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ABSTRACT

Kaki, Gowtham PhD, Purdue University, August 2019. Automatic Reasoning Tech-
niques for Non-Serializable Data-Intensive Applications. Major Professor: Suresh
Jagannathan.

The performance bottlenecks in modern data-intensive applications have induced

database implementors to forsake high-level abstractions and trade-off simplicity and

ease of reasoning for performance. Among the first casualties of this trade-off are the

well-known ACID guarantees, which simplify the reasoning about concurrent database

transactions. ACID semantics have become increasingly obsolete in practice due

to serializable isolation – an integral aspect of ACID, being exorbitantly expensive.

Databases, including the popular commercial offerings, default to weaker levels of

isolation where effects of concurrent transactions are visible to each other. Such weak

isolation guarantees, however, are extremely hard to reason about, and have led to

serious safety violations in real applications. The problem is further complicated

in a distributed setting with asynchronous state replications, where high availability

and low latency requirements compel large-scale web applications to embrace weaker

forms of consistency (e.g., eventual consistency) besides weak isolation. Given the

serious practical implications of safety violations in data-intensive applications, there

is a pressing need to extend the state-of-the-art in program verification to reach non-

serializable data-intensive applications operating in a weakly-consistent distributed

setting.

This thesis sets out to do just that. It introduces new language abstractions, pro-

gram logics, reasoning methods, and automated verification and synthesis techniques

that collectively allow programmers to reason about non-serializable data-intensive

applications in the same way as their serializable counterparts. The contributions
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made are broadly threefold. Firstly, the thesis introduces a uniform formal model

to reason about weakly isolated (non-serializable) transactions on a sequentially con-

sistent (SC) relational database machine. A reasoning method that relates the se-

mantics of weak isolation to the semantics of the database program is presented, and

an automation technique, implemented in a tool called ACIDifier is also described.

The second contribution of this thesis is a relaxation of the machine model from se-

quential consistency to a specifiable level of weak consistency, and a generalization

of the data model from relational to schema-less or key-value. A specification lan-

guage to express weak consistency semantics at the machine level is described, and

a bounded verification technique, implemented in a tool called Q9 is presented that

bridges the gap between consistency specifications and program semantics, thus al-

lowing high-level safety properties to be verified under arbitrary consistency levels.

The final contribution of the thesis is a programming model inspired by version con-

trol systems that guarantees correct-by-construction replicated data types (RDTs) for

building complex distributed applications with arbitrarily-structured replicated state.

A technique based on decomposing inductively-defined data types into characteris-

tic relations is presented, which is used to reason about the semantics of the data

type under state replication, and eventually derive its correct-by-construction repli-

cated variant automatically. An implementation of the programming model, called

Quark, on top of a content-addressable storage is described, and the practicality of

the programming model is demonstrated with help of various case studies.
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1 INTRODUCTION

Contemporary applications are data-intensive, as opposed to compute-intensive [1];

rather than being limited by the available CPU power, the performance bottlenecks in

these applications pertain to handling high-volume reads and writes to large amounts

of data with complex internal structure. While such applications have gained promi-

nence in recent years — thanks to the proliferation of planet-scale web-services and

mobile devices, data-intensive applications, in some form or the other, have been

around since the beginning of the formal study of databases itself. Indeed, while the

theory of databases has progressively introduced elegant abstractions to reason about

database transactions, such as Atomicity, Serializability etc (collectively referred to as

ACID guarantees), the performance bottlenecks in database applications have always

induced practitioners to break such abstractions and tradeoff safety for performance

whenever needed. A prototypical example of this kind is the proposal of Weak Isola-

tion by Jim Grey et al. in 1976 [2]. Serializable isolation - an integral aspect of ACID

guarantees, ensures that any permissible concurrent schedule of transactions yields

results equivalent to a serial one in which there is no interleaving of actions from

different transactions. As much as it simplifies the reasoning about concurrent trans-

actions, Serializability does not come for free, however — pessimistic concurrency

control methods require databases to use expensive mechanisms such as two-phase

locking that incur overhead to deal with deadlocks, rollbacks, and re-execution [3,4].

Similar criticisms apply to optimistic multi-version concurrency control methods that

must deal with timestamp and version management [5]. Moreover, while serializabil-

ity is a sufficient condition for correctness, it is often not necessary to ensure the

overall correctness of an application if many interleavings of transactions turn out

to be benign. It is based on these observations that Grey et al. proposed multiple

“degrees” or “levels” of isolation weaker than serializability that try to recover perfor-
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mance by breaking the ACID abstraction, even at the expense of simplicity and ease

of reasoning. These weaker variants permit a transaction to witness various effects

of newly committed, or even concurrently running, transactions while it executes,

thereby weakening serializability’s strong isolation guarantees. The ANSI SQL 92

standard defines three such weak isolation levels which are now implemented in many

relational and NoSQL databases. Owing to their performance benefits [6–8], weak iso-

lation levels have seen overwhelming adoption in practice [9], displacing serializability

as the de facto isolation level on most ACID relational databases [10].

Indeed, strong isolation is not the only abstraction to have been breached by

data-intensive applications in the pursuit of performance. The decade of 2000s saw

the proliferation of planet-scale web applications, such as Google and Amazon, which

replicate their state and logic across multiple replicas within and across data cen-

ters. Replication is intended not only to improve application throughput and reduce

user-perceived latency, but also to tolerate partial failures without compromising over-

all service availability. Traditionally programmers have relied on strong consistency

guarantees such as linearizability [11] in order to build correct applications. While

serializability is a property of transactions, i.e., a group of operations over multi-

ple objects, linearizability is a real-time guarantee about single operations on single

objects. Linearizability requires that the final state of an object be a result of per-

forming the operations on the object sequentially, where each operation appears to

take effect sometime between its invocation and conclusion. While linearizability is

an easily stated property, it masks the reality underlying large-scale distributed sys-

tems with respect to non-uniform latency, availability, and network partitions [12,13].

In particular, strong consistency à la linearizability is incompatible with high avail-

ability and network partition tolerance. Modern web services, which aim to provide

an “always-on” experience, overwhelmingly favor availability and partition tolerance

over strong consistency, resulting in the introduction of several weak consistency mod-

els such as eventual consistency, causal consistency, session guarantees, and timeline
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consistency [14] which are now widely implemented in the off-the-shelf data stores

that support geo-replication [15,16].

An unfortunate but unsurprising fallout of breaking open the strong consistency

and isolation abstractions is that applications now admit concurrency anomalies re-

sulting in behaviors that are difficult to comprehend. The detrimental effect that

admission of weak isolation anomalies has on the integrity of database applications

has been well-studied both in the experimental and real-world settings [9,17]. There

have also been a few notable casualties among commercial enterprises due to weak

isolation-related bugs [18–20]. The scenario with weak consistency is similar [21,22].

While enforcing serializability (resp. linearizability) for all transactions (resp. oper-

ations) would be sufficient to avoid these errors and anomalies, it would likely be an

overly conservative strategy; indeed, 75% of the application invariants studied in [9]

were shown to be preserved under some form of weak isolation. When to use weak

isolation and weak consistency, and in what form, is therefore a prominent question

facing the programmers of data-intensive applications universally. The problem is ex-

acerbated by the fact that there do not exist uniform formal specifications of various

forms of weak consistency and isolation in a way that is suitable to reason about appli-

cation correctness. For instance, Grey et al. define multiple degrees of weak isolation

in terms of the database implementation details such as the nature and duration of

locks in each case, which have no direct bearing on the application semantics. The

ANSI SQL 92 standard defines four levels of isolation (including serializability) in

terms of various undesirable phenomena (e.g., dirty reads - reading data written by

an uncommitted transaction) each is required to prevent. This formulation requires

programmers to be prescient about the possible ways various undesirable phenomena

might manifest in their applications, and in each case determine if the phenomenon

can be allowed without violating application invariants, which is almost impossible

in practice given the non-existent tool support. Likewise, several proposals introduc-

ing weak consistency variants, such as [23], define them in terms of the relationships

between low-level read and write operations, which are far below the high-level data
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abstractions exposed to the applications. Given this unsatisfactory state of affairs,

there is a pressing need to (a). Formalize the weak consistency and weak isolation

properties uniformly at a high-level abstraction closer to the one exposed by the data

store to the application, (b). Define proof systems that relate consistency and isola-

tion specifications to the semantics of the application to enable rigorous reasoning and

formal proofs of correctness of the latter, and (c). Develop proof automation meth-

ods and efficient implementation techniques to apply the aforementioned reasoning

at scale. This thesis covers considerable ground towards these ends.

Note that consistency and isolation are properties of executions defined at the

abstraction of objects and operations, and are as such independent of the data repre-

sentation and its high-level interpretation. While data stores offering weakly-isolated

transactions and linearizable operations tend to support relational data model suit-

able for deep join-intensive querying, replicated data stores that eschew strong con-

sistency lean towards the variants of simpler key-value abstraction that preempt ex-

pensive joins across geo-distributed replicas. In either case, an application is exposed

a uniform data abstraction (relational or key-value) on top of which it can structure

its semantically-relevant high-level state. The underlying data structures used to

support the abstraction are therefore irrelevant. While many commercially-deployed

applications have successfully adopted this paradigm, there is a small but emerging

class of distributed applications that break open the data representation abstraction

for performance and software engineering reasons. Such applications, e.g., collabora-

tive text editors and distributed ledgers, structure their (replicated) state in terms

of bespoke inductively-defined data types, such as document trees and blockchains,

whose data representation invariants are closely tied to the application logic. Under

a geo-replicated setting, latency and availability requirements make weak consistency

inevitable, which, in this case, might break the application invariants related to data

representation. For instance, naively merging two concurrent edits at the same loca-

tion of a shared document may result in a counterintuitive result, or even a violation

of document tree integrity (e.g., concurrently inserted span and div elements in an
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HTML document could be incorrectly merged by nesting the div inside the span ,

which violates HTML tree integrity). Thus, to engineer a replicated version of an

inductive data type, one has to carefully reason about the data type’s behavior under

replication, identify possible conflicts that result in data representation invariant vio-

lations, and extend the type definition with the semantics of reconciling such replica-

tion conflicts in a meaningful way. For non-trivial inductive data types, this process is

intellectually challenging enough to become the focus of a few research papers [24,25].

If the process of building distributed application around replicated data types were

to become any easier, there is an immediate need for automated reasoning techniques

that assist, or even automate, the process of engineering replicated data types out of

inductively-defined sequential data types. This thesis makes contributions towards

this end too.

1.1 Contributions

The various contributions made by this thesis are briefly summarized below.

1.1.1 Compositional Reasoning and Inference for Weak Isolation

The first major contribution of this thesis is a program logic for weakly-isolated

transactions along with automated verification support to allow developers to verify

the soundness of their applications, without having to resort to low-level operational

reasoning as they are forced to do currently. The thesis presents a declarative char-

acterization of weak isolation, and describes a set of syntax-directed compositional

proof rules that enable the construction of correctness proofs for transactional pro-

grams in the presence of weak isolation. Realizing that the proof burden imposed by

these rules may discourage applications programmers from using the proof system,

the thesis also develops an inference procedure that automatically verifies the weakest

isolation level for a transaction while ensuring its invariants are maintained. The key

to inference is a novel formulation of relational database state (represented as sets
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of tuples) as a monad, and in which database computations are interpreted as state

transformers over these sets. This interpretation leads to an encoding of database

computations amenable for verification by off-the-shelf SMT solvers. The approach is

realized as an extended static analysis pass called ACIDifier in the context of a DSL

embedded in OCaml. An evaluation study featuring standard database benchmarks

is presented.

1.1.2 Bounded Verification under Weak Consistency

The second major contribution of this thesis is a bounded verification and inference

technique that automatically detects weak consistency anomalies in applications with

replicated state, and infers the weakest strengthening of consistency level required

to preempt each anomaly. A programming framework embedded in OCaml is pre-

sented that lets applications define a well-typed replicated state on top of off-the-shelf

key-value stores, and compose effectful computations around it. The framework is

equipped with a symbolic execution engine called Q9 that systematically explores the

state space of an application executing on top of an eventually consistent data store,

under an unrestricted consistency model but with a finite concurrency bound. Q9

uncovers anomalies (i.e., invariant violations) that manifest as finite counterexamples,

and automatically generates repairs for such anomalies by selectively strengthening

consistency guarantees for specific operations. Crucial to this step is a novel formula-

tion of Consistency guarantees as constraints over axiomatic executions, which is also

presented. An evaluation study Q9 over implementations of well-known benchmarks

is presented, which also includes a discussion on subtle anomalies uncovered in such

implementations.

1.1.3 Principled Derivation of Mergeable Replicated Data Types

The third and final major contribution of this thesis is a novel programming model

inspired by version control systems (e.g., Git) that lets one build distributed applica-
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tions around mergeable replicated data types derived from their inductively-defined

sequential counterparts using first principles. The derivation relies on invertible re-

lational specifications of an inductively-defined data type as a mechanism to capture

salient aspects of the data type relevant to how its different instances can be safely

merged in a replicated environment without violating data representation invariants.

Importantly, because these specifications only address a data type’s (static) structural

properties, their formulation does not require exposing low-level system-level details

concerning asynchrony, replication, visibility, etc. As a consequence, the version

control-based programming framework enables the correct-by-construction synthesis

of rich merge functions over arbitrarily complex (i.e., composable) data types. The

framework, called Quark is implemented as a shallow extension of OCaml on top

of a content-addressable storage abstraction. An evaluation study featuring multiple

replicated data types, and applications composed of such data types, including the

replicated variants of standard database benchmarks, is presented.

1.2 Roadmap

The rest of the thesis is organized as follows. The next three chapters (2, 3,

and 4) present a detailed technical development and evaluation studies pertaining

to the aforementioned three major contributions (ACIDifier, Q9, and Quark)

respectively. The last section of each of the three chapters discusses the body of

work that is closely related to the work presented in the chapter. The last chapter,

Chapter 5, presents the conclusions of this thesis, along with a discussion on possible

directions that the future work can take.
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2 COMPOSITIONAL REASONING AND INFERENCE FOR WEAK

ISOLATION

In this chapter, we1 present a high-level formalism capable of uniformly specifying

various weak isolation guarantees found in the database literature and practice. The

formalism is high-level in the sense that it captures the semantics of weak isolation

in relation to the operational semantics of a transactional program, as against the

low-level trace-based characterization found in the literature. The advantage of such

high-level characterization is that it lets us extend the existing concurrent program

logics with an awareness of weak isolation, and use it as a basis to develop a proof

system capable of verifying high-level invariants, and even full-functional correctness,

of data-intensive applications composed of database transactions. We complement

the proof system with an inference and proof automation technique that is described

in the later sections of this chapter. The approach is implemented in a static analysis

tool called ACIDifier in the context of a DSL embedded in OCaml that treats SQL-

based relational database operations (e.g., inserts, selects, deletes, updates, etc.) as

computations over an abstract database state.

Before we delve into technical development, we shall first motivate the problem

of verifying weakly-isolated transactions through an example.

2.1 Motivation

Fig. 2.1 shows a simplified version of the TPC-C new order transaction written in

our OCaml DSL. The DSL is manages an abstract database state that can be manipu-

lated via a well-defined SQL interface. Arbitrary database computations can be built

1This work was done in collaboration with Kartik Nagar, Mahsa Nazafzadeh, and Suresh Jagan-
nathan.



