
 

 

MACHINE ANOMALY DETECTION USING 

SOUND SPECTROGRAM IMAGES AND NEURAL NETWORKS 

by 

Hanjun Kim 

 

A Thesis 

Submitted to the Faculty of Purdue University 

In Partial Fulfillment of the Requirements for the degree of 

 

Master of Science in Mechanical Engineering 

 

School of Mechanical Engineering 

West Lafayette, Indiana 

August 2019 

  



ii 

 

THE PURDUE UNIVERSITY GRADUATE SCHOOL 

STATEMENT OF COMMITTEE APPROVAL 

Dr. Martin B.G. Jun, Chair 

School of Mechanical Engineering 

Dr. Patricia Davies 

School of Mechanical Engineering 

Dr. Peter H. Meckl 

School of Mechanical Engineering 

 

Approved by: 

Dr. Jay P. Gore 

Head of the Graduate Program 
  



iii 

 

To my Parents and Country 

 



iv 

 

ACKNOWLEDGMENTS 

  First of all, I would like to thank my advisory professor Dr. Martin Jun. Without his sincere 

instructions and guidance during my master’s program, I would have never completed this work. 

Special gratitude to my committee members, Dr. Patricia Davies and Dr. Peter Meckl, for 

providing constructive comments on the thesis. Their professional assistance made this 

achievement possible. 

I would like to thank my family and friends in my motherland, and my friends in LAMM for 

caring about me at Purdue. My peaceful days without any single accident owe to their help. 

I will never be able to forget anything I have faced here at Purdue. Though I’m returning back to 

my nation, I will remember every single second of my 2 years at Purdue. 

Lastly, I would like to take this opportunity to thank my country, the Republic of Korea and Army, 

for making all of this work possible by their trust and support. 

 

 



v 

 

TABLE OF CONTENTS 

LIST OF TABLES ........................................................................................................................ vii 

LIST OF FIGURES ....................................................................................................................... ix 

ABSTRACT .................................................................................................................................. xii 

 INTRODUCTION ................................................................................................ 1 

1.1 Motivation and objectives ................................................................................................... 1 

1.2 Overview of thesis .............................................................................................................. 5 

 Literature review ................................................................................................... 7 

2.1 Feature extraction and data-driven monitoring applications .............................................. 7 

2.2 Neural Network (NN) applications in monitoring problems .............................................. 9 

2.3 Other NN applications in manufacturing area .................................................................. 10 

2.4 Summary of review and extensions to our work .............................................................. 11 

 Background ......................................................................................................... 12 

3.1 Feature extraction from spectrograms .............................................................................. 12 

3.2 Audio system identification using linear chirp ................................................................. 13 

3.2.1 Approximating rectangular frequency response ........................................................ 14 

3.2.2 System identification procedure ................................................................................ 15 

3.3 Neural Network (NN) designs .......................................................................................... 19 

3.3.1 Basic learning process ............................................................................................... 19 

3.3.2 Autoencoder ............................................................................................................... 23 

3.3.3 Convolutional Neural Network (CNN) ..................................................................... 25 

 Experimental procedure ...................................................................................... 28 

4.1 Algorithm scheme ............................................................................................................. 28 

4.2 Experimental setup............................................................................................................ 30 

4.3 Audio system identification .............................................................................................. 31 

4.4 Data acquisition and feature extraction............................................................................. 34 

4.5 Preliminary study using the Convolutional Neural Network (CNN)................................ 36 

4.6 Autoencoder design .......................................................................................................... 41 

4.7 Results ............................................................................................................................... 43 

4.7.1 Data preparation ......................................................................................................... 43 



vi 

 

4.7.2 Training results .......................................................................................................... 44 

4.7.3 Testing results ............................................................................................................ 51 

4.8 Discussion ......................................................................................................................... 56 

4.8.1 Feasibility of proposed method ................................................................................. 56 

4.8.2 Summary and suggestions ......................................................................................... 57 

 Conclusion .......................................................................................................... 59 

5.1 Benefits and drawbacks .................................................................................................... 59 

5.1.1 Stethoscope as a sensing tool ..................................................................................... 59 

5.1.2 Neural Network (NN) frameworks ............................................................................ 60 

5.2 Future work ....................................................................................................................... 60 

5.2.1 Further development of the sound sensor .................................................................. 60 

5.2.2 Increasing the number of data sets by using data augmentation ............................... 60 

5.3 Other ongoing applications ............................................................................................... 61 

5.3.1 Remote health monitoring of hydraulic motor (with Standard Industrial) ................ 61 

5.3.2 Spindle unbalance detection (with Korea Institute of Machinery and Materials) ..... 62 

REFERENCES ............................................................................................................................. 63 

  



vii 

 

LIST OF TABLES 

Table 4.1 Specifications of sensors used in experiments. ............................................................. 31 

Table 4.2 Hyperparameters of designed 2-hidden layer CNN; a hidden layer is composed of a 

convolution layer and a pooling layer. The max-pooling was applied in pooling layer. .............. 37 

Table 4.3 Size of data sets for training and validation, and hyperparameters in training process; the 

number of features varies by the dimension of input (n), hence the size of training / validation data 

sets are represented by using n (=4,8,16,32). ................................................................................ 45 

Table 4.4 Comparison of training results in axis 1. ...................................................................... 45 

Table 4.5 Comparison of training results in axis 2. ...................................................................... 46 

Table 4.6 Comparison of training results in axis 3. ...................................................................... 46 

Table 4.7 Comparison of training results in axis 4. ...................................................................... 47 

Table 4.8 Comparison of training results in axis 5. ...................................................................... 47 

Table 4.9 Comparison of training results in axis 6. ...................................................................... 48 

Table 4.10 First threshold values in each axis are settled from the maximum REs using mic #1.49 

Table 4.11 First threshold values in each axis are settled from the maximum REs using mic #2.50 

Table 4.12 Detection results in testing (Axis 1);                                                                          Mic 

1 fails to separate anomalous groups from normal groups (66%, 65%), while Mic 2 provides almost 

clear separation (93.3%, 100%). ................................................................................................... 54 

Table 4.13 Detection results in testing (Axis 2);                                                                          Mic 

1 fails to separate anomalous groups from normal groups (86.7%, 75%), while Mic 2 provides 

almost clear separation (95%, 98.8%). ......................................................................................... 55 

Table 4.14 Detection results in testing (Axis 3);                                                                          Mic 

1 successfully separates anomalous groups from normal groups (91.7%, 100%), and Mic 2 also 

provides almost clear separation (91.7%, 98.8%)......................................................................... 55 

Table 4.15 Detection results in testing (Axis 4);                                                                          Mic 

1 successfully separates anomalous groups from normal groups (91.7%, 100%), while Mic 2 fails 

to provide separation (96.7%, 0%). .............................................................................................. 55 

Table 4.16 Detection results in testing (Axis 5);                                                                          Mic 

1 successfully separates anomalous groups from normal groups (90%, 100%), while Mic 2 fails to 

provide separation (61.7%, 48.8%)............................................................................................... 56 



viii 

 

Table 4.17 Detection results in testing (Axis 6);                                                                          Mic 

1 successfully separates anomalous groups from normal groups (88.3%, 100%), while Mic 2 fails 

to provide separation (81.7%, 25%). ............................................................................................ 56 

Table 4.18 The feasibility of stethoscopes in each location is summarized; the stethoscope (#1) 

located at the wrist is applicable for monitoring axis 3 - axis 6, while the stethoscope (#2) at the 

base can be applied for monitoring axis 1 - axis 3. ....................................................................... 57 

 

 

 

  



ix 

 

LIST OF FIGURES 

Figure 1.1 Various sensors are compared in multiple aspects, to determine the suitable sensor for 

our application (based on quotations in May 2019)........................................................................ 2 

Figure 1.2 The stethoscope is used to shield the low-cost USB microphone from other noise 

sources and amplify the sound of interest ....................................................................................... 3 

Figure 1.3 Basic information of KUKA KR6 R700 are illustrated:                                                (a) 

geometry of the robot arm, and (b) load capacity diagram. ............................................................ 4 

Figure 2.1 To represent characteristics of raw data, features from both time domain and frequency 

domain are extracted (modified from [19]). ................................................................................... 8 

Figure 2.2 By utilizing feature parameters from sensor signals, a decision map that classifies the 

predefined machine status can be portrayed. .................................................................................. 9 

Figure 2.3 Assigning synthetic defects on machine components is a possible approach in 

classification of machine status using supervised NN. (revised from [38]) ................................. 10 

Figure 3.1 A spectrogram is derived from impact test using an electronic stethoscope, to show an 

example of time-varying spectra. .................................................................................................. 13 

Figure 3.2 The sound transferring system in this work is assumed to be linear and time-invariant.

....................................................................................................................................................... 13 

Figure 3.3 Designed linear sine chirp signal is expressed in different ways:                                 (a) 

1-second time history, (b) spectrogram, and (c) magnitude of the Fourier Transform. ............... 17 

Figure 3.4 Magnitude of the Fourier Transform of:                                                                       (a) 

the inverse signal, and (b) the convolution of the linear sweep with the inverse signal. .............. 18 

Figure 3.5 A NN consists of several layers, weights, and activation functions. ........................... 19 

Figure 3.6 An autoencoder receives an input vector to learn the compressed form by encoding, 

then reconstructs the input by decoding. ....................................................................................... 24 

Figure 3.7 CNN includes (a) the convolution layers for more complexity, and (b) the pooling layers 

for data compression. As a combination of (a) and (b), an example of CNN procedure is described 

in (c). ............................................................................................................................................. 26 

Figure 4.1 In our anomaly detection algorithm, (a) autoencoders are trained by features from good 

robot conditions. After training, features both from good and bad conditions are fed into the 

autoencoders to measure RE values. (b) By comparing the distributions of RE, a threshold can be 

set to distinguish the normal and the abnormal status. ................................................................. 29 



x 

 

Figure 4.2 For the experiments, (a) two stethoscopes are attached at the wrist and the base of robot 

arm, (b) different load conditions are assigned at the end of the manipulator. (c) The captured 

sound signals are delivered to a desktop through USB microphones. .......................................... 30 

Figure 4.3 Silicone and sound barrier sealing are applied in order to reject external noise. ........ 31 

Figure 4.4 Approximated impulse response h(t) and frequency response 20log10|H(f)| of the 

stethoscope at: (a) wrist, and (b) base. .......................................................................................... 32 

Figure 4.5 Real output 𝑦(𝑡) and estimation 𝑦′(𝑡) are compared with errors between them at:     (a) 

wrist, and (b) base. ........................................................................................................................ 33 

Figure 4.6 Features are extracted by 1) bandpass filtering, 2) normalizing, and 3) binding the sound 

spectrogram images. ..................................................................................................................... 35 

Figure 4.7 Sound spectrogram images both in the calm and the noisy environments are compared 

from the joint at: (a) axis 1, (b) axis 2, (c) axis 3, (d) axis 4, (e) axis 5, (f) axis 6. ...................... 36 

Figure 4.8 As a preliminary study, a 2-hidden-layer CNN is designed to take a 1-dimensional sound 

PSD vector (0Hz - 255Hz) as input to predict the axis number in operation. The entire structure of 

our design is depicted in (a). (b) and (c) illustrates the first convolution and pooling process, and 

(d) and (e) illustrates the second convolution and pooling process. (f) describes the fully-connected 

layer (FCL) for final decision (6 axes). ........................................................................................ 39 

Figure 4.9 Joint number prediction results of a CNN using a stethoscope at:                               (a) 

wrist, and (b) base. ........................................................................................................................ 41 

Figure 4.10 The structure of autoencoders is controlled by 4 different input dimensions (4, 8, 16, 

and 32) and 3 different hidden layer depths (1, 3, and 5). ............................................................ 42 

Figure 4.11 Training and testing data sets were prepared both in calm and noisy conditions, by 

applying various load conditions. ................................................................................................. 43 

Figure 4.12 Gathered data sets were utilized for training and testing the autoencoder in each axis.

