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ABSTRACT 

Author: Sun, Xiangying. PhD 
Institution: Purdue University 
Degree Received: August 2019 
Title: Comprehensive Computational Analysis of Chromatin-Enriched RNAs Mark Both Active 

and Repressive Cis-Regulative Non-coding RNAs. 
Committee Chair: Michael Gribskov 
 
Nuclear RNA-seq has revealed thousands of potentially regulatory long noncoding RNA 

(lncRNA). Nuclear-retained lncRNA may interact with various chromatin regulatory proteins and 

recruit them to cis-regulatory elements in order to regulate gene expression. We are interested in 

analyzing nuclear RNA-seq to identify chromatin-associated lncRNA (cheRNA) that share 

enhancer features and transcription-factor dependence, and are thus being indicators of cis-acting 

loci. Nuclear RNA-seq requires rigorous and effective pipelines that differ from the conventional 

pipelines used for total RNA-seq datasets, but a thorough survey of analytic pipelines for nuclear 

RNA-seq has not been performed. 

The existing computational pipeline (Werner) has important biases. To address the flaws in Werner 

pipeline, we have developed three new pipelines (referred to here as Tuxedo, Concatenating, and 

Taco) to analyze nuclear RNA-seq datasets. In this study, we survey the four nuclear RNA-seq 

analytic pipelines for the cheRNA identification and use the optimal scheme to explore new 

structure features of cheRNA that has high cis-regulatory potential. 

To evaluate the transcriptomes assembled by the four pipelines, we used RNA from K562 cells as 

an example. The Tuxedo pipeline assembles complete transcriptome, including 10.9k unannotated 

lncRNAs. Transcripts assembled by Tuxedo, compared to the other three pipelines, showed the 

highest fraction of ongoing transcription by Pol II, and the highest level of nascent transcription 

by GRO-seq, demonstrating that the Tuxedo assembled transcriptome is more concordant with the 

active transcription signal represented by traditional measurements. 

Comparing the four pipelines, Tuxedo also outperforms the other pipelines constructing 

assemblies that are enriched in enhancer hallmarks. ROC analysis, using the pool of predicted 
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transcripts identification by all four methods, shows that Tuxedo identifies cheRNA precisely, 

while recapturing three known genomic features of active enhancer.  

Applying the Tuxedo approach to the K562 dataset, we found that intergenic cheRNA (icheRNA) 

is more positively correlated with the transcription of neighboring gene than with randomly 

selected gene. This demonstrates, for the first time, a quantitative cis-regulatory effect of cheRNA 

expression. A similar analysis of FAMTOM- or ChromHMM-predicted eRNA, which is believed 

to have cis-regulatory enhancer effect, shows similar but weaker positive correlation. In contrast, 

intergenic chromatin depleted RNA (isneRNA) and neighboring gene show negative correlation. 

Genomic regions with abundant H3K9me3 modification, which is usually associated with 

condensed, inactive chromatin regions, can be actively transcribed. IcheRNAs with high levels of 

H3K9me3 in the gene body are transcribed at dramatically higher levels than those with lower 

levels; This is seen in both the soluble nuclear extract and the chromatin pellet, indicating that 

icheRNA is actively transcribed from regions with high H3K9me3 modification (contrary to 

expectation). One hypothesis for the unexpected H3K9me3 signal around icheRNA is that the 

icheRNA may be embedded in condensed domains derived from mobile elements. 

We observed that the TSS of antisense cheRNA (as-cheRNA) colocalized mRNA is significantly 

less open (measured by ATAC-seq signal), has fewer active transcription marks (POL II, 

H3K4me3), and has more repressive marks (H3K27me3) and PRC2 complex binding (SUZ12, 

EZH2), compared with random mRNA. This pattern is not observed in mRNA colocalized with 

antisense chromatin depleted RNA (as-sneRNA), suggesting that as-cheRNA may be cis-

regulatory elements that interfere transcription of colocalized mRNAs on the opposite strand via 

recruiting the PRC2 complex.  

Nuclear RNA-seq sheds new light on cis-regulatory elements and the Tuxedo computational 

pipeline can be used to analyze nuclear RNA-seq data containing both high low expression 

lncRNA. With our improved computational strategy, we have examined the molecular 

characteristics of cheRNA in greater detail than has heretofore been possible. Notwithstanding the 

similarity of these features to those of eRNA, our analysis finds several unique molecular 

characteristics that quantitatively distinguishes icheRNA and eRNA. Our evidence suggests 

cheRNA has diverse functions, and may interact with diverse chromatin modulators, or utilize 
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RNA elements to perform cell-type specific cis-regulatory roles, including transcriptional 

activation and repression. Our approach thus affords a straightforward approach to identifying 

novel regulatory lncRNA for future mechanistic evaluation.  
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CHAPTER 1. INTRODUCTION 

1.1 Non-coding regions: the dark matter of the genome 

When I taught genomics in our Fundamental Biology course, I always started by telling the 

students a fun fact – the human genome is not the largest eukaryotic genome on this planet. The 

genome of the single-celled amoebae is up to 100-fold larger than the human genome. The students 

were always surprised as they expected humans would need a larger genome to support their 

complexity. Scientists in the 20th century were also troubled by this fact when they studied the 

size, evolution, and function of genomes. Mirsky and Ris introduced a concept called “C-value” 

to describe the amount of DNA in the haploid genome of an organism. They found there was little 

correlation between the “C-value” and the complexity of an organism, even though there was a 

general increase in “C-value” with organisms from prokaryotes to vertebrates (Mirsky and Ris, 

1951). Thomas later termed this puzzling observation the “C-value paradox” (Thomas 1971). In 

1980, the “C-value paradox” became even more puzzling when Lewin discovered that a large 

portion of many genomes does not code for proteins (Kung et al., 2013). Surprisingly, the increased 

complexity of the genome is not reflected by an increased number of protein-coding genes; this 

was termed the “G-value paradox” (Taft et al., 2007), andled to the hypothesis that the organism 

maintains a certain amount of “junk DNA”, which could consist of any sequence, to make its 

genome size optimal (Horner and Macgregor, 1983). At that time, the number of protein-coding 

genes in human genome was estimated to be in the range of 50,000-140,000 (Antequera et al., 

1993; Fields et al., 1994). However, this estimate dramatically decreased after the publication of 

the human genome in 2001. The sequence of the human genome revealed two striking and 

surprising facts. First, the genome contains only 20,000-30,000 protein-coding genes, close to the 

number of protein-coding genes in the genomes of the invertebrate sDrosophila melanogaster and 

Caenorhabditis elegans; and second, a large fraction (98.8%) of the human genome is composed 

of non-coding DNA (Venter et al., 2001; Lander et al., 2001). Moreover, whole genome 

sequencing and annotation of more organisms, showed that human genome contains an even a 

smaller number of protein-coding genes than plants such as rice (~37,000), or protists such as 

Paramecium tetraurelia (~40,000) (Taft et al., 2007). It became apparent that the number of 

protein-coding genes does not reflect the developmental complexity of the organism. In 2004, a 
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comparative analysis of 85 sequenced organisms (59 bacteria, 8 archaea, and 18 eukaryotes - 7 

simple eukaryotes, 1 fungus, 3 plants, 3invertebrates, 1 urochordate, and 3 vertebrates) 

demonstrated that the relative amount of noncoding DNA in the genome of an organism, i.e. the 

ratio of non-coding DNA to total genomic DNA (ncDNA/tgDNA), consistently increases with 

organism complexity (Taft and Mattick, 2003). A following study by the same group further 

showed that the distribution of intronic sequences in the genome is not random. Especially in 

complex organisms (e.g., mouse and human), geneswith large amounts of intronic sequence (91-

100% of bases in introns are significantly enriched in genes involved in embryonic, neurological, 

and immune system development (Taft et al., 2007). This strongly suggested that the ubiquitous 

non-coding regions, previously regarded as “junk DNA”, could, perhaps, be far more important 

than had been imagined in controlling developmental complexity of organisms.  

1.2 Early discoveries of non-coding RNAs 

Non-coding RNA (ncRNA) is a class of functional RNA that is transcribed from DNA, but not 

translated into protein. Conservative estimates from the GENCODE (v25) project showed that 

ncRNA is pervasively transcribed in the human genome (51.8% of the human genome is 

transcribed, but only 1.2% encodes proteins (Ransohoff et al., 2018)). Unlike protein-coding 

messenger RNA (mRNA), which clearly functions as the intermediate carrying genetic 

information from DNA to protein, ncRNA function in diverse roles.  

The past decade has witnessed an explosion in the studies of ncRNA. However, before the 

completion of the Human Genome Project, studies of RNA were largely focused on the roles of 

the mRNA. While the widespread interest in ncRNA is rather recent, the discovery that ncRNA 

could have functions is not. 

In 1955, Georges Palade identified the very first class of ncRNA: ribosomal RNA (rRNA) (Jarroux 

et al., 2017). In 1958, Francis Crick described the existence of an “adaptor” needed to mediate 

between the triplet genetic code and the encoded amino acids (Crick, 1958). Meanwhile, Mahlon 

Hoagland and Paul Zamecnik identified these “adaptors” biochemically (Hoagland et al., 1958). 

The “adaptors”, which were later recognized as transfer RNA (tRNA), were the second identified 

class of ncRNA (Eddy, 2001). In the early 1980s, with the discovery and isolation of uridine (U)-

rich RNAs (uRNAs), a new class of ncRNA called small nuclear RNAs (snRNA) was recognized 
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(Zieve, 1981). This class of ncRNA were later proven to be a component of the spliceosome, which 

is involved in the process of mRNA splicing, and is a major player in post-transcriptional RNA 

processing (Tam and Steitz, 1996; Sharp and Burge, 1997). At this time, the ncRNA that had been 

discovered were limited to housekeeping ncRNAs (including rRNAs, tRNAs and snRNAs). For 

many years, therefore, ncRNAs were considered only as accessory components involving in 

protein synthesis and their pervasive regulatory roles were overlooked.  

The initial discovery that ncRNA can function as a regulatory molecule occurred in 1984, when 

Masayuki Inoue identified the very first regulatory ncRNA, micF, in Escherichia coli (Inouye and 

Delihas, 1988). The micF ncRNA was shown to base pair with the mRNA encoding the outer 

membrane protein F (OmpF), and to thereby reduce the level of OmpF. Subsequent studies 

confirmed that regulation of gene expression via base pairing with target mRNA is also in bacteria, 

supporting the widespread existence of this mechanism (De Lay et al., 2013). This class of 

prokaryotic ncRNA was designated small RNAs (sRNA). sRNA is a major class of regulatory 

ncRNA in prokaryotes that functions to inhibit both transcription and translation of target mRNA.  

1.3 MicroRNA1 

 Biological background 

MicroRNAs (miRNAs) are typically about 22 bases long (lengths can vary from 16-24 bases in 

different species) that play an important role in gene regulation in eukaryotic organisms, usually 

acting by targeting the mRNA for degradation, or by acting as a translation repressor (see 

(Catalanotto, Cogoni and Zardo 2016) for a review of nuclear functions). 

 

 

____________________________ 

1 This section has been published in a peer reviewed book. Sun, X. and Gribskov, M. (2019). 
MicroRNA and lncRNA Databases and Analysis. Encyclopedia of Bioinformatics and 
Computational Biology, vol.2, pp. 165–170. Oxford: Elsevier.  
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The first miRNA to be discovered was lin-4, which was identified by Ambros et al. in C. elegans 

(Almeida et al., 2011). In the 1980s, they showed that lin-4 acts as a negative regulator of 

expression of the LIN-14 protein, resulting a temporally controlled decrease in the level of LIN-

14 protein starting in the first laval stage of C. elegans development (Ambros and Horvitz, 1987; 

Ambros, 1989). In 1993, this group identified and cloned two small lin-4 transcripts of 

approximately 22 and 61 nucleotides in length, and showed that neither of the two transcripts 

encode proteins. They also showed that the lin-4 transcripts both contain sequences 

complementary to a repeated sequence found in the in 3’UTR of the lin-14 mRNA, suggesting that 

lin-4 regulates translation of lin-14 via an antisense RNA-RNA interaction (Lee et al., 1993). In 

2000, the second miRNA let-7 was identified in C.elegans, and found to play an important role in 

the transition from the late larval to adult cell stage (Reinhart et al., 2000). Let-7 was also found 

to to have homologues in a variety of animal species (including vertebrates, ascidians, 

hemichordates, mollusks, annelids, and arthropods) (Pasquinelli et al., 2000). This discovery 

triggered greatly increased interest in miRNA, leading to the characterization of miRNAs as 

general regulatory elements important in development and differentiation. In 2001, Hutvagner and 

coworkers presented in vivo and in vitro evidence, in D. melanogaster, explaining the biogenesis 

of mature miRNA, and the RNA interference (RNAi) machinery: briefly, the let-7 precursor is 

processed into a stem-loop structure by the Drosha-containing microprocessor complex and then 

exported to the cytoplasm to be cleaved into the mature let-7 miRNA (Hutvagner et al., 2001; 

Jarroux et al., 2017). These studies, together, indicated that miRNA with regulatory function are 

not just isolated examples. Since then, with the advent of next-generation sequencing (NGS) 

technology, and development in bioinformatics methods for miRNA identification, the number of 

novel functional miRNA has greatly expanded (Palazzo and Lee, 2015).   

MicroRNA genes are common in eukaryotic genomes; usually there are thousands of miRNA 

genes. For instance, in humans, the ENCODE project reported 11,000 small RNA genes (The 

Encode Project Consortium 2012), and about 2600 mature miRNAs are listed in miRBase (S. 

Griffiths-Jones 2006). MiRNA genes are often located in the introns of protein coding genes 

(sometimes called miRtrons), in UTRs of coding transcripts, or found as completely separate 

transcripts. The primary transcript (pri-miRNA) is processed to produce a 60-100 base precursor 

RNA by the splicing process, in the case of intron encoded miRNAs, or by Drosha (DCL1 in 

plants) in the case of non-intron miRNAs. In either case, the result is a precursor RNA (pre-
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miRNA), with an extended base-paired hairpin structure. After export from the nucleus, the pre-

miRNA is asymmetrically cleaved, near the loop of the hairpin structure by the Dicer endonuclease 

to produce a mature miRNA. One strand of the mature miRNA, usually with a strong preference 

for the strand originating from the 5’ end of the pre-miRNA, referred to as the 5p strand, is loaded 

into the RNA-induced silencing complex, RISC, and the other, the 3p or * strand is degraded. 

Within the RISC, the miRNA is bound by an Argonaute (Ago) protein, and is used to locate its 

complementary target mRNA, usually binding in the 3’ UTR. The first 2-7 bases of the miRNA, 

the seed sequence, are particularly important in binding to the target, although extended 

complementarity or the miRNA and target mRNA is common. The seed region is also of interest 

because miRNAs with the same seed sequence are generally assigned to the same family. The 

mRNA is ultimately degraded by one of several pathways once it is bound to RISC. There are 

many exceptions and differences from the canonical process described above, but the general 

aspects are highly conserved. In addition to classical miRNA, there are additional classes of 

regulatory small RNAs including piwi-interacting RNA (piRNA), which interact with piwi 

proteins, a subtype of Argonaute proteins, and appear to act primarily to repress transcription of 

transposable elements (for a review see (Tang 2010)), and small interfering RNAs (siRNA) which 

are also produced from double stranded precursors by a Dicer-like system. One of the difficulties 

in predicting miRNAs is that exceptions to almost every aspect of the canonical process, described 

above, have been found, and while the process is very similar, there are significant differences 

between plants, animals, and fungi. 

From a computational viewpoint, the focus is usually on 1) miR discovery, identifying the miRNA 

genes or pri-miRNA transcripts from genome or transcriptome sequence and predicting the mature 

miRNA sequence from the gene/precursor sequence, and 2) predicting the mRNA targets. 

 MiRNA discovery 

Mature miRNAs can be identified experimentally by isolating and sequencing small RNAs, 

typically 17-28 bases long.  The sequences can then be mapped to the reference genome using 

standard short-read mapping programs such as BWA or Bowtie2. Mismatches must be allowed 

since miRNAs may undergo adenosine to inosine editing (Cai, et al. 2009). Pre-miRNAs, which 

are typically capped and polyadenylated, can also be identified in typical RNA-Seq experiments.  

In this case, the two arms of the miRNA hairpin stem are often detected as separate reads 
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(Kozomara and Griffiths-Jones 2013). Crosslinking-immunoprecipitation has been used to identify 

miRNAs bound in vivo to Argonaute.  This should, in principle, provide much better experimental 

datasets, but Agarwal et al (Agarwal, et al. 2015) suggest that many putative sites miRNA binding 

sites may be non-functional. 

Computational identification of novel miRNA genes in genomic sequence relies on a combination 

of sequence similarity to known mature miRNAs, typically based on Blast (Altschul, et al. 1997) 

searches, and secondary structure prediction using UnaFold (Markham and Zuker 2008), RNAFold 

(Mathews, et al. 2004), or the Vienna RNA package (Lorenz, et al. 2011). MiRNAs are often 

highly conserved between species, and the conservation of the mature miRNA should be nearly 

perfect, however due to “arm switching” (Griffiths-Jones, et al. 2011), the shift of the mature 

miRNA from the 5p to 3p side of the precursor hairpin, matching to just mature miRNAs can be 

problematic, and matching to the pre-miRNA is likely to be more reliable. The second approach 

to identification of miRNAs lies in detection of the long base-paired hairpin stem of the miRNA. 

Minimum free energy RNA secondary structure prediction methods are typically used to detect 

potential hairpin structures (see references, above), usually after pre-screening to restrict the 

analysis to only 3’ UTRs, to identify sequences similar to known miRNA, or to remove protein 

coding sequences, structural RNAs and transposable elements. Because there are many sequences 

that are predicted to fold as an acceptable hairpin stem, for instance Bentwich (Bentwich, et al. 

2005) identified about 11 million in the human genome, this basic approach is typically augmented 

by additional ad hoc criteria. These so-called context criteria examine features such as the presence 

of a base paired region adjacent to the precursor hairpin with a typical 2 base overhang on the 3p 

arm, require fewer than 4 mismatches between the 5p and 3p arms in the mature miRNA region, 

absence of loops in the mature miRNA region, or place additional constraints on GC-content, 

minimum predicted folding free energy (Zhang, et al. 2006) or alignment score, structural 

“exposure” of the seed binding region in the mRNA, exclusion of perfect inverted repeats forming 

the putative pre-miRNA hairpin (possible transposable element) (see, for instance, (Lucas and 

Budak 2012), (Meyers, et al. 2008)), and continuous pairing in the precursor stem. RNA 

sequencing data is frequently included, requiring that sequences for both the 5p and 3p arms be 

detected with a minimum number of reads. Most of these features have been proposed based on 

inspection of specific sets of predicted or validated miRNAs, and their power and generality are 

often unclear. 



20 

 MiRNA target prediction 

There is general consensus that complementarity of the mRNA with the miRNA seed sequence, 

conservation of the miRNA and mRNA target sequence across species, the predicted stability of 

the miRNA-mRNA duplexes, presence of multiple sites (abundance), and accessibility of the 

mRNA target site are among the most important features in predicting mRNA target sites (Peterson 

SM 2014). However, many of the same ad hoc features listed above may be incorporated.  There 

are literally dozens of predictive methods (for a recent comparison see (Fan and Kurgan 2015)). 

The recall (fraction of known miRNA targets identified in known data) and precision (fraction of 

correctly predicted targets) vary widely, and offer the classic trade-off between high recall-low 

precision and low recall-high precision. 

Many machine learning methods have been applied to miRNA discovery (see (Demirci, Baumbach 

and Allmer 2017) for a review).  Methods aremost often trained using data from miRBase as 

training data.  Negative datasets are usually obtained from coding regions (or equivalently, exons), 

or by random sampling from whole genomes.  It has been suggested that an average decision tree 

is best, and generalizes across species. Recently, a number of groups have attempted to determine 

which of the many proposed features are most discriminative. Agarwal et al. (Agarwal, et al. 2015) 

found that 3’-UTR site abundance, predicted seed-and downstream pairing stability, the base at 

position 1 and 8 of the miRNA seed sequence, the base at position 8 of the target site, local UA 

content, predicted structural accessibility, distance from the miRNA site to the stop codon of polyA 

site, site conservation, ORF length, 3’UTR length, and the number of offset sites in the UTR are 

the most important features in identifying miRNA targets. Lopes et al. (Lopes, Schliep and de 

Carvalho 2014) found that predicted minimum free energy index, ensemble free energy, 

normalized number of sequence variants, normalized Shannon entropy, and normalized base-pair 

distance were the most important features in a random forest approach. Tran et al. (Tran, et al. 

2015) found, using a boosted support vector machine approach, that the most important features 

are predicted folding free energy of the longest nonexact stem, maximum number of consecutive 

G’s in the longest nonexact stem, percentage of CC and GA dinucleotides, maximum number of 

consecutive C’s, maximum number of consecutive G’s in the hairpin, percentage of G–U pairs, 

folding free energy normalized by hairpin size, percentage of paired U, average predicted folding 

free energy, percentage of unpaired–unpaired A–paired triplets, and size of bulges. As just these 
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three examples show, there is considerable disagreement, even today, over what features are most 

relevant and powerful for miRNA target identification. 

