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In the context of highway safety factors, road geometrics and pavement condition are of particular 

interest to highway managers as they fall within their direct control and therefore can be addressed 

through highway projects. In spite of the preponderance of econometric modeling in highway 

safety research, there still remain areas worthy of further investigation. These include 1) the lack 

of sufficient feedback to roadway preservation engineers regarding the impacts of road-surface 

condition on safety; 2) the inadequate feedback to roadway designers on optimal lane and shoulder 

width allocation; 3) the need for higher predictive capability and reliability of models that analyze  

roadway operations; and 4) the lack of realistic simulations to facilitate reliable safety impact 

studies regarding autonomous vehicles (AV). In an attempt to contribute to the existing knowledge 

in this domain and to throw more light on these issues, this dissertation proposes a novel 

framework for enhanced prediction of highway safety that incorporates machine learning and 

econometrics with optimization to evaluate and quantify the impacts of safety factors.  In the 

traditional highway operating environment, the proposed framework is expected to help agencies 

improve their safety analysis. Using an Indiana crash dataset, this dissertation implements the 

framework, thereby 1) estimating the safety impacts of the road-surface condition with advanced 

econometric specifications, 2) optimizing space resource allocations across highway cross-

sectional elements, and 3) predicting the fatality status of highway segments using machine 

learning algorithms. In addition, this dissertation discusses the opportunities and the expected 

safety impacts and benefits of AV in the emerging operating environment. The dissertation also 

presents a proposed deep learning-based autonomous driving simulation framework that addresses 

the limitations of AV testing and evaluation on in-service roads and test tracks. 
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CHAPTER 1. INTRODUCTION 

1.1 Background 

1.1.1 Prelude 

Highway safety is influenced by multiple factors (e.g., highway geometry, driver characteristics, 

vehicle characteristics, and environment), and crashes are typically caused by an interaction of 

more than one of these factors (Sinha and Labi, 2007). Regarding the geometric characteristics , 

highways in most countries face problems with deficient design, due not to deliberately poor 

original design but rather to a continuing legacy of old designs that served users well under 

conditions long past. In several countries, a significant number of highways have safety 

deficiencies arising from inadequate road geometry, driver information deficiencies, lack of 

passing opportunities, inadequate shoulders, poor condition of pavement, and traffic conflicts due 

to driveways (Paterson, 1987; Silva and Liautaud, 2011; AASHTO, 2011; FHWA, 2006; 2014; 

2016). Most of the deficient roads were designed and built to standards that became outdated vis-

à-vis current design policies or operating conditions.   

Financial constraints make it impossible to reconstruct (or improve) all highways to make 

them consistent with current established standards or national requirements. At the same time, 

agencies do not have the option of allowing highways to operate under their current geometric 

deficiencies as that would cause increased crashes, vehicle operating costs, delays, and 

inconveniences. Thus, driver frustration and lost time are prevalent, exacerbating safety problems 

that already exist due to inadequate geometry. For this reason, highway agencies seek to focus on 

areas identified as needing urgent safety intervention. The development of models that help predict 

crashes therefore are helpful in this regard.  

The need to continually investigate the relationships between road conditions and road 

characteristics is underscored by the recent and continuing trends in the highway administration 

environment, which include ever-increasing population (hence, highway demand), advancements 

in computer technology, and legislation calling for operational accountability of highway assets in 

terms of their mobility, safety, and state of good repair. Of these needs, safety continues to be a 

major focus of highway agencies (Sinha and Labi, 2007). The application of crash prediction 
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models that can adequately account for changing operational trends including emerging 

technologies, is expected to lead to more productive use of highways, better allocation of safety 

resources, and more effective management of crash risks. 

1.1.2 Crash Causes 

Roadway crashes are caused by several factors that are related to the vehicle, the driver, the natural 

or built-up environment, the road pavement and geometrics, the highway policy and legislation, or 

a combination thereof (Sinha and Labi, 2007). With regard to the road engineering factors, the 

literature is replete with studies that have investigated the safety impacts of road geometrics, such 

as lane width, shoulder width, vertical and horizontal alignment (Zegeer and Council, 1994; Farah 

et al., 2009; Labi et al., 2017), traffic operating conditions such as traffic volume, traffic stream 

composition (Ma et al., 2008; Ayati and Abbasi, 2011), and weather conditions (Huang et al., 

2004). Of these factors, those associated with road geometrics and condition are of particular 

interest to highway asset managers as they fall within their direct control and can be addressed 

through highway projects. The American Society of Civil Engineers (ASCE) in 2014 advocated a 

significant, sustained effort to reduce traffic crashes and related deaths and injuries through 

improvements in all aspects of highway system performance and advocated for the reduction of 

crashes by “auditing existing roadway systems to identify roadway hazards and safety 

improvement opportunities and implementing highway and other engineering-related 

improvements proven effective in reducing the potential for, and severity of, traffic crashes.” 

1.1.3 The True Cost of Crashes 

The adverse impacts of traffic crashes on society should not be underestimated. In 2015, it was 

reported that approximately 1.4 million lives are lost worldwide each year due to highway vehicle 

crashes, making traffic crashes the ninth leading cause of death (World Health Organization, 2015). 

In the U.S., traffic crashes were the fourth leading cause of death for all ages and the leading cause 

of death among young people (ages 1 to 44) (U.S. Centers for Disease Control and Prevention, 

2016). Every year, more than 30,000 people in the U.S. lose their lives due to highway vehicle 

crashes (USDOT, 2004); specifically, this number was 37,461 in 2016, which was an increase of 

5.6 percent from 2015 (NHTSA, 2017). Crashes and the resulting deaths and related injuries are 
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an enormous strain on society; and it was estimated that the total economic and societal cost of 

highway crashes in the U.S. is $836 billion (Blincoe et al., 2015).  

Given the significant economic and social costs of highway accidents and the potential for 

cost-effective implementation of safety countermeasures, highway agencies continue to seek more 

knowledge about the relationships between highway accidents and road geometry, pavement 

condition, and traffic. It is expected that such knowledge can facilitate effective identification of 

hazardous areas and, overall, enhance decision-making based on strategic safety-related 

performance indicators aligned with a clear vision of the societal benefits of safety improvements 

(Aguero-Valverde, 2013; Qiao et al., 2018). 

1.1.4 Efforts to Reduce Crashes 

In a bid to reduce the frequency of traffic crashes and their impact on society, several  initiatives 

have been undertaken, ranging from policies (regarding the driver, vehicle, and speed limit) to 

physical interventions (road improvements) to regional, national, and international programs. An 

example of one such initiative was launched by the Swedish government in 1997, “Vision Zero,”  

which aimed to eliminate vehicle-related deaths in Sweden. “Vision Zero” was subsequently 

adopted in the U.S. (Tingvall, 1997), and recently the United Nations set “Vision Zero” as one of 

the agency’s goals, seeking to reduce global road traffic fatalities by 50% by 2020 (UNHCR, 2016). 

For “Vision Zero” to be reasonably successful and other ambitious safety improvement goals to 

be achieved, it is imperative to continue investigating the main factors involved in traffic crashes 

so that prediction of fatal crashes can be refined. The highway safety literature is replete with the 

work of many researchers who have not only attempted to predict crash frequency and severity but 

also have studied the relationships between highway crashes and crash factors (Zegeer et al. 1994; 

Milton et al. 1998; Lee et al. 2002; Pulugurtha et al. 2013; Ma et al. 2016; Chen et al. 2017a; 2017b; 

Labi et al. 2017; Tang et al. 2018). 

 In order to reduce crashes efficiently and effectively, it is necessary to have a 

comprehensive understanding of the relationships between crash occurrence and crash factors (e.g., 

the expected impact of widening the width of the shoulder on a certain roadway segment with 

respect to the number of injury crashes). Therefore, having reliable models is essential as they will 

provide researchers and agencies necessary information about these relationships. 
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1.1.5 Understanding the Crash Experience through Modeling 

The abundant highway safety research literature pertaining to methodological developments and 

increasing model sophistication over the last several decades have spawned improvements in the 

predictive capability and reliability of models (Mannering and Bhat, 2014). This is especially true 

from an econometric modeling perspective. Specifically, researchers have put forth significant and 

sustained efforts to account for various types of unobserved heterogeneities. For example, when 

modeling highway safety data, researchers have considered a wide range of factor categories that 

affect highway crashes, such as the attributes of the driver, vehicle, enforcement levels, natural 

environment, and road engineering features (Sinha et al., 1981; Sinha and Labi, 2007) as well as 

the complex interactions among them (Park, 2016; Mannering et al., 2016). Unfortunately, the 

information collected in crash databases does not span this entire spectrum of accident factors. As 

such, efforts to model accident frequency and severity are often proceeded with tacit or explicit 

admission that some accident factor information is missing in the data that, if available, could have 

helped better explained the accident experience. This problem of unobserved heterogeneity is 

further exacerbated by the spatial and temporal correlation of accident data and the correlation 

across the different levels of accident severity. Failure to account for these correlations may lead 

to invalid inferences and unreliable parameter estimation (Lee et al., 2015). 

Safety researchers have risen to this challenge, however, as highway safety research has 

continued to advance the state of the art regarding analytical methods that can characterize and 

address the effect of such unobserved factors. For example, over the past few decades, there has 

been an upsurge in the development and application of statistical multivariate techniques and 

approaches for joint modeling of accident frequencies (Hauer, 2010; El-Basyouny and Sayed, 2009; 

Aguero-Valverde, 2013; Bijleveld, 2005; Ma and Kockelman, 2006; Ma et al., 2008; Song et al., 

2006; Wang et al., 2011; Chen et al., 2017a; Chen et al., 2017b). Also, a number of research studies 

have used a variety of statistical tools to address other sources of possible errors in modeling 

accident data (El-Basyouny and Sayed, 2009; Barua et al., 2016; Chen and Tarko, 2014; Park et 

al., 2015; Dinu and Veeraragavan, 2011; El-Basyouny et al., 2014a, Garnowski and Manner, 2011; 

Dong et al., 2015; El-Basyouny et al., 2014b; Lee et al., 2015; Venkataraman et al., 2011; Barua 

et al., 2016; Chen et al., 2019).These efforts have gradually spawned substantial improvements in 

the predictive capability and reliability of models.  
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1.2 Problem Statement 

Despite the preponderance of econometric modeling in the highway safety data analysis research 

area, several important issues remain to be answered and further investigated: 

1) Insufficient feedback to roadway preservation engineers regarding the impacts of road-surface 

condition on safety. Nearly 30% of annual highway fatalities are caused by poor condition of 

pavements (Zimmerman and Larson, 2005). Past studies have attempted to investigate both the 

direct and indirect effects of road-surface condition on safety; however, the direction of 

pavement impact (positive vs. negative) has been rather ambiguous and additional research 

was recommended. 

2) Insufficient feedback for roadway design on optimal lane and shoulder width allocation. It is 

important to not only identify new and innovative approaches to improving safety on two-lane 

highways, but also to optimize the implementation of appropriate safety countermeasures. A 

case in point is determination of the optimal width of lanes and shoulders for roadways. The 

term “optimal width” suggests that both the cases of narrow lanes and shoulders and very wide 

lanes and shoulders are undesirable; and somewhere between these extremes, an optimal width 

exists. At one extreme, it has long been recognized that small lanes and widths are undesirable  

(widening the travel lanes or/and their shoulders has a positive impact in terms of reductions 

in crashes of various types, particularly roadway departure crashes and horizontal curve 

crashes). Given the apparent challenge but potential benefits associated with the optimal 

allocation of lane and shoulder widths within a given total roadway width (TRW), it is crucial 

that public highway agencies can  apply consistent and objective methodologies to a variety of 

allocation scenarios to ascertain the optimal allocation of resources while providing the 

greatest safety benefit to the road users. 

3) Need for continued search for higher predictive capability and reliability for analyzing 

roadway operations. Econometric modeling techniques are becoming more sophisticated; for 

example, when modeling crash counts, negative binomial and Poisson models have become 

the common choice in the literature. Researchers continue to incorporate advanced elements 

into their models, such as random effect, random parameter, multivariate analysis, seemingly 

unrelated equations, etc. However, there is a lack of approaches that can really do the following: 

a) assess whether the current econometric modeling techniques are adequate, b) analyze the 
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necessity to keep improving these modeling techniques, and c) assess the extent to which they 

are improved to assure they are devoid of issues such as over-fitting. 

In addition, state-of-the-art algorithms in data mining and machine learning, despite 

their demonstrated efficacy in other disciplines, are barely found in highway safety research 

literature. These algorithms typically have superior prediction power (but weaker interpretation 

power) compared to econometric models. Therefore, it can be argued that they should be 

considered in crash prediction analysis.  

It is noted that in a sense, econometric and regression models may be considered as 

machine learning algorithms because regression coefficients are “learned” from the data. In 

this dissertation, machine learning algorithms exclude econometric methods but include only 

Support Vector Machine, Random Forests, Bayesian Network, and Deep Learning algorithms.  

4) Lack of literature on testing and evaluating the impacts of autonomous vehicles (AVs) on 

safety. In addition, AVs are expected to eliminate human errors in driving. Some factors 

previously found significant may not be significant in the AV era (e.g., driver’s gender, driver’s 

age, etc.). Due to these impacts, highway agencies need to consider the implementation of new 

safety-related designs, policies, and regulations that will impact AV operations. These 

implementations need to be conducted and evaluated in a safe setting to ensure that the AV 

does not pose undue safety hazards and produces the prospective benefits. 

Also, AVs contain technology that will help collect data and provide data that may not  

have been accessible in the past (e.g., real-time data on weather conditions, traffic, speed of 

vehicles involved in crashes, etc.). 

1.3 Study Objectives 

In light of the above problem statement, the objectives of this dissertation are: 

1) Create a framework for enhanced prediction of highway safety considering the design factors. 

2) In the traditional operating environment (without AVs), apply the proposed framework to do 

the following: 

a) Estimate the impacts of the road-surface condition on safety 

b) Optimize the space resource allocation across highway cross sectional elements 

c) Predict the fatality status of highway segments 
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3) In the emerging operating environment (with AVs): 

a) Discuss the safety factors and impacts for adopting AVs 

b) Discern the current limitations of testing and evaluating AVs on in-service roads and test 

track 

c) Propose and demonstrate a deep learning-based framework for testing AVs using 

simulation that can help facilitate more realistic AV safety studies in a simulated 

environment. 

1.4 Organization of the Dissertation 

The remainder of this dissertation proceeds as follows. Chapter 2 introduces an enhanced crash 

prediction framework and describes the model types (for both econometric models and machine 

learning models) and their attributes. Implementation of the framework as well as the case studies 

are presented in Chapter 3, along with the evidence found regarding crash factors and roadway 

design in the traditional environment. Chapter 4 discusses the safety factors and the impacts in the 

era of AV. Chapter 5 proposes and demonstrates a simulation framework that enable researchers 

to test and evaluate the emerging AV technology in a safe environment. Finally, Chapter 6 

summarizes and concludes this dissertation and presents the study’s limitations and avenues for 

future work. Figure 1.1 presents the general structure of this dissertation. 
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Figure 1.1 General structure of the dissertation 
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CHAPTER 2. FRAMEWORK FOR ENHANCED PREDICTION OF 

HIGHWAY SAFETY CONSIDERING THE DESIGN FACTORS 

2.1 Introduction 

To deepen the understanding of the impacts of highway safety factors, this dissertation proposes a 

framework to enhance the prediction of highway crashes. The proposed framework includes 

machine learning algorithms and econometric models to quantify the impacts of safety factors, 

which can be further incorporated into an optimization framework with engineering economic 

analysis to help highway agencies improve their safety-related decision-making process.  

Figure 2.1 illustrates the general flow of the proposed framework. Part I of the framework 

consists of collecting and synthesizing information pertaining to highway safety, which includes 

crash data, road pavement and geometrics, traffic information, and other factors such as weather, 

driver age and gender, etc. This part of the framework is expected to change a lot in the era of AV 

for the following reasons: 1) AVs are expected to drastically affect safety factors; for example, 

some of the factors, such as driver age and sobriety, which significantly affect roadway safety at 

the present time may not be significant in the future once AV attains high market penetration. In 

addition, some of the new factors, including the level of automation and the types of AV control 

algorithm, may appear as significant safety factors. 2) AVs are expected to collect and report data 

automatically. As a result, information such as vehicle speed at the time of a crash, which is 

difficult to collect, is expected to be available for researchers. Chapter 4 of this dissertation will 

discuss the safety benefits and impacts of AV in detail. Part 2 of this framework entails data 

analysis. The discussion includes the use of advanced econometric and statistical modeling 

techniques for diagnostics and the use of machine learning and data mining algorithms for making 

reliable predictions. Part 3 of the framework consists of the results and feedback provided by the 

improved roadway safety modeling for highway agencies to improve their decision-making 

process regarding design, operation, and maintenance. Both the diagnostic and predictive models 

will be assessed using appropriate evaluation metrics. This assessment will also evaluate the 

quality of the current data and provide feedback for future collection. The elements of this 

framework are discussed in detail below. 
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The developed framework is expected to help agencies improve their safety analysis 

process so they can predict and evaluate crashes more reliably and identify the correct influence 

of the crash factors. With better prediction capabilities, the framework can help predict long-term 

safety performance and support funding requests for safety projects and for safety resource 

allocation. Highway safety projects include construction, reconstruction, expansion, rehabilitation, 

or maintenance of guardrails, crash barriers, median cables, road signs, pavement markings, 

rumble strips, etc. With better characterization of the relationship between roadway factors and 

crashes, such information can be provided to designers for guidance in design audits and reviews, 

possible revisions in lane width and shoulder width, and threshold pavement conditions in the 

agency’s design and preservation manuals. 
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2.2 Highway Safety Data 

The literature suggests that crash factors are directly related to the driver, the vehicle, the natural 

or built-up environment, the road pavement, the geometrics (and traffic volume), or a combination 

of these factors (Sinha and Labi, 2007). In this dissertation, the crash factors will be categorized 

as follows: 

1) Road pavement, geometrics design. These factors are typically within direct control of 

highway agency and can be mitigated through highway project implementation. 

2) Traffic information. Passenger car, truck (autonomous passenger car, autonomous truck). 

Traffic is considered partially under the control of the highway agency through regulations, 

tolling, etc.). 

3) Other factors such as driver age, weather condition, vehicle condition, driving behavior, 

etc. 

 

Driving behaviors, weather conditions, regulations, culture, and other factors vary across 

regions, and the modeling results of a certain area therefore may not be applicable to other areas. 

To replicate the analysis, collecting data pertaining to the future study area is recommended. 

2.3 Econometric and Statistical Regression of Crash Data 

2.3.1 Negative Binomial (NB) Regression for Count Data 

In the literature, most of the studies regarding highway safety analysis used econometric and 

statistical regression models as their major approach to evaluate the impacts of safety factors 

(independent variables) on crashes (dependent variables). For example, one of the most popular 

econometric models is Negative Binomial (NB) regression, which is a commonly applied model 

form for analyzing crash count data (Gkritza and Mannering, 2008; Milton et al., 2008; El-

Basyouny and Sayed, 2009; Labi, 2011; Dinu and Veeraragavan, 2011; Garnowski and Manner, 

2011; Venkataraman et al., 2011; 2013; Wu et al., 2013; Xiong and Mannering, 2013; Behnood et 

al., 2014; Chen and Tarko, 2014; Russo et al., 2014; El-Basyouny et al., 2014a; Barua et al., 2016; 

Chen et al., 2016; Heydari et al., 2016; Serhiyenko et al., 2016; Mothafer et al., 2017; Gomes et 

al., 2017). The NB model has a general function form (Washington et al., 2011): 
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𝜆𝑖𝑘 = EXP(𝜷𝑘𝑿𝑖𝑘
′ + 𝜀𝑖𝑘)             

 

where, 

𝑿𝑖𝑘= (1, 𝑋1𝑘 , 𝑋2𝑘 , … , 𝑋𝑁𝑘), is the vector of independent variables  

𝜷𝑘= (𝛽0𝑘 , 𝛽1𝑘 , … ,𝛽𝑁𝑘), the vector of coefficients  

𝜆𝑖𝑘 is the expected number of crashes in ith road segment and k th severity level (e.g. fatal, injury, 

no-injury) 

𝜀𝑖𝑘 is the unobserved error term for ith road segment and k th severity level 

 

For this type of data, each observation i is a road segment, which contains the number of crashes 

(sometimes by crash severity or crash pattern) and information regarding road geometric design, 

traffic, pavement condition, and other factors. 

2.3.2 Unobserved Heterogeneity 

From the modeling perspective, the error term 𝜀𝑖𝑘 appears to be the most intriguing element. It 

consists of unobserved information (heterogeneity). Since it is almost impossible to have the 

perfect dataset due to lack of information, researchers typically expend great effort in making the 

error term 𝜀𝑖𝑘 as small as possible to calibrate coefficients 𝜷𝑘  as precise as possible (it is assumed 

that the errors in data collection are negligible or under control compared to the heterogeneity). 

These efforts include choosing different distributions for 𝜷𝑘  and/or 𝜀𝑖𝑘  through the modeling 

procedure as well as other modeling advancements. 

Some advancements for minimizing the error term include estimation of 

multivariate/bivariate crash count models (Heydari et al., 2016; Serhiyenko et al., 2016), 

incorporation of random parameters in crash models (Venkataraman et al., 2014; Coruh et al., 2015; 

Barua et al., 2016; Bhat et al., 2017; Waseem et al., 2019); accounting for spatial/temporal 

correlation in crash models (Chiou et al., 2014; Chiou and Fu, 2015; Hong et al., 2016; Saeed et 

al., 2019a) and estimation of latent class, finite mixture, two-state Markov switching, mixed logit 

and neural network models (Malyshkina et al., 2009; Park and Lord, 2007; Behnood et al., 2014; 

Behnood and Mannering, 2016; Zeng et al., 2016). These improvements arose from concerted 

efforts to identify and address a number of complex issues associated with highway crash data and 

analysis, which included unobserved heterogeneity, spatial and temporal correlation, correlated 
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collision types (Mannering and Bhat, 2014; Chiou and Fu, 2015; Hong et al., 2016; Mannering et 

al., 2016; Amoh-Gyimah et al., 2017; Behnood and Mannering, 2017a; Huang et al., 2017; Qiao 

et al., 2018). For example, failure to address any unobserved heterogeneity in the data could result 

in biased, inefficient, or inconsistent parameter estimates when a traditional fixed-parameter model 

is specified, consequently leading to incorrect inferences (Washington et al., 2011). Taking a 

similar position, Mannering et al. (2016) argued that neglecting any unobserved heterogeneity 

(thus, assuming implicitly that the effects of observable factors are the same across all observations) 

may cause model specification problems, biased and inefficient parameters, and ultimately, 

erroneous predictions.  

In this vein, a number of research studies over the last decade have used a variety of 

statistical tools to account for the unobserved heterogeneity across observations in crash data 

(Gkritza and Mannering, 2008; Milton et al., 2008; El-Basyouny and Sayed, 2009; Dinu and 

Veeraragavan, 2011; Garnowski and Manner, 2011; Venkataraman et al., 2011; 2013; 2014; Wu 

et al., 2013; Xiong and Mannering, 2013; Behnood et al., 2014; Chen and Tarko, 2014; Russo et 

al., 2014; El-Basyouny et al., 2014a; Barua et al., 2016; Mothafer et al., 2017; Gomes et al., 2017).  

The use of random-parameter models to account for unobserved heterogeneity is prevalent 

in recent studies (Gkritza and Mannering, 2008; Milton et al., 2008; Chen and Tarko, 2014; Russo 

et al., 2014; Venkataraman et al., 2014; Coruh et al., 2015; Behnood and Mannering, 2015; 2016; 

2017b; Sarwar et al., 2017; Seraneeprakarn et al., 2017; Anderson and Hernandez, 2017; Bogue et 

al., 2017; Saeed et al., 2017; Ahmed et al., 2017). This is because random parameter models can 

explicitly account for heterogeneity across observations that are mainly due to unobserved 

explanatory traffic, environmental, roadway design, vehicle characteristics, driver behavior, and 

other related factors. This technique allows every estimated parameter in the model to vary across 

each individual observation according to an analyst-defined continuous distribution and thus 

requires a parametric distribution. Since it is quite possible that the individual coefficients in the 

model will follow different distributions, using a parametric approach could potentially cause 

statistical problems (Mannering et al., 2016). Analysts find that it is often impractical to consider 

all these factors simultaneously because highway crashes are often the outcome of a combination 

of factors, such as those related to the driver, vehicle, roadway, and natural environment and the 

road (engineering) as well as the complex interactions among them (Sinha and Labi, 2011; 

Mannering et al., 2016). 
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2.3.3 Multivariate Analysis 

Crash data are inherently multivariate. Therefore, it can be problematic to model crashes within 

each crash severity level separately without accounting for possible correlations between the 

crashes across the severity levels. Using a univariate modeling approach for the correlated crash 

counts can lead to less precise estimates of the risk factors associated with the different severity 

levels. In this regard, using multivariate modeling approaches to model crash frequency jointly 

across the different crash severity levels has gained attention in recent years (Bijleveld, 2005; Ma 

and Kockelman, 2006; Song et al., 2006; Park and Lord, 2007; Ma et al., 2008; Wang et al., 2011; 

El-Basyouny et al., 2014a, 2014b; Lee et al., 2015; Abay and Mannering, 2016; Barua et al., 2016; 

Serhiyenko et al., 2016; Zeng et al., 2016; Heydari et al., 2016; 2017; Sarwar et al., 2017). 

Multivariate models have been found to adequately account for correlations among the different 

levels of crash severity, which seem to emerge from a variety of sources including data on traffic 

collisions that involve multiple occupant injuries from the same crash. See Mannering et al. (2016) 

for more detailed information. In this example, the occupants would likely suffer different levels 

of injury (crash severity), but the unobserved factors that influence the injury severity levels would 

be correlated (Eluru et al., 2010; Abay et al., 2013; Yasmin et al., 2014; Russo et al., 2014; Ma et 

al., 2017). The unobserved factors may impact the multiple crash counts of different severity levels 

simultaneously for each roadway segment under consideration (Mannering et al., 2016); therefore, 

estimating separate univariate models could cause statistical problems. To avoid these problems, 

the concept of random parameters in a multivariate modeling framework to accommodate the 

unobserved heterogeneity in the correlated crash data is presented in Chapter 3. 

2.4 Machine Learning and Data Mining Methods 

Machine learning algorithms are known for their superior predictive power and their ability to deal 

with the problems related to high dimensionality (Hastie et al., 2009). In recent years, the field of 

transport studies has seen an explosion of interest in machine learning and data mining methods. 

However, in the highway safety analysis area, these state-of-the-art methods have not been well 

explored. Some general description of machine learning and data mining methods are discussed 

below (Hastie et al., 2009; James et al., 2013). 
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2.4.1 k-Fold Cross-validation 

The idea of cross-validation is to select the appropriate hyper-parameters for the classifiers to 

perform well not only in training but also in validation and testing to avoid overfitting and 

underfitting (Hastie et al., 2009).  

This approach involves randomly dividing the data into k  folds (groups) of equal size. Then, 

for the first round, the first fold is used as a validation dataset, and the classifier is fitted onto the 

remaining folds. After training, the mean squared error 𝑀𝑆𝐸1 is computed on the first fold. This 

procedure is repeated k  times (e.g., for the second round, the second fold is used as a validation 

dataset, and the same classifier is fitted onto the remaining folds. After training, the mean squared 

error 𝑀𝑆𝐸2 is computed on the second fold, etc.) This process results in k  estimated validation 

errors: 𝑀𝑆𝐸1 , 𝑀𝑆𝐸2, . . . , 𝑀𝑆𝐸𝑘 . Computing the average of these values, the k-fold cross-

validation (𝐶𝑉𝑘) estimate is obtained: 

 

𝐶𝑉𝑘 =
1

𝑘
∑ 𝑀𝑆𝐸𝑖

𝑘
𝑖=1        

 

For each set of hyper-parameters, 𝐶𝑉𝑘  is computed using the above procedure. The final classifier 

uses the set of hyper-parameters that yields the smallest 𝐶𝑉𝑘 . 

k  = 5 or k  = 10 is typically preferred in practice. When k is set to equal the number of 

observations n, it becomes a special case Leave-One-Out Cross-Validation (LOOCV), which 

requires fitting the machine learning method n times (n refers to number of observations). This  

process potentially can be computationally expensive. Cross-validation is a general approach that 

can be applied to almost any machine learning method. Some learning algorithms have 

computationally intensive fitting procedures. Therefore, performing LOOCV may pose 

computational problems, particularly if n is extremely large. In such cases, performing 5-fold or 

10-fold cross-validation could be much more feasible. 

2.4.2 Support Vector Machine 

Support vector machine (SVM) is a supervised machine learning algorithm that analyzes data 

based on statistical learning theory. In general, if the data (with different labels) can be perfectly 

separated using a hyperplane, SVM can help establish the maximal margin hyperplane (the 
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hyperplane that is farthest from the training observations) (Scholkopf and Smola, 2001; Hastie et 

al., 2009; James et al., 2013). Consider the construction of a maximal margin hyperplane based on 

n training observations x1 , x2 …x𝑛𝜖𝑅𝑝 and with corresponding labels y1, y2 … y𝑛𝜖{−1,1}. The 

maximal margin hyperplane solution can be established using optimization techniques as follows: 

 

Maximize 𝑀(𝛽0, 𝛽1 … 𝛽𝑝 , 𝜀1,… 𝜀𝑛)         

s.t. ∑ 𝛽𝑗
𝑝
𝑗=1 = 1 

y𝑖(𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯+ 𝛽𝑝𝑥𝑖𝑝) ≥ 𝑀(1 − 𝜀𝑖)    ∀𝑖 = 1, … ,𝑛 

𝜀𝑖 ≥ 0,   ∀𝑖 = 1,… , 𝑛            ∑𝜀𝑖 ≤ 𝐶

𝑛

𝑖=1

 

 

where C is a non-negative constant, M is the width of the margin, 𝛽0, 𝛽1 … 𝛽𝑝 are the coefficients 

that define the separating hyperplane in p dimensional space, and  𝜀1, …𝜀𝑛 are the slack variables 

that allow individual observations to stay on the “wrong” side of the margin. 

For data that are not linearly separable, a kernel function 𝐾(𝑥, x𝑖) can be used to replace 

the hyperplane function, which transforms the input space into a high-dimensional space using a 

nonlinear transformation defined by an inner product function. In this dissertation, two popular 

kernel functions (radial basis function [RBF] and polynomial) are applied and compared: 

 

RBF kernel:   𝐾(𝑥, 𝑥′) = 𝑒𝑥𝑝(−𝛾||𝑥 − 𝑥′||
2
 ) 

Polynomial kernel:   𝐾(𝑥, 𝑥′) = (𝑥𝑇 ∙ 𝑥′ + 1)𝑑 

 

where 𝛾 is a hyper-parameter that controls the shape of the RBF kernel and d is the degree of the 

polynomial kernel. For fixed values of C and 𝛾 or d, there is always a globally optimal solution to 

the optimization problem. In practice, these hyper-parameters are generally selected using cross-

validation.   

