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ABSTRACT

Jumabayeva, Altyngul PhD, Purdue University, August 2019. Model-based Analysis
and Design of Color Screen Sets for Clustered-Dot Periodic Halftoning and Design
of Monochrome Screens Based on Direct Binary Search for Aperiodic Dispersed-Dot
Halftoning. Major Professor: Jan P. Allebach.

Periodic clustered-dot halftones are widely used in electrophotographic printers

due to the relatively poor print stability of this class of printers. It is important to

analyze the nature and the causes of perceived fluctuation in order to understand the

factors that prevent the high-end digital presses from achieving the same print quality

as the commercial offset presses. In order to better approximate the screen sets used

for the commercial offset presses, irregular screen sets can be considered. We start by

developing a set of candidate screen tile-vectors that best fit the specified screen fre-

quency, screen angle, and printer resolution. We then perform Fourier-based analysis

of regular and irregular periodic, clustered-dot halftone textures in order to under-

stand how perceived fluctuation relates to the halftoning technology. After exploring

the search for the best single separation geometry, we consider the superposition of

multiple periodic clustered-dot halftones, and propose to apply HVS-based model,

which assists us in finding the best color assignments to the superimposed halftones.

It turned out that the choice of the best color assignments depends on different com-

binations of colorant absorptance values, hence we propose to apply different color

assignments within the image depending on the local color and content of the image.

Next, we propose a step-by-step screen design for standard and high resolution peri-

odic irregular clustered-dot halftones. Finally, we presented monochrome DBS-based

screen design with overlapping clusters of 2×2 or 3×3 pixels, which can also be used

in electrophotographic printers.
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1. INTRODUCTION

1.1 Digital halftoning and areas of application

Digital Halftoning is the process of rendering a continuous tone image with a

limited number of tone levels [1]. The goal of digital halftoning is to generate an

image with correct tone and detail of an original image without introducing any

visible artifacts. There are many areas where halftoning is used. For example, in

certain applications such as image enhancement, image scanning or image compres-

sion, a technique called inverse halftoning is used. Whereas halftoning is a technique

for converting grayscale images to halftone images, inverse halftoning is a technique

used to reconstruct grayscale images from halftone images. There are various inverse

halftoning methods. For example, in [2], Multilayer Perceptron neural network (MLP)

trained by a Backpropagation (BP) was proposed to be used in order to achieve high

quality reconstructed grayscale images. In [3], the least squares filtering and the edge

detection classification were suggested to be used. The proposed method was said

to enhance the quality of output grayscale images for inverse halftoning. Kite et al.

present a fast inverse halftoning algorithm and a new multiscale gradient estimator for

error-diffused halftones [4]. They also compare the implementation cost, peak signal

to noise ratio, and visual quality with other inverse halftoning algorithms. There’s

also been a considerable amount of research on color inverse halftoning [2], [5], [6].

Another important area of halftoning is 3D halftoning [7]. In [7], a volumetric

slicing method with halftoning algorithm that simultaneously converts the color of

3D models into printable layers was proposed. Their work primarily focused on color

reproduction for light-curable 3D printing technology.

Due to the fact that halftoning is employed in image printing, it also plays an

important role in digital watermarking and data hiding [8–12]. For example, it can be
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used in order to protect ownership rights or in order to prevent the illegal distribution

of a printed document without permission of its owner. In [12], Guo et al. propose

the Look-Up-Table (LUT) strategy to efficiently embed multiple watermarks into a

set of multi-scale watermarks, which are then embedded into a host halftone image.

Their method significantly improves the embedding capacity and reliability [12].

In this work, we investigate the use of halftoning in printing systems. Halftoning

plays an integral role in almost all printing systems. The choice of halftone pattern

type and complexity level of the algorithm is dependent on the characteristics of the

marking technology, the application space and price-point of the system, and the

customer expectations. The two most widely used digital marking technologies are

electrophotography and inkjet. Both these technologies are deployed in very low-

cost printers intended for home and small-office use, as well as much more expensive

commercial printing systems.

According to Dun&Bradstreet First Research, the global commercial printing in-

dustry generated about $785 billion (USD) in annual revenue in 2017 [13]. And

according to Printing Impressions, another research organization, 63.1% of the capi-

tal investments made by commercial printers during the past 3 years were for digital

presses, as the migration from traditional analog offset lithographic presses to digital

presses continues [14]. The work presented in this dissertation is particularly relevant

to high-end digital presses that are widely used in the commercial printing industry.

Offset, lithographic printing systems use a fixed plate to image each color sepa-

ration for each impression onto the media, typically paper. Although contemporary

systems use digital marking technologies to create the plate, once the plate has been

created, it can only be used to print one content per impression. Thus, relatively

long print runs are needed for offset, lithographic printing to be economically viable.

In contrast, digital marking technologies offer much more flexibility in terms of the

characteristics of the print job. Every succeeding page can be different, and very

short print runs are possible. The challenge has been for high-end digital presses to

achieve the level of image quality that customers are used to seeing with prints made
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using offset, lithographic presses. Achieving that goal with digital presses based on

electrophotographic technology is the primary motivation for our work.

Previously, the plates used with offset, lithographic systems were generated us-

ing analog imaging systems with very high resolution. The halftone patterns that

have traditionally been used are clustered-dot, periodic patterns. Specifically, a sin-

gle screen that generates square halftone cells is rotated to a different angle for each

colorant [15]. The angles that are traditionally used are 15°, 45°, 75°, and 0°, for cyan

(C), magenta (M) , black (K), and yellow (Y), respectively. The goal is to achieve

maximal angular separation between C, M, and K. The Y screen is not rotated, be-

cause the halftone pattern in the yellow separation is much less visible. More recently,

digital plate-writers have replaced these analog imaging systems. However, these

plate-writers still have very high resolution, typically in the range of 4000 dots/inch.

Thus, the halftone patterns that are printed can effectively be the same as those used

with earlier analog plate writing systems.

In contrast, digital, electrophotographic presses are disadvantaged in two ways.

First, they have much more limited resolution, typically less than 1000 dots/inch.

Second, the electrophotographic marking process is not as stable as is the offset,

lithographic marking process. What this means is that there is more variation from

dot-cluster to dot-cluster, there is more noise due to scattered colorant, and small dot-

clusters may not consistently develop. The overall effect is to create the appearance of

graininess in the printed image, which customers find to be objectionable. In addition,

large area variation in the period of the halftone patterns, due to mechanical drift in

registration or local deformation of the media itself, can cause spatial variation in the

interference between the superimposed halftone patterns used to print the different

color separations. This phenomenon can result in very objectionable, low-frequency,

moire patterns.
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1.2 Digital halftoning algorithms and halftone textures

Viewed according to computational complexity, digital halftoning algorithms can

be broadly categorized into three groups: 1) point processes - ordered dithering or

screening [16]; 2) neighborhood processes - error diffusion [17–22] and dot diffu-

sion [23–25]; 3) iterative processes: Direct Binary Search (DBS) [26, 27]. Among

the three groups, the best image quality is considered to be provided by DBS. How-

ever, the processing time of DBS may become an issue. Due to the fact that DBS

seeks to minimize the total squared perceived error, while algorithms in point and

neighborhood processes are mostly heuristic, DBS can generate halftone images of

the best quality. The search of an optimal solution for DBS involves two operations:

toggle and swap. Among recent works, Liao in [28] proposes a new DBS algorithm

called “monotonically non-decreasing swap” (MNDS) DBS which considers toggle and

swap separately and the swap operations are considered in the order from the edge

to the center of the filter. The second best quality is considered to be provided by

error diffusion, especially the tone dependent error diffusion described in [18]. The

image quality resulted by the ordered dithering is inferior to the above two techniques,

however, it can provide the highest processing speed.

Halftone textures can be classified along two dimensions: periodic or aperiodic,

and clustered-dot or dispersed-dot. All four combinations are used in practice. In

dispersed-dot halftoning, different gray levels are achieved by changing the relative

density of printed dots, whereas in clustered-dot halftoning, different gray levels are

achieved by changing the size of printed dots on the page. Due to the fact that the

two approaches are analogous to frequency modulation (FM) and amplitude modula-

tion (AM) used in communication systems, sometimes they are referred to as FM and

AM halftoning. There has been a lot of research in AM-FM image representation.

Havlicek et al. propose to compute the AM-FM image representation for multicompo-

nent, nonstationary images using a statistical component model [29]. Pattichis et al.

suggest using an AM-FM representation for fingerprint classification [30]. Acton et
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al. provide an automated method to repair broken, occluded oriented image textures

based on partial differential equations and AM-FM image modeling [31].

FM and AM halftoning can be used in the screening process. Usually, dispersed-

dot (FM) screens are more robust to moire artifacts, but appear noisier due to the

stochastic nature of the halftone textures. For example, aperiodic, dispersed-dot

screens produce what is commonly called blue-noise textures. The concept of blue

noise halftoning was first introduced in [32] by Ulichney. The spectra of blue-noise

halftones are composed entirely of high-frequency components that are least visible

to human viewer [32], [33]. He in [34] presented hierarchical colorant-based direct

binary search (HCB DBS) halftoning, which is considered an image quality bench-

mark for dispersed-dot halftoning algorithms. Similarly, he proposed hierarchical

error diffusion (HED) in [21]. Ishizaka in [35] proposes the new spatial measure for

dispersed-dot halftoning assuring good point distribution in any density. The work

presented in [36] describes a methodology for design of color, aperiodic, dispersed-dot

halftoning algorithms. Aperiodic, dispersed-dot halftoning (FM) algorithms are most

appropriate for digital printing systems based on inkjet technology. However, they

are also used with commercial, offset analog presses, and are of growing interest for

digital presses. The methodology described in [36] is based on the concept of Neuge-

bauer Primary Area Coverage (NPAC), and the use of a selection matrix to decide

which Neugebauer primary will be printed at each printer-addressable pixel [36–38].

Dispersed-dot screens are primarily used in marking devices which can easily ren-

der an isolated dot, such as inkjet printers, whereas clustered-dot screens are used

in electrophotographic devices which cannot easily produce an isolated dot. For ex-

ample, we can use aperiodic, clustered-dot screens with electrophotographic printers.

The textures formed by aperiodic clustered-dot screens are usually referred to as

green-noise textures [39], [33]. The concept of green noise was first introduced by

Lau et al. [39]. They also proposed an algorithm to design screens that generate

green-noise textures [40]. Multiscale error diffusion algorithm to produce halftones of

desirable green noise characteristics was proposed in [19]. Their algorithm allows one
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to modify the desirable cluster size freely and provides a linear relationship between

the cluster size and the input gray level. Their approach succeeds in eliminating pat-

tern and directional artifacts, and preserving original image details. Similarly, they

also optimized the error diffusion filter for blue noise halftoning in [20].

If we were to compare periodic and aperiodic clustered-dot screens, we’d find out

a greater level of noisiness in aperiodic clustered-dot screens, especially when they

are used in color halftoning. For electrophotographic printers, periodic, clustered-dot

screening is preferred to other halftoning approaches due to its stable dot formation,

and robustness to printer artifacts, such as dot gain and banding. There is, however,

another problem when clustered-dot screens are used to halftone color images. The

problem here is that the superposition of the individual color plane separations can

result in moire patterns that are extremely objectionable from the viewer’s perspec-

tive. There are different approaches for solving this problem. For example, Babaei

and Hersch propose a novel use of lines to generate color halftone patterns [41], [42].

Since the patterns consist of a thin line for each colorant, they fall in the domain of

clustered-dot, periodic patterns that are well-suited to digital presses based on the

electrophotographic process. The line patterns are designed in such a way as to ex-

plicitly control the interaction of the individual halftone patterns for each colorant,

and thus explicitly control the moire that could result from the superposition of these

patterns. This paper shares many common elements with the work presented by

Jiang et al. in [43] in that it generates color halftone patterns with a single angle and

single frequency that incorporate explicit control of colorant overlap. In addition, the

HP Indigo Division has recently announced a similar solution that is called “the silky

screen” in the trade literature [44], but which has not been described in the scholarly

literature.

Chen et al. discuss another approach to the control of moire in the printing of

digital color halftone images that is based on lattice theory [45, 46]. This work only

considers the choice of screen geometry. It does not address the arrangement of the

elements in the threshold matrix that control the shape of the halftone dots at each
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colorant level. Thus, it does not provide a complete end-to-end procedure for design of

threshold matrices for generating digital, color, periodic, clustered-dot halftone pat-

terns, Halftoning solutions based on this screen design approach are currently offered

by the HP Indigo Division for their products. They are sold under the trademark

“rainbow screen”. The elements of the screen design process that are not described

in the paper above have not been published in the open literature.

1.3 Overview of my work

It is important to analyze the nature and the causes of perceived fluctuation in

order to understand the factors that prevent the high-end digital presses from achiev-

ing the same print quality as the commercial offset presses. Currently, offset plates

are generated using very high-resolution plate-writers that can generate faithful ren-

derings of circular halftone dots on any chosen lattice of dot centers. In contrast,

digital presses have much lower resolution, and therefore are limited in their capabil-

ities to approximate the screen frequencies and angles that are conventionally used

with offset presses. The combination of screen frequency and angle is conveniently

represented by the 2× 2 periodicity matrix N =
[
v1

T v2
T

]
, where v1 =

[
v11 v12

]
and v2 =

[
v21 v22

]
, v11, v12, v21, v22 are rational numbers [47], [48].

In Chapter 2, we introduce the algorithm for determining candidate screen tile

vectors in order to better approximate the desired screen angle and screen frequency.

Candidate screen tile vectors are obtained by admitting non-integer-valued elements

in the periodicity matrix. This will result in an irregular halftone pattern, in which

the shape of the dot clusters varies from dot-to-dot. In contrast, a regular halftone

pattern results when the periodicity matrix has only integer-valued elements [49].

In this case, each dot-cluster is identical; but the set of achievable combinations of

screen frequency and angle is limited. The disadvantage of irregular screens is that

the variation in dot shape leads to an increase in perceived fluctuation or noisiness
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in the printed halftone pattern. To our knowledge, there is relatively little published

work on design of irregular halftone screens.

Design of color screen sets for digital presses is a challenging task. First, it is

necessary to choose a set of periodicity matrices, one for each colorant, typically

cyan, magenta, yellow, and black, that will yield good visual quality when printed

individually and also in combination. This requires consideration of moire effects that

arise when the halftoned separations are superimposed [45, 46, 50–53] as well as the

effect of misregistration between the separations that may occur during printing [48,

50,54–56]. Once the set of periodicity matrices has been chosen, then it is necessary

to develop the sequences according to which dots are added to the dot clusters in the

highlight region, and holes are added to the hole clusters in the shadow region [48].

This must be done separately for each color plane or separation. Finally, images are

printed using the trial halftone screens; and these are evaluated for the presence of

artifacts. This last step is essential, since existing printer models cannot account for

all aspects of the printing process that may affect print quality.

We start by developing a set of candidate screen tile-vectors that best fit the spec-

ified screen frequency, screen angle, and printer resolution. We then perform Fourier-

based analysis of regular and irregular periodic, clustered-dot halftone textures in

order to understand how perceived fluctuation relates to the halftoning technology.

The main advantage of the proposed model lies in predicting the perceived fluctuation

metrics based solely on the periodicity matrix.

In Chapter 3, after exploring the search for the best single separation geometry,

we consider the superposition of two periodic clustered-dot halftones, and investigate

how to make the best color assignments to the two regular or irregular clustered-dot

halftones in order to minimize the perceived error. As we explore the superposition of

two irregular color halftones, we need not only take into account the effects of super-

position but also the effects of digitization. In order to eliminate dot-on-dot printing

in the superposition image, the screen of each colorant is rotated to a different angle.

However, this causes other problems such as moire and rosette artifacts, which are the
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result of the interaction between two lattices. The moire phenomenon refers to a low-

frequency structure, which has a very visible pattern and can be observed at the su-

perposition of two halftones, and not in the individual halftones separately [48,51,52].

In contrast, a rosette pattern has a circular or polygonal pattern, which is formed as a

result of rotating halftone screens [48,51,52]. The superposition of two color halftones

is a very important question to study because the artifacts such as moire, rosette and

misregistration can lead to color shifts. Baqai and Allebach presented a systematic

method for designing moire- and rosette- free clustered-dot color screens for discrete

raster color systems [48]. Whereas Ufuk and Allebach developed a model-based color

halftoning method which minimizes the perceived error between the continuous tone

original color image and the color halftone image [57]. In our research, we develop

a model that agreed with a human observer and allowed fast implementation. The

perceived error helps us identify the configuration of colors and screens that will im-

prove the appearance of the superposition image. We also investigate the effects of

misregistration on image fluctuation and colorshift.

After applying our HVS-based model to the superposition of three and four

clustered-dot color halftones, we came to the conclusion that this color assignment

plays a significant role in producing the high quality images. Moreover, the choice of

the best color assignments depends on different combinations of colorant absorptance

values. Hence, in Chapter 4, we propose to apply different color assignments within

the image depending on the local color and content of the image. If the image content

locally has a high variance of color and texture, the artifacts due to halftoning will not

be as visible as the artifacts in smooth areas of the image. Therefore, our algorithm

involves detecting smooth areas of the image by segmenting the image based on the

color of the content, and applying the best color assignments in those areas. This ap-

proach will primarily improve the quality of rendering the large smooth areas, such as

memory colors or flesh tones. The concept of performing image segmentation based on

the content and using different halftoning techniques in different regions of the image

was investigated before. Park et al developed a method in which they divided a doc-
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ument into smooth and detail objects, and used low-frequency, periodic clustered-dot

halftoning in smooth areas to promote stable development, and high-frequency, peri-

odic clustered-dot halftoning in detail areas to provide better rendering of the detail

in the image [58]. Ostromoukhov and Nehab checked the local gradient at each pixel,

and chose a basic dither matrix based on the magnitude of the gradient [59]. Huang

and Bhattacharjya described a process for switching between a periodic, clustered-dot

screen in smooth areas, and error diffusion with a screen in detail areas [60]. The

screen used for both detail and smooth regions is the same. References [59] and [60]

address only halftoning of monochrome images. Reference [58] does consider color.

But it is targeted to home/office laser electrophotographic printers, not high-end dig-

ital presses. The main novelty of our approach, which is targeted to printing with

high-end digital presses, is the application of different color assignments within the

image depending on the local color and content of the image, without changing the

overall set of screens that are used.

The primary focus of our research is periodic irregular clustered-dot halftones,

which provide a larger space of available screen geometries in comparison to the

regular clustered-dot halftones, and hence may result in better screen sets with respect

to smoothness and robustness. Therefore, we needed a screen design approach that

would work for both regular and irregular clustered-dot halftones. In Chapter 5, we

started by designing base levels based on the work presented by Baqai and Allebach

in [48], and we extended their approach to irregular halftones. Then in order to

remove contouring and maze-like artifacts, we followed the work presented by Lee and

Allebach in [47], and we extended the hybrid screen design to irregular halftones for

standard and high resolution printing. High resolution printing involves considering

a cluster of 2× 2 pixels at a center of a microcell instead of a single pixel.

In Chapter 6, we present monochrome DBS-based screen design with overlapping

clusters of 2× 2 or 3× 3 pixels, which can also be used in electrophotographic print-

ers. We started by reviewing monochrome DBS-based screen design which produces

dispersed-dot textures and is usually used for inkjet printers, which have no trouble
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in rendering isolated dots. Due to the fact that with electrophotographic printers,

isolated dots are not stable, we proposed to use a cluster of 2 × 2 pixels as a single

unit instead of a single pixel. We then introduced overlapping clusters by swapping

single dot pixels with single hole pixels to create bigger dot and hole clusters, which

resulted in the monochrome DBS-based screen design with overlapping clusters of

2 × 2 pixels. Lastly, we extended our screen design to the use of clusters of 3 × 3

pixels instead of 2× 2 pixels.

Finally, in Chapter 7, I present my major contributions, list my publications and

propose what can be done in the future.
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2. SINGLE SEPARATION ANALYSIS FOR CLUSTERED

DOT HALFTONES

2.1 Introduction

High-end digital printing that is intended to compete with traditional offset litho-

graphic printing is one of the most exciting new growth areas in printing. Customers

in this market segment base their judgment of print quality, and thus the acceptabil-

ity of digital print output as a substitute for offset prints, on the quality to which

they are accustomed with offset. Currently, offset plates are generated using very

high-resolution plate-writers that can generate faithful renderings of circular halftone

dots on any chosen lattice of dot centers. In contrast, digital presses have much lower

resolution, and therefore are limited in their capabilities to approximate the screen

frequencies and angles that are conventionally used with offset presses. The combina-

tion of screen frequency and angle is conveniently represented by the 2×2 periodicity

matrix N =
[
v1

T v2
T

]
, where v1 =

[
v11 v12

]
and v2 =

[
v21 v22

]
, v11, v12, v21, v22

are rational numbers [47], [48].

In this chapter, we first, introduce the algorithm for determining candidate screen

tile vectors in order to better approximate the desired screen angle and screen fre-

quency. Candidate screen tile vectors are obtained by admitting non-integer-valued

elements in the periodicity matrix. This will result in an irregular halftone pat-

tern, in which the shape of the dot clusters varies from dot-to-dot. In contrast, a

regular halftone pattern results when the periodicity matrix has only integer-valued

elements [49]. In this case, each dot-cluster is identical; but the set of achievable

combinations of screen frequency and angle is limited. The disadvantage of irregular

screens is that the variation in dot shape leads to an increase in perceived fluctuation

or noisiness in the printed halftone pattern. Fig. 2.1 illustrates the relative quality
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of regular and irregular halftone textures. To our knowledge, there is relatively little

published work on design of irregular halftone screens.

(a)

N1 =

 4 −1

1 4


(b)

N2 =

 9
2 −1

1 9
2


(c)

N3 =

 13
3

−7
6

7
6

13
3



Fig. 2.1.: The three halftones (a), (b), and (c) correspond to the same target tile

vector with a screen frequency of 180 lpi, screen angle of 15◦, and printer resolution

of 812.8 dpi. The halftone in (a) is a regular halftone, whereas the halftones in (b)

and (c) are irregular halftones. Note that with the use of irregular halftones ((b) and

(c)), the shapes of dot clusters are not identical, which may lead to an increase in

perceived fluctuation in the printed halftone pattern.

