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ABSTRACT

Rajasekaran, Suren Deepak Ph.D., Purdue University, August 2019. Perceptual
Evaluation and Metric for Terrain Models. Major Professor: Bedrich Benes.

The use of Procedural Modeling for the creation of 3D models such as

Buildings, Terrains, Trees etc., is becoming increasingly common in Films, Video

Games, Urban Modeling and Architectural Visualization. This is due to the

primary factor that using procedural models in comparison to traditional

hand-modeled models helps in saving time, cost and aids in generation of a larger

variety in comparison to a few. However, there are so many open problems in

procedural modeling methods that does not rely on any user assistance or aid in

generating models especially in terms of their visual quality and perception.

Although, it is easy to identify realistic looking models from procedural models, the

metrics that make them ’Real’ or ’Procedural’ is still in the indeterminable and

remains uncanny in nature. The perceptual metrics (intrinsic factors such as surface

features and details, extrinsic factors such as environmental attributes and visual

cues) that contributes to the visual perception of Procedural models have not been

studied in detail or quantified yet.

This dissertation presents a first step in the direction of perceptual

evaluation of procedural models of terrains. We gathered and categorized several

types of real and synthetic terrains generated by methods used in computer graphics

and conducted two large studies with 70 participants ranking them perceptually.

The results show that synthetic terrains lack in visual quality and are perceived

worse than real terrains with statistical significance. We performed a quantitative

study by using localized geomorphology based landform features on terrains

(geomorphons) that indicate that valleys, ridges, and hollows have significant
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perceptual importance. We then used generative deep generative neural network to

transfer the features from real terrains to synthetic ones and vice versa to further

confirm their importance. A second perceptual experiment with 128 participants

confirmed the importance of the transferred features for visual perception. Based on

these results, we introduce PTQM (Perceived Terrain Quality Metrics); a novel

perceptual metrics based on geomorphons that assigns a number of estimated visual

quality of a terrain represented as a digital elevation map. The introduced

perceptual metric based on geomorphons indicate that features such as Valley (0.66),

Ridge (0.64), Summit (0.44), Depression (0.42), Spur(0.33), and Hollow (0.22) in

order have significant perceptual importance. By using linear regression, we show

that the presented features are strongly correlated with perceived visual quality.
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CHAPTER 1. INTRODUCTION

Modeling is a fundamental component in the asset creation pipeline of many

areas in computer graphics. 3D models of any kind or variety are essential in

Architectural Visualization, Urban Modeling, Films, Games and many other areas

that utilize them. These assets may primarily be the object of focus in the context

of a given scene or simply be a part of it. Modelers who primarily work on creating

these assets dedicate considerable amount of time and effort in sculpting these

models from scratch. This process is usually referred to as Hand Modeling or

Traditional Modeling approach. Therefore, there has always been research in the

modeling field for easing the process of asset creation. As the field of computer

graphics became increasingly complex and sophisticated, so are the methods for

synthesizing models such as Hand Modeling techniques, Data-Driven Modeling

techniques (use of data in aiding the modeling or the design process) and procedural

methods that use mathematical methods with formal grammers for representing and

generating 3D models and their textures.

Terrains are among the most visually stunning structures in landscapes and

their modeling has attracted attention of computer graphics researchers for decades.

Patterns found in terrains result from eons of complex and interacting

geomorphological processes with varying strength at differing spatial and temporal

scales, which makes them extremely difficult to capture. Additionally, other

phenomena, such as the underlying bedrock strata, tectonics forces, vegetation

development, temperature influence, or presence of glaciers, make terrain modeling

even more complicated.

Humans experience terrains through their entire life and our visual

perception system has evolved into a very precise tool for judging the overall

appearance of terrains. Humans are excellent in detecting minor anomalies in them
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Travers (1984), which makes synthetic terrain modeling the more challenging as

quantifying those inconsistencies remains highly complex. Generating geometric

models of naturally looking terrains is a difficult task that usually requires

expertise. Although a wide variety of algorithms exists for modeling terrains (see

the recent review Galin et al. (2019)), existing methods consider the morphological

phenomena shaping the terrains independently and their mutual dependencies are

neither well-studied nor understood.

Procedural modeling methods in the computer graphics field is very vital and

has been widely utilized in films and game production areas (but not only limited)

to save time. However, there are three major modeling fields where procedural

modeling tools are being used extensively for model generation: buildings, trees and

terrains. This is highly evident from the sales and prominence of procedural

modeling oriented toolkits such as Houdini (SideFX (2019)), SpeedTree (SpeedTree

(2019)), Terragen (PlanetsideSoftware (2019)), Vue (E-onSoftware (2019)), XFrog

(XfrogInc (2019)) etc., for use in these aforementioned areas. Procedural Modeling

is the process of using generative methods to create a 3-D model of effect (Smelik,

De Kraker, Tutenel, Bidarra, and Groenewegen (2009) & Smelik, Tutenel, Bidarra,

and Benes (2014)). Procedural modeling is an alternative to manual modeling and

it includes advantages such as data compression, time-saving attributes, and variety

Smelik et al. (2014). Procedural model generation methods can easily be able to

produce a variety of models with a quick turn around time from a single

representation. These attributes made procedural modeling to be widely adapted in

wide areas of application. There are many different methods of procedurally

generating terrains can be classified into two main categories: 1) stochastic methods

and 2) erosion or growth models and weathering simulations. Procedural modeling

methods albeit having a lot of advantages tend to have an important drawback

when compared to other modeling methods which is the lack of control over

generated models. Though there are significant advances in this field, there exists a

research gap in which the generated models are not evaluated in terms of how they
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are perceived by the audience that it is intended for. This gap has been addressed

in procedural texturing area where the results show that the textures are not

perceptually meaningful as they tend to be ”repetitive,” ”directional,” ”structured,”

(Liu, Dong, Cai, Qi, and Chantler (2015a)). This requires the need for studying the

characteristics or procedurally generated models as to understand their visual

perception metrics so that purely procedural methods can be sufficient in terms of

satisfying the model requirement needs with out the need of any user assistance.

While the terrain morphology is an important driving force behind the

landscape formation, the human observer is the final judge of the computer

generated model’s visual plausibility. Previous methods focused on replicating

phenomenological processes of terrain formation, but none, to the best of our

knowledge, have focused on the human perception of terrain models. The evaluation

of results of algorithms simulating natural phenomena has been a tedious question

for almost everyone working in this field and is usually addressed by providing

side-by-side comparison of the generated structures or is assumed to be correct if

the underlying simulations are physically-based.

This dissertation is a first step in the direction of rigorous perceptual

validation of computer graphics generated models of terrains. In particular, we

attempt to answer the question of what are the visually important features in

terrains that make them visually plausible, and what is the level of visual

plausibility of synthetic terrains commonly used in computer graphics. A recent

work in geology allows for quantitative evaluation of terrain by using so called

geomorphons that are set of quantitative features assigned to digital elevation

maps Jasiewicz and Stepinski (2013). We performed an extensive user study, in

which we measured the perceived visual plausibility of real and synthetic terrains.

We express the plausibility in terms of the underlying geomorphons. We then used

the state of the art deep neural networks CycleGAN Zhu, Park, Isola, and Efros

(2017) to transfer features from the images that were ranked high to those ranked

low and vice versa. We performed another user study that shows that the landforms
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transferred from highly ranked sets to lowly ranked ones improve the visual

perception and that the landforms transferred from low-ranked images to high

ranked ones demote them perceptually. Results of the two user-studies combined

with the analysis of features show that synthetic terrains do not often include

commonly found geomorphological features such as depressions, summit, flat, valley,

ridge, hollow and spur geomorphons. We introduce PTQM (Perceived Terrain

Quality Metrics) that assigns a normalized value of perceived perception to a terrain

represented as a digital elevation model.

The primary motivation in attempting this research is in identifying the

perceptual attributes of procedurally generated natural objects. We hypothesize

that the identified visual perception metrics can be ranked and used in improving

the existing procedural modeling methods which are very vital in thoroughly

automating the modeling process. We begin this study with the assumption that

those perceptual attributes can be identified and measured with the use of a mixed

methods approach and the same can be used in machine learning approaches to

classify perceptually realistic models and unrealistic models.
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Figure 1.1. Rendered example of a procedural terrain digital elevation map
generated with fluvial erosion patterns.

Figure 1.2. Rendered example of a real terrain digital elevation map with fluvial
and aeolian erosion patterns from South Carolina state in USA.
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1.1 Scope

The scope of the research is to identify and list the metrics that directly

affect the visual perception of Terrain models. Our goal is to improve the purely

procedural modeling methods by using these metrics and automate the process even

further without any interventions from the user for producing models that are

visually plausible. Therefore, we attempt to train a neural network to identify and

improve visually important features that may be imperceptible to the human eye.

1.2 Significance

There are three major contributions of this dissertation work:

1. Identification of visual perception metrics in the context of procedural models

of terrains.

2. Improving the quality of terrain models that are generated based on purely

procedural methods without user assistance.

3. Additionally, the methods shown in this study are scalable and reapplied to

other categories of procedural generation methods.

1.3 Research Question

1. Are procedurally modeled terrains visually perceived by humans equally as the

real terrains ?

2. What are the elements of terrains that have the strongest effect on perceived

quality ?

3. Is it possible to change the perceived quality by transferring elements from

real and procedural terrains by the use of a Neural Network ?
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1.4 Assumptions

The assumptions for this study include:

• It is possible to identify and quantify the perceptual factors that affect the

perception of procedural Terrain models through a mixed-methods approach.

• The identified subset of procedural features that are visually important can be

parameterized and mapped to the inputs of procedural models.

• The visual features of a Terrain model can be perceptually improved by the

utilization of a Neural Network.

1.5 Limitations

The limitations for this study include:

• The research work targets only the intrinsic factors that affect the perception

of procedural models and a detailed study of extrinsic perceptual factors is

beyond the scope of the study.

• The work is also limited only to the perception of shape and physical features

of the procedural models rather than the effect of rendering modes or textures

in their representation.

• The training data was not readily available and had to gathered, prepared,

annotated from scratch, even though the user studies are carefully designed,

this presents us with a challenge of limited validity of results.

1.6 Delimitations

The delimitations for this study include:

• Our method only focuses on attempting to improve the procedural model

generation methods that are purely automatic (such as Noise-based generation
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methods for Terrains) and not thoroughly user assisted to represent their real

world counterparts.

• Trained and Expert users of Terrain models such as Geologists are not

considered in terms of measuring the accurateness of visual perception.

• The participants in the user study may introduce personal perceptual bias in

the survey and interview procedures that is beyond the control of researchers.

• The developed technique is primarily dependent on the data used for training

the neural network therefore there are no guarantees about generalization of

the technique.

1.7 Definition of Key Terminologies

In the broader context of thesis writing, we define the following terms:

Framework: ”Frameworks model a specific domain or an important aspect thereof.

They represent the domain as an abstract design, consisting of abstract classes

(or interfaces). The abstract design is more than a set of classes, because it

defines how instances of the classes are allowed to collaborate with each other

at runtime. Effectively, it acts as a skeleton, or a scaffolding, that determines

how framework objects relate to each other.” (Riehle, 2000).

Inverse Procedural Modeling: The inverse process of a Procedural Modeling which

involves estimating the formal grammer and parameters of a given model.

Machine Learning: Machine Learning is a field of Aritificial Intelligence that uses

statistics and data to drive learning in machines without the need for explicit

programming.

Mixed Methods Study: Mixed methods study is a type of research that involves the

use of more than one method to aid the data collection process.
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Neural Network: Neural network is a machine representation of biological animal

brain that aids the process of machine learning in computers.

Perception: Perception is the interpretation of sensory information received by the

brain in order to understand.

Procedural Modeling: Procedural Modeling is the process of using generative

methods through the used of Mathematical models to create 3-D model

(Smelik et al. (2009) & Smelik et al. (2014)).

Thematic Analysis: Thematic analysis is a data analysis technique used in

Qualitative research studies to identify the underlying ”themes” and

”patterns” in a data set.

1.8 Summary

This chapter provided the scope, significance, research question, assumptions,

limitations, delimitations, definitions, and other background information for the

research project. The next chapter provides a review of the relevant literature that

will cover existing procedural modeling techniques, perception issues, mixed

methodology research, machine learning and recent developments in the same fields.
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CHAPTER 2. REVIEW OF RELEVANT LITERATURE

This literature review attempts to showcase important information relevant

to the areas and research questions that the work is trying to address. This section

is divided into multiple sections: First, the Human Visual System (HVS) and how

perception works is briefly showcased followed by general perceptual issues in

Graphics. Second, Perceptual metrics and how perception driven graphics

approaches have aided in improving computer graphics methods has been studied.