2.4.3 Random Forests 

Random forests (Breiman, 2001) is a substantial modification of bagging (a general procedure for 

reducing the variance of a machine learning model (James et al., 2013) that builds a large collection 
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of de-correlated trees and then averages them. In many cases, random forests perform in a way 

similar to boosting (a general procedure for improving model prediction by combining many 

“weak” models (Hastie et al., 2009)), however, random forests are generally simpler to train and 

tune. The essential idea behind bagging is to reduce the variance by generating many sub-datasets 

that are used to train approximately unbiased models. Decision trees are ideal candidates for 

bagging due to their extraordinary flexibility and ability to capture complex interaction structures 

in the data. If trees grow sufficiently deep, they have relatively low bias. The random forests 

algorithm is provided in Hastie et al. (2009) and James et al. (2013): 

 

- Train the random forests: 

For b = 1 to B: 

(a) Draw a bootstrap sample Z* of size N from the training data. 

(b) Grow a random forest tree T𝑏 to the bootstrapped data by recursively repeating the 

following steps for each terminal node of the tree until the minimum node size n𝑚𝑖𝑛 is 

reached: 

i. Select m variables at random from the p variables.  

(m can be any integer from 1 to p. Common choices are 𝑚 = √𝑝 or 𝑚 = 𝑙𝑜𝑔2(𝑝).) 

ii. Pick the best variable/split-point among the m variables. 

iii. Split the node into two daughter nodes. 

Output the ensemble of trees {T𝑏}1
𝐵. 

- Make a prediction at a new point x: 

Let C𝑏(𝑥) be the class prediction of the bth random forest tree.  

Then, predicted class = majority vote {C𝑏(𝑥)}1
𝐵. 

2.5 Metric of Model Performance 

Using appropriate metrics is crucial in model performance evaluation. A common error in highway 

safety literature for evaluating models is using only accuracy (for a machine learning model), ρ2 

or likelihood (for econometric regression) to evaluate and select models. 

Imagine a case where 90% of the highway segments do not have fatal crashes and the 

remaining 10% do. One can easily propose a completely useless model with a high accuracy of 
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90%: no matter what information (e.g., geometric design, traffic volume) is provided, the model 

always predicts “the segment does not have fatal a crash.” Therefore, for highway safety data 

analysis, the accuracy of a model by itself is generally not a good metric for evaluating model 

performance while using machine learning algorithms. Three metrics for model performance 

evaluation (Precision, Recall, and F1 score) are introduced here and recommended for use (Hastie 

et al., 2009; James et al., 2013).  

 

 

Figure 2.2 Definitions of true positive (TP), false positive (FP), false negative (FN), and true 

negative (TN) 

 

Based on the definitions of true positive (TP), false positive (FP), false negative (FN), and true 

negative (TN) (Figure 2.2), the Precision, Recall, and F1 score are defined as: 

 

Precision =
TP

TP+FP
    (% positive predictions that are correct) 

Recall =
TP

TP+FN
       (% positive instances that are predicted positive) 

F1 = 2
Precision∙Recall

Precision+Recall
   (Harmonic mean of precision and recall) 

 

Chapter 3 discusses the advantages of using Precision, Recall, and F1 score in tuning machine 

learning models to analyze fatal highway crashes. 

Regarding performance metrics for econometric models, ρ2  and likelihood are good 

representations of a model’s overall fit to the data. However, from a statistics perspective, adding 

increasingly more independent variables or higher order terms (e.g. 𝑥2, 𝑥3,… ,𝑥𝑛 ) always 

increases a model’s overall fit to the data. In this sense, since there is no penalty for the increased 
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number of independent variables, using only ρ2 or likelihood in model selection may lead to issues 

such as overfitting. Therefore, in the model selection process, Akaike information criterion (AIC) 

(Akaike, 1987), Bayesian information criterion (BIC) (Burnham and Anderson, 2004), or other 

model performance metrics are suggested because they penalize large numbers of independent 

variables. Chapter 3 presents examples of the use of AIC in evaluating advanced econometric 

models.  

When selecting machine learning or econometric regression models, the trade-off between 

prediction accuracy and model interpretability should be considered. Of the many commonly used 

econometric and machine learning methods, some are less flexible than others. For example, linear 

regression is a relatively inflexible approach because it can generate only linear functions such as 

lines in a two-dimensional space or a linear hyperplane in a high-dimensional space. Other 

methods, such as decision tree, are considerably more flexible because they can generate a much 

more complicated and multi-dimensional discrete function.  

If inference is the main interest, then restrictive models are much more interpretable. For 

example, when inference is the goal, a linear model may be a good choice because it is quite easy 

to understand the relationship between the dependent variable Y and the independent variables X1, 

X2,…Xp. On the other hand, flexible approaches, such as a decision tree, will generate a 

complicated function where it will be relatively difficult to interpret the effects of any independent 

variable on the dependent variable.  

Generally, regression type models are often considered less flexible compared to machine 

learning algorithms for analyzing highway safety data. Due to their functional forms, regression 

models are typically continuous, monotone, and differentiable. With regard to econometric models, 

the marginal effects and elasticity for regression functions can be easily computed. As a result, 

econometric and regression models have high interpretation power. In contrast, machine learning 

algorithms usually have relatively lower interpretation power but higher prediction power due to 

the flexibility in their function forms. Based on the purpose of their specific application, highway 

agencies should consider this trade-off when selecting appropriate models for predicting or 

analyzing crashes. 
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2.6 Network-Level and Project-Level Decision Making Using Optimization 

After analyzing safety data with machine learning and econometric models,  the sub-framework 

of optimization programming introduced in this section is recommended for helping highway 

agencies improve the decision-making process at both the network level (Labi et al., 2006; 

Lamptey et al., 2008; Murillo Hoyos et al., 2015) and the project level (Irfan et al., 2011; Labi et 

al., 2017). For example, in network level decision-making, machine learning models are generally 

preferred as econometric regression models compute the average or overall response values by 

their definition, which will lead to relatively low performance compared to machine learning 

models insofar as predicting individual cases. Machine learning algorithms generate the inputs of 

predicted “dangerous/high risk” road segments for the optimization sub-framework. Using 

optimization, highway agencies can determine the most cost-effective intervention strategies to 

improve their funding allocations. For example, if they seek to be conservative and cover as many 

potential “dangerous/high risk” road segments as possible, machine learning models should be 

tuned based on recall; if funding is extremely limited, and agencies seek to avoid wasting any 

funds on false positive “dangerous/high risk” road segments, machine learning models should be 

tuned based on precision; otherwise, F1 score should be used as the model performance metric in 

order to achieve a balanced decision. See Section 3.4 for more details. 

Regarding project-level decision-making, econometric models are generally preferred due 

to their high interpretation power. Using calibrated regression coefficients, highway agencies can 

evaluate the impacts of changes in road safety factors (e.g., widening lane width and improving 

pavement condition). For example, Section 3.3 describes a scenario where the outputs from 

econometric models are used as inputs for the optimization sub-framework. In that section, life-

cycle analysis is incorporated into the optimization model to determine the optimal distribution of 

lane and shoulder width on a two-lane highway with a restricted right of way. 

2.7 Chapter Summary 

This chapter presents a proposed framework to enhance prediction of highway crashes. With a 

comprehensive literature review, the chapter described the elements of the proposed framework, 

which included advance econometrics and machine learning techniques. Then, the concepts and 

reasons for using appropriate performance metrics for model assessment were explained. Finally, 
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the chapter discussed the trade-offs between econometrics and machine learning models, and how 

to incorporate them within an optimization framework to improve the network-level or project-

level decision making process. 
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CHAPTER 3. SAFETY IMPLICATIONS OF ROADWAY DESIGN AND 
MANAGEMENT — OLD FINDINGS AND NEW EVIDENCE IN THE 

TRADITIONAL ENVIRONMENT 

3.1 Introduction 

In response to the growing public demand for safer roadways, transportation agencies have 

developed a variety of safety programs, roadway safety education, accelerated highway renewal, 

and innovative technology to improve roadway safety design and management (Bonneson et al., 

2007). Some of the traditional methods to evaluate the safety effect for a certain design are based 

on the laws of physics, before-after studies, and comparisons (e.g., two types of different safety 

components). However, highway safety is generally influenced by multiple factors that include 

highway geometry, driver characteristics, roadway surface condition, vehicle characteristics, and 

the environment. Typically, crashes are caused by an interaction of more than one of these factors.  

Due to these complicated interactions, traditional methods may not able to conclude accurate 

results. As a result, highway engineers tend to follow design standards, such as AASHTO (2011), 

and rely on policies to guide them in the design phases. The underlying assumption is that these 

design standard and policies are expected to “warrant safe roadways.” Generally, this assumption 

regarding safety is valid; however, with the continual changes occurring in the driving culture, 

traffic environment, vehicle characteristics, emerging technology, etc., traditional approaches for 

design and management may not be able to “warrant safe roadways,” and the corresponding safety 

assumption may be violated.  

Fortunately, over the past decade, the quality of crash data has been improving, which has 

created opportunities in developing advanced statistical models and data mining techniques. Using 

these advancements, this dissertation proposes a framework to enhance the prediction of highway 

crashes to help agencies estimate the safety impacts of design factors and management more 

precisely. In addition, from the roadway safety perspective, engineering factors are considered 

particularly relevant because 1) engineering factors are within the direct control of highway 

agencies and 2) enhancements in engineering factors can help reduce the crash contributions of 

the other crash factors (Sinha and Labi, 2007). Taking these into account, and with the 
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opportunities discussed in Chapter 1, this dissertation demonstrates the implementation of the 

proposed prediction framework using an Indiana crash dataset for three different scenarios: 

a) Estimating the impacts of the road-surface condition with advanced econometric 

models 

b) Identifying the optimal lane and shoulder width on a two-lane rural highway using 

multiobjective optimization  

c) Predicting fatal highway segments with machine learning algorithms 

 

The original data for the case studies are from a 2006 study by Labi (2006) that analyzed several 

geometric factors on rural two-lane roads in a bid to ascertain their relative effects on crash 

reduction. Labi’s study used a variety of data sources to formulate models to estimate the number 

of crashes. Those datasets included: 

- Roadway Inventory Dataset (RID), a comprehensive database of the geometric, 

operational, and pavement conditions for road segments on the Indiana state highway 

network. 

- Route Alignment Dataset (RAD), which contains information on the horizontal and 

vertical alignments (including information on segment curvatures) for the all Indiana state 

highways. 

- Indiana Crash Dataset (ICD), which is a listing of the individual crashes and the 

corresponding circumstances on Indiana highways based on data received from the 

Indiana State Police. The records from 1997 to 2000 were utilized for the crash prediction 

models. 

- Road Sections Dataset (RSD), which is a geospatial database consisting of the RID and 

various state and local jurisdictional boundaries, with the goal of assigning each crash and 

corresponding road segment to an urban or rural categorization. 

 

Data for the agency cost estimates were collected from two sources: 1) information on shoulder 

construction and maintenance costs were from a 2001 study at Iowa State University and 2) lane 

construction and maintenance costs were from the Wisconsin and Washington DOT. Data from 

Midwestern states were particularly valuable because they generally share similar conditions with 

Indiana that are related to the economy, highway operations, weather, and terrain.  



36 
 

3.2 Impacts of Road-Surface Condition on Safety 

Recent studies have begun to shed more light on the crashes experienced on rural roads by 

examining the influence of a road’s pavement surface condition. In a bid to contribute to this 

growing body of knowledge and to facilitate comprehensive evaluation of pavement maintenance 

projects, this case study explored the safety effects of the pavement condition of rural roads. It 

tested the hypotheses that pavement roughness generally has a non-trivial residual impact on safety 

outcomes and that the magnitude and direction of these impacts differ across road segments. To 

explore these hypotheses, the case study contained crash frequency models for three levels of crash 

severity and five levels of road surface condition. The developed models used the multivariate 

random parameters negative binomial (MRPNB) specification to account for the unobserved 

heterogeneity and correlation among the different levels of crash severity.  

3.2.1 Literature Review 

Several recent studies found significant variation in the effects of roughness or overall pavement 

condition on crash frequency and severity (Lamptey, 2004; Labi, 2006; Labi, 2011; Mayora and 

Piña, 2009; Li et al., 2013; Buddhavarapu et al., 2013; Anastasopoulos, 2016). A school of thought 

contends that crash propensity increases as pavement condition improves because a very good 

pavement condition is generally associated with higher speeds and subsequently higher crash 

counts. Other researchers maintained that such effects have yet to be proven beyond a reasonable 

doubt (Harwood et al., 2003), a position that was seemingly corroborated by Agent et al. (2004) 

whose analysis using Kentucky highway data found no difference in crash frequency before and 

after pavement resurfacing. Al-Masaeid (1997), on the other hand, indicated that pavement 

condition, expressed in terms of the international roughness index (IRI) had significant but rather 

opposite effects on single- and multiple-vehicle crashes. NCHRP Project 17-9(2) reported that 

resurfacing had a negative effect on safety in certain states and a positive effect in others. Earlier 

work by Cleveland (1987) seemed rather prescient, suggesting that the direction of impact was 

rather ambiguous and that additional research was needed. Drivers tend to behave less carefully 

on roads with adequate levels of service where they perceive a low level of risk and more carefully 

on roads with inadequate levels of service where there is a high level of perceived risk. Therefore, 

it seems plausible that a high level of pavement condition could exhibit either direction of impact 
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depending on driver behavior: a positive net impact where adequate friction and surface condition 

outweighed the positive risk compensation of drivers, and a negative net impact where the negative 

risk compensation of drivers outweighed adequate friction and surface condition. Further, the net 

direction of impact may be positive or negative depending on factors such as driver (heterogeneous) 

behavior in situations of good or poor pavement condition, the level of the poorest pavement 

condition in the analysis dataset.  

It is generally hypothesized that crash propensity decreases as pavement condition 

improves from poor (high IRI) to good (low IRI); however, it is important to explore the variable 

effects of the pavement condition on safety that could arise due to the heterogeneous response in 

driver behavior (Mannering et al., 2016). This variation in response or adjustment/non-adjustment 

of driving behavior to the perceived level of risk, left unobserved, can vary from one road segment 

to the next, particularly in the case of poor pavement condition. Most past studies suggested a 

unidirectional relationship between pavement condition and safety. However, the possibility of 

risk-compensation or offset-hypothesis effects, where driver behavior changes in response to the 

level of perceived risk (Winston et al., 2006), exists. In the case of poor pavement conditions, 

drivers may or may not adjust their behavior. Where drivers make adjustments, they drive more 

carefully in response to a poor pavement condition (higher level of perceived risk) but less 

carefully in the case of a pavement in good condition which makes them feel safer. Investigating 

this issue is important to achieving this study’s main objective of exploring the impact of pavement 

condition on rural roadway safety across the various levels of pavement condition. These levels, 

in terms of pavement roughness (IRI in/mile), may be defined as: Excellent (60 – 100), Good (101 

– 125), Good ~ Fair (126 – 150), Fair (151 – 200) and Poor (≥ 200) based on the thresholds 

established in the pavement management literature (INDOT, 2000; Sinha et al., 2005). In 

addressing the issue, this dissertation intends to produce models that reduce the bias and 

inconsistency in the estimation process and to enhance the reliability of highway safety prediction.  

3.2.2 Case Study 

3.2.2.1 Introduction 

In this case study, the multivariate random parameter negative binomial (MRPNB) model was 

chosen for analyzing the pavement condition impacts on highway safety. The overdispersion 
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parameters confirmed that the negative binomial models were preferred over their Poisson 

counterparts. Winkelmann (2000), Winkelmann (2008), and Shi and Valdez (2014) described the 

general framework of the multivariate negative binomial model with the expected number of 

crashes, λ, in ith road segment and k th severity level. In this dissertation, these levels are fatal, injury, 

and no-injury): 

  

𝜆𝑖𝑘 = EXP(𝜷𝑘𝑿𝑖𝑘
′ + 𝜀𝑖𝑘)                 𝑘 = 1,2,3             

where, 𝑿𝑖𝑘= (1, 𝑋1𝑘 , 𝑋2𝑘 , … , 𝑋𝑁𝑘), is the vector of independent variables  

𝜷𝑘= (𝛽0𝑘 , 𝛽1𝑘 , … ,𝛽𝑁𝑘), the vector of coefficients  

EXP(𝜀𝑖𝑘) is a multivariate gamma-distributed error term with mean 1 and variance α−1. 

 

The negative binomial is appropriate where α is significantly different from 0, otherwise, the 

Poisson model is preferred (Washington et al., 2011).  

In addition, the error term 𝜀𝑖𝑘 is multivariate and is normally and independently distributed 

with zero mean, variance 𝝈𝟐, and correlation 𝜌 based on the unstructured correlation covariance 

matrix: 

 

Σ = [

𝜎1
2 𝜎1𝜎2𝜌21 𝜎1𝜎3𝜌31

𝜎2𝜎1𝜌21 𝜎2
2 𝜎2𝜎3𝜌32

𝜎3𝜎1𝜌31 𝜎3𝜎2𝜌32 𝜎3
2

]          

 

It is important to account for the influence of unobserved heterogeneity; for example, the effects 

of individual independent variables may be different across road segments. In this case, the 

estimated parameter should not be specified as a fixed value but instead should be made to follow 

a distribution such as normal, uniform, etc. To do so, random parameters were introduced into this 

multivariate modeling framework. Greene (2008) described estimation procedures for 

incorporating random parameters in Poisson and negative binomial count-data models. The 

estimable parameters are then written as: 

 

𝜷𝒌 = 𝜷 + 𝝎𝑘            
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where 𝝎𝒌  is a randomly-distributed term (e.g., a normally-distributed term with mean 0 and 

variance 𝜎2 ). A random parameter should be kept in the model only if its estimated 𝜎2  is 

significantly greater than zero and if the likelihood ratio test also recommends using a model with 

random parameters. 

The simulation-based maximum likelihood method to maximize the simulated log-

likelihood function, with 𝜎≠0 allowing for heterogeneity, was used for estimating the random 

parameters multivariate negative binomial models. Two hundred (200) Halton draws typically 

provide an efficient distribution of draws for numerical integration (Milton et al., 2008; Russo et 

al., 2014), and therefore was used in this dissertation to estimate the random parameters.  

The Akaike information in this case study was found to be smaller than that of the 

comparison models and thus provided a superior fit and possessed parameter estimates that closely 

converged to the true model parameters.  

To evaluate the statistical superiority of the alternative model specifications (the fixed vs. 

random parameters multivariate negative binomial, hereinafter referred to as the fixed model f and 

the random parameters model r, respectively) likelihood ratio tests (Washington et al., 2011) was 

carried out for the model representing pavements in poor condition: 

 

𝜒2 = −2[𝐿𝐿(𝛽𝑓)− 𝐿𝐿(𝛽𝑟)]          

  

where, LL(β𝑓) is the log-likelihood at convergence of the fixed parameters multivariate negative 

binomial model and LL(β𝑟)  is the log-likelihood at convergence of the random parameters 

multivariate negative binomial model.  

Moreover, the models were estimated separately for the different levels of pavement 

condition: excellent, good, good~fair, fair, and poor. The likelihood ratio test for parameter 

transferability, which was carried out to investigate the transferability of the results over all five 

levels of pavement condition, is given as (Washington et al., 2011): 

 

𝜒2 = −2[𝐿𝐿(𝛽𝑡) − 𝐿𝐿(𝛽𝑖) − 𝐿𝐿(𝛽𝑗)]         

 

where, 𝐿𝐿(𝛽𝑡) is the log-likelihood at convergence of the model estimated with the data from all 

the pavement condition levels, 𝐿𝐿(𝛽𝑖) is the log-likelihood at convergence of the model using 
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pavement condition level i data, and 𝐿𝐿(𝛽𝑗) is the log-likelihood at convergence of the model 

using pavement condition level j data.  

The marginal effect reflects the impact of a one-unit change in an independent variable on 

the dependent variable (in this case, the expected frequency of non-injury, injury, or fatal crashes). 

For crash severity level k , the marginal effect of the mth independent variable is calculated as: 

 

ME𝑋𝑚𝑘

𝜆𝑚𝑘 =
𝜕𝜆𝑘

𝜕𝑋𝑚𝑘
= 𝛽𝑚𝑘𝐸𝑋𝑃(𝜷𝒌𝑿𝒌

′ )          

  

where 𝜆𝑘 is the estimated model for crash severity level k; 𝑋𝑚𝑘 is the mth independent variable; 

𝛽𝑚𝑘  is the corresponding estimated coefficient; 𝑿𝒌
′  are 𝜷𝒌  are the vectors of the independent 

variables and the corresponding estimated coefficients, respectively. 

3.2.2.2 Data Statistics 

The studied database of 1,524 highway segments was developed by merging two independent 

datasets: a road pavement condition dataset and a road safety dataset. The combined dataset 

contained the historical vehicle crash data of rural highways in Indiana over a three-year period. 

Based on the pavement condition, the data were further divided into subsets depending on the level 

of pavement condition in terms of the International Roughness Index (IRI): Excellent 

(60<IRI≤100), 681 observations; Good (100<IRI≤125), 324 observations; Good ~ Fair 

(125<IRI≤150), 111 observations; Fair (150<IRI≤200), 99 observations; Poor (IRI>200), 67 

observations. Each of these subsets contained the pavement condition and road geometric 

information such as lane width, inside and outside shoulder widths, and curvature. In addition, the 

crashes on each road segment were categorized into three levels of crash severity: fatal, injury, and 

no-injury.  

The pavement surface condition indicator, IRI, is measured in units of inches per mile 

(in/mile) or meters per kilometer (m/km), which is defined technically as the deviations of a 

pavement surface from a true planar surface with characteristic dimensions that affect vehicle 

dynamics, ride quality, dynamic loads, and drainage (Sayers and Steven, 1998). Roughness is an 

important pavement characteristic because it affects the dynamics of moving vehicles, increasing 

the wear on vehicle parts and the handling of a vehicle, and therefore has significant impacts on 
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vehicle operating costs and safety, as well as the comfort and speed of travel. It also increases the 

dynamic loadings imposed by vehicles on the surface, accelerating the deterioration of the 

pavement structure (Sayers et al., 1986). IRI is typically measured annually using pavement 

profiling laser sensors. IRI is the accumulated vertical deviations of the pavement surface along a 

longitudinal path divided by the distance traveled by the vehicle during the measurement (such as 

kilometers or miles). For this reason, the IRI units are meters per kilometer (m/km) or inches per 

mile (in/mi). The IRI of a new pavement can be as low as 60 in/mi, and for a pavement in poor 

condition, as high as 300 in/mi (Sayers et al., 1986; Chang et al., 2009). IRI, which often serves as 

the basis for pavement preservation decisions, is collected on a regular basis by most highway 

agencies worldwide and is believed to adequately represent user perception of road quality. In the 

U.S., the FHWA adopted IRI for the state highway system because it uses a standardized procedure, 

indicates consistency across jurisdictions, represents an objective measurement, and has gained 

acceptance worldwide as a universal measure of pavement surface condition. Table 3.1 presents 

the summary statistics of the key variables used in the analysis. 
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Table 3.1 Descriptive statistics of the key variables 

Variable Description  Mean Std Dev Minimum Maximum 

Pavements in Excellent Condition 

(60 < IRI ≤ 100) 

    

Total number of fatal crashes 0.217 0.472 0 3 

Total number of injury crashes 3.800 4.125 0 41 

Total number of no-injury crashes 13.638 13.165 0 110 

IRI (in/mile) 80 11.092 60.500 100 

Segment length in miles 5.901 2.599 0.560 16.610 

Average annual daily traffic of passenger cars (in 10,000s) 1.419 1.457 0.027 12.865 

Natural logarithm of average daily trucks  7.160 1.073 3.701 9.867 

Number of lanes 3.289 1.490 2 7 

Lane width in ft. 12.407 1.889 8.290 26.520 

Median width in ft. 23.834 28.205 0 99 

Outside shoulder width in ft. 6.642 3.494 0 13 

Inside shoulder width in ft. 1.887 2.532 0 18 

Average vertical curve grade (%) 1.143 1.713 0 6.446 

Road segment with 2 lanes 56.82%    

US road 33.92%    

SR road 40.67%    

Interstate  25.40%    

Pavements in Good Condition 

(100 < IRI ≤ 125) 

    

Total number of fatal crashes 0.138 0.363 0 2 

Total number of injury crashes 3.296 3.414 0 21 

Total number of no-injury crashes 11.802 11.399 0 88 

IRI (in/mile) 109 6.880 100.500 125 

Segment length in miles 5.837 2.558 0.560 16.610 

Average annual daily traffic of passenger cars (in 10,000s) 0.945 1.168 0.029 12.446 

Natural logarithm of average daily trucks  6.808 0.971 3.779 9.834 

Number of lanes 2.858 1.376 2 7 

Lane width in ft. 12.514 2.283 8.290 26.520 

Median width in ft. 16.829 28.373 0 99 

Outside shoulder width in ft. 5.953 3.515 0 12 

Inside shoulder width in ft. 1.106 1.981 0 18 

Average vertical curve grade (%) 1.229 1.719 0 6.753 
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Table 3.1 continued 

Road segment with 2 lanes 71.60%    

US road 44.38%    

SR road 40.18%    

Interstate  15.44%    

Pavements in Good ~ Fair Condition 

(125 < IRI ≤ 150) 

    

Total number of fatal crashes 0.144 0.481 0 4 

Total number of injury crashes 3.144 3.476 0 22 

Total number of no-injury crashes 11.945 10.340 0 51 

IRI (in/mile) 137 7.251 125.500 150 

Segment length in miles 5.730 2.538 1 15.140 

Average annual daily traffic of passenger cars (in 10,000s) 1.041 1.319 0.031 10.198 

Natural logarithm of average daily trucks  6.845 1.028 3.786 9.635 

Number of lanes 3.144 1.520 2 7 

Lane width in ft. 12.053 1.685 9 25.160 

Median width in ft. 19.862 27.981 0 99 

Outside shoulder width in ft. 6.385 3.509 0 12 

Inside shoulder width in ft. 1.540 2.088 0 9 

Average vertical curve grade (%) 1.109 1.692 0 5.838 

Road segment with 2 lanes 63.06%    

US road 52.25%    

SR road 40.54%    

Interstate  7.20%    

Pavements in Fair Condition 

(150 < IRI ≤ 200) 

    

Total number of fatal crashes 0.212 0.498 0 2 

Total number of injury crashes 3.667 3.016 0 14 

Total number of no-injury crashes 12.101 9.695 0 55 

IRI (in/mile) 174 13.572 151 200 

Segment length in miles 5.434 2.224 0.620 9.910 

Average annual daily traffic of passenger cars (in 10,000s) 0.954 0.718 0.066 3.068 

Natural logarithm of average daily trucks  6.940 0.873 4.607 8.434 

Number of lanes 3.454 1.501 2 5 

Lane width in ft. 12.163 2.003 8.750 24 

Median width in ft. 24.302 25.577 0 75.870 
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Table 3.1 continued 

Outside shoulder width in ft. 6.813 3.584 0.300 13 

Inside shoulder width in ft. 2.055 2.460 0 13 

Average vertical curve grade (%) 1.495 1.798 0 6.753 

Road segment with 2 lanes 51.51%    

US road 65.66%    

SR road 27.27%    

Interstate  7.07%    

Pavements in Poor Condition 

(IRI > 200) 

    

Total number of fatal crashes 0.089 0.286 0 1 

Total number of injury crashes 2.716 3.450 0 21 

Total number of no-injury crashes 8.895 8.884 0 54 

IRI (in/mile) 235 34.847 200.500 365 

Segment length in miles 5.127 1.960 1.120 9.510 

Average annual daily traffic of passenger cars (in 10,000s) 0.779 0.681 0.124 3.569 

Natural logarithm of average daily trucks 6.769 0.745 5.226 8.585 

Number of lanes 2.761 1.308 2 5 

Lane width in ft. 12.859 2.281 10.390 26.440 

Median width in ft. 12.603 22.228 0 60 

Outside shoulder width in ft. 5.476 3.396 1 14 

Inside shoulder width in ft. 1.007 1.895 0 9.240 

Average vertical curve grade (%) 1.569 1.706 0 5.948 

Road segment with 2 lanes 74.62%    

US road 44.77%    

SR road 50.74%    

Interstate  4.47%    
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3.2.2.3 Model Estimation Results and Discussion 

Tables 3.2 through 3.6 present the estimation results for the MRPNB models developed separately 

for pavement segments in excellent, good, good~fair, fair, and poor condition; and Table 3.7 

reports the AIC and other goodness-of-fit values for all the models. Based on these values, the 

estimated models were found to have a superior fit and their parameter estimates closely converged 

to the true model parameters. Moreover, Table 3.8 presents the results for the likelihood ratio tests 

for examining parameter transferability. These tests were performed to assess the appropriateness 

of estimating the models separately for different levels of pavement condition.  

The variables found to be statistically significant at a 10% level of significance are listed 

in Tables 3.2 through 3.6. Likelihood-ratio tests were carried out to ensure that the inclusion of a 

variable in the model led to an improvement in the overall model fit at a given level of confidence 

(see Washington et al. (2011) for a detailed description of the likelihood-ratio tests). The signs of 

the estimated coefficients in the model were found to be intuitive. In addition, Table 3.6 presents 

the results for the likelihood ratio test to establish the level of confidence that one of the two 

alternative models (fixed parameters vs random parameters) was statistically superior to the other. 

Due to the MRPNB model functional form, the model coefficients appear as exponents. For 

example, holding all other variables in a model at constant values, a U.S. road segment with an 

excellent pavement condition is expected to have the number of injury crashes to increase by 20.13% 

(e0.1833 − 1 = 0.2013) compared to a non-U.S. Road segment in similar condition. 

The pavement condition is expressed in terms of its surface roughness (a lower roughness 

reflects better pavement condition). In the models for each category or range of pavement 

condition (except the model representing the poor condition), the pavement condition variable was 

found to have a fixed parameter estimate (i.e., fixed impacts on the expected crash frequency) 

across the road segments in that condition range. However, in the model representing the segments 

in poor pavement condition, the pavement condition variable was found to have a random 

parameter estimate. This same variable also was found to have a normally distributed random 

parameter in the model for the injury and non-injury crash severity levels.  

Regarding the fatal and injury crash models, the interaction term representing the 

interaction of the segment length and the pavement condition (IRI) was found to significant ly 

affect crash severity on road segments with pavements in excellent condition but also was found 

to impact only fatal crashes in the case of road segments with pavements in good condition. 
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Moreover, for pavements in good~fair pavement condition, the interaction term also turned out to 

be a significant factor for fatal and no-injury crashes. The results in Tables 3.2 through 3.4 show 

that an increase in either of these two or both in the interaction term had an increasing effect on 

the expected crash frequency in the models indicated. This interaction term is an interesting and 

unusual variable but highly intuitive and suggests that an “extended” road, that is, one that has 

long distance between its terminal points (intersections) with poor pavement condition, is more 

likely to have an even higher crash frequency compared to a similar short-length road. In other 

words, the sum of the effects of the pavement condition and road length combined is greater than 

the effect of the sum of the pavement condition only and road length only. 

To explore the effect on safety across the different functional classes of rural roads and the 

different number of lanes on a road segment, several indicator variables were created and explored 

in the models. These included the U.S. road indicator, state road indicator, interstate road indicator, 

two-lane road indicator, three-lane road indicator, four-lane road indicator, five-or-more lane road 

indicator, and multi-lane (>2) road indicator. Some of these results provided greater insight into 

the model interpretations. Compared with state roads and interstates, U.S. roads were found 

generally to have a higher expected injury-crash frequency where the pavement condition is 

excellent, good, good~fair, or poor; a higher no-injury crash frequency where the pavement 

condition is excellent; and a higher expected fatal-crash frequency where the pavement condition 

is good or fair. Moreover, compared to non-state roads, state roads with poor pavement condition 

tend to have a higher frequency of injury crashes. In addition, rural two-lane road pavements in 

good condition tend to have less injury crashes compared to rural multi-lane roads in good 

condition; on the other hand, rural two-lane road pavements in poor condition tend to have a 

significantly lower expected frequency of no-injury crashes compared to rural multi-lane roads in 

poor condition. These results seem to be indicative of risk compensation, which is discussed in the 

next section. Regarding rural road pavements in excellent condition, a higher number of lanes was 

associated with increased frequency of injury and no-injury crashes compared with those with 

fewer lanes, which is indicative of driver behavior such as overtaking.  