....................................................................................................................................................... 44 

Figure 4.13 After training, REs are compared to set up the first threshold using mic #1, in:        (a) 

axis1, (b) axis 2, (c) axis 3, (d) axis 4, (e) axis 5, (f) axis 6. ......................................................... 49 

Figure 4.14 After training, REs are compared to set up the first threshold using mic #2, in:        (a) 

axis1, (b) axis 2, (c) axis 3, (d) axis 4, (e) axis 5, (f) axis 6. ......................................................... 50 

Figure 4.15 Thresholds from the training result are utilized to distinguish the normal and the 

abnormal status using mic #1, in: (a) axis 1, (b) axis 2, (c) axis 3, (d) axis 4, (e) axis 5, (f) axis 6;                                                    

the anomalies can be separated in axes 3 - 6 using mic #1. .......................................................... 52 



xi 

 

Figure 4.16 Thresholds from the training result are utilized to distinguish the normal and the 

abnormal status using mic #2, in: (a) axis 1, (b) axis 2, (c) axis 3, (d) axis 4, (e) axis 5, (f) axis 6;                                                    

the anomalies can be separated in axes 1 - 3 using mic #2. .......................................................... 54 

Figure 5.1 A hydraulic motor in the Standard Industrial is monitored by: (a) collecting sound 

signals using a stethoscope, and (b) delivering the signals to remote PC using Raspberry Pi. .... 61 

Figure 5.2 A case study on mass unbalance detection of spindle is performed by: (a) assigning 

mass unbalance, and (b) capturing the sound and vibration signals using accelerometer and 

stethoscope. ................................................................................................................................... 62 

 

  



xii 

 

ABSTRACT 

Author: Kim, Hanjun. MSME 

Institution: Purdue University 

Degree Received: August 2019 

Title: Machine Anomaly Detection using Sound Spectrogram Images and Neural Networks 

Committee Chair: Martin B.G. Jun 

 

  Sound and vibration analysis is a prominent tool used for scientific investigations in various fields 

such as structural model identification or dynamic behavior studies. In manufacturing fields, the 

vibration signals collected through commercial sensors are utilized to monitor machine health, for 

sustainable and cost-effective manufacturing. 

  Recently, the development of commercial sensors and computing environments have encouraged 

researchers to combine gathered data and Machine Learning (ML) techniques, which have been 

proven to be efficient for categorical classification problems. These discriminative algorithms have 

been successfully implemented in monitoring problems in factories, by simulating faulty situations. 

However, it is difficult to identify all the sources of anomalies in a real environment.  

In this paper, a Neural Network (NN) application on a KUKA KR6 robot arm is introduced, as a 

solution for the limitations described above. Specifically, the autoencoder architecture was 

implemented for anomaly detection, which does not require the predefinition of faulty signals in 

the training process. In addition, stethoscopes were utilized as alternative sensing tools as they are 

easy to handle, and they provide a cost-effective monitoring solution. To simulate the normal and 

abnormal conditions, different load levels were assigned at the end of the robot arm according to 

the load capacity. Sound signals were recorded from joints of the robot arm, then meaningful 

features were extracted from spectrograms of the sound signals. The features were utilized to train 

and test autoencoders. During the autoencoder process, reconstruction errors (REs) between the 
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autoencoder’s input and output were computed. Since autoencoders were trained only with features 

corresponding to normal conditions, RE values corresponding to abnormal features tend to be 

higher than those of normal features. In each autoencoder, distributions of the RE values were 

compared to set a threshold, which distinguishes abnormal states from the normal states. As a 

result, it is suggested that the threshold of RE values can be utilized to determine the condition of 

the robot arm.
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 INTRODUCTION 

1.1 Motivation and objectives 

Unexpected halt of factory lines may cause devastating costs, or even worse, dangerous incidents. 

To avoid such cases, a wide range of studies has focused on timely and precise diagnostics of 

machine components. To capture the behaviors of the target machine, various sensor data are 

collected, such as torques [1], [2], vibrations [3]–[5], sound emissions [6], [7], and currents [8], 

[9]. The gathered signals are investigated to construct physical models, or to extract meaningful 

features that represent the status of the machines. The former approach is called a model-based 

method, and the latter is called a data-driven method. The model-based method relates sensor 

signals to the physical model parameters [3], [9]–[11]. After optimizing the parameters, the models 

then can be utilized to predict sensor signals in specific conditions. On the other hand, the data-

driven method emphasizes feature extraction [12]–[14]. The data-driven method does not aim to 

estimate the exact sensor signals, rather, it tends to pursue grouping and classifying the features 

from a variety of conditions.  

As the data storage capability of computers increases, studies on data handling techniques have 

arisen as an independent branch of engineering. The achievements in contemporary computer 

technologies accelerated the new era of smart manufacturing, which is a branch of industry 4.0. In 

particular, the enhancement of computing infrastructures such as Artificial Intelligence (AI) 

permits researchers and scholars to utilize a large amount of manufacturing data for multiple 

purposes. 

The suitability of sensors and methods depends on applications. Firstly, there are differences 

among sensors in terms of bandwidth and cost. Figure 1.1 illustrates the variations of sensors: 

microphone, accelerometer and acoustic emission (AE) sensors. Since the aim of this work is 
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collecting gear signals from robot joints in moderate operation speed, the bandwidth of AE sensors 

is too high for this application. The response ranges of both the microphone and the accelerometer 

are both acceptable, but there are some discrepancies. For example, the conditioning cost for the 

accelerometer is high, since data transfer equipment such as data acquisition (DAQ) is necessary. 

On the other hand, microphones usually have their direct connection to the PC, hence conditioning 

equipment is optional.   

 

Figure 1.1 Various sensors are compared in multiple aspects, to determine the suitable sensor for 

our application (based on quotations in May 2019). 

However, the sound sensor receives sounds from multiple directions, hence may be susceptible 

to external noise. To isolate the sensing target from environmental noise, physical sealing can be 

considered as a solution. Inspired from the health diagnosis on humans, the stethoscope is selected 

as a sensing tool to diagnose robot health in this work. As portrayed in Figure 1.2, the stethoscope 

can focus on the target surface and reject noise by rubber sealing. Since the rotational speed of a 

gear in a robot arm is restricted, the frequency response range of a stethoscope (500Hz) is expected 
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to be sufficient. Furthermore, the sound signals collected from the stethoscope can be easily 

delivered to a PC by connecting a USB microphone, which yields cost-effectiveness compared to 

other sensing methods described in Figure 1.1. 

 

Figure 1.2 The stethoscope is used to shield the low-cost USB microphone from other noise 

sources and amplify the sound of interest 

Next, a proper strategy for signal analysis should be selected between the model-based and data-

driven methods. In the model-based approach, it is necessary to clarify the complex relations 

between the physical and dynamic parameter values and the signal. Therefore, it demands 

comprehensive knowledge of the attributes of target systems, and takes a long time to verify [5], 

[11], [15]. In contrast, the data-driven method requires data to be divided into a few groups. 

Especially in fault detection problems, associating signals to conditions (normal, fault, etc.) is 

preferred over relating signals to exact parameter values due to its simplicity. To provide a simpler 

solution than developing physical models, the scope of this work is narrowed down to the data-

driven method. 

Data-driven machine health monitoring has arisen from the need for classification [12], [13]. In 

traditional classification problems, the signals from normal and abnormal status are projected into 
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a feature domain. To collect the abnormal signals, it is required to wait until the machine produces 

anomalous signals, or to impose some intended defects on the machine. For this reason, the 

gathering of faulty signals is sometimes limited. Further, running experiments in abnormal 

conditions may result in severe breakdown that cannot be restored. Due to this, it is more desirable 

to have reduced requirements for fault simulation data.  

In this work, the KUKA KR6 industrial robot arm is chosen as the monitoring target, which is 

widely used in factories. The robot arm has 6 independent joints and has its own load capacity as 

depicted in Figure 1.3. Our purpose is to discriminate bad conditions of the robot arm by data-

driven method using sound sensors. The autoencoder framework was applied, which is a type of 

NN architecture. To simulate anomalies, the load conditions were assigned at the end-effector, in 

compliance with the capacity diagram in Figure 1.3-(b). However, the signals from anomalous 

status were not utilized in training the autoencoder. They were used only in testing, to verify the 

NN algorithm can achieve an acceptable anomaly detection performance, without fault data in the 

training step. 

 
(a)                                  (b) 

Figure 1.3 Basic information of KUKA KR6 R700 are illustrated:                                                

(a) geometry of the robot arm, and (b) load capacity diagram. 

  Accordingly, the objectives of this thesis are: 1) to provide cost-effective data analytics solution 

using sound sensors, 2) to develop data-driven approach without deriving exact physical model, 3) 
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to establish anomaly detection algorithms that do not require fault simulation data. To achieve the 

goals, we employed stethoscopes as sound sensors to focus on sound emissions from joints of the 

KUKA KR6 industrial robot arm, and to reject external noise. We applied the autoencoder 

framework to establish the data-driven anomaly detection algorithm, without including fault data 

sets in training. 

1.2 Overview of thesis 

The rest of this thesis is outlined as follows. Chapter 2 reviews several research stories relevant 

to fault detection using data-driven approaches. Contents in Chapter 2 are organized with several 

ways of feature extraction and their usages for monitoring problems. In addition, the other NN 

applications for manufacturing are introduced. 

  Chapter 3 explains some theoretical background required for performing the experiments and 

anomaly detection algorithm. Initially, a spectrogram-based feature extraction and audio system 

identification procedure using linear sine chirp are described. These contents are necessary for 

extracting proper features from raw sound signals. Afterwards, the basic concepts of NN are 

introduced then expanded to the autoencoder and the Convolutional Neural Network (CNN). The 

main algorithm of this work is oriented from the autoencoder. The CNN is applied for a 

preliminary study, in advance to implementing the autoencoder-based framework. 

  Chapter 4 illustrates the whole process of the application. The sound signals from single-axis 

operations of the industrial robot arm are transferred by classic stethoscopes and stored into a 

desktop computer by connecting USB microphones. The features of each load condition are 

extracted from spectrograms. Extracted features are put into autoencoders, and the reconstruction 

errors (RE) are examined for anomaly detection. The data processing and NN procedures are 

performed via two software languages, MATLAB and Python. 
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  Conclusions from the research and some suggestions for future work are given in Chapter 5. 

Firstly, the benefits and weaknesses of proposed methods are discussed. Chapter 5 also suggests 

future work to suggest solutions for some limitations. Finally, some collaborative works in 

progress are introduced.   
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 LITERATURE REVIEW 

2.1 Feature extraction and data-driven monitoring applications 

The data-driven strategy requires feature extraction steps to represent the conditions of the target 

machine in compressed form. Since machines in factories are programmed to perform repetitive 

operations or usually driven by the gear rotations, meaningful features are extractable periodically. 

One intuitive way to extract features is examining the statistical property of raw sensor signals in 

every specific period. For example, the root-mean-square (RMS) and kurtosis of time-domain 

signals have been utilized to explain the status of the target [13], [16]–[18]. Safizadeh and Latifi 

[13] extracted various statistical features from vibration signals of the rolling element bearings to 

form high-dimensional feature vectors, and sorted the most meaningful information by principal 

component analysis (PCA). They pointed out the feature values on the feature map, then 

partitioned machine health conditions by visible borders. As such, locating features in the same 

space can provide a visualization of machine health.  

When the monitoring target is driven by rotating machine components such as rolling element 

bearings or gears, the frequency information is also a crucial part of analysis. However, it is 

difficult to recognize the frequency information by the time-domain signals and features. To 

capture the behaviors of the machine in the frequency domain, the feature extraction step is 

executed after domain conversion, such as the Fourier Transform. Lei et al. [19] extended the 

statistical feature extraction to the frequency domain, then utilized them for grouping various 

rolling element bearing conditions. Their approach also includes the bearing signal model derived 

from [3] in calculating frequency domain features. Beyond the basic Fourier Transform, some 

advanced techniques such as short-term Fourier Transform (STFT) [20], wavelet transform [21]–

[23], and Hilbert-Huang transform (HHT) [24]–[26] are applied. Those techniques are also called 
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time-frequency analysis, which can cope with non-stationary signals and provide better 

visualization.   

