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ABSTRACT

Keaton, Timothy J. Ph.D., Purdue University, August 2019. Dismembering the
Multi-Armed Bandit. Major Professor: Arman Sabbaghi.

The multi-armed bandit (MAB) problem refers to the task of sequentially assign-

ing treatments to experimental units so as to identify the best treatment(s) while

controlling the opportunity cost of further investigation. Many algorithms have been

developed that attempt to balance this trade-off between exploiting the seemingly

optimum treatment and exploring the other treatments. The selection of an MAB

algorithm for implementation in a particular context is often performed by compar-

ing candidate algorithms in terms of their abilities to control the expected regret of

exploration versus exploitation. This singular criterion of mean regret is insufficient

for many practical problems, and therefore an additional criterion that should be

considered is control of the variance, or risk, of regret.

This work provides an overview of how the existing prominent MAB algorithms

handle both criteria. We additionally investigate the effects of incorporating prior in-

formation into an algorithm’s model, including how sharing information across treat-

ments affects the mean and variance of regret.

A unified and accessible framework does not currently exist for constructing MAB

algorithms that control both of these criteria. To this end, we develop such a frame-

work based on the two elementary concepts of dismemberment of treatments and a

designed learning phase prior to dismemberment. These concepts can be incorporated

into existing MAB algorithms to effectively yield new algorithms that better control

the expectation and variance of regret. We demonstrate the utility of our framework

by constructing new variants of the Thompson sampler that involve a small number

of simple tuning parameters. As we illustrate in simulation and case studies, these
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new algorithms are implemented in a straightforward manner and achieve improved

control of both regret criteria compared to the traditional Thompson sampler. Ul-

timately, our consideration of additional criteria besides expected regret illuminates

novel insights into the multi-armed bandit problem.

Finally, we present visualization methods, and a corresponding R Shiny app for

their practical execution, that can yield insights into the comparative performances

of popular MAB algorithms. Our visualizations illuminate the frequentist dynam-

ics of these algorithms in terms of how they perform the exploration-exploitation

trade-off over their populations of realizations as well as the algorithms’ relative re-

gret behaviors. The constructions of our visualizations facilitate a straightforward

understanding of complicated MAB algorithms, so that our visualizations and app

can serve as unique and interesting pedagogical tools for students and instructors of

experimental design.

[Versions of the content primarily contained in Chapters 4 and 5 have been sub-

mitted to Statistical Science and Stat, respectively, and are under review. Some

included visualizations are animated, and the use of Adobe Acrobat is recommended

for proper viewing.]
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1. CHASING BANDITS: MEANS, MOTIVE, AND OPPORTUNITY

In current multi-armed bandit literature, a primary focus has been on a singular

criterion of average algorithm performance, failing to provide a complete picture of

the algorithm’s practical application. Additionally, the visual tools contained in this

literature are often relegated to somewhat bland summaries of results that do not

provide substantial insight into the process behind those results.

Our key contribution is that, as applied statisticians, we strive to focus on the

entire distribution of algorithm behavior as opposed to a singular measure of cen-

tral tendency. This perspective helps us understand the effects of tuning parameters

in prominent bandit algorithms, in particular how they affect the average algorithm

behavior as well as the consistency of the algorithm. This approach also guides our

construction of a new framework that helps control these aspects of algorithm per-

formance. To illustrate, we use primarily the Thompson sampler, but our approaches

and conclusions can be generalized to other algorithms as well.

Another important contribution is that, as educators and visual learners, we have

created engaging and enlightening visualizations to help teach and understand bandit

algorithm behavior. These dynamic tools can aid in creating better intuition into how

these algorithms operate, which we hope can provide a new perspective to inspire fresh

interest in and original contributions to multi-armed bandit research.
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2. INTRODUCING THE MULTI-ARMED BANDIT

2.1 The Need for Bandits and Evaluating Their Risk

Experimental design has been a pillar of applied statistics since the field’s in-

ception and should continue in this role for the foreseeable future. Thanks to the

pioneering work of Fisher (1937) and many others, experiments have been applied

in agriculture, clinical trials, marketing, and countless other fields. Technology gi-

ants like Google, Amazon, eBay, and Netflix sought to use experimental methods to

improve their services (Christian, 2012). However, due to the fast-paced nature of

the modern internet-connected world, there are new problems that traditional exper-

imental methods are not equipped to handle in an efficient manner. The scope of the

experiment needed to broaden.

For example, consider a company that wishes to modify a page on its website

to increase the number of clicks on a particular button. Each click, or conversion,

generates some amount of profit. Two proposed page designs are created, and an

example is provided in Figure 2.1. The traditional experimental design approach

to find the optimum design would randomly direct a large number of site visitors,

or experimental units, to a version of the webpage. The conversion rate in each

group would be measured, and the researcher could see if a certain design produced

statistically significantly better results than the others and would then be used as

the webpage’s design moving forward. This well-established approach is fairly easy

to implement and analyze. However, it comes with a major opportunity cost, as

many of the potential customers were presented with a suboptimal experience for a

substantial amount of time. A design strategy that directly targets this opportunity

cost of the online service industry is required (Scott, 2015).
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Adopt a Pet

ADOPT

Adopt a Pet

ADOPT

Design 
A

Design 
B

Figure 2.1. Different example webpage designs to evaluate via experimen-
tation.

Multi-armed bandit (MAB, Berry and Fristedt, 1985) problems constitute a novel

domain in the broad field of experimental design, and they can address the unique

features of the online service industry. A primary objective in this domain, which

is part of the broader field of reinforcement learning (Sutton and Barto, 1998), is

to sequentially assign treatments to experimental units so as to balance learning of

the treatments’ effects (i.e., exploring the different treatments) with earning from

the treatments’ implementation during the course of experimentation (i.e., exploiting

those treatments that appear most profitable given the collected data). Specifically,

algorithms for MABs involve either deterministic or probabilistic sequential decision

rules for assigning the possible treatments to experimental units so that undesirable

treatments are likely to be abandoned relatively early, leaving more desirable treat-

ments to be assigned and evaluated for future experimental units. The prominence

of MAB problems for real-life applications has advanced in parallel with the rapid

growth of the online service industry, which enjoys a significant and ever-expanding
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role in the global economy and touches upon nearly every type of daily activity (Scott,

2015). Multi-armed bandit algorithms can better address these tasks compared to

traditional designs. This is because experimenting on a web app involves the combi-

nation of a production line with a laboratory, and the opportunity cost of providing

suboptimum services to the app’s stream of users during the course of experimenta-

tion is of significant concern (Scott, 2015). In such settings, experimentation requires

a focus on tactical as opposed to scientific questions, i.e., Type II versus Type I errors,

which traditional experimental designs do not typically consider (Scott, 2010).

In Figure 2.2, we present a visualization of the difference between the traditional

experimental approach and a general MAB algorithm for a simplified case of two

available treatments labeled A and B. While treatment B is the more desirable, many

experimental units are wasted under the traditional assignment. An MAB approach

can recognize the disparity earlier, and it may choose to assign the more optimum

treatment much more frequently. Some further exploration of treatment A may still

occur under many algorithms, but this can be seen as a failsafe option in case the

initial observations were misleading due to random error. The utility of the dif-

ferent treatments is still explored, but the MAB allows the stakeholder to obtain

demonstrably better long-term gains than the traditional approach by minimizing

the opportunity cost and exploiting the more profitable option.

Traditional Experiment

A

T
re

a
tm

e
n

ts

B

A

T
re

a
tm

e
n

ts

B

Multi-Armed Bandit

…

Figure 2.2. A visual contrast of traditional experiments with MABs.

A potential limitation of current MAB algorithms is their sole focus on optimiz-

ing the expected profit while ignoring the variability, or risk, associated with their
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strategies. A specific algorithm may, on average, produce desirable results. However,

if the algorithm is only going to be implemented a handful of times or even just once,

the consistency of the results should also be of great concern. In many applications of

MABs, this is the case. Google might run thousands of tests on its search algorithms

in a given year (Christian, 2012), but a small locally-run business might only have the

resources to majorly update its website once every few years. The entire distribution

of the outcomes should be considered, not just one summary value.

Following a more technical introduction to MABs in Section 2.2, this concept of

considering the entire distribution of outcomes will be discussed in more detail in

Section 2.3. An overview of various prominent MAB algorithms is then provided in

2.4, and then a path is set for the remainder of this dissertation in Section 2.5.

2.2 Notations and Definitions

In this work we consider the standard MAB problem in which a fixed set of K ≥ 2

treatments are to be assigned to a sequence of experimental units, and the outcomes

for past experimental units guide the treatment assignment for future units. The

treatments are also referred to as “arms,” and the observed outcomes are referred

to as “rewards.” The assignment mechanism can be performed one unit at a time

or in batches. In either case, we denote the arm assigned to experimental unit i by

ki. In this work, we do not consider assignment mechanisms that depend on the

experimental units’ covariates, which fall under the contextual MAB problem.

The distribution of rewards for arm k = 1, . . . , K is modeled by a cumulative dis-

tribution function Fk (y | θk), where θk is the vector of (unknown) model parameters

for arm k. We let θ = (θ1, . . . , θK). A common model for MAB problems in which

arms are assigned on an individual basis and rewards are binary (with “1” denoting a

success and “0” a failure) is the Bernoulli distribution, and θk in this case represents

the probability that an experimental unit’s reward under arm k is a success. This

MAB problem is known as the Binomial Bandit. For more general cases in which the



6

rewards are unbounded counts of successes, the Poisson distribution may be used, and

the θk represent the expectations (as well as variances) of the counts. The Normal

distribution could be adopted as the model for MAB problems in which the rewards

are continuous numbers, with each θk = (µk, σ
2
k) for mean reward µk and reward

variance σ2
k. We primarily consider the Binomial Bandit in this section and the next

to demonstrate concepts for MAB algorithms, because it serves as a straightforward

starting point to discuss other bandits. As demonstrated in Section 4.3, the MAB

framework and algorithms developed in this work possess a wider scope of application

beyond Binomial Bandits.

A value vk(θ) is specified for each arm k based on its reward distribution. One

standard value is expected reward, i.e., vk(θ) =

∫ ∞
−∞

ydFk (y | θk). The arm with the

greatest value is the optimum arm and is denoted by k∗, while the arm assigned to

experimental unit i is denoted by ki. In both the Binomial and Poisson Bandits,

the optimum arm corresponds to the maximum θk, and in the Normal bandit the

optimum arm corresponds to the maximum µk.

2.3 Regret-Based Criteria: Mean and Variance

Many different algorithms can be formulated for an MAB problem. Formal met-

rics of algorithm performance must accordingly be adopted to evaluate candidate

algorithms and decide which should be implemented. Several standard metrics are

defined based on differences between the values of the arms assigned to the exper-

imental units and the optimum arm’s value, a type of opportunity costs which are

referred to as regrets. We formally define regret rn as the cumulative sum of the dif-

ferences between the value of the optimum arm and the values of the arms assigned

to all units up to and including unit n, i.e.,

rn =
n∑
i=1

{vk∗(θ)− vki(θ)} . (2.1)

The rn in Equation (2.1) are unknown, positive random variables. This definition

of regret was considered by Auer et al. (2002a) and Scott (2010), and has also been
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referred to as cumulative/cumulated regret (Chapelle and Li, 2011; Kaufmann et al.,

2012; Cherkassky and Bornn, 2013) and total regret (Agrawal and Goyal, 2012) to

distinguish it from the unit-level differences vk∗(θ)− vki(θ).

We visually compare the regret behaviors of candidate MAB algorithms by plot-

ting multiple independent realizations of the algorithms. Sample comparative visual-

izations for two algorithms, the Thompson sampler and the Greedy algorithm, which

will be discussed in Sections 2.4.5 and 2.4.1, respectively, are presented in Figure 2.3.

Plotting the individual runs of an MAB algorithm directly conveys how it navigates

the exploration-exploitation trade-off. For example, we observe from the topmost

curve of the left plot in Figure 2.3 that one run of the Thompson sampler frequently

exploited a suboptimum arm before its exploration of the other arms enabled the

exploitation of better arms, including the optimum (which is indicated by flatlining

of the regret curve). Also, a comparison of the runs in the left and right plots clearly

indicates that the Thompson sampler better navigates the exploration-exploitation

trade-off compared to the greedy MAB algorithm.