When the pavement condition is poor, an increase in the IRI (further decrease in pavement 

condition) would generally increase the expected crash frequency, but the coefficient was 

relatively smaller compared to the effect observed in the models developed for the higher levels 
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of pavement condition. This result was observed in this dissertation for the injury and no-injury 

models developed for pavements in this condition category.  

Regarding the model for injury crashes, the estimated random coefficient of IRI followed 

a normal distribution with a mean value of 0.00936 and standard deviation of 0.0142. The results 

indicate that for 25.48% of the observations, the pavement condition parameter had a negative sign, 

which means that for 25.48% of the observations, an increase in IRI (or decrease in pavement 

condition) was associated with a decrease in crashes and for 74.52% of the observations, an 

increase in IRI was associated with an increase in crashes. Regarding the model for no-injury 

crashes, the corresponding mean value of the normally distributed parameter coefficient for 

pavement condition was 0.00443 and the standard deviation was 0.0201. In addition, in 41.27% of 

the observations, the pavement condition parameter had a negative sign, which means that for 

41.27% of the observations, an increase in IRI (or decrease in pavement condition) was associated 

with a decrease in crashes and for 58.73% of the observations, an increase in IRI was associated 

with an increase in crashes. 

The random parameter estimate for poor pavement condition suggests that the impact of 

the surface condition on crash frequency was indeed bi-directional and the specific direction of the 

increasing pavement condition depends on the characteristics of the road segment in question. The 

negative portion of the density function of the condition parameter suggests that for those 

observations (road segments) that yielded this result, a higher IRI (further lowering of the 

pavement condition) would decrease the expected crash frequency. This finding can be attributed 

to the risk compensation effect where drivers generally become more careful where they perceive 

greater risks in their operating environment. Such heightened caution in driving behavior likely 

results in lower crash occurrence. The random parameter of IRI in the poor pavement condition 

model also served as evidence of the heterogeneous nature of driver behavior (i.e., in response to 

greater risk in the driving environment posed by poor pavement condition, some drivers drive more 

cautiously. This behavior varied across the different road segments. Generally, this finding is 

consistent with the concepts known as the Peltzman effect, risk homeostasis, or offset hypothesis, 

whereby humans tend to engage in less risky behavior when they perceive a riskier environment 

(Winston et al., 2006; Labi, 2006; Labi, 2016). 

Another interesting finding for the road segments with pavements in poor condition is that 

relatively fewer road geometry factors were significant in the crash frequency model compared to 
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the model for segments with pavements in fair-excellent condition. This may happen because the 

factors related to road geometry (e.g., lane width and shoulder width) become less influential in 

affecting the crash frequency when the pavement condition is poor. 

 

Table 3.2 Multivariate negative binomial model for pavements in excellent condition 

Variables coefficient 
estimates 

t-stat 

Constant [FAT] –4.1887 –3.78 
Constant [INJ] –4.2057 –10.44 

Constant [NINJ] –2.9520 –7.29 
Segment length in miles [NINJ] 0.1019 9.18 

Natural logarithm of average daily trucks [FAT] 0.3832 2.09 
Natural logarithm of average daily trucks [INJ] 0.6436 10.80 
Natural logarithm of average daily trucks [NINJ] 0.5816 11.33 

Average annual daily traffic of passenger cars (in 10,000) [FAT] 0.1903 2.06 
Lane width in ft. [FAT] –0.0813 –1.95 
Outside shoulder width in ft. [FAT] –0.0514 –2.36 

Outside shoulder width in ft. [INJ] –0.0525 –2.68 
Outside shoulder width in ft. [NINJ] –0.0224 –2.60 

IRI (in/mile) [NINJ] 0.0052 2.47 

Interaction between segment length and IRI (Length × IRI/100) [FAT]1 0.1181 3.49 

Interaction between segment length and IRI (Length × IRI/100) [INJ]1 0.1264 9.03 
Average vertical curve grade [INJ] 0.0220 2.30 

Average vertical curve grade [NINJ] 0.0259 2.99 
Inside shoulder width in ft. [FAT] –0.1538 –2.34 
Inside shoulder width in ft. [INJ] –0.1660 –5.27 

Inside shoulder width in ft. [NINJ] –0.1732 –6.15 
Median width in ft. [INJ] –0.0114 –4.11 

Median width in ft. [NINJ] –0.0065 –2.51 
Number of lanes on the road segment [INJ] 0.2516 4.12 
Number of lanes on the road segment [NINJ] 0.1981 3.37 

Functional class US (1 if US road, 0 otherwise) [INJ] 0.1833 2.40 
Functional class US (1 if US road, 0 otherwise) [NINJ] 0.1468 2.16 
   

Covariance matrix   

σ2[FAT] 5.1666  

σ2[INJ] 2.5042  

σ2[NINJ] 0.9943  

ρ[FAT/INJ] 0.7063  

ρ[FAT/NINJ] 0.1404  

ρ[INJ/NINJ] 0.1543  

FAT, fatal crashes; INJ, injury crashes; NINJ, no-injury crashes. 
Variables are statistically significant at 90% degree of confidence. 
1 (divided by 100 in order to scale the interaction term. The scaling helps to address the convergence issue during the 
maximum likelihood optimization procedure) 
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Table 3.3 Multivariate negative binomial model for pavements in good condition  

Variables coefficient 
estimates 

t-stat 

Constant [FAT] –6.3110 –3.81 
Constant [INJ] –1.2977 –1.48 

Constant [NINJ] –2.1190 –2.63 
Segment length in miles [INJ] 0.1875 9.20 

Segment length in miles [NINJ] 0.1657 10.01 
Natural logarithm of average daily trucks [FAT] 0.5641 2.05 
Natural logarithm of average daily trucks [NINJ] 0.3912 6.05 

Average annual daily traffic of passenger cars (in 10,000) [INJ] 0.4310 6.85 
Average annual daily traffic of passenger cars (in 10,000) [NINJ] 0.0563 1.12 
Lane width in ft. [FAT] –0.2024 –2.23 

IRI (in/mile) [INJ] 0.0126 1.62 
IRI (in/mile) [NINJ] 0.0066 2.18 

Interaction between segment length and IRI (Length × IRI/100) [FAT]1 0.4233 6.48 
Inside shoulder width in ft. [FAT] –0.2536 –1.83 

Inside shoulder width in ft. [INJ] –0.1980 –3.33 
Median width in ft. [NINJ] –0.0084 –4.08 
Two-lane road segment (1 if two-lane, 0 otherwise) [INJ] –0.4746 –2.12 

Functional class US (1 if US road, 0 otherwise) [FAT] 0.5996 3.08 
Functional class US (1 if US road, 0 otherwise) [INJ] 0.2246 2.34 
   

Covariance matrix   

σ2[FAT] 0.5658  

σ2[INJ] 0.8647  

σ2[NINJ] 1.0594  

ρ[FAT/INJ] 0.5683  

ρ[FAT/NINJ] 0.1214  

ρ[INJ/NINJ] 0.1530  

FAT, fatal crashes; INJ, injury crashes; NINJ, no-injury crashes. 
Variables are statistically significant at 90% degree of confidence. 
1 (divided by 100 in order to scale the interaction term. The scaling helps to address the convergence issue during the 
maximum likelihood optimization procedure) 
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Table 3.4 Multivariate negative binomial model for pavements in good~fair condition 

Variables coefficient 
estimates 

t-stat 

Constant [FAT] 18.6371 3.11 
Constant [INJ] –5.3488 –2.71 

Constant [NINJ] –4.3847 –2.97 
Segment length in miles [INJ] 0.1465 3.81 

Natural logarithm of average daily trucks [FAT] 1.9246 1.98 
Natural logarithm of average daily trucks [INJ] 0.9527 4.28 
Natural logarithm of average daily trucks [NINJ] 0.7243 7.01 

Average annual daily traffic of passenger cars (in 10,000) [FAT] 0.9085 2.18 
Average annual daily traffic of passenger cars (in 10,000) [INJ] 0.1158 2.20 
Lane width in ft. [FAT] –0.2116 –2.96 

Lane width in ft. [INJ] –0.1485 –2.37 
Lane width in ft. [NINJ] –0.1225 –2.32 

Outside shoulder width in ft. [INJ] –0.1264 –3.19 
Outside shoulder width in ft. [NINJ] –0.0456 –1.70 
IRI (in/mile) [INJ] 0.0102 2.37 

IRI (in/mile) [NINJ] 0.0197 2.02 

Interaction between segment length and IRI (Length × IRI/100) [FAT]1 0.1543 1.60 

Interaction between segment length and IRI (Length × IRI/100) [NINJ]1 0.1048 4.97 
Average vertical curve grade [INJ] 0.0792 1.62 

Average vertical curve grade [NINJ] 0.0591 1.55 
Median width in ft. [FAT] –1.7975 –2.05 

Functional class US (1 if US road, 0 otherwise) [INJ] 0.5052 2.66 
   
Covariance matrix   

σ2[FAT] 1.0811  

σ2[INJ] 0.7644  

σ2[NINJ] 0.5638  

ρ[FAT/INJ] 0.7933  

ρ[FAT/NINJ] 0.4389  

ρ[INJ/NINJ] 0.3276  

FAT, fatal crashes; INJ, injury crashes; NINJ, no-injury crashes. 

Variables are statistically significant at 90% degree of confidence. 
1 (divided by 100 in order to scale the interaction term. The scaling helps to address the convergence issue during the 

maximum likelihood optimization procedure) 
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Table 3.5 Multivariate negative binomial model for pavements in fair condition  

Variables coefficient 
estimates 

t-stat 

Constant [FAT] 5.5748 1.56 
Constant [INJ] –9.9081 –4.69 

Constant [NINJ] –7.3271 –5.13 
Segment length in miles [INJ] 0.1337 3.33 

Segment length in miles [NINJ] 0.1292 4.09 
Natural logarithm of average daily trucks [INJ] 1.3755 4.18 
Natural logarithm of average daily trucks [NINJ] 1.0171 5.15 

Average annual daily traffic of passenger cars (in 10,000) [FAT] 0.4703 1.59 
Average annual daily traffic of passenger cars (in 10,000) [INJ] 0.6878 2.05 
Average annual daily traffic of passenger cars (in 10,000) [NINJ] 0.4530 2.09 

Lane width in ft. [FAT] –0.7279 –2.14 
Lane width in ft. [INJ] –0.0975 –2.40 

Outside shoulder width in ft. [INJ] –0.0797 –1.58 
IRI (in/mile) [INJ] 0.0121 2.08 
IRI (in/mile) [NINJ] 0.0140 3.11 

Median width in ft. [INJ] –0.0129 –1.78 
Median width in ft. [NINJ] –0.0202 –5.94 
Functional class US (1 if US road, 0 otherwise) [FAT] 1.2756 1.67 

   
Covariance matrix   

σ2[FAT] 1.4732  

σ2[INJ] 1.2243  

σ2[NINJ] 0.8036  

ρ[FAT/INJ] 0.7312  

ρ[FAT/NINJ] 0.4312  

ρ[INJ/NINJ] 0.3016  

FAT, fatal crashes; INJ, injury crashes; NINJ, no-injury crashes. 

Variables are statistically significant at 90% degree of confidence. 
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Table 3.6 Multivariate random parameters (RPs) negative binomial model for pavements in poor 
condition  

Variables coefficient 
estimate 

t-stat Std 
(RPs) 

t-stat 
(RPs) 

Constant [FAT] –6.2923 –2.48   
Constant [INJ] –6.5937 –4.35   
Constant [NINJ] 0.9012 2.84   

Segment length in miles [NINJ] 0.1718 4.32   
Natural logarithm of average daily trucks [INJ] 0.6727 4.43   

Average annual daily traffic of passenger cars (in 10,000) [NINJ] 0.3389 2.16   
IRI (in/mile) [FAT] 0.0156 1.61   
IRI (in/mile) [INJ] 

(random parameter with normal distribution) 

0.00936 

(25.48%  
negatively 

signed) 

2.42 0.0142 4.75 

IRI (in/mile) [NINJ] 
(random parameter with normal distribution) 

 

0.00443 
(41.27%  

negatively 
signed) 

1.55 0.0201 3.88 

Average vertical curve grade [NINJ] 0.0911 2.02   

Two-lane road segment (1 if two-lane, 0 otherwise) [NINJ] –0.5453 –2.47   
Functional class US (1 if US road, 0 otherwise) [INJ] 1.0636 2.26   
Functional class SR (1 if State road, 0 otherwise) [INJ] 1.2761 2.72   

     
Covariance matrix     

σ2[FAT] 0.5949    

σ2[INJ] 0.6363    

σ2[NINJ] 1.0035    

ρ[FAT/INJ] 0.6471    

ρ[FAT/NINJ] -0.0562    

ρ[INJ/NINJ] 0.0271    

𝐿𝐿(𝛽𝑓) -358.64    

𝐿𝐿(𝛽𝑟) -355.40    

𝜒2 = −2[𝐿𝐿(𝛽𝑓)− 𝐿𝐿(𝛽𝑟)] 6.48    

Degree of freedom 2    

Critical value for 95% level of confidence: 𝜒0.05,2
2  5.99    

FAT, fatal crashes; INJ, injury crashes; NINJ, no-injury crashes. 
Variables are statistically significant at 90% degree of confidence. 

 

 

The effects of specific variables were also investigated, and Table 3.9 presents the marginal effects 

of each estimated parameter. A marginal effect is defined as the change in a dependent variable 

due to a one-unit change in an independent variable. In this dissertation, the marginal effect reflects 

the impact of a unit change in each variable (Tables 3.2 through 3.6) on the expected frequencies 

of fatal, injury, and no-injury crashes on a road segment. For example, the results of the estimated 

models indicate that if the annual average daily traffic of passenger cars increases by 10,000, the 

following could be expected: an average increase of 0.0199 fatal crash frequency on road segments 



53 
 

with pavements in excellent condition; increased injury and no-injury crashes by 1.3197 and 

0.4805, respectively, on road segments with pavements in good condition; and increased fatal and 

injury crashes by 0.0125 and 0.4188, respectively, on road segments with pavements in good~fair 

condition. In addition, a similar increase in passenger car volume can be expected to cause 

increases of 0.0641, 2.034, and 7.5445 in fatal, injury, and no-injury crashes, respectively, on road 

segments with pavements in fair condition; and 5.7135 in no-injury crashes on road segments with 

pavements in poor condition.  

This case study also investigated the marginal effects of truck traffic. If the average daily 

truck traffic (in the form of its natural logarithm) increased by one unit, the resulting impacts on 

the crash frequency were estimated from the model results. These marginal effects of truck traffic 

were examined across the different pavement conditions and across the different crash severity 

levels. The marginal impacts of truck traffic on crash frequency generally ranged from 1.7165 to 

4.0677 for injury crashes, 3.3386 to 16.9394 for no-injury crashes, and 0.0265 to 0.0551 for fatal 

crashes, depending on the pavement condition. For road segments with pavements in excellent 

condition, the marginal impacts of truck traffic were 0.04, 1.7165, and 5.9864 for fatal, injury, and 

no-injury crashes, respectively. For segments with pavements in good condition, the effects were 

0.0551 and 3.3386 for fatal and no-injury crashes, respectively; and for segments with pavements 

in good~fair condition, the effects were 0.0265, 3.4454, and 7.9374 for fatal, injury, and no-injury 

crashes, respectively. In addition, for segments with pavements in fair condition, the marginal 

effects were 4.0677 and 16.9394 for injury and no-injury crashes, respectively; and for segments 

with pavements in poor condition, the marginal effect of truck traffic was 2.4289 for injury crashes. 

These results are consistent with engineering expectation, and also past research determined that 

truck traffic, compared with passenger car traffic, has a greater impact on the expected crash 

frequency (Konduri et al., 2003). 

This case study confirmed the findings of past research regarding the impact of highway 

geometry on rural highway safety and the variation of these impacts across the different levels of 

crash severity (Zegeer et al., 1994; Council and Stewart, 1999; Fitzpatrick, 2000; Lamptey, 2004; 

Prato et al., 2014; Labi et al., 2017). In addition, it was determined that segments with wide lanes 

generally have fewer crashes compared to those with narrower lanes. In terms of rural highway 

safety, a 1 ft. increase in lane width was found to reduce the expected fatal crashes by 0.0085, 

0.0198, 0.0029, and 0.0991 on road segments with pavements in excellent, good, good~fair and 
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fair condition, respectively. In addition, for segments with pavements in good~fair condition, the 

expected injury and no-injury crashes decreased by 0.5370 and 1.3424, respectively; and for 

segments with pavements in fair condition, the expected injury crash frequency tended to decrease 

by 0.2883 with a 1 ft. increase in lane width. Regarding the outside shoulder, the results suggest 

that a 1 ft. increase in width would reduce fatal crashes by 0.0054, injury crashes by 0.14, and no-

injury crashes by 0.2306 on road segments with pavements in excellent condition; reduce injury 

crashes by 0.4571 and no-injury crashes by 0.4997 on road segments with pavements in good~fair 

condition; reduce injury crashes by 0.2357 on road segments with pavements in fair condition; and 

would have no significant safety impact on road segments with pavements in good and poor 

conditions. The results also suggest that a wider inside shoulder had little impact on road segments 

with pavements in conditions below the “good” level. However, this feature had significant 

impacts on segments with pavements in excellent or good condition: for roads with pavements in 

excellent condition, it was found that a 1 ft. increase in the inside shoulder width resulted in a 

0.0161, 0.4427, and 1.7827 reduction in expected fatal, injury, and no-injury crashes, respectively. 

For roads with pavements in good condition, this increment resulted in a 0.0248 and 0.6062 

reduction in expected fatal and injury crashes, respectively. This case study also determined that 

regarding pavements in poor condition, the median width was not a significant variable in the crash 

models. However, a 1 ft. increase in median width was associated with the following: reduction of 

fatal crashes by 0.0247 at segments with pavements in good~fair condition, reduction of injury 

crashes by 0.0304 and 0.0381 at segments with pavements in excellent or fair condition; and 

reduction of no-injury crashes by 0.0669 and 0.0717 at segments with pavements in excellent or 

good condition. In addition, a lower average vertical curve grade was found to be associated with 

reduction of the expected crash frequency for injury and no-injury crashes but not for fatal crashes 

at segments with pavements in excellent and good~fair condition; and lower expected no-injury 

crashes at road segments with pavements in poor condition. 

These results are consistent with past research, which concluded that median and shoulder 

widths have variable impacts on vehicle crashes with regard to the different levels of crash severity 

(Knuiman et al., 1993; Shankar et al., 1997; Labi, 2011; Anarkooli et al., 2017).  
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Table 3.7 Goodness-of-fit of the multivariate random-parameter negative binomial models 

 

Excellent 
Pavement 

Condition 

(60<IRI≤100) 

Good 
Pavement 

Condition 

(100<IRI≤125) 

Good ~ Fair 
Pavement 

Condition 

(125<IRI≤150) 

Fair  
Pavement 

Condition 

(150<IRI≤200) 

Poor 
Pavement 

Condition 
(IRI>200) 

𝐿𝐿(𝐶) –4545.65 –2019.47 –740.21 –688.49 –411.34 

𝐿𝐿(𝛽) –3113.70 –1616.23 –627.69 –576.56 –355.40 

𝑀𝑐𝐹𝑎𝑑𝑑𝑒𝑛 𝑝𝑠𝑒𝑢𝑑𝑜 𝜌2 0.315 0.201 0.152 0.164 0.136 
Akaike information 

criterion (AIC) 

6277.40 3270.46 1299.38 1189.12 736.81 

N 681 324 111 99 67 

𝐿𝐿(𝐶) = Restricted Log-likelihood; and 𝐿𝐿(𝛽) = Log-likelihood at convergence 

 

Table 3.8 Likelihood ratio tests for parameter transferability 

 
Excellent 
Pavement 
Condition 

Good 
Pavement 
Condition 

Good ~ Fair 
Pavement 
Condition 

Fair 
Pavement 
Condition 

Poor 
Pavement 
Condition 

Excellent 

Pavement 
Condition 

--- 
𝜒2 = 463.27 

DOF = 25 

𝜒2 = 387.69 

DOF = 23 

𝜒2 = 775.73 

DOF = 23 

𝜒2 = 833.16 

DOF = 16 

Good Pavement 

Condition 
--- --- 

𝜒2 = 274.44 

DOF = 20 

𝜒2 = 413.21 

DOF = 18 

𝜒2 = 442.97 

DOF = 15 
Good ~ Fair 

Pavement 
Condition 

--- --- --- 
𝜒2 = 141.54 
DOF = 21 

𝜒2 = 243.15 
DOF = 18 

Fair Pavement 

Condition 
--- --- --- --- 

𝜒2 = 178.59 
DOF = 15 

Poor Pavement 
Condition 

--- --- --- --- --- 

𝜒𝑐,0.05,25
2 =37.65248413, 𝜒𝑐,0.05,23

2 = 35.17246163, 𝜒𝑐,0.05,21
2  = 32.67057334, 𝜒𝑐,0.05,20

2  = 31.41043284, 𝜒𝑐,0.05,18
2  = 

28.86929943, 𝜒𝑐,0.05,16
2  = 26.2962276, 𝜒𝑐,0.05,15

2 = 24.99579014. For all the cases (between different pairs of pavement 

condition), 𝜒2 > 𝜒𝑐,0.05,𝐷𝑂𝐹
2 , the null hypothesis that parameters are the same for various pavement condition is 

rejected. The transferability tests indicate that the models should be estimated separately on the basis of various levels 
of pavement condition. 
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Table 3.9 Marginal effects of the estimated MRPNB regression parameters 

 

Variable Description Excellent Pavement Condition Good Pavement Condition Good ~ Fair Pavement Condition Fair Pavement Condition Poor Pavement Condition 

(60<IRI≤100)  (100≤IRI<125) (125<IRI≤150) (150<IRI≤200) (IRI>200)

Segment length in miles [FAT] 0.0099 0.0451 0.0029 − −

Segment length in miles [INJ] 0.2697 0.5741 0.5298 0.3954 −

Segment length in miles [NINJ] 1.0489 1.4141 1.5734 2.1518 2.8964

Natural logarithm of average daily trucks [FAT] 0.04 0.0551 0.0265 − −

Natural logarithm of average daily trucks [INJ] 1.7165 − 3.4454 4.0677 2.4289

Natural logarithm of average daily trucks [NINJ] 5.9864 3.3386 7.9374 16.9394 −

Average annual daily traffic of passenger cars (in 10,000) [FAT] 0.0199 − 0.0125 0.0641 −

Average annual daily traffic of passenger cars (in 10,000) [INJ] − 1.3197 0.4188 2.034 −

Average annual daily traffic of passenger cars (in 10,000) [NINJ] − 0.4805 − 7.5445 5.7135

Lane width in ft. [FAT] -0.0085 -0.0198 -0.0029 -0.0991 −

Lane width in ft. [INJ] − − -0.537 -0.2883 −

Lane width in ft. [NINJ] − − -1.3424 − −

Outside shoulder width in ft. [FAT] -0.0054 − − − −

Outside shoulder width in ft. [INJ] -0.14 − -0.4571 -0.2357 −

Outside shoulder width in ft. [NINJ] -0.2306 − -0.4997 − −

IRI (in/mile) [FAT] 0.0007 0.0024 0.0001 − 0.0011

IRI (in/mile) [INJ] 0.0199 0.0386 0.0369 0.0358 0.0338

IRI (in/mile) [NINJ] 0.0535 0.0563 0.2817 0.2332 0.0747

Average vertical curve grade [INJ] 0.0587 − 0.2864 − −

Average vertical curve grade [NINJ] 0.2666 − 0.6477 − 1.5359

Inside shoulder width in ft. [FAT] -0.0161 -0.0248 − − −

Inside shoulder width in ft. [INJ] -0.4427 -0.6062 − − −

Inside shoulder width in ft. [NINJ] -1.7827 − − − −

Median width in ft. [FAT] − − -0.0247 − −

Median width in ft. [INJ] -0.0304 − − -0.0381 −

Median width in ft. [NINJ] -0.0669 -0.0717 − -0.3364 −

Number of lanes on the road segment [INJ] 0.671 − − − −

Number of lanes on the road segment [NINJ] 2.039 − − − −

Two-lane road segment (1 if two-lane, 0 otherwise) [INJ] − -1.4531 − − −

Two-lane road segment (1 if two-lane, 0 otherwise) [NINJ] − − − − -9.1932

Functional class US (1 if US road, 0 otherwise) [FAT] − 0.0586 − 0.1737 −

Functional class US (1 if US road, 0 otherwise) [INJ] 0.4889 0.6877 1.827 − 3.8403

Functional class US (1 if US road, 0 otherwise) [NINJ] 1.511 − − − −

Functional class SR (1 if State road, 0 otherwise) [INJ] − − − − 4.6075
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3.2.2.4 Summary of Results of the MRPNB Model 

The model results suggest that for pavements in fair or good condition, the surface condition 

parameter had fixed effects on the crash frequency, irrespective of the crash severity level. 

However, for pavements in poor condition, the surface condition variable in the crash model had 

a significant random parameter that was normally distributed. The positive portions of the 

parameter density function suggest that higher roughness (poorer condition) generally increased 

the expected crash frequency, likely because drivers may lose control of their vehicles. The 

negative portions suggest that within that condition range, higher surface roughness is generally 

associated with a lower expected crash frequency because drivers are generally likely to drive 

more carefully on pavements in very poor condition (a manifestation of risk-compensation 

behavior). These developed models can help highway engineers quantify not only the safety 

benefits of road resurfacing projects but also the safety consequences of worsening road surface 

conditions arising from deferring the pavement maintenance. 

 The phenomenon of risk-compensation behavior found in this dissertation may vary in the 

future, particularly in the emerging operating environment in the era of AV because risk-

compensation behavior is based in human psychology. Therefore, it may not exist in the fully AV 

era when the vehicle is completely controlled by AI and algorithms. 

3.3 Optimizing the Space Resource Allocation across Highway Cross Sectional Elements 

3.3.1 Introduction 

Lane and shoulder widths are important highway safety factors because wider lanes and shoulders 

generally are known to help reduce crashes. In practice, however, due to the physical limitations 

of the right-of-way or statutory restrictions, it may be the case that the existing overall width of 

the roadway (lanes plus shoulders) cannot exceed a certain value. For a given overall roadway 

width constraint, wider lanes mean there will be smaller space for shoulders, and vice versa. In 

such situations, it is not certain if a cross-sectional configuration with wide lanes and narrow 

shoulders is safer compared to one with narrow lanes and wide shoulders. Considering the 

dichotomous effect of shoulder or lane widening as established in the safety literature, one of the 

greatest identified challenges in optimizing lane and shoulder width for two-lane rural roadways 
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is the quest to balance the area for recovery as well as for accommodating driver recklessness. 

Addressing this issue is important for agencies that seek to identify optimal widths to evaluate 

their existing lane and shoulder design practices. Clearly, for a given total roadway width (TRW), 

the tradeoff between the shoulder and lane widths should be evaluated to maximize the user 

benefits (safety) without unduly incurring excessive agency life-cycle costs of construction and 

preservation. The TRW allocations to the lane and shoulder, expressed as the ratio of the lane 

width to the shoulder width, generally depend on the TRW, lane and shoulder pavement material 

types and costs, and traffic volume, among other factors. To optimize the lane and shoulder width 

allocations for a given TRW, this dissertation proposes a framework that formulates the problem 

as an optimization problem with the objective of minimizing the total (agency and user) life-cycle 

cost of the roadway. First, the relationships are established between the lane/shoulder widths and 

the resulting user costs (crashes) and between the lane/shoulder widths and the associated agency 

costs of lane/shoulder construction and preservation. The sensitivity of the optimal solution to 

different evaluation inputs (e.g., the relative weights between the agency and user costs) is also 

analyzed. Using the developed framework, the dissertation presents several decision support charts 

that can be used by highway agencies to determine the optimal lane and shoulder widths under a 

given set of conditions including the highway functional class and the total available roadway 

width. The flexibility of the proposed optimization framework to accommodate the risk 

compensation effects also is demonstrated. 

3.3.2 Literature Review (General) 

Users of transport facilities and other physical infrastructure are invariably subjected the risks of 

personal injury, fatality, and property damage arising from their use of such facilities. While some 

risks are generally unavoidable, effective safety management can lead to their reduction with 

subsequent benefits to all parties directly or indirectly involved with the usage or administration 

of these infrastructures. The key elements of safety management include (Wegman and 

Hagenzieker, 2010; Lamptey et al., 2011): the establishment of safety performance indicators 

(Hale, 2009; Gitelman 2010; Øien et al., 2011; Reiman and Pietikäinen, 2012; Hinze et al., 2013; 

Podgorski, 2015), measurement or prediction of safety performance under a given set of physical 

conditions and operational characteristics (Cozzani and Salzano, 2004; Kjellen, 2009; Hauer, 2010; 

Sgouru et al., 2010), identification and effectiveness assessment of safety prescriptions for a given 
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safety hazard (Robson et al., 2007), prioritization of safety investments (Law et al., 2006), and the 

measurement and consideration of the costs borne by each infrastructure stakeholder in the 

provision or use of the safety prescriptions (Cigna, 2008; Pellicer et al., 2014). Another key 

element is the development of safety policies regarding the infrastructure design (dimensions) in 

a manner that considers all the above issues and thus enhances infrastructure operations from a 

safety standpoint (Lamptey et al., 2010).  

Determination of the optimal width of lanes and shoulders is a key issue for highway 

agencies. The term “optimal width” suggests that the cases of both narrow lanes and shoulders and 

very wide lanes and shoulders are undesirable; and therefore somewhere between these extremes, 

an optimal width exists. At one extreme, it has long been recognized that small lanes and widths 

are undesirable: widening the travel lanes or/and their shoulders has a positive impact in terms of 

reductions in crashes of various types, particularly roadway departure crashes and horizontal curve 

crashes. 

Given the apparent challenge but potential benefits associated with the optimal allocation 

of lane and shoulder widths within a given total roadway width (TRW), it is crucial that highway 

agencies apply consistent and objective methodologies to a variety of allocation scenarios to 

ascertain the optimal allocation of resources while providing the greatest safety benefit to the road 

users. This is the overarching goal of this dissertation and is further discussed in later sections. 

In presenting and demonstrating a methodology to address the allocation of shoulder and 

lane width (or evaluation of existing distributions) for rural two-lane roads, this section first 

reviews the literature on the relationships between crash frequencies and lane or shoulder width, 

crash costing, and lane and shoulder width allocation policy. This section then describes the data 

and the study methodology, presents its results in the context of existing design policy, and ends 

with a discussion of the implications for practice and possible future research in this area. 