Finally, specific perceptual issues in Procedural Modeling are discussed, followed by

general factors that are influential in perception of a specific category of model type.

2.1 Visual Sensitivity from HVS & Psychology of Perception

Figure 2.1. Description of World from a Human Eye (Thompson et al., 2011)

Computer Graphics, principally, is a field that is ’visual’ oriented, the main

purpose of the area is to synthesize images for people to view (Thompson et al.,

2011). The HVS that consists of the eyes and complex neural network, becomes the

epicenter of everything that is synthesized and simulated graphically for viewing.

The above included graphics exemplifies how a dynamic scene is broken down

visually by the human visual system. The understanding and study of human visual

system is in the amalgamation of fields such as perceptual psychology,
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eye-movements, medicine, physics, neuro-science and computational vision

(OSullivan, Howlett, Morvan, McDonnell, & OConor, 2004). The concept of

perception is subjective, given how complicated the Human visual system is,

’overgeneralizing’ in this field usually ends up giving shoddy results. Therefore,

there is a need for perceptual effectiveness in the research that is conducted, so that

the computer graphics imagery, ”looks” as they are intended to be (Thompson et

al., 2011).

The understanding of how a computer generated object as perceived by

human eye, is core to the overall scheme of things because it helps in maximum

throughput while being efficient by not focusing on the things that are not essential

to the HVS (Bartz, Cunningham, Fischer, & Wallraven, 2008). Fundamentally, all

the Image, visual and perceptual quality metrics and enhancement approaches is

based upon the HVS ((Saghri, Cheatham, & Habibi, 1989) & (Panetta, Wharton,

& Agaian, 2008)).

2.2 General Perceptual Issues and Factors in areas of Computer Graphics

Perception oriented studies has been in existence for a long time, not

necessarily in CG, but in the fields of Psychology, Art, Visualization. One of the

pioneering research in the field was by Gibson (1950) for studying the perception of

textures. However, in CG, albeit not as broad as psychology, perception has been

studied in all subfields such as how distances, synthetic human models, animations,

emotions, scale, depth, and effects of motion are studied in both real and virtual

environments (Virtual Reality and Augmented Reality) ((Loomis & Knapp, 2003)

& (Jones, Swan II, Singh, Kolstad, & Ellis, 2008)). Perceptional issues specific to

Augmented Reality area in Computer Graphics has been studied in detail a couple

of times by Drascic and Milgram in 1996 and Kruijff, Swan, and Feiner in 2010.

Hodgins, Jörg, O’Sullivan, Park, and Mahler studied how the human anomalies in

simulated human characters are easily identifies by the audience based on the
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famous ’Uncanny Valley’ response in the year 2010. A thorough detail of human

visual system, perceptually motivated rendering, optimizations, and how perception

drives computer graphics combined with new trends in perception oriented graphics

research for image processing, facial animation, realistic characters in movies has

been presented by McNamara, Mania, and Gutierrez (2011) as a SIGGRAPH course

in the year 2011.

2.3 Perceptual Metrics in Computer Graphics

The various subjective perceptual phenomenon of the HVS has been

quantified by researchers several times as a metric that are highly useful for

measuring and understanding it. This is evident from the studies that attempted in

measuring a subjective HVS phenomenon such as ’Just-Noticeable-Difference’

(JND) in visual quality for 3D models by reducing the number of polygons and

generating a threshold parameter (Cheng, Firouzmanesh, & Basu, 2011). A

detailed research of measurement metrics for perceptual visual quality metrics in

Images has been studied and listed by ((Gao, Brooks, & Arnold, 2017) & Lin and

Kuo (2011)). There has been numerous researches and comparative studies on the

perceptual metrics of 3D models such as model Quality, for both static and dynamic

triangular models ((Cleju & Saupe, 2006), (Lavoué, 2011), (Corsini et al., 2013),

& (Elloumi, Kacem, Dey, Ashour, & Bouhlel, 2017)). On the same lines, a

perceptual metric study that encompassed 3D models along with Light and Material

Interaction had been conducted to show how the model modification impacts on

their perception (Vanhoey, Sauvage, Kraemer, & Lavoué, 2017).

Just-Noticeable-Difference is another common and useful perception metric

in Computer Graphics and has been useful in measuring the degree of perceptual

change in areas such as Animation, View Estimation, Texture and Material

perception etc., Just-Noticeable-Difference metric for models (static 3D objects) has

been devised by (Cheng & Boulanger, 2005) to analyze different types of models to
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identify redundant information so that available bandwidth can be used for

improving texture resolution without compromise in perceived quality. Cheng and

Boulanger’s method focuses on viewing distance independent static models and also

accounts for changes in varying textures and lighting. The findings of this paper

proves that not every set of vertices in a 3D Model has ’significant impact on visual

quality’ and each model has its own unique surface property, perceptual values. A

drawback of this study is that only one type of model (Ellipsoid) is analyzed and a

certain portion of (median axis of the model) of the 3D Model; It is highly

dependent upon the model refinement approach that is being used, therefore the

results that are from this experiment are not very generalizable to organic model

varieties such as a Terrains or Trees.

2.4 Perception-Driven Graphics Approaches

The knowledge of human perception has been applied in computer graphics

to optimize the modeling and rendering pipeline since the beginnings and a common

way is to incorporate it as a computational model of a particular HVS feature,

visual masking (Ferwerda, Shirley, Pattanaik, & Greenberg, 1997), visual attention

and saliency (Frintrop, Werner, & Garca, 2015; Riche, Duvinage, Mancas,

Gosselin, & Dutoit, 2013), or to fully replace it by a hardware such as an eye

tracker (O’Sullivan, Howlett, McDonnell, Morvan, & O’Conor, 2004).

The studies in perception has led to benefit computer graphics area by using

perceptual quality metrics for improving the performance in areas such as Lighting,

Rendering and Animation (Myszkowski, 2002) by reducing computational costs and

use of perceptual metrics such as Animation quality metric (AQM) and Visible

Difference Predictor (VDP). The many advantages of using perception to improve

Interactive Graphics, Image Fidelity, Animation, Virtual Environment, visualization

and Non-Photo realistic Rendering are highlighted by OSullivan et al. (2004). The

perceptual use of impostor representation for simplification of human and building
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models in large scale crowd scenes and city scenes are evaluated and explored in

Hamill, McDonnell, Dobbyn, and O’Sullivan (2005). The authors Gan, Cai, Liu,

and Wang in the year 2015, similarly used perception based texture retrieval that

are perceptually meaningful and non-uniform for non-expert users. Perception

driven texture generation approach for generating textures with desired perceptual

properties had been researched and proven to be successful (Gan et al., 2017). On

similar lines, Perception-driven rendering methods has been studied to accelerate

computational time for photo-realistic rendering to deliver ’full experience’ to the

end user without any compromise in visual quality by measuring perception metrics

(Weier et al., 2017a).

Photorealistic rendering traditionally exploits perception limitations to

accelerate costly light transport computations (Weier et al., 2017b) and in 3D

graphics, HVS models allow removing nonperceptible components (Reddy, 1997,

2001) and/or predicting popping artifacts (Schwarz & Stamminger, 2009).

Perceptual models have been further applied to improving virtual

simulations (Ondřej, Ennis, Merriman, & O’sullivan, 2016), character

animations (O’Sullivan et al., 2004; Reitsma & Pollard, 2003), human body

modeling Shi, Ondřej, Wang, and O’Sullivan (2017), fluid simulations (Bojrab,

Abdul-Massih, & Benes, 2013; Um, Hu, & Thuerey, 2017), and crowd

simulations (Wang, Ondřej, & O’Sullivan, 2017; Wang, Ondřej, & O’Sullivan,

2016). High dynamic range imaging and tone mapping benefits from models of

human light adaptation (Ferwerda, Pattanaik, Shirley, & Greenberg, 1996;

Mantiuk, Myszkowski, & Seidel, 2006), color to grey conversions simulate human

color sensitivity (Neumann, Čad́ık, & Nemcsics, 2007; Smith, Landes, Thollot, &

Myszkowski, 2008). Interestingness (Gygli, Grabner, Riemenschneider, Nater, &

Gool, 2013) and aesthetic properties of photographs (Aydın, Smolic, & Gross,

2015), paintings and fractals (Spehar, Clifford, Newell, & Taylor, 2003; Taylor,

Spehar, van Donkelaar, & Hgerhll, 2011) have also been approximated by

computational models of HVS.
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Close to our work is research on procedural textures (Liu, Dong, Cai, Qi, &

Chantler, 2015b) that aims to define perceptual scales which can be used to

steering texture model. The perceived quality of a geometry replaced with texture

has also been studied (Rushmeier, Rogowitz, & Piatko, 2000).

Image quality metrics (IQM) utilize HVS models to predict perceptual image

quality. Full-reference IQMs compute perceptual differences between the reference

and distorted images (Mantiuk, Kim, Rempel, & Heidrich, 2011; Wang, Bovik,

Sheikh, & Simoncelli, 2004; Wolski et al., 2018), while no-reference

metrics (Herzog et al., 2012; Ye, Kumar, & Doermann, 2014) predict the quality

in a reference-less setup. Video quality metrics (Aydın, Čad́ık, Myszkowski, &

Seidel, 2010; Winkler & Mohandas, 2008) simulate temporal HVS properties to

faithfully comparing video sequences. Recent research works study perceptual

quality of 3D models (Lavoué, Larabi, & Vása, 2016) and models (Guo, Vidal,

Baskurt, & Lavoué, 2015; Nader, Wang, Htroy-Wheeler, & Dupont, 2016)

including textured models (Guo et al., 2016). Visual saliency predictors for 3D

models have been also proposed (Wu, Shen, Zhu, & Liu, 2013).

Unfortunately, no existing metric is applicable to comparison of synthetic and

real terrain images or models, because the compared contents differs significantly.

2.5 Perceptual Issues related to Procedural Modeling Area

The current procedural modeling methods try to address the need for

modeling individual characteristics of model types and improving their quality

((Smelik et al., 2009) & (Smelik et al., 2014)). Liu, Dong, Qi, and Chantler (2013)

was the first to address the need for identifying perceptual features of procedural

textures. Liu et al. (2015a) also identified that the textures which are based on

mathematical processes are not perceptually meaningful as they tend to be

”repetitive,” ”directional,” ”structured,” (Liu et al., 2015a). Zheng, Zhong, Liu,

Cai, and Dong (2014) proposed a learning model and deep architecture for learning



16

visual textures to understand their perception. Procedurally generated Cities and

Buildings are also criticized because they realistic structure, lack of control, the

generated methods are not of sufficient quality and the isolated feature set (Smelik

et al., 2009), (Smelik et al., 2014) & (Musialski et al., 2013).

2.5.1 General factors that affect the perception of a model

a. ’Mesh Saliency’ & ’Schelling Points’

’Mesh Saliency’ is defined as the ”measure of regional importance” of 3D

models and (Lee et al., 2005) ’Schelling Points’ is defined as the point of focus

when perceiving an object in a graphically simulated scene (Chen et al., 2012).

Both of these properties combinatorially, is very important in computer graphics

applications as they aid in Object Recognition, Shape Matching, Shape-Based

Retrieval, Metamorphosis, Cross-Parametrization, Texture Mapping, Deformation

Transfer, Shape Approximation, View-Point Selection, Symmetry Detection and

Part-Based Segmentation etc., of a 3D model (Chen et al., 2012). Therefore, from

the perspective of my research topic, it is very important to determine the ’Mesh

saliency’ and ’Schelling points’ of the specific category of the procedurally modeled

model that will be studied in detail.

Figure 2.2. Armadillo model [Left] - Saliency Points [Right] (Lee et al., 2005).
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Figure 2.3. Schelling Points of 3D models (Chen et al., 2012).

b. Perspective (View point selection and Nice viewpoints)

”Perspective effects are pervasive in our visual worlds and provide a wealth

of information about spatial layout” (Sedgwick, 1983) and (Thompson et al.,

2011). The perspective of a scene that includes an object of interest will help the

viewer in understanding the object size, distance, position of the object in relation

to the figure-ground plane and many more visual details (Thompson et al., 2011).

But, not every perspective projection of a model in a scene can be

categorized as a ’nice view point’. A nice view point of an object or a 3-D model as

defined by (Toussaint, 2000) is a view that encompasses all the features of an

object of interest with clear visibility (Kamada & Kawai, 1988). In addition to this,

there are three different viewpoint quality measures: a. heuristic measure, b. view

point entropy and c. Kullback-Leibler distance which is based on the projected and

actual distribution of polygons (Neumann et al., 2005).

c. Model Texture

The texture of a model is the surface appearance of a model. The texture

details of the model can give us many visual cues that correspond to the surface
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Figure 2.4. ”Representative views” of a ’Chair’ model (Neumann et al., 2005).

orientation, material property and shape of the model itself ((Landy & Graham,

2004) and (Gibson, 1950)).