Design of color screen sets for digital presses is a challenging task. First, it is

necessary to choose a set of periodicity matrices, one for each colorant, typically

cyan, magenta, yellow, and black, that will yield good visual quality when printed

individually and also in combination. This requires consideration of moire effects that

arise when the halftoned separations are superimposed [50], [51], [52], [45], [46], [53]

as well as the effect of misregistration between the separations that may occur during

printing [48], [50], [54], [55], [56]. Once the set of periodicity matrices has been chosen,

then it is necessary to develop the sequences according to which dots are added to

the dot clusters in the highlight region, and holes are added to the hole clusters in the
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shadow region [48]. This must be done separately for each color plane or separation.

Finally, images are printed using the trial halftone screens; and these are evaluated

for the presence of artifacts. This last step is essential, since existing printer models

cannot account for all aspects of the printing process that may affect print quality.

It is in the context of this larger problem that we have conducted the work re-

ported in this chapter. Specifically, our goal is to develop a tool that can be used to

eliminate periodicity matrices that will result in poor quality halftones, based only on

an analysis of the periodicity matrix itself, without considering the specific threshold

matrix that will control the growth of dot clusters in highlights and hole clusters in

shadows, as well as the midtone halftone textures. Consequently, we consider only a

single separation; and we assume an ideal circular dot shape for a single absorptance

level = 0.25, where 0 corresponds to no colorant (white) and 1 corresponds to max-

imum colorant (black). In [67], we described the Fourier analysis that underlies this

work. In this chapter, we develop a rigorous framework for determining the minimum

set of frequency components that must be included in the evaluation of halftone fluc-

tuation. We also propose a set of four ratios to quantify this fluctuation. These ratios

are fully based on an analytic expression for the Continuous-Space Fourier Transform

(CSFT) of the halftone pattern.

2.2 Preliminaries

In this chapter, we use boldface to indicate vector or matrix quantities. We use

lower case to indicate vector quantities, and upper case to indicate matrix quantities.

We use (x) = (x, y)T to represent the continuous coordinates in the units of inches.

We use (u) = (u, v)T to represent frequency coordinates, where u and v are the

horizontal and vertical spatial frequency variables in the units of cycles per inch.
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2.3 Development of a Set of Candidate Screen Tile Vectors

2.3.1 Algorithm for obtaining candidate screen tile vectors

The design of any periodic screen starts by introducing the periodicity matrix

N =
[
v1

T v2
T

]
, where v1 =

[
v11 v12

]
and v2 =

[
v21 v22

]
, v11, v12, v21, v22 are

rational numbers [47]. The whole spatial domain can then be tiled according to

k1v1 + k2v2, (k1, k2) ∈ Z2. In our work we only consider the orthogonal and square

geometries, hence v1 · v2 = 0, and ‖v1‖ = ‖v2‖, where ‖v1‖ is the microcell size.

For example, if N =

4 −1

1 4

, then the geometry is square and orthogonal with

the microcell size of ‖v1‖ = ‖v2‖ =
√

5 [47], [45]. The two tile vectors generate a

parallelogram, which is also known as the continuous-parameter halftone cell (CPHC)

[45]. The CPHC for the geometry with periodicity matrix N =

4 −1

1 4

 is illustrated

in Fig. 2.2.
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Fig. 2.2.: Example of the continuous parameter halftone cell (CPHC) for the geometry

with periodicity matrix N =

4 −1

1 4

 .
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Due to the assumption that the screens are square and orthogonal, the tile vectors

v1 and v2 take the following form:

v1 =
[
v11 v12

]
, (2.1)

v2 =
[
−v12 v11

]
.

Hence, we have the periodicity matrix N =

v11 −v12

v12 v11

, where v11 and v12 represent

the distance between the two microcell centers in the horizontal and the vertical

directions in units of printer addressable pixels.

The parameters of the halftone screen are the printer resolution ρ in units of dots

per inch (dpi), the screen frequency Fs in units of cycles per inch (cpi), and the

screen angle α in degrees. The tile vectors v1 and v2 can be expressed in terms of

the parameters as follows:

v1 =
[
v11 v12

]
=

ρ

Fs

[
cosα sinα

]
= ‖v1‖

[
cosα sinα

]
(2.2)

v2 =
[
−v12 v11

]
=

ρ

Fs

[
− sinα cosα

]
= ‖v1‖

[
− sinα cosα

]
.

The smallest element in the imaging system is one printer-addressable pixel,

therefore it is easy to work with non-negative integer values for v11 and v12, i.e.

v11, v12 ∈ Z∗. The screens with periodicity matrices whose entries are all integers are

called regular. The range of regular screens is limited within the common industry

screen frequency range of 150 < Fs < 300 lpi [1]. This frequency range is based

on the capabilities of the typical digital marking engine processes and the visibility

of the resulting halftone textures at normal viewing distances. In order to design

screens which are more smooth and whose parameters are closer to the target screen

frequency and screen angle, it is necessary to enlarge the space of available screen

geometries with the use of irregular geometries. This is achieved by allowing v11, v12
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to be rational numbers, i.e. v11, v12 ∈ Q. Hence, the periodicity matrix tile vectors

take the form:

v1 =
[
v11 v12

]
=
[
p1

q1

p2

q2

]
, (2.3)

v2 =
[
−v12 v11

]
=
[
−p2

q2

p1

q1

]
,

where p1, q1, p2, q2 ∈ Z∗, Z∗ is the set of the non-negative integers.

In order to obtain the non-negative integer values p1, q1, p2, q2, which will produce

the tile vectors closest to the target screen parameters, we propose to perform a search

over the space of realizable periodicity matrices [65]. We start with an irrational target

tile vector vtarget
1 obtained using Eq. 2.2, and search over the candidate rational tile

vectors of the form v1 =
[
p1

q1

p2

q2

]
, which minimize the Euclidean distance between

the target tile vectors and candidate tile vectors. The space of candidate screen tile

vectors includes all possible combinations of p1

q1
and p2

q2
within the desired limit values

plimit, and qlimit. Thus, for each fixed value of qlimit, we search over all 1 ≤ p1 ≤ plimit,

and 1 ≤ p2 ≤ plimit, 1 ≤ q1 ≤ qlimit, and 1 ≤ q2 ≤ qlimit to find the best fit to the

target set. The block diagram for the procedure is shown in Fig 2.3 [65]. If for any

given (q1, q2) combination the best fit may be for some q′1 ≤ q1, and/or q′2 ≤ q2, such

combination of (q1, q2) will not be taken into account.

After obtaining the candidate screen tile vectors, their screen parameters can be

evaluated. The screen parameters that we are most interested in are summarized in

Table 2.1. In most screening implementations, the screen is usually stored in a form of

2-D rectangular array. The rectangular region that can represent a periodic, clustered-

dot halftone screen is not unique. Holladay [62], [63] was one of the earliest researchers

to work on the problem of determining a rectangular region to represent a clustered-

dot periodic screen. Baqai et al. [48], Lin et al. [61] and Lee et al. [47] followed his

approach. However, they only considered regular screens. Lin, Baqai and Lee referred

to their version of the rectangular region as the Basic Screen Block (BSB). Tang et

al. [49] extended it to the case of irregular screens. It was concluded that to obtain

the Basic Screen Block size for irregular screens, we first obtain a supercell matrix
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Fig. 2.3.: Search algorithm for generating candidate screen tile-vectors.

S =

s11 −s12

s12 s11

 using the diagonal repetition number matrix M. The elements

of the repetition matrix M on the diagonal are equal to the least common multiple

of the denominator of the elements of the periodicity matrix. For example, if the

periodicity matrix is V =

 9
5
−18

5

18
5

9
5

, then the repetition matrix is M =

5 0

0 5

 and

the supercell periodicity matrix is S = VM =

 9
5
−18

5

18
5

9
5

5 0

0 5

 =

 9 −18

18 9

. To

determine the Basic Screen Block size B, we use

B =

∣∣∣∣ det S

gcd(s11, s12)

∣∣∣∣ , (2.4)
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Table 2.1.: Basic screen parameters

Symbol Definition

v1, v2 the tile vectors

α the screen angle in degrees

Fs the screen frequency in cycles per inch (com-

monly called lines per inch)

ρ the printer resolution in printer-addressable

pixels per inch (commonly called dots per inch

(dpi)) (∈ R)

M the repetition matrix (diagonal)

S the supercell periodicity matrix

Hblock,Wblock the basis screen block height and width

and obtain the Basic Screen Block of size B = 45. Since we only work with orthogonal

and square geometries, the BSB height and width are the same.

2.3.2 Experimental results

In this section, examples of obtaining the set of candidate screen tile vectors for the

target screen parameters of 180 lpi, 812.8 dpi, and 15°, 45°, and 75°, are demonstrated.

For the first set of screen parameters (15°, 180 lpi, 812.8 dpi), we start by obtaining

the target tile vectors for the screen angle of vtarget
1 and vtarget

2 using Eq. 2.2:

vtarget
1 =

[
v11 v12

]
=

ρ

Fs

[
cosα sinα

]
=

812.8

180

[
cos 15◦ sin 15◦

]
=
[
4.36 1.17

]
,

(2.5)

vtarget
2 =

[
−v12 v11

]
=
[
−1.17 4.36

]
.
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The set of candidate screen tile vectors when the maximum denominator is set to

9 and the maximum value for a numerator is set to 50 is shown in Fig. 2.4 a). Thus,

for each fixed value of qlimit, where 1 ≤ qlimit ≤ 9, we search over all 1 ≤ p1 ≤ 50,

and 1 ≤ p2 ≤ 50, 1 ≤ q1 ≤ qlimit, and 1 ≤ q2 ≤ qlimit to find the best fit to the

target set. Therefore, each row in the table corresponds to setting the limit of the

denominator to qlimit, whereas columns 1 through 6 contain the candidate tile vectors

of the form v1 =
[
p1

q1

p2

q2

]
, which were obtained by minimizing the distance between

v1 and vtarget
1 .

Similarly, the sets of candidate screen tile vectors for the target screen parameters

of (45°, 180 lpi, 812.8 dpi) and (75°, 180 lpi, 812.8 dpi) are demonstrated in Figs. 2.4

b) and c). With the target screen parameters (45°, 180 lpi, 812.8 dpi), the target tile

vector is vtarget
1 =

[
3.19 3.19

]
. Whereas, with the target screen parameters (75°,

180 lpi, 812.8 dpi), the target tile vector is vtarget
1 =

[
1.17 4.36

]
.

From the results in Fig. 2.4 we can conclude that as we increase the limit for

maximum denominator, i.e. as we go from row 1 to row 9, the Euclidean distance

between the target tile vector and the candidate tile vector gets smaller. Hence, the

screen angle and the screen frequency of the candidate tile vectors become closer to

the target screen angle and the target screen frequency. However, their Basic Screen

Block size may get bigger, which may result in some undesirable artifacts. In order

to measure image fluctuation solely based on the periodicity matrix, we looked into

the theoretical model for halftone image fluctuation in the Fourier domain.

2.4 Theoretical Model for Halftone Image Fluctuation

2.4.1 Fourier spectra of continuous-space analog and digital halftones

For our analysis, we use the idealized halftone patterns consisting of circular dots

for the analog halftones. Hence, our continuous-space halftone image is defined as

g (x) =
∑
k∈Z2

circ (M (x−RNk)) , (2.6)
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(a) The set of the candidate screen tile-vectors for 180 lpi, 15◦ and 812.8 dpi. The target tile

vector is vtarget
1 =

[
4.36 1.17

]
.

(b) The set of the candidate screen tile-vectors for 180 lpi, 45◦ and 812.8 dpi. The target tile

vector is vtarget
1 =

[
3.19 3.19

]
.

(c) The set of the candidate screen tile-vectors for 180 lpi, 75◦ and 812.8 dpi. The target tile vector

is vtarget
1 =

[
1.17 4.36

]
.

Fig. 2.4.: The set of the candidate screen tile-vectors for 180 lpi, 812.8 dpi, and three

screen angles 15◦, 45◦, and 75◦. Each row in the tables corresponds to setting the limit

of the denominator to qlimit, where 1 ≤ qlimit ≤ 9, and plimit = 50. Columns 1 through

6 contain the candidate tile vectors of the form v1 =
[
p1

q1
p2

q2

]
, which were obtained by

minimizing the Euclidean distance between v1 and vtarget
1 (column 9). Column 8 contains

the values of Euclidean distance normalized by the by the length of the target tile vector.

Columns 7-8, 10-14 contain the values for the parameters presented in Table 2.1.
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where the parameterR is the horizontal and vertical distance between printer-addressable

pixels in units of inches. The matrix M is a diagonal matrix defined as diag
{

1
d
, 1
d

}
,

where the parameter d is a diameter of each circular dot. The CSFT of g (x) is given

by

G (u) =
jinc

(
M−Tu

)
R2 |det (M) det (N)|

∑
k∈Z2

δ

(
u− 1

R
N−Tk

)
, (2.7)

where the CSFT of the circ function is the jinc function defined as jinc (u) =
J1(π

√
u2+v2)

2
√
u2+v2 ,

where J1 is the Bessel function of the first kind with order 1.

For the digital halftones, we use sampled versions of the analog halftones. There-

fore, in order to obtain the digital rendering of the continuous-space halftone g (x),

we sample g (x) on the printer lattice, and obtain gs (x) = combRR [g (x)]. Then,

we convolve gs (x) with the printer dot profile function rect
(
x
R

)
, which has CSFT

R2sinc (Ru). The CSFT of the resulting printed digital halftone image gprinter (x) is

given by

Gprinter (u) = sinc (Ru)
∑
m∈Z2

jinc
(
M−T (u−Vm)

)
R2 |det (M) det (N)|

(2.8)

×
∑
k∈Z2

δ

(
u−Vm− 1

R
N−Tk

)
,

where V = diag
{

1
R
, 1
R

}
.
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Lastly, in order to obtain the perceived analog and digital rendering continuous-

space halftone images, we convolve them with the point-spread function of the human

visual system (HVS). In the Fourier domain, we thus have

G̃ (u) = HHVS (u)G (u) , (2.9)

= HHVS (u)
jinc

(
M−Tu

)
R2 |det (M) det (N)|

∑
k∈Z2

δ

(
u− 1

R
N−Tk

)
,

G̃printer (u) = HHVS (u)Gprinter (u) ,

= HHVS (u) sinc (Ru)
∑
m∈Z2

jinc
(
M−T (u−Vm)

)
R2 |det (M) det (N)|

×
∑
k∈Z2

δ

(
u−Vm− 1

R
N−Tk

)
,

Equation (2.8) contains two summations over infinite limits. In order to evaluate these

summations and to determine which spectral components contribute to the perceived

halftone image, we need to determine limits for both m and k. That is the topic of

the following two subsections.

Determining Limits of Summation for m

We start by re-writing (2.8) as

G̃printer (u) =

(
1

R2 |det (M) det (N)|

)(π
4

)
G̃norm

printer (u) , (2.10)

where

G̃norm
printer (u) = H̄PPD (u)

∑
m∈Z2

H̄AHI (u−Vm) , (2.11)

H̄PPD (u) = H̄HVS (u) H̄PD (u) (2.12)

= H̄HVS (u) sinc (Ru) ,

and

H̄AHI (u) = H̄AHD (u)
∑
k∈Z2

δ

(
u− 1

R
N−Tk

)
, (2.13)
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where

H̄AHD (u) =
4

π
jinc

(
M−Tu

)
. (2.14)

Equations (2.10)-(2.14) contain several new acronyms, which are defined in Table

2.2. We use the overbar to denote the fact that the corresponding quantity is upper-

bounded by its value at the origin (u = 0), which is unity. Thus,
∣∣H̄PPD(u)

∣∣ ≤∣∣H̄PPD(0)
∣∣ = 1 and

∣∣H̄AHD(u)
∣∣ ≤ ∣∣H̄AHD(0)

∣∣ = 1.

Table 2.2.: Acronyms and their definitions.

Acronym Definition of Term

PD Printer Dot

PPD Perceived Printer Dot

AHI Analog Halftone Image

AHD Analog Halftone Dot

BPPD Bandwidth of Perceived Printer Dot

BAHI Bandwidth of Analog Halftone Image

PROD Product

We want to determine the limits of summation for m and k that are as small

as possible, yet provide satisfactory accuracy. Larger limits lead to more accurate

results, and smaller limits reduce computation. We wish to determine the contribution

of these terms to the region of the frequency domain that is visible to the human

viewer. Equation (2.11) shows that the normalized spectrum G̃norm
printer(u) of the printed

halftone image consists of replications of the analog halftone image spectrum H̄AHI(u)

displaced to frequencies u = Vm and weighted by the spectrum H̄PPD(u) of the

perceived printer dot. Figure 2.5 depicts the normalized spectrum of the digital

halftone.
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Fig. 2.5.: Normalized spectrum of the digital halftone.

Next, we upper-bound the strength of the impulses in (2.11)-(2.13). To do that,

we define a new function

H̄PROD (u; udisplace) = H̄PPD (u) H̄AHD (u− udisplace) (2.15)

as the upper bound of the contribution at frequency u of a replication of H̄AHD (u)

centered at udisplace. We define the threshold δ to be the smallest value for a spectral

term that we must include in the summations given by (2.11) and (2.13). When we

choose the limits for our summations over m and k, we may also include terms that

have magnitude ≤ δ. However, we will never neglect a term that is ≥ δ.

Since the absolute value of both terms in the expression for H̄PROD(u; udisplace)

given by (2.15) are bounded from above by 1,
∣∣H̄PROD(u; udisplace)

∣∣ ≤ δ, whenever

either H̄PPD(u) ≤ δ, or H̄AHD(u; udisplace) ≤ δ. Thus, we define

uBPPD = min{uBPPD :
∣∣H̄PPD(u)

∣∣ < δ,∀ |u| > uBPPD},

uBAHI = min{uBAHI :
∣∣H̄AHI(u)

∣∣ < δ,∀ |u| > uBAHI}. (2.16)
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Combining the two facts above, we conclude that we do not need to consider values for

m, for which udisplace > uBPPD +uBAHI. Therefore, we set umax initial
displace = uBPPD +uBAHI.

However, this results in a range of summation for m that is too conservative. We

seek a tighter upper bound for umax
displace. Therefore, for each value of 0 ≤ udisplace ≤

umax initial
displace , we determine the value

H̄max
PROD (udisplace) = max

0≤u≤umax
H̄PROD (u; udisplace) , (2.17)

where umax = duBPPDe. Then, we find the minimum value for udisplace for which

umax final
displace = min{udisplace :

∣∣H̄max
PROD (udisplace)

∣∣ < δ}. (2.18)

Finally, the limits for m can be determined from m ≤
⌈
V−1umax final

displace

⌉
. Here scalar

operations or relations are applied to each element of the vectors. Having determined

the m limits in the preceding subsection, we next need to determine, for each fixed

value m = m0 within those limits, what are the minimum limits of the summation

over k in (2.11)-(2.14) that will satisfy our criterion on the spectral magnitude of each

term for it to be included in the summation.

Determining Limits of Summation for k

For the k limits, we consider the normalized spectrum of the analog halftone image

illustrated in Fig. 2.6. There are two factors that delineate the cases to be considered

for determining the k-limits. The first factor is that the axes defined by n1
′ and n2

′,

shown in Fig. 2.6, can each intersect the u1 or u2 axes, respectively, at a positive value

or at a negative value. The second factor is that the axes defined by n1
′ and n2

′ can

each intersect or not intersect the band region of the perceived printer dot with radius

uBPPD. This is the region that limits the set of frequency components that will be

visible to the human viewer, as indicated by (2.13), (2.14). We determined that there

are 16 cases for the two factors above. The first 4 cases are presented in Fig. 2.7.

And the other 12 cases are defined analogously by searching around the circle with

radius uBPPD, and keeping either the n1
′ or n2

′ axis fixed, while moving along the
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Fig. 2.6.: Normalized spectrum of the analog halftone image. The dots indicate the

location of impulses.

opposite axis. Hence, out of the 16 cases, there are 13 unique cases, and 3 non-unique

cases that occur when making a switch from one direction to the other. Based on

these results, we came up with a general approach for determining the k-limits.

2.4.2 Experimental results

The perceived analog rendering continuous-space halftone images in the Fourier

domain have the following form:

G̃norm (u) = HHVS (u) jinc
(
M−Tu

) ∑
k∈Z2

δ

(
u− 1

R
N−Tk

)
, (2.19)

whereas the perceived digital rendering continuous-space halftone images in the Fourier

domain have the following form:

G̃norm
printer (u) = HHVS (u) sinc (Ru)

∑
m∈Z2

jinc
(
M−T (u−Vm)

)
(2.20)

×
∑
k∈Z2

δ

(
u−Vm− 1

R
N−Tk

)
.
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Fig. 2.7.: The first 4 cases for determining the k-limits. We keep the n2
′ axis fixed,

and move the n1
′: (1) n1

′ intersects u2 at a positive value and does not intersect the

shaded circle; (2) n1
′ intersects u2 at a positive value and does intersect the shaded

circle; (3) n1
′ intersects u2 at a negative value and does intersect the shaded circle;

(4) n1
′ intersects u2 at a negative value and does not intersect the shaded circle.

We use the expressions in (2.19) and (2.20) in order to determine the locations

of all the frequency components, and their corresponding amplitudes. We generate

tables of all the data in ascending order with respect to the distance from the origin.

Here is the approach for generating the tables of frequency components:

1. Start with the main CSFT equation ((2.19) or (2.20)) and obtain the limits for

m and k as described previously.

2. Generate a table of values of all the frequency components, and their magnitudes

for a newly defined region of m and k.

3. Determine which m and k result in the same u1 and u2, and update the con-

tributions of the desired sources of attenuation.

4. Sort all the obtained values of the locations of frequency components in ascend-

ing order in order to determine what m and k give the additional frequency
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components in the digital rendering spectrum that were not present in the ana-

log rendering spectrum.

In this section, we use an example of the geometry with periodicity matrix N = 9
2
−1

1 9
2

. The limits for m values for the digital rendering spectrum have turned

out to be −51 ≤ m1 ≤ 51,m1 ∈ Z and −51 ≤ m2 ≤ 51,m2 ∈ Z. The limits for k for

the analog rendering spectrum are −2 ≤ k1 ≤ 2, k1 ∈ Z and −2 ≤ k2 ≤ 2, k2 ∈ Z,

whereas for the digital rendering the limits for k are unique for each pair of m values.