3.3.3 Literature Review (Crash Factors) 

On both extremes of the relationship between safety feature intensity (such as lane width) and 

crash experience, it has long been recognized that it is generally undesirable to have lanes and 

shoulders that are very narrow or very wide. The extant literature review below shows that past 

research established that very narrow lanes and shoulders deny drivers the needed opportunity for 

maneuverability and provide smaller distances between oncoming vehicles. On the other hand, 
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relatively recent research contended that very wide lanes or shoulders not only imbue drivers with 

a false sense of security such that they may tend to operate their vehicles more recklessly but also 

are costly to build and maintain. The literature review also examines past research that investigated 

the appropriate widths of highway lanes and shoulders.  

 

Increased Safety resulting from Lane or Shoulder Widening 

Zegeer (1980) analyzed two-lane roads concerning geometries, accidents, and traffic volumes. The 

analysis was based on the accident rates for various combinations of lane and shoulder widths and 

established that for roads without shoulders, the crash rate is over 80% lower than when the lane 

widths increase from 2.1 m to 3.7 m. For roads with shoulders, accident rates were found to be 

lower for wider lanes. Also, Zegeer et al. (1994) established that wide lanes and shoulders help 

reduce roadway crashes (Figure 3.1).  

 

 

Figure 3.1 Crash rates by total roadway width (Zegeer, 1980) 

 

Hadi et al. (1995) found that greater shoulder width was associated with lower crash rates on rural 

two-lane highways on the Florida state highway system. Abboud and Bowman (2001) argued that 
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the additional construction cost of 4-ft. shoulders on two-lane rural highways (compared with the 

existing 2-ft. shoulders) was not justified by any statistically significant reduction in crashes. 

Fitzpatrick et al. (2005) and Geni and Peng (2008) documented the benefits of widening the travel 

lanes or/and their shoulders in terms of reductions in crashes of various patterns, particularly 

roadway departure crashes and horizontal curve crashes. In Pennsylvania, Gross and Jovanis (2007) 

investigated the safety impacts of shoulder-widening projects on rural two-lane highways and 

found that for shoulder widening of 2 ft. and 8 ft., the crash reduction ranged from 13–43% for 

unpaved shoulders and 16–59% for paved shoulders. In Wisconsin, Örnek and Drakopoulos (2007) 

examined state highway sections with shoulder widths ranging from 1 ft. to 10 ft. and found that 

the crash rates were lower for sections with wider shoulders; however, shoulder widths beyond 10 

ft. were found to yield no further reductions in the crash rates. Using the empirical Bayes method 

for a before–after comparison, Wu et al. (2015) studied the safety impacts of narrow pavement 

widening projects on rural two-lane roads in Texas. They investigated how wider lanes and 

shoulders affected collisions by type and severity and showed that widening resulted in a 31.5% 

reduction in total crashes, a 35.7% reduction in run-off-the-road crashes, a 55.4% reduction in 

head-on crashes, and a 29.5% reduction in fatal and injury crashes. Park (2016) investigated the 

safety effect of shoulder widening on 17 rural multilane roadway sections and determined that this 

treatment resulted in reductions of 12% of crashes of all severity levels, 18% of injury crashes, 

and 21% of severe crashes. Regarding run-off-the-road crashes, they found that the treatment 

yielded reductions of 25% for all crash severities, 28% for injury crashes, and 31% for severe 

crashes. 

Many studies in the literature on the tradeoffs between lane width and shoulder width 

adopted case-control methods that involved the use of “odds ratios” (i.e., the probability of a crash 

on a road segment with nonstandard lane and shoulder widths divided by the probability of a crash 

on a similar road segment with standard widths). Using Pennsylvania data spanning 1997 to 2001 

and a matched case-control design, Gross and Jovanis (2007) estimated the safety effectiveness of 

lane and shoulder widening on rural two-lane roads and established odds ratio estimates using a 

base case of a 12-ft. lane and a 6-ft. shoulder. They found that the crash likelihood generally 

decreased with increasing lane and shoulder widths, except for width values on the extreme upper 

end of the scale where crash likelihood increased slightly. A similar study using data from 

Pennsylvania and Washington showed that increases in both lane and shoulder width generally 
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had positive impacts (reduced crashes), but the tradeoffs between the two elements for a fixed 

pavement width were unclear (Gross et al., 2009). Gross et al. (2009) further evaluated the safety 

effectiveness of various lane-shoulder width configurations for fixed total paved widths as a 

countermeasure for roadway departure crashes and found that wide lanes (9.75–10.97 m or 32–36 

ft) were generally associated with fewer crashes compared to narrow lanes (7.92–9.14 m (26–30 

ft). Gross and Donnell (2011) undertook a similar approach, comparing crash modification factors 

(CMFs) developed using case-control studies to CMFs developed using more traditional cross-

sectional models. They used data from Pennsylvania to estimate the CMFs associated with 

improvements in shoulder width, by comparing the results of the case-control studies with those 

from negative binomial econometric models developed for the cross-sectional data and found that 

varying the lane width had inconsistent impacts on highway crash reduction; nevertheless, 

increased shoulder width (up to 10 ft. of additional width) consistently resulted in fewer crashes 

and, consequently, smaller CMFs. In a similar study sponsored by Kansas DOT, Schrock et al.  

(2011) used the CMF concepts to compare the safety effectiveness of widening shoulders and 

adding passing lanes on rural two-lane roads and found that adding passing lanes was more 

economically efficient compared to shoulder widening.  

Dong et al. (2015) examined the issue of highway geometrics and safety from the specific 

perspective of trucks. The authors categorized truck-involved crashes by collision vehicle types 

since passenger cars and large trucks differ in dimensions, size, weight, and operating 

characteristics and determined that the significant factors of such crashes included the lane width 

and the right-side shoulder width, among other factors. 

 

No Change or Decreased Safety Resulting from Lane or Shoulder Widening  

Several studies (Milton and Mannering, 1998; Sawalha and Sayed 2001) found that reducing the 

lane width led to lower speeds and accident frequency, but the ultimate effect depended on the 

lane width and road class (Fildes and Lee, 1993). In Alberta, Canada. El-Assaly and Hempsey 

(2000) concluded that no correlation or dependency existed between the width of a paved two-lane 

highway and the casualty collision rates. Garder (2006) used crash data on rural two-lane highways 

in Maine to study the safety impacts of shoulder attributes (width and surface material type). Their 

results indicated that a wider shoulder led to a higher percentage of crashes producing serious 

injuries (23% for highways with shoulders at least 7 ft. wide compared to 18% for highways with 
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narrower shoulders). Rosey et al. (2009) used data from field tests and laboratory simulations to 

determine that reducing the lane width had no impact on speeds but did induce the participants to 

drive closer to the center of the road.  

 

Evaluation of Existing Widths or Identification of Optimal Widths  

Researchers have long sought to optimize aspects of highway geometrics besides lane and shoulder 

width as well as using other performance metrics besides safety. Jha and Schonfeld (2004) 

developed a highway alignment optimization model using a geographic information system (GIS), 

based on criteria including agency cost, community (environmental cost), and the user costs of 

travel time, vehicle operations, and accidents. Also, the use of optimization as a tool for decision 

support and evaluation of existing design or operational policy is widespread in transportation 

safety policy and practice, which is demonstrated by the numerous contexts, including geometric 

design (Cedar and Eldar, 2002), project-level selection of safety countermeasure (Mishra et al., 

2015), network-level resource allocation (Ahmed, 1983; Melachrinoudis and Kozanidis, 2002; 

Sinha et al., 1981; Brown, 1980, Lamptey et al., 2010). Other researchers such as Farah et al. (2009) 

applied optimization to address other aspects of rural two-lane road safety, such as long-term work 

programming and scheduling.  

Political and budgetary priorities also have been a significant driving force behind research 

into the effects of lane and shoulder widths on crashes in recent years. Minnesota DOT (MNDOT) 

completed a study a few years ago to assess the benefits and costs if the lanes of low-volume rural 

roads were 11 ft. wide instead of the conventional 12 ft. They found that for roads with daily traffic 

volumes less than 1,200, the reduced construction costs of narrower lanes would greatly offset the 

additional user cost (higher number of crashes) due to the narrow lanes. Their finding that there 

were fewer crashes on low-volume rural two-lane roads with 11 ft. wide lanes compared to 12 ft. 

wide lanes, was subsequently corroborated by van Schalkwyk and Washington (2008). The 

MNDOT study established the potential cost savings in rehabilitation and design standards and 

also highlighted the underlying intriguing question regarding the relative importance of the 

competing interests associated with lane and shoulder widening, namely, should each dollar of an 

agency’s cost of construction and maintenance of lanes and shoulders be valued the same as each 

dollar of the safety cost incurred by the road users? Gross et al. (2009) argued that for a fixed 

pavement width, there was a general safety benefit associated with wider lanes and narrower 
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shoulders. For example, for total paved widths of 7.92 to 9.75 m (26 to 32 ft.), a 3.66-m (12 ft.) 

lane provides the optimal safety benefit; and for a 10.36-m (34 ft.) total paved width, 3.35-m (11 

ft.) lanes provide the optimal safety benefit. 

In the emerging AV operating environment, there could be an opportunity for more narrow 

lanes and shoulders. Currently, there are lanes (and sometimes even shoulders) that are much wider 

than vehicles to provide space to minimize the possible interactions with vehicles in adjacent lanes. 

These interactions are typically caused by human errors in driving. Having narrower lanes and 

shoulders is expected to make it possible to either have more lanes using the same amount of space 

or require less land for right-of-way, which consequently could be expected to increase mobility 

on the highways or reduce agency costs. It may be noted that it is important to evaluate the safety 

impacts of having narrow lanes and shoulders in the context of AV operations. 

 

3.3.4 Case Study 

This case study identified the optimal distribution of a fixed width of the total (lane + shoulder) 

using nonlinear programming techniques. The development of an optimization framework based 

on the life-cycle agency cost and life-cycle user (safety) cost for the roadway is described here. 

The objective is to minimize the total life-cycle cost. The constraints are that the sum of the lane 

and shoulder widths equals the total available width, and the lane width cannot be smaller than 10 

ft. The decision variables are the lane and shoulder widths in feet. Also, the sensitivity of the 

optimal solutions with respect to the relative weight between the agency and user cost dollars was 

studied for the different levels of the fixed width of a roadway. The case study concludes with a 

discussion of the use of optimization in evaluating the relationship between lane and shoulder 

width and suggests several promising areas of future research. 

3.3.4.1 Methodology 

To optimize the allocation between the lane width and the shoulder width for a fixed total width 

of roadway, there are a number of factors that must be considered. The life-cycle costs refer to any 

costs incurred by the agency or the user throughout the service life of an asset (in this case, the 

rural two-lane highway). It may be appropriate to have a framework where the analyst has the 

flexibility to assign relative weights, as the analyst deems appropriate, to the agency cost and user 
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cost. The objective is to minimize the weighted sum of these two cost classifications. The two 

decision (input) variables are the lane and shoulder widths. The following sections describe in 

detail the methods used to arrive at the total agency and the safety life-cycle cost estimates and 

how these estimates are combined to yield an overall life-cycle cost for the highway. 

 

Crash prediction modeling 

To compute the life-cycle safety cost for different lane and shoulder width combinations, it was 

first necessary to derive a set of models which can be used to estimate the expected number and 

type of crashes. This was completed for each of the two-lane rural road classes. For this dissertation, 

the following broad grouping of the crash severity levels was used: property damage only (PDO) 

crashes, and fatal + injury crashes (which includes all crashes with injuries, fatalities, or some 

combination of the two). Fatal and injury crashes were combined as one category due to the very 

limited number of fatal crashes (as evidenced by Figure 3.2), which precluded the development of 

a separate statistically significant functional relationship for the fatal level of crash severity. If 

enough data were available to allow estimation of a statistically significant crash prediction model 

for fatal crashes, this model could easily accommodate such a situation. 
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Figure 3.2 Distributions of crash rates for different crash severity levels across the three 
functional classes 
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Due to the differences in the geometric and operational characteristics across the different 

functional classes that constitute rural two-lane highways, this case study used separate crash 

models for the three different classifications of rural two-lane highways: rural major collectors , 

rural minor arterials, and rural principal arterials. Principal arterials primarily service interstate 

trips and routes with heavier volumes so while it is rare to see principal arterial routes with only 

two lanes, they were still considered in this dissertation. Rural minor arterials service long-distance 

intrastate trips, connect urbanized areas, and are more likely to be two-lane highways compared 

with principal arterials. Rural major collectors often service shorter intrastate and inter-county trips, 

and combined with lower volumes, are more likely to be designated along two-lane rural highway 

routes (FHWA, 2013). Because this dissertation is concerned with assessing the tradeoff between 

the cost effectiveness of lane and shoulder widths on Indiana highways in particular, the equations 

previously-developed for rural two-lane highways by Labi (2011), presented below, were used for 

the crash estimation component of the final objective function. It should be noted that these 

equations are shown and used here for demonstration only. In future replications of this analysis, 

these equations may be replaced by any safety performance equation relevant to the region in 

question or the site under consideration. 

 

Rural major collectors: 

PDO Crash Model 

μPDO = exp [−4.06689 + 0.8706 ∗ 𝐿𝑁(𝐿𝐸𝑁𝐺𝑇𝐻) + 0.6259 ∗ 𝐿𝑁(𝐴𝐴𝐷𝑇) − 0.0617 ∗ 𝐿𝑊

− 0.0119 ∗ 𝑆𝑊 − 0.0190 ∗ 𝐹𝑅 + 0.0163 ∗ 𝐴𝑅𝐴𝐷 + 0.1100 ∗ 𝐴𝐺𝑅𝐴𝐷] 

 

Fatal+Injury Crash Model 

μfatal+injury = exp [−6.6231 + 0.9237 ∗ 𝐿𝑁(𝐿𝐸𝑁𝐺𝑇𝐻) + 0.8526 ∗ 𝐿𝑁(𝐴𝐴𝐷𝑇) − 0.0928

∗ 𝐿𝑊 − 0.0321 ∗ 𝑆𝑊 − 0.0156 ∗ 𝐹𝑅 + 0.0262 ∗ 𝐴𝑅𝐴𝐷 + 0.0541 ∗ 𝐴𝐺𝑅𝐴𝐷] 

 

Rural minor arterials: 

PDO Crash Model 

μPDO = exp [−3.81056 + 0.9981 ∗ 𝐿𝑁(𝐿𝐸𝑁𝐺𝑇𝐻) + 0.6363 ∗ 𝐿𝑁(𝐴𝐴𝐷𝑇) − 0.0960 ∗ 𝐿𝑊

− 0.0317 ∗ 𝑆𝑊 − 0.0127 ∗ 𝐹𝑅 + 0.0722 ∗ 𝐴𝑅𝐴𝐷 + 0.0944 ∗ 𝐴𝐺𝑅𝐴𝐷] 
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Fatal+Injury Crash Model 

μfatal+injury = exp [−6.4612 + 0.9964 ∗ 𝐿𝑁(𝐿𝐸𝑁𝐺𝑇𝐻) + 0.8255 ∗ 𝐿𝑁(𝐴𝐴𝐷𝑇) − 0.0896

∗ 𝐿𝑊 − 0.0511 ∗ 𝑆𝑊 − 0.0330 ∗ 𝐹𝑅 + 0.0580 ∗ 𝐴𝑅𝐴𝐷 + 0.0866 ∗ 𝐴𝐺𝑅𝐴𝐷] 

 

Rural principal arterials: 

PDO Crash Model 

μPDO = exp [0.8921 + 0.7097 ∗ 𝐿𝑁(𝐿𝐸𝑁𝐺𝑇𝐻) + 0.2409 ∗ 𝐿𝑁(𝐴𝐴𝐷𝑇) − 0.1128 ∗ 𝐿𝑊

− 0.0676 ∗ 𝑆𝑊 − 0.0624 ∗ 𝑆𝐼 + 0.0553 ∗ 𝐴𝑅𝐴𝐷 + 0.0646 ∗ 𝐴𝐺𝑅𝐴𝐷] 

 

Fatal+Injury Crash Model 

μfatal+injury = exp [−2.2394 + 0.9231 ∗ 𝐿𝑁(𝐿𝐸𝑁𝐺𝑇𝐻) + 0.4499 ∗ 𝐿𝑁(𝐴𝐴𝐷𝑇) − 0.0837

∗ 𝐿𝑊 − 0.0943 ∗ 𝑆𝑊 − 0.1962 ∗ 𝑆𝐼 + 0.0364 ∗ 𝐴𝑅𝐴𝐷 + 0.0489 ∗ 𝐴𝐺𝑅𝐴𝐷] 

 

For these crash models, the detailed descriptions of the individual variables, along with their 

corresponding units of measure, are as follows: 

μ𝑘  = number of crashes of particular type k  (fatal + injury, or PDO); Length = Segment length in 

mile; AADT = Annual average daily traffic; LW = Lane width in ft.; SW = Shoulder width in ft.  

ARAD = Average horizontal curve radius in miles; AGRAD = Average vertical curve grade (%) 

FR = Pavement friction number; SI = Present serviceability index of the pavement. 

 

The length of the sample road segment is 10 miles, the AADT is 8,000, and the pavement friction 

number is 3.5. Additionally, the pavement serviceability index is 3, the average horizontal curve 

radius is 2.6 miles, and the average vertical grade is 3%. The example values to be used in this 

analysis are average values from the rural two-lane road database and were provided for 

demonstrating the proposed methodology. For any given in-service road segment of interest, these 

values could be smaller or larger than the values shown. Based on these values, the proposed 

framework was demonstrated to yield the optimal lane and shoulder width combination for 

different total road widths as well as for different road classes. This was done by minimizing the 

total agency and safety life cycle costs. 
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Agency life cycle cost 

The agency life cycle cost is comprised of several different components: first, the shoulder and 

lane costs, and for each of these two road features, the construction costs (incurred in the initial 

year) and the preservation costs (incurred over the rest of life). Regarding the surface material 

types, this dissertation considered the case where the same material type was used for the lane and 

shoulders (hot-mix asphalt (HMA)). The preservation cost component of agency life cycle cost is 

that which is required annually or periodically to preserve the lanes and the shoulders, which can 

range from low-level routine work, such as crack sealing on shoulders and lanes, to high-level 

treatments that provide a new wearing surfaces, such as microsurfacing or slurry seal. Using data 

from Iowa DOT, the average contract bid prices for calendar year 2000, and converted to year 

2012 with the U.S. Army Corps of Engineers Civil Works Construction Cost Index (USACE, 

2016), the following lane and shoulder construction and maintenance costs were determined: 

 

Table 3.10 Agency construction and maintenance costs for HMA paved lanes and shoulders 

($ per ft-width per mile) 

 Construction Cost Maintenance Cost 

Lane $197,101 $493 
Shoulder $27,710 $39 

* Lane reference cost values given for 12-ft lanes; this was divided by 12 to obtain the unit cost. 

* Shoulder reference cost values given for 3-ft shoulders; this was divided by 3 to obtain the unit cost. 

 

User cost of safety over life cycle 

The user cost of safety over the road segment life cycle can be represented by the annual economic 

cost due to different types of crashes on the road segment. As described in the crash modeling 

section above, these crashes are often grouped by crash severity, and for the purposes of this  

dissertation, two broad groups were considered: fatal + injury, which comprises all crashes in 

which the worst injury is a fatality or incapacitating injury; and property damage only (PDO), 

where there is no fatality or injury. 

Pursuant to these crash severity type groupings, the crash prediction models were used to 

estimate the annual number of crashes on a 10-mile road segment for the different highway 

functional classes. After the number of crashes was estimated, a dollar value representing the 

economic cost of these crashes was applied to determine the total annual safety cost. These dollar 
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values were derived from the Indiana Five Percent Report (Chen et al., 2012), converted to year 

2012 using the Consumer Price Index (CPI), and are shown in Table 3.11 

 

Table 3.11 Estimated unit crash cost values ($ per crash) 

Crash Severity Crash Cost 

Fatal + Injury $509,086 

PDO $5,244 

(Chen et al., 2012) 
 

Optimization framework  

The objective of this part of the dissertation was to minimize the agency and safety life cycle costs 

by changing the lane and shoulder width within given constraints (e.g., total road width and 

minimum lane width). In mathematical notation, this is written as follows: 

 

Decision variables: 

LW, SW 

 

Objective function: 

Minimize 𝑇(𝐿𝑊,𝑆𝑊) = 

2{𝑤𝑎𝑔𝑒𝑛𝑐𝑦[(𝐶𝐶𝑙 ∗ 𝐿𝑊 + 𝐶𝐶𝑠 ∗ 𝑆𝑊)𝐿 +
(1 + 𝑖)𝑁 − 1

𝑖(1 + 𝑖)𝑁
(𝑀𝑅𝑙 ∗ 𝐿𝑊 + 𝑀𝑅𝑠 ∗ 𝑆𝑊)𝐿]

+ 𝑤𝑢𝑠𝑒𝑟

(1 + 𝑖)𝑁 − 1

𝑖(1 + 𝑖)𝑁 ∑c𝑘μ𝑘(𝐿𝑊, 𝑆𝑊)

𝑘

1

} 

Subject to: 

2LW + 2SW = TRW 

LW ≥ MLW  

where: 

T = total life cycle cost in $ 

𝐶𝐶𝑙 = unit initial construction cost for lane in $ per ft-width per mile 

𝐶𝐶𝑠 = unit initial construction cost for shoulder in $ per ft-width per mile 

𝑀𝑅𝑙 = unit annual maintenance and rehabilitation cost for lane in $ per ft-width per mile 
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𝑀𝑅𝑠 = unit annual maintenance and rehabilitation cost for shoulder in $ per ft-width per mile 

c𝑘 = crash cost for crash severity k  (fatal + injury, or PDO) 

μ𝑘  = number of crashes of crash severity k  (fatal + injury, or PDO) 

𝑤𝑎𝑔𝑒𝑛𝑐𝑦, 𝑤𝑢𝑠𝑒𝑟  = weight of agency cost dollar and user cost dollar, respectively. 

LW, SW = lane and shoulder width, respectively, in ft. 

L = section length in miles 

TRW = total roadway width 

MLW = minimum lane width 

N = analysis period in years 

i = interest rate 

 

The above problem is nonlinear. Also, it can be shown that for the crash models presented above, 

the objective is a strictly convex function of LW and SW. Given that the constraints are linear, it is 

known that a local optimum for this problem will be globally optimal and unique (see, e.g., Hadley, 

1964, p. 91). In this case study, the General Algebraic Modeling System (Brooke et al., 2005) was 

used to compute the optimal solution. 

This section’s agency life-cycle cost provides details on the computation of the initial 

construction cost and the maintenance and rehabilitation costs. The section on the user cost of 

safety over the life-cycle provides details about how the annual crash costs were calculated. Only 

lane width and shoulder width were considered. Hence, the sum of the lane width and the shoulder 

width for both directions should equal the TRW. Note that it is not reasonable to have a highway 

section without an adequate driving lane so there was a lower bound on lane width indicating that 

the lane width should not be less than 10 ft. A uniform series present worth factor was used to 

convert future costs, which occur uniformly over an extended period, to a present value. For 

illustration, a 20-year analysis period (N=20) was assumed, which is the nominal service life of a 

hot-mix asphalt pavement in Indiana (INDOT, 2013), and a 5% discount rate was used in this case 

study.  
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3.3.4.2 Results and Discussion 

Results for each functional class 

The proposed optimization framework was applied to different highway functional classes with 

TRWs varying from 26 to 46 ft., which captured most existing width situations on two-lane rural 

highways in the state. The optimization results are shown in Appendix A and are illustrated in 

Figure 3.3. For each given TRW, the results of the sensitivity analysis show that the effect varied 

the ratio of agency cost weight and user cost weight (e.g., a ratio of 1 indicates that the agency and 

user cost were equally important).  

Figure 3.3 presents the optimization results in terms of the shoulder and lane width 

allocations for the different functional classes and TRWs. For minor arterials and major collectors, 

the shapes of the optimal widths as functions of the relative weight on the user cost relative to the 

agency costs were qualitatively similar. When the weight on the user cost was extremely high, the 

optimum had a shoulder width of zero (the lanes constituted the entire TRW). This was considered 

intuitive because the contribution of the increased width to crash reduction was always higher for 

the lane compared to the shoulder (from the crash prediction models). When the weight of the user 

cost was very low, the optimum had a lane width of 10 ft., and the shoulder took up the remaining 

TRW. This was intuitive because construction and maintenance costs for shoulders are much lower 

compared to those of lanes. Between these extremes, there is a range for the ratio of the weight on 

the agency cost divided by the user cost, which is specific to the TRW and the road functional 

class; over this range, the optimal width of the lane transitioned from its maximum value of TRW/2 

to its minimum feasible value of 10 ft. Regardless of the TRW value, these transitions occurred at 

lower values for the ratio of agency-to-user cost ratio for minor arterials compared to major 

collectors. 

The situation was different for principal arterials, with the optimum having a lane width of 

10 ft. and the rest of the TRW taken up by the shoulder, which was due to two factors. First, the 

crash prediction model for fatal+injury crashes (which had a much higher unit cost compared to 

PDO crashes), places greater value on wide shoulders than on wide lanes for the purpose of crash 

reduction, unlike the other two functional classes, specifically regarding the fatal+injury crash 

prediction model for rural principal arterials. The coefficient of the lane width variable was 

−0.0837, which had a smaller absolute value compared to the corresponding coefficient of the 

shoulder width variable, −0.0943. As a result, the absolute value of the marginal effects for lane 
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width was smaller than for the shoulder width. Therefore, the optimization framework was shown 

to prefer shoulder widening to lane widening. This was intuitive because wide shoulders are more 

likely to reduce crashes than wide lanes, potentially because even though a wide lane increases the 

separation between vehicles, it tends to encourage higher vehicle speeds. In addition, the 

construction and maintenance costs of shoulders are much lower compared to lanes. There was no 

other penalty for very wide lanes or shoulders because the models used in this case study do not 

account for the risk compensation that would have indicated increasing crashes for very wide lanes 

or shoulders. Therefore, from both the user and agency perspectives, having narrow lanes and 

shoulders that are as wide as possible is preferable. For principal arterials, the optimizat ion 

framework tends to provide results with minimum lane widths. 

The crash prediction models and case studies were used and presented here only for 

purposes of illustration and can be replaced by other models to fit specific conditions. In addition, 

using different pavement materials may change the optimal lane and shoulder width ratio. For 

example, if an unbound shoulder is used instead of a paved shoulder, the resulting lower cost of 

shoulder construction will benefit the shoulder (i.e., the optimal allocation will call for a wider 

shoulder and a narrower lane). However, if a longer lifecycle is used in the analysis, the opposite 

will likely result because an unbound shoulder generally has higher maintenance and rehabilitation  

costs. 

 

Comparison with prior recommendations 

The sensitivity analysis of the agency cost and user cost ratios given by the optimizat ion 

framework would be useful for evaluating existing practices. For example, the results of the 

optimal lane width analysis can be compared with the lane and shoulder width specifications in 

highway design manuals, such as Policy on Geometric Design of Highways and Streets (AASHTO, 

2011). The AASHTO manual recommends that rural highways should be designed with lanes 12 

ft. wide, but in some cases, an 11 ft. lane is acceptable if the alignment and safety record are 

satisfactory. In the case study, all the variables and parameters in the optimization framework 

stayed within the range where the crash prediction models were estimated; therefore, the result 

shows that the case study’s highway agency inherently had an agency-to-user cost ratio of 1.3–1.9 

for rural major collectors and 0.9–1.2 for rural minor arterials. In other words, for rural major 

collectors and rural minor arterials, the agency considered the agency cost to be more important 
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than the user cost by a factor ranging from 1.3 –1.9 and 0.9–1.2, respectively. The generally higher 

weight for the agency cost was chosen because that cost is borne directly by the agency in the form 

of cash payments for construction and maintenance while the user costs are not felt by the agency 

and often are indirect and in some cases, even intangible. The vertical red lines in the figures 

represent the current practice 12 ft. lane width. Figure 3.5 presents examples of the optimal ratio 

for lane and shoulder widths for different TRWs and different 𝑤𝑎𝑔𝑒𝑛𝑐𝑦/𝑤𝑢𝑠𝑒𝑟 ratios and across 

different road functional classes. 

Assuming a 𝑤𝑎𝑔𝑒𝑛𝑐𝑦/𝑤𝑢𝑠𝑒𝑟 ratio of 1:1 (a reasonable ratio which stays within the range in 

the discussion above), the total life cycle costs of the optimal solutions were compared with the 

current practice 12 ft. lane width suggested by AASHTO. Table 3.12 and Figure 3.4 show the total 

life cycle benefits across the road functional classes for different TRWs if the optimal 

lane/shoulder ratio is applied instead of the current practice 12 ft. lane width. If a different ratio is 

applied in the sensitivity analysis, the expected benefits vary depending on the difference between 

the selected ratio and the current practice ratio corresponding to the 12 ft. lane width (represented 

by the vertical red bars). The larger difference indicates the higher life-cycle benefits. The discount 

rate was also found to have small impacts on the optimal lane and shoulder width ratio. Generally, 

an increase in the discount rate favored wider lanes at the expense of shoulders. The change in 

ratio was smaller than 10% for any change in the discount rate over the range from 2.5% to 10%. 
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(a) TRW = 26 ft. 

 

(b) TRW = 30 ft. 

Figure 3.3 Optimal lane and shoulder widths across road functional classes for different TRWs 
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Figure 3.3 continued 

 

(c) TRW = 34 ft. 

 

 

(d) TRW = 38 ft. 
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Table 3.12 Total life cycle benefits (LCB) across road functional classes for different TRWs 

  Total LCB 

(M$) 

TRW 

Major Collector Minor Arterial Principal Arterial 

Current 

practice 
Optimal Benefit 

Current 

practice 
Optimal Benefit 

Current 

practice 
Optimal Benefit 

26 ft. 1.516 1.491 0.025 1.578 1.571 0.007 1.792 1.699 0.093 

30 ft. 1.465 1.411 0.054 1.485 1.481 0.004 1.582 1.493 0.089 

34 ft. 1.418 1.357 0.061 1.401 1.401 0 1.409 1.324 0.085 

38 ft. 1.374 1.326 0.048 1.327 1.323 0.004 1.268 1.186 0.082 

42 ft. 1.333 1.301 0.032 1.262 1.251 0.011 1.153 1.073 0.080 

46 ft. 1.296 1.276 0.020 1.204 1.187 0.017 1.060 0.981 0.079 

 

 

 

Figure 3.4 Total life-cycle benefits across road functional classes for different TRWs 
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Figure 3.5 Optimal lane and shoulder width ratio by 𝑤𝑎𝑔𝑒𝑛𝑐𝑦/𝑤𝑢𝑠𝑒𝑟 ratio across road functional 

classes for different TRWs (26 ft. and 46 ft.) 

 

Optimal lane-shoulder width diagrams that consider risk compensation effects 

Thus far, the crash prediction models used to demonstrate the proposed framework in this 

dissertation are not sensitive enough to capture the anomalous safety effects of excessively narrow 

or excessively wide lanes and shoulders. As the results for the “normal-range” widths show (Figure 

3.3), these optimal widths plateaued after a certain point due only to the higher agency costs of 

very wide lanes or shoulders and not due to the diminishing safety benefits of excessive dimensions. 