There are two different parent types of textures: a. Structural (”a

specification of individual subpatterns making up a texture and an indication of

how the subpatterns are replicated over the image region corresponding to the

surface”) (Thompson et al., 2011) and b. Statistical (”conditional distributions of

nearby image locations or spatial frequency distribution”)(Thompson et al., 2011).

d. Lighting (Illumination, Shading and Shadows)

The Illumination of an object indicated the source of incoming light of how

the object is visible to the viewer. In Computer Graphics, there are three types of

object illumination: 1. Direct Illumination, 2. Indirect Illumination and 3. Global

Illumination based on the source of how the light arrives to surface of the object

(Thompson et al., 2011). The continuous variation of the light formed on the

surface of the object that is caused to due to the incident light reflection is called as

’Chiaroscuro’ or ’Shading’. The light interacting with the surface of the object helps

in revealing the chiaroscuro pattern that will help the viewer in evaluating the shape

of the object through shading (Thompson et al., 2011). Objects tends to cast

shadows on other objects on the scene when they are placed in a directional light

field. The strength of the shadow will help in understanding the distance and shape

of the object (Thompson et al., 2011).
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Figure 2.5. Different types of Illumination as exhibited through a ’Cornell Box’
model (Goral et al., 1984).

e. Material Properties

The type of material that an object is made up of helps in identifying several

properties of the materials and how it interacts with the environment such as

appearance, texture, light interaction and dynamics of the object (Thompson et al.,

2011). In computer graphics, the material property of a model is usually defined

through a shader system.

2.5.2 Specific factors that affect the perception of a certain model category:

In addition, to the above mentioned features in section 2.5.1, there are

several unique identifiable features of a model that will affect the perception of its

own model category. They are discussed in the next section for Terrains as follows.
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Figure 2.6. Examples of State of Art in Terrain Modeling in Computer Graphics as
rendered by Galin et al. (2019)
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2.6 Terrains

Terrains in computer graphics have been studied for several decades and a

recent comprehensive review of generating methods can be found in Galin et al.

(2019). Here we briefly list the three major categories of terrain generation

techniques: procedural approaches, erosion simulation and from example synthesis.

Procedural Terrains in computer graphics are generated through the use of a

2-Dimensional height field in which the value of vertices represents the elevation at

that location (Smelik et al., 2009) and (Smelik et al., 2014). The heightfield of a

Terrain are generated through the use of stochastic methods (such as mid-point

displacement, noise generation, fractal techniques), example based techniques

(image or through the input of the user by sculpting) or simulation based

approaches (Smelik et al., 2014).

Historically, the first methods to synthesize terrains relied on procedural and

fractal approaches. It consists in finding a way to generate a fractal surface that

exhibits self-similarity either by using subdivisions Fournier, Fussell, and Carpenter

(1982); Miller (1986), faulting Mandelbrot (1988), or by summing noises Musgrave,

Kolb, and Mace (1989). Approaches that control Kelley, Malin, and Nielson (1988)

or more specific curve-based constructions Gain, Marais, and Strasser (2009);

Hnaidi, Guérin, Akkouche, Peytavie, and Galin (2010) have been introduced. The

overall realism of the generated landscape depends on the fine tuning of control

parameters and requires a deep knowledge and understanding of the underlying

generation process which restrict those methods to skilled technical artists. In

contrast, erosion simulations aim at generating realistic terrain features by

approximating the natural phenomena, such as hydraulic Benes, Těš́ınský, Hornyš,

and Bhatia (2006); Krǐstof, Benes, Křivánek, and Šťava (2009); St’ava, Benes,

Brisbin, and Křivánek (2008) or thermal erosion Benes and Forsbach (2002);

Musgrave et al. (1989) processes at different scales.
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In general, these methods are computationally intensive, and only capture a

limited set of small scale structures features Cordonnier, Cani, Benes, Braun, and

Galin (2018), such as ravines or downstream sediment accretion regions. When

combined at a larger scale with uplift Cordonnier et al. (2016), erosion simulations

generate realistic mountain ranges with dendritic ridge networks and their dual

drainage network forming rivers.

Another option to obtain realism by synthesizing new terrains by-example,

for example by stitching together terrain patches from existing data-sets. By using

techniques from texture synthesis Gain, Merry, and Marais (2015); Zhou, Sun,

Turk, and Rehg (2007) or sparse modeling Guérin, Digne, Galin, and Peytavie

(2016), authors can generate large terrain with realistic small-scale features. The

large scale plausibility remains an open challenge as existing methods, even deep

learning Guérin et al. (2017) oriented approaches, rely on user-sketching and

authoring.

Figure 2.7. Interactive Example based Authoring of Terrains Guérin et al. (2017)

Despite recent advances in simulation, the user-control remains an open

problem and terrain generation methods only generate a limited set of landforms.

Moreover, validation of the generated structures remains an outstanding problem

and has been addressed only partially.

2.6.1 Perception of terrains:

Synthetic terrains have not been studied in perception experiments and we

are not aware of any computational perception quality metric that could be applied.
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Furthermore, a data-set of synthetic and real terrain images comprising human

judgments which could be used for an evaluation and comparison of terrain

generating methods or for training of data-driven techniques is missing as well.

Nevertheless, a few research works on classification and perception of

real-world terrains have been presented in the fields of environmental psychology

and geomorphology. Dragut and Blaschke [2006] proposed a system for landforms

classification on the basis of profile curvature. Several data layers are extracted from

the digital terrain model to feed an image segmentation which classifies the terrain

into classes like toe slopes, peaks, shoulders, etc. Fractal characteristics of terrains

were studied in Hagerhall, Purcell, and Taylor (2004) and they conclude that there

is a relationship between preference and the fractal dimension, meaning that fractal

dimension may be part of the basis for preference. Finally, scenic beauty and

aesthetics have been addressed by Daniel (2001); Palmer (2003); Tremblet (2016);

Tveit, Sang, and Hagerhall (2012). These works lay the foundation of landscape

perception, but they cannot be directly applied to quality assessment of synthetic

terrains. Automated tools of measurement and analysis of terrains are

sought Palmer (2003) to advance this area of research.

The inherent features of a Terrain model that the current procedural

modeling methods address can be categorized as follows (Li et al., 2008), (Peytavie

et al., 2009), (Smelik et al., 2009) and (Smelik et al., 2014):

Figure 2.8. Categorization of Terrain Features (Li et al., 2008).

• Shape: Peak, Pit, Ridge, Channel, Pass.

• Layers: Loose Rocks, Overhangs, Arches and Caves.
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Figure 2.9. Material Layer and MaterialStacks (Peytavie et al., 2009).

• Feature: Lakes, Streams, Rivers and Oceans.

• Texture: Sand, Snow, Rocks and Grass.

• Modification of Appearance: Eroded Features (Aeolian, Hydraulic, Fluvial

and Glacial).

The erosion (Wind, Water, Glacial and Sea) simulation of a Terrain and its

features can be considered as its dynamic feature (Št’ava, Benes, Brisbin, &

Křivánek, 2008), Vanek, Benes, Herout, and Stava (2011) and (Cordonnier et al.,

2017).

2.7 Research Methods in Applied Perception and Computer Graphics

Qualitative research methods is one of the best answer for studying the

phenomenon as their world view helps to ”seek deep understandings of others

unique socially constructed worlds and search for patterns in human behaviors”

(Miller, 2005). The use of Qualitative methods in Computer Graphics are not

necessarily new for studying perception. Hoffman and Nadelson (2010) used a

mixed methods study for motivational engagement in video games. Dünser, Grasset,

and Billinghurst (2008) demonstrates the variety of evaluation that have been used

in a variety of Augmented Reality studies from the years 1993 to 2007. Interviewing

participants and doing a thematic analysis is a common answer for detecting

common perception attributes ((Dünser et al., 2008), (King et al., 2004)

(Vaismoradi, Turunen, & Bondas, 2013)). Allen et. al in the year 2006 attempted
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to make sense of the barriers in IT for Women through the use of Interviews,

performing Thematic Analysis on the collected data and demonstrating the results

with the use of a causal maps. This seems very map-able to our problem of

detecting perception issues in computer graphics scenes that uses procedurally

generated models.

2.8 Machine Learning

The digital presentations of terrain are common as height maps in image

format. We assume the real terrain height maps contain geomorphological elements

that procedural ones do not have. One of our primary goals is to study the

difference of the features between real and procedural terrains. To achieve this, we

would like to apply the features from real terrains to procedural terrains, vice versa.

The geomorphological features reflect in the images as structured feature pixels.

Therefore, we can relate our work to Neural Generative Networks.

Recently, Machine learning has been picking up traction in computer

graphics for solving a variety of problems without explicitly programming for a

specific task through supervised, reinforced or unsupervised learning methods. In

the year 2009, Judd et al predicted where the humans look in the screen through

the use of a ML approach (Judd, Ehinger, Durand, & Torralba, 2009). A variety of

applications and approaches for using Deep Learning in various scenarios has been

thoroughly surveyed in 2015 by LeCun et al. (LeCun, Bengio, & Hinton, 2015a).

Through the use of reinforcement learning, locomotion skills for an animation agent

that adapts to various types of terrain has been found to be successful (Peng,

Berseth, & Van de Panne, 2016). Data-driven shape analysis and processing has

been studied thoroughly to provide suggestions on how to guide future studies that

involves large data on how data is collected, feature extraction for learning,

inference and reconstruction has been shown in detail by Xu et al. (Xu, Kim,
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Huang, Mitra, & Kalogerakis, 2016). We hypothesize that this technique will be

very useful in our study for improving perceptual features in a 2D context.

Our work is based on recent advances in deep neural generative

networks.Powered by Deep Learning LeCun, Bengio, and Hinton (2015b), a variety

of applications and approaches were explored in various scenarios, especially with

Convolutional Neural Network (CNN) on image understanding tasks He, Zhang,

Ren, and Sun (2016); Krizhevsky, Sutskever, and Hinton (2012); Simonyan and

Zisserman (2014). Besides the many breakthroughs with CNN such as object

detection Redmon and Farhadi (2018), segmentation He, Gkioxari, Dollar, and

Girshick (2017), and tracking Wang, Zhang, Bertinetto, Hu, and Torr (2019), the

generative networks such as Neural Style Transfer (NST) Gatys, Ecker, and Bethge

(2015) and Generative Adversarial Network (GAN) Goodfellow et al. (2014) belong

to the most promising approaches that should find applications in computer

graphics. The generative networks make pixel-wise alteration or synthesis for

getting desired visual features in an image. Generative neural networks have been

applied to terrain generation only in limited way Guérin et al. (2017). In this paper,

we use generative networks to transfer important features from terrains perceived as

realistic to non-realistic ones.

Recent NST work has been reviewed and summarized by Jing et al. (2017).

The initial research of NST started with Image-Optimisation-Based (IOB) networks

using parametric Gatys et al. (2015); Luan, Paris, Shechtman, and Bala (2017) and

non-parametric methods Li and Wand (2016). Such methods can transfer artistic

style or photorealistic features. However, the iterative image optimization procedure

usually leads to low computational efficiency. The more recent NST direction shifts

to Model-Optimisation-Based (MOB) methods, from per-style-per-model Johnson,

Alahi, and Fei-Fei (2016); Ulyanov, Lebedev, Vedaldi, and Lempitsky (2016) to

multiple/arbitrary-style-per-model architectures Chen and Schmidt (2016); Zhang

and Dana (2018). Comparing to the online IOB optimizations, offline MOB models

provide more efficient and flexible solutions. The per-style-per-model methods
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produce more impressive results close to Gatys et al. (2015) than the

arbitrary-style-per-model methods while requiring more training efforts. The

multiple-style-per-model methods are more suitable for the terrain feature transfer

considering terrains with different erosion types as styles.

Generative Adversarial Neural Networks (GAN): Goodfellow et al. (2014)

provides a neural network structure that utilizes a generator and a discriminator to

adversarial synthesis of remarkable images. There is a large number of variants and

enhancements of GANs that have been proposed and applied to different scenarios -

from sketch to photo translation Isola, Zhu, Zhou, and Efros (2016) to face

generator Karras, Aila, Laine, and Lehtinen (2017). A close work on terrain

authoring Guérin et al. (2017) used conditional GAN Isola et al. (2016) to translate

sketches into terrain representations. Several works Kim, Cha, Kim, Lee, and Kim

(2017); Zhu, Zhang, et al. (2017) extended the conditional GAN Isola et al. (2016).