 Databases/Resources 

There are many online resources related to miRNA (for a recent review see (Singh 2017).  A large 

fraction of these have been created for a particular organism or purpose, and then not updated. 

Below, we give our recommendations for the most useful and reliable resources (in our opinion). 

• MiRBase [ (miRBase 2016) (Kozomara and Griffiths-Jones 2013) ] is the original miRNA 

resource and still hosts the miRBase registry which provides unique names for novel miRNA 

genes prior to publication. Release 21 of miRBase contains 28645 entries from 223 species, 

including extensive annotation of functions, experimental evidence, and links to other 

databases. 

• DIANA-TarBase [ (Paraskevopoulou MD 2016, DIANA-TOOLS 2016), (Vlachos, et al. 

2015)] focuses on experimentally validated miRNAs and includes more than half a million 

experimentally supported miRNA-mRNA interactions.  In addition TarBase includes 

computational predictions made with the MicroT-CDS method. 

• Plant Non-coding RNA Database [ (PNRD 2016) (Yi, et al. 2014) focuses on all types of non-

coding RNAs in plants, not just miRNAs.  Since miRNAs are structurally somewhat different 

in plants, a plant specific resource is sometimes useful. The earlier Plant MicroRNA Database 

(PMRD) appeared to be inactive at the time this article was written. 

• Rfam [ (Rfam 2017)] contains a large amount of information about miR families, including 

sequences, species of occurrence, secondary structure (usually predicted), and matching 

motifs. 

1.4 Long non-coding RNAs1 

 Biological background 

By definition, long noncoding RNA (lncRNA) collectively refers to transcribed RNAs longer than 

200 nucleotides that have low coding potential. However, the 200 nucleotide threshold is an 

arbitrary threshold, which was selected based on a convenient biochemical cutoff in RNA isolation 

protocols. BC1and snaR, for example, are examples of ncRNAs that are shorter than 200 
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nucleotides but still classified as lncRNAs. Therefore, in 2011, Amaral et al. refined this definition: 

lncRNAs are noncoding RNAs that may have a function as either primary or spliced transcripts, 

that do not encode proteins, and are neither structural RNAs families (tRNAs, snoRNAs, 

spliceosomal RNAs, etc.), nor processed into known classes of small RNAs, such as microRNAs 

(miRNAs), piwi-interacting (piRNAs) and small nucleolar RNA (snoRNAs) [1]. Clearly this is 

still somewhat unsatisfying as lncRNAs are primarily defined as those that do not belong to known 

classes.  

Because of the generous definition, lncRNAs are diverse in their biogenesis, stability, sub-cellular 

localization, evolutionary conservation, structure and function [ (Ayupe, et al.2015), (Johnsson, et 

al. 2014)]. LncRNAs are typically capped, spliced, and poly-adenylated. Compared with mRNAs, 

lncRNAs have relatively lower expression level and lower stability. They are more tissue and cell-

type specific, and are often expressed in a narrower developmental time window. LncRNAs are 

mostly located in the nucleus, presumably to regulate gene expression at the epigenetic level, but 

a minority of lncRNAs are present in the cytoplasm where they regulate translation. For example, 

Xist is a well-studied lncRNA that is involved in X inactivation in placental mammals. Xist is 

localized in the nucleus, and is highly expressed from the inactivated X chromosome at the onset 

of X chromosome inactivation. Xist binds at many locations in the inactivated X chromosome (by 

an, as yet, not well understood process) and recruits silencing factors such as the Polycomb 

repressive complex 2 (PRC2) to silence X chromosome genes (Brown et al. 1992; Clemson et al. 

1996).  

Beyond primates, little sequence conservation is typically observed in lncRNAs, unlike mRNA. 

The lack of conservation in the sequence of lncRNA does not indicate a lack of common function; 

An increasing number of examples have shown that lncRNAs are conserved in structure rather 

than sequence, and that the secondary (or higher) structure of lncRNAs constitutes the main  

 

___________________________ 

1 This section has been published in a peer reviewed book. Sun, X. and Gribskov, M. (2019). 
MicroRNA and lncRNA Databases and Analysis. Encyclopedia of Bioinformatics and 
Computational Biology, vol.2, pp. 165–170. Oxford: Elsevier.  
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functional unit. For example, HOTAIR is a trans-acting lncRNA whose sequence is poorly 

conserved in mammals beyond primates (Bhan and Mandal 2016). Covariance analysis of 33 

mammalian HOTAIR sequences revealed a significant number of covarying positions and half-

flips localized in all four domains of HOTAIR, which act to maintain a similar structure 

(Somarowthu, et al. 2015).  

According to NONCODE (v 5.0, a database of lncRNAs documented in the literature), 354,855 

lncRNAs have been identified in 17 species. However, the functional roles of these lncRNAs 

remain mostly unknown. According to lncRNAdb (a database of eukaryotic lncRNA annotations), 

fewer than 300 have annotated functions confirmed by overexpression or knockdown experiments. 

LncRNAs, in general, can either repress or activate gene expression, and have been found to be 

associated with cell-fate programming ((Flynn and Chang 2014)) and numerous human diseases [ 

(Esteller 2011)]. The number of lncRNA whose mechanisms are known in detail is even more 

limited, less than 20. But these examples have already shown that lncRNA is involved in important 

biological processes, such as genomic imprinting, chromatin remodeling, post-transcriptional 

RNA processing, and regulation of translation. Based on our current knowledge, lncRNAs 

consummate their regulatory roles in 3 major ways: 1). As decoys: that is they bind to regulatory 

proteins and preclude their access to DNA; 2). As scaffolds: they recruit epigenetic complexes to 

regulate chromatin states; and 3). As guides: the lncRNA binds proteins and guides the 

ribonucleoprotein complex to a target [ (Rinn and Chang 2012)]. PANDA is an example of a 

lncRNA decoy. It sequesters a transcription factor called NF-YA, and keeps NF-YA from binding 

to its target genes, thereby preventing p53-mediated apoptosis [ (Hung, et al. 2011)]. HOTAIR, 

which is located in the HOXC cluster, is an example of a lncRNA scaffold. It can simultaneously 

bind PRC2 in its 5’ domain and LSD1 in its 3’ domain. PRC2 has the function of histone H3 

lysine-27 trimethylation, and LSD1 is involved in demethylation of histone H3 at lysine 4. This 

combination of interactions ensures epigenetic silencing of multiple cancer related genes [ (Hajjari 

and Salavaty 2015)]. As mentioned above, Xist is an example of a lncRNA guide. Xist recruits 

Polycomb 1 and 2 complexes and guides them to the X chromosome targeted for inactivation to 

establish and maintain its silencing. Because the mechanisms of so few lncRNAs are known in 

detail, it is likely that many other mechanisms will be uncovered, ultimately revealing a more 

complex picture of the role of lncRNAs in regulatory networks.   
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 Classification of lncRNAs 

In GENCODE [ (GENCODE 2017)], lncRNA is classified based on its genomic location with 

respect to nearby protein-coding genes. This is also one of the most commonly used methods to 

classify lncRNAs. Initially, lncRNAs were classified as either intergenic lncRNAs or intragenic 

lncRNAs. The transcripts of Intergenic lncRNAs (lincRNAs) do not overlap protein coding 

transcripts, while intragenic lncRNAs are transcribed from regions that overlap protein coding 

genes and can be further classified into sense and antisense lncRNAs. Sense lncRNAs are 

transcribed from regions of protein-coding genes on the same strand as the mRNA. They can 

overlap with both introns and exons of protein-coding genes. Totally Intronic RNAs (TINs), are 

lncRNAs that are located entirely within intronic regions of protein-coding genes. Partially 

Intronic RNAs (PINs), [ (Nakaya, et al. 2007)] are lncRNAs that partially or entirely cover the 

introns of protein-coding gene. Antisense lncRNAs, or Natural Antisense Transcripts (NATs), are 

lncRNAs transcribed from the opposite strand of protein-coding genes.  

Another way to classify lncRNAs is to distinguish their roles in the regulation of gene expression, 

distinguishing cis-acting and trans-acting RNAs. Cis-acting lncRNAs regulate the expression of 

genes that are positioned at the same, or a nearby, genomic locus. They may function through 

transcriptional interference or chromatin modification. Promoters and enhancers are two natural 

targets of cis-regulatory lncRNAs, which can recruit transcription factors, or chromatin 

modification complexes which remodel the structure of adjacent protein coding genes, to increase 

transcription. Promoter lncRNAs (sometimes called bidirectional promoter lncRNAs), plncRNAs, 

are transcribed from regions near the transcription start site (usually within 1500 bp of the 

transcription start site) of protein-coding genes, whereas enhancer lncRNAs (elncRNAs) may be 

located up to 1 Mbp upstream or downstream of the regulated gene. Trans-acting lncRNAs can 

control the expression of a gene at independent loci, for example, genes on a different 

chromosomes. 

 Discovery and exploration of lncRNAs 

Determining the nature and possible biological functions of lncRNAs has become a focus of 

intense research. Expression profiling is often a first step in uncovering the function of a lncRNA. 

Identifying differentially expressed lncRNAs in developmental stages or conditions can imply 
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their potential functions. Alternatively, an informatic method termed “Guilt by Association” 

identifies functions of lncRNAs by looking for protein-coding genes whose expression are 

significantly correlated with those of lncRNA [ (Guttman, et al. 2009).  

Even though some researchers have successfully identified lncRNAs using polyadenylated RNA 

sequencing (mRNA-Seq), total cellular RNA sequencing (total RNA-Seq) is the usually the 

method of choice for comprehensive expression profiling of lncRNAs. This is because some 

lncRNAs, particularly lncRNAs, may not be spliced or polyadenylated. By using total cellular 

RNA-Seq, both mRNAs and lncRNAs can be identified, regardless of whether they are 

polyadenylated.  

In the following section, we provide a computational pipeline for the identification of lncRNAs 

using total RNA-Seq data.  

1.  An appropriate reference assembly must be identified or constructed. 

a. If using a reference genome, reads are first mapped to the genome using an intron 

aware mapper (e.g., using Tophat2 [ (Kim, et al. 2013)]). Transcripts from different 

samples are merged (e.g., using cufflinks [ (Trapnell, et al. 2012)] ) 

b. If not using a reference genome, reads from all samples are combined to construct a 

de novo transcript assembly (e.g., using Trinity [ (Grabherr, et al. 2011)])  

2. Reads from the individual samples are separately mapped to the reference. 

3. Possible protein coding transcripts are excluded by multiple filtering steps, for example, 

by removing 

a. annotated protein coding transcripts, 

b. transcripts with high coding potential (e.g., using the Coding Potential Calculator [ 

(Kong, et al. 2007)]), 

c. transcripts with highly conserved known proteins or motifs (e.g., using BlastX [ 

(Altschul, et al. 1997)]), 

d. transcripts that have a high rate of synonymous versus nonsynonymous substitutions 

(e.g., using PhyloCSF [ (Lin, Jungreis and M 2011)]) 

4. ChIP-Seq (Chromatin Immunoprecipitation Sequencing) can be used to identify lncRNAs 

involved in gene activation involving transcription factors, or histone modification. 
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 lncRNA databases/resources 

Many online resources are available for lncRNAs.  As with miRNAs, the spectrum of resources 

rapidly changes as many databases are created for particular purposes, but not maintained over 

time.  In Table 1, we list a few of the currently active resources. Online searches for “lncRNA 

database” or similar terms will typically provide an updated list of resources, and a list is also 

maintained on Wikipedia (see the source citation in Table 1).  

Table 1 lncRNA databases and resources 

Database Species Last 
Update 

Description  

(URL http://) 

lncRNAdb 69 species 23-Nov-15 Includes lnc RNAs shown to be functional by 
overexpression or knockdown experiments. 

(www.lncrnadb.org) 

RNAcentral 37 species 1-Apr-17 Combines 25 well maintained ncRNA databases. 
Provides integrated text search, sequence 
similarity search, and programmatic data access. 

(rnacentral.org) 

NONCODE 17 species 6-Sep-17 Includes lncRNAs from published literature, 
GenBank, and specialized Databases such as 
Ensembl, RefSeq, lncRNAdb and LNCipedia. 
Functions of lncRNA are predicted by lnc-GFP. 

(www.noncode.org) 

LNCipedia Human 4-May-17 Includes 146,742 annotated human lncRNAs. 
Provides basic transcript information, predicted 
secondary 
structure, calculated protein coding potential, and 
predicted microRNA binding sites. 
(lncipedia.org) 

GreeNC 45 species 19-Sep-16 Includes lncRNAs annotated in plants and algae 
that are identified by using self-developed 
pipelines. Provides information about sequence, 
genomic coordinates, coding potential, and 
predicted folding energy.  
(greenc.sciencedesigners.com) 
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Table 1 continued 

PLAR2 17 
vertebrates 

Unknown Includes lncRNAs identified using self-developed 
pipelines. 3P-seq information are included.  
(www.weizmann.ac.il/Biological_Regulation/ 
IgorUlitsky/pipeline-lncrna-annotation-rna-seq-
data-plar) 

LncRNADisease human 26-Jul-17 Includes experimentally supported lncRNA-
disease association data and lncRNA interactions 
in various levels, including protein, RNA, 
miRNA, and DNA. 

(www.cuilab.cn/lncrnadisease) 

Lnc2Cancer human 4-Jul-16 A manually curated database that include 1488 
entries of associations between 666 human 
lncRNAs and 
97 human cancers.  

(www.bio-bigdata.com/lnc2cancer) 

Source: Wikipedia  
(http://en.wikipedia.org/wiki//List_of_long_non-coding_RNA_databases). 

1.5 Enhancer RNAs 

 Biological background 

The past decade has witnessed an explosion in the number of identified lncRNAs, which have been 

proven to be significant regulators of genome architecture and gene expression. In contrast to 

mRNA which functions as a mediator passing genomic information from DNA to protein, 

lncRNAs regulate gene expression in a variety of ways. Even though only a few lncRNAs have 

been characterized in detail, from well-studied cases (Rinn and Chang, 2012), it is obvious that 

lncRNAs regulate gene expression through interaction with chromatin to form a variety of RNA, 

DNA and protein complexes. For instance, lincRNA-p21, which is a lncRNA activated by 

transcription factor p53 and HIF-1α, regulates target gene expression by binding to the repressor 

protein hnRNP-K to effect hnRNP-K localization on genes in the p-53 dependent apoptosis 

pathway (Baldassarre and Masotti, 2012). A similar example is lncRNA Meg3, which recruits 

Polycomb Repressive Complex 2 (PRC2) to target genes via triple-helix formation, acting as a 

tumor-suppressor in pancreatic neuroendocrine tumor cells (Modali, et al, 2015).  
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Enhancers are DNA regulatory elements capable of activating their cognate promoters from a 

variable distance (from 100 bp up to Mbs (Mora et al., 2016)) to up-regulate the transcription of a 

target gene. This is believed to occur by forming promoter-enhancer looping interactions. Multiple 

lncRNAs have been demonstrated to be transcribed within enhancers regions. In 2010, a study 

revealed that RNA polymerase II (Pol II) recruitment to active enhancers initiates widespread 

transcription of ncRNA in mouse cortical neurons (Kim et al, 2010). These RNAs were termed 

enhancer-derived RNAs (eRNAs). Since then, extensive efforts have been devoted to eRNA 

identification in a variety of cell types and species, and to their potential functions and mechanisms. 

Initially, eRNAs were thought to be merely transcriptional noise caused by high concentrations of 

Pol II. Recent studies have confirmed that eRNAs are essential for enhancer function. In particular  

chromosome conformation capture (3C) (Dekker et al., 2002) and related techniques (e.g., circular 

chromosome conformation capture (4C) (Simonis et al., 2006; Zhao et al., 2006), chromosome 

conformation capture carbon copy (5C) (Dostie et al., 2006), Hi-C (Lieberman-Aiden et al., 2009), 

Combined 3C-Chip-Cloning (6C) (Tiwari and Baylin, 2009), chromatin interaction analysis by 

paired-end tag sequencing (ChIA-PET) (Fullwood et al., 2009) and 3D DNA selection and ligation 

(3D-DSL) (Harismendy et al., 2011)), have shown eRNAs to be important for stabilizing 

enhancer-promoter looping by interacting with cohesion/mediator proteins and facilitating 

enhancer function. For example, eRNA CCAT1-L, transcribed from the human 8q24 gene desert 

region (long region of the genome that are devoid of protein-coding gene (Ovcharenko et al., 

2005)) upstream of the MYC oncogene, plays an important role in regulating MYC transcription 

by promoting the formation of a long-range chromatin loop between the MYC promoter and 

enhancers (Xiang et al, 2014). Similar examples of eRNA involvment in chromatin-loop formation 

have been also observed in other studies (Fullwood et al., 2009; Yang et al., 2013; Lai et al., 2013; 

Li et al., 2013; Ren et al., 2017; Meng and Bartholomew, 2018), suggesting that eRNA isa group 

of ncRNA that function at the chromatin level to regulate target gene expression (Kim et al., 2015).  

Enhancer RNAs are ncRNA that function at the RNA level and are not translated into proteins. 

Similar to lncRNA, eRNA expression is tissue specific (Heward et al, 2015;). Still, eRNA possesss 

unique features that can be used to distinguish them from the lncRNA. The first distinctive feature 

is their association with specific chromatin modifications of the originating genomic regions. 

Genomic regions from which eRNA originates from usually have higher levels of enhancer marks 

(H3K27ac and H3K4me1). And unlike canonical lncRNA and mRNA, these regions are thought 



29 

to be depleted in H3K4me3 marks, unless the enhancer is highly transcribed (Meng and 

Bartholomew, 2018). Second, while lncRNA undergoes maturation processes such as splicing and 

polyadenylation, eRNA is rarely spliced or polyadenylated. Third, eRN is relatively unstable and 

has lower expression level, making them difficult to capturd by traditional transcriptome profiling 

approaches such as RNA-seq (Kim et al., 2015; Wang et al., 2018). In addition, several studies 

have reported that highly transcribed eRNAs are a hallmark of active enhancers, as the expression 

levels of eRNA is positively correlated with the activity of enhancers (Wang et al, 2011; Hah et 

al, 2013; Andersson, 2015). These emerging features of eRNA have greatly expanded the 

complexityof genomic transcriptional regulation. As eRNA marks active enhancers, targeted 

sequencing and bioinformatic analysis of eRNA may be a useful approach to detect enhancers and 

investigate biological functions of enhancers.  

 eRNAs in disease 

Disease-associated SNPs and recurrent somatic cancer mutations have been identified within 

enhancer regions (Murakawa et al., 2016), and many studies have shown that eRNA is 

differentially transcribed in various diseases (Yao et al., 2015; Le et al., 2017; Ren et al., 2017; 

Hauberg et al., 2018). Here we list several studies of eRNA in neurodegenerative diseases and 

cancer as examples.  

In 2015, Yao et al. identified a robust set of tissue-specific eRNAs expressed in human brain, and 

showed that the enhancer regions from which these eRNAs are transcribed are enriched in genetic 

variants associated with autism spectrum disorders (Yao et al., 2015). A more recent study, in 

2017, found that loss of RNA Pol II binding sites in enhancer regions in Huntington's disease 

mouse striatum contributes to reduced transcription of eRNA, resulting in down-regulation of 

target genes compared with healthy individuals (Le et al., 2017). Another study, published in 2018, 

examined RNA-seq data from 537 postmortem brain samples and identified 118 differentially 

transcribed eRNAs associated with schizophrenia. Furthermore, a genome-wide association study 

of schizophrenia indicated that a genetic variant in an enhancer region alters expression of both an 

eRNA and its target gene, suggesting the association of schizophrenia risk variants with eRNA 

(Hauberg et al, 2018). Collectively, these examples suggest that eRNA may be valuable as 

diagnostic markers and therapeutic targets for human neurodegenerative diseases.  
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The role of eRNA as a key regulatory non-coding RNA element in cancer has also been widely 

appreciated. An early study in 2013 reported that, in human breast cancer cells, 17β-oestradiol 

(E2)-bound estrogen receptor α (ER-α) causes a global increase in eRNA transcription in enhancers 

adjacent to estrogen-induced upregulated coding genes. In combination with 3D-DSL methods, 

upregulation of eRNA transcription induced by estrogen was found to be associated with 

significantly increases in corresponding enhancer-promoter interaction, indicating that eRNAs 

play important regulatory roles in gene expression in cancer cells (Li et al., 2013). Chen and 

colleagues (2018) introduced a comprehensive approach to detection and characterization of 

eRNA using RNA-seq data from 8928 tumors across 33 cancer types. This study observed global 

enhancer activation in most cancers compared with matched normal tissues. Moreover, they 

successfully identified and validated the existence of an eRNA transcribed from ethe nhancer 

region of PD-L1 (a major cancer immunotherapy target), suggesting a clinical ipotential for eRNA 

(Chen et al., 2018). Mutations of enhancers that are associated with cancer have also been shown 

to be heritable. Bal and colleagues studied six families with Bazex-Dupré-Christol syndrome and 

identified germline mutations in enhancer regions around oncogene ACTRT1. These mutations 

presumably leadi to the impairment of enhancer activity, transcription from the enhancer, and 

expression of ACTRT1 (Bal et al., 2017).   