Within these “normal” ranges of lane or shoulder widths, the crash prediction models exhibit the 

traditional trend (decreasing crashes with increasing width). Risk compensation (also referred in 

certain literature as risk homeostasis, the Peltzman effect, or offset hypothesis) is the seemingly 

unintuitive phenomenon where narrow lanes or shoulders have fewer crashes compared to their 

normal-range widths, and very wide lanes and shoulders have more crashes compared to their 

normal-range widths (Mannering, 2009; Labi, 2016). This has been attributed to careful driver 

behavior on segments with very narrow lanes or shoulders and/or reckless behavior on segments 

with very wide lanes or shoulders. The question is whether the incorporation of such anomalous 
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behavior would yield optimal allocations of the lane and shoulder widths that differ from those 

obtained using the traditional crash prediction models.  

Specifically, the hypothesis is that, using crash prediction models that incorporate risk 

compensation will result in further penalization of very wide shoulders or lanes by considering 

other consequences besides their higher agency costs. The overall penalty is likely to be less severe 

for the shoulder compared to the lane, which means that the optimal solutions will generally have 

slightly wider shoulders and slightly narrower lanes compared to solutions that do not consider 

risk compensation. This dissertation investigated this hypothesis for rural major collectors 46 ft. 

wide. 

Figure 3.6 illustrates the difference between the crash prediction functions with and without 

the risk compensation effects.  

 

  

(a) (b) 

Figure 3.6 Comparison of the crash prediction model without and with risk compensation, rural 
major collectors, 46 ft. total road width 

 

Figure 3.6(a) depicts a strictly decreasing function, such as the crash prediction equations 

presented in Section 3.3.4.1, which ignores the anomalous cases of very narrow or very wide lanes 

where the anomalous effects of risk compensation become manifest. The function in Figure 3.6(b) 

depicts a third-order polynomial that accounts for the risk compensation effects at the left and right 

tails. 

To demonstrate the effect of risk compensation on the optimal solution (optimal lane-

shoulder width allocations), the traditional crash prediction model is replaced by a third-order 

polynomial, based on Newton’s method (Chapra and Canale, 1998). The polynomial function was 

used to develop a crash prediction model that shows the anomalous effects of very narrow or very 

wide lanes and shoulders, hence accommodating the risk compensation effects at both extremes of 
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the curve. The analysis was carried out for PDO crashes on rural major collectors with a TRW of 

46 ft. and an 8 to 22 ft. range of lane widths. For the lower bound of the lane width, 8 ft. was used 

instead of 10 ft. to highlight the impact of lower extreme widths.  

When the ratio of agency-to-user cost was small, consideration of risk compensation 

yielded smaller lane-width allocations compared to when risk compensation was not considered. 

In addition, as the agency-to-user cost weight ratio increased (i.e., as agency cost became more 

important than user cost), the lane-width allocations in both with- and without-risk compensation 

cases converged to the lower bound of 8 ft. due to the higher agency cost of lane widening 

compared to shoulder widening.  

When risk compensation was considered, an interesting phenomenon occurred when the 

agency-to-user cost ratio increased to a certain point (in this case 0.6), namely, the optimal lane 

width converged sharply to the lower bound. This convergence took place because when the 

agency cost became increasingly important to the point where the agency cost began to dominate 

the model, the framework chose the optimal solution as the minimum lane width choice. This was 

exacerbated by the fact that there was little incentive to protect the user benefits (safety) and very 

little additional penalty for further reductions in the lane width at that region of the curve because 

the crash prediction function no longer increased strictly with the decreasing lane width. In general, 

using crash prediction models that account for the risk compensation effects will further penalize 

very wide lanes or shoulders beyond just their higher costs. The overall penalty will likely be less 

severe for the shoulder compared to the lane, which means that the optimal solutions will generally 

have slightly wider shoulders and slightly narrower lanes compared to solutions that do not 

consider risk compensation. 

Earlier in Figure 3.1, it was shown that Zegeer et al. (1994) demonstrated that when the 

TRW was greater than 20 ft. (i.e., 10 ft. for each direction), the accident rate generally decreased 

as the TRW increased. Hence, with the constraint that at least 10 ft. of the roadway width is 

allocated to the lane on each direction, as in this dissertation, the models and results obtained 

without considering risk compensation can be considered appropriate for the decision-making 

process for national or state highways because these highways have road geometries consistent 

with the domain of geometries where drivers do not exhibit the same risk compensation behavior 

with respect to lane and shoulder width. 
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3.4 Efficacy of Machine Learning in Road Safety Analysis: Predicting the Fatality Status of 
Highway Segments 

3.4.1 Introduction 

Prediction models for traffic crashes are a key element of safety management systems because 

these models help forecast crashes and thus identify hazardous locations. Advancements in 

modeling techniques and new model performance metrics in the existing literature provide 

opportunities to further enhance the predictive capabilities of crash prediction models, particularly 

for fatal crashes. This part of the dissertation uses two machine learning modeling techniques 

(MLMTs) – support vector machine (SVM) and random forests (RF) – to predict whether a 

highway segment can be considered fatal based on road engineering factors, which are the only 

factor category within direct control of highway agencies. Arguing that traditional model 

evaluation metrics can be misleading, this dissertation uses the techniques of precision, recall, and 

F1 score for model evaluation and validation (MEV) for the following reasons. Using precision 

yields conservative predictions of fatal segments, which reduces false positives and ultimately 

minimizes wasting scarce safety resources on highway segments where such resources may be 

unwarranted. Using recall yields aggressive prediction of fatal segments, which reduces false 

negatives and ultimately minimizes the denial of needed safety investments at deserving segments. 

SVM with radial basis function (RBF) kernel was found to yield the best model. This section 

discusses how the availability of funding within an agency can guide the choice of the MEV 

technique. Overall, this dissertation demonstrates that MLMTs can help highway agencies identify 

which highway links have a propensity for fatal crashes and thereby provide information that can 

help develop fatal crash countermeasures at those locations. 

3.4.2 Literature Review 

To identify the factors that influence the likelihood of fatality or serious injury for vehicle 

occupants, past studies categorized crash factors as follows: driver attributes, vehicle condition, 

enforcement, natural environment, road engineering features, and the complex interactions among 

these factors (Zeeger et al. 1994; Prato et al., 2014; Mannering et al., 2016). Of these factors, road 

engineering features have been the focus of most of the past research for two reasons: (a) a well-
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engineered road “forgives” the adversities imposed by non-engineering factors and (b) unlike non-

engineering factors, engineering factors are within the direct control of the highway agency. 

The safety literature suggests that most crash prediction models belong to the family of 

regression models, particularly negative binomial (NB) and Poisson regressions (Milton and 

Mannering, 1998; Caliendo, 2007). The attractiveness of econometric regression modeling for 

safety analysis can be explained by the distributional-property nature of crash data (Milton and 

Mannering, 1998). Probably the most popular fatal crash regression models are zero-inflated NB 

(ZINB) and zero-inflated Poisson (ZIP) models, owing to their capability in predicting sparse 

outcomes, because fatal crash data typically contain a preponderance of zeros due to the relatively 

infrequent occurrence of crashes of this severity. In addition, because an excessive number of zeros 

in a dataset can cause the variance of the outcome to exceed the mean, the ability of the ZINB 

models to account for overdispersion in the data arising from the prevalence of zeros in fatal crash 

data is important (Lee and Mannering, 2002).  

Even though the ZINB and ZIP models are suitable for predicting phenomena with sparse 

outcomes, like all other regression models, they are built with the assumption that the mathematical 

relationship that exists between the independent and dependent variables is known a priori. In 

cases when this assumption is violated, the outcomes of these models are likely to  yield incorrect 

inferences (Chang, 2005). Additionally, while regression models minimize the error term by 

accounting for heterogeneity across observations (Washington et al., 2011), excessive error 

minimization without post-elaboration validation could raise issues related to overfitting. These 

limitations of regression models have continued to motivate the search for other modeling 

techniques for crash prediction purposes.  

Several artificial neural network (ANN) models have been developed for civil and 

infrastructure engineering research (Adeli, 2001; Ghosh-Dastidar and Adeli, 2003; Jiang and Adeli, 

2007; Panakkat and Adeli, 2009; Yao et al., 2017; Cao and Dai, 2017; Zhang et al., 2018; Nabian 

and Meidani, 2018). Specifically, researchers have adopted ANN models for predicting motor 

vehicle crashes (Chang, 2005; Chong et al., 2004; Abdelwahab and Abdel-Aty, 2002; Pande and 

Abdel-Aty, 2008). However, ANNs have been criticized for their tendency to overfit and have 

been classified as black-box networks compared to other common machine learning techniques  

(Yu and Abdel-Aty, 2013). Due to ANN’s limitations, researchers have advocated for the use of 

support vector machine (SVM) models for predicting traffic crashes (Yu and Abdel-Aty, 2013; Li 
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et al., 2012; Chen et al., 2016). SVM has been proven to address problems with overfitting while 

providing better or similar performance compared to ANN models, particularly for medium-size 

datasets (Li et al., 2008). SVM models have been shown to be powerful in predicting and 

classifying problems such as the probability of roadway crash severity levels (Li et al., 2012). 

Similarly, RF models have been shown to be useful for classification and regression. RF is a classic 

ensemble method where predictions are made by not only a single model but a group of models 

(Breiman, 2001; Pham et al. 2010). 

3.4.3 Case study 

3.4.3.1 Introduction 

This case study proposes prediction models to determine which highway segments in a network 

can be expected to have at least one fatality based on their geometric design, traffic volume, or 

pavement condition. The case study used the concepts of precision, recall, and F1 score to measure 

the performance of prediction models developed using MLMTs versus econometric techniques. 

This comparison was made in order to investigate the notion that econometric models are less 

flexible than machine learning algorithms (James et al., 2013). These model evaluation metrics 

were used because the traditionally used metric of accuracy can be misleading (Provost et al., 1998; 

Davis and Goadrich, 2006). Using precision, recall, and F1 score curves, machine learning models 

and traditional econometric models were compared for their efficiency and reliability in predicting 

fatal highway segments. It is anticipated that these proposed models can help highway agencies 

identify fatal highway segments and thereby better allocate their resources (safety funding, labor, 

equipment, etc.) to the most fatal segments.  

3.4.3.2 Literature Review 

Several past studies predicted vehicle crashes and related fatality and injury severity levels using 

statistical models because such models help promote understanding of the data. Milton and 

Mannering (1998) used negative binomial regression as a statistical model for predicting crash 

frequency considering highway geometrics. Donnell and Mason (2006) used negative binomial 

regression models to predict the frequency of median barrier crashes. Caliendo et al. (2007) used 
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Poisson, negative binomial, and negative multinomial regression models to predict crashes for 

multi-lane roads in Italy considering geometric and traffic factors.  

Zero-inflated regression models have been widely applied in the literature for predicting 

data with an excessive number of zeros. In addressing zero inflation, Lee and Mannering (2002) 

used ZIP and ZINB models to analyze the impact of roadside features on the frequency and severity 

of run-off-road crashes. Lord et al. (2004) provided guidelines for selecting the appropriate type 

of regression model for crash analysis and concluded that Poisson and NB models provide only 

approximations of crashes. Poisson models perform well under homogenous conditions, and NB 

models perform well under overdispersed conditions (Washington et al., 2011).  

Researchers also have adopted various modeling techniques to account for heterogeneity 

across observations, which is not addressed by traditional NB and Poisson models. Milton and 

Mannering (2008) used mixed logit to model highway crash severities while capturing segment-

specific heterogeneity. Kim et al. (2010) also used mixed logit to model pedestrian injury severity. 

Malyshkina et al. (2009) encouraged the use of Markov switching instead of zero-inflated models 

to predict vehicle crash frequencies. Some researchers also have used multivariate modeling to 

address the heterogeneity across observations. For example, to predict crash counts, Ma et al.  

(2008) proposed a multivariate Poisson-lognormal regression model using the Bayesian method 

as an improvement over the traditional counterpart univariate model. Park et al. (2007) used 

multivariate Poisson-lognormal models to jointly model crash frequency by severity. Ma et al.  

(2016) observed that the distribution of crash rates was skewed and developed a lognormal hurdle 

model to capture the heterogeneity of the data.  

Machine learning paradigms have been adopted as a promising modeling technique to 

avoid violating the assumptions in regression models for predicting vehicle crashes. The main 

approaches for machine learning have been neural networks (Mussone et al., 1999; Abdelwahab 

and Abdel-Aty, 2002), Bayesian neural networks (Riviere et al., 2006; Xie et al., 2007), and SVM 

(Li et al., 2008). SVM is one of the most widely adopted machine learning methods due to its 

capability of forecasting phenomena with relatively little data (Alenezi et al., 2008; Rajasekaran 

et al., 2008). Chong et al. (2005) compared neural networks, SVM, decision trees, and a concurrent 

hybrid model involving decision trees and neural networks to model injury severity during head-

on front-impact point collisions and concluded that the hybrid model had the highest accuracy. Li 

et al. (2008) compared SVM and NB models for predicting motor vehicle crashes and suggested 
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that SVM models are faster to implement and perform similarly to, if not better than, back-

propagation neural networks (BPNN).  

Additionally, Li et al. (2012) compared the performance of SVM and ordered probit models 

in predicting injury severity and found that the SVM model had a higher percentage of correct 

predictions compared to the ordered probit model. Yu and Abdel-Aty (2013) used SVM models to 

evaluate the real-time crash risk of vehicles and suggested that SVM models can achieve good 

predictive performance even with a small sample size. Dong et al. (2015) used SVM to evaluate 

crash risk while accounting for cross-zonal spatial correlations. Also, work has been done using 

RF models for crash prediction. Pham et al. (2010) used RF to separate traffic situations into non-

crash and pre-crash conditions using data collected from loop detectors.  

This case study contributes to the existing literature in a number of ways. First, it focused 

on the crash severity level that is the most difficult to predict, fatal crashes, and does so using 

machine learning techniques. There was a gap in the literature regarding the identification of fatal 

segments exclusively using machine learning techniques. Additionally, to assess the efficacy of 

the developed model, this dissertation used the concepts of precision, recall, and F1 score as 

performance measures for highway crash prediction models. Furthermore, this dissertation focused 

on road engineering factors, which are the only crash factors that are within direct control of 

highway agencies. This focus allows agencies to react more quickly and directly to the problem of 

fatal segments. Finally, this case study provides learning curves that be used to evaluate the quality 

of the data used to develop crash prediction models. Using these learning curves, researchers can 

determine whether the dataset they use to develop their models is sufficient or whether a higher 

quality/quantity (with more variables or observations) of data can be used to further improve the 

models.  

3.4.3.3 Methodology 

This case study used a machine learning approach (SVM and RF) to develop a fatal crash 

prediction function. The methodology also includes a comparison of the predictive efficacy of 

machine learning models and zero-inflated models and logistic regression. Generally, econometric 

models are considered less flexible than machine learning algorithms (James et al., 2013). Due to 

their functional forms, econometric models are typically continuous, monotone, and differentiable. 

Marginal effects and elasticities can be easily computed for econometric models. As a result, 
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econometric models usually have high interpretative power. In contrast, machine learning 

algorithms usually have superior predictive power due to the flexibility of their function forms. 

3.4.3.4 Econometric Models for Comparison 

For comparison purposes, traditional econometric models commonly used in analyzing traffic 

crashes were implemented in this dissertation using the same dataset used for the machine learning 

algorithms. These models include zero-inflated Poisson regression and logistic regression. Note 

that some researchers argue that econometric models can be considered “statistical machine 

learning” techniques. For example, one may argue that logistic regression could behave similarly 

to SVM in some cases if kernel functions are adopted and regularization is applied to control mode l 

parameters. In such cases, the main difference between logistic regression and SVM is the 

techniques’ different loss functions. However, in this case study, the econometric models refer to 

regression models without kernel functions and regularization. The main concepts of zero-inflated 

regression and logistic regression are briefly described in Washington et al. (2011) and 

Washington et al. (2014).  

 

a) Zero-Inflated Poisson/Negative Binomial Regression 

Due to the count nature of crash frequency, two forms of count models (Poisson and negative 

binomial) were considered in this dissertation. As determined from past research, these model 

forms differ in their assumptions of the conditional mean and variance of the dependent variable. 

The Poisson model requires the mean and variance to be equal (i.e., E(crash frequency) = Var(crash 

frequency)). If these two values are not equal, then the data are either underdispersed or 

overdispersed and the estimated parameters become biased. In such cases, the negative binomial 

model is recommended. 

There is also a class of count models that considers the possibility that count data are 

generated from two distinct processes: a normal count state (when crashes occur according to a 

count process, such as Poisson or negative binomial) and a zero-count state (when crashes do not 

occur). Models that consider this dual-state process are known as zero-inflated models because the 

observed “zero” is inflated by the possibility that a zero-count state exists. Zero-inflated models 

have been applied elsewhere with considerable success, particularly in the literature on motor 

vehicle crash frequency (Washington et al., 2011; Chin and Quddus, 2003). 
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In the case of highway crashes, the zero-inflated Poisson model assumes that the crash 

frequency y𝑖 at section i is as follows:  

 

y𝑖 = 0 with probability 𝑝𝑖 + (1 − 𝑝𝑖)𝐸𝑋𝑃(−λ𝑖) 

y𝑖 = y with probability 
(1−𝑝𝑖)𝐸𝑋𝑃(−λ𝑖)λ𝑖

𝑦

𝑦!
,    y = 1, 2, 3… 

 

where 𝑝𝑖  is the probability of being in the zero state, y is the number of crashes, and λ𝑖  is the 

expected crash frequency. 

 

The zero-inflated negative binomial regression model follows a similar formulation: 

𝑦𝑖 = 0 with probability 𝑝𝑖 + (1 − 𝑝𝑖) [
1/𝛼

(1/𝛼)+λ𝑖
]
1/𝛼

 

𝑦𝑖 = y with probability (1 − 𝑝𝑖)
Γ((1/𝛼)+𝑦)𝑢𝑖

1/𝛼(1−𝑢𝑖)
𝑦

Γ(1/𝛼)𝑦!
,    y = 1, 2, 3… 

 

where 𝑢𝑖 =
(1/𝛼)

(1/𝛼)+λ𝑖
, Γ denotes the 𝛾 distribution and all other terms are as previously defined. The 

function that describes the probability of being in the zero state 𝑝𝑖  is typically based on the 

assumption of normality (probit model); therefore, pi ≈ Normal [Zi], where  is a vector of 

estimable parameters and Zi is a vector of independent variables that determine the zero-state 

probability. It should be noted that the influential factors of one process are not necessarily the 

influential factors of the other (Washington et al, 2011). In other words, an independent variable 

that affects highway crash frequency does not necessarily influence the probability that a highway 

section is in a zero crash state.  

To statistically determine the appropriate count model to be used for modeling (Poisson, 

negative binomial, ZIP, or ZINB), the Vuong statistic was used, which is defined as follows 

(Vuong, 1989):  

 

𝑚𝑖 = 𝐿𝑁 (
𝑓1(𝑦𝑖|𝑋𝑖)

𝑓2(𝑦𝑖|𝑋𝑖)
) 
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where 𝑓1(𝑦𝑖|𝑋𝑖) is the probability density function of model 1 and 𝑓2(𝑦𝑖|𝑋𝑖) is the probabilit y 

density function of model 2. Using this statistic, with n being the total number of observations 

(highway segments), the statistic for testing model 1 versus model 2 is as follows (Washington et 

al., 2010): 

 

𝑉 =
√𝑛[

1
𝑛

∑ 𝑚𝑖
𝑛
𝑖=1 ]

√1
𝑛

∑ (𝑚𝑖 −
1
𝑛

∑ 𝑚𝑖
𝑛
𝑖=1 )2𝑛

𝑖=1

 

 

The Vuong statistic is asymptotically standard normal, and if the absolute value of V is less than 

Vcritical (1.65 for a 95% confidence level, one-tailed t distribution), the test does not support the 

selection of one model over another and the test is inconclusive. Large positive values of V greater 

than Vcritical favor model 1 over model 2, whereas large negative values support model 2 over model 

1. Shankar et al. (1997) provided model selection guidelines based on possible values of Vuong 

test and overdispersion parameter () t-statistic (using the 95% confidence level):  

 

Use ZIP or Poisson when 𝑉 < −1.65 and α′s t-statistic < 1.65 

Use NB when 𝑉 < −1.65 and α′s t-statistic > 1.65 

Use ZIP when 𝑉 > 1.65 and α′s t-statistic < 1.65 

Use ZINB when 𝑉 > 1.65 and α′s t-statistic > 1.65 

 

b) Logistic Regression 

A logistic regression model is used to predict the probabilities of the possible outcomes of 

a dependent variable given a set of independent variables. In this part of the dissertation, the 

dependent variable is the probability (𝑃𝑖) that segment i is a fatal segment: 

 

𝑃𝑖 =
𝐸𝑋𝑃[𝛽0 + 𝛽1𝑋1,𝑖 + 𝛽2𝑋2,𝑖 + ⋯+ 𝛽𝑝𝑋𝑝,𝑖]

1 + 𝐸𝑋𝑃[𝛽0 + 𝛽1𝑋1,𝑖 + 𝛽2𝑋2,𝑖 + ⋯+ 𝛽𝑝𝑋𝑝,𝑖]
 

 

https://en.wikipedia.org/wiki/Dependent_variable
https://en.wikipedia.org/wiki/Independent_variable
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where 𝛽0  is the model constant, 𝑝  is the number of independent variables, and 𝛽1, … ,𝛽𝑝  are 

unknown parameters corresponding to the independent variables 𝑋1 ,… , 𝑋𝑝 . These unknown 

parameters are typically estimated using maximum likelihood methods.  

The probability that a highway segment is a fatal segment is calculated, and a threshold 

probability T is used to make the final assessment. For example, highway segment i is identified 

as a fatal segment if 𝑃𝑖 ≥ 𝑇. This threshold is typically tuned using a validation dataset. 

3.4.3.5 Model Performance Metrics, Model Selection, and Learning Curves 

A common error in evaluating the performance of highway safety models is to use only their 

predictive accuracy. For example, less severe crashes (e.g., property damage only and injury 

crashes) are typically much more frequent than fatal crashes. Out of the 1,601 highway segments 

in the study database, 1,528 (95.44%) of the segments had no fatal crashes and 51 segments had 

only 1 fatal crash (see Figure 3.7). Only 10, 5, 5, 0, 1, and 1 segments had 2, 3, 4, 5, 6, and 7 fatal 

crashes, respectively. Since most of the highway segments had no fatal crashes, one can easily 

propose a non-informative and superfluous model with a high accuracy of 95.44% which will 

predict that a given segment will not have a fatal crash irrespective of any provided information 

(e.g., geometric design, traffic volume, etc.). Therefore, the accuracy of a model by itself is 

generally not an appropriate metric for evaluating model performance in terms of predicting fatal 

crashes. In this part of the dissertation, the metrics for model performance evaluation are precision, 

recall, and F1 score. The definitions of precision, recall, and F1 score are discussed in Chapter 2.  
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Figure 3.7 Distribution of fatal crashes 

 

For each of the classifiers, several plots are presented in this dissertation: the precision, 

recall, and F1 score versus the hyper-parameters for both the training and validation data. In the 

cross-validation process, the average values of precision, recall, and F1 score for the training and 

validation folds were computed and plotted. For each type of modeling technique, the classifiers 

with the best performance in the cross-validation process were elected into the final pool of 

potential best models. Then, multiple hypothesis tests were formulated with Bonferroni correction 

to determine the final selected model for this dissertation. The precision, recall, and F1 score of 

the final selected model on the testing data are shown.  

The learning curves showing the relationship between the model performance and the 

number of training samples are presented below. These curves can help highway agencies 

understand the effects of training sample size. For example, they can provide highway agencies 

with useful information to evaluate (a) how much data are needed for the classifier and (b) whether 

additional data can help train the classifier and enhance predictive accuracy. This information can 

help agencies make projections to evaluate whether additional data can help train the classifiers 

and help the agency make better decisions.  
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3.4.3.6 Model Implementation and Results 

The goal of the model was to build classifiers that can be used to predict the fatality status of a 

given highway segment. The fatality status is defined as follows: 

- Fatal segment: there is at least one fatal crash on the highway segment in a given year 

- Non-fatal segment: there are no fatal crashes on the highway segment in a given year 

 

It is expected that this analysis can help highway agencies in two ways. First, if a classifier’s 

performance is acceptable, it can help highway agencies determine which highway segments can 

be expected to be fatal. Then, highway agencies can further investigate these fatal segments 

through site visits to identify the appropriate safety countermeasures (e.g., guardrails, pavement 

rehabilitation, etc.) and to allocate available resources (e.g., safety funding). Second, if a 

classifier’s performance is not acceptable, it may indicate that the current features are not adequate 

to determine whether a highway segment is fatal or non-fatal. Such a result suggests that highway 

agencies should collect other information (e.g., weather conditions, driver ages, etc.) to identify 

fatal segments. This result also indicates that information on highway design, traffic volume, and 

pavement condition alone may not be adequate for reliable predictions. 

3.4.3.7 Classification Goal in Terms of Performance Metrics 

In training machine learning classifiers, the hyper-parameters can be fine-tuned, and final 

classifiers can be selected based on the precision, recall, or F1 score. The choice of performance 

metric depends on the objective of the agency. Selection based on precision encourages the 

classifiers to predict fatal segments conservatively and thereby reduces the number of false positive 

predictions. As a result, highway agencies can potentially prevent wasting funds on highway 

segments that are predicted as fatal but that in reality are not fatal. Selection based on recall 

encourages the classifiers to predict fatal segments aggressively, thereby reducing false negative 

predictions. In such cases, the number of false negative predictions is reduced at the cost of a 

greater number of false positive predictions most of the time. As a result, a greater number of truly 

fatal highway segments can be detected by the classifier at the expense of a potentially greater 

number of false positive predictions of fatal segments. If funding is limited, highway agencies 

should choose classifiers that have high precision. If funding is not a significant concern, agencies 
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should choose classifiers that have high recall. The F1 score, by definition, is the harmonic mean 

of precision and recall so this metric is recommended for highway agencies when balanced 

decisions are preferred. In addition, the receiver operating characteristics (ROC) curve (James et 

al., 2013) can be used as a supplemental performance metric for evaluating machine learning 

classifiers. With respect to ROC, the overall performance of a classifier is given by the area under 

the (ROC) curve (AUC), where the larger the AUC, the better the classifier. When the differences 

in classifier performance in terms of precision, recall, and F1 score are not statistically significant, 

the AUCs of classifiers can be compared. 

Prior to training the classifiers, the features are standardized by removing the mean and 

scaling to the unit variance. During training and testing, the data are centered and scaled 

independently on each feature by computing the relevant statistics. This process can improve both 

the data fitting and prediction performance because it normalizes the dissimilar units and 

magnitudes of the different features (Li et al., 2008). The standardization is accomplished using 

the following equation: 

 

𝑥𝑖𝑝
′ =

𝑥𝑖𝑝− 𝑚𝑒𝑎𝑛(𝑥𝑖𝑝)

𝑠𝑡𝑑(𝑥𝑖𝑝)
        ∀𝑖, 𝑝 

 

where 𝑥𝑖𝑝
′ is the standardized value of observation i and feature p and 𝑥𝑖𝑝 is the original value of 

observation i and feature p. 

3.4.3.8 Implementation of Machine Learning Models  

General Procedure 

Initially, the dataset is divided into two parts: training and validation data (80% of the observations) 

and testing data (20% of the observations). The training and validation data are used to tune the 

hyper-parameters through k-fold cross-validation using the criteria discussed in Section 2.4.1. 

Three groups of models are trained:  

(1) Linear SVM, SVM with polynomial kernel of degree 2, 3, and 4  

(2) SVM with RBF kernel  

(3) RFs 
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For SVM, the RBF kernel is much more flexible than the linear or polynomial kernels because it 

maps the features onto an infinite dimensional space (Friedman et al., 2001). If the hyper-

parameters are tuned properly, SVM with RBF kernel is expected to outperform SVM with linear 

or polynomial kernels, considering that the correlation and causation between the dependent 

variable (fatal highway crashes) and independent variables (geometric design, traffic, and 

pavement condition) are extremely complicated. In this dissertation, however, SVM with linear or 

polynomial kernels were trained and validated because the aim was to determine whether the 

correlation and causation of fatal crashes with other factors can be quantified to an understandable 

level (e.g., to the fourth order of feature interactions). When any SVM model with a first to fourth 

order of polynomial kernel performs similarly to SVM with RBF kernel, it is an indication that 

fatal crashes are highly correlated with the geometric design, traffic, and pavement condition up 

to their fourth order of interactions. This information is expected to be useful for improving the 

econometric models in the literature because even though machine learning algorithms have 

superior predictive power compared to econometric models, econometric models are easier to 

interpret.     

 

Tuning Hyper-parameters for Linear SVM, SVM with Polynomial Kernel of Degree 2, 3, and 4 
(Group 1) 
 

The hyper-parameter tuned in group (1) is C. Parameter C is a regularization term that provides a 

way to control overfitting: a large value of C discourages any positive 𝜀𝑖 (i.e., slack variables, see 

Section 2.3.2) and may lead to an overfit wiggly boundary in the original feature space, while a 

small value of C encourages the boundary to be smoother (Hastie et al., 2009). The best model in 

this group is SVM with polynomial kernel degree 3 with a C value of 32. It has an average precision 

of 0.6869, an average recall of 0.6446, and an average F1 score of 0.6265. (Note that these values 

are the average values for the k-fold cross-validation. That is, the equation F1 = 2
Precision∙Recall

Precision+Recall
 

does hold for individual values but may not hold for the average value.)  

Figure 3.8 presents the precision, recall, and F1 score versus the values of the hyper-

parameter. The ROC curve for the best model in this group is shown in Figure 3.9, where the area 

under the curve is 0.7724. 
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(a) Linear SVM (b) SVM with polynomial kernel of degree 2 

Figure 3.8 Tuning hyper-parameters for linear SVM, SVM with polynomial kernel of degrees 2, 
3, and 4 (examples shown here) 
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Figure 3.8 continued 

 

  

  

  

(c) SVM with polynomial kernel of degree 3 (d) SVM with polynomial kernel of degree 4 
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Figure 3.9 ROC curve (with AUC) for SVM with polynomial kernel degree 3 (Group 1 best 
model) 

 

Tuning Hyper-parameters for SVM with RBF Kernel (Group 2) 

The hyper-parameters tuned in group (2) are C and 𝛾. Parameter C is a regularization term that 

provides a way to control overfitting: a large value of C discourages positive 𝜀𝑖  (i.e., slack 

variables, see Section 2.3.2) and may lead to an overfit wiggly boundary in the original feature 

space, while a small value of C encourages the boundary to be smoother (Hastie et al., 2009). 𝛾 is 

a positive constant that controls the Euclidean distance between observations: as 𝛾  increases, 

generally the fit becomes more nonlinear, which may lead to an overfit wiggly boundary (James 

et al., 2013). The best model in this group is SVM with RBF kernel with a C value of 4 and a 𝛾 

value of 0.8. It has an average precision of 0.9016, an average recall of 0.5054, and an average F1 

score of 0.6298. 

Figure 3.10 presents the precision, recall, and F1 score versus the values of the hyper-

parameters. The ROC curve for the best model in this group is shown in Figure 3.11, where the 

area under the curve is 0.9228. 
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(a) SVM with RBF kernel: 𝛾 = 0.1 (b) SVM with RBF kernel: 𝛾 = 0.8 

Figure 3.10 Tuning hyper-parameters for SVM with RBF kernel (examples shown here) 
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Figure 3.11 ROC curve (with AUC) for SVM with RBF kernel 

 

Tuning Hyper-parameters for Random Forests (Group 3) 

Figure 3.12 shows that when the number of trees exceeds 200, the validation performance tends to 

become stable. Increasing the number of trees generally improves the performance by reducing 

the variance at the expense of the computing time (James et al., 2013). In practice, the best value 

for the maximum number of features m to be considered at each split for building the tree structure 

depends on the problem (Hastie et al., 2009), although popular choices include √𝑝, log(𝑝) , 𝑝/3, 

etc. The value of m was chosen to be 1 in this part of the dissertation. The best model in this group 

is RF with 300 trees, 1 maximum feature, and a maximum depth of 30. It has an average precision 

of 0.8766, an average recall of 0.4661, and an average F1 score of 0.5831. 

