# QUANTIFICATION OF UNCERTAINTY IN THE 

# MAGNETIC CHARACTERISTIC OF STEEL AND PERMANENT MAGNETS AND THEIR EFFECT ON THE PERFORMANCE OF A PERMANENT MAGNET SYNCHRONOUS MACHINE 

## A Dissertation

Submitted to the Faculty
of

Purdue University
by

Abhijit Sahu

In Partial Fulfillment of the Requirements for the Degree of

Master of Science

August 2019
Purdue University

West Lafayette, Indiana

# THE PURDUE UNIVERSITY GRADUATE SCHOOL STATEMENT OF DISSERTATION APPROVAL 

Dr. Dionysios Aliprantis<br>School of Electrical and Computer Engineering<br>Dr. Ilias Bilionis<br>School of Mechanical Engineering<br>Dr. Steven D. Pekarek<br>School of Electrical and Computer Engineering<br>Approved by:<br>Dr. Dimitrios Peroulis<br>Head of the School Graduate Program

Dedicated to my parents Arjun and Bhagyalata, and my sister, Akankhya.

## ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my advisors, Prof. Dionysios Aliprantis and Dr. Ilias Bilionis for their able guidance throughout the course of this thesis. I would also like to express my gratitude to Prof. Steven D. Pekarek for agreeing to serve as a member of my committee.

I am thankful to the Power group for having made this journey so meaningful. It has been my pleasure being a part of this knowledgeable and resourceful group. Here, I would also like to express my gratitude to Rohit for helping me during the course of this thesis.

Lastly, I would like to thank my parents and my sister for having supported me throughout this journey. I am lucky to have got such a wonderful family.

This research was supported by the Grainger Center for Electric Machinery and Electromechanics (CEME) and I am thankful to them for having supported me financially during my time in Purdue.

## TABLE OF CONTENTS

Page
LIST OF TABLES ..... vii
LIST OF FIGURES ..... ix
ABSTRACT ..... xiv
1 INTRODUCTION ..... 1
1.1 Background ..... 1
1.2 Objective of the thesis ..... 3
1.3 Organization ..... 5
2 FINITE ELEMENT SIMULATOR ..... 7
2.1 Drawbacks in analysis using a linear lumped parameter model ..... 7
2.2 Development of 2-D FE simulator ..... 9
2.3 Validation of the FE simulator ..... 18
3 DIMENSIONALITY REDUCTION ..... 50
3.1 A brief review ..... 50
3.2 Dimensionality reduction using principal component analysis ..... 51
3.2.1 Projection ..... 52
3.2.2 Reconstruction ..... 54
4 MODELING OF UNCERTAINTY IN $B-H$ CURVES AND REMANENT FLUX DENSITY OF PERMANENT MAGNETS ..... 56
4.1 Data-driven modeling of uncertainty due to punching in $B$ - $H$ curves ..... 56
4.2 Modeling of uncertainty in $B$ - $H$ curves due to unknown material com- position ..... 62
4.3 Modeling of the epistemic uncertainty in the saturation value of mag- netic flux density ..... 63
4.4 Modeling of uncertainty in remanent flux density of permanent mag- nets (Extended work) ..... 65
Page
5 CONSTRUCTION OF SURROGATE MODELS ..... 66
5.1 Overview of Gaussian process regression ..... 66
5.1.1 Prior state of knowledge ..... 67
5.1.2 Measurement process ..... 69
5.1.3 Posterior of the Gaussian Process ..... 69
5.1.4 Obtaining the hyper-parameters ..... 70
5.2 Development of the surrogate model for predicting the torque waveform of PMSM ..... 71
5.2.1 Dimensionality reduction of the torque waveform ..... 73
5.2.2 Multi-output Gaussian process regression ..... 74
5.2.3 Validation of the surrogate model ..... 76
5.2.4 Assessment of the Surrogate Model ..... 76
5.3 Development of surrogate models for predicting average torque and average flux linkages of the PMSM ..... 108
5.3.1 Validation of the surrogate model ..... 113
5.3.2 Assessment of the Surrogate Model ..... 114
6 PROPAGATION OF UNCERTAINTY IN $B-H$ CURVES TO THE TORQUE PROFILE OF THE PMSM ..... 117
6.1 Case study 1 ..... 117
6.2 Case Study 2 ..... 118
7 PROPAGATION OF UNCERTAINTY IN $B-H$ CURVES AND REMA- NENT FLUX DENSITY OF PERMANENT MAGNETS TO THE PMSM DRIVE SYSTEM ..... 125
7.1 Case Study 1 ..... 125
7.2 Case Study 2 ..... 129
8 CONCLUSION ..... 132
REFERENCES ..... 135
A Appendix ..... 139

## LIST OF TABLES

Table Page
2.1 Dimensions and parameters of the PMSM ..... 12
2.2 Operating points for validation study ..... 20
2.3 Relative $L_{2}$-norm error between the torque waveforms obtained from $A N$ - SYS Maxwell 2D and in-house FE code ..... 23
2.4 Torque error obtained using ANSYS Maxwell 2D and in-house FE code ..... 24
2.5 Difference in the average torque obtained using ANSYS Maxwell 2D and in-house FE code ..... 30
2.6 Difference in the sixth harmonic component of torque obtained using $A N$ - SYS Maxwell 2D and in-house FE code ..... 32
$2.9 \quad B-H$ data points of the perturbed curve ..... 38
2.7 Difference in the twelfth harmonic component of torque obtained using ANSYS Maxwell 2D and in-house FE code ..... 45
$2.8 \quad B-H$ data points of the nominal curve ..... 46
2.10 Difference in the average torque from in-house FE code and ANSYS Maxwell $2 D$ for the nominal and perturbed $B-H$ curves ..... 47
2.11 Difference in the sixth harmonic component of torque from in-house FE code and ANSYS Maxwell $2 D$ for the nominal and perturbed $B-H$ curves ..... 48
2.12 Difference in the twelfth harmonic component of torque from in-house FE code and ANSYS Maxwell $2 D$ for the nominal and perturbed $B-H$ curves ..... 49
4.1 Random variables defining uncertainty in the state of the punching tool of different degraded zones ..... 62
5.1 Distribution of input parameters ..... 71
5.2 Difference between the average torque corresponding to the most degraded curve and the least degraded curve ..... 88
5.3 Difference between the sixth harmonic component of torque corresponding to the most degraded curve and the least degraded curve ..... 90

Table
5.4 Difference between the twelfth harmonic component of torque correspond- ing to the most degraded curve and least degraded curve ..... 91
5.5 Difference between the average torque corresponding to $B-H_{1}$ and $B-H_{2}$ obtained from (i) FE simulator (ii) surrogate model ..... 99
5.6 Difference between the sixth harmonic component of torque corresponding to $B-H_{1}$ and $B-H_{2}$ obtained from (i) FE simulator (ii) surrogate model . 100
5.7 Difference between the twelfth harmonic component of torque correspond- ing to $B-H_{1}$ and $B-H_{2}$ obtained from (i) FE simulator (ii) surrogate model 101
5.8 Difference between the average torque corresponding to $B-H_{1}$ and $B-H_{2}$ obtained from (i) FE simulator (ii) surrogate model ..... 109
5.9 Difference between the sixth harmonic component of torque corresponding to $B-H_{1}$ and $B-H_{2}$ obtained from (i) FE simulator (ii) surrogate model ..... 110
5.10 Difference between the twelfth harmonic component of torque correspond- ing to $B-H_{1}$ and $B-H_{2}$ obtained from (i) FE simulator (ii) surrogate model 111
5.11 Input parameters for the surrogate models ..... 114
7.1 Look-up table of $\max (\bar{T})$ vs $\omega_{\mathrm{rm}}$ characteristics of PMSM ..... 127
7.2 Look-up table of $\max (\bar{T})$ vs $\omega_{\mathrm{rm}}$ characteristics of PMSM (contd.) ..... 128
A. 1 Table of $B$ values of synthetically generated data ..... 139
A. 2 Table of $H$ values of synthetically generated data ..... 140

## LIST OF FIGURES

Figure ..... Page
2.1 PMSM stator dimensions ..... 10
2.2 PMSM rotor and permanent magnet dimensions ..... 11
2.3 Discretized domain of a nominal Interior permanent magnet synchronous machine in 2-D ..... 17
2.4 Illustration of degraded zones in the FE mesh of the PMSM under study. Degraded layers correspond to (a) Stator outer edge, (b) Stator teeth and slots, (c) Rotor outer edge, (d) Rotor magnet pockets and (e) Rotor inner edge ..... 19
2.5 Computation of torque using MST, VDM and Arkkios method at 25 op- erating points ..... 21
2.6 Validation of the FE simulator at 25 different operating points ..... 21
2.7 Histogram of $L_{2}$-norm error between the torque waveforms from $A N S Y S$ Maxwell 2D and in-house FE code ..... 22
2.8 Relative $L_{2}$-norm error between the torque waveforms from ANSYS Maxwell $2 D$ and in-house FE code in $I_{q}-I_{d}$ plane ..... 22
2.9 Torque error between the torque waveforms from ANSYS Maxwell 2D and in-house FE code in $I_{q}-I_{d}$ plane ..... 25
2.10 Difference in the average torque from ANSYS Maxwell 2D and in-house FE code in $I_{q}-I_{d}$ plane ..... 29
2.11 Difference in sixth harmonic component of torque from ANSYS Maxwell $2 D$ and in-house FE code in $I_{q}-I_{d}$ plane ..... 31
2.12 Difference in twelfth harmonic component of torque ANSYS Maxwell 2D and in-house FE code in $I_{q}-I_{d}$ plane ..... 31
2.13 Torque waveforms corresponding to operating point (a) 1, (b) 2, (c) 3, (d) 4 , (e) 5 , (f) 6 ..... 33
2.14 Torque waveforms corresponding to operating points (a) 7, (b) 8, (c) 9,(d) $10,(\mathrm{e}) 11$, (f) 1234
Figure Page
2.15 Torque waveforms corresponding to operating points(a) 13, (b) 14, (c) 15, (d) 16 , (e) 17 , (f) 18 ..... 35
2.16 Torque waveforms corresponding to operating points (a) 19, (b) 20 (c) 21, (d) 22 , (e) 23 , (f) 24 ..... 36
2.17 Torque waveform corresponding to operating point 25 ..... 37
$2.18 B-H$ curves for comparing the sensitivities of in-house FE code and $A N S Y S$ Maxwell 2D ..... 37
2.19 Torque waveforms corresponding to operating point (a) 1, (b) 2, (c) 3, (d) 4 , (e) 5 , (f) 6 ..... 39
2.20 Torque waveforms corresponding to operating points (a) 7, (b) 8, (c) 9, (d) $10,(\mathrm{e}) 11$, (f) 12 ..... 40
2.21 Torque waveforms corresponding to operating points(a) 13, (b) 14, (c) 15, (d) 16 , (e) 17 , (f) 18 ..... 41
2.22 Torque waveforms corresponding to operating points (a) 19, (b) 20 (c) 21, (d) 22 , (e) 23 , (f) 24 ..... 42
2.23 Torque waveform corresponding to operating point 25 ..... 43
2.24 Difference in the average torque from the in-house FE code and $A N S Y S$ Maxwell 2D for the nominal and perturbed $B-H$ curves ..... 43
2.25 Difference in the sixth harmonic component of torque from the in-house FE code and $A N S Y S$ Maxwell $2 D$ for nominal and perturbed $B-H$ curves ..... 44
2.26 Difference in the twelfth harmonic component of torque from the in-house FE code and $A N S Y S$ Maxwell $2 D$ for nominal and perturbed $B-H$ curves ..... 44
4.1 Illustration of the degradation function for $h_{\mathrm{dg}}=1$ ..... 59
4.2 Synthetically generated $B-H$ curves. ..... 60
4.3 Percentage of total variance captured by PCs for the reduced-order stochas- tic model. ..... 60
4.4 Eigenvectors of the covariance matrix of $\mathbf{H}$. ..... 61
4.5 Density estimation of 1 -st PC ..... 61
4.6 Illustration of epistemic uncertainty in saturation flux density ..... 65
5.1 Diagram showing $I_{\mathrm{pk}}$ and $\phi_{c}$ in rotor reference frame ..... 71
5.2 Illustration of convergence of relative $L_{2}$-norm error between $\mathbf{T}_{\mathrm{a}}$ and $\mathbf{T}_{v}$ with number of training points ..... 77

## Figure

5.3 Percentage of variance captured by 8 PCs of $\mathbf{T}_{a}$ ..... 77
5.4 Eigenvectors corresponding to the retained PCs of $\mathbf{T}_{a}$ ..... 78
5.5 Study to analyse the reconstruction error from the surrogate. (a) His- togram of absolute $L_{2}$-norm error of reconstruction using the 8 PCs by the surrogate model, (b) absolute $L_{2}$-norm error vs Average torque ..... 80
$5.6 B-H$ curve showing most degraded and least degraded curve that reflect the magnetic characteristics of the degraded zones ..... 82
5.7 Torque waveforms corresponding to operating point (a) 1, (b) 2, (c) 3, (d) 4 , (e) 5 , (f) 6 ..... 83
5.8 Torque waveforms corresponding to operating points (a) 7, (b) 8, (c) 9, (d) $10,(e) 11,(f) 12$ ..... 84
5.9 Torque waveforms corresponding to operating points(a) 13, (b) 14, (c) 15, (d) $16,(\mathrm{e}) 17$, (f) 18 ..... 85
5.10 Torque waveforms corresponding to operating points (a) 19, (b) 20 (c) 21, (d) 22 , (e) 23 , (f) 24 ..... 86
5.11 Torque waveform corresponding to operating point 25 ..... 87
5.12 Difference between the average torque corresponding to the most degraded curve and least degraded curve obtained from (i) FE simulator (ii) surro- gate model ..... 87
5.13 Difference between the sixth harmonic component of torque corresponding to the most degraded curve and least degraded curve obtained from (i) FE simulator (ii) surrogate model ..... 89
5.14 Difference between the twelfth harmonic component of torque correspond- ing to the most degraded curve and least degraded curve obtained from (i) FE simulator (ii) surrogate model ..... 89
5.15 Torque waveforms corresponding to operating point (a) 1, (b) 2, (c) 3, (d) 4 , (e) 5 , (f) 6 ..... 93
5.16 Torque waveforms corresponding to operating points (a) 7, (b) 8, (c) 9, (d) $10,(e) 11,(f) 12$ ..... 94
5.17 Torque waveforms corresponding to operating points(a) 13, (b) 14, (c) 15, (d) 16 , (e) 17 , (f) 18 ..... 95
5.18 Torque waveforms corresponding to operating points (a) 19, (b) 20 (c) 21, (d) 22 , (e) 23 , (f) 24 ..... 96
5.19 Torque waveform corresponding to operating point 25 ..... 97
5.20 Difference between the average torque corresponding to $B-H_{1}$ and $B-H_{2}$ obtained from (i) FE simulator (ii) surrogate model ..... 97
5.21 Difference between the sixth harmonic component of torque corresponding to $B-H_{1}$ and $B-H_{2}$ obtained from (i) FE simulator (ii) surrogate model ..... 98
5.22 Difference between the twelfth harmonic component of torque correspond- ing to $B-H_{1}$ and $B-H_{2}$ obtained from (i) FE simulator (ii) surrogate model 102
5.23 Torque waveforms corresponding to operating point (a) 1, (b) 2, (c) 3 , (d) $4,(\mathrm{e}) 5$, (f) 6 ..... 103
5.24 Torque waveforms corresponding to operating points (a) 7 , (b) 8 , (c) 9 , (d) 10 , (e) 11 , (f) 12 ..... 104
5.25 Torque waveforms corresponding to operating points(a) $13,(\mathrm{~b}) 14,(\mathrm{c}) 15$, (d) 16 , (e) $17,(f) 18$ ..... 105
5.26 Torque waveforms corresponding to operating points (a) 19, (b) 20 (c) 21 , (d) 22 , (e) $23,(f) 24$ ..... 106
5.27 Torque waveform corresponding to operating point 25 ..... 107
5.28 Difference between the average torque corresponding to $B-H_{1}$ and $B-H_{2}$ obtained from (i) FE simulator (ii) surrogate model ..... 107
5.29 Difference between the sixth harmonic component of torque corresponding to $B-H_{1}$ and $B-H_{2}$ obtained from (i) FE simulator (ii) surrogate model ..... 108
5.30 Difference between the twelfth harmonic component of torque correspond- ing to $B-H_{1}$ and $B-H_{2}$ obtained from (i) FE simulator (ii) surrogate model 112
5.31 Convergence of the relative $L_{2}$-norm error of the surrogate models corre- sponding to (a) $\bar{T}$, (b) $\Lambda_{\mathrm{qs}}$ and (c) $\Lambda_{\mathrm{ds}}$ ..... 115
5.32 Error in prediction by the trained surrogate models corresponding to (a) $\bar{T}$, (b) $\Lambda_{\mathrm{qs}}$ and (c) $\Lambda_{\mathrm{ds}}$ at the validation points ..... 116
6.1 Illustration of PDF of average torque with variation of input parameters for operating point A ..... 118
6.2 Illustration of PDF of sixth harmonic component of torque with variation of parameters for operating point $A$ ..... 119
6.3 Illustration of PDF of twelfth harmonic component of torque with varia- tion of input parameters for operating point $A$ ..... 119
6.4 Illustration of PDF of average torque with variation of input parameters for operating point B ..... 120

Figure Page

> 6.5 Illustration of PDF of sixth harmonic component of torque with variation of parameters for operating point B . . . . . . . . . . . . . . . . . . . . . 120
6.6 Illustration of PDF of twelfth harmonic component of torque with varia-
tion of input parameters for operating point B . . . . . . . . . . . . . . . 121
6.7 Illustration of torque waveform with the gradual wearing of punching tool 122
6.8 Illustration of average torque with the gradual wearing of punching tool . 123
6.9 Illustration of mean of average torque with the gradual wearing of punching tool in an operating range . . . . . . . . . . . . . . . . . . . . . . . . 123
6.10 Illustration of standard deviation of average torque with the gradual wear-
ing of punching tool in an operating range . . . . . . . . . . . . . . . . . 124
7.1 Impact of uncertainty in $B-H$ curves and $B_{r}$ on the $\max (\bar{T})$ vs $\omega_{\text {rm }}$ characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.2 Impact of uncertainty in $B-H$ curves and $B_{r}$ on $V_{\min }$ vs $\omega_{\mathrm{rm}}$ characteristics 129
7.3 PDF of $V_{\min }$ at $\omega_{\mathrm{rm}}=6000 \mathrm{rpm}$ due to uncertainty in $B$ - $H$ curves and $B_{r}$ on $V_{\min }$. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.4 Illustration of MTPA operation of the PMSM in the entire operating range 131
7.5 PDF of $I_{\mathrm{pk}}$ due to uncertainty in $B-H$ curves and $B_{r}$ operating under
MTPA condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131


#### Abstract

Sahu, Abhijit M.Sc., Purdue University, August 2019. Quantification of Uncertainty in the Magnetic Characteristic of Steel and Permanent Magnets and their Effect on the Performance of a Permanent Magnet Synchronous Machine. Major Professors: Dionysios Aliprantis, Ilias Bilionis.


The numerical calculation of the electromagnetic fields within electric machines is sensitive to the magnetic characteristics of steel. However, the properties of steel are uncertain due to fluctuations in alloy composition, possible contamination, and other manufacturing process variations including punching. Previous attempts to quantify magnetic uncertainty due to punching are based on parametric analytical models of $B-H$ curves, where the uncertainty is reflected by model parameters. In this work, we set forth a data-driven approach for quantifying the uncertainty due to punching in $B-H$ curves. In addition to the magnetic characteristics of steel lamination, the remanent flux density $\left(B_{r}\right)$ exhibited by the permanent magnets in a permanent magnet synchronous machine (PMSM) is also uncertain due to unpredictable variations in the manufacturing process. Previous studies consider the impact of uncertainties in $B-H$ curves and $B_{r}$ of the permanent magnets on the average torque, cogging torque, torque ripple and losses of a PMSM. However, studies pertaining to the impact of these uncertainties on the combined machine/drive system of a PMSM is scarce in the literature. Hence, the objective of this work is to study the effect of $B-H$ and $B_{r}$ uncertainties on the performance of a PMSM using a validated finite element simulator. Our approach is as follows. First, we use principal component analysis to build a reduced-order stochastic model of $B-H$ curves from a synthetic dataset containing $B-H$ curves affected by punching. Second, we model the the uncertainty in $B_{r}$ and other uncertainties in $B-H$ characteristics e.g., due to unknown state of the material composition and unavailability of accurate data in deep saturation region. Third, to
overcome the computational limitations of the finite element simulator, we replace it with surrogate models based on Gaussian process regression. Fourth, we perform propagation studies to assess the effect of $B-H$ and $B_{r}$ uncertainties on the average torque, torque ripple and the PMSM machine/drive system using the constructed surrogate models.

## 1. INTRODUCTION

### 1.1 Background

The electromagnetic fields that permeate electric machines are sensitive to the magnetic characteristics of the ferromagnetic materials employed in their construction. A robust design of an electric machine hinges on accurate numerical calculations of these fields at all operating points. Such analysis requires information regarding the nonlinear $B-H$ function(s) of the material(s) used, which is typically reflected by a nominal curve provided in a datasheet. However, the actual $B-H$ curve may deviate from the nominal due to difference in grain size [1] and presence of impurities in the material $[2,3]$, operating conditions such as temperature and frequency [4-6], and various manufacturing processes that can alter the micro-structure of the material [7-13]. Furthermore, the limited availability of accurate $B-H$ curve data in the deep saturation region [14] introduces additional epistemic uncertainty. Quantifying the effect of these uncertainties on the performance of an electric machine is a challenging problem.

The primary cause of behavioral uncertainty in the $B-H$ curve of a steel lamination is the manufacturing process it undergoes [15]. In particular, punching has the most noticeable influence [7,16-18]. Previous studies have shown that the plastic stress introduced during punching deteriorate the magnetic characteristics of steel near the cut edge [13]. The effect of various punching parameters including the sharpness of the punch and die, and the cutting speed and clearance has been described in [10-12,19]. These studies, whose main purpose was to deduce the physical mechanisms responsible for the degradation, have been conducted in controlled environments. In practice, mass production of steel laminations cannot be precisely controlled, due to unforeseen variations in the manufacturing process that are not known in advance. Thus, the
unpredictable variation of these punching parameters leads to the uncertainty in $B$ - $H$ curves.

Furthermore, behavioral uncertainty in a $B-H$ curve is also governed by the the material composition of its corresponding steel lamination. Depending on the type of annealing process the lamination undergoes, the grain size of silicon in it may vary [1]. As a result, its $B-H$ curve characteristic varies [20]. Besides, steel contains impurities in the form of compounds such as Nitrogen, Sulphur, Carbon, etc.. The amount of these impurities in a steel lamination also dictate the variation in its $B-H$ curve characteristic [3].

An additional source of magnetic uncertainty is the limited availability of $B-H$ curve data in the deep saturation region. The maximum value of $B-H$ data point of a material published by the manufacturers is generally well below the value that corresponds to its saturation magnetization. In literature, various methods have been proposed to extrapolate the $B-H$ curves beyond their last recorded data points [21-23]. However, it is unlikely that the extrapolated magnetization characteristic matches with the actual physical curve [14]. One would assume that the problem could be overcome by obtaining experimental measurements at high saturation levels. Nonetheless, such measurements using Epstein frames (used by manufacturers), are prone to measurement errors [14]. Thus, modeling this epistemic uncertainty is important especially to quantify the variation in the performance of the machines operating in deep saturation region [14].

Previous attempts to quantify magnetic uncertainty are based on parametric models of the $B$ - $H$ curves $[24,25]$ where the uncertainty is reflected by model parameters. These attempts do not incorporate local variations due to punching as well. Thus, our goal in this project is to overcome the short-comings of the previous attempts and propose methodologies to quantify the behavioral and epistemic uncertainty in the experimental data set of $B-H$ curves and as an illustrative case study, we propagate this uncertainty to the torque response of a permanent magnet synchronous machine (PMSM).

In an extended work of this study, we consider an additional uncertainty, the uncertainty of remanent flux density $\left(B_{r}\right)$ of permanent magnets in the PMSM. The variation in $B_{r}$ occurs due to the variability in magnetization of PMs during the manufacturing process [26], from misuse of the machine [27] and the deterioration of $B_{r}$ with time [27]. In a PMSM, $B_{r}$ has a significant influence on the electromagnetic behavior of the machine. Therefore, the impact of its corresponding uncertainty on the performance of the machine is considered in this extended work. A detailed account of the objectives of this thesis is provided below.

### 1.2 Objective of the thesis

The first objective of this work is to propose a methodology for constructing a stochastic model that can quantify the uncertainty due to punching using a dataset of $B$ - $H$ curves. This dataset encodes the uncertainty introduced due to the uncertain state of the punching tool. We use principal component analysis (PCA) to reduce the dimensionality of uncertainty of this dataset. Furthermore, we also model the uncertainty in $B$ - $H$ curves due to the unknown material composition of steel and the limited availability of accurate data in deep saturation region.

The second objective is to analyze the effect of the modeled uncertainties on the output torque of a PMSM. To achieve this objective, a finite element (FE) simulator is designed. Additional layers are added in the stator and rotor of the PMSM model in the FE simulator representing the regions that show local degradation in the magnetic characteristics of steel. These regions reflect the uncertainty in $B-H$ curves due to punching tool variation. The material uncertainty is reflected in the $B-H$ curves of the remaining regions of the stator and rotor. Furthermore, we also incorporate the epistemic uncertainty in deep saturation region of all the $B-H$ curves from the dataset (reflecting punching and material uncertainty in the machine). The brute force method to propagate these uncertainties is to run a large number of simulations using the FE simulator on samples of $B-H$ curves and obtain relevant statistics.

However, evaluation using a FE simulator is computationally expensive. Instead, we train a surrogate model by running few of these expensive simulations on samples from the entire input space and use the trained surrogate to quantify the effect of $B-H$ curve uncertainty on the output torque of a PMSM.

Surrogate models have gained eminence in various engineering applications. But, only recently they have gained popularity in the electric machines community. Quantification and propagation of uncertainty in an electric machine due to manufacturing processes using surrogate models is presented in [25]. In [28], the authors study the effect of uncertainty in rotor eccentricity on the air gap field using polynomial chaos expansion (PCE) and [29] describes the methodology to quantify the uncertainty in the magnetic field of magnets using PCE. As dimensionality of the problem increases, the number of simulations required to train these non-intrusive polynomial chaos models grows. Thus, in this study, we use Gaussian process (GP) regression to build the surrogate model. GP regression is a powerful Bayesian technique that combines the prior assumptions about the output with input-output observations using Bayes rule to form a posterior GP that complies with the prior assumptions and the observations simultaneously. The posterior GP can be used to make point-wise prediction for any new input sample and these predictions can be made accurate by training the GP regression surrogate with adequate number of simulations. Additionally, GP regression provides information about the epistemic uncertainty due to limited data availability as well. Depending on this information, the training data can be strategically sampled.

The observed quantity of interest in this study is the output torque of a PMSM. Torque waveform computed from a magneto-static FE simulator is a vector containing magnitudes of torque corresponding to distinct rotor positions of the PMSM. Generally, the torque vector has significantly high output dimension. In this high dimensional space, the surrogate is inefficient in predicting the torque as high number of scalar functions (equal to the number of dimensions) are required to learn the torque response. Physics based models contain inherent few dominant modes which
have the most influence on the output [30]. By predicting only these modes, it is possible to predict the output with significant accuracy. In this study, we use PCA to identify these dominant modes contributing to the output torque and learn them using GP regression to build the surrogate. Finally, our aim is to assess the effect of $B-H$ curve uncertainty on the output torque profile of the PMSM using the surrogate model.

We extend this work further by considering the effect of uncertainty in the remanent flux density $\left(B_{r}\right)$ of the permanent magnets. We study the combined impact of uncertainties in $B$ - $H$ curve and $B_{r}$ on the PMSM machine/drive system. Our goal is to assess the effect of all the modeled uncertainties on the maximum average torque vs speed characteristics of the machine, minimum DC-link voltage required for the motor/drive system and the current limit of the machine operating under maximum torque per ampere (MTPA) condition.

### 1.3 Organization

The organization of the thesis is as follows. Chapter 2 provides an insight into the FE simulator design of a PMSM with degraded zones. In the final section of this chapter, we validate the in house code with the commercial software, ANSYS Maxwell 2D. Chapter 3 explains in detail the concept of PCA and its use in dimensionality reduction. Chapter 4 provides the methodology to incorporate the uncertainty in $B-H$ curves due to punching defect, unpredictability in material composition and the limited availability of accurate data of saturation magnetization, and the uncertainty in remanent flux density of permanent magnets. Chapter 5 provides the methodology of constructing surrogate models using GP regression. This chapter also gives details related to the methodology used for constructing a surrogate model using GP regression that learns the principal components of the output torque. In the final section of this chapter, we construct surrogate models that learn the average torque and average flux-linkages of the machine. Chapter 6 discusses two case studies for propagating
the modeled uncertainties in $B$ - $H$ curves to the average torque and torque ripple profiles of the PMSM. In chapter 7, we propagate the combined effect of $B-H$ uncertainties and uncertainty in remanent flux density of permanent magnets to PMSM machine/drive system. Finally, chapter 8 provides the conclusion of the conducted studies in this research.

## 2. FINITE ELEMENT SIMULATOR

This chapter begins by describing the drawbacks of a linear lumped parameter model based on analytical machine equations. The second section of this chapter introduces the underlying concept of designing a two-dimensional (2-D) finite element (FE) simulator and calculating the quasi-magnetostatic field of a permanent magnet synchronous machine (PMSM) made of steel following non-linear magnetic characteristics. Additionally, we modify the FE mesh in this section to incorporate the degraded zones caused by the punching tool during manufacturing process. In the final section, we validate the finite element simulator against the results from the commercial software, ANSYS Maxwell 2D.