In summary, the more we study eRNA, the more evidence has collected showing that eRNA are 

functional molecules that act at the chromatin level. Studies have also shown that eRNA expression 

is a hallmark of active enhancers (Wang et al., 2011; Andersson, 2015), and that the expression 

level of eRNA is positively correlated with enhancer activity (Chen et al., 2018).    

 Identification of eRNAs 

Currently, there is no direct way to isolate and sequence eRNA les. Still, in the past decade, several 

approaches have beeb applied to detect eRNA using sequencing approaches.  

The first approach is to sequence the nuclear transcriptome or the total. Considering that the 

majority of eRNA remains in the nucleus and is not polyadenylated (Wang et al., 2008), poly-A+ 

RNA-seq is not an appropriate sequencing method. Originally, eRNAs were detected by total 

RNA-seq (Kim et al., 2010), which is still the most commonly used sequencing method in eRNA 

detection because of its low cost and simplicity. However, total RNA-seq basically sequences all 
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types of RNAs (mRNA plus multiple forms of noncoding RNA). Because the abundance of eRNA 

is 19-34-fold lower than that of mRNA (Liu, 2016), detection of eRNA requires higher sequencing 

depth than does conventional RNA-seq (Murakawa et al., 2016). More recently, several more 

sensitive sequencing methods have been used to detect eRNA, e.g., cap analysis gene expression 

(CAGE) (Andersson et al., 2014), TSS-seq (Yamashita et al., 2011), and paired-end analysis of 

TSSs (PEAT) (Ni et al., 2010). These methods define a snapshot of the 5′ end of transcripts, which 

makes it possible to precisely locate the position of eRNA transcription initiation. However, these 

methods only work for 5’ capped mature RNAs, and are biased toward detection of stable 

transcripts. Such approaches are not suitable for detecting actively degraded eRNA (De Santa et 

al., 2010). Recently, nascent RNA sequencing technologies, such as global nuclear run-on 

sequencing (GRO-seq), precision run-on sequencing (PRO-seq) and native elongating transcript 

sequencing (NET-seq), have been used to detect eRNA (Wang et al., 2011; Kwak et al., 2013; 

Mayer et al., 2015). GRO-seq, which is the most widely used method to measure nascent RNAs, 

assesses transcription from engaged Pol II by sequencing transcripts from Pol II re-initiated 

transcription in vitro (Gardini, 2017). PRO-seq is an improved method, based on GRO-seq, that 

=sequences the 3’ end of the nascent RNA, and maps Pol II active sites with single nucleotide 

resolution (Mahat et al., 2016). NET-seq determines the 3’ end of nascent Pol II bound RNAs to 

detect actively transcribed RNAs at single nucleotide resolution (Churchman and Weissman, 

2012). Even though these methods can efficiently detect unstable nascent RNAs, including 

eRNAs, they all require elaborate in vitro experimental procedures and are relatively technically 

challenging.  

A second approach is to annotate eRNA using classic enhancer features. For example, high levels 

of H3K4me1, H3K27ac, and p300 binding are epigenomic marks that have been widely used to 

annotate enhancers. Noncoding RNAs (sometimes intergenic RNAs) coincident with these marks 

are annotated as eRNA. These epigenomic marks can be measured by chromatin 

immunoprecipitation (ChIP) coupled with DNA sequencing (ChIP–seq) (Heintzman et al., 2007). 

Note that while these epigenomic marks are useful and informative, their levels only describe the 

chromatin state of genomic regions, and they are indirect indicators of enhancers. Additional novel 

methods are still needed to directly identify enhancers and annotate  
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Many targets of eRNA are expected to occur in adjacent genomic regions, i.e., eRNA is often cis-

regulatory. Therefore, analysis eRNA expression patterns together with that of adjacent protein-

coding genes has been used to predict eRNA target. If knocking down on eRNA results in 

repression of a nearby protein-coding gene, the eRNA is likely to be cis-regulatory.  

 Database/resources 

Presently, there is no database for eRNA. However, there are several enhancer databases and 

eRNA can be identified as RNA transcribed from enhancer regions. Most of current available 

enhancer databases are collections of predicted enhancers rather than enhancers validated in vivo. 

In addtion, these databases mainly focus on tabulating enhancer regions in the human genome. 

Here we introduce several enhancer databases that have been widely used in enhancer/eRNAs 

studies.  

VISTA Enhancer Brower (https://enhancer.lbl.gov/) (Visel et al., 2007) is a central resource for 

experimentally validated human and mouse noncoding DNA fragments with enhancer activity. 

Candidate enhancer fragments in the human genome were first selected based on their extreme 

conservation in other vertebrates, or based on epigenomic evidence (ChIP-Seq identification ofof 

putative enhancer mark), and then were validated by in vivo experiments in transgenic mice. This 

database provides a valuable resource of experimentally validated enhancers and has been used as 

the gold standard in many enhancer prediction methods. However, since enhancers are specific to 

different developmental stages, this database has limitation that it only includes enhancers that are 

active at the time points that are examined by VISTA. As of 3/20/2019, this growing database 

contains 2963 in vivo tested DNA fragments, of which 1597 have enhancer activity.  

FANTOM5 Human Enhancers (also called Human Transcribed Enhancer Atlas) ( 

http://slidebase.binf.ku.dk/human_enhancers/) (Andersson et al., 2014) is a database describing a 

collection of predicted active enhancer regions defined by CAGE-based bidirectional transcription 

in the FANTOM5 projects. The FANTOM5 project carried out CAGE sequencing on RNAs 

isolated from every major human organ, over 200 cancer cell lines, 30 time courses of cellular 

differentiation, mouse developmental time courses, and over 200 primary cell types, making it 

possible to classify both cell-type-specific and ubiquitous enhancers. DNA regions that are not 

associated with promoters but are identified as the source of balanced transcription on both strands 
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(indicated by CAGE signals) are predicted to be active enhancer regions. In total, this database 

contains 43,011 predicted active enhancers.  

ChromHMM (http://compbio.mit.edu/ChromHMM/) (Ernst and Kellis, 2012) is a Hidden Markov 

Model based software that integrates multiple chromatin marks, such as those from ChIP-seq, to 

characterize chromatin states (such as enhancer, promoter, transcribed regions, and repressed 

regions) for each 200-bp genomic segment. ChromHMM has been applied to 111 Roadmap 

primary cell lines and 16 ENCODE cell lines to predict multi-cell activity profiles for chromatin 

state, gene expression and regulatory motif enrichment. The correlation between these profiles has 

also been used to predict cell-type-specific enhancers as well as target genes. These profiles can 

be retrieved from the website. In addition, users can also analyze their own files to get profiles of 

chromatin states in other cell types following the published protocol (Ernst and Kellis, 2017).  

Segway 2.0 (https://omictools.com/segway-tool) (Chan et al., 2018) is another chromatin state 

annotation software utilizing ChIP-seq or DNase-seq signals. It employs a Dynamic Bayesian 

Network (DBN), which takes input of the ChIP-seq or DNase-seq signals at 1-bp resolution in 

contrast to 200-bp resolution for ChromHMM. However, the increased resolution comes at the 

expense of computing efficiency. Moreover, this tool is not an open source tool and cannot be used 

for free.    

EnhancerAtlas (http://www.enhanceratlas.org/) (Gao et al., 2016) is an interactive database that 

contains 2,534,123 predicted enhancers for 76 human cell lines and 29 tissue types. Enhancers are 

predicted in each cell type by summation of at least three independent high throughput 

experimental datasets (e.g., DNase-seq, Formaldehyde-Assisted Isolation of Regulatory Elements 

(FAIRE)-seq, eRNA, P300 binding sites, POLII binding sites, histone modifications, transcription 

factor binding sites and CHIA-PET) with relative weights derived from a cross-validation 

approach. This database also predicts enhancer targets by integrating four features (i.e., enhancer 

and promoter activity correlation, transcription factor and promoter activity correlation, enhancer and 

promoter sequence co-evolution, and enhancer-to-promoter distance) using a Random Forest 

classifier. In addition to providing profiles of predicted enhancers, this database is also an 

interactive platform that allows users to (1) examine predicted enhancers in a specific genomic 
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regions; (2) examine predicted enhancers associated with specific genes (3) compare predicted 

enhancers across different cell/tissue types; (4) predict and build enhancer-gene networks.  

1.6 Chromatin enriched RNAs 

 Discovery and general features of cheRNA 

To provide some general insights into this mode of regulation and the mechanism of chromatin 

interaction for lncRNAs in nuclear, Ruthenburg and colleagues isolated lncRNAs tightly 

associated with chromatin in the nucleus by biochemical fractionation of the nuclear compartment 

followed by RNA-seq (Werner and Ruthenburg, 2015). They first extracted nuclei with a 

denaturing urea/detergent buffer to separate and purify soluble and loosely bound material 

(soluble-nuclear extract, SNE) from chromatin tightly-bound material (chromatin pellet extract, 

CPE). This nuclear fractionation procedure was adapted from Wuarin and Schibler (Wuarin and 

Schibler, 1994). RNA-seq was used to examine RNA levels in three biological replicates of SNE 

and CPE samples. Using de novo transcriptome assembly and differential expression analysis 

approaches, they identified 2,621 intergenic transcripts that were significantly (p<0.05) enriched 

in CPE in HEK293 cells. They termed these transcripts chromatin-enriched RNAs (cheRNAs).  

They found that most of cheRNAs are tethered to chromatin by Pol II and that they are remarkably 

co-localized with protein-coding genes with spacing <50 kb along the chromosomal coordinate. 

Moreover, the presence of cheRNA is strongly correlated with the expression of the nearest 

protein-coding gene at a level similar to, or higher than, that of enhancers predicted by 

ChromHMM and FANTOM, suggesting that cheRNA are a class of RNA that functions similarly 

to eRNA. In addition, in a subsequent study, they demonstrated that cheRNA is transcribed in a 

cell-type-specific manner by profiling cheRNA in three divergent cell lines: HEK293, K562, and 

H1-hESC (Werner et al., 2017). However, there are several molecular characteristics that 

distinguish cheRNA from the canonical defined eRNA. First, most putative enhancer regions 

marked by high levels of H3K4me1 relative to H3K4me3 are bi-directionally transcribed (Lam et 

al., 2014), while transcription of cheRNA displays strand bias and high abundance of H3K4me3 

marks. Second, the cheRNA identified in HEK293 have a median length of 2,110 bases, much 

longer than the median length of currently described eRNA (~350 bases). Finally, only a small 

proportion (~11%) of the FANTOM predicted eRNA loci overlap with cheRNA in any of the three 
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tested cell lines (HEK293, K562, H1-hESC). Despite these distinctions, the apparent functional 

similarity of cheRNA and eRNA provides a compelling reason to further investigate the role of 

cheRNA in activation of adjacent protein-coding genes.  

 Examples of cheRNA as cis-activator 

To further the cis-activating function of cheRNA, Werner et al. used the nuclear fractionation-

sequencing method to identify cheRNA in two Tier 1 cell lines (H1-hESC and K562) (Werner et 

al., 2017). In this study, they used CRISPRi to inhibit transcription of three cheRNAs that were 

highly expressed in the K562 nucleus. The three selected cheRNAs are: BONIFACIO, located 

67kb downstream of the nearest protein-coding gene, B3GNT2; PAINE located 71kb downstream 

of its nearest protein-coding gene, PDCD6IP; and ILYICH located 19kb upstream of its nearest 

protein-coding gene, IL6. They observed that reduced transcription (60-95%)of cheRNA led to 

proportional decreases in the expression of the nearest protein-coding gene in two out of three 

cases, suggesting a model in which cheRNA acts as a transcriptional activator in cis.  

In a further example, knockdown of another cheRNA HIDALGO, with CRISPRi decreased 

transcription of its nearest gene, i.e., the gamma-1 fetal hemoglobin (HBG1) gene. To distinguish 

if this is the effect of read-through transcription, or of the HIDALGO cheRNA molecule itself 

playing a role, they specifically degraded HIDALGO RNA using antisense oligonucleotides 

(ASOs). They observed a significant decrease in HBG1 transcription commensurate with the 

degree of HIDALGO knockdown, demonstrating that the cheRNA molecule itself plays the role to 

activate nearby gene transcription. To investigate whether HIDALGO plays a similar role as some 

eRNAs in maintaining a chromatin looping structure that facilitates contact between promoter and 

enhancer, Werner and colleagues performed chromatin conformation capture (3C) to study the 

interactions between HIDALGO and HBG1. They found that the promoter of HBG1 forms contacts 

with the TSS of HIDALGO, and that this contact is diminished by ASO or CRISPRi depletion of 

HIDALGO. Together these results indicate that the cheRNA HIDALGO cis-activates HBG1 

transcription similarly to the mechanism of eRNA, that is by mediating the contact between 

enhancer and its target.  
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In addition, Werner et al. studied the evolution of cheRNA and found that 96% of cheRNAs in 

K562 cells,  and 98% in H1-hESC cells, overlap with class I transposable elements (TE). Although 

this is not conclusive, the significant enrichment of TE suggests cheRNA may evolve from TE.  

In summary, cheRNAs are operationally defined by statistically significant enrichment in 

chromatin after biochemical fraction of nuclei (Werner et al., 2017). With convincing examples, 

Werner et al. have shown that cheRNA has the potential to activate proximal protein coding genes 

through interaction with chromatin. However, cheRNA seems not to function using a single 

uniform mechanism. For example, knockdown of cheRNA PAINE does not lead to a decrease in 

expression of its adjacent protein-coding gene; the identified cheRNA XIST is a well-known 

repressor located on the X chromosome of the placental mammals that acts as a major effector of 

the X inactivation process. Future investigations will most certainly be needed to complete our 

understanding of this novel class of lncRNA. 
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CHAPTER 2. IDENTIFICATION OF CHROMATIN-ENRICHED RNAS 
USING FOUR PIPELINES 

2.1 Summary 

Long noncoding RNA (lncRNA) is enriched not only in the cell nucleus, but also within the 

chromatin-associated fraction (Quinodoz et al., 2014). Many nuclear lncRNAs affect coding gene 

expression and chromatin organization, and are important in diverse biological processes (Khalil 

2009, Sun 2018). Nuclear RNA-seq has revealed thousands of potentially regulatory lncRNA, 

including chromatin-associated lncRNA (cheRNA) (Werner and Ruthenburg, 2015; Gayen et al., 

2017; Werner et al., 2017). However, a thorough survey of analytic pipelines for nuclear RNA-

seq has not been performed. 

The answers to many important questions regarding nuclear RNA-seq data analyses and cheRNA 

identification remain elusive. First, nuclear RNA-seq library construction differs from other RNA-

seq protocols (Figure 1.1a). These differences have significant consequences for the interpretation 

and analysis of the sequencing data (Griffith et al., 2015). For instance, sequencing of 

polyadenylated (polyA+) RNA may miss transcripts that are not usually polyadenylated, which 

includes many lncRNA. Total-RNA sequencing detects a higher proportion of lncRNA, but is 

more expensive and less efficient in quantifying coding-gene expression (Kumar et al., 2017). 

Moreover, because total RNA-seq basically sequences all types of RNAs (mRNA plus multiple 

forms of noncoding RNA) and the abundance of lncRNA is 19-34-fold lower than that of mRNA 

(Liu, 2017), detection of lncRNA requires higher sequencing depth than does conventional RNA-

seq (Murakawa et al., 2016). For example, the numbers of detected transcripts differ when nuclear 

or total RNA is sequenced, with 30.0% (7.0 k out of 23.3 k) of the transcripts detected only by 

total RNA sequencing, and 15.9% only by nuclear (Figure 1.1b). This difference is unlikely to be 

simply due to sequencing depth because the median depth was 49M for four pooled total RNA 

samples and 33M for 22 nuclear RNA samples; the latter includes the 9 CPE and 9 SNE samples 

reanalyzed in this study (Table 4). Markers of transcriptional regulation including RNA 

polymerase II (Pol II) sites, transcription factor binding sites, cis-regulatory RNA structures, 

histone deacetylase, and histone enhancer hallmarks are common in the DNA corresponding to the 

3700 RNAs detectable only by nuclear RNA-seq (Figure 1.1c). This observation agrees with  
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Figure 2.1 Nuclear RNA-seq sheds new insights into cis-regulatory elements. 

(a) Diverse RNA-seq library strategies from parallel samples. Solid lines are the sequencing 
libraries (in category) analyzed in this study, and dashed lines are other available libraries. Blue 
color indicates the RNA-seq strategies to specifically sequence nuclear RNA. (b) Venn diagram 
comparing the number of predicted transcripts in two pooled RNA-seq transcriptomes. In both 
cases, RNA-seq data is from the K562 cell line with RNA-seq libraries from ENCODE and GEO. 
One transcriptome is the union of the total RNA-seq transcripts that were expressed with ENCODE 
transcript quantification value>0 in both replicates, in at least one of four collected samples, and 
the other is the union of the three types of nuclear RNA-seq transcripts (blue boxes in panel a, 
pooled from 22 samples (see Table 4). The latter includes either all detectable transcripts (those 
with non-NA values in the downloaded data) in both its replicates, or Tuxedo-assembled expressed 
transcripts with CPM ≥ 1. (c) Prevalence of epigenetic and transcriptional markers in nuclear and 
total RNA. Transcriptomic (Trans) loci were defined by the presence of ENCODE ChIP-seq peaks 
or similarity to anonotated Rfam families (lncRNA). Mark of interest (peaks), were compared with 
each transcriptome and assigned as occurring in both, only one, or neither (at least 1nt, ignoring 
transcript orientation). The assignment is indicated by the bar color Hallmarks are ordered 
according to the percentages of peaks overlapping with only the nuclear RNA transcriptome 
(darkest bar). CPE: Chromatin Pellet Extract; SNE: Soluble Nuclear Extract. Table 3 lists the data 
resources. 
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previous suggestions that nuclear-retained lncRNA may interact with chromatin regulatory 

proteins and recruit them to cis-regulatory elements in order to regulate gene expression (Quinodoz 

2014, Sun 2018). Therefore, nuclear RNA-seq requires rigorous and effective pipelines different 

from the conventional pipelines used for total RNA-seq datasets. 

In this study, we compare one published and three new analytic pipelines for nuclear RNA-seq 

data analysis. A newly developed pipeline, Tuxedo, outperforms the other pipelines with respect 

to transcriptome completeness, accuracy of cheRNA identification, and enrichment of enhancer-

hallmarks at cheRNA gene regions. 

2.2 Nuclear RNA-seq requires rigorous computational strategies 

After the isolation of RNA and generation of sequencing libraries, a typical RNA-seq analytic 

workflow involves sequencing hundreds of millions of reads, alignment of reads against a 

reference genome or transcriptome, and downstream statistical analysis of expression. In the 

original method developed by Werner et al. (Werner and Ruthenburg, 2015; Werner et al., 2017), 

which we refer to as Werner, cheRNA was identified in the following steps: 1). chromatin pellet 

(CPE) transcripts were assembled using de novo transcript assembly with Cufflinks (Trapnell et 

al., 2010). Predicted transcripts from replicate samples were combined with Cuffmerge (Trapnell 

et al., 2010); 2). CPE predicted transcripts longer than 1000 bases were retained for further analysis 

and combined with soluble nuclear extract (SNE) predicted transcript assembled with Cufflinks 

relative to the reference GENCODE annotation (Harrow et al., 2012); 3). Differential abundance 

estimates of the combined transcript file, including replicate soluble nuclear and chromatin 

fractions, were made by Cuffdiff using standard options (Trapnell et al., 2012). This pipeline has 

three important biases: 1) Werner overestimates the proportion of de novo transcripts originating 

from CPE because it applies reference-guided de novo assembly (which can discover novel 

transcripts) to CPE but not to SNE fractions. 2) Werner removes transcripts shorter than 1000 

bases from the analysis. LncRNA transcripts are typically shorter than (median length 592 bases) 

protein-coding transcripts (median 2.4k bases), and 33% of GENCODE-annotated noncoding 

RNA is shorter than 1000 bases long (Derrien et al., 2012). Removing transcripts shorter than 

1,000 bases from the CPE assembly leads to significant under-detection of lncRNA. 3) In the 

differential expression analysis, Cuffdiff was used in Werner. However, Cuffdiff cannot do a two-
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group test on RNAs that have high expression levels. For example, noncoding RNA XIST, which 

is a canonical cheRNA, was categorized as “HiDATA” and excluded from differential expression 

analysis by Cuffdiff. In addition, it has been shown that discarding genes that are not expressed at 

a biologically meaningful level in any condition (prefiltering) can increase the power for detecting 

differentially expression gene (Bourgon et al., 2010), but Werner doesn’t include a prefiltering 

step in the differential expression analysis.  