The table of the frequency components and their corresponding amplitudes for

the analog rendering table is provided in the Fig. 2.8. The table of the frequency

components and their corresponding amplitudes for the digital rendering table is

provided in the Figs. 2.9 and 2.10. From such Fourier analysis, we can identify

two sources of attenuation of the frequency domain alias terms. The first is the

Fourier spectrum of the ideal halftone dot shape that would be rendered by an analog

device. The second is the Fourier spectrum corresponding to the shape of the printer-

addressable pixels denoted by digital rendering [45]. Due to the relatively small size

of these pixels, this effect is much weaker than the attenuation due to the spectrum of

the ideal halftone dot shape. Taking into account both the locations and amplitudes

of each Fourier component with a visual weighting function allows us to predict the

perceived lack of smoothness in the printed halftone pattern. In the next section, we

discuss how we use the information in the tables in order to obtain the measure of

the perceived image fluctuation.

2.5 Evaluation of Image Fluctuation with the Use of Analog and Digital

Halftones Spectra and Computation of Ratios.

2.5.1 Computation of ratios using the analog and digital halftones spectra

As mentioned before, if the elements of the periodicity matrix are integers, then

the screen is regular, and if some or all elements of the periodicity matrix are non-
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Fig. 2.8.: The summary statistics of the locations of the frequency components and

their amplitudes for the analog rendering of an irregular screen with a periodic-

ity matrix N =

 9
2
−1

1 9
2

. The table is generated using the following equation:

G̃norm (u) = HHVS (u) jinc
(
M−Tu

) ∑
k∈Z2

δ
(
u− 1

R
N−Tk

)
. The entire table has 24 en-

tries, here −2 ≤ k1 ≤ 2, k1 ∈ Z and −2 ≤ k2 ≤ 2, k2 ∈ Z. Note: the entries in

the table are sorted based on the distance of the frequency components to the origin.

Column 7 contains the distance in units of cycles per inch. The jinc value in column

8 corresponds to the result of jinc
(
M−Tu

)
. The four main peaks are placed in a blue

box.
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Fig. 2.9.: The summary statistics of the locations of the frequency components and

their amplitudes for the digital rendering of an irregular screen with a periodicity ma-

trix N =

 9
2 −1

1 9
2

. The table is generated using the following equation: G̃norm
printer (u) =

HHVS (u) sinc (Ru)
∑

m∈Z2

jinc
(
M−T (u−Vm)

) ∑
k∈Z2

δ
(
u−Vm− 1

RN−Tk
)
. The entire ta-

ble has 211,786 entries, here −51 ≤ m1 ≤ 51,m1 ∈ Z and −51 ≤ m2 ≤ 51,m2 ∈ Z, k limits

are unique for each pair of m values. Since different m and k give the identical u2 and u2

(or u(1) and u(2) as labeled in the table), their jinc values needed to be combined. The

example of the frequency components that are combined are placed in green boxes. Their

jinc components are combined: 2.6983e−5+(−4.0365e−5)+(−1.5813e−4)+ . . . = 0.0150.

The changes are reflected in the next figure. The blue arrow shows that the table is sorted in

the ascending order, based on the distance of the frequency components to the origin. Note:

the jinc value in column 8 corresponds to the result of jinc
(
M−T (u−Vm)

)
, whereas the

sinc value corresponds to the result of sinc (Ru), and column 10 corresponds to the product

of columns 8 and 9.
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Fig. 2.10.: The summary statistics of the locations of the frequency components and

their amplitudes for the digital rendering of an irregular screen with a periodicity ma-

trix N =

 9
2 −1

1 9
2

 updated. The table is generated using the following equation:

G̃norm
printer (u) = HHVS (u) sinc (Ru)

∑
m∈Z2

jinc
(
M−T (u−Vm)

) ∑
k∈Z2

δ
(
u−Vm− 1

RN−Tk
)
.

This is the updated table shown in Fig. 2.9. The entire table has 80 entries. Column

13 contains the values which are obtained by scaling column 12 by the maximum amplitude

obtained from the four main peaks in the analog rendering (percentage). The frequency

components in the blue box are the example of the components that have the same loca-

tions as those that were present in the analog rendering spectrum, whereas the frequency

components in the red box are the example of the new frequency components that were not

present in the analog rendering.
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integers, then the screen is irregular. The examples of regular and irregular analog

and digital halftone textures are provided in Fig. 2.11.

Their corresponding DFT spectra are shown in Fig. 2.12. As can be seen from

Fig. 2.12, with the irregular halftones, not only can we see the frequency components

that fall on the same locations as in the analog rendering, but we can also observe the

additional frequency components that fall on the different locations as shown in Fig.

2.12 d) [67]. The frequency components near the origin will be most visible, and will

contribute the most to the perception of noise in the resulting image. Based on this

observation, we chose to compute four ratios. The numerator terms for all four ratios

are based on the square-root of the sum of the squares of the amplitudes of the selected

terms. Ratio 1 summarizes the contributions of these components, which lie in a

quadrilateral bounded by, but not including the four lowest frequencies in the analog

halftone. Ratio 2 summarizes the contribution of the digital halftone at the same

frequencies (fundamentals and harmonics) that were present in the analog halftone.

Ratio 3 summarizes the contributions of all components in the digital halftone, except

those present in the analog halftone. Finally, Ratio 4 summarizes the contributions

of all non-zero frequency terms in the printed digital halftone. We normalize all our

ratios by the square-root of the sum of the squares of the amplitudes of the four lowest

(fundamental) frequencies in the analog halftone image [65]. An example of how the

frequency components are selected for computing ratios is demonstrated in Fig. 2.13.

2.5.2 Experimental results

In order to compare our results we pick the 3 screen tile vectors from Fig. 2.14

and compare their ratios. The target screen parameters for these geometries are the

screen frequency of 180 lpi, screen angle of 15◦, and printer resolution of 812.8 dpi.

Fig. 2.15 contains the values of the four ratios for the three periodicity matrices

and halftone patterns. As expected, for the regular screen, Ratios 1 and 3 are zero;

and Ratios 2 and 4 are nearly unity. The value of Ratio 2 is close to unity for



34

(a) The analog halftone with a regular

geometry.

(b) The digital halftone with a regular

geometry.

(c) The analog halftone with an irregu-

lar geometry.

(d) The digital halftone with an irregu-

lar geometry.

Fig. 2.11.: Comparison between analog and digital, regular and irregular halftones:

a) and b) are regular halftones that have a periodicity matrix N =

4 −1

1 4

; c) and

d) are irregular halftones that have a periodicity matrix N =

9/2 −1

1 9/2


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(a) The DFT of an analog halftone with a

regular geometry.

(b) The DFT of a digital halftone with a reg-

ular geometry.

(c) The DFT of an analog halftone with an

irregular geometry.

(d) The DFT of a digital halftone with an

irregular geometry.

Fig. 2.12.: Comparison between the DFT of analog and digital, regular and irregular

halftones: a) and b) are the DFT spectra of a regular geometry with periodicity

matrix N =

4 −1

1 4

; c) and d) are the DFT spectra of an irregular geometry with

periodicity matrix N =

9/2 −1

1 9/2


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(b) (c)

(d) (e)

Fig. 2.13.: This figure demonstrates which frequency components are considered in order to com-

pute four ratios. Subfigure a) contains an example of the analog rendering spectrum, subfigures (b),

(c), (d), and (e) contain the corresponding digital rendering spectrum. If the frequency components

are surrounded with green lines, that means that they are the only ones that are used for computing

the corresponding ratio. If the frequency components are marked with a green x mark, then they are

the frequency components that are not included in computing the corresponding ratio. a) The four

fundamental frequency components (peaks) in the analog rendering spectrum are selected. These

frequency components are used in computing the denominator for the four ratios. b) The frequency

components in the digital rendering whose distance to the origin is smaller than the distance to the

fundamental peak in the analog rendering. These frequency components are used in computing the

numerator for Ratio 1. c) The frequency components in the digital rendering, which fall on the

same locations as those that are in the analog rendering spectrum. These frequency components are

used in computing the numerator for Ratio 2. d) All the new frequency components that appear

as a result of digitization in the digital rendering, and that are not present in the analog rendering.

These frequency components are used in computing the numerator for Ratio 3. e) The entire digital

rendering spectrum. These frequency components are used in computing the numerator for Ratio 4.
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all three screens, suggesting that the significance of the spectral power change at

harmonics of the fundamental frequency of the analog halftone induced by an irregular

screen is minimal. In addition, for the two irregular screens, Ratios 1, 3, and 4 have

nearly identical values. This suggests that the spectral power within the quadrilateral

bounded by, but not including the four lowest frequencies in the analog halftone, will

dominate all three of these ratios. The value of these ratios is much larger for N3

than for N2. This is in agreement with the visual appearance of the corresponding

halftone patterns shown in Fig. 2.15, which is much noisier for N3 than for N2.

In addition, Table 2.3 contains ratio results for all candidate tile vectors presented

in Fig. 2.14. It can be seen from the results that as we increase the denominator

threshold value and allow higher values for digitization, the ratios 1, 3, and 4 increase

drastically, which happens due to the fact that as we increase the denominator, the

number of additional frequency components that occur in the digital rendering also

goes up. Therefore, the number of additional frequency components that are closest

to the origin also increases, which leads to higher graininess levels. However, it may

also happen that if we increase the denominator only slightly, the ratio values may

both increase or decrease, which can be tracked from the data tables that we generate.

As for ratio 2, its value is close to 1 most of the time due to the fact there are always

frequency components in the digital rendering that fall on the same locations in the

analog rendering.

Fig. 2.14.: The set of the candidate screen tile-vectors for 180 lpi, 15◦ and 812.8 dpi.

The target tile vector is vtarget
1 =

[
4.36 1.17

]
.



38

Table 2.3.: Ratio results for the candidate tile vectors presented in Fig. 2.14. As we

increase the denominator value (going from row 1 to row 6), and allow higher values for

digitization, the ratios 1, 3, and 4 increase drastically, which happens due to the fact that

as we increase the denominator, the number of additional frequency components that occur

in the digital rendering also goes up. As for ratio 2, its value is close to 1 most of the time

due to the fact there are always frequency components in the digital rendering that fall on

the same locations in the analog rendering.

Periodicity matrix Ratio 1 Ratio 2 Ratio 3 Ratio 4

N1 =

4 −1

1 4

 0 0.99 0 0.99

N2 =

9/2 −1

1 9/2

 1.36 0.93 1.36 1.65

N3 =

13/3 −4/3

4/3 13/3

 10.05 0.91 10.05 10.09

N4 =

13/3 −5/4

5/4 13/3

 17.77 0.92 17.77 17.79

N5 =

13/3 −6/5

6/5 13/3

 21.31 0.91 21.31 21.33

N6 =

13/3 −7/6

7/6 13/3

 20.22 0.91 20.22 20.24
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(a)

N1 =

 4 −1

1 4


(b)

N2 =

 9
2 −1

1 9
2


(c)

N3 =

 13
3

−7
6

7
6

13
3



Fig. 2.15.: Comparison of the ratio results: the three halftones (a), (b), and (c)

correspond to the same target tile vector with a screen frequency of 180 lpi, screen

angle of 15◦, and printer resolution of 812.8 dpi. The halftone in (a) is a regular

halftone, whereas the halftones in (b) and (c) are irregular halftones. a) Ratio 1 =

0, Ratio 2 = 0.99, Ratio 3 = 0, Ratio 4 = 0.99. (b) Ratio 1 = 1.36, Ratio 2 = 0.93,

Ratio 3 = 1.36, Ratio 4 = 1.65. (c) Ratio 1 = 21.31, Ratio 2 = 0.91, Ratio 3 = 21.31,

Ratio 4 = 21.33

2.6 Conclusion

In this chapter, we proposed a procedure for finding the optimal screens that will

minimize image graininess. Our algorithm was based on developing a set of alter-

native tile-vectors that will best fit the specified target screen set: screen frequency,

screen angle, and printer resolution. We also, generated the tool for looking at the fre-

quency spectrum of any halftone, and finding all the information about its frequency

components. Finally, we provided a measure for computing the image fluctuation for

a single separation based only the periodicity matrix. Our ratio metrics also assist us

in making better choices when selecting between several halftones without generating

the halftones themselves.
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3. DIGITAL SIMULATION-BASED ANALYSIS OF

HALFTONING WITH AN ARBITRARY NUMBER OF

SEPARATIONS (REGULAR OR IRREGULAR) USING

THE SPATIOCHROMATIC HVS MODEL

3.1 Introduction

The purpose of our research is to design a predictor that will help us assign col-

orants to different screens that will minimize the perceived error. In addition, we

would like to find out what are the advantages and disadvantages in using regular

and irregular halftones for the superposition. In our previous work, which was based

on a single separation, we made a conclusion that choosing an irregular halftone

screen has an advantage of getting closer to the target screen tile vector. However, it

results in higher graininess levels. Whereas with a regular screen, the distance from

the target screen tile vector is increased, but the graininess levels may improve [65].

Another challenge that we are facing is that as we explore the superposition of two

irregular color halftones, we need not only take into account the effects of superposi-

tion but also the effects of digitization. In order to eliminate dot-on-dot printing in

the superposition image, the screen of each colorant is rotated to a different angle.

However, this causes other problems such as moire and rosette artifacts, which are

the result of the interaction between two lattices. The moire phenomenon refers to a

low-frequency structure, which has a very visible pattern and can be observed at the

superposition of two halftones, and not in the individual halftones separately [48]. In

contrast, a rosette pattern has a circular or polygonal pattern, which is formed as a

result of rotating halftone screens [48]. The superposition of two color halftones is

a very important question to study because the artifacts such as moire, rosette and

misregistration can lead to color shifts. Baqai and Allebach presented a systematic
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method for designing moire- and rosette- free clustered-dot color screens for discrete

raster color systems [48]. Whereas Ufuk and Allebach developed a model-based color

halftoning method which minimizes the perceived error between the continuous tone

original color image and the color halftone image [57]. In our research, we integrate

the HVS based model that takes into account the spectral representation of color and

the difference in the responses of the human viewer to luminance and chrominance

information in order to obtain the perceived error metric. Specifically, we are inter-

ested in investigating the new challenges that occur as a result of superimposing the

two irregular halftone screens in comparison to the two regular halftone screens.

3.2 HVS-Based Model for Superposition of Two Color Halftones

3.2.1 Method for obtaining the average squared perceived error

The procedure implemented in our research consists of three parts. The first part

involves generating the three gX [m], gY [m], and gZ [m] images of the superposition

halftone. In the second part, in order to account for the difference in the responses

of the human viewer to luminance and chrominance information, we use a linearized

version of the L?a?b? uniform color space, which is YyCzCz [70]. And lastly, in part

three we apply separate luminance and chrominance frequency responses; and we

obtain the average squared perceived error.

Color device model

We start by considering the superposition of two colorants. The halftone patterns

of the cyan and magenta colorants associated with their periodicity matrices Nc and

Nm are represented as gc [m] and gm [m] in Fig. 3.1. The superposition of these

two halftones generates three colorant areas (Neugebauer primaries) c, m, cm, and a

white w area. In order to transform to a device-independent space CIE XYZ, we use

the Neugebauer primaries generator to obtain a gNP [m] image. Next, we obtain the
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Fig. 3.1.: The procedure for generating images in CIE XYZ.

XY Z matrix using the spectral reflectance, the CIE XYZ color matching functions

(CMF’s), and a D65 Illuminant, depicted in Figs. 3.2, 3.3, and 3.4. X, Y , and Z

values are obtained using the following equations:

X =

∫ 700

400

S(λ)x̄(λ)dλ

Y =

∫ 700

400

S(λ)x̄(λ)dλ (3.1)

Z =

∫ 700

400

S(λ)x̄(λ)dλ,

where

S(λ) = I(λ)R(λ). (3.2)

Here, we define I(λ) to be the Illuminant function, for example D50 Illuminant or

D65 Illuminant, and R(λ) to be the Reflectance function corresponding to the specific

Neugebauer primary, including the media on which the colorant is placed. It is unique

to the target printer. In this chapter, we use the Ideal Block Reflectance functions,



43

Fig. 3.2.: D65 Illuminant.

shown in Fig. 3.4 for the cyan and magenta colorants only, and the D65 Illuminant

to illustrate our results. The final XY Z matrix has the following form:

XY Z =


Xc Xm Xcm Xw

Yc Ym Ycm Yw

Zc Zm Zcm Zw

 . (3.3)
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Fig. 3.3.: CIE XYZ color matching functions.

Lastly, to get the gX [m], we use the previously obtained gNP [m] and the Xvalues

for c, m, cm, and w:

gX [m] =



Xw, gNP [m] = 0

Xc, gNP [m] = 1

Xm, gNP [m] = 2

Xcm, gNP [m] = 3.

(3.4)

The gY [m] and gZ [m] images are similarly obtained.
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Fig. 3.4.: Ideal block reflectance for cyan and magenta colorants.

Opponent color space

Next, we implement the human visual model that accounts for the difference in

the responses of the human viewer to luminance and chrominance information. We
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use a linearized version of L?a?b? color space in order to preserve local averages, which

are crucial for faithful tone reproduction [70]. The transformation that we use is:

Yy = 116
Y

Yn

Cx = 500

[
X

Xn

− Y

Yn

]
(3.5)

Cz = 200

[
Y

Yn
− Z

Zn

]
,

where (Xn, Yn, Zn) is the D65 white point for theXY Z color space. The Yy component

represents luminance, and Cx and Cz components represent the R − G and B − Y

opponent-color chrominance components. In order to look at each channel separately,

we convert each channel to sRGB by setting the other two channels to 0 or a constant

value [70]. For example, in order to look at the Y channel, we set Cx, and Cz channels

to 0 resulting in (Yy, 0, 0). After that we transform back to XYZ and to sRGB

[70]. Figure 3.5 summarizes the procedure. It turned out after the transformation of

(Ymid, Cx, 0) and (Ymid, 0, Cz) from XYZ to sRGB, there were negative values in sRGB

at some pixels. In order to not lose any data, we developed a procedure, that will fit

all the data inside the range [0, 1]. Figure 3.6 depicts the procedure for visualizing

(Ymid, 0, Cz). A similar approach is used to display (Ymid, Cx, 0). In addition to Fig.

3.6, a detailed derivation for obtaining the α parameter is provided in the Appendix.

3.2.2 Spatial frequency response and error metric

The next step is to apply separate luminance and chrominance frequency responses

to Yy, Cx and Cz, which are chosen based on the spatial sensitivity of the human eye

to them. For the luminance channel, we use Daly HVS, which is given as:

H (ρ̄) =

a (b+ cρ̄) exp
(
− (cρ̄)d

)
, ρ̄ > ρ̄max

1, else,

(3.6)
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Fig. 3.5.: Visualization of Yy, Cx and Cz channels in sRGB. Ymid is the midpoint

between the maximum and the minimum values in the Yy component .

Fig. 3.6.: Procedure for visualizing (Ymid, 0, Cz).

where a = 2.2, b = 0.192, c = 0.114, d = 1.1, ρ̄max = 6.6, and ρ̄ =
√
u2 + v2 [69]. For

the chrominance channel, we use the approximation by Kolpatzik and Bouman to

experimental data collected by Mullen, which is given as:

W (ρ̄) = A exp (−α||ρ̄||) , (3.7)
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where α = 0.419, and A = 100 [70], [48]. The procedure is demonstrated in Fig.

3.7. After obtaining εYy (i, j), εCx (i, j), εCz (i, j) for each pixel of the image located

at (i, j), and scaling εYy (i, j) by 4, we calculate ∆E (i, j) in the following way:

∆E (i, j) =
√(

εYy (i, j)2 + εCx (i, j)2 + εCz (i, j)2). (3.8)

Finally, we obtain the ∆Efluctuation value, using:

∆Efluctuation =
1

mn

m∑
i=1

n∑
j=1

∆E (i, j) , (3.9)

where the size of the image is mxn. Knowing ∆Efluctuation helps us identify which

color should be assigned to which screen in order to decrease the graininess of the

superposition image.

Fig. 3.7.: The procedure for obtaining the main components for calculating

∆Efluctuation. G̃Yy (u), G̃Cx (u), and G̃Cz (u) represent the perceived Fourier Trans-

forms of their corresponding images g̃Yy [m], g̃Cx [m], and g̃Cx [m].
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3.2.3 Experimental results

Since the scope of our research lies in investigating the behavior of irregular clus-

tered dot halftones, we chose to work with two irregular halftone screens and 3 col-

orants: cyan, magenta, and yellow. The first screen is an irregular screen with a pe-

riodicity matrix N1 =

9/2 −1

1 9/2

, and the second screen is also an irregular screen

with a periodicity matrix N2 =

10/3 −10/3

10/3 10/3

. For the HP Indigo press with res-

olution 812.8 dpi, these screens have frequencies 176.32 and 172.42 lpi, respectively.