The ROC curve for the best model in this group is shown in Figure 3.13, where the area 

under the curve is 0.8984. 
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(a) Tuning number of trees in the forest (d) Tuning number of features to consider at 

splits 

Figure 3.12 Tuning hyper-parameters for RF (examples shown here) 
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Figure 3.13 ROC curve (with AUC) for RF 

 

Final Selection of Machine Learning Classifiers using Hypothesis Tests  

Based on the cross-validation process, SVM with RBF kernel seemed to perform better than the 

other two types of models in terms of average performance with the validation data. For example, 

the validation precision values for SVM with RBF kernel, SVM with polynomial kernel, and RFs 

are 0.9016, 0.6869, and 0.8766, respectively. The AUC values for SVM with RBF kennel, SVM 

with polynomial kernel, and RFs are 0.9228, 0.7724, and 0.8984, respectively. Multiple hypothesis 

tests with Bonferroni correction were carried out to ascertain whether the performance differences 

were significant. It was found that SVM with RBF kernel and RF performed significantly better 

than SVM with polynomial kernel. However, the performance difference between SVM with RBF 

kernel and RF was not statistically significant. Figure 3.14 shows the performance of the final 

selected machine learning models with the testing data. 
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Figure 3.14 Performance of final selected machine learning models with testing data 

 

In addition, the significant difference between SVM with RBF kennel and SVM with polynomia l 

kernel indicated that the relationship between fatal crashes and geometric design, traffic, and 

pavement condition is extremely complicated. The results show that the fourth order of interactions 

between these features is not capable of providing a reliable prediction of fatal crashes. 

 

Learning Curves for the Final Selected Classifiers 

The learning curves for the final selected models are shown in Figure 3.15. For both SVM with 

RBF kernel and RF, the learning curves show that there is still potential to improve the models ’ 

performance by acquiring additional data. The number of observations is considered sufficient 

when the training and validation curves converge to each other, that is, when the gap between the 

training and validation curves tends to remain constant as more observations are fed into the model. 

In addition, in terms of precision, highway agencies require at least 900 and 1,200 observations to 

train these models to reach precision values of approximately 0.6 and 0.8, respectively. 

 

0.875

0.4375

0.5833

0.8571

0.375

0.5217

0

0.2

0.4

0.6

0.8

1

Precision Recall F1

SVM with RBF kernel

Random Forest



102 
 

  

  

  

(a) Learning curve for SVM with RBF kernel (b) Learning curve for RF 

Figure 3.15 Learning curves for final selected machine learning models 
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3.4.3.9 Implementation of Econometric Regression Models 

The preliminary diagnostic analysis of the data (Figure 3.7) suggested that very few road segments 

had fatal crash counts greater than zero. The maximum count of fatal crashes for any segment was 

seven. These characteristics, from the perspective of model specification, suggested two actions. 

First, the Poisson model form, instead of the negative binomial form, should be used for modeling 

because both the expected crash frequency and its variance were close to 0 and, more importantly, 

were equal, which was confirmed by the insignificant overdispersion parameter for these data. 

Second, due to the preponderance of road segments with zero fatal crashes, a ZIP model was 

preferred to model fatal crashes, which was confirmed by the Vuong statistic (Vuong, 1989).) In 

addition, a logistic regression function also was estimated for this analysis to evaluate the safety 

level of highway segments for comparison purposes. Table 3.13 and Figure 3.16 present the 

estimation results of the econometric models and the corresponding performance of the models 

with the testing data, respectively.  

 

Table 3.13 Estimation results of econometric models 

Model type Variables Coef.  t-stat P-value 

ZIP 

Constant –0.981 –7.72 <0.001 

*Segment length (miles) –0.490 –5.06 <0.001 

LN(Average annual daily traffic) 0.978 7.74 <0.001 
Median width (ft.) –0.009 –2.29 0.022 

Left side shoulder width (ft.) –0.080 –1.98 0.047 

ρ2 = 0.153    

Vuong stat = 4.08    

Logistic Regression 

Constant -7.588 -9.89 <0.001 

Functional class SR (1 if State road, 0 

otherwise) 

-1.594 -2.91 0.004 

IRI (in/mile) 0.006 1.97 0.049 

Segment length (miles) 0.254 6.33 <0.001 

Lane width (ft.) 0.466 2.90 0.004 

Average annual daily traffic 0.000028 3.15 0.002 

Left side shoulder width (ft.) -0.1529 -1.86 0.063 
Average vertical curve grade 0.2449 3.44 0.001 

ρ2 = 0.311    
Variables are statistically significant at 90% degree of confidence. 

*Variable estimated for determining zero-state probability 
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Figure 3.16 Performance of econometric models with testing data 

 

3.4.4 Summary of Results for the Machine Learning and Regression Models 

In selecting between machine learning and econometric regression models, the trade-off between 

prediction and interpretability should be considered. Of the many typically applied econometric 

and machine learning methods, some are less flexible than others. For example, linear regression 

is a relatively inflexible approach because it can only generate linear functions such as lines in 

two-dimensional space or linear hyperplanes in high-dimensional space. Other methods, such as 

RFs, are considerably more flexible because they can generate a much more complicated discrete 

function. If the main interest is statistical inference, then inflexible models are much more 

interpretable. For example, when inference is the goal, linear models may be preferred because it 

is quite easy to understand the relationship between the dependent variable and the independent 

variables through estimated coefficients, marginal effects, or elasticities. In contrast, flexible 

approaches, such as RFs, generate a complicated function that is relatively difficult to interpret in 

terms of the effects of any independent variable on the dependent variable. 

Figure 3.17 juxtaposes the contents of Figure 3.14 and Figure 3.16 to compare the 

performance of the machine learning algorithms and econometric models. Econometric regression 

models, by definition, compute the average or overall response values (Jiang and Sinha, 1989), 

which leads to relatively low performance in predicting individual cases compared to machine 

learning models. As expected, machine learning algorithms outperform econometric models by a 

large margin in predicting fatal highway segments. 
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Figure 3.17 Comparison of performance of machine learning and econometric models with 

testing data 
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CHAPTER 4. INSIGHTS INTO EMERGING OPERATING 
ENVIRONMENT - HIGHWAY SAFETY IN AN ERA OF 

AUTONOMOUS VEHICLE 

4.1 Introduction 

The previous chapters of this dissertation addressed various aspects related to enhanced prediction 

of highway safety, including a proposed framework for enhanced prediction of highway safety. 

By focusing on crash factors that are directly under highway agency’s control (i.e., roadway 

engineering factors), this dissertation demonstrated the application of the framework in providing 

feedback from the preservation phase (safety impacts of road-surface condition), design phase 

(optimal space allocation across highway cross-sectional elements), and operations phase (reliable 

prediction of fatal crashes). 

Notwithstanding the noble intentions of “forgiving” designs, humans, for ages, have been 

the cause of most highway crashes. As far back as the 1970s, it was found that humans were a 

probable cause of 92% of accidents (Treat et al., 1979). In the 1980s, it was reported that human 

actions were a sole or contributory factor in 90% to 95% of all accidents (Rumar, 1985). In the 

1990s, studies reported that 45% to 75% of all crashes were caused by human (driver) error (Aberg 

and Rimmo, 1998; Hankey et al, 1999). At the turn of the millennium, researchers continued to 

find that driver error dominated the crash causes (Wierwille et al., 2002). Salmon et al. (2005) 

found that driver error contributed to as much as 75% of all roadway crashes. As shown in Figure 

4.1 (FHWA, 1995), the distribution of road accident causes in the U.S. was heavily skewed toward 

the driver. If this chart is representative of the current distribution of crash causes, then only 7% 

of crashes are currently not attributed to the driver. The underlying causes of driver-attributed 

crashes include driver age extremes, state of sobriety, fatigue, inexperience, or distractedness, such 

as texting while driving. Another possible cause of the predominance of driver errors is that driving 

is vision-based. In other words, although other mechanisms of information delivery are relevant to 

drivers, the most critical information for the driving task comes from human vision (Gordon and 

Lindberg, 2015). Macadam (2003) stated that human driving is 90% visual. Because human 

driving is heavily vision-based, humans are unable to fully recognize the potential hazards in their 

driving environment. 
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Figure 4.1 Distribution of road accident causes in the U.S. (FHWA, 1995). 

 

At the current time, several nations are investing heavily in safety initiatives, including Vision 

Zero, a multi-national road traffic safety that seeks to eliminate all road traffic fatalities or serious 

injuries. However, safety-inspired initiatives and improvements in highway policy and design 

(such as wider lanes and shoulders) and vehicle technology advances (such as antilock brakes, 

airbags, and collision-avoidance systems) seem to have had limited effects due to the effect of 

human risk-compensation behaviors (Winston et al., 2006; Labi, 2016). Therefore, as long as 

human drivers operate vehicles, it is difficult to see how such safety initiatives can reach their 

targets.  

4.2 The Design Safety Conundrum in the Current Highway Environment  

In the traditional operating environment, highways are designed, maintained, and operated to serve 

human drivers, who are subject to errors due to distraction, impairment, fatigue, inexperience and 

other factors. The goal is to provide “forgiving highways” that mitigate the effects of bad driving.  
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4.3 The Emerging Era of AVs and Safety Implications 

A driverless vehicle is one that is capable of navigating without a human driver. A driverless 

vehicle may be controlled remotely by an off-site operator with complete data on the driving 

environment and therefore makes the driving decisions for the vehicle. In this case, the vehicle is 

driverless but not autonomous. Examples of this include prospective systems for driverless taxis 

(Greenblatt and Saxena, 2015) and shared mobility systems where a central planner/dispatcher 

makes the vehicle’s driving control decisions remotely (Bischoff and Maciejewski, 2016). Another 

class of driverless vehicles includes those that are autonomous because they are capable of self-

control without external intervention. Such driverless vehicles are capable of (a) receiving stored 

data about the driving environment from a control office or server, interpreting the data to establish 

in real-time a 3D characterization of the driving environment, and making its own driving 

decisions; (b) monitoring the driving environment in its immediate vicinity via video, lidar, GPS, 

and/or odometry, interpreting the data in real-time, and making its own driving decisions without 

external input regarding the interpretation and driving decisions; or (c) a combination of (a) and 

(b). Therefore, based on the above definitions, it is clear that while AVs inherently possess 

driverless capability, not all driverless vehicles are autonomous. 

In the U.S., the National Highway Traffic Safety Administration (NHTSA) and SAE 

established an official classification system for defining the different levels of autonomy (NHTSA, 

2013a). At Level 0, the driver completely controls the vehicle at all times; at Level 1, the individua l 

vehicle controls (e.g., electronic stability control and automatic braking) are automated. At Level 

2, at least two controls can be automated in unison, such as adaptive cruise control in combination 

with lane keeping. At Level 3, in certain conditions, the driver can fully cede control of all safety-

critical functions to the vehicle, and the vehicle can sense when conditions require the driver to 

retake control and provides a sufficiently comfortable transition time for such a transfer of control. 

At Level 4, the vehicle performs all the safety-critical functions for the entire trip, including 

parking, and the driver is not expected to control the vehicle at any time. At Level 5, all functions 

are undertaken by the AV with no possibility of driver input. It is clear that fully autonomous 

mobility, that every vehicle is at Level 5 autonomy, will not happen all at once. There will be a 

transition phase when roadways are expected to host a mix of vehicles at different levels of 

autonomy (Saeed et al., 2019b; 2019c).  



109 
 

Technological developments towards AVs and their levels of autonomy have proceeded at 

a rapid pace, much faster than the establishment and promulgation of operational regulations 

associated with AVs (Miller, 2018). At the current time, most newly manufactured vehicles 

incorporate some advanced features that are part of this trend: automatic anti-lock braking systems, 

electronic stability control systems, rear-movement collision avoidance and warning systems, and 

lane-guidance systems (Mikusova, 2017). It is speculated that over the next decade, driving 

functions will increasingly become more automated and that AV operations will be permitted for 

certain vehicle classes and at certain road classes (Saeed, 2019). According to a U.S. DOT report, 

fully automated vehicles could be commercially available by 2034 (USDOT, 2014). 

The potential impacts of autonomous vehicles include changes in the need for (or 

dimensions of) certain types of existing infrastructure and the introduction of new physical or 

cyber infrastructure (Labi et al., 2015). Other impacts include the benefits of enhanced mobility , 

particularly for children, the elderly, and the disabled, and relieving travelers from driving and 

navigation chores and freeing up in-vehicle travel time for other activities. The Volpe Center and 

the Rand Corporation discussed the effect of AVs on demand, mobility, accessibility, congestion, 

land use, energy, and emissions, among others (Smith et al., 2015; Anderson et al., 2016). In 

addition, it has been forecast that AVs will significantly reduce the need for parking and will likely 

promote business models for shared transportation. Of the various prospective benefits of AVs, 

safety improvements have been touted as the most significant in terms of certainty and magnitude. 

The next section addresses the prospective safety impacts of AVs. 

The safety benefits of automated vehicles are paramount. The potential for automated 

vehicles to save lives and reduce injuries is rooted in one critical and tragic fact: 94 percent of 

serious crashes are due to human error. Automated vehicles have the potential to remove the human 

error factor from the crash model, which will help protect drivers and passengers, as well as 

bicyclists and pedestrians.  

AVs are expected to greatly reduce crashes, and their safety benefits are already being seen 

at the low levels of vehicle autonomy (levels 2 and 3). An NHTSA-sponsored research study 

determined that the electronic stability control feature already implemented in vehicles prevented 

over 2,200 fatalities between 2008 and 2010 (Srivinski, 2011). It is envisioned that the sensors and 

algorithms in driverless vehicles will continue to advance to a level where they can reliably handle 

anomalous roadway conditions and situations including inclement weather, work zones, and 
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unusual or unexpected obstacles in the roadway. With well-tested safety technology, AVs can react 

much more quickly to events on the road because the sensors and algorithms are able to respond 

faster than human perception and reaction. In addition, sensors and algorithms, if programmed and 

tested properly, have a higher reliability of detection compared to human drivers as human drivers 

may not always pay attention to everything in the driving environment. 

However, based on surveys conducted by OnePoll, people have safety concerns about AVs 

related to pedestrian safety (56%), passenger safety (51%), rise in accidents (49%), connectivity 

and backhaul network failure (35%) and cyber-attacks on personal information (29%) (Scroxton, 

2019). 

4.4 Safety Factors in the Emerging Operating Environment 

In the AV operating environment, the traditional analysis of crash factors may become less and 

less important or even eventually have no impact, as the crash factors that significantly affect 

highway safety in the traditional operating environment may no longer have significance. For 

example, some of the human factors, such as driver’s gender and age, are expected to have less 

impacts with higher penetration of fully AVs. With the adoption of advanced autonomous driving 

technologies, human error in driving may be eliminated completely in the future. As a result, the 

focus of highway design could be shifted from “forgiving highways” to other factors, including 

enhanced mobility, efficient land use, etc.. In addition, roadway design changes may be required 

to support AV operations. Therefore, the safety impacts of the engineering factors are expected to 

change as well, especially the new crash factors related to AV operations, algorithms, etc.  This 

section specifies and discusses the crash factors and data that need to be collected for analyzing 

roadway crashes in the emerging AV operating environment. When the data are available in the 

future, analysis need to be carried out using the framework proposed in this dissertation for 

enhanced prediction of highway safety and therefore for quantifying the safety impacts of these 

crash factors. 

4.4.1 Roadway Engineering Factors 

In the pre-AV era, roadways are being designed as “forgiving highways” to promote safety by 

compensating for human driving errors. With the adoption of AVs, it is therefore expected that the 
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safety impacts of several current roadway engineering factors will need to be evaluated to facilitate 

AV traffic operations, such as, lane and shoulder width, horizontal and vertical alignment, 

superelevation, and stopping sight distance. 

- Lane and shoulder width: Since AVs are expected to have precise positioning capabilities , 

several studies indicate that the current roadway lane and shoulder widths could be reduced 

(Somers and Weeratunga 2015; Hayeri et al., 2015). As a result, additional lanes could be 

created for human driving vehicles (HDVs) as well as dedicated bus/truck lanes, which could 

lead to enhanced mobility. However, the safety impacts of reducing lane and shoulder widths 

need to be evaluated thoroughly when relevant data is available. 

- Horizontal and vertical alignment, and superelevation: For AV control, AI algorithms, such as 

reinforcement learning, can help AVs perform at their optimal speed and wheel control for 

turning. This need creates opportunities for new designs for roadway alignment including 

horizontal and vertical alignment and superelevation, which may result in enhanced safety and 

mobility. 

- Sight distance: Sight distance allows the driver to estimate the conditions in the environment 

and make appropriate responses. Sight distance requires the driver's awareness of their 

surroundings and driving properly. Usually, the design of sight distance is very conservatively 

calculated. For example, stopping distance, which is the sum of two distances (the distance 

traveled during perception plus reaction time and the distance to stop the vehicle) is designed 

with lower deceleration and slower perception reaction time than normally expected from the 

driver. As most AVs are expected to be connected and autonomous vehicles (CAVs), they are 

expected to drive safer than human in situations where the sight distance is limited with the 

help of connectivity (V2I, V2V, V2X).  

4.4.2 Driver Characteristics 

In the traditional environment, driver characteristics are considered impactful in roadway safety 

because crashes are influenced by driver age and gender, experience, alcohol, fatigue etc. (Islam 

and Mannering, 2006; Sinha and Labi, 2007). For example, Kweon and Kockleman (2003) found 

males (ages 18-55 years) were more likely to get involved in an accident than their female 

counterparts. For older age groups, however, males were less likely to have an accident than female 

drivers. In addition, drivers in the younger and older age groups tended to have higher crash rates 
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in comparison. Moreover, intoxicated drivers were far more likely to have higher crash rates 

(crashes per VMT) than sober drivers. The authors found that approximately 1/3 of the roadway 

fatalities involved intoxicated drivers. As a result, the adoption of AVs is expected to have higher 

safety impacts for the groups that are more likely to have crashes (such as young and middle-aged 

males, older age females, and intoxicated drivers). Moreover, the connection between highway 

safety, particularly speeding, and the characteristics of the drivers has attracted a lot of research 

attention as personality traits are more definitive indicators of speeding. Several studies found that 

drivers with a “sensation seeking” tendency were more likely to exhibit risky behaviors such as 

speeding (e.g. Jonah et al., 2001, Greaves and Ellison, 2010). Other researchers who focused on 

the “classic” personality types, showed that people with Type-A personalities tended to speed (Tay 

et al., 2003).  In turn, drivers who were altruistic and averse to risk were unlikely to speed (Machin 

and Sankey, 2008, Greaves and Ellison, 2010) 

From the human factor perspective, operating AVs may involve a variety of human-

machine interactions (HMIs), such as driver response to warning signs, take-over requests, and 

other driving assistance systems. Education of drivers will be required for operating AVs safely. 

Inadequate education may lead to unsafe driving as drivers may not be able to perform HMI tasks 

properly. From the technology perspective, AVs need to be “educated” properly through their AI 

systems as well. This “AV education” is necessary for AVs to understand the appropriate HMIs, 

driving environment, policy and regulation, vehicle control, etc. For example, it would be more 

efficient if AVs are educated to interact with drivers in human-like ways. In human 

communications, explanations and expectations are crucial in trust establishment. People find it 

difficult to trust an agent that acts unexpectedly and unpredictably. Researchers have found that 

AVs might be able to reduce this negative impact by giving more information or explanation 

regarding the specific actions they took (Yang et al., 2018). On the contrary, poor “AV education,”  

may cause dangerous AV maneuvers on roadways. For instance, when people are talking in the 

vehicle, human conversation can be misunderstood by AVs as a signal when it contains certain 

“messaging” words. Moreover, voice recognition in AI might need to be trained for every user, 

which can be a good thing, but also may lead to false detection. 
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4.4.3 Policy 

Policy, as a crash factor, refers to the laws and regulations associated with driving and includes  

sobriety laws that regulate the alcohol limit for truck drivers, seat belt and helmet laws, etc. In 

highway safety, one of the most controversial policy factors is the speed limit. Crash severities and 

rates can be affected by modifying speed limits or establishing speed differentials by vehicle class. 

These changes typically depend on multiple other factors such as highway functional class, 

severity type of crash, current speed limits, etc. In the era of AV, policies regarding speed limits 

may have different safety impacts compared to the traditional operating environment because AV 

speed will be controlled by AI algorithms instead of a human driver, which is expected to eliminate 

speeding issues. Due to improved control of the vehicle and its speed, speed limits could be 

increased for new roadway designs, especially for AV-dedicated lanes to increase safety and 

mobility. In addition, in the emerging operating environment with AVs, potential changes 

regarding the policy factors will provide opportunities for platooning of passenger cars and heavy-

duty vehicles to increase roadway safety, save fuel, and add roadway capacity. With a higher 

market penetration, policy factors are expected to have a higher impact on roadway safety. 

4.4.4 Traffic Heterogeneity 

In the traditional environment, particularly at developing countries, the traffic is highly 

heterogeneous, consisting of vehicles of wide-ranging static and dynamic characteristics. These 

vehicles include motorcycles, cars (jeeps and small vans), large passenger vans, and small four-

wheeled goods vehicles, buses, trucks, and bicycles. In addition, sometimes, a small percentage of 

animal-drawn vehicles also can be seen on the roads. All these different types of vehicles share 

the same road space. Past researchers have sought to optimize the utilization of available 

infrastructure in such a way that the carrying capacity (number of persons transported) of the 

roadway is enhanced. Cox (1975) recommended the use of exclusive bus lanes and  found that the 

assignment of special lanes to buses did not adversely affect the level of service of the vehicular 

traffic with decreasing travel time and stops and increasing speed. 

With the development of AVs, the future vehicular traffic, including human-driving and 

self-driving vehicles, would greatly enhance highway capacity. Autonomous vehicles offer a wide 

variety of potential benefits. One commonly-discussed benefit is improving traffic operations 
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(decreased congestion, decreased delay, and improved efficiency). AVs are expected to perform 

differently from human-driven vehicles in many aspects, such as operating with smaller headways, 

shorter reaction times, and higher speeds than human-driven vehicles (Bierstedt et al., 2014). 

Researchers believe that with enough cooperation and penetration, vehicle automation could 

enhance traffic flow in the future (Vander Werf et al., 2002; Shladover, 2009).  

Nevertheless, there is still a slow transition towards automated systems. It is likely that 

many human-driven and autonomous vehicles will appear at the same time on the roadways. As 

most AV operating technologies and regulations are still in development, there is limited publicly 

available empirical data on how they will behave in heterogeneous traffic flow. The impacts of 

partial vehicle automation and driver assistance systems have not been completely elucidated in 

practice (Milanés et al., 2014). These uncertainties consist of the efficiency and safety trade-off 

(Hoogendoorn et al., 2014), the interactions between automated and non-automated vehicles 

(Calvert et al., 2016), traffic flow stability (Kesting and Treiber, 2008), and many human factors 

(Jamson et al., 2013). 

Based on the literature, self-driving vehicles  will see a significant increase in the vehicle 

fleet share by 2020 but may not be greater than 25% of all vehicles by 2030 (Calvert et al., 2017). 

Some studies proposed that the relatively low-level AVs would have limited influence compared 

to high share levels. Other researchers, who were focused on the effect of automatic driving 

vehicles on traffic flow, found that in the heterogeneous free flow, AVs indeed could reduce the 

probability of traffic breakdown even with low penetration (10%-20%). At the same time, AVs 

could increase the threshold flow rate for spontaneous traffic breakdowns as well as the maximum 

and minimum capacities of free flow at the bottleneck (Kerner, 2016). 

4.4.5 Vehicle-Related Factors 

Vehicle Mechanical Perspective: 

Vehicle design features (such as size, weight, and shape) affect crash severity and crash frequency 

(Torrão, et al., 2012; Everett et al., 2014). In addition, fatal crashes occurred at a higher rate in 

small passenger cars than in heavier or larger vehicles. Recently-developed cars with new design 

features and safety equipment could provide better protection in crashes compared to older models, 

thus tending to reduce crash severities and frequencies (Sinha and Labi, 2007). Unfortunately, 

drivers in these newer cars seem to drive more aggressively, thus canceling out the designed 
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benefits of safety features (Winston et al., 2006). For occupants, transit vehicles, such as buses, 

are likely to have low crash frequency per mile as well as low injury rates. Large vans and sport 

utility vehicles were reported to have a high rate of rollover crashes. Pedestrians, bicyclists, and 

motorcyclists are more likely to be injured in a crash (Sinha and Labi, 2007). 

For AVs, AI algorithms can interact with the vehicle’s mechanics. For example, besides 

designing a controller that drives an AV, the design process also applies algorithms to advanced 

driver-assistance systems (Giarratana, 2016). As a result, the controller is made of individua l 

controlling modules aimed to serve specific tasks (e.g., a feedforward steering controller to track 

the vehicle’s path accurately and stably). Moreover, these modules can be used independently as 

well. For example, using a steering feedback module alone could provide assistance when the 

driver is losing control (NVIDIA, 2018). The features of individual modules and how they advance 

the robustness of the entire AV system is being studied. 

 

Vehicle Cyber perspective: 

Several-recently developed motor vehicles have advanced features that could prevent drifting into 

adjacent lanes or making unsafe lane changes, brake automatically when the front car stops or 

slows suddenly, and warn other vehicles behind them when backing up (Urmson et al., 2008). 

These safety systems combine hardware (sensors, cameras, and radar) and software technologies 

to help recognize safety risks and warn the driver to prevent accidents (LeBlanc et al.,1996). The 

goal of future automotive technology is to deliver automated driving systems which can handle all 

driving tasks. 

Traditional vehicle manufacturers like Audi, Ford, Mercedes, and Nissan, and new tech 

companies including Google, Tesla and Uber, are currently in a race to produce the first fully 

autonomous self-driving vehicle (Greenblatt, 2016). In general, the methods they use are similar. 

Essentially, an AV should be able to perform three actions to take over from a human driver: to 

perceive, to think, and to act. These actions are realized by the assistance of high-tech devices 

including computers, cameras, and controllers (Birdsall, 2014).  

 

1) Sensor technologies 

The perception (or sight) of an AV includes several parts that have their relative advantages and 

disadvantages (Menke, 2017). Cameras are placed on the roof and/or other spots to surround the 



116 
 

vehicle for 360º vision. Although cameras have enough resolution and can recognize colors, they 

cannot detect the range or distance to the objects. Moreover, their performance is influenced by 

lighting and unpleasant weather (Lee et al., 2013). Light Detection and Ranging (LiDAR) devices 

with a constantly rotating laser beam, are much better at measuring the position and shape of items 

in a round view, but they are costly, sensitive to snow or rain, and could be affected by other self-

driving vehicles’ laser sources (Cho et al., 2014; Hecht, 2018). Besides cameras and LiDAR 

equipment, driverless vehicles often are equipped with traditional radars, which are useful in fog, 

snow, and rain and can determine the relative speeds of other cars or moving objects accurately. 

But they are not helpful at finding the shape and size of the object and can only see very fuzzily, 

and thus are not very useful in identifying the object (Jenn, 2019). Radars also are not efficient in 

lane detection. Because of these two major limitations, radars are not used as a primary sensor for 

self-driving cars but rather serve as a backup in adverse weather (Patole et al., 2017).  

The inconsistency between human driving and what the machine is programmed to do will 

lead to conflicts between human drivers and AVs during the transition period (Montgomery et al., 

2018.). While human driving overwhelmingly is based on eyesight, vision is not useful for self-

driving vehicles, which are informed by cameras, lidar, radar, and other sensors (Anderson et al., 

2014). These sensors determine other patterns and frequencies of emission and so form a 

perceptual “world” that is different from human perception. These sensors are integrated together 

such that the AVs observe (i.e., gather information in pattern-recognition assemblages) the 

environment in a very distinct way than humans do (Hancock et al., 2019). The difference 

associated with human and machine abilities and the related variability of attribution, indicates 

AVs and human drivers are far away from integrating completely, which may bring safety issues 

(Hancock et al., 2019). For example, it is difficult for a human to differentiate whether vehicles 

are human-driven or self-driving. Then, when passing on multilane highways, this uncertainty can 

result in dangerous attribution errors. For example, a human driver could wrongly assume that an 

overtaken car has advanced 360º machine vision whereas it is driven by another driver who in fact 

has blind spots (Vanderbilt, 2017). 

 

2) AI Algorithms 

A significant area in self-driving development and testing is artificial intelligence (AI). Deep 

learning, which mimics neuron activity, is believed to be the most important technology behind 
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autonomous driving AI (Pan et al., 2017). Deep learning is helpful in voice search, speech and 

voice recognition, image recognition and processing, movement detection, and data analysis. As a 

result, AVs can detect and recognize pedestrian traffic, other cars, and traffic signals and can 

follow mapped-out routes (Chen et al., 2017). For safe operation, AVs require very advanced 

computers to deal with all the sensor-collected data in real time (Wu, 2018). For example, some 

intelligent and efficient algorithms that are trained to recognize items in the environment have 

been developed that can differentiate motorcycles versus bicycles as well as other objects, such as 

traffic lights, vehicles, pedestrians, and obstacles. After identifying which objects surround the car 

and how far away they are, the computers also determine how to react and then executes the 

decision (Lu et al., 2010). For example, when encountering a closed lane due to road construction, 

the computer would figure out the options: it can either immediately switch lanes or slow down 

first to let the other vehicles in the next lane pass. Here, different AI systems may have different 

decisions to make, which may trigger some safety issues. 

Before any AV can safely navigate on the roadway, engineers must first test and validate 

the AI algorithms and other software that enable the vehicle to drive itself (Yan et al., 2016). AV 

systems must be subjected to huge numbers of scenarios to gain confidence in their safety. Many 

challenges of how AI can teach road safety to AVs will arise around edge case scenarios, where 

rarely-occurring, interdependent and ultra-specific sets of circumstances that are hard to predict 

come into play (Litman, 2017). AI-powered AVs must be able to respond properly to the incredibly 

diverse situations they could experience, such as emergency vehicles, pedestrians, animals, and a 

virtually infinite number of other obstacles (Ramos et al., 2017).  

 

3) Security of AV system 

Quick and stable connectivity between self-driving vehicles and the outside environment, such as 

cloud infrastructure, will allow more efficient signal transmission. The cutting-edge 5G wireless 

technology, which ensures high speed connections and data exchange, is expected to improve 

connectivity among vehicles and provide a wide range of services (Cheng et al., 2017; Chen et al., 

2018). There are a few protocols that will regulate how AVs connect to their surroundings. The 

comprehensive term is Vehicle-to-Everything (V2X) (Abou-zeid), which involves a) Vehicle-to-

Infrastructure (V2I) communication, which is a wireless exchange of information with the 

surrounding road infrastructure to operate within the bounds of the speed limits, traffic lights, and 
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signage and also helps manage fuel consumption and prevent crashes; and b) Vehicle-to-Vehicle 

(V2V) communication, which allows operations safety within traffic situations and helps prevent 

collisions (Amoozadeh et al., 2015). 