Though extracting features helps to compare the signals in a lower dimension, it implies some 

information is lost since the features are a compact representation of the raw signal. Sometimes 

features from a single sensor are unable to explain some characteristics present in the raw data, 

which degrades the accuracy of the algorithm. To enhance the discriminative performance, several 

studies employed multiple sensors to predict tool state or life during operations [27]–[30], or to 

estimate bearing health conditions [31]–[33]. 

 

Figure 2.1 To represent characteristics of raw data, features from both time domain and 

frequency domain are extracted (modified from [19]). 

To summarize, the data-driven method derives meaningful features from multiple sensor signals. 

Figure 2.1 shows several widely-used feature parameters [19] in both time and frequency domains. 
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The extracted features are projected into a classification map to establish a data-driven fault 

detection rule. As an example, Figure 2.2 illustrates a 3-class decision map drawn by 2-

dimensional features. 

 

Figure 2.2 By utilizing feature parameters from sensor signals, a decision map that classifies the 

predefined machine status can be portrayed. 

2.2 Neural Network (NN) applications in monitoring problems 

Though direct mapping of feature parameters has been successfully implemented for fault 

classification, the decisions are usually made based on linear classifications. When the decision 

maps are drawn with nonlinear shapes, it becomes difficult to formulate the rules. Moreover, high-

dimensional features such as spectrum vectors or 2D images are intractable to generalize by 

conventional methods. To assign nonlinearity in monitoring problems, the NN frameworks are 

applied. By the NN approach, complex and nonlinear relationships can be captured. 

In the categorical classification problem, the NN framework also requires normal and abnormal 

data sets. The conditions to be estimated are digitized as output values, then matched with input 

signals. Several studies have achieved feasible monitoring solutions for rolling element bearings 

[34]–[36], gearboxes [37], and gears in the robot manipulator [38]. In those applications, some 

recognizable defects are imposed to form different condition groups as shown in Figure 2.3.  
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Figure 2.3 Assigning synthetic defects on machine components is a possible approach in 

classification of machine status using supervised NN. (revised from [38]) 

  As addressed in the previous chapter, the supervised classification approach demands a large 

amount of abnormal status data for proper training. Again, it is not always possible to predefine 

existing faults into finite condition classes. To detect the anomaly without categorization, 

unsupervised clustering can be an alternative solution. Some of the unsupervised NN applications 

focus on forming clustered groups without prior class information [39], [40], and others on 

isolating anomalous conditions from normal ones [41], [42].  

2.3 Other NN applications in manufacturing area 

In NN studies, it is recommended to ensure that the size of the data sets is at least 10 times the 

number of updatable parameters [43]. However, as the structure of NN gets deeper and more 

complex, satisfying the recommendation becomes demanding. To resolve this problem, some 

generative methods are applied to reproduce the data set. Li et al. [44] investigated various direct 

data augmentation techniques to increase the size of a raw signal by adding random gaussian noise, 

translating, modulating amplitudes, and time stretching. 
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  Different from direct augmentation methods, some generative NN models such as the Generative 

Adversarial Network (GAN) [45] and the Variational Autoencoder (VAE) [46] perform data 

augmentation by statistical methods. In NN approaches toward data augmentation, the NN models 

learn from compressed features, which is called the latent space. In several studies, the  generative 

NN models were applied [47]–[49] to increase manufacturing data size, as well as to extract 

features from the latent space. 

In addition, NN can be used to develop parameter prediction models, such as cutting force [50] 

and surface roughness prediction [51], [52]. Though these models cannot be expressed in 

formulated equations, the NN architecture figures out complex relationships between parameters 

by learning from large amounts of data. 

2.4 Summary of review and extensions to our work 

The performance of data-driven monitoring depends both on quantity and quality of the data set. 

In particular, extracting good features accounts for the majority of NN processes. Therefore, 

understanding the attributes of the monitoring target is required in designing and running 

experiments. Our target is monitoring the industrial robot arm during its warm-up operation. Some 

axes have vertical movements, which involve gravity. Therefore, drawing spectrograms in the 

time-frequency domain may be able to capture variations in the spectrum, instead of taking the 

basic Fourier Transform. Since the KUKA KR6 robot arm is a more complex system, it is difficult 

to define every possible defect. Hence, we apply the autoencoder-based anomaly detection 

algorithm, rather than applying a supervised classification strategy. By implementing the 

autoencoder framework, we can approach failure without synthetic fault simulations. Starting from 

Chapter 3, some required prior knowledge is detailed then applied to investigate experimental data.   
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 BACKGROUND 

3.1 Feature extraction from spectrograms 

  To establish a discriminative algorithm without a physical model, proper features should be 

extracted to represent different conditions of the machine. As aforementioned, spectrograms are 

widely used in analysis of vibration signals to recognize trend changes of signals in both time and 

frequency domains [14], [42], [53], [54]. This spectrogram-based approach is implemented again 

in this work, to detect the evolutions of spectral patterns as different conditions are assigned. 

  To derive spectrograms, discrete STFT is computed in every 𝑘th window as follows: 

 

𝑆𝑇𝐹𝑇𝑘(𝑥[𝑛]) =
1

𝑁
∑ 𝑥[𝑛]𝑤[𝑛 − (2𝑅𝑘 − 1)𝑚]𝑒

𝑗2𝜋𝑓(𝑛−𝑛𝑘)
𝑁

𝑛𝑘+𝑁−1

𝑛=𝑛𝑘

 (3.1) 

 
𝑃𝑆𝐷𝑘 =

|𝑆𝑇𝐹𝑇𝑘|2

(𝑤𝑐𝑜𝑚𝑝)
 (3.2) 

where n is the sample number, 𝑛𝑘 is the starting location of each signal block (𝑛𝑘 = 2(𝑘 − 1)𝑚), 

𝑤 is the window function, 𝑤𝑐𝑜𝑚𝑝 is the window compensation, 2𝑚 is the length of the window, 

and 𝑅𝑘 is the number coefficient of the block which starts from 1. If there is no overlap among 

blocks, then 𝑅𝑘 = 1,2,3, … ; otherwise it has a specific interval other than 1 (e.g. 𝑅𝑘 =

1, 1.5, 2, 2.5, …  in case of 50% overlap). From equations (3.1) and (3.2) the power spectral 

densities (PSDs) can be calculated and concatenated horizontally along the time axis as shown in 

Figure 3.1. In this work, we apply the Hann window (𝑤𝑐𝑜𝑚𝑝 = 0.375) in each application, with 

50% of overlap in spectrograms. Figure 3.1 shows an example spectrogram of an impact test, 

recorded via electronic stethoscope with 4kHz sampling frequency. By drawing spectrograms, we 
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can sort the impact moments as features if the spectral patterns vary by the experimental conditions. 

More specific procedures for feature extraction are detailed in later parts of each application. 

 

Figure 3.1 A spectrogram is derived from impact test using an electronic stethoscope, to show an 

example of time-varying spectra. 

3.2 Audio system identification using linear chirp 

  The identification of sound transferring systems is required not only to specify the frequency 

band for use, but to confirm whether there is any interference of high-frequency noise. To verify 

both requirements, the linear sine chirp signal is utilized to identify the stethoscope systems. 

 
Figure 3.2 The sound transferring system in this work is assumed to be linear and time-invariant. 

  To begin with, we assume that the systems are approximately linear and time-invariant (LTI) as 

shown in Figure 3.2. Theoretically, the measured output signal 𝑦(𝑡) is acquired by convolving the 

input signal 𝑥(𝑡) and the impulse response of the system ℎ(𝑡): 
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  𝑦(𝑡) = 𝑥(𝑡) ∗ ℎ(𝑡)  (3.3) 

where the symbol ‘∗’ indicates the convolution process.  

Assume there is any 𝑥′(𝑡) such that convolution with 𝑥(𝑡) produces Dirac’s delta function:  

  𝑥(𝑡) ∗ 𝑥′(𝑡) = 𝛿(𝑡)  (3.4) 

  Convolving 𝑥′(𝑡) on both sides of (3.3) yields calculation of ℎ(𝑡) and 𝐻(𝑓) as follows: 

  𝑥′(𝑡) ∗ 𝑦(𝑡) = ℎ(𝑡) 

𝐻(𝑓) = ℱ(ℎ(𝑡))   

 

(3.5) 

where ℱ designates the Fourier Transform. However, it is difficult to simulate the exact direct 

delta function, since it has infinite length in the frequency domain. Instead, some finite-length 

rectangular spectra with 0dB magnitude can be designed, which are overlapped to the target 

bandwidth. The linear chirp signal is tractable to approximate the rectangular spectrum, and 

thereby is widely used for system identification purposes [55], [56]. In the following subsections, 

the characteristics of linear chirps are investigated, then the identification process for our audio 

transfer system are described. 

3.2.1 Approximating rectangular frequency response 

The linear chirp signal has a linearly increasing instantaneous frequency, and can be written as: 

  
𝑠(𝑡) = 𝑠𝑖𝑛 (𝜔1𝑡 +

𝑡2(𝜔2 − 𝜔1)

2𝑇
) 

 
(3.6) 

where 𝜔1 is start frequency, 𝜔2 is end frequency, and 𝑇 is total duration. In the ideal case, the 

magnitude of the linear chirp signal should be flat within the designated bandwidth (ω1, ω2) [57], 

hence a simple amplitude modulation could be done to result in a flat 0dB frequency response. 
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Geyer [58] and Aldridge [59] investigated the autocorrelation 𝑅𝑠𝑠(𝜏) of linear chirp signals and 

approximated it to the sinc function in the time domain, which has a rectangular magnitude in the 

frequency domain. Theoretically, it also has zero-phase attribute since the autocorrelation 𝑅𝑠𝑠(𝜏) 

is given by the convolution of 𝑠(𝑡) and 𝑠(−𝑡), which yields the product of 𝑆(𝑓) and 𝑆∗(𝑓) in the 

frequency domain as follows: 

  
𝑅𝑠𝑠(𝜏) = ∫ (𝑠(𝑡)𝑠(𝜏 + 𝑡))𝑑𝑡

∞

−∞

 

             = ∫ (𝑠(−𝑡)𝑠(𝜏 − 𝑡))𝑑𝑡
∞

−∞

= 𝑠(−𝜏) ∗ 𝑠(𝜏) 

 

(3.7) 

  ℱ(𝑅𝑠𝑠(𝜏)) = ℱ(𝑠(𝜏) ∗ 𝑠(−𝜏)) = 𝑆(𝑓)𝑆∗(𝑓) 

                                                         = |𝑆(𝑓)|2 

 

(3.8) 

where ℱ yields the Fourier Transform and 𝑆∗(𝑓) yields the complex conjugate of 𝑆(𝑓). Equation 

(3.8) implies that ℱ(𝑅𝑠𝑠(𝑡)) is real, and therefore the phase is zero. Following the above process, 

we can design the proper inverse filter of a linear chirp by reversing and amplifying the original 

chirp, so that we can measure the impulse response of the target system within specific frequency 

bandwidth.  

3.2.2 System identification procedure 

Our bandwidth of interest for the system identification is up to 2kHz, which is sufficiently broader 

than the recommended usage of classic stethoscopes (500Hz). We designed the input signal within 

20Hz - 1900Hz with 15 seconds emission duration, by applying equation (3.6). Figure 3.3 

illustrates the characteristics of the designed linear chirp signal in multiple domains. To derive the 
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spectrogram in Figure 3.3-(b), a 48000-point (1 second) Hann window with 50% overlap (24000 

points) was applied.  

 
(a) 

 
(b) 
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(c) 

Figure 3.3 Designed linear sine chirp signal is expressed in different ways:                                 

(a) 1-second time history, (b) spectrogram, and (c) magnitude of the Fourier Transform. 