### 2.1 Drawbacks in analysis using a linear lumped parameter model

In this research, we consider the interior PMSM of the 2004 Toyota Prius, which has been documented in detail in [31]. The dimensions of the stator slot, teeth and back-iron are illustrated in Fig. 2.1 and the rotor and permanent magnet dimensions are illustrated in Fig. 2.2. The parameters are provided in Table 2.1. This is a 8-pole motor, rated for 400 Nm and 50 kW , at 1500 rpm . In this study, we consider a no-load system where the 3 -phase currents, $i_{a}$, $i_{b}$ and $i_{c}$, excite the machine for operation. Here the currents are given by

$$
\left[\begin{array}{c}
i_{\mathrm{a}}  \tag{2.1}\\
i_{\mathrm{b}} \\
i_{\mathrm{c}}
\end{array}\right]=I_{\mathrm{pk}}\left[\begin{array}{c}
\cos \left(\theta_{e}+\phi_{c}\right) \\
\cos \left(\theta_{e}+\phi_{c}-\frac{2 \pi}{3}\right) \\
\cos \left(\theta_{e}+\phi_{c}+\frac{2 \pi}{3}\right)
\end{array}\right]
$$

where $I_{\mathrm{pk}}$ is the peak magnitude of current, $\phi_{c}$ is the current angle and $\theta_{e}$ is the rotor electrical angular position, given by

$$
\begin{equation*}
\theta_{e}=\omega_{e} t \tag{2.2}
\end{equation*}
$$

where $t$ is the time (in s), and $\omega_{e}$ is the rotor angular speed (in rad/s).
For simplicity of analysis, in a linear lumped parameter model, we consider only the linear relationship between the parameters. Although these equations make the analysis simpler, they fail to capture the dynamics of the machine accurately. To analyze the machine, the $q-d$ transformed currents in rotor reference frame are used [32]. The transformation is given by

$$
\left[\begin{array}{l}
i_{\mathrm{qs}}^{r}  \tag{2.3}\\
i_{\mathrm{ds}}^{r} \\
i_{0 \mathrm{~s}}^{r}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \theta_{e} & \cos \left(\theta_{e}-\frac{2 * \pi}{3}\right) & \cos \left(\theta_{e}+\frac{2 * \pi}{3}\right) \\
\cos \theta_{e} & \cos \left(\theta_{e}-\frac{2 * \pi}{3}\right) & \cos \left(\theta_{e}+\frac{2 * \pi}{3}\right) \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2}
\end{array}\right]\left[\begin{array}{c}
i_{a} \\
i_{b} \\
i_{c}
\end{array}\right],
$$

where $i_{\mathrm{qs}}, i_{\mathrm{ds}}$ and $i_{0 \mathrm{~s}}$ are the $q$-axis, $d$-axis and the zero-sequence currents respectively. However, since we are dealing with balanced sinusoidal currents, the zero-sequence current is absent [32]. Thus, using these transformations, the state of the machine can be defined by the $q$ - and $d$ - axes voltages.

$$
\begin{align*}
& v_{\mathrm{qs}}^{r}=r_{s} i_{\mathrm{qs}}^{r}+\omega_{e} \lambda_{\mathrm{ds}}^{r}+\frac{d \lambda_{\mathrm{qs}}^{r}}{d t},  \tag{2.4}\\
& v_{\mathrm{ds}}^{r}=r_{s} i_{\mathrm{ds}}^{r}+\omega_{e} \lambda_{\mathrm{qs}}^{r}+\frac{d \lambda_{\mathrm{ds}}^{r}}{d t}, \tag{2.5}
\end{align*}
$$

where $r_{s}$ is the resistance of single phase winding,

$$
\begin{equation*}
\lambda_{\mathrm{qs}}^{r}=L_{q} i_{\mathrm{qs}}^{r} \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{\mathrm{ds}}^{r}=L_{d} i_{\mathrm{ds}}^{r}+\lambda_{m}^{\prime r} \tag{2.7}
\end{equation*}
$$

where $L_{q}$ is the $q$-axis inductance, $L_{d}$ is the $d$-axis inductance and $\lambda_{m}^{\prime r}$ is the flux linkage due to the permanent magnets. In a linear model, $L_{q}$ and $L_{d}$ are assumed to be constant. Subsequently, the torque, $T$, of the machine is given by [32]

$$
\begin{equation*}
T=\left(\frac{3}{2}\right)\left(\frac{P}{2}\right)\left(\lambda_{\mathrm{ds}}^{r} i_{\mathrm{qs}}^{r}-\lambda_{\mathrm{qs}}^{r} i_{\mathrm{ds}}^{r}\right) . \tag{2.8}
\end{equation*}
$$

There are a number of problems with the linear lumped parameter model. The approximation of the model assuming a linear behavior of the magnetic material is
one of them. This approximation provides a linear relationship between the applied currents ( $i_{\mathrm{qs}}^{r}, i_{\mathrm{ds}}^{r}$ ) and the flux linkages $\left(\lambda_{\mathrm{qs}}^{r}, \lambda_{\mathrm{ds}}^{r}\right)$ as observed in Eqns. (2.6) and (2.7). However in reality, the behavior of the magnetic material is dictated by nonlinear $B$ - $H$ curve affecting the relationship between the currents and flux linkages (as we will see later in this chapter). Furthermore, as $L_{q}$ and $L_{d}$ are assumed to be constants, the harmonics due to the stator teeth and slots of the machine are not captured by the lumped parameter model. Thereby, the torque given by Eq. (2.8) fails to capture these harmonics. In this study, we intend to quantify the effect of $B-H$ curve uncertainty on the torque profile of a PMSM. Thus, it is important for us to model the behavior of the machine accurately so that its sensitivity to the considered uncertainties can be precisely quantified. Considering the disadvantages of the linear lumped parameter model, we use the FE analysis approach to obtain the torque waveform of the PMSM. The details on the design of a FE simulator are provided in the following sections. For simplicity of notation, henceforward, we refer to $i_{\mathrm{qs}}^{r}$ as $I_{q}$ and $i_{\mathrm{ds}}^{r}$ as $I_{d}$.

### 2.2 Development of 2-D FE simulator

The torque produced by a PMSM is a result of interaction between the magnetic fields produced by the rotor magnets and stator currents. The interaction of these electromagnetic fields is analyzed using a 2-D FE solver. This analysis is simplified by making following assumptions. The currents are considered to flow only in the axial direction ( $z$ - axis) and the displacement current in Ampere's law is ignored [33]. Additionally, the dynamics of the machine are assumed to be fast enough to ignore the transients. Such FE solver is called a magnetostatic solver. In a magnetostatic solver, the magnetic field is obtained by solving a non-linear Poisson's equation. The following equations form the basis for deriving Poisson's equation:

$$
\begin{equation*}
\nabla \times \vec{H}=\vec{J}_{e} \tag{2.9}
\end{equation*}
$$



Fig. 2.1.: PMSM stator dimensions

$$
\begin{gather*}
\nabla \cdot \vec{B}=0  \tag{2.10}\\
\vec{B}=\mu \vec{H}  \tag{2.11}\\
\vec{B}=\nabla \times \vec{A} \tag{2.12}
\end{gather*}
$$

where $\vec{H}$ is the magnetic field intensity, $\vec{B}$ is the magnetic flux density, $\vec{A}$ is magnetic vector potential (MVP), $\vec{J}_{e}$ is the equivalent current density which is a vector sum of current density due to the currents in the stator and perceived current density due


Fig. 2.2.: PMSM rotor and permanent magnet dimensions
to the magnets in the rotor, and $\mu$ is the absolute permeability of the region under consideration. From Eq. (2.9), Eq. (2.11) and Eq. (2.12), we get

$$
\begin{equation*}
\nabla \times(\boldsymbol{\nabla} \times \vec{A})=\mu \vec{J}_{e} \tag{2.13}
\end{equation*}
$$

In 2-D, Eq. (2.13) reduces to

$$
\begin{equation*}
\frac{\partial^{2} A}{\partial x^{2}}+\frac{\partial^{2} A}{\partial y^{2}}=-\mu \vec{J}_{e} \tag{2.14}
\end{equation*}
$$

where $A$ and $J_{e}$ are functions of $x$ and $y$ and correspond to the $z$ - components of the MVP and equivalent current density respectively.

Eq. (2.14) is the non-linear Poisson's equation which is equal to the EulerLagrange equation for an energy related functional, $F$, defined in a 2-D domain of interest, D. In magnetostatic problems, $F$ is defined as

$$
\begin{equation*}
F=\iiint_{D} m(A) d x d y-\iiint_{D} A J d x d y-\nu_{m} \iiint \overrightarrow{B_{r}} \cdot\left(\frac{\partial A}{\partial y} \hat{a_{x}}-\frac{\partial A}{\partial x} \hat{a_{y}}\right) \tag{2.15}
\end{equation*}
$$

Table 2.1.: Dimensions and parameters of the PMSM

| Parameter | Value |
| :---: | :---: |
| Stator outer diameter (mm) | 269 |
| Stator inner diameter (mm) | 161.93 |
| Stator stack length (mm) | 8.35 |
| Rotor outer diameter (mm) | 160.47 |
| Air gap (mm) | 0.73025 |
| Slot depth (mm) | 33.5 |
| Slot opening (mm) | 1.93 |
| Magnet residual flux density (T) | 1.23 |
| Total number of slots ( ) | 48 |
| Stator turns per coil ( ) | 9 |
| Parallel circuits per phase ( ) | 0 |
| Relative permeability of the magnet() | 1.12 |

where $\nu_{m}$ is the absolute reluctivity of the magnet, $\hat{a}_{x}$ is the unit vector in $x$-direction, $\hat{a}_{y}$ is the unit vector in the $y$ - direction, and $m(A)$ is the energy density of the system given by

$$
\begin{equation*}
m(A)=\frac{1}{2} \int_{0}^{B^{2}} \nu\left(b^{2}\right) d b^{2}=m\left(B^{2}\right) \tag{2.16}
\end{equation*}
$$

where $\nu$ is the reciprocal of $\mu$ and $\vec{B}_{r}$ is the residual magnetic flux density of the magnet defined as

$$
\begin{equation*}
\overrightarrow{B_{r}}=\mu_{o}\left(M_{x} \hat{a_{x}}+M_{y} \hat{a_{y}}\right) \tag{2.17}
\end{equation*}
$$

The function $A(x, y)$ that minimizes $F$ must satisfy Eq. (2.14). Hence, instead of finding a solution to Eq. (2.14), we solve for $A(x, y)$ that minimizes $F$. To achieve this, $D$ is discretized into triangular elements assuming that the current density within
each element remains constant and the variation of $A$ inside the element is linear w.r.t. $x$ and $y$. Thus, inside each element, $A(x, y)$ is given by

$$
\begin{equation*}
A(x, y)=a+b x+c y . \tag{2.18}
\end{equation*}
$$

Consider a triangle element with nodes $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$. The MVP's at these nodes is given by

$$
\begin{align*}
& A_{1}\left(x_{1}, y_{1}\right)=a+b x_{1}+c y_{1}  \tag{2.19}\\
& A_{2}\left(x_{2}, y_{2}\right)=a+b x_{2}+c y_{2}  \tag{2.20}\\
& A_{3}\left(x_{3}, y_{3}\right)=a+b x_{3}+c y_{3} . \tag{2.21}
\end{align*}
$$

Solving Eq. (2.19), Eq. (2.20) and Eq. (2.21), we get

$$
\begin{gather*}
a=\frac{1}{2 \triangle}\left[\left(x_{2} y_{3}-x_{3} y_{2}\right) A_{1}+\left(x_{3} y_{1}-x_{1} y_{3}\right) A_{2}+\left(x_{1} y_{2}-x_{2} y_{1}\right) A_{3}\right],  \tag{2.22}\\
b=\frac{1}{2 \triangle}\left[\left(y_{2}-y_{3}\right) A_{1}+\left(y_{3}-y_{1}\right) A_{2}+\left(y_{1}-y_{2}\right) A_{3}\right]  \tag{2.23}\\
c=\frac{1}{2 \triangle}\left[\left(x_{3}-x_{2}\right) A_{1}+\left(x_{1}-x_{3}\right) A_{2}+\left(x_{2}-x_{1}\right) A_{3}\right] . \tag{2.24}
\end{gather*}
$$

where $\triangle$ is the area of the triangle element given by:

$$
\begin{equation*}
\triangle=\frac{1}{2}\left[\left(x_{2}-x_{1}\right)\left(y_{3}-y_{1}\right)-\left(y_{2}-y_{1}\right)\left(x_{3}-x_{1}\right)\right] . \tag{2.25}
\end{equation*}
$$

Substituting Eq. (2.19), Eq. (2.20) and Eq. (2.21) into Eq. (2.18), we get

$$
\begin{equation*}
A=\sum_{i=1}^{3} \alpha_{i} A_{i} . \tag{2.26}
\end{equation*}
$$

where for $i=1,2,3$,

$$
\begin{align*}
\alpha_{i}(x, y) & =\frac{1}{2 \triangle}\left[p_{i}+q_{i} x+r_{i} y\right]  \tag{2.27}\\
p_{1} & =x_{2} y_{3}-x_{3} y_{2}  \tag{2.28}\\
p_{2} & =x_{3} y_{1}-x_{1} y_{3},  \tag{2.29}\\
p_{3} & =x_{1} y_{2}-x_{2} y_{1}  \tag{2.30}\\
q_{1} & =y_{2}-y_{3} \tag{2.31}
\end{align*}
$$

$$
\begin{align*}
& q_{2}=y_{3}-y_{1}  \tag{2.32}\\
& q_{3}=y_{1}-y_{2}  \tag{2.33}\\
& r_{1}=x_{3}-x_{2}  \tag{2.34}\\
& r_{2}=x_{1}-x_{2}  \tag{2.35}\\
& r_{3}=x_{2}-x_{1} \tag{2.36}
\end{align*}
$$

$\alpha_{i}(x, y)$ are called basis functions which possess the property

$$
\begin{align*}
\alpha_{i}\left(x_{j}, y_{j}\right) & =1, \text { if } i=j  \tag{2.37}\\
& =0, \text { if } i \neq j
\end{align*}
$$

Substituting Eq. (2.37) in Eq. (2.26), we get

$$
\begin{equation*}
A=\sum_{i=1}^{3} A_{i} \alpha_{i}(x, y) \tag{2.38}
\end{equation*}
$$

Taking into account the discretization of the domain and linear interpolation inside the triangle elements, the functional, $F$, can be approximated as $F_{\text {apx }}$ given by

$$
\begin{align*}
F_{a p x}=\sum_{k=1}^{K} & \iint_{\Delta^{k}} m\left(B^{2}\right) d x d y-\sum_{k=1}^{K} \iint_{\Delta^{k}} A J d x d y  \tag{2.39}\\
& -\sum_{k=1}^{K} \nu^{k} \mu_{0} \iint_{\Delta^{k}}\left(M_{x} \frac{\partial A}{\partial y}-M_{y} \frac{\partial A}{\partial x}\right) d x d y
\end{align*}
$$

In each triangle element, $k$, the functional takes the form, $F_{a p x}^{k}$, given by:

$$
\begin{align*}
F_{a p x}^{k} & =\iint_{\Delta^{k}} m\left(B^{2}\right) d x d y-\iint_{\Delta^{k}} A J d x d y-\nu^{k} \mu_{0} \iint_{\Delta^{k}}\left(M_{x} \frac{\partial A}{\partial y}-M_{y} \frac{\partial A}{\partial x}\right) d x d y \\
& =m\left(B^{2}\right) \triangle^{k}-\frac{J^{k} \triangle^{k}}{3}\left(A_{1}+A_{2}+A_{3}\right)-\frac{\nu^{k} \nu_{0}}{2} \sum_{i=1}^{3} A_{i}\left(M_{x}^{k} r_{i}^{k}-M_{y}^{k} q_{i}^{k}\right) \tag{2.40}
\end{align*}
$$

In Eq. (2.40), the first term is a function of $B^{2}$ which is dependent on $A$ (Eq. (2.12)). Thus, find $F_{a p x}$ in terms of $A, B^{2}$ needs to be calculated as a function of $A$. Thus, $B^{2}$ is given by

$$
\begin{align*}
B^{2} & =\left(\frac{\partial A}{\partial x}\right)^{2}+\left(\frac{\partial A}{\partial y}\right)^{2}=|\nabla A|^{2} \\
& =\sum_{i=1}^{3} \sum_{j=1}^{3} A_{i}^{k} A_{j}^{k}\left(\nabla \alpha_{i} \cdot \nabla \alpha_{j}\right) . \tag{2.41}
\end{align*}
$$

A normalized element stiffness matrix, $S^{k}$ is defined such that,

$$
\begin{equation*}
s_{i j}^{k}=\triangle^{k}\left(\nabla \alpha_{i} \cdot \nabla \alpha_{j}\right) \tag{2.42}
\end{equation*}
$$

where $s_{i j}^{k}$ is the element of $S^{k}$ corresponding to its $i^{\text {th }}$ row and $j^{\text {th }}$ column. Substituting Eq. (2.42) in Eq. (2.41), we get

$$
\begin{equation*}
B^{2}=\frac{A^{k T} S^{k} A^{k}}{\triangle^{k}} \tag{2.43}
\end{equation*}
$$

The solution to Eq. (2.40) can be obtained by solving a simple linear equation when $\nu^{k}$ is constant or independent of $B^{2}$ which is possible if the material used in the stator and rotor of the machine exhibits linear magnetic characteristics. However, in practice, the material is non-linear in nature. Thus, an additional iterative algorithm is used to reach to the solution of $A$ numerically that minimizes Eq. (2.40). The next subsection discusses more about the implementation of this algorithm.

## Integration of the non-linear material

The absolute permeability, $\mu$, in Eq. (2.11), for a material, varies depending on the magnetic field intensity, $\vec{H}$. At low excitation, $\mu$ increases with increase in $|\vec{H}|$ whereas at high excitation $\mu$ decreases with increase in $|\vec{H}|$ until it reaches $\mu_{0}$, the absolute permeability of free space. Due to the presence of this non-linearity in the magnetic property of the material, a solution of $A$ that minimizes $F$ cannot be obtained analytically. Therefore, a numerical technique based on Newton-Raphson algorithm is implemented in this study to find the solution of $A$.

By Fermat's theorem, the partial derivative of $F$ w.r.t $A$, is given by

$$
\begin{equation*}
\frac{\partial F}{\partial A}_{a t A=A_{m}}=0=g\left(A_{m}\right) \tag{2.44}
\end{equation*}
$$

where $A_{m}$ is a vector of nodal values of $A$ that minimizes $F_{a p x}$, and $g=\frac{\partial F}{\partial A}$. By expanding Eq. (2.44) using Taylor's series at $A_{m}$ and neglecting higher order terms, we get

$$
\begin{equation*}
g(A)=g\left(A_{m}\right)+\frac{\partial^{2} F}{\partial A^{2}}\left(A-A_{m}\right) \tag{2.45}
\end{equation*}
$$

Solving further, the iterative formula of Newton-Raphson is obtained which is given by

$$
\begin{equation*}
A^{t+1}=A^{t}-H^{-1} g\left(A^{t}\right) \tag{2.46}
\end{equation*}
$$

where $A^{t}$ is the value of $A$ at $t^{t h}$ iteration of Newton-Raphson and $H=\frac{\partial^{2} F}{\partial A^{2}}$. Substituting Eq. 2.40 in Eq. (2.44), we get

$$
\begin{align*}
\frac{\partial F^{k}}{\partial A_{i}^{k}} & =\frac{\partial}{\partial A_{i}^{k}} m^{k}\left(B^{2}\right) \triangle^{k}-\frac{J^{k} \triangle^{k}}{3}-I_{i}^{k}  \tag{2.47}\\
& =\triangle^{k} \frac{d m^{k}}{d B^{2}} \frac{\partial B^{2}}{\partial A_{i}}-\frac{J^{k} \triangle^{k}}{3}-I_{i}^{k}
\end{align*}
$$

where $I_{i}^{k}$ is considered as the equivalent nodal current due to the permanent magnets in the rotor and is given by

$$
\begin{equation*}
I_{i}^{k}=\frac{\nu^{k} \mu_{0}}{2}\left(M_{x}^{k} r_{i}^{k}-M_{y}^{k} q_{i}^{k}\right) \tag{2.48}
\end{equation*}
$$

Solving Eq. (2.16), we get

$$
\begin{equation*}
\frac{d m^{k}}{d B^{2}}=\frac{1}{2} \nu\left(B^{2}\right) \tag{2.49}
\end{equation*}
$$

Thus, using Eq. (2.49), Eq. (2.47) can be reduced to

$$
\begin{equation*}
\frac{\partial F^{k}}{\partial A_{n_{i}}^{k}}=\nu\left(B^{2}\right)\left(S^{k} A^{k}\right)_{i}-\frac{J^{k} \triangle^{k}}{3}-I_{i}^{k} \tag{2.50}
\end{equation*}
$$

Similarly following necessary substitutions, $\frac{\partial^{F^{k}}}{\partial A_{i}^{k} \partial A_{j}^{k}}$ can be expanded to get the hessian matrix, $H . H^{k}$, the sub-matrix of $H$ for each element is given by:

$$
\begin{equation*}
H^{k}\left(A^{k}\right)=\frac{\partial^{2} F^{k}}{\partial A_{i}^{k} \partial A_{j}^{k}}=\nu\left(B^{2}\right) s_{i j}-\frac{2}{\triangle^{k}} \frac{d \nu\left(B^{2}\right)}{d B^{2}}\left(S^{k} A^{k}\right)_{i}\left(S^{k} A^{k}\right)_{j} \tag{2.51}
\end{equation*}
$$

Substituting Eq. (2.47) and Eq. (2.51) in Eq. (2.46), the MVP at each node is evaluated iteratively till the stopping criteria is met. The stopping criteria is defined as:

$$
\begin{equation*}
\frac{\|g(A m)\|_{2}}{\|I\|_{2}} \leq 10^{-6} \tag{2.52}
\end{equation*}
$$

where $I$ is the vector of nodal currents of the discretized elements.
After the solution of MVP at each node is obtained, the electromagnetic torque waveform is calculated using three different algorithms. The three algorithms correspond to the Maxwell stress tensor (MST) [34], the virtual distortion of triangles [35] (VDM), and the Arkkio's [36] (Arkkios) method.


Fig. 2.3.: Discretized domain of a nominal Interior permanent magnet synchronous machine in 2-D

## Incorporation of the degraded zones

The process of punching introduces plastic deformation in the region near the cut edge of the lamination, thereby deteriorating its magnetic characteristics locally [37]. This region is henceforward referred to as a degraded zone. To model this effect, we introduce a number of degraded zones in the FE mesh, as shown in Fig. 2.4. In the stator, we assume the presence of two degraded zones, as if they are caused by two separate punching tools with potentially different effect; the first is at the outer
boundary, whereas the second is at the inner boundary and follows the shape of the stator teeth and slots. In the rotor, we assume 10 degraded zones; 2 zones at the outer and inner boundaries of the rotor, and 8 zones surrounding the magnet pockets. We assume that the outer and inner boundaries of the rotor are shaped by two different punching tools, whereas the 8 magnet pockets are punched by the same punching tool.

Zones are represented by $1-\mathrm{mm}$ thick layers in the FE mesh [13]. The material in each degraded zone is assigned an uncertain $B-H$ curve characteristic dictated by the uncertain state of its corresponding punching tool. For instance, although there are 8 geometrically separate degraded zones surrounding the magnet pockets, they all share a single $B-H$ curve characteristic. The magnetization uncertainty corresponds to the combined effect of cutting speed, cutting clearance, wearing and sharpness of the punch and die of the punching tool. Henceforward, the combined effect of these parameters on the punching tool is referred to as the state of the punching tool.

### 2.3 Validation of the FE simulator

In the in-house FE code, we calculate the torque waveform using three different algorithms. It can be observed in Fig. 2.5 that the torque waveform computed using all of these methods produce identical results with no significant error. Henceforward, we use the Arkkio's method to compute the torque waveform for all the conducted studies.

We validate the in-house FE code against the results from the commercial software ANSYS Maxwell 2D. The torque waveform as a function of the mechanical rotor position, $\theta_{r m}$ and the operating points, defined by the magnitude of peak current, $I_{\mathrm{pk}}$, and the current angle, $\phi_{c}$, is obtained from ANSYS Maxwell 2D using the Magnetostatic solution mode. We use the Optimetrics option to feed the input parameters, $\theta_{r m}, I_{\mathrm{pk}}$ and $\phi_{c}$, as discrete values to ANSYS Maxwell 2D and evaluate the torque waveform at these values. We consider 32 equally spaced mechanical rotor positions


Fig. 2.4.: Illustration of degraded zones in the FE mesh of the PMSM under study. Degraded layers correspond to (a) Stator outer edge, (b) Stator teeth and slots, (c) Rotor outer edge, (d) Rotor magnet pockets and (e) Rotor inner edge

Table 2.2.: Operating points for validation study

| Operating point | Currents (A) |
| :---: | :---: |
| 1 | $I_{q}=10.000 \mathrm{~A}, I_{d}=0.000 \mathrm{~A}$ |
| 2 | $I_{q}=9.469 \mathrm{~A}, I_{d}=-3.214 \mathrm{~A}$ |
| 3 | $I_{q}=7.934 \mathrm{~A}, I_{d}=-6.088 \mathrm{~A}$ |
| 4 | $I_{q}=5.556 \mathrm{~A}, I_{d}=-8.315 \mathrm{~A}$ |
| 5 | $I_{q}=2.588 \mathrm{~A}, I_{d}=-9.659 \mathrm{~A}$ |
| 6 | $I_{q}=70.000 \mathrm{~A}, I_{d}=0.000 \mathrm{~A}$ |
| 7 | $I_{q}=66.285 \mathrm{~A}, I_{d}=-22.501 \mathrm{~A}$ |
| 8 | $I_{q}=55.535 \mathrm{~A}, I_{d}=-42.613 \mathrm{~A}$ |
| 9 | $I_{q}=38.890 \mathrm{~A}, I_{d}=-58.203 \mathrm{~A}$ |
| 10 | $I_{q}=18.117 \mathrm{~A}, I_{d}=-67.615 \mathrm{~A}$ |
| 11 | $I_{q}=130.000 \mathrm{~A}, I_{d}=0.000 \mathrm{~A}$ |
| 12 | $I_{q}=123.101 \mathrm{~A}, I_{d}=-41.787 \mathrm{~A}$ |
| 13 | $I_{q}=103.136 \mathrm{~A}, I_{d}=-79.139 \mathrm{~A}$ |
| 14 | $I_{q}=72.224 \mathrm{~A}, I_{d}=-108.091 \mathrm{~A}$ |
| 15 | $I_{q}=33.646 \mathrm{~A}, I_{d}=-125.570 \mathrm{~A}$ |
| 16 | $I_{q}=190.000 \mathrm{~A}, I_{d}=0.000 \mathrm{~A}$ |
| 17 | $I_{q}=179.917 \mathrm{~A}, I_{d}=-61.073 \mathrm{~A}$ |
| 18 | $I_{q}=150.737 \mathrm{~A}, I_{d}=-115.665 \mathrm{~A}$ |
| 19 | $I_{q}=105.558 \mathrm{~A}, I_{d}=-157.979 \mathrm{~A}$ |
| 20 | $I_{q}=49.176 \mathrm{~A}, I_{d}=-183.526 \mathrm{~A}$ |
| 21 | $I_{q}=250.000 \mathrm{~A}, I_{d}=0.000 \mathrm{~A}$ |
| 22 | $I_{q}=236.733 \mathrm{~A}, I_{d}=-80.360 \mathrm{~A}$ |
| 23 | $I_{q}=198.338 \mathrm{~A}, I_{d}=-152.190 \mathrm{~A}$ |
| 24 | $I_{q}=138.893 \mathrm{~A}, I_{d}=-207.867 \mathrm{~A}$ |
| 25 | $I_{q}=64.705 \mathrm{~A}, I_{d}=-241.481 \mathrm{~A}$ |



Fig. 2.5.: Computation of torque using MST, VDM and Arkkios method at 25 operating points


Fig. 2.6.: Validation of the FE simulator at 25 different operating points


Fig. 2.7.: Histogram of $L_{2}$-norm error between the torque waveforms from $A N S Y S$ Maxwell 2D and in-house FE code


Fig. 2.8.: Relative $L_{2}$-norm error between the torque waveforms from $A N S Y S$ Maxwell 2D and in-house FE code in $I_{q}-I_{d}$ plane

Table 2.3.: Relative $L_{2}$-norm error between the torque waveforms obtained from ANSYS Maxwell 2D and in-house FE code

| Operating point | relative $L_{2}$-norm error(\%) |
| :---: | :---: |
| 1 | 1.6612 |
| 2 | 1.5919 |
| 3 | 1.7320 |
| 4 | 2.1940 |
| 5 | 4.0541 |
| 6 | 1.0626 |
| 7 | 0.7553 |
| 8 | 0.4500 |
| 9 | 0.6137 |
| 10 | 0.8749 |
| 11 | 0.9628 |
| 12 | 0.6906 |
| 13 | 0.4521 |
| 14 | 0.3600 |
| 15 | 0.7242 |
| 16 | 0.8104 |
| 17 | 0.5126 |
| 18 | 0.3567 |
| 19 | 0.2476 |
| 20 | 0.5183 |
| 21 | 0.7099 |
| 22 | 0.3849 |
| 23 | 0.2652 |
| 24 | 0.2918 |
| 25 | 0.3914 |

Table 2.4.: Torque error obtained using ANSYS Maxwell 2D and in-house FE code

| Operating point | Torque error (Nm) |
| :---: | :---: |
| 1 | 0.0312 |
| 2 | 0.0304 |
| 3 | 0.0294 |
| 4 | 0.0272 |
| 5 | 0.0241 |
| 6 | 0.1451 |
| 7 | 0.1338 |
| 8 | 0.0857 |
| 9 | 0.0970 |
| 10 | 0.0709 |
| 11 | 0.2278 |
| 12 | 0.2231 |
| 13 | 0.1680 |
| 14 | 0.1248 |
| 15 | 0.1380 |
| 16 | 0.2584 |
| 17 | 0.2272 |
| 18 | 0.1869 |
| 19 | 0.1277 |
| 20 | 0.1575 |
| 21 | 0.2734 |
| 22 | 0.2078 |
| 23 | 0.1716 |
| 24 | 0.1913 |
| 25 | 0.1599 |



Fig. 2.9.: Torque error between the torque waveforms from ANSYS Maxwell 2D and in-house FE code in $I_{q}-I_{d}$ plane
within 0 and 15 degrees where the magnitude of torque is computed. The range of $0-15$ degrees is strategiclly chosen as the torque waveform for a symmetric 3 phase machine repeats itself after every 60 electrical degrees ( 15 mechanical degrees for a 8 pole machine as the PMSM considered in the study). For each of the considered rotor position, ANSYS Maxwell 2D implements an adaptive meshing technique to reduce the local error associated with the energy of the system such that between two consecutive passes, it would not exceed $0.01 \%$. The relative $L_{2}$-norm error between the torque waveforms evaluated using $A N S Y S$ Maxwell 2D, $\mathbf{t}_{\mathrm{am}}$, and the in-house FE code, $\mathbf{t}_{\text {ih }}$, is given by

$$
\begin{equation*}
\text { relative } L_{2} \text {-norm error }=\frac{\left\|\mathbf{t}_{\mathrm{am}}-\mathbf{t}_{\text {ih }}\right\|_{2}}{\left\|\mathbf{t}_{\mathrm{ih}}\right\|_{2}} . \tag{2.53}
\end{equation*}
$$

The torque waveform is computed at 25 different operating points. $I_{\mathrm{pk}}$ and $\phi_{c}$ are considered at 5 equally spaced points between 10 A and 250 A , and 0 degree and 75 degrees respectively. The operating points are reported in the form of $I_{q}$ and $I_{d}$ in Table 2.2. It can be observed in Fig. 2.7 that the errors of 12 of the validation points are below $0.5 \%$ and 7 of them are below $1 \%$. The error is also illustrated in the $I_{q}-I_{d}$
plane in Fig. 2.8 and reported in Table 2.3. It can be seen that the 5 outliers (error $>1.25 \%$ ) correspond to the low current region. Figs. 2.13, 2.14, 2.15, 2.16 and 2.17 illustrate the different torque waveforms with their relative $L_{2}$-norm errors. We also consider another error criteria called the torque error between the two codes where the torque error, $e_{t}$, is given by

$$
\begin{equation*}
e_{t}=\frac{\left\|\mathbf{t}_{\mathrm{am}}-\mathbf{t}_{\mathrm{ih}}\right\|_{2}}{N_{r}} \tag{2.54}
\end{equation*}
$$

where $N_{r}$ corresponds to the number of discrete rotor positions where the magnitude of torque is computed. Fig. 2.9 shows the torque error for the 25 operating points and Table 2.4 reports them. It can be observed that although the relative $L_{2}$-norm error was high near the low current region, the torque error is high near the high current region. However, the maximum torque error is approximately around 0.25 Nm which is acceptable.