The work of Cherian and Sullivan (2019); Zhu, Park, et al. (2017) enable domain

translation without paired images in training.

The deep learning area is very quickly evolving but has been applied to the

simulation of natural phenomena only in limited way. The goal of this work is to

apply deep learning to transfer visually important features among terrains.

2.9 Geomorphology Based Evaluation Approaches

Huggett (2016) provides us with common landforms in the globe that are

caused by many different types of erosions with corresponding patterns such as:

Aeolian, Glacial, Fluvial, Slope, Coastal, Weathering etc.,. These landforms have

similar landform features across them. Bullard and Livingstone (2002) suggests that

there are interactions between these systems and they could not be viewed as

mutually exclusive. Therefore, deriving a perceptual metric based on erosion

patterns alone would not suffice and scale well. In the year 2013, Jasiewicz and

Stepinski (2013) came up with a novel mapping and classification system of
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Figure 2.10. Machine Vision based feature classification provided by Geomorphons
(image from Jasiewicz and Stepinski (2013)).

Figure 2.11. Hydrology based evaluation of Real and Synthetic Terrains.

landform elements for Digital Elevation Maps based on Computer Vision based

pattern recognition approach. These landform will provide us with a basis for

deriving a perceptual metric for terrain models in computer graphics. The

geomorphons is discussed in detail in Section 4 of this research work. Although, We

could also visually evaluate a terrain based on the flow path enforcement and filling

but it only limits the evaluation category to Terrains with dendritic patterns

Lindsay (2016). An example of such hydrology based evaluation for Real and

Synthetic Terrains are given in 2.11.
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2.10 Summary

The current procedural modeling methods though they address the needs for

modeling individual characteristics of the aforementioned model types yet there is a

research gap in this area for individual feature examination for their ’goodness’ and

perception with the exception of textures which is studied by Liu et al. (2015a).

The procedural models such as procedural textures which are based on

mathematical processes are not perceptually meaningful as they tend to be

”repetitive,” ”directional,” ”structured,” (Liu et al., 2015a). Additionally, there has

been criticism of procedural city models such as ”the cities they generate often lack

a realistic structure” (Smelik et al., 2009) and ”quality of the obtained results is

not sufficient for most applications” (Musialski et al., 2013) for urban building

models. Therefore, there is a need for detailed perception analysis of procedurally

generated models that needs to be studied.

Unfortunately, the perception of procedural models (with the exception of

Procedural Textures) in both static and dynamic scene context has not been studied

in detail previously. This presents an opportunity for us to experiment and research

for filling the research gap in the area that concerns Procedural Modeling and

Perception analysis. The overarching idea will not only benefit in understanding the

metrics and factors that lie behind perception of procedural models but also helping

in improving the quality of generated models in procedural modeling by focusing on

those specific metrics.
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CHAPTER 3. METHODOLOGY

The main goal of undertaking this large scale perceptual experiment is to

establish a set of visual perceptual attributes and in turn perceptual metrics for

procedural terrain models. The perceptual attributes can be used as parameters to

guide the neural network training for both identification and transfering features

from real terrain models and procedural models. This chapter provides the

methodology to be used in the research study for data collection, data analysis,

feature extraction, learning and inference for our perceptual realistic reconstruction

of the digital elevation model.

3.1 Method Overview

The key question we are trying to answer in this body of research is the

visual plausibility of terrains and the visual perception and evaluation of synthetic

terrains generated by terrain modeling methods in computer graphics. We focus on

the terrain geometry only and we do not consider any additional features such as

snow, vegetation, of water bodies. Our work builds on the recent advances in

geomorphology, in particular we use the concept of geomorphons that are features

extracted from Digital Elevation Models (DEMs) that quantitatively measure

presence of various shapes in terrain (Section 4.1).

3.1.1 Research Method

We performed a large scale user study in two-phases (Section 4.2) in which

we quantify the perception of real and synthetic data-set and the transferred

features. Figure 3.2 shows the overview of our testing. Our goal is to quantify the
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levels of perception on a given model. On a higher level, a web based survey with

two rendered images of models (Procedural Models vs Models from other means)

side by side and asking the samples to choose which image is realistic were help us

in identifying their preferences seemed like a direct approach. A rendered image is

better than showing the research participants, an interactive 3D Model because in

real life most of the participants are going to have experience with a procedural

model in a certain context (2D) that is not tangible (3D). A cognitive web-based

survey was conducted to accomplish the study objectives. The participants in the

survey were asked to choose between two set of images based on their realism. The

investigators imposed minute variations in the procedurally generated terrains when

compared with their natural counterparts. Finally, based on the survey results, the

list of parameters that the audience has chosen were be composed and used for

completing the objective of the study. The main goal of doing this study is

validating the outputs of the proposed procedural natural object generation model

by showing the variety of generated models to the audience.

During the initial data generation, we acquired data of real terrains from

Shuttle Radar Topography Mission and we carefully selected several classes

featuring prevalent geological patterns (see Table 4.1): Aeolian, Coastal, Fluvial,

Glacial, and Slope (4.1). Then we generated synthetic data-sets by using terrain

generation algorithms used in computer graphics: coastal, thermal and fluvial

erosion, fractional Brownian motion, noise and ridged-noise terrain models.

Geomorphons were generated for each image.

3.1.2 Measure for Success

The measure of success for the research experiments is defined by the

successful identification of attributes that are influential in ’realistic’ visual

perception, classification of procedural Terrains models.
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Description of Experiment-α (E-α) was our initial experiment with 10 Real

Terrains (AEOLIAN Patterns x4, FLUVIAL Patterns x3 and GLACIAL Patterns

x3) and 10 guided Synthetic Terrains with state of the art erosion algorithms. This

was a pair-wise perceptual comparison with two-alternative forced choice design –

2AFC in Amazon Mechanical Turk platform. This test served more as a proof of

concept and validated our concerns that Real Terrains perceptually rank higher

than the Synthetic Terrains. we asked our test participants the question: ”Which

image looks better: The HIT consists of two images which are marked as ”Left” and

”Right”. Please choose between ”Left” or ”Right” images depending on which image

you think looks the best?”. The real terrains received 11,311 and synthetic terrains

received 5,558 votes out of 16,869 total votes by 348 unique participants in the

survey.

We performed statistical tests on our normalized perceptual scores to

determine if there are any differences in perception of our terrain data groups in

E-α: REALα vs SYNTHETICSE α. We state the null hypothesis, H0 for our

statistical test in E-α as follows: “There are no significant differences in the visual

perception scores between our terrain data groups.”. We used the significance level of

α = 0.01, and get the statistics for, REALα versus SYNTHETICSα

(p− value < 0.01, DF = 3373, t = 2.32). It is highly evident from the test that Real

Terrains are perceptually ranked than the Synthetic Terrains proving our notion.

Therefore, we can reject the null hypothesis and proceed with further tests.

Figure 3.1. A Sample HIT of Experiment α in the Amazon Mechanical Turk test
Platform
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Figure 3.2. Overview of our experiments (boxes with rounded corners describe
processes and squared boxes describe data). The initial data for Experiment 1 were
acquired from two sources: real and synthetic data, they were rendered and we also

generated geomorphons for each image that quantitatively describe the landform
features it contains. During the Experiment 1 we acquired perceptual ranking of

each image. During the feature transfer we transferred features from highly ranked
images (Real⇒Synth) and vice versa (Synth⇒Real) resulting in two new datasets.
During the Experiment 2 we perceptually evaluated the initial data and the newly
generated ones, confirming that the transferred features have visual importance on

the perceived visual quality.

Description of Experiment-1: (E1) The first user study is a pair-wise

perceptual comparison (two-alternative forced choice design – 2AFC) by using

Mechanical Turk. The experiment provided initial terrain ranking for each image

and for each image category within each group. The random pairing is based on the

process shown in 3.3. In particular, we have shown pairs of images and we asked the

viewers the question: ”Which terrain looks more realistic (left or right)?”. Each

image received multiple rankings and the number of votes decided its positioning in

the overall test.

Feature Transfer: After the first user study we used the CycleGAN (Zhu,

Park, et al., 2017) to transfer features from the images that were ranked high to

those ranked low and conversely (Section 4.2.2). The motivation for this step is the

underlying assumption that certain features have important effect on the visual

perception of terrains. This step generated a new data-set that we call S2R

(synthetic to real) and R2S (real to synthetic). S2R indicates that procedural
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Figure 3.3. (Top) An overview pipeline of our Image random pairing process across

our experiments: Experiment 1 & Experiment 2. The subscript-’R’ indicates a
randomly chosen image from a set e.g., AR indicates a randomly chosen image from

Image set A. (Bottom) This figure shows the combinationsof sets used for
generating our pairwise comparisons used in the Experiments

features were transferred to the real terrains and R2S is the opposite process.

Geomorphons were also generated for the new data-sets.

Description of Experiment-2: (E2) The second user study is the same as E1,

but also included the newly generated sets (Section 4.2.3). The random pairing is

based on the process shown in 3.3. The underlying assumption was that the features

from the highly ranked terrains were be transferred to the low ranked terrains and

the new terrains were improve their ranking. The same expectation was hold for the

terrains ranked in the opposite way. Moreover, for each terrain we also generated
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Figure 3.4. A Sample HIT of Experiment 1 in the Amazon Mechanical Turk test
Platform.

the corresponding geomorphons and we kept a careful track of which features were

transferred.

Figure 3.5. A Sample HIT of Experiment 2 in the Amazon Mechanical Turk test
Platform.

3.2 Summary

This chapter provided the framework and methodology to be used in the

research study. The next chapter will discuss our implementation details, neural

network setup and style transfer process in detail.
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CHAPTER 4. EXPERIMENTS

4.1 Terrain Data and Geomorphons

The objective of these studies was to compare the terrains with the most

prevalent geomorphological processes with visually distinguishable features and the

common terrain synthesis methods in computer graphics. The DEMs used in this

study come from Shuttle Radar Topography Mission (SRTM) research data-set Farr

and Kobrick (2000). We used the three arc-second capture resolution (90m pixel

resolution along the equator) tiles from the data set as some of the tiles from the

one arc-second (30m pixel resolution along the equator) data that covers the whole

globe is not made available to public yet. The resolution roughly translates to 1◦

Longitude ×1◦ Latitude or 100× 100 km resolution approximately depending on the

DEM’s location on Earth. All the DEMs we used maintained a resolution of

512× 512 that gives sizes of the land features around 200 meters per pixel. We

determined 512× 512 image resolution for height maps to be a nice balance in terms

of visual features and image size for neural network training based on Peak

signal-to-noise ratio [PSNR] estimation in comparison with other resolutions such as

128× 128, 256× 256, 768× 768, 1024× 1024 and 1201× 1201.

4.1.1 Real terrains

Without loss of generality we used terrains that include patterns that

commonly results from aeolian, glacial, coastal, fluvial, and slope processes Huggett

(2016) along with the retrievability of suggested patterns from the SRTM

data-set Farr and Kobrick (2000). It is important to note that the geoforming

processes are not well-understood and most of the terrains are affected by several of



37

them either at the same time period or in an indeterminable unknown sequence. So

instead of discussing processes, we consider terrains that include the specified

geomorphological patterns more or less. The two top rows of Figure 4.1 show

examples of several renderings of real terrains and the supplementary materials

include all data.

4.1.2 Synthetic Terrains

Again, Without loss of generality we used terrains generated by noise Perlin

(1985), ridged-noise, fractional Brownian motion (fBm) surfaces Fournier et al.

(1982), thermal erosion Musgrave et al. (1989), fluvial erosion Anh, Sourin, and

Aswani (2007); Krǐstof et al. (2009); Neidhold, Wacker, and Deussen (2005);

St’ava et al. (2008), and coastal erosion approximated by hydraulic erosion applied

only to coastal areas (see Galin et al. (2019) for an overview). Eroded terrains were

generated from noise-based terrains (Figure 4.1 two bottom rows).

While procedural generation of terrains is simple so we could have generated

an arbitrary number of DEMs, it is rather difficult to find good samples for all the

above-mentioned examples of real patterns. Table 4.1 shows how many terrain

models we had for each category and also establishes nomenclature for each set.

Each real image starts with letter R and synthetic with S, the second letter

indicates subcategory. We refer to all images from real dataset, R and all synthetic

as S. The size of each data-set was the same: |S| = |R| = 150.

4.1.3 Rendering

All terrains were rendered by using exactly the same settings to avoid any

bias.