Quantitative criteria for MAB algorithms follow via summaries of their result-

ing distributions of the rn. One summary that has been of great emphasis is the

expectation of regret, with an MAB algorithm being better than another in this re-

spect if it has smaller expected regret for a certain number of experimental units.

Expected regrets are displayed as black curves in Figure 2.3 and are calculated as

sample means of the multiple runs. The development of a dynamic allocation index

applied to MABs by Gittins (Gittins and Jones, 1974; Gittins, 1979), later dubbed

the “Gittins index,” was a key step in the development of algorithms that control

expected regret (Whittle, 1980; Russo, 2018).

The traditional focus on expected regret is relevant for large-scale experiments

that involve optimizing several distinct aspects of a system or process; for some ex-

amples, see the recent work of Misra et al. (2019). However, this single criterion will

be insufficient for a smaller-scale operation whose survival depends on the consistent

performance of an MAB algorithm (as it would lack the resources to absorb losses
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compared to larger operations) or that are focused on optimizing fewer aspects (typ-

ically one). In many cases, an MAB algorithm is just run once in a certain setting.

At that point, the experimenter is likely not concerned with what regret the chosen

algorithm produces on average. The experimenter would care about the regret the

chosen algorithm produces in that one specific realization, and would therefore desire

the algorithm that produces the least risk. In such cases, an MAB algorithm must

be designed so as to adequately control the variance, i.e., risk, of regret. A summary

that can reflect the risk of an MAB algorithm on the same scale as expected regret is

the standard deviation of regret. These are displayed as dashed curves in Figure 2.3,

and are calculated as sample standard deviations of the multiple runs.
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Figure 2.3. Illustration of individual runs (gray curves), along with
the means (black, solid curves) and standard deviations (black, dashed
curves), of regret for two MAB algorithms. The left figure corresponds to
the Thompson sampler, and the right figure corresponds to the Greedy
algorithm. Plots are not on the same scale.

This attention to the variance of regret, which can considered an emphasis on

algorithm consistency, has not been incredibly prominent in MAB literature. Only

recently has the concept started to be briefly discussed (Chapelle and Li, 2011, p. 4;
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Lattimore and Szepesvari, 2019). To this end, we begin looking at the distribution of

regret over experimental units instead of focusing on the mean solely.

In Figure 2.4, we provide an example of two regret distributions resulting from

the ε-Greedy algorithm with different settings, choosing the regret at the final exper-

imental unit for illustration. Even within this one algorithm, the behavior of regret

changes considerably depending on the choice of tuning parameter (in this case, ε).

Furthermore, we observe much variation between simulation replicates within the

same algorithm setting. This algorithm and the behavior of regret in this exact

situation will both be discussed in more detail in Section 2.4.2.

Although comparing the algorithm mean and standard deviation at some arbitrary

terminal point is a fairly straightforward approach, the behavior of these metrics

over time, that is, experimental units, may also be of interest. To this end, we

can optionally plot the path of the standard deviation over experimental units as well

while suppressing the individual simulation replicate paths, as demonstrated in Figure

2.5. With this approach, a viewer has an alternate way to view how the consistency

of the algorithm’s regret performance changes over the algorithm’s run.

Consideration of both the mean and standard deviation of regret, whether in the

form of curves across experimental units or as individual values for a chosen terminal

unit, yield succinct and interpretable criteria for MAB algorithms. Accordingly, we

can optionally evaluate MAB algorithms by assessing their levels of control for the

combination of these two criteria. This composite criterion is relevant when an MAB

algorithm will be implemented only once, because an algorithm that controls risk

while minimizing expected regret is preferable in this case. An alternative formulation

of this composite criterion is the minimization of the expected squared regret, because

minimizing E (r2n) is equivalent to minimizing {E (rn)}2 + Var (rn).

Note that our consideration of the risk of regret differs from existing MAB cri-

teria. For example, the works of Audibert et al. (2009), Sani et al. (2012), and

Galichet et al. (2013) on risk control for MAB problems were primarily focused on

developing algorithms that identify the arm(s) with minimum reward variance. The
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Figure 2.4. ε-Greedy algorithms for ε = 0.001,0.2 with their corresponding
histograms of terminal regret. Standard deviations of terminal regret are
displayed in parentheses in the figures.

assignment of arms possessing low reward variances that generally occurs under such

algorithms could yield low algorithm variance, as algorithm runs might be more sim-

ilar to each other since the arm payouts would be more consistent. However, it does

not necessarily correspond to consistently smaller standard deviations of regret across

experimental units. Furthermore, such algorithms do not target the identification of
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Figure 2.5. The ε-Greedy algorithm for ε = 0.001,0.2 with paths displayed
for both the mean and standard deviation of regret.

the arm(s) with the greatest value, and so they do not directly tackle both the mean

and standard deviation of regret as our composite criterion does. Russo and Roy

(2016) do consider the square of expected regret in their information theoretic-study

of Thompson sampling. However, their treatment of this quantity differs from our

composite criterion for evaluating candidate MAB algorithms in that they seek to

guide exploration in a way that reduces the variance of the posterior distribution for

θk∗ .

Our first goal is to use our proposed metrics to evaluate common existing MAB

algorithms. Some algorithms might have a previously unrecognized value or shortcom-

ings based on this perspective. Another goal is to investigate whether new algorithms

can be developed that perform well under these metrics.
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2.4 Overview of Traditional Multi-Armed Bandit Algorithms

We now provide examples of a few prominent MAB algorithms currently in use.

This will by no means be an exhaustive review of the algorithms that have been

developed to approach MAB problems, but is intended to provide a reasonable in-

troduction and overview to the typical methodology employed. We will also focus on

how each of these algorithms handle control of the expectation and variance of regret,

especially in regard to their respective tuning parameters.

2.4.1 The Greedy Algorithm

The most basic MAB algorithm is known as the Greedy algorithm. Following a

pure exploration learning phase, the arm with the highest estimated value is selected

for every experimental unit moving forward. This requires that estimated values exist

for all arms, requiring each arm to be selected at least once during the learning phase.

There is no exploration at all in this algorithm following the conclusion of the learning

phase; the Greedy algorithm is pure exploitation. Its performance in minimizing

expected regret is wholly reliant on the accuracy of the estimates obtained from the

learning phase. If the optimum arm emerges from the learning phase as the most

promising, then the regret remains constant for the remainder of the experiment,

which is the most desirable outcome. However, if a suboptimal arm has the highest

estimated mean value at the conclusion of the learning phase, the regret will increase

at a constant rate until the experiment ends. This results in the expected regret

also having a constant increase, although the rate of this increase is determined by

the probability that the correct arm is selected. This probability is controlled by the

length of the learning phase as well as the separation of the arm values. We can easily

see this behavior exhibited when plotting the results from simulations.

The performance of this and other algorithms can be evaluated visually by graph-

ing the regret versus experimental unit, as described in Section 2.3. Figure 2.6 shows
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the results for the Greedy algorithm run on a Binomial Bandit with K = 5 arms for

two different learning phase lengths.

Figure 2.6. The Greedy algorithm, comparing learning phases of lengths
L = 200 and L = 600. The standard deviation curve is suppressed, with
the terminal value given in parentheses.

The learning phase can be seen as the first unpatterned linear trend in each part

of Figure 2.6 for the initial experimental units. After the learning phase, the algo-

rithm begins to run. The simplicity of the Greedy algorithm makes for K different

straightforward paths. The optimum arm may be selected after the learning phase,

and it would continue to be selected. In this case, no more regret is accumulated, as

the correct decision has been made, causing the regret to completely flatline following

the learning phase. If one of the K − 1 suboptimal arms are selected, then the regret

will increase at a constant rate. The less optimal the arm, the steeper this slope will

be. We can see by the relative darkness of the lines that the more optimal arms are

selected more often, as realizations are represented as semi-transparent gray lines.

The dark, thicker line represents the average behavior of the regret across all these

algorithm realizations, and the value displayed at the end of this line represents the
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estimate of the mean regret at the terminal experimental unit. The value in parenthe-

sis represents the standard deviation of the regret at the terminal experimental unit.

This approach to not display the standard deviation curve is taken to help visualize

the regret behavior with greater clarity in this instance.

The only tuning parameter in the Greedy algorithm is the length of the pure

exploration learning phase, which we will refer to as L. As we see in Figure 2.6,

changing L can have a considerable effect on the algorithm’s performance. With the

shorter learning phase of L = 200 experimental units, seen on the left side of the

figure, the algorithm produces five different options for which arm it has identified as

optimum, as within these replicates, each of the arms had the best performance during

the learning phase of at least one replicate. This creates a large standard deviation of

the regret at the terminal experimental unit, and it also results in a relatively steep

curve for the mean regret following learning. However, its mean performance over

the experimental window is better than that of the figure on the right side of the

figure with the longer learning phase of L = 600. We see here that the more time

spent exploring resulted in only four of the five possible arms ever being identified as

optimum. Additionally, this lengthier learning phase resulted in the mean regret curve

having a less steep slope than in the L = 200 case (suggesting that if the experiment

continues indefinitely, the L = 600 case would result in better mean performance).

By the terminal experimental unit, though, the mean performance for the L = 600

algorithm was worse than that of the L = 200 due to the extended time sampling

the suboptimal arms during the extended learning phase. One advantage, however,

is that the longer learning phase resulted in more consistent behavior between the

simulation replicates, as one might expect, as demonstrated by the lower terminal

standard deviation of regret.

The simplicity of the Greedy algorithm does not provide many avenues of oppor-

tunity for further study of this relationship between the mean and variance of regret.

There are, however, more involved algorithms that can provide additional insight into

this seemingly inverse relationship.
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2.4.2 The ε-Greedy Algorithm

A slightly more advanced algorithm is known as the ε-Greedy algorithm (Watkins,

1989). A generally quite small probability ε is selected before the algorithm is run.

Following a learning phase, where each arm must again be selected at least once, a

biased coin is flipped for each experimental unit. Exploitation occurs with probability

(1 − ε), and the arm with the highest estimated value is selected. However, with

probability ε there is exploration: among the arms that do not have the highest

estimated value, one is selected randomly with equal probability. The estimated

value of each arm is updated every time that arm is selected.

The extent of exploration in the ε-Greedy algorithm is primarily governed by the

selection of ε, which can be thought of as a tuning parameter. If ε = 0, the ε-Greedy

algorithm is very similar to the Greedy algorithm. However, due to the updating of

the estimated arm values in ε-Greedy, the arm that appeared optimal at the start of

the algorithm might eventually drop to appearing suboptimal, allowing the selected

arm to switch. The Greedy algorithm does not include this update step, and therefore

is always stuck on the same arm. With ε-Greedy, we see the ability of the algorithm

to make corrections thanks to the exploration and updating. ε-Greedy can have some

of the same patterns as Greedy, but there are many realizations where a more optimal

arm can be identified and switched to as the new arm of choice. This is exhibited

in the patterns where a line’s steep ascent switches to a less-steep ascent, or in cases

where the optimum arm is found, a flat horizontal line.

This is illustrated in Figure 2.7, which revisits the example shown previously in

Figures 2.4 and 2.5. In this particular case, we observe that the lower ε = 0.001

produces a lower mean regret but a higher standard deviation. The higher ε = 0.2

results in a higher mean regret but with greater consistency. This seemingly continues

the trend we saw from the Greedy algorithm, where these two metrics tend to be

inversely related to each other.
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Figure 2.7. The ε-Greedy algorithm, comparing ε = 0.001 to ε = 0.2,
each with a set learning phase of L = 200. The standard deviation curve
is suppressed, with the terminal value given in parentheses.

2.4.3 The Upper Confidence Bound Algorithms

Multiple Upper Confidence Bound (UCB) algorithms were introduced by Auer

et al. (2002a). Specifically, their UCB1 algorithm has been implemented and studied

extensively. UCB1 operates by first assigning each arm to experimental units once.

Then at each experimental unit n and for each arm k, upper confidence bounds for

vk(θ) are calculated as

ȳk,n +

√
2 log(n)∑n

i=1 1(ki = k)
, (2.2)

where ȳk,n represents the sample mean of rewards for arm k up to experimental unit n,

and
∑n

i=1 1(ki = k) represents the number of times arm k had been assigned through

experimental unit n. The arm with the maximum bound is chosen for assignment to

the next experimental unit n+ 1. There are no explicit tuning parameters for UCB1,

which can be seen as an advantage of the algorithm. However, that does not provide
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us with much opportunity to investigate how it handles the relationship between the

mean and variance of regret, so we consider a UCB variant which is a special case for

the Binomial Bandit.