9

let new_order (d_id , c_id , item_reqs) = atomically_do @@ fun () ->

let dist = SQL.select1 District (fun d -> d.d_id = d_id) in

let o_id = dist.d_next_o_id in

begin

SQL.update (* UPDATE *) District

(* SET *)(fun d -> {d with d_next_o_id = d.d_next_o_id + 1})

(* WHERE *)(fun d -> d.d_id = d_id );

SQL.insert (* INSERT INTO *) Order (* VALUES *)

{o_id=o_id; o_d_id=d_id; o_c_id=c_id;

o_ol_cnt=S.size item_reqs };

foreach item_reqs @@ fun item_req ->

let stk = SQL.select1 (* SELECT * FROM *) Stock

(* WHERE *)(fun s -> s.s_i_id = item_req.ol_i_id &&

s.s_d_id = d_id)(* LIMIT 1 *) in

let s_qty ’ = if stk.s_qty >= item_req.ol_qty + 10

then stk.s_qty - item_req.ol_qty

else stk.s_qty - item_req.ol_qty + 91 in

SQL.update Stock (fun s -> {s with s_qty = s_qty ’})

(fun s -> s.s_i_id = item_req.ol_i_id);

SQL.insert Order_line {ol_o_id=o_id; ol_d_id=d_id;

ol_i_id=item_req.ol_i_id;

ol_qty=item_req.ol_qty}

end

Figure 2.1.: TPC-C new order transaction

around this interface, which can then be run as transactions using the atomically do

combinator provided by the DSL. TPC-C is a widely-used and well-studied Online

Transaction Processing (OLTP) benchmark that models an order-processing system

for a wholesale parts supply business. The business logic is captured in 5 database

transactions that operate on 9 tables; new order is one such transaction that uses

District , Order , New order , Stock , and Order line tables. The transaction

acts on the behalf of a customer, whose id is c id , to place a new order for a given
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set of items ( item reqs ), to be served by a warehouse under the district identified

by d id . Fig. 2.2 illustrates the relationship among these different tables.

The transaction manages order placement by invoking appropriate SQL function-

ality, captured by various calls to functions defined by the SQL module. All SQL

operators supported by the module take a table name (a nullary constructor) as their

first argument. The higher-order SQL.select1 function accepts a boolean function

that describes the selection criteria, and returns any record that meets the criteria (it

models the SQL query SELECT ... LIMIT 1 ). SQL.update also accepts a boolean

function (its 3rd argument) to select the records to be updated. Its 2nd argument is

a function that maps each selected record to a new (updated) record. SQL.insert

inserts a given record into the specified table in the database.

The new order transaction inserts a new Order record, whose id is the sequence

number of the next order under the given district ( d id ). The sequence number is

stored in the corresponding District record, and updated each time a new order

is added to the system. Since each order may request multiple items ( item reqs ),

an Order line record is created for each requested item to relate the order with the

item. Each item has a corresponding record in the Stock table, which keeps track

of the quantity of the item left in stock ( s qty ). The quantity is updated by the

transaction to reflect the processing of new orders (if the stock quantity falls below

10, it is automatically replenished by 91).

TPC-C defines multiple invariants, called consistency conditions, over the state of

the application in the database. One such consistency condition is the requirement

that for a given order o , the order-line-count field ( o.o ol cnt ) should reflect the

number of order lines under the order; this is the number of Order line records whose

ol o id field is the same as o.o id . In a sequential execution, it is easy to see how

this condition is preserved. A new Order record is added with its o id distinct from

existing order ids, and its o ol cnt is set to be equal to the size of the item reqs

set. The foreach loop runs once for each item req , adding a new Order line

record for each requested item, with its ol o id field set to o id . Thus, at the end



11

d_next_o_idd_id
District

o_ol_cnto_c_ido_d_ido_id
Order

s_qtys_d_ids_i_id
Stock

ol_qtyol_i_idol_d_idol_o_id
Order_line

211

1 11 7 1

20 11 80

1

21 11 93

11 20 20

(a) A valid TPC-C database. The

only existing order belongs to the

district with d id=11. Its id

( o id ) is one less than the district’s

d next o id , and its order count

( o ol cnt ) is equal to the number

of order line records whose ol o id

is equal to the order’s id.

d_next_o_idd_id
District

o_ol_cnto_c_ido_d_ido_id
Order

s_qtys_d_ids_i_id
Stock

ol_qtyol_i_idol_d_idol_o_id
Order_line

1 11 7 1

20 11 70

1

21 11 83

11 20 20

2 11 9 2

2 11 20 10
2 11 21 10

11 3

(b) The database in Fig. 2.2a after correctly ex-

ecuting a new order transaction. A new or-

der record is added whose o id is equal to

the d next o id from Fig. 2.2a. The dis-

trict’s d next o id is incremented. The order’s

o ol cnt is 2, reflecting the actual number of

order line records whose ol o id is equal to the

order’s id (2).

Figure 2.2.: Database schema of TPC-C’s order management system. The naming

convention indicates primary keys and foreign keys. For e.g., ol id is the primary

key column of the order line table, whereas ol o id is a foreign key that refers to

the o id column of the order table.

of the loop, the number of Order line records in the database (i.e., the number of

records whose ol o id field is equal to o id ) is guaranteed to be equal to the size

of the item reqs set, which in turn is equal to the Order record’s o ol cnt field;

these constraints ensure that the transaction’s consistency condition is preserved.

Because the aforementioned reasoning is reasonably simple to perform manually,

verifying the soundness of TPC-C’s consistency conditions would appear to be fea-

sible. Serializability aids the tractability of verification by preventing any interfer-

ence among concurrently executing transactions while the new order transaction
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 SELECT(District, d_id) ! dist  

 UPDATE(District, d_id) SET
     d_next_o_id = d_next_o_id + 1

.

.

.
Commit

T2 SELECT(District, d_id) ! dist  
 UPDATE(District, d_id) SET
     d_next_o_id = d_next_o_id + 1

.

.

.
Commit

T1

Figure 2.3.: An RC execution involving two instances (T1 and T2) of the new order trans-

action depicted in Fig. 2.1. Both instances read the d id District record concurrently,

because neither transaction is committed when the reads are executed. The subsequent

operations are effectively sequentialized, since T2 commits before T1. Nonetheless, both

transactions read the same value for d next o id resulting in them adding Order records

with the same ids, which in turn triggers a violation of TPC-C’s consistency condition.

executes, essentially yielding serial behaviors. Under weak isolation2, however, inter-

ferences of various kinds are permitted, leading to executions superficially similar to

executions permitted by concurrent (racy) programs [26, 27]. To illustrate, consider

the behavior of the new order transaction when executed under a Read Committed

(RC) isolation level, the default isolation level in 8 of the 18 databases studied in [10].

An executing RC transaction is isolated from dirty writes, i.e., writes of uncommit-

ted transactions, but is allowed to witness the writes of concurrent transactions as

soon as they are committed. Thus, with two concurrent instances of the new order

transaction (call them T1 and T2), both concurrently placing new orders for different

customers under the same district ( d id ), RC isolation allows the execution shown

in Fig. 2.3.

2Weak isolation does not violate atomicity as long as the witnessed effects are those of committed
transactions
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The figure depicts an execution as a series of SQL operations. In the execution,

the new order instance T1 (green) reads the d next o id field of the district record

for d id , but before it increments the field, another new order instance T2 (red)

begins its execution and commits. Note that T2 reads the same d next o id value

as T1, and inserts new Order and Order line records with their o id and ol o id

fields (resp.) equal to d next o id . T2 also increments the d next o id field, which

T1 has already acccessed. This is allowed because reads typically do not obtain a

mutually exclusive lock on most databases. After T2’s commit, T1 resumes execution

and adds new Order and Order line fields with the same order id as T1. Thus,

at the end of the execution, Order line records inserted by T1 and T2 all bear the

same order id. There are also two Order records with the same district id ( d id ) and

order id, none of whose o ol cnt reflects the actual number of Order line records

inserted with that order id. This clearly violates TPC-C’s consistency condition.

This example does not exhibit any of the anomalies that characterize RC isola-

tion [28]3. For instance, there are no lost writes since both concurrent transactions’

writes are present in the final state of the database. Program analyses that aim to de-

termine appropriate isolation by checking for possible manifestations of RC-induced

anomalies would fail to identify grounds for promoting the isolation level of new order

to something stronger. Yet, if we take the semantics of the application into account,

it is quite clear that RC is not an appropriate isolation level for new order .

While reasoning in terms of anomalies is cumbersome and inadequate, reasoning

about weak isolation in terms of traces [29,30] on memory read and write actions can

complicate high-level reasoning. A possible alternative would be to utilize concurrent

program verification methods where the implementation details of weak isolation

are interleaved within the program, yielding a (more-or-less) conventional concurrent

program. But, considering the size and complexity of real-world transaction systems,

this strategy is unlikely to scale.

3Berenson et al. characterize isolation levels in terms of the anomalies they admit. For example, RC
is characterized by lost writes because it admits the anomaly.
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In this chapter, we adopt a different approach that lifts isolation semantics (not

their implementations) to the application layer, providing a principled framework to

simultaneously reason about application invariants and isolation properties. To il-

lustrate this idea informally, consider how we might verify that new order is sound

when executed under Snapshot Isolation (SI), a stronger isolation level than RC.

Snapshot isolation allows transactions to be executed against a private snapshot of

the database, thus admitting concurrency, but it also requires that there not be any

write-write conflicts (i.e., such a conflict occurs if concurrently executing transac-

tions modify the same record) among concurrent transactions when they commit.

Write-write conflicts can be eliminated in various ways, e.g., through conflict detec-

tion followed by a rollback, or through exclusive locks, or a combination of both. For

instance, one possible implementation of SI, close to the one used by PostgreSQL [31],

executes a transaction against its private snapshot of the database, but obtains ex-

clusive locks on the actual records in the database before performing writes. A write

is performed only if the record that is to be written has not already been updated by

a concurrent transaction. Conflicts are resolved by abort and roll back.

As this discussion hints, implementations of SI on real databases such as Post-

greSQL are highly complicated, often running into thousands of lines of code. Nonethe-

less, the semantics of SI, in terms of how it effects transitions on the database state,

can be captured in a fairly simple model. First, effects induced by one transaction

(call it T ) are not visible to another concurrently executing one during T ’s execution.

Thus, from T ’s perspective, the global state does not change during its execution.

More formally, for every operation performed by T , the global state T witnesses be-

fore (∆) and after (∆′) executing the operation is the same (∆′ = ∆). After T finishes

execution, it commits its changes to the actual database, which may have already in-

corporated the effects of concurrent transactions. In executions where T successfully

commits, concurrent transactions are guaranteed to not be in write-write conflict with

T . Thus, if ∆ is the global state that T witnessed when it finished execution (the

snapshot state), and ∆′ is the state to which T commits, then the difference between
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∆ and ∆′ should not result in a write-write conflict with T . To concretize this notion,

let the database state be a map from database locations to values, and let δ denote a

transaction-local log that maps the locations being written to their updated values.

The absence of write-write conflicts between T and the diff between ∆ and ∆′ can be

expressed as: ∀x ∈ dom(δ), ∆′(x) = ∆(x). In other words, the semantics of SI can

be captured as an axiomatization over transitions of the database state (∆ −→ ∆′)

during a transaction’s (T ) lifetime:

• While T executes, ∆′ = ∆.

• After T finishes execution, but before it commits its local state δ, ∀(x ∈
dom(δ)). ∆′(x) = ∆(x).

This simple characterization of SI isolation allows us to verify the consistency condi-

tions associated with the new order transaction. First, since the database does not

change (∆′ = ∆) during execution of the transaction’s body, we can reason about

new order as though it executed in complete isolation until its commit point, lead-

ing to a verification process similar to what would have been applied when reasoning

sequentially. When new order finishes execution, however, but before it commits,

the SI axiomatization shown above requires us to consider global state transitions

∆ −→ ∆′ that do not include changes to the records (δ) written by new order , i.e.,

∀(x ∈ dom(δ)). ∆′(x) = ∆(x). The axiomatization precludes any execution in which

there are concurrent updates to shared table fields (e.g., d next o id on the same

District table), but does not prohibit interferences that write to different tables,

or write to different records in the same table. We need to reason about the safety

of such interferences with respect to new order ’s consistency invariants to verify

new order .

We approach the verification problem by first observing that a relational database

is a significantly simpler abstraction than shared memory. Its primary data structure

is a table, with no primitive support for pointers, linked data structures, or aliasing.

Although a database essentially abstracts a mutable state, this state is managed
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through a well-defined fixed number of interfaces (SQL statements), each tagged

with a logical formula describing what records are accessed and updated.

This observation leads us away from thinking of a collection of database transac-

tions as a simple variant of a concurrent imperative program. Instead, we see value

in viewing them as essentially functional computations that manage database state

abstractly, mirroring the structure of our DSL. By doing so, we can formulate the

semantics of database operations as state transformers that explicitly relate an oper-

ation’s pre- and post-states, defining the semantics of the corresponding transformer

algorithmically, just like classical predicate transformer semantics (e.g., weakest pre-

condition or strongest post-condition). In our case, a transformer interprets a SQL

statement in the set domain, modeling the database as a set of records, and a SQL

statement as a function over this set. Among other things, one benefit of this ap-

proach is that low-level loops can now be substituted with higher-order combinators

that automatically lift the state transformer of its higher-order argument, i.e., the

loop body, to the state transformer of the combined expression, i.e., the loop. We

illustrate this intuition on a simple example.

foreach item_reqs @@ fun item_req ->

SQL.update Stock (fun s -> {s with s_qty = k1})

(fun s -> s.s_i_id = item_req.ol_i_id);

SQL.insert Order_line {ol_o_id=k2; ol_d_id=k3;

ol_i_id=item_req.ol_i_id; ol_qty=item_req.

ol_qty}

Figure 2.4.: Foreach loop from Fig. 2.1

Fig. 2.4 shows a (simplified) snippet of code taken from Fig. 2.1. Some irrelevant

expressions have been replaced with constants ( k1 , k2 , and k3 ). The body of the

loop executes a SQL update followed by an insert. Recall that a transaction reads

from the global database (∆), and writes to a transaction-local database (δ) before

committing these updates. An update statement filters the records that match the
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search criteria from ∆ and computes the updated records that are to be added to the

local database. Thus, the state transformer for the update statement (call it TU) is

the following function on sets4:

λ(δ,∆). δ ∪∆�= (λ s .if table( s ) = Stock ∧ s . s i id = item req.ol i id

then {〈 s i id = s.s i id ; s d id = s.s d id ; s qty = k1 〉}
else ∅)

Here, the set bind operator extracts record elements ( s ) from the database, checks

the precondition of the update action, and if satisfied, constructs a new set containing

a single record that is identical to s except that it binds field s qty to value k1 .

This new set is added (via set union) to the existing local database state δ.5

The transformer (TI(δ,∆)) for the subsequent insert statement can be similarly

constructed:

λ(δ,∆). δ ∪ {〈 ol o id = k2 ; ol d id = k3 ; ol i id = item req.ol i id ;

ol qty = item req.ol qty 〉}

Observe that both transformers are of the form T(δ,∆) = δ ∪ F(∆), where F is a

function that returns the set of records added to the transaction-local database (δ).

Let FU and FI be the corresponding functions for TU and TI shown above. The state

transformation induced by the loop body in Fig. 2.1 can be expressed as the following

composition of FU and FI :

λ(δ,∆). δ ∪ FU (∆) ∪ FI(∆)

The transformer for the loop itself can now be computed to be:

λ(δ,∆). δ ∪ item reqs �= (λ item req . FU (∆) ∪ FI(∆))

Observe that the structure of the transformer mirrors the structure of the program it-

self. In particular, SQL statements become set operations, and the foreach combina-

tor becomes set monad’s bind (�=) combinator. As we demonstrate, the advantage

of inferring such transformers is that we can now make use of a semantics-preserving

4Bind (�=) has higher precedence than union (∪). Angle braces (〈. . .〉) are used to denote records.
5For now, assume that the record being added is not already present in δ.
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translation from the domain of sets equipped with �= to a decidable fragment of

first-order logic, allowing us to leverage SMT solvers for automated proofs without

having to infer potentially complex thread-local invariants or intermediate assertions.