The camera position was set to display the terrain from about 45 degrees

angle that is a common viewing distance from a top of a mountain or a low flying

aircraft. This location shows enough details as opposed to top view and does not
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Real Aeolian (RA)
PTQM=0.75

Real Costal (RC)
PTQM=0.77

Real Glacial (RG)
PTQM=0.69

Real Fluvial (RF) 
PTQM=0.86

Real Slope (RS)
PTQM=0.66

Synth Noise (SP)
PTQM=0.24

Synth Ridge (SR)
PTQM=0.18

Synth fBM (SM)
PTQM=0.27

Synth Thermal (ST)
PTQM=0.22

Synth Fluvial (SF)
PTQM=0.23

Synth Coastal (SC)
PTQM=0.24

Figure 4.1. (Top) Examples of real terrains rendering used in our experiment and
their PTQM: RA) aeolian patterns from Moab Arches National Park Utah USA,

RC) coastal patterns from Gobi desert Mongolia, RG) glacial erosion patterns from
Himachal Pradesh Western Himalaya India, RF) fluvial pattern from Chichiltepec

Mexico Guerrero, and RS) slope pattern from Death Valley California USA.
(Bottom) Examples of synthetic terrains SP) noise-based, SR) ridged-noise,

SM) fractional Brownian motion surface, ST) thermal erosion, SF) fluvial erosion,
and SC) coastal erosion (see supplementary material for high-resolution images).

cause self occlusions as opposed to side view. We also positioned the camera above

one of its randomly chosen corners. We assumed viewers are familiar with this

viewing angle.

We used sky sphere for illumination with gradient from 50% of gray near the

horizon to full white in zenith. The rendering was performed by using global

illumination with no additional lights, by using 500 reflections of light and 9×

super-sampling for anti-aliasing. Each terrain was textured by the same color map

that changed from low-level and flat areas with yellow color (sand), medium levels

flat green (grass) to high and steep slopes gray (stone). We experimented with pure

grayscale rendering by using only ambient occlusion, but the consistent color
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Table 4.1.

Terrain type (real/synthetic/transferred features), categories, abbreviations, and the
number of terrain samples in each category.

Type Category Abbr. Sampl.
Real (R) Aeolian RA 55

Coastal RC 19
Fluvial RF 64
Glacial RG 07
Slope RS 05

Synthetic (S) Coastal SC 25
fBm SM 25
Fluvial SF 25
Noise SP 25
Ridged-noise SR 25
Thermal ST 25

Transferred Synth features to real terrains S2R 150
Features (2) Real features to synth terrains R2S 150

mapping provides better contrast of the final images. We intentionally used

non-photo-realistic Gooch, Gooch, Shirley, and Cohen (1998) rendering so as to

avoid any bias introduced by the simulation of vegetation and realistic rock, sand or

grass rendering. Moreover, non-photo-realistic rendering enhances the shape and

structure of the bare elevation of terrain which is the focus or this study.

4.1.4 Geomorphons

The fundamental theory behind our method is the recently introduced

concept of geomorphons Jasiewicz and Stepinski (2013) that provide an exhaustive

classification of terrain features from digital elevation models (DEMs) based on

pattern recognition approach. Geomorphons build on the decomposition of DEM

into local ternary patterns Liao (2010) that generate an oriented eight directional

feature vector for each location of the DEM; one value for the Moore neighborhood.

This gives rise to ten geomorphons (flat, peak, ridge, shoulder, spur, slope,
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a) b)

c) d)

Figure 4.2. Examples from our different rendering experiments in tools such as: a)
Terragen, b) Vue, c) RayShade module in R, d) POVRay.

depression (or pit), valley, footlsope, and hollow) as shown in Figure 4.3

from Jasiewicz and Stepinski (2013).

We used an open implementation of geomorphons in GRASS GIS tool

Neteler and Mitasová (2013) that generates color-coded image corresponding to the

input DEM as shown in example in Figure 4.4. The output of the algorithm is the

percentage of coverage of each geomorphon in the input DEM.

We utilize geomorphons in the context of understanding the importance of

individual geomorphological landform features and how they affect the perception of

terrains. In the next text we show how they are present or missing in different

terrains. The order of the geomorphons in the color coding in Figure 4.4 is

arbitrary. In order to compare the wide variety of terrains used in this paper, we

decided to sort the geomorphons according to their presence in the best visually
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Figure 4.3. Ten most common land form patterns can be uniquely classified by
geomorphons from a DEM. Blue disc identify lower, red higher, and green the same
altitude (image from Jasiewicz and Stepinski (2013)).

perceived terrain category from our user study that are glacial patterns of real

terrains (Section 4.2.1). Figure 5.11 shows the normalized frequency of

geomorphons in all dataset used in this paper and we use the ascending order of

geomorhons as: Depression (or pit) (the least present), Summit, Flat, Valley, Ridge,

Hollow, Spur, Shoulder, Slope, and Footslope (the most frequently present). Please

note that the values of geomorphons for all dataset from this paper will be made

available as a supplementary material.
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a) b)

c) d)

Depression
Summit
Flat
Valley
Ridge
Hollow
Spur
Shoulder
Slope
Footslope

Figure 4.4. a) The input DEM b) its rendering and c) the geomorphons d) with the
explanation of the color-coding.

4.2 Perceptual Experiments and Feature Transfer

The perceptual study was run on the Amazon Mechanical Turk platform and

we asked the subjects the question: ”Which terrain looks more realistic (left or

right)?” by a showing a pair of terrain images without giving any other information

about the terrain. Only qualified ”Mechanical Turk Masters” were allowed to

answer the survey and each repetitions of the image pair during the survey process

were restricted to be answered only by unique participants every time. The survey
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is blinded such that the participants only see an image pair with responses

restricted to ’Left’ or ’Right’ option. The experiment involved 70 participants with

no particular constraints on their education or previous knowledge. All participants

were older than 18 years. The source category information of each terrain that is

being shown for collecting responses would not be displayed and randomized every

time.

For each image pair we denote the category by dash, so R-S indicates pair of

images where one is from the real and one from the synthetic sample. The actual

position of each image (left or right) was randomized that makes this relation

symmetrical: R-S is the same as S-R.

4.2.1 Experiment 1: Perceptual Evaluation of Real and Synthetic Terrain Models

We generated random image pairs for our 2AFC study by using the rendered

images from Section 4.1. We randomly paired one real with one synthetic resulting

in 150 image pairs. This pairing happened five times for each image from R

resulting in |R-S| =750 images.

1. we randomly paired one synthetic with another synthetic terrain (another 150

images called S-S) and we repeated this step five times for each S resulting in

|S-S| =750.

2. Also, one real image was paired with one real (150 image pairs called R-R)

repeated five times resulting in |R-R|=750 image pairs. The total number of

image pairs for E1 was |R-S|+|R-R|+|S-S| = 2,250 image pairs.

We made sure that the pairing did not miss any image, each image was

repeated exactly five times, and pairing occurred always with a different image. The

order of the images within each pair was also randomized so that the synthetic image

could be on the left hand or right hand side of the pair with the same probability.

During the experiment each image pair was shown to five different

participants who chose to participate in the survey resulting in a total 3750 image
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Table 4.2.

The configuration for our Experiment 1 (E-1).

TEST-1
Datasets Used Real (R), Synthetic (S)

Count of Terrains R = 150, S = 150
Across Comparisons R-S (150)
Within Comparisons R-R (150), S-S (150)

Unique Terrains 450
Image Pair Count after random matching 2250

Repetitions 5
Total Votes 11250

pair observations by a total of 70 subjects (out of which 33 respondents participated

in responding for Across comparisons: R-S) with varying degree of participation

(determined based on the unique count of anonymized ’workerID’ provided by

Amazon Mechanical Turk).

Each time an image was selected as more realistic, it received a point, and

the total number of points determined the overall ranking of each image that was

normalized as discussed in chapter 5. Moreover, we also calculated the normalized

ranking of each category of real (RA, RC, RG, RF, and RS) and synthetics (SP, SR,

SM, ST, SF, and SC) terrains.

4.2.2 Feature Transfer

E1 provided a ranking of each category of real and synthetic terrains. We

observed that the real terrain contained features that the synthetic ones do not

have, the valley topology in the terrains with fluvial erosion. Moreover, within the

real terrain domain, different erosion causes different feature patterns, reflecting in a

height map as patches of pixels with varying distributions of elevations.
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We assumed that a deep neural network could learn the features that make

real terrains visually plausible and that such features can be transferred onto the

synthetic terrains to make them more visually realistic.

We initially experimented with neural style transfer (NST), which did not

perform well, because the model lacks the capability of transferring consistent global

topologies such as long ridges or valleys as discussed by Gatys et al. (2015). Because

explicit pairing between the real and synthetic terrains is difficult, we consider using

the unpaired image to image translation Zhu, Park, et al. (2017) to transfer features

from the real domain to the synthetic domain, and vice versa. Moreover, we also

hypothesize that the same transfer could be used to diminish features if the transfer

occurs from synthetic to real terrains that would justify the importance of specific

features.

The pipeline with major components of our network is shown in Figure 4.5.

We use a pair of generators GR and GS with a pair of discriminators DR and DS.

The generator GR translates terrains from the synthetic domain S to the real

domain R with real features. The discriminator DR discriminates between

terrains {r} and {GR(s)}, where {r} ∈ R and {s} ∈ S. Moreover, GS translates

terrains within the real domain R to the synthetic domain S with synthetic

features. Similarly, DS discriminates between terrains {s} and {GS(r)},

where {r} ∈ R and {s} ∈ S. Besides the adversarial loss, a cycle consistency loss is

used to make GS (GR(s)) ≈ s and GR (GS(r)) ≈ r. This process is indicated with

the dashed arrows in Figure 4.5. The cycle consistency ensures the high-quality

feature transfer.

We adopt a nine res-block generator and a 70× 70 PatchGAN

discriminator Isola et al. (2016). The checkerboard patterns (Figure 4.6) happen in

the transferred terrains caused by fractionally-strided convolution and the artifacts

decrease if the training epochs increase. We also applied resize-conv with Nearest

Neighbor and Bilinear as suggested in Odena, Dumoulin, and Olah (2016)

(Figure 4.6).



46

Synthetic Terrains
Synthetic Terrains
& Real Features

Real Terrains
Real Terrains &

Synthetic Features

Discriminator
Real

Discriminator
Synthetic

Generator
Real

Generator
Synthetic

Start

Start

Figure 4.5. The pipeline with major components of the network for feature transfer.
The blue arrows indicate the working flow of R2S; the orange arrows indicate the
working flow of S2R. The dotted-and-dashed arrows indicate the cycle consistency

process.

Our training set contains 9, 800 real terrain height maps selected from the

SRTM DEMs excluding the terrains that have been used in our E1 and E2. We

generated additional synthetic height maps for use in training based on

aforementioned synthetic categorization and same size as the real terrain training

data which is 9, 800 (see the data collection in Sections 4.1.1 and 4.1.2). Note that

the sets from the first experiment were also included in the second one. In this way

we have validated the first experiment, because the ranking of the results was

consistent between E1 and E2 (Section 5).

We trained the model with 20 epochs, and have then generated 150 images of

real terrains with synthetic features denoted by S2R; the notation denotes the

transfer meaning ”synthetic features were transferred to real terrains” and we also

generated another 150 images of synthetic terrains with real features denoted by

R2S. Figures 5.1 and 4.7 shows example result of the feature transfer in both
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directions (from real to synthetic and from synthetic to real) and Section 5 further

discusses results.

Initially, we also experimented with another neural style transfer (NST),

which did not perform as well as GAN. We based our NST on a

multiple-style-per-model net Zhang and Dana (2018), considering a) a 2D style

embedding (CoMatch) layer can enrich the representation of terrains with different

erosion types (styles), b) a controllable brush-size supports varying density erosion

features, and c) a good performance. Local fractal features in the real terrains can

be well transferred to the procedural ones. However, the model lacks the capability

of transferring consistent global topologies such as long ridges or valleys. As

discussed by Gatys et al. (2015), large scale structures in the images usually

response in deep layers. However, by adding hidden layers to the transformation

network of NST, we did not observe significant improvement in transferring global

geomorphological processes in our experiment. We may further improve the quality

of the images by using unsupervised Almahairi, Rajeswar, Sordoni, Bachman, and

Courville (2018) or supervised Zhu, Zhang, et al. (2017) approaches for different

erosion types in the future work.