We developed three new pipelines (referred to here as Tuxedo, Concatenating, and Taco,) to 

analyze these datasets (Figure 2.2). The four major analytic steps in each pipeline are: sequence 

mapping, transcript assembly for sample, final transcriptome construction, and signature 

identification between CPE and SNE samples (APPENDIX B. Methods). The sequence mapping 

steps are the same in the three new pipelines; reads were mapped against the human genome 

version GRCh38.p10 using Tophat (v2.1.1) (Kim et al., 2013). In the transcript assembly step of 

the Concatenating, Tuxedo and Taco pipelines, we applied reference annotation-based transcript 

(RABT) assembly using Cufflinks, which assembles both annotated and de novo transcripta, 

independently for each sample and replicate. In the final transcriptome construction step, different 

strategies of combining the predicted transcripts were used in each pipeline. In the Concatenating 

pipeline, Cuffmerge (Trapnell et al., 2012) was used to separately merge the predicted transcripts 

from the three CPE replicates and three SNE replicates to produce separate CPE and SNE 

transcriptomes; then the CPE transcriptome and SNE transcriptome were combined to produce the 

final reference transcriptome used for differential expression analysis. In the Tuxedo pipeline, 

Cuffmerge was used to merge predicted transcripts from all CPE and SNE replicates to produce 

the final transcriptome. And in the Taco pipeline, we used TACO, a dynamic programming 

approach reported to outperform existing software tools (Niknafs et al., 2017), to assemble and 

merge all predicted transcripts from all CPE and SNE replicates to produce the reference 

transcriptome (more details can be found in APPENDIX B. Methods). In the last step, the 

identification of differential expression signatures between CEP and SNE samples, the 

Concatenating, Tuxedo and Taco pipelines used the model-based statistical Limma package, to 

identify differentially expressed transcripts. Limma has been shown to have higher precision and 

shorter runtimes than Cuffdiff and DESeq (Seyednasrollah et al., 2015). Hereafter, we evaluate 

the performance of the three new pipelines and Werner using the K562 dataset, which has the 

largest set of well described genomic features. 
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2.3 Identification of cheRNAs using four pipelines 

We compared four pipelines, namely Werner, Concatenating, Tuxedo, and Taco, for the 

identification of chromatin enriched RNAs (Figure 2.2). Werner was executed by strictly following 

the analysis steps published in Werner’s paper (Werner and Ruthenburg, 2015). Briefly, there are 

four steps in each pipeline: sequence mapping, transcript assembly, transcriptome construction, 

and signature identification. 

The sequence mapping step is the same in all four pipelines. First, the reads were mapped against 

the human genome version GRCh38.p10 using Tophat (v2.1.1) (Kim et al., 2013) with default 

parameters for stranded RNA-seq libraries (e.g., tophat -p 8 --library-type=fr-firststrand -G 

gencode.v25.gtf GRCH38.genome -o CPE1 CPE1.fastq).  

Strategies used in transcript assembly varied in four different pipelines. In the Werner pipeline, de 

novo assembly was applied only on the three biological Chromatin Pellet Extract (CPE) replicates 

using Cufflinks (v2.2.1) (Trapnell et al., 2012) (e.g., cufflinks -p 8 -u -N -library-type fr-firststrand 

-o cufflinks_CPE1 CPE1.bam), while reference-guided assembly (e.g., cufflinks -p 8 -u -N -

library-type fr-firststrand -G gencode.v25.gtf) were applied on the three biological Soluble Nuclear 

Extract (SNE) replicates. In Concatenatin, Tuxedo and Taco pipelines, we independently applied 

the reference annotation-based transcript (RABT) assembly, which assembles both known and 

novel transcript. Specifically, we run the RABT assembly on the three biological CPE replicates 

and three biological SNE replicates by Cufflinks (Trapnell et al., 2012) using “cufflinks -g” option 

with GENCODE (v25) annotation as reference (e.g., cufflinks -u -N -library-type fr-firststrand -g 

gencode.v25.gtf -o cufflinks_CPE1 CPE1.bam). 
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Figure 2.2 Four nuclear RNA-Seq analytic workflows. 
Workflow of the four nuclear RNA-Seq analytic pipelines. Werner pipeline is executed by strictly 
following the analysis steps described by Werner et al. (Werner 2015). There are four major 
analytic steps in each pipeline are: (a1) Sequence mapping; Tophat is used to map RNA-seq reads 
in each sample/replicate are against the human genome version GRCh38.p10 (S Methods). (a2) 
Transcript assembly; Cufflinks is used to apply denovo/annotation guided/RABT (reference 
annotation based transcript) assembly on mapped reads (S Methods). Annotation guided assembly 
only assembles annotated transcripts included in provided GTF files. RABT assembly assembles 
both annotated transcripts and unannotated transcripts. (a3) Final transcriptome construction; 
Cuffmerge/TACO is used to merge assembled transcripts from all replicates/samples to construct 
final transcriptome GTF file (S Methods). Bar plot represents the number of “expressed” transcripts 

(CPM ≥ 1 in at least two samples); color indicates the assembly result in different cell line (H1: 
grey, K562: purple, HEK293: green). (a4) Signature identification; Cuffdiff/limma is used to 
identify RNAs that are differentially expressed between CPE and SNE samples (S Methods). 
Stacked bar plot represents the number of RNA with different abundance in the CPE/SNE samples; 
within each line a lighter color represents abundance in SNE and a darker color represents 
abundance in CPE. 
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Strategies used to construct transcriptome also varied in four different pipelines. In Werner, we 

did: 

1) CPE replicates and SNE replicates were separately combined using Cuffmerge (v2.2.1) 

(Trapnell et al., 2010), resulting in both CPE transcriptome (e.g., cuffmerge -p 8 -o 

CPE_cuffmerge CPE_transcripts.txt) and SNE transcriptome (e.g., cuffmerge -p 8 -o 

SNE_cuffmerge SNE_transcripts.txt).  

2) Reused transcript identifiers in the CPE transcriptome ‘XLOC_’ were renamed to ‘CLOC_’ 

to differentiate them from the transcript in the SNE transcriptome.  

3) Only transcripts longer than 1000bp were kept in CPE transcriptome. – Note that this sub-

step is specific to the Werner pipeline according to the author which may cause a bias to 

longer transcripts (Werner and Ruthenburg, 2015) 

4) Two .bed files of CPE transcriptomes (‘CLOC_’) and SNE transcriptomes (‘XLOC_’) 

were obtained from their respective Cufflinks output .gtf files using gtf2bed in BEDOPS 

(v2.4.28) (Neph et al., 2012).  

5) Next, we retrieved CPE-unique transcriptome using intersectBed (e.g., intersectBed -s -v -

a CLOC.bed -b XLOC.bed) in bedtools (v2.26.0) (Quinlan and Hall, 2010).  

6) These CPE-unique transcriptomes were then combined with SNE transcriptomes using ‘cat’ 

command to build the transcriptome for differential expression analysis.  

The other three pipelines were similar to Werner except the sub-steps 1) and 3). In Concatenating, 

we used Cuffmerge to merge three CPE replicates (e.g., cuffmerge -p 8 -o CPE_cuffmerge 

CPE_transcripts.txt) and three SNE replicates (e.g., cuffmerge -p 8 -o SNE_cuffmerge 

SNE_transcripts.txt) separately to get the CPE transcriptome and SNE transcriptome.  

In Tuxedo, we used Cuffmerge to merge all CPE and SNE replicates together to make an 

annotation for differential expression analysis (e.g., cuffmerge -p 8 -o tuxedo_cuffmerge 

ALL_transcripts.txt).  

And in Taco, we used Taco (Niknafs et al., 2017) to merge all CPE and SNE replicates together 

to build the transcriptome for differential expression analysis.  
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In the last step to identify cheRNA signatures, Werner used Cuffdiff (v2.2.1) (Trapnell et al., 2010) 

with standard options (cuffdiff -p 8 -o cuffdiff.out --library-type fr-firststrand -L SNE,CPE -u 

combined_transcriptome.gtf K562_SNE1.bam, K562_SNE2.bam, K562_SNE3.bam 

K562_CPE1.bam, K562_CPE2.bam, K562_CPE3.bam). As a result, un-transcribed RNAs were 

identified as RNAs with a “NOTEST” value under “Test status” column in “gene_exp.diff” table. 

When contrasting expression levels in CPE samples to SNE samples, RNAs with FoldChange>1 

and q_value<0.05 were identified as CPE-enriched RNA (cheRNAs) and RNAs with 

FoldChange<1 and q_value<0.05 were identified Soluble Nuclear-Extracted RNAs (sneRNAs).  

In Concatenating, Tuxedo and Taco pipelines, we applied the same advanced computational 

strategy (limma) which generally showed higher precision and shortest runtimes than cuffdiff in 

RNA-seq data analysis (Seyednasrollah et al., 2015). Specifically, we did: 

1) Used HTSeq (v.0.7.0) (Anders et al., 2015) to get the raw counts of transcripts (e.g., htseq-

count -f bam -s no -m intersection-nonempty CPE1.bam tuxedo_transcriptome.gtf > 

CPE1_geneCounts.out). 

2) Transformed the expression of RNAs from raw counts to counts per million (CPM). RNAs 

with CPM<1 are considered as un-transcribed. Only RNAs expressed in at least 3 out of 6 

samples were retained for further analysis.  

3) Normalization of RNA expression was performed by the method of trimmed mean of M-

values (TMM).  

4) Used limma package in R (Ritchie et al., 2015) to do differential expression analysis 

comparing CPE samples with SNE samples, per cell type. The expected FDR was 

estimated using the Benjamini-and-Hochberg method.  

5) Transcripts having FDR<0.05 and FoldChange>1.2 were identified as chromatin enriched 

RNAs and transcripts having FDR<0.05 and FoldChange<0.83 were identified as 

chromatin depleted RNAs 

2.4 Tuxedo builds a complete transcriptome for active transcripts 

Lowly expressed transcripts are likely to be experimental noise (Hart et al., 2013). Unlike methods 

applied to coding gene profiles, in which one can define an expression cutoff for active promoters, 

we made an empirical decision to define predicted transcripts with CPM (counts per million) ≥ 1 
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as ‘expressed’ for downstream analysis. This filter resulted in an approximately log-normal 

distribution of expression levels and about 14 k measured transcripts per sample (Figure 2.3a), 

ensuring the appropriateness of model-based differential expressional analyses such as Limma 

(Ritchie et al., 2015). 

To evaluate the transcriptomes assembled by the 4 pipelines, we used the assembly result of K562 

cell data as a reference. We first compared the completeness of the transcriptomes. Transcriptomes 

assembled by the Tuxedo and Concatenating assemblies are very concordant. 99.8% of transcripts 

are the same. 84.4% of transcripts assembled by both Tuxedo and Concatenating are also 

assembled by Werner. This number decreases to 27.0% for Taco (Figure 2.4a). To determine the 

reasons for assembly inconsistency, we compared the assembly results for annotated transcripts 

(Figure 2.4b) and unannotated transcripts (Figure 2.4c) separately. 

 
Figure 2.3 Noise filtering and transcript length. 

(a) Density plot showing the consequence of filtering the lowest-expressed values by the Tuxedo 
pipeline. A nice bell-like shape of count distribution was observed after this filtering of noise. Line 
colors decode individual samples. (b) The width distribution of all transcripts built in the four pipelines 
showing Taco assembles relatively shorter transcripts, as 83% of its assembled RNAs are shorter than 
1k bases. 

The annotated transcripts assembled by Tuxedo, Concatenating and Werner pipelines are almost 

identical, and correspond to the set of annotated transcripts in GENCODE (v25). Taco only 

assembled 26.2% of annotated transcripts. This is because the Taco pipeline uses TACO instead 

of Cufflinks as the assembly tool. TACO only includes transcripts that have significant expression, 

while Cufflinks keeps all annotated transcripts when building the transcriptome. By looking at the 
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expression level of transcripts, we confirmed that the 40.7 k annotated transcripts that are omitted 

by Taco are transcripts with low expression levels in K562. Among the unannotated transcripts 

assembled by Tuxedo and Concatenating, 96.8 % are the same. Moreover, Tuxedo and 

Concatenating assembled more transcripts than Werner and Taco. The length distribution of 

transcripts assembled by Tuxedo and Concatenating, but not by Werner, shows that the majority 

of such transcripts are shorter than 1000 bases (Figure 2.4d), which is caused by removing 

transcripts shorter than 1000 bases from CPE samples in Werner. Taco assembled the smallest 

number of unannotated transcripts. 

The unannotated transcripts omitted by Taco also have low expression. Even though these 

transcripts were lowly expressed in samples, it is still necessary to keep them in the assembled 

transcriptome to accurately estimate gene expression levels. We next investigated the length of 

assembled transcripts (Figure 2.3b, Figure 2.4e). Approximately half of the assembled transcripts 

have lengths between 200-1000 bases and show similar log-normal distributions for Tuxedo and 

Concatenating. In contrast, transcripts assembled by Werner are generally longer (71% of the 

assembled transcripts are longer than 1000 bases), which is another indication of the 

incompleteness caused by removing short transcripts. Transcripts assembled by Taco are much 

shorter (83% of assembled transcripts are shorter than 1000 bases). The TACO assembler employs 

an algorithm based on change-point detection via binary segmentation to predict transcript 

structure (Niknafs et al., 2017). This algorithm is more robust in assembly of annotated and 

conserved transcript such as mRNA. However, when it is applied to assembly of noncoding RNA, 

the TACO assembler overestimates the degree of alternative splicing and results in a large number 

of truncated transcripts. This is incorrect since only a small fraction of lncRNA undergo splicing 

(Tilgner et al., 2012). In summary, Tuxedo and Concatenating construct relatively complete and 

correctly structured transcriptomes for analysis.  
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Figure 2.4 Tuxedo assembles a complete high-quality transcriptome. 

(a) Overlap in predicted RNA classes in the K562 cell line. Venn-diagram showing coordinate-
overlaps for all RNA predicted in the four pipelines. Numbers are calculated by the R package 
ChIPpeakAnno with the “findOverlapsOfPeaks” function to count number of overlapped 
transcripts. RNAs with an overlap of 1 base or more are considered to be overlapped. If multiple 
transcripts overlap in several groups, the minimal number of transcripts in any group is counted as 
the number of overlapping transcripts. (b) Overlap in annotated RNA in K562 cell line. Venn-
diagram showing coordinate-overlaps for annotated or (c) unannotated RNA, being respectively 
constructed by 4 pipelines. (d) Length distribution of predicted RNA in the four pipelines. Color 
indicates different pipelines: Werner (green), Concatenating (Concat., red), Tuxedo (purple), Taco 
(blue). (e) Length distribution of unannotated RNA predicted by Tuxedo and Concatenating but 
not by Werner or Taco. (f) Proportion of expressed RNA (CPM ≥ 1) assembled in each pipeline 
that overlap (at least 1 base, same strand) by coordinate with any GRO-seq peak and POL II peak. 
Coordinate overlaps are calculated by using the R package GenomicRanges with the “findoverlaps” 
function. Expressed RNA in Tuxedo assembly has the highest proportion of overlap with peaks 
representing ongoing transcription (by Pol II), and nascent transcription (by GRO-seq). 
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Additionally, we compared the transcriptional activity of the expressed transcripts assembled by 

the 4 pipelines using two independent measurements: Pol II ChIP-seq and global run-on 

sequencing (GRO-seq) (Table 4). Expressed transcripts are defined as those having CPM ≥ 1. The 

expressed transcripts assembled by Tuxedo show the highest proportion of overlap with peaks 

representing both ongoing transcription by Pol II, and peaks representing nascent transcription by 

GRO-seq (Figure 2.4f), demonstrating that expressed transcripts assembled by Tuxedo are more 

concordant with active transcription signal represented by other methods. 

2.5 Tuxedo outperforms in identifying cheRNAs 

To evaluate the performance of the four pipelines in cheRNA identification, we used the set of 

transcripts identified by all methods as a proxy gold standard, and found Tuxedo and 

Concatenating outperformed Werner and Taco in the identification of both cheRNA and sneRNA 

(Figure 2.5a). To further check the accuracy we examined sixteen loci of known cheRNA, sneRNA, 

or chromatin-independent RNA (transcripts not significantly differentially expressed between 

CPE and SNE samples) that were previously validated in specific cell types (Werner and 

Ruthenburg, 2015; Werner et al., 2017). Tuxedo and Concatenating successfully confirmed the 

chromatin enrichment in all canonical cheRNAs and outperform Werner and Taco with overall 

positive predicted value (ppv) of 0.88 (Figure 2.5b, Table 2). This analysis, although possibly 

susceptible to threshold effects, makes up the shortage of lack of a truly gold standard in the ROC-

analysis. Both analyses suggest that Tuxedo and Concatenating are better than Werner and Taco.  

Because intergenic cheRNA (icheRNA), which are defined as cheRNA without no coordinate 

overlap with known coding genes, is similar to eRNA (Werner and Ruthenburg, 2015; Werner et 

al., 2017), we examined the occupancy of enhancer marks (ChIP-seq signals of EP300, H3K27ac, 

H3K4me1) and a repressive mark (H3K27me3) around the TSS of the 2.0 k to 6.7 k icheRNA 

identified by each pipeline (Figure 2.5c). In this analysis, we used ChromHMM (Ernst et al., 2016) 

predicted eRNA (Figure 2.5c, yellow) and non- enhancer RNA (Figure 2.5c, black) as positive and 
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Table 2 Canonical cheRNAs can be better identified by Tuxedo and Concatenating methods. 
Colored cells are validated in specific cell and used as gold standards. 

16 alidations HEK293 K562 

result cell RNA Symbol 
Wern

er 
Tuxe

do 
Conc

at. Taco 
Wern

er 
Tuxe

do 
Conc

at. Taco 

CPE 

HEK293 KCNQ1OT1 CPE CPE CPE NA         

HEK293 XIST HD CPE CPE CPE         
HEK293

/K562 PVT1 - CPE CPE - CPE CPE CPE CPE 

K562 BONIFACIO         CPE CPE CPE CPE 

K562 ILYICH         CPE CPE CPE CPE 

K562 HIDALGO         - CPE CPE CPE 

SNE 

HEK293 GAPDH SNE SNE SNE SNE         

HEK293 ACTB SNE SNE SNE SNE         
HEK293

/K562 MYC SNE SNE SNE SNE SNE SNE SNE SNE 

K562 B3GNT2         SNE SNE SNE SNE 

K562 IL6         - - - NA 

K562 PDCD6IP         - SNE SNE SNE 

interm
ediate 

HEK293 HOTAIR SNE - - NA         
HEK293 DLX6-AS1, 

Evf-2_5p - CPE CPE NA         
correct prediction: 5 7 7 4 5 7 7 7 
number of gold standarad: 8 8 8 8 8 8 8 8 
PPV     0.63 0.88 0.88 0.50 0.63 0.88 0.88 0.88 
NA:   not tested because of low expression level     
HD:  not tested by Cuffdiff because of high expression level (HI-DATA)  
“-”:   tested but not significantly differentially expressed     
PPV:  

  
number of correct predictions /number of gold standard in each cell line (8 gold 
standard in HEK293 while 8 gold standard in K562) 

 

negative controls. ChromHMM-predicted eRNA is defined as intergenic RNA that overlaps (at 

least 1 base, same strand) with any ChromHMM predicted “strong enhancer” region and 

ChromHMM-predicted non-enhancer RNA is defined as transcribed RNA that has no overlap with 

any predicted “strong enhancer” or “weak enhancer” region. We found that the levels of enhancer 
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marks (EP300, H3K27ac, H3K4me1) are significantly higher around TSS of icheRNA than at the 

TSS of ChromHMM predicted non-enhancer RNA, while the level of repressive marks is 

significantly lower. Moreover, among the 4 pipelines, the icheRNA identified by Tuxedo pipeline 

have the highest levels of H3K27ac and H3K4me1 enhancer marks around their TSS, and 

relatively lower levels of repressive marks. We also noticed that the levels of enhancer marks 

around TSS of ChromHMM predicted eRNA are much higher than those around TSS of icheRNA. 

Considering that ChromHMM predicts enhancer regions based on histone modification patterns, 

the enhancers predicted by ChromHMM may be biased toward having high occupancy of these 

canonical enhancer marks. Additionally, all three new pipelines slightly improved the cell-type 

specificity compared to Werner, as evaluated by the proportion of tissue-specific icheRNA 

identified by each pipeline (represented by R1 score in Figure 2.5d).  