As shown in Figure 3.3-(c), we need amplitude modulation so that 𝑚𝑆(𝑓)𝑆∗(𝑓) has flat 0dB 

magnitude within 20Hz - 1900Hz. We have selected the magnitude value at the middle of the range 

960Hz, thereby the inverse filter is designed by: 

  
𝑖𝑛𝑣𝑠(𝑡) =

1

|𝑆(𝑓960𝐻𝑧)|2
𝑠(−𝑡) 

 
(3.9) 

where |𝑆(𝑓960𝐻𝑧)| is amplitude of 𝑆(𝑓) at 960Hz. Figure 3.4 illustrates the final inverse filter for 

the designed linear chirp input and the product with 𝑆(𝑓). 
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(a) 

 
(b) 

Figure 3.4 Magnitude of the Fourier Transform of:                                                                       

(a) the inverse signal, and (b) the convolution of the linear sweep with the inverse signal. 

By combining the above result and equation (3.5), the frequency response 𝐻(𝑓)  can be 

approximated by computing the product of ℱ(𝑖𝑛𝑣𝑠(𝑡)) and 𝑌(𝑓): 

  𝐻(𝑓) = ℱ(𝑖𝑛𝑣𝑠(𝑡))𝑌(𝑓)  (3.10) 

  The system identification results and verifications for our system are detailed in Chapter 4. 
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3.3 Neural Network (NN) designs 

  The NN is a nonlinear data processing architecture, inspired from the perception of human beings 

through neurons [60]. Studies in the early stage of NN have succeeded in demonstrating the 

feasibility in several classification and regression problems. However, they were criticized for their 

inefficiency resulting from the lack of proper computing technologies. For this reason, the NN-

based approaches have not become popular until the breakthrough use of graphics processors 

(GPUs) for machine learning [61].  

  After the invention of distributive computation enabled by GPUs, the NN strategies have 

prospered in various fields of studies. In advance to illustrate the proposed algorithm in detail, the 

basic update algorithm of NN is described in the following contents. Further, the concepts and 

structures of the autoencoder and Convolutional Neural Network (CNN) are introduced. 

3.3.1 Basic learning process  

The term “training” or “learning” of the NN comes from minimizing errors between the output 

of the NN and designated target value. A popular “learning” method for NN is combination of 

“gradient descent” and “back propagation”. In the following parts below, the back-propagation 

processes are briefly explained based upon the activation and loss functions. 

 
Figure 3.5 A NN consists of several layers, weights, and activation functions. 
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  The structure of NN is composed of an input layer, some hidden layers, and an output layer. 

Among the layers, weights and activation functions are assigned to deliver input values to output 

layers. A simple structure of NN is described in Figure 3.5. 

  In the above graph, 𝑋 = [𝑥1, 𝑥2, 𝑥3, 𝑥4]𝑇  is the input, 𝑊1, 𝑊2  are the weights, 𝜎1, 𝜎2  are the 

activation functions, 𝑍1 = [𝑧1
1, 𝑧2

1]𝑇 is the intermittent output from hidden layer, and 𝑌 = [𝑦1, 𝑦2]𝑇 

is the computed output through NN. Provided that we have 𝑘 sampled data sets, and intended target 

values 𝑇 = [𝑡1, 𝑡2]𝑇 for every input 𝑋, then 𝑘 input-output pairs of samples exist; 𝑆𝑖 = [𝑋𝑖, 𝑇𝑖], 

where 𝑖 = 1,2,3, … , 𝑘. The purpose of training the NN is to minimize the discrepancy between the 

output (𝑌) and target value (𝑇) of each data pair, by updating weights (𝑊1, 𝑊2) to desirable 

values. The difference between 𝑌  and 𝑇 is also named “loss”, hence the NN updates itself to 

minimize the loss function 𝐸(𝑌, 𝑇). 

  Generally, the NN processes can be divided into feed-forwarding and updating. As described in 

(3.11), the feed-forwarding process computes output values by designated weights and activations: 

  
𝑁1 = [𝑛1

1, 𝑛2
1]𝑇 = 𝑊1𝑋 

𝑍1 = [𝑧1
1, 𝑧2

1]𝑇 = 𝜎1(𝑁1) = [𝜎1(𝑛1
1), 𝜎1(𝑛2

1)]𝑇 

𝑁2 = [𝑛1
2, 𝑛2

2]𝑇 = 𝑊2𝑍1 

𝑌 = [𝑦1, 𝑦2]𝑇 = 𝜎2(𝑁2) = [𝜎2(𝑛1
2), 𝜎2(𝑛2

2)]𝑇 

 

(3.11) 

Next, the gradients are calculated to update weights, using the output 𝑌 and corresponding target 

𝑇. Before depicting the back-propagation algorithm for weight update, the loss function is defined 

as 𝐸(𝑌, 𝑇) =
1

2
∑ (𝑡𝑖 − 𝑦𝑖)

2𝑚
𝑖=1  with 𝑚 = 2 for simplicity. According to [62], the weight gradients 

∆𝑊 are represented as: 
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∆𝑤𝑖,𝑗

𝑘 = −𝜇
𝜕𝐸(𝑌, 𝑇)

𝜕𝑤𝑖,𝑗
𝑘  

 
(3.12) 

where 𝜇 is the learning rate and 𝑤𝑖,𝑗
𝑘  is the weight value from 𝑖th cell of 𝑘th layer to 𝑗th cell of 

(𝑘 + 1)th layer (see Figure 3.5 for better understanding).  

  Equation (3.12) can be expanded by applying the chain rule. First, we calculate ∆𝑤𝑖,𝑗
2  which are 

just before the output layer: 

  
∆𝑤𝑖,𝑗

2 = −𝜇
𝜕𝐸(𝑌, 𝑇)

𝜕𝑤𝑖,𝑗
2 = −𝜇

𝜕𝐸(𝑌, 𝑇)

𝜕𝑛𝑗
2

𝜕𝑛𝑗
2

𝜕𝑤𝑖,𝑗
2  

 
(3.13) 

  𝜕𝑛𝑗
2

𝜕𝑤𝑖,𝑗
2 = 𝑧𝑖

1 (∵ 𝑛𝑗
2 = 𝑤1,𝑗

2 𝑧1
1 + 𝑤2,𝑗

2 𝑧2
1) 

 
(3.14) 

  
−𝛿𝑗

2 ≡
𝜕𝐸(𝑌, 𝑇)

𝜕𝑛𝑗
2 =

𝜕𝐸(𝑌, 𝑇)

𝜕𝑦𝑗

𝜕𝑦𝑗

𝜕𝑛𝑗
2 

 
(3.15) 

  𝜕𝐸(𝑌, 𝑇)

𝜕𝑦𝑗
= −(𝑡𝑗 − 𝑦𝑗) 

 
(3.16) 

  𝜕𝑦𝑗

𝜕𝑛𝑗
2 = 𝜎2

(1)
(𝑛𝑗

2) 
 

(3.17) 

where 𝜎2
(1)

 is the first derivative of 𝜎2. Substituting the components by equations (3.14) - (3.17), 

equation (3.12) can be rewritten as follows: 

  ∆𝑤𝑖,𝑗
2 = 𝜇 ∙ (𝑡𝑗 − 𝑦𝑗) ∙ 𝜎2

(1)
(𝑛𝑗

2) ∙ 𝑧𝑖
1  (3.18) 

 

Next, ∆𝑤𝑖,𝑗
1  are computed in a similar way, but different results are derived: 
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∆𝑤𝑖,𝑗
1 = −𝜇

𝜕𝐸(𝑌, 𝑇)

𝜕𝑤𝑖,𝑗
1 = −𝜇

𝜕𝐸(𝑌, 𝑇)

𝜕𝑛𝑗
1

𝜕𝑛𝑗
1

𝜕𝑤𝑖,𝑗
1  

 
(3.19) 

 

  
𝜕𝑛𝑗

1

𝜕𝑤𝑖,𝑗
1 = 𝑥𝑖 (∵ 𝑛𝑗

1 = ∑ 𝑤𝑖,𝑗
1 𝑥𝑖

1

4

𝑖=1

) 

 
(3.20) 

  

−𝛿𝑗
1 ≡

𝜕𝐸(𝑌, 𝑇)

𝜕𝑛𝑗
1 =

𝜕𝐸(𝑌, 𝑇)

𝜕𝑧𝑗
1

𝜕𝑧𝑗
1

𝜕𝑛𝑗
1 

 
(3.21) 

  
𝜕𝐸(𝑌, 𝑇)

𝜕𝑧𝑗
1 = ∑ −𝛿𝑖

2𝑤𝑖,𝑗
2

2

𝑖=1

 

 
(3.22) 

  
𝜕𝑧𝑗

1

𝜕𝑛𝑗
1 = 𝜎1

(1)
(𝑛𝑗

1) 
 

(3.23) 

where 𝛿𝑖
2 is defined in (3.14). Combining equations (3.19) - (3.23) altogether yields: 

  

∆𝑤𝑖,𝑗
1 = 𝜇 ∙ (∑ 𝛿𝑖

2𝑤𝑖,𝑗
2

2

𝑖=1

) ∙ 𝜎1
(1)

(𝑛𝑗
1) ∙ 𝑥𝑖 

 
(3.24) 

 

  We can recognize that the updates of weights are derived in different ways with respect to where 

the weights are located. Generally, the update derivations in input-hidden and hidden-hidden layer 

intervals share their computation procedures, while those in hidden-output layer intervals are 

calculated in a unique way.  

  By investigating the overall update process through equations (3.11) - (3.24), we can also recall 

that the updates in later weights are required to renew the earlier weights. In other words, the 

direction of weight update is opposite to the feed-forward process. For this reason, the name of the 

learning process of NN is known as “back-propagation”. More generalized representation of back-

propagation is described in [62]. 
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  Likewise in previous NN research, the convergence analysis using the back-propagation 

algorithm was successfully performed in [63]. However, it is not guaranteed whether the NN 

solution leads the losses to the global or local minimum. Furthermore, there is no established 

method for organizing the optimal NN, hence we need some iterations in selecting the 

hyperparameters and structures of NN [64]. In general, increasing the depth and dimension of 

layers enhances the performance on minimizing losses. Even so, indiscreet complication of the 

NN structure slows down the computations and sometimes yields an “overfitting problem”, since 

more weight parameters are included. Therefore, the users need to find a suitable shape of NN for 

their own purposes. These efforts toward selecting the hyperparameters of NN are called the tuning 

process.  

  In this work, two popular architectures of NN were implemented: the autoencoder and the CNN. 

The autoencoder was utilized as the main algorithm for anomaly detection, and the CNN was 

utilized for preliminary study of sound signal analysis. The tuning processes are detailed in later 

chapters of each application. 

3.3.2 Autoencoder 

The autoencoder is a NN architecture of semi-supervised learning, which is a popular approach 

in image reconstruction and denoising. The term “semi-supervised” comes from the aspect that the 

autoencoder makes use of inputs as targets for reference. The encoding stage finds a compressed 

interpretation of the original input, and the decoding stage produces an output that mimics the 

original input. 

  Assume that there is a sequence composed of n-dimensional vectors 𝑋(𝑖)’s, {𝑋(1), 𝑋(2), 𝑋(3), … }, 

where 𝑋(𝑖) ∈ 𝑅𝑛. The autoencoder tries to adapt output 𝑌(𝑖) close to the original input 𝑋(𝑖). Figure 

3.6 describes the simplest case of a single-layer autoencoder. 
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Figure 3.6 An autoencoder receives an input vector to learn the compressed form by encoding, 

then reconstructs the input by decoding. 

The error between 𝑋(𝑖) and 𝑌(𝑖) is named the Reconstruction Error (RE), and is also represented 

as the loss function of the autoencoder. The feedforward process is as follows: 

  

(𝐻𝑖𝑑𝑑𝑒𝑛 𝐿𝑎𝑦𝑒𝑟)     𝑍(𝑖) = 𝜎(𝑊𝐸𝑋(𝑖)) 

(𝑂𝑢𝑡𝑝𝑢𝑡 𝐿𝑎𝑦𝑒𝑟)     𝑌(𝑖) = 𝜎(𝑊𝐷𝑍(𝑖)) 

 (3.25) 

where 𝑊𝐸 and 𝑊𝐷 are the weight arrays of encoder and decoder, respectively, 𝜎 is the activation 

function. 