4.2.3 Experiment 2: Perceptual Evaluation of Real, Synthetic, and Terrain Models

with Transferred Features

The objective of the second experiment (E2) was to evaluate how the

terrains with transferred features score perceptually against real and synthetic

terrains. We have reused the 750 R-S image pairs from E1 (Section 4.2.1) and added

another 750 images for each missing combination. Table 4.4 shows the naming of

the image pairs. The first column shows the reused pairs from E1 (R-S). The newly

added pairs compare newly created transferred features from synthetic to real R2S

combined with all options R2S-R, R2S-S, and S2R-R2S. Also, we added

combinations for feature transfer from real to synthetic S2R S2R-R and S2R-S.
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R2S-S2R is already included because it is symmetrical with S2R-R2S. Again, each

shuffling was generated five times resulting in 750 images for each item of Table 4.4

resulting in total of 4,500 image pairs. We have repeated each test for five

independent viewers and this resulted in the total of 22,500 views by 128 subjects

(out of which 128 respondents participated in responding for Across comparisons:

R-S, R-R2S, R-S2R, S-R2S, S-S2R, R2S-S2R). All participants were older than 18

years. Note that because the R-S set from the first experiment were also included in

the second one, we have validated the first experiment, because the ranking of the

results was consistent between E1 and E2 suggesting the data saturation point has

been attained. (Section 5).
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Figure 4.6. The checkerboard artifacts reduces with the training time and the can
be mitigated with the resizing of convolution kernels.
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a) b)

c) d)

Figure 4.7. Example of feature transfer: a) Real terrain with strong fluvial patterns
from Colombian Amazonian forest area (S01 W072) (PTQM=0.67) and b) synthetic

terrain generated by thermal erosion (PTQM=0.46). c) Synthetic features
transferred to real terrain worsen its perceived visual quality (PTQM=0.49) and

d) real features transferred to synthetic terrain improve it (PTQM=0.63).

Table 4.4.

Image pairing for Experiment 2. (Boldface pairs are reused from E1.)

S R2S S2R

R R-S R2S-R S2R-R
S • R2S-S S2R-S

R2S • • S2R-R2S
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Table 4.5.

Geomorphon value averages for our terrains in Experiments 1 and 2 (Part-I).

CATEGORY DEPRESSION SUMMIT FLAT VALLEY RIDGE
RG-AVG: 0.007 0.018 0.166 0.224 0.250
RG-STDEV: 0.004 0.013 0.161 0.058 0.052
RF-AVG: 0.154 0.185 0.124 0.529 0.535
RF-STDEV: 0.217 0.249 0.137 0.246 0.249
RA-AVG: 0.072 0.082 0.158 0.386 0.396
RA-STDEV: 0.156 0.145 0.131 0.165 0.167
RS-AVG: 0.049 0.068 0.371 0.363 0.381
RS-STDEV: 0.051 0.044 0.185 0.117 0.121
RC-AVG: 0.043 0.054 0.286 0.322 0.337
RC-STDEV: 0.036 0.037 0.204 0.120 0.116
SP-AVG: 0.000 0.000 0.198 0.023 0.024
SP-STDEV: 0.000 0.000 0.004 0.001 0.001
SR-AVG: 0.016 0.012 0.000 0.040 0.081
SR-STDEV: 0.002 0.002 0.000 0.004 0.010
SM-AVG: 0.001 0.001 0.178 0.030 0.032
SM-STDEV: 0.001 0.001 0.004 0.002 0.002
ST-AVG: 0.048 0.051 0.000 0.159 0.147
ST-STDEV: 0.003 0.002 0.000 0.005 0.006
SF-AVG: 0.006 0.018 0.001 0.145 0.181
SF-STDEV: 0.002 0.002 0.000 0.006 0.005
SC-AVG: 0.024 0.024 0.001 0.061 0.066
SC-STDEV: 0.002 0.003 0.001 0.004 0.005
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Table 4.6.

Geomorphon value averages for our terrains in Experiments 1 and 2 (Part-II).

CATEGORY HOLLOW SPUR SHOULDER SLOPE FOOTSLOPE
RG-AVG: 0.388 0.432 0.483 0.551 0.574
RG-STDEV: 0.122 0.122 0.103 0.061 0.109
RF-AVG: 0.460 0.550 0.405 0.396 0.419
RF-STDEV: 0.134 0.158 0.241 0.105 0.222
RA-AVG: 0.408 0.483 0.526 0.431 0.561
RA-STDEV: 0.124 0.142 0.209 0.095 0.203
RS-AVG: 0.336 0.427 0.481 0.314 0.529
RS-STDEV: 0.091 0.109 0.186 0.108 0.194
RC-AVG: 0.343 0.406 0.521 0.397 0.571
RC-STDEV: 0.114 0.129 0.193 0.109 0.187
SP-AVG: 0.135 0.141 0.930 0.587 0.922
SP-STDEV: 0.003 0.003 0.004 0.004 0.005
SR-AVG: 0.581 0.518 0.012 0.974 0.013
SR-STDEV: 0.024 0.017 0.005 0.014 0.005
SM-AVG: 0.148 0.155 0.922 0.596 0.917
SM-STDEV: 0.002 0.003 0.005 0.004 0.005
ST-AVG: 0.766 0.869 0.011 0.777 0.009
ST-STDEV: 0.010 0.012 0.002 0.007 0.002
SF-AVG: 0.972 0.955 0.025 0.694 0.023
SF-STDEV: 0.014 0.017 0.004 0.009 0.004
SC-AVG: 0.642 0.668 0.017 0.914 0.016
SC-STDEV: 0.017 0.018 0.005 0.010 0.003
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CHAPTER 5. RESULTS

An example in Figure 5.1 shows a procedural terrain and the distribution of

its landforms based on geomorphons as well as a real terrain with its accompanying

features. The feature vector of the geomorphons is organized so that the visually

plausible ones are on the right hand side. The real terrain was ranked as highly

visually plausible (77%) in our user study and the procedural terrain was on the

opposite scale (49%) as can be also seen in the distribution of the geomorphons. We

then used deep learning to transfer the features from the procedural to real and vice

versa and we show the corresponding distribution of the geographics features that

indicates that the distributions of the geomorphons changed so that the high-ranked

worsen and low-ranked improved. This quantitative validation has been then

Feature transfer (real terrain to synthetic)
Feature transfer (synthetic to real)

Real Synthetic Synthetic with
Real Features

Real with Synthetic 
Features

Feature transfer

PTQM=0.76 PTQM=0.51
PTQM=0.69 PTQM=0.33

Figure 5.1. The real terrain from the state of Arizona in the USA with complex
geomorphological patterns has PTQM=0.76 of top visually plausible and it ranked

as top 78% in our perceptual study. The synthetic terrain models with patterns
generated by thermal erosion is has PTQM=0.51 and it ranked as 49% in the study.

The corresponding geomorphons show the distribution of patterns in each model
with strong presence of valleys, ridges, and hollows landform in real terrain that

were not so present in the synthetic variety. By using a CycleGAN, we transferred
the visually important features to the procedural terrain (orange arrows) and we
transferred the features in synthetic terrain to the real terrain (green arrow). The

second perceptual study showed that the transferred features improved to
PTQM=69 (77% ranking in our study) and transferring the visually unattractive

features from procedural terrain to real demoted its PTQM=0.33 (29%). The
transferred features are circled in the corresponding graphs of geomorphons.
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confirmed by the second user study that showed that the procedural terrain after

the style transfer improves its visual plausibility by to 69% and the real terrain

worsens to 29%.

Below we describe results of our two experiments and feature transfer. We

show results of E1 and E2, discuss the features in geomorphons and the feature

transfer. Finally, we introduce the perceptual terrain quality metric PTQM (see

also the supplemental material).

5.1 Perceptual Experiments

Experiment 1: The first Mechanical Turk experiment assigned each image

a number of how many times it was selected as more realistic. We normalized the

counts so that the best image had a score of 1.0. We then calculated the average,

standard deviation, mean, and range for each category of R and S from Table 4.1.

The sorted results by the average value are shown in Figure 5.3 top. The ranking of

terrains from least visually plausible to the best was:

SR-SC-SF-SM-SP-ST-RS-RC-RA-RF-RG. All synthetic terrains were perceived as

visually worse as compared to the real ones. The most visually plausible synthetic

terrains are generated by thermal erosion. See also Table 5.4 for the actual numbers.

We have also calculated the average and standard deviation of values of

ranking of all images in the sets S and R. An unpaired T-Test evaluation suggested

that the difference is statistically significant with the two-tailed p− value < 0.01,

DF = 283, t = 17.91 & α = 0.01.

Experiment 2: The second experiment repeated E1 with the addition of

pairs of images with transferred features. Our assumption was that the features

transferred from real terrains to synthetic would improve their ranking and that the

transfer of features from synthetic to real terrains will worsen their ranking.
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Similarly to E1 we have normalized the rank of each image and calculated

statistics for each category. Figure 5.3 shows the result and Table 5.4 shows the

actual numbers.

Figure 5.2. Percentile Plot of Normalized Scores from Experiment-2.

Simply stated, the perceptual experiment suggests that synthetic terrains in

our data-set are perceived as visually significantly worse than the real ones.
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SR SC SMSF SP ST RS RC RA RF RG

SR SC SM SF SP S2R ST RS RC R2S RA RF RG

Figure 5.3. Distribution of perception scores from experiments: E1 and E2.
Perceptual ranking of terrains from E1 (top) and E2 (bottom). The abbreviations

are from Table 4.1 and the terrains are sorted by the average perceived visual
quality from worse (left) to the best (right). While the order of the rankings in E2 is
very similar to E1, note that the S2R synthetic terrains improved with features from

real terrains ranked high. At the same time, real terrain with features transferred
from procedural R2S ranked lower. The figure has been plotted based on their

average scores. The ×, •, and the − sign represent the mean, outlier points, and the
median markers respectively. These plots should be interpreted with care as they
should not be used for interpret or infer statistical significance of the difference

among terrain categories.

The order of terrain categories is exactly the same as in E1 that confirms the

validity of both tests. The categories with transferred features ranked as expected.

The synthetic terrains enhanced with features from real terrains R2S ranked 10th,

which is better than some of the real terrains, but better than all synthetic ones.

This confirms our initial hypothesis that feature transfer has an important effect on
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Figure 5.4. Frequency Distribution comparison of our normalized scores from
Experiments E-1 and E-2 respectively. The match shows the robustness and validity

of our method.
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Table 5.1.

The average perceptual scores of all our terrain samples in each test category.

Type Category E1 E2
Real RG 0.80 0.80
(R) RF 0.71 0.77

RA 0.70 0.74
RC 0.63 0.67
RS 0.60 0.66

Synthetic ST 0.46 0.41
(S) SP 0.40 0.34

SM 0.34 0.28
SF 0.22 0.33
SC 0.24 0.12
SR 0.17 0.08

Transfers R2S N/A 0.71
(T) S2R N/A 0.40

terrain perception. Similarly, the real terrain with transferred procedural features

S2R ranked significantly worse than all real terrain and even worse than thermal

erosion simulation at 6th place. This again confirmed our hypothesis that features

of synthetic terrains do not contribute to visual quality of terrains.

5.2 Statistical Tests

We performed statistical tests on our normalized perceptual scores to

determine if there are any differences in perception of our terrain data groups:R, S,

R2S and S2R. We state the null hypothesis, H0 for our 6 statistical tests in E2 as

follows: “There are no significant differences in the visual perception scores between

our terrain data groups.”. We used t-Tests to compare the means and variances of

the perception scores. We have summarized the results for our statistical tests in

Table 4. For testing our candidates in E2, we used the significance level of α = 0.01,

and get the statistics for, R versus R2S (p− value = 0.02, DF = 149, t = 2.26), R
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versus S2R (p− value < 0.01, DF = 149, t = 22.10), R versus S (p− value < 0.01,

DF = 149, t = 22.59), R2S versus S2R (p− value < 0.01, DF = 149, t = −23.52),

R2S versus S (p− value < 0.01, DF = 149, t = 29.12) and S2R versus S

(p− value < 0.01, DF = 149, t = 10.79). It is evident from the tests (Table 5.2)

that the perception scores are statistically different between the terrain groups

meaning that our observers perceived and like the terrains on different scales except

the candidate R v R2S signifying that there are features in real terrains that

increase the visual plausibility. Therefore, we can safely reject our null hypothesis

for R v R2S and state that there is a significant difference in perception of Real

Terrains (R), Synthetic Terrains (S), Synthetic Terrains with Real features (R2S)

and Real Terrains with Synthetic features (S2R).