Overall, we conclude that Tuxedo and Concatenating outperform the other two pipelines in 

identifying expected cheRNA, and that the Tuxedo predicted icheRNA transcripts are more highly 

enriched in enhancer hallmarks compared to other methods. In this sense, Tuxedo outperforms 

Concatenating and other pipelines in enriching enhancer hallmarks in the same cell type. 
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Figure 2.5 cheRNA prediction using the four pipelines in K562 cell line. 
(a) Receiver operating characteristic (ROC) curves of four pipelines identifying cheRNA (a1) and 
sneRNA (a2). The commonly-identified 731 cheRNA or 3573 sneRNA by all four pipelines are 
the proxy gold standard (GS) used here. Color represents different pipeline: Werner (green), 
Concatenating (Concat., red), Tuxedo (purple), Taco (blue). The Tuxedo and Concatenating 
methods have the best performance, with AUC larger than 0.89 in both cheRNA and sneRNAs 
identification. (b) Average positive predicted value (ppv) in identifying sixteen canonical 
cheRNA/sneRNA/intermediate RNA (RNA not differentially expressed between CPE and SNE) 
experimentally verified in previous studies for chromatin-enrichment or depletion, using the four 
pipelines, respectively. Further details about these 16 loci are given in Table 2. (c) Average ChIP-
seq read density around TSS (±1kb centered at TSS) of the indicated RNA classes in K562. Boxes 
span the lower to upper quartile boundaries, the median is indicated with solid line in each box. 
Color represents the icheRNA identified in four pipelines, and two control group of ChromHMM 
predicted RNAs in K562 (ChromHMM-predicted eRNAs as a positive control (yellow), and 
ChromHMM-predicted non-enhancer RNAs as a negative control (black)). ChromHMM-
predicted eRNA is defined as intergenic RNA overlapped (at least 1 base, same strand) with any 
ChromHMM predicted “strong enhancer” region and ChromHMM-predicted non-enhancer RNA 
is defined as transcribed RNA that have no overlap with any ChromHMM-predicted “strong” or 
“weak” enhancers. (d) Fraction of cell-type-specific intergenic cheRNAs. R1 is the ratio of cell 
type specific RNAs versus all RNAs identified in each pipeline. Higher R1 value indicating more 
cell-type specific identification. Venn diagrams show the overlap of icheRNA identified in K562, 
HEK293 and H1-hESC cell lines by Werner (green), Concatenating (red), Tuxedo (purple) and 
Taco (blue). icheRNA identified by all the four pipelines except Werner (green) have high tissue-
specificity (R1>0.9).  
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2.6 Discussion 

Detail analysis of nuclear RNA-seq sheds new light on cis-regulatory elements (Figure 2.1c). We 

have presented a computational pipeline, Tuxedo, for analyzing nuclear RNA-seq data containing 

both high low expression lncRNA (Figure 2.2). The Tuxedo pipeline makes three key 

computational improvements: 1) Tuxedo assembles the complete transcriptome in an unbiased 

way, covering both highly-expressed transcripts and lncRNA shorter than 1,000 bases. 2) Tuxedo 

employs an empirical threshold to distinguish between low but informative lncRNA transcription 

and noise. And 3) Tuxedo identifies cheRNAs precisely while recapturing three known genomic 

features of active enhancers. The strategies used in the Tuxedo pipeline are not restricted to 

cheRNA identification, and could be beneficial to nuclear RNA-seq data analyses testing broader 

biological hypotheses, such as to the relationship between enhancer marked and differentially 

expressed nuclear RNAs.  
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CHAPTER 3. INTERGENIC CHERNAS UNIQUELY PRESENT 
ERNAS FEATURES 

3.1 Summary 

Development of sequencing technology leads to a surprising increase in the discovery of 

noncoding RNA, especially miRNA and lncRNA. Unlike miRNA, the functioning mechanism of 

which has been well studied, most of lncRNAs are identified with no known function. Based on 

the studied lncRNA mechanisms, it is worth noting that lncRNA frequently functions at chromatin 

interface. eRNA is a subgroup of lncRNAs that are pervasively transcribed from enhancer regions 

and required for maintaining enhancer-promoter looping structure through chromatin interaction.  

cheRNA is operationally defined by statistically significant enrichment in chromatin after 

biochemical fraction of nuclei. The previous work by Werner et al. showed that cheRNA correlates 

with neighboring gene transcriptional activity at a level similar to, or better than the current state-

of-the-art active enhancer annotation (Werner and Ruthenburg, 2015). Perturbation of four distinct 

cheRNAs further suggest that cheRNA activates nearby genes through a mechanism similar with 

eRNA. To investigate if this similarity is widely existing among all cheRNAs, we used the 

suggested Tuxedo pipeline to undertake a more comprehensive examination of cheRNAs in 

HEK293, K562 and H1-hESC cell line. We discussed the similarity between cheRNAs and eRNAs 

in five aspects: 1). genomic localization; 2). coding potential; 3). RNA polyadenylation; 4). 

transcriptional correlation with nearby coding gene; 5). chromatin and histone signatures. We 

found that cheRNAs are mostly transcribed from intergenic regions. Compared to intergenic 

sneRNA (isneRNA), intergenic cheRNA (icheRNA) has lower coding probability, lacks 

polyadenylation, and its expression is more positively correlated with that of neighboring coding 

genes, suggesting that icheRNA rather than isneRNA is more similar to eRNA.  

We also observed that icheRNA has a lower transcription level and is largely unannotated, while 

isneRNA is more highly transcribed and better annotated. This unbiased annotation in icheRNA 

and isneRNA suggest that the traditional transcriptome profiling of non-coding RNA (e.g. total 

RNA-seq) yields the broadest survey of transcripts but has limited ability to detect low expression 

transcripts such as those of icheRNA. Isolation and sequencing RNAs that tightly interacts with 
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chromatin in nuclear can identify a group of novel noncoding RNAs that has been largely overseen 

before.  

In the aspect of chromatin signatures, we found that regions around TSS of icheRNA only show 

moderate level of active enhancer marks, which is consistent with previous observation by Werner 

et al. (Werner and Ruthenburg, 2015). This may indicate icheRNAs contain other RNA groups 

besides eRNA. Despite there are differences, icheRNA still show more apparent similarity to 

eRNAs than other RNA groups, which indicates that indentification of icheRNA provides a new 

way to annotate eRNA. 

3.2 icheRNA represents a subset of noncoding RNAs de novo 

Werner et al proposed that icheRNA is a distinct subclass of unannotated eRNA. To further 

examine this hypothesis, we categorized the 14k expressed nuclear RNAs detected by Tuxedo into 

three groups (intergenic RNA, coding-antisense RNA (labeled as “antisense RNA” in Figure 3.2a) 

and those that overlap mRNAs in the sense orientation (labeled as “mRNA” in Figure 3.2a). 
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Figure 3.1 Workflow of categorizing RNA into mRNA, intergenic RNA, or antisense RNA.  

Figure 3.1 shows the workflow used to categorize the three RNA groups). A large fraction (66%) 

of the 5,680 identified cheRNAs are transcribed from noncoding regions (Figure 3.2a, pink bar). 

In contrast, approximate 90% of the identified 5,672 sneRNAs were mRNAs (Figure 3.2a, blue 

bar). Additionally, icheRNA exhibits lower coding potential (cumulative CPC2 score (Kang et al., 

2017)) than coding genes, intergenic sneRNA (isneRNA), and intergenic RNA transcribed from 

ChromHMM- or FANTOM- (de Hoon et al., 2015) predicted enhancer regions in the same cell 

lines (Figure 3.1d). The coding potential of icheRNA is therefore more similar to that of 

ChromHMM predicted eRNA, while that of isneRNA is more similar to that of mRNA. 

81% (2.7 k) of the identified 3.3 k icheRNAs are previously unannotated transcripts, in contrast to 

only 6% (27) of the 459 isneRNAs, (Figure 3.2c). Additionally, over half (69% of 445) of the 
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antisense cheRNAs are unannotated, in contrast to only 2% of 163 antisense sneRNAs. This biased 

annotation of noncoding RNA suggests that previously detected noncoding RNAs primarily 

correspond to chromatin-depleted noncoding RNA (noncoding sneRNA), and that identifying 

chromatin enriched RNAs from nuclear extracts can give a more balanced picture of the overall 

noncoding RNA population.  
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Figure 3.2 Known genomic features of the intergenic cheRNAs in the K562 cells. 

(a) Distribution of RNA classes in fractionated libraries. Three classes of RNAs were defined 
based on their relative genomic locations to GENCODE (v25)-annotated protein-coding genes 
(Figure 3.1). Chromatin-independent RNAs refer to RNAs not differentially expressed in CPE and 
SNE samples. (b) Coding potential of icheRNA (red), ChromHMM predicted eRNAs (yellow), 
FANTOM predicted eRNAs (green), isneRNA (blue) and mRNAs (purple). Intergenic RNA 
overlapped (at least 1 base) with any ChromHMM/FANTOM identified enhancer region is 
assumed to be predicted ChromHMM/FANTOM predicted eRNAs. icheRNA (red) hold the lowest 
protein-coding potential. Color decoding five RNA groups. As a control, mRNAs (purple) have 
the highest protein-coding potential with a curve tending towards the bottom-right corner. The 
online tool CPC2 is used. (c) Percentage of GENCODE (v25) annotated and unannotated RNAs 
in icheRNA and isneRNA. (d) Pairwise Correlation of expression of RNA classes in the K562 
nucleus. The Pearson correlation coefficient is shown for of each of the indicated RNA classes 
(icheRNA (red), isneRNA (blue), ChromHMM-predicted eRNA (green) and FANTOM predicted 
eRNA (purple)) and its neighboring coding genes. To pair an intergenic genomic feature with its 
neighboring gene, the adjacent upstream or downstream gene with the highest magnitude PCC is 
selected. The relative density at a certain PCC value is calculated by dividing the kernel density 
estimates of indicated RNA and neighboring coding gene pairs by that of indicated RNA and 
randomly selected coding gene pairs. (Two vertical dashed lines mark significant cutoffs of PCC 
values at -0.8 or 0.8). (e) Normalized expression values of fractionate RNA classes. Values are 
given in FPKM (Fragments Per Kilobase Million) of icheRNA (red) and isneRNA (blue) in 
Poly(A)+ nuclear RNA-Seq library (x-axis, GSE88339) versus nuclear total-RNA-Seq library (y-
axis, GSE87982) in K562 cells. More comparisons are available in (Supplementary Figure. 3.3). 
(f) Average ChIP-seq read density versus input in K562 cells of RNA polymerase II (POL II), 
H3K4me3, H3K27ac, EP300, H3K27me3 and H3K4me1 profiles centered at promoters (±1kb 
centered at TSS) of randomly selected mRNAs (green), randomly selected silent RNAs (purple), 
icheRNA (red) and isneRNA (blue), p-values calculated by two-sided Wilcoxon rank sum test, NS 
p>0.05, * p<0.01, ** p<1e-10, **** p<2.2e-16. (Note that in each panel, boxes without overlaps 
are significantly different without showing **** for simplicity.) We randomly selected 3000 
mRNAs from 9.8k transcribed mRNAs and 3000 silent RNAs from 66.9k annotated but 
untranscribed RNAs. 
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3.3 icheRNA positively correlate with adjacent genes in expression 

RT-PCR experiments have shown that several eRNAs are intergenic chromatin enriched RNAs 

(icheRNA) (Yang et al., 2017). Werner et al. also showed that protein-coding genes proximal to 

icheRNA have higher expression levels than those near to other expressed lncRNA, suggesting 

that icheRNA could predict cis-gene transcription (Werner and Ruthenburg, 2015; Werner et al., 

2017). However, it is not clear from previous work whether higher icheRNA expression is 

correlated with expression of proximal protein-coding genes. To quantitatively confirm the cis-

regulatory potential of icheRNA, we calculated the Pearson correlation coefficient between the 

expression of icheRNA and neighboring protein-coding genes, and compared it to the correlation 

coefficient between the expression of icheRNA and randomly selected protein-coding genes. 

isneRNA and neighboring protein-coding gene, ChromHMM predicted eRNA and neighboring 

protein-coding gene, and FANTOM predicted eRNA and neighboring protein-coding gene.  

We find that icheRNA are more positively correlated with neighboring genes than with randomly 

selected genes (Figure 3.2d, red line shows relative density > 1 when correlation coefficient > 0.5). 

The same calculation for FAMTOM- or ChromHMM-predicted eRNAs, which are believed to 

have cis-regulatory enhancer effects, and adjacent genes in the same cell types, shows similar but 

weaker positive correlations. In contrast, pairs of intergenic sneRNAs (isneRNA) and neighboring 

genes (blue line) showed negative correlation (Figure 3.2d, blue line shows relative density > 1 

when correlation coefficient < -0.5). Specifically, with a significance cutoff of correlation 

coefficient=0.8, 23% of the identified icheRNA transcripts, in contrast to only 11% of the isneRNA 

are positively correlated with proximal genes. This observation, for the first time, gives 

quantitative evidence for a potential cis-regulatory effect of icheRNA on adjacent genes. It also 

suggests that identification of icheRNA can be used as another approach to predict eRNA, 

comparable to approaches using ChromHMM and FANTOM database. 

Transcriptional correlation analysis also displayed high relative density at correlation coefficient 

< -0.5 for pairs of icheRNA and neighboring coding genes (Figure 3.2d), indicating that not all 

icheRNAs are positively correlated with proximal protein-coding gene expression. Indeed, XIST 

is a canonical icheRNA that has a well-known repressive regulatory role, and it might be one of 

the icheRNAs that are negatively correlated with proximal protein-coding genes. 
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3.4 Polyadenylated RNA is relatively depleted in icheRNA 

Most eRNAs have been reported to be unspliced and non-polyadenylated (De Santa et al., 2010; 

Kim et al., 2010; Lam et al., 2014, Kim et al., 2015). To test if icheRNA are similar in this regard, 

we compared the relative expression (measured as Reads Per Kilobase of transcript per Million 

mapped reads, RPKM) of intergenic cheRNAs in nuclear Poly(A)+ RNA-seq library and nuclear 

total RNA-seq libraries using published datasets for K562 cells (Table 4). We observe (Figure 3.2e) 

lower relative abundance of icheRNA in the nuclear total-RNA-seq library than in the nuclear 

Poly(A)+ RNA-seq library, indicating that majority of icheRNA lack polyadenylation. A similar 

but weaker preference for the total-RNA-seq library was also observed for antisense cheRNAs 

(Figure 3.3). In contrast, all protein-coding mRNAs have equivalent expression levels in two 

libraries, which is consistent with the role of polyadenylation in producing mRNA in the 

eukaryotic cell nucleus (Guhaniyogi and Brewer, 2001). Chromatin depleted non-coding RNAs 

(isneRNA and antisense sneRNAs) also have similar expression levels in the two RNA-seq 

libraries as those of mRNAs (Figure 3.3). The patterns of polyadenylation indicate that icheRNA 

and isneRNA are differentially polyadenylated. With respect to polyadenylation, icheRNA is more 

similar to eRNA than is sneRNA, since the majority of icheRNA are not polyadenylated. 
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Figure 3.3 Normalized expression values of fractionate RNA classes. 

Scale-density plot, comparing the expression value (in FPKM) in Poly(A)+ nuclear RNA-Seq 
library (x-axis) and total nuclear RNA-Seq library (y-axis) for (a) chromatin-enriched RNAs (red), 
(b) chromatin-depleted RNAs (blue), and (c) chromatin-independent RNAs (purple, RNAs not 
differentially expressed in either CPE or SNE samples) transcribed from intergenic region, region 
antisense to coding gene and coding gene region.  

3.5 IcheRNAs and isneRNAs confer different chromatin characteristics 

Histone 3 lysine 4 monomethylation (H3K4me1) and histone 3 lysine 27 acetylation (H3K27ac) 

have been identified as key histone modification features that mark enhancers. H3K4me1 is 

present at both poised and active enhancers (Dorighi et al., 2017), while H3K27ac uniquely marks 

active enhancers (Creyghton et al., 2010). Werner et al. previously observed peaks of H3K27ac 



63 

near the transcriptional start sites (TSS) of icheRNA, however, unlike prototypical eRNA, these 

regions did not show abundant H3K4me1 modification (Werner and Ruthenburg, 2015). To further 

investigate whether icheRNA have a distinct chromatin signature, we profiled the relative reads 

per million (RPM) of RNA polymerase II (POLII), H3K27ac, H3K4me3, H3K4me1, and 

H3K27me3 marks on the flanking 1 kb sequences around TSS of icheRNA, isneRNA, mRNA and 

unexpressed mRNA (RNAs annotated in GENCODE(v25) but not transcribed in K562) (Figure 

3.2f). IcheRNA show low levels of marks associated with active transcription (POLII and 

H3K4me3), similar to the levels of unexpressed mRNA, and lower than those of isneRNA and 

mRNA (Figure 3.2f1, red and purple box). In contrast to unexpressed mRNA, icheRNA TSS 

flanking regions show low levels of repressive (H3K27me3) and poised enhancer (H3K4me1) 

marks (Figure 3.2f2, red and purple box), but are enriched in active enhancer (H3K27ac and EP300) 

marks (Figure 3.2f3, red and purple box). Note that in addition to being enriched at enhancer 

regions, H3K27ac and EP300 are also pervasively found near TSS of actively transcribed regions. 

icheRNA TSS thus have a chromatin profile that is distinctly different from those of mRNA, 

isneRNA, and unexpressed mRNA, suggesting that significantly different modes of regulation may 

be controlling icheRNA expression. 

In summary, icheRNA and isneRNA differ in many respects. In addition to the enrichment of 

specific epigenetic marks near the TSS, icheRNA has lower coding probability, lacks 

polyadenylation, and its expression is more positively correlated with that of neighboring coding 

genes. Overall icheRNA is more similar to eRNA, while isneRNA is more similar to mRNA. The 

similarity of icheRNA to eRNA, as defined by ChromHMM and FANTOM predictions, suggests 

that icheRNA identification may provide a useful independent approach to predicting eRNA.  

3.6 Discussion 

Operationally, cheRNA is defined by its statistically significant enrichment in chromatin after 

biochemical fractionation of nuclei. With our improved computational strategy, we have examined 

the molecular characteristics of cheRNAs in greater detail than has heretofore been possible. We 

find that, first, cheRNAs are more likely to be transcribed from noncoding regions, while sneRNAs 

are mostly transcribed from protein-coding regions. Second, icheRNA has a lower transcription 

level and is largely unannotated, in contrast to isneRNA which is more highly transcribed and 



64 

better annotated. Traditional transcriptome profiling of non-coding RNA, using techniques such 

as total RNA-seq, yields the broadest survey of transcripts, but has limited ability to detect low 

expression transcripts such as those of icheRNA. Thus, previous analyses of noncoding RNA 

primarily focused on noncoding RNA with relatively high transcription levels (e.g., isneRNA and 

as-sneRNA). In contrast, sequencing and identifying chromatin enriched RNAs in a nuclear extract 

more sensitively identifies low expression noncoding RNAs that previously have been ignored by 

conventional sequencing and analysis methods. Third, we have shown that icheRNA, in contrast 

isneRNA, is mostly non-coding, non-polyadenylated, and positively correlated with the expression 

of neighboring coding genes (Figures 3.2a-3.2e). The above analysis also shows that icheRNAs 

possess stronger positive correlation with adjacent protein-coding genes in expression, compared 

with ChromHMM- and FANTOM-predicted eRNAs, suggesting that separating intergenic RNAs 

into chromatin-enriched and chromatin-depleted groups can be used as another approach to predict 

eRNAs, comparable to approaches applied in ChromHMM and FANTOM database. 

Notwithstanding the similarity of these features to those of eRNA, icheRNA has several unique 

molecular characteristics that distinguish it. For example, icheRNA is generally longer than eRNA 

(median length of icheRNA is ~4,400 bases; eRNA is ~350 bases, Andersson et al., 2014)) and 

icheRNA shows only modest coincidence with enhancer marks (H3K27ac, H3K4me1 and EP300) 

that are used to canonically define eRNA (Figure 3.2f). Moreover, some canonical icheRNA (e.g., 

XIST) are known to be repressive regulators rather than activators as is eRNA. Combining all this 

evidence, we conclude that icheRNA and eRNAs are two distinct non-coding RNA groups that 

overlap. Despite there are differences, icheRNA still show more apparent similarity to eRNAs than 

other RNA groups. 
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CHAPTER 4. CIS-REGULATORY POTENTIAL OF TWO CHERNAS 
SUBSETS 

4.1 Summary 

To provide more insights into the features of cheRNAs, in this chapter, we explore two new 

potential cis-regulatory functions of subsets of cheRNAs: intergenic cheRNAs transcribed from 

genes in condensed chromatin (marked by H3K9me3), and cheRNA transcript antisense to coding 

genes.  

Firstly, we found that regions around TSS of icheRNAs are depleted with H3K9me3 chromatin 

mark, however, the DNA regions transcribing icheRNA body show high H3K9me3 level. This 

revealed an unexpected association between chromatin-based RNA and H3K9me3, a chromatin 

mark associated with closed/repressed chromatin. To further explore this association, we separate 

icheRNA into two groups: icheRNA with H3K9me3 mark and icheRNA without H3K9me3 mark. 

We compared the chromatin signatures around DNA regions related to the two groups. We found 

that icheRNA transcribed from H3K9me3 marked regions show elevated transcriptional activity 

and higher levels of enhancer marks compared to icheRNA transcribed from regions without 

H3K9me3 marks. Moreover, we measured the H3K9me3 levels across canonical icheRNA 

transcribed regions and found that three previously identified icheRNA (HIDALGO, ILYICH, 

BONIFACIO) with validated positive activator functions show relatively higher H3K9me3 levels 

than the only icheRNA with a known repressive role (XIST). Together, these evidences suggest 

that DNA regions transcribing icheRNA, even with high levels of H3K9me3 modification, can be 

actively transcribed and may have the potential to indicate active enhancer region.  

Secondly, we discussed one possible origin for the unexpected H3K9me3 signal around icheRNA. 