Their angles are 12.53 and 45 degrees, respectively. Since we have 2 halftone screens

and 3 colorants, we need to compare 6 different sets of data, defined and indexed in

Table 3.1. Based on Table 3.1, with Superposition #1 the halftone with periodicity

Table 3.1.: Six configurations for two halftone screens and three colorants: cyan,

magenta, and yellow

Index (#) N1 =

9/2 −1

1 9/2

 N2 =

10/3 −10/3

10/3 10/3


1 Cyan Magenta

2 Magenta Cyan

3 Yellow Magenta

4 Magenta Yellow

5 Cyan Yellow

6 Yellow Cyan

matrix N1 is cyan, and the halftone with periodicity matrix N2 is magenta. It is

presented in Fig. 3.9. Figure 3.10 reveals the visualization of the opponent channels

in sRGB. In order get a better insight of the opponent color channels, the zoomed-in

view of Yy, Cx, and Cz is provided in Fig. 3.8. The YyCxCz matrix corresponding to
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the XYZ matrix mentioned in Equation 3.3 has the following form:
Yy

Cx

Cz

 =


101.51 33.03 11.75 122.80

−124.05 140.59 44.21 −27.67

−50.96 −145.85 −177.08 −19.73

 (3.10)

Similar to Equation 3.3, columns 1 through 4 correspond to the cyan, magenta, cyan

and magenta, and white pixels in the superposition image. From Fig. 3.8, it can

be seen that the magenta pixel, which is the sum of red and blue, has a large red

component in the Cx channel with its corresponding value of 140.59 and a large blue

component in the Cz image with its corresponding value of -145.85 based on Equation

3.10. Whereas the cyan pixel, which is the sum of green and blue, has a large green

component in the Cx channel with its value of -124.05, but a much smaller blue com-

ponent in the Cz channel with its value of -50.96. Figure 3.11 is a visualization of the

opponent color channels filtered with their corresponding luminance and chrominance

Fig. 3.8.: Zoomed-in view of Yy, Cx, and Cz channels for the Superposition #1.
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frequency responses depicted in the Methods section. The filtered (Yy, 0, 0) image has

a strongly visible low frequency pattern, whereas the filtered Cx, and Cz images have

no visible pattern due to the nature of the chrominance filter. As a comparison to

the Superposition #1 results, the detailed results for the Superposition #2, when the

halftone with periodicity matrix N2 is cyan, and the halftone with periodicity matrix

N1 is magenta, are presented in Figs. 3.12, 3.13, and 3.14. Based on Fig. 3.14, it can

be deduced that the filtered (Yy, 0, 0) image has a less visible low frequency pattern

than the (Yy, 0, 0) image of Superposition #1, which is also verified by the calcu-

lated ∆Efluctuation values, which are provided in Table 3.2, and supported by their

corresponding images in Fig. 3.15. Our results emphasize that in the case of Ideal

Block Reflectance and D65 Illuminant, we get a higher ∆Efluctuation when applying

the magenta colorant to a more irregular screen if choosing between either magenta

and yellow, or magenta and cyan configurations. In this chapter, the more irregular

screen is N2 =

10/3 −10/3

10/3 10/3

. That’s why the ∆Efluctuation for configurations #1

and #3 is higher than their complementary pairs. Similarly, ∆Efluctuation is higher

for configuration #6, when the cyan colorant is applied to a more irregular halftone

rather than the yellow colorant. The results may seem intuitive for these simple

cases. However, when considering different sets of regular and irregular screens, and

different sets of Illuminants and Spectral Reflectance Functions, the results may no

longer be easily predicted.
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(a) Cyan Halftone (b) Magenta Halftone (c) Superposition image

Fig. 3.9.: Superposition when the cyan halftone has a periodicity ma-

trix N1 =

9/2 −1

1 9/2

 and the magenta halftone has a periodicity matrix

N2 =

10/3 −10/3

10/3 10/3



(a) (Yy, 0, 0) (b) (Ymid, Cx, 0) (c) (Ymid, 0, Cz)

Fig. 3.10.: Visualization of Yy, Cx, and Cz channels of the superposition image pre-

sented in Fig. 3.9 c).
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(a) (Yy, 0, 0) (b) (Ymid, Cx, 0) (c) (Ymid, 0, Cz)

Fig. 3.11.: Visualization of Yy, Cx, and Cz channels of the superposition image pre-

sented in Fig. 3.9 c), filtered with luminance and chrominance frequency responses

(a) Cyan Halftone (b) Magenta Halftone (c) Superposition image

Fig. 3.12.: Superposition when the cyan halftone has a periodicity ma-

trix N2 =

10/3 −10/3

10/3 10/3

 and the magenta halftone has a periodicity matrix

N1 =

9/2 −1

1 9/2


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(a) (Yy, 0, 0) (b) (Ymid, Cx, 0) (c) (Ymid, 0, Cz)

Fig. 3.13.: Visualization of Yy, Cx, and Cz channels of the superposition image pre-

sented in Fig. 3.12 c).

(a) (Yy, 0, 0) (b) (Ymid, Cx, 0) (c) (Ymid, 0, Cz)

Fig. 3.14.: Visualization of Yy, Cx, and Cz channels of the superposition image pre-

sented in Fig. 3.12 c), filtered with luminance and chrominance frequency responses
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(a) Superposition #1.

∆Efluctuation = 0.6468

(b) Superposition #3.

∆Efluctuation = 0.6461

(c) Superposition #5.

∆Efluctuation = 0.0658

(d) Superposition #2.

∆Efluctuation = 0.1917

(e) Superposition #4.

∆Efluctuation = 0.1463

(f) Superposition #6.

∆Efluctuation = 0.1099

Fig. 3.15.: Visualization of six configurations based on cyan, magenta, and yellow

colorants and two periodicity matrices N1 =

9/2 −1

1 9/2

 and N2 =

10/3 −10/3

10/3 10/3

.

The detailed information is provided in Table 3.2
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Table 3.2.: Comparison between six different configurations for cyan, magenta, and

yellow.

Superposition Index N1 =

9/2 −1

1 9/2

 N2 =

10/3 −10/3

10/3 10/3

 ∆Efluctuation

1 Cyan Magenta 0.6468

2 Magenta Cyan 0.1917

3 Yellow Magenta 0.6461

4 Magenta Yellow 0.1463

5 Cyan Yellow 0.0658

6 Yellow Cyan 0.1099
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3.2.4 Conclusion

We have presented the HVS-based model for the superposition of two clustered dot

color halftones, which assists us in making the right choices when assigning colorants

to a variety of irregular or regular screens. We used the YyCxCz color space in order

to account for the difference in the responses of the human viewer to luminance

and chrominance information. Our model can be used to improve the predictions

concerning the visibility of color halftone textures. In the next section, we’ll show the

result of expanding our model to the superposition of three and four clustered dot

color halftones as well as looking at different absorptance combinations.

3.3 Analysis of Impact of Screen Configuration on Image Fluctuation and

Color Shift (for misregistration) across all Absorptance Combinations

In this section, we present the results of the analysis of impact of screen con-

figuration on image fluctuation and colorshift across all absorptance combinations.

We start with the HVS-based model for the superposition of two clustered dot color

halftones and we expand it to the superposition of three or four halftones. We use

the ∆Efluctuation metric as our measure for image fluctuation. The model helps us de-

cide what are the best color assignments for the superposition of regular or irregular

halftones that will minimize the perceived error.

In the previous section, we assumed one absorptance value for all separations.

In this section, we have no restriction on absorptance value. In order to generate

irregular clustered-dot halftones with all possible absorptance values, we started with

the systematic approach for regular clustered-dot halftones that Baqai and Allebach

proposed in [48], and extended it to the case of irregular clustered-dot halftones. We

present our approach and example in the first subsection.

After applying our model to the superposition of three and four clustered-dot color

halftones with different absorptance values, it was concluded that for different com-

binations of colorant absorptance values, their corresponding best color assignments
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Fig. 3.16.: Block diagram for performing analysis of impact of screen configuration

on image fluctuation and colorshift (for misregistration) across all absorptance com-

binations.

turn out to be different. Hence, it was decided that for a given superposition set, we

need to look at different absorptance combinations and different color assignments in

order to determine the best color assignment. On the other hand, given a specific set

of absorptance values for each colorant, we evaluate the fluctuations and colorshift

due to misregistration within 2 printer-addressable pixels. The block diagram for this

section is provided in Fig. 3.16. We start with a superposition set of four geometries

and five absorptance values, and perform all possible superpositions of four halftones.

In the case of 4 periodicity matrices and 4 colorants, we have 24 different ways to

assign colors to the periodicity matrices. In the case of 5 absorptance values and 4
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periodicity matrices, we have 625 different combinations of absorptance values. Af-

ter performing all possible combinations, we select 3 best and 3 worst configurations

that’ll be evaluated for image fluctuation and colorshift due to misregistration.

3.3.1 Screen design for irregular clustered-dot halftones.

The main challenge with the screen design of irregular clustered-dot halftones is

that, unlike with regular halftones, the microcells within the tile are not identical.

Hence, we have to generate all microcell growing sequences for all microcells within

a tile, and then tile them. The full block diagram for our approach is presented in

Fig. 3.17. Similarly to our theoretical analysis of Fourier spectra of continuous-space

analog and digital halftones, we start by producing analog circular-dot halftones.

In order to produce a checkerboard pattern at the 50% absorptance and circular

patterns at all other levels, we use the approach described in [79]. The examples of

three circular-dot halftones are presented in Fig. 3.18.

(1) Generate analog 

halftones* using the 

sum of two cosine 

functions

(3) Generate 

the microcell 

lattice within 

an image of 

size tileSize.

Periodicity 

matrix N
(2) Calculate the 

area covered by a 

circular dot in each 

printer pixel

(4) Calculate 

the area 

covered by a 

single 

microcell in 

each printer 

pixel of an 

image with 

size tileSize. 

(5) Quantize the 

sides of a 

microcell by 

assigning pixels 

with the largest 

overlap with a 

microcell to the 

corresponding 

DPHC**.

(6) Within 

each DPHC 

select d

number of 

printer pixels 

in the order of 

decreasing 

area  obtained 

in (2)

Output 

digital 

halfone

Output 

analog 

halftone

d – number of printer pixels that need to be switched on based on a specific absorptance value.

*analog halftone is represented as a digital image, which is highly upsampled by a factor of 20.

**DPHC – discrete parameter halftone cell.

Fig. 3.17.: Block diagram for generating analog and digital halftones.
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(a) (b) (c)

Fig. 3.18.: Example of producing analog rendering halftones. For this example, the

screen frequency is 176.32 lpi, screen angle is 12.53°, and printer resolution is 812.8

dpi. (a) Absorptance = 0.05; (a) Absorptance = 0.25; (c) Absorptance = 0.50.

The equation for producing circular dots is t(x, y) =
(
−1

2

)
(cos(2πf1x) + cos(2πf2x)),

where f1 and f2 are derived from the periodicity matrix.

Next we, build the continuous parameter halftone cell lattice (CPHC) based on

the periodicity matrix tile vectors, and then quantize the CPHC to obtain the DPHC

[48], [47]. We quantize the sides of the CPHC by assigning printer pixels with the

largest overlap with a CPHC to the corresponding DPHC. An example of computing

CPHC overlaps with the printer grid is shown in Fig. 3.19. An example of quantizing

the CPHC provided in Fig. 3.19 is shown in Fig. 3.20. Once all the DPHCs within the

tile are obtained, we can select the desired number of printer pixels in the descending

order of the area coverages of a circular dot in that DPHC. An example of generating

digital halftones with absorptance values of 0.30 and 0.40 is shown in Fig. 3.21. For

all of the figures in this section, we used the geometry with the screen frequency is

176.32 lpi, screen angle is 12.53°, and printer resolution is 812.8 dpi. The periodicity

matrix for this geometry is N =

9
2
−1

1 9
2

, hence the microcell area = 21.25 printer

pixels. The continuous-tone ramp image halftoned using this specific geometry is

shown in Fig. 3.22.
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(a)

(b)

Fig. 3.19.: Example of computing area coverage by a single CPHC in each printer

pixel. For this example, the screen frequency is 176.32 lpi, screen angle is 12.53°, and

printer resolution is 812.8 dpi. (a) The red lines correspond to the microcell lattice,

the background grid is the printer lattice, and the shaded region is the continuous

parameter halftone cell (CPHC). (b) The area coverage (overlap) values of the printer-

addressable pixels in a shaded region in (a).

(a) (b)

Fig. 3.20.: Example of quantizing the sides of the CPHC by assigning pixels with the

largest overlap to the corresponding DPHC. (a) The shaded cell is the CPHC. (b)

The quantized CPHC - DPHC (discrete parameter halftone cell).

3.3.2 Dependence on absorptance grouping combination

In this section, we use two terms configuration number and absorptance grouping

number. Periodicity matrix configuration number is a 4-digit number, where each
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(b)

1 printer pixel, 

each printer 

pixel is 

comprised of  

20x20 

subpixels

R =
1

3.2 dpmm

(a)

(d)(c)

Fig. 3.21.: Example of selecting a desired number of printer-addressable pixels in the

order of decreasing area coverages of a circular dot in that DPHC. For this example, the

screen frequency is 176.32 lpi, screen angle is 12.53°, and printer resolution is 812.8 dpi.

The periodicity matrix is N =

9
2 −1

1 9
2

, hence the microcell area = 21.25 printer pixels.

Subfigures (a) and (b) correspond to the absorptance of 0.30. (a) The analog halftone for

absorptance = 0.30, (b) The resulting digital halftone with 6 printer pixels switched on in

each dot; Subfigures (c) and (d) correspond to the absorptance of 0.40. (c) The analog

halftone for absorptance = 0.40, (d) The resulting digital halftone with 9 printer pixels

switched on in each dot. The red boxes are placed in order to visualize the decreasing area

coverages of a circular dot with the printer grid.

digit corresponds to a periodicity matrix number (1, 2, 3, and 4 correspond to pe-

riodicity matrices N1,N2,N3, andN4). The four digits are ordered in the order of

their assignment to the (C, M, Y, K) colorants. For example, configuration number

4321 represents the assignment of C to N4, M to N3, Y to N2, and K to N1; 4312

means C is N4, M is N3, Y is N1, and K is N2.

Absorptance grouping numbers are indices for each possible combination of 5 ab-

sorptance values assigned to four separations. For the examples, provided in this

section, the 5 absorptance values are 0.1, 0.3, 0.5, 0.7, 0.9. For example, absorp-
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Fig. 3.22.: Example of generating all possible gray levels for the geometry with the

screen frequency is 176.32 lpi, screen angle is 12.53°, and printer resolution is 812.8

dpi. The periodicity matrix for this geometry is N =

9
2
−1

1 9
2

.
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tance grouping number 1 is for (a1, a2, a3, a4) = (0.1, 0.1, 0.1, 0.1), number 2 is for

(a1, a2, a3, a4) = (0.1, 0.1, 0.1, 0.3). Every value in the absorptance grouping number

corresponds to a 4-tuple of absorptance values which are assigned to the (C, M, Y,

K) colorants. For each of the 24 periodicity matrix configuration numbers, we obtain

the minimum, maximum, and mean ∆Efluctuation values among all 625 absorptance

grouping numbers. Based on the mean ∆Efluctuation over all absorptance grouping

numbers, we select 3 best and 3 worst cases of periodicity matrix configuration num-

bers. The visualization of the images that we work with is illustrated in Fig. 3.23.

3.3.3 Dependence on misregistration

In this subsection, we investigate the effect of misregistration on image fluctu-

ation and color shift, which are very common in electrophotographic printers. We

perform the misregistration within 2 printer pixels. Due to the fact that we shift

three halftones relative to the fourth, we have 93 = 729 cases of misregistration (no

shift, shift by 1, shift by 2 printer-addressable pixels). For each case, we’ll calculate

∆Emisregistration
fluctuation and ∆Ecolorshift. The block diagram for computing ∆Emisregistration

fluctuation is

shown in Fig. 3.25. For the human visual systems (HVSs), we used the Daly HVS for

luminance and Mullen Chrominance HVS for chrominance channels [69], [70]. Their

frequency responses are shown in Fig. 3.24.

The block diagram for computing ∆Ecolorshift is shown in Fig. 3.26. Similarly

to obtaining ∆Emisregistration
fluctuation , we perform 729 cases of misregistration in order to

obtain the ∆Ecolorshift,∆Y , and ∆ECx,Cz. As for the reference image, we use the

superposition image where no shifts are performed.

3.3.4 Experimental results

In order to demonstrate our results, we use the superposition set of four geometries,

provided in Table 3.3. In order to generate the results in Table 3.3, we use three

different sets of absorptance values and 4 halftones. Hence, for each set of absorptance
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Fig. 3.23.: Visualization of the images that are used in order to obtain the best

color assignment depending on different absorptance values. Absorptance grouping

numbers vary from row to row, whereas periodicity matrix configuration numbers

vary from column to column. In order to select the 3 best and 3 worst configurations,

the mean ∆Efluctuation over all absorptance grouping numbers in each configuration

set is computed.
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(a) (b)

Fig. 3.24.: Daly and Mullen Chrominance human visual systems frequency responses.

(a) Daly HVS; (b) Mullen Chrominance HVS.

values, we have 54 = 625 possible absorptance grouping numbers. We obtained

mean ∆Efluctuation among all 625 absorptance grouping numbers for each of the 24

configurations, and sorted the results in increasing order from the minimum mean

∆Efluctuation to the maximum mean ∆Efluctuation to obtain the 3 best and 3 worst

cases. We used three different sets of absorptance values: a) highlight levels 0.05 -

0.45 with increment of 0.1, b) shadow levels 0.55 - 0.95 with increment of 0.1; c) all

levels 0.1 - 0.9 with increment of 0.2. The result is provided in Fig. 3.27.

From Fig. 3.27, it can be concluded that configuration #17 is the best. Con-

figuration #17 is 2143, which means that we need to assign the highest frequency

halftone (in this case, geometry with N4) to Yellow. Configuration #18 is the worst.

After performing misregistration and evaluating ∆Emisregistration
fluctuation and ∆Ecolorshift

on the three best and worst cases described in Fig. 3.27, we derived two main obser-

vations regarding the effect of misregistration on image fluctuation and color shift for

this superposition set. The first observation is that the three best configurations that

are obtained by looking at different absorptance combinations are more robust to the
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Table 3.3.: Superposition set used for the experimental results.

Periodicity matrix Periodicity matrix

(fractional)

Screen

Fre-

quency

(lpi)

Screen

Angle

(degree)

Tile

based

BSB

Supercell

based

BSB

N1 =

4.42 −0.32

0.32 4.42

 N1 =

 3240
733 − 240

733

240
733

3240
733

 183.38 4.24 120 87960

N2 =

3.72 −2.53

2.53 3.72

 N2 =

 2640
709 − 1800

709

1800
709

2640
709

 180.35 34.29 120 85080

N3 =

2 −4

4 2

 N3 =

2 −4

4 2

 181.75 63.44 80 10

N4 =

 4 −1.33

1.33 4

 N3 =

4 − 4
3

4
3 4

 192.77 18.43 80 40
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Fig. 3.25.: The block diagram for computing the perceived error due to misregistra-

tion. Given εY , εCx, εCz for each pixel i, we calculate ∆E(i) =
√
ε2Y + ε2Cx + ε2Cz, and

then ∆Emisregistration
fluctuation = 1

n
Σn
i=1∆E(i). Here n is the number of pixels in the image.

image fluctuation than the three worst cases. In order to visualize the impact of the

first observation, we use the three best and three worst cases obtained after evaluating

mean ∆Efluctuation among all 625 absorptance grouping numbers for absorptance val-

ues 0.05-0.45 (increment = 0.1) shown in the first column of Fig. 3.27. As mentioned

before, for each separation, we choose one absorptance value, and perform all possible

shifts within 2 printer-addressable pixels. In this case, we choose to work with the

absorptance of 0.25 for each separation. For each configuration of the three best and

three worst cases, we compute the mean, min, max and stdev of ∆Emisregistration
fluctuation . The

results are summarized in Fig. 3.28. It can be seen that configurations with smaller
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Fig. 3.26.: The block diagram for computing the global colorshift due to misreg-

istration. Here, ∆Ecolorshift =
√

(Y1 − Y2)2 + (Cx1 − Cx2)2 + (Cz1 − Cz2)2,∆Y =

Y1 − Y2, and ∆ECx,Cz =
√

(Cx1 − Cx2)2 + (Cz1 − Cz2)2.

mean ∆Efluctuation among all 625 absorptance grouping numbers (the best 3 cases,

in this example #14, #17 and #23) are more robust to misregistration than the 3

worst cases. It may that happen that in some cases, the maximum ∆Emisregistration
fluctuation for

the best case may be larger than the maximum ∆Emisregistration
fluctuation for the worst case.

However, the mean ∆Emisregistration
fluctuation for the best case has only been recorded to be

smaller than the mean ∆Emisregistration
fluctuation for the worst case. Hence, it can be concluded

that the best case that we choose while evaluating ∆Efluctuation among different ab-

sorptance groupings, will be the most robust to misregistration. In addition, the
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Fig. 3.27.: Impact of screen configuration on image fluctuation across different ab-

sorptance combinations. The results in this figure are generated for the superposition

set shown in Table 3.3. It can be concluded that configuration #17 is the best. Con-

figuration #17 is 2143, which means that we need to assign the highest frequency

halftone (in this case, geometry with N4) to Yellow. Configuration #18 is the worst.

visualization of the halftones with the maximum ∆Emisregistration
fluctuation for the best and the

worst configurations is provided in Fig 3.29.

The second observation is related to the effect of misregistration on color shift.

In order to visualize the impact of the second observation, we use the three best and

three worst cases obtained after evaluating mean ∆Efluctuation among all 625 absorp-

tance grouping numbers for absorptance values 0.55-0.95 (increment = 0.1) shown

in the second column of Fig. 3.27. For each separation, we choose one absorptance
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Fig. 3.28.: The table contains the values of the mean, min, max and stdev of

∆Emisregistration
fluctuation due to misregistration within 2 printer pixels (729 cases of misregis-

tration) for the superposition set shown in Table 3.3. Absorptance is 0.25 for each

separation. Configuration indices in the 1st column are the 3 best and 3 worst cases

obtained after evaluating mean ∆Efluctuation among all 625 absorptance grouping

numbers for absorptance values 0.05-0.45 (increment = 0.1) shown in Fig. 3.27.

Configurations with smaller mean ∆Efluctuation among all 625 absorptance grouping

numbers (the best 3 cases, in this example #14, #17 and #23) are more robust to

misregistration than the 3 worst cases. The maximum ∆Emisregistration
fluctuation for the best

case is 7.84, whereas the maximum ∆Emisregistration
fluctuation for the worst case is 11.11 (both

results are highlighted in red and their visualization is provided in Fig 3.29).
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(a) (b)

Fig. 3.29.: The example with the maximum image fluctuation due to misregistration

within the range of two printer-addressable pixels: (a) Configuration #14 (2413) with

max ∆Emisregistration
fluctuation = 7.84. Superposition image with the following misregistration:

geometry 1 has shift coordinates [0, 0], geometry 2 has shift coordinates [2, 0], geom-

etry 3 has shift coordinates [0, 0], and geometry 4 has shift coordinates [1, 2]. (b)

Configuration #18 (2134) with max ∆Emisregistration
fluctuation = 11.11. Superposition image

with the following misregistration: geometry 1 has shift coordinates [0, 0], geometry

2 has shift coordinates [0, 2], geometry 3 has shift coordinates [1, 0], and geometry 4

has shift coordinates [2, 1].
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value, and perform all possible shifts within 2 printer-addressable pixels. In this case,

we choose to work with the absorptance of 0.75 for each separation. For each config-

uration of the three best and three worst cases, we compute the mean, min, max and

stdev of ∆Emisregistration
fluctuation . The results are summarized in Fig. 3.30.

We observed that in some cases, not always, configurations with larger mean

∆Efluctuation among all 625 absorptance grouping numbers (the worst 3 cases, in this

example #18, #24 and #13) are more robust to colorshifts due to misregistration than

the 3 best cases. However, even though the maximum ∆Ecolorshift for the best cases

are larger than the maximum ∆Ecolorshift for the 3 worst cases, the ∆Emisregistration
fluctuation for

the worst cases is usually larger than the ∆Emisregistration
fluctuation for the best cases. Hence,

there is a trade-off between the image fluctuation and color shift.

