , (C.14)

where R = e−θθq−1 and R′ = ∂R/∂θ. Similarly, the second term is

∂2

∂θ2
log P(B = 0; θ, q) =

∂2

∂θ2
log Ψq(θ)

= −R
′Ψq(θ) +R2/Γ(q)

Γ(q) (Ψq(θ))
2 .

(C.15)
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Substitute (C.14) and (C.15) in (C.13) yields

Iq(θ) =
( α
K

)2 [
− R′Γ(q)(1−Ψq(θ))−R2

Γ2(q) (1−Ψq(θ))

+
R′Γ(q)Ψq(θ) +R2

Γ2(q)Ψq(θ)

]
=
( α
K

)2 e−2θθ2q−2

Γ2(q)Ψq(θ) (1−Ψq(θ))
.

C.4 Proof of Proposition 4.1.3

The lower bound is obtained by observing that the product Ψq(θ) (1−Ψq(θ))

attains its maximum value when Ψq(θ) = 1/2. Substituting with the upper bound

Ψq(θ) (1−Ψq(θ)) ≤ 1/4, we get:

log(c2Iq(c)) = log

{(αc
K

)2 e−2θθ2q−2

Γ2(q)Ψq(θ) (1−Ψq(θ))

}
= log

e−2θθ2q

Γ2(q)Ψq(θ) (1−Ψq(θ))

≥ log
4e−2θθ2q

Γ2(q)

= 2 log 2− 2θ + 2q log θ − 2 log Γ(q)

= 2
(
log 2− αc

K
+ q log

αc

K
− log Γ(q)

)
.

C.5 Proof of Proposition 4.1.4

Using the definition of Gamma function Γ(q) = (q−1)! and θ = αc
K

, we can rewrite

the lower bound in Proposition 4.1.3 as follows.

Lq(c) = 2 (log 2− θ + q log θ − log(q − 1)!)

= 2

(
log 2− θ + (q − 1) log θ + log θ − log

q−1∏
k=1

k

)

= 2

(
log 2− θ +

q−1∑
k=1

log(θ/k) + log θ

)
The only dependence on q is in the second term, so we take a closer look at it. When

q − 1 < ⌊θ⌋, all summands log(θ/k) are positive because k < ⌊θ⌋. Hence, the total
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sum increases by increasing q. On the other hand, when q − 1 > ⌊θ⌋, we start to add

negative summands log(θ/k) because k > θ. Therefore, the total sum decreases on

increasing q − 1 over ⌊θ⌋. Thus, maximum is obtained at q = ⌊θ⌋+ 1 = ⌊αc
K
⌋+ 1.

C.6 Proof of Proposition 4.2.1

By definition, S def
=
∑T−1

t=0

∑K−1
k=0 Bk,t is the summation of KT independent i.i.d.

Bernoulli random variables. Therefore, S is a binomial random variable with param-

eters n def
= KT and p

def
= 1−Ψ(αc/K). The mean and variance of a binomial random

variable is E[S] = np, and Var[S] = np(1− p). Therefore, we have

E [γq(c)] = 1− E[S]
KT

= Ψq

(αc
K

)
, and

Var [γq(c)] =
Var [S]

K2T 2
=

1

KT
Ψq

(αc
K

)(
1−Ψq

(αc
K

))
.

C.7 Proof of Proposition 4.2.2

The probability P[0 < γq(c) < 1] can be evaluated by checking the complement

when γq(c) = 0 or γq(c) = 1:

P[0 < γq(c) < 1] = 1− P[γq(c) = 0]− P[γq(c) = 1]

= 1− P[S = 0]− P[S = KT ]

(a)
= 1−Ψq(θ)

KT − [1−Ψq(θ)]
KT ,

where (a) follows from the fact that S, which is a sum of i.i.d. Bernoulli random

variables, is a binomial random variable.

Let 0 < δ < 1. If

1−
(
δ

2

) 1
KT

≤ Ψq(θ) ≤
(
δ

2

) 1
KT

,

then we have

Ψq(θ)
KT <

δ

2
and [1−Ψq(θ)]

KT <
δ

2
.
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Thus, it holds that

1−Ψq(θ)
KT − [1−Ψq(θ)]

KT > 1− δ.

C.8 Proof of Proposition 5.2.1

Since the luminance channel comprises only one baseband component in the fre-

quency domain, the luminance gain in the amplitude of this component, i.e.,

γl =
1

L
||h̃l||2 =

1

L

√
h̃2l (0, 0) + 0 + . . .+ 0

=
1

L
h̃l(0, 0).

Substituting in the DFT equation with u = v = 0, we get

γl(x) =
1

L

M−1∑
m=0

N−1∑
n=0

hl(m,n)

=
1

L
1Thl =

1

L
1TZ lx = bTx,

where b
def
= 1

L
1TZ l. As for the chrominance gain γc, by squaring the definition in

(5.17), we get

γc(x)
2 =

1

L2
min

(
||h̃α||22, ||h̃β||22

)
(C.16)

(a)
= min

(
||hα||22, ||hβ||22

)
= min

(
||Zαx||22, ||Zβx||22

)
= min

(
xTQαx,x

TQβx
)
,

where (a) follows from Parseval theorem, and Qα
def
= ZT

αZα and Qβ
def
= ZT

βZβ are two

positive semidefinite matrices.
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