We initially performed an ANOVA (E1: calculated F − V alue = 320.91,

critical F − value = 3.87, p < 0.01, df = 298) (E2: calculated F − V alue = 465.78,

critical F − value = 2.61, p < 0.01, df = 596) to determine if there are any

significant difference in the variances of the scores and after establishing that there

are differences in the groups, we proceeded with the t-tests to determine among

which groups the significant differences lie. Additionally, a post-hoc test (Tukey’s

HSD (honestly significant difference) test) indicated that there is no statistically

significant difference in the perception scores between the terrain groups, R and R2S

with a p− value = 0.0511 and standard error of 1.0938 while there is a statistically

significant difference between the rest of the terrain groups with p− value < 0.001

and standard error of 1.0938 with α = 0.01 which is consistent with t-Test results.
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Table 5.2.

The table shows the statistical significance of each terrain set compared with the
other set from our experiments: E1 and E2. The implies that the terrain set in
the vertical column are statistically significant than the terrain set in the horizontal
row, × to suggest that the difference is not statistically significant and • to suggest

that the test is not available or compared already.

R S R2S S2R
R • ×
S • •
R2S • • •
S2R • • • •

Table 5.3.

The Average (AVG), Median (MED), Mode (MODE), RANGE (RNG), Standard
Deviation (STDEV), Standard Error (SE), and 95% Confidence Interval (95% C.I.)

of the normalized scores for the terrain set: E1.

E2
T Ab. AVG MED MODE RNG STDEV SE 95% C.I.
R RG 80 84 92 52 19 7 14

RF 71 74 88 80 20 3 5
RA 70 72 92 88 22 3 6
RC 63 64 96 68 21 5 9
RS 60 76 N/A 56 28 12 24

S ST 46 48 48 64 17 3 7
SP 40 44 48 56 13 3 5
SM 34 32 36 56 14 3 6
SF 22 16 16 40 12 2 5
SC 24 28 28 48 11 2 4
SR 17 16 20 48 10 2 4

2 R2S N/A N/A N/A N/A N/A N/A N/A
S2R N/A N/A N/A N/A N/A N/A N/A
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Table 5.4.

The Average (AVG), Median (MED), Mode (MODE), RANGE (RNG), Standard
Deviation (STDEV), Standard Error (SE), and 95% Confidence Interval (95% C.I.)

of the normalized scores for the terrain set: E2.

E2
T Ab. AVG MED MODE RNG STDEV SE 95% C.I.
R RG 80 851 N/A 58 19 7 13

RF 77 79 86 58 13 2 3
RA 74 80 89 65 19 3 5
RC 67 65 63 63 17 4 8
RS 67 71 N/A 53 20 8 16

S ST 41 40 32 21 7 1 3
SP 34 34 34 17 5 1 2
SM 28 29 32 24 6 1 2
SF 33 33 35 31 8 2 3
SC 12 11 10 16 5 1 2
SR 8 8 13 16 4 1 2

2 R2S 71 72 70 68 13 2 2
S2R 40 39 33 39 9 1 1
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5.3 Thurstone Scaling

We constructed and utilized a pairwise comparison strategy in our

experiments as it is efficient in capturing subjective judgements from our

participants in terms of identifying the differences in perception of terrains. Because

of the nature of our testing platform (Mechanical Turk), we do not have control over

the balance of the study as the respondents can decide to not vote for all the image

pairs in an experiment. Additionally, we were not able to construct a complete

design as in the terrains of a subgroup are not compared with all of the other

terrains of another. We achieve balance in our study by forcing each image pair will

be voted by at least five different and unique participants.

For efficiently capturing both the ranking and the magnitude of differences

between these conditions in a study that has a partially balanced incomplete design

such as ours, a scaling method can be utilized. Perez-Ortiz and Mantiuk (2017)

suggested a pairwise comparison scaling method that is based on Thurstone Case V

model to measure the attitude of respondents based on probabilities (5.5. Therefore,

to perform such a scaling, we constructed a comparison matrix for responses from

each of the observers based on the conditions being compared in our experiments E1

and E2 namely, R, S, R2S and S2R. The comparison matrix can then be utilized to

construct standardized scores and probabilities based on a observer model such as

Thurstone Case V model.

As a preliminary step before standardizing the scores, we performed outlier

analysis to look for any potential outliers. One such potential outlier is show in

Figure 5.5. After carefully investigating all the potential outliers based on a

inter-quartile normalised score threshold, we couldn’t justify removing respondent

observations from the comparison matrix because of the nature of our study design

and our survey platform (mTurk) in which some respondents may choose to answer

the complete set of comparison pairs whereas others may only choose to do a few.

Therefore, we did not remove the remove the responses from the dataset that are
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Figure 5.5. Distribution of probabilities of selection of one condition over the other
for general perceived quality from experiments: E1 (top) and E2 (bottom). The

black circle sign represent the answers of a potential outlier.

shown as potential outliers after careful analysis and investigation determining that

they chose to answer more from the comparison set when compared to the rest of

the respondents (Perez-Ortiz & Mantiuk, 2017). We then proceeded with

standardization of scores based on Thurstonian scaling.

We performed an ANOVA on both the experiments E1 and E2 for

identifying if there are any significant differences in standardized perception scores

for our terrain categories with the null hypothesis, H0 for our statistical test in our

experiments, E1 and E2 as follows: “There are no significant differences in the

standardized perception scores scores between terrain categories.”. For E1, the
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ANOVA test yielded the following statistic: (critical F − value = 3.8507,

Between Groups DF = 1, Within Groups DF = 998,

calculated F − value = 3336.037, p− value < 0.001) and For E2, the ANOVA test

yielded: (Critical F − value = 2.6093, Between Groups DF = 3,

Within Groups DF = 1996, Calculated F − value = 2592.893, p− value < 0.001).

Therefore, for both the experiments we can reject the null hypothesis and conclude

that there are significant differences in perception scores by terrain categories: R, S,

R2S and S2R. Additionally, a post-hoc test (Tukey’s HSD test) also indicated that

there is statistically significant difference in the scaled scores based on Thurstonian

scaling between all the terrain groups with a p− value < 0.001 and a standard error

of 0.0077 with α = 0.01 which is consistent with our t-Test results.

For further establishing where the difference in our terrain candidates lie, we

performed a Two-Sample t-Test Assuming Unequal Variances for testing our

candidates in E2. We used the significance level of α = 0.05, and get the statistics

for, R versus S (p− value = 0, DF = 983, t = 84.75), R versus R2S

(p− value < 0.01, DF = 987, t = 9.67), R versus S2R (p− value < 0.01,

DF = 908, t = 46.20), R2S versus S2R (p− value < 0.01, DF = 954, t = 36.28),

R2S versus S (p− value = 0, DF = 998, t = 71.54) and S2R versus S

(p− value < 0.01, DF = 960, t = 27.45). We have summarized the same results in

the table that follows: Table 5.5.

It is evident from the multiple statistical tests that the perception scores are

statistically different between the terrain groups meaning that our observers

perceived and like the terrains on different scales with the following ranking: Real

Terrains (R), Synthetic Terrains with Real features (R2S) and Real Terrains with

Synthetic features (S2R), Synthetic Terrains (S). The ranking has been visualized in

the following plots (Figure 5.6 and Figure 5.7).
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Table 5.5.

The table shows the statistical significance between pair of standardized scores from
our terrain sets compared from Experiment E2 that is based on thurstonian scaling.
The implies that the condition pair in vertical column is statistically significant
than the terrain set in the horizontal row, × to suggest that the difference is not
statistically significant and • to suggest that the test is not available or compared

already.

R S R2S S2R
R •
S • •
R2S • • •
S2R • • • •
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Figure 5.6. Triangle Plot of general perceived quality from experiments: E1 (top)
and E2 (bottom) for interpretation of data in terms of statistical significance with

95% confidence. The categories in the triangle plot connected with continuous lines
indicate statistical significance whereas the categories connected with dashed lines
indicate a lack of evidence for establishing statistical significance. In our case, all

the terrain categories are different from each other with statistical significance and
hence there are no dashed lines.
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Figure 5.7. Distribution of standardized scores from experiments: E1 (top) and E2
(bottom). The ×, •, and the − sign represent the mean, outlier points, and the

median markers respectively.
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5.4 Just Objectionable Differences (JOD)

The standardized scores based on Thurstonian scaling mechanism are then

converted to distances for the underlying quality scores to determine Just

Objectional Differences [JODs]. We made use of publicly available MATLAB code

by (Perez-Ortiz & Mantiuk, 2017) with a few modifications to fit our data to

determine the JOD scores with bootstraping upto 500 samples as suggested. As we

have already identified Real Terrain (R) as the top category from our terrain

groups, we can set the condition as our anchor point (reference condition) for JOD,

as it is a relative scoring scheme. A visualization of these scaling results are shown

in the figure 5.8.

We cannot directly compare the JOD scaling values between terrain

subgroups as these values are interlinked and interdependent on each other. Based

on testing strategies for JOD comparison scales, we performed statistical tests to

determine differences between two conditions based on the covariance matrix and

JOD scores on our scaled data set to identify that the JOD score difference between

two conditions is 0 (Perez-Ortiz & Mantiuk, 2017). The captured covariance matrix

for the pairwise comparison of our conditions [R, S] in E1 is given by the matrix,

ΣE1 :

ΣE1 =

0 0

0 0.1024


We state the null hypothesis, H0 for our statistical test in our experiment, E1

as follows: “There are no significant differences in the JOD scores between

conditions R and S.”. We utilized a two-tailed F-test to test our hypothesis, with a

significance level of α = 0.025, and get the statistics for, R versus S

(critical F − value = 1.1920, Numerator DF = 499, Denominator DF = 499,

calculated F − value = 7.3828).

The covariance matrix for the pairwise comparison of our conditions [R, S,

R2S, S2R] in E2 is given by the matrix, ΣE2:
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Figure 5.8. The graph shown above visualizes the scaling results for experiments E1
and E2 along with their 95% confidence intervals for our dataset. The first

condition (R) is our reference condition therefore, it is always set at 0 and hence
there are no confidence intervals. A difference of 1 JOD unit indicates that 75% of

the participants chose a condition over the other.

ΣE2 =


0 0 0 0

0 0.1763 0.0033 0.1337

0 0.0033 0.0401 0.0055

0 0.1337 0.0055 0.4356
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Similar to E1, We state the null hypothesis, H0 for our 6 statistical tests in

our experiments, E2 as follows: “There are no significant differences in the JOD

scores between conditions.”. Likewise, we utilized a two-tailed F-test to test our

hypothesis, with a significance level of α = 0.025, and get the statistics for, R versus

S (critical F − value = 1.1920, Numerator DF = 499, Denominator DF = 499,

calculated F − value = 8.2558), R versus R2S (critical F − value = 1.1920,

Numerator DF = 499, Denominator DF = 499, calculated F − value = 3.7805),

R versus S2R (critical F − value = 1.1920, Numerator DF = 499,

Denominator DF = 499, calculated F − value = 2.3530), S versus R2S

(critical F − value = 1.1920, Numerator DF = 499, Denominator DF = 499,

calculated F − value = 6.2144), S versus S2R (critical F − value = 1.1920,

Numerator DF = 499, Denominator DF = 499, calculated F − value = 1.2496),

R2S versus S2R (critical F − value = 1.1920, Numerator DF = 499,

Denominator DF = 499, calculated F − value = 1.8794).

It is evident from the tests (Table 5.6) that the JOD scores are statistically

different between the conditions representing our terrain sets: R, S, R2S and S2R in

both of our experiments E1 and E2. Therefore, we can reject the null hypothesis

stated above and conclude from the results that the respondents view the difference

between terrain groups with statistical significance. The results are consistent from

our previous findings except the R and R2S terrain comparison category.
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Table 5.6.

The table shows the statistical significance between pair of conditions from our
terrain sets compared from Experiment E2. The implies that the condition pair in
vertical column is statistically significant than the terrain set in the horizontal row,
× to suggest that the difference is not statistically significant and • to suggest that

the test is not available or compared already.

R S R2S S2R
R •
S • •
R2S • • •
S2R • • • •

5.5 Geomorphons

Each geomorphon can be thought of as a feature vector in 10D space and

their spatial distribution can bring further insight into the features and the

corresponding data-sets. In Figure 5.9 we show the points corresponding to all our

data-sets (R, S, R2S, and S2R) projected from 10D space to 2D by using Principal

Component Analysis Wold, Esbensen, and Geladi (1987) that preserves distance

among points across the dimensions. Synthetic images are clustered close to each

other, while features of real terrains are scattered over a wide area. This is

confirmed by the variance of the features as can be seen in graphs in Figure 5.11.

When the real features are transferred to synthetic terrains, they tend to scatter the

images apart and when synthetic features are transferred to real terrains they tend

to get close to each other. This seems to indicate that a high variability in

geomorphological features is beneficial for visual plausibility.