4.4.6 Natural Environment Factors 

Environmental conditions, such as low visibility, rain, or snow, strong winds, icy roadway, 

crossing animals, etc. are important factors of roadway collisions (Sinha and Labi, 2007; Andrey, 

2010). 

In the emerging operating environment, AVs must perform regardless of the weather, road, 

or lighting conditions (Sivak and Schoettle, 2015). There is no feasible way to physically road test 

vehicles in all these situations nor is road testing sufficiently controllable, repeatable, exhaustive, 

or fast enough. Testing self-driving vehicles safely in a realistic simulation environment is 

important. Combining simulated miles with actual road miles in the data center is the key to testing 

and validating AVs (Grazioli et al., 2017). 

4.4.7 Enforcement Factors 

Patrol frequency, driver education, and license restrictions improve safety in general (Williams , 

2007). Generally, severe penalties for traffic infringement are likely to encourage operator 

responsibility and thus improve traffic safety as well (Ivers et al., 2009). In the emerging operating 

environment, AVs need to be able to properly interact with patrols to ensure operation safety. 

Malfunctioning AI or control systems that are not able to recognize patrol and response 

accordingly may decrease roadway safety and cause severe highway crashes (Reimer, 2014; Yang 

and Coughlin, 2014). 

4.4.8 AV Decision-Making Ethics as a Crash Factor 

For the past two decades, AV has demonstrated its success statistically by traveling thousands of 

miles with low crashes rates on real roads (Kalra and Paddock, 2016). Paradoxically, the weakness 

of automated systems is the same as their strength: they involve no tactical human decision-making. 

This may lead to controversial ethical issues, such as should AV prioritize protecting its own 

passengers or a pedestrian in an unavoidable crash? Unfortunately, humans probably have no clue 

on how AV would react to such novel situations. Humans have empathy for understanding how 
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other people behave when facing boundary scenarios by imagining themselves in certain situations 

and how they would respond. AVs at present, however, have no such foresight. At the current time, 

it is difficult to forecast how AVs would react to these situations, thus giving rise to a social science 

challenge (Goodall, 2014). 

4.5 AV Testing and Related Safety Problems 

As with all new technologies, it is important to carry out field-testing of AVs to ensure that they 

do not pose undue safety hazards to the public and that they produce the prospective benefits. Such 

a testing period will facilitate the training of AVs to operate in non-deterministic driving 

environments, including during the transition phase where both AVs and traditional vehicles share 

the road. AVs will need to learn to accommodate the capricious and often unpredictable habits of 

human drivers of traditional vehicles. AVs have been tested mostly at dedicated test facilities 

largely devoid of human-driven vehicles.  

It can be argued that the true capabilities of AVs can be best determined on in-service roads 

and not on test tracks, as the latter often fail to adequately replicate the driving environment. For 

this reason, government policy and legislation in many countries has supported (or at least 

permitted) the testing and use of driverless vehicles on public roads. The continued and expanded 

permitting of AV testing on public roads is a welcome development because it will facilitate 

reliable training of AVs in varied and realistic driving environments. Unfortunately, there have 

been a few AV crashes at some of these public testing locations. While AV crash rates are much 

lower compared to traditional vehicles, the vast media attention they garner may be negative and 

seems to have damaged some public trust in AVs (Knight, 2018).  

It has been established that it is dangerous to test self-driving cars on actual roads, 

particularly at night, and these vehicles need enhanced warning systems that quickly detect, 

interpret, and react to potentially hazardous situations. All the reported instances of AV crashes 

had humans at the wheel but that was not enough to prevent the crashes. Clearly, having a human 

driver at the wheel is no guarantee of safety. These high-profile crashes have led to a need for AV 

testing that does not pose a safety hazard to the public. Such testing can be carried out in a safe 

environment using AV test tracks or driving simulation. Unfortunately, as discussed above, test 

tracks are limited in what they can replicate as far as real driving environments due to cost 
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constraints. The most promising recourse, therefore, is computer simulation of AV driving. To 

address the limitations of testing AVs on in-service road and test tracks, Chapter 5 proposes and 

demonstrates a deep learning-based simulation framework for autonomous driving. 
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CHAPTER 5. A DEEP LEARNING BASED SIMULATION 
FRAMEWORK FOR AUTONOMOUS DRIVING 

5.1 Introduction 

AV stakeholders continue to seek assurance of the safety performance of this new technology 

through AV testing on in-service roads, AV-dedicated road networks, and AV test tracks. However, 

recent AV-related fatalities on in-service roads may have exacerbated public skepticism and 

eroded some public trust in the safety of AV operations. Further, test tracks are unable to 

characterize adequately the real-world driving environment. For this reason, driving simulators 

continue to serve as an attractive means of AV testing. However, in most AV driving simulators, 

the AV operation is based on commands external to the vehicle and embedded in the code for the 

driving environment. To address the simulation shortfalls associated with this approach, this part 

of the dissertation develops a deep Convolutional Neural Network – Long Short-Term Memory 

(CNN-LSTM) algorithm for self-driving simulation. This algorithm observes and characterizes the 

AV’s driving environment and controls the AV movement in the driving simulation. The CNN 

part extracts the features that use transfer learning to introduce human prior knowledge, and the 

LSTM part uses temporal information to process the extracted features and incorporates temporal 

dynamics to predict driving decisions. AV also may use an external server with a database 

containing road environment data as an additional source of information. It is acknowledged that 

different driving simulators differ in their functions and their capabilities to access driving-

environment data. Therefore, to make it sufficiently flexible to facilitate replication by other 

researchers who use driving simulators, the algorithm has been designed and demonstrated using 

only image data of the driving environment as input because roadway image data are easily and 

readily accessible from the screen of any driving simulator. The proposed algorithm was tested 

using The Open Racing Car Simulator (TORCS) test track platform and was found to be able to 

mimic human driving decisions with a high degree of accuracy. 

The objective of this part of the dissertation was to develop, for self-driving simulation 

purposes, an algorithm that directly observes and characterizes the AV’s driving environment and 

controls the AV movement in the driving simulation. First, the various ways for classifying vehicle 

simulation are presented. Next, the methodology is explained, including the self-driving 
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computational model that involves transfer of prior knowledge and the incorporation of temporal 

information. Then, the implementation of the computational model is presented, including the 

collection and balancing of the training data, the results, and how the developed algorithm was 

validated. Finally, its contribution in the context of AV simulation and avenues for possible future 

work in this domain are discussed. 

5.2 Classes of Computer Simulation 

Simulation refers to the abstraction of a system so that it is represented by a replica that is more 

amenable to study (Labi, 2014). Simulation is particularly useful when the system is too large to 

be studied; it is too expensive or impractical to create scenarios; the real-life system is inaccessible; 

it is dangerous, unethical, or unacceptable to use the real-life system; or the real-life system does 

not yet exist (Sokolowski and Banks, 2009). In such situations, simulation is useful for acquiring 

insights and describing or predicting behavior over time when the real-life system is subjected to 

different internal or external conditions or different courses of action.  

Simulation is used in a wide range of disciplines including the military, where it is too 

dangerous or costly for trainees to interact with the real world (Aldrich, 2004). It is used in 

engineering, medicine, and the social sciences for the tasks of testing, training and education, 

monitoring and optimizing the performance of systems, and predicting future system failure or 

diagnosing the reasons for failure (Hartman, 1996; Adeli and Jiang, 2008; Adeli and Kim, 2009). 

For example, in driving simulation, researchers study the naturalistic behaviors of drivers by 

providing them with a lifelike experience of the driving environment with features related to the 

road width, alignment, friction, traffic conditions, and weather conditions (Kandhai et al., 2011). 

Driving simulators mimic the internal and external conditions of a real vehicle in a virtual driving 

environment as the user (driver) undergoes a realistic experience of sitting in a seemingly real 

vehicle and driving along a seemingly real roadway. 

In the next three subsections, a number of simulation classifications are described as a 

prelude to a discussion of the context in which this part of the dissertation makes a contribution to 

existing knowledge or practice.  
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5.2.1 Simulation Classification by Simulation Player and Environment 

The Modeling and Simulation Coordination Office of the U.S. Department of Defense (DOD) 

categorizes training simulation programs by whether the players or the environment are being 

simulated (Table 5.1). In Live simulation (RVPE I), both the players and the environment are real 

as is the case for AVs operating on test tracks or in-service roads. In Virtual Type 1 simulation 

(RVPE II), the players are real while the environment is simulated; in Virtual Type 2 simulation 

(RVPE III), the players are simulated but the environment is real; and in Constructive simulation 

(RVPE IV), both the players and the environment are simulated. Most driving simulators belong 

to the constructive RVPE category of simulation, where both the player (vehicle) and the (driving) 

environment are simulated. 

 

Table 5.1 Real-virtual player-environment (RVPE) or DOD classification of simulation (Labi, 
2014) 

Category of Training Simulation  Simulation Entity 

Players Environment 
Live (RVPE I) Real Real 
Virtual Type 1 (RVPE II) Real Simulated 
Virtual Type 2 (RVPE III) Simulated Real 

Constructive (RVPE IV) Simulated Simulated 
 

5.2.2 Simulation Classification by Source of Information and Source of Vehicle Control (SIVC) 

AV simulation also can be categorized based on the source of the information they use to 

characterize their driving environment and the source of the vehicle control (Table 5.2). The 

driving environment refers to the road geometry and other roadway characteristics and the 

locations, dimensions, and other features of the roadside and traffic. These features include lane 

widths, curves, shoulder locations, traffic signs, traffic signals, and lane markings, as well as 

visibility, other vehicles, bicycles, and pedestrians. 
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Table 5.2 Simulation classification by source of information and source of the AV control 

 Source of information 

External server with 
database on road 
environment 

AV’s sensors (video, 
lidar, GPS) 

Source of 

the AV 

control 

Entity external to 
the AV*1 

SIVC I SIVC II 

The AV*2 SIVC III SIVC IV 

*1 Driverless but not autonomous. *2 Autonomous 

 

The sources of information about the driving environment may include:  

- A central office or server that provides the AV with stored and/or real-time information on the 

driving environment. 

- Sensing technology (camera, lidar, sensors, laser-based technology, etc.) that is used by the 

AV to characterize its immediate driving environment in real time. 

The sources of vehicle control may include:  

- A person or computer in a central office that controls the AV’s driving. This is the situation 

that is expected for shared autonomous taxis (a concept that is still hypothetical) where the 

environment is completely connected in terms of vehicle-to-everything (V2X) communication.  

- The AV controls the driving by itself, through interpretation of data it receives from the central 

office or the AV’s onboard sensors using AI tools that include machine learning, deep learning, 

fuzzy control, etc. 

This part of the dissertation posits that the source of vehicle control, as explained above, is the 

basis upon which a simulation of autonomous driving can be considered a more representative 

simulation or otherwise. Therefore, a more representative simulation of autonomous driving is 

defined herein as a simulation where the source of vehicle control is the AV itself (i.e., SIVC III 

and IV). In contrast, in simulation where the source of vehicle control is some entity external to 

the vehicle (i.e., SIVC I and II) as can be expected in the case of driverless taxis (Bischoff and 

Maciejewski, 2016; Greenblatt and Saxena, 2015), then the simulation cannot really be considered 

an adequate simulation of AV driving as defined in this dissertation. 

In other words, simulation of autonomous driving is only a good representative of actual 

AV driving when it mimics real-life autonomous driving where the driving task is carried out by 

real-time on-site collection and interpretation of data on the immediate driving environment. For 
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example, from the control perspective, a real-life autonomous vehicle, such as Tesla’s partial 

autopilot system (Dikmen and Burns, 2018), can be categorized as SIVC IV, or possibly, a 

combination of SIVC III and IV.  

Regarding the source of information, most AVs use their sensors to obtain information 

regarding the driving environment (e.g., the distance to roadside infrastructure, traffic signals, lane 

markings, other vehicles, pedestrians, etc.). In the case of connected vehicles, the information 

regarding the driving environment is provided fully or partially (SIVC III in Table 5.2) through 

vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), or vehicle-to-everything (V2X) 

communication. Regarding the source of vehicle control, a more representative autonomous 

driving (not route planning) is realized by the AV itself through its AI system. 

In contrast, the autonomous driving systems that are represented in the driving simulators 

at most universities and research institutions may not adequately represent simulation of 

autonomous driving as defined in this dissertation. Such simulations are similar to video games, 

where both the players and their environment are programmed together in the same computer code; 

in these simulations, the AV does not need to obtain driving-environment information through its 

sensors because it obtains all such information directly through the same computer code. In such 

cases, the simulated autonomous driving is realized not by the AV itself (through its AI) but by 

entities external to the vehicle, such as preprogrammed rules (e.g., pre-specified or pre-randomized 

paths) or pre-defined functions (e.g., equations that take into account the stored data in the 

computer program regarding the driving environment, such as lane widths, number of lanes, 

distance to nearest pedestrian, traffic signal, etc.).  

The concept of a more representative simulation of autonomous driving is indeed essential.  

As discussed previously, one of the benefits of simulating a system is that the simulation does not 

pose a safety hazard to the public. Through driving simulations, researchers can investigate the 

AV user’s reaction time to hazards and warnings, user behavior, etc., in a safe setting that does not 

cause any risk to users. However, the current autonomous driving simulators may not be 

adequately mimicking the autonomy of real-life AVs and may not be yielding outcomes that 

adequately predict the expected impacts of prospective real-life AV operations. 

In summary, the DOD or RVPE simulation classification suggests that, currently, most 

driving simulators belong to the constructive category of simulation, where both the player 

(vehicle) and the driving environment are simulated. From another perspective (and therefore, 
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within each of the DOD classification categories), AV simulations can be further categorized based 

on the source of information they use to characterize their environment (in-vehicle vs. external or 

AV sensors) and the source of vehicle control (an external entity or the AV itself). Further, most 

driving simulators belong to the category where the source of vehicle control is some entity 

external to the vehicle rather than the AV itself. Such simulations cannot be considered as 

adequately representing simulation of autonomy. 

5.2.3 Simulation Classification by Level of Driving Decision (LODD) 

It is also possible to categorize the simulation of driving operations by the level of the driving 

decisions that the AV algorithms are permitted or designed to make: 

 Strategic: high-level driving decisions/tasks, such as route choice (LODD I) 

 Tactical: mid-level driving decisions/tasks, such as whether to overtake (LODD II) 

 Operational: low-level real-time driving decisions/tasks (LODD III) 

 

Classifying simulation by the level of driving decision is an important consideration in 

categorizing next-generation vehicles. For example, regarding shared transportation, a central 

office makes strategic decisions or assigns tasks (route choices), while operational tasks (e.g., 

accelerating, stopping, braking to avoid a pedestrian) are made by the vehicle. In the coming era 

of vehicles that are autonomous, connected, and shared, simulations of the operations of these 

vehicles will need to fully recognize and duly account for the level of decision-making assigned 

to the vehicle and to other entities.   

The next section presents an AV driving simulation computational model that is based on 

the constructive category of simulation and the category where the source of control for the AV is 

the vehicle itself, uses sensors to characterize its driving environment, and undertakes operational 

tasks and decisions (similar to level 2-3 of autonomy). 

5.3 Methodology 

5.3.1 A Proposed Self-driving Computational Model 

The aim of the proposed self-driving computational model is to realize the SIVC IV and LODD 

III class of simulation for AV operational decisions, where the AV uses sensors (video, lidar, GPS) 
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as the source of information and controls itself through its AI algorithm. This class of simulation 

is the most similar to a real-life scenario, and, in this dissertation, is realized by applying the 

proposed computational model on simulated real-life driving data from The Open Racing Car 

Simulator (TORCS) (Wymann, 2015). A successful computational model for AV simulation is 

one that can drive the host car in a way that mimics closely manually-operated human driving 

behavior within a simulated environment, such as TORCS. TORCS was chosen in this dissertation 

to demonstrate the framework because it is an open source software and therefore is readily 

available to researchers seeking to replicate this dissertation’s methodology. Researchers may 

choose software and games such as Aimsun, PreScan, etc. depending on their needs. For example, 

Martinez et al., 2017 developed and tested 3D-CNN for autonomous driving in Grand Theft Auto 

V, one of the most popular commercially available games. 

The motivation for focusing on building the self-driving computational model for SIVC IV 

simulation instead of a combination of SIVC III and IV was that it was sought to make the proposed 

computational model flexible enough to be replicated by universities and research institutes that 

own driving simulators. This goal is important because while different driving simulators have 

different capabilities and functions and differ in their ability to access information regarding the 

driving environment, they all have the same ability to generate images of the driving environment 

on their driving simulator screens.  

Figure 5.1 illustrates the proposed computational model. The input is a real-time frame 

simulated by TORCS. This input is fed into and processed by the deep CNN-LSTM to generate 

the corresponding output for the frame. The output refers to the driving decisions regarding the 

use of the accelerator, brake, and wheel controls for this input frame. The decisions are used to 

drive the host car in the TORCS environment. The entire procedure then moves to the next frame 

and is repeated. This is a real-time process. In this dissertation, 10 frames were simulated and 

processed by the computational model per second. Table 5.3 presents the nine classes of driving 

decisions used in this dissertation.  
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Figure 5.1 General self-driving computational model for the AV 

 

Table 5.3 Classes of driving decisions 

Driving decision class Output labels 

Accelerate 1 
Brake 2 
Turn Left 3 
Turn Right 4 

Turn Left + Accelerate 5 
Turn Left + Brake 6 
Turn Right + Accelerate 7 
Turn Right + Brake 8 

No wheel, accelerator and brake control 9 

 

5.3.2 Deep CNN-LSTM Algorithm 

This section explains the proposed deep CNN-LSTM algorithm in detail. The main components 

in the proposed algorithm include data processing, a convolutional neural network (CNN) for 

feature extraction, a (LSTM network (Hochreiter et al., 1997) that processes the extracted features 

and incorporates temporal dynamics to predict driving decisions, and a fully connected 
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classification layer. Figure 5.2 shows the architecture of the proposed deep CNN-LSTM algorithm 

used in the computational model. 

 

 

Figure 5.2 General architecture of the deep CNN-LSTM algorithm used in the proposed 
computational model 

5.3.2.1 Data Processing 

A common problem in real-life applications of deep learning-based classifiers is that some of the 

classes (i.e., driving decisions) have a significantly higher number of examples in the training set 

compared to other classes. This difference is referred to as class imbalance. There are numerous 

examples of this phenomenon in other fields, including medical diagnosis and fraud detection, 

where this issue is highly significant because the frequency of one class (e.g., cancer patients) can 

be 1,000 times lower than that of other classes (e.g., healthy patients). It has been established that 

class imbalance can have significant detrimental effects on the training of a neural network (Buda, 

2018). A high disparity between the frequencies of majority and minority classes as well as 

minority classes with very low frequencies have a negative effect on the performance of the 
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resulting classifiers. Furthermore, the effect of imbalanced data is significantly stronger for tasks 

with higher complexity. 

To solve this problem, the most straightforward and common approach is to use sampling 

methods. These methods operate on the data itself (rather than the neural network) to increase its 

balance. The concept of random majority under-sampling, which describes the removal of a 

random portion of examples from the majority classes, is widely adopted and has been proven to 

work well (Japkowicz, 2002). Under-sampling results in having the same number of examples in 

each class. Examples are removed randomly from majority classes until all the classes have the 

same number of observations (referred to as “examples” in the literature).  

Normalizing the input data as well as the propagated data between the network layers will 

smoothen and stabilize the training process of deep neural networks (Ioffe and Szegedy, 2015; Lin 

et al., 2017). The data are normalized using the following equation: 

 

𝑥𝑖𝑝
′ =

𝑥𝑖𝑝−𝑚𝑒𝑎𝑛(𝑥𝑖𝑝)

𝑠𝑡𝑑(𝑥𝑖𝑝)
        ∀𝑖, 𝑝   

 

where: 𝑥𝑖𝑝
′ is the normalized input value of observation i and feature p, and 𝑥𝑖𝑝 is the original 

value of observation i and feature p. 

In addition, horizontal flipping augmentation (He et al., 2018) is performed on the training 

data. All the frames are flipped horizontally to obtain their mirror frames. This helps to smoothen 

the algorithm learn turning decisions for driving on both directions of the tracks and to make the 

AV self-driving system more robust. 

5.3.2.2 Deep Neural Network 

Deep neural networks (or deep learning) is a burgeoning area of AI that allows computational 

models composed of multiple processing layers to learn representations of data with multiple levels 

of abstraction (Adeli, 2001; Hinton et al., 2006; LeCun, 2015). Since 2006, deep learning methods 

have been applied widely in various fields such as autonomous driving, natural language 

processing, computer vision, and drug discovery to enhance the state of the art and the state of the 

practice in these fields. Specifically, deep convolutional nets have brought about breakthroughs in 

processing images, video, speech, and audio (LeCun, 2015).  
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In the civil and infrastructure engineering domain, researchers have adopted this technique 

to detect cracks in infrastructure (Jiang and Adeli, 2007; Zhang et al., 2018), manage and 

automatize construction projects (Adeli, 2001; Ghosh-Dastidar and Adeli, 2003; Luo et al., 2018; 

Fang et al., 2018), investigate highway safety (Chang, 2005; Pande and Abdel-Aty, 2008), analyze 

traffic and transportation networks (Yao et al., 2017; Nabian and Meidani, 2018), predict 

earthquakes (Panakkat and Adeli, 2009; Less and Adeli, 2010), and evaluate structural reliability 

(Dai and Cao, 2017).  

5.3.2.3 Transferring Prior Knowledge with Classic CNN 

Besides the applications of CNN in the domain of civil engineering, one of the most popular tasks 

is object recognition using an Imagenet dataset. Imagenet contains approximately 1.2 million 

images of 1,000 different classes (Krizhevsky et al., 2012). To date, several well-known network 

structures in the literature have been proven to be efficient and effective in recognizing a large 

variety of objects to a high degree of accuracy.  

Deep CNN, which has made considerable progress in recent years, allows researchers to 

tackle complex problems efficiently and effectively. However, the amount of training data and 

training time required for deep learning algorithms typically far exceed those for traditional 

machine learning algorithms. Transfer learning has attracted a lot of attention in the past decade 

due to its efficiency and effectiveness in solving complicated problems and saving computational 

resources. The concept of transfer learning is derived from the human learning process, namely, 

humans typically do not learn everything from scratch. They normally leverage and transfer their 

knowledge (particularly when the knowledge has been proven to be useful) from previously-learnt 

domains to newer domains. In this dissertation, the idea of transfer learning is adopted to test if 

prior knowledge learned from image recognition tasks are transferable to learning driving policy. 

Figure 5.3 shows an example of feature extraction with Inception network. Initially, the 

data on the image (the road environment that faces the AV), is processed and then fed into the 

network. In this process, information (knowledge) such as edge, shape, and other high-level 

features, are extracted and mapped to feature vectors as the output of the network. To do this, the 

last three layers (the dropout, fully connected, and softmax layers) need to be removed from the 

original Inception network.  
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The intermediate features learned were found to have universal expressiveness across 

multiple domains, which motivated this dissertation to leverage the power of pre-trained networks 

and apply transfer learning from object classification to learning driving policy. Two of the most 

popular models, the Inception network (Szegedy et al., 2015) and the ResNet-50 network (He et 

al., 2016), along with a baseline CNN, were compared in this dissertation.  

The Inception network is a widely adopted image classification model built by the Google 

Brain team. This network has been shown to attain greater than 78.1% accuracy on the ImageNet 

dataset and achieved 21.2% top 1 and 5.6% top 5 error rates (i.e., the percentage of test examples 

for which the correct class was not in the top 1 and top 5 predicted classes, respectively) for single -

frame evaluation with a computational cost of 5 billion multiply-adds per inference and using less 

than 25 million parameters. In one of the most recent applications of the Inception v3 network 

structure, a research team from New York University trained the network to classify different types 

of lung cancer (Coudray et al., 2018). 

ResNet is a widely used deep convolutional neural network framework for image 

recognition invented by He et al. (Microsoft Research) in 2015. This model won first place in the 

ILSVRC 2015 classification competition with a top-5 error rate of 3.57% and won first place in 

ILSVRC and COCO 2015 competition in ImageNet Detection, ImageNet localization, COCO 

detection, and COCO segmentation. In this dissertation, ResNet-50, rather than other versions of 

ResNet, was adopted in transfer learning to reduce the run time of the model and allowed the 

framework to be replicated using a personal computer. 
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Figure 5.3 Example of feature extraction process using inception network 
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5.3.2.4 Incorporating Temporal Information with LSTM 

The autonomous driving decision is not fully independent at each time step. For example, in 

making driving decisions, human drivers typically consider information in the past and previous 

actions. Similarly, an autonomous driving system ideally does not rely purely on the information 

at the current time step but also incorporate information from the past. After extracting features 

from the CNN, these features are processed by a LSTM network which takes information of the 

previous driving environment into account. The LSTM network processes w feature vectors in a 

sliding window, which indicates that the driving decision at a time step is predicted with w of past 

observations (𝑿𝒕−𝒘+𝟏,𝑿𝒕−𝒘+𝟐,… ,𝑿𝒕). The size of the sliding window w controls the length of 

memory used to make the current driving decision. In general, a smaller w leads to shorter memory, 

which tends to react faster in terms of driving decision-making but learns less from the past 

information. On the other hand, a larger w generally corresponds with smoother driving as it 

processes more information from the past. However, it requires more time to train and make 

driving decisions. 

The output of the LSTM is then fed into a fully connected network with the softmax layer 

to predict driving decisions. The softmax layer (Friedman and Rob, 2010) serves as a 

generalization of the logistic regression for multi-class classification. When the class label y has 

more than two values, i.e., 𝑦 ∈ {1,2,3, … , c}, for input data x, the probabilities that x belongs to 

each class is: 

 

h𝜃(𝐱) =

[
 
 
 
 
 
𝑝(𝑦(𝑖) = 1|𝒙;𝜽)
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⋮
⋮
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Where 𝜃1 , 𝜃2, … 𝜃𝑐  are the parameters for the softmax layer. After the training is complete, the 

probabilities that input data x belong to label j can be computed using the equation above, and the 

class label assigned to this input is: 

y = 𝑗 = argmax
𝑗

𝑒
𝜽𝑗
𝑇𝒙

∑ 𝑒
𝜽𝑗
𝑇𝒙𝑐

𝑗=1
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5.3.2.5 Recovering from Possible Data Mismatch  

This work involves making a sequence of decisions given a sequence of observations over time. 

The learning approach is to train a classifier to predict a human driver’s behavior based on the 

training data of the observations (input) and the decisions (output) performed by the person. 

However, since the classifier’s current prediction affects future input observations during 

execution of the learned policy, which seriously violates the independent and identically 

distributed assumption made by most statistical learning approaches and leads to poor performance 

as a result. This is intuitive because as soon as the classifier makes a mistake, it may encounter 

completely different observations than those in the training set, leading to a compounding of errors. 

In order to make the test trajectory distribution the same as the distribution learned from 

the driving expert’s demonstration, the initial policy trained by the learning approach described 

earlier is fine-tuned, as follows: 

 

Initialize D0 and P0 to be the initial training set and the initial policy. Then, perform iteratively the 

following steps: 

For each training track: 

For i = 1 to N: 

1. Train a neural network to output a policy P using data D (input image data Dimage + 

driving maneuver data Dlabel) generated by a human driver. 

2. Run the policy to generate more observation Dimage+ and execute the decision Yp using 

current policy P. 

3. Manually label the observation Dimage+ and generate Dlabel+.  

If Dlabel+ ≠ Dp (incorrect decision): 

D′ = {Dimage+, Dlabel+}. 

4. Aggregate Di= D′ ∪ Di−1.   

 

At the end of each episode, the model is saved back to the previous classifier to ensure lifelong 

and continual learning. To improve sample efficiency, only the incorrect decisions are saved. In 

this case, the method iteratively bridges the gap between the testing trajectory distribution and that 
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learned during the training by having a human supervise the observation generated by the current 

policy. This iterative approach thus solves the distribution mismatch problem.  

5.4 Implementing the Computational Model 

This section of the dissertation demonstrates the implementation of the proposed self-driving 

simulation computational model. First, the data collection and balancing process are described. 

Second, the process of training the deep transfer learning algorithm is introduced and a number of 

parameters that affected the training are discussed. Next, the results of this demonstration are 

presented using the curves generated from the training process. Finally, the effectiveness of the 

method for the implementation demonstration is verified. 

5.4.1 Data 

5.4.1.1 Collecting Training Data 

The experimental datasets were collected by manually driving the host car on four tracks (shown 

in Figure 5.4) in TORCS to serve as a benchmark for the training. A Python program was used to 

record the screen on a frame-by-frame basis via screenshots and each frame was matched to the 

corresponding driving decision (Table 5.3) by recording the keyboard action. The screenshots 

taken while driving the host car were resized to 160×90 resolution. The frame rate was set to 10 

frames per second. The host car was driven by a human player on each track multiple times, and 

extreme driving cases (e.g., running off the road or travelling at dangerous speeds while turning) 

were intentionally created to collect data that would make the self-driving system more robust. A 

total of 137,500 frames were collected. 
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Figure 5.4 The TORCS tracks on which training data were collected 

 

5.4.1.2 Balancing the Data 

For the dataset initially collected (without balancing), the frames in the “accelerate” class were the 

majority (nearly 70% of the data) for the following two reasons. First, as shown in Figure 5.4, the 

host car was driving on a relatively straight line for these tracks most of the time; and second, due 

to the fact that there was no granular control for the accelerator (i.e., the keyboard binary control 

could either input "full accelerate" or "no accelerate"), the host car needed to "accelerate" to keep 

moving forward. However, feeding the model directly with this unbalanced dataset may jeopardize 

the training process because the deep neural network strives to maximize predictive accuracy 

during the training process. Therefore, it will quickly learn to predict only “accelerate” (or “go 

straight”) to obtain the 70% accuracy without taking much effort to really learn how to drive 

properly. This certainly is not the outcome one would seek from a self-driving system, and the 

random majority under-sampling method was applied to solve this issue. A significant 

disadvantage of this method is that it discards a portion of the data available. However, in this 

dissertation, the driving data were easily obtained in the simulated TORCS environment. Therefore, 
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discarding very similar examples of majority class data (e.g., driving on a straight track without 

turning) is not considered wasteful. In addition, additional data were collected specifically for 

minority classes, such as the host car approaching or negotiating a curve.  After balancing the data, 

42,633 frames were used to develop the network. 

5.4.2 Settings of the CNN-LSTM network structure 

Five alternative networks were developed and their corresponding performance levels were 

compared: 

1) Baseline CNN+FCN: The baseline CNN had six convolutional layers. The kernel size for the 

first 3 layers was 4 × 4, and for the last three layers was 2 × 2. The dimension of the six layers 

were 32, 32, 48, 48, 64, and 64. The activation function used was ReLu (Nair and Hinton, 

2010). Batch normalization and dropout layers were added after each convolutional layer. The 

CNN was followed by a fully connected network (FCN) with a softmax layer to predict the 

driving decisions. 

2) Inception+FCN: This network used the Inception network to extract features. The extracted 

feature vectors were then fed into a FCN with a softmax layer to predict the driving decisions.  

3) ResNet-50+FCN: This network used the ResNet-50 network to extract features. The extracted 

feature vectors were then fed into a FCN with a softmax layer to predict the driving decisions.  