Unlike H3K27me3, H3K9me3 is more global and permanent, and are frequently associated with 

constitutive heterochromatin regions. For example, H3K9me3 has been found to be enriched at 

Lamina-Associated Domains (LADs), which are genomic regions in close contact with the nuclear 

lamina. These regions are termed as Lamina-Associated Domains (LADs) (van Steensel and 

Belmont, 2017). We showed that icheRNAs are overrepresented in LADs than other RNA groups 

(48% of icheRNAs are transcribed from LADs in contrast to only 12% for other RNAs). Moreover, 
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considering H3K9me3 is also associated with transposable elements (TE) repression (He et al., 

2019), we examined the enrichment of TEs among icheRNAs and icheRNAs with H3K9me3 

marks in K562 cell. We found that 82% of icheRNAs and 96% of icheRNAs with H3K9me3 marks 

overlap with class 1 TEs. In conclusion, one hypothesis for the unexpected H3K9me3 signal 

around icheRNA is that the icheRNA may be embedded in condensed domains derived from 

mobile elements.  

Lastly, we explored the cis-regulatory potential of antisense cheRNA (as-cheRNA). We observed 

that antisense RNA (asRNA) accumulates preferentially in the nucleus associating with chromatin. 

Similar with icheRNA, as-cheRNA lacks annotation. By examining the transcriptional activity of 

the colocalized mRNA on the opposite strand, we observed that the TSS of antisense cheRNA (as-

cheRNA) colocalized mRNA is significantly less open (measured by ATAC-seq signal), has fewer 

active transcription marks (POL II, H3K4me3), and has more repressive marks (H3K27me3) and 

PRC2 complex binding (SUZ12, EZH2), compared with random mRNA. Moreover, this pattern 

is not observed in mRNA colocalized with antisense chromatin depleted RNA (as-sneRNA). Even 

though still not conclusive, this unique pattern observed only in as-cheRNA suggests as-cheRNA 

to be cis-acting repressor that interfere transcription of colocalized mRNAs on the opposite strand 

via recruiting the PRC2 complex. 

4.2 IcheRNA with H3K9me3 across transcript body is prone to present active cis-regulation 

Histone 3 lysine 9 trimethylation (H3K9me3) is associated with constitutive heterochromatin, and 

has been shown to mark transcriptionally repressed regions that are mutually exclusive with 

H3K27me3 marked repressive regions (Kouzarides, 2007; Hublitz et al., 2009; Zhang et al., 2015; 

Becker et al., 2016). We find that the levels of H3K9me3 near actively transcribed icheRNA and 

mRNA TSS (Figure 4.1a1, red line and green line) are much higher than near transcriptionally 

silenced regions (DNA regions near to unexpressed mRNA) (Figure 4.1a1, purple line). In addition, 

H3K9me3 profiles at actively transcribed regions are quite different from those at transcriptionally 

silent regions: H3K9me3 modification is low near the TSS of transcribed RNA (icheRNA, 

isneRNA, and mRNA) (Figure 4.1a1, red line, blue line and green line) but not depleted around 

TSS of unexpressed mRNA (Figure 4.1a1, purple line). It has been suggested, for coding 

transcripts, that H3K9me3 at the promoter is repressive, whereas H3K9me3 across the mRNA 
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transcript body is activatory (Kouzarides, 2007). The pattern we observe is similar, and when 

combined with the previous observation that high levels of H3K9me3 modification are present in 

some active genes (Barski 2007), it suggests that high H3K9me3 levels do not necessarily indicate 

transcriptional repression; H3K9me3 modification at the TSS region is more strongly associated 

with transcriptional silencing, in contrast, H3K9me3 at gene body regions can be actively 

transcribed.  

We also note that H3K9me3 levels within the DNA region of transcribed icheRNA is substantially 

higher than near other transcribed RNA (e.g., mRNA and isneRNA) (Figure 4.1a2). To further 

investigate the effect of H3K9me3 on icheRNA transcription, we separated DNA regions 

transcribing icheRNA into high H3K9me3 (at least 1 peak of H3K9me3 mark near the transcribed 

icheRNA) and low H3K9me3 (no H3K9me3 mark near the transcribed icheRNA) groups. These 

groups are labeled as “icheRNA with H3K9me3” and “icheRNA without H3K9me3”, respectively 

in Figure 4.1b. DNA regions in the “icheRNA with H3K9me3” have significantly higher levels of 

H3K9me3 modification than those in the “icheRNA without H3K9me3” group (Figure 4.1b1). 

Furthermore, chromatin signatures associated with active transcription (POL2, H3K4me3) (Figure 

4.1b2), as well as transcription levels in both CPE and SNE samples (Figure 4.1c), are strikingly 

elevated in the “icheRNA with H3K9me3” group compared to the “icheRNA without H3K9me3” 

group, indicating that icheRNA are more actively transcribed from regions with high H3K9me3 

modification. It also reinforces the evidence indicating that regions with abundant H3K9me3 

modification can be actively transcribed.   
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Figure 4.1 icheRNA with H3K9me3 signal concur chromatin modification patterns of active 
enhancers.  

(a) Average H3K9me3 ChIP-seq read density versus input in K562 cells (a1) at promoters (±1kb 
centered at TSS) of, or (a2) across regions transcribing, randomly selected mRNAs (green), 
randomly selected silent RNAs (purple), icheRNA (red) and isneRNA (blue). (b) Average ChIP-
seq read density versus input in K562 cells of (b1) H3K9me3 profiles across regions transcribing, 
or (b2) POL II and H3K4me3 profiles at promoters (±1kb centered at TSS) of, randomly selected 
mRNAs (green), randomly selected silent RNAs (purple), icheRNA coincident with H3K9me3 
marks (icheRNA with H3K9me3, red), icheRNA without H3K9me3 (yellow) and isneRNA (blue). 
(c) Normalized expression values in FPKM in chromatin pallet extract (CPE, red boxes) and 
soluble nuclear extract (SNE, blue) of K562 cells for randomly selected mRNA, icheRNA, 
icheRNA with H3K9me3 (icheRNA w/ H3K9me3), icheRNA without H3K9me3 (icheRNA w/o 
H3K9me3) and isneRNA. (d) Average ChIP-seq read density in K562 cells of active enhancer 
marks (H3K27ac and EP300) and poised enhancer mark (H3K4me1) profiles at promoters (±1kb 
centered at TSS) of randomly selected mRNAs (green), randomly selected silent RNAs (purple), 
icheRNA with H3K9me3 (red), icheRNA without H3K9me3 (yellow) and isneRNA (blue). (e) 
Average H3K9me3 ChIP-seq read density versus input in K562 cells across regions transcribing 
four canonical cheRNAs. The four cheRNAs were ordered according to their known 
transcriptomic regulatory functions, from the repressor (XIST) on the left to other three cis-
activators (ILYICH, BONIFACIO, HIDALGO) on the right. p-values calculated by two-sided 
Wilcoxon rank sum test, NS p>0.05, * p<0.01, ** p<1e-10, **** p<2.2e-16. 
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Our previous analysis showed that icheRNA possesses features similar to eRNA, however, the 

TSS of icheRNA show only moderately higher levels of enhancer marks compared to unexpressed 

mRNA, and lower levels than TSS of isneRNA. We measured the levels of enhancer marks 

(H3K27ac, EP300 and H3K4me1) around TSS of “icheRNA with H3K9me3” (Figure 4.1d, red 

box). We found that levels of active enhancer marks (H3K27ac and EP300) around TSS of 

“icheRNA with H3K9me3” are significantly higher than at the TSS of “icheRNA without 

H3K9me3” (Figure 4.1d, yellow box) and TSS of isneRNA (Figure 4.1d, purple box), indicating 

that icheRNA with H3K9me3 marks shows high levels of active enhancer marks near the TSS, but 

all icheRNA do not. Moreover, we measured the H3K9me3 levels across canonical icheRNA 

transcribed regions and found that three previously identified icheRNA (HIDALGO, ILYICH, 

BONIFACIO) with validated positive activator functions show relatively higher H3K9me3 levels 

than the only icheRNA with a known repressive role (XIST) (Figure 4.1e). These examples 

reinforce the hypothesis that DNA regions transcribing icheRNA, even with high levels of 

H3K9me3 modification, may act as enhancers. 

4.3 Possible origin for H3K9me3 signal around icheRNA 

In metazoan cell nuclei, hundreds of large chromatin domains, termed Lamina-Associated 

Domains (LADs), have found to be in close contact with the nuclear lamina. LADs are enriched 

in histone modification of H3K9me2 and H3K9me3, modifications that are typical of 

heterochromatin (van Steensel and Belmont, 2017). A study on a 1 Mb LAD encompassing the 

human HBB loci showed that knockdown of H3K9me3 by depletion of the two H3K9me3 

methyltransferases Suv39H1 and Suv39H2 caused detachment of the LADs and nuclear lamina, 

suggesting that H3K9me3 modification contributes to anchoring LADs to nuclear lamina (Bian et 

al., 2013). Considering H3K9me3 is a chromatin mark associated with closed/repressed chromatin, 

gene transcription from H3K9me3 enriched LADs is expected to be repressed. However, the 

unexpected association between icheRNA and high levels of H3K9me3 chromatin marks suggests 

that icheRNA genes may be embedded in, and actively transcribed from, condensed LADs. Indeed, 

we find that 48% of icheRNAs are transcribed from LADs (greater than chance expectation, 

empirical p < 2.2e-16), in contrast, only 12% of other RNAs are transcribed from LADs. Moreover, 

agree with the previous hypothesis by Werner et al. that TEs may provide an evolutionary origin 

to chromatin enriched RNAs (Werner et al., 2017), we noticed that 82% of icheRNAs and 96% of 
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icheRNAs with H3K9me3 chromatin marks in K562 overlap with class 1 TEs. Together, these 

observations suggest that icheRNA may represent a group of RNAs transcribed from condensed 

chromatin domains derived from mobile elements, and that the transcription of these domains is 

regulated in a cell-specific way.  

4.4 Antisense cheRNAs (as-cheRNA) concur local mRNA repression 

Antisense RNA (asRNA) complementary to protein-coding transcript(s) has been shown to 

interfere with transcription of mRNA on the opposite strand (Tufarelli et al., 2003). Consistent 

with this, asRNA accumulates preferentially in the nucleus associating with chromatin, we observe 

that almost (59%) of the identified 756 asRNAs in K562 cell nucleus are chromatin enriched and 

only 22% are chromatin depleted (Figure 3.2a), indicating a significant enrichment of asRNA in 

the chromatin pellet (Figure 4.2a). Moreover, we notice that about one third of the chromatin 

enriched asRNAs (as-cheRNA) are unannotated while almost all chromatin depleted asRNAs 

(antisense sneRNA, as-sneRNA) are annotated (Figure 4.2c), suggesting that many as-cheRNA 

are completely novel. 

Regulatory mechanisms involving asRNA range from simple transcriptional interference through 

competing for RNA Pol II (Shearwin et al., 2005) to regulation of epigenomic modifications 

(Kotake et al., 2011; Bhan and Mandal, 2014). A current hypothesis suggests that asRNA is acts 

in gene regulation at the chromatin level by recruiting epigenetic regulators, e.g., polycomb 

repressive complex 2 (PRC2), to its corresponding sense mRNA to induce histone methylation 

and gene repression (Magistri et al., 2012; Latgé et al., 2018). Inspired by this hypothesis, we 

investigated a similar potential function for both as-cheRNA and as-sneRNA. Functional RNA 

molecules often exhibit secondary structures that are better conserved than their sequences 

(Kalvari 2018), we first interrogated the equence based predicted secondary structure of as-

cheRNA and as-sneRNA in comparison to known RNA families in Rfam. Rfam collects multiple-

sequence alignment-based families of RNA secondary structural motifs (Kalvari et al., 2018). The 

motif sizes are generally less than 400 bases long Figure 4.3b), much shorter than the asRNA in 

the assembled transcriptome. We annotated each asRNA as belonging to a Rfam family if it fully 

covered a Rfam family motif. We then calculated, for each Rfam family, a) the fraction of as- 

cheRNA/as-sneRNA annotated to this Rfam family (the fraction in observation); b) the fraction of 
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Figure 4.2 as-cheRNAs indicate local mRNA silencing. 

(a) Venn diagram showing the enrichment of cheRNA among asRNA. Fisher’s exact test is used 
to estimate the odds ratio and p-value to quantify the strength of enrichment. Odds ration larger 
than 1 and p-value less than 0.05 indicate significant enrichment. (b) Enrichment of 14 Rfam 
ncRNA secondary structure family among as-cheRNA (left sub-panel) and sneRNAs (right sub-
panel). The dashed line indicates a RR-score of 1. An RR-score larger than 1 indicates that as-
cheRNA/as-sneRNA is overrepresented in the selected Rfam family. (c) Percentage of GENCODE 
(v25) annotated (orange) and unannotated (blue) RNA in as-cheRNA and as-sneRNA. (d) 
Normalized expression values in FPKM in chromatin pallet extract (CPE, yellow) and soluble 
nuclear extract (SNE, blue) of K562 cells for randomly selected mRNA, as-sneRNA and as-
cheRNA. (e) Average ATAC-Seq read density and ChIP-seq read density of histone marks 
representing active transcription (POLII and H3K4me3) versus input in K562 cells at promoters 
(±1kb centered at TSS) of randomly selected mRNA (grey), as-cheRNA antisense overlapped 
mRNA (as-cheRNA-colocalized mRNA, red) and as-sneRNA antisense overlapped mRNA (as-
sneRNA-colocalized mRNA, blue). (f) Average ChIP-seq read density of repressive histone mark 
(H3K27me3) and two PRC2 subunits (SUZ12 and EZH2) versus input in K562 cells at promoters 
(±1kb centered at TSS) of randomly selected mRNA (grey), as-cheRNA antisense overlapped 
mRNA (as-cheRNA-colocalized mRNA, red) and as-sneRNA antisense overlapped mRNA (as-
sneRNA-colocalized mRNA, blue). p-values are calculated using a two-sided Wilcoxon rank sum 
test, NS p>0.05, * p<0.01, ** p<1e-10, **** p<2.2e-16.   



73 

 

 



74 

all assembled RNA annotated to this Rfam family (the fraction in background); and c) the ratio of 

the fraction in observation over the fraction background (RR-score). An RR-score larger than 1 

indicates that as-cheRNA/as-sneRNA is overrepresented in the selected Rfam family. Among 

fourteen major RNA structural groups in the Rfam database (v13, hg38) (Figure 4.3a), three 

structural groups (Histone 3, lncRNA, and antisense) are significantly overrepresented in as-

cheRNA (Figure 7b, two or more folds). In particular, the overrepresentation of the antisense 

structure group among as-cheRNA suggests that the function of as-cheRNA, rather than that of as-

sneRNA, is likely to be structure-based.  

We then measured the transcription level in CPE and SNE of mRNA that antisense overlaps with 

as-cheRNA and as-sneRNA. We find that the transcription of both as-cheRNA-colocalized mRNA 

and as-sneRNA-colocalized mRNA are relatively low compared to that of random mRNA (Figure 

4.2d), suggesting a negative correlation between the transcription of sense and antisense RNA. 

Even though both as-cheRNA-colocalized mRNA and as-sneRNA-colocalized mRNA are shown 

to be repressed at similar levels, the chromatin features and histone patterns around the TSS of the 

two mRNA groups are significantly different. The TSS of as-cheRNA-colocalized mRNA (Figure 

4.2e-4.2f, red box) are significantly less open (measured by Encode ATAC-seq signal), have fewer 

active transcription marks (POL2, H3K4me3), but have more repressive marks (H3K27me3) and 

show higher PRC2 complex binding (SUZ12, EZH2) compared with random mRNA (Figure 4.2e-

4.2f, black box). This pattern was not observed in as-sneRNA-colocalized mRNAs (Figure 4.2e-

4.2f, blue box). Altogether, this suggests that as-cheRNA and as-sneRNA may cis-repress gene 

transcription through different mechanisms. As-cheRNA may be cis-regulatory elements that 

repress transcription of colocalized mRNAs on the opposite strand via recruiting the PRC2 

complex to specific genomic loci.  
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Figure 4.3 Fourteen major RNA structural groups in the Rfam database (v13, hg19). 
(a) Pi plot showing the proportion in RNA structural motifs per group; (b) histogram of RNA 
structural motif widths compared to nuclear RNA-seq transcriptome (Tuxedo). Color decoding the 
fourteen major RNA structural groups. 

4.5 Discussion 

IcheRNA transcribed from H3K9me3 marked regions are more actively transcribed and more 

highly associated with elevated levels of enhancer marks than icheRNA without H3K9me3 marks. 

This observation indicates that H3K9me3 not only marks actively transcribed regions, but that it 

may also mark potential enhancer regions. The association between H3K9me3 and enhancers was 

also previously suggested by Zhu et al (2012), who described the widespread presence of 

H3K9me3 at enhancer flanking regions. They also showed anecdotal examples in which regulating 

H3K9me3 levels at the enhancers of Mdc and Il12b, affected Mdc and Il12b transcription in 

dendritic cells and macrophages, suggesting that H3K9me3 plays an important role in regulating 

enhancer activity (Zhu et al., 2012). If it can be verified that the regulatory role of H3K9me3 is a 

common feature of many enhancers, icheRNA coincident with H3K9me3 marks may prove a very 

effective predictor for chromatin-based eRNA, and may be a powerful approach to predicting 

novel enhancer regions.  

Antisense RNA (asRNA) is another class of noncoding RNA that has been shown to have cis 

regulatory functions. Consistent with previous knowledge, our analysis confirms that asRNA is 

more abundant in the nuclear chromatin enriched pellet than in soluble nuclear pellet. Similar to 
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isneRNA and icheRNA, almost all as-sneRNAs are annotated, while a large fraction of as-

cheRNAs lack annotation. This further suggests that sequencing RNAs abundant in the nuclear 

chromatin pellet can identify many novel noncoding RNAs. Despite the fact that both as-cheRNA 

and as-sneRNA show negative correlations in transcription level with their corresponding sense 

mRNA, the chromatin pattern around the TSS of as-cheRNA-colocalized mRNA and as-sneRNA-

colocalized mRNA are quite different. Regions around the TSS of as-cheRNA-colocalized mRNA 

are less open and lack active transcription marks, but have high level of H3K27me3 and PRC2 

binding, suggesting that as-cheRNA may regulate sense mRNA transcription in cis acting as a 

guide RNA for regulatory complexes that modify the target chromatin. Even though this 

investigation of as-cheRNA is still preliminary, it provides some testable hypotheses for asRNA 

function. 
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CHAPTER 5. SUMMARY 

5.1 Challenges 

The scientific discipline of genetics is founded upon Gregor Mendel's experimental work on peas. 

However, his intention was not to offer a general law of inheritance. Instead, his purpose was only 

to find out a law of the development of hybrids in plants (Gayon, 2016). So does the original goal 

of the Human Genome Project, which was launched with an aim to determine the sequence of 

human genome and make the map of the genes to facilitate the study of inherited diseases. The 

Human Genome Project accomplished this goal very well. Besides, it also revealed the importance 

of noncoding regions in the genome and leaded to a surprising increase in the study of ncRNA. 

When the sequence of the human genome was published in 2001, it showed that 99% of the human 

genome will not be translated into proteins. It was later shown that these noncoding regions are 

pervasively transcribed into ncRNAs. Since then, ncRNAs have been characterized in many 

species and were shown to be involved in processes such as development and pathologies, 

revealing a new layer of regulation in eukaryotic cells (Jarroux et al., 2017). Before 1999, the 

number of discovered ncRNAs in mammalian organisms was only less than 300. By 2004, this 

number increased dramatically to 5000. Most of these newly identified ncRNAs are miRNAs and 

putative lncRNAs with unknown function (Hüttenhofer et al., 2005).  

Unlike miRNA, the mechanism of which has been well studied and understood, the understanding 

of lncRNA functioning mechanisms is still limited to the few individual examples. By definition, 

lncRNA is functional RNA molecule with a length of more than 200 nts that does not encode 

protein. This is a very broad definition, making this RNA group contains a variety of RNAs that 

function differently. LncRNA is also found to be less conserved, expressed at lower levels than 

mRNA, and show high level of cell and developmental specificity. All these features make 

lncRNA hard to be systematically identified and studied.  

From the few known examples of lncRNAs, it’s worth to notice that lncRNA frequently functions 

at chromatin interface in nuclear. This feature distinguishes lncRNA from other noncoding RNAs 

that function by base pairing. Inspired by this, our collaborator Werner et al. employed 

biochemical fractionation of the nuclear compartment coupled to RNA-seq to identify lncRNAs 
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that are tightly associated with chromatin, termed as cheRNA (Werner and Ruthenburg, 2015). 

From perturbation of four distinct cheRNAs, they demonstrated that cheRNA positively correlates 

with neighbor gene expression, which indicates similarity with eRNA.  

This study aims to provide a more holistic view of the nuclear noncoding transcriptome. We started 

with designing and surveying four computational strategies for nuclear RNA-seq data analysis. 