Moreover, we visualize domain-wise comparisons among R, R2S, S, and S2R

on the distributions of the element-wise geomorphon feature of terrains in

Figure 5.10. The geomorphon features of real terrains (blue curve) tend to

distribute normally with a wide span. However, the synthetic features (green curve)

show significant differences from the real with multi-modal and low-variability
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Figure 5.9. Projection of geomorphons from all terrains to 2D. Synthetic terrains
are clustered, while real terrains are scattered. Transfer of real features scatters the
terrains and transfer of procedural features cluster the resulting terrains. The axes

indicate the two projected principal components.

distributions on depression, summit, flat, valley, and ridge (Figure 5.10 top row).

We believe the high-peak distributions of synthetic terrains lead to less attractive

perceptions than the real. The process of R2S transfer (orange curve) smooths and

normalizes the multi-modal high-peak distributions in the synthetic terrains, and

improves the perception (refer to Section 5.1). One outlier feature of R2S is the flat

geomorphon, which has an extremely narrow distribution on small values near zero,

meaning that R2S terrains have very few “flat” elements compared to the real ones.

On the other hand, S2R (red curve) contains the low-variability distributed features

transferred from the synthetic to the real. However, S2R does not perform a highly

fit for the synthetic curves in hollow, spur, shoulder, and footslope. From the
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visualizations, it seems that lack of geomorphon diversity or variability of individual

geomorphon feature in distribution may lead to worse visual plausibility of the

terrain.
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Figure 5.11. Distribution of the detected geomorphons in real and synthetic terrains
from our dataset.
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5.6 Perceived Terrain Quality Metric (PTQM)

The results described above suggest that an automatic visual quality metric

for terrains may be devised using geomorphons. To this end, we exploited a linear

regression model, which predicts an overall perceptual terrain quality based on

geomorphon features.

Correlation From the Pearson Correlation Coefficients table for our data in

Table 5.4, we can see that there is a strong correlation between each of the

geomorphons (our predictor variables) at various levels (Positive and Negative

Correlation) on the Perception Score. The order of the influence on the perception

score is given by: Valley (0.66), Ridge (0.64), Summit (0.44), Depression (0.42), Spur

(0.33), Hollow (0.22), Flat (-0.10), Foot (-0.15), Shoulder (-0.17) and Slope (-0.65).

Perceived Terrain Quality Metric (PTQM) We performed a multiple linear

regression (MLR) model on our dataset with the hypothesis, H0 as follows: “There

is no linear relationship between the 10 geomorphon landform categories and the

perception scores for our terrain data groups.”. The regression model is given by:

Yscore = βint + βdepressionXdepression + βsummitXsummit +

βflatXflat + βvalleyXvalley + βridgeXridge + (5.1)

βhollowXhollow + βspurXspur + βshoulderXshoulder +

βslopeXslope + βfootslopeXfootslope + σ(Y ),

where SD(Y ) = σ that is independent from predictors. The regression gave

us the following statistics: DFn = 10, DFd = 588, F = 153.5276, p− value < 0.01,

and with α = 0.01. Therefore, we rejected the null hypothesis. All coefficients are

statistically significant with a p− value less than 0.01. We get the coefficients:

βint = −38.02, βdepression = 3.55, βsummit = 1.75, βflat = 25.12, βvalley = 9.61,
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βridge = 7.59, βhollow = 6.71, βspur = 9.02, βshoulder = 7.31, βslope = 28.95, and

βfootslope = 7.63.

The resulting R-Squared value for our regression model is 0.72 signifiying

that the 72% of variation in the visual plausibility of terrains the perception score

can be explained by the full model with all of our predictor variables 10

geomorphon distribution values with a standard error of 0.13. All of the landform

factors are significant predictors of the perception score.

Based on our linear regression model between 10 geomorphons categories and

the perception score we introduce a new metric to predict visual plausibility score

for terrains, Perceived Terrain Quality Metrics (PTQM). The scale for the metric is

〈0.0, 1.0〉 and higher is perceived as more visually plausible.

By substituting the values of geomorphons into the linear regression model in

Eqn (5.2) we receive the PTQM:

PTQM = −38.02 + 3.55Gdepression + 1.75Gsummit +

25.12Gflat + 9.61Gvalley + 7.59Gridge + (5.2)

6.71Ghollow + 9.02Gspur + 7.31Gshoulder +

28.95Gslope + 7.63Gfootslope.

Table 5.9 and Figure 5.16 shows the comparison of PTQM with the

calculated perception score averages for each category. The results from the same

are presented below. The average of all real terrains PTQM=0.68 and synthetic

PTQM=0.32. The SR is an outlier in synthetic terrains with PQTM=0.02 and if it

is excluded, the average PTQM=0.38 for the synthetic terrain group 5.15.
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Table 5.8.

A comparison of perception scores generated based on our introduced metric and our
previously normalized score from the study for the overall terrain groups.

Type Measured Perception Score PTQM
Real (R) 0.71 0.68
Synthetic (S) 0.31 0.32
Real Features to Synthetic Terrains (R2S) 0.67 0.71
Real Features to Synthetic Terrains (R2S) 0.38 0.41

Table 5.9.

A comparison of perception scores generated based on our introduced metric and our
previously normalized score from the study for all the individual terrain

subcategories.

Type Category Measured Perception Score PTQM
Real RG 0.61 0.57
(R) RF 0.78 0.73

RA 0.75 0.69
RS 0.73 0.74
RC 0.69 0.65

Synthetic ST 0.50 0.53
(S) SP 0.35 0.36

SF 0.40 0.42
SM 0.35 0.36
SC 0.24 0.24
SR 0.02 0.02

Transfers R2S 0.67 0.71
(T) S2R 0.38 0.41
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5.7 Evaluation

We evaluate PTQM model by splitting the data five times randomly into

80:20%, recalculating the metrics on the 80% and validating on the 20%. The

average regression equation from the evaluation is given by -38.44 +

3.61*Depression + 1.77*Summit + 25.40*Flat + 9.71*Valley + 7.65*Ridge +

6.77*Hollow + 9.14*Spur + 7.40*Shoulder + 29.26*Slope + 7.69*Footslope similar

to the introduced PTQM model. The amount of explained variation (72%) and

standard error (0.13) remained consistent as the regression model in the manuscript

with 95% confidence interval. Table 5.10 shows the statistical and regression details

of our validation technique. Figure 5.17, Figure 5.18, Figure 5.19, Figure 5.20, and

Figure 5.21 shows the comparison of calculated scores from the evaluation and the

measured score averages for each category. The match and similarity shows the

robustness and validity of our method.
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Figure 5.17. A comparison of measured scores (Ground Truth) and calculated
scores (Predicted Scores) from Group-1 of Five random 80%:20% split regression

evaluations.
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Figure 5.18. A comparison of measured scores (Ground Truth) and calculated
scores (Predicted Scores) from Group-2 of Five random 80%:20% split regression
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Figure 5.19. A comparison of measured scores (Ground Truth) and calculated
scores (Predicted Scores) from Group-1 of Five random 80%:20% split regression

evaluations.
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Figure 5.20. A comparison of measured scores (Ground Truth) and calculated
scores (Predicted Scores) from Group-4 of Five random 80%:20% split regression

evaluations.
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Figure 5.21. A comparison of measured scores (Ground Truth) and calculated
scores (Predicted Scores) from Group-5 of Five random 80%:20% split regression

evaluations.
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CHAPTER 6. CONCLUSION

This paper presented a first step in the direction of evaluating the perceptual

quality of procedural models of terrains. We have conducted two large scale

perceptual studies on the Mechanical Turk surveying platform that allowed us to

rank both synthetic and real terrains. The experiments show that synthetic terrains

lack in visual quality. Our results indicate that synthetic terrains are perceived

worse than real terrains with strong statistical significance.

We have performed a quantitative analysis on the terrains used in the study

by using Geomorphons, a machine vision based landform classification system for

DEMs that indicate geomorphological features such as Valley (0.66), Ridge (0.64),

Summit (0.44), Depression (0.42), Spur(0.33), and Hollow (0.22) have significant

perceptual importance in that order of influence on perceptual significance.

Then, by using multiple linear regression, we show that the presented

geomorphon features are strongly correlated with perceived visual quality and inturn

the perception scores. We used deep neural networks, specifically, a Bicycle GAN to

transfer the features and the second perceptual study confirmed this observation.

Eventually, we have designed a novel perceptual metrics based on geomorphons that

allows to assign a number of estimated visual quality of the generated terrain.

Based on the conducted experiments and statistics, we can answer our

research questions as follows:

• Procedural terrain models are not perceived equally as good as the real

terrains.

• The geomorphon features such as Valley, Ridge, Summit, Depression, Spur and

Hollow have the strongest influence on perceived quality of the terrain models.
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• It is possible to transfer features from procedural terrains to real terrains and

vice versa to study their underlying perceptual phenomenon using deep neural

networks especially Bicycle GANs but we do not have precise control over the

features that will be transferred.

6.1 Contributions

In this body of research, we claim the following contributions:

1. We introduce Perceived Terrain Quality Metrics, a novel procedural terrain

evaluation metric that assigns a normalized value of perceived perception to a

terrain represented as a digital elevation model.

2. We have conducted large scale user studies that confirm and validate that

procedural terrains are not visually plausible as real terrains and to measure

the visual plausibility of real and synthetic terrain models.

3. We have determined the geomorphological features that have the strongest

effect on visual plausibility of terrains.

4. We provide a publicly available data-set of real and procedural terrains with

assigned perceptual evaluation scores and calculated geomorphons along with

their individual statistics.

6.2 Limitations

Our study has several limitations that are addressed as follows:

1. Geomorphons are localized to small areas of the terrain and they do not

reflect the distributions of the large features such as rivers, large valleys, etc.

It is possible that two terrains with the same feature vector may be perceived

as different because of the variety of distributions and their presence in

conjunction with some other features that has not been studied yet.
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2. Our research design made several assumptions on size of the terrains. The

changing of the scale on these terrains may have different effects on our results

because geomorphological features of different scales would be captured by

magnification or minification of the terrain scale.

3. Another important limitation is the assumption about the terrain

classification while we motivated our classification into terrains with different

geomorphological patterns, it is well known that probably every terrain on

Earth has been exposed to eons of various morphing phenomena through

erosion and weathering. Therefore, it is not entirely clear what exactly caused

those patterns as the result of each geological feature is concatenation of

multiple geomorphological processes acting in parallel or in a sequence.

4. We also assumed a fixed position of the camera, consistent texturing, and

illumination. While these aspects were carefully selected and made constant,

it would be interesting to see the effect of each of them on the results such as

using a rendering style or grayscale textures.

5. The deep learning based feature transfer with GAN provides limited control

on the content to be or not to be transferred. With the metric we provided,

the transferred results can be further improved in perception with a better

control schema of the generative network.

6. Lastly, We also did not study the spatial correlation between geomorphon

features.

6.3 Recommendations

The order of the influence on the perception score is given by: Valley (0.66),

Ridge (0.64), Summit (0.44), Depression (0.42), Spur (0.33), Hollow (0.22), Flat

(-0.10), Foot (-0.15), Shoulder (-0.17) and Slope (-0.65). Based on our results from

E-2 (Section 4.2.3), each of our procedurally generated terrain model categories does
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not have enough variety of geomorphogical features 5.13 as the real terrain models

5.12 which is highly evident from our deep learning based feature transfer process.

Therefore, when generating a procedural terrain in CG, using a multitude of erosion

methods will result in generating more geomorphological variety in these terrains

which will inturn increased the perceived quality.

6.4 Future Work

There are many possible avenues for future work:

1. Perceptual studies have the potential to answer longstanding questions of

visual quality of procedural models. Our work is based on the underlying

concept of geomorphons that may be difficult to generalize to different

domains. It would be interesting to develop similar metrics for vegetation,

urban models, etc. Generalizing this work to other simulations, such as fluids,

would be also an interesting future work.

2. Augmenting the current research methodology with qualitative research and

design workshops to gather other levels of information may provide more

meaningful insights on the aspects of the attributes we are looking for in

procedural terrains that are typically non-quantifiable by geomorphons.

3. Consideration of other non-intrinsic properties that may contribute and affect

the perception of a terrain such as the Environmental atttibutes and context

based conditions.

6.5 Summary

In this chapter of the dissertation, we summarized our methods, presented

our final results and the novel perceptual evalution metric we have formulated for

terrains namely, Perceptual Terrain Quality Metric in computer graphics. In

addition, we also addressed the limitations of our proposed methods in
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augmentation with a list of recommendations for future terrain modeling including

some of the possible venues for future work and extending the proposed method to

other categories of procedural models in CG.
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