3.3.5 Conclusion

In this section, we investigated the impact of screen configuration on image fluc-

tuation and colorshift across all absorptance combinations. We started with the

HVS-based model for the superposition of two clustered dot color halftones and we

expanded it to the superposition of four halftones. We used the ∆Efluctuation metric as

our measure for image fluctuation and obtained the best and the worst configurations

across different combinations of absorptance values. We concluded that for differ-

ent combinations of absorptance values their best and worst configurations maybe

different. Hence, in the next chapter, we propose to apply content-color-dependent

screening in order to generate the best quality halftones.

After determining on average the best and worst configurations across different

absorptance combinations, we investigated the effect of misregistration within the

range of 2 printer-addressable pixels on image fluctuation and color shift. We con-

cluded that the three best configurations were more robust to misregistration than

the three worst configurations, i.e. their ∆Emisregistration
fluctuation values were smaller than

those for the worst configurations. On the other hand, we found out that sometimes
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Fig. 3.30.: The table contains the values of the mean, min, max and stdev of

∆Ecolorshift due to misregistration within 2 printer pixels (729 cases of misregistration)

for the superposition set shown in Table 3.3. Absorptance is 0.75 for each separation.

Configuration indices in the 1st column are the 3 best and 3 worst cases obtained

after evaluating mean ∆Efluctuation among all 625 absorptance grouping numbers for

absorptance values 0.55-0.95 (increment = 0.1) shown in Fig. 3.27. The maximum

∆Ecolorshift for the best case is 3.99, whereas the maximum ∆Ecolorshift for the worst

case is 1.24(both results are highlighted in red and their visualization is provided in

Fig. 3.31).



75

(a) (b)

(c) (d)

Fig. 3.31.: The example with the maximum colorshift due to misregistration within the range of two printer-

addressable pixels: (a) Configuration #17 (2143) is the reference image; b) Configuration #17 (2143) with max

∆Ecolorshift = 3.99(in addition its ∆Y = 1.54 and ∆ECxCz = 3.68); (c) Configuration #18 (2134) is the reference

image; d) Configuration #18 (2134) with max ∆Ecolorshift = 1.24 (in addition its ∆Y = 0.12 and ∆ECxCz = 1.23).

Superposition image in (b) has the following shifts: geometry 1 has shift coordinates [0, 0], geometry 2 has shift

coordinates [1, 1], geometry 3 has shift coordinates [2, 0], and geometry 4 has shift coordinates [0, 1]. Superposition

image in (d) has the following shifts: geometry 1 has shift coordinates [0, 0], geometry 2 has shift coordinates [2, 2],

geometry 3 has shift coordinates [2, 0], and geometry 4 has shift coordinates [0, 1].
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the worst configurations are more robust to the color shift than the best configura-

tions, however the worst configurations look less smooth than the best configuration

images. Hence, there is a tradeoff between image fluctuation and color shift.
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4. CONTENT-COLOR-DEPENDENT SCREENING

(CCDS) USING REGULAR OR IRREGULAR

CLUSTERED-DOT HALFTONES

4.1 Introduction

The purpose of our research is to improve print quality in high end digital presses.

In this chapter, we focus on improving the quality of color images. Most color printers

use four different colorants, typically cyan, magenta, yellow, and black (CMYK). In

order to produce a color image, each colorant plane is halftoned independently, as if it

were a separate monochrome image. Superimposing the four colorant planes halftoned

with screens rotated to different angles will give the final image. Superposition of two

or more lattices at different angles can produce moire and rosette artifacts. The moire

phenomenon refers to a low-frequency structure, which is easily seen at a normal

viewing distance. The rosette pattern has circular or polygonal patterns, which is

formed as a result of rotating the halftone screens [68]. The conventional screen

angles that minimize visible moire and rosette patterns are 75°, 15°, 0°, and 45°for

cyan, magenta, yellow, and black, respectively [68], [45]. A slight change in the screen

angle or frequency can result in more visible moire and rosette patterns. There

are a number of methods for choosing a set of, say four, regular and/or irregular

screens that will not result in artifacts when halftone patterns generated with these

screens are superimposed [56], [50]. But how to assign a fixed set of screens to

individual colorants has been less thoroughly investigated. In our previous work, we

presented a method for choosing the best color assignments to two regular or irregular

halftones in order to minimize the perceived error. We developed a model based on

the human visual system. In order to account for the difference in the responses of

the human viewer to luminance and chrominance information, we used the YyCxCz
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color space. The perceived error helped us to identify the configuration of colors

and screens that will improve the appearance of the superposition image [66]. For

example, given two irregular halftones with periodicity matrices N1 =

9/2 −1

1 9/2

,

and N2 =

10/3 −10/3

10/3 10/3

, two colorants cyan and magenta with absorptance of 0.25,

it was concluded that assigning N1 to magenta and N2 to cyan will yield a better

result than assigning N2 to magenta and N1 to cyan [66].

In the case of 4 periodicity matrices and 4 colorants, we have 24 different ways

to assign colors to the periodicity matrices. In addition, if colorants have different

absorptance values, then we have to look at all possible combinations of absorptance

values. Since any image can contain any color content, i.e. different absorptance val-

ues for each colorant, it was decided that the image needed to be clustered. Next, for

each cluster in the image, the corresponding best color assignment can be determined

and the image can be halftoned with the best color assignments depending on the

color content. It turned out that when we switched color assignments inside smooth

areas, the transition from one color assignment to another caused an artifact. Hence,

an edge detection algorithm was added. Finally, using the cluster-map and the edge-

map, we were able to segment the image based on the color content, and halftone

each segment with its optimal color assignment, while not segmenting smooth regions

with similar color content into separate regions.

The concept of performing image segmentation based on the content and using dif-

ferent halftoning techniques in different regions of the image was investigated before.

Park et al developed a method in which they divided a document into smooth and de-

tail objects, and used low-frequency, periodic clustered-dot halftoning in smooth areas

to promote stable development, and high-frequency, periodic clustered-dot halftoning

in detail areas to provide better rendering of the detail in the image [58]. Ostro-

moukhov and Nehab checked the local gradient at each pixel, and chose a basic

dither matrix based on the magnitude of the gradient [59]. Huang and Bhattacharjya
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described a process for switching between a periodic, clustered-dot screen in smooth

areas, and error diffusion with a screen in detail areas [60]. The screen used for both

detail and smooth regions is the same. References [59] and [60] address only halfton-

ing of monochrome images. Reference [58] does consider color. But it is targeted to

home/office laser electrophotographic printers, not high-end digital presses. The main

novelty of our approach, which is targeted to printing with high-end digital presses,

is the application of different color assignments within the image depending on the

local color and content of the image, without changing the overall set of screens that

are used.

In this chapter, we will use irregular clustered-dot halftones to demonstrate our

results. In order to generate irregular clustered-dot halftones, we followed the method

proposed by Baqai and Allebach [48]. Baqai and Allebach presented a systematic

method for designing regular clustered-dot halftones based on the periodicity matrix

[48]. We extended their approach to design of irregular clustered-dot halftones.

4.2 The procedure for performing content-color-dependent screening

The procedure implemented in our research consists of four parts. In Sec. 4.2.1,

the K-means algorithm to cluster the color content is described. In Sec. 4.2.2, an

algorithm for obtaining the segmented edge-map is described. In Sec. 4.2.3, merging

of the cluster-map and the segmented edge-map into a final map is explained. In

Sec. 4.2.4, the approach for obtaining the best color assignment is reviewed and two

examples are provided. Finally, the image can be halftoned using the final map of

clusters and their corresponding best color assignments. The complete block diagram

is presented in Fig. 4.1.

4.2.1 Generation of the cluster-map using K-means

K-means clustering is a type of unsupervised learning, which can be used when

we have unlabeled data that needs to be clustered or categorized into groups based
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Fig. 4.1.: Block diagram of content-color-dependent screening (CCDS).

on a certain similarity feature [71]. In our case, we start with a CMYK image, and

our goal is to cluster all pixels in the image based on the absorptance values of the

C, M, Y and K separations.

The number of clusters is usually represented by the variable K. The algorithm

starts with initial estimates for the K centroids. In our approach, the initial centroids

were randomly selected from the image. Each centroid represents one of the clusters.

Each pixel of the image is then assigned to its nearest centroid’s cluster, based on the

squared Euclidean distance. Next, by taking the mean of all pixels assigned to that

centroid’s cluster, the new centroids are obtained. The algorithm iterates until the

maximum number of iterations is reached [71]. Based on our experiments, K-means

clustering converged before 10 iterations. Therefore, we chose to use the value of 10

as the maximum number of iterations.

The outputs of the K-means clustering algorithm are: a) the final centroids of the

K clusters; b) the cluster-map, which is the image indexed with values 1 through K

that represent each pixel being assigned to a single cluster. We’ll later use the final

centroids values in order to obtain the best color assignments out of 24 possible color
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assignments (i.e. given 4 periodicity matrices, and 4 colorants C, M, Y and K, there

are 24 ways to make color assignments). In addition, we will use the cluster-map

along with the edge-map in order to build the final map for halftoning the image.

4.2.2 Generation of the segmented edge-map

After obtaining the cluster-map and halftoning the image based solely on the

cluster map, it was concluded that the transition between two color assignments in

smooth areas of the image was very visible. Hence, we need an additional step in

which the smooth areas will be identified. In order to do that, it was decided to first

generate an edge map of the image, and then use the connected components algorithm

to partition the edge image into segments. Since the number of segments may be too

large, it was decided that we should only focus on the largest segments and constrain

the number of segments to some number S. Therefore, S−1 segments will be selected

in the order of their decreasing size. The remaining segments will be combined in

the last segment. The complete block diagram for obtaining the segmented image is

provided in Fig. 4.3.

As shown in Fig. 4.3, after converting from RGB to L?a?b? space, we used a

bilateral filter in order to smooth the image while preserving large-scale edges without

blurring. The expression for the bilateral filter with the CIE L?a?b? color difference

model is presented in (4.1) [72], [73].

BF{Ik[m0, n0]} = (4.1)

1

M

m0+w∑
m=m0−w

n0+w∑
n=n0−w

exp

(
−(m−m0)2 + (n− n0)2

2σ2
d

)
× exp

(
−∆E2(IL?a?b? [m,n], IL?a?b? [m0, n0])

2σ2
r

)
Ik[m,n],

where BF{I} is the bilateral filtered image in CIE L?a?b? color space; k ∈ {L?, a?, b?}
refers to one of the channels in the CIE L?a?b? color space; [m0, n0] is the center pixel

of a (2w + 1)× (2w + 1) convolution window; σd is the standard deviation of spatial

smoothing; and σr indicates the range of tolerance in color difference. We used σr = 6,
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and for σd we used 2% of image diagonal. The color difference component is calculated

as the Euclidean distance between the two colors in the CIE L?a?b? space:

∆E2(IL?a?b? [m,n], IL?a?b? [m0, n0]) (4.2)

= (IL? [m,n]− IL? [m0, n0])2 +

(Ia? [m,n]− Ia? [m0, n0])2 +

(Ib? [m,n]− Ib? [m0, n0])2 ,

and the normalization factor M is computed as

M =

m0+w∑
m=m0−w

n0+w∑
n=n0−w

exp

(
−(m−m0)2 + (n− n0)2

2σ2
d

)
(4.3)

× exp

(
−∆E2(IL?a?b? [m,n], IL?a?b? [m0, n0])

2σ2
r

)
Ik[m,n].

Next, we used a Sobel edge detector in the L?a?b? space to obtain the magnitude of

the gradients in L?, a?, and b? channels, denoted as |∇gL?|, |∇ga? | and |∇gb?| [74], [75].

We used the following Sobel operator for the horizontal direction

SH =


1 2 1

0 0 0

−1 −2 −1

 , (4.4)

and the following Sobel operator for the vertical direction

SV = S ′H . (4.5)

In order to compute each of the three magnitudes of the gradients, we first convolved

the images in L?, a?, and b? channels with SH and SV , to obtain the gradients

in horizontal and vertical directions, and then computed their magnitudes. The

magnitude of the color gradient is then computed as

|∇gL?a?b?| =
√
|∇gL? |2 + |∇ga?|2 + |∇gb?|2. (4.6)

The initial edge map can then be obtained by applying hysteresis thresholding [76].

The hysteresis thresholding algorithm uses two thresholds Thigh and Tlow. A pixel is
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Fig. 4.2.: An example of applying Zhang-Suen thinning algorithm.

called a strong pixel if |∇gL?a?b?|[m,n] > Thigh at that pixel. A pixel is called a weak

pixel if |∇gL?a?b? |[m,n] ≤ Tlow at that pixel. All other pixels are called candidate

pixels. We chose Thigh and Tlow empirically. In order to obtain the initial edge map,

the steps below need to be iterated until there are no more changes:

1. Discard the pixel if it is weak, output the pixel if it is strong.

2. If the candidate pixel is connected to a strong pixel through the 8-point con-

nectivity, output this candidate pixel; otherwise, do not output the candidate

pixel.

In order to thin the edges, we used the well-known Zhang-Suen thinning algorithm

[77]. The goal of thinning algorithms is to take a binary image and draw a 1 pixel

wide skeleton of that image while retaining the shape and structure of the full image.

The Zhang-Suen Thinning algorithm is probably the most used thinning algorithm.

Devised in 1984, the algorithm is what is called a 2-pass algorithm, meaning that for

each iteration it performs two sets of checks to remove pixels from the image. An

example of thinning with Zhang-Suen thinning algorithm is shown in Fig. 4.2.

After thinning the edges, the connected components algorithm with a 4-point

connectivity was used [78]. Finally, S segments were selected based on the order of

decreasing size producing the segmented edge-map.
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Fig. 4.3.: Block diagram for obtaining segmented edge-map.

4.2.3 Merging the cluster-map and the segmented edge-map

After obtaining the cluster-map and the segmented edge-map, the final map needs

to be generated. In order to accomplish this goal, the following approach was used.

We start with the segmented edge-map, and for each segment s ∈ 1, 2, ..., S, compute

the number of pixels that were assigned to each cluster k ∈ 1, 2, ..., K within this seg-

ment. We then determine the cluster number, which occurred the maximum number

of times among the pixels in that segment. Finally, we assign that number to all the

pixels in the segment. As a result, we obtained the final map with K clusters that

would be used for halftoning the image with different color assignments.
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4.2.4 Selection of the best color assignments

In order to select the best color assignment for any set of absorptance values

acmyk = (ac, am, ay, ak), the HVS-based model for the superposition of color halftones

was used [66]. In our case, we’ve narrowed down all image absorptance values to

the mean absorptance values of the K clusters obtained in Sec. 4.2.1, specified as

µ1, ..., µk, where each µi = (ac,i, am,i, ay,i, ak,i). Hence, for each of the K vectors

of mean absorptance values, the best color assignment was obtained. The metric

for obtaining the best color assignment was presented in [66] , and is denoted as

∆Efluctuation (previously ∆Eaverage) .

Next, two examples comparing different color assignments are presented. For both

examples, the following geometries were used:

N1 =

4.56 −1.19

1.19 4.56

 ,N2 =

3.44 −3.26

3.26 3.44

 (4.7)

N3 =

1.30 −4.45

4.45 1.30

 ,N4 =

2.50 −2.40

2.40 2.50

 .
For the HP Indigo press with resolution 812.8 dpi, the parameters for the 4 geometries

above are: 172.5 lpi and 14.62◦, 171.56 lpi and 43.45◦, 175.17 lpi and 73.74◦, and

234.73 lpi and 43.83◦. In order to represent the color assignment, a 4-digit number

is used. Each digit in a color assignment number represents the periodicity matrix

number being assigned to C, M, Y, and K. For example, color assignment number

3214 should be interpreted as N3 is cyan, N2 is magenta, N1 is yellow, and N4 is

black.

For Example 1 in Fig. 4.4, the set of absorptance values is acmyk = (0.20, 0.93, 0.96, 0.13)

with the color assignments 3421 and 3214, and the resulting ∆Efluctuation values are

0.92 and 3.89, accordingly. It can be seen that the superposition image with color as-

signment 3421 is much smoother than the superposition image with color assignment

3214, and hence its ∆Efluctuation is smaller. Similarly, a second example is demon-

strated with superposition images in Fig. 4.5. The set of absorptance values for these
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images is acmyk = (0.29, 0.31, 0.30, 0.02), and the color assignments are 3412 and 4231.

The resulting ∆Efluctuation values are 4.78 and 6.91, respectively.

4.3 Experimental results

In order to demonstrate a result of CCDS, it was decided to use the image shown

in Fig. 4.6 (a). The K-means clustering algorithm was applied with the number

of clusters K = 4. The cluster-map can be observed in Fig. 4.6 (b). Based on

the cluster-map, it was concluded that since smooth areas of the image, such as

the woman’s face and arms, got clustered into two clusters, the additional edge-

detection and segmentation step was important. Otherwise, we will see artifacts

from the transition between two color assignments after halftoning. The result of the

segmented edge-map with S = 4 is presented in Fig. 4.6 (c). After that, the final

map, which involves merging the maps in Fig. 4.6 (b) and (c), was obtained and

is displayed in Fig. 4.6 (d). It can be seen that each smooth area of the image is

assigned a single cluster. Hence, after halftoning, the visible artifacts in those areas

will no longer be present. After that, we used our HVS-based model to determine the

color assignments that will minimize the perceived error for the four clusters [66]. The

best color assignments with their corresponding clusters are presented in Fig. 4.7.

Finally, using the geometries presented in Sec. 4.2.4, a part of the halftoned image

is presented in Fig. 4.8 (a). The image in Fig. 4.8 (b) is generated by halftoning

using the single color assignment of 3214 for the entire image. The assignment of

3214 was chosen randomly out of 24 possible color assignments. By comparing the

images in Figs. 4.8 (a) and (b), it can be concluded that the image in Fig. 4.8 (a)

is much smoother than the image in Fig. 4.8 (b). Therefore, applying content-color-

dependent screening yields much smoother images than the images obtained by using

a single color assignment for the entire image.
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(a) (b)

(c) (d)

Fig. 4.4.: Example 1: acmyk = (0.20, 0.93, 0.96, 0.13) (a) color assignment 3421,

∆Efluctuation = 0.92; (b) color assignment 3214, ∆Efluctuation = 3.89; (c) zoomed-

in part of the image outlined in (a); (d) zoomed-in part of the image outlined in

(b)
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(a) (b)

(a) (b)

Fig. 4.5.: Example 2: acmyk = (0.29, 0.31, 0.30, 0.02) (a) color assignment 3412,

∆Efluctuation = 4.78; (b) color assignment 4231, ∆Efluctuation = 6.91; (c) zoomed-

in part of the image outlined in (a); (d) zoomed-in part of the image outlined in

(b)
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(a) (b)

(c) (d)

Fig. 4.6.: Example of obtaining the map for selecting best color assignments in a

given image: (a) Original image; (b) Cluster-map; (c) Segmented edge-map; d) Final

map: merging of cluster-map and segmented edge-map.
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Fig. 4.7.: Best color assignments for the four clusters comprising the image.

4.4 Conclusion

We have presented a content-color-dependent screening method using clustered-

dot color halftones, which helps us produce prints with better quality. We used the

K-means algorithm along with edge detection to segment an image depending on its

color content. Then, we used an HVS-based model to select the best color assignment

for each of the clusters in the image. Since the HVS-based model determines the

color assignments that will minimize the perceived error, and the entire image will

be halftoned with the best color assignments based on the color content, we believe

that the CCDS approach can move the quality of color prints generated by limited-

resolution digital presses closer to that of the much higher resolution analog offset

printing presses with which the digital presses are competing.
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(a) (b)

Fig. 4.8.: (a) Halftoning with CCDS applied: optimal color assignments were used

for the clusters shown in Fig. 4.7; (b) Halftoning with the single color assignment

3214 for the entire image. (The reader is advised to zoom into to 300% magnification

in order to obtain a more accurate impression of these two halftone images.)
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5. DESIGN OF STANDARD AND HIGH RESOLUTION,

PERIODIC, CLUSTERED-DOT COLOR SCREEN SETS

WITH FOCUS ON IMPACT OF HYBRID SCREENING

METHOD ON HIGHLIGHTS

5.1 Introduction

In chapter 3, we presented the screen design that can generate both regular or

irregular clustered-dot halftones. With this screen design, the number of distinct

gray levels is equal to the number of printer addressable pixels in the halftone cell

(cell area) plus an additional level. If the cell area is insufficient, then we’ll observe

contouring artifacts when we change from level to level. In order to remove the

contouring artifacts, a supercell approach is used [80]. In the supercell approach,

microcells are grouped together to form supercells. The clusters in the microcells of

the supercell can grow sequentially or a few at a time, which eliminates the contouring

artifacts. The dot turn-on sequence was denoted as the microcell growing sequence

and the order in which the microcell clusters grow inside the supercell was denoted

as the macrodot growing sequence by Lee and Allebach [47]. It has become a popular

practice to use a stochastic, blue noise screen for the macrodot growing sequence.

However, using the macrodot growing sequence alone results in maze-like artifacts.

Lin and Allebach showed that in order to remove the maze-like artifacts, the hybrid

screen design can be used [47], [61].

The hybrid screen is a modified supercell approach that removes the maze-like

artifacts in the highlights and shadows and preserves the advantage of the clustered-

dot screen in the midtones [47]. The hybrid screen design involves the use of cores,

which are small regions inside each microcell. Lee and Allebach suggested to use

a core with the size of 2 × 2 pixels [47]. In order to design the overall macrodot
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growing sequence as well as the microcell growing sequence within the cores DBS is

used [47]. By allowing the first dot in each microcell to move around within the core

from microcell to microcell within the supercell, the maze-like artifact is eliminated.

After the first dot in each core is turned on, that sequence is used for the macrodot

growing sequence. When every core is filled, the original microcell growing sequence is

used. That way the periodic, clustered-dot texture is preserved in the midtones. Due

to the dot-hole complementary symmetry, the same shadow core strategy is applied

in the shadows.

In our work, the novelty lies in applying the hybrid screen design to the irregular

clustered-dot halftones, where microcell growing sequences are unique for each mi-

crocell within the tile. Therefore, cores do not have identical shapes. In addition, we

extended the hybrid screen design to high-resolution periodic clustered-dot halftones,

where instead of using a single pixel at the center of a microcell we use a cluster of

2× 2 pixels.