The purpose of this study is to consider the effect of $B-H$ uncertainties on our quantities of interests (QoIs) where the QoIs are given by the average torque, the sixth and twelfth harmonic components of torque. Thus, it is important that the QoIs are accurately evaluated by the in-house FE code. Hence, we also calculate the difference between the QoIs obtained from ANSYS Maxwell 2D and the in-house FE code in our study. The magnitude of average torque at any operating point is given by

$$
\begin{equation*}
t_{\mathrm{avg}}=\frac{1}{N_{r}} \sum_{n=1}^{N_{r}} t_{\mathrm{c}}^{(n)} \tag{2.55}
\end{equation*}
$$

where $t_{c}^{(n)}$ is the $n$-th value of the torque waveform, $\mathbf{t}_{c}$, obtained using the in-house FE code/ANSYS Maxwell 2D. The sixth and the twelfth harmonic components of torque are given by the discrete-fourier transform (DFT) of $\mathbf{t}_{c}$. The evaluation of DFT is computationally intensive. Instead, we use the Fast-fourier transform (FFT) which is computationally inexpensive. To obtain the FFT, we use the numpy package
of python. Fundamentally, the DFT decomposes $\mathbf{t}_{c}$ such that its each component, $T_{k}$ is given by

$$
\begin{equation*}
T_{k}=\sum_{n=0}^{N_{r}-1} t_{c}^{(n)} \exp \left\{\frac{\dot{i 2} \pi k n}{N_{r}}\right\} \tag{2.56}
\end{equation*}
$$

In this interpretation, each component, $T_{k}$ is a complex number that encodes both amplitude and phase of a complex sinusoidal component, $\exp \{i 2 \pi k n\}$, of $t_{c}^{(n)}$. The sinusoid's frequency is $k$ cycles per $N_{r}$ samples. It's amplitude is given by

$$
\begin{equation*}
\left|T_{k}\right| / N_{r}=\sqrt{\operatorname{Re}\left(T_{k}\right)^{2}+\operatorname{Im}\left(T_{k}\right)^{2}} / N_{r} \tag{2.57}
\end{equation*}
$$

Since, we work with just one period of the torque waveform, the absolute value of the second component, $\left|T_{1}\right| / N_{r}$ corresponds to the magnitude of sixth harmonic component of the torque waveform and the absolute value of third component, $\left|T_{2}\right| / N_{r}$, corresponds to the magnitude of twelfth harmonic component of the torque waveform. We obtain the difference between the magnitudes of the QoIs from ANSYS Maxwell $2 D$ and the in-house FE code. We plot these differences in the $I_{q}-I_{d}$ plane (see Figs. 2.10, 2.11 and 2.12) and their values are reported in Tables 2.5, 2.7 and 2.6 respectively.

ANSYS Maxwell $2 D$ implements a quadratic interpolation of the magnetic vector potential where as in the in-house FE code, we implement a bilinear interpolation of MVP (see Eq.(2.18)). Thus, the elements of the stiffness matrix corresponding to ANSYS Maxwell $2 D$ and the in-house FE code will be different which results in different values of MVPs. Consequently, the torque calculated from the two sources will be different as well. However, if the triangular elements are sufficiently small, the deviation is expected to be small. The mesh used by ANSYS Maxwell 2D is different from the mesh of in-house FE code which is yet another factor contributing to the error. Considering these sources of error, the discrepancy between the quantities evaluated from in-house FE code and ANSYS Maxwell 2D is acceptable.

In addition to validating the torque waveforms obtained from the in-house FE code at 25 operating points, we also study the change in the QoIs with the change in $B$ - $H$ curve of steel from both the solvers. We prepare the study by perturbing the
$B-H$ curve such that it has a slope greater than the nominal $B-H$ curve. To obtain the perturbed curve, we decrease the $H$-values of the nominal curve by $30 \%$ at same $B$ values (as the nominal curve) and extrapolate the generated curve with a slope of $\mu_{0}$. ANSYS Maxwell 2D uses a straight line extrapolation algorithm [22] to extrapolate the $B$ - $H$ curve using the last two data points from the provided curve where as in the in-house FE code, we extrapolate the $B-H$ curve with a slope of $\mu_{0}$ beyond the last available data point. Thus, the extrapolation of the nominal and perturbed curve is necessary to ensure that the extrapolated $B-H$ curve of $A N S Y S$ Maxwell 2D matches that of in-house FE code. To this end, we introduce an additional $H$-value in the deep saturation region, i.e. $H_{e}=1.8 e 5 \mathrm{~A} / \mathrm{m}$, after the last data point of the nominal and perturbed curve. At $H_{e}=1.8 e 5 \mathrm{~A} / \mathrm{m}$, the $B$-value is given by

$$
\begin{equation*}
B_{e}=\left(H_{e}-H_{l}\right) \mu_{0}+B_{l}, \tag{2.58}
\end{equation*}
$$

where $H_{l}$ and $B_{l}$ correspond to be the last $H$ - and $B$-values of the $B$ - $H$ data respectively. The value, $H_{e}$, is arbitrarily chosen and its choice doesn't affect the study since we assume that after the last data point, $\left\{H_{l}, B_{l}\right\}$, the slope of the $B$ - $H$ curve is $\mu_{0}$. Thereafter, we construct a shape-preserving polynomial cubic Hermite interpolating polynomials (PCHIP) function with the $B-H$ data points, given by $B(H)$ and using this function, we sample $50 B$-values at 50 equally spaced $H$-values in the log-scale. The PCHIP is constructed to ensure that the slope of the curve is smooth till the last extrapolated data point which is essential in the iterative solution of the MVP (refer to Section 2.2 for details). The data points of the $2 B-H$ curves are provided in Tables 2.8 and 2.9 and illustrated in Fig. 2.18.

The torque waveforms corresponding to these $B-H$ curves were obtained from the in-house FE code and $A N S Y S$ Maxwell 2D separately. They can be observed in Figs. 2.19, 2.20, 2.21, 2.22 and 2.23. We also compute the difference of QoIs corresponding to these $B-H$ curves using the 2 solvers. Fig. 2.24 shows the difference between the average torque computed from the in-house FE code and ANSYS Maxwell $2 D$. The scatter plots reveal that the difference of average torque obtained from the 2 solvers is approximately the same. Small discrepancies can be observed in the values


Fig. 2.10.: Difference in the average torque from $A N S Y S$ Maxwell 2D and in-house FE code in $I_{q}-I_{d}$ plane
reported in Table 2.10. These discrepancies are acceptable considering the reasoning (pertaining to the basis functions of MVP and the mesh of the solvers) provided earlier in this section. A similar phenomena is observed for the difference between the sixth and twelfth harmonic components of the torque waveforms at the nominal and perturbed $B$ - $H$ curves as illustrated in Figs. 2.25 and 2.26 and their corresponding reported values in Table 2.11 and 2.12. In conclusion, it can be said that the in-house FE code is validated against results from ANSYS Maxwell 2D.

Table 2.5.: Difference in the average torque obtained using ANSYS Maxwell 2D and in-house FE code

| Operating point | Difference (Nm) |
| :---: | :---: |
| 1 | 0.1228 |
| 2 | 0.1252 |
| 3 | 0.1229 |
| 4 | 0.1121 |
| 5 | 0.0928 |
| 6 | -0.3852 |
| 7 | -0.4144 |
| 8 | -0.0897 |
| 9 | 0.4714 |
| 10 | 0.2892 |
| 11 | -0.9699 |
| 12 | -0.9562 |
| 13 | -0.5879 |
| 14 | 0.4608 |
| 15 | 0.5422 |
| 16 | -1.1677 |
| 17 | -0.9722 |
| 18 | -0.7306 |
| 19 | -0.0239 |
| 20 | 0.5434 |
| 21 | -1.2680 |
| 22 | -0.8810 |
| 23 | -0.6385 |
| 24 | -0.5887 |
| 25 | 0.5807 |



Fig. 2.11.: Difference in sixth harmonic component of torque from ANSYS Maxwell $2 D$ and in-house FE code in $I_{q}-I_{d}$ plane


Fig. 2.12.: Difference in twelfth harmonic component of torque ANSYS Maxwell 2D and in-house FE code in $I_{q}-I_{d}$ plane

Table 2.6.: Difference in the sixth harmonic component of torque obtained using ANSYS Maxwell 2D and in-house FE code

| Operating point | Difference (Nm) |
| :---: | :---: |
| 1 | -0.0151 |
| 2 | -0.0144 |
| 3 | -0.0127 |
| 4 | -0.0111 |
| 5 | -0.0079 |
| 6 | -0.1805 |
| 7 | -0.1266 |
| 8 | -0.0684 |
| 9 | 0.0062 |
| 10 | -0.0131 |
| 11 | -0.0008 |
| 12 | 0.0689 |
| 13 | -0.0939 |
| 14 | -0.0552 |
| 15 | 0.0339 |
| 16 | 0.2344 |
| 17 | 0.3751 |
| 18 | 0.2492 |
| 19 | 0.0197 |
| 20 | 0.0590 |
| 21 | 0.2755 |
| 22 | 0.3893 |
| 23 | 0.3179 |
| 24 | 0.2112 |
| 25 | 0.0641 |



Fig. 2.13.: Torque waveforms corresponding to operating point (a) 1, (b) 2, (c) 3, (d) $4,(\mathrm{e}) 5,(\mathrm{f}) 6$


Fig. 2.14.: Torque waveforms corresponding to operating points (a) 7, (b) 8, (c) 9, (d) $10,(\mathrm{e}) 11,(\mathrm{f}) 12$


Fig. 2.15.: Torque waveforms corresponding to operating points(a) 13, (b) 14, (c) 15 , (d) 16, (e) 17 , (f) 18


Fig. 2.16.: Torque waveforms corresponding to operating points (a) 19, (b) 20 (c) 21 , (d) 22 , (e) 23 , (f) 24


Fig. 2.17.: Torque waveform corresponding to operating point 25

## Validation of sensitivity to change in $\boldsymbol{B}-\boldsymbol{H}$ curve



Fig. 2.18.: $B-H$ curves for comparing the sensitivities of in-house FE code and ANSYS Maxwell 2D

Table 2.9.: B-H data points of the perturbed curve

| $H(\mathrm{~A} / \mathrm{m})$ |  | $B(\mathrm{~T})$ |  |
| :---: | :---: | :---: | :---: |
| 9.0178 | 3910.5781 | 0.0416 | 1.6364 |
| 11.0409 | 4787.9063 | 0.0587 | 1.6792 |
| 13.5179 | 5862.0608 | 0.0961 | 1.7227 |
| 16.5506 | 7177.1992 | 0.1637 | 1.7707 |
| 20.2637 | 8787.3855 | 0.2638 | 1.8176 |
| 24.8098 | 10758.8130 | 0.3751 | 1.8617 |
| 30.3759 | 13172.5252 | 0.4868 | 1.9031 |
| 37.1906 | 16127.7475 | 0.5988 | 1.9371 |
| 45.5342 | 19745.9665 | 0.7106 | 1.9655 |
| 55.7497 | 24175.9236 | 0.8133 | 1.9852 |
| 68.2570 | 29599.7302 | 0.9082 | 2.0025 |
| 83.5703 | 36240.3540 | 0.9944 | 2.0233 |
| 102.3191 | 44370.7848 | 1.0706 | 2.0449 |
| 125.2741 | 54325.2570 | 1.1329 | 2.0700 |
| 153.3791 | 66512.9895 | 1.1873 | 2.0989 |
| 187.7893 | 81435.0087 | 1.2312 | 2.1245 |
| 229.9193 | 99704.7448 | 1.2710 | 2.1486 |
| 281.5011 | 122073.2494 | 1.3084 | 2.1737 |
| 344.6552 | 149460.0708 | 1.3411 | 2.2024 |
| 421.9777 | 180000 | 1.3695 | 2.2399 |
| 516.6473 |  | 1.3929 |  |
| 632.5558 |  | 1.4136 |  |
| 774.4681 |  | 1.4332 |  |
| 948.2180 |  | 1.4521 |  |
| 1160.9483 |  | 1.4704 |  |
| 1421.4041 |  | 1.4892 |  |
| 1740.2925 |  | 1.5111 |  |
| 2130.7227 |  | 1.5358 |  |
| 2608.7449 |  | 1.5628 |  |
| 3194.0101 |  | 1.5966 |  |



Fig. 2.19.: Torque waveforms corresponding to operating point (a) 1, (b) 2, (c) 3,
(d) $4,(\mathrm{e}) 5,(\mathrm{f}) 6$


Fig. 2.20.: Torque waveforms corresponding to operating points (a) 7, (b) 8, (c) 9, (d) 10 , (e) 11 , (f) 12


Fig. 2.21.: Torque waveforms corresponding to operating points(a) 13, (b) 14, (c) 15 , (d) 16 , (e) 17 , (f) 18


Fig. 2.22.: Torque waveforms corresponding to operating points (a) 19, (b) 20 (c) 21 , (d) 22 , (e) 23 , (f) 24


Fig. 2.23.: Torque waveform corresponding to operating point 25


Fig. 2.24.: Difference in the average torque from the in-house FE code and ANSYS Maxwell 2D for the nominal and perturbed $B-H$ curves


Fig. 2.25.: Difference in the sixth harmonic component of torque from the in-house FE code and $A N S Y S$ Maxwell $2 D$ for nominal and perturbed $B$ - $H$ curves


Fig. 2.26.: Difference in the twelfth harmonic component of torque from the in-house FE code and ANSYS Maxwell 2D for nominal and perturbed $B$ - $H$ curves

Table 2.7.: Difference in the twelfth harmonic component of torque obtained using ANSYS Maxwell 2D and in-house FE code

| Operating point | Difference (Nm) |
| :---: | :---: |
| 1 | -0.0228 |
| 2 | 0.0030 |
| 3 | 0.0194 |
| 4 | 0.0294 |
| 5 | 0.0306 |
| 6 | -0.2868 |
| 7 | -0.1326 |
| 8 | 0.0463 |
| 9 | 0.1284 |
| 10 | 0.1572 |
| 11 | -0.3355 |
| 12 | -0.1877 |
| 13 | 0.0088 |
| 14 | 0.2197 |
| 15 | 0.3069 |
| 16 | -0.3142 |
| 17 | -0.2274 |
| 18 | -0.0071 |
| 19 | 0.2958 |
| 20 | 0.3855 |
| 21 | -0.2592 |
| 22 | -0.2002 |
| 23 | 0.0448 |
| 24 | 0.3240 |
| 25 | 0.3343 |

Table 2.8.: B-H data points of the nominal curve

| $H(\mathrm{~A} / \mathrm{m})$ |  | $B(\mathrm{~T})$ |  |
| :---: | :---: | :---: | :---: |
| 26.2817 | 7455.7184 | 0.0889 | 1.6266 |
| 31.7260 | 9000.1696 | 0.1475 | 1.6658 |
| 38.2980 | 10864.5537 | 0.2327 | 1.7063 |
| 46.2314 | 13115.1448 | 0.3375 | 1.7487 |
| 55.8082 | 15831.9456 | 0.4409 | 1.7939 |
| 67.3689 | 19111.5313 | 0.5438 | 1.8358 |
| 81.3244 | 23070.4828 | 0.6471 | 1.8765 |
| 98.1707 | 27849.5307 | 0.7507 | 1.9131 |
| 118.5068 | 33618.5579 | 0.8424 | 1.9434 |
| 143.0554 | 40582.6384 | 0.9294 | 1.9687 |
| 172.6893 | 48989.3273 | 1.0073 | 1.9866 |
| 208.4619 | 59137.4609 | 1.0770 | 2.0024 |
| 251.6448 | 71387.7793 | 1.1341 | 2.0212 |
| 303.7730 | 86175.7497 | 1.1849 | 2.0417 |
| 366.6995 | 104027.0465 | 1.2265 | 2.0642 |
| 442.6613 | 125576.2374 | 1.2634 | 2.0914 |
| 534.3585 | 151589.3408 | 1.2992 | 2.1242 |
| 645.0508 | 180000 | 1.3309 | 2.1638 |
| 778.6730 |  | 1.3588 |  |
| 939.9750 |  | 1.3824 |  |
| 1134.6908 |  | 1.4026 |  |
| 1369.7418 |  | 1.4215 |  |
| 1653.4837 |  | 1.4393 |  |
| 1996.0026 |  | 1.4568 |  |
| 2409.4743 |  | 1.4738 |  |
| 2908.5967 |  | 1.4916 |  |
| 3511.1122 |  | 1.5121 |  |
| 4238.4386 |  | 1.5351 |  |
| 5116.4307 |  | 1.5600 |  |
| 6176.2988 |  | 1.5904 |  |

Table 2.10.: Difference in the average torque from in-house FE code and ANSYS Maxwell 2D for the nominal and perturbed $B-H$ curves

| Operating point | Difference (Nm) <br> (In-house code) | Difference (Nm) (Ansys) |
| :---: | :---: | :---: |
| 1 | -0.1095 | -0.1069 |
| 2 | -0.0858 | -0.0842 |
| 3 | -0.0559 | -0.0539 |
| 4 | -0.0279 | -0.0256 |
| 5 | -0.0087 | -0.0060 |
| 6 | 0.8089 | 0.6579 |
| 7 | 2.3365 | 2.0966 |
| 8 | 2.4744 | 2.2281 |
| 9 | 1.8028 | 1.6992 |
| 10 | 0.8332 | 0.8083 |
| 11 | 2.9282 | 2.4309 |
| 12 | 7.2609 | 6.6760 |
| 13 | 9.5509 | 9.2058 |
| 14 | 7.7270 | 7.5216 |
| 15 | 3.7278 | 3.6306 |
| 16 | 2.2545 | 1.7449 |
| 17 | 8.3806 | 7.7624 |
| 18 | 14.5674 | 14.0029 |
| 19 | 15.3174 | 14.9812 |
| 20 | 8.1948 | 7.9872 |
| 21 | 1.7610 | 1.2760 |
| 22 | 8.2175 | 7.7189 |
| 23 | 16.5483 | 16.1229 |
| 24 | 22.3896 | 22.1657 |
| 25 | 13.3731 | 13.1337 |

Table 2.11.: Difference in the sixth harmonic component of torque from in-house FE code and ANSYS Maxwell 2D for the nominal and perturbed $B-H$ curves

| Operating point | Difference (Nm) <br> (In-house code) | Difference (Nm) (Ansys) |
| :---: | :---: | :---: |
| 1 | -0.0005 | 0.0007 |
| 2 | 0.0006 | 0.0005 |
| 3 | 0.0024 | 0.0023 |
| 4 | 0.0043 | 0.0045 |
| 5 | 0.0059 | 0.0060 |
| 6 | 0.1464 | 0.1552 |
| 7 | 0.1431 | 0.1491 |
| 8 | 0.0779 | 0.0789 |
| 9 | 0.0169 | 0.0165 |
| 10 | 0.0316 | 0.0323 |
| 11 | -0.2990 | -0.2767 |
| 12 | -0.1675 | -0.1607 |
| 13 | 0.1988 | 0.1889 |
| 14 | 0.2692 | 0.2673 |
| 15 | 0.1757 | 0.1936 |
| 16 | -0.6822 | -0.6630 |
| 17 | -0.7834 | -0.7757 |
| 18 | -0.7195 | -0.6943 |
| 19 | 0.1960 | 0.1961 |
| 20 | 0.4989 | 0.5030 |
| 21 | -0.0622 | -0.0776 |
| 22 | 0.1659 | 0.1723 |
| 23 | -0.0595 | -0.1294 |
| 24 | -0.4862 | -0.4911 |
| 25 | 0.6123 | 0.6110 |

Table 2.12.: Difference in the twelfth harmonic component of torque from in-house FE code and $A N S Y S$ Maxwell 2D for the nominal and perturbed $B-H$ curves

| Operating point | Difference (Nm) <br> (In-house code) | Difference (Nm) (Ansys) |
| :---: | :---: | :---: |
| 1 | 0.0048 | -0.0036 |
| 2 | 0.0097 | 0.0105 |
| 3 | 0.0145 | 0.0155 |
| 4 | 0.0151 | 0.0162 |
| 5 | 0.0090 | 0.0100 |
| 6 | 0.3737 | 0.4358 |
| 7 | 0.3255 | 0.3849 |
| 8 | 0.3412 | 0.3846 |
| 9 | 0.3181 | 0.3276 |
| 10 | 0.1490 | 0.1318 |
| 11 | -0.1659 | -0.0465 |
| 12 | -0.3839 | -0.2938 |
| 13 | -0.5679 | -0.5365 |
| 14 | -0.3651 | -0.3881 |
| 15 | -0.2571 | -0.2356 |
| 16 | -0.1804 | 0.0219 |
| 17 | -0.9327 | -0.8285 |
| 18 | -0.8139 | -0.7731 |
| 19 | -1.0324 | -1.0695 |
| 20 | -0.7989 | -0.8047 |
| 21 | -0.6880 | -0.5728 |
| 22 | -2.1165 | -2.1379 |
| 23 | -0.7811 | -0.7772 |
| 24 | -1.1333 | -1.1792 |
| 25 | -1.1529 | -1.1670 |

## 3. DIMENSIONALITY REDUCTION

In the first section of this chapter, various dimensionality reduction techniques are reviewed. Thereafter, in Section 3.2, the methodology to reduce the dimensionality of a dataset using principal component analysis is provided. This section illustrates the procedure to project a dataset into a low-dimensional space and its reconstruction into the original high-dimensional space.

### 3.1 A brief review

Data analysis of a high dimensional dataset has been a difficult problem in the field of statistics and machine learning as it is difficult to visualize and extract variables of interest in a high-dimensional space. Additionally, predictive modeling in a highdimensional space is computationally expensive and is encountered by the problem of curse of dimensionality. Thus, it is desirable to reduce the dimensionality of the dataset before performing analysis or constructing a predictive model.

Dimensionality reduction can be achieved in two different ways. One of the ways is retaining the most important variables of the dataset and ignoring the rest. The short-coming of this method is that there is no universal technique to distinguish the important variables from the unimportant ones. Additionally, depending on the quantity of interest, the important variables change. The second way is to identify and project the data set into the underlying low-dimensional space by exploiting the correlation between the elements of the high-dimensional dataset. The later technique referred to as the projection technique maintains the original structure of the data set removing the existing redundancy. Thus, it is a popular technique for dimensionality reduction. However, it must be noted that this technique fails to achieve its objective when the correlation between the elements of the high-dimensional dataset is minimal.

Consider a data set, $\mathbf{D}$ with dimensionality $M$. Projection techniques project $\mathbf{D}$ to a $M^{\prime}\left(M \gg M^{\prime}\right)$ dimensional space while retaining the geometry of the original dataset to the possible extent. Traditional linear projection techniques like Principal component analysis (PCA) and factor analysis are used to project the dataset into a low-dimensional sub-space using linear a projection matrix. In both the methods, the variables in the low-dimensional space are a linear combination of the highdimensional variables. PCA is the more elegant technique of the two because it is simple to implement.

In the recent decade, a number of non-linear dimensionality reduction techniques have been developed to tackle non-linear datasets with high dimension. [38] performs a comparative study of the newly developed non-linear dimensionality reduction techniques and traditional PCA. It shows that although non-linear techniques have shown promise in identifying complex manifolds in artificial non-linear datasets, they have failed to show appreciable performance while dealing with real world datasets. At the same time, PCA has been successful in dealing with real world datasets for a long time now. Considering the success of PCA and the simplicity in its implementation, PCA has been used for dimensionality reduction in this study.

### 3.2 Dimensionality reduction using principal component analysis

Principal component analysis (PCA) is a method of projection of a dataset comprising of a large number of correlated elements into a lower dimensional space, resulting in uncorrelated elements such that the variance of the projected data is maximized. Any observation of any variable in a dataset is referred to as an element of the dataset.

In the low-dimensional space, the variables are called Principal components (PCs) and the elements are called PC scores. PCA follows the mapping of the elements in the high dimensional space to the PC scores using a linear transformation matrix, $\boldsymbol{\phi}$. $\phi$ is such that its rows are orthogonal to each other [39] which facilitates the removal
of correlation between the PCs in the low-dimensional space. Also, the variance in the low-dimensional space is distributed in such a way that it is concentrated mostly in first few PCs [39]. Hence, keeping these few PCs and ignoring the rest, it is possible to reconstruct the original data set with appreciable accuracy. This phenomena is called dimensionality reduction and has been used extensively in this study. A brief discussion on the methodology of projection and reconstruction using PCA is provided below.

Consider a data set $\mathbf{D} \in \mathbb{R}^{V X N}$ with $V$ variables and $N$ observations. Let the centered matrix, $\mathbf{C}$, be obtained by after subtracting the mean of each row of $\mathbf{D}$ from the element of its corresponding row. The row-wise mean of $\mathbf{D}$ is given by $\boldsymbol{\mu}$.

### 3.2.1 Projection

The idea behind PCA is to project the variables of high-dimensional space on such basis vectors such that the variance of the projected variables is maximized. Let $\phi_{1}$ be such a row vector that projects $\mathbf{C}$ into a space such that the variance of $\phi_{1} \mathbf{C}$ is maximized, where $\boldsymbol{\phi}_{1} \mathbf{C}$ represents the projected variable or PC . The variance of $\boldsymbol{\phi}_{1} \mathbf{C}$ is given by,

$$
\begin{align*}
\operatorname{var}\left(\boldsymbol{\phi}_{1} \mathbf{C}\right) & =\mathbb{E}\left[\boldsymbol{\phi}_{1} \mathbf{C C}^{T} \boldsymbol{\phi}_{1}^{T}\right] \\
& =\boldsymbol{\phi}_{1} \mathbb{E}\left[\mathbf{C C}^{T}\right] \boldsymbol{\phi}_{1}^{T}  \tag{3.1}\\
& =\boldsymbol{\phi}_{1} \mathbf{Q} \boldsymbol{\phi}_{1}^{T}
\end{align*}
$$

where $\mathbf{Q}$ is the covariance of $\mathbf{C}$. The maximization of Eq. (3.4) needs to be done to obtain $\phi_{1}$. However, the maximization would not be finite for unconstrained $\phi_{1}$. Thus, a normalization constraint must be used to overcome this issue. By the geometric definition of PCA, $\boldsymbol{\phi}_{1}$ corresponds to a basis axis in low-dimensional space. Therefore, it is assumed that $\phi_{1}$ is a unit vector, as a result, satisfying the constraint $\phi_{1} \phi_{1}^{T}=1$. It should be noted that this normalization constraint is applied by the definition of PCA. Other kind of constraint leads to more difficult optimization problem and the resultant projected variables are not PCs.

To maximize $\boldsymbol{\phi}_{1} \mathbf{Q} \boldsymbol{\phi}_{1}^{T}$ subjected to $\boldsymbol{\phi}_{1} \boldsymbol{\phi}_{1}^{T}=1$, we use a Lagrange multiplier technique to formulate the objective function. The equation to be maximized is given by

$$
\begin{equation*}
\boldsymbol{\phi}_{1} \mathbf{Q} \boldsymbol{\phi}_{1}^{T}-\lambda_{1}\left(\boldsymbol{\phi}_{1} \boldsymbol{\phi}_{1}^{T}-1\right) \tag{3.2}
\end{equation*}
$$

where $\lambda_{1}$ is the Lagrange multiplier. Differentiating Eq. (3.2) with respect to $\boldsymbol{\phi}_{1}$, we get

$$
\begin{equation*}
\mathbf{Q} \boldsymbol{\phi}_{1}^{T}=\lambda_{1} \boldsymbol{\phi}_{1}^{T} \tag{3.3}
\end{equation*}
$$

Eq. (3.3) represents an eigen value problem where $\lambda_{1}$ is the eigen value of $\mathbf{Q}$ and $\boldsymbol{\phi}_{1}^{T}$ is its corresponding eigen vector. From Eqs. (3.1) and (3.3), we get

$$
\begin{equation*}
\operatorname{var}\left(\boldsymbol{\phi}_{1} \mathbf{C}\right)=\boldsymbol{\phi}_{1} \mathbf{Q} \boldsymbol{\phi}_{1}^{T}=\lambda_{1} \tag{3.4}
\end{equation*}
$$

$\lambda_{1}$ has to be the largest eigen value of $\mathbf{Q}$ to maximize Eq. (3.4). Since, $\mathbf{Q}$, the covariance matrix, is positive semi-definite or positive-definite, $\lambda_{1}$ is unique. Similarly, the second basis vector $\phi_{2}$ is obtained by constrained maximization of $\phi_{2} \mathrm{Q} \boldsymbol{\phi}_{2}^{T}$ by enforcing an additional constraint of orthogonality between the two basis vectors. This constraint is given by

$$
\begin{equation*}
\phi_{2} \phi_{1}^{T}=0 . \tag{3.5}
\end{equation*}
$$

The equation to be maximized is formulated as

$$
\begin{equation*}
\boldsymbol{\phi}_{2} \mathbf{Q} \boldsymbol{\phi}_{2}^{T}-\lambda_{2}\left(\boldsymbol{\phi}_{2} \boldsymbol{\phi}_{2}^{T}-1\right)-\sigma \boldsymbol{\phi}_{2} \boldsymbol{\phi}_{1}^{T} . \tag{3.6}
\end{equation*}
$$

Differentiating Eq. (3.6) with respect to $\boldsymbol{\phi}_{2}$, we get

$$
\begin{equation*}
\mathbf{Q} \boldsymbol{\phi}_{2}^{T}-\lambda_{2} \boldsymbol{\phi}_{2}^{T}-\sigma \boldsymbol{\phi}_{1}^{T}=0 \tag{3.7}
\end{equation*}
$$

Premultiplying Eq. (3.7) with $\boldsymbol{\phi}_{1}$, we obtain

$$
\begin{equation*}
\boldsymbol{\phi}_{1} \mathbf{Q} \boldsymbol{\phi}_{2}^{T}-\boldsymbol{\phi}_{1} \lambda_{2} \boldsymbol{\phi}_{2}^{T}-\boldsymbol{\phi}_{1} \sigma \boldsymbol{\phi}_{1}^{T}=0 . \tag{3.8}
\end{equation*}
$$

Since the first and second terms on the left hand-side are zero, using Eq. (3.5), we get

$$
\begin{equation*}
\sigma=0 \tag{3.9}
\end{equation*}
$$

Substituting Eq. (3.9) in Eq. (3.8) a similar eigen value problem is reached which is given by

$$
\begin{equation*}
\mathbf{Q} \boldsymbol{\phi}_{2}^{T}=\lambda_{2} \boldsymbol{\phi}_{2}^{T} . \tag{3.10}
\end{equation*}
$$

Here $\lambda_{2}$ corresponds to the second largest eigen value of $\mathbf{Q}$. By induction, it can be shown that the the variance of following PCs and their respective PC bases correspond to the remaining eigen values and their corresponding eigen vectors. Thus, the linear transformation matrix $\phi$ corresponds to the transpose of the matrix containing the eigen vectors of $\mathbf{Q}$.