We implement a UCB-based algorithm that employs a Gaussian approximation to

calculate the bounds. Similar to ε-Greedy and UCB1, estimated values for each arm

are updated after each experimental unit. In contrast, an estimate of the variance is

also updated. These values are then used to calculate the α-level upper bound of a

confidence interval for each arm’s true value. A significance level α is set beforehand

and can be thought of as a tuning parameter, along with a required pure exploration

learning phase of L experimental units. The arm with the highest upper confidence

bound is selected for assignment to the subsequent experimental unit. The more times

an arm is selected, the thinner its confidence interval becomes, shrinking the upper

confidence bound closer and closer to the arm’s estimated value. Arms that have not

been selected often tend to have very wide intervals, giving them a higher chance of

being selected in the future. This narrowing of the confidence intervals allows the

algorithm to explore, and the amount of exploration here is governed by the selection

of α. A small α encourages exploration, while a large α leans more heavily toward

exploitation. At one extreme, an α = 0.5 results in no additive term in the calculation

of the upper confidence bound. This then simplifies to the ε-Greedy algorithm with

ε = 0. Specifically, for a Binomial Bandit and arm k, let θ̂k,n represent the sample

proportion of successes that have been experienced so far. Then the upper confidence

bound for θk is calculated as

θ̂k,n + z1−α

√√√√ θ̂k,n

(
1− θ̂k,n

)
∑n

i=1 1(ki = k)
, (2.3)

where z1−α represents the 100(1−α)th percentile of the standard normal distribution.

Note that here we are defining α as one would for a one-sided confidence interval.

If a researcher is afraid that the true success probabilities are extreme, likely

resulting in early sample proportions of 0 or 1, and therefore a variance estimate of

0, then an adjustment like that proposed by Wilson (1927) can be implemented. If
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this is done, then no learning phase is required before the algorithm can commence.

This approach is not implemented here, but it is discussed in more detail in Section

3.1.

Figure 2.8. Comparing the performance of two Gaussian Upper Confi-
dence Bound algorithms for α = 0.001 and α = 0.1, each with a set
learning phase of L = 200. The standard deviation curve is suppressed,
with the terminal value given in parentheses.

To illustrate, we see in the left panel of Figure 2.8 an α = 0.001 gives the algorithm

a great amount of freedom to explore. This exploration allows the algorithm to correct

somewhat when it initially favors suboptimal arms, and it is able to move toward more

optimal arms fairly early. In contrast, the right panel with α = 0.1 does not explore

as much and tends to get stuck on suboptimal arms. Note especially how it gets

stuck on the least optimal arm in several realizations, as seen in the grouping of the

steepest lines. This stronger exploitation of α = 0.1 does decrease the mean regret,

however it does so at the expense of the regret’s variance.
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2.4.4 The Exp3 Algorithm

The Exp3 algorithm (Auer et al., 2002b) is the first of two probability matching

MAB algorithms we will discuss, and it will receive the lesser focus in this work. Under

the Exp3 algorithm, weights are assigned to each arm, initialized as equal weights.

These weights will be updated based on arm performance, with better-performing

arms being given higher weights (we exclude the full description of this part of the

procedure for the sake of brevity). An arm is assigned to the next experimental

unit according to probabilities. The probability that arm k, having weight wk,n at

experimental unit n, is assigned to experimental unit n+ 1 is calculated as

(1− γ)

(
wk,n∑K
i=1wi,n

)
+ γ

(
1

K

)
, (2.4)

where γ ∈ [0, 1] is a user-chosen “egalitarianism factor” (Burtini et al., 2015). Man-

ual tuning of the degree to which an Exp3 algorithm performs exploration versus

exploitation is achieved by the selection of γ, with larger γ yielding algorithms that

place greater emphasis on exploration. This can be clearly seen in the form of Equa-

tion 2.4, with the 1/K term corresponding to pure exploration.

We exclude illustrative figures at this point, as the trend is becoming quite clear.

The more aggressively an algorithm exploits, the greater improvement can be seen in

the mean regret. However, this comes at the cost of increased regret variance.

2.4.5 The Thompson Sampler

The Thompson sampler (Thompson, 1933) is a prominent Bayesian-based prob-

ability matching algorithm. This algorithm is a sequential, probabilistic decision

rule that adaptively assigns treatments to incoming experimental units based on the

Bayesian posterior probabilities of each treatment being optimum. The posterior

probabilities are calculated using the combination of observed treatment assignments

and outcomes for previous experimental units, models for the treatments’ outcomes,

prior distributions for the (unknown) model parameters, and Bayes’s rule.
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To formally describe the assignment mechanism for the Thompson sampler, con-

sider the Binomial Bandit and let y1, . . . , yn (n ≥ 1) denote the rewards for the

previous set of n units that were assigned arms based on this algorithm. We first cal-

culate pk,n+1 = Pr(θk = max {θ1, . . . , θK} | y1, . . . , yn, k1, . . . , kn) for each arm k using

Bayes’s rule, the specified reward model, and a joint prior distribution on (θ1, . . . , θK).

A reference prior typically adopted in this case is θk ∼ Uniform(0, 1) independently.

Under this prior, the θk are independent a posteriori and distributed as

Beta

(
1 +

n∑
i=1

yi1(ki = k), 1 +
n∑
i=1

(1− yi)1(ki = k)

)
, (2.5)

where
∑n

i=1 yi1(ki = k) is the number of successes and
∑n

i=1(1 − yi)1(ki = k) is

the number of failures for arm k. In practice, we can next approximate the pk,n+1

via Monte Carlo by repeatedly drawing from the posterior distributions of the θk

and calculating for each arm k the proportion p̂k,n+1 of times that the drawn θk

were the maximum in their respective θ draws. These approximations are finally

used to randomly sample one of the K arms for assignment to unit n + 1. It is

important to note that the previous description is not the unique implementation

of the Thompson sampler. A simpler, equivalent approach that is frequently used

involves sampling only one set of parameters from the joint posterior and choosing

the arm corresponding to the largest parameter draw (Agrawal and Goyal, 2012). We

describe in Section 4.2.1 why the former implementation can be preferable.

One feature of the Thompson sampler is that, under a proper prior on θ, it does

not require collecting data solely to explore the arms and enable inferences on param-

eters. Indeed, in this case the Thompson sampler can be implemented starting with

the first experimental unit by drawing the θk from their priors. Another feature is

that substantive prior information about an MAB problem can be incorporated into

the algorithm in a principled and conceptually straightforward manner via the prior

distribution on θ.

Much of the work in the remainder of this dissertation will be focused on the

Thompson sampler, and as such, the reader is spared figures at this point.
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2.5 Outline of Modifications to the Thompson Sampler

A reasonable starting point for developing algorithms that satisfy our desire for

variance control is to investigate possible modifications to existing accepted algo-

rithms. We have selected the Thompson sampler, described in Section 2.4.5, as our

primary candidate, as multiple studies have demonstrated its ability to better control

expected regret compared to competing MAB algorithms, which intuitively results

from its adaptive treatment assignment (Scott, 2010; Chapelle and Li, 2011; Agrawal

and Goyal, 2012, 2013). Therefore this algorithm, which has no explicit tuning param-

eters in its default form (Chapelle and Li, 2011, p. 8), can serve as a solid foundation

for further modification.

THE THOMPSON SAMPLER

Establish priors for parameters

Repeat for each experimental unit {

Calculate joint posterior of all 
parameters

Randomly select an arm, with a 
probability for each arm 
proportional to its posterior 
probability of being optimum

Assign that arm to the next 
experimental unit

}

What is the effect of 
changing these priors?

[1]

What if we set some of 
these probabilities to 0?

[2]

And what if they are set 
to 0 conditionally?

[3]

Figure 2.9. An outline of the Thompson sampler with proposed modifica-
tions.

In Figure 2.9, we present an outline of the Thompson sampler, wherein we identify

some key points for investigation. Firstly, the prior distributions employed by the

algorithm provide a reasonable starting point. Chapter 3 investigates the handling of

prior information in the Thompson sampler, including more general principles that

can be gleaned from such modifications.
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The second and third arrows in Figure 2.9 propose modifications made more di-

rectly to the assignment probabilities generated by the algorithm. Based on these

ideas, Chapter 4 introduces a new framework from which we derive two effective vari-

ants to the Thompson sampler that can improve mean regret while considering the

effect on the variance of regret.

Chapter 5 then takes an in-depth look at some of the dynamic visualization tech-

niques we developed while studying MAB algorithms. Finally, Chapter 6 concludes

and provides some thoughts on future directions for this research.
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3. PRIORS FOR THE MULTI-ARMED BANDIT

3.1 The Effect of Priors on the Thompson Sampler

As a Bayesian algorithm, the starting point for the Thompson sampler (described

in Section 2.4.5) is a prior distribution. For Binomial Bandits, this traditionally takes

the form of independent Uniform(0,1) priors on each of the arm success probabilities

θk. This simple reference prior provides ample opportunities for alterations, and the

choice of prior can be considered a tuning parameter for the algorithm.

To illustrate the possible influence of the choice of prior on the results of a Thomp-

son sampler, a preliminary study was done on a Binominal Bandit. Under the same

conditions, two sets of priors on the θ parameter vector were compared. The first

set of priors used the relatively uninformative Uniform prior between 0 and 1 for all

K arms independently. The second set of priors used a strongly informative Beta

prior with fairly low variance centered at θk for each arm independently. In practi-

cality, this Beta prior represented 100 theoretical runs of each arm with its expected

number of successes. For example, the prior used for the arm with θk = 0.10 was

Beta(α = 10, β = 90), as seen in Figure 3.1. This type of very informative prior,

though admittedly exaggerated here, might not be completely unreasonable if one

has a good idea of the neighborhood of the success rate.

We then see these priors implemented in Figure 3.2, and the resulting regret curves

are quite different. These results show that the choice of prior is unquestionably in-

fluential on the results. The algorithm with the reference Uniform priors is required

to take a long time exploring before it really can begin optimizing. The algorithm

with the strongly informative Beta priors eliminates such a need and has quite the

head start. The highly accurate priors reduced both the mean regret and the stan-
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Figure 3.1. A Uniform prior compared to an example Beta prior to be
used with Thompson samplers.

Figure 3.2. Simulation results for the Thompson sampler executed with
two choices of prior distributions.

dard deviation of the regret. Again, this is an extreme example for the purpose of

illustration.
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While the idea of incorporating prior information to a model might typically be

thought of as exclusive to Bayesian approaches, the idea is more general. For example,

when constructing a Gaussian-based UCB approach as described in Section 2.4.3, a

method originally proposed by Wilson (1927) and more recently studied by Agresti

and Caffo (2000) can be implemented. This approach, which includes two additional

pseudo successes and two additional pseudo failures when calculating a Binomial

confidence interval, acts as a surrogate prior. Though not explored in this work, the

effect of incorporating and manipulating this surrogate prior could also be of interest.

If reasonable prior knowledge about the distribution of the θk is available, then

it should be implemented. However, often this knowledge might be unavailable. To

this end, we next pursue a method that lets information be shared across arms via a

hierarchical prior.

3.2 Hierarchical Priors for the Thompson Sampler

One consideration we explored was the effect of adding a hierarchical structure

to the priors. After all, if the success probability for one arm is relatively low, the

other arms might have their θk in roughly the same neighborhood. By combining

information across arms, information gained from an experimental unit using one

arm can inform about the other arms as well. For example, if a Binomial Bandit has

arms all with very low success probabilities, the hierarchical prior should be able to

focus in on that in a shorter amount of experimental units. Instead of ignoring the

fact that the first (K − 1) arms have very low estimated θk, the hierarchical model

will use that information in estimating the last arm’s probability. This would be a

very realistic scenario for something like the aforementioned website conversion rate

example. In this framework, we assume the θk come from some common distribution,

the hyperprior. Using Gelman et al. (2013, p. 101) as a starting point for this model,

we attempted various hyperpriors with different reasonable practical interpretations.