Sec. 2.4 describes this translation. In the exposition thus far, we assumed ∆ remains

invariant, which is clearly not the case when we admit concurrency. Necessary con-

currency extensions of the state transformer semantics to deal with interference is

also covered in Sec. 2.4. Before presenting the transformer semantics, we first focus

our attention in the following two sections on the theoretical foundations for weak

isolation, upon which this semantics is based.

2.2 T : Syntax and Semantics

Fig. 2.5 shows the syntax and small-step semantics of T , a core language that

we use to formalize our intuitions about reasoning under weak isolation. Variables

(x), integer and boolean constants (k), records (r) of named constants, sets (s) of

such records, arithmetic and boolean expressions (e1 � e2), and record expressions

(〈f = e〉) constitute the syntactic class of expressions (e). Commands (c) include

SKIP , conditional statements, LET constructs to bind names, FOREACH loops, SQL

statements, their sequential composition (c1; c2), transactions ( TXN i〈I〉{c}) and their

parallel composition (c1 || c2). Each transaction is assumed to have a unique identifier

i, and executes at the top-level; our semantics does not support nested transactions.

The I in the TXN block syntax is the transaction’s isolation specification, whose pur-

pose is explained below. Certain terms that only appear at run-time are also present

in c. These include a txn block tagged with sets (δ and ∆) of records representing

local and global database state, and a runtime foreach expression that keeps track of

the set (s1) of items already iterated, and the set (s2) of items yet to be iterated.

Note that the surface-level syntax of the FOREACH command shown here is slightly

different from the one used in previous sections; its higher-order function has two

arguments, y and z, which are invoked (during the reduction) with the set of already-
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Syntax

x, y ∈ Variables f ∈ Field Names i, j ∈ N � ∈ {+,−,≤,≥,=}

k ∈ Z ∪ B r ∈ 〈f = k〉

δ,∆, s ∈ State := P
(
〈f = k〉

)
Ie, Ic ∈ IsolationSpec := (δ,∆,∆′)→ P

v ∈ Values := k | r | s

e ∈ Expressions := v | x | x.f | 〈f = e〉 | e1 � e2

c ∈ Commands := LET x = e IN c | IF e THEN c1 ELSE c2 | c1; c2

| INSERT x | DELETE λx.e

| LET y = SELECT λx.e IN c

| UPDATE λx.e1 λx.e2 | FOREACH x DO λy.λz.c

| foreach〈s1〉 s2 do λx.λy.e | TXN i〈I〉{c}

| txni〈I, δ,∆〉{c} | c1||c2 | SKIP

E ∈ Eval Ctx ::= • | • ||c2 | c1|| • | •; c2 | txni〈I, δ,∆〉{•}

Figure 2.5.: T : Syntax

iterated items, and the current item, respectively. This form of FOREACH lends itself

to inductive reasoning that will be useful for verification (Sec. 2.3). Our language

ensures that all effectful actions are encapsulated within database commands, and

that all shared state among processes are only manipulated via transactions and its

supported operations. In particular, we do not consider programs in which objects

resident on e.g., the OCaml heap are concurrently manipulated by OCaml expressions

as well as database actions.

Figs. 2.6 and 2.7 define a small-step operational semantics for this language

in terms of an abstract machine that executes a command, and updates either a
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Local Reduction ∆ ` ([c]i, δ) −→ ([c′]i, δ
′)

E-Insert

r.id 6∈ dom(δ ∪∆) r′ = 〈r with txn = i; del = false 〉

∆ ` ([INSERT r]i, δ) −→ ([ SKIP ]i, δ ∪ {r′})
E-Select

s = {r ∈ ∆ | eval([r/x]e) = true } c′ = [s/y]c

∆ ` ([ LET y = SELECT λx.e IN c]i, δ) −→ ([c′]i, δ)

E-Delete

dom(δ) ∩ dom(s) = ∅

s = {r′ | ∃(r ∈ ∆). eval([r/x]e) = true ∧ r′ = 〈r with del = true ; txn = i〉}

∆ ` ([DELETE λx.e]i, δ) −→ ([ SKIP ]i, δ ∪ s)
E-Update

dom(δ) ∩ dom(s) = ∅

s = {r′ | ∃(r ∈ ∆). eval([r/x]e2) = true∧

r′ = 〈[r/x]e1 with id = r.id; txn = i; del = r.del〉}

∆ ` ([UPDATE λx.e1 λx.e2]i, δ) −→ ([ SKIP ]i, δ ∪ s)

E-Foreach1 ∆ ` ([FOREACH s DO λy.λz.c]i, δ) −→ ([foreach〈∅〉 s do λy.λz.c]i, δ)

E-Foreach2 ∆ ` ([foreach〈s1〉 {r} ] s2 do λy.λz.c]i, δ) −→ ([[r/z][s1/y]c;

foreach〈s1 ∪ {r}〉 s2 do λy.λz.c]i, δ)

E-Foreach3 ∆ ` ([foreach〈s〉 ∅ do λy.λz.c]i, δ) −→ ([ SKIP ]i, δ)

Figure 2.6.: T : Transaction-local reduction

transaction-local (δ), or global (∆) database, both of which are modeled as a set of

records of a pre-defined type, i.e., they all belong to a single table. The generalization
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Top-Level Reduction (c,∆) −→ (c′,∆′)

E-Txn-Start

( TXN i〈I〉{c},∆) −→ (txni〈I, ∅,∆〉{c},∆)

E-Txn

Ie (δ,∆,∆′) ∆ ` ([c]i, δ) −→ ([c′]i, δ
′)

(txni〈I, δ,∆〉{c},∆′) −→ (txni〈I, δ′,∆′〉{c′},∆′)

E-Commit

Ic (δ,∆,∆′)

(txni〈I, δ,∆〉{ SKIP },∆′) −→ ( SKIP , δ � ∆′)

Figure 2.7.: T : Top-level reduction

to multiple tables is straightforward, e.g., by having the machine manipulate a set of

sets, one for each table. The semantics assumes that records in ∆ can be uniquely

identified via their id field, and enforces this property wherever necessary. Certain

hidden fields are treated specially by the operational semantics, and are hidden from

the surface language. These include a txn field that tracks the identifier of the trans-

action that last updated the record, and a del field that flags deleted records in δ.

For a set S of records, we define dom(S) as the set of unique ids of all records in

S. Thus |dom(∆)| = |∆|. During its execution, a transaction may write to multiple

records in ∆. Atomicity dictates that such writes should not be visible in ∆ until the

transaction commits. We therefore associate each transaction with a local database

(δ) that stores such uncommitted records6. Uncommitted records include deleted

records, whose del field is set to true . When the transaction commits, its local

database is atomically flushed to the global database, committing these heretofore

uncommitted records. The flush operation (�) is defined as follows:

∀r. r ∈ (δ � ∆) ⇔ (r.id /∈ dom(δ) ∧ r ∈ ∆) ∨ (r ∈ δ ∧ ¬r.del)

6While SQL’s UPDATE admits writes at the granularity of record fields, most popular databases
enforce record-level locking, allowing us to think of “uncommitted writes” as “uncommitted records”.
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Let ∆′ = δ�∆. A record r belongs to ∆′ iff it belongs to ∆ and has not been updated

in δ, i.e., r.id /∈ dom(δ), or it belongs to δ, i.e., it is either a new record, or an updated

version of an old record, provided the update is not a deletion (¬r.del). Besides the

commit, flush also helps a transaction read its own writes. Intuitively, the result of a

read operation inside a transaction must be computed on the database resulting from

flushing the current local state (δ) to the global state (∆). The abstract machine of

Fig. 2.7, however, does not let a transaction read its own writes. This simplifies the

semantics, without losing any generality, since substituting δ�∆ for ∆ at select places

in the reduction rules effectively allows reads of uncommitted transaction writes to

be realized, if so desired.

The small-step semantics is stratified into a transaction-local reduction relation,

and a top-level reduction relation. The transaction-local relation (∆ ` (c, δ) −→
(c′, δ′)) defines a small-step reduction for a command inside a transaction, when the

database state is ∆; the command c reduces to c′, while updating the transaction-

local database δ to δ′. The definition assumes a meta-function eval that evaluates

closed terms to values. The reduction relation for SQL statements is defined straight-

forwardly. INSERT adds a new record to δ after checking the uniqueness of its id.

DELETE finds the records in ∆ that match the search criteria defined by its boolean

function argument, and adds the records to δ after marking them for deletion. SELECT

bounds the name introduced by LET to the set of records from ∆ that match the

search criteria, and then executes the bound command c. UPDATE uses its first func-

tion argument to compute the updated version of the records that match the search

criteria defined by its second function argument. Updated records are added to δ.

The reduction of FOREACH starts by first converting it to its run-time form to

keep track of iterated items (s1), as well as yet-to-be-iterated items (s2). Iteration

involves invoking its function argument with s1 and the current element x (note: ]
in {x} ] s2 denotes a disjoint union). The reduction ends when s2 becomes empty.

The reduction rules for conditionals, LET binders, and sequences are standard, and

omitted for brevity.
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The top-level reduction relation defines the small-step semantics of transactions,

and their parallel composition. A transaction comes tagged with an isolation speci-

fication I, which has two components Ie and Ic, that dictate the timing and nature

of interferences that the transaction can witness, during its execution (Ie), and when

it is about to commit (Ic). Formally, Ie and Ic are predicates over the (current)

transaction-local database state (δ), the state (∆) of the global database when the

transaction last took a step, and the current state (∆′) of the global database. Intu-

itively, ∆′ 6= ∆ indicates an interference from another concurrent transaction, and the

predicates Ie and Ic decide if this interference is allowed or not, taking into account

the local database state (δ). For instance, as described in §4.1, an SI transaction on

PostgreSQL defines I as follows:

Ie (δ,∆,∆′) = ∆′ = ∆

Ic (δ,∆,∆′) = ∀(r ∈ δ)(r′ ∈ ∆). r′.id = r.id⇒ r′ ∈ ∆′

This definition dictates that no change to the global database state can be visible to

an SI transaction while it executes (Ie), and there should be no concurrent updates

to records written by the transaction by other concurrently executing ones (Ic). To

simplify the presentation, we use I instead of Ie and Ic when its destructed form is

not required.

The reduction of a TXN i〈I〉{c} begins by first converting it to its run-time form

txni〈I, δ,∆〉{c}, where δ = ∅, and ∆ is the current (global) database. Rule E-Txn

reduces txni〈I, δ,∆〉{c} under a database state (∆′), only if the transaction-body

isolation specification (Ie) allows the interference between ∆ and ∆′. Rule E-Commit

commits the transaction txni〈I, δ,∆〉{c} by flushing its uncommitted records to the

database. This is done only if the interference between ∆ and ∆′ is allowed at the

commit point by the isolation specification (Ic). The distinction between Ie and Ic
allows us to model the snapshot semantics of realistic isolation levels that isolate a

transaction from interference during its execution, but expose interferences at the

commit point.
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Local Context Independence As mentioned previously, our operational seman-

tics does not let a transaction read its own writes. It also does not let a transaction

overwrite its own writes, due to the premise dom(δ) ∩ dom(s) = ∅ on the E-Delete

and E-Update rules. We refer to this restriction as local context independence. This

restriction is easy to relax in the operational semantics and the reasoning framework

presented in the next section; our inference procedure described in §2.4, however, has

a non-trivial dependence on this assumption. Nonetheless, we have encountered few

instances in practice where enforcing local context independence turns out to be a se-

vere restriction. Indeed, all of the transactions we have considered in our benchmarks

(e.g., TPC-C) satisfy this assumption.

2.2.1 Isolation Specifications

A distinctive characteristic of our development is that it is parameterized on a

weak isolation specification I that can be instantiated with the declarative character-

ization of an isolation guarantee or a concurrency control mechanism, regardless of

the actual implementation used to realize it. This allows us to model a range of isola-

tion properties that are relevant to the theory and practice of transaction processing

systems without appealing to specific implementation artifacts like locks, versions,

logs, speculation, etc. A few well-known properties are discussed below:

Unique Ids. As the new order example (§4.1) demonstrates, enforcing global

uniqueness of ordered identifiers requires stronger isolation levels than the ones that

are default on most databases (e.g., Read Committed). Alternatively, globally unique

sequence numbers, regardless of the isolation level, can be requested from a relational

database via SQL’s UNIQUE and AUTO INCREMENT keywords. Our development cru-

cially relies on the uniqueness of record identifiers7, which are checked locally for

7The importance of unique ids is recognized in real-world implementations. For example, MySQL’s
InnoDB engine automatically adds a 6-byte unique identifier if none exists for a record.
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uniqueness by the E-Insert rule. The global uniqueness of locally unique identifiers

can be captured as an isolation property thus:

Iid(δ,∆,∆′) = ∀(r ∈ δ). r.id /∈ dom(∆)⇒ r.id /∈ dom(∆′)

Iid ensures that if the id of a record is globally unique when it is added to a trans-

action’s δ, it remains globally unique until the transaction commits. This would be

achieved within our semantic framework by prohibiting the interference from a con-

current transaction that adds the same id. The axiom thus simulates a global counter

protected by an exclusive lock without explicitly appealing to an implementation ar-

tifact.

Write-Write Conflicts. Databases often employ a combination of concurrency

control methods, both optimistic (e.g., speculation and rollback) and pessimistic (e.g.,

various degrees of locking), to eliminate write-write (ww) conflicts among concurrent

transactions. We can specify the absence of such conflicts using our tri-state formu-

lation thus:

Iww(δ,∆,∆′) = ∀(r′ ∈ δ)(r ∈ ∆). r.id = r′.id⇒ r ∈ ∆′

That is, given a record r′ ∈ δ, if there exists an r ∈ ∆ with the same id (i.e., r′ is

an updated version of r), then r must be present unmodified in ∆′. This prevents a

concurrent transaction from changing r, thus simulating the behavior of an exclusive

lock or a speculative execution that succeeded (Note: a transaction writing to r always

changes r because its txn field is updated).

Snapshots Almost all major relational databases implement isolation levels that

execute transactions against a static snapshot of the database that can be axiomatized

thus:

Iss(δ,∆,∆′) = ∆′ = ∆

Read-Only Transactions. Certain databases implement special privileges for

read-only transactions. Read-only behavior can be enforced on a transaction by

including the following proposition as part of its isolation invariant:

Iro(δ,∆,∆′) = δ = ∅
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In addition to these properties, various specific isolation levels proposed in the

database or distributed systems literature, or implemented by commercial vendors

can also be specified within this framework:

Read Committed (RC) and Monotonic Atomic View (MAV). RC isola-

tion allows a transaction to witness writes of committed transactions at any point

during the transaction’s execution. Although it offers only weak isolation guarantees,

it nonetheless prevents witnessing dirty writes (i.e., writes performed by uncommit-

ted transactions). Monotonic Atomic View (MAV) [7] is an extension to RC that

guarantees the continuous visibility of a committed transaction’s writes once they

become visible in the current transaction. That is, a MAV transaction does not wit-

ness disappearing writes, which can happen on a weakly consistent machine. Due to

the SC nature of our abstract machine (there is always a single global database state

∆; not a vector of states indexed by vector clocks), and our choice to never violate

atomicity of a transaction’s writes, both RC and MAV are already guaranteed by our

semantics. Thus, defining Ie and Ic to true ensures RC and MAV behavior under our

semantics.

Repeatable Read (RR) By definition, multiple reads to a transactional vari-

able in a Repeatable Read transaction are required to return the same value. RR is

often implemented (for e.g., in [7, 32]) by executing the transaction against a (con-

ceptual) snapshot of the database, but committing its writes to the actual database.