The error 𝐿𝑜𝑠𝑠(𝑥(𝑖), 𝑦(𝑖)) is computed after the output layer, and the “learning” minimizes the 

𝐿𝑜𝑠𝑠 so that reconstructed images get similar to the original inputs. In this work, the activation 

functions and loss function were designated as follows: 
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(𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛)     𝜎𝑒𝑛𝑐(𝑥) = {
0, 𝑥 < 0
𝑥, 𝑥 ≥ 0

 

(𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛)     𝜎𝑑𝑒𝑐(𝑥) =
1

1 + 𝑒−𝑥
 

(𝑅𝐸)     𝐿𝑜𝑠𝑠(𝑥𝑖 , 𝑦𝑖) =
1

𝑛
∑(𝑥𝑘

(𝑖)
− 𝑦𝑘

(𝑖)
)

2
𝑛

𝑘=1

 

 (3.26) 

  The activation functions 𝜎𝑒𝑛𝑐(𝑥) and 𝜎𝑑𝑒𝑐(𝑥) are also known as the Rectified Linear Unit (ReLU) 

and the sigmoid function, respectively. In this application, 𝜎𝑒𝑛𝑐(𝑥) was used for encoding (data 

compression), and 𝜎𝑑𝑒𝑐(𝑥) was used for decoding (input reconstruction). For the loss function, we 

assigned a mean-squared error. Herein the RE can be used for the anomaly detection algorithm 

[42], [65], [66]. To classify anomalous signals from normal signals by RE, the autoencoder should 

be trained purely with normal signals. After training without abnormal signals, the autoencoder 

produces larger RE when “unseen” data are fed in as input. Since the collected REs in each 

operation cycle have their own distributions, we can compare the RE distributions of multiple 

cycles then decide whether there is any anomalous signal in some cycles. 

3.3.3 Convolutional Neural Network (CNN) 

The CNN is a NN framework of supervised learning, which is specialized for supervised 

classification problems. The CNN takes predefined classes as output (“car”, “dog”, “cat”, 

“airplane”, etc.), and aims to predict the classes correctly by feeding forward an input image. In 

general NN structures, the number of weights between two layers equals the product of the number 

of cells in neighboring layers. On the other hand, the size of weights in the CNN architecture is 

flexible. Instead of computing pointwise multiplications, the weight arrays in CNN sweeps the 
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input of the previous layer, which accounts for the convolutional process. Figure 3.7 portrays a 

simple configuration of CNN. 

 
(a) 

 
(b) 

 
(c) 

Figure 3.7 CNN includes (a) the convolution layers for more complexity, and (b) the pooling 

layers for data compression. As a combination of (a) and (b), an example of CNN procedure is 

described in (c). 
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A CNN usually consist of the convolution layer, the pooling layer, and the fully-connected layer 

(FCL). In the convolution layers, the weight arrays feed the inputs forward to the next layer by 

computing convolution products. Figure 3.7-(a) depicts a process in the convolution layer, using a 

weight array size of 3, and stride size 1. When 𝑖𝑡ℎ input vector is fed into the CNN, the value of 

𝑗𝑡ℎ cell in the next layer is computed by: 

  𝑧𝑗
(𝑖)

= 𝜎 (𝑊(𝑥𝑗
(𝑖)

𝑥𝑗+1
(𝑖)

 𝑥𝑗+2
(𝑖)

))  (3.27) 

where 𝜎 is activation function. In this work, the ReLU function described in the previous chapter 

was implemented as the activation of the CNN. 

  The pooling layers are responsible for data compression, by averaging or selecting the maximum 

values. As described in Figure 3.7-(b), the pooling layers reduce the dimension of incoming 

information. The FCL performs the same operation as the general NN, producing the final output 

vector which is related with the decision. Combining those layers altogether, the CNN projects 

high-dimensional input vectors into decision vectors, usually composed of 0, 1 and other digits.  

  As stated, researchers in engineering fields utilized CNN for categorical fault detection of 

machine components, by imposing some synthetic faults on the target and gathering faulty signals 

from them to train the CNN. However, it is difficult to simulate every sort of defect. Furthermore, 

running experiments on defective machines without replacement may lead to irreversible 

breakdown. Hence there is a limitation in collecting a large size of faulty data sets. For this reason, 

the CNN framework was implemented as a preliminary study to verify the possibility of 

categorization of sound signals from different conditions. More detailed derivation of 

backpropagation in CNN can be found in [67], [68]. 
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 EXPERIMENTAL PROCEDURE 

  We investigated the sound signals which were collected through the stethoscope-microphone 

system, while the robot arm was operating single-axis movements with different load conditions. 

The excessive load conditions were considered as anomaly, which are target outliers to be detected. 

The features were extracted from the sound spectrograms, then fed into autoencoders for training 

and testing. After extracting the features, the autoencoder structure was established to compute 

reconstruction error (RE) in order to detect anomalies. Experiments in both calm and noisy 

conditions were investigated in order to demonstrate the performance of the proposed method in 

real factory environments. 

4.1 Algorithm scheme 

Based upon the preliminary knowledge of the autoencoder, the anomaly detection algorithm can 

be organized as follows: 

1) The signals which are considered as “normal” or “acceptable” are collected to train the 

autoencoder. The dimension of the input and the depth of the autoencoder are selected by some 

iterations. Features are extracted from sound spectrograms, and then fed into the autoencoders. 

The detailed procedure is described in later sections.  

2) After training the autoencoder, the signals from both “normal” and “abnormal” conditions are 

collected for testing. Again, the features are extracted in the same way, then fed forward into the 

trained autoencoder. 

3) The REs are computed and compared in compliance with the load conditions. Some thresholds 

𝜀 are set up between “normal” and “abnormal” status in each axis.  
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Figure 4.1 illustrates the scheme of the proposed method. 

 
(a)  

 
(b) 

Figure 4.1 In our anomaly detection algorithm, (a) autoencoders are trained by features from 

good robot conditions. After training, features both from good and bad conditions are fed into the 

autoencoders to measure RE values. (b) By comparing the distributions of RE, a threshold can be 

set to distinguish the normal and the abnormal status. 
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4.2 Experimental setup 

The experiments are performed using KUKA KR6 6-DOF industrial robot. The robot is 

programmed to operate 6 single axial movements. For sound signal acquisition, two 3M Littmann- 

Classic II stethoscopes were attached, which have frequency range up to 500Hz, on the wrist and 

the base. The sound signals were transferred to the PC by connecting FIFINE USB microphone. 

The load conditions were assigned using different mass plates on the end effector, in order to 

simulate abnormal friction of joints (0, 1.25, 2.5, 5.0, 7.5, 10.0, 12.5lbs). The hardware setup and 

frequency specifications of sensors are shown in Figure 4.2 and Table 4.1. 

 
(a)                                                                                              (b) 

 
(c) 

Figure 4.2 For the experiments, (a) two stethoscopes are attached at the wrist and the base of 

robot arm, (b) different load conditions are assigned at the end of the manipulator. (c) The 

captured sound signals are delivered to a desktop through USB microphones. 
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Table 4.1 Specifications of sensors used in experiments. 

Sensor Model name Sampling frequency Response range 

Stethoscope Littmann 3M Classic II - 20Hz - 500Hz 

Microphone FIFINE K053 48kHz 20Hz - 16000Hz 

  As shown in Table 4.1, the sound signals were collected with sampling frequency of 48kHz, 

which is unnecessarily broader than the frequency response range of the stethoscopes. To decide 

on the appropriate frequency band, the audio system identification is performed in the next part. 

For noise isolation purpose, the contact locations of robot-stethoscope and stethoscope-

microphone are sealed with silicone and 3.2mm Peacemaker Sound Barrier, respectively (Figure 

4.3). Note that the sound transfer system identifications were performed before the noise rejecting 

management.  

 

Figure 4.3 Silicone and sound barrier sealing are applied in order to reject external noise. 

4.3 Audio system identification 

  To measure the output signal in the PC, the input signal was designed by following Chapter 3.2, 

then was transferred through incorporated stethoscope-microphone systems. For sound emission, 
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ETEKCITY ROVERBEATS T3 speaker was utilized to deliver the input signal designed from 

MATLAB. Received output signals were inverted to impulse responses ℎ(𝑡) by taking the inverse 

Fourier Transform (IFFT) of 𝐻(𝑓), derived from equation (3.9).  

 
(a) 

 
(b) 

Figure 4.4 Approximated impulse response h(t) and frequency response 20log10|H(f)| of the 

stethoscope at: (a) wrist, and (b) base. 

  Figure 4.4 shows approximated impulse responses ℎ(𝑡) and frequency responses 𝐻(𝑓). For 

verification, the real outputs 𝑦𝑟𝑒𝑎𝑙(𝑡)  and estimations 𝑦𝑒𝑠𝑡(𝑡) = 𝑠(𝑡) ∗ ℎ(𝑡)  are compared in 

Figure 4.5 with errors 𝑒(𝑡) = |𝑦𝑟𝑒𝑎𝑙(𝑡) − 𝑦𝑒𝑠𝑡(𝑡)|.  

  From the system identification process, we narrow down the range of frequency for data analysis. 

Since we set the data compression ratio as 50% in the later autoencoder processes, we restricted 

the frequency response range up to power of 2 (2k − 1) with 1Hz frequency resolution. As shown 

in Figure 4.4, it is sufficient to select 0Hz - 255Hz to get meaningful information, whereas 27(up 

to 127Hz) is lossy, and 29 (up to 511Hz) is redundant.  
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(a)  

 
(b) 

Figure 4.5 Real output 𝑦(𝑡) and estimation 𝑦′(𝑡) are compared with errors between them at:     

(a) wrist, and (b) base. 
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4.4 Data acquisition and feature extraction 

  The KUKA KR6 robot arm executes axial operations along every single joint (axis 1 – axis 6). 

The robot repeats the axial operation 5 times in each cycle, and the sound signals were captured 

by stethoscopes then delivered to PC through microphones (sampling frequency: 48kHz).   To test 

the feasibility of the algorithm in real factory environment, experiments were fulfilled in both calm 

and noisy conditions. The noisy environments were simulated by turning on the audio records from 

real factories nearby the robot arm. 

  Acquired signals were converted into spectrogram every second in accordance with equation 

(3.1), with a Hann window and 50% overlap applied (𝑚 = 24000 and 𝑅𝑘 = 1.0, 1.5, 2.0, 2.5 …). 

The features were extracted using the following procedure: 

1) The PSDs were filtered up to 255Hz. In this step, selecting the first 256 points in each PSD 

vector accounts for selecting the bandwidth up to 255Hz, since the frequency resolution of the raw 

spectrogram is 1Hz. After this, every single PSD has length of 256. 

2) The filtered PSDs were normalized to have values within 0 and 1. Equation (4.1) maps filtered 

PSDs into normalized vectors. This step is required since the scale affects performance of the 

autoencoder.  

  
𝑃𝑆𝐷𝑛𝑜𝑟𝑚

𝑘 (𝑖) =
𝑃𝑆𝐷𝑘(𝑖) − 𝑚𝑖𝑛(𝑃𝑆𝐷𝑘)

𝑚𝑎𝑥(𝑃𝑆𝐷𝑘) − 𝑚𝑖𝑛(𝑃𝑆𝐷𝑘)
 

 
(4.1) 

where 𝑃𝑆𝐷𝑘(𝑖) is 𝑖𝑡ℎ component in 𝑘𝑡ℎ PSD of spectrogram. 