5.2 Design of standard resolution periodic irregular clustered-dot halftones

with the hybrid screen design

5.2.1 Procedure

We started by investigating the research work presented by Lee and Allebach

in [47] and Lin and Allebach in [61]. As mentioned in the introduction, their work is

based on periodic regular clustered-dot halftones. In our research, we focus on the use

of periodic irregular clustered-dot halftones, which provide a larger space of available

screen geometries, and therefore, we can design better screen sets with respect to

smoothness and robustness. The procedure presented in this chapter can be applied

to both regular or irregular halftones.

The block diagram for the algorithm is presented in Fig. 5.1. Given any geom-

etry, we start by generating digital halftones for base levels using the screen design

procedure presented in Chapter 2. The number of levels depends of the microcell
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Generate digital 
halftones for all 
levels based on 
the given 
geometry 

Obtain the 
microcell growing 
sequences for each 
DPHC within the 
image of size 
𝑡𝑖𝑙𝑒𝑆𝑖𝑧𝑒

Obtain the highlight 
cores which consist of 
the 4 pixels in each 
DPHC with indices 0, 
1, 2, and 3.

Obtain the macrocell
growing sequence 
using DBS with 
swap approach and 
the highlight cores.

Generate the highlight levels by 
using the remaining pixels in the 
highlight cores using DBS with 
swap approach.

Generate the highlight - midtone
levels by choosing each microcell 
based on the macrocell growing 
sequence and select the printer 
pixel based on the corresponding 
microcell growing sequence

Obtain the shadow 
cores which consist of 
the 4 pixels in each 
DPHC with the highest 
4 indices.

Obtain the macrocell
growing sequence 
using DBS with 
swap approach and 
the shadow cores.

Generate the shadow levels by 
using the remaining pixels in the 
shadow cores using DBS with 
swap approach.

Generate the shadow - midtone
levels by choosing each microcell 
based on the macrocell growing 
sequence and select the printer 
pixel based on the corresponding 
microcell growing sequence

Fig. 5.1.: Block diagram for the hybrid screen design for regular or irregular clustered

dot halftones. In the figure, DPHC stands for the discrete parameter halftone cell

obtained by quantizing a CPHC (continuous parameter halftone cell). The core is

the region where the original microcell growing sequence is ignored and is chosen by

DBS.
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area of the geometry. For example, for the geometry with the screen frequency of

172.48 lpi, screen angle of 14.62°, and printer resolution of 812.8 dpi, the periodicity

matrix is N =

4.56 −1.19

1.19 4.56

, and the microcell area = det N = 22.21 printer pixels.

For irregular screens, the microcell area is non-integer, hence, the number of base

levels L is computed according to L = ddet Ne+ 1. In this case, the number of base

levels will be L = 24. The continuous-tone ramp image halftoned using this specific

geometry is shown in Fig. 5.2. As mentioned in the introduction, due to the fact that

the number of levels is small, we can see contouring artifacts when going from level

to level. Hence, we add the hybrid screen design in order to remove the contouring

artifacts.

After generating all base levels, we combine the dot turn on sequences into mi-

crocell growing sequences for each DPHC (discrete parameter halftone cells) within

the image of size T . T is the smallest square that can be tiled in the vertical and

horizontal direction and is denoted as tile size. The image containing all the microcell

growing sequences is called an index image. An example of a part of an index image

for the geometry with the screen frequency of 172.48 lpi, screen angle of 14.62°, and

printer resolution of 812.8 dpi is shown in Fig. 5.3. For this geometry, the tile size

T = 112, therefore, the full size of an index image is 112 × 112. Each value in the

image corresponds to the microcell growing sequence of the corresponding pixel.

The next step is to obtain the highlight and shadow cores. The highlight cores

consist of the four pixels in each DPHC with indices 0, 1, 2, and 3. The shadow cores

consist of the four pixels in each DPHC with the highest four indices. Due to the

fact that with irregular halftones, the number of pixels in each DPHC may vary, the

shadow cores have to consist of the four pixels with the highest values. Otherwise,

the number of pixels in shadow cores will vary from 1 to 4, which will perturb the

symmetry of highlight and shadows. Another big difference from the regular halftones

is that the shapes of the cores may not be identical. Examples of highlight and shadow
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Fig. 5.2.: Example of generating all base levels for the geometry with the screen

frequency of 172.48 lpi, screen angle of 14.62°, and printer resolution of 812.8. The

periodicity matrix for this geometry is N =

4.56 −1.19

1.19 4.56

. The number of base

levels is 24.
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cores are presented in Fig. 5.3. The highlight cores are highlighted in green, and the

shadow cores are highlighted in blue.

Next, the macrocell growing sequences for both highlight cores and shadow cores

can be obtained using DBS with swap. An example of the macrocell growing sequence

for the highlight cores is shown in Fig. 5.3. After determining the macrocell growing

sequence, one pixel in each core will have a corresponding sequence index. Hence,

there will still be 3 pixels remaining in each core. In order to design the remaining

highlight levels, we use macrocell growing sequence to choose each core one by one and

perform DBS by toggling the remaining locations. When switching on additional dots

inside the core, the 4-point connectivity needs to be preserved. Finally, we generate

the highlight - midtone levels by choosing each microcell based on the macrocell

growing sequence and selecting the printer pixel based on the corresponding microcell

growing sequence as was done in [47]. The shadow levels and the shadow-midtone

levels can be obtained in a similar way.

5.2.2 Experimental results

In order to demonstrate our results, we continue with an example geometry pre-

sented earlier. The geometry has the screen frequency of 172.48 lpi, screen angle of

14.62°, and printer resolution of 812.8 dpi. As is shown in Fig. 5.2, simply using

the base levels creates undesirable contouring artifacts. Hence, first we’ll show an

example of applying the supercell approach, where the macrocell growing sequence is

also obtained using DBS, but there are no cores. The resulting ramp image is shown

in Fig. 5.4. It can be seen that with the supercell approach, the contouring artifacts

are removed, however the maze like artifacts are present, which can be observed by

zooming in to the highlights or shadows of the ramp image. Finally, we applied our

updated hybrid screen design procedure for the irregular halftones and the resulting

ramp image is shown in Fig. 5.4. As a result, the maze like artifacts are eliminated.
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Fig. 5.3.: An example of a part of an index image for the geometry with the screen

frequency of 172.48 lpi, screen angle of 14.62°, and printer resolution of 812.8 dpi.

For this geometry, the tile size T = 112, therefore, the full size of an index image is

112× 112. Each value in the image corresponds to the microcell growing sequence of

the corresponding pixel. The highlight cores are highlighted in green, and the shadow

cores are highlighted in blue. An example of the macrocell growing sequence for the

highlight cores is shown in red.
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a)

b)

Fig. 5.4.: Example of applying the supercell and the hybrid screen design for stan-

dard resolution, periodic, irregular, clustered-dot halftones using the geometry with

the screen frequency of 172.48 lpi, screen angle of 14.62°, and printer resolution of

812.8: a) Ramp image after the supercell approach; b) Ramp image after the hybrid

approach.
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5.3 Design of high resolution, periodic, irregular, clustered-dot halftones

with the hybrid screen design

5.3.1 Update to the hybrid screen design used for standard resolution,

periodic, clustered-dot halftoning

With high resolution printing, the main difference is that instead of having 1 pixel

as the center of a microcell, we want to have a cluster of 2 × 2 pixels. Clusters of

2 × 2 pixels are used in electrophotographic printers due to its better print stability

in comparison to 1 pixel. That’s why the hybrid screen design needs to be updated.

The main update involves increasing the size of the core in order to incorporate

the shifting of a 2× 2 cluster inside the core. Instead of having a core of 4 pixels in

the hybrid screen design, we need to have a core of at least 7 pixels so that the 2× 2

block can be shifted inside the region with 7 pixels. An example demonstrating this

update is shown in Fig. 5.5.

By increasing the core size, the number of possible shifting positions may increase.

Figure 5.6 has an example of a microcell whose cores consist of 9 and 10 pixels. In the

case of 9 pixels, there are 3 possible shifting positions, and in the case of 10 pixels,

there are 4 possible shifting positions. By increasing the core size, the quality of the

halftones maybe improved, however it will require more computations.

Similarly to the hybrid screen design for standard resolution periodic clustered-

dot halftoning, in order to determine the optimal position of a 2× 2 cluster of pixels,

DBS with swap is used. After determining the optimal position for a 2 × 2 cluster

of pixels, the remaining indices in the core are chosen using DBS with toggle. Due

to the fact that we are swapping clusters of 2 × 2 pixels and not single pixels, DBS

equations were updated accordingly. Chapter 6 shows derivations of the equations

for swapping and toggling clusters of 2× 2 pixels.
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Fig. 5.5.: An example of a microcell with cores for standard resolution hybrid screen

design a) and high resolution hybrid screen design b) and c). A core is highlighted

in blue. For standard resolution hybrid screen design, a core consists of 4 pixels with

indices 0, ..., 3, as it is shown in a). Since, a shifting unit is a single pixel, there are

4 possible positions for a pixel to move inside the core. An example of one shifting

position is shown in a red box. For the high resolution hybrid screen design, a core

should consist of at least 7 pixels (indices from 0 to 6) so that there are at least two

possible shifting positions for a cluster of 2×2 pixels: b) and c) show the two possible

shifting positions in red boxes.
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Fig. 5.6.: An example of a microcell whose cores consist of 9 and 10 pixels: a) The

core (highlighted in blue) consists of 9 pixels with indices from 0 to 8 so that there

are 3 possible shifting positions for a cluster of 2 × 2 pixels; b) The core consists of

10 pixels with indices from 0 to 9 so that there are 4 possible shifting positions for a

cluster of 2× 2 pixels.
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5.3.2 Experimental results

In order to demonstrate our results, we used a geometry with the screen frequency

of 288.17 lpi, screen angle of 29.58°, and printer resolution of 1625.6 dpi. For this

example, we used a core size of 8 pixels. The halftoned ramp image is shown in Fig.

5.7. By zooming into the highlights and the shadows of the ramp it can be seen that

the dot and hole clusters consist of 2 × 2 pixels instead of single pixels, which will

improve the quality of the prints for high resolution printing.

5.4 Conclusion

In this chapter, we presented the design of standard and high resolution, periodic,

clustered-dot regular or irregular color screen sets with focus on impact of hybrid

screening method on highlights. We started by designing base levels given geometry

parameters: screen frequency, screen angle and printer resolution. Since the primary

focus of our research was periodic irregular clustered-dot halftones, we extended the

hybrid screen design presented by Lee and Allebach [47] to irregular halftones. We

then compared the use of the supercell approach with the use of the hybrid screen

design, and showed that the hybrid screen design removes the undesirable maze-like

artifacts. Finally, we extended the hybrid screen design for high resolution printing,

where the center of the microcell consists of a cluster of 2 × 2 pixels instead of a

single pixel. It can be seen that the hybrid screen design for high resolution, periodic,

clustered-dot halftones produces smooth halftone prints, while preserving clusters of

2× 2 pixels in highlights and shadows.
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Fig. 5.7.: Example of applying the hybrid screen design for high resolution, periodic,

irregular, clustered-dot halftones using the geometry with the screen frequency of

288.17 lpi, screen angle of 29.58°, and printer resolution of 1625.6 dpi. In this case,

the core size is 8 pixels.
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6. MONOCHROME DBS-BASED SCREEN DESIGN

WITH OVERLAPPING CLUSTERS OF 2× 2 PIXELS OR

3× 3 PIXELS

6.1 Introduction

Digital Halftoning is the process of rendering a continuous tone image with a lim-

ited number of tone levels. The goal of digital halftoning is to generate an image with

correct tone and detail of original image without introducing any visible artifacts [47].

There are three most widely used algorithms: point processes (screening or dither-

ing), neighborhood processes (error diffusion), and iterative algorithms [47], [45], [46].

Screening is computationally most efficient among the three methods because it re-

quires only one comparison per pixel with the threshold matrix. The design of the

threshold matrix can be complex and computationally expensive, however, it is a

one-time and an offline process.

Conventional halftoning is accomplished by either changing the relative density

of printed dots or changing the size of printed dots on the page [45], [46]. These two

approaches are dispersed-dot halftoning and clustered-dot halftoning. In this chap-

ter, we focus on dispersed-dot halftoning. Dispersed-dot screens are widely used in

printers that have no trouble in rendering an isolated dot. However, for electropho-

tographic printers, this halftoning method doesn’t have a good print quality because

the isolated dots are not stable. Therefore, our goal was to generate dispersed-dot

screens for electrophotographic printers by using clusters of 2 × 2 or 3 × 3 pixels as

the smallest printing unit.

In the next section, we introduce the procedure for the monochrome DBS-based

screen design with overlapping clusters of 2 × 2 pixels. Next, we extend our screen

design to clusters of 3× 3 pixels. Finally, we show experimental results by halftoning
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a continuous tone ramp image. For comparison, we halftone the ramp with the

monochrome DBS-based screen design with non-overlapping and overlapping clusters

of 2× 2 pixels.

6.2 Preliminaries

In this chapter, we use (x) = (x, y) and (m) = [m,n] to represent continuous and

discrete spatial coordinates, respectively. The units of (x) and (m) are inches and

pixels, respectively. We use f [m,n] as a continuous-tone image with discrete spatial

coordinates and g[m,n] as a halftone image.

6.3 Review of the Direct Binary Search (DBS)

Direct binary search is an iterative halftoning algorithm. It minimizes the error

between the perceived continuous-tone image and the perceived halftone image [84],

[87]. In DBS, every pixel is visited once per iteration. For every pixel, if the pixel

value is toggled or swapped with one of the neighbors, the change in the perceived

error is computed. If any of these operations decrease the perceived error, then we

apply the operation that has the maximum decrease of the perceived error. Image is

scanned iteratively until no operations or a few operations are accepted per iteration.

This would be the final halftone image. DBS is not guaranteed to achieve the global

minimum, but it produces halftone images with very good quality.

The perceived error ẽ(x) between the continuous-tone image and the halftone

image is given by

ẽ(x) = g̃(x)− f̃(x) (6.1)

=
∑
m

e[m]p̃(x−mX),

where

e[m] = g[m]− f [m], (6.2)
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and

p̃(x) = p(x) ∗ ∗h(x) (6.3)

is the perceived spot profile function of the ideal printer [86]. Here p(x) = rect
(
x
X

)
is

the spot profile function of the ideal printer, and X is the distance between printer-

addressable pixels. Thus, X = 1
R

, where R is the printer resolution. For the HVS

model, we use the Nasanen model, which was shown to produce the best halftone

quality when incorporated in DBS [69], [85]. The frequency response of the Nasanen

HVS model is shown in Fig. 6.1. Finally, the mean squared error is given as

E =

∫
|ẽ(x)| dx =

∑
m

e[m] cp̃ẽ [m], (6.4)

where cp̃ẽ [m] = e[m] ∗ ∗ cp̃p̃ [m].

Fig. 6.1.: The frequency response of the Nasanen HVS model with the viewing dis-

tance of 16 in.
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In our work, we use DBS with swap or DBS with toggle. For example, if we want

to swap pixels located at m0 and m1, the swap equations are given as follows

g′[m] = g[m] + a0δ[m−m0] + a1δ[m−m1] (6.5)

∆E = (a2
0 + a2

1) cp̃p̃ [0] + 2a0 cp̃ẽ [m0] + 2a1 cp̃ẽ [m1]

+ 2a0a1 cp̃p̃ [m0−m1] (6.6)

c ′p̃ẽ [m] = cp̃ẽ [m] + a0 cp̃p̃ [m−m0] + a1 cp̃p̃ [m−m1], (6.7)

where a0 = 1 if g[m0] is changed from 0 to 1, and a0 = −1 if g[m0] is changed from

1 to 0. Hence, a1 = −a0, since the swapping of g[m0] and g[m1] is performed [86].

Whereas, if we want to toggle a pixel located at m0, then the toggle equations are

given as follows

g′[m] = g[m] + a0δ[m−m0] (6.8)

∆E = a2
0 cp̃p̃ [0] + 2a0 cp̃ẽ [m0] (6.9)

c ′p̃ẽ [m] = cp̃ẽ [m] + a0 cp̃p̃ [m−m0]. (6.10)

In our work, we use the equations above and update them for toggling and swapping

clusters of k pixels.

6.4 DBS equations for swapping and toggling clusters of k pixels.

Let the first cluster consist of k pixels with coordinates (m0,m1, ...,mk−1), and

the second cluster consist of pixels with coordinates (n0,n1, ...,nk−1). In order to

compute the ∆E and cp̃ẽ [m] update equations, we assume the swapping of k pixels

step by step, and then add the updates to determine the final result.

To swap m0 and n0:

∆E0 = (a2
0 + a2

1) cp̃p̃ [0] + 2a0 cp̃ẽ [m0] + 2a1 cp̃ẽ [n0] (6.11)

+ 2a0a1 cp̃p̃ [m0−n0]

c ′p̃ẽ [m] = cp̃ẽ [m] + a0 cp̃p̃ [m−m0] + a1 cp̃p̃ [m−n0] (6.12)
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To swap m1 and n1:

∆E1 = (a2
0 + a2

1) cp̃p̃ [0] (6.13)

+ 2a0(cp̃ẽ [m1] + a0 cp̃p̃ [m1−m0] + a1 cp̃p̃ [m1−n0])

+ 2a1(cp̃ẽ [n1] + a0 cp̃p̃ [n1−m0] + a1 cp̃p̃ [n1−n0])

+ 2a0a1 cp̃p̃ [m1−n1]

= (a2
0 + a2

1) cp̃p̃ [0]

+ 2a0 cp̃ẽ [m1] + 2a2
0 cp̃p̃ [m1−m0] + 2a0a1 cp̃p̃ [m1−n0]

+ 2a1 cp̃ẽ [n1] + 2a1a0 cp̃p̃ [n1−m0] + 2a2
1 cp̃p̃ [n1−n0]

+ 2a0a1 cp̃p̃ [m1−n1]

c ′′p̃ẽ [m] = c ′p̃ẽ [m] + a0 cp̃p̃ [m−m1] + a1 cp̃p̃ [m−n1] (6.14)

= cp̃ẽ [m] + a0(cp̃p̃ [m−m0] + cp̃p̃ [m−m1])

+ a1(cp̃p̃ [m−n0] + cp̃p̃ [m−n1])
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To swap m2 and n2:

∆E2 = (a2
0 + a2

1) cp̃p̃ [0] (6.15)

+ 2a0(cp̃ẽ [m2] + a0(cp̃p̃ [m2−m0] + cp̃p̃ [m2−m1])

+ a1(cp̃p̃ [m2−n0] + cp̃p̃ [m2−n1]))

+ 2a1(cp̃ẽ [n2] + a0(cp̃p̃ [n2−m0] + cp̃p̃ [n2−m1])

+ a1(cp̃p̃ [n2−n0] + cp̃p̃ [n2−n1]))

+ 2a0a1 cp̃p̃ [m2−n2]

= (a2
0 + a2

1) cp̃p̃ [0] (6.16)

+ 2a0 cp̃ẽ [m2] + 2a2
0 cp̃p̃ [m2−m0] + 2a2

0 cp̃p̃ [m2−m1]

+ 2a0a1 cp̃p̃ [m2−n0] + 2a0a1 cp̃p̃ [m2−n1]

+ 2a1 cp̃ẽ [n2] + 2a1a0 cp̃p̃ [n2−m0] + 2a1a0 cp̃p̃ [n2−m1]

+ 2a2
1 cp̃p̃ [n2−n0] + 2a2

1 cp̃p̃ [n2−n1]

+ 2a0a1 cp̃p̃ [m2−n2]

= (a2
0 + a2

1) cp̃p̃ [0] + 2a0 cp̃ẽ [m2] + 2a2
0

1∑
i=0

cp̃p̃ [m2−mi] (6.17)

+ 2a1a0

1∑
i=0

cp̃p̃ [m2−ni] + 2a1 cp̃ẽ [n2] + 2a1a0

1∑
i=0

cp̃p̃ [n2−mi]

+ 2a2
1

1∑
i=0

cp̃p̃ [n2−ni] + 2a0a1 cp̃p̃ [m2−n2]

c ′′′p̃ẽ [m] = c ′′p̃ẽ [m] + a0 cp̃p̃ [m−m2] + a1 cp̃p̃ [m−n2] (6.18)

= cp̃ẽ [m] + a0(cp̃p̃ [m−m0] + cp̃p̃ [m−m1] + cp̃p̃ [m−m2])

+ a1(cp̃p̃ [m−n0] + cp̃p̃ [m−n1] + cp̃p̃ [m−n2])
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To swap mk−1 and nk−1:

∆Ek−1 = (a2
0 + a2

1) cp̃p̃ [0] + 2a0 cp̃ẽ [mk−1] + 2a2
0

k−2∑
i=0

cp̃p̃ [mk−1−mi] (6.19)

+ 2a1a0

k−2∑
i=0

cp̃p̃ [mk−1−ni] + 2a1 cp̃ẽ [nk−1] + 2a1a0

k−2∑
i=0

cp̃p̃ [nk−1−mi]

+ 2a2
1

k−2∑
i=0

cp̃p̃ [nk−1−ni] + 2a0a1 cp̃p̃ [mk−1−nk−1]

cp̃ẽ ′k[m] = cp̃ẽ [m] + a0

k−1∑
i=0

cp̃p̃ [m−mi] + a1

k−1∑
i=0

cp̃p̃ [m−ni] (6.20)

Finally,

∆Eupdate = ∆E0 + ∆E1 + ∆E2 + ...+ ∆Ek−1 (6.21)

= (a2
0 + a2

1) cp̃p̃ [0] + 2a0 cp̃ẽ [m0] + 2a1 cp̃ẽ [n0]

+ 2a0a1 cp̃p̃ [m0−n0] + (a2
0 + a2

1) cp̃p̃ [0]

+ 2a0 cp̃ẽ [m1] + 2a2
0 cp̃p̃ [m1−m0] + 2a0a1 cp̃p̃ [m1−n0]

+ 2a1 cp̃ẽ [n1] + 2a1a0 cp̃p̃ [n1−m0] + 2a2
1 cp̃p̃ [n1−n0]

+ 2a0a1 cp̃p̃ [m1−n1] + (a2
0 + a2

1) cp̃p̃ [0] + 2a0 cp̃ẽ [m2] + 2a2
0

1∑
i=0

cp̃p̃ [m2−mi]

+ 2a1a0

1∑
i=0

cp̃p̃ [m2−ni] + 2a1 cp̃ẽ [n2] + 2a1a0

1∑
i=0

cp̃p̃ [n2−mi]

+ 2a2
1

1∑
i=0

cp̃p̃ [n2−ni] + 2a0a1 cp̃p̃ [m2−n2]

+ ...+ (a2
0 + a2

1) cp̃p̃ [0] + 2a0 cp̃ẽ [mk−1] + 2a2
0

k−2∑
i=0

cp̃p̃ [mk−1−mi]

+ 2a1a0

k−2∑
i=0

cp̃p̃ [mk−1−ni] + 2a1 cp̃ẽ [nk−1] + 2a1a0

k−2∑
i=0

cp̃p̃ [nk−1−mi]

+ 2a2
1

k−2∑
i=0

cp̃p̃ [nk−1−ni] + 2a0a1 cp̃p̃ [mk−1−nk−1]

(6.22)
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After adding up all the terms, the final update equation has the following form

∆Eupdate = k(a2
0 + a2

1) cp̃p̃ [0] + 2a0

k−1∑
i=0

cp̃ẽ [mi] + 2a1

k−1∑
i=0

cp̃ẽ [ni] (6.23)

+ 2a0a1

k−1∑
i=0

cp̃p̃ [mi−ni]

+ 2a2
0

k−1∑
j=1

j−1∑
i=0

cp̃p̃ [mj −mi] + 2a0a1

k−1∑
j=1

j−1∑
i=0

cp̃p̃ [mj −ni]

+ 2a1a0

k−1∑
j=1

j−1∑
i=0

cp̃p̃ [nj −mi] + 2a2
1

k−1∑
j=1

j−1∑
i=0

cp̃p̃ [nj −ni]

Similarly, in order to toggle a cluster of k pixels, the following ∆Eupdate equation

should be used:

∆Eupdate = ka2
0 cp̃p̃ [0] + 2a0

k−1∑
i=0

cp̃ẽ [mi] + 2a2
0

k−1∑
j=1

j−1∑
i=0

mj −mi (6.24)

6.5 Procedure for the monochrome DBS-based screen design with over-

lapping clusters of 2× 2 pixels

In this section, we present a procedure for monochrome DBS-based screen design

with overlapping clusters of 2× 2 pixels. The goal of our screen design is to generate

a thresholding matrix that will produce smooth halftone textures given a desired

matrix size M and take into account overlapping clusters of 2× 2 pixels. The block

diagram of the procedure is shown in Fig. 6.2.