We showed that a new pipeline (Tuxedo) outperforms in assembly of both highly expressed 

mRNAs and lowly expressed lncRNAs. Besides, Tuxedo pipelines identifies cheRNAs with higher 

accuracy than the original pipeline. With this improved pipeline, we identified two highly clustered 

populations corresponding to nuclear-soluble RNA (sneRNA) and chromatin-associated RNA 

(cheRNA) in K562, HEK293 and H1-hESC cell lines. We characterized and compared the 

genomic features of cheRNA and sneRNA, and found that these two RNA groups are distinct in 

many aspects. CheRNAs are mostly transcribed from intergenic regions, in contrast, sneRNAs are 

mostly transcribed from protein coding regions. Compared to intergenic sneRNA (isneRNA), 

intergenic cheRNA (icheRNA) has lower coding probability, lacks polyadenylation, and its 

expression is more positively correlated with that of neighboring coding genes, suggesting that 

icheRNA rather than isneRNA is more similar to eRNA. We also observed that DNA regions 

transcribing icheRNA are abundant with H3K9me3 modification. In addition, we found that 

icheRNA transcribed from regions with high level of H3K9me3 modification show elevated 

transcriptional activity and higher levels of enhancer marks compared to icheRNA transcribed 

from regions with low level of H3K9me3. This unexpected association between chromatin-based 

RNA and high level of H3K9me3 suggests that DNA regions transcribing icheRNA, even 

methylated by H3K9me3, can be actively transcribed and may have the potential to indicate active 

enhancer region. Following this, we proposed one hypothesis for the origin of H3K9me3 signal 

around icheRNA transcribed region, which is icheRNA may be embedded in condensed domains 

derived from mobile elements. In the end, we explored a potential cis-repressive function for as-

cheRNA. We showed that as-cheRNA appears to inhibit colocalized mRNA on the opposite strand 

through a mechanism of recruiting PRC complex to specific genomic loci.  

In summary, quantitative identification of chromatin-enriched nuclear RNA provides a powerful 

way to profile the nuclear transcriptional landscape, especially to profile the noncoding 

transcriptome. The computational pipeline presented here provides researchers with a reliable 
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approach to identifying cheRNA, and studying cell-type specific gene regulators. Although the 

cheRNA is unlikely to be monolithic in function, icheRNA, especially icheRNA with high levels 

of H3K9me3 marks, may act as a transcriptional cis-activator similar to eRNA. In contrast, as-

cheRNA may interact with diverse chromatin modulators to cis-repress transcription. With the 

Tuxedo pipeline, the future challenge will be refining the functional mechanisms of this noncoding 

RNA class through exploring their regulatory roles, which are involved in diverse molecular and 

cellular processes in human and other organisms. 

5.2 Future work 

CheRNAs are not a uniform set. However, based on our analysis results, icheRNA transcribed 

from H3K9me3 modified regions is more prone to enhancer cis gene transcription, and as-cheRNA 

appear to recruit PRC2 complex to colocalized mRNA on the opposite strand to repress gene 

transcription. Considering the current evidences are majorly from computational analysis, the 

future work should be focused on performing experiments to validate these cis-regulatory potential 

in vivo. Here I list five questions as a guide line for related future work: 

(1). Does in vivo experiment (perturbation experiment) also supports that icheRNA transcribed 

from H3K9me3 marked region positively correlates with neighbor coding gene in transcription?  

(2). Does alteration of H3K9me3 level at icheRNA transcribed region will affect transcriptional 

activity of icheRNA?  

(3). If the answer to the question (1) is yes, does the alteration of H3K9me3 level at icheRNA 

transcribed region will affect the activatory function of icheRNA? 

(4). Does repression of as-cheRNA in vivo will increase the transcription of colocalized sense 

mRNA?  

(5). Does repression of as-cheRNA in vivo will decrease the binding of PRC2 complex on 

colocalized sense mRNA? 
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Besides performing related experiments to provide in vivo supports, the future work can also be 

extended to identification of cheRNA in other cell lines and organisms to facilitate the study of 

regulatory ncRNA that involves in disease development and cellular process.  
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APPENDIX A. DATASETS 

RNA-seq raw datasets (in HEK293, H1 and K562 cell lines) were obtained from the NCBI Short-

Read Archive (SRA) (Table 3). For the K562 cells, nuclear RNA sequencing, the ChIP-seq of 

multiple histone marks and transcription factors and ATAC-seq datasets were downloaded from 

ENCODE data portal (Tables 3-4). The noncoding RNA family were defined by Rfam (v13) 

(Kalvari et al., 2018). While mutiple resource IDs are available, we downloaded it from the 

ENCODE by ENCODE_ACCESSION IDs. While only hg19 landscape is available, we liftover 

hg19 landscape to the hg38 landscape. 

Table 3 Genomic landscapes re-analyzed in Figure 2.1c. 

Feature type marker ID # of peaks 

Histone 

ATAC GSM1782764 65,009,291 ATAC GSM1782765 
EP300 ENCFF755HCK 28,757 

H3K27ac ENCFF038DDS 52,334 
H3K4me1 ENCFF159VKJ 108,229 
H3K4me2 ENCFF118PIE 66,293 
H3K4me3 ENCFF148POZ 

118,763 H3K4me3 ENCFF616DLO 
H3K4me3 ENCFF909PMV 
H3K4me3 ENCFF961SPZ 
H3K9me3 ENCFF371GMJ 5,584 

Transcriptomic 

rfam antisense  97 
rfam cisReg  647 

rfam lncRNA  138 
POLR2A ENCFF099NYA 

169,631 

POLR2A ENCFF182YZG 
POLR2A ENCFF285MBX 
POLR2A ENCFF668VIK 
POLR2A ENCFF730DLS 
POLR2A ENCFF881ONC 

 
TF-binding 

 
 
 

ATF2 ENCFF803FHN 46,737 
ATF3 ENCFF467WOR 7,875 

BACH1 ENCFF543FNN 4,707 
BRCA1 ENCFF652NES 815 
BRD4 ENCFF806CQB 8,493 
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TF-binding 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CBX3 ENCFF951BQB 26,789 
CBX5 ENCFF403TAE 7,022 
CBX8 ENCFF210GJE 4,697 

CEBPB ENCFF321KQD 
71,925 CEBPB ENCFF813LOW 

CTCF ENCFF119XFJ 

200,637 
CTCF ENCFF396BZQ 
CTCF ENCFF519CXF 
CTCF ENCFF843VHC 
E2F6 ENCFF417DTI 

51,227 E2F6 ENCFF533GSH 
EGR1 ENCFF175VSS 

103,204 EGR1 ENCFF375RDB 
EGR1 ENCFF561OGS 
FOSL1 ENCFF087MFG 8,194 
GABPA ENCFF124HAC 15,818 
GTF2F1 ENCFF478HYJ 5,219 
H2AFZ ENCFF921IKK 100,908 
H3K9ac ENCFF306MNO 

172,520 H3K9ac ENCFF558JOB 
HDAC2 ENCFF363GSV 

48,253 HDAC2 ENCFF618YRQ 
HDAC2 ENCFF741IMY 
HDAC6 ENCFF295GBP 1,570 

JUN ENCFF032UMW 

50,782 
JUN ENCFF167WUZ 
JUN ENCFF394CEC 
JUN ENCFF672LKE 
JUN ENCFF881AVX 

JUND ENCFF213EYD 47,477 
KDM1A ENCFF483BRD 

80,331 KDM1A ENCFF796VMI 
KDM5B ENCFF668XLN 22,315 
MAFK ENCFF893SCL 26,862 
MAX ENCFF618VMC 

97,737 MAX ENCFF900NVQ 
MXI1 ENCFF243QTL 8,988 
PHF8 ENCFF952YDR 28,768 

RBBP5 ENCFF666PCE 24,374 
REST ENCFF023ZUW 

63,662 REST ENCFF290ESJ 
RING1 ENCFF779XNE 1,077 
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Table 
4 

Publicly accessible omics datasets analyzed in this study 

DATASET_NAME SEQ 
TYPE 

CELL 
LINE 

GENOME GEO/ENCODE 
ACCESSION 

HEK293_CPE1 RNA-seq HEK293 HG38 GSM1623143 
HEK293_CPE2 RNA-seq HEK293 HG38 GSM1623144 
HEK293_CPE3 RNA-seq HEK293 HG38 GSM1623145 
HEK293_SNE1 RNA-seq HEK293 HG38 GSM1623140 
HEK293_SNE2 RNA-seq HEK293 HG38 GSM1623141 
HEK293_SNE3 RNA-seq HEK293 HG38 GSM1623142 
H1_CPE1 RNA-seq H1-hESC HG38 GSM2208157 
H1_CPE2 RNA-seq H1-hESC HG38 GSM2208158 
H1_CPE3 RNA-seq H1-hESC HG38 GSM2208159 
H1_SNE1 RNA-seq H1-hESC HG38 GSM2208160 
H1_SNE2 RNA-seq H1-hESC HG38 GSM2208161 
H1_SNE3 RNA-seq H1-hESC HG38 GSM2208162 
K562_CPE1 RNA-seq K562 HG38 GSM2208147 
K562_CPE2 RNA-seq K562 HG38 GSM2208148 

 
 
 
 
 

 
 
 

TF-bidning 
 
 
 
 
 

RNF2 ENCFF349MSP 

69,849 RNF2 ENCFF462AZY 
RNF2 ENCFF741CLJ 
RNF2 ENCFF820LKT 
SAP30 ENCFF103RHL 14,223 
SIN3A ENCFF407VGB 

15,822 SIN3A ENCFF802JAN 
SIX5 ENCFF247LOF 3,590 
SP1 ENCFF452LDK 14,782 

SUZ12 ENCFF856HYC 2,454 
TAF1 ENCFF453TIB 19,263 
TAF7 ENCFF852NOL 685 
TCF12 ENCFF912LXU 

45,012 TCF12 ENCFF952JIK 
TEAD4 ENCFF547MLB 36,110 
USF1 ENCFF717KGR 21,382 
USF2 ENCFF425FVY 3,542 
WDR5 ENCFF985TIE 6,630 
YY1 ENCFF024TJO 

51,788 YY1 ENCFF635XCI 
YY1 ENCFF953BTB 

ZNF143 ENCFF700GZI 29,840 
ZNF274 ENCFF323AWS 

3,440 ZNF274 ENCFF498VQZ 
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K562_CPE3 RNA-seq K562 HG38 GSM2208149 
K562_SNE1 RNA-seq K562 HG38 GSM2208150 
K562_SNE2 RNA-seq K562 HG38 GSM2208151 
K562_SNE3 RNA-seq K562 HG38 GSM2208152 
K562_total_RNA-seq_1 RNA-seq K562 HG38 ENCFF010QAI 
K562_total_RNA-seq_2 RNA-seq K562 HG38 ENCFF345SBQ 
K562_total_RNA-seq_3 RNA-seq K562 HG38 ENCFF509AOR 
K562_total_RNA-seq_4 RNA-seq K562 HG38 ENCFF745GPL 
K562_nuclear_polyA_RNA-
seq_1 

RNA-seq K562 HG38 ENCLB278NDX 

K562_nuclear_polyA_RNA-
seq_2 

RNA-seq K562 HG38 ENCLB538THW 

K562_nuclear_total_RNA-
seq_1 

RNA-seq K562 HG38 ENCLB873LMQ 

K562_nuclear_total_RNA-
seq_2 

RNA-seq K562 HG38 ENCLB645CDM 

K562 GRO-Seq GRO-seq   HG19 GSM1480325  
K562_ATAC_1 ATAC-

seq 
K562 HG19 GSM1782764 

K562_ATAC_2 ATAC-
seq 

K562 HG19 GSM1782765 

K562_POL2_1 CHIP-seq K562 HG38 ENCFF730DLS 
K562_POL2_2 CHIP-seq K562 HG38 ENCFF668VIK 
K562_POL2_3 CHIP-seq K562 HG38 ENCFF285MBX 
K562_POL2_4 CHIP-seq K562 HG38 ENCFF182YZG 
K562_POL2_5 CHIP-seq K562 HG38 ENCFF099NYA 
K562_POL2_6 CHIP-seq K562 HG38 ENCFF881ONC 
K562_H3K27me3_1 CHIP-seq K562 HG38 ENCFF049HUP 
K562_H3K27me3_2 CHIP-seq K562 HG38 ENCFF031FSF 
K562_H3K27ac CHIP-seq K562 HG38 ENCFF038DDS 
K562_H3K9me3 CHIP-seq K562 HG38 ENCFF371GMJ 
K562_H3K4me3_1 CHIP-seq K562 HG38 ENCFF961SPZ 
K562_H3K4me3_2 CHIP-seq K562 HG38 ENCFF909PMV 
K562_H3K4me3_3 CHIP-seq K562 HG38 ENCFF616DLO 
K562_H3K4me3_4 CHIP-seq K562 HG38 ENCFF148POZ 
K562_H3K4me1 CHIP-seq K562 HG38 ENCFF159VKJ 
K562_EP300 CHIP-seq K562 HG38 ENCFF755HCK 
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APPENDIX B. METHODS 

Calculating numbers of coordinate-overlaps 

The numbers of coordinate-overlapped transcripts (shown in Figure 2.4a-2.4c) are calculated by 

using the R package ChIPpeakAnno (Zhu et al., 2010; Zhu, 2013) with the “findOverlapsOfPeaks” 

function. Transcripts with a coordinate-overlapping of 1bp or more on the same strand are 

considered to be overlapped. If one transcript in one set is (or multiple transcripts are) overlapped 

with multiple transcripts in the other set, the number of overlapped transcripts is counted as the 

minimal number of involved transcripts in any of the two groups. The venn diagrams shown in 

Figure 2.4a-2.4c are plotted using the R package ChIPpeakAnno with the “makeVennDiagram”. 

Calculating proportions of transcripts coincident with GRO-seq/POL II signals 

The K562 POLL II “bed narrowPeak” files in GRCh38 are downloaded from ENCODE. GRO-

seq “bigwig” files in hg19 are downloaded from GEO (Edgar et al., 2002) and a liftover of the 

hg19 annotations to GRCh38.p10 were then generated using an online tool called Batch 

Coordinate Conversion (liftOver) in UCSC genome browser (Kent et al., 2002) (Table 4). 

Transcripts overlapped 1bp or more with GRO-seq/POL II peaks by coordinates are defined as 

transcripts coincident with GRO-seq/POL II signals. Overlapping between transcripts and GRO-

seq/POL II peak regions are done by using the R package GenomicRanges (Lawrence et al., 2013) 

with the “findoverlaps” function. 

Categorize transcripts into mRNA, intergenic RNA (iRNA), and antisense RNA (as-RNA) 

We categorized the assembled RNAs into three sub groups based on their relative genomic 

locations to GENCODE (v25)-annotated protein-coding genes (Figure 3.1). We firstly overlapped 

the coordinates of all assembled RNAs with GENCODE annotated protein-coding genes by using 

the “findOverlaps” function in R package GenomicRanges (v1.32.3) (Lawrence et al., 2013). 

Those assembled-RNAs that were not overlapped with any protein-coding genes were categorized 

as intergenic RNAs (iRNAs). The RNAs overlapping with protein-coding genes on the same strand 

were spitted into two sub-groups: those with an overlapped region accounts for at least 50% of the 

assembled RNA region were categorized as ‘mRNAs’; and the others were categorized as iRNAs. 
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Finally, the assembled RNAs whose coordinates overlapped with protein-coding genes on the 

opposite strand were identified as antisense RNAs. Among those antisense RNAs, the ones that 

overlapped with protein-coding promoters (1000 bp windows around TSS of genes) were further 

categorized as antisense RNAs at 5UTR; other antisense RNAs were then categorized as antisense 

RNAs at 3UTR.  

Coding probability calculation 

The coding probability of RNA transcripts was calculated using Coding Potential Calculator 2 

(CPC2) (Kang et al., 2017). CPC2 assessed coding probability by employing a support vector 

machine model based on four sequence intrinsic features: Fickett TESTCODE score of DNA 

sequences (Fickett, 1982), open reading frame (ORF) length, ORF integrity, and isoelectric point.  

AUC analysis 

AUC analysis was performed using the ROCR (v1.0-7) package in R (Sing et al., 2005). The 

commonly identified 731 cheRNAs or 3573 sneRNAs by all four pipelines were used as gold 

standard to calculate the accuracy of prediction in AUC analysis.  

Chromatin states analysis and comparison 

When comparing chromatin states of interested loci, we used ChIP-seq signals directly from BAM 

files instead of the published peak files for better sensitivity. Files meeting the following criteria 

were included in the analysis: (1). Format = Bam; (2) Genome version = GRCh38; (3). Output 

type = alignments.  

To compare different chromatin features and chromatin accessibility, the metagene analysis was 

performed at either body regions or promoter regions (±1kb of TSS) of RNAs using the 

Bioconductor package metagene (v2.14.0) (Noguchi et al., 2006). When comparing ChIP-Seq 

signals using the downloaded bam files (which may ignore the ChIP-seq input control) with 

metagene analyses, we input not only the bam file for a histone mark but also its input control. 

Briefly, three steps were performed for meta-gene analysis:  
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1) The read coverages of all selected regions were extracted from BAM files and normalized 

to reads per million aligned (RPM) using the Bioconductor package metagene.  

2) We divided each interested region into 100 equally-sized bins and calculated the averaged 

RPM within each bin.  

3) Metagene profiles were plotted in the format of a ribbon plot or a box plot. If plotted in a 

ribbon plot, lines represent averaged RPM and ribbons represent the 95% confidence 

interval of the mean calculated using 1000 bootstraps; If plotted in a box plot, each box 

represents the distribution of averaged RPM at each bin.  

4) To statistically compare two averaged RPM distributions, two-sided Wilcoxon rank sum 

test was performed to calculate p-value.  

Retrieving ChromHMM predicted enhancer-driven RNAs (eRNAs) 

To retrieve ChromHMM predicted eRNAs in K562 cell line, we downloaded the broad Chromatin 

State Segmentation by Hidden Markov Model from ENCODE (Broad ChromHMM) (Ernst and 

Kellis, 2012) profile in hg19 for K562 cell line from ENCODE 

(http://genome.ucsc.edu/encode/downloads.html). A map of these downloaded hg19 annotations 

to GRCh38.p10 was then conducted using an online tool called Batch Coordinate Conversion 

(liftOver) in the UCSC genome browser (Kent et al., 2002). In this work ChromHMM-predicted 

eRNAs were defined as intergenic RNAs overlap (at least 1 base) with ChromHMM-predicted 

“Strong enhancer” regions.  

Retrieving FANTOM profiles 

To retrieve FANTOM-predicted eRNAs in the K562 cell line, we downloaded the FANTOM-

predicted enhancer regions in hg19 (ubiquitous_enhancers_cells.bed.txt) from FANTOM5 

consortium (http://slidebase.binf.ku.dk/human_enhancers/presets) (Andersson et al., 2014). A 

liftover of the hg19 annotations to GRCh38.p10 for the downloaded profile were then generated 

using an online tool called Batch Coordinate Conversion (liftOver) in UCSC genome browser 

(Kent et al., 2002). FANTOM-predicted eRNAs were defined as intergenic RNAs overlap (at least 

1 base) with FANTOM-predicted enhance regions. 
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Relative density of correlation between intergenic RNAs and neighbor coding genes 

We calculated the pairwise Pearson correlation coefficient (PCC) between the intergenic RNA and 

protein-coding gene. We tested five types of intergenic RNA-gene groups: the icheRNA with 

random protein-coding gene pairs; the icheRNA with neighbor protein-coding gene pairs 

(icheRNA:neighborCoding); ChromHMM-predicted eRNAs with neighbor protein-coding genes 

pairs (ChromHMM-neighborCoding), FANTOM-predicted eRNAs with neighbor protein-coding 

genes pairs (FANTOM-neighborCoding) and the isneRNA with neighbor protein-coding gene 

pairs (isneRNA:neighborCoding).  

The PCC of each intergenic RNA-gene pair was calculated based on their expression levels across 

all CPE and SNE samples of three cell types (K563, HEK293, H1-hESC). To pair an intergenic 

RNA with its neighbor protein-coding gene out of its nearest upstream and downstream genes on 

the same strand, the one with the highest absolute PCC value is selected. A significant cutoff of 

PCC values was set at -0.8 or 0.8, respectively for the negative or positive correlation. Kernel 

density is estimated for each intergenic RNA-gene pair group. Relative density for each intergenic 

RNA and neighboring protein-coding gene pairs group (e.g. icheRNA:neighborCoding) is 

calculated in the way of dividing the kernel density estimates of indicated intergenic RNA and 

neighboring protein-coding gene pairs group (e.g. icheRNA:neighborCoding) by the kernel 

density of icheRNA and randomly selected coding gene pairs group.  

RNA structural analysis based on the Rfam annotations 

Each annotating family in Rfam (v13, hg38) is represented by a multiple-sequence alignment, a 

consensus secondary structure, and a covariance model (Kalvari et al., 2018); and we grouped one 

or more annotating families into a super-family according to their function as well proportions in 

the above noncoding transcriptome. The homologous ncRNA sequences in each super-family were 

generally less than 400 bp (2.6 on the log10-scale, Fig 9), much shorter than the ncRNAs in the 

assembled transcriptome. Therefore, only when a ncRNA transcript fully covers an annotating 

family sequence, we annotated this ncRNA transcript with a Rfam super-family.  

To assess the probabilities of a Rfam super-family (i) among a set of ncRNAs of interest (t), we 

calculated the ratio of ratios (RR) using Formula 1.   
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𝑅𝑅 𝑡, 𝑟 = &	()*+,-.	+
&

&	()*+,-.	/
/

,      Formula 1 

where T={t} is the collection of all noncoding transcripts in the transcriptome, and |.| is the number 

of transcripts meeting a condition.  