3) After normalization, successive PSDs were concatenated along the time axis. Since the collected 

signals were not stationary, training the autoencoder with 1-dimensional PSDs may lead to 

confusion between normal and abnormal conditions. Rather, multiple PSDs are combined into 2-

dimensional PSD sequences in order to construct a 2-dimensional input for the autoencoder. The 
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tuning process for the time-length 𝑛  of spectrogram patch is described in later sections. The 

concatenation of 1-dimensional PSDs results in 256-by-n-2D images. Therefore, 𝑘𝑡ℎ  2-

dimensional feature 𝐹(𝑘) is configured through equation (4.2): 

  𝐹(𝑘) = [𝑃𝑆𝐷𝑛𝑜𝑟𝑚
𝑘  | 𝑃𝑆𝐷𝑛𝑜𝑟𝑚

𝑘+1  | … | 𝑃𝑆𝐷𝑛𝑜𝑟𝑚
𝑘+𝑚 ], 

𝑘 = 1,2,3, … (𝑚 − 𝑛) 

 

(4.2) 

where 𝑚 is the place of the first 1-dimensional PSD vector and 𝑛 is the time-length of the 2-

dimensional feature. The 𝑘𝑡ℎ feature starts from 𝑘𝑡ℎ PSD, not (1 + 8(𝑘 − 1))𝑡ℎ, in order to make 

features overlap to each other. This is needed because our sound recording system is not 

synchronized with the robot arm operation. Since the starting points are not the same, the features 

should be extracted with overlapped parts to include possible patterns. The whole procedure of 

feature extraction is described in Figure 4.6. 

 

Figure 4.6 Features are extracted by 1) bandpass filtering, 2) normalizing, and 3) binding the 

sound spectrogram images. 

To verify the noise rejection of our incorporated sound sensing system, Figure 4.7 compares 

processed signals (before PSD patch binding in Figure 4.6) from 6 axes, in both noiseless and 

noisy conditions. We noticed that there is little discrepancy between the external noise conditions. 
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Thus, data sets from both environments were fed into the autoencoders, then the results were 

compared for verification. 

 

    (a)                                                               (d) 

 

    (b)                                                               (e) 

 

    (c)                                                               (f) 

Figure 4.7 Sound spectrogram images both in the calm and the noisy environments are compared 

from the joint at: (a) axis 1, (b) axis 2, (c) axis 3, (d) axis 4, (e) axis 5, (f) axis 6. 

4.5 Preliminary study using the Convolutional Neural Network (CNN) 

In Figure 4.7, several identical patterns of spectrograms can be recognized. However, it is difficult 

to perceive the trend of pattern change, since the baseline is not a physical model. Instead, the NN 

framework takes over in discerning the trends of spectral patterns. For this purpose, the CNN 

architecture was applied to verify whether the NNs may learn the features of the spectra. 
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In this preliminary study, the CNN architecture was implemented to predict axis number by 

feeding forward the given input PSD, which is filtered up to 255Hz. The load condition for CNN 

application was restricted to 0lb. Based on the feature extraction process in Chapter 4.4, the 1-

dimensional CNN with 2 hidden layers was designed, starting from input size of 256. The target 

value of CNN was designated as the axis number in operation (axis 1 - axis 6). The structural 

attributes of designed CNN are described in Table 4.2 and Figure 4.8. 

Table 4.2 Hyperparameters of designed 2-hidden layer CNN; a hidden layer is composed of a 

convolution layer and a pooling layer. The max-pooling was applied in pooling layer. 

 
Weight array 

size 

Number of 

weight arrays 

Stride 

size 

Pooling 

size 

Output 

size 

Hidden layer 

1 
3 x 1 32 1 x 1 2 x 1 128 x 32 

Hidden layer 

2 
3 x 32 64 1 x 1 2 x 1 64 x 64 

 

 
(a) 
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(b) 

 
(c) 

 

(d) 
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(e) 

 
(f) 

Figure 4.8 As a preliminary study, a 2-hidden-layer CNN is designed to take a 1-dimensional 

sound PSD vector (0Hz - 255Hz) as input to predict the axis number in operation. The entire 

structure of our design is depicted in (a). (b) and (c) illustrates the first convolution and pooling 

process, and (d) and (e) illustrates the second convolution and pooling process. (f) describes the 

fully-connected layer (FCL) for final decision (6 axes).  

  Figure 4.8-(a) portrays the entire CNN procedure. We included 2 hidden layers, and each hidden 

layer consists of a convolution layer and a pooling layer. Initially, an input vector passes through 

the first convolution layer. As shown in Figure 4.8-(b), two zeros are attached to each side of the 

input vector to maintain the original size of input. After zero-padding, a 3x1 weight vector 𝑊 is 



40 

 

utilized to compute the convolution product vector, in size of 256x1. Since we have 32 different 

𝑊, a 256x32 matrix is derived as result. Next, the 256x32 matrix is compressed into 128x32 in the 

first pooling layer, as depicted in Figure 4.8-(c). As we selected the max-pooling method, a larger 

value is selected in every neighboring 2 different cells. In the second convolution layer, the 3x32 

weight matrices are used for convolution. Similar to the first convolution layer, 64 zeros are used 

for zero padding in the second convolution layer. As explained in Figure 4.8-(d), the pointwise 

multiplications of 2-dimensional matrices build up the convolution product in the second 

convolution layer. We have 64 different 𝐵, hence an output of the second convolution layer has 

the size of 128x64. As shown in Figures 4.8-(e) and (f), the output is compressed to 64x64 again 

in the second pooling layer, then flattened to 4096x1 vector in order to go through the fully-

connected layer (FCL). In the FCL, the weight array performs the multiplication in fixed location 

as the general NNs or autoencoders do, instead of convolution or sweep. The FCL produces a 6x1 

vector, which indicates the axis number. The target 6x1 vector is composed of single 1 and five 0, 

and the location of 1 stands for the axis number. For example, [0 0 0 1 0 0] and [0 1 0 0 0 0] 

indicate the axis 4 and axis 2, respectively. Then the errors between CNN output and target are 

computed for update process.  

  In the training session, the Adam optimizer [69] was employed with learning rate 0.0005, and the 

ReLU function was utilized as activation. Since the aim of this Chapter is not enhancing the 

performance, no further tuning process was carried out. The size of the training and testing data 

sets were 400 and 100, respectively. Figure 4.9 summarizes the testing results from both 

stethoscopes by trained CNNs, showing that the CNNs classify the joint number fairly, by learning 

from 1-dimensional spectrums. As a result, the signals from stethoscope 1 and 2 were matched to 

the joint number precisely with 92.03% and 91.7% accuracy respectively, using trained CNNs. 
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                                                 (a)                                                            (b) 

Figure 4.9 Joint number prediction results of a CNN using a stethoscope at:                               

(a) wrist, and (b) base. 

  Even though the prediction results are not state-of-the-art, we notice that the NN is a feasible 

approach in the classifying problem on spectral patterns. Motivated by this preliminary study, our 

work continues to build the anomaly detection algorithm using another NN framework, the 

autoencoder. 

4.6 Autoencoder design 

  In designing the structure of the autoencoder, the dimension of the input layer is determined by 

the time-length selection in the feature extraction process. The 2-dimensional features are stretched 

into 1-dimensional vectors then fed into the autoencoder. In the encoding phase, each dimension 

of the hidden layers is 1/4 of the dimension of the former layer. In contrast, in the decoding phase, 

the dimension of the latter layer is 4 times as large as the previous dimension.  To avoid overfitting, 
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20% dropout rate was applied [70] between every layer. In the tuning process, the dimension of 

the first input (256 x n) and the depth of the autoencoder were controlled in search of the optimal 

design. The basic design of the autoencoder and controls on structural hyperparameters are 

described in Figure 4.10. 

 

Figure 4.10 The structure of autoencoders is controlled by 4 different input dimensions (4, 8, 16, 

and 32) and 3 different hidden layer depths (1, 3, and 5). 

  To decide the NN structure for use among the given options, we established some standards as 

below: 

1) Higher reconstruction performance: Smaller final losses of training and validation are better.  

2) Avoiding overfitting: The loss difference between training and validation should be small. In 

other words, the ratio of the two losses closer to 1 is better. 
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3) Lighter computation load: If restrictions 1) and 2) are similarly satisfied among different 

structures, the simpler structure (lower depth and dimension) is better. 

  The selections of NN structure in each axis are detailed in chapter 3.2.6, by comparing the above 

standards after training.  

4.7 Results 

4.7.1 Data preparation 

  According to Figure 1.3, we separated the load conditions into two categories: normal (0lb - 2.5lb) 

and abnormal (5.0lb - 12.5lb). Since 5.0lb of load is close to the load capacity combined with the 

load of the connector, we classified the 5.0lb load as warning status. Firstly, data sets for training 

and validation were acquired for 12 days, only assigning normal loads (0lb - 2.5lb). Among them, 

the data for actual training were chosen from the first 10 days. Other data from the last two days 

were used for validation. After training autoencoders for each condition, data for testing were 

gathered for 10 days. Different from the first period of gathering, anomalous load conditions were 

also performed in the experiments. Figure 4.11 describes the overall data preparation process. 

 

Figure 4.11 Training and testing data sets were prepared both in calm and noisy conditions, by 

applying various load conditions. 
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  We trained autoencoders with different structural hyperparameters: the dimension of input, and 

the depth of the autoencoder. The most favorable structures were selected by measuring REs. 

Figure 4.12 summarizes data separations and training / testing procedures of the autoencoder for 

each axis. The validation processes were included in the training session. Consequently, 6 

differently trained autoencoders were created, with respect to 6 independent axes. After training 

the autoencoders, data sets collected in another period were used for testing.  

 

Figure 4.12 Gathered data sets were utilized for training and testing the autoencoder in each axis. 

4.7.2 Training results 

  In the training session, we applied the Adam optimizer [69], setting the initial learning rate to  

0.0005. Other hyperparameters and size of training and validation data sets are given in Table 4.3. 
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Table 4.3 Size of data sets for training and validation, and hyperparameters in training process; 

the number of features varies by the dimension of input (n), hence the size of training / validation 

data sets are represented by using n (=4,8,16,32). 

 Axis 1 Axis 2 Axis 3 Axis 4 Axis 5 Axis 6 

Training size 𝟑𝟎𝟖𝟑 − 𝒏 𝟐𝟏𝟏𝟗 − 𝒏 𝟏𝟓𝟕𝟓 − 𝒏 𝟒𝟐𝟕𝟐 − 𝒏 𝟐𝟖𝟎𝟏 − 𝒏 𝟔𝟕𝟕𝟗 − 𝒏 

Validation size 𝟔𝟑𝟑 − 𝒏 𝟒𝟑𝟒 − 𝒏 𝟑𝟏𝟒 − 𝒏 𝟖𝟕𝟎 − 𝒏 𝟓𝟖𝟐 − 𝒏 𝟏𝟑𝟗𝟑 − 𝒏 

Hyperparameters 

(shared) 

Optimizer: Adam 

Initial Learning rate: 0.0005 

Total epochs / batch size: 100 / 50 

 

With the hyperparameters given in Table 4.3, we scrutinized possible tuning options then selected 

the most favorable results according to the standards in Chapter 4. After choosing the structures, 

testing data sets were fed into the trained autoencoder to verify the separability of changes in load. 

The foundation results for selecting the structures are described in Tables 4.4 – 4.9. 

Table 4.4 Comparison of training results in axis 1. 

 Stethoscope #1 (wrist) Stethoscope #2 (base) 

Depth 

Dim 
1 3 5 1 3 5 

4 

Train loss 

0.0043 

Train loss 

0.0037 

Train loss 

0.0016 

Train loss 

0.0065 

Train loss 

0.0052 

Train loss 

0.0055 

Val loss 

0.0043 

Val loss 

0.0038 

Val loss 

0.0015 

Val loss 

0.0072 

Val loss 

0.0059 

Val loss 

0.0053 

8 

Train loss 

0.0033 

Train loss 

0.0030 

Train loss 

0.0009 

Train loss 

0.0063 

Train loss 

0.0045 

Train loss 

0.0050 

Val loss 

0.0035 

Val loss 

0.0053 

Val loss 

0.0015 

Val loss 

0.0063 

Val loss 

0.0046 

Val loss 

0.0048 

16 

Train loss 

0.0011 

Train loss 

0.0020 

Train loss 

0.0008 

Train loss 

0.0050 

Train loss 

0.0042 

Train loss 

0.0047 

Val loss 

0.0038 

Val loss 

0.0044 

Val loss 

0.0014 

Val loss 

0.0063 

Val loss 

0.0047 

Val loss 

0.0050 

32 

Train loss 

0.0174 

Train loss 

0.0020 

Train loss 

0.0009 

Train loss 

0.0045 

Train loss 

0.0041 

Train loss 

0.0047 

Val loss 

0.0162 

Val loss 

0.0045 

Val loss 

0.0013 

Val loss 

0.0062 

Val loss 

0.0047 

Val loss 

0.0050 
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Table 4.5 Comparison of training results in axis 2. 