We start with a desired matrix size M . In our case, matrix size should be an

integer multiple of 8 due to hardware limitations. First, a random halftone consisting

of clusters of 2 × 2 pixels with 50% absorptance is generated. We start with 50%

absorptance so that we can grow dots and holes in a similar manner. Next, we apply

monochrome DBS algorithm for the non-overlapping clusters of 2 × 2 pixels and

generate an initial level. In order to apply the monochrome DBS algorithm for the

non-overlapping clusters of 2× 2 pixels, we modified the swapping and toggling DBS
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equations for the case of clusters of 2 × 2 pixels. The derivation of the equations is

provided in Section 6.5.1. After designing an initial level consisting of non-overlapping

clusters of 2 × 2 pixels, we wanted to introduce the overlapping clusters. Hence, it

was decided to grow some clusters of 2× 2 pixels by swapping single dot pixels with

single hole pixels, and creating dot and hole clusters of at least 2 × 2 pixels. The

new halftone was called an optimized initial level. Next, in order to generate levels

below and levels above the optimized initial level, we apply DBS with toggle and

allow toggling of either single pixels, or clusters of 2× 2 pixels, 1× 2 or 2× 1 pixels.

Finally, all levels are combined and a thresholding matrix is generated. In the next

subsections, further details of each step are provided.

Apply mono-
DBS for the non-

overlapping 
clusters of 2x2 

pixels

Swap single dot 
pixels with single 
hole pixels, and 

create dot and hole 
clusters of at least 

2x2 pixels

Toggle single dot 
pixels attached to 
clusters of at least 
2x2 pixels, toggle 

dot clusters of 2x2, 
2x1 and 1x2 pixels

Toggle single hole 
pixels attached to 
clusters of at least 
2x2 pixels, toggle 

hole clusters of 2x2, 
2x1 and 1x2 pixels

Initial 
level

Generate a
random 

halftone at 
50% 

absorptance

Optimized 
initial level

Levels 
below the 
optimized 

initial level

Levels 
above the 
optimized 

initial level

Generate a 
thresholding 

matrix

Optimized 
initial level

Matrix 
size 
𝑀

Fig. 6.2.: Block diagram of the monochrome DBS-based screen design with overlap-

ping clusters of 2× 2 pixels.

6.5.1 Generating an initial level

We start with a random halftone consisting of clusters of 2 × 2 pixels with 50%

absorptance. We then apply monochrome DBS algorithm for the non-overlapping
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clusters of 2×2 pixels and generate an initial level. This step of the procedure has the

constraint of not allowing the creation of checkerboard patterns, which led to localized

artifacts in levels below and above an initial level. One example of eliminating the

checkerboard patterns was discussed in [18], [17]. Their method involves an upper

and lower tone-dependent threshold and uses a special procedure for the values in

between those thresholds. In our work, we assume that random halftone doesn’t have

any checkerboard artifacts and we use the following approach in order to not create

the checkerboard artifacts. For each candidate cluster swap, we check if the removal

of the candidate dot cluster in the corresponding region will create a checkerboard.

Below is the algorithm that we used to perform the check:

1. Temporarily turn off the candidate dot cluster for swapping.

2. Check whether the left neighbor of the candidate dot cluster has a dot cluster in

a 4 - cluster neighborhood. If no, then the candidate dot removal is not allowed,

else go to step 3.

3. Repeat step 2 for top, right and bottom neighbors of the candidate dot cluster.

4. Allow the candidate dot removal, i.e. the checkerboard will not be created.

An example of initial level with and without the checkerboard constraint is shown

in Fig. 6.3. In order to apply monochrome DBS algorithm for the non-overlapping

clusters of 2× 2 pixels, DBS equations needed to be updated. Below is the review of

the updates.

6.5.2 Generating an optimized initial level

The initial level halftone introduced in the previous subsection consists only of

non-overlapping clusters of 2 × 2 pixels. The goal of our screen design was to work

with overlapping clusters of 2 × 2 pixels. Therefore, it was decided to grow some

clusters of 2 × 2 pixels by swapping single dot pixels with single hole pixels, and
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a) b)

Fig. 6.3.: Initial level for M = 300 with and without the checkerboard constraint: a)

Without the checkerboard constraint; b) With the checkerboard constraint.

creating dot and hole clusters of at least 2 × 2 pixels. The procedure for optimizing

the initial level is the following:

1. Take the first candidate dot pixel and check if the remaining cluster without

that pixel has a size of at least 2 × 2 pixels. Temporarily assign its value to 0

in order to search for candidate hole pixels.

2. Find the candidate hole pixels, which are connected to the cluster of pixels that

has a size of at least 2× 2 pixels.

3. Compute the ∆E of swapping the candidate dot pixel with all candidate hole

pixels, and find an optimum position for the candidate dot pixel if such a posi-

tion exists.

4. Repeat steps 1-3 for all candidate dot pixels.

5. Iterate through the entire image until no more swaps are accepted.
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An example of an initial level with an optimized initial level is shown in Fig. 6.4.

Optimized initial level looks much smoother than an initial level. It can be seen from

Fig. 6.4 b) that each dot pixel is either a part of a 2× 2 dot cluster or is adjacent to

the 2× 2 dot cluster. Similarly, each hole pixel is either a part of a 2× 2 hole cluster

or is adjacent to the 2 × 2 hole cluster. In order to control the allowable length of

the path of single pixels attached to a cluster of 2× 2, pathDepthMax parameters is

used.

a) b)

Fig. 6.4.: Initial level and optimized initial level for M = 300: a) Initial level; b)

Optimized initial level.

6.5.3 Generating remaining levels

In order to generate the levels below and levels above the optimized initial level,

DBS with toggle is used and the stacking constraints are preserved. Due to the fact

that the optimized initial level consists of dot (or hole) clusters, where each dot (or

hole) pixel is either a part of a 2 × 2 cluster or is adjacent to the 2 × 2 cluster, it

was decided that the following toggling operations should be considered: toggling a
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single pixel, toggling clusters of 2 × 2, 1 × 2 or 2 × 1. When considering toggling a

block of pixels, we check that the following condition is preserved: each remaining

dot (or hole) pixel should be either a part of a 2 × 2 dot (or hole) cluster or should

be adjacent to the 2× 2 dot (or hole) cluster. The number of levels is dependent on

whether a single pixel, or a cluster of 2× 2, 1× 2 or 2× 1 pixels are toggled at each

step.

DBS update equations when going from level to level.

When going from one level to the next, the continuous tone image needs to be

modified in order to compute the error:

f ′[m] = f [m] + ∆l · 1[m], (6.25)

where ∆l is the graylevel update. Similarly as before, the halftone image is updated

after toggle at m0

g′[m] = g[m] + a0δ[m−m0]. (6.26)

Therefore, the error is

e′[m] = g′[m]− f ′[m] (6.27)

= (g[m] + a0δ[m−m0])− (f [m] + ∆l · 1[m])

= (g[m]− f [m]) + a0δ[m−m0]−∆l · 1[m]

= e[m] + a0δ[m−m0]−∆l · 1[m].

As a result, the cp̃ẽ
′[m] can be obtained as follows

cp̃ẽ
′[m] = e′[m] ∗ ∗ cp̃p̃ [m] (6.28)

= (e[m] + a0δ[m−m0]−∆l · 1[m]) ∗ ∗ cp̃p̃ [m]

= cp̃ẽ [m] + a0 cp̃p̃ [m−m0]−∆l · 1[m].
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6.5.4 Extension to clusters of 3× 3 pixels

In the case of clusters of 3 × 3 pixels, the design procedure is the same, but

DBS equations need to be updated. We use m = [m,n] to represent the dis-

crete spatial coordinates as before. Let the 1st cluster consist of pixels with co-

ordinates (m0,m1, ...,m8), and the second cluster consist of pixels with coordinates

(n0,n1, ...,n8). Next, in order to compute the ∆E and cp̃ẽ [m] update equations, we

swap 9 pairs of pixels step by step, and then add updates to determine the final result.

Hence, final update equations for swapping are:

∆Eupdate =
8∑
i=0

∆Ei (6.29)

= 9(a2
0 + a2

1) cp̃p̃ [0] + 2a0

8∑
i=0

cp̃ẽ [mi] + 2a1

8∑
i=0

cp̃ẽ [ni] + 2a0a1

8∑
i=0

cp̃p̃ [mi−ni]

+ 2a2
0

8∑
j=0

8∑
i=j+1

cp̃p̃ [mi−mj] + 2a0a1

8∑
j=0

8∑
i=j+1

cp̃p̃ [mi−nj]

+ 2a1a0

8∑
j=0

8∑
i=j+1

cp̃p̃ [ni−mj] + 2a2
1

8∑
j=0

8∑
i=j+1

cp̃p̃ [ni−nj]

c ′′′′′′′′′p̃ẽ [m] = cp̃ẽ [m] + a0

8∑
i=0

cp̃p̃ [m−mi] + a1

8∑
i=0

cp̃p̃ [m−ni]

Similarly, for toggling the update equations are

∆Eupdate =
8∑
i=0

∆Ei (6.30)

= 9a2
0 cp̃p̃ [0] + 2a0

8∑
i=0

cp̃ẽ [mi] + 2a2
0

8∑
j=1

j−1∑
i=0

cp̃p̃ [mj −mi]

c′′′′′′′′′p̃ẽ [m] = cp̃ẽ [m] + a0

8∑
i=0

cp̃p̃ [m−mi]

Another update was made when generating levels below and above the optimized

initial level. Previously, we considered toggling either a single pixel or clusters of

2× 2, 1× 2, or 2× 1. In the case of clusters of 3× 3, the variety of possible clusters



119

for toggling is increased. We can now consider toggling clusters of 3× 3, 1× 3, 3× 1,

2× 2, 1× 2, or 2× 1. Therefore, the general form for toggling k pixels is:

∆Eupdate = ka2
0 cp̃p̃ [0] + 2a0

k−1∑
i=0

cp̃ẽ [mi] + 2a2
0

k−1∑
j=1

j−1∑
i=0

mj −mi (6.31)

6.6 Experimental results

In order to demonstrate our results, we chose to work with the matrix size M =

800. For comparison, we first generated a thresholding matrix using monochrome

DBS-based screen design with non-overlapping clusters of 2×2 pixels. In this case, the

design procedure is analogous to the overlapping case described previously, however,

in this case, all clusters consist of 2× 2 pixels and there are no overlaps between the

clusters. After obtaining the thresholding matrix, we halftoned the K ramp, and the

resulting ramp is shown in Fig. 6.5. Similarly, we generated a thresholding matrix

using monochrome DBS-based screen design with overlapping clusters of 2× 2 pixels

and the resulting ramp is shown in Fig. 6.6. By comparing Figs. 6.5 and 6.6, it

can be concluded that the ramp image halftoned with the matrix that was generated

with monochrome DBS-based screen design with overlapping clusters of 2× 2 pixels

looks much smoother than the ramp image halftoned with the matrix in the non-

overlapping case. There are, however, some localized artifacts at the quartertones of

the ramp. These artifacts are due to the greedy algorithm that tries to minimize the

cost at every step.

6.7 Conclusion

In this chapter, we presented a new monochrome DBS-based screen design with

overlapping clusters of 2×2 or 3×3 pixels. The clusters of 2×2 or 3×3 pixels are used

in electrophotographic printers due to their print stability. We started by designing

screens using monochrome DBS-based screen design with non-overlapping clusters of
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Fig. 6.5.: Ramp image halftoned with matrix of size 800 × 800 that was generated

with monochrome DBS-based screen design with non-overlapping clusters of 2 × 2

pixels.
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Fig. 6.6.: Ramp image halftoned with matrix of size 800 × 800 that was generated

with monochrome DBS-based screen design with overlapping clusters of 2× 2 pixels.
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2× 2 pixels. We then came up with the approach to create dot and hole clusters that

contain the region of 2 × 2 pixels inside of them, which led us to the monochrome

DBS-based screen design with overlapping clusters of 2 × 2 pixels. We updated the

DBS equations for swapping and toggling clusters of pixels instead of swapping and

toggling single pixels. After working with 2×2 clusters, we also considered using 3×3

clusters, which are even more stable than the 2 × 2 clusters. Finally, we presented

experimental results to illustrate the efficacy of our new approach. Our results show

that the screen design with overlapping clusters produces much smoother halftones

than the screen design with non-overlapping clusters.
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7. CONCLUSION

7.1 Summary and major contributions

In this dissertation, we investigated model-based analysis and design of color

screen sets for clustered-dot periodic halftoning and design of monochrome screens

based on direct binary search for aperiodic dispersed-dot halftoning. In Chapter 2,

we described the single separation analysis for clustered-dot halftones. We started

by introducing regular and irregular clustered-dot halftones. We then presented an

algorithm for obtaining candidate screen tile vectors given target screen parameters.

After that we developed a framework for determining the minimum set of frequency

components that must be included in the evaluation of halftone fluctuation. We pro-

posed a set of four ratios to quantify this fluctuation. These ratios are fully based

on an analytic expression for the Continuous-Space Fourier Transform (CSFT) of the

halftone pattern. As a result, we developed a tool that can be used to eliminate peri-

odicity matrices that will result in poor quality halftones, based only on an analysis

of the periodicity matrix itself, without considering the specific threshold matrix that

will control the growth of dot clusters in highlights and hole clusters in shadows, as

well as the midtone halftone textures.

Major contributions of Chapter 2:

1. Presented a procedure for choosing an optimal irregular screen with a given

degree of irregularity. These screens can achieve a closer approximation to the

target screen frequency and angle.

2. Provided a measure for computing image fluctuation for a single separation

based only on the periodicity matrix.
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3. Conducted an in-depth Fourier Analysis in order to establish the behavior of

the frequency components in regular and irregular clustered dot halftones.

4. Found out that with irregular clustered-dot halftones, there are additional fre-

quency components in the digital rendering spectra that are not present in the

analog rendering spectra.

5. Concluded that there’s a trade-off between getting closer to the target screen

parameters and the graininess levels.

In Chapter 3, we presented digital simulation-based analysis of halftoning with

an arbitrary number of separations (regular or irregular) using the spatiochromatic

HVS model. Our goal was to design a predictor that will help us assign colorants to

different screens that will minimize the perceived error. We started by integrating

the HVS based model that takes into account the spectral representation of color and

the difference in the responses of the human viewer to luminance and chrominance

information in order to obtain the perceived error metric. To start, we investigated

superimposing of two clustered-dot color halftones only. The perceived error metric

demonstrated that the color assignment plays an important role in the visual ap-

pearance of the resulting superposition image. We then expanded our model to the

superposition of three and four clustered dot color halftones as well as looking at

different absorptance combinations. In the second part of Chapter 3, we presented

results of the analysis of impact of screen configuration on image fluctuation and

colorshift across all absorptance combinations. Due to the fact that we expanded our

model for different absorptance combinations, we needed to propose and implement

the screen design algorithm for irregular clustered-dot halftones. The main challenge

with the screen design of irregular clustered-dot halftones was that, unlike with reg-

ular halftones, the microcells within the tile were not identical. Hence, we had to

generate all microcell growing sequences for all microcells within a tile, and then tile

them. After that, we looked into the effect of misregistration on image fluctuation

and color shift, which are very common in electrophotographic printers.
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Major contributions of Chapter 3:

1. Presented a procedure for making the best color assignments to the two, three

or four regular or irregular halftones in order to minimize the perceived error.

2. Developed tools for digitally analyzing the image fluctuation due to halftone

structure and image fluctuation and color shift due to misregistration for arbi-

trary screen sets.

3. Performed the analysis of the interdependence of the screen configuration and

the color that’s being halftoned.

In Chapter 4, we proposed to perform content-color-dependent screening (CCDS)

instead of using a single screen set for one image. We first presented the procedure for

CCDS, which involves obtaining the cluster-map by clustering the color content using

K-means algorithm, obtaining the segmented edge-map, merging the cluster-map and

the edge-map into a final map, determining the best color assignments for different

clusters using the HVS-based model presented in Chapter 3, and finally halftoning

with the optimal color assignments for their corresponding clusters. Since the HVS-

based model determines the color assignments that will minimize the perceived error,

and the entire image will be halftoned with the best color assignments based on

the color content, we believe that the CCDS approach can move the quality of color

prints generated by limited-resolution digital presses closer to that of the much higher

resolution analog offset printing presses with which the digital presses are competing.

Major contributions of Chapter 4:

1. Proposed and implemented content-color-dependent screening method using

clustered-dot color halftones, which helps us produce prints with better quality.

2. The main novelty of our approach is the application of different color assign-

ments within the image depending on the local color and content of the image,

without changing the overall set of screens that are used.
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In Chapter 5, we presented design of standard and high resolution, periodic,

clustered-dot color screen sets with focus on impact of hybrid screening method on

highlights. We started with the screen design approach for generating base levels

for irregular clustered-dot halftones presented in Chapter 3. Next, we proposed the

design of standard resolution periodic irregular clustered-dot halftones with the hy-

brid screen design. We used the hybrid screen design proposed by Lee and Allebach

in [47] as the foundation for our approach. The novelty of our approach lies in ap-

plying the hybrid screen design to the irregular clustered-dot halftones, where the

microcell growing sequences are unique for each microcell within the tile. Therefore,

some of the steps in the procedure had to be modified. In addition, we extended

the hybrid screen design to high-resolution periodic clustered-dot halftones, where

instead of using a single pixel at the center of a microcell we used a cluster of 2 × 2

pixels.

Major contributions of Chapter 5:

1. The novelty of our approach lies in applying the hybrid screen design to the

irregular clustered-dot halftones, where microcell growing sequences are unique

for each microcell within the tile.

2. Implemented the hybrid screen design for high-resolution periodic clustered-dot

halftones.

In Chapter 6, we proposed monochrome DBS-based screen design with overlapping

clusters of 2× 2 or 3× 3 pixels that can be used in electrophotographic printers. We

started by reviewing monochrome DBS-based screen design which produces dispersed-

dot textures and is usually used for inkjet printers, which have no trouble in rendering

isolated dots. Due to the fact that with electrophotographic printers, isolated dots

are not stable, we proposed to use a cluster of 2 × 2 or 3 × 3 pixels as a single unit

instead of a single pixel. We provided the updated DBS equations for performing

swapping and toggling of clusters. Next, it was decided to update monochrome DBS-

based screen design by considering the clusters to overlap. Our results showed that
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the screen design with overlapping clusters produces much smoother halftones than

the screen design with non-overlapping clusters.

Major contributions of Chapter 6:

1. Implemented the monochrome DBS-based screen design with non-overlapping

clusters of 2× 2 pixels.

2. Presented and implemented a new monochrome DBS-based screen design with

overlapping clusters of 2× 2 or 3× 3 pixels.

7.2 My publications

1. A. Jumabayeva, Y.-T. Chen, T. Frank, R. Ulichney, and J. P. Allebach, “Design

of irregular screen sets that generate maximally smooth halftone patterns,” in

Proc. IS&T/SPIE Electron. Imaging, 20th Color Imaging: Displaying, Pro-

cess., Hardcopy, and Appl., vol. 9395, San Francisco, CA, Feb. 2015.

2. A. Jumabayeva, T. Frank, Y. Ben-Shoshan, R. Ulichney, and J. P. Allebach,

“HVS-based model for superposition of two color halftones,” in Proc. IS&T

Electron. Imaging, 21st Color Imaging: Displaying, Process., Hardcopy, and

Appl., vol. 9395, San Francisco, CA, Feb. 2016.

3. A. Jumabayeva, Y.-T. Chen, T. Frank, R. Ulichney, and J. P. Allebach, “Single

separation analysis for clustered dot halftones,” in Proc. 2016 IEEE Int. Conf.

on Image Process., Phoenix, AZ, Sep. 2016, pp. 4383 – 4387

4. A. Jumabayeva, T. Frank, Y. Ben-Shoshan, R. Ulichney, and J. P. Allebach,

”Content-color-dependent screening (CCDS) using regular or irregular clustered-

dot halftones,” in Proc. 2018 7th Eur. Workshop Visual Inform. Process.,

Tampere, Finland, Nov. 2018.

5. A. Jumabayeva and J. P. Allebach, “Assigning halftone screens based on color

and content”, U.S. Patent Application 2019-ALLE-68610, Mar. 2019
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7.3 Future work

Below is the list of items that could be investigated further:

1. Print patches using regular or irregular halftones for CMYK separations and

perform a psychophysical experiment in order to check whether our HVS-based

model for superposition of multiple halftones predicts the image fluctuation

correctly.