Considering there exists an intrinsic low-dimensional space, most of the variance of the original dataset is concentrated on the first few PCs. Thus, the dimensionality can be reduced by keeping these few PCs which capture the amount of variance that meets an intended criteria, for instance to retain $98 \%$ of variance of the total data. In general, more is the retained variance through the PCs, less is the projection error [39].

### 3.2.2 Reconstruction

Let the retained PC bases be $\phi^{\prime} \in \mathbb{R}^{V^{\prime} X V}$ with the corresponding PC scores, $\mathbf{Z}^{\prime}$ $\in \mathbb{R}^{V^{\prime} X N}$. The reconstruction of each column of the reduced order matrix, $\mathbf{D}^{\prime}$, in the high dimensional space is given by

$$
\begin{equation*}
\mathbf{D}^{\prime(i)}=\boldsymbol{\mu}+\sum_{k=1}^{V^{\prime}} \sqrt{\lambda_{k}} z_{k}^{(i)} \boldsymbol{\phi}_{k} . \tag{3.11}
\end{equation*}
$$

where $z_{k}^{(i)}$ is the scaled projection of $\mathbf{D}^{(i)}-\boldsymbol{\mu}$ on the eigen vector $\boldsymbol{\phi}_{k}$.
Dimensionality reduction is a crucial part of this study. We have implemented PCA's capacity of dimensionality reduction in two different applications. Firstly, to construct a reduced order stochastic model of $B-H$ curves. Here, the reduced variables in the low-dimensional space are used as random variables to sample points which are subsequently used to obtain $B-H$ curves in the high-dimensional space. Secondly, PCA is used to reduce the output dimensionality of the torque profile so that few
variables have to be learned by the surrogate. Furthermore, by just predicting these few variables, torque can be predicted by the surrogate with appreciable accuracy.

## 4. MODELING OF UNCERTAINTY IN $B$ - $H$ CURVES AND REMANENT FLUX DENSITY OF PERMANENT MAGNETS

The first section of this chapter describes in detail the methodology used to build a reduced-order stochastic model of a dataset of $B-H$ curves that quantifies its uncertainty due to punching. Principal component analysis (PCA) is used to accomplish this objective. In the subsequent section, a modeling technique is proposed to incorporate the uncertainty in $B-H$ curves due to the unknown state of the material composition of steel. In the third section, we model the epistemic uncertainty due to unavailability of accurate $B-H$ data in deep saturation region. The final section of this chapter discusses extended work where we model the uncertainty in the remanent flux density of the permanent magnets of the permanent magnet synchronous machine (PMSM).

### 4.1 Data-driven modeling of uncertainty due to punching in $\boldsymbol{B}-\boldsymbol{H}$ curves

In this section, we propose a data-driven approach to model the effect of punching uncertainty on $B-H$ curves. The data collection procedure plays a consequential role in ensuring the accuracy of the proposed model. For appreciable accuracy, each $B-H$ curve must reflect a unique state of the punching tool. The idea is to collect samples such that the distribution of the $B-H$ curves in the dataset reflects the distribution of the underlying uncertainty in the state of the punching tool. Thus, the curves must be obtained by measuring steel samples cut by such punching tools that represent unique states with respect to each other.

Consider a dataset of $N B$ - $H$ curve samples collected by employing the above procedure. Let the dataset be given by $\mathcal{D}=\left\{\left(\mathbf{b}^{(i)}, \mathbf{h}^{(i)}\right)\right\}_{i=1}^{N}$ where each curve consists
of $V$ data points. The $B$-values are fixed for all samples, i.e., $\mathbf{b}^{(i)}=\mathbf{b}$. Our goal is to construct a reduced-order stochastic model of the processes that generated the $B-H$ curves in $\mathcal{D}$.

We start by populating a $V \times N$ matrix $\mathbf{H}=\left(\mathbf{h}^{(1)}, \ldots, \mathbf{h}^{(N)}\right)$ using these samples. The columns of $\mathbf{H}$ are correlated, so we expect $\mathbf{H}$ to be well-described by a lowdimensional manifold embedded in a $V$-dimensional space [40]. Principal component analysis (PCA) finds the best, in the sense of minimizing the squared reconstruction error, affine linear approximation of this low-dimensional manifold [41].

PCA is based on decomposition of the symmetric, positive-definite covariance matrix given by

$$
\begin{equation*}
\mathbf{C}_{h}=\frac{1}{N-1} \sum_{i=1}^{N}\left(\mathbf{h}^{(i)}-\boldsymbol{\mu}_{h}\right)\left(\mathbf{h}^{(i)}-\boldsymbol{\mu}_{h}\right)^{T}, \tag{4.1}
\end{equation*}
$$

where $\boldsymbol{\mu}_{h} \in \mathbb{R}^{V}$ is the row-wise mean of $\mathbf{H}$. Each sample $\mathbf{h}^{(i)}$ can be expressed as

$$
\begin{equation*}
\mathbf{h}^{(i)}=\boldsymbol{\mu}_{h}+\sum_{k=1}^{V} \sqrt{\lambda_{h, k}} z_{h, k}^{(i)} \boldsymbol{\phi}_{h, k}, \tag{4.2}
\end{equation*}
$$

where $\lambda_{h, k}$ is the $k$-th largest eigenvalue of $\mathbf{C}_{h}$, and $\boldsymbol{\phi}_{h, k}$, the corresponding eigenvector. The scalar $z_{h, k}^{(i)}$ is known as the $i$-th principal component (PC) score of the $k$-th PC, $\mathbf{z}_{h, k}=\left(z_{h, k}^{(1)}, \ldots, z_{h, k}^{(N)}\right)$. The eigenvalue, $\lambda_{h, k}$, also represents the amount of variance of the original dataset captured by the $k$-th PC. Dimensionality reduction is achieved by keeping the first few PCs that capture sufficient variance and ignoring the rest [41]. These few PCs form the foundation of our reduced order stochastic model.

We demonstrate our methodology using a synthetic dataset. As shown in [10], the $B-H$ curve is most affected near the "knee-point" due to punching, extent of which depends on the state of punching tool. Sharp, high-speed punch with low cutting clearance causes the least degradation of the $B-H$ curve where as a blunt, low-speed punch with high-clearance causes the most degradation. Thus, we design a function that incorporates such degradation. We call it the degradation function. The synthetic dataset of degraded curves is generated by perturbing the $H$-values
of a nominal $B$ - $H$ curve, $\left\{\mathbf{h}_{n}, \mathbf{b}_{n}\right\}$ using the degradation function. This function is inspired by the probability density function of a log-normal distribution and is given by,

$$
\begin{equation*}
d\left(h_{\mathrm{dg}}, B\right)=\frac{h_{\mathrm{dg}}}{\left(B_{\max }-B+\epsilon_{m}\right) \rho_{\mathrm{dg}} \sqrt{2 \pi}} \exp \left(-\frac{\left(\ln \left(B_{\max }-B+\epsilon_{m}\right)-\mu_{\mathrm{dg}}\right)^{2}}{2 \rho_{\mathrm{dg}}^{2}}\right)+\epsilon_{B} \tag{4.3}
\end{equation*}
$$

where $\epsilon_{B}=0.04, \epsilon_{m}=1 e-7, \rho_{\mathrm{dg}}=0.8, \mu_{\mathrm{dg}}=0 . B_{\max }$ corresponds to the maximum $B$-value in the dataset of the nominal $B$ - $H$ curve. $h_{\mathrm{dg}}$ is a sample from $\mathbf{H}_{\mathrm{dg}}$, where $\mathbf{H}_{\mathrm{dg}}$ is given by

$$
\begin{equation*}
\mathbf{H}_{\mathrm{dg}} \sim \mathcal{U}(0.3,3) \tag{4.4}
\end{equation*}
$$

The degradation function can be visualized in Fig. 4.1 for $h_{\mathrm{dg}}=1$. To confer with the used practice of $B$ - $H$ curve plotting, the $y$-axis corresponds to the independent variable, $B$, in this case. The constants in the functions are manually calibrated for the data available to the author. However, the behavior of the function itself is independent of the dataset. Thus, depending on the availability of the data to any other user, the function can be calibrated to obtain the synthetic dataset.

The procedure to generate a degraded curve is as follows. First, we obtain a sample from $\mathbf{H}_{\mathrm{dg}}$ (Eq. (4.4)), $h_{\mathrm{dg}}$. Second, at $\mathbf{b}_{n}$, we substitute $h_{\mathrm{dg}}$ in Eq. (4.3) to obtain a vector, $\mathbf{d}\left(h_{\mathrm{dg}}, \mathbf{b}_{n}\right)$. Third, the degraded curve, $\mathbf{h}_{g}$, is obtained by plugging $\mathbf{d}\left(h_{\mathrm{dg}}, \mathbf{b}_{n}\right)$ in the formula,

$$
\begin{equation*}
\mathbf{h}_{g}=\mathbf{h}_{n}+\mathbf{d}\left(h_{\mathrm{dg}}, \mathbf{b}_{n}\right) \dot{\mathbf{h}_{n}} . \tag{4.5}
\end{equation*}
$$

In this study we use the nominal $B-H$ curve corresponding to $36 F 155$ (M-19) where the number of data points, $V=41$. By sampling $N=50$ values from $\mathbf{H}_{\mathrm{dg}}$ and following the procedure stated earlier, we obtain 50 synthetic curves as shown in Fig. 4.2. Depending on the uncertain state of the punching tool, the $B-H$ curves in Fig. 4.2 exhibit different characteristics. The values corresponding to these $B-H$ curves can be found in the Appendix A.

We assemble the $H$-values corresponding to these 50 samples to form $\mathbf{H} \in \mathbb{R}^{41 \times 50}$. Thereafter, we perform PCA of $\mathbf{H}$. The variance represented by the first three PCs


Fig. 4.1.: Illustration of the degradation function for $h_{\mathrm{dg}}=1$
can be observed in Fig. 4.3, and their corresponding eigenvectors can be observed in Fig. 4.4. In our case, the first PC, $\mathbf{z}_{h, 1}$, captures more than $99.9 \%$ of the variance from the original dataset (see Fig. 4.3). Thus, we retain the first PC and ignore the rest. In an experimental dataset, it is likely that two or more PCs may be necessary.

The PC scores, $z_{h, 1}^{(i)}$ 's, can be interpreted as samples from a distribution $\mathbf{Z}_{h}$. Thus, $B-H$ curves reflecting punching uncertainty can be reconstructed by drawing samples from $\mathbf{Z}_{h}$, and mapping them to the high-dimensional space. Here one must say, how can we sample from $\mathbf{Z}_{h}$ if the distribution of $\mathbf{Z}_{h}$ is unknown. We use kernel density estimation with Gaussian kernels to estimate the density of $\mathbf{Z}_{h}$ (see Fig. 4.5). Thus, our model for the $B-H$ curve for any sample, $z_{h}$ from $\mathbf{Z}_{h}$, is:

$$
\begin{equation*}
\mathbf{h}_{r}\left(z_{h}\right)=\boldsymbol{\mu}_{h}+\sqrt{\lambda_{h, 1}} z_{h} \boldsymbol{\phi}_{h, 1} . \tag{4.6}
\end{equation*}
$$



Fig. 4.2.: Synthetically generated $B-H$ curves.


Fig. 4.3.: Percentage of total variance captured by PCs for the reduced-order stochastic model.


Fig. 4.4.: Eigenvectors of the covariance matrix of $\mathbf{H}$.


Fig. 4.5.: Density estimation of 1 -st PC

Table 4.1.: Random variables defining uncertainty in the state of the punching tool of different degraded zones

| Variable | Degraded zone |
| :---: | :---: |
| $\mathbf{Z}_{\text {hst }}$ | Stator teeth and slots |
| $\mathbf{Z}_{\text {hso }}$ | Outer edge of the stator |
| $\mathbf{Z}_{\text {hro }}$ | Outer edge of the rotor |
| $\mathbf{Z}_{\text {hri }}$ | Inner edge of the rotor |
| $\mathbf{Z}_{\mathrm{hrm}}$ | Rotor magnet pockets |

We now come to the problem of defining the uncertain state of the 5 punching tools described in Section 2.2. The states of these tools are defined by five different variables listed in Table 4.1. Since we have established that $\mathbf{Z}_{h}$ represents the uncertain state of a punching tool, these variables follow the characteristic of $\mathbf{Z}_{h}$. Here, it is imperative to state that these variables are independent of each other. Thus, although the $B-H$ curve uncertainty reflected by their corresponding reconstructed samples would be similar, the individual samples would not be the same.

### 4.2 Modeling of uncertainty in $B-\boldsymbol{H}$ curves due to unknown material composition

The uncertainty in the $B-H$ curve characteristics of steel due to the unknown state of its material composition (material uncertainty) is reflected through a model in this section. This uncertainty is expected to be small since the material composition of a commercially manufactured non-oriented silicon steel is tightly regulated [3]. Our approach for modeling the material uncertainty is as follows. First, we obtain the data of the nominal $B-H$ curve, $\left\{\mathbf{h}_{n}, \mathbf{b}_{n}\right\}$, corresponding to the steel lamination which has not undergone the process of punching. The nominal data, in our study, corresponds to the $B$-H curve of $36 F 155$ (M-19). We model material uncertainty considering a
uniform distribution about the $B$-values of the nominal curve such that the maximum deviation about these $B$-values is defined as a function of $\mathbf{h}_{n}$, given by

$$
\begin{equation*}
\mathbf{b}_{\mathrm{dv}}=\frac{1}{\sqrt{\mathbf{h}_{n}}}+b_{o} \mathbf{i}_{n} \tag{4.7}
\end{equation*}
$$

where $b_{o}=0.01 \mathrm{~T}$ and $\mathbf{i}_{n} \in \mathbb{R}^{N \times 1}$ is a vector whose each element is equal to unity. The first term on the right hand side represents an element-wise operation. The offset $b_{o}$ is used to account for the fact that the uncertainty at high flux region is not negligible [3]. Second, we define a uniform random variable, $\mathbf{U}$, where $\mathbf{U}$ is given by

$$
\begin{equation*}
\mathbf{U} \sim \mathcal{U}(-1,1) \tag{4.8}
\end{equation*}
$$

Third, for any sample, $u$, drawn from $\mathbf{U}$, the $B$ - $H$ curve representing material uncertainty is given by

$$
\begin{equation*}
\mathbf{b}_{m}(u)=\mathbf{b}_{n}+u \mathbf{b}_{\mathrm{dv}} . \tag{4.9}
\end{equation*}
$$

As each curve obtained using Eq. (4.9) has equal probability of reflecting the actual $B-H$ characteristics of the material, uniform distribution can satisfactorily model the effect of material uncertainty in $B-H$ curves. Thus, our model reflects the unknown state of the material composition and its effect on the $B-H$ characteristics. Fig. 4.9 shows 20 curves reflecting material uncertainty.

### 4.3 Modeling of the epistemic uncertainty in the saturation value of magnetic flux density

In this section, we model the uncertainty associated with $B-H$ curves in deep saturation region. For the purpose of modeling, instead of working with $B-H$ curves we work with $M$ - $H$ curves, where $M$ is given by

$$
\begin{equation*}
M=B-\mu_{0} H \tag{4.10}
\end{equation*}
$$

The slope of the $M-H$ curves in deep saturation region is close to zero. This property is used later in this section.

We incorporate the uncertainty in saturation flux density on all the $B$ - $H$ curves reflecting punching and material uncertainty. To do so, for each $B-H$ curve, we obtain the corresponding $M-H$ curve using Eq. (4.10). We assume that the curve saturates at $H_{\text {sat }}=1 e 5 \mathrm{~A} / \mathrm{m}$ because the corresponding $M$-value, $M_{\text {sat }}$, for $36 F 155$ (M19) is within $1 \%$ of the actual value of saturation magnetization at $H_{\text {sat }}$ [42]. To account for the epistemic uncertainty in $M_{\text {sat }}$, we define a random variable, S , given by

$$
\begin{equation*}
\mathbf{S} \sim \mathcal{N}\left(\mu_{\mathrm{sat}}, \sigma_{\mathrm{sat}}^{2}\right), \tag{4.11}
\end{equation*}
$$

where we assume that $\mu_{\text {sat }}=2 \mathrm{~T}$ and $\sigma_{\text {sat }}=0.02 \mathrm{~T}$. The distribution can be observed in Fig. 4.6. Our methodology is independent of these assumptions. Thus, given the actual measurements are available, the proposed methodology can be applied without reservation. The use of normal distribution to model the uncertainty is based on our assumption that the value of $M_{\text {sat }}$ is likely to be near the mean value, $\mu_{\text {sat }}$.

We extrapolate each $M-H$ curve till saturation implementing the following procedure. First, we obtain a sample, $s$, from $\mathbf{S}$ for each $M-H$ curve. The sample, $s$, represents the value of $M_{\text {sat }}$ for the corresponding curve. Second, we append $\left\{H_{\text {sat }}, s\right\}$ to the existing values of $H$ and $M$ of the $M-H$ curve. Third, we interpolate the $H, M$ data points using a shape preserving piecewise cubic Hermite polynomial (PCHIP) function, given by $M(H)$, such that the slope at the last data point is zero. Fourth, we sample 50 discrete equally spaced values of $H, \mathbf{h}_{e}$, extending till $H_{\text {sat }}$. Fifth, at $\mathbf{h}_{e}$, we obtain the corresponding $M$ values, $M\left(\mathbf{h}_{e}\right)$ to obtain $M$ - $H$ data points till saturation. Finally, we transform the $M-H$ data points to obtain the $B-H$ curve till saturation using Eq. (4.10).

At the conclusion of this section, we can completely define the uncertainty in $B-H$ curves using 7 random variables, namely, $\mathbf{Z}_{\mathrm{hst}}, \mathbf{Z}_{\mathrm{hso}}, \mathbf{Z}_{\mathrm{hro}}, \mathbf{Z}_{\mathrm{hrm}}, \mathbf{Z}_{\mathrm{hri}}, \mathbf{U}$ and $\mathbf{S}$.


Fig. 4.6.: Illustration of epistemic uncertainty in saturation flux density

### 4.4 Modeling of uncertainty in remanent flux density of permanent magnets (Extended work)

The modeling of uncertainty in remanent flux density $\left(B_{r}\right)$ of the permanent magnets is an extended work of this thesis. The variability in $B_{r}$ can be local or global. The local variation corresponds to the condition where the variation of $B_{r}$ of one magnet of the PMSM is different from the other where as the global variation corresponds to the condition where the variation of $B_{r}$ of all the magnets is the same. In this study, we consider the global variation of $B_{r}$ and model it with a normal distribution such that the nominal value of $B_{r}$ is equal to the mean value of the distribution and its standard deviation is equal to $1 \%$ of the mean value [26]. Thus, the random variable reflecting uncertainty in $B_{r}$ is given by,

$$
\begin{equation*}
\mathbf{B}_{r} \sim \mathcal{N}\left(\mu_{\mathrm{Br}}, \sigma_{\mathrm{Br}}^{2}\right) \tag{4.12}
\end{equation*}
$$

where $\mu_{\mathrm{Br}}=1.23 \mathrm{~T}$, the nominal value of $B_{r}$ of the magnet used in 2004 model of Toyota Prius traction motor [43] and $\sigma_{\mathrm{Br}}=0.0123 \mathrm{~T}$.

## 5. CONSTRUCTION OF SURROGATE MODELS

This chapter provides the methodology used for constructing surrogate models using Gaussian process (GP) regression). Section 5.1 gives a concise description of the principles of GP regression. Subsequently, in Section 5.2, the methodology of constructing a surrogate model using GP regression that learns the principal components of the output torque from a permanent magnet synchronous machine (PMSM) spanning the entire operating range is given as well as a detailed procedure for validation of the proposed surrogate model that predicts the torque waveform is illustrated. The last section gives a detailed overview of the development of surrogate models for predicting average torque and average flux linkages of the PMSM which is part of the extended work.

### 5.1 Overview of Gaussian process regression

Gaussian process (GP) is a stochastic process defined as a collection of random variables any finite number of which has a multivariate normal distribution. It can be referred to as an extension of multivariate random Gaussian variables into infinite dimensions. Using Bayes rule, GP combines the prior knowledge about a model/system with the observations that results in an updated state of knowledge about the system known as the posterior GP. The posterior GP complies with the prior information and the observations simultaneously. This phenomena is used in regression to build an inexpensive surrogate model of a detailed expensive model.

Let us consider a data set, $\mathcal{D}=\{\mathbf{Y}, \mathbf{X}\}$, where $\mathbf{Y}$ is the output, potentially noisy, observation,

$$
\begin{equation*}
\mathbf{Y}=\left\{y^{(1)}, \ldots, y^{(N)}\right\} \tag{5.1}
\end{equation*}
$$

at inputs $\mathbf{X}$ given by

$$
\begin{equation*}
\mathbf{X}=\left\{\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(N)}\right\} \tag{5.2}
\end{equation*}
$$

A GP describes a probability measure on a space of functions. This measure encodes our prior beliefs regarding the output of a computationally expensive model whose surrogate is being built. Using Bayes rule, GP regression combines this prior beliefs with the input-output observations (evaluated using the expensive model) to obtain the posterior GP. The posterior GP is referred to as a Bayesian surrogate. For making point wise prediction on any input, the median of the posterior GP is used. One can also derive predictive error bars about the output that corresponds to the epistemic uncertainty (induced by the limited availability of the input-output observations) with the help of the variance predicted by the posterior GP. For learning a response surface and making prediction using GP, a three step procedure is followed:

1. Modeling the prior state of knowledge about the response surface.
2. A model describing the measurement process
3. A depiction of the posterior state of knowledge

### 5.1.1 Prior state of knowledge

The prior state of knowledge is modeled by taking into account the trends of the response of the computationally expensive numerical model whose surrogate is being constructed. The trends of the output observation such as continuity, differentiability, etc. correspond to the prior state of knowledge. Such prior state of knowledge about the function of interest, $f(\cdot)$, is described by assigning a GP prior. Formally, $f(\cdot)$ is said to be a GP with mean function $\mu(\cdot ; \boldsymbol{\theta})$ and covariance function $k(\cdot, \cdot ; \boldsymbol{\theta})$. Thus, $f(\cdot)$ is defined as

$$
\begin{equation*}
f(\cdot) \mid \boldsymbol{\theta} \sim \mathcal{G} \mathcal{P}(f(\cdot) \mid \mu(\cdot ; \boldsymbol{\theta}), k(\cdot ; \boldsymbol{\theta})), \tag{5.3}
\end{equation*}
$$

where $\boldsymbol{\theta}$ represents the hyper-parameters of the model. The mean and covariance functions along with their hyper-parameters reflect our prior knowledge and beliefs about the response. Thus, we also define a prior over the hyper-parameters given by

$$
\begin{equation*}
\boldsymbol{\theta} \sim p(\boldsymbol{\theta}) \tag{5.4}
\end{equation*}
$$

Without any prior knowledge about the behavior of the response/output, the mean function is assumed to be zero [30]. The covariance function, also called the covariance kernel, is the most crucial part of GP. It measures the similarity between two input points in the parameter space. Throughout the present study, the squared exponential (SE) kernel (with automatic relevance determination (ARD)) is used, which is given by

$$
\begin{equation*}
k_{k}\left(x, \mathbf{x}^{\prime}\right)=\sigma_{f, n}^{2} \exp \left(-\frac{1}{2}\left(\mathbf{x}-\mathbf{x}^{\prime}\right)^{T} \mathbf{L}^{-1}\left(\mathbf{x}-\mathbf{x}^{\prime}\right)\right) \tag{5.5}
\end{equation*}
$$

For any input set X, using Eq. (5.3), the prior is defined for the GP model on the output observations, $\mathbf{Y}$,

$$
\begin{equation*}
\mathbf{f}=\left\{f\left(\mathbf{x}^{(1)}\right), \ldots, f\left(\mathbf{x}^{(N)}\right)\right\} \tag{5.6}
\end{equation*}
$$

The prior distribution of $\mathbf{f}$ is given by

$$
\begin{equation*}
\mathbf{f} \mid \boldsymbol{\theta} \sim \mathcal{N}(\mathbf{f} \mid \boldsymbol{\mu}, \mathbf{K}), \tag{5.7}
\end{equation*}
$$

where $\mathcal{N}(\cdot \mid \boldsymbol{\mu}, \mathbf{K})$ is the PDF of a multivariate normal random variable with mean vector, $\boldsymbol{\mu}$ and covariance matrix $\mathbf{K} . \boldsymbol{\mu}$ is given by

$$
\boldsymbol{\mu}=\mu(\mathbf{X} ; \boldsymbol{\theta})=\left(\begin{array}{c}
\mu\left(\mathbf{x}^{(1)} ; \boldsymbol{\theta}\right)  \tag{5.8}\\
\vdots \\
\mu\left(\mathbf{x}^{(N)} ; \boldsymbol{\theta}\right)
\end{array}\right)
$$

and $\mathbf{K} \in \mathbb{R}^{N X N}$ is the covariance matrix given by

$$
\mathbf{K}(\mathbf{X}, \mathbf{X} ; \boldsymbol{\theta})=\left(\begin{array}{ccc}
k\left(\mathbf{x}^{(1)}, \mathbf{x}^{(1)} ; \boldsymbol{\theta}\right) & \ldots & k\left(\mathbf{x}^{(1)}, \mathbf{x}^{(N)} ; \boldsymbol{\theta}\right)  \tag{5.9}\\
\vdots & \ddots & \vdots \\
k\left(\mathbf{x}^{(N)}, \mathbf{x}^{(1)} ; \boldsymbol{\theta}\right) & \ldots & \left.k\left(\mathbf{x}^{(N)}, \mathbf{x}^{(N)} ; \boldsymbol{\theta}\right)\right)
\end{array}\right)
$$

### 5.1.2 Measurement process

The measurement process is required to quantify and model any measurement error associated with the observations, Y. The simplest way to model this measurement error is to consider identical independently distributed gaussian noise about each observation. For simplicity we assume that the gaussian noise has zero mean and variance of $\sigma^{2}$. That is given by

$$
\begin{equation*}
y^{(i)} \mid f\left(\mathbf{x}^{(i)}\right), \sigma \sim \mathcal{N}\left(y^{(i)} \mid f\left(\mathbf{x}^{(i)}\right), \sigma^{2}\right), \tag{5.10}
\end{equation*}
$$

where $\sigma$ is another hyper-parameter on which a prior is defined as

$$
\begin{equation*}
\sigma \sim p(\sigma) \tag{5.11}
\end{equation*}
$$

Assuming independence of the outputs, we can obtain the likelihood by applying the sum rule of probability and some standard integrals which is given by

$$
\begin{equation*}
\mathbf{Y} \mid \mathbf{X}, \boldsymbol{\theta}, \sigma \sim \mathcal{N}\left(\mathbf{Y} \mid \boldsymbol{\mu}, \mathbf{K}+\sigma^{2} \mathbf{I}_{N}\right) \tag{5.12}
\end{equation*}
$$

### 5.1.3 Posterior of the Gaussian Process

With the help of Bayes rule the prior state of knowledge (Eq. (5.3)) is combined with the likelihood of the observations (Eq. (5.12)), to give the posterior distribution/posterior GP,

$$
\begin{equation*}
\mathbf{f}(\cdot) \mid \mathbf{X}, \mathbf{f}(\mathbf{X}), \boldsymbol{\theta}, \sigma \sim \mathcal{G} \mathcal{P}(f(\cdot) \mid \tilde{\mu}(\cdot), \tilde{k}(\cdot, \cdot)) \tag{5.13}
\end{equation*}
$$

where $\tilde{\mu}(\cdot)$ is the posterior mean given by

$$
\begin{align*}
\tilde{\mu}\left(\mathbf{x}^{(*)}\right) & =\tilde{\mu}\left(\mathbf{x}^{(*)} ; \boldsymbol{\theta}\right)  \tag{5.14}\\
& =\mathbf{K}\left(\mathbf{x}^{(*)}, \mathbf{X}\right)\left(\mathbf{K}(\mathbf{X}, \mathbf{X})+\sigma^{2} \mathbf{I}_{T}\right)^{-1} \mathbf{f}(\mathbf{X}),
\end{align*}
$$

and the posterior covariance, $\tilde{k}\left(\mathbf{x}^{(*)}, \mathbf{x}^{(*)^{\prime}}\right)$, is given by

$$
\begin{align*}
& \tilde{k}\left(\mathbf{x}^{(*)}, \mathbf{x}^{(*)^{\prime}}\right)=\tilde{k}\left(\mathbf{x}^{(*)}, \mathbf{x}^{(*)^{\prime}} ; \boldsymbol{\theta}, \sigma\right) \\
& =\mathbf{K}\left(\mathbf{x}^{(*)}, \mathbf{x}^{(*)^{\prime}}\right)  \tag{5.15}\\
& -\mathbf{K}(\mathbf{X}, \mathbf{X})\left(\mathbf{K}\left(\mathbf{x}^{(*)}, \mathbf{X}\right)+\sigma^{2} \mathbf{I}_{T}\right)^{-1} \mathbf{K}\left(\mathbf{X}, \mathbf{x}^{(*)}\right)
\end{align*}
$$

For obtaining the distribution of the best hyper-parameters, the posterior distribution of the hyper-parameters is obtained by combining Eq. (5.4) and Eq. (5.11) with the likelihood. The posterior distribution of the hyper-parameters is given by

$$
\begin{equation*}
p(\boldsymbol{\theta}, \sigma \mid \mathbf{X}, \mathbf{Y}) \propto p(\mathbf{Y} \mid \mathbf{X}, \boldsymbol{\theta}, \sigma) p(\boldsymbol{\theta}) p(\sigma) \tag{5.16}
\end{equation*}
$$

### 5.1.4 Obtaining the hyper-parameters

In general, the analytic solution to Eq. (5.16) is intractable. Thus, ideally applying sampling techniques like Markov chain Monte Carlo (MCMC), the range of best fit hyper-parameters is obtained. However, this method is computationally intensive. Instead, we obtain a single best fit hyper-parameter that maximizes the likelihood of the observations. To avoid numerical issues, the logarithm of the likelihood (Eq. (5.12)) is used.

$$
\begin{align*}
\log (p(\mathbf{Y} \mid \mathbf{X}, \boldsymbol{\theta}, \sigma)) & =-\frac{1}{2}(\mathbf{Y}-\boldsymbol{\mu})^{T}\left(\mathbf{K}+\sigma^{2} \mathbf{I}_{N}\right)^{-1}(\mathbf{Y}-\boldsymbol{\mu}) \\
& -\frac{1}{2} \log \left|\mathbf{K}+\sigma^{2} \mathbf{I}_{N}\right|-\frac{N}{2} \log 2 \pi \tag{5.17}
\end{align*}
$$

Differentiating Eq. (5.17) partially w.r.t. any parameter $\phi$, where $\phi=\sigma$ or $\theta_{i}$, we get

$$
\begin{align*}
\frac{\partial}{\partial \phi}(\log (p(\mathbf{Y} \mid \mathbf{X}, \boldsymbol{\theta}, \sigma))) & =\frac{1}{2} \operatorname{tr}\left[\left\{\left(\mathbf{K}+\sigma^{2} \mathbf{I}_{N}\right)^{-1}(\mathbf{Y}-\boldsymbol{\mu})\right.\right. \\
& \left(\left(\mathbf{K}+\sigma^{2} \mathbf{I}_{N}\right)^{-1}(\mathbf{Y}-\boldsymbol{\mu})\right)^{T}  \tag{5.18}\\
& \left.-\left(\mathbf{K}+\sigma^{2} I_{N}\right)^{-1}\right\} \frac{\partial\left(\mathbf{K}+\sigma^{2} I_{N}\right)}{\partial \phi}
\end{align*}
$$

The point estimate of the hyper-parameters is called the maximum likelihood estimate (MLE). MLE is a simpler approach to obtain the best hyper-parameters with significant accuracy. Thus, we use MLE to estimate the hyper-parameters in this study. We solve Eq. (5.18) using the BFGS optimization algorithm.