 Stethoscope #1 (wrist) Stethoscope #2 (base) 

Depth 

Dim 
1 3 5 1 3 5 

4 

Train loss 

0.0082 

Train loss 

0.0046 

Train loss 

0.0042 

Train loss 

0.0065 

Train loss 

0.0043 

Train loss 

0.0035 

Val loss 

0.0075 

Val loss 

0.0064 

Val loss 

0.0063 

Val loss 

0.0065 

Val loss 

0.0044 

Val loss 

0.0038 

8 

Train loss 

0.0044 

Train loss 

0.0017 

Train loss 

0.0039 

Train loss 

0.0059 

Train loss 

0.0035 

Train loss 

0.0035 

Val loss 

0.0046 

Val loss 

0.0020 

Val loss 

0.0032 

Val loss 

0.0065 

Val loss 

0.0038 

Val loss 

0.0037 

16 

Train loss 

0.0041 

Train loss 

0.0012 

Train loss 

0.0031 

Train loss 

0.0037 

Train loss 

0.0034 

Train loss 

0.0009 

Val loss 

0.0046 

Val loss 

0.0021 

Val loss 

0.0029 

Val loss 

0.0049 

Val loss 

0.0038 

Val loss 

0.0037 

32 

Train loss 

0.0028 

Train loss 

0.0013 

Train loss 

0.0029 

Train loss 

0.0039 

Train loss 

0.0032 

Train loss 

0.0010 

Val loss 

0.0044 

Val loss 

0.0019 

Val loss 

0.0029 

Val loss 

0.0046 

Val loss 

0.0039 

Val loss 

0.0038 

 

Table 4.6 Comparison of training results in axis 3. 

 Stethoscope #1 (wrist) Stethoscope #2 (base) 

Depth 

Dim 
1 3 5 1 3 5 

4 

Train loss 

0.0072 

Train loss 

0.0068 

Train loss 

0.0046 

Train loss 

0.0121 

Train loss 

0.0081 

Train loss 

0.0062 

Val loss 

0.0067 

Val loss 

0.0071 

Val loss 

0.0068 

Val loss 

0.0114 

Val loss 

0.0088 

Val loss 

0.0092 

8 

Train loss 

0.0057 

Train loss 

0.0064 

Train loss 

0.0047 

Train loss 

0.0102 

Train loss 

0.0079 

Train loss 

0.0085 

Val loss 

0.0067 

Val loss 

0.0064 

Val loss 

0.0047 

Val loss 

0.0102 

Val loss 

0.0091 

Val loss 

0.0089 

16 

Train loss 

0.0053 

Train loss 

0.0047 

Train loss 

0.0045 

Train loss 

0.0074 

Train loss 

0.0055 

Train loss 

0.0085 

Val loss 

0.0067 

Val loss 

0.0048 

Val loss 

0.0047 

Val loss 

0.0098 

Val loss 

0.0088 

Val loss 

0.0088 

32 

Train loss 

0.0046 

Train loss 

0.0036 

Train loss 

0.0177 

Train loss 

0.0052 

Train loss 

0.0042 

Train loss 

0.0172 

Val loss 

0.0066 

Val loss 

0.0050 

Val loss 

0.0154 

Val loss 

0.0099 

Val loss 

0.0089 

Val loss 

0.0160 
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Table 4.7 Comparison of training results in axis 4. 

 Stethoscope #1 (wrist) Stethoscope #2 (base) 

Depth 

Dim 
1 3 5 1 3 5 

4 

Train loss 

0.0023 

Train loss 

0.0017 

Train loss 

0.0005 

Train loss 

0.0015 

Train loss 

0.0008 

Train loss 

0.0011 

Val loss 

0.0022 

Val loss 

0.0024 

Val loss 

0.0026 

Val loss 

0.0018 

Val loss 

0.0030 

Val loss 

0.0036 

8 

Train loss 

0.0004 

Train loss 

0.0010 

Train loss 

0.0009 

Train loss 

0.0014 

Train loss 

0.0006 

Train loss 

0.0009 

Val loss 

0.0023 

Val loss 

0.0011 

Val loss 

0.0011 

Val loss 

0.0022 

Val loss 

0.0030 

Val loss 

0.0035 

16 

Train loss 

0.0007 

Train loss 

0.0008 

Train loss 

0.0006 

Train loss 

0.0014 

Train loss 

0.0005 

Train loss 

0.0032 

Val loss 

0.0036 

Val loss 

0.0012 

Val loss 

0.0005 

Val loss 

0.0026 

Val loss 

0.0031 

Val loss 

0.0065 

32 

Train loss 

0.0003 

Train loss 

0.0008 

Train loss 

0.0006 

Train loss 

0.0013 

Train loss 

0.0002 

Train loss 

0.0032 

Val loss 

0.0029 

Val loss 

0.0011 

Val loss 

0.0005 

Val loss 

0.0024 

Val loss 

0.0029 

Val loss 

0.0065 

 

Table 4.8 Comparison of training results in axis 5. 

 Stethoscope #1 (wrist) Stethoscope #2 (base) 

Depth 

Dim 
1 3 5 1 3 5 

4 

Train loss 

0.0006 

Train loss 

0.0012 

Train loss 

0.0020 

Train loss 

0.0037 

Train loss 

0.0031 

Train loss 

0.0038 

Val loss 

0.0016 

Val loss 

0.0014 

Val loss 

0.0020 

Val loss 

0.0036 

Val loss 

0.0033 

Val loss 

0.0038 

8 

Train loss 

0.0012 

Train loss 

0.0008 

Train loss 

0.0017 

Train loss 

0.0036 

Train loss 

0.0028 

Train loss 

0.0034 

Val loss 

0.0013 

Val loss 

0.0013 

Val loss 

0.0014 

Val loss 

0.0036 

Val loss 

0.0034 

Val loss 

0.0035 

16 

Train loss 

0.0009 

Train loss 

0.0007 

Train loss 

0.0074 

Train loss 

0.0034 

Train loss 

0.0027 

Train loss 

0.0075 

Val loss 

0.0013 

Val loss 

0.0013 

Val loss 

0.0074 

Val loss 

0.0036 

Val loss 

0.0033 

Val loss 

0.0080 

32 

Train loss 

0.0008 

Train loss 

0.0007 

Train loss 

0.0074 

Train loss 

0.0029 

Train loss 

0.0028 

Train loss 

0.0075 

Val loss 

0.0012 

Val loss 

0.0014 

Val loss 

0.0074 

Val loss 

0.0037 

Val loss 

0.0034 

Val loss 

0.0080 
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Table 4.9 Comparison of training results in axis 6. 

 Stethoscope #1 (wrist) Stethoscope #2 (base) 

Depth 

Dim 
1 3 5 1 3 5 

4 

Train loss 

0.0122 

Train loss 

0.0111 

Train loss 

0.0059 

Train loss 

0.0053 

Train loss 

0.0007 

Train loss 

0.0018 

Val loss 

0.0140 

Val loss 

0.0105 

Val loss 

0.0077 

Val loss 

0.0059 

Val loss 

0.0010 

Val loss 

0.0027 

8 

Train loss 

0.0111 

Train loss 

0.0063 

Train loss 

0.0047 

Train loss 

0.0054 

Train loss 

0.0005 

Train loss 

0.0016 

Val loss 

0.0113 

Val loss 

0.0103 

Val loss 

0.0050 

Val loss 

0.0055 

Val loss 

0.0011 

Val loss 

0.0027 

16 

Train loss 

0.0063 

Train loss 

0.0043 

Train loss 

0.0036 

Train loss 

0.0047 

Train loss 

0.0005 

Train loss 

0.0044 

Val loss 

0.0065 

Val loss 

0.0052 

Val loss 

0.0037 

Val loss 

0.0055 

Val loss 

0.0010 

Val loss 

0.0048 

32 

Train loss 

0.0063 

Train loss 

0.0032 

Train loss 

0.0013 

Train loss 

0.0046 

Train loss 

0.0005 

Train loss 

0.0044 

Val loss 

0.0052 

Val loss 

0.0040 

Val loss 

0.0016 

Val loss 

0.0056 

Val loss 

0.0010 

Val loss 

0.0048 

  In Tables 4.4 - 4.9, the final losses of various autoencoder structures in each stethoscope are 

given. The elected designs are highlighted with bold, underlined characters. After selecting proper 

structures, the distributions of REs from different noise conditions were investigated to set up 

thresholds for anomaly detection. As a first step, the maximum RE values were designated as 

thresholds in each experiment. Figures 4.13 and 4.14 compare the REs and designate the first 

thresholds, and Tables 4.10 and 4.11 depict the maximum RE values to setup thresholds. The 

thresholds designated from training results were utilized to detect anomalies in the testing data set, 

in order to separate load conditions over capacity from acceptable load conditions.   
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         (a)                       (b) 

 

         (c)                       (d) 

 

         (e)                       (f) 

Figure 4.13 After training, REs are compared to set up the first threshold using mic #1, in:        

(a) axis1, (b) axis 2, (c) axis 3, (d) axis 4, (e) axis 5, (f) axis 6. 

Table 4.10 First threshold values in each axis are settled from the maximum REs using mic #1. 

 Axis 1 Axis 2 Axis 3 Axis 4 Axis 5 Axis 6 

Maximum 

RE 
0.00339 0.0220 0.0074 0.000734 0.00192 0.00266 

First 

threshold 
0.0035 0.0225 0.0075 0.00075 0.002 0.00275 

 

 

  



50 

 

 

         (a)                       (b) 

 

         (c)                       (d) 

 

         (e)                       (f) 

Figure 4.14 After training, REs are compared to set up the first threshold using mic #2, in:        

(a) axis1, (b) axis 2, (c) axis 3, (d) axis 4, (e) axis 5, (f) axis 6. 

Table 4.11 First threshold values in each axis are settled from the maximum REs using mic #2. 

 Axis 1 Axis 2 Axis 3 Axis 4 Axis 5 Axis 6 

Maximum 

RE 
0.0063 0.00535 0.0121 0.0031 0.00537 0.00184 

First 

threshold 
0.0065 0.0055 0.01225 0.0032 0.0055 0.0019 
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4.7.3 Testing results 

  After training and tuning autoencoders, test data sets were collected for 10 days. In each daily 

experiment, 7 different load conditions were assigned. Similar to the training session, experiments 

were performed in both calm and noisy conditions. The processed signals were fed into trained 

autoencoders to compute REs in each experiment. As illustrated in Figures 4.15 and 4.16, daily 

REs were compared to show separability of anomalies with preset thresholds from training results. 

The success rates of detection are summarized in Tables 4.12 - 4.17. 

 
(a) 

 
(b) 

 
(c) 
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(d) 

 
(e) 

 
(f) 

Figure 4.15 Thresholds from the training result are utilized to distinguish the normal and the 

abnormal status using mic #1, in: (a) axis 1, (b) axis 2, (c) axis 3, (d) axis 4, (e) axis 5, (f) axis 6;                                                    

the anomalies can be separated in axes 3 - 6 using mic #1. 
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(a) 

 
(b) 

 
(c) 

 
(d) 
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(e) 

 
(f) 

Figure 4.16 Thresholds from the training result are utilized to distinguish the normal and the 

abnormal status using mic #2, in: (a) axis 1, (b) axis 2, (c) axis 3, (d) axis 4, (e) axis 5, (f) axis 6;                                                    

the anomalies can be separated in axes 1 - 3 using mic #2. 

Table 4.12 Detection results in testing (Axis 1);                                                                          

Mic 1 fails to separate anomalous groups from normal groups (66%, 65%), while Mic 2 provides 

almost clear separation (93.3%, 100%). 