This implementation of RR can be axiomatized as Ie = Iss and Ic = true. However,

this specification of RR is stronger than the ANSI SQL specification, which requires

no more than the invariance of already read records. In particular, ANSI SQL RR

allows phantom reads, a phenomenon in which a repeated SELECT query might re-

turn newly inserted records that were not previously returned. This specification is

implemented, for e.g., in Microsoft’s SQL server, using record-level exclusive read

locks, that prevent a record from being modified while it is read by an uncommitted

transaction, but which does not prohibit insertion of new records. The ANSI SQL RR

specification can be axiomatized in our framework, but it requires a minor extension

to our operational semantics to track a transaction’s reads. In particular, the records
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returned by SELECT should be added to the local database δ, but without changing

their transaction identifiers (txn fields), and flush (�) should only flush the records

that bear the current transaction’s identifier. With this extension, ANSI SQL RR

can be axiomatized thus:

Ie(δ,∆,∆′) ⇔ ∀(r ∈ δ).r ∈ ∆⇒ r ∈ ∆′

Ic(δ,∆,∆′) ⇔ true

If a record r belongs to both δ and ∆, then it must be a record written by a differ-

ent transaction and read by the current transaction (since the current transaction’s

records are not yet present in ∆). By requiring r ∈ ∆′, Ie guarantees the invariance

of r, thus the repeatability of the read.

Snapshot Isolation (SI) The concept of executing a transaction against a con-

sistent snapshot of the database was first proposed as Snapshot Isolation in [28]. SI

doesn’t admit write-write conflicts, and the original proposal, which is implemented

in Microsoft SQL Server, required the database to roll-back an SI transaction if con-

flicts are detected during the commit. This behavior can be axiomatized as Ie = Iss
(execution against a snapshot), and Ic = Iww (avoiding write-write conflicts during the

commit). Note that the same axiomatization applies to PostgreSQL’s RR, although

its implementation (described in Sec. 4.1) differs considerably from the original pro-

posal. Thus, reasoning done for an SI transaction on MS SQL server carries over to

PostgreSQL’s RR and vice-versa, demonstrating the benefits of reasoning axiomati-

cally about isolation properties.

Serializability (SER) The specification of serializability is straightforward:

Ie (δ,∆,∆′) = ∆′ = ∆

Ic (δ,∆,∆′) = ∆′ = ∆

2.3 The Reasoning Framework

We now describe a proof system that lets us prove the correctness of a T program

c w.r.t its high-level consistency conditions I, on an implementation that satisfies
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the isolation specifications (I) of its transactions8. Our proof system is essentially

an adaptation of a rely-guarantee reasoning framework [33] to the setting of weakly

isolated database transactions. The primary challenge in the formulation deals with

how we relate a transaction’s isolation specification (I) to its rely relation (R) that

describes the transaction’s environment, so that interference is considered only insofar

as allowed by the isolation level. Another characteristic of the transaction setting that

affects the structure of the proof system is atomicity; we do not permit a transaction’s

writes to be visible until it commits. In the context of rely-guarantee, this means that

the transaction’s guarantee (G) should capture the aggregate effect of a transaction,

and not its individual writes. While shared memory atomic blocks also have the

same characteristic, the fact that transactions are weakly-isolated introduces non-

trivial complexity. Unlike an atomic block, the effect of a transaction is not a

sequential composition of the effects of its statements because each statement can

witness a potentially different version of the state.

2.3.1 The Rely-Guarantee Judgment

Figs. 2.8, 2.9, and 2.10 show an illustrative subset of the rely-guarantee (RG)

reasoning rules for T . We define two RG judgments: top-level ({I, R} c {G, I}), and

transaction-local (R ` {P} [c]i {Q}). Recall that the standard RG judgment is the

quintuple {P,R} c {G,Q}. Instead of separate P and Q assertions, our top-level

judgment uses I as both a pre- and post-condition, because our focus is on verifying

that a T program preserves a databases’ consistency conditions9. A transaction-local

RG judgment does not include a guarantee relation because transaction-local effects

are not visible outside a transaction. Also, the rely relation (R) of the transaction-

local judgment is not the same as the top-level rely relation (R) because it must take

8Note the difference between I and I. The former constitute proof obligations for the programmer,
whereas the latter describes a transaction’s assumptions about the operational characteristics of the
underlying system.
9The terms consistency condition, high-level invariant, and integrity constraint are used interchange-
ably throughout this chapter.
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R ` {P} [c]i {Q}
RG-Select

P (δ,∆) ∧ x = {r | r ∈ ∆ ∧ [r/y]e} ⇒ P ′(δ,∆) R ` {P ′} [c]i {Q} stable(R, P ′)

R ` {P} [ LET x = SELECT λy.e IN c]i {Q}

RG-Insert

stable(R, P ) ∀δ, δ′,∆, i. P (δ,∆) ∧ j 6∈ dom(δ ∪∆)

∧δ′ = δ ∪ {〈x with id = j; txn = i; del = false 〉} ⇒ Q(δ′,∆)

R ` {P} [INSERT x]i {Q}

RG-Update

stable(R, P ) ∀δ, δ′,∆. P (δ,∆) ∧ δ′ = δ ∪ {r′ | ∃(r ∈ ∆).[r/x]e2∧

r′ = 〈[r/x]e1 with id = r.id; txn = i; del = false 〉} ⇒ Q(δ′,∆)

R ` {P} [UPDATE λx.e1 λx.e2]i {Q}

RG-Delete

stable(R, P ) ∀δ, δ′,∆. P (δ,∆) ∧ δ′ = δ ∪ {r′ | ∃(r ∈ ∆). [r/x]e

∧r′ = 〈r with txn = i; del = true 〉} ⇒ Q(δ′,∆)

R ` {P} [DELETE λx.e]i {Q}

Figure 2.8.: T : Transaction-local Rely-Guarantee Judgment Part 1 (SQL Statements)

into account the transaction’s isolation specification (I). Intuitively, R is R modulo I.

Recall that a transaction writes to its local database (δ), which is then flushed when

the transaction commits. Thus, the guarantee of a transaction depends on the state

of its local database at the commit point. The pre- and post-condition assertions (P

and Q) in the local judgment facilitate tracking the changes to the transaction-local

state, which eventually helps us prove the validity of the transaction’s guarantee.

Both P and Q are bi-state assertions; they relate transaction-local database state (δ)
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RG-Foreach

stable(R, Q) stable(R, ψ) stable(R, P )

P ⇒ [∅/y]ψ R ` {ψ ∧ z ∈ x} [c]i {Qc}

Qc ⇒ [y ∪ {z}/y]ψ [x/y]ψ ⇒ Q

R ` {P} [FOREACH x DO λy.λz.c]i {Q}

RG-Conseq

{I,R} TXN i〈I〉{c} {G, I}

I′ ⇒ I R′ ⊆ R G ⊆ G′ stable(R′, I′)

∀∆,∆′. I(∆) ∧G′(∆,∆′)⇒ I(∆′)

{I,R′} TXN i〈I′〉{c} {G′, I}

Figure 2.9.: T : Transaction-local Rely-Guarantee Judgment Part 2

{I, R} c {G, I}
RG-Txn

stable(R, I) stable(R, I) Re = R\Ie Rc = R\Ic

P (δ,∆)⇔ δ = ∅ ∧ I(∆) Re ` {P} c {Q} stable(Rc, Q)

∀δ,∆. Q(δ,∆)⇒ G(∆, δ � ∆) ∀∆,∆′. I(∆) ∧G(∆,∆′)⇒ I(∆′)

{I,R} TXN i〈I〉{c} {G, I}

Figure 2.10.: T : Top-level Rely-Guarantee Judgment

to the global database state (∆). Thus, the transaction-local judgment effectively

tracks how transaction-local and global states change in relation to each other.

Stability A central feature of a rely-guarantee judgment is a stability condition

that requires the validity of an assertion φ to be unaffected by interference from other

concurrently executing transactions, i.e., the rely relation R. In conventional RG,

stability is defined as follows, where σ and σ′ denote states:

stable(R,φ) ⇔ ∀σ, σ′. φ(σ) ∧R(σ, σ′)⇒ φ(σ′)

Due to the presence of local and global database states, and the availability of an

isolation specification, we use multiple definitions of stability in Fig. 2.10, but they

all convey the same intuition as above. In our setting, we only need to prove the

stability of an assertion (φ) against those environment steps which lead to a global



31

database state on which the transaction itself can take its next step according to its

isolation specification (I).

stable(R,φ) ⇔ ∀δ,∆,∆′.φ(δ,∆) ∧R∗(∆,∆′) ∧ I(δ,∆,∆′)⇒ φ(δ,∆′)

A characteristic of RG reasoning is that stability of an assertion is always proven w.r.t

to R, and not R∗, although interference may include multiple environment steps, and

R only captures a single step. This is nonetheless sound due to inductive reasoning: if

φ is preserved by every step of R, then φ is preserved by R∗, and vice-versa. However,

such reasoning does not extend naturally to isolation-constrained interference because

R∗ modulo I is not same as R∗; the former is a transitive relation constrained by I,

whereas the latter is the transitive closure of a relation constrained by I. This means,

unfortunately, that we cannot directly replace R∗ by R in the above condition.

To obtain an equivalent form in our setting, we require an additional condition on

the isolation specification, which we call the stability condition on I. The condition

requires I to admit the interference of multiple R steps (i.e., R∗(∆,∆′′), for two

database states ∆ and ∆′′), only if it also admits interference of each R step along

the way. Formally:

stable(R, I) ⇔ ∀δ,∆,∆′,∆′′. I(δ,∆,∆′′) ∧R(∆′,∆′′)⇒ I(δ,∆,∆′) ∧ I(δ,∆′,∆′′)

It can be easily verified that the above stability condition is satisfied by the isolation

axioms from Sec. 2.2.1. For instance, Iss, the snapshot axiom, is stable because if a

the state is unmodified between ∆ and ∆′′, then it is clearly unmodified between ∆

and ∆′, and also between ∆′ and ∆′′, where ∆′ is an intermediary state. Modifying

and restoring the state ∆ is not possible because each new commit bears a new

transaction id different from the transaction ids ( txn fields) present in ∆.

The stability condition on I guarantees that an interference from R∗ is admissible

only if the interference due to each individual R step is admissible. In other words, it

makes isolation-constrained R∗ relation equal to the transitive closure of the isolation-

constrained R relation. We call R constrained by isolation I as R modulo I (R\I;
written equivalently as R), which is the following ternary relation:

(R\I)(δ,∆,∆′) ⇔ R(∆,∆′) ∧ I(δ,∆,∆′)
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It is now enough to prove the stability of an RG assertion φ w.r.t R\I:

stable((R\I), φ) ⇔ ∀δ,∆,∆′. φ(δ,∆) ∧ (R\I)(δ,∆,∆′)⇒ φ(δ,∆′)

This condition often significantly simplifies the form of R\I irrespective of R. For

example, when a transaction is executed against a snapshot of the database (i.e. Iss),

R\Iss will be the identity function, since any non-trivial interference will violate the

∆′ = ∆ condition imposed by Iss.

Rules RG-Txn is the top-level rule that lets us prove a transaction preserves

the high-level invariant I when executed under the required isolation as specified by

I. It depends on a transaction-local judgment to verify the body (c) of a transaction

with id i. The precondition P of c must follow from the fact that the transaction-

local database (δ) is initially empty, and the global database satisfies the high-level

invariant I. The rely relation (Re) is obtained from the global rely relation R and

the isolation specification Ie as explained above. Recall that Ie constrains the global

effects visible to the transaction while it is executing but has not yet committed, and

P and Q of the transaction-local RG judgment are binary assertions; they relate local

and global database states. The local judgment rules require one or both of them to

be stable with respect to the constrained rely relation Re.

For the guarantee G of a transaction to be valid, it must follow from the post-

condition Q of the body, provided that Q is stable w.r.t the commit-time interference

captured by Rc. Rc, like Re, is computed as a rely relation modulo isolation, except

that commit-time isolation (Ic) is considered. The validity of G is captured by the

following implication:

∀δ,∆. Q(δ,∆)⇒ G(∆, δ � ∆)

In other words, if Q relates the transaction-local database state (δ) to the state of the

global database (∆) before a transaction commits, then G must relate the states of the

global database before and after the commit. The act of commit is captured by the

flush action (δ�∆). Once we establish the validity of G as a faithful representative of

the transaction, we can verify that the transaction preserves the high-level invariant

I by checking the stability of I w.r.t G, i.e., ∀∆,∆′. I(∆) ∧G(∆,∆′)⇒ I(∆′).
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The RG-Conseq rule lets us safely weaken the guarantee G, and strengthen the

rely R of a transaction. Importantly, it also allows its isolation specification I to be

strengthened (both Ie and Ic). This means that a transaction proven correct under

a weaker isolation level is also correct under a stronger level. Parametricity over the

isolation specification I, combined with the ability to strengthen I as needed, admits a

flexible proof strategy to prove database programs correct. For example, programmers

can declare isolation requirements of their choice through I, and then prove programs

correct assuming the guarantees hold. The soundness of strengthening I ensures that

a program can be safely executed on any system that offers isolation guarantees at

least as strong as those assumed.

Salient rules of transaction-local RG judgments are shown in Fig. 2.10. These rules

(RG-Update, RG-Select, RG-Delete, and RG-Insert) reflect the structure of

the corresponding reduction rule from Fig. 2.7. The rule RG-Foreach defines the

RG judgment for a FOREACH loop. As is characteristic of loops, the reasoning is

pivoted on a loop invariant ψ that needs to be stable w.r.t R. ψ must be implied

by P , the pre-condition of FOREACH , when no elements have been iterated, i.e, when

y = ∅. The body of the loop can assume the loop invariant, and the fact that z is an

element from the set x being iterated, to prove its post-condition Qc. The operational

semantics ensures that z is added to y at the end of the iteration, hence Qc must imply

[y ∪ {z}/y]ψ. When the loop has finished execution, y, the set of iterated items, is

the entire set x. Thus [x/y]ψ is true at the end of the loop, from which the post-

condition Q must follow. As with the other rules, Q needs to be stable. The rules for

conditionals, sequencing etc., are standard, and hence elided.

2.3.2 Semantics and Soundness

We now formalize the semantics of the RG judgments defined in Fig. 2.10, and

state their soundness guarantees.
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Definition 2.3.1 (Interleaved step and multi-step relations) Interleaved step re-

lations interleave global and transaction-local reductions with interference as captured

by the corresponding rely relations. They are defined thus:

(c,∆) −→R (c′,∆′) , (c,∆) −→ (c′,∆′) ∨ (c′ = c ∧R(∆,∆′)) [global]

([c]i, δ,∆) −→R ([c′]i, δ
′,∆′) , ∆ ` ([c]i, δ) −→ ([c′]i, δ

′) ∧∆′ = ∆

∨(c′ = c ∧ δ′ = δ ∧ R(δ,∆,∆′)) [transaction-local]

An interleaved multi-step relation (−→∗R) is the reflexive transitive closure of the

interleaved step relation.