### 5.2 Development of the surrogate model for predicting the torque waveform of PMSM



Fig. 5.1.: Diagram showing $I_{\mathrm{pk}}$ and $\phi_{c}$ in rotor reference frame

Table 5.1.: Distribution of input parameters

| Parameter | Type of <br> distribution | Range | Statistics |
| :---: | :---: | :---: | :---: |
| $\mathbf{I}_{\mathrm{pk}}(A)$ | Uniform | $[0,250]$ | Mean $=125$ |
| $\mathbf{\Phi}_{c}($ deg $)$ | Uniform | $[0,90]$ | Mean $=45$ |
| $\mathbf{Z}_{\text {hst }}$ | Uniform | $[-1.368,1.971]$ | Mean $=0.3015$ |
| $\mathbf{Z}_{\text {hso }}$ | Uniform | $[-1.368,1.971]$ | Mean $=0.3015$ |
| $\mathbf{Z}_{\text {hro }}$ | Uniform | $[-1.368,1.971]$ | Mean $=0.3015$ |
| $\mathbf{Z}_{\text {hri }}$ | Uniform | $[-1.368,1.971]$ | Mean $=0.3015$ |
| $\mathbf{Z}_{\text {hrm }}$ | Uniform | $[-1.368,1.971]$ | Mean $=0.3015$ |
| $\mathbf{U}$ | Uniform | $[-0.1,0.1]$ | Mean $=0$ |
| $\mathbf{S}$ | Gaussian | $[-\infty, \infty]$ | Mean $=2$, |

Given a nominal geometry of a PMSM, our goal is to study the effect of $B-H$ uncertainties on its torque profile in the entire operating range of the machine. To
this end, the FE simulator is parameterized by the operating points and the uncertain $B-H$ curves. Furthermore, the operating points in the entire range can be obtained by varying $\mathbf{I}_{\mathrm{pk}}$, the amplitude of the current and $\mathbf{\Phi}_{c}$, the current angle (see Fig. 5.1) uniformly whereas in Section 4.1, we have shown that the $B-H$ uncertainties can be completely defined by 7 different parameters. Thus, these parameters constitute a 9-D parameter space shown in Table 5.1.

To overcome the computational cost of the evaluations from the FE simulator, we develop an inexpensive surrogate model with the parameters of the FE simulator as input. We train the surrogate with input-output observations such that the inputs correspond to the samples from a normalized input space and the outputs correspond to the torque waveforms evaluated using the FE simulator at the mapped values of these normalized input samples. Using Latin hypercube sampling algorithm (LHS), we draw normalized input samples from a 9-D space, $\Omega \in[0,1]^{9}$ for training the surrogate. Let $\mathbf{x}^{(n)} \in \mathbb{R}^{9}$ be one of the input samples. To obtain the mapped inputs, the values in $\mathbf{x}^{(n)}$ are mapped to the distributions stated in Table 5.1. The mapping of any value, $x$, from a normalized input sample, $\mathbf{x}^{(n)}$, to an uniform distribution is given by

$$
\begin{equation*}
x_{m}=l_{b}+\left(u_{b}-l_{b}\right) * x, \tag{5.19}
\end{equation*}
$$

where $x_{m}$ is the mapped input, $l_{b}$ and $u_{b}$ are the lower and upper bounds of the concerned uniform distribution respectively. Thus, using Eq. (5.19), we map the first 8 values of $\mathbf{x}^{(n)}$ to the distributions in the first 8 rows of Table 5.1 to obtain the samples $i_{\mathrm{pk}}, \phi_{c}, z_{\mathrm{hst}}, z_{\mathrm{hso}}, z_{\mathrm{hro}}, z_{\mathrm{hri}}, z_{\mathrm{hrm}}$ and $u$. Using Eq. (4.6), we obtain the $B-H$ curves corresponding to the degraded zones in Table 4.1 from $z_{\text {hst }}, z_{\text {hso }}, z_{\text {hro }}, z_{\text {hri }}$ and $z_{\text {hrm }}$ respectively. The sample, $u$, is used to obtain the $B$ - $H$ curve reflecting material uncertainty using Eq. (4.9). The final value in $\mathbf{x}^{(n)}$ is mapped to $s$ by taking its inverse transformation with respect to $\mathbf{S}$. Thereafter, the obtained $B-H$ curves are extrapolated till saturation using the sample, $\left\{H_{\mathrm{sat}}, s\right\}$ and following the procedure stated in Section 4.3. These extrapolated $B-H$ curves along with the samples, $i_{\mathrm{pk}}$ and
$\phi_{c}$ are used to run the FE simulator to obtain the torque waveform corresponding to the input $\mathbf{x}^{(n)}$.

Given a total of $N$ training samples are obtained, the entire training input data set is given by $\mathbf{X}=\left(\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(N)}\right) \in \mathbb{R}^{9 \times N}$. In practice, for a separate validation set, we predict the torque waveform using the trained surrogate and compare the prediction against the actual torque waveform from the FE simulator. $N$ is iteratively increased till the decided error criteria between the predicted torque waveform and the actual torque waveform is within a satisfactory tolerance. The methodology to train the surrogate is described in detail in the following sections.

### 5.2.1 Dimensionality reduction of the torque waveform

The output torque waveform, $\mathbf{t}^{(n)} \in \mathbb{R}^{M}$, at any input point, is a function of rotor positions. The output dimension, $M$, depends on the resolution of the discretization of air gap in the FE simulator. In practice, the resolution is kept high to reduce numerical errors, resulting in high output dimensionality. Taking advantage of PCA, we seek to reduce this dimensionality. Let the total output torque matrix obtained at the training input set be $\mathbf{T}=\left(\mathbf{t}^{(1)}, \ldots, \mathbf{t}^{(N)}\right) \in \mathbb{R}^{M \times N}$. Performing PCA on the covariance matrix of $\mathbf{T}, \mathbf{Q}_{t}$, we can decompose each column of $\mathbf{T}, \mathbf{t}^{(i)}$, as:

$$
\begin{equation*}
\mathbf{t}^{(i)}=\boldsymbol{\mu}_{t}+\sum_{m=1}^{M} \sqrt{\lambda_{t, m}} z_{t, m}^{(i)} \boldsymbol{\phi}_{t, m}, \tag{5.20}
\end{equation*}
$$

where $\lambda_{t, m}$ is the $m$-th largest eigenvalue of $\mathbf{Q}_{t}, \boldsymbol{\phi}_{t, m}$ the corresponding eigenvector, $z_{t, m}^{(i)}$ is the $i$-th PC score of the $m$-th PC, $\mathbf{z}_{t, m}=\left(z_{t, m}^{(1)}, \ldots, z_{t, m}^{(N)}\right)$ and $\boldsymbol{\mu}_{t}$ is the row-wise mean of $\mathbf{T}$.

We keep the first $L=M^{\prime}\left(M \gg M^{\prime}\right)$ significant PCs and ignore the rest. These $L$ PCs are learned by scalar Gaussian process (GP) functions to build the surrogate that predicts the torque waveform. We shall show the methodology to chose the number of significant PCs in the subsequent section.

### 5.2.2 Multi-output Gaussian process regression

For constructing the surrogate, each $\mathrm{PC}, \mathbf{z}_{t, m}$, is learned by a scalar GP function, $f_{m}$. The PC score of $\mathbf{z}_{t, m}$ is defined as

$$
\begin{equation*}
z_{t, m}^{(n)}=f_{m}\left(\mathbf{x}^{(n)}\right)+\epsilon^{(n)} . \tag{5.21}
\end{equation*}
$$

where $\epsilon^{(n)}$ is a standard Gaussian distributed noise used to capture the numerical error in the FE simulator. For notational simplicity, we drop the implicit $m$ subscript from all the following derivations. The prior assumption for $f$ is modeled by a GP prior given by

$$
\begin{equation*}
f(\cdot) \mid \boldsymbol{\theta} \sim \mathcal{G} \mathcal{P}(f(\cdot) \mid 0, k(\cdot, \cdot ; \boldsymbol{\theta})), \tag{5.22}
\end{equation*}
$$

where $k(\cdot, \cdot ; \boldsymbol{\theta})$ is the covariance function and $\boldsymbol{\theta}$ represents all the hyper-parameters of the model. We use the squared exponential function as the covariance function of the GP which is defined as

$$
\begin{equation*}
k\left(\mathbf{x}, \mathbf{x}^{\prime} ; \boldsymbol{\theta}\right)=\sigma_{f}^{2} \exp \left(-\frac{1}{2} \sum_{i=1}^{9}\left(\frac{x_{i}-x_{i}^{\prime}}{d_{i}}\right)^{2}\right) \tag{5.23}
\end{equation*}
$$

where $d_{i}$ 's, the length scales corresponding to each input dimension and $\sigma_{f}^{2}$, the signal variance of the covariance function constitute the hyper-parameters, $\boldsymbol{\theta}$.

The GP prior is modeled as a multivariate normal distribution of $f(\cdot)$ at $\mathbf{X}$, given by

$$
\begin{equation*}
\mathbf{f}(\mathbf{X}) \mid \mathbf{X}, \boldsymbol{\theta} \sim \mathcal{N}(\mathbf{0}, \mathbf{K}) \tag{5.24}
\end{equation*}
$$

where $\mathbf{K} \in \mathbb{R}^{N \times N}$ is the covariance matrix such that each of its element $K_{(i, j)}$ is given by

$$
\begin{equation*}
K_{(i, j)}=k\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)} ; \boldsymbol{\theta}\right) \tag{5.25}
\end{equation*}
$$

We acquire the PC scores, $\mathbf{y}$, at the input data points, $\mathbf{X}$, by performing PCA on the covraiance matrix of the output torque obtained from the FE simulator. Additionally, we model the numerical errors in the FE simulator, $\boldsymbol{\epsilon}$, assuming that it is distributed normally about $\mathbf{y}$ with a variance, $\sigma^{2}$. By using properties of Gaussian integrals and the sum rule of probability theory the Gaussian likelihood on $\mathbf{y}$ at $\mathbf{X}$ is given by

$$
\begin{equation*}
\mathbf{y}(\mathbf{X}) \mid \mathbf{X}, \boldsymbol{\theta}, \sigma \sim \mathcal{N}\left(\mathbf{0}, \mathbf{K}+\sigma^{2} \mathbf{I}_{N}\right), \tag{5.26}
\end{equation*}
$$

where $\mathbf{I}_{N} \in \mathbb{R}^{N \times N}$ is an identity matrix. Note that $\sigma$ is one more hyperparameter.
Using Bayes rule, the prior state of knowledge given by Eq. (5.22) is combined with the likelihood given by Eq. (5.26), to yield the posterior GP,

$$
\begin{equation*}
f(\cdot) \mid \mathbf{X}, \mathbf{y}, \boldsymbol{\theta}, \sigma \sim \mathcal{G} \mathcal{P}(f(\cdot) \mid \tilde{\mu}(\cdot ; \boldsymbol{\theta}), \tilde{k}(\cdot, \cdot ; \boldsymbol{\theta}, \sigma)), \tag{5.27}
\end{equation*}
$$

where $\tilde{\mu}(\cdot ; \boldsymbol{\theta})$ is the posterior mean and $\tilde{k}(\cdot, \cdot ; \boldsymbol{\theta}, \sigma)$ is the posterior covariance function. In practice, we work with the predictive probability density at a single input point, $\mathbf{x}^{(*)}$, given by,

$$
\begin{equation*}
\mathbf{f}\left(\mathbf{x}^{(*)}\right) \mid \mathbf{x}^{(*)}, \boldsymbol{\theta}, \sigma \sim \mathcal{N}\left(\tilde{\mu}\left(\mathbf{x}^{(*)} ; \boldsymbol{\theta}\right), \tilde{k}\left(\mathbf{x}^{(*)}, \mathbf{x}^{(*)} ; \boldsymbol{\theta}, \sigma\right)\right) \tag{5.28}
\end{equation*}
$$

where the predictive mean is given by

$$
\begin{equation*}
\tilde{\mu}\left(\mathbf{x}^{(*)} ; \boldsymbol{\theta}\right)=\mathbf{k}^{\mathrm{T}}\left(\mathbf{K}+\sigma^{2} \mathbf{I}_{N}\right)^{-1} \mathbf{y} \tag{5.29}
\end{equation*}
$$

and the predictive covariance is given by

$$
\begin{align*}
\tilde{k}\left(\mathbf{x}^{(*)}, \mathbf{x}^{(*)} ; \boldsymbol{\theta}, \sigma\right) & =k\left(\mathbf{x}^{(*)}, \mathbf{x}^{(*)} ; \boldsymbol{\theta}, \sigma\right)  \tag{5.30}\\
& -\mathbf{k}^{\mathrm{T}}\left(\mathbf{K}+\sigma^{2} \mathbf{I}_{N}\right)^{-1} \mathbf{k} .
\end{align*}
$$

The vector $\mathbf{k}$ is obtained by evaluating the covariance function at $\mathbf{x}^{(*)}$ and the input training points $\mathbf{X}$. Thus, $\mathbf{k}$ is given by

$$
\begin{equation*}
\mathbf{k}=\left(k\left(\mathbf{x}^{(*)}, \mathbf{x}^{(1)} ; \boldsymbol{\theta}\right), \ldots, k\left(\mathbf{x}^{(*)}, \mathbf{x}^{(N)} ; \boldsymbol{\theta}\right)\right) . \tag{5.31}
\end{equation*}
$$

The hyperparameters are obtained by maximizing the likelihood given in Eq. (5.26) following the procedure stated in [30]. Thus, for any input set $\mathbf{x}^{(*)}$, using Eq. (5.27), the surrogate model predicts the PC score of the $m$-th PC. One of the major advantages of GP based surrogate model is that not only they predict the mean at $\mathbf{x}^{(*)}, \tilde{\mu}\left(\mathbf{x}^{(*)} ; \boldsymbol{\theta}\right)$, they also predict the predictive error bars which capture the epistemic uncertainty due to limited training data set. Based on the epistemic uncertainty, the training sets can be sampled strategically.

### 5.2.3 Validation of the surrogate model

The accuracy of the trained surrogate model is tested on a separate set of inputs called the validation set. Let the validation input set be $\mathbf{X}_{v}=\left(\mathbf{x}_{v}^{(1)}, \ldots, \mathbf{x}_{v}^{(P)}\right) \in$ $\mathbb{R}^{9 \times P}$ containing $P$ samples from the parameter space obtained using LHS. At these inputs, let $\mathbf{Z}_{\mathrm{tv}}=\left(\mathbf{z}_{\mathrm{tv}}^{(1)}, \ldots, \mathbf{z}_{\mathrm{tv}}^{(P)}\right) \in \mathbb{R}^{L \times P}$ be the predictive mean of the truncated PC scores from the surrogate model, where for each input, $\mathbf{x}^{(p)}$, the corresponding predicted PC scores for $L$ PCs are given by $\mathbf{z}_{\mathrm{tv}}^{(p)}=\left(z_{\mathrm{tv}, 1}^{(p)}, \ldots, z_{\mathrm{tv}, L}^{(p)}\right)$. Performing inverse PCA on $\mathbf{Z}_{\mathrm{tv}}$, the predicted torque matrix, $\mathbf{T}_{v} \in \mathbb{R}^{M \times P}$ is obtained where each column of $\mathbf{T}_{v}, \mathbf{t}_{v}^{(i)}$, is given by

$$
\begin{equation*}
\mathbf{t}_{v}^{(i)}=\boldsymbol{\mu}_{t}+\sum_{m=1}^{L} \sqrt{\lambda_{t, m}} z_{\mathrm{tv}, m}^{(i)} \phi_{t, m} \tag{5.32}
\end{equation*}
$$

where $\boldsymbol{\mu}_{t}, \lambda_{t, m}$ and $\phi_{t, m}$ are obtained in Eq. (5.20).
Additionally, the output torque is independently calculated from the FE simulator at these $P$ validation inputs. Let the torque matrix obtained from the FE simulator be called the actual torque matrix, $\mathbf{T}_{a} \in \mathbb{R}^{M \times P}$. The error criteria used in this study to evaluate the convergence is the relative $L_{2}$ norm of the error between the predicted torque matrix and the actual torque matrix, where the relative $L_{2}$ norm of the error is given by

$$
\begin{equation*}
\text { relative } L_{2} \text {-norm error }=\frac{\left\|\mathbf{T}_{v}-\mathbf{T}_{a}\right\|_{2}}{\left\|\mathbf{T}_{v}\right\|_{2}} . \tag{5.33}
\end{equation*}
$$

The training samples, $N$, are increased iteratively until the relative $L_{2}$-norm of the error is within a desired tolerance.

### 5.2.4 Assessment of the Surrogate Model

In this section, we define the procedure of conducting the assessment of the surrogate model that is used to carry out the propagation study. The response from the FE simulator used in our study corresponds to a $M=32$ dimensional vector of torque waveform as a function of rotor position. However, while training the surrogate, we reduce the output dimension from $M=32$ to $M=8$ by performing PCA. We train


Fig. 5.2.: Illustration of convergence of relative $L_{2}$-norm error between $\mathbf{T}_{\mathrm{a}}$ and $\mathbf{T}_{v}$ with number of training points


Fig. 5.3.: Percentage of variance captured by 8 PCs of $\mathbf{T}_{a}$


Fig. 5.4.: Eigenvectors corresponding to the retained PCs of $\mathbf{T}_{a}$
the surrogate with $N=550$ input points and validate it with an additional $P=100$ points. The convergence of the relative $L_{2}$-norm error (see Eq. (5.33)) for the 8 PCs can be observed in Fig. 5.2. It can be observed that with further increase in number of training points the relative $L_{2}$-norm error doesn't go down significantly. Thus, the error is said to have converged. We choose the number of significant PCs based on the amount of variance captured by them. By keeping 8 PCs , we can capture more than $99.9995 \%$ variance (see Fig. 5.3) from the original data set. Thus, 8 PCs are kept. We also observe the eigenvectors of the retained PCs in Fig. 5.4.

Additionally, we conduct reconstruction studies with 8 PCs to quantify the error due to the approximation caused by the dimensionality reduction using PCA. The reconstruction study is conducted as follows. First we obtain a test set containing the output torque waveforms from the FE simulator at a test input set. The torque waveforms from the validation set, $\mathbf{T}_{v}$, is considered as the test set in our study. Thereafter, $\mathbf{T}_{v}$ is projected into the low-dimensional space by using Eq. (5.20). In this low-dimensional space, first 8 PCs are retained and rest are ignored. Now, the reconstruction is performed by projecting the PCs back into the high-dimensional space using Eq. (5.32). Let this reconstructed matrix be given by $\hat{\mathbf{T}}_{v}$. The absolute
$L_{2}$-norm error between $\mathbf{T}_{v}$ and $\hat{\mathbf{T}}_{v}$ is computed where the absolute $L_{2}$-norm error is given by

$$
\begin{equation*}
\text { absolute } L_{2} \text {-norm error }=\left\|\mathbf{T}_{v}-\hat{\mathbf{T}}_{v}\right\|_{2} . \tag{5.34}
\end{equation*}
$$

Fig. 5.5a shows the histogram of the absolute $L_{2}$-norm error. It can be observed that the maximum error is approximately close to $3 \mathrm{~N}-\mathrm{m}$ and from the Fig. 5.5 b we can infer that it occurs near the high torque region and doesn't introduce significant inaccuracy in the surrogate model.

## Sensitivity study corresponding to punching uncertainty

Next, we perform a validation study of the trained surrogate model to analyze its sensitivity towards $B$ - $H$ curves in the degraded zones of the PMSM. Here, the idea is to observe how the QoIs change when $B-H$ curves in the degraded regions change using both the FE simulator and the surrogate model (a study similar to the one performed in Chapter 2). This study is performed at the 25 operating points reported in Table 2.2. Two $B$ - $H$ curves, the least degraded one and the most degraded one, are selected for all the regions affected by punching (see Fig. 5.6). Additionally, all the degraded zones are assumed to follow a single $B-H$ characteristic. For the region reflecting material uncertainty, the $B-H$ curve corresponding to the mean value of $\mathbf{U}$ (variable reflecting material uncertainty) from Table 5.1 is selected. All the $B-H$ curves are extrapolated to the saturation value that corresponds to the mean value of $\mathbf{S}$ (variable reflecting uncertainty in saturation flux density).

The $B-H$ curves and the operating points act as inputs to the FE simulator for obtaining 50 torque waveforms; 1 waveform corresponding to each degraded $B-H$ curve at each operating point. Similarly, the predicted torque waveforms from the surrogate model are also evaluated at the normalized inputs corresponding to the $B$ - $H$ curves and the operating points. The percentage change in the QoIs at all of these 25 operating points for both the degraded $B-H$ curves is separately visualized

(b)

Fig. 5.5.: Study to analyse the reconstruction error from the surrogate. (a) Histogram of absolute $L_{2}$-norm error of reconstruction using the 8 PCs by the surrogate model, (b) absolute $L_{2}$-norm error vs Average torque
for the FE simulator and the surrogate model where the percentage change is given by

$$
\begin{equation*}
Q_{c}=\frac{Q_{m}-Q_{l}}{Q_{m}} 100 \tag{5.35}
\end{equation*}
$$

where $Q_{c}$ is the change of QoI in percentage, $Q_{m}$ is the QoI corresponding to the most degraded curve and $Q_{l}$ is the QoI corresponding to the least degraded curve.

Thereafter, we compare the change of QoIs obtained from the FE simulator and the surrogate model. Figs. 5.7, 5.8, 5.9, 5.10 show the torque waveforms corresponding to this study. Fig. 5.12 shows the scatter plot representing the change in average torque and its corresponding values are reported in Table 5.2. There is an appreciable match between the differences computed using the FE simulator and the surrogate model. Fig. 5.13 and the values from the Table 2.7 show that the change in the sixth harmonic component of torque from the FE simulator and the surrogate model do not show significant agreement. A similar phenomena is observed in the difference of twelfth harmonic component of torque as well (see Fig. 5.14 and the values reported in Table 5.4). Thus, although the surrogate predicts the sensitivity of average torque due to the uncertainty in punching accurately, it fails to predict the sensitivity of sixth and twelfth harmonic components of torque. The failure of the surrogate model in predicting the sixth and twelfth harmonic components of torque can be because of the approximation of the model by dimensionality reduction using PCA. If the change in any QoI is smaller than the approximation error, the surrogate won't be able to predict the change with adequate accuracy.


Fig. 5.6.: $B$ - $H$ curve showing most degraded and least degraded curve that reflect the magnetic characteristics of the degraded zones


Fig. 5.7.: Torque waveforms corresponding to operating point (a) 1, (b) 2, (c) 3, (d)
4 , (e) 5 , (f) 6


Fig. 5.8.: Torque waveforms corresponding to operating points (a) 7, (b) 8, (c) 9, (d) $10,(\mathrm{e}) 11$, (f) 12


Fig. 5.9: Torque waveforms corresponding to operating points(a) 13, (b) 14, (c) 15, (d) 16 , (e) 17 , (f) 18


Fig. 5.10.: Torque waveforms corresponding to operating points (a) 19, (b) 20 (c) 21, (d) 22, (e) 23, (f) 24


Fig. 5.11.: Torque waveform corresponding to operating point 25


Fig. 5.12.: Difference between the average torque corresponding to the most degraded curve and least degraded curve obtained from (i) FE simulator (ii) surrogate model

Table 5.2.: Difference between the average torque corresponding to the most degraded curve and the least degraded curve

| Operating point | Difference (\%) <br> (FE simulator) | Difference (\%) (Surrogate) |
| :---: | :---: | :---: |
| 1 | -0.0063 | -0.0206 |
| 2 | -0.0090 | -0.0505 |
| 3 | -0.0096 | -0.0798 |
| 4 | -0.0079 | -0.0515 |
| 5 | -0.0041 | -0.0311 |
| 6 | $-0.2722$ | -0.2766 |
| 7 | -0.4267 | -0.4649 |
| 8 | -0.3855 | -0.4070 |
| 9 | -0.2489 | -0.2443 |
| 10 | -0.1159 | -0.1239 |
| 11 | -0.6863 | -0.6755 |
| 12 | -1.1569 | -1.1707 |
| 13 | -1.3265 | -1.3645 |
| 14 | -0.8506 | -0.9292 |
| 15 | $-0.3327$ | -0.3085 |
| 16 | -0.8139 | -0.8041 |
| 17 | -1.4815 | -1.5519 |
| 18 | -2.0381 | -2.1226 |
| 19 | -1.6888 | -1.7310 |
| 20 | -0.6485 | -0.5556 |
| 21 | -0.7586 | -0.6403 |
| 22 | -1.4525 | -1.4200 |
| 23 | -2.3088 | -2.2841 |
| 24 | -2.5067 | -2.5381 |
| 25 | -1.0255 | -1.0898 |



Fig. 5.13.: Difference between the sixth harmonic component of torque corresponding to the most degraded curve and least degraded curve obtained from
(i) FE simulator (ii) surrogate model


Fig. 5.14.: Difference between the twelfth harmonic component of torque corresponding to the most degraded curve and least degraded curve obtained from
(i) FE simulator (ii) surrogate model

Table 5.3.: Difference between the sixth harmonic component of torque corresponding to the most degraded curve and the least degraded curve

| Operating point | Difference (\%) <br> (FE simulator) | $\begin{gathered} \text { Difference (\%) } \\ \text { (Surrogate) } \end{gathered}$ |
| :---: | :---: | :---: |
| 1 | 0.0028 | 0.0410 |
| 2 | 0.0023 | 0.0233 |
| 3 | 0.0017 | 0.0004 |
| 4 | 0.0012 | 0.0202 |
| 5 | 0.0013 | 0.0019 |
| 6 | -0.0001 | -0.0192 |
| 7 | 0.0011 | 0.0080 |
| 8 | 0.0009 | -0.0151 |
| 9 | -0.0176 | -0.0372 |
| 10 | 0.0043 | 0.0073 |
| 11 | 0.0831 | 0.0717 |
| 12 | 0.0140 | 0.0229 |
| 13 | 0.0745 | 0.1004 |
| 14 | 0.0093 | 0.0076 |
| 15 | -0.0098 | -0.0175 |
| 16 | 0.1304 | 0.0931 |
| 17 | -0.1635 | -0.1724 |
| 18 | -0.1446 | -0.1591 |
| 19 | 0.1544 | 0.2062 |
| 20 | -0.0182 | -0.0309 |
| 21 | 0.1460 | 0.0442 |
| 22 | -0.0885 | -0.1040 |
| 23 | -0.2198 | -0.2469 |
| 24 | -0.0088 | 0.0442 |
| 25 | 0.0434 | 0.0332 |

Table 5.4.: Difference between the twelfth harmonic component of torque corresponding to the most degraded curve and least degraded curve

| Operating point | Difference (\%) <br> (FE simulator) | Difference (\%) <br> (Surrogate) |
| :---: | :---: | :---: |
| 1 | -0.3749 | -0.6691 |
| 2 | 0.2087 | -3.9079 |
| 3 | 0.7303 | 3.2374 |
| 4 | 0.8154 | 3.8314 |
| 5 | 0.5645 | -0.0961 |
| 6 | -0.9966 | -0.3923 |
| 7 | -1.0678 | -0.9392 |
| 8 | -0.8578 | 0.5685 |
| 9 | 1.6287 | 2.3091 |
| 10 | 0.5424 | 0.6741 |
| 11 | 0.7308 | 0.0407 |
| 12 | -0.1889 | -0.1778 |
| 13 | -0.4590 | 0.1680 |
| 14 | 0.0075 | 0.8853 |
| 15 | 1.2114 | 1.1353 |
| 16 | -0.1624 | -0.1763 |
| 17 | -0.3749 | -0.2447 |
| 18 | -0.1777 | -0.2095 |
| 19 | -0.5304 | 0.0746 |
| 20 | 0.5698 | 0.8148 |
| 21 | -0.6137 | -0.1168 |
| 22 | -0.6197 | -0.2337 |
| 23 | -0.4515 | -0.0923 |
| 24 | -0.3718 | -0.2088 |
| 25 | -0.0369 | 0.0665 |

## Sensitivity study corresponding to the material uncertainty

We also perform a similar sensitivity study as in the previous section considering only the variation of the $B-H$ curves reflecting material uncertainty. We prepare the study by obtaining two $B-H$ curves by sampling two values from $\mathbf{U}, B-H_{1}$ and $B-H_{2}$. For the regions reflecting punching uncertainty, the $B-H$ curve corresponding to the mean value of the variables in Table 4.1 is selected. All the $B-H$ curves are extrapolated to the saturation value that corresponds to the mean value of $\mathbf{S}$ (variable reflecting uncertainty in saturation flux density). Using these two $B$ - $H$ curves, we observe the percentage difference of QoIs obtained separately from the FE simulator and the surrogate model. The waveforms corresponding to this study are shown in Figs. 5.15, 5.16, 5.17 and 5.18. The corresponding differences of QoIs can be observed in Figs. 5.20, 5.21 and 5.22. The values of these differences are reported in Tables 5.5, 5.6 and 5.7. Since the values in the tables show a significant agreement, it can be claimed that the surrogate is able to predict the changes of QoIs with sufficient accuracy.