Cherkassky and Bornn (2013) attempted traveling down a similar path with their
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sequential Monte Carlo bandits, resulting in efficient inference for θ in the contextual

bandit setting.

The Beta-Binomial hierarchical model assumes exchangeability of the θs, that is,

θi
iid∼ p(θ), i ∈ {1, 2, ..., K}. We attempted three hyperpriors on the Beta distribution

parameters α and β. As given by Gelman et al. (2013, p. 111), the first hyperprior

employed is uniform, i.e., flat, on
(

α
α+β

, 1√
α+β

)
. α + β can be thought of as the

prior number of trials, and α
α+β

can likewise be considered the prior success proba-

bility. The second hyperprior considered was constructed as α
α+β
∼ Beta(1, 2) with

1√
α+β
∼ Beta(2, 1), independently. This can be interpreted as the researcher having

weak confidence that success probabilities for the arm reward distributions are low.

The third hyperprior considered was similar, though now with both α
α+β
∼ Beta(1, 2)

and 1√
α+β
∼ Beta(1, 2), independently. Here the researcher would have high confi-

dence that the success probabilities are low. As with the majority of the simulation

studies presented in this work, we used low success probabilities in the arm reward

distributions to emulate the environment of the online service industry.

Table 3.1.
Statistics calculated from the regret of the 2000th experimental unit of
a Binomial Bandit, where success probabilities were generated from a
Beta(3,47) distribution. Estimates are based on 200 simulation replicates
for each setting. For a more comprehensive study, many more replicates
would be advised. However, given these lackluster results, efforts were
diverted to more promising avenues.

Prior Structure Mean Regret Regret Standard Deviation

Independent Uniform Priors 25.52 9.67

Hierarchical: Flat hyperprior 33.56 13.35

Hierarchical: Beta(1,2)∗Beta(2,1) 31.62 12.39

Hierarchical: Beta(1,2)∗Beta(1,2) 32.37 12.58

The reader is spared plots for simulation results, although summarized results are

presented in Table 3.1. Regardless of the hyperprior chosen, the hierarchical structure
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resulted in increases in both the mean and standard deviation of regret. This is, of

course, the opposite of the desired behavior for both metrics. From visually analyzing

individual simulation runs (see Figure 3.3 for an example), our interpretation is that

this hierarchy causes the posterior distributions to merge together. This shrinkage

essentially “muddies the waters” too much, and it causes the algorithm to explore far

too much and exploit far less than is desired.

Figure 3.3. A comparison of the posterior distributions for the Thompson
sampler with independent priors to one with a hierarchical prior structure.

Again, while this discussion has primarily been focused on the Thompson sampler,

the idea of shrinkage can be extended to other algorithms, such as UCB variants.

The previously-discussed Wilson (1927) approach to constructing Binomial confidence

intervals incorporates this idea already in its default form, but it may be modified

with even more added pseudo observations to emulate the effect of hierarchy. Again,

this approach is not pursued here.
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This detour did, however, point us in a more promising direction. If altering the

priors to increase the amount of exploration is detrimental, perhaps we could instead

alter the priors in a way that decreases the amount of exploration to produce more

desirable results.

3.3 U-Shaped Priors for the Thompson Sampler

Our second proposed change to the priors is much simpler to implement. Instead

of using the traditional independent Uniform(0,1) priors on the θk, we attempt more

general independent Beta priors. By using a Beta distribution with parameters α =

β < 1, we can construct a symmetric U-shaped prior. Such a prior implies the

interpretation that the success probabilities are either quite low or quite high. This

might not be an accurate representation of the researcher’s prior beliefs nor of reality,

but such a prior has the opposite effect of hierarchical priors. Instead of merging the

posterior distributions together, the U-shaped Beta prior essentially helps separate

the posteriors. Early performance of the arms has a slightly stronger effect on early

sampling; arms that perform well early on will be more likely to be sampled than

under the flat Uniform priors. This means that exploitation is encouraged more

strongly over exploration. A moderate U-shape produced by a Beta(0.5,0.5) prior

sees a decrease in the mean regret. However, the push to make Thompson Sampling

a bit more exploitative like the Greedy algorithm does have the drawback of increasing

the variance of the regret. If a sub-optimal arm has good performance early on, as it

might just by random chance, it is more difficult for an algorithm using a U-shaped

prior to recover. It should also be cautioned that more extreme U-shapes, such as

that produced by the Beta(0.01,0.01) distribution, result in a detriment to both the

mean and variance. Such a case weights exploitation far too heavily to be beneficial.

These candidate prior distributions are displayed in Figure 3.4.

As mentioned previously, changing the traditional Uniform priors, which are

Beta(1,1), to U-shaped priors like the Beta(0.5,0.5) is a mechanically simple change
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Figure 3.4. The candidate prior distributions considered for use in the
Thompson sampler for a Binomial Bandit. The first plot corresponds
to the standard Uniform prior, while the other two plots correspond to
considered U-shaped priors.

to implement. Any current user of a Thompson sampler who wishes to reduce the

mean regret without regard for the variance can make a very slight change to the

start of their algorithm for any projects moving forward. The initial additive value

of 1 in each of the parameters of the Beta posteriors presented in Equation 2.5 would

only need to be changed to a value of 0.5.

As seen in Figure 3.5, the moderately U-shaped Beta(0.5,0.5) prior enjoys a de-

crease in the mean regret but a slight increase in the standard deviation when com-

pared to the results using the standard Uniform prior. This behavior can be attributed

to the fact that the new prior makes the Thompson Sampler behave a little more like

the Greedy algorithm. Well-performing arms are sampled more heavily due to high

density close to θ = 1. This makes the algorithm exploit a bit more than than it does

under the Uniform prior.

On the other hand, the extremely U-shaped Beta(0.01,0.01) prior pushes the al-

gorithm much too far to the exploitation side of the exploration-exploitation scale. If

a less-optimal arm performs well early on, the incredibly high density close to θ = 1

makes the algorithm favor that arm far too much. This decreased exploration of the



30

other more-optimal arms leads to to a very undesirable increase in both the regret’s

mean and standard deviation.

Figure 3.5. Simulation results for the regret performance of Thomp-
son samplers using different Beta prior distributions. The Uniform, or
Beta(1,1), prior results in a terminal mean regret of 53.04 with a stan-
dard deviation of 25.23. The moderately U-shaped Beta(0.5,0.5) prior
results in a terminal mean regret of 48.94 with a standard deviation of
26.13. The extremely U-shaped Beta(0.01,0.01) prior results in a terminal
mean regret of 71.96 with a standard deviation of 75.85.

The very simple implementation of the Beta(0.5,0.5) prior for a Binomial Bandit

can be suggested for organizations and researchers who want an easy way to slightly

decrease the mean regret without an incredible detriment in the consistency of perfor-

mance enjoyed in the standard Uniform prior case. In general, a moderately U-shaped

prior is an easy change to implement at the outset of a Thompson sampler, and it

can provide a desirable reduction in mean regret. In cases beyond the Binomial Ban-

dit, priors with more weight near extreme values should have a similar effect to the

U-shaped priors discussed here.

3.4 Concluding Thoughts on Prior Distributions

Our investigations into the effect of prior distributions have shown that alterations

that encourage more exploitation over exploration seem promising. However, we have
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not yet achieved our goal. We wish to decrease the mean regret while also controlling

the variance of the regret. In this pursuit, we turn our attention away from modifying

the prior distributions to focus on the posterior distributions. This aligns us with

Chapelle and Li (2011, p. 4), who suggested that modifying the posteriors in a way

that reduces exploration can be beneficial in reducing mean regret. In Chapter 4, we

will strive to find such a modification that does so while also controlling the variance

of regret.
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4. DISMEMBERMENT AND DESIGN FOR THE MULTI-ARMED

BANDIT

4.1 The Design of Multi-Armed Bandit Algorithms That Control the

Mean and Variance of Regret

In this chapter, we develop a framework for constructing MAB algorithms that

reduce the expectation of regret and control the variance of regret in comparison

to existing algorithms. Our framework is based on two fundamental concepts. The

first is the explicit dismemberment of treatments that do not appear to be optimum,

and the second is the administration of an initial learning phase so as to explore the

different treatments. The first concept targets minimization of expected regret, and

the second directly targets risk reduction. These two general concepts can be usefully

incorporated into current popular MAB algorithms, such as the Upper Confidence

Bound algorithms, the Exp3 algorithm, and the Thompson sampler, to yield new

MAB algorithms with improved performance in terms of these criteria.

Our framework for constructing new MAB algorithms that control both the expec-

tation and variance of regret is in contained in Section 4.2. Comparative evaluations

of the performances of new algorithms constructed by considering the Thompson

sampler under our framework are performed via simulation in Section 4.3. Our sim-

ulation studies are conducted according to the reasoning of Draguljić et al. (2014),

specifically, to address the goal of providing insights into how our framework can be

utilized for real-life applications. An emulated application of our framework for the

problem of comparing opening moves in the game of chess is in Section 4.4. Our

concluding remarks on future directions of research that could be pursued under our

new MAB framework are provided in Section 4.5.
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4.2 The Concepts of Dismemberment and a Designed Learning Phase

Our framework for constructing MAB algorithms that control both the expecta-

tion and variance of regret involves two essential concepts. The first concept is the

dismemberment of arms for certain sets of experimental units. For an MAB problem

with K total arms, dismemberment with d arms (1 ≤ d < K) is said to be performed

for an experimental unit if it can only be assigned one of d selected arms. Under dis-

memberment, the assignment probabilities for the other K − d arms are set to zero,

and the assignment probabilities for the d selected arms are reweighted accordingly

using their original probabilities from the unadjusted MAB algorithm. The second

concept is the design of a learning phase at the start of the MAB algorithm in which

exploration of all arms for a prespecified number of experimental units is performed.

These two concepts can target different aspects of the exploration-exploitation

trade-off, and accordingly have different effects on the expectation and variance of

regret for an MAB problem. Dismemberment decreases exploration and increases

exploitation. Its practical rationale is to remove suboptimum arms from consider-

ation and assign only superior arms to experimental units. The incorporation of

dismemberment in an MAB algorithm can thus reduce expected regret compared to

the unadjusted algorithm. A designed learning phase can be focused on exploration,

collecting data from all arms so as to reduce uncertainties on their model parameters.

This can control the variance of regret.

Dismemberment and a designed learning phase can be usefully incorporated into

current MAB algorithms. Certain popular algorithms implicitly use simple imple-

mentations of these two concepts. For example, the Greedy algorithm uses a fixed

learning phase (typically consisting of a completely randomized design) and then per-

forms dismemberment with d = 1 selected top arm. The standard UCB algorithms

implement a learning phase but not dismemberment, although the latter could be

easily incorporated after the former. The combination of these two concepts has

not yet been considered for the Thompson sampler. Thall and Wathen (2007) and
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Scott (2015) introduced tuning parameters for the Thompson sampler that modify

the assignment probabilities, but these adjustments are not directly related to either

dismemberment or a learning phase. We detail in the remainder of this section how

both of these concepts can be effectively incorporated into the Thompson sampler.

This discussion is also applicable to other popular MAB algorithms, e.g., the UCB

algorithms and the Exp3 algorithm.

4.2.1 Dismemberment in Thompson Sampling: d-Thompson

We refer to dismemberment in the Thompson sampler as the d-Thompson sampler.

This dismemberment can be performed by reweighting the selected top arms’ posterior

probabilities of being optimum according to the exclusion of the posterior probabilities

for the other arms. An example of this adjustment for one experimental unit is in

Table 4.1. It is important to note that no single set of arms will be permanently

dismembered for all units. This is because all arms’ posterior probabilities of being

optimum are re-calculated for each new unit based on all previous data. As these

probabilities are used to select the set of arms considered for assignment to a new

unit, the selected arms could change across the units. Setting d = K results in the

standard Thompson sampler, and as d decreases the distribution of regret for this

algorithm can share similar characteristics as that for the Greedy algorithm, as it

places greater emphasis on exploitation.