Definition 2.3.2 (Semantics of RG judgments) The semantics of the global and

transaction-local RG judgments are defined thus:

R ` {P} [c]i {Q} , ∀δ, δ′,∆,∆′. P (δ,∆) ∧ ([c]i, δ,∆) −→∗R ([ SKIP ]i, δ
′,∆′)⇒ Q(δ′,∆′)

{I,R} c {G, I} , ∀∆. I(∆)⇒ (∀∆′. (c,∆) −→∗R ( SKIP ,∆′)⇒ I(∆′))

∧TxnGuaranteed(R,G, c,∆)

The TxnGuaranteed predicate used in the semantics of the global RG judgment is

defined below:

TxnGuaranteed(R,G, c,∆) , ∀c′, c′′∆′,∆′′.(c,∆) −→∗R (c′,∆′) ∧ (c′,∆′) −→ (c′′,∆′′)

⇒ G(∆′,∆′′)

Thus, if {I, R} c {G, I} is a valid RG judgment, then (a) every interleaved multi-step

reduction of c preserves the database integrity constraint (consistency condition) I,

and (b) the effect that every transaction in c has on the database state is captured by

G. We can now assert the soundness of the RG judgments in Fig. 2.10 as follows10:

Theorem 2.3.1 (Soundness) The rely-guarantee judgments defined by the rules in

Fig. 2.10 are sound with respect to the semantics of Definition 2.3.2.

10Full proofs for the major theorems and lemmas defined in this chapter are available from [34].
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Proof Sketch. The most important rule is the top-level rule RG-Txn, which

proves that a transaction c which begins its execution in global database state satis-

fying I and encountering interference R while executing under isolation specification

I finishes its execution in a database state also satisfying I, and also guarantees

that its commit step satisfies G. The rule uses the transaction-local RG judgment

Re ` {P} c {Q}. By E-Txn-Start, the local and global database states at the

start of a transaction satisfy P , and the only challenge is that environment steps in

an execution covered by Re ` {P} c {Q} are in Re, while the top-level judgment

requires environment steps in R. We show that it is enough to consider only those

environment steps in Re. First, we use an inductive argument and stability of Ie
(stable(R, Ie)) to show that any execution in which the transaction completes all its

steps must always preserve the isolation specification Ie after every environment step.

Intuitively, this is because once Ie gets broken after some environment step, it will

continue to remain broken and the transaction would not be able to proceed (accord-

ing to E-Txn). Since Re contains exactly those environment steps which preserve

Ie, the local-level RG judgment can be soundly used, which guarantees that after

the transaction finishes its execution, its local state δ and global state ∆ will satisfy

the assertion Q. Environment steps between the last step of the transaction and its

commit step can modify the global state, and hence we also require Q to be stable

against R. Again, we use an inductive argument, the stability of Ic, and the fact

that the transaction must execute its commit step to show that all environment steps

must preserve Ic, and hence it is enough to require stable(Rc, Q). Q guarantees that

the commit step is in G, and G in turn guarantees that after execution, the global

database state will obey the invariant I.

2.4 Inference

The rely-guarantee framework presented in the previous section facilitates modular

proofs for weakly-isolated transactions, but imposes a non-trivial annotation burden.
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x, y, δ,∆ ∈ Variables ϕ ∈ P0 φ ∈ P1

s := x | δ | ∆ | {x |ϕ} | exists(∆, φ, s) | s1 �= λx.s2 | if ϕ then s1 else s2 | s1 ∪ s2

Figure 2.11.: Syntax of the set language S

In particular, it requires each statement (c) of the transaction to be annotated with

a stable pre- (P ) and post-condition (Q), and loops to be annotated with stable

inductive invariants (ψ). While weakest pre-condition style predicate transformers

can help in inferring intermediate assertions for regular statements, loop invariant

inference remains challenging, even for the simple form of loops considered here. As

an alternative, we present an inference algorithm based on state transformers that

alleviates this burden. The idea is to infer the logical effect that each statement has

on the transaction-local database state δ (i.e., how it transforms δ), and compose

multiple such effects together to describe the effect of the transaction as a whole.

Importantly, this approach generalizes to loops, where the effect of a loop can be

inferred as a well-defined function of the effect of its body, thanks to certain pleasant

properties enjoyed by the database programs modeled by our core language. Inter-

preting database semantics as functional transformations on sets (described in terms

of their logical effects) enables an inference mechanism that can leverage off-the-shelf

SMT solvers for automated verification.

At the core of our approach is a simple language (S) to express set transforma-

tions (see Fig. 2.11). The language admits set expressions that include variables (x),

literals of the form {x |ϕ} where ϕ is a propositional (quantifier-free) formula on x,

a restricted form of existential quantification that binds a set ∆ satisfying proposi-

tion φ in a set expression s, a monadic composition of two set expressions (s1 and

s2) composed using a bind (�=) operation, a conditional set expression where the

condition is a propositional formula, and a union of two set expressions. Symbols

δ and ∆ are also variables in S, but are used to denote local and database states
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(also represented as sets), respectively. Constant sets can be written using set literal

expressions. For example, the set {1, 2} can be written as {x |x = 1 ∨ x = 2}. The

language is carefully chosen to be expressive enough to capture the semantics of T
statements (as well as SQL operations more generally), yet simple enough to have a

semantics-preserving translation amenable for automated verification.

Fig. 2.12 shows the syntax-directed state transformer inference rules for T com-

mands inside a transaction TXN i. The rules compute, for each command c, a (meta)

function F that returns a set of records as an expression in S, given a global database

∆. Intuitively, F(∆) abstracts the set of records added to the local database δ as a

result of executing c under ∆ (i.e., ∆ ` ([c]i, δ) −→∗R ([ SKIP ]i, δ∪F(∆)))11. Note that

the function F we call state transformer here is actually the effect part of the state

transformer introduced in Sec. 4.1, which is a function T of form λ(δ,∆). δ ∪ F(∆).

Nonetheless, for simplicity, we will continue to refer to F as state transformer. Since

the execution is subject to isolation-constrained interference, the inference judgment

depends on the isolation-constrained rely relation R, which is used to enforce the

stability of the state transformer F. Recall that R is a tri-state rely relation over δ, ∆

and ∆′, that admits an interference from ∆ and ∆′ depending on the local database

state δ. Thus, the stability of the state transformer F of c with respect to R needs

to take into account the (possible) prior state of the local database δ, which depends

on the context (sequence of previous commands) of c, and computed by the corre-

sponding state transformer Fctxt. Thus, the semantics of the state transformer can be

understood in terms of the RG judgment as following (formalized as Theorem 2.4.1

in Sec. 2.4.1):

R ` {λ(δ,∆). δ = Fctxt(∆)} [c]i {λ(δ,∆). δ = Fctxt(∆) ∪ F(∆)}

In the above RG judgment, let P denote the pre-condition λ(δ,∆). δ = Fctxt(∆), and

let Q denote the post-condition λ(δ,∆). δ = Fctxt(∆)∪ F(∆). The stability condition

on the state transformer F can be derived from the stability condition on Q. Observe

that for Q to be stable, Fctxt(∆
′) ∪ F(∆′) must be equal to Fctxt(∆) ∪ F(∆), where

11Recall that the operational semantics treats deletion of records as the addition of the deleted
record with its del field set to true in the local store.
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Fctxt ` c =⇒〈i,R,I〉 F

Fctxt ` INSERT x =⇒〈i,R,I〉 TFctxt[λ(∆). {r | r = {〈x with del = false; txn = i〉}]U〈R,I〉

G = λr. if [r/x]e2 then {r′ | r′ = 〈[r/x]e1 with id = r.id; del = r.del; txn = i〉} else ∅

Fctxt ` UPDATE λx.e1 λx.e2 =⇒〈i,R,I〉 TFctxt[λ(∆). ∆�= G]U〈R,I〉

G = λr. if [r/x]e then {r′ | r′ = 〈r with del = true; txn = i〉} else ∅

Fctxt ` DELETE λx.e =⇒〈i,R,I〉 TFctxt[λ(∆). ∆�= G]U〈R,I〉

Fctxt ` c =⇒〈i,R,I〉 F

Fctxt ` LET x = e IN c =⇒〈i,R,I〉 λ(∆). [e/x]F(∆)

Fctxt ` c =⇒〈i,R,I〉 F

G = λr. if [r/x]e then {r′ | r′ = r} else ∅ F′ = TFctxt[λ(∆). ∆�= G]U〈R,I〉

Fctxt ` LET y = SELECT λx.e IN c =⇒〈i,R,I〉 λ(∆). [F′(∆)/y]F(∆)

Fctxt ` c1 =⇒〈i,R,I〉 F1 Fctxt ` c2 =⇒〈i,R,I〉 F2

Fctxt ` IF e THEN c1 ELSE c2 =⇒〈i,R,I〉 λ(∆). if e then F1(∆) else F2(∆)

Fctxt ` c1 =⇒〈i,R,I〉 F1 Fctxt ∪ F1 ` c2 =⇒〈i,R,I〉 F2

Fctxt ` c1; c2 =⇒〈i,R,I〉 F1 ∪ F2

Fctxt ` c =⇒〈i,R,I〉 F

Fctxt ` FOREACH x DO λy.λz. c =⇒〈i,R,I〉 λ(∆). x�= (λz. F(∆))

Figure 2.12.: T : State transformer semantics.
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∆ and ∆′ are related by R (ignore I for the moment). Assuming that P is stable,

Fctxt(∆
′) = Fctxt(∆) is already given, leaving F(∆′) = F(∆) to be enforced. Thus, the

stability of F in in the context of Fctxt (written Fctxt[F]) is defined as following:

stable(R,Fctxt[F]) ⇔ ∀∆,∆′, ν. R(Fctxt(∆) ∪ F(∆),∆,∆′)⇒ F(∆) = F(∆′)

where ν are the variables that occur free in F; this is possible because of how the

inference rules are structured. The equality in S translates to equivalence in first-order

logic, as we describe later. In the inference rules, stability is enforced constructively

by a meta-function T·U〈R,I〉, which accepts a transformer F (in its context Fctxt) and

returns a new transformer that is guaranteed to be stable under R. T·U〈R,I〉 achieves

the stability guarantee by abstracting away the bound global state (∆) in an unstable

F to an existentially bound ∆′ as described below:

TFctxt[F]U〈R,I〉 = F if stable(R,Fctxt[F]).

= λ(∆). exists(∆′, I(∆′),F(∆′)) otherwise. ∆′ is a fresh name.

Observe that when F is not stable, TFU〈R,I〉 returns a transformer F′ that simply

ignores its ∆ argument in favor of a generic ∆′, making F′ trivially stable. It is

safe to assume I(∆′) because all verified transactions must preserve the invariant,

and hence only valid database states will ever be witnessed. From the perspective

of RG reasoning, T·U〈R,I〉 effectively weakens the post-condition of a statement, as

done by the RG-Conseq rule for transaction-bound commands. The weakening se-

mantics chosen by T·U〈R,I〉, while being simple, is nonetheless useful because of the

I(∆′) assumption imposed on an existentially bound ∆′. The example in Fig. 2.13

demonstrates. Here, an add interest transaction adds a positive interest (deter-

mined by pc ) to the balance of a bank account, which is required to be non-negative

(I(∆)⇔ ∀(r ∈ ∆). r. bal ≥ 0). The transaction starts by issuing a select1 query,

whose transformer F is essentially a singleton set containing a record r whose id is

acc id (i.e., F(∆) = {r | r ∈ ∆ ∧ r. id = acc id }). However, F is unstable because

F(∆′) may not be the same set as F(∆) when ∆′ 6= ∆. A record r ∈ ∆ whose

id = acc id may have its balance updated by a concurrent withdraw or deposit
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let add_interest acc_id pc = atomically_do @@ fun () ->

let a = SQL.select1 BankAccount (fun acc -> acc.id = acc_id) in

let y = a.bal + pc*a.bal in

SQL.update BankAccount (fun acc -> {acc with bal = acc.bal + y})

(fun acc -> acc.id = acc_id)

Figure 2.13.: A transaction that deposits an interest to a bank account.

transaction in ∆′, making the record in ∆′ different from the record in ∆. Hence

the stability check fails. Fortunately, the weakening operator (T·U〈R,I〉) allows us to

weaken the effect to exists(∆, I(∆), {r | r ∈ ∆ ∧ r. id = acc id }), which effectively

asserts that the select1 query returns a record with id = acc id from some

database state that satisfies the non-negative balance invariant I. This weakened

assertion is nonetheless enough to deduce that a.bal ≥ 0, and subsequently prove

that a.bal + pc ∗ a.bal ≥ 0, allowing us to verify the add interest transaction.

The state transformer rules, like the earlier RG rules, closely follow the corre-

sponding reduction rules in Fig. 2.7, except that their language of expression is S.

For instance, while the reduction rule for UPDATE declaratively specifies the set of

updated records, the state transformer rule uses S’s bind operation to compute the

set. Other SQL rules do likewise. The rules for LET binders, conditionals, and se-

quences compose the effects inferred for their subcommands. Thus, the effect of a

sequence of commands c1; c2 is the union of effects F1 and F2 of c1 and c2, respec-

tively, except that F2 is computed in a context that includes F1 (we write F1∪F2 as a

shorthand for λ(∆). F1(∆)∪F2(∆)). The inference rule for FOREACH takes advantage

of the S’s bind operator to lift the effect inferred for the loop body to the level of

the loop. Since records added to δ in each iteration of FOREACH are independent of

the previous iteration (recall that we make a local context independence assumption

about database programs; Sec. 2.2), sequential composition of the effects of different

iterations is the same as their parallel composition. Since the loop body is executed
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once per each z ∈ x, the effect of the the loop is a union of effects (F) for all z ∈ x, all

applied to the same state (∆). That is, Floop(∆) =
⋃
z∈x Fbody(∆). From the definition

of the set monad’s bind operator, Floop(∆) = x�= (λz. Fbody(∆)), which mirrors the

definition of the rule.

2.4.1 Soundness of Inference

We now formally state the correspondence between the inference rules given above

and the RG judgment of §2.3:

Theorem 2.4.1 For all i,R,I,c,Fctxt, F, if stable(R, I), stable(R,Fctxt) and Fctxt `
c =⇒〈i,R,I〉 F, then:

R ` {λ(δ,∆). δ = Fctxt(∆) ∧ I(∆)} [c]i {λ(δ,∆). δ = Fctxt(∆) ∪ F(∆)}

Proof Sketch. The proof follows by structural induction on c. Let P = λ(δ,∆). δ =

Fctxt(∆) ∧ I(∆) and Q = λ(δ,∆).δ = Fctxt(∆) ∪ F(∆). The base cases correspond

to INSERT , UPDATE and DELETE statements, where the proof is straightforward.

The proofs for SELECT , sequencing, and conditionals use the inductive hypothesis

to infer the RG-judgments present in the premises of their corresponding RG-rules.