Fig. 5.15.: Torque waveforms corresponding to operating point (a) 1, (b) 2, (c) 3, (d) 4 , (e) 5 , (f) 6


Fig. 5.16.: Torque waveforms corresponding to operating points (a) 7, (b) 8, (c) 9, (d) $10,(\mathrm{e}) 11$, (f) 12


Fig. 5.17.: Torque waveforms corresponding to operating points(a) 13, (b) 14, (c) 15 , (d) 16, (e) 17 , (f) 18


Fig. 5.18.: Torque waveforms corresponding to operating points (a) 19, (b) 20 (c) $21,(\mathrm{~d}) 22$, (e) 23 , (f) 24


Fig. 5.19.: Torque waveform corresponding to operating point 25


Fig. 5.20.: Difference between the average torque corresponding to $B-H_{1}$ and $B-H_{2}$ obtained from (i) FE simulator (ii) surrogate model


Fig. 5.21.: Difference between the sixth harmonic component of torque corresponding to $B-H_{1}$ and $B-H_{2}$ obtained from (i) FE simulator (ii) surrogate model

## Sensitivity study corresponding to the uncertainty in saturation flux density

We conduct a sensitivity study considering the variation of saturation flux density of the $B-H$ curves as well (as in the previous section). We prepare the study by obtaining two $B-H$ curves for all the regions of the machine (regions reflecting punching uncertainty and material uncertainty) by sampling two values from $\mathbf{S}, B-H_{1}$ and $B-H_{2}$. At these two $B-H$ curves we observe the percentage difference of QoIs obtained separately from the FE simulator and the surrogate model. The waveforms corresponding to this study are shown in Figs. 5.23, 5.24, 5.25 and 5.26. The corresponding differences of QoIs can be observed in Figs. 5.28, 5.29 and 5.30. The values of these differences are reported in Tables 5.8, 5.9 and 5.10. Since the values in the

Table 5.5.: Difference between the average torque corresponding to $B-H_{1}$ and $B-H_{2}$
obtained from (i) FE simulator (ii) surrogate model

| Operating point | Difference (\%) <br> (FE simulator) | Difference (\%) (Surrogate) |
| :---: | :---: | :---: |
| 1 | -0.0203 | 0.427 |
| 2 | -0.0058 | 0.0047 |
| 3 | -0.0281 | 0.0460 |
| 4 | -0.0187 | 0.0396 |
| 5 | -0.0086 | 0.0023 |
| 6 | -0.3973 | 0.4741 |
| 7 | -0.2815 | 0.2905 |
| 8 | -0.0690 | 0.1620 |
| 9 | -0.0942 | -0.0840 |
| 10 | $-0.0573$ | -0.0597 |
| 11 | -0.4583 | 0.4409 |
| 12 | -0.1823 | 0.2039 |
| 13 | -0.0313 | -0.0104 |
| 14 | $-0.5510$ | -0.6337 |
| 15 | -0.4962 | -0.4958 |
| 16 | -0.0723 | -0.1533 |
| 17 | -0.7788 | -0.8098 |
| 18 | -0.8921 | -0.8651 |
| 19 | -1.0609 | -1.2376 |
| 20 | -1.1276 | -1.1622 |
| 21 | -0.8692 | -0.6839 |
| 22 | $-2.2383$ | $-2.4845$ |
| 23 | -2.5030 | -2.5740 |
| 24 | -1.9386 | -1.8455 |
| 25 | -1.8239 | -1.7101 |

Table 5.6.: Difference between the sixth harmonic component of torque corresponding to $B-H_{1}$ and $B-H_{2}$ obtained from (i) FE simulator (ii) surrogate model

| Operating point | Difference (\%) <br> (FE simulator) | $\begin{gathered} \text { Difference (\%) } \\ \text { (Surrogate) } \end{gathered}$ |
| :---: | :---: | :---: |
| 1 | 0.0128 | 0.0210 |
| 2 | -0.0023 | -0.0233 |
| 3 | -0.0017 | -0.0004 |
| 4 | 0.0012 | 0.0202 |
| 5 | 0.0013 | 0.0019 |
| 6 | -0.0001 | -0.0192 |
| 7 | -0.0011 | -0.0080 |
| 8 | -0.0009 | -0.0151 |
| 9 | -0.0176 | -0.0372 |
| 10 | -0.0043 | -0.0073 |
| 11 | -1.0831 | -1.0717 |
| 12 | -2.0140 | -2.0229 |
| 13 | $-0.0745$ | -0.1004 |
| 14 | 0.0093 | 0.0076 |
| 15 | 0.0098 | 0.0175 |
| 16 | -4.1304 | -3.9321 |
| 17 | 1.1635 | 1.1724 |
| 18 | 0.1446 | 0.1591 |
| 19 | -1.1544 | -1.2062 |
| 20 | -0.0182 | -0.0309 |
| 21 | -1.1460 | -1.0442 |
| 22 | 0.0885 | 0.1040 |
| 23 | 1.198 | 1.469 |
| 24 | -2.0088 | 2.0442 |
| 25 | -0.0434 | -0.0332 |

Table 5.7.: Difference between the twelfth harmonic component of torque corresponding to $B-H_{1}$ and $B-H_{2}$ obtained from (i) FE simulator (ii) surrogate model

| Operating point | $\begin{aligned} & \text { Difference (\%) } \\ & \text { (FE simulator) } \end{aligned}$ | $\begin{gathered} \text { Difference (\%) } \\ \text { (Surrogate) } \end{gathered}$ |
| :---: | :---: | :---: |
| 1 | -0.0049 | 0.0162 |
| 2 | -0.0038 | -0.0202 |
| 3 | -4.1015 | -4.2093 |
| 4 | 0.0012 | -0.0049 |
| 5 | 0.0028 | 0.0023 |
| 6 | -0.0138 | -0.0321 |
| 7 | 0.0237 | 0.0202 |
| 8 | 0.0479 | 0.0467 |
| 9 | 0.0332 | 0.0528 |
| 10 | 0.0168 | 0.0236 |
| 11 | 0.0338 | 0.0219 |
| 12 | 0.0610 | 0.0442 |
| 13 | 0.1009 | 0.1115 |
| 14 | 0.1306 | 0.1210 |
| 15 | 0.0486 | 0.0495 |
| 16 | -0.0599 | -0.0722 |
| 17 | -0.0817 | -0.0812 |
| 18 | -0.0112 | -0.0243 |
| 19 | 0.0984 | 0.0956 |
| 20 | 0.0151 | 0.0292 |
| 21 | -1.2646 | -1.3666 |
| 22 | -0.3560 | -0.3083 |
| 23 | -0.6520 | -0.8486 |
| 24 | 0.0258 | 0.0268 |
| 25 | -0.0093 | -0.0493 |



Fig. 5.22.: Difference between the twelfth harmonic component of torque corresponding to $B-H_{1}$ and $B-H_{2}$ obtained from (i) FE simulator (ii) surrogate model
tables show a significant agreement, it can be claimed that the surrogate is able to predict the changes of QoIs with sufficient accuracy.


Fig. 5.23.: Torque waveforms corresponding to operating point (a) 1, (b) 2, (c) 3, (d) 4 , (e) 5 , (f) 6


Fig. 5.24.: Torque waveforms corresponding to operating points (a) 7 , (b) 8, (c) 9,
(d) $10,(\mathrm{e}) 11,(\mathrm{f}) 12$


Fig. 5.25.: Torque waveforms corresponding to operating points(a) 13, (b) 14, (c) 15 , (d) 16 , (e) 17 , (f) 18


Fig. 5.26.: Torque waveforms corresponding to operating points (a) 19, (b) 20 (c)

$$
21, \text { (d) } 22, \text { (e) } 23, \text { (f) } 24
$$



Fig. 5.27.: Torque waveform corresponding to operating point 25


Fig. 5.28.: Difference between the average torque corresponding to $B-H_{1}$ and $B-H_{2}$ obtained from (i) FE simulator (ii) surrogate model


Fig. 5.29.: Difference between the sixth harmonic component of torque corresponding to $B-H_{1}$ and $B-H_{2}$ obtained from (i) FE simulator (ii) surrogate model

### 5.3 Development of surrogate models for predicting average torque and average flux linkages of the PMSM

This section is a part of the extended work. Our goal in the extended work is to study the effect of uncertainty in $B-H$ curves and remanent flux density of permanent magnets on performance of the machine/drive system. For performing this study, we assume that all the degraded zones follow the same $B-H$ characteristics dictated by $\mathbf{Z}_{h}$. Physically, it means that the punching tool corresponding to each cutting edge of the stator and rotor reflects the same state. Thus, we parameterize the FE simulator by the operating points and the uncertain parameters, given by $\mathbf{Z}_{h}, \mathbf{U}, \mathbf{S}$ and $\mathbf{B}_{r}$. The operating points in the defined range can be obtained by varying $\mathbf{I}_{\mathrm{pk}}$, the amplitude of the current and $\boldsymbol{\Phi}_{c}$, the current angle (see Fig. 5.1) uniformly. Thus, these parameters constitute a 6 -D parameter space reported in Table 5.11.

Table 5.8.: Difference between the average torque corresponding to $B-H_{1}$ and $B-H_{2}$
obtained from (i) FE simulator (ii) surrogate model

| Operating point | Difference (\%) <br> (FE simulator) | Difference (\%) <br> (Surrogate) |
| :---: | :---: | :---: |
| 1 | 0.0406 | 0.0427 |
| 2 | 0.0358 | 0.0047 |
| 3 | 0.0281 | 0.0460 |
| 4 | 0.0187 | 0.0396 |
| 5 | 0.0086 | 0.0023 |
| 6 | 0.3973 | 0.4741 |
| 7 | 0.2815 | 0.2905 |
| 8 | 0.0690 | 0.1620 |
| 9 | -0.0942 | -0.0840 |
| 10 | -0.0573 | -0.0597 |
| 11 | 0.4583 | 0.4409 |
| 12 | 0.1823 | 0.2039 |
| 13 | -0.0313 | -0.0104 |
| 14 | $-0.5510$ | -0.6337 |
| 15 | -0.4962 | -0.4958 |
| 16 | -0.0723 | -0.1533 |
| 17 | $-0.7788$ | -0.8098 |
| 18 | -0.8921 | -0.8651 |
| 19 | -1.0609 | -1.2376 |
| 20 | -1.1276 | -1.1622 |
| 21 | -0.8692 | -0.6839 |
| 22 | -2.2383 | -2.4845 |
| 23 | -2.5030 | -2.5740 |
| 24 | -1.9386 | -1.8455 |
| 25 | -1.8239 | -1.7101 |

Table 5.9.: Difference between the sixth harmonic component of torque corresponding to $B-H_{1}$ and $B-H_{2}$ obtained from (i) FE simulator (ii) surrogate model

| Operating point | Difference (\%) <br> (FE simulator) | Difference (\%) (Surrogate) |
| :---: | :---: | :---: |
| 1 | 0.0028 | 0.0410 |
| 2 | 0.0023 | 0.0233 |
| 3 | 0.0017 | 0.0004 |
| 4 | 0.0012 | 0.0202 |
| 5 | 0.0013 | 0.0019 |
| 6 | -0.0001 | -0.0192 |
| 7 | 0.0011 | 0.0080 |
| 8 | 0.0009 | -0.0151 |
| 9 | $-0.0176$ | $-0.0372$ |
| 10 | 0.0043 | 0.0073 |
| 11 | 0.0831 | 0.0717 |
| 12 | 0.0140 | 0.0229 |
| 13 | 0.0745 | 0.1004 |
| 14 | 0.0093 | 0.0076 |
| 15 | -0.0098 | -0.0175 |
| 16 | 0.1304 | 0.0931 |
| 17 | -0.1635 | -0.1724 |
| 18 | -0.1446 | -0.1591 |
| 19 | 0.1544 | 0.2062 |
| 20 | -0.0182 | -0.0309 |
| 21 | 0.1460 | 0.0442 |
| 22 | $-0.0885$ | -0.1040 |
| 23 | -0.2198 | -0.2469 |
| 24 | -0.0088 | 0.0442 |
| 25 | 0.0434 | 0.0332 |

Table 5.10.: Difference between the twelfth harmonic component of torque corresponding to $B-H_{1}$ and $B-H_{2}$ obtained from (i) FE simulator (ii) surrogate model

| Operating point | Difference (\%) <br> (FE simulator) | Difference (\%) (Surrogate) |
| :---: | :---: | :---: |
| 1 | -0.0049 | 0.0162 |
| 2 | -0.0038 | -0.0202 |
| 3 | -0.0015 | $-0.0093$ |
| 4 | 0.0012 | -0.0049 |
| 5 | 0.0028 | 0.0023 |
| 6 | -0.0138 | -0.0321 |
| 7 | 0.0237 | 0.0202 |
| 8 | 0.0479 | 0.0467 |
| 9 | 0.0332 | 0.0528 |
| 10 | 0.0168 | 0.0236 |
| 11 | 0.0338 | 0.0219 |
| 12 | 0.0610 | 0.0442 |
| 13 | 0.1009 | 0.1115 |
| 14 | 0.1306 | 0.1210 |
| 15 | 0.0486 | 0.0495 |
| 16 | -0.0599 | -0.0722 |
| 17 | $-0.0817$ | -0.0812 |
| 18 | -0.0112 | $-0.0243$ |
| 19 | 0.0984 | 0.0956 |
| 20 | 0.0151 | 0.0292 |
| 21 | -0.1646 | -0.0666 |
| 22 | $-0.1560$ | -0.1083 |
| 23 | -0.0650 | -0.0887 |
| 24 | 0.0458 | 0.0468 |
| 25 | -0.0093 | -0.0493 |



Fig. 5.30.: Difference between the twelfth harmonic component of torque corresponding to $B-H_{1}$ and $B-H_{2}$ obtained from (i) FE simulator (ii) surrogate model

The study of the performance of the machine/drive system hinges on the evaluation of average torque, $\bar{T}$, and the minimum DC-link voltage, $V_{\min }$, of the inverter required to drive the machine. The minimum DC-link voltage, $V_{\min }$, is given by

$$
\begin{equation*}
V_{\min }=\sqrt{V_{\mathrm{qs}}^{2}+V_{\mathrm{qs}}^{2}} \sqrt{3} \tag{5.36}
\end{equation*}
$$

where

$$
\begin{align*}
& V_{\mathrm{qs}}=r_{s} I_{\mathrm{q}}+\omega_{r} \Lambda_{\mathrm{ds}},  \tag{5.37}\\
& V_{\mathrm{ds}}=r_{s} I_{\mathrm{d}}-\omega_{r} \Lambda_{\mathrm{qs}}, \tag{5.38}
\end{align*}
$$

where $r_{s}$ is the resistance of each phase of the stator winding in PMSM, $\omega_{r}$ is the rotor speed, $I_{\mathrm{q}}, I_{\mathrm{d}}$ are the $q$ - and $d$ - axes stator currents respectively and $\Lambda_{\mathrm{qs}}, \Lambda_{\mathrm{ds}}$ are the $q$ and $d$ - axes average flux linkages referred to the stator respectively. The evaluation of $V_{\min }$ requires the calculation of $\Lambda_{\mathrm{qs}}$ and $\Lambda_{\mathrm{ds}}$ from the FE simulator. Hence, $\bar{T}$, $\Lambda_{\mathrm{qs}}$ and $\Lambda_{\mathrm{ds}}$ of the machine are our quantities of interest (QoIs) that we have to evaluate using the FE simulator under the considered uncertainties. Note that the

QoIs of the extended work is different from the original work. However, evaluations using FE simulator is computationally expensive. Thus, we develop 3 inexpensive surrogate models that evaluate our QoIs, $\bar{T}, \Lambda_{\mathrm{qs}}$ and $\Lambda_{\mathrm{ds}}$ with the parameters of the FE simulator as the input. To obtain the average values of torque and flux linkages from their corresponding waveforms, Simpson's rule is employed.

The procedure of obtaining input-output observations for constructing the surrogate models for the QoIs is identical to the procedure followed in Section 5. Given a total of $N$ training samples are obtained, the entire training input data set is given by $\mathbf{X}=\left(\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(N)}\right) \in \mathbb{R}^{6 \times N}$. In practice, for a separate validation set, we predict the QoIs using the trained surrogates and compare the prediction against the actual QoIs obtained from the FE simulator. $N$ is iteratively increased till the decided error criteria between the QoIs is within a satisfactory tolerance.

We construct the surrogate models for the QoIs using Gaussian process (GP) regression. Each QoI is learned by a scalar GP function, $f$. The procedure of construction of the surrogate model for each QoI is the same as that of the procedure used to construct the surrogate model that predicts an individual PC in the previous section. Thus, interested readers are requested to refer to Section 5 for details on the construction of the model.

### 5.3.1 Validation of the surrogate model

The accuracy of the trained surrogate model is tested on a separate set of inputs called the validation set. Let the validation input set be $\mathbf{X}_{v}=\left(\mathbf{x}_{v}^{(1)}, \ldots, \mathbf{x}_{v}^{(P)}\right) \in$ $\mathbb{R}^{6 \times P}$ that contains $P$ samples from the parameter space obtained using LHS. At these inputs points, let $\mathbf{q}_{v}=\left(q_{v}^{(1)}, \ldots, q_{v}^{(P)}\right) \in \mathbb{R}^{P}$ be the predictive mean of QoIs from the surrogate model at $\mathbf{X}_{v}$.

Additionally, the QoIs are independently calculated from the FE simulator at these $P$ validation inputs. Let the QoIs obtained from the FE simulator be called the actual QoIs, $\mathbf{q}_{a} \in \mathbb{R}^{P}$. The error criteria used in this study to evaluate the convergence
of the model is the relative $L_{2}$ norm of the error between the actual QoIs and the predicted QoIs, where the relative $L_{2}$ norm of the error is given by

$$
\begin{equation*}
\text { relative } L_{2} \text {-norm error }=\frac{\left\|\mathbf{q}_{v}-\mathbf{q}_{a}\right\|_{2}}{\left\|\mathbf{q}_{v}\right\|_{2}} \tag{5.39}
\end{equation*}
$$

The training samples, $N$, are increased iteratively until the convergence is reached.

Table 5.11.: Input parameters for the surrogate models

| Parameter | Lower bound | Upper bound | Mean |
| :---: | :---: | :---: | :---: |
| $\mathbf{I}_{\mathrm{pk}}(\mathrm{A})$ | 0 | 300 | 150 |
| $\boldsymbol{\Phi}_{c}(\mathrm{deg})$ | 0 | 90 | 45 |
| $\mathbf{Z}_{h}()$ | -2.1624 | 2.772 | 0.3052 |
| $\mathbf{U}()$ | -1 | 1 | 0 |
| $\mathbf{S}(\mathrm{~T})$ | 1.94 | 2.06 | 2 |
| $\mathbf{B}_{r}(\mathrm{~T})$ | 1.1931 | 1.26691 | 1.23 |

### 5.3.2 Assessment of the Surrogate Model

In this section, we assess the 3 surrogate models used to predict $\bar{T}, \Lambda_{\mathrm{qs}}$ and $\Lambda_{\mathrm{ds}}$. Each surrogate is trained with $N=600$ input points and validated with an additional $P=150$ points. It should be noted that the training and validation points for all the 3 surrogate models are the same. Initially, we start with $N=50$ training points and iteratively increase it till the convergence of the relative $L_{2}$-norm error is reached. We evaluate the relative $L_{2}$-norm error with increasing training points to observe its convergence for each surrogate model. The convergence of the relative $L_{2}$-norm error for each surrogate is illustrated in Fig. 5.31. It can be observed that after 450 training points, with further increase in number of training points the relative $L_{2}$-norm error doesn't go down significantly i.e. the change in relative $L_{2}$-norm is less than $10^{-2}$.

Thus, the error is said to have converged. Additionally, we also illustrate the error between the actual QoIs from the FE simulator and predicted QoIs from the 3 trained surrogate models (with 600 training points) at the validation points in Fig. 5.32. It can be observed the error is negligible especially at the operating region of the PMSM i.e. at high torque and current regions.


Fig. 5.31.: Convergence of the relative $L_{2}$-norm error of the surrogate models corresponding to (a) $\bar{T}$, (b) $\Lambda_{\mathrm{qs}}$ and (c) $\Lambda_{\mathrm{ds}}$


Fig. 5.32.: Error in prediction by the trained surrogate models corresponding to (a)

$$
\bar{T}, \text { (b) } \Lambda_{\mathrm{qs}} \text { and (c) } \Lambda_{\mathrm{ds}} \text { at the validation points }
$$

## 6. PROPAGATION OF UNCERTAINTY IN $B-H$ CURVES TO THE TORQUE PROFILE OF THE PMSM

In this chapter, we consider two case studies where we assess the effect of $B-H$ uncertainties on the average torque and torque ripple profiles (the quantities of interest (QoIs)) of the permanent magnet synchronous machine (PMSM). The first section of this chapter illustrates case study 1 where we consider the effect of variation of all the parameters representing $B-H$ uncertainties on the QoIs and Section 6.2 illustrates case study 2 we consider the effect of wearing of punching tool on the QoIs.

### 6.1 Case study 1

The evaluation of the trained surrogate is computationally inexpensive. Hence, the torque response can be evaluated at hundreds of random samples from the input space. We consider two operating points; operating point, A, given by $I_{\mathrm{pk}}=250$ $\mathrm{A}, \phi_{c}=45 \operatorname{deg}\left(I_{q}=176.77 \mathrm{~A}, I_{d}=-176.77 \mathrm{~A}\right)$ and operating point, B, given by $I_{\mathrm{pk}}=150, \phi_{c}=60 \operatorname{deg}\left(I_{q}=75 \mathrm{~A}, I_{d}=-129.903 \mathrm{~A}\right)$. At these points, we want to observe the effect of parametric and epistemic uncertainty on the QoIs. To this end, we consider the $B-H$ uncertainties through 1000 random samples from the 7-D space defined by the distributions in rows $3-9$ in Table 5.1. Thereafter, we obtain 1000 evaluations of the torque response from the surrogate at these 1000 input samples for both the operating points. These 1000 evaluations give rise to 1000 probability density functions (PDFs) of the mean torque, sixth and twelfth harmonic components of torque. From these PDFs, we obtain the mean and $95 \%$ error bars. These error bars arise due to the limited amount of training data used in training the surrogate. The Figs. 6.1 and 6.4 show the variation of the average torque with the variation of the input parameters. Similarly, the uncertainty in


Fig. 6.1.: Illustration of PDF of average torque with variation of input parameters for operating point A
input parameters is also propagated to the sixth and twelfth harmonic components of torque as illustrated in Figs. 6.2, 6.3, 6.5 and 6.6 respectively. The two operating points under consideration belong to two different torque regions, namely, high (>300 Nm ) and medium ( $>150 \mathrm{Nm}$ and $<300 \mathrm{Nm}$ ) torque regions. The propagation study shows the influence of input parameters at these regions.

### 6.2 Case Study 2

In another instance, we consider the effect of gradual wearing of the punching tool on the torque profile of the PMSM. Additionally, we also assume that the punching tools responsible for all the degraded zones are in the same state. Thus, all the degraded zones follow the same $B-H$ characteristic. To perform the analysis, we consider another operating point, C, with $I_{\mathrm{pk}}=75 \mathrm{~A}$ and $\phi_{c}=60 \mathrm{deg}\left(I_{q}=37.5 \mathrm{~A}\right.$, $\left.I_{d}=-64.951 \mathrm{~A}\right)$. At this point, we fix the value of the last two rows of distribution in Table 5.1 to their mean value and vary the distribution from rows $3-7$ linearly from


Fig. 6.2.: Illustration of PDF of sixth harmonic component of torque with variation of parameters for operating point A


Fig. 6.3.: Illustration of PDF of twelfth harmonic component of torque with variation of input parameters for operating point A


Fig. 6.4.: Illustration of PDF of average torque with variation of input parameters for operating point B


Fig. 6.5.: Illustration of PDF of sixth harmonic component of torque with variation of parameters for operating point $B$


Fig. 6.6.: Illustration of PDF of twelfth harmonic component of torque with variation of input parameters for operating point $B$


Fig. 6.7.: Illustration of torque waveform with the gradual wearing of punching tool
their lower bound to the upper bound. To do so, we sample 1000 points that vary linearly in this space and obtain the predictive mean values of the torque waveform from the surrogate. The variation in the waveform with the variation of the state of the punching tool can be visualized in Fig. 6.7. The histogram of the average torque can be observed in Figs. 6.8. It can be seen that the effect of punching has minimal effect on the torque profile of the machine. Since we have established in Section 5.2.3 that the sensitivity of sixth and twelfth harmonic components of torque cannot be predicted adequately by the surrogate model, we do not perform the study concerning the sensitivity of these QoIs to punching uncertainty.

Furthermore, we perform a similar study in an entire operating range by varying $I_{\mathrm{pk}}$ from 0 to 250 A and $\phi_{c}$ from 0 to 75 degrees. The mean and standard deviation of the average torque can be observed in Figs. 6.9 and 6.10. Fig. 6.10 confirms that the effect of punching is minimal in the considered operating range as well. Since, an interior PMSM is designed to operate in the flux-weakening region, it can be conveniently claimed that punching has minimal effect on the torque waveform of a interior PMSM from the results shown in Fig. 6.10.


Fig. 6.8.: Illustration of average torque with the gradual wearing of punching tool


Fig. 6.9.: Illustration of mean of average torque with the gradual wearing of punching tool in an operating range


Fig. 6.10.: Illustration of standard deviation of average torque with the gradual wearing of punching tool in an operating range

## 7. PROPAGATION OF UNCERTAINTY IN $B$ - $H$ CURVES AND REMANENT FLUX DENSITY OF PERMANENT MAGNETS TO THE PMSM DRIVE SYSTEM

In this chapter, we assess the combined effect of uncertainty in $B-H$ curves and remanent magnetic flux density $\left(B_{r}\right)$ of permanent magnets on the maximum average torque $(\max (\bar{T}))$ vs rotor mechanical speed $\left(\omega_{\mathrm{rm}}\right)$ characteristics of the permanent magnet synchronous machine (PMSM), minimum DC-link voltage required for the machine/drive system and the current limit of the PMSM operating under maximum torque per ampere (MTPA) condition.

### 7.1 Case Study 1

Initially, we evaluate the $\max (\bar{T})$ vs $\omega_{\text {rm }}$ characteristics of the PMSM operating under no uncertainty in $B-H$ curves and $B_{r}$. We obtain these characteristics by solving an optimization problem at discrete points in the speed range, $\omega_{\mathrm{rm}} \in[0,6000$ rpm]. The problem is defined as follows,

Objective function: maximize $\bar{T}\left(I_{\mathrm{pk}}, \phi_{c}\right)$
Subject to:

1. $V_{\min }\left(I_{\mathrm{pk}}, \phi_{c}, \Lambda_{\mathrm{qS}}\left(I_{\mathrm{pk}}, \phi_{c}\right), \Lambda_{\mathrm{ds}}\left(I_{\mathrm{pk}}, \phi_{c}\right)\right) \leq V_{\mathrm{dc}}$,
2. $I_{\mathrm{pk}} \leq I_{\max }$
where $V_{\mathrm{dc}}=500 \mathrm{~V}$ is the DC-link voltage and $I_{\max }=250 \mathrm{~A}$ is the current limit of the windings in the PMSM.

We use a non-linear optimization method, constrained optimization by linear approximation (COBYLA) [44], to solve the problem. This method uses the surrogate model of $\bar{T}$ to obtain the $\max (\bar{T})$ and the surrogate models corresponding to $\Lambda_{\mathrm{qs}}$ and


Fig. 7.1.: Impact of uncertainty in $B-H$ curves and $B_{r}$ on the $\max (\bar{T})$ vs $\omega_{\mathrm{rm}}$ characteristics
$\Lambda_{\mathrm{ds}}$ to evaluate $V_{\min }$. To remove the effect of uncertainty in $B-H$ curves and $B_{r}$, we set the uncertain parameters (rows 3-6 in Table 5.1) of the surrogate models to their mean values. Thereafter, we prepare a look-up table of $I_{\mathrm{pk}}$ and $\phi_{c}$ at discrete $\omega_{\mathrm{rm}}$ 's by solving the optimization problem. The values of the look-up table are reported in Tables 7.1 and 7.2.

Our goal is to observe the uncertainty in the nominal $\max (\bar{T})$ vs $\omega_{\text {rm }}$ characteristics of the machine due to the uncertainty in $B-H$ curves and $B_{r}$. Thus, at each operating point in the prepared look-up table, we evaluate the average torque from the surrogate at 1000 random samples from the original distribution of the parameters from rows 3-6 mentioned in Table 5.1, i.e. the parameters reflecting uncertainty in $B-H$ curves and $B_{r}$. The $\max (\bar{T})$ vs $\omega_{\text {rm }}$ curve under the impact of considered uncertainties can be observed in Fig. 7.1. The $95 \%$ error bar corresponds to the $95 \%$ of the total variation caused due to the influence of uncertainties in $B-H$ curves and $B_{r}$ about the nominal characteristics.

Table 7.1.: Look-up table of $\max (\bar{T})$ vs $\omega_{\mathrm{rm}}$ characteristics of PMSM

| Mechanical rotor speed (rpm) | Amplitude of current (A) | Current angle (degree) |
| :---: | :---: | :---: |
| 0.0000 | 250.0000 | 47.5700 |
| 122.4490 | 250.0000 | 47.5700 |
| 244.8980 | 250.0000 | 47.5700 |
| 367.3469 | 250.0000 | 47.5700 |
| 489.7959 | 250.0000 | 47.5700 |
| 612.2449 | 250.0000 | 47.5700 |
| 734.6939 | 250.0000 | 47.5700 |
| 857.1429 | 250.0000 | 47.5700 |
| 979.5918 | 250.0000 | 47.5700 |
| 1102.0408 | 250.0000 | 47.5700 |
| 1224.4898 | 250.0000 | 47.5700 |
| 1346.9388 | 250.0000 | 47.5700 |
| 1469.3878 | 250.0000 | 47.5700 |
| 1591.8367 | 250.0000 | 47.5701 |
| 1714.2857 | 250.0000 | 50.8713 |
| 1836.7347 | 250.0000 | 58.2778 |
| 1959.1837 | 250.0000 | 62.9381 |
| 2081.6327 | 250.0000 | 66.2818 |
| 2204.0816 | 250.0000 | 68.8989 |
| 2326.5306 | 241.0405 | 70.0448 |
| 2448.9796 | 232.1874 | 70.9050 |
| 2571.4286 | 224.4625 | 71.6639 |
| 2693.8776 | 217.6144 | 72.3386 |
| 2816.3265 | 211.4580 | 72.9413 |
| 2938.7755 | 205.8735 | 73.4832 |

Table 7.2.: Look-up table of $\max (\bar{T})$ vs $\omega_{\text {rm }}$ characteristics of PMSM (contd.)

| Mechanical rotor speed (rpm) | Amplitude of current (A) | Current angle (degree) |
| :---: | :---: | :---: |
| 3061.2245 | 200.7831 | 73.9742 |
| 3183.6735 | 196.1444 | 74.4248 |
| 3306.1224 | 191.9171 | 74.8426 |
| 3428.5714 | 188.0651 | 75.2336 |
| 3551.0204 | 184.5475 | 75.6016 |
| 3673.4694 | 181.3265 | 75.9495 |
| 3795.9184 | 178.3638 | 76.2788 |
| 3918.3673 | 175.6282 | 76.5911 |
| 4040.8163 | 173.0917 | 76.8875 |
| 4163.2653 | 170.7317 | 77.1693 |
| 4285.7143 | 168.5289 | 77.4373 |
| 4408.1633 | 166.4688 | 77.6928 |
| 4530.6122 | 164.5359 | 77.9364 |
| 4653.0612 | 162.7216 | 78.1694 |
| 4775.5102 | 161.0153 | 78.3923 |
| 4897.9592 | 159.4096 | 78.6061 |
| 5020.4082 | 157.8966 | 78.8114 |
| 5142.8571 | 156.4712 | 79.0089 |
| 5265.3061 | 155.1258 | 79.1992 |
| 5387.7551 | 153.8560 | 79.3827 |
| 5510.2041 | 152.6572 | 79.5600 |
| 5632.6531 | 151.5237 | 79.7313 |
| 5755.1020 | 150.4531 | 79.8972 |
| 5877.5510 | 149.4398 | 80.0579 |
| 6000.0000 | 148.4804 | 80.2137 |

Consequently, due to the variation of the $\max (\bar{T})$ vs $\omega_{\mathrm{rm}}$ characteristics, there is variation of the minimum DC -link voltage, $V_{\min }$, required to sustain the demanded torque of the machine. This deviation can be observed in Fig. 7.2. The maximum deviation of $V_{\min }$ is at $\omega_{\mathrm{rm}}=6000 \mathrm{rpm}$. Thus, we observe the probability density function (PDF) of the variation of $V_{\min }$ at $\omega_{\mathrm{rm}}=6000 \mathrm{rpm}$ in Fig. 7.3. It can be inferred from Fig. 7.3 that to be able to sustain the required torque, the $V_{\mathrm{dc}}$ must be at least greater than 520 V ( $4 \%$ greater than the nominal value).