The calculation of the assignment probabilities for the d-Thompson sampler is

distinct from the previously described method for the standard Thompson sampler

that is based on only one set of posterior draws of model parameters. The latter

cannot easily accommodate the general concept of dismemberment, although it does

enable other, distinct approaches to limit exploration that we discuss below. Multiple

posterior draws of the model parameters can accommodate dismemberment in a more

straightforward and flexible manner. These multiple draws enable explicit Monte

Carlo approximations of the arms’ posterior probabilities of being optimum as well as
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Table 4.1.
The adjustment in d-Thompson with K = 5 and d = 2 on the arms’
assignment probabilities (i.e., posterior probabilities of being optimum)
for one experimental unit. This unit will be assigned one of the two most
promising arms, with the probabilities being reweighted versions of the
originals according to the removal of the other arms from consideration.

Arm

1 2 3 4 5

Assignment

Probabilities

Pre-Dismemberment 0.05 0.20 0.05 0.60 0.10

Post-Dismemberment 0 0.25 0 0.75 0

simple modifications to them that directly alter the exploration-exploitation trade-off

for the algorithm. We note that the algorithms of Thall and Wathen (2007) and Scott

(2015) were also based on having multiple posterior draws of parameters.

The change in assignment probabilities performed in d-Thompson corresponds to

a suggestion made, and pursued differently, by Chapelle and Li (2011, p. 4) to ad-

just the arms’ posterior probabilities of being optimum so as to reduce exploration

and thereby improve expected regret. The Top-Two Thompson sampler of Russo

(2018) can be seen as similar in spirit to d-Thompson with d = 2. However, a major

difference is that the Top-Two Thompson sampler operates according to the sim-

pler Thompson implementation. Specifically, it repeatedly obtains posterior draws

of the model parameters until the top two optimum arms are identified. Then a

tuning parameter β is introduced to manually define the assignment probability for

the seemingly best arm, with the identified top two arms being the only possible

assignments for a new experimental unit. Several other fundamental differences exist

between this algorithm and d-Thompson besides their forms of implementation. First,

the ranking of the arms is fully determined in d-Thompson when the arms’ posterior

probabilities of being optimum are estimated, and there is no need to perform further

additional posterior draws as is done in the Top-Two Thompson sampler. Second,



36

d-Thompson does not involve any manual tuning of assignment probabilities for top

arms, as those probabilities are already defined by their reweighted assignment prob-

abilities. Finally, consideration of arms beyond the top two can be performed in a

more direct and straightforward manner under d-Thompson compared to the general

Top-m approach of Russo (2018).

Bubeck and Sellke (2019) recently studied a modification of the Thompson sam-

pler that performs a distinct form of dismemberment. Their algorithm is known as

Thresholded Thompson Sampling, and involves temporarily excluding from assign-

ment those arms whose posterior probabilities of being optimum are below a specified

threshold. Such an exclusion of arms is referred to as “freezing” them, and was previ-

ously considered by Allenberg et al. (2006) and Lykouris et al. (2017) for other MAB

algorithms. For example, Lykouris et al. (2017) implements a secondary thresholding

step following the initial freezing for the Exp3 algorithm. A feature of Thresholded

Thompson Sampling is that the number of frozen arms can potentially fluctuate over

experimental units. We will address this type of behavior in the following section.

The meaningful and effective selection of a threshold on the probabilities under the

approach of Bubeck and Sellke (2019) can be less intuitive or straightforward to imple-

ment in certain settings compared to the dismemberment of arms under d-Thompson.

4.2.2 Thompson with Adaptive Dismemberment Design

The incorporation of a designed learning phase prior to dismemberment in the d-

Thompson sampler is a refinement in which the number of dismembered arms changes

across the sequence of experimental units. We refer to this algorithm as a Thompson

with Adaptive Dismemberment Design (TADD) sampler. In the simplest implementa-

tion of a TADD sampler, a single new tuning parameter L is introduced that indicates

the experimental unit index for which the learning phase ends, and the dismember-

ment of arms occurs afterwards. A wide variety of MAB algorithms or experimental

designs could be implemented during the learning phase of a TADD sampler (where
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no arms are dismembered), but in this work we consider learning phases that involve

the standard Thompson sampler. More formally, in this TADD sampler d is set to

K for experimental units i = 1, . . . , L, and d is set to a value less than K for units

i = L+1 and beyond. Other TADD samplers involving multiple changes in d can also

be formulated. Potential disadvantages of such algorithms include the complicated

effects on the expectation and variance of regret that result from the additional tuning

parameters along with increased difficulty associated with their implementation.

The tuning parameter L in a TADD sampler is expected to control the variance of

regret for experimental units after the learning phase. This is because the posterior

distribution of the model parameters after L experimental units can be viewed as an

updated prior distribution on the parameters for a new experimental unit (Gelman

et al., 2013, p. 9). A thoughtful design of the learning phase for a TADD sampler

can thus yield an informative prior on the parameters with reduced inferential un-

certainties, and hence it can improve the consistent dismemberment of inferior arms

compared to d-Thompson. It is important to recognize that the single tuning param-

eter of d in d-Thompson is unlikely to enable simultaneous control of both the mean

and variance of regret, which can be viewed as an optimization problem involving two

distinct objectives and generally requiring at least two tuning parameters to solve.

The two independent tuning parameters of d and L in TADD possess the capability

for such simultaneous control. Simulation studies in Section 4.3 further demonstrate

this capability.

In practice, L can be tuned based on prior knowledge of the MAB problem. For

example, if it is thought that there exists a large gap between the top and poorly

performing arms, then L can be set at a small or moderate value. Another approach

to specify both d and L for a TADD sampler follows by considering their “power” to

identify the optimum arm. The True Identification Rate (TIR) of a TADD sampler

with selected values of d and L is defined as the probability that the optimum arm has

a posterior probability of being optimum that is among the top d of all of the arms’

posterior probabilities after L experimental units under the sampler. An illustration of
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the True Identification Rates for different TADD samplers in the context of Binomial

Bandit problems is in Figure 4.1. This figure was constructed via simulation for

the cases of K = 5 and θ = (s, 2s, 3s, 4s, 5s) for different separation values s =

(0, 0.01, . . . , 0.05). For s = 0, θ = (0.06, . . . , 0.06), and one arm was fixed as the

optimum for the purposes of the simulation. If one is interested in a particular d,

then L can be chosen on the basis of these plots to construct a TADD sampler with

a specified TIR. Alternatively, if one is given a budget for L, then d can be chosen

based on the plots.

Figure 4.1. Estimated True Identification Rate (TIR) curves for dif-
ferent TADD samplers in Binomial Bandit problems with K = 5 and
θ = (s, 2s, 3s, 4s, 5s) for separation values s = (0, 0.01, . . . , 0.05). For
s = 0, θ = (0.06, . . . , 0.06), and one fixed arm is selected as the optimum.
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4.3 Evaluating Dismemberment and Learning in the Thompson Sampler

In this section, we conduct simulation studies to compare the performances of the

Thompson, d-Thompson, and TADD samplers for the Binomial, Poisson, and Normal

Bandits. Our studies yield a broad understanding of the effects of dismemberment

and the learning phase on the expectation and standard deviation of regret for other

MAB problems. This is because these three MAB problems are useful models for

many practical problems with discrete or continuous rewards, and also because they

involve different types of relationships between the mean and standard deviation of

rewards.

The number of replicates in a simulation study of an MAB algorithm is of impor-

tance for the estimation of its expectation and standard deviation of regret. Many

previous simulation studies involved small or moderate numbers of replicates. For

example, Cherkassky and Bornn (2013) used 50 replicates and Scott (2010, 2015)

used 100 replicates. In general, a large number of replicates should be performed to

obtain accurate and precise estimates, and correspondingly reliable conclusions, on

the expectations and standard deviations of regret for candidate MAB algorithms. To

illustrate this fact, two independent sets of 100 replicates of the Thompson sampler

for the Binomial Bandit with K = 5 and (θ1, . . . , θ5) = (0.02, 0.04, 0.06, 0.08, 0.1) are

summarized in Figure 4.2. For each experimental unit in each replicate, the arms’

assignment probabilities are estimated using 100 posterior draws of the parameters.

By inspection, 100 replicates can result in large uncertainties for the mean and stan-

dard deviation estimators. More replicates are necessary to reduce the uncertainties

to a more acceptable level, e.g., by an order of magnitude. We use either 104 or 105

replicates, and confirm in each simulation that the chosen number yields sufficiently

accurate and precise estimates of the mean and standard deviation of regret.
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Figure 4.2. Estimates of the expectation and standard deviation of regret
for two independent sets of 100 replicates of the Thompson sampler for
the Binomial Bandit. The estimates of the expectation and standard
deviation of regret at the terminal experimental unit for the first set of
replicates are 56.31 and 24.90, respectively, and the respective estimates
for the second set are 51.55 and 19.72.

4.3.1 Evaluations for the Binomial Bandit

Our evaluations for the Binomial Bandit involve the moderate number of arms

K = 5 and low success probabilities (θ1, . . . , θ5) = (0.02, 0.04, 0.06, 0.08, 0.1). This

context reflects the type of MAB problems encountered in the online service industry.

TADD samplers based on all combinations of d = 2, 3, 5 and L = 0, 500, 1000, 1500,

2000, 2500, 3000 are evaluated. The TADD samplers with d = 5 and any value of

L are equivalent to the Thompson sampler, and those with d = 2, 3 and L = 0 are

d-Thompson samplers. For the former set of samplers, the changes in L have no

effect on the distribution of regret, and all summaries (e.g., expectation and standard

deviation) of regret are equivalent to the corresponding summaries for the TADD
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sampler with d = 5 and L = 0. As before, assignment probabilities are estimated

based on 100 posterior draws of parameters.

Inferences on the expectation of regret, standard deviation of regret, and ex-

pectation of squared regret for experimental unit 105 (referred to as the “terminal

experimental unit”) in this simulation study are summarized in Tables 4.2, 4.3, and

4.4, respectively. In these tables, decreases in d correspond to increases in the num-

ber of arms dismembered. The first row of each table enables comparisons of the

Thompson and d-Thompson samplers, and the other rows enable comparisons of all

three MAB algorithms. Two sets of conclusions can be drawn from these tables.

We first observe that as d decreases, the corresponding d-Thompson samplers yield

smaller expected regret at the cost of higher standard deviation of regret compared

to the Thompson sampler. This is illustrated by means of Figure 4.3 for the case

of d = 2, with the d-Thompson sampler favoring exploitation over exploration and

its realizations having characteristics in common with those of the Greedy algorithm.

Realizations of the d-Thompson sampler with d = 1 (omitted here) more strongly

resemble those of the Greedy algorithm, as this d-Thompson sampler places a much

stronger emphasis on exploitation. The d-Thompson sampler with d = 4 is not

significantly different from the Thompson sampler.

The second set of conclusions are in terms of comparisons of the TADD and d-

Thompson samplers, and the TADD and Thompson samplers. A TADD sampler with

small d and L has similar characteristics in its regret distribution as those for the d-

Thompson sampler with the same value of d, and as L increases the corresponding

TADD samplers will have smaller standard deviation of regret and expectation of

squared regret. Furthermore, all of the TADD samplers have smaller expected regret

and expected squared regret than the Thompson sampler, with the standard deviation

of regret controlled for relatively large L values when d = 2 and for small L values

when d = 3. Figure 4.4 contains results from two TADD samplers with d = 2,

L = 1500 and d = 3, L = 2000 that can be compared with those in Figure 4.3 to

illustrate these conclusions.
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Table 4.2.
Estimates of expected regret across different d and L, and 99% nonpara-
metric bootstrap confidence intervals for the expectations, at the terminal
experimental unit number 105 based on 104 replicates. The TADD sam-
plers with d = 5 are equivalent to one another.

L
d

5 3 2

0
52.35 49.22 45.38

(51.74, 52.97) (48.54, 49.93) (44.53, 46.26)

500 ↓
49.99 45.48

(49.32, 50.63) (44.64, 46.30)

1000 ↓
50.36 45.19

(49.72, 51.01) (44.45, 45.98)

1500 ↓
49.99 45.66

(49.37, 50.65) (44.94, 46.38)

2000 ↓
49.92 46.03

(49.33, 50.52) (45.35, 46.76)

2500 ↓
50.68 46.18

(50.07, 51.28) (45.57, 46.81)

3000 ↓
50.83 47.16

(50.22, 51.45) (46.53, 47.81)
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Table 4.3.
Estimates of the standard deviation of regret across different d and L,
and 99% nonparametric bootstrap confidence intervals for the standard
deviations, at the terminal experimental unit number 105 based on 104

replicates. The TADD samplers with d = 5 are equivalent to one another.