The interesting case is the FOREACH statement, for which we use the loop invariant

ψ(δ,∆)⇔ δ = Fctxt(∆) ∪ (y �= (λz. F(∆))), (where assuming that c is the body of

the loop, c =⇒〈i,R,I〉 F) to prove all the premises of RG-Foreach. Using the same

notation as the rule RG-Foreach, y refers to the records already processed in pre-

vious iterations of the loop, while z refers to the record being processed in the current

iteration. At the beginning of the loop [φ/y]ψ(δ,∆) just reduces to δ = Fctxt(∆) which

is implied by the pre-condition P . From the inductive hypothesis, we can infer that

each iteration corresponds to the application of F. Since all iterations are assumed to

be independent of each other, and z is bound to a record in x for each iteration, we

conclude that at the end of every iteration, the loop invariant [y ∪ {z}/y]ψ will be

satisfied.
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Jδ | ∆ | . . .K〈ν〉 = (>, λ(υ, r). r ∈ δ) | (>, λ(υ, r). r ∈ ∆) | . . . |υ| = |ν|

J{x |ϕ}K〈ν〉 = (>, λ(υ, r). [r/x]ϕ) |υ| = |ν|

Jif ϕ then s1 else s2K〈ν〉 = (φ1 ∧ φ2, λ(υ, r). if ϕ then G1(υ, r) (φ1,G1) = Js1K〈ν〉

else G2(υ, r) (φ2,G2) = Js2K〈ν〉

Js1 ∪ s2K〈ν〉 = (φ1 ∧ φ2, (φ1,G1) = Js1K〈ν〉

λ(υ, r).G1(υ, r) ∨ G2(υ, r)) (φ2,G2) = Js2K〈ν〉

Js1 �= λx.s2K〈ν〉 = (φ1 ∧ φ2 ∧ ∀ν.∀a.∀b. π1(ν)⇔ fresh(π1) fresh(π2) fresh(g)

G1(ν, a) ∧ G2(ν, a, b)⇒ g(ν, b) (φ1,G1) = Js1K〈ν〉

∧∀ν.∀b.∃a. π2(ν)⇔ (φ2,G2) = J[a/x]s2K〈ν,a〉

g(ν, b)⇒ G1(ν, a) ∧ G2(ν, a, b), fresh(a) fresh(b)

λ(υ, r). π1(υ) ∧ π2(υ) ∧ g(υ, r)) |υ| = |ν|

Jexists(∆, φ, s)K〈ν〉 = (φs ∧ ∀ν.∀a.∀b. f(ν, a) ∧ f(ν, b)⇒ a = b fresh(a) fresh(b)

∧∀ν.∃a. f(ν, a) fresh(f)

∧∀ν.∀a.∀b. π(ν)⇔ f(ν, a) ∧ [a/∆]φ fresh(π) fresh(g)

∧g(ν, b) = Gs(ν, b), (φs,Gs) = J[a/∆]sK〈ν〉

λ(υ, r). π(υ) ∧ g(υ, r)) |υ| = |ν|

Figure 2.14.: Encoding S in first-order logic

2.4.2 From S to the First-Order Logic

Theorem 2.4.1 lets us replace the local judgment of the RG-Txn rule (Fig. 2.10)

by a state transformer inference judgment. The soundness of a transaction’s guarantee
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can now be established w.r.t the effect F of the body. The RG-Txn rule so updated

is shown below (F∅ = λ(∆). ∅ denotes an empty context):

stable(R, I) stable(R, I) Re = R\Ie Rc = R\Ic F∅ ` c =⇒〈i,Re,I〉 F

stable(Rc,F∅[F]) ∀∆. G(∆,F(∆)) ∀∆,∆′. I(∆) ∧G(∆,∆′)⇒ I(∆′)

{I,R} TXN i〈I〉{c} {G, I}

Automating the application of the RG-Txn rule for a transaction requires automating

the multiple implication checks in the premise. While R, G, I and I are formulas in

first-order logic (FOL) with a relatively simple structure, F is an expression in the set

language S (Fig. 2.11) with a possibly complex structure. Fortunately, however, there

exists a semantics-preserving translation from S to a restricted subset of first-order

logic (FOL) that lends itself to automatic reasoning.

The algorithm (J·K〈·〉) shown in Fig. 2.14 translates an S expression (s) to FOL.

The translation is based on encoding a set of element type T as a unary predicate on

T . The predicate is represented as a meta function that accepts an x : T and returns

a quantifier-free proposition that evaluates to true (>) if and only if x is present in

the set. Alternatively, the translation may also encode the set as a predicate in the

logic itself, in which case a quantified proposition constraining the predicate is also

generated. For instance, consider the set {1, 2}. The predicate describing the set can

be encoded as the function λυ.υ = 1∨υ = 2, with no further constraints, or it can be

encoded as the function λυ.g(υ) with an associated constraint, φ ∈ P1 = ∀ν. g(ν)⇔
ν = 1 ∨ ν = 2, defining the uninterpreted predicate g. The translation adopts one or

the other approach, depending on the need. For uniformity, we consider the encoding

of a set as pair (φ,G), where G is a meta function, and φ is a FOL formula constraining

any uninterpreted predicates used in G.

Due to the presence of bind (�=) in S, a set expression s may contain free

variables introduced by an enclosing binder. For instance, consider the S expression

s1 �= (λx.{y | y = x+1}), where s1 is an integer set (expression). The subexpression

{y | y = x + 1} (call it s2) contains x as a free variable. In such cases, the predicate

associated with the subexpression should also be indexed by its free variables so that
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a unique set exists for each instantiation of the free variables. Thus, the predicate (G)

associated with the subexpression from the above example should be λυ1.λυ2. υ2 =

υ1 + 1, so that the set G x1 is different from the set G x2 for distinct x1, x2 ∈ s1.

Intuitively, the bind expression s1 �= (λx.{y | y = x+ 1}) denotes the set
⋃
x∈s1

G x.

The translation algorithm (Fig. 2.14) takes free variables into account. Given

a set expression s ∈ S, whose (possible) free variables are ν in the order of their

introduction (top-most binder first), JsK〈ν〉 returns the encoding of s as (φ,G). The

meta-function G is a predicate indexed by the (possible) free variables of s, and

thus its arity is |ν| + 1. Note that ν is only a sequence of variables introduced by

the enclosing binders of s, and not all may actually occur free in s. Nonetheless,

its predicate G is always indexed by |ν| free variables for uniformity. The translation

encodes database state as an uninterpreted sort. Considering that the state is actually

a set of records, we define an uninterpreted relation “∈” to relate records and states.

Thus, a variable set expression ∆ denoting a database state is encoded as the predicate

λ(υ, r). r ∈ ∆, where |υ| = |ν| (predicates are uncurried for simplicity; υ is a comma-

separated sequence; r 6∈ S is a special variable). The constraints associated with

the encoding of a state are trivial (denoted >). The set literal expression {x |ϕ} is

encoded straightforwardly. The conditional set expression is encoded as an if-then-

else predicate in FOL, where the predicates on true and false branches are computed

from the set subexpressions s1 and s2, respectively. The conjunction of constraints

φ1 and φ2, from Js1K〈ν〉 and Js2K〈ν〉 (resp.), is propagated upwards as the constraint of

the conditional expression. A set union expression is encoded similarly.

The first-order encoding of a bind expression describes the semantics of the set

monad’s bind operator in FOL. Let s1 be a set, and let f be a function that maps

each variable in s1 to a new set. Then, s2 = s1 �= f if and only if for all y ∈ s2,
there exists an x ∈ s1 such that y = f(x), and forall x ∈ s1, f(x) ∈ s2. The encoding

essentially adds new constraints to this effect. The translation first encodes s1 and s2

to obtain (φ1,G1) and (φ2,G2), respectively. Since s2 is under a new binder that binds

x, the free variable sequence of s2 is ν, x. In the interest of hygiene, we substitute a
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fresh a for x, making the sequence ν, a. The set s is encoded as a new uninterpreted

predicate g indexed by s’s free variables (ν). Since the set denoted by g is the result of

the bind s1 �= λx.s2, first-order constraints defining the bind operation (as described

above) are generated. The constraints relate the predicates G1 and G2, representing

s1 and s2 (resp.), to the uninterpreted predicate g that represents s. The constraints

are assigned names (π1 and π2) to give them an easy handle.

The first-order encoding of the exists(∆, φ, s) expression essentially Skolemizes

the existential. Skolemizing is the process of substituting an existentially bound x

in φx ∈ P1 with f(ν), where f is a fresh uninterpreted function (called the Skolem

function), and ν are the free variables in φx bound by enclosing universal quantifiers.

Due to the decidability restrictions (Sec. 2.4.3), the only uninterpreted functions we

admit in our logic are boolean (i.e., predicates/relations). Consequently, we cannot

define the Skolem function f directly. Instead, we define it via an uninterpreted

relation, by explicitly asserting the function property:

(∀ν.∀a.∀b. f(ν, a) ∧ f(ν, b)⇒ a = b) ∧ (∀ν.∃a.f(ν, a))

We then replace the existentially bound ∆ with a new universally bound a in φ and

s, such that f(ν, a) holds, before encoding the existentially bound s.

Example Let us reconsider the TPC-C new order transaction from Sec. 4.1. Recall

that the state transformer (T) for the foreach loop shown in Fig. 2.4 is ( k1 , k2 ,

and k3 are constants):

λ(δ,∆). δ ∪ item reqs �= (λ item req . FU (∆) ∪ FI(∆))

where:

FU = λ(∆). ∆�= (λs.if table(s) = Stock ∧ s. s i id = item req.ol i id

then {〈 s i id = s. s i id ; s d id = s. s d id ; s qty = k1 〉}

else ∅)

FI = λ(∆). {〈 ol o id = k2 ; ol d id = k3 ; ol i id = item req.ol i id ;

ol qty = item req.ol qty 〉}
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For any ∆, FU(∆) and FI(∆) are expressions in S, so can be translated to FOL by

the encoding algorithm in Fig. 2.14. Since the iteration variable item req occurs

free in these expressions, the appropriate application of the encoding algorithm is

JFU(∆)K〈 item req 〉 and JFI(∆)K〈 item req 〉, which results in (φU ,GU) and (φI ,GI), respec-

tively, where φU , φI , GU , GI are as shown below:

φU = ∀ item req .∀s.∀s′. π1( item req )⇔

(s ∈ ∆) ∧ ( if table(s) = Stock ∧ s. s i id = item req.ol i id

then s′ = 〈 s i id = s. s i id ; s d id = s. s d id ; s qty = k1 〉

else ⊥)⇒ g0( item req , s′)

∧∀ item req .∀s′.∃s. π2( item req )⇔

g0( item req , s′)⇒ s ∈ ∆ ∧ if table(s) = Stock ∧ s. s i id = item req.ol i id

then s′ = 〈 s i id = s. s i id ; s d id = s. s d id ; s qty = k1 〉

else ⊥

GU = λ( item req , r). π1( item req ) ∧ π2( item req ) ∧ g0( item req , r)

φI = >

GI = λ( item req , r). r = 〈 ol o id = k2 ; ol d id = k3 ; ol i id = item req.ol i id ;

ol qty = item req.ol qty 〉

Since the transformer (T) of the foreach loop is not nested does not contain any

free iteration variables, the appropriate application of the encoding algorithm is

JT(δ,∆)K〈∅〉, which results in the (φI ∧ φU ∧ φ1 ∧ φ2,G), where φ1, φ2, and G are

as defined below:

φ1 = ∀ item req .∀s. π3 ⇔ item req ∈ item reqs ∧ GU ( item req , s′) ∨ GI( item req , s′)⇒ g1(s)

φ2 = ∀s.∃ item req . π4 ⇔ g1(s)⇒ item req ∈ item reqs ∧ GU ( item req , s′) ∨ GI( item req , s′)

G = λ(r). π3 ∧ π4 ∧ g1(r)



47

2.4.3 Decidability

Observe that the encoding shown in Fig. 2.14 maps to a fragment of FOL that

satisfies the following syntactic properties:

• All function symbols, modulo those that are drawn from P0 and P1, are unin-

terpreted and boolean.

• All quantification is first-order; second-order objects, such as sets and functions,

are never quantified.

• Quantifiers appear only at the prenex position, i.e., at the beginning of a quan-

tified formula.

The simple syntactic structure of the fragment already makes is amenable for auto-

matic reasoning via an off-the-shelf SMT solver, such as Z3. The decidability of this

fragment, however, is more subtle and discussed below.

Consider a set expression s with no free variables (i.e., ν = ∅, like T(δ,∆) from

the above example). Let (φ,G) = JsK〈∅〉. Note that φ is a conjunction of (a). φi’s,

where each φi results from encoding a subexpression si of s, and (b). a φs, resulting

from encoding s itself (i.e., its top-level expression). From Fig. 2.14, it is clear that

φs is either > (for the first four cases), or it is a prenex-quantified formula, where

quantification is either ∀2, or ∃, or ∀∃. Generalizing this observation, for a set expres-

sion s with |ν| free variables, φs, if quantified, is a prenex-quantified formula, where

quantification assumes one among the forms of ∀|ν|+2, or ∀|ν|∃, or ∀|ν|+1∃. In other

words, the number of ∀ quantifiers preceding an ∃ quantifier is utmost one more than

the number of free variables (ν) in s. For the convenience of this discussion, let us

call ∀|ν|+1∃ as the prenex signature of φs.

Next, in Fig. 2.14, observe that the (ordered) set ν is extended only in the en-

coding rule for �=. Since an occurrence of �= adds a quantifier to |ν|, if s is a

bind expression nested inside a top-level bind expression (like FU(∆) from the above

example), then the prenex signature of φs is ∀2∃. Furthermore, if the subexpressions
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of s are neither bind nor exists expressions, then none of the φi’s are quantified, and

the prenex signature of φ =
∧
i φi ∧ φs remains ∀2∃. A similar observation holds

when s is an exists expression nested inside a top-level bind expression. Since exists

is generated as a result of stabilizing a SQL command transformer, which is always

a non-nested bind expression, the subexpression (s′) of exists is a non-nested bind

expression. s′ is however nested inside a top-level bind expression, hence its prenex

signature is ∀2∃. Since exists does not extend ν, the prenex signature of s remains

∀2∃. When s is an expression other than �= or exists, then φs is not a quantified

formula, and its prenex signature is trivially subsumed by ∀2∃. Thus, for the subset

of S, where bind expressions are restricted to one level of nesting, the FOL formulas

generated by the encoding have the prenex signature as ∀2∃.
The fragment of FOL that admits formulas with prenex signatures of the form

∀2∃∗ is called the Gödel-Kálmar-Schütte (GKS) fragment [35], which is known to be

decidable. The language of encoding, however, is a combination of GKS with (a). P0,

the theory from which quantifier-free propositions (ϕ) that encode object language

expressions are drawn, and (b). P1, the theory from which invariants (I) are drawn.

Thus, the encoding of the subset of S described above is decidable if the combination

of GKS + P0 + P1 is decidable. We write S[P0,P1] to highlight the parameterization

of S on P0 and P1. The discussion in the previous paragraph points to the existence

of non-trivial subsets in S[P0,P1] that are decidable:

Theorem 2.4.2 There exist S ′[P0,P1] ⊂ S[P0,P1] such that S ′ is decidable if GKS +

P0 + P1 is decidable.

One interesting example of such an S ′ is the subset described above: S with bind

expressions confined to one level of nesting. We denote this subset as S1[P0,P1], for

which we assert decidability:

Corollary 2.4.3 S1[P0,P1] is decidable if GKS + P0 + P1 is decidable.

S1 is a useful subset of S, for it corresponds to T programs without nested foreach

loops. Observe that the new order transaction (Fig. 2.1) belongs to this subset.
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Indeed, S1, while being a restricted version of S, is nonetheless expressive enough to

cover all the benchmarks we considered in Sec. 2.6.

A useful instantiation of S1 is S[BV,GKS + BV], where BV is the theory of bit-

vector arithmetic, which is often used to encode the finite-bit integer arithmetic of

real programs. Finite-bit integer arithmetic has a finite axiomatization in GKS. For

instance, 32-bit integers can be encoded as 232 distinct constants of an uninterpreted

sort T , while integer operations like addition and multiplication can be encoded as

uninterpreted functions whose properties are enumerated for the entire domain of

T . Thus BV is subsumed by GKS. Since the latter is decidable, the combination is

decidable:

Theorem 2.4.4 S1[BV,GKS + BV] is decidable.

This instantiation requires I to be drawn from GKS+BV, which is expressive enough

to describe common database integrity constraints, such as referential integrity, non-

negativeness of all integer values in a column etc. The isolation specifications pre-

sented in §2.2.1 are already simple first-order formulas that can be encoded in GKS.

Furthermore, it is also reasonable to expect the guarantee (G) of a transaction to be

expressible in the same logic as its inferred F, since F (without the stability check)

is essentially a complete characterization of the transaction, while G is only an ab-

straction. Thus, with S1[BV,GKS + BV] as the language of inference, the verification

problem for weakly isolated transactions is decidable.