Fig. 7.2.: Impact of uncertainty in $B-H$ curves and $B_{r}$ on $V_{\min }$ vs $\omega_{\mathrm{rm}}$ characteristics

### 7.2 Case Study 2

In the previous study, it can be observed that at low speeds, the PMSM operates under current limited region where the torque capability of the nominal machine, i.e. the PMSM operating under no uncertainty, is limited by $I_{\max }$. In this zone, the PMSM is operating under MTPA condition. Considering the nominal machine, it can be observed in Fig. 7.1 that the $I_{\mathrm{pk}}$ required to sustain the $\max (\bar{T})$ would be more than $I_{\max }$. We intend to observe the PDF of the variation of $I_{\mathrm{pk}}$ of the nominal


Fig. 7.3.: PDF of $V_{\min }$ at $\omega_{\mathrm{rm}}=6000 \mathrm{rpm}$ due to uncertainty in $B-H$ curves and $B_{r}$ on $V_{\text {min }}$
machine in this region. To this end, we evaluate the MTPA curve of the machine using the surrogate of $\bar{T}$ at discrete points varying $I_{\mathrm{pk}} \in[0,300 \mathrm{~A}]$ (see Fig. 7.4). It can be observed that at low torque/current region, the surrogate fails to adequately predict the average torque as established in Section 5.3.1. We use a shape-preserving piecewise cubic Hermite polynomial (PCHIP) function to interpolate the values of $I_{\mathrm{pk}}$ as a function of $\max (\bar{T}), I_{\mathrm{pk}}(\max (\bar{T}))$. Using this function, we obtain the variation of $I_{\mathrm{pk}}$ with the variation of $\max (\bar{T})$ under the influence of uncertainty in $B$ - $H$ curves and $B_{r}$. The PDF of this variation is shown in Fig. 7.5. It can be observed that $I_{\mathrm{pk}}$ overshoots $I_{\text {max }}$ by more than 5 A .


Fig. 7.4.: Illustration of MTPA operation of the PMSM in the entire operating range


Fig. 7.5.: PDF of $I_{\mathrm{pk}}$ due to uncertainty in $B-H$ curves and $B_{r}$ operating under MTPA condition

## 8. CONCLUSION

In this study, our attempt was to quantify the effect of uncertainty in the $B-H$ curves due to the state of the punching tool, unpredictability of the material composition and the uncertainty in the value of saturation magnetization on the torque profile of a permanent magnet synchronous motor (PMSM). We extended the work further to consider the combined effect of uncertainty in $B-H$ curves and remanent flux density of permanent magnets on the PMSM machine/drive system.

The model for quantifying the uncertainty in $B-H$ curves of steel due to punching was built using principal component analysis (PCA). Using a synthetic data set of $B-H$ curves, it was shown that by applying PCA on the data set, the number of uncertain dimensions was reduced from 41 to 1 . Additionally, using this 1 uncertain input in the low-dimensional space, samples of $B-H$ curves could be generated for training the surrogate model cheaply. Furthermore, while conducting the propagation study, it was computationally efficient to deal with 1 uncertain input in the low-dimensional space instead of 41 in the high-dimensional space. We considered the material uncertainty and the epistemic uncertainty in the saturation flux density of the $B-H$ curve as well. To this end, we modeled the uncertainties in these quantities using random variables based on our knowledge from literature.

The mesh in the finite element (FE) simulator was modified to incorporate the degraded zones reflecting the local plastic deformation due to punching. All the elements in the zone were assumed to have a certain magnetic characteristic (dictated by the degraded $B$ - $H$ curves) depending on the sample obtained from the reduced order stochastic model. In Chapter 5, an inexpensive surrogate model using Gaussian process (GP) regression was built to conduct the propagation study. Again, PCA was used to reduce the dimensionality of the output from the FE simulator reducing the number of GP functions required to learn and predict the output. The dimensionality
of the output was reduced from 32 in the high-dimensional space to 8 in the lowdimensional space. Thus, only 8 scalar GP functions were used to learn the 8 principal components in the low-dimensional space. Using these GP functions, a prediction accuracy of $99 \%$ was achieved for $92 \%$ of the samples from the validation set. However, at low-torque region (average torque $<50 \mathrm{Nm}$ ), the surrogate fails to predict the output with significant accuracy (maximum relative $L_{2}$-norm error $>5 \%$ ).

Using the trained surrogate, certain statistics were evaluated about the torque response of the machine. We conducted a parametric uncertainty study where it was found that the limited number of training points used in training of the surrogate has an impact on the surrogate evaluation providing an uncertain statistics about the average torque, the sixth and twelfth harmonic components of the torque. Additionally, in the second case study, we found that the uncertainty due to punching on $B-H$ curves has negligible impact on the output torque of the PMSM.

We extended this work further to consider the combined impact of uncertainties in $B$ - $H$ curves and remanent flux density of permanent magnets on the PMSM machine/drive system. To this end, we built 3 surrogate models for average torque and $q$ - and $d$ - axes flux linkages of the machine using GP regression. Finally, using the surrogate models, we conducted a propagation study observing the effect of the considered uncertainties on the maximum average torque $(\max (\bar{T}))$ vs speed $\left(\omega_{\mathrm{rm}}\right)$ characteristics of the PMSM, the minimum DC-link voltage $\left(V_{\min }\right)$ required to drive the machine and the current limit of the PMSM operating under maximum torque per ampere (MTPA) condition. It was found that the considered uncertainties have greater effect on $\max (\bar{T})$ vs $\omega_{\text {rm }}$ characteristics of the PMSM in the MTPA region than in the Voltage limited region. Additionally, it was found that the $V_{\min }$ required to drive the machine under uncertainty has to be atleast $4 \%$ greater than its nominal value and the current rating of the phase windings must be at least $2 \%$ greater than their nominal value to be able to operate under the considered uncertainties.

The future scope of this work would be to consider the impact of uncertainties due to variations in geometry of the machine on the output torque of the PMSM.

Furthermore, it would be interesting to observe the effects of $B-H$ curve uncertainties on the core loss of the machine. The training of the surrogate models in this study was done by sampling input points from the entire parameter space. However, this method of sampling training points can be improved by strategic sampling using the information of epistemic uncertainty provided by the model. Additionally, the length scale of each input parameter from the covariance function (Eq. (5.25)) that provides the sensitivity of the each input dimension to the response is another variable that can be used for strategic sampling. Using an acquisition function that depends on these variables, strategic sampling can be done in the input parameter space. By employing this technique, the number of samples required to train the surrogate would reduce, improving the prediction at low torque region at the same time.

REFERENCES

## REFERENCES

[1] E. Mangiorou, "Correlation of grain growth phenomena with magnetic properties in non - oriented electrical steels," IOP Conference Series: Materials Science and Engineering, vol. 108, p. 012016, March. 2016.
[2] S. Szymura, C. Adamczyk, H. Majchrzak, J. Mehlis, and A. Zawada, "Effect of composition and impurities on the magnetic properties of low-carbon electrical steels," Journal of Material Science Letter, vol. 6, no. 11, pp. 1259-1260, November. 1987.
[3] K. Honma, T. Nozawa, H. Kobayashi, Y. Shimoyama, I. Tachino, and K. Miyoshi, "Development of non-oriented and grain-oriented silicon steel," IEEE Transaction on Magnetics, vol. 21, no. 5, pp. 1903-1908, September. 1985.
[4] M. deCampos, T. Yonamine, M. Fukuhara, F. Landgraf, C. Achete, and F. Missell, "Effect of Frequency on the Iron Losses of $0.5 \%$ and $1.5 \%$ Si Nonoriented Electrical Steels," IEEE Transaction on Magnetics, vol. 42, no. 10, pp. 28122814, October. 2006.
[5] N. Takahashi, M. Morishita, D. Miyagi, and M. Nakano, "Comparison of Magnetic Properties of Magnetic Materials at High Temperature," IEEE Transaction on Magnetics, vol. 47, no. 10, pp. 4352-4355, October. 2011.
[6] A. Krings, S. A. Mousavi, O. Wallmark, and J. Soulard, "Temperature influence of NiFe Steel laminations on the characteristics of small slotless permanent magnet machines," IEEE Transaction on Magnetics, vol. 49, no. 7, pp. 4064-4067, July. 2013.
[7] A. Schoppa, J. Schneider, and J.-O. Roth, "Influence of the cutting process on the magnetic properties of non-oriented electrical steels," Journal of Magnetism and Magnetic Material, vol. 215-216, pp. 100-102, June. 2000.
[8] M. Oka, M. Kawano, K. Shimada, T. Kai, and M. Enokizono, "Evaluation of the magnetic properties of the rotating machines for the building factor clarification," Przeglad Elektrotechniczny (Electrical Review), vol. 87, no. 9B, pp. 43-46, 2011.
[9] W. Deprez, J. Schneider, T. Kochmann, F. Henrotte, and K. Hameyer, "Influence of the manufacturing process on the magnetic properties of electrical steel in ecores," Soft Magnetic Materials, vol. 16, 2003.
[10] H. M. S. Harstick, M. Ritter, and W. Riehemann, "Influence of punching and tool wear on the magnetic properties of non-oriented electrical Steel," IEEE Transaction on Magnetics, vol. 50, no. 4, pp. 1-4, April. 2014.
[11] H. A. Weiss, P. Trober, R. Golle, S. Steentjes, N. Leuning, S. Elfgen, K. Hameyer, and W. Volk, "Impact of punching parameter variations on magnetic properties of nongrain-Oriented Electrical Steel," IEEE Transactions on Industrial Applications, vol. 54, no. 6, pp. 5869-5878, November. 2018.
[12] H. Weiss, N. Leuning, S. Steentjes, K. Hameyer, T. Andorfer, S. Jenner, and W. Volk, "Influence of shear cutting parameters on the electromagnetic properties of non-oriented electrical steel sheets," Journal of Magnetism and Magnetic Material, vol. 421, pp. 250-259, January. 2017.
[13] M. Bali and A. Muetze, "The degradation depth of non-grain oriented electrical steel sheets of electric machines due to mechanical and laser cutting: A state-of-the-art review," IEEE Transactions on Industrial Applications, vol. 55, no. 1, pp. 366-375, January. 2019.
[14] D. K. Rao and V. Kuptsov, "Effective use of magnetization data in the Design of electric machines with overfluxed regions," IEEE Transaction on Magnetics, vol. 51, no. 7, pp. 1-9, July. 2015.
[15] A. Krings, Iron losses in electrical machines : influence of material properties, manufacturing processes and inverter operation. KTH Royal Institute of Technology, 2014.
[16] K. Bourchas, A. Stening, J. Soulard, A. Broddefalk, M. Lindenmo, M. Dahlen, and F. Gyllensten, "Quantifying effects of cutting and welding on Magnetic properties of electrical steels," IEEE Transactions on Industrial Applications, vol. 53, no. 5, pp. 4269-4278, September. 2017.
[17] M. Bali, H. De Gersem, and A. Muetze, "Finite-Element Modeling of Magnetic Material Degradation Due to Punching," IEEE Transaction on Magnetics, vol. 50, no. 2, pp. 745-748, February. 2014.
[18] A. J. Clerc and A. Muetze, "Measurement of stator core magnetic degradation during the manufacturing process," IEEE Transactions on Industry Applications, 2012.
[19] Z. Wang, S. Li, R. Cui, X. Wang, and B. Wang, "Influence of grain Size and blanking clearance on magnetic properties deterioration of non-oriented electrical steel," IEEE Transaction on Magnetics, vol. 54, no. 5, pp. 1-7, May. 2018.
[20] D. Schuller, D. Hohs, S. Schweizer, D. Goll, and G. Schneider, "Tailoring the microstructure of soft magnetic composites for electric motor applications," IEEE Transaction on Magnetics, vol. 55, no. 2, pp. 1-4, February. 2019.
[21] J. Brauer, "Simple equations for the magnetization and reluctivity curves of steel," IEEE Transaction on Magnetics, vol. 11, no. 1, pp. 81-81, January. 1975.
[22] A. E. Umenei, Y. Melikhov, and D. C. Jiles, "Models for extrapolation of magnetization Data on magnetic cores to high fields," IEEE Transaction on Magnetics, vol. 47, no. 12, pp. 4707-4711, December. 2011.
[23] A. M. Knight and D. G. Dorrell, "Improving the torque prediction of saturated automotive drive machines by accurate representation of saturated $\$ \mathrm{~B} / \mathrm{H} \$$ Curves," IEEE Transaction on Magnetics, vol. 48, no. 11, pp. 4630-4633, November. 2012.
[24] R. Ramarotafika, A. Benabou, and S. Clenet, "Stochastic modeling of soft magnetic properties of electrical steels: Application to stators of electrical machines," IEEE Transaction on Magnetics, vol. 48, no. 10, pp. 2573-2584, October. 2012.
[25] S. Clenet, "Uncertainty quantification in computational electromagnetics: The stochastic approach," International Compumag society Newsletters, vol. 20, no. 1, pp. 2-12, March. 2013.
[26] P. Offermann and K. Hameyer, "A polynomial chaos meta model for non linear stochastic magnet variations," COMPEL, vol. 32, no. 4, pp. 1211-1218, 2013.
[27] A. Kallaste, A. Belahcen, and T. Vaimann, "Effect of pm parameters variability on the operation quantities of a wind generator," in 2015 IEEE WEMDCD, March. 2015, pp. 242-247.
[28] Z. Bontinck, H. De Gersem, and S. Schops, "Response Surface Models for the Uncertainty Quantification of Eccentric Permanent Magnet Synchronous Machines," IEEE Transaction on Magnetics, vol. 52, no. 3, pp. 1-4, March. 2016.
[29] A. Bartel, H. De Gersem, T. Hulsmann, U. Romer, S. Schops, and T. Weiland, "Quantification of uncertainty in the field quality of magnets originating from material measurements," IEEE Transaction on Magnetics, vol. 49, no. 5, pp. 2367-2370, May. 2013.
[30] R. Tripathy, I. Bilionis, and M. Gonzalez, "Gaussian processes with built-in dimensionality reduction: Applications to high-dimensional uncertainty propagation," Journal of Computational Physics, vol. 321, pp. 191-223, 92016.
[31] T. Burress, C. Coomer, S. Campbell, L. Seiber, L. D. Marlino, R. Staunton, and J. Cunningham, "Evaluation of the 2007 toyota camry hybrid synergy drive system," Oak Ridge National Laboratory (ORNL), Oak Ridge, TN, Tech. Rep., 2008.
[32] P. Krause, O. Wasynczuk, S. D. Sudhoff, and S. Pekarek, Reference-Frame Theory. IEEE, 2013.
[33] J. P. A. Bastos and N. Sadowski, Electromagnetic modeling by finite element methods. Marcel Dekker, 2003.
[34] N. Sadowski, Y. Lefèvre, M. Lajoie-Mazenc, and J. Cros, "Finite element torque calculation in electrical machines while considering the movement," IEEE transactions on magnetics, vol. 28, no. 2, pp. 1410-1413, 1992.
[35] J. Coulomb, "A methodology for the determination of global electromechanical quantities from a finite element analysis and its application to the evaluation of magnetic forces, torques and stiffness," IEEE Transaction on Magnetics, vol. 19, no. 6, pp. 2514-2519, November. 1983.
[36] A. Arkkio, "Finite element analysis of cage induction motors fed by static frequency converters," IEEE Transaction on Magnetics, vol. 26, no. 2, pp. 551-554, March. 1990.
[37] S.-K. Kuo, W.-C. Lee, S.-Y. Lin, and C.-Y. Lu, "The Influence of Cutting Edge Deformations on Magnetic Performance Degradation of Electrical Steel," IEEE Transactions on Industry Applications, vol. 51, no. 6, pp. 4357-4363, November. 2015.
[38] L. v. d. Maaten, L. van der Maaten, E. O. Postma, and H. J. van den Herik, "Dimensionality Reduction: A Comparative Review," Journal of Machine Learning Research, 2008.
[39] C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.
[40] I. Bilionis, E. M. Constantinescu, and M. Anitescu, "Data-driven model for solar irradiation based on satellite observations," Sol. Energy, vol. 110, pp. 22-38, December. 2014.
[41] C. M. Bishop, "Continuous latent variables," in Pattern Recognition and Machine Learning. Springer, 2006, p. 561.
[42] A. I. H. Committee, Metals Handbook, 8th Edition. Volume 1: Properties and Selection. American Society for Metals, 1966.
[43] J. Hsu, C. Ayers, C. Coomer et al., "Report on toyota/prius motor design and manufacturing assessment," Oak Ridge Nat. Laboratory (ORNL), Oak Ridge, TN (United States), Tech. Rep., 2004.
[44] A. Conn, K. Scheinberg, and P. Toint, On the convergence of derivative-free methods for unconstrained optimization. Cambridge University Press, 1997, pp. 83-10.

APPENDIX

## A. APPENDIX

The data for the synthetic $B-H$ is provided here. The vector of $B$ values, $\mathbf{b}$, is same for all the curves. The vector of $H$ values for the curves are represented as columns of $\mathbf{H}$ matrix mentioned in Section 4.1.

Table A.1.: Table of $B$ values of synthetically generated data

| $\mathbf{b}$ |  |  |
| :---: | :---: | :---: |
| 0.0416 | 0.6241 | 1.2065 |
| 0.0832 | 0.6657 | 1.2481 |
| 0.1248 | 0.7073 | 1.2897 |
| 0.1664 | 0.7489 | 1.3313 |
| 0.2080 | 0.7905 | 1.3729 |
| 0.2496 | 0.8321 | 1.4140 |
| 0.2912 | 0.8737 | 1.4542 |
| 0.3328 | 0.9153 | 1.4936 |
| 0.3744 | 0.9569 | 1.5335 |
| 0.4160 | 0.9985 | 1.5736 |
| 0.4576 | 1.0401 | 1.6139 |
| 0.4992 | 1.0817 | 1.6538 |
| 0.5409 | 1.1233 | 1.6934 |
| 0.5825 | 1.1649 |  |

Table A.2.: Table of $H$ values of synthetically generated data

| $\mathbf{h}^{(1)}$ |  | $\mathbf{h}^{(2)}$ |  | $\mathbf{h}^{(3)}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 26.5302 | 666.1948 | 21.7077 | 476.8970 | 28.6060 | 747.6765 |
| 38.3408 | 774.9766 | 31.0894 | 567.7889 | 41.4621 | 864.1589 |
| 45.4029 | 892.9599 | 36.4757 | 673.8647 | 49.2455 | 987.2677 |
| 52.0498 | 1047.6323 | 41.4198 | 819.9388 | 56.6254 | 1145.6411 |
| 58.3107 | 1279.2378 | 45.9534 | 1045.2204 | 63.6298 | 1379.9688 |
| 64.4285 | 1699.7925 | 50.2749 | 1455.8066 | 70.5208 | 1804.8143 |
| 71.0394 | 2370.8106 | 54.8802 | 2126.7851 | 77.9951 | 2475.8495 |
| 78.2768 | 3363.5671 | 59.8617 | 3138.8251 | 86.2034 | 3460.3055 |
| 86.6422 | 4505.5536 | 65.5877 | 4323.6852 | 95.7049 | 4583.8375 |
| 95.6479 | 5880.6249 | 71.6713 | 5722.1750 | 105.9684 | 5948.8284 |
| 105.4933 | 7285.2091 | 78.2520 | 7115.8279 | 117.2191 | 7358.1180 |
| 116.8408 | 8865.0238 | 85.8063 | 8661.6379 | 130.1994 | 8952.5696 |
| 128.9929 | 10653.2414 | 93.8053 | 10408.8416 | 144.1391 | 10758.4414 |
| 142.2119 |  | 102.4362 |  | 159.3331 |  |
| 157.3568 |  | 112.3092 |  | 176.7472 |  |
| 173.4059 |  | 122.6890 |  | 195.2366 |  |
| 190.6790 |  | 133.8146 |  | 215.1558 |  |
| 210.1184 |  | 146.3607 |  | 237.5623 |  |
| 232.6636 |  | 160.9942 |  | 263.5132 |  |
| 257.3212 |  | 177.0555 |  | 291.8709 |  |
| 284.8009 |  | 195.0916 |  | 323.4156 |  |
| 314.0539 | 214.4717 |  | 356.9183 |  |  |
| 346.5500 |  | 236.3287 |  | 393.9940 |  |
| 383.4672 |  | 261.6450 |  | 435.9046 |  |
| 423.5610 |  | 289.8297 |  | 481.1246 |  |
| 469.1894 |  | 322.8652 |  | 532.1734 |  |
| 525.2690 |  | 364.7034 |  | 594.3832 |  |
| 588.8726 |  | 414.1770 |  | 664.0689 |  |


| $\mathbf{h}^{(4)}$ |  | $\mathbf{h}^{(5)}$ |  | $\mathbf{h}^{(6)}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 28.6060 | 747.6765 | 22.4091 | 504.4305 | 20.8604 | 443.6395 |
| 41.4621 | 864.1589 | 32.1441 | 597.9245 | 29.8154 | 531.3884 |
| 49.2455 | 987.2677 | 37.7742 | 705.7322 | 34.9073 | 635.3722 |
| 56.6254 | 1145.6411 | 42.9660 | 853.0570 | 39.5523 | 779.9356 |
| 63.6298 | 1379.9688 | 47.7508 | 1079.2584 | 43.7824 | 1004.1062 |
| 70.5208 | 1804.8143 | 52.3335 | 1491.2945 | 47.7882 | 1412.9411 |
| 77.9951 | 2475.8495 | 57.2306 | 2162.2788 | 52.0412 | 2083.9126 |
| 86.2034 | 3460.3055 | 62.5402 | 3171.5139 | 56.6264 | 3099.3405 |
| 95.7049 | 4583.8375 | 68.6501 | 4350.1381 | 61.8887 | 4291.7330 |
| 105.9684 | 5948.8284 | 75.1587 | 5745.2217 | 67.4589 | 5694.3372 |
| 117.2191 | 7358.1180 | 82.2143 | 7140.4645 | 73.4661 | 7086.0696 |
| 130.1994 | 8952.5696 | 90.3202 | 8691.2205 | 80.3538 | 8625.9054 |
| 144.1391 | 10758.4414 | 98.9234 | 10444.3898 | 87.6233 | 10365.9034 |
| 159.3331 |  | 108.2216 |  | 95.4481 |  |
| 176.7472 |  | 118.8614 |  | 104.3949 |  |
| 195.2366 |  | 130.0658 |  | 113.7786 |  |
| 215.1558 |  | 142.0856 |  | 123.8242 |  |
| 237.5623 |  | 155.6343 |  | 135.1592 |  |
| 263.5132 |  | 171.4185 |  | 148.4027 |  |
| 291.8709 |  | 188.7302 |  | 162.9537 |  |
| 323.4156 |  | 208.1399 |  | 179.3307 |  |
| 356.9183 |  | 228.9560 |  | 196.9762 |  |
| 393.9940 |  | 252.3605 |  | 216.9641 |  |
| 435.9046 |  | 279.3641 |  | 240.2422 |  |
| 481.1246 |  | 309.2810 |  | 266.3347 |  |
| 532.1734 |  | 344.1482 |  | 297.1577 |  |
| 594.3832 |  | 388.0578 |  | 336.4939 |  |
| 64.0689 |  |  |  | 383.4850 |  |


| $\mathbf{h}^{(7)}$ |  | $\mathbf{h}^{(8)}$ |  | $\mathbf{h}^{(9)}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 20.8604 | 443.6395 | 19.3772 | 385.4185 | 27.7004 | 712.1265 |
| 29.8154 | 531.3884 | 27.5852 | 467.6652 | 40.1003 | 825.2491 |
| 34.9073 | 635.3722 | 32.1617 | 567.9866 | 47.5690 | 946.1217 |
| 39.5523 | 779.9356 | 36.2829 | 709.9056 | 54.6291 | 1102.8804 |
| 43.7824 | 1004.1062 | 39.9817 | 932.1312 | 61.3091 | 1336.0204 |
| 47.7882 | 1412.9411 | 43.4351 | 1337.9001 | 67.8628 | 1758.9938 |
| 52.0412 | 2083.9126 | 47.0712 | 2008.8594 | 74.9604 | 2430.0216 |
| 56.6264 | 3099.3405 | 50.9626 | 3030.2182 | 82.7451 | 3418.0990 |
| 61.8887 | 4291.7330 | 55.4132 | 4235.7971 | 91.7509 | 4549.6826 |
| 67.4589 | 5694.3372 | 60.0846 | 5645.6039 | 101.4656 | 5919.0716 |
| 73.4661 | 7086.0696 | 65.0877 | 7033.9742 | 112.1032 | 7326.3082 |
| 80.3538 | 8625.9054 | 70.8088 | 8563.3515 | 124.3711 | 8914.3738 |
| 87.6233 | 10365.9034 | 76.8009 | 10290.7351 | 137.5309 | 10712.5431 |
| 95.4481 |  | 83.2145 |  | 151.8632 |  |
| 104.3949 |  | 90.5399 |  | 168.2873 |  |
| 113.7786 |  | 98.1800 |  | 185.7120 |  |
| 123.8242 |  | 106.3348 |  | 204.4767 |  |
| 135.1592 |  | 115.5497 |  | 225.5887 |  |
| 148.4027 |  | 126.3598 |  | 250.0537 |  |
| 162.9537 |  | 138.2670 |  | 276.7971 |  |
| 179.3307 |  | 151.7395 |  | 306.5682 |  |
| 196.9762 |  | 166.3484 |  | 338.2167 |  |
| 216.9641 |  | 183.0641 |  | 373.2944 |  |
| 240.2422 |  | 202.7742 |  | 413.0264 |  |
| 266.3347 |  | 225.2039 |  | 456.0099 |  |
| 297.1577 |  | 252.1539 |  | 504.6938 |  |
| 336.4939 |  | 287.1099 |  | 564.2290 |  |
| 383.4850 |  |  |  |  |  |


| $\mathbf{h}^{(10)}$ |  | $\mathbf{h}^{(11)}$ |  | $\mathbf{h}^{(12)}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 27.7004 | 712.1265 | 23.6546 | 553.3196 | 28.5697 | 746.2492 |
| 40.1003 | 825.2491 | 34.0169 | 651.4340 | 41.4074 | 862.5966 |
| 47.5690 | 946.1217 | 40.0798 | 762.3171 | 49.1782 | 985.6157 |
| 54.6291 | 1102.8804 | 45.7113 | 911.8624 | 56.5452 | 1143.9242 |
| 61.3091 | 1336.0204 | 50.9423 | 1139.6971 | 63.5367 | 1378.2042 |
| 67.8628 | 1758.9938 | 55.9889 | 1554.3078 | 70.4141 | 1802.9746 |
| 74.9604 | 2430.0216 | 61.4040 | 2225.3023 | 77.8732 | 2474.0095 |
| 82.7451 | 3418.0990 | 67.2962 | 3229.5572 | 86.0646 | 3458.6109 |
| 91.7509 | 4549.6826 | 74.0878 | 4397.1085 | 95.5461 | 4582.4661 |
| 101.4656 | 5919.0716 | 81.3510 | 5786.1439 | 105.7877 | 5947.6337 |
| 112.1032 | 7326.3082 | 89.2498 | 7184.2099 | 117.0137 | 7356.8408 |
| 124.3711 | 8914.3738 | 98.3354 | 8743.7482 | 129.9654 | 8951.0360 |
| 137.5309 | 10712.5431 | 108.0111 | 10507.5099 | 143.8738 | 10756.5985 |
| 151.8632 |  | 118.4943 |  | 159.0332 |  |
| 168.2873 |  | 130.4957 |  | 176.4075 |  |
| 185.7120 |  | 143.1643 |  | 194.8542 |  |
| 204.4767 |  | 156.7717 |  | 214.7270 |  |
| 225.5887 |  | 172.1007 |  | 237.0816 |  |
| 250.0537 |  | 189.9283 |  | 262.9728 |  |
| 276.7971 |  | 209.4601 |  | 291.2657 |  |
| 306.5682 |  | 231.3088 |  | 322.7392 |  |
| 338.2167 |  | 254.6747 |  | 356.1674 |  |
| 373.2944 |  | 280.8269 |  | 393.1628 |  |
| 413.0264 |  | 310.8266 |  | 434.9860 |  |
| 456.0099 |  | 343.8193 |  | 480.1162 |  |
| 504.6938 | 381.9387 |  | 531.0701 |  |  |
| 564.2290 |  | 429.5264 |  | 593.1725 |  |
|  |  |  |  |  |  |


| $\mathbf{h}^{(13)}$ |  | $\mathbf{h}^{(14)}$ |  | $\mathbf{h}^{(15)}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 28.5697 | 746.2492 | 25.1148 | 610.6350 | 24.7978 | 598.1945 |
| 41.4074 | 862.5966 | 36.2125 | 714.1661 | 35.7359 | 700.5498 |
| 49.1782 | 985.6157 | 42.7827 | 828.6544 | 42.1960 | 814.2557 |
| 56.5452 | 1143.9242 | 48.9298 | 980.8032 | 48.2313 | 965.8393 |
| 63.5367 | 1378.2042 | 54.6838 | 1210.5526 | 53.8717 | 1195.1732 |
| 70.4141 | 1802.9746 | 60.2743 | 1628.1815 | 59.3442 | 1612.1469 |
| 77.8732 | 2474.0095 | 66.2966 | 2299.1880 | 65.2347 | 2283.1508 |
| 86.0646 | 3458.6109 | 72.8719 | 3297.6043 | 71.6617 | 3282.8344 |
| 95.5461 | 4582.4661 | 80.4626 | 4452.1744 | 79.0789 | 4440.2222 |
| 105.7877 | 5947.6337 | 88.6107 | 5834.1192 | 87.0349 | 5823.7059 |
| 117.0137 | 7356.8408 | 97.4979 | 7235.4950 | 95.7076 | 7224.3634 |
| 129.9654 | 8951.0360 | 107.7320 | 8805.3291 | 105.6925 | 8791.9627 |
| 143.8738 | 10756.5985 | 118.6652 | 10581.5089 | 116.3527 | 10565.4472 |
| 159.0332 |  | 130.5376 |  | 127.9235 |  |
| 176.4075 |  | 144.1352 |  | 141.1747 |  |
| 194.8542 |  | 158.5203 |  | 155.1872 |  |
| 214.7270 |  | 173.9890 |  | 170.2519 |  |
| 237.0816 |  | 191.4052 |  | 187.2151 |  |
| 262.9728 |  | 211.6283 |  | 206.9182 |  |
| 291.2657 |  | 233.7628 |  | 228.4878 |  |
| 322.7392 |  | 258.4709 |  | 252.5752 |  |
| 356.1674 |  | 284.8260 |  | 278.2816 |  |
| 393.1628 |  | 314.1996 |  | 306.9559 |  |
| 434.9860 |  | 347.7118 |  | 339.7057 |  |
| 480.1162 |  | 384.3103 |  | 375.5216 |  |
| 531.0701 |  | 426.2425 |  | 416.6262 |  |
| 593.1725 |  | 478.1423 |  | 467.5900 |  |
| 662.7517 |  |  |  | 526.1178 |  |