Mic 

#1 

load 

decision 
0lb 1.25lb 2.5lb 5.0lb 7.5lb 10.0lb 12.5lb 

Success 

rate 

Normal 0/20 20/20 20/20 8/20 20/20 0/20 0/20 40/60 

Anomalous 20/20 0/20 0/20 12/20 0/20 20/20 20/20 52/80 

Mic 

#2 

load 

decision 
0lb 1.25lb 2.5lb 5.0lb 7.5lb 10.0lb 12.5lb 

Success 

rate 

Normal 20/20 20/20 16/20 0/20 0/20 0/20 0/20 56/60 

Anomalous 0/20 0/20 4/20 20/20 20/20 20/20 20/20 80/80 
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Table 4.13 Detection results in testing (Axis 2);                                                                          

Mic 1 fails to separate anomalous groups from normal groups (86.7%, 75%), while Mic 2 

provides almost clear separation (95%, 98.8%). 

Mic 

#1 

load 

decision 
0lb 1.25lb 2.5lb 5.0lb 7.5lb 10.0lb 12.5lb 

Success 

rate 

Normal 12/20 20/20 20/20 19/20 0/20 1/20 0/20 52/60 

Anomalous 8/20 0/20 0/20 1/20 20/20 19/20 20/20 60/80 

Mic 

#2 

load 

decision 
0lb 1.25lb 2.5lb 5.0lb 7.5lb 10.0lb 12.5lb 

Success 

rate 

Normal 19/20 20/20 18/20 1/20 0/20 0/20 0/20 57/20 

Anomalous 1/20 0/20 2/20 19/20 20/20 20/20 20/20 79/80 

 

 

Table 4.14 Detection results in testing (Axis 3);                                                                          

Mic 1 successfully separates anomalous groups from normal groups (91.7%, 100%), and Mic 2 

also provides almost clear separation (91.7%, 98.8%). 

Mic 

#1 

load 

decision 
0lb 1.25lb 2.5lb 5.0lb 7.5lb 10.0lb 12.5lb 

Success 

rate 

Normal 18/20 20/20 17/20 0/20 0/20 0/20 0/20 55/60 

Anomalous 2/20 0/20 3/20 20/20 20/20 20/20 20/20 80/80 

Mic 

#2 

load 

decision 
0lb 1.25lb 2.5lb 5.0lb 7.5lb 10.0lb 12.5lb 

Success 

rate 

Normal 20/20 15/20 20/20 0/20 0/20 0/20 1/20 55/60 

Anomalous 0/20 5/20 0/20 20/20 20/20 20/20 19/20 79/80 

 

 

Table 4.15 Detection results in testing (Axis 4);                                                                          

Mic 1 successfully separates anomalous groups from normal groups (91.7%, 100%), while Mic 2 

fails to provide separation (96.7%, 0%). 

Mic 

#1 

load 

decision 
0lb 1.25lb 2.5lb 5.0lb 7.5lb 10.0lb 12.5lb 

Success 

rate 

Normal 20/20 15/20 20/20 0/20 0/20 0/20 0/20 55/60 

Anomalous 0/20 5/20 0/20 20/20 20/20 20/20 20/20 80/80 

Mic 

#2 

load 

decision 
0lb 1.25lb 2.5lb 5.0lb 7.5lb 10.0lb 12.5lb 

Success 

rate 

Normal 18/20 20/20 20/20 20/20 20/20 20/20 20/20 58/60 

Anomalous 2/20 0/20 0/20 0/20 0/20 0/20 0/20 0/80 
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Table 4.16 Detection results in testing (Axis 5);                                                                          

Mic 1 successfully separates anomalous groups from normal groups (90%, 100%), while Mic 2 

fails to provide separation (61.7%, 48.8%). 

Mic 

#1 

load 

decision 
0lb 1.25lb 2.5lb 5.0lb 7.5lb 10.0lb 12.5lb 

Success 

rate 

Normal 14/20 20/20 20/20 0/20 0/20 0/20 0/20 54/60 

Anomalous 6/20 0/20 0/20 20/20 20/20 20/20 20/20 80/80 

Mic 

#2 

load 

decision 
0lb 1.25lb 2.5lb 5.0lb 7.5lb 10.0lb 12.5lb 

Success 

rate 

Normal 10/20 17/20 10/20 20/20 20/20 1/20 0/20 37/60 

Anomalous 10/20 3/20 10/20 0/20 0/20 19/20 20/20 39/80 

 

 

Table 4.17 Detection results in testing (Axis 6);                                                                          

Mic 1 successfully separates anomalous groups from normal groups (88.3%, 100%), while Mic 2 

fails to provide separation (81.7%, 25%). 

Mic 

#1 

load 

decision 
0lb 1.25lb 2.5lb 5.0lb 7.5lb 10.0lb 12.5lb 

Success 

rate 

Normal 20/20 20/20 13/20 0/20 0/20 0/20 0/20 53/60 

Anomalous 0/20 0/20 7/20 20/20 20/20 20/20 20/20 80/80 

Mic 

#2 

load 

decision 
0lb 1.25lb 2.5lb 5.0lb 7.5lb 10.0lb 12.5lb 

Success 

rate 

Normal 20/20 20/20 9/20 0/20 20/20 20/20 20/20 49/60 

Anomalous 0/20 0/20 11/20 20/20 0/20 0/20 0/20 20/80 

 

 

4.8 Discussion 

4.8.1 Feasibility of proposed method 

  From the testing results, we compared the success rates from different conditions. Different from 

supervised classification problem, the anomalous status should be discernable by setting thresholds 

without predefinition of the class. When the algorithm confuses the estimation of the normal 

signal, new thresholds should be provided to include outliers from normal status. For example, the 

threshold in Axis 2 - microphone #2 (base) can be modified to make a perfect discrimination. 

However, Axis 4 - microphone #2 (base) has no proper threshold for a perfect discrimination, 

because of some overlaps between normal and abnormal status. Hence microphone #2 fails to 
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provide a solution for anomaly detection in Axis 4. Based upon the foundations above, feasible 

sensing sources for the autoencoder are illustrated in Table 4.18. 

Table 4.18 The feasibility of stethoscopes in each location is summarized; the stethoscope (#1) 

located at the wrist is applicable for monitoring axis 3 - axis 6, while the stethoscope (#2) at the 

base can be applied for monitoring axis 1 - axis 3. 

 Stethoscope #1 (wrist) Stethoscope #2 (base) 

Axis 1 Not available Available 

Axis 2 Not available Available 

Axis 3 Available Available 

Axis 4 Available Not available 

Axis 5 Available Not available 

Axis 6 Available Not available 

 

 

4.8.2 Summary and suggestions 

  So far, we have explored ways to utilize the autoencoder using only “normal” signals for anomaly 

detection, instead of the supervised categorical learning. Sound signals were collected, transferred, 

then analyzed through stethoscope-USB microphone systems. It was shown that the features from 

low-frequency spectrogram (0Hz - 255Hz) were enough to build an algorithm in this application.  

  Although the proposed method succeeded in discerning different groups, however, it does not 

reflect the detailed harshness of condition. For example, in Axis 3 - microphone #1 (wrist), the 

increasing trend in the REs does not follow the order of load amount (REs of 7.5lb, 10lb are usually 

higher than REs of 12.5lb). Likewise, this application may have some difficulties when the users 

seek the prediction of exact load condition values. 

  Similarly, the algorithm may confuse when subtle status appears between normal and abnormal. 

As shown in Axis 5 - microphone #1 (wrist), the REs from the 5.0lb condition are closer to the 

normal group than the anomalous group. This implies that the 5.0lb load condition has not changed 

the patterns in the spectrogram sufficiently in some axes. 
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  Besides, the importance of the mounting location of the sensor should be emphasized.  In the 

initial stage of work, deciding where to attach the stethoscopes was a primary issue. As 

summarized in Table 4.18, each stethoscope has its available range of detection with respect to its 

location. Thus, it is required to implement multiple stethoscopes when applying this work to other 

works which have multiple sources of sound emission. 
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 CONCLUSION 

5.1 Benefits and drawbacks 

  In this thesis, the autoencoder-based framework has been successfully implemented for anomaly 

detection of the industrial robot arm. In addition, it has been shown that the stethoscope is a viable 

sensing tool in factory areas as well as hospitals. However, there are some limitations in both the 

hardware and software aspects. In the contents below, the characteristics of the proposed method 

are summarized to help the achievements in future applications. 

5.1.1 Stethoscope as a sensing tool 

  One of the prime attributes of the stethoscope is its focusing effect. In our equipment 

incorporation, USB microphones are attached at the end of the rubber tube of the stethoscopes. 

Because of this focusing attribute, external noise become negligible when the target is emitting 

sounds. We verified this point by comparing spectrograms acquired from calm and noisy 

circumstances. 

  As stated in Chapter 3.3, the low frequency response range is another special feature of the 

stethoscope. When the target application does not require a high frequency range of data, 

stethoscopes can provide easier and cost-effective solutions. 

  However, the stethoscope is restricted in measuring sound signals. When it comes to the user’s 

need to construct a physical model and verify dynamic behaviors of the target, stethoscopes may 

fail to give the solution. Furthermore, the low frequency characteristic of stethoscopes can be not 

only a benefit, but also a limitation when broader range analysis is necessary.  
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5.1.2 Neural Network (NN) frameworks 

  The NN-based data analysis has an advantage that the users do not have to be experts with 

scientific background in each subject. As exhibited in our application, the strategy based upon NN 

enabled us to proceed toward given problems without establishing a structural model of the robot. 

  However, still we cannot verify the sources of pattern changes or anomalies in features solely by 

the NN approach. In addition, we cannot be certain that our designed NN models are the best 

solutions, since there is no theoretical way for finding the optimal tuning.  

  Nevertheless, NN-based data-driven method can be easily implemented in the initial stage of 

research in a variety of topics, to recognize the relationships between designated input and 

measured output. After this first step, designing the scientific models can be regarded as a follow-

up study in the scheme of research. 

5.2 Future work 

5.2.1 Further development of the sound sensor 

  Although the stethoscope is successfully employed as a sound sensing tool for anomaly detection, 

it is limited to the low frequency response range. By maintaining the benefit of the stethoscope, 

we are planning to develop a new sound sensing device for broader bandwidth, which exploits the 

focusing effect by sealing. Our target is to expand the range to the audible frequency range (up to 

20kHz). 

5.2.2 Increasing the number of data sets by using data augmentation   

  There have been many discussions about the size of data sets for proper training of NNs. Besides 

extensive works on optimizing the size of data sets [43], [71], it is recommended as rule of thumb 

to set the training size to at least 10 times the number of updatable parameters.  
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  However, the number of weights in our work exceeds the above standard. Practically, it is difficult 

to collect the data from experiments to satisfy the recommendation since our designed NNs have 

more than millions of variables. Instead, the data can be generated by other direct methods and 

NN strategies. As introduced in Chapter 2, adding noise or direct modulations can be a simple way 

to reproduce real signals. The GAN has also been widely employed to resolve the lack of 

experiment data in manufacturing subjects. 

5.3 Other ongoing applications 

5.3.1 Remote health monitoring of hydraulic motor (with Standard Industrial) 

  In our laboratory, some work on remote factory access using Raspberry pi is in progress. As a 

part of the work, we attached a stethoscope on a hydraulic motor of the pipe bending machine 

located in the Standard Industrial facility, and are collecting sound signals daily. Our goal is to 

build a cloud server to store a long-term history of factories and combine this with data analytics 

techniques. 

 
(a) 

 
(b)  

Figure 5.1 A hydraulic motor in the Standard Industrial is monitored by: (a) collecting sound 

signals using a stethoscope, and (b) delivering the signals to remote PC using Raspberry Pi. 
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5.3.2 Spindle unbalance detection (with Korea Institute of Machinery and Materials) 

  Applying a similar autoencoder-based framework, we are establishing a mass unbalance 

detection algorithm. As shown in Figure 5.1, we are gathering sound and vibration signals by 

changing the unbalance level. To simulate the mass unbalance, some nuts are mounted on the plate 

at the end of the spindle. This work is a collaborative project with the Korea Institute of Machinery 

and Materials. 

 
(a) 

 
(b) 

Figure 5.2 A case study on mass unbalance detection of spindle is performed by: (a) assigning 

mass unbalance, and (b) capturing the sound and vibration signals using accelerometer and 

stethoscope. 
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