2.5 ACIDifier Implementation

We have implemented our DSL to define transactions as monadic computations

in OCaml (modulo some syntactic sugar), and our automatic reasoning framework as

an extra frontend pass (called ACIDifier) in the ocamlc 4.03 compiler. The input

to ACIDifier is a program in our DSL that describes the schema of the database as

a collection of OCaml type definitions, and transactions as OCaml functions, whose

top-level expression is an application of the atomically do combinator. For in-
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type table_name = District | Order | Order_line | Stock

type district = {d_id: int; d_next_o_id: int}

type order = {o_id: int; o_d_id: int; o_c_id: int; o_ol_cnt: int}

type order_line = {ol_o_id: int; ol_d_id: int; ol_i_id: int; ol_qty:

int}

type stock = {s_i_id: int; s_d_id:int; s_qty: int}

Figure 2.15.: OCaml type definitions corresponding to the TPC-C schema from

Fig. 2.2

stance, TPC-C’s schema from Fig. 2.2 can be described via the OCaml type defini-

tions shown in Fig. 2.15. ACIDifier also requires a specification of the program in

the form of a collection of guarantees (G), one per transaction, and an invariant I that

is a conjunction of the integrity constraints on the database. An auxiliary DSL that

includes the first-order logic (FOL) combinators has been implemented for this pur-

pose. ACIDifier’s verification pass follows OCaml’s type checking pass, hence the

concrete artifact of verification is OCaml’s typed AST. The tool is already equipped

with an axiomatization of PostgreSQL and MySQL’s isolation levels expressed in our

FOL DSL. Other data stores can be similarly axiomatized. The concrete result of

verification is an assignment of an isolation level of the selected data store to each

transaction in the program.

At the top-level, ACIDifier runs a loop that picks an unverified transaction and

progressively strengthens its isolation level until it passes verification. If the selected

data store provides a serializable isolation level, and if the program is sequentially

correct, then the verification is guaranteed to succeed. Within the loop, ACIDifier

first computes the various rely relations needed for verification (R, Rl, and Rc). It

then traverses the AST of a transaction, applying the inference rules to construct

a state transformer, checks its stability, and weakens it (T·U〈R,I〉) if it is not stable.

The result of traversing the transaction’s AST is therefore a state transformer (F)
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that is stable w.r.t Rl, which is also stabilized against Rc (using T·U〈R,I〉), and then

checked against the transaction’s stated guarantee (G). If the check passes, then the

guarantee is verified to check if it preserves the invariant I. The successful result

from both checks results in the transaction being certified correct under the current

choice of its isolation level. Successful verification of all transactions concludes the

top-level execution, returning the inferred isolation levels as its output. ACIDifier

uses the Z3 SMT solver as its underlying reasoning engine. Each implication check

described above is first encoded in FOL, applying the translation described in §2.4

wherever necessary.

2.5.1 Pragmatics

Real-World Isolation Levels The axiomatization of the isolation levels pre-

sented in §2.2.1 leaves out certain nuances of their implementations on real data

stores, which need to be taken into account for verification to be effective in practice.

We take these into account while linking ACIDifier with store-specific semantics

(isolation specifications, etc.). As an example, consider how PostgreSQL implements

an UPDATE operation. UPDATE first selects the records that meet the search criteria

from the snapshot against which it is executing (the snapshot is established at the

beginning of the transaction if the isolation level is SI, or at the beginning of the

UPDATE statement if the isolation level is RC). The selected records are then visited

in the actual database (if they still exist), write locks are obtained, and the update is

performed, provided that each matched record still meets UPDATE ’s search criteria.

If a record no longer meets the search criteria (due to a concurrent update), it is

excluded from the update, and the write lock is immediately released. Otherwise, the

record remains locked until the transaction commits.

Clearly, this sequence of events is not atomic, unlike the assumption made by our

formal model because the implementation admits interference between the updates

of individual records that meet the search criteria. Nonetheless, through a series of

relatively straightforward deductions, we can show that PostgreSQL’s UPDATE is in
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fact equivalent (in behavior) to a sequential composition of two atomic operations

c1; c2, where c1 is effectively a SELECT operation with the same search criteria as

UPDATE , and c2 is a slight variation of the original UPDATE that updates a record

only if a record with the same id is present in the set of records returned by SELECT :

UPDATE (λx. e1) (λx. e2) −→ LET y = SELECT (λx. e1) IN

UPDATE (λx. e1 ∧ x.id ∈ dom(y)) (λx. e2)

The intuition behind this translation is the observation that all interferences pos-

sible during the execution of the UPDATE can be accommodated between the time

the records are selected from the snapshot, and the time they are actually updated.

ACIDifier performs this translation if the selected store is PostgreSQL, allowing it

to reason about UPDATE operations in a way that is faithful to its semantics on Post-

greSQL. ACIDifier also admits similar compensatory logic for certain combinations

of isolation levels and operations on MySQL.

Set functions SQL’s SELECT query admits projections of record fields, and also

application of auxiliary functions such as MAX and MIN , e.g., SELECT MAX(ol o id)

FROM Order line WHERE . . . , etc. We admit such extensions as set functions in our

DSL (e.g., project , max , min ), and axiomatize their behavior. For instance:

s2 = project s1 (λz. e) ⇔ ∀y. y ∈ s2 ⇔ ∃(x ∈ s1). y = [x/z]e

x = max s ⇔ x ∈ s ∧ ∀(y ∈ s). y ≤ x

There are however certain set functions whose behavior cannot be completely ax-

iomatized in FOL. These include sum , count etc. For these, we admit imprecise

axiomatizations.

Annotation Burden ACIDifier significantly reduces the annotation burden

in verifying a weakly isolated transactions by eliminating the need to annotate in-

termediate assertions and loop invariants. Guarantees (G) and global invariants (I),

however, still need to be provided. Alternatively, a weakly isolated transaction T

can be verified against a generic serializability condition, eliminating the need for

guarantee annotations. In this mode, ACIDifier first infers the transformer FSER
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of T without considering any interference, which then becomes its guarantee (G).

Doing likewise for every transaction results in a rely relation (R) that includes FSER

of every transaction. Verification now proceeds by taking interference into account,

and verifying that each transaction still yields the same F as its FSER. The result

of this verification is an assignment of (possibly weak) isolation levels to transactions

which nonetheless guarantees behavior equivalent to a serializable execution.

2.6 Evaluation

In this section, we present our experience in running ACIDifier on two different

applications: Courseware: a course registration system described by [36], and TPC-C.

Courseware The Courseware application allows new courses to be added (via an

add course transaction), and new students to be registered (via a register transac-

tion) into a database. A registered student can enroll ( enroll ) in an existing course,

provided that enrollment has not already exceeded the course capacity ( c capacity ).

A course with no enrollments can be canceled ( cancel course ). Likewise, a student

who is not enrolled in any course can be deregistered ( deregister ). Besides Student

and Course tables, there is also an Enrollment table to track the many-to-many

enrollment relationship between courses and students. The simplified code for the

Courseware application with only enroll and deregister transactions is shown

in Fig. 2.16. The application is required to preserve the following invariants on the

database:

1. I1: An enrollment record should always refer to an existing student and an

existing course.

2. I2: The capacity ( c capacity ) of a course should always be a non-negative

quantity.

Both I1 and I2 can be violated under weak isolation. I1 can be violated, for example,

when deregister runs concurrently with enroll , both at RC isolation. While the
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type table_name = Student | Course | Enrollment

type student = {s_id: id; s_name: string}

type course = {c_id: id; c_name: string; c_capacity: int}

type enrollment = {e_id: id; e_s_id: id; e_c_id: id}

let enroll_txn sid cid =

let crse = SQL.select1 [Course] (fun c -> c.c_id = cid) in

let s_c_enrs = SQL.select [Enrollment]

(fun e -> e.e_s_id = sid &&

e.e_c_id = cid) in

if crse.c_capacity > 0 && Set.is_empty s_c_enrs then

(SQL.insert Enrollment {e_id=new_id (); e_s_id=sid;

e_c_id=cid};

SQL.update Course

(fun c -> {c with c_capacity = c.c_capacity - 1})

(fun c -> c.c_id = cid)) else ()

let deregister_txn sid =

let s_enrs = SQL.select [Enrollment]

(fun e -> e.e_s_id = sid) in

if Set.is_empty s_enrs

then SQL.delete Student (fun s -> s.s_id = sid)

else ()

Figure 2.16.: Courseware Application

former transaction removes the student record after checking that no enrollments for

that student exists, the latter transaction concurrently adds an enrollment record after

checking the student exists. Both can succeed concurrently, resulting in an invalid

state. Invariant I2 can be violated by two enroll s, both reading c capacity=1, and

both (atomically) decrementing it, resulting in c capacity=-1. We ran ACIDifier

on the Courseware application (Fig. 2.16) after annotating transactions with their

respective guarantees, and asserting I = I1 ∧ I2 as the correctness condition. The
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guarantees Ge and Gd for enroll and deregister transactions, respectively, are

shown below:

Ge(∆,∆
′) ⇔ ∆′s = ∆s ∧ ∃ cid .∃ sid .

∆′c = ∆c �= λc. if c. c id = cid

then exists(c′, c′. id = c. id ∧ c′. c name = c. c name

∧ c′. c capacity ≥ 0, {c′})

else {c}

∧∆e = ∆′e �= λe. if e. e c id = cid ∧ e. e s id = sid then ∅ else {e}

Gd(∆,∆
′) ⇔ ∆′c = ∆c ∧∆′e = ∆e ∧ ∃ sid . if ∀(e ∈ ∆e). e. e s id 6= sid

then ∆′s = ∆s �= λs. if s. id = sid then ∅ else {s}

else ∆′s = ∆s

For the sake of this presentation we split ∆ into three disjoint sets of records, ∆s,

∆c, and ∆e, standing for Student , Course , and Enrollment tables, respectively.

Observing that the set language S (Sec. 2.4), besides being useful for automatic

verification, also facilitates succinct expression of transaction semantics, we define

Ge and Gd in a combination of FOL and S. Ge essentially says that the enroll

transaction leaves the Student table unchanged, while it may update the c capacity

field of a Course record to a non-negative value (even when it doesn’t update, it is the

case that c′. c capacity ≥ 0, because c′ = c, and c ∈ ∆c, and we know that I2(∆c)).

Ge also conveys that enroll might insert a new Enrollment record by stating that

∆e, the Enrollment table in the pre-state, contains all records e from ∆′e, the table in

the post-state, except when e. e c id and e. e s id match cid and sid , respectively.

The guaranteeGd of deregister asserts that the transaction doesn’t write to Course

and Enrollment tables. The transaction might however delete a Student record

bearing an id= sid (formally, ∆′s = ∆s �= λs. if s. id = sid then ∅ else {s}),
for some sid for which no corresponding Enrollment records are present in the

pre-state (in other words, ∀(e ∈ ∆e). e. e s id 6= sid ).
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Table 2.1.: The discovered isolation levels for TPC-C transactions

new order delivery payment order status stock level

MySQL SER SER RC RC RC

PostgreSQL SI SI RC RC RC

With help of the guarantees, such as those described above, ACIDifier was able

to automatically discover the aforementioned anomalous executions, and was subse-

quently able to infer that the anomalies can be preempted by promoting the isolation

level of enroll and deregister to SER (on both MySQL and PostgreSQL), leaving

the isolation levels of remaining transactions at RC. The total time for inference and

verification took less than a minute running on a conventional laptop.

TPC-C The simplified schema of the TPC-C benchmark has been described in

Sec. 4.1. In addition to the tables shown in Fig. 2.2, the TPC-C schema also has

Warehouse and New order tables that are relevant for verification. To verify TPC-

C, we examined four of the twelve consistency conditions specified by the standard,

which we name I1 to I4:

1. Consistency condition I1 requires that the sales bottom line of each warehouse

equals the sum of the sales bottom lines of all districts served by the warehouse.

2. Conditions I2 and I3 effectively enforce uniqueness of ids assigned to Order and

New order records, respectively, under a district.

3. Condition I4 requires that the number of order lines under a district must match

the sum of order line counts of all orders under the district.

Similar to the example discussed in Sec. 4.1, there are a number of ways TPC-C’s

transactions violate the aforementioned invariants under weak isolation. ACIDi-

fier was able to discover all such violations when verifying the benchmark against

I =
∧
i Ii, with guarantees of all three transactions provided. The isolation levels
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were subsequently strengthened as shown in Table. 2.1. As before, inference and

verification took less than a minute.

To sanity-check the results of ACIDifier, we conducted experiments with a high-

contention OLTP workload on TPC-C aiming to explore the space of correct isolation

levels for different transactions. The workload involves a mix of all five TPC-C trans-

actions executing against a TPC-C database with 10 warehouses. Each warehouse

has 10 districts, and each district serves 3000 customers. There are a total of 5

transactions in TPC-C, and given that MySQL and PostgreSQL support 3 isolation

levels each, there are a total of 35 = 243 different configurations of isolation levels

for TPC-C transactions on MySQL and PostgreSQL. We executed the benchmark

with all 243 configurations, and found 171 of them violated at least one of the four

invariants we considered. As expected, the isolation levels that ACIDifier infers for

the TPC-C transactions do not result in invariant violations, either on MySQL or on

PostgreSQL, and were determined to be the weakest safe assignments possible.

2.7 Related Work

This section discusses the work that is closely related to the work presented in

this chapter.

Specifying weak isolation. Adya [29] specifies several weak isolation levels in

terms of dependency graphs between transactions, and the kinds of dependencies that

are forbidden in each case. The operational nature of Adya’s specifications make

them suitable for runtime monitoring and anomaly detection [37–39], whereas the

declarative nature of the isolation specifications presented in this chapter make them

suitable for formal reasoning about program behavior. Cerone et al. [30] specify

isolation levels with atomic visibility using the vocabulary introduced in [40], but

such trace-level specifications are hard to relate to high-level semantics of database

programs.
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Crooks et al. [41] also explore the use of a state-based interpretation of isolation,

and present specifications of weak isolation that are not tied to implementation-

specific artifacts. However, they do not consider verification (manual or automated)

of client programs, and it is not immediately apparent if their specification formalism

is amenable for use within a verification toolchain. Warszawski et al. [42] present a

dynamic analysis for weak isolation that attempts to discover weak isolation anomalies

from SQL log files. Their solution, while capable of identifying database attacks due

to the use of incorrect isolation levels, does not consider how to verify application

correctness, infer proper isolation levels, or formally reason about the relationship

between weak-isolation levels and application invariants.

Reasoning under weak isolation. Fekete et al. [43] propose a theory to charac-

terize non-serializable executions that arise under si. They also propose an algorithm

that allocates either si or ser isolation levels to transactions while guaranteeing se-

rializability. Cerone et al. [44] improve on Adya’s si specification and use it to derive

a static analysis that determines the safety of substituting si with a weaker variant

called Parallel Snapshot Isolation [45]. These efforts focus on establishing the equiv-

alence of executions between a pair of isolation levels, without taking application

invariants into account. Bernstein et al. [46] propose informal semantic conditions

to ensure the satisfaction of application invariants under weaker isolation levels. All

these techniques are tailor-made for a finite set of well-understood isolation levels

(rooted in [28]).

Reasoning under weak consistency. There have been several recent proposals

to reason about programs executing under weak consistency [8, 36, 47–50]. All of

them assume a system model that offers a choice between a coordination-free weak

consistency level (e.g., eventual consistency [8,47–50]) or causal consistency [36,51]).