L
d

5 3 2

0
24.03 26.60 32.46

(22.77, 25.27) (25.12, 28.07) (30.67, 34.20)

500 ↓
25.76 32.46

(24.33, 27.17) (30.66, 34.26)

1000 ↓
25.28 29.65

(23.89, 26.66) (27.84, 31.41)

1500 ↓
25.06 28.31

(23.69, 26.40) (26.66, 29.96)

2000 ↓
22.84 27.11

(21.65, 24.10) (25.40, 28.82)

2500 ↓
24.05 24.35

(22.70, 25.37) (22.79, 25.96)

3000 ↓
24.29 24.58

(23.01, 25.57) (23.07, 26.06)
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Table 4.4.
Estimates of the expected squared regret across different d and L, and
99% nonparametric bootstrap confidence intervals for the expectations,
at the terminal experimental unit number 105 based on 104 replicates.
The TADD samplers with d = 5 are equivalent to one another.

L
d

5 3 2

0
3317.9 3130.4 3112.6

(3205.4, 3437.9) (2992.7, 3272.1) (2932.2, 3302.8)

500 ↓
3162.1 3121.5

(3031.5, 3294.0) (2940.2, 3311.5)

1000 ↓
3150.0 2815.2

(3026.6, 3289.4) (2664.5, 2970.9)

1500 ↓
3127.3 2886.1

(3007.3, 3254.6) (2732.2, 3046.2)

2000 ↓
3014.2 2853.8

(2910.5, 3124.5) (2708.9, 3011.1)

2500 ↓
3146.8 2725.5

(3032.7, 3264.3) (2604.1, 2861.3)

3000 ↓
3173.9 2827.9

(3061.3, 3293.5) (2705.2, 2952.5)
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Figure 4.3. Estimates of the expectation and standard deviation of regret
for the Thompson sampler and the d-Thompson sampler with d = 2 in the
case of a Binomial Bandit. Each set of estimates is based on 104 replicates
of the respective MAB algorithm. The estimates of the expectation and
standard deviation of regret at the terminal experimental unit for the
Thompson sampler are 52.99 and 25.16, respectively, and the respective
estimates for the d-Thompson sampler are 45.30 and 32.28.

On the basis of the first conclusion, the d-Thompson samplers with d = 2 or d = 3

are reasonable MAB algorithms to implement in this context and when expected

regret is of major concern. This is of broad relevance for large organizations that

implement many MAB algorithms in their operations. For smaller organizations that

seek to control the risk of regret, we have from the second set of conclusions that the

TADD sampler with d = 3 and L = 1000 (which is a reasonable lower bound on the

size of the learning phase given the total number of experimental units) could yield

improvements over Thompson and d-Thompson in the control of expected regret,

standard deviation of regret, and expected squared regret.
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Figure 4.4. Estimates of the expectation and standard deviation of regret
for two TADD samplers in the case of a Binomial Bandit. Each set of
estimates is based on 105 replicates of the respective MAB algorithm.
The estimates of the expectation and standard deviation of regret at the
terminal experimental unit for the TADD sampler with d = 3, L = 2000
are 50.37 and 24.22, respectively, and the respective estimates for the
TADD sampler with d = 2, L = 1500 are 45.25 and 27.68.

4.3.2 Evaluations for the Poisson Bandit

As in our previous Binomial Bandit setting, our evaluations for the Poisson Bandit

involve K = 5 arms and parameters θ = (0.02, 0.04, 0.06, 0.08, 0.1). This corresponds

to an MAB problem in the online service industry in which the total number of

clicks on an app by users is expected to be small. For all of our Thompson sampler-

based MAB algorithms, we specify independent, flat priors on θ1, . . . , θ5, which are the

reference priors for the Poisson mean parameters (Yang and Berger, 1996). To emulate

sampling from these flat priors, the first five experimental units are assigned to five

different arms. The θk are independent Gamma random variables a posteriori, and
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each has shape parameter 1 +
∑n−1

i=1 yi1(ki = k) and rate parameter
∑n−1

i=1 1(ki = k)

after n− 1 experimental units.

We conduct an abbreviated comparison of the standard Thompson sampler, the

d-Thompson sampler with d = 3, and the TADD sampler with d = 3, L = 1000

for this Poisson Bandit. Visual summaries of the results are in Figure 4.5. We

observe that the d-Thompson sampler has the smallest expected regret, but the largest

standard deviation of regret, at the terminal experimental unit. Also, the TADD

sampler exhibits smaller expected regret than the Thompson sampler and slightly

better control of the standard deviation of regret than the d-Thompson sampler.

Figure 4.5. Estimates of the expectation and standard deviation of regret
for Thompson, d-Thompson, and TADD samplers in the case of a Poisson
Bandit. Each set of estimates is based on 104 replicates of the respective
MAB algorithm. The estimates of the expectation and standard deviation
of regret at the terminal experimental unit for the Thompson sampler are
55.88 and 24.57, respectively, the respective estimates for the d-Thompson
sampler are 53.23 and 26.91, and the respective estimates for the TADD
sampler are 53.40 and 26.22.

Another Poisson Bandit problem for which we evaluated these three MAB algo-

rithms is that given by Liu and Zhao (2010), where K = 5 and θ = (1, 2, 3, 4, 5).

In this case, neither the d-Thompson nor the TADD samplers, for several different

choices of d and L, exhibited improved control of regret compared to the Thompson
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sampler (figures omitted). This is due to the relatively large separations between the

arms’ expectations and variances. Specifically, if an MAB algorithm is able to identify

the optimum arm early in a realization, then the large separations would lead it to

control regret well regardless of the number of dismembered arms or the length of the

learning phase. However, if the algorithm had a poor start because a suboptimum

arm performed well early in the realization, then the large separations would make it

difficult for the algorithm to recover, again regardless of the number of dismembered

arms or the length of the learning phase.

4.3.3 Evaluations for the Normal Bandit

Our final set of simulations are for the Normal Bandit problem with K = 5,

and σ2
k = 1 and µk = Φ−1 (θk) for k = 1, . . . , 5, where Φ−1 : [0, 1] → R is the

inverse cumulative distribution function for the standard Normal random variable

and θ1, . . . , θ5 are specified as in Section 4.3.1. To facilitate our evaluations, the σ2
k

are taken as known, and independent, flat priors are placed on the µk. As performed

with the Poisson Bandit, each arm is tried once before sampling from the posteriors

commences. The µk are independent Normal random variables a posteriori, and each

has mean {
∑n−1

i=1 yi1(ki = k)}/{
∑n−1

i=1 1(ki = k)} and variance σ2/
∑n−1

i=1 1(ki = k)

after n− 1 experimental units.

We again conduct an abbreviated comparison of the Thompson, d-Thompson,

and TADD samplers, as in Section 4.3.2. Visual summaries are in Figure 4.6. We

observe that the Thompson and TADD samplers experience difficulty in correcting

themselves after a suboptimum start, in that they tend to continue assigning the

suboptimum arm that happened to be a strong early performer and fail to further

explore other arms in a realization. The d-Thompson sampler exhibits the worst

performance for both the expectation and standard deviation of regret. However,

in contrast to the Thompson and TADD samplers, the d-Thompson sampler can

better correct itself after a suboptimum start, and in such realizations samples from
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the optimum arm almost exclusively for the remainder of the experimental units.

The observed differences between the results for our Binomial, Poisson, and Normal

Bandit problems serve to illustrate how an MAB algorithm’s exploration-exploitation

trade-off depends on the reward distribution.

Figure 4.6. Estimates of the expectation and standard deviation of regret
for Thompson, d-Thompson, and TADD samplers in the case of a Normal
Bandit. Each set of estimates is based on 104 replicates of the respective
MAB algorithm. The estimates of the expectation and standard deviation
of regret at the terminal experimental unit for the Thompson sampler are
85.86 and 50.61, respectively, the respective estimates for the d-Thompson
sampler are 90.02 and 68.51, and the respective estimates for the TADD
sampler are 85.25 and 51.36.

We also evaluated these three MAB algorithms for a Normal Bandit with large

separations in the µk, specifically, µk = k for k = 1, . . . , 5 (Liu and Zhao, 2010). As

in the previous Poisson Bandit, neither d-Thompson nor TADD samplers exhibited

improved control of regret in this case.
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4.4 Application of Dismemberment and a Designed Learning Phase for

Chess Opening Moves

Our final demonstration of the effects of incorporating dismemberment and a

designed learning phase in the Thompson sampler on the expectation and variance of

regret is based on an emulation of the problem of exploring and exploiting opening

chess moves. In contrast to the previous simulation studies, this emulation involves

reward distributions that are not immediately known based on the chess engine’s

inputs. The optimum arm is thus not identifiable prior to the collection of data from

chess games that are played with the opening moves described below. These features

of our application better reflect the situations encountered in real-life MAB problems

compared to traditional simulation studies.

Eight arms are considered in our emulation. Each arm corresponds to an opening

move for the White player that involves one of its pawns moving forward two spaces

on the board. In terms of the standard algebraic notation for chess (Matanović and

Ratar, 1974), these arms are

• a4 (the Ware or Meadow Hay Opening),

• b4 (the Sokolsky, Polish, or Orangutan Opening),

• c4 (the English Opening),

• d4 (the Queen’s Pawn Game),

• e4 (the King’s Pawn Game, illustrated in Figure 4.7),

• f4 (the Bird’s Opening or Dutch Attack),

• g4 (Grob’s Attack), and

• h4 (the Desprez Opening or Reagan’s Attack).

An experimental unit is a single game of chess. The possible rewards for an experi-

mental unit assigned a particular arm are binary, and defined as either a win for the
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White player (denoted by 1) or a failure to win for the White player (denoted by

0). Once an arm is assigned to an experimental unit, and the corresponding opening

move is made by the White player, the rest of the game proceeds according to the

Stockfish engine playing against itself, similar to the work of Kapicioglu et al. (2018).

The Stockfish engine is executed using the Cutechess command line interface, with

the White player set at the low skill level of 2 (on a scale of 1 to 20) and the Black

player set at the higher skill level of 5. These particular skill levels were chosen for

two reasons. First, they yield small expected rewards across all arms (similar to MAB

problems in the online service industry), with the player making the first move of the

game not likely to win given the skill difference between the two players. Second,

they emulate a real-life game involving an inexperienced player that is not aware of

any advantages of certain moves (e.g., openings in which the central pawns attack

the middle of the board should yield more success than those that involve advancing

pawns closer to the perimeter of the board), and is accordingly willing to experiment.

Figure 4.7. The King’s Pawn Game: the White player opens the game by
moving the King’s pawn to space e4. This image was produced using the
rchess package for R by Kunst (2015).
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We replicate standard Thompson, d-Thompson, and TADD samplers 10 times

each, with each replicate consisting of 15000 experimental units. In order for our

emulation to accurately reflect real-life applications of these MAB algorithms, we will

not consider the exact calculation or estimation of the unknown regrets. Instead, we

compare these algorithms’ performances using the observable, and practical, metric

of the number of wins for the White player in a replicate. One distinction to recog-

nize between this metric and those based on regret is that the former will inherently

exhibit more variability than the latter, as the former is a realization of a random

variable and the latter is a based on parameters of a random variable’s distribution.

The d-Thompson sampler that we evaluate here dismembers four arms. This choice of

d was made according to the belief that the four arms involving central pawns would

yield different results than the four arms involving pawns on the board’s periphery.

Additionally, our Binomial Bandit simulation studies that indicate setting d as ap-

proximately K/2 yields better results in expectation than the Thompson sampler.

Our TADD sampler in this emulation has d = 4 and L = 2000. These specific values

were chosen based on an initial pilot study involving each of the eight arms and True

Identification Rate (TIR) calculations for different L values given the fixed d = 4,

as described in Section 4.2.2. We observe from the summary of these calculations in

Figure 4.8 that L = 2000 yields a TIR of approximately 90%. It is important to note

that our selection of d and L for the d-Thompson and TADD samplers here serve

to illustrate how they can be specified for other real-life MAB problems based on

domain knowledge and pilot studies.