This RR score was calculated for each Rfam-family for its frequency within a ncRNA set (t) versus 

its global frequency. Therefore, an RR-score above 2 indicates a ncRNA set (t)-selective RNA 

structural family.  

polyA RNA-seq and total RNA-seq analysis 

To compare expression levels of nuclear RNAs in different RNAseq libraries, we downloaded the 

raw sequencing datasets of K562 nuclear polyA RNA-seq (GSE88339) and nuclear total RNA-seq 

(GSE87982) from ENCODE data portal (Table 4). Reads were aligned to the human genome 

version GRCh38.p10 using Tophat (v2.1.1) (Kim et al., 2013) (e.g., tophat -p 8 --library-type=fr-

firststrand -G gencode.v25.gtf GRCH38.genome -o polyA1 polyA1.fastq). Then the Fragments 

Per Kilobase Million (FPKM) of RNA transcripts were calculated using Cufflinks (v2.2.1) 

(Trapnell et al., 2012) (e.g., cufflinks -p 8 -u -N -library-type fr-firststrand -o FPKM_polyA1 -G 

gtf polyA1.bam). When making dot plots in Figures 5 and Figure 6, only expressed RNAs (with 

CPM>1) were plotted.  

ChIP-seq peak signal 

ChIP-seq peak signals were downloaded from ENCODE as “bed narrowPeak” files (Table 4).  

When one sample includes several replicates, we used the “bed narrowPeak” file with the 

Irreproducible Discovery Rate (IDR) values thresholded at the optimization precision (“optimal 

idr thresholded peaks”). When multiple samples are available and collected for one mark, we 

generated a union signal which was the pool of ChIP-seq peaks identified at least once from 

biological replicates. All files were downloaded with GRCh38 mapping assembly.  

These bed/wig files generated from ENCODE used a score associated with each peak (enriched 

interval) which is the mean signal value across the interval. (Note that a broad region with 

moderate enrichment may deviate from the background more significantly than a short region with 
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high signal.) The input control information is on the same page where the bed/wig/bam file is 

download. 

Calculating proportions of transcripts overlapping with LADs 

The genomic coordinates of human (hg19) fibroblast LADs are downloaded from ENCODE 

(http://compbio.med.harvard.edu/modencode/webpage/lad/human.fibroblast.DamID.hg19.bed) 

and a liftover of the hg19 annotations to GRCh38.p10 were then generated using an online tool 

called Batch Coordinate Conversion (liftOver) in UCSC genome browser (Kent et al., 2002). 

Transcripts embedded in LADs are defined if more than 50% of the transcript overlaps with 

genomic coordinates of LADs. Overlapping between genomic coordinates of transcripts and LADs 

is done by using the R package GenomicRanges (Lawrence et al., 2013) with the “findoverlaps” 

function. 

Calculating proportions of transcripts overlapping with class 1 TEs 

The annotation of class 1 TEs in human (GRCh38.p10) is downloaded from RepeatMasker 

(http://www.repeatmasker.org/species/hg.html) (Yang et al., 2004). Transcripts overlapping with 

class 1 TEs are defined if the sequence of the transcript contains at least one sequence of class 1 

TEs.  
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APPENDIX C. SOURCE FILE FOR TUXEDO PIPELINE 

######################################################################## 

# 1. Genome Alignment using Tophat 

######################################################################## 

 

####### K562_CPE1  

tophat --rg-sample SRR3703288 --rg-id SRR3703288 --library-type=fr-firststrand \ 

--segment-length 50 --segment-mismatches 2 --no-coverage-search --keep-fasta-order -p 32 \ 

-o /homeDir/GSE83531_cheRNA/tophat/SRR3703288 \ 

/homeDir/Reference_Sequences/Human/FASTA/GRCh38.primary_assembly.genome \ 

/homeDir/GSE83531_cheRNA/FastQ/SRR3703288.fastq.gz 

 

####### K562_CPE2 

tophat --rg-sample SRR3703289 --rg-id SRR3703289 --library-type=fr-firststrand \ 

--segment-length 50 --segment-mismatches 2 --no-coverage-search --keep-fasta-order -p 32 \ 

-o /homeDir/GSE83531_cheRNA/tophat/SRR3703289 \ 

/homeDir/Reference_Sequences/Human/FASTA/GRCh38.primary_assembly.genome \ 

/homeDir/GSE83531_cheRNA/FastQ/SRR3703289.fastq.gz 

 

####### K562_CPE3 

tophat --rg-sample SRR3703290 --rg-id SRR3703290 --library-type=fr-firststrand \ 

--segment-length 50 --segment-mismatches 2 --no-coverage-search --keep-fasta-order -p 32 \ 

-o /homeDir/GSE83531_cheRNA/tophat/SRR3703290 \ 
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/homeDir/Reference_Sequences/Human/FASTA/GRCh38.primary_assembly.genome \ 

/homeDir/GSE83531_cheRNA/FastQ/SRR3703290.fastq.gz 

 

####### K562_SNE1 

tophat --rg-sample SRR3703291 --rg-id SRR3703291 --library-type=fr-firststrand \ 

--segment-length 50 --segment-mismatches 2 --no-coverage-search --keep-fasta-order -p 32 \ 

-o /homeDir/GSE83531_cheRNA/tophat/SRR3703291 \ 

/homeDir/Reference_Sequences/Human/FASTA/GRCh38.primary_assembly.genome \ 

/homeDir/GSE83531_cheRNA/FastQ/SRR3703291.fastq.gz 

 

####### K562_SNE2 

tophat --rg-sample SRR3703292 --rg-id SRR3703292 --library-type=fr-firststrand \ 

--segment-length 50 --segment-mismatches 2 --no-coverage-search --keep-fasta-order -p 32 \ 

-o /homeDir/GSE83531_cheRNA/tophat/SRR3703292 \ 

/homeDir/Reference_Sequences/Human/FASTA/GRCh38.primary_assembly.genome \ 

/homeDir/GSE83531_cheRNA/FastQ/SRR3703292.fastq.gz 

 

####### K562_SNE3 

tophat --rg-sample SRR3703293 --rg-id SRR3703293 --library-type=fr-firststrand \ 

--segment-length 50 --segment-mismatches 2 --no-coverage-search --keep-fasta-order -p 32 \ 

-o /homeDir/GSE83531_cheRNA/tophat/SRR3703293 \ 

/homeDir/Reference_Sequences/Human/FASTA/GRCh38.primary_assembly.genome \ 

/homeDir/GSE83531_cheRNA/FastQ/SRR3703293.fastq.gz 
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######################################################################## 

# 2. clean bam files using samtools to remove reads mapped mitochondria chromosome 

######################################################################## 

 

####### K562_CPE1  

samtools idxstats /homeDir/GSE83531_cheRNA/All_bam/SRR3703288_accepted_hits.bam \ 

| cut -f 1 | grep 'chr' | grep -v 'chrM' | \ 

xargs samtools view -b 

/homeDir/GSE83531_cheRNA/All_bam/SRR3703288_accepted_hits.bam > \ 

/homeDir/GSE83531_cheRNA/cleaned_bam/SRR3703288_clean.bam 

samtools index /homeDir/GSE83531_cheRNA/cleaned_bam/SRR3703288_clean.bam 

 

####### K562_CPE2 

samtools idxstats /homeDir/GSE83531_cheRNA/All_bam/SRR3703289_accepted_hits.bam \ 

| cut -f 1 | grep 'chr' | grep -v 'chrM' | \ 

xargs samtools view -b 

/homeDir/GSE83531_cheRNA/All_bam/SRR3703289_accepted_hits.bam > \ 

/homeDir/GSE83531_cheRNA/cleaned_bam/SRR3703289_clean.bam 

samtools index /homeDir/GSE83531_cheRNA/cleaned_bam/SRR3703289_clean.bam 

 

####### K562_CPE3 

samtools idxstats /homeDir/GSE83531_cheRNA/All_bam/SRR3703290_accepted_hits.bam \ 

| cut -f 1 | grep 'chr' | grep -v 'chrM' | \ 
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xargs samtools view -b 

/homeDir/GSE83531_cheRNA/All_bam/SRR3703290_accepted_hits.bam > \ 

/homeDir/GSE83531_cheRNA/cleaned_bam/SRR3703290_clean.bam 

samtools index /homeDir/GSE83531_cheRNA/cleaned_bam/SRR3703290_clean.bam 

 

####### K562_SNE1 

samtools idxstats /homeDir/GSE83531_cheRNA/All_bam/SRR3703291_accepted_hits.bam \ 

| cut -f 1 | grep 'chr' | grep -v 'chrM' | \ 

xargs samtools view -b 

/homeDir/GSE83531_cheRNA/All_bam/SRR3703291_accepted_hits.bam > \ 

/homeDir/GSE83531_cheRNA/cleaned_bam/SRR3703291_clean.bam 

samtools index /homeDir/GSE83531_cheRNA/cleaned_bam/SRR3703291_clean.bam 

 

####### K562_SNE2 

samtools idxstats /homeDir/GSE83531_cheRNA/All_bam/SRR3703292_accepted_hits.bam \ 

| cut -f 1 | grep 'chr' | grep -v 'chrM' | \ 

xargs samtools view -b 

/homeDir/GSE83531_cheRNA/All_bam/SRR3703292_accepted_hits.bam > \ 

/homeDir/GSE83531_cheRNA/cleaned_bam/SRR3703292_clean.bam 

samtools index /homeDir/GSE83531_cheRNA/cleaned_bam/SRR3703292_clean.bam 

 

####### K562_SNE3 

samtools idxstats /homeDir/GSE83531_cheRNA/All_bam/SRR3703293_accepted_hits.bam \ 
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| cut -f 1 | grep 'chr' | grep -v 'chrM' | \ 

xargs samtools view -b 

/homeDir/GSE83531_cheRNA/All_bam/SRR3703293_accepted_hits.bam > \ 

/homeDir/GSE83531_cheRNA/cleaned_bam/SRR3703293_clean.bam 

samtools index /homeDir/GSE83531_cheRNA/cleaned_bam/SRR3703293_clean.bam 

 

######################################################################## 

# 3. RABT assembly using Cufflinks 

######################################################################## 

 

####### K562_CPE1  

cufflinks -o /homeDir/GSE83531_cheRNA/cufflinks_rabt/SRR3703288 \ 

-p 32 --library-type fr-firststrand \ 

-g 

/homeDir/Reference_Sequences/Human/Annotation/gencode.v25.primary_assembly.annotation.

gtf \ 

-u /homeDir/GSE83531_cheRNA/cleaned_bam/SRR3703288_clean.bam 

 

####### K562_CPE2 

cufflinks -o /homeDir/GSE83531_cheRNA/cufflinks_rabt/SRR3703289 \ 

-p 32 --library-type fr-firststrand \ 
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-g 

/homeDir/Reference_Sequences/Human/Annotation/gencode.v25.primary_assembly.annotation.

gtf \ 

-u /homeDir/GSE83531_cheRNA/cleaned_bam/SRR3703280_clean.bam 

 

####### K562_CPE3 

cufflinks -o /homeDir/GSE83531_cheRNA/cufflinks_rabt/SRR3703290 \ 

-p 32 --library-type fr-firststrand \ 

-g 

/homeDir/Reference_Sequences/Human/Annotation/gencode.v25.primary_assembly.annotation.

gtf \ 

-u /homeDir/GSE83531_cheRNA/cleaned_bam/SRR3703290_clean.bam 

 

####### K562_SNE1 

cufflinks -o /homeDir/GSE83531_cheRNA/cufflinks_rabt/SRR3703291 \ 

-p 32 --library-type fr-firststrand \ 

-g 

/homeDir/Reference_Sequences/Human/Annotation/gencode.v25.primary_assembly.annotation.

gtf \ 

-u /homeDir/GSE83531_cheRNA/cleaned_bam/SRR3703291_clean.bam 

 

####### K562_SNE2 

cufflinks -o /homeDir/GSE83531_cheRNA/cufflinks_rabt/SRR3703292 \ 
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-p 32 --library-type fr-firststrand \ 

-g 

/homeDir/Reference_Sequences/Human/Annotation/gencode.v25.primary_assembly.annotation.

gtf \ 

-u /homeDir/GSE83531_cheRNA/cleaned_bam/SRR3703292_clean.bam 

 

####### K562_SNE3 

cufflinks -o /homeDir/GSE83531_cheRNA/cufflinks_rabt/SRR3703293 \ 

-p 32 --library-type fr-firststrand \ 

-g 

/homeDir/Reference_Sequences/Human/Annotation/gencode.v25.primary_assembly.annotation.

gtf \ 

-u /homeDir/GSE83531_cheRNA/cleaned_bam/SRR3703293_clean.bam 

 

######################################################################## 

# 4. Build transcriptome using Cuffmerge 

######################################################################## 

 

cuffmerge -o /homeDir/GSE83531_cheRNA/cuffmerge_rabt_k562/ -p 32 \ 

-g 

/homeDir/Reference_Sequences/Human/Annotation/gencode.v25.primary_assembly.annotation.

gtf \ 

-s /homeDir/Reference_Sequences/Human/FASTA/GRCh38.primary_assembly.genome.fa \ 
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/homeDir/GSE83531_cheRNA/cufflinks_rabt/che_sne_K562.txt 

 

######################################################################## 

# 5. Get geneCounts using htseq 

######################################################################## 

 

####### K562_CPE1  

htseq-count -f bam -s reverse -m intersection-nonempty \ 

/homeDir/GSE83531_cheRNA/cleaned_bam/K562_cleaned_bam/SRR3703288_clean.bam \ 

/homeDir/GSE83531_cheRNA/cuffmerge_rabt_k562/merged.gtf > \ 

/homeDir/GSE83531_cheRNA/HTseq_ruthenburg_1000_K562/SRR3703288_geneCounts.out 

 

####### K562_CPE2 

htseq-count -f bam -s reverse -m intersection-nonempty \ 

/homeDir/GSE83531_cheRNA/cleaned_bam/K562_cleaned_bam/SRR3703289_clean.bam \ 

/homeDir/GSE83531_cheRNA/cuffmerge_rabt_k562/merged.gtf > \ 

/homeDir/GSE83531_cheRNA/HTseq_ruthenburg_1000_K562/SRR3703289_geneCounts.out 

 

####### K562_CPE3 

htseq-count -f bam -s reverse -m intersection-nonempty \ 

/homeDir/GSE83531_cheRNA/cleaned_bam/K562_cleaned_bam/SRR3703290_clean.bam \ 

/homeDir/GSE83531_cheRNA/cuffmerge_rabt_k562/merged.gtf > \ 

/homeDir/GSE83531_cheRNA/HTseq_ruthenburg_1000_K562/SRR3703290_geneCounts.out 
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####### K562_SNE1 

htseq-count -f bam -s reverse -m intersection-nonempty \ 

/homeDir/GSE83531_cheRNA/cleaned_bam/K562_cleaned_bam/SRR3703291_clean.bam \ 

/homeDir/GSE83531_cheRNA/cuffmerge_rabt_k562/merged.gtf > \ 

/homeDir/GSE83531_cheRNA/HTseq_ruthenburg_1000_K562/SRR3703291_geneCounts.out 

 

####### K562_SNE2 

htseq-count -f bam -s reverse -m intersection-nonempty \ 

/homeDir/GSE83531_cheRNA/cleaned_bam/K562_cleaned_bam/SRR3703292_clean.bam \ 

/homeDir/GSE83531_cheRNA/cuffmerge_rabt_k562/merged.gtf > \ 

/homeDir/GSE83531_cheRNA/HTseq_ruthenburg_1000_K562/SRR3703292_geneCounts.out 

 

####### K562_SNE3 

htseq-count -f bam -s reverse -m intersection-nonempty \ 

/homeDir/GSE83531_cheRNA/cleaned_bam/K562_cleaned_bam/SRR3703293_clean.bam \ 

/homeDir/GSE83531_cheRNA/cuffmerge_rabt_k562/merged.gtf > \ 

/homeDir/GSE83531_cheRNA/HTseq_ruthenburg_1000_K562/SRR3703293_geneCounts.out 

 

######################################################################## 

# 6. Differential expression analysis using limma package in R 

######################################################################## 

###### Reference: https://www.bioconductor.org/help/workflows/RNAseq123/ 
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library(limma) 

library(edgeR) 

 

###### read htseq geneCounts into a DGE matrix used in edgeR 

htseqToDGE <- function(files_dir){ 

  library(edgeR) 

  files <- list.files(path=files_dir, pattern="geneCounts") 

  files <- sort(files, decreasing=T) 

  files_fullPath <- sapply(files, function(x) paste0(files_dir,x)) 

  ######### 

  raw_DGE <- readDGE(files_fullPath, header=F) 

  list <- c("no_feature", "ambiguous", "too_low_aQual", "not_aligned", "alignment_not_unique") 

  for(i in list){ 

    tmp <- grep(i, rownames(raw_DGE$counts)) 

    if(length(tmp)>0) raw_DGE$counts <- raw_DGE$counts[-tmp,] 

  } 

  colnames(raw_DGE) <- sapply(files, function(x) unlist(strsplit(x, "_", fixed=T))[1]) 

  group <- as.factor(c("SNE", "SNE", "SNE", "CPE", "CPE", "CPE")) 

  raw_DGE$samples$group <- group 

  return(raw_DGE) 

} 

 

###### filtered raw counts, normalize raw counts and make density plots and barplots 
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filterNormPlot <- function(raw_DGE, method, cpm_cutoff){ 

  library(edgeR) 

  library(RColorBrewer) 

   

  # plot log-cpm of raw data 

  par(mfrow=c(2,2)) 

  nsamples <- ncol(raw_DGE) 

  col <- brewer.pal(nsamples, "RdYlGn") 

  samplenames <- colnames(tuxedo_DGE) 

  lcpm <- cpm(raw_DGE, log=TRUE) 

  plot(density(lcpm[,1]), col=col[1], lwd=2, las=2, ylim=c(0,0.5),  

       main="", xlab="") 

  title(main=paste0("A. ",method," Raw data"), xlab="Log2-cpm") 

  abline(v=0, lty=3) 

  for (i in 2:nsamples){ 

    den <- density(lcpm[,i]) 

    lines(den$x, den$y, col=col[i], lwd=2) 

  } 

  legend("topright", samplenames, text.col=col, bty="n") 

   

  # filter by cpm 

  cpm <- cpm(raw_DGE) 

  keep.exprs <- rowSums(cpm>cpm_cutoff)>=3   
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  filtered_DGE <- raw_DGE[keep.exprs, keep.lib.sizes=FALSE] 

  dim(filtered_DGE) 

  filtered_lcpm <- cpm(filtered_DGE, log=TRUE) 

  plot(density(filtered_lcpm[,1]), col=col[1], lwd=2, las=2, ylim=c(0,0.5), 

       main="", xlab="") 

  title(main=paste0("B. ", method, " Filtered data"), xlab="Log2-cpm") 

  abline(v=0, lty=3) 

  for (i in 2:nsamples){ 

    den <- density(filtered_lcpm[,i]) 

    lines(den$x, den$y, col=col[i], lwd=2) 

  } 

  legend("topright", samplenames, text.col=col, bty="n") 

   

  # plot unnormalized data 

  boxplot(filtered_lcpm, las=2, col=col, main="") 

  title(main=paste0("C. Example: ",method," Unnormalized filtered data"),ylab="Log2-cpm") 

   

  # normalization 

  norm_DGE <- calcNormFactors(filtered_DGE, method = "TMM") 

  norm_DGE$samples$norm.factors 

  norm_lcpm <- cpm(norm_DGE, log=TRUE) 

  boxplot(norm_lcpm, las=2, col=col, main="") 

  title(main=paste0("D. Example: ",method," Normalised filtered data"),ylab="Log2-cpm") 



103 

  return(norm_DGE) 

} 

 

limmaFitDE <- function(norm_DGE, method){ 

  library(limma) 

  group <- norm_DGE$samples$group 

  design <- model.matrix(~0+group) 

  contr.matrix <- makeContrasts(CPEvsSNE = groupCPE-groupSNE, levels = colnames(design)) 

   

  par(mfrow=c(1,2)) 

  v <- voom(norm_DGE, design, plot=TRUE) 

  vfit <- lmFit(v, design) 

  vfit <- contrasts.fit(vfit, contrasts=contr.matrix) 

  efit <- eBayes(vfit) 

  plotSA(efit, main=paste0(method, " Final model: Mean???variance trend")) 

  return(efit) 

} 

 

tuxedo_path <- "HTseq_tuxedo/" 

tuxedo_DGE <- htseqToDGE(tuxedo_path) 

 

pdf(file="limma_filter_norm_plot_2.pdf", width=10, height=8) 

tuxedo_normDGE <- filterNormPlot(tuxedo_DGE, "Tuxedo", 1) 
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dev.off() 

 

tuxedo_efit <- limmaFitDE(tuxedo_normDGE, "Tuxedo") 

 

summary(decideTests(tuxedo_efit, p.value = 0.05, lfc=log2(1.2))) 

 

tuxedo_limmaRES <- topTreat(tuxedo_efit, sort="none",number=Inf) 

tuxedo_limmaRES$decision <- decideTests(tuxedo_efit, p.value = 0.05, lfc=log2(1.2)) 
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