4) Inception+LSTM+FCN: This network used the Inception network to extract features. The 

extracted feature vectors were then fed into a LSTM network. The LSTM, which had 64 hidden 

units and sliding window size w = 4 produced the best performance on the dataset. The LSTM 

was followed by a FCN with a softmax layer to predict the driving decisions. 

5) ResNet-50+LSTM+FCN: This network used the ResNet-50 network to extract features. The 

extracted feature vectors were then fed into a LSTM network. Similar to 4), the LSTM, which 

had 64 hidden units and sliding window size w = 4, produced the best performance on the 

dataset. The LSTM was followed by a FCN with a softmax layer to predict the driving 

decisions. 

5.4.3 Training of the Model Based on the Collected Data 

The training was carried out using TensorFlow on a hardware platform with the following 

specifications: Overclocking 5.0 GHz Intel i9 processor, 32 GB DDR4/2666 MHz memory, and 
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Nvidia GeForce GTX 1080. TensorFlow is an open-source software platform that allows 

computation to be carried out on multiple GPUs or CPUs (Tensorflow, 2016). The platform allows 

users to create large and complex deep neural networks and perform training effectively. The 

parameters used for training the networks are briefly discussed below. 

5.4.3.1 Batch Size 

The batch size was set as 128. The batch size controls the number of samples to be propagated 

through the network at a time. Typically, gradients computed during the training process are more 

accurate for larger batch sizes compared to smaller ones. A smaller batch size requires less memory. 

In addition, the use of small batch sizes has been shown to avoid local minima and improve 

generalization performance and optimization convergence in the training of deep neural networks 

(LeCun et al., 2012; Keskar et al., 2016). 

5.4.3.2 Learning Rate  

The Adam optimization algorithm (Kingma and Ba, 2014) was applied to train the networks. The 

initial learning rate was set as 0.001 with a momentum decay of 0.9. In general, a high learning 

rate may make it difficult for a network to converge, particularly if the network is trained with a 

small batch size. However, a very low learning rate requires many training epochs to achieve 

convergence. 

5.5 Results 

To measure the accuracy of the driving decisions made by the self-driving computational model, 

a validation dataset was constructed, which consisted of the last 10% samples of the data collected 

on each training track (i.e., data collected from a certain part of the track will not be included in 

training). The reason for choosing the last 10% instead of random selected 10% of the data is to 

avoid data leak. For example, if 10% of random selected data is used as validation set, some of the 

validation information will be very similar to the training data, which can lead to low 

generalization ability for the model. The model was trained using an accuracy metric that indicate d 

how close the predicted driving decision was to the real driving decision for each frame. The higher 
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the accuracy, the closer the predicted decision was to the human driver’s decision. Table 5.4 shows 

the training and validation accuracies for the five networks described in Section 5.4.2. 

 

Table 5.4 Comparison of training and validation accuracy across different network structures. 

Network Structure Training Accuracy Validation Accuracy 

Baseline CNN+FCN 80.33% 73.21% 
Inception+FCN 84.19% 79.76% 
ResNet-50+FCN 83.67% 81.04% 

Inception+LSTM+FCN 86.94% 85.67% 
ResNet-50+LSTM+FCN 87.12% 84.01% 

 

During the data collection process, it was observed that human drivers may make some driving 

decisions randomly. For example, for a person who drives the host car twice on the same track, it 

is impossible for the wheel, accelerator, and brake decisions to be identical in both driving sessions. 

Therefore, it is impossible to reach 100% accuracy, even when training data are used. 

Comparing Inception+FCN and ResNet-50+FCN with Baseline CNN+FCN, it was 

observed that by using features extracted from a pretrained network with Imagenet data, the 

network performance increased significantly compared to training a CNN from scratch. This result 

indicates that prior information learned from image recognition task is transferable to learning 

driving policy.  

With LSTM, the accuracies for Inception and ResNet networks were further enhanced to 

85.67% and 84.01%, respectively, which indicates that incorporating temporal information with 

recurrent neural networks helps improve driving decisions as human drivers also use information 

from the past while driving. 

The final selected networks were Inception+LSTM+FCN and ResNet-50+LSTM+FCN. 

They were evaluated in the TORCS driving environment. When the proposed self-driving models 

were used to operate a vehicle on the TORCS track, the only information it accessed was the front-

facing image fed to them. Within the simulation, the model outputs can be visualized and used as 

input to control the keyboard through a Python program that operates the vehicle. The self-driving 

model was first tested on the four tracks where the training data were collected (Figure 5.4). It was 

observed that the models drove the host car on these four training tracks satisfactorily without any 

collisions or dangerous driving situations. Then, the models were tested on four “new” tracks, that 
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is, tracks that were not used in the model training (Figure 5.5). Again, it was observed that the 

models drove the host car satisfactorily without collisions or near collisions. In some scenarios 

with sharp turns, it was observed that the host car sometimes slightly overshot its target path at 

first while turning but then quickly recovered to the appropriate path. In general, the computational 

models were shown to be capable of producing a smooth driving experience. 

 

 

 

 

 

Figure 5.5 TORCS tracks used for testing the self-driving model 
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CHAPTER 6. SUMMARY AND CONCLUSIONS 

6.1 Introduction 

This chapter presents the conclusions and key findings of the dissertation with respect to highway 

safety in both traditional and emerging operating environments are discussed. In addition, this 

chapter identifies limitations and some possible avenues for the future work. 

6.2 The Traditional Operating Environment 

6.2.1 Impacts of Road-Surface Condition on Safety 

Chapter 3.2 investigated the impacts of pavement condition and other factors including geometric 

features and traffic characteristics on rural highway safety across different road surface conditions. 

This investigation was conducted for three levels of crash severity – fatal, injury, and no-injury. 

The data represented hundreds of in-service pavement sections, and the level of highway safety at 

each section was expressed in terms of the number of each crash type along a given section each 

year within the specified analysis period. Crash data are inherently multivariate in nature; therefore, 

modeling each severity level separately, while not accounting for the likely correlation between 

the crash counts across the crash severity levels, can be expected to be problematic. Using a 

univariate modeling approach for the correlated crash counts can lead to less precise estimates for 

the risk factors associated with different severity levels. In this regard, for joint modeling of crash 

frequency, a multivariate modeling approach was used for the analysis. In order to account for the 

unobserved heterogeneity and correlation among the three levels of crash severity, MRPNB 

models were estimated for each of the three subclasses of rural highways (Interstates, State roads 

and U.S. roads) as these road classes generally differ from each other in terms of geometric 

standards, pavement quality, and traffic volume.  

The results were consistent with engineering intuition and also with a-priori indications 

from past research. A number of traffic and road geometric covariates were found to significant ly 

influence the number of crashes, at various severity levels, and across the various pavement surface 

conditions of rural highways. For roads with pavements in poor condition, fewer road geometry 
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factors were found to be significant compared to those with pavements in fair-excellent condition. 

The results generally supported the hypothesis that crash propensity generally decreases as 

pavement condition improves from poor (high IRI) to good condition (low IRI). However, this 

part of the dissertation also established that for pavements in poor condition, the effect of further 

reductions or increases in condition can have a dichotomous effect on the number of crashes.  

In addition, the results show that for most crash types and most pavement condition 

categories, the impact of pavement condition on rural road safety is generally similar in direction 

but not in magnitude. In certain cases, the direction of influence was found to be opposite. 

Specifically, the results indicate that state roads with pavements in poor condition have a greater 

frequency of injury crashes compared to non-state roads in similar condition. In addition, two-lane 

highways with pavements in poor condition have a lower frequency of no-injury crashes compared 

to highways with four or six lanes. For roads with pavements in excellent condition, more lanes 

are associated with a higher frequency of injury and no-injury crashes.  

The models representing each pavement condition suggest that the safety effects of 

pavement condition differ across various levels of pavement condition; with the exception of the 

poor pavement condition model, the models suggest that a fixed-effects parameter is appropriate 

for the pavement condition variable (IRI). In the poor pavement condition model, the results 

indicate that the pavement condition variable has a normally distributed random parameter and 

therefore leads to an interpretation that reflects both opposing effects (i.e., increased pavement 

condition within that condition range causes a higher frequency of crashes in certain situations and 

a lower frequency in other situations). The observation of the latter effect is not only reflective of 

the phenomenon of risk compensation but also reinforces the notion that driver behavior in 

response to operating conditions can be significantly heterogeneous.  

For each crash severity level, this part of the dissertation confirmed the results of recent 

studies that the effect of pavement condition on safety differs across the different pavement 

conditions. For no-injury and injury crashes, it was determined that the higher the road functional 

class (from state roads to interstates), the greater the sensitivity of safety to changes in the 

pavement condition; however, this dissertation observed the opposite trend for fatal crashes.  

Due to the demonstrated impact of pavement condition on highway safety, an agency’s 

pavement preservation program can provide an excellent opportunity to substantially reduce the 

number of roadway crashes. According to Zimmerman and Larson (2005) and Mahoney et al.  
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(2006), by incorporating safety measures into its pavement management systems as well as its 

long-range plans, an agency can utilize a systematic approach for identifying and prioritizing 

pavement preservation needs. The conceptual frameworks in these two studies argued for the need 

to incorporate safety performance in long-range pavement planning and management (Lamptey et 

al., 2005; Lamptey et al., 2010; Murillo-Hoyos et al., 2015; Anastasopoulos et al., 2016). The 

results of this part of the dissertation could provide input toward such applications. Furthermore, 

the developed models can help highway engineers quantify not only the safety benefits of rural 

road resurfacing projects but also the safety consequences of worsening road surface conditions 

arising from maintenance that is denied or delayed.   

There is a wealth of knowledge to be gained by continuing the research in this area. First, 

future work could investigate a greater range of possibilities of interactions between the variables. 

Second, future work could acquire and incorporate more data on other crash factors besides the 

engineering factors. Third, the work could be extended to urban highways where a greater number 

of factors exist that can influence highway crashes. Finally, future work could extend the analysis 

presented in this part of the dissertation to account for both spatial and temporal heterogeneity 

within the multivariate random parameters framework.  

6.2.2 Optimizing Space Allocation across Highway Cross Sectional Elements 

Chapter 3.3 developed a framework for determining the optimal allocation of shoulder and lane 

widths on two-lane rural highways. The rural road functional classes considered are: major 

collectors, minor arterials, and principal arterials. For each functional class, first, a set of crash 

prediction models was used to estimate the expected number of fatal+injury and PDO crashes, 

based upon predefined geometric and operating conditions. These crash results were combined 

with the cost of constructing and maintaining the lane and shoulder for different combinations of 

lane and shoulder width under a given total roadway width constraint. Then the agency and user 

costs were assigned relative weights to achieve the optimal distribution of total roadway width 

between the lane and the shoulder such that total agency costs and user safety costs over life cycle 

were minimized using nonlinear programming. 

For minor arterials and major collectors, the resulting shapes of the optimal solutions 

(funnel diagrams) as functions of the relative weight of user cost to agency cost, are similar. For 

high user cost weights, it is observed that the optimum has a shoulder width of zero (the lanes 
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constitute the entire TRW). This is because in the crash prediction models used, wider lanes 

contribute more to crash reduction compared to wider shoulders. For low weights of the user cost, 

it is seen that the optimum has a lane width of 10 ft., and the shoulder takes up the remaining TRW. 

This is because the shoulder construction and maintenance costs are much lower compared to the 

lanes. Between these two extremes of user cost weight, there is a range for the ratio of the weight 

on agency cost divided by user cost, which is specific to the TRW and the road functional class; 

over this range, the optimal width of the lane transitions from its maximum value of TRW/2 to its 

minimum feasible value of 10 ft. Irrespective of the TRW value, these transitions occur at lower 

values of the agency-user cost weight ratio for minor arterials compared to major collectors. 

With regard to principal arterials, the results are somewhat different, with the optimum 

being a lane width of 10 ft. and the rest of the TRW taken up by shoulder. This is because unlike 

the other two functional classes, the principal arterial roads’ crash prediction model for fatal+injury 

crashes places greater premium on wide shoulders than it does on wide lanes, in terms of crash 

reduction. The absolute value of the marginal effects for lane width is small compared to the 

shoulder width; thus the optimization result favors shoulder widening to lane widening. This is 

coupled with the fact that fatal and injury crashes have a much higher unit cost compared to PDO 

crashes. Furthermore, agency costs (of shoulder construction and maintenance) are much lower 

compared to the lanes, and there is no other penalty for very wide lanes or shoulders, for example, 

the models used in this study do not account for the risk compensation that would have indicated 

increasing crashes for very wide lanes or shoulders. Therefore, from both the user and agency 

perspectives, having narrow lanes and shoulders that are as wide as possible is preferable. The 

optimization framework tends to provide results with minimum lane width for principal arterials. 

The sensitivity analysis on the agency cost and user cost ratios given by the optimizat ion 

framework were found to be useful in evaluating existing practice. AASHTO standards generally 

recommend 12 ft. wide lanes for rural highways. The results present the optimal ratio for lane and 

shoulder widths, for different TRWs, different agency-user cost weight ratios, and across different 

road functional classes. The discount rate was also found to have small impacts on optimal lane 

and shoulder width ratio. Generally, an increase of discount rate will favor wider lanes at the 

expense of shoulders. The crash prediction models and case studies are used and presented here 

only for purposes of illustration; they can be replaced by other models to fit for specific conditions.  
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In this dissertation, the consequences of a widened shoulder or lane were measured in terms 

of the agency cost of construction and maintenance, and the user safety benefits (reduced crashes). 

Future studies could examine other cost and benefit types associated with road widening. For 

example, the benefits of lane or shoulder widening could be made to include improvement to 

structural integrity (Wu et al., 2015); this is due not to any increase in pavement thickness but to 

increased protection of the road edges, thus reducing road edge breakoffs that cause lane or 

shoulder drop-offs (defined as the uneven edge or vertical height differential between the paved 

lane and the unpaved shoulder, or the paved shoulder and the surrounding ground (FHWA, 2006). 

Another potential benefit of shoulder widening is its potential use for hard-shoulder running (Ma 

et al., 2016) in times of recurrent or incident-induced congestion. 

There are several potentially restrictive assumptions which were made in this analysis that 

could be addressed in future research. For instance, in the agency life-cycle cost analysis, this study 

assumed that the installation and maintenance costs for paved shoulders are lower than those for 

paved lanes. This would reflect the practice of an agency first paving the travel lanes to a certain 

depth, and then paving the shoulders to a shallower depth in order to reduce overall pavement costs. 

In reality, if the agency were to pave the lanes and shoulders to the same depth using a single pass 

of an HMA paver, then this assumption, and the corresponding construction costs, may need to be 

revised. Also, this study used fixed unit construction and maintenance costs that are independent 

of the added width. In reality, for each mile, the unit cost ($/ft.) is likely to decrease as added width 

increases due to scale economies. In addition, this study used deterministic inputs including agency 

and user costs (safety performance, costs of construction, maintenance, and rehabilitation). Future 

studies could duly consider stochastic values of these inputs. Also, the analysis was demonstrated 

using crash prediction models from a specific state that may not reflect operating and economic 

conditions that exist at other locations. Nonetheless, the framework presented in this dissertation 

is sufficiently flexible for use at locations that have different values of these inputs and models, 

and is also accommodates the effects of risk compensation. 

6.2.3 Efficacy of Machine Learning in Road Safety Analysis: Predicting the Fatality Status of 
Highway Segments 

Chapter 3.4 explored the application of machine learning algorithms to predict highway crash 

fatalities. The goal of the part of the dissertation was to develop machine learning models to predict 

fatal highway segments and to compare these models with zero-inflated and logistic econometric 
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models using precision, recall, and F1 score as performance measures. Both the machine learning 

and econometric models were constructed using engineering factors as inputs. Engineering factors 

were chosen because they are the crash factors that can be manipulated by highway agencies. 

Simply using historical data from fatal highway segments may be considered sufficient in certain 

cases when making predictions for a static network. For systems that are changing (e.g., where 

traffic flow is increasing or decreasing due to regulations and new routes, pavement deterioration 

is occurring, new highways and lanes are being constructed, and so on), machine learning models 

developed in this study are able to make predictions with a high level of confidence. For this part 

of the dissertation, several machine learning models were trained and their performance evaluated. 

In addition, this part of the dissertation proposed the use of precision, recall, and F1 score instead 

of accuracy to select models for predicting fatal highway segments based on the specific needs of 

highway agencies. In general, when agencies are less restrictive with funding and the goal is to 

improve as many potential fatal segments as possible, then a model with high recall is 

recommended. Otherwise, a model with high precision is recommended because high-precision 

models can help agencies be more conservative with their funding through reductions in the 

number of false positive predictions. The F1 score is the harmonic mean of precision and recall 

and is suggested for agencies that prefer greater balance. 

Both the final selected models, SVM with RBF kernel and random forests, exhibit good 

performance in terms of precision (above 0.85 with the testing data), while their recall values are 

relatively low. The results can be considered reasonable from a highway engineering standpoint. 

This is because the features used in the analysis (e.g., highway geometric design, pavement 

condition, and road functional class) are able to determine whether a highway segment is safe or 

dangerous in terms of design (leading to high precision). However, these features are unable to 

identify safe or dangerous highway segments in terms of other factors, such as the presence of 

drunk drivers or bad weather (leading to low recall). In addition, the learning curves for the final 

selected models suggest that there is still potential to further improve the models’ performance if 

additional data are included. For future work, more data (observations and crash conditions) are 

planned to be collected to further improve the efficiency and reliability of fatal crash predictions.  

The proposed machine learning algorithms have been proven to be more efficient in 

identifying fatal highway segments. This performance can help provide meaningful feedback for 

highway operations: for segments that are predicted by high-precision machine learning models to 
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be fatal, a highway agency can further investigate these segments through roadway audits as a first 

step toward prescribing a countermeasure.  

It is important to note that driving behaviors, weather conditions, regulations, culture, and 

other factors vary across regions, and therefore the modeling results of a certain area may not be 

applicable to other areas. As such, in order to replicate the analysis, it is recommended that the 

requisite design and operational data pertaining to any future study area be collected and analyzed 

using the methodology presented in this part of the dissertation. In addition, future study may also 

investigate other data sources including the second Strategic Highway Research Program (SHRP 

2) Safety Data, which is administered by the Transportation Research Board of the National 

Academies and includes naturalistic driving data and provides information regarding vehicle speed, 

acceleration and braking, lane position, near-crashes, and so on. 

6.3 The Emerging Operating Environment 

6.3.1 Contributions and Concluding Remarks 

In the operating environment, an era of AV, the traditional analysis of roadway safety factors may 

become less and less important. Safety factors that significantly affect highway safety in the 

traditional operating environment may not be significant in the future. Due to the potential changes 

in safety factors and the resulting uncertainty, it is important to carry out field testing on AVs to 

ensure their safety performance, particularly in the current era where recent AV crashes have 

somewhat eroded public trust and confidence in AVs. An impediment to field testing, however, is 

the inability of test tracks to fully and adequately replicate the real-world driving environment. 

This part of the dissertation therefore proposes a simulation methodology to facilitate reliable 

testing of AVs to ascertain their safety performance and other prospective benefits. As explained 

earlier in this part of the dissertation, existing driving simulators belong to the constructive 

category of simulation (where both the vehicle and the driving environment are simulated) and the 

category where the AV does not independently and externally characterize the driving 

environment. That is, the AV operation is based on commands external to the vehicle already 

embedded in the code for the driving environment. Such simulation, where the source of vehicle 

control is some entity external to the vehicle (i.e., SIVC I and II in Table 5.2), the simulation may 

not be considered as an adequate representation of AV driving as defined in this part of the 
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dissertation. In an earlier section, this part of the dissertation argued that a more representative 

simulation of autonomous driving refers to a simulation where the source of vehicle control is the 

AV itself (i.e., SIVC III and IV in Table 5.2).  

SIVC IV, where the AV uses sensors (video, lidar, GPS) as the source of information and 

controls itself (through its AI system), is the category that most closely resembles a real-life 

situation. Category SIVC III, where the AV uses an external server with a road environment 

database as the source of information and controls itself, is also similar to a real-life scenario in 

terms of connected and autonomous vehicles (CAVs); however, this scenario is not the focus of 

this part of the dissertation. In the future, as more data become available (e.g., data that mimic 

V2V, V2I, V2X communication), the data can easily be integrated into the proposed model to 

enhance it further. 

To address the simulation shortfalls associated with traditional simulation (SIVC I and II), 

this part of the dissertation proposes a self-driving computational model that enables SIVC IV 

simulation. The dissertation proposes a deep Convolutional Neural Network – Long Short-Term 

Memory (CNN-LSTM) algorithm. This algorithm observes and characterizes the AV’s driving 

environment, and controls the AV movement in the driving simulation. The CNN part extracts 

features that use transfer learning to introduce human prior knowledge, and the LSTM part uses 

temporal information to process the extracted features, and incorporates temporal dynamics to 

make driving decisions. The dissertation demonstrated the developed self-driving computational 

model using only image data of the driving environment as input. The proposed model was tested 

using TORCS and exhibited an ability to predict human-like driving decisions reliably. The AV 

may also use an external server with a database containing road environment data such as a GPS 

as an additional source of information on the roadway.  

The developed approach can be considered flexible enough to be adopted or replicated by 

universities and research institutes that have their own simulators. This is motivated by the fact 

that while different driving simulators have different functions and different capabilities to access 

driving-environment data, every simulator has access to image data on its screen. Other types of 

data (e.g., data that mimic V2V, V2I and V2X communication, etc.) can easily be integrated into 

the proposed computational model to realize SIVC III simulation.  

The proposed computational model for simulators can help to overcome the challenges 

caused by the scarcity of data, particularly in the domain of civil and infrastructure engineering. 
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With the proposed model, researchers will be able to collect data and conduct CAV-related 

research on human factors, education, smart infrastructure (e.g., V2I communication), roadway 

design, and so on. From the human factor perspective, the model provides researchers with 

enhanced ability to study CAV passenger behavior, reactions and reaction times to different types 

of warning systems (while passengers perform different tasks), passenger comfort with different 

driving styles (e.g., different distances between vehicles, speed controls, etc.), and so on. From an 

education perspective, researchers will be able to determine the necessary training and investigate 

different ways to train CAV users based on their age, gender, education level, etc., and children 

will be provided an opportunity to experience CAVs for educational purposes in a safe 

environment.  

In addition, the computational model, when implemented, can play an important role in 

new roadway design for CAVs. With the adoption of CAVs, it is expected that various levels of 

current roadway design features will need to be evaluated to facilitate AV traffic operations. These 

design factors include lane and shoulder width, horizontal and vertical alignment, cross section, 

superelevation, stopping sight distance, entrance and exit design, and so on. In real-life, physically 

changing the levels of these design features incrementally and assessing the resulting impacts on 

AV operations, will be not only impractical and hazardous but also prohibitively expensive. In a 

simulation platform, it is quick and easy. It is also necessary to evaluate alternative proposed new 

designs from a human factor perspective because CAV users may not be comfortable with certain 

design features.  

Furthermore, from a technology perspective, the computational model will need to be 

retrained with the new roadway designs and will require a large amount of data that will not be 

available before the new designs are implemented. In sum, it is suggested that potential new 

roadway designs to accommodate AVs need to be studied in driving simulators using the “more 

representative” simulation computational model introduced in this part of the dissertation prior to 

their adoption in real life highway systems. 

This dissertation has strived to make a few significant contributions to existing knowledge 

regarding the simulation of AV operations in a simulated environment. Traditional research into 

autonomous driving system development has focused on specific elements of the driving tasks 

such as lane detection (Wang et al., 2004; Assidiq et al., 2008), object detection (Huang et al., 

2004), path planning (Chu et al., 2012), lane change (Naranjo et al., 2008). Subsequent 
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advancements in deep learning algorithms and enhanced modern computing power have allowed 

researchers to realize end-to-end learning frameworks for autonomous driving decisions. For 

example, Chen et al., (2015), Bojarski et al., (2016), Martinez et al., (2017) and Dosovitskiy et al., 

(2017) proposed deep convolutional neural networks that process image data to realize 

autonomous driving.  

However, the past models could be improved further in a number of areas: a) incorporation 

of the driver’s prior general knowledge of driving environments. Human drivers make certain 

assumptions and follow certain rules while driving, and are able to use prior knowledge such as 

the expected positions of lane markings relative to their vehicle. However, the previously proposed 

models are expected to learn from scratch, which is not efficient and effective for researchers that 

lack computing power and data; b) consideration of additional temporal information (not only the 

current information) to make driving decisions. There is a need to accommodate the reality that 

human drivers typically use information from the past (speed and visual information collected a 

few seconds ago, for example) along with the current information, to make driving decisions. 

In this dissertation, deep convolutional neural network-long short-term memory (CNN-

LSTM) model is proposed to improve the simulation of autonomous driving. The methodology, 

unlike its predecessors, allows for incorporation of prior knowledge using transfer learning of 

classic and powerful CNN (e.g., Inception, ResNet, etc.). This is done to improve driving decision-

making and to save computing and training resources. The Long Short-Term Memory (LSTM) 

network structure duly considers temporal information (past and present). LSTM processes 

transferred knowledge from classic CNNs; that way, the proposed framework can utilize past 

information to make driving decisions. In addition, an improved data collection process is 

proposed such that it addresses the data mismatch problem (where the test trajectory distribution 

deviate from the training trajectory distribution) which may lead to navigation paths of the AV 

that stray outside the lanes in the testing environment. 

6.3.2 Limitation and Possible Directions for Future Research 

In this dissertation, driving decisions (Table 5.3) were implemented using a keyboard. Therefore, 

the host car was able to perform only the following actions at any given time: full acceleration, 

braking, and turning, due to the binary keyboard inputs. On the keyboard, a key representing left 

turn, for example, would make the car turn full left turn only (maximum left turn of the front 
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wheels) when pressed. In reality, however, this is not the case because drivers with a rotary steering 

wheel can turn the wheel to any angle between zero and the full-turn angle, not just the full turn 

angle only. The same is true for the driver’s control over the accelerator and brake: Using limited 

driving data to train the model will teach the self-driving system to drive using binary control of 

the host car’s turns (no turn vs. full turn), accelerations (no acceleration vs. full acceleration), and 

braking (no brake vs. full brake). This limitation can be addressed in future work by introducing 

more fluid control. Instead of using a keyboard to control the movement of the host car, a rotary 

wheel with accelerator/brake pedals could be used. With such increased fluidity of control, the 

computational model can be expected to smoothen the self-driving of the host car.  

The driving environment in this part of the dissertation was a relatively simple one, in that 

there were no other cars on the simulated track. In reality, the AV driving environment is expected 

to be populated by a mélange of vehicle types, some AV, others traditional. In such scenarios, it is 

necessary to address situations that require a 360-degree panoramic characterization of the driving 

environment. For example, when the host vehicle moves to another lane to overtake another 

vehicle, it is difficult to ascertain whether it is safe to complete the overtaking maneuver by 

returning to the initial lane because the host vehicle is unable to “see” the overtaken vehicle. To 

simulate a real-world environment, in which AVs typically have 360-degree cameras, it is 

suggested that the simulator use 360-degree screens to make the driving environment more realistic. 

In addition, Future research may consider incorporating microsimulation (which is able to simulate 

complicated traffic network) with driving simulation, or consider to use multiple driving 

simulators (autonomous or manual modes) in the same simulated environment to test the 

interactions between human driving vehicles and autonomous vehicles. 

Future research can also apply reinforcement learning in certain situations to let the self-

driving system learn to drive on its own. The reason for this proposed future modification is that 

during the demonstration, it was observed that when there were very sharp turns and the host car 

was driving at high speeds, the human driver was not able to prepare and react quickly and 

effectively, which led to crashes in the simulation. It is expected that using reinforcement learning 

will enable the AI algorithm to learn through failure and ultimately identify and adopt the optimal 

turning angles and speeds. Other related refinements that could be made to the proposed self-

driving computational model include additions of sub-models for object detection, hazard warning, 

and speed controls. 
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To enhance further the framework, the proposed deep learning algorithm can be fused with 

other algorithms. Furthermore, after more granular input controls are implemented in the 

simulation, real-world data (real driving data on highways, local roads, etc.) collected using 

smartphone cameras can be used to test the TORCS-based model developed in this part of the 

dissertation. For example, the wheel and speed control data from real-world highway driving can 

be compared with the predictions made by the deep neural network.  

6.4 Overall Summary 

This dissertation began with a comprehensive discussion of the literature regarding 

highway safety, crash factors, and modeling techniques in the traditional operating environment, 

followed by a discussion of the opportunities that exist to enhance crash prediction models to 

provide better feedback with respect to preservation phase, design phase and operations phase. 

Then, a framework for enhanced prediction of highway safety was introduced for evaluating and 

quantifying the safety impacts of road-surface condition, optimal lane and shoulder width 

allocation, and reliable crash prediction model to predict highway fatalities. Finally, with the 

insights gained from the traditional operating environment, this dissertation discussed the 

opportunities and the expected safety impacts and benefits of adopting AV into the operating 

environment. To address the limitations of testing and evaluating the safety impacts of AV on in-

service roads and test tracks, this dissertation proposed and demonstrated an autonomous driving 

simulation framework that can enable researchers to test and evaluate these impacts in a safe 

environment. 
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APPENDIX 

Optimal lane & shoulder widths across road functional classes for different TRWs 

 
  Major Collector Minor Arterial Principal Arterial 

TRW WAGENCY/WUSER Lane Shoulder Lane Shoulder Lane Shoulder 

26 ft. 

0 to 1.1 13 0 13 0 10 3 

1.2 13 0 12.282 0.718 10 3 

1.3 13 0 10.262 2.738 10 3 

1.4 to 1.7 13 0 10 3 10 3 

1.8 12.62 0.38 10 3 10 3 

1.9 11.674 1.326 10 3 10 3 

2 10.78 2.22 10 3 10 3 

>2.1 10 3 10 3 10 3 

30 ft. 

0 to 0.9 15 0 15 0 10 5 

1 15 0 14.348 0.652 10 5 

1.1 15 0 11.941 3.059 10 5 

1.2 15 0 10 5 10 5 

1.3 15 0 10 5 10 5 

1.4 14.785 0.215 10 5 10 5 

1.5 13.643 1.357 10 5 10 5 

1.6 12.576 2.424 10 5 10 5 

1.7 11.573 3.427 10 5 10 5 

1.8 10.627 4.373 10 5 10 5 

>1.9 10 5 10 5 10 5 

34 ft. 

0 to 0.8 17 0 17 0 10 7 

0.9 17 0 14.469 2.531 10 7 

1 17 0 11.812 5.188 10 7 

1.1 17 0 10 7 10 7 

1.2 16.289 0.711 10 7 10 7 

1.3 14.964 2.036 10 7 10 7 

1.4 13.738 3.262 10 7 10 7 

1.5 12.597 4.403 10 7 10 7 

1.6 11.529 5.471 10 7 10 7 

1.7 10.526 6.474 10 7 10 7 

>1.8 10 7 10 7 10 7 

38 ft. 

0 to 0.6 19 0 19 0 10 9 

0.7 19 0 18.277 0.723 10 9 

0.8 19 0 14.905 4.095 10 9 

0.9 19 0 11.938 7.062 10 9 

1 18.261 0.739 10 9 10 9 

1.1 16.683 2.317 10 9 10 9 

1.2 15.243 3.757 10 9 10 9 

1.3 13.919 5.081 10 9 10 9 

1.4 12.692 6.308 10 9 10 9 

1.5 11.551 7.449 10 9 10 9 

1.6 10.483 8.517 10 9 10 9 

>1.7 10 9 10 9 10 9 
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