The results of our three MAB algorithms are summarized in Figure 4.9. Both the

d-Thompson and TADD samplers have greater average win counts than the Thompson

sampler, with the average for the TADD sampler being greater than that for the

d-Thompson sampler. Also, the standard deviations of the win counts for the d-

Thompson and TADD samplers are fairly similar, and both are greater than that

of the Thompson sampler. The observed relation between the standard deviations

of the Thompson and d-Thompson samplers corresponds to those observed in our
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Figure 4.8. Estimated True Identification Rates (TIR) for the TADD
samplers with d = 4 across different L based on 104 simulation replicates.

previous simulation studies. The apparent contradictory result that the standard

deviation of the TADD sampler is greater than that of the Thompson sampler can

perhaps be attributed to a single low outlier win count that was realized for the TADD

sampler. Removing said outlier would make the two algorithms’ standard deviations

much more similar while further increasing the mean number of wins for the TADD

sampler. Overall, the individual realizations of the three MAB algorithms correctly

indicate that arms corresponding to opening with one of the central pawns (c4, d4,

e4, and f4) are preferable to the other arms.

4.5 Concluding Thoughts on the Dismemberment and Designed Learning

Framework

In this chapter we presented a new framework to construct MAB algorithms that

can be used to decrease the expected regret while considering the effect on the re-

gret’s variance. Dismemberment serves to decrease the expected regret by increasing

exploitation, but it does so at the expense of variance. Designed learning allows

early exploration while being able to control the variance of the regret once dismem-

berment is later implemented. These two concepts were applied to the Thompson
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Figure 4.9. A comparison of three MAB algorithms for the emulated
chess games. Each algorithm had 10 replicates, and each replicate had
15000 games. The d-Thompson sampler d = 4 had a slightly larger aver-
age number of wins compared to the Thompson sampler, but also had a
larger variance, which corresponds to the results of the Binomial Bandit
simulations. The TADD sampler with d = 4, L = 2000 had the largest
estimated expectation, but also had the largest standard deviation due to
one low outlier.

sampler to produce the d-Thompson and TADD samplers, and the behavior of these

new samplers was studied through both simulation and a practical emulation.

Ultimately, considering the entire distribution of regret instead of a single sum-

mary statistic creates intriguing new avenues of research for MAB problems and their

algorithm development. Future work involves the consideration of other descriptors

of the distribution of regret, including key percentiles, skewness, and the coefficient

of variation. Preliminary exploration suggests that our framework can provide some

control of these other statistics as well. Additionally, the extension of our framework

to other algorithms, such as the Exp3 and UCB algorithms, could shed additional

insight into regret behavior.
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5. VISUALIZING THE MULTI-ARMED BANDIT

5.1 Introduction to Visualizations

Evaluations of multiple candidate MAB algorithms are required to identify an

algorithm that yields desirable regret behaviors in a particular context. Such eval-

uations have previously been performed using detailed and complicated theoretical

analyses or dry simulation studies that do not yield compelling insights into the fun-

damental dynamics of MAB algorithms. Two disadvantages of these traditional ap-

proaches are that (i) they may prevent effective MAB algorithms from reaching their

full potential in terms of adoption for applications (Chapelle and Li 2011; Agrawal

and Goyal 2012, p. 2), and (ii) they frustrate the teaching of MAB algorithms to

students and researchers in experimental design. The latter disadvantage is partic-

ularly unfortunate because MAB algorithms can offer a great deal more excitement

and engagement in experimental design courses compared to the standard topics that

are taught from design textbooks. Also, statistics undergraduates may need to be

prepared to implement and interpret MAB algorithms for their first data science jobs.

We present new visualization methods that we developed for evaluating the dy-

namics of MAB algorithms and their regret behaviors. A fundamental component

in our visualizations is visuanimation, i.e., the implementation of animated statisti-

cal visualizations (Genton et al., 2015). This component is intuitive and natural for

MAB algorithms due to their sequential natures. Our visualizations capture three

major features for distinct classes of MAB algorithms: (i) the dynamics of infer-

ences on the values of arms, (ii) trends in the assignments of the arms, and (iii) the

frequentist behaviors of regret curves. The first two features of an MAB algorithm

govern both its exploration-exploitation trade-off and regret behaviors. From our own

personal experiences, we believe that these visualizations can serve as effective and
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entertaining pedagogical tools for teaching fundamental concepts underlying MAB

algorithms. We compiled these visualizations into a R Shiny app (Chang et al., 2019)

called “MABViz” that is straightforward and free to operate online. Our app cur-

rently incorporates the UCB1 algorithm, the Exp3 algorithm, and the Thompson

sampler, along with our Gaussian UCB approach, d-Thompson, and TADD. We dis-

cuss in this chapter how instructors can utilize our app to convey the excitement and

novelty of MAB algorithms to their students.

The development in this chapter is inspired in part by the work of Buja et al.

(2008), with each of the following sections containing a visualization method that

targets a particular feature of an MAB algorithm. Section 5.2 presents visualizations

for the dynamics in an MAB algorithm’s inferences on the arms’ values. Visualiza-

tions that convey how the arms’ assignments change as the number of experimental

units increases are in Section 5.3. Section 5.4 presents a visualization that can yield

frequentist evaluations of an MAB algorithm’s regret. Adobe Acrobat Reader is rec-

ommended for the proper viewing of these visualizations. Our interactive app that

incorporates all of these visualizations is described in Section 5.5. Concluding remarks

on the utility of our visualizations, and additional future work that will be performed

on the app, are in Section 5.6.

5.2 Visualizing the Dynamics of Inference

Our visualizations for the dynamics of an MAB algorithm’s inferences on the arms’

values are composed of four major components that are calculated upon the arrival

of each new experimental unit. Additional components can be incorporated when

desired to reflect unique aspects of a selected MAB algorithm. The first component

is a set of point estimates for the arms’ values. The second is a collection of uncertainty

measures for the arms’ values. Example measures include bootstrap distributions for

the point estimators, and confidence intervals and Bayesian posterior distributions

for the arms’ values. The third is a list of counts for the arms’ assignments to
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the previous experimental units. This component is necessary for assessing how the

inferences change as a function of the number of experimental units assigned to the

arms. The final component is the pair of exploration-exploitation percentages of the

algorithm. We calculate the exploitation percentage as the percentage of previous

experimental units who, at the time of their particular assignments, were assigned the

arm that was inferred to be the optimum. For probability matching MAB algorithms

such as the Thompson sampler and Exp3 algorithm, the inferred optimum arm can be

defined as the arm that has the greatest assignment probability. For UCB algorithms,

the inferred optimum arm can be defined as the arm with the greatest value point

estimate. The exploration percentage is calculated as the difference between 1 and

the exploitation percentage. These two percentages can succinctly summarize the

relative exploration-exploitation behaviors of algorithms, and their dependencies on

the values of tuning parameters. This visualization is for a single realization of an

MAB algorithm. Multiple realizations can be considered by placing their separate

visualizations side-by-side, and executing them simultaneously.

Figure 5.1 contains this visualization for the Thompson sampler in the context of

a Binomial Bandit problem with K = 3, and θ1 = 0.3, θ2 = 0.5, θ3 = 0.7. It is im-

portant to note that all of our visualizations are designed to be applicable to a larger

number of arms and/or different reward distributions, and that this particular MAB

problem was primarily chosen to facilitate our exposition. This Thompson sampler

has independent Uniform(0, 1) priors on θ1, θ2, and θ3, which results in equal assign-

ment probabilities for experimental unit 1. We include two additional components of

interest for the Thompson sampler that are calculated prior to each new experimen-

tal unit’s assignment: the arms’ sample success proportions (top of the figure) and

assignment probabilities (right of the figure). The sample proportions are connected

to the posterior means by lines to demonstrate the shrinkage of the arms’ empiri-

cal values under the Bayesian paradigm. This yields a distinct visualization for the

Thompson sampler compared to previous visualizations, e.g., the static visualization

for K = 2 constructed by Thall and Wathen (2007). The assigned arm for a new
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experimental unit is indicated by a “+1” next to its assignment probability. Our

realization of the Thompson sampler commences by assigning arm 3 to experimental

unit 1. The outcome is y1 = 0, and the posterior distribution for θ3 is consequently

the triangular-shaped Beta(1, 2) distribution, which is graphed prior to the arm as-

signment for experimental unit 2. The arms’ assignment probabilities are updated

accordingly. Experimental unit 2 is then assigned arm 1, and the outcome is y2 = 1,

so that the posterior distribution for θ1 is a Beta(2, 1) distribution. The assignment

probabilities are again updated, and the algorithm and visualization proceed for the

remaining experimental units. By inspection of this visualization for the remaining

experimental units, we observe that arms 1 and 3 eventually switch places. In the

early stages of this realization, arm 1 is assigned often enough so that its posterior

moves to the left, and arms 2 and 3 are then assigned more often. Also, the posterior

distributions are sufficiently dispersed so as to allow intermittent explorations of the

other arms. Arm 3 is assigned to 50% of the experimental units by unit 20, and ap-

pears to dominate the other arms after some time. One final observation is that as the

posterior distribution of θ3 becomes more concentrated, the relatively more dispersed

posteriors for θ1 and θ2 lead to their corresponding arms to be assigned more often.

This is an example of the general fact that the Thompson sampler’s exploration is

partly governed by the relatively small variance of the posterior distribution for an

apparent optimum arm’s value as that arm is assigned to more experimental units, or

alternatively the relatively large spreads in the posterior distributions for arms with

smaller posterior means that have not been assigned to many experimental units.

Figure 5.2 contains the visualization for the UCB1 algorithm under the previous

Binomial Bandit context. To maintain the simplicity of the visualization, the upper

bounds as specified in the algorithm are adopted for the uncertainty measure compo-

nent. Additional statistics for each arm (e.g., the sample standard deviations) that

are of interest for certain UCB algorithms could also be incorporated into this visu-

alization. The exploration-exploitation trade-off in this algorithm is clearly exhibited

during the course of Figure 5.2. Arm 3 is the sole arm that yields a success upon as-
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Figure 5.1. Visualization for the inferences on the values of K = 3 arms in
a Binomial Bandit problem that are drawn from the Thompson sampler.
The posterior distributions for θ1, θ2, and θ3 are calculated and graphed
prior to the arm assignment for each experimental unit in this realization,
with one frame for each such graph.

signment during the learning phase, and consequently becomes favored for assignment

to future experimental units because it then has the greatest upper bound. After arm

3 is assigned to experimental units 4 and 5, θ̂3 drops slightly and the corresponding

upper bound decreases to a considerable degree, so that the other arms can then be

considered for assignment. This is an example of the general fact for UCB algorithms

that, as the number of experimental units assigned a particular arm increases, the up-

per bound for that arm generally shrinks to approach the point estimate of the arm’s

value, and consequently the exploration of the other arms increases. The exploration-

exploitation trade-off for UCB algorithms is governed by this feature because large

upper bounds promote exploitation while shrinking upper bounds promote explo-

ration. This flux between the arms’ inferences and assignments continues throughout

the realization. Arm 1 never has the greatest value point estimate, but its upper
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bound is sufficiently far away from θ̂1 so that it can still be intermittently assigned

to new experimental units. The competition in the assignments for the remaining

experimental units ultimately lies between arms 2 and 3, with arm 3 assigned most

often at the conclusion of the realization. This dynamic visualization can provide a

similarly engaging record of the “race” between the arms in other MAB algorithms

as inferences are performed on their values, and as they jockey for assignment.

Figure 5.2. Visualization for the inferences on the values of K = 3 arms
in a Binomial Bandit problem that are drawn from the UCB1 algorithm.
The arm selected for assignment to a new experimental unit is denoted by
a purple upper confidence bound bracket. The learning phase is performed
on experimental units 1, 2, 3, and the algorithm is implemented starting
with experimental unit 4.

5.3 Visualizations for Arm Assignments

For a probability matching MAB algorithm, we construct visualizations that ex-

plicitly evaluate the history in the arms’ assignment probabilities across the experi-
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mental units. We use the Thompson sampler and Exp3 algorithm to illustrate this

second class of visualizations. Although these algorithms involve different assign-

ment probability calculations, they make use of the assignment probabilities in the

same manner once they are calculated. As such, the visualizations for assignment

probabilities that we now construct are relevant to them both.