| $\mathbf{h}^{(16)}$ |  | $\mathbf{h}^{(17)}$ |  | $\mathbf{h}^{(18)}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 24.7978 | 598.1945 | 23.3389 | 540.9286 | 21.1204 | 453.8467 |
| 35.7359 | 700.5498 | 33.5423 | 637.8720 | 30.2064 | 542.5603 |
| 42.1960 | 814.2557 | 39.4954 | 747.9756 | 35.3887 | 647.1861 |
| 48.2313 | 965.8393 | 45.0155 | 896.9581 | 40.1255 | 792.2132 |
| 53.8717 | 1195.1732 | 50.1334 | 1124.3788 | 44.4487 | 1016.7248 |
| 59.3442 | 1612.1469 | 55.0625 | 1538.3370 | 48.5514 | 1426.0972 |
| 65.2347 | 2283.1508 | 60.3462 | 2209.3289 | 52.9125 | 2097.0708 |
| 71.6617 | 3282.8344 | 66.0908 | 3214.8460 | 57.6194 | 3111.4589 |
| 79.0789 | 4440.2222 | 72.7096 | 4385.2038 | 63.0240 | 4301.5397 |
| 87.0349 | 5823.7059 | 79.7816 | 5775.7721 | 68.7517 | 5702.8811 |
| 95.7076 | 7224.3634 | 87.4666 | 7173.1226 | 74.9350 | 7095.2029 |
| 105.6925 | 8791.9627 | 96.3040 | 8730.4350 | 82.0273 | 8636.8723 |
| 116.3527 | 10565.4472 | 105.7078 | 10491.5120 | 89.5207 | 10379.0818 |
| 127.9235 |  | 115.8907 |  | 97.5928 |  |
| 141.1747 |  | 127.5470 |  | 106.8239 |  |
| 155.1872 |  | 139.8445 |  | 116.5134 |  |
| 170.2519 |  | 153.0495 |  | 126.8904 |  |
| 187.2151 |  | 167.9273 |  | 138.5971 |  |
| 206.9182 |  | 185.2370 |  | 152.2672 |  |
| 228.4878 |  | 204.2061 |  | 167.2818 |  |
| 252.5752 |  | 225.4366 |  | 184.1680 |  |
| 278.2816 |  | 248.1562 |  | 202.3459 |  |
| 306.9559 |  | 273.6120 |  | 222.9074 |  |
| 339.7057 |  | 302.8524 |  | 246.8110 |  |
| 375.5216 |  | 335.0655 |  | 273.5457 |  |
| 416.6262 |  | 372.3606 |  | 305.0478 |  |
| 467.5900 |  | 419.0162 |  | 345.1519 |  |
| 526.1178 |  |  |  |  |  |


| $\mathbf{h}^{(19)}$ |  | $\mathbf{h}^{(20)}$ |  | $\mathbf{h}^{(21)}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 21.1204 | 453.8467 | 20.9101 | 445.5892 | 29.3123 | 775.4000 |
| 30.2064 | 542.5603 | 29.8901 | 533.5223 | 42.5241 | 894.5023 |
| 35.3887 | 647.1861 | 34.9993 | 637.6287 | 50.5529 | 1019.3551 |
| 40.1255 | 792.2132 | 39.6618 | 782.2808 | 58.1822 | 1178.9877 |
| 44.4487 | 1016.7248 | 43.9096 | 1006.5165 | 65.4396 | 1414.2415 |
| 48.5514 | 1426.0972 | 47.9340 | 1415.4540 | 72.5937 | 1840.5470 |
| 52.9125 | 2097.0708 | 52.2076 | 2086.4259 | 80.3616 | 2511.5880 |
| 57.6194 | 3111.4589 | 56.8161 | 3101.6552 | 88.9004 | 3493.2198 |
| 63.0240 | 4301.5397 | 62.1056 | 4293.6062 | 98.7884 | 4610.4728 |
| 68.7517 | 5702.8811 | 67.7058 | 5695.9691 | 109.4799 | 5972.0340 |
| 74.9350 | 7095.2029 | 73.7466 | 7087.8141 | 121.2087 | 7382.9245 |
| 82.0273 | 8636.8723 | 80.6735 | 8628.0002 | 134.7445 | 8982.3562 |
| 89.5207 | 10379.0818 | 87.9857 | 10368.4206 | 149.2925 | 10794.2347 |
| 97.5928 |  | 95.8577 |  | 165.1584 |  |
| 106.8239 |  | 104.8589 |  | 183.3446 |  |
| 116.5134 |  | 114.3010 |  | 202.6643 |  |
| 126.8904 |  | 124.4099 |  | 223.4838 |  |
| 138.5971 |  | 135.8159 |  | 246.8999 |  |
| 152.2672 |  | 149.1408 |  | 274.0094 |  |
| 167.2818 |  | 163.7804 |  | 303.6262 |  |
| 184.1680 |  | 180.2547 |  | 336.5539 |  |
| 202.3459 |  | 198.0019 |  | 371.5025 |  |
| 222.9074 |  | 218.0993 |  | 410.1363 |  |
| 246.8110 |  | 241.4969 |  | 453.7460 |  |
| 273.5457 |  | 267.7120 |  | 500.7101 |  |
| 305.0478 |  | 298.6648 |  | 553.6032 |  |
| 345.1519 |  | 338.1477 |  | 617.8987 |  |
| 392.9048 |  |  |  |  |  |


| $\mathbf{h}^{(22)}$ |  | $\mathbf{h}^{(23)}$ |  | $\mathbf{h}^{(24)}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 29.3123 | 775.4000 | 19.6318 | 395.4134 | 28.4684 | 742.2750 |
| 42.5241 | 894.5023 | 27.9680 | 478.6046 | 41.2552 | 858.2469 |
| 50.5529 | 1019.3551 | 32.6330 | 579.5548 | 48.9908 | 981.0159 |
| 58.1822 | 1178.9877 | 36.8442 | 721.9277 | 56.3220 | 1139.1440 |
| 65.4396 | 1414.2415 | 40.6342 | 944.4872 | 63.2772 | 1373.2912 |
| 72.5937 | 1840.5470 | 44.1824 | 1350.7824 | 70.1169 | 1797.8523 |
| 80.3616 | 2511.5880 | 47.9244 | 2021.7439 | 77.5340 | 2468.8863 |
| 88.9004 | 3493.2198 | 51.9350 | 3042.0845 | 85.6780 | 3453.8926 |
| 98.7884 | 4610.4728 | 56.5248 | 4245.3997 | 95.1041 | 4578.6479 |
| 109.4799 | 5972.0340 | 61.3505 | 5653.9700 | 105.2843 | 5944.3071 |
| 121.2087 | 7382.9245 | 66.5260 | 7042.9175 | 116.4418 | 7353.2847 |
| 134.7445 | 8982.3562 | 72.4474 | 8574.0902 | 129.3138 | 8946.7660 |
| 149.2925 | 10794.2347 | 78.6588 | 10303.6394 | 143.1350 | 10751.4675 |
| 165.1584 |  | 85.3147 |  | 158.1981 |  |
| 183.3446 |  | 92.9184 |  | 175.4618 |  |
| 202.6643 |  | 100.8578 |  | 193.7894 |  |
| 223.4838 |  | 109.3373 |  | 213.5332 |  |
| 246.8999 |  | 118.9161 |  | 235.7430 |  |
| 274.0094 |  | 130.1439 |  | 261.4681 |  |
| 303.6262 |  | 142.5050 |  | 289.5806 |  |
| 336.5539 |  | 156.4761 |  | 320.8558 |  |
| 371.5025 |  | 171.6063 |  | 354.0767 |  |
| 410.1363 |  | 188.8837 |  | 390.8488 |  |
| 453.7460 |  | 209.2064 |  | 432.4285 |  |
| 500.7101 |  | 232.2649 |  | 477.3086 |  |
| 553.6032 |  | 259.8797 |  | 527.9981 |  |
| 617.8987 |  | 295.5877 |  | 589.8015 |  |
| 89.6538 |  |  |  |  |  |


| $\mathbf{h}^{(25)}$ |  | $\mathbf{h}^{(26)}$ |  | $\mathbf{h}^{(27)}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 28.4684 | 742.2750 | 26.1947 | 653.0255 | 24.6855 | 593.7841 |
| 41.2552 | 858.2469 | 37.8363 | 760.5627 | 35.5670 | 695.7227 |
| 48.9908 | 981.0159 | 44.7818 | 877.7176 | 41.9881 | 809.1511 |
| 56.3220 | 1139.1440 | 51.3103 | 1031.7918 | 47.9836 | 960.5344 |
| 63.2772 | 1373.2912 | 57.4510 | 1262.9574 | 53.5838 | 1189.7209 |
| 70.1169 | 1797.8523 | 63.4438 | 1682.8186 | 59.0144 | 1606.4624 |
| 77.5340 | 2468.8863 | 69.9153 | 2353.8340 | 64.8582 | 2277.4654 |
| 85.6780 | 3453.8926 | 76.9957 | 3347.9320 | 71.2326 | 3277.5982 |
| 95.1041 | 4578.6479 | 85.1774 | 4492.9012 | 78.5884 | 4435.9849 |
| 105.2843 | 5944.3071 | 93.9799 | 5869.6017 | 86.4763 | 5820.0143 |
| 116.4418 | 7353.2847 | 103.5982 | 7273.4254 | 95.0729 | 7220.4170 |
| 129.3138 | 8946.7660 | 114.6818 | 8850.8744 | 104.9694 | 8787.2241 |
| 143.1350 | 10751.4675 | 126.5449 | 10636.2387 | 115.5329 | 10559.7530 |
| 158.1981 |  | 139.4448 |  | 126.9968 |  |
| 175.4618 |  | 154.2229 |  | 140.1251 |  |
| 193.7894 |  | 169.8776 |  | 154.0056 |  |
| 213.5332 |  | 186.7230 |  | 168.9271 |  |
| 235.7430 |  | 205.6828 |  | 185.7296 |  |
| 261.4681 |  | 227.6776 |  | 205.2485 |  |
| 289.5806 |  | 251.7372 |  | 226.6178 |  |
| 320.8558 |  | 278.5599 |  | 250.4851 |  |
| 354.0767 |  | 307.1260 |  | 275.9615 |  |
| 390.8488 |  | 338.8820 |  | 304.3879 |  |
| 432.4285 |  | 374.9921 |  | 336.8675 |  |
| 477.3086 |  | 414.2574 |  | 372.4058 |  |
| 527.9981 |  | 459.0097 |  | 413.2171 |  |
| 589.8015 |  | 514.0986 |  | 463.8491 |  |
| 659.0841 |  | 576.7192 |  |  |  |


| $\mathbf{h}^{(28)}$ |  | $\mathbf{h}^{(29)}$ |  | $\mathbf{h}^{(30)}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 24.6855 | 593.7841 | 29.8066 | 794.8007 | 26.3887 | 660.6421 |
| 35.5670 | 695.7227 | 43.2673 | 915.7366 | 38.1281 | 768.8991 |
| 41.9881 | 809.1511 | 51.4679 | 1041.8097 | 45.1410 | 886.5331 |
| 47.9836 | 960.5344 | 59.2716 | 1202.3236 | 51.7380 | 1040.9533 |
| 53.5838 | 1189.7209 | 66.7061 | 1438.2255 | 57.9483 | 1272.3733 |
| 59.0144 | 1606.4624 | 74.0442 | 1865.5526 | 64.0133 | 1692.6356 |
| 64.8582 | 2277.4654 | 82.0178 | 2536.5977 | 70.5654 | 2363.6526 |
| 71.2326 | 3277.5982 | 90.7877 | 3516.2532 | 77.7366 | 3356.9747 |
| 78.5884 | 4435.9849 | 100.9462 | 4629.1121 | 86.0246 | 4500.2189 |
| 86.4763 | 5820.0143 | 111.9372 | 5988.2732 | 94.9446 | 5875.9771 |
| 95.0729 | 7220.4170 | 124.0006 | 7400.2840 | 104.6942 | 7280.2407 |
| 104.9694 | 8787.2241 | 137.9252 | 9003.2008 | 115.9305 | 8859.0578 |
| 115.5329 | 10559.7530 | 152.8988 | 10819.2827 | 127.9607 | 10646.0724 |
| 126.9968 |  | 169.2349 |  | 141.0452 |  |
| 140.1251 |  | 187.9614 |  | 156.0354 |  |
| 154.0056 |  | 207.8622 |  | 171.9182 |  |
| 168.9271 |  | 229.3117 |  | 189.0110 |  |
| 185.7296 |  | 253.4343 |  | 208.2481 |  |
| 205.2485 |  | 281.3547 |  | 230.5613 |  |
| 226.6178 |  | 311.8524 |  | 254.9667 |  |
| 250.4851 |  | 345.7480 |  | 282.1695 |  |
| 275.9615 |  | 381.7084 |  | 311.1328 |  |
| 304.3879 |  | 421.4327 |  | 343.3169 |  |
| 336.8675 |  | 466.2313 |  | 379.8938 |  |
| 372.4058 |  | 514.4159 |  | 419.6383 |  |
| 413.2171 |  | 568.5996 |  | 464.8972 |  |
| 463.8491 |  | 634.3547 |  | 520.5591 |  |
| 522.0476 |  |  |  | 583.7482 |  |


| $\mathbf{h}^{(31)}$ |  | $\mathbf{h}^{(32)}$ |  | $\mathbf{h}^{(33)}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 26.3887 | 660.6421 | 26.7533 | 674.9518 | 27.1308 | 689.7700 |
| 38.1281 | 768.8991 | 38.6762 | 784.5612 | 39.2439 | 800.7798 |
| 45.1410 | 886.5331 | 45.8159 | 903.0954 | 46.5147 | 920.2461 |
| 51.7380 | 1040.9533 | 52.5415 | 1058.1655 | 53.3736 | 1075.9893 |
| 57.9483 | 1272.3733 | 58.8824 | 1290.0636 | 59.8497 | 1308.3824 |
| 64.0133 | 1692.6356 | 65.0833 | 1711.0794 | 66.1912 | 1730.1786 |
| 70.5654 | 2363.6526 | 71.7870 | 2382.0994 | 73.0519 | 2401.2016 |
| 77.7366 | 3356.9747 | 79.1287 | 3373.9638 | 80.5702 | 3391.5565 |
| 86.0246 | 4500.2189 | 87.6162 | 4513.9670 | 89.2643 | 4528.2036 |
| 94.9446 | 5875.9771 | 96.7571 | 5887.9549 | 98.6340 | 5900.3583 |
| 104.6942 | 7280.2407 | 106.7535 | 7293.0448 | 108.8859 | 7306.3039 |
| 115.9305 | 8859.0578 | 118.2765 | 8874.4325 | 120.7059 | 8890.3535 |
| 127.9607 | 10646.0724 | 130.6207 | 10664.5475 | 133.3752 | 10683.6790 |
| 141.0452 |  | 144.0520 |  | 147.1656 |  |
| 156.0354 |  | 159.4408 |  | 162.9671 |  |
| 171.9182 |  | 175.7521 |  | 179.7222 |  |
| 189.0110 |  | 193.3096 |  | 197.7609 |  |
| 208.2481 |  | 213.0678 |  | 218.0588 |  |
| 230.5613 |  | 235.9791 |  | 241.5894 |  |
| 254.9667 |  | 261.0343 |  | 267.3175 |  |
| 282.1695 |  | 288.9510 |  | 295.9734 |  |
| 311.1328 |  | 318.6606 |  | 326.4559 |  |
| 343.3169 |  | 351.6489 |  | 360.2770 |  |
| 379.8938 |  | 389.1028 |  | 398.6390 |  |
| 419.6383 |  | 429.7475 |  | 440.2159 |  |
| 464.8972 |  | 475.9584 |  | 487.4126 |  |
| 520.5591 |  | 532.6969 |  | 545.2659 |  |
| 583.7482 |  |  |  |  |  |


| $\mathbf{h}^{(34)}$ |  | $\mathbf{h}^{(35)}$ |  | $\mathbf{h}^{(36)}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 27.1308 | 689.7700 | 23.9366 | 564.3877 | 21.3315 | 462.1326 |
| 39.2439 | 800.7798 | 34.4409 | 663.5481 | 30.5238 | 551.6292 |
| 46.5147 | 920.2461 | 40.6017 | 775.1273 | 35.7795 | 656.7763 |
| 53.3736 | 1075.9893 | 46.3328 | 925.1754 | 40.5908 | 802.1798 |
| 59.8497 | 1308.3824 | 51.6648 | 1153.3799 | 44.9896 | 1026.9681 |
| 66.1912 | 1730.1786 | 56.8165 | 1568.5733 | 49.1710 | 1436.7768 |
| 73.0519 | 2401.2016 | 62.3488 | 2239.5702 | 53.6199 | 2107.7522 |
| 80.5702 | 3391.5565 | 68.3729 | 3242.6976 | 58.4255 | 3121.2962 |
| 89.2643 | 4528.2036 | 75.3188 | 4407.7422 | 63.9456 | 4309.5004 |
| 98.6340 | 5900.3583 | 82.7529 | 5795.4083 | 69.8012 | 5709.8167 |
| 108.8859 | 7306.3039 | 90.8426 | 7194.1135 | 76.1273 | 7102.6170 |
| 120.7059 | 8890.3535 | 100.1500 | 8755.6399 | 83.3857 | 8645.7748 |
| 133.3752 | 10683.6790 | 110.0685 | 10521.7997 | 91.0609 | 10389.7796 |
| 147.1656 |  | 120.8200 |  | 99.3339 |  |
| 162.9671 |  | 133.1296 |  | 108.7957 |  |
| 179.7222 |  | 146.1296 |  | 118.7333 |  |
| 197.7609 |  | 160.0965 |  | 129.3795 |  |
| 218.0588 |  | 175.8286 |  | 141.3879 |  |
| 241.5894 |  | 194.1188 |  | 155.4043 |  |
| 267.3175 |  | 214.1531 |  | 170.7951 |  |
| 295.9734 |  | 236.5540 |  | 188.0947 |  |
| 326.4559 |  | 260.4971 |  | 206.7047 |  |
| 360.2770 |  | 287.2714 |  | 227.7319 |  |
| 398.6390 |  | 317.9494 |  | 252.1434 |  |
| 440.2159 |  | 351.6384 |  | 279.3993 |  |
| 487.4126 | 390.4941 |  | 311.4526 |  |  |
| 545.2659 |  | 438.9145 |  | 352.1801 |  |
|  |  |  |  |  |  |


| $\mathbf{h}^{(37)}$ |  | $\mathbf{h}^{(38)}$ |  | $\mathbf{h}^{(39)}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 21.3315 | 462.1326 | 27.8925 | 719.6698 | 29.7770 | 793.6407 |
| 30.5238 | 551.6292 | 40.3892 | 833.5054 | 43.2228 | 914.4669 |
| 35.7795 | 656.7763 | 47.9247 | 954.8525 | 51.4132 | 1040.4671 |
| 40.5908 | 802.1798 | 55.0527 | 1111.9538 | 59.2065 | 1200.9283 |
| 44.9896 | 1026.9681 | 61.8016 | 1345.3458 | 66.6304 | 1436.7914 |
| 49.1710 | 1436.7768 | 68.4268 | 1768.7165 | 73.9575 | 1864.0575 |
| 53.6199 | 2107.7522 | 75.6043 | 2439.7458 | 81.9188 | 2535.1023 |
| 58.4255 | 3121.2962 | 83.4789 | 3427.0548 | 90.6749 | 3514.8760 |
| 63.9456 | 4309.5004 | 92.5899 | 4556.9300 | 100.8172 | 4627.9976 |
| 69.8012 | 5709.8167 | 102.4211 | 5925.3857 | 111.7903 | 5987.3023 |
| 76.1273 | 7102.6170 | 113.1887 | 7333.0579 | 123.8336 | 7399.2461 |
| 83.3857 | 8645.7748 | 125.6078 | 8922.4786 | 137.7350 | 9001.9545 |
| 91.0609 | 10389.7796 | 138.9331 | 10722.2823 | 152.6831 | 10817.7850 |
| 99.3339 |  | 153.4482 |  | 168.9912 |  |
| 108.7957 |  | 170.0824 |  | 187.6854 |  |
| 118.7333 |  | 187.7330 |  | 207.5514 |  |
| 129.3795 |  | 206.7427 |  | 228.9632 |  |
| 141.3879 |  | 228.1294 |  | 253.0436 |  |
| 155.4043 |  | 252.9096 |  | 280.9155 |  |
| 170.7951 |  | 279.9956 |  | 311.3606 |  |
| 188.0947 |  | 310.1431 |  | 345.1983 |  |
| 206.7047 | 342.1850 |  | 381.0982 |  |  |
| 227.7319 |  | 377.6867 |  | 420.7572 |  |
| 252.1434 |  | 417.8810 |  | 465.4847 |  |
| 279.3993 |  | 461.3390 |  | 513.5964 |  |
| 311.4526 |  | 510.5247 |  | 567.7030 |  |
| 352.1801 |  | 570.6275 |  | 633.3708 |  |
| 400.5515 |  |  |  |  |  |


| $\mathbf{h}^{(40)}$ |  | $\mathbf{h}^{(41)}$ |  | $\mathbf{h}^{(42)}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 29.7770 | 793.6407 | 20.3611 | 424.0393 | 22.7924 | 519.4746 |
| 43.2228 | 914.4669 | 29.0646 | 509.9358 | 32.7204 | 614.3904 |
| 51.4132 | 1040.4671 | 33.9830 | 612.6866 | 38.4837 | 723.1444 |
| 59.2065 | 1200.9283 | 38.4516 | 756.3598 | 43.8108 | 871.1525 |
| 66.6304 | 1436.7914 | 42.5029 | 979.8756 | 48.7329 | 1097.8565 |
| 73.9575 | 1864.0575 | 46.3227 | 1387.6783 | 53.4584 | 1510.6848 |
| 81.9188 | 2535.1023 | 50.3680 | 2058.6457 | 58.5148 | 2181.6722 |
| 90.6749 | 3514.8760 | 54.7197 | 3076.0703 | 64.0037 | 3189.3749 |
| 100.8172 | 4627.9976 | 59.7087 | 4272.9021 | 70.3234 | 4364.5918 |
| 111.7903 | 5987.3023 | 64.9763 | 5677.9310 | 77.0642 | 5757.8142 |
| 123.8336 | 7399.2461 | 70.6455 | 7068.5315 | 84.3793 | 7153.9258 |
| 137.7350 | 9001.9545 | 77.1405 | 8604.8464 | 92.7867 | 8707.3843 |
| 152.6831 | 10817.7850 | 83.9799 | 10340.5978 | 101.7199 | 10463.8130 |
| 168.9912 |  | 91.3296 |  | 111.3827 |  |
| 187.6854 |  | 99.7306 |  | 122.4415 |  |
| 207.5514 |  | 108.5273 |  | 134.0965 |  |
| 228.9632 |  | 117.9364 |  | 146.6048 |  |
| 253.0436 |  | 128.5576 |  | 160.7013 |  |
| 280.9155 |  | 140.9819 |  | 177.1143 |  |
| 311.3606 |  | 154.6429 |  | 195.1092 |  |
| 345.1983 |  | 170.0421 |  | 215.2694 |  |
| 381.0982 |  | 186.6653 |  | 236.8701 |  |
| 420.7572 |  | 205.5515 |  | 261.1201 |  |
| 465.4847 |  | 227.6285 |  | 289.0457 |  |
| 513.5964 |  | 252.4879 |  | 319.9091 |  |
| 567.7030 |  | 282.0071 |  | 355.7770 |  |
| 633.3708 |  | 319.8687 |  | 400.8185 |  |
| 706.4874 |  |  |  | 453.4702 |  |


| $\mathbf{h}^{(43)}$ |  | $\mathbf{h}^{(44)}$ |  | $\mathbf{h}^{(45)}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 22.7924 | 519.4746 | 20.7673 | 439.9831 | 28.2648 | 734.2825 |
| 32.7204 | 614.3904 | 29.6754 | 527.3864 | 40.9490 | 849.4990 |
| 38.4837 | 723.1444 | 34.7349 | 631.1402 | 48.6139 | 971.7653 |
| 43.8108 | 871.1525 | 39.3470 | 775.5376 | 55.8732 | 1129.5303 |
| 48.7329 | 1097.8565 | 43.5437 | 999.5860 | 62.7555 | 1363.4105 |
| 53.4584 | 1510.6848 | 47.5149 | 1408.2283 | 69.5194 | 1787.5507 |
| 58.5148 | 2181.6722 | 51.7291 | 2079.1990 | 76.8517 | 2458.5831 |
| 64.0037 | 3189.3749 | 56.2707 | 3094.9994 | 84.9004 | 3444.4035 |
| 70.3234 | 4364.5918 | 61.4820 | 4288.2201 | 94.2151 | 4570.9691 |
| 77.0642 | 5757.8142 | 66.9957 | 5691.2766 | 104.2719 | 5937.6171 |
| 84.3793 | 7153.9258 | 72.9399 | 7082.7979 | 115.2916 | 7346.1331 |
| 92.7867 | 8707.3843 | 79.7544 | 8621.9768 | 128.0035 | 8938.1787 |
| 101.7199 | 10463.8130 | 86.9436 | 10361.1826 | 141.6493 | 10741.1484 |
| 111.3827 |  | 94.6798 |  | 156.5187 |  |
| 122.4415 |  | 103.5248 |  | 173.5598 |  |
| 134.0965 |  | 112.7990 |  | 191.6481 |  |
| 146.6048 |  | 122.7258 |  | 211.1323 |  |
| 160.7013 |  | 133.9277 |  | 233.0511 |  |
| 177.1143 |  | 147.0183 |  | 258.4421 |  |
| 195.1092 |  | 161.4033 |  | 286.1916 |  |
| 215.2694 |  | 177.5979 |  | 317.0681 |  |
| 236.8701 |  | 195.0527 |  | 349.8722 |  |
| 261.1201 |  | 214.8350 |  | 386.1951 |  |
| 289.0457 |  | 237.8891 |  | 427.2849 |  |
| 319.9091 |  | 263.7516 |  | 471.6622 |  |
| 355.7770 |  | 294.3314 |  | 521.8200 |  |
| 400.8185 |  | 333.3925 |  | 583.0221 |  |
| 453.4702 |  |  |  | 651.7081 |  |


| $\mathbf{h}^{(46)}$ |  | $\mathbf{h}^{(47)}$ |  | $\mathbf{h}^{(48)}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 28.2648 | 734.2825 | 29.5172 | 783.4433 | 24.1518 | 572.8341 |
| 40.9490 | 849.4990 | 42.8322 | 903.3058 | 34.7644 | 672.7928 |
| 48.6139 | 971.7653 | 50.9323 | 1028.6645 | 41.0001 | 784.9033 |
| 55.8732 | 1129.5303 | 58.6338 | 1188.6626 | 46.8072 | 935.3351 |
| 62.7555 | 1363.4105 | 65.9647 | 1424.1851 | 52.2162 | 1163.8217 |
| 69.5194 | 1787.5507 | 73.1951 | 1850.9141 | 57.4480 | 1579.4600 |
| 76.8517 | 2458.5831 | 81.0483 | 2521.9568 | 63.0698 | 2250.4586 |
| 84.9004 | 3444.4035 | 89.6829 | 3502.7693 | 69.1946 | 3252.7255 |
| 94.2151 | 4570.9691 | 99.6830 | 4618.2005 | 76.2582 | 4415.8572 |
| 104.2719 | 5937.6171 | 110.4987 | 5978.7667 | 83.8228 | 5802.4783 |
| 115.2916 | 7346.1331 | 122.3662 | 7390.1216 | 92.0581 | 7201.6713 |
| 128.0035 | 8938.1787 | 136.0632 | 8990.9982 | 101.5347 | 8764.7150 |
| 141.6493 | 10741.1484 | 150.7876 | 10804.6193 | 111.6386 | 10532.7048 |
| 156.5187 |  | 166.8485 |  | 122.5948 |  |
| 173.5598 |  | 185.2587 |  | 135.1396 |  |
| 191.6481 |  | 204.8193 |  | 148.3926 |  |
| 211.1323 |  | 225.9000 |  | 162.6338 |  |
| 233.0511 |  | 249.6090 |  | 178.6734 |  |
| 258.4421 |  | 277.0547 |  | 197.3166 |  |
| 286.1916 |  | 307.0367 |  | 217.7346 |  |
| 317.0681 |  | 340.3657 |  | 240.5568 |  |
| 349.8722 |  | 375.7338 |  | 264.9405 |  |
| 386.1951 |  | 414.8197 |  | 292.1895 |  |
| 427.2849 |  | 458.9222 |  | 323.3851 |  |
| 471.6622 |  | 506.3924 |  | 357.6055 |  |
| 521.8200 |  | 559.8206 |  | 397.0231 |  |
| 583.0221 |  | 624.7212 |  | 446.0790 |  |
| 651.7081 |  |  |  | 502.7137 |  |


| $\mathbf{h}^{(49)}$ |  | $\mathbf{h}^{(50)}$ |  |
| :---: | :---: | :---: | :---: |
| 24.1518 | 572.8341 | 25.4420 | 623.4814 |
| 34.7644 | 672.7928 | 36.7046 | 728.2265 |
| 41.0001 | 784.9033 | 43.3886 | 843.5229 |
| 46.8072 | 935.3351 | 49.6512 | 996.2552 |
| 52.2162 | 1163.8217 | 55.5224 | 1226.4338 |
| 57.4480 | 1579.4600 | 61.2349 | 1644.7392 |
| 63.0698 | 2250.4586 | 67.3932 | 2315.7484 |
| 69.1946 | 3252.7255 | 74.1216 | 3312.8560 |
| 76.2582 | 4415.8572 | 81.8914 | 4464.5166 |
| 83.8228 | 5802.4783 | 90.2378 | 5844.8721 |
| 92.0581 | 7201.6713 | 99.3465 | 7246.9897 |
| 101.5347 | 8764.7150 | 109.8381 | 8819.1315 |
| 111.6386 | 10532.7048 | 121.0531 | 10598.0947 |
| 122.5948 |  | 133.2369 |  |
| 135.1396 |  | 147.1922 |  |
| 148.3926 |  | 161.9621 |  |
| 162.6338 |  | 177.8480 |  |
| 178.6734 |  | 195.7320 |  |
| 197.3166 |  | 216.4920 |  |
| 217.7346 |  | 239.2099 |  |
| 240.5568 |  | 264.5588 |  |
| 264.9405 |  | 291.5840 |  |
| 292.1895 |  | 321.6795 |  |
| 323.3851 |  | 355.9791 |  |
| 357.6055 |  | 393.3857 |  |
| 397.0231 |  | 436.1726 |  |
| 446.0790 |  |  |  |
| 502.7137 |  |  |  |