2. Investigate machine learning methods to locate smooth areas in the image for

color-content-dependent screening (CCDS).

3. Improve the computation efficiency of the monochrome DBS-based screen design

with overlapping clusters of 2× 2 or 3× 3 clusters by generating fewer number

of levels, instead of using a greedy approach and generating all possible number

of levels.

4. Update the monochrome DBS-based screen design with overlapping clusters for

multiple color separations.

5. Update the monochrome DBS-based screen design with overlapping clusters for

multilevel halftoning instead of bilevel halftoning.
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A. DERIVATION FOR OBTAINING PARAMETERS FOR

OPPONENT CHANNELS VISUALIZATION

Our goal is to display an image defined as (Ymid, 0, Cz) in sRGB space, which we

specify as

RGBFULL = (RFULL
Cz , GFULL

Cz , BFULL
Cz ). (A.1)

However, when we convert directly, we have negative values in sRGB space, which

correspond to the opponency of channels (Y,Cx, Cz). We use the fact that

(Ymid, 0, Cz) = (Ymid, 0, 0) + (0, 0, Cz). (A.2)

After converting an image (Ymid, 0, 0) from XYZ space to sRGB space, we obtain

the image (RY mid, GY mid, BY mid). Similarly, converting an image (0, 0, Cz) from XYZ

space to sRGB space, we obtain the image (RCz, GCz, BCz).

Therefore,

(RFULL
Cz , GFULL

Cz , BFULL
Cz ) = 4(RCz, GCz, BCz) + (RY mid, GY mid, BY mid), (A.3)

where

4RCz(m,n) = RCz(m,n)−RY mid

4GCz(m,n) = GCz(m,n)−GY mid (A.4)

4BCz(m,n) = BCz(m,n)−BY mid.

Since the range of RGBFULL should be from 0 to 1 for each channel, we define the

new parameter α such that

(R̃FULL
Cz , G̃FULL

Cz , B̃FULL
Cz ) = α4 (RCz, GCz, BCz) + (RY mid, GY mid, BY mid). (A.5)



137

We scale 4(RCz, GCz, BCz) by α, such that

0 ≤ α(4RCz,4GCz,4BCz) + (RY mid, GY mid, BY mid) ≤ 1. (A.6)

Therefore, for each channel, we have:

RFULL
Cz (m,n) = αR 4RCz(m,n) +RY mid

GFULL
Cz (m,n) = αG4GCz(m,n) +GY mid (A.7)

BFULL
Cz (m,n) = αB 4BCz(m,n) +BY mid,

such that

0 ≤ αR 4RCz(m,n) +RY mid ≤ 1

0 ≤ αG4GCz(m,n) +GY mid ≤ 1 (A.8)

0 ≤ αB 4BCz(m,n) +BY mid ≤ 1,

and

α = min(αR, αG, αB). (A.9)

The following assumptions have been made:

0 < RY mid < 1

0 < GY mid < 1 (A.10)

0 < BY mid < 1

(αR, αG, αB) > 0.

We start by looking at the red channel.

0 ≤ αR 4RCz(m,n) +RY mid ≤ 1. (A.11)
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Part 1. Given that

αR 4RCz(m) +RY mid ≤ 1, (A.12)

we have αR ≤
1−RY mid

4RCz(m,n)
, if 4RCz(m,n) > 0

αR ≥ 1−RY mid

4RCz(m,n)
, if 4RCz(m,n) < 0.

(A.13)

The second equation in the system is satisfied by assumptions stated in the beginning

that

0 < RY mid < 1

αR > 0.

Therefore,

αR ≥
1−RY mid

4RCz(m,n)
, if 4RCz(m,n) < 0, (A.14)

is always true. As for the first equation, we have

α+
R ≤ min

(m,n)
{ 1−RY mid

4RCz(m,n)
, if 4RCz(m,n) > 0}. (A.15)

Part 2. Given that

αR 4RCz(m) +RY mid ≥ 0, (A.16)

(A.17)

we have αR ≥
−RY mid

4RCz(m,n)
, if 4RCz(m,n) > 0

αR ≤ −RY mid

4RCz(m,n)
, if 4RCz(m,n) < 0.

(A.18)

The first equation in the system is satisfied by assumptions stated before that

0 < RY mid < 1

αR > 0.

Therefore

αR ≥
−RY mid

4RCz(m,n)
, if 4RCz(m,n) > 0. (A.19)
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As for the second equation, we have

α−R ≤ min
(m,n)
{ −RY mid

4RCz(m,n)
, if 4RCz(m,n) < 0}. (A.20)

And lastly,

αR = min(α+
R, α

−
R). (A.21)

αG and αB can be obtained similarly as αR. And all three will be used to find

α = min(αR, αG, αB). (A.22)
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B. DETAILED DERIVATION OF THEORETICAL

FOURIER ANALYSIS FOR A SINGLE SEPARATION

AND A SUPERPOSITION OF TWO

HALFTONES

B.1 CSFT of analog and digital rendered images

A continuous space halftone image g(x) is defined as

g (x) = c (x) ∗ l (x)

= circ (Mx) ∗
∑
k∈Z2

δ (x−RNk) (B.1)

=
∑
k∈Z2

circ (M(x−RNk)

where

c (x) = circ (Mx) =

1, if
√
x2 + y2 ≤ 1

2

0, otherwise

(B.2)

with its corresponding CSFT

C (u) = jinc
(
M−Tu

)
(B.3)

and l (x) is the impulse function defined as

l (x) =
∑
k∈Z2

δ (x−RNk) (B.4)

where the matrix N is the periodicity matrix, and the parameter R is the horizontal

and vertical distance between printer-addressable pixels in units of inches. The matrix

M is a diagonal matrix, and it is defined as

M =

 1
d

0

0 1
d

 , (B.5)
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where a parameter d is a diameter of a circular dot. The image g (x) is called the

analog rendering image. Next, we compute the Continuous Space Fourier Trans-

form (CSFT) of the continuous space halftone image with circular dot pattern g (x).

The CSFT is obtained the following way:

G (u) = CSFT (g (x))

= CSFT (c (x) ∗ l (x))

= CSFT (circ (Mx) ∗
∑
k∈Z2

δ (x−RNk))

=
jinc

(
M−Tu

)
R2 |det (M) det (N)|

∑
k∈Z2

δ

(
u− 1

R
N−Tk

)
=

C (u)

R2 |det (M) det (N)|
∑
k∈Z2

δ

(
u− 1

R
N−Tk

)
where the CSFT of a circ function is a jinc function which is defined as

jinc (u) =
J1

(
π
√
u2 + v2

)
)

2
√
u2 + v2

, (B.6)

and J1 is the Bessel function of the first kind with order 1.



142

Additional derivation: Assume g (x) is given as:

g (x) = repX [δ (x)] (B.7)

Its corresponding CSFT has a form:

G (u) =
1

X
comb [1] (B.8)

Now, assume g (x) is an impulse train given as:

g (x) =
∑
k∈Z

δ
(
x− kX̄

)
(B.9)

Its corresponding CSFT has a form:

G (u) =
1

X̄

∑
k∈Z

δ

(
u− k

X̄

)
(B.10)

We can derive g (x) as following:

g (x) =

∫ ∞
−∞

G (u) ej2πuxdu (B.11)

=

∫ ∞
−∞

1

X̄

∑
k∈Z

δ

(
u− k

X̄

)
ej2πuxdu

=
1

X̄

∑
k∈Z

∫ ∞
−∞

δ

(
u− k

X̄

)
ej2πuxdu (B.12)

=
1

X̄

∑
k∈Z

ej2π
k
X̄
x (B.13)

Therefore, we have:

g (x) =
∑
k∈Z

δ
(
x− kX̄

)
=

1

X̄

∑
k∈Z

ej2π
k
X̄
x (B.14)

and for our derivation, we have:∑
k∈Z2

e−j2πu
TRNk =

1

R2 |det N|
∑
k∈Z2

δ

(
u− 1

R
N−Tk

)
(B.15)
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In order to obtain the digital rendering form of the continuous space halftone

image g (x), we sample g (x) with the printer lattice, and obtain gs (x):

gs (x) = combRR [g (x)] (B.16)

And, finally we convolve gs (x) with the printer dot profile function defined as p (x),

where

p (x) = rect
( x

R

)
(B.17)

and, therefore

P (u) = R2sinc (Ru) (B.18)

The resulted image is defined as gp (x):

gp (x) = gs (x) ∗ p (x) (B.19)

= combRR [g (x)] ∗ rect
( x

R

)
.

The image gprinter (x) is the digital rendering image of a continuous space halftone

with circular dot pattern g (x). The CSFT of gprinter (x) is computed the following

way:

Gp (u) =
1

R2
rep 1

R
1
R

[G (u)]P (u) (B.20)

=

(
1

R2
rep 1

R
1
R

[G (u)]

)(
R2sinc (Ru)

)
= sinc (Ru)

∑
m∈Z2

G (u−Vm)

= sinc (Ru)
∑
m∈Z2

jinc
(
M−T (u−Vm)

)
R2 |det (M) det (N)|

∑
k∈Z2

δ

(
u−Vm− 1

R
N−Tk

)
,

where the matrix V is defined as

V =

 1
R

0

0 1
R

 (B.21)

and R is the horizontal and vertical distance between printer addressable pixels in

inches.
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In short, we derived the two main CSFT functions for analog rendering image

g (x) and digital rendering image gprinter (x):

G (u) =
jinc

(
M−Tu

)
R2 |det (M) det (N)|

∑
k∈Z2

δ

(
u− 1

R
N−Tk

)
(B.22)

=
C (u)

R2 |det (M) det (N)|
∑
k∈Z2

δ

(
u− 1

R
N−Tk

)
and

Gp (u) = sinc (Ru)
∑
m∈Z2

jinc
(
M−T (u−Vm)

)
R2 |det (M) det (N)|

∑
k∈Z2

δ

(
u−Vm− 1

R
N−Tk

)
(B.23)

In order to obtain the perceived digital rendered continuous space halftone images,

we define g̃printer (x) as

g̃printer (x) = gprinter (x) ∗ hHV S (x) . (B.24)

Thus, the CSFT of a perceived digital rendered continuous space halftone image with

circular dot pattern g̃printer (x) is

G̃p (u) = Gp (u)HHV S (u) (B.25)

= HHV S (u) sinc (Ru)
∑
m∈Z2

jinc
(
M−T (u−Vm)

)
R2 |det (M) det (N)|

∑
k∈Z2

δ

(
u−Vm− 1

R
N−Tk

)
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B.2 Multiplication model in reflectance for a superposition of 2 halftones

We start by defining a function gi (x)

gi (x) =

1, colorant is present

0, otherwise

(B.26)

and for 2 colorants, we define their corresponding reflectance functions as:

ri (x) = 1− gi (x) (B.27)

Therefore, we have:

r1 (x) = 1− g1 (x) , (B.28)

r2 (x) = 1− g2 (x) .

Next, we multiply the two functions together, and lastly convert them back into

absorptance:

rtotal (x) = r1 (x) r2 (x) , (B.29)

gtotal (x) = 1− rtotal (x) = 1− (1− g1 (x)) (1− g2 (x))

= g1 (x) + g2 (x)− g1 (x) g2 (x)

The value of gtotal (x) at each pixel is equal to one when there exists any colorant at

the pixel location, or zero otherwise.

Therefore,

gtotal (x) = g1 (x) + g2 (x)− g1 (x) g2 (x) . (B.30)

In frequency domain, we have

Gtotal (u) = G1 (u) +G2 (u)−G1 (u) ∗ ∗G2 (u) (B.31)
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where ∗∗ denotes the two-dimensional convolution.

In order to understand Eq. B.31, we start by looking at Eq. B.23, which is the CSFT

of a digital-rendered image

Gp (u) = sinc (Ru)
∑
m∈Z2

jinc
(
M−T (u−Vm)

)
R2 |det (M) det (N)|

∑
k∈Z2

δ

(
u−Vm− 1

R
N−Tk

)
(B.32)

= P (u)
∑
m∈Z2

C (u−Vm)

R2 |det (M) det (N)|
∑
k∈Z2

δ

(
u−Vm− 1

R
N−Tk

)
Since now we have 2 different colorants, we have different M and N parameters for

each screen. In order to simplify the derivation of the formula we define the following

parameters:

Ai =
1

R2 |det (Mi) det (Ni)|
(B.33)

Therefore, the simplified CSFT functions look like:

G1 (u) = A1P1 (u)
∑

m1∈Z2

C1 (u−Vm1)
∑

k1∈Z2

δ

(
u−Vm1 −

1

R
N1
−Tk1

)
(B.34)

and

G2 (u) = A2P2 (u)
∑

m2∈Z2

C2 (u−Vm2)
∑

k2∈Z2

δ

(
u−Vm2 −

1

R
N2
−Tk2

)
(B.35)
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B.2.1 Derivation of Gtotal(u)

According to Eq. B.31, we have

Gtotal (u) = G1 (u) +G2 (u)−G1 (u) ∗ ∗G2 (u) (B.36)

Based on Eqs. B.34 and B.35,

G1 (u) +G2 (u) =

A1P1 (u)
∑

m1∈Z2

C1 (u−Vm1)
∑

k1∈Z2

δ

(
u−Vm1 −

1

R
N1
−Tk1

)
(B.37)

+

A2P2 (u)
∑

m2∈Z2

C2 (u−Vm2)
∑

k2∈Z2

δ

(
u−Vm2 −

1

R
N2
−Tk2

)

and

G1 (u) ∗ ∗G2 (u) =

A1P1 (u)
∑

m1∈Z2

C1 (u−Vm1)
∑

k1∈Z2

δ

(
u−Vm1 −

1

R
N1
−Tk1

)
(B.38)

∗ ∗

A2P2 (u)
∑

m2∈Z2

C2 (u−Vm2)
∑

k2∈Z2

δ

(
u−Vm2 −

1

R
N2
−Tk2

)
=

 ∑
m1∈Z2

∑
k1∈Z2

A1P1 (u)C1 (u−Vm1) δ

(
u−Vm1 −

1

R
N1
−Tk1

)
∗ ∗

 ∑
m2∈Z2

∑
k2∈Z2

A2P2 (u)C2 (u−Vm2) δ

(
u−Vm2 −

1

R
N2
−Tk2

)
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In order to simplify the calculations, we define:

F1 (u) = P1 (u)C1 (u−Vm1) (B.39)

F2 (u) = P2 (u)C2 (u−Vm2)

u1 = Vm1 +
1

R
N1
−Tk1

u2 = Vm2 +
1

R
N2
−Tk2

Therefore, with the use of Sifting Property, we have

G1 (u) ∗ ∗G2 (u) =

 ∑
m1∈Z2

∑
k1∈Z2

A1F1 (u) δ (u− u1)

 (B.40)

∗ ∗

 ∑
m2∈Z2

∑
k2∈Z2

A2F2 (u) δ (u− u2)


=

∫ ∞
−∞

∑
m1∈Z2

∑
k1∈Z2

A1F1 (µ) δ (µ− u1)

×
∑

m2∈Z2

∑
k2∈Z2

A2F2 (u− µ) δ (u− µ− u2) dµ

=
∑

m1∈Z2

∑
k1∈Z2

∑
m2∈Z2

∑
k2∈Z2

∫ ∞
−∞

A1F1 (µ) δ (µ− u1)

× A2F2 (u− µ) δ (u− µ− u2) dµ

=
∑

m1∈Z2

∑
k1∈Z2

∑
m2∈Z2

∑
k2∈Z2

A1F1 (u1)A2F2 (u− u1) δ (u− u1 − u2)

=
∑

m1∈Z2

∑
k1∈Z2

∑
m2∈Z2

∑
k2∈Z2

A1A2F1 (u1)F2 (u2) δ (u− (u1 + u2))
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where

u1 = Vm1 +
1

R
N1
−Tk1 (B.41)

u2 = Vm2 +
1

R
N2
−Tk2

A1 =
1

R2 |det (M1) det (N1)|

A2 =
1

R2 |det (M2) det (N2)|

and

F1 (u1) = P1 (u)C1 (u−Vm1) (B.42)

F2 (u2) = P2 (u)C2 (u−Vm2)

P1 (u) = sinc (Ru)

P2 (u) = sinc (Ru)

Due to the fact that

A1A2 =
1

R2 |det (M1) det (N1)|
1

R2 |det (M2) det (N2)|
(B.43)

=
1

R4 |det (M1N1M2N2)|

and

F1 (u1) = P1 (u1)C1 (u1 −Vm1) (B.44)

= sinc

(
R

(
Vm1 +

1

R
N1
−Tk1

))
C1

(
Vm1 +

1

R
N1
−Tk1 −Vm1

)
= sinc

(
R

(
Vm1 +

1

R
N1
−Tk1

))
C1

(
1

R
N1
−Tk1

)
= sinc

(
R

(
Vm1 +

1

R
N1
−Tk1

))
jinc

(
M−T 1

R
N1
−Tk1

)
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and

F2 (u2) = P2 (u2)C2 (u2 −Vm2) (B.45)

= sinc

(
R

(
Vm2 +

1

R
N2
−Tk2

))
C1

(
Vm2 +

1

R
N1
−Tk2 −Vm2

)
= sinc

(
R

(
Vm2 +

1

R
N2
−Tk2

))
C2

(
1

R
N2
−Tk2

)
= sinc

(
R

(
Vm2 +

1

R
N2
−Tk2

))
jinc

(
M−T 1

R
N2
−Tk2

)
and

δ (u− (u1 + u2)) = δ

(
u−

((
Vm1 +

1

R
N1
−Tk1

)
+

(
Vm2 +

1

R
N2
−Tk2

)))
(B.46)

= δ

(
u−Vm1 −Vm2 −

1

R
N1
−Tk1 −

1

R
N2
−Tk2

)
The half of the equation G1 (u) ∗ ∗G2 (u) has the following form:

(B.47)

G1 (u) ∗ ∗G2 (u) =
1

R4 |det (M1N1M2N2)|

×
∑

m1∈Z2

∑
k1∈Z2

sinc

(
R

(
Vm1 +

1

R
N1
−Tk1

))
jinc

(
M−T 1

R
N1
−Tk1

)
×
∑

m2∈Z2

∑
k2∈Z2

sinc

(
R

(
Vm2 +

1

R
N2
−Tk2

))
jinc

(
M−T 1

R
N2
−Tk2

)
× δ

(
u−Vm1 −Vm2 −

1

R
N1
−Tk1 −

1

R
N2
−Tk2

)
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and based on Eq. B.37, another half of the equation G1 (u)+G2 (u) has the following

form:

G1 (u) +G2 (u) =

A1P1 (u)
∑

m1∈Z2

C1 (u−Vm1)
∑

k1∈Z2

δ

(
u−Vm1 −

1

R
N1
−Tk1

)
(B.48)

+

A2P2 (u)
∑

m2∈Z2

C2 (u−Vm2)
∑

k2∈Z2

δ

(
u−Vm2 −

1

R
N2
−Tk2

)
=

1

R2 |det (M1) det (N1)|
sinc (Ru)

∑
m1∈Z2

jinc
(
M1

−T (u−Vm1)
)

×
∑

k1∈Z2

δ

(
u−Vm1 −

1

R
N1
−Tk1

)
+

1

R2 |det (M2) det (N2)|
sinc (Ru)

∑
m2∈Z2

jinc
(
M2

−T (u−Vm2)
)

×
∑

k2∈Z2

δ

(
u−Vm2 −

1

R
N2
−Tk2

)
=

1

R2 |det (M1N1)|
sinc (Ru)

∑
m1∈Z2

jinc
(
M1

−T (u−Vm1)
)

×
∑

k1∈Z2

δ

(
u−Vm1 −

1

R
N1
−Tk1

)
+

1

R2 |det (M2N2)|
sinc (Ru)

∑
m2∈Z2

jinc
(
M2

−T (u−Vm2)
)

×
∑

k2∈Z2

δ

(
u−Vm2 −

1

R
N2
−Tk2

)
Finally, the entire equation, which was previously given as

Gtotal (u) = G1 (u) +G2 (u)−G1 (u) ∗ ∗G2 (u) (B.49)
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can now be described as

(B.50)

Gtotal (u) =
1

R2 |det (M1N1)|
sinc (Ru)

∑
m1∈Z2

jinc
(
M1

−T (u−Vm1)
)

×
∑

k1∈Z2

δ

(
u−Vm1 −

1

R
N1
−Tk1

)
+

1

R2 |det (M2N2)|
sinc (Ru)

∑
m2∈Z2

jinc
(
M2

−T (u−Vm2)
)

×
∑

k2∈Z2

δ

(
u−Vm2 −

1

R
N2
−Tk2

)
− 1

R4 |det (M1N1M2N2)|

×
∑

m1∈Z2

∑
k1∈Z2

sinc

(
R

(
Vm1 +

1

R
N1
−Tk1

))
jinc

(
M−T 1

R
N1
−Tk1

)
×
∑

m2∈Z2

∑
k2∈Z2

sinc

(
R

(
Vm2 +

1

R
N2
−Tk2

))
jinc

(
M−T 1

R
N2
−Tk2

)
× δ

(
u−Vm1 −Vm2 −

1

R
N1
−Tk1 −

1

R
N2
−Tk2

)
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B.3 Multiplication model in reflectance for a superposition of 3 halftones

We start by defining a function gi (x)

gi (x) =

1, colorant is present

0, otherwise

(B.51)

and for 3 colorants, we define their corresponding reflectance functions as:

ri (x) = 1− gi (x) (B.52)

Therefore, we have:

r1 (x) = 1− g1 (x) , (B.53)

r2 (x) = 1− g2 (x) ,

r3 (x) = 1− g3 (x) .

Next, we multiply the three functions together, and convert the result back into

absorptance:

rtotal (x) = r1 (x) r2 (x) r3 (x) , (B.54)

gtotal (x) = 1− rtotal (x) = 1− (1− g1 (x)) (1− g2 (x)) (1− g3 (x))

= g1 (x) + g2 (x) + g3 (x)− g1 (x) g2 (x)− g1 (x) g3 (x)− g2 (x) g3 (x)

+ g1 (x) g2 (x) g3 (x) .

The value of gtotal (x) at each pixel is equal to one when there exists any colorant at

the pixel location, or zero otherwise.

Therefore,

gtotal (x) = g1 (x) + g2 (x) + g3 (x)− g1 (x) g2 (x)− g1 (x) g3 (x)− g2 (x) g3 (x)

(B.55)

+ g1 (x) g2 (x) g3 (x) .
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