Our first visualization is for a single realization of a probability matching MAB

algorithm. Its fundamental component is a line plot of the arms’ assignment proba-

bilities. This visualization is similar to that of Scott (2010, p. 656), and is distinct

from that of Thall and Wathen (2007) because they only plot the optimum arm’s

path. Figure 5.3 presents a static form of this visualization that compiles the assign-

ment probabilities for the Thompson sampler in Section 5.2. We observe that the

probabilities eventually diverge as the number of experimental units and amount of

data increase.
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Figure 5.3. Assignment probabilities for one realization of the Thomp-
son sampler over 150 experimental units, calculated from the posterior
distributions in Figure 5.1.
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The second visualization plots multiple realizations of the arms’ assignment prob-

abilities across different frames, with each frame corresponding to a single realization

of the MAB algorithm. This visuanimation can provide more intuition and insights

into how a probability matching MAB algorithm typically behaves in identifying the

optimum arm, and the uncertainty associated with that identification, as data are col-

lected. Figure 5.4 contains this visualization for 10 realizations of the Exp3 algorithm

with γ = 0.3 under the same Binomial Bandit context as in Section 5.2. This visual-

ization can help to illuminate the effect of changes in γ on the algorithm’s behavior,

but we do not present these comparative evaluations here. Auer et al. (2002a) employ

a type of averaging approach to understand the changes in assignment probabilities

that occur as γ changes, but they only plot the optimum arm’s path, whereas our vi-

sualization considers all of the arms’ paths. As for the Thompson sampler, the arms’

assignment probabilities for experimental unit 1 are all 1/3, and they then shift and

diverge as the arms’ weights are updated based on the collected data. Two general

types of divergences in the assignment probabilities are exhibited in the third, fourth,

fifth, and seventh frames in Figure 5.4. In the third realization, arm 1 appears to be

the strongest early performer, but then after data on 40 experimental units have been

collected arm 3 is correctly identified as the inferred optimum arm, and its assignment

probability diverges from those of the other arms. The seventh realization exhibits

a similar divergence, with the difference that it occurs nearly immediately in the

course of the algorithm’s operation. In contrast to these two, the fourth realization

effectively has arm 2 as the dominant arm throughout the course of the algorithm’s

operation, with arm 3 only briefly appearing to be the inferred optimum arm between

experimental units 50 and 60. Finally, the fifth realization exhibits a mixture of the

behaviors in the previous three realizations, with arm 2 appearing to be optimum for

the vast majority of the experimental units, and arm 3 overtaking arm 2 to finally

become the inferred optimum arm between experimental units 80 and 90. The final

frame of Figure 5.4 contains the sample averages of the arms’ assignment probabilities

for each experimental unit number, with the average taken over the 10 realizations.
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This frame suggests that the average behavior of the algorithm’s assignment proba-

bilities is more stable than what was indicated in the individual realizations, with the

optimum arm’s average assignment probability steadily increasing over the course of

the algorithm’s operation.

Figure 5.4. Assignment probabilities for 10 realizations of the Exp3 algo-
rithm with γ = 0.3, each of which consists of 100 experimental units. The
last frame contains the arms’ average assignment probabilities (across the
realizations) for each experimental unit number.

5.4 Visualizing Regret

The visualization we construct to obtain frequentist evaluations of regret for nearly

any type of MAB algorithm is a visuanimation with multiple frames that contain

regret curves across a fixed number of experimental units. The first frame contains

the regret curve for a single realization of the MAB algorithm, and the terminal regret

is at the end of the curve in the plot. Each subsequent frame adds a new regret curve

and terminal regret for a new realization, with new curves in black and previously
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realized curves in gray. After the regret curve for the final realization is added, the

visuanimation then proceeds to add curves for specified distributional summaries of

regret across the experimental unit numbers. For example, if the expectation and

standard deviation of regret are of interest, then two additional frames are added to

the visualization, with the penultimate frame adding the mean regret curve and the

final frame adding the curve of standard deviations of regret for each experimental

unit number. These summary curves are calculated based on the multiple realizations

of the MAB algorithm. This final frame produces the type of result we previously

presented in Section 2.3.

The individual regret curves in our visualization are easily interpretable by means

of the changes in their slopes across the experimental units. Those regret curves

that exhibit frequent flatlining, especially early in the realization, correspond to the

desirable case in which the optimum arm is consistently identified and assigned to

experimental units. The occurrence of (positive) slopes in a regret curve indicate the

set of experimental units that were assigned suboptimum arms. The steepest slopes

correspond to the assignments of arms with the smallest values.

Figure 5.5 contains this visualization for 10 realizations of the Thompson sampler

in the same context as presented in Section 5.2. Our choice of 10 realizations was

made solely to facilitate the exposition; additional realizations are required in practice

to obtain rigorous and definitive evaluations. The first realization displayed corre-

sponds to that in Figures 5.1 and 5.3. This realization illustrates a typical history

of exploration-exploitation trade-offs, with exploration occurring much of the time

for the early experimental units followed by exploitation of the correctly identified

optimum arm for the majority of the remaining experimental units interrupted by

the occasional brief exploration. For example, we observe the consistent assignment

of arm 3 for experimental units 36 through 60, illustrated by the flatlining of the

regret curve for those units. Additionally, we can see the slight increase in regret

that occurred at experimental unit 75 when the suboptimal arm 2 was assigned, as

well as the more pronounced increase in regret that occurred at experimental units
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90, 100, and 109 when the least optimal arm 1 was assigned. Realizations 3 and

6 illustrate very desirable regret behaviors, exhibiting regret curves that are nearly

always below the other regret curves. Realization 3 very quickly correctly identifies

the optimum arm and begins assigning it very regularly with few later instances of

brief exploration. Realization 6 takes slightly longer to settle on the optimum arm,

but after doing so never again deviates. On the other extreme, realizations 8 and 9

have regret curves that are nearly always above the other regret curves. This behavior

arose because these realizations consistently assigned the worst arm during many of

the early experimental units, with the medial and optimum arms only seeing occa-

sional assignment. It is not until after experimental unit 90 that the optimum arm

begins to be assigned to the majority of the remaining experimental units. These

realizations are examples of the general phenomenon of an MAB algorithm being

misled by the occurrence of rewards from suboptimum arms early in its operation,

which then yields mediocre regret performances. They also demonstrate how existing

visualizations that are based primarily on the mean regret curve can fail to capture

such important details and facts.

5.5 Visualizing Multi-Armed Bandits With MABViz

Our current MABViz app enables the effective and interactive execution of all our

visualization methods for Binomial Bandit problems. The beta version of the app

that is available for public use is currently hosted at https://keatont.shinyapps.

io/mabviz/, and a screenshot of the app is provided in Figure 5.6. Three major user

inputs must be provided to execute our app: an MAB algorithm from a drop-down

list, the total number of experimental units, and the θk values. The app currently

accommodates the UCB1 and our Gaussian UCB algorithm (both discussed in Sec-

tion 2.4.3), the Exp3 algorithm (described in Section 2.4.4), the Thompson sampler

(described in Section 2.4.5), and the d-Thompson and TADD samplers (introduced

in Sections 4.2.1 and 4.2.2, respectively). The Gaussian UCB and Exp3 algorithms,

https://keatont.shinyapps.io/mabviz/
https://keatont.shinyapps.io/mabviz/
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Figure 5.5. Regret curves for 10 realizations of the Thompson sampler.
The first frame corresponds to the realization shown in Figures 5.1 and 5.3,
with each subsequent frame (excluding the penultimate and final frames)
adding a regret curve for a new realization. The penultimate frame adds
the mean regrets, and the final frame adds the standard deviations of re-
gret, across the experimental units. These latter two curves are calculated
based on the 10 realizations.

and the d-Thompson and TADD samplers, involve additional inputs that the user

must provide. After all of the user inputs have been entered and the “Run Algorithm

⇒” button has been clicked, the app proceeds to generate the visualizations for a

single realization of the MAB algorithm. A slider is included at the top right of

the app so that the user can select specific experimental units for further inspection.

The visuanimations proceed by clicking the play button at the bottom right of the

slider, and they are paused by clicking on the pause button that subsequently appears.

In addition to a visualization of the exploration-exploitation percentages, a table is

provided at the bottom left of the app that displays the number of times each arm

was assigned, proportions of successes for each arm, and additional algorithm-specific



67

numbers (e.g., the upper bounds for the arms under a UCB algorithm). These num-

bers are always calculated prior to the assignment of an arm to a new experimental

unit during the course of the visuanimation.

Figure 5.6. A screenshot of the MABViz app. The user has defined the
arm success probabilities, from which the app has calculated the number
of arms. The user specified 200 total experimental units and ran the
selected Thompson sampler. Using the slider, the user selected to inspect
the table data and corresponding figures for experimental unit 190.
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5.6 Concluding Thoughts on Visualization

Multi-armed bandit algorithms are novel sequential experimentation procedures

that exhibit dynamic behaviors in inferences on the effects of arms, and the assign-

ments of arms. Our visualizations enable one to acquire deeper insights into the

behaviors and performances of distinct classes of MAB algorithms. A characterizing

feature of all our visualizations is their simplicity in execution and interpretation.

This feature is evident in our MABViz app, which yields informative and interactive

visuanimations for popular MAB algorithms in Binomial Bandit problems. We believe

that our free app can improve statistics students’ learning about MAB algorithms,

and consequently their potential future earnings as data scientists.

We hope to continue developing our MABViz app so that it can accommodate new

MAB algorithms and other innovations in this field that will arise in the future. At

this point in time, we plan to extend the capability of our app for the direct study of

multiple realizations of MAB algorithms. Another addition that we will investigate is

the incorporation of a feature in which a user can upload previous realizations of their

own MAB algorithms for study using the visualizations in our app. Finally, we plan

to extend our visualizations and app for the study of algorithms in the broader field

of reinforcement learning. To some extent, the app will hopefully always be a work

in progress as innovation in this field continues and new algorithms are developed.
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6. CONCLUDING REMARKS AND FUTURE WORK ON THE

MULTI-ARMED BANDIT

In this work, we discussed the importance of studying the entire distribution of a

multi-armed bandit algorithm’s performance. We examined how many prominent

algorithms handle the exploration-exploitation trade-off. In turn, we saw the effect

these algorithms’ tuning parameters have on regret performance, in terms of both

mean and variance. One aspect we inspected was the effect of incorporating prior

information into an algorithm’s model, including the implementation of a hierarchi-

cal prior structure and the use of U-shaped priors. This investigation then helped

lead to the development of a framework that incorporates dismemberment of arms

and a designed learning phase. The application of this framework to the Thompson

sampler resulted in two variant algorithms, namely the d-Thompson and TADD sam-

plers. We then analyzed the performance of these algorithms when applied to the

Binomial, Poisson, and Normal Bandits, along with an emulated chess application.

Additionally included was a presentation of the various dynamic visualization tech-

niques we developed and implemented as part of this study, wherein we discussed the

construction of these tools and the various ways they can assist in interpretation and

understanding of various MAB algorithms and their components.

One major extension of our work involves using the regret distributions to focus

on other measures of interest as well beyond the mean and standard deviation. This

has been explored a little by Metzen (2016) in a slightly different context. A possible

avenue is to examine certain informative percentiles, such as the median or extreme

percentiles, the latter resulting in central mass bands for the regret.

Another extension involves refining a version of the TADD sampler that employs

automatic dismemberment, where the value of d is chosen based on the separation of
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the posterior distributions. An approach like that of Kim and Billard (2013) could

be beneficial in determining how dissimilar the posteriors are, regardless of the type

of distribution, so that an appropriate number of arms to be dismembered can be

selected at various points throughout the experiment.

We would also hope to see more work done in development of diagnostics for

MAB algorithms being applied in the field. Currently, not much is done beyond

simulation studies and relatively simple comparisons to historical results. This is a

prime opportunity for the development of more robust evaluations.

Finally, we strive to construct a unified theory on the connection between existing

MAB algorithms. While this was briefly alluded to in Section 2.4, certain algorithms

can be considered special cases of other algorithms when using specific tuning parame-

ters. Further study into these relationships, forming a figurative “web” of algorithms,

could inspire further insight into algorithm behavior and construction.

In conclusion, there are many exciting possible directions that multi-armed bandits

might follow in terms of both research and application. As always, deciding which

avenues to explore and which to exploit will be a welcome challenge.
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