All these efforts involve proving that atomic and fully isolated operations preserve

application invariants when executed under these consistency levels. In contrast,

the work presented in this chapter focuses on reasoning in the presence of weakly-
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isolated transactions under a strongly consistent data store. Gotsman et al. [36]

adapt Parallel Snapshot Isolation to a transaction-less setting by interpreting it as a

consistency level that serializes writes to objects; a dedicated proof rule is developed

to help prove prove program invariants hold under this model. By parameterizing the

proof system over a gamut of weak isolation specifications, ACIDifier avoids the

need to define a separate proof rule for each new isolation level we may encounter.

Inference. Vafeiadis et al. [52,53] describe action inference, an inference procedure

for computing rely and guarantee relations in the context of RGSep [54], an integra-

tion of rely-guarantee and separation logic [55] that allows one to precisely reason

about local and shared state of a concurrent program. The ideas underlying action

inference have been used to prove memory safety, linearizability, shape invariant in-

ference, etc. of fine-grained concurrent data structures. While the motivation of this

work is similar (automated inference of intermediate assertions and local invariants),

the context of study (transactions vs. shared-memory concurrency), the objects being

analyzed (relational database tables vs. concurrent data structures), the properties

being verified (integrity constraints over relational tables vs. memory safety, or lin-

earizability of concurrent data structure operations) and the analysis technique used

to drive inference (state transformers vs. abstract interpretation) are quite different.
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3 BOUNDED VERIFICATION UNDER WEAK CONSISTENCY

This chapter shifts the focus from weak isolation to weak consistency. We1 present a

reasoning technique based on bounded symbolic execution to find weak consistency

anomalies violating the integrity of the replicated state in distributed applications.

The symbolic execution is complemented with an inference procedure that traverses

a finite lattice of consistency levels, and finds the weakest consistency level sufficient

preempt an anomaly. Repeating the anomaly detection-repair loop sufficient number

of times yeilds bounded guarantees on program correctness.

Our symbolic execution engine (called2 Q9) operates in the context of a pro-

gramming framework embedded in OCaml that allows the expression of replicated

data types (RDTs) composed of a given library of conflict-free/convergent replicated

data types (CRDTs). The framework lets effectful computations be defined over in-

stances of these types. The engine abstracts executions in terms of path conditions

and RDT operations, under an axiomatization of a data storage model that only

provides weak eventual consistency guarantees on object updates. The engine checks

application-specific safety properties on different state configurations induced by con-

sidering executions in which the visibility and ordering of RDT operations on different

replicas may vary. Q9 tracks operations precisely (up to a bound), thus ensuring that

every violation of a safety property is a true violation. Over a collection of benchmark

results, including well-studied database applications [56], Q9 was able to correctly

identify anomalies that arise because satisfiability of the application’s safety prop-

erties demand greater coordination and synchronization than manifest explicitly in

1This work was done in collaboration with Kapil Earanky, KC Sivaramakrishnan, and Suresh Ja-
gannathan
2The number 9 in Q9 refers to our initial hypothesis that most replication anomalies manifest under
9 or fewer concurrent operations. The letter ‘q’ is a symbol resembling 9, hinting at our approach
of using symbolic execution to uncover such anomalies.
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the application or which is implicitly supported by the storage layer. Counterexam-

ples generated by Q9 are used to automatically strengthen the consistency level (i.e.,

the degree of global synchronization required) of offending operations. Empirical re-

sults support the thesis that anomalies can be detected quickly under relatively small

bounds, and repaired easily by selectively strengthening consistency requirements on

RDT operations to enforce greater coordination among replicas.

3.1 Replicated State Anomalies: The Motivation for Verification

Consider a simple distributed application that maintains a bank account with

replicated state. The representation of a bank account may be in terms of a con-

vergent replicated type (e.g., an integer PN-counter [57] that admits increments and

decrements) that guarantees all replicas will eventually reflect the same value of the

account. However, convergence alone may not be sufficient to preserve application-

specific safety properties. For example, suppose we wish to assert that the balance

of the account will always be non-negative. Given operations to deposit and with-

draw amounts into the account, it is straightforward, in a sequential execution, to

ensure this invariant is always preserved, by ensuring that deposit only ever adds to

the balance, and that withdraw always checks if there is a sufficient balance before

withdrawing. However, asynchronous replication may lead to anomalous executions

that violate the invariant. Two such executions that are illustrative of the anomalies

possible under asynchronous replication are shown in Fig. 3.1.

Fig. 3.1a depicts an execution that allows two withdraw operations to be applied

concurrently at different replicas. Two users, Alice and Bob, assume that there is a

sufficient balance in their (joint) account, and issue a withdraw operation for $1 each,

to replicas R1 and R2, respectively. Each withdraw operation reads the local balance

($1), checks that it is sufficient for the withdraw ($1 ≥ $1), and subsequently issues

a Withdraw effect that will be asynchronously transmitted to the other replica. The

effect is essentially a computational message that updates the state of the account on
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Alice

withdraw (1)

Bob

withdraw (1)

R1

get_balance ()→ -1 

bal = 1

R2

(a) Anomaly due to concurrency

Alice

Deposit (1)

Cheryl

get_balance ()→ -1 

R1
bal = 0

R2

Bob

Withdraw (1)

(b) Anomaly due to out-of-order message

delivery

Figure 3.1.: Anomalous executions of a simple bank account application.

All operations operate over a single replicated account object.

the replicas which receive it. When both Withdraw effects are eventually applied at

both the replicas, the balance drops below $0 resulting in an invariant violation, which

gets witnessed by Alice when she queries the balance. The anomaly is reminiscent

of a classical data race between two writes in a shared memory system, except that

writes are not lost or overwritten3

However, unintended executions that are unfamiliar to shared memory program-

mers are also possible in an asynchronous replicated system. Consider the execution

shown in Fig. 3.1b involving three users - Alice, Bob, and Cheryl, and two replicas

- R1 and R2. The initial balance at both the replicas is $0. Alice first submits a

deposit operation for $1 to R1. Bob, who subsequently connects to R1, finds there

is sufficient balance to perform a withdraw for $1. While effects from both the op-

erations are expected to be delivered to R2, it is possible that because of transient

network conditions, the Withdraw effect gets delivered first while the Deposit is still

in transit. This results in a transient violation of the no-negative-balance invariant,

which gets witnessed when Cheryl queries the balance at R2. The Deposit effect will

3Note that we cannot rectify this anomaly by simply forcing each replica to check the balance before
applying a received Withdraw effect as that may cause the account balance on different replicas not
to converge.
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eventually be delivered to R2 resulting in the invariant being restored; however since

there are no bounds on when this can happen, there are no guarantees on how this

violation may affect system behavior. Indeed, it is possible that a temporary viola-

tion of safety may lead to cascading errors that compromise application integrity. For

instance, a negative (albeit temporary) balance could be witnessed by a minimum bal-

ance enforcement module, which may erroneously impose a penalty on the account

that remains even after the violation is remedied. As this example demonstrates,

asynchronous replication of an application’s state can result in anomalous behaviors

that could be confounding to understand and repair. It is clearly unreasonable to

expect an application programmer to be prescient about the anomalies that might

manifest under replication, determine if they indeed lead to invariant violations, and

fix the application to avoid them.

Q9’s verification engine is based on the observation that concurrency anomalies

under replication most often have small representative counterexamples involving

few concurrent operations, similar to those shown in Fig. 3.1. Such anomalies can be

exposed by exploring the state space of the application with a relatively small bound

on the number of concurrent operations. Moreover, by representing the state space

using an appropriate formal vocabulary that abstracts away low-level details, such as

process crashes and network faults, we can compute an abstract representation of each

counterexample that represents not only the counterexample, but an entire class of

such counterexamples. Systematically eliminating such classes of counterexamples by

consistency strengthening leads us to compute the weakest consistency configuration

at which an application is free of all discovered anomalies, and hence most likely to

be safe.

3.2 The Q9 Programming Framework

The first component of Q9 is a programming framework implemented as a col-

lection of type definitions and libraries in OCaml, intended to operate within a
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module BankAccount (C:CRInt) : BANKACCT = struct

type t = C.t

type m = C.m

let init = C.init_val

let get_balance () : int = C.get ()

let do_deposit (amt:int) : m = C.add amt

let do_withdraw (amt:int) : m =

if C.get () >= amt then C.add (0-amt)

else error "Insufficient Balance"

let inv_non_neg_bal () : bool = CRInt.get () >= 0

end

module CRInt : sig

type t

type m = t -> t

val init_val : t

val add : int -> m

val get : unit -> int

end

module Bank (Checking : BANKACCT) (Savings: BANKACCT) = struct

type t = Checking.t * Savings.t

type m = t -> t

let txn_transfer (amt:int) : m =

let m1 = Checking.do_withdraw amt in

let m2 = Savings.do_deposit amt in

fun (x,y) -> (m1 x, m2 y)

end

Figure 3.2.: A Bank Account application written in Q9

replicated, eventually consistent, distributed environment; for this purpose, it comes

equipped with a library of convergent RDT [57] definitions. The semantics of a CRDT



65

object guarantee that even when multiple operations are applied to it in different or-

der on different replicas, the object’s state at all replicas, after all operations have

been delivered and executed (i.e., when the system becomes quiescent), will be the

same. Q9 uses CRDT specifications to specify richer RDTs through compositional

abstractions, capturing notions of convergent state replication for free without having

to define a specialized network/storage layer, or to prove additional semantic prop-

erties (e.g., commutativity) for the sake of convergence. In this section, we illustrate

the programming model with the help of an example.

Fig. 3.2 shows a simple BankAccount application written in Q9 that was infor-

mally introduced in the previous section. The application manages a replicated object

(a bank account) whose underlying representation is given in terms of a CRDT integer

( C.t ). The signature of a CRInt defines two operations: get returns the current

value of the integer, and add adds its argument to the existing value of the integer.

Observe that while the signature for get is unremarkable, add ’s type returns a value

of type m , a function type with signature C.t -> C.t . This return type captures the

essence of an effectful operation in a replicated setting. The function returned by add

is intended to be applied to every instance of C on every replica in the distributed

environment managed by Q9 supplying the value of the integer ( C.t ) at that replica

as the argument to this function. On the other hand, get ’s signature does not ap-

peal to m - it is expected to return the value of the integer on the replica to which

it is applied, in contrast to add . This particular specification of CRDTs allows us

to hide the implementation artifacts of replication behind high-level signatures that

characterize an operation’s local and remote effects.

The BankAccount module defines standard banking operations that internally

manipulate the CRInt CRDT. The operations include get balance , do deposit ,

and do withdraw . get balance function is standard - like C.get , it returns the

integer value of the current state on whatever replica it is applied to. Operations

do deposit and do withdraw , on the other hand, are effectful. These operations

return an effect, which is essentially a computation that must eventually be performed
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on all replicas. The type of an effect is therefore t -> t for which we introduce a

type synonym m . Thus, the type of an RDT operation4 over type t , that expects

an argument of type a , and returns a t effect (i.e., m = t -> t ) is as follows:

type a t oper = t -> a -> m

Note that, by definition, an RDT operation acts on a single instance of an RDT.

As described above, the semantics of an RDT operation follows from the CRDT

computation it returns. For instance, a do deposit operation returns a CRInt.m

computation that when invoked on a replica R will add amt to C ’s integer state

( C.t ) on R. This abstract notion of an effect can be concretized as a function that

maps a replica state to a new state. As a convention, we use pascal case and uncurried

arguments to denote an effect, and snake case and curried arguments for an operation.

We also drop the prefix do . Hence, the effect of ( do deposit amt ) is written

Deposit(amt) . Its semantics is defined by ascribing it the following denotation:

J Deposit(amt) K = λ s′ . s′ + amt

In ascribing the above denotation to Deposit , we assumed that CRInt.t is an int

and CRInt.add is basically integer addition. We can similarly ascribe a denotation

to Withdraw(amt) effect. Assuming that withdraw generates an effect only when

the balance check is satisfied on the origin replica, the Withdraw(amt) effect can be

thought of as a function that simply decrements amt from the integer state on all

the replicas:

J Withdraw(amt) K = λ s′ . s′ − amt

The function get balance doesn’t generate an effect, and thus has no need for a

denotation.

As highlighted by the oper type definition above, an RDT operation ( do ... )

is only ever allowed to operate on a single RDT. However, in general, distributed

applications will need to compose multiple RDT operations to perform useful com-

putation. To express such compositions, Q9 additionally supports transactions over

4By convention, we denote such operations by prefixing their name with do .
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replicated objects. In Fig. 3.2, module Bank composes two BankAccount objects -

one ( Checking.t ) denoting a checking account and the other ( Savings.t ) savings.

It defines a txn transfer transaction (the prefix txn is a naming convention for

transactions) that withdraws from the former and deposits to the latter. Provided

that the withdraw on the checking account is successful, it returns a composite ef-

fectful computation that when applied on a replica serves to perform the transfer

on the instance of Checking and Savings on that replica. If we think of a trans-

action as generating an aggregate effect, that effect is a composition of effects of

individual RDT-specific operations that constitute the transaction. For instance, if

txn transfer amt is thought of as generating a Transfer(amt) effect, its denota-

tion is as follows:

J Transfer(amt) K = λ( s′1 , s
′
2 ). (J Withdraw ( amt )K( s′1 ), J Deposit ( amt )K( s′2 ))

The result of executing transfer is therefore the generation of this effect.

Finally, Q9 also allows applications to specify safety properties as boolean func-

tions, via functions whose names are prefixed by inv . These safety properties be-

come the basis for verifying RDT applications.

3.2.1 Explicit Effect Representation

Besides explicating the semantics of RDT operations, the notion of an effect serves

a more concrete purpose in Q9. Named effects (e.g., Withdraw(amt) ) constitute

the class of messages that are exchanged between replicas, and act as the pivot for

consistency enforcement. More importantly, effects provide a tangible structure to

reason about concurrent operations potentially executable on different replicas, an

essential requirement for any verification exercise. For these reasons, Q9 translates

high-level RDT programs to an intermediate representation (IR) that uses explicit

effects. In our running example, the translated version of the BankAccount RDT in

the IR includes the following definitions
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type eff = Deposit of int

| Withdraw of int

let apply_eff (s’:int) (e:eff) =

match e with

| Deposit(a) -> s’ + a

| Withdraw(a) -> s’-a

Note that the eff type definition and the apply eff function reify the abstract

notions of effects and their semantics in the context of the BankAccount application.

Operations and transactions can now be defined in terms of these explicit effects:

let deposit (amt:int) = Deposit(amt)

let withdraw (amt:int) =

if s>= amt then Withdraw(amt)

else error "Insufficient Balance"

let transfer (amt:int) =

let eff1 = Checking.withdraw amt in

let eff2 = Savings.deposit amt in

(eff1 ,eff2)

Observe that, under this formulation, CRDT definitions such as CRInt exist only

to transfer CRDT semantics to their consumers. After compilation to the effect-

aware IR, the application’s RDTs themselves become CRDTs; e.g., applying (via

apply eff ) a collection of effects (i.e., values of eff type) in any order results in

the same BankAccount state. Thus, the Q9 programming model serves as a way

to engineer arbitrary distributed applications with convergent semantics, while its

underlying IR directly manipulates effects in ways consistent with CRDT semantics.

The translation to this IR elaborates each operation (i.e., do -prefixed function

on an RDT) in to a representation that returns the corresponding effect. The effect

takes the place of the RDT computation m in the definition of the operation (for

e.g., compare withdraw given above to its definition in Fig. 3.2). Conversely, the

interpretation of the effect of an operation at state s′ is obtained by inlining the

CRDT computation ( m ), and applying it on s′ (for e.g., compare the interpretation

of Withdraw in apply eff above to the definition of do withdraw in Fig. 3.2). A
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module Microblog(Tweet: TWEET)(Userline : USERLINE)

(Timeline : TIMELINE) =

struct

type t = Tweet.t * Userline.t * Timeline.t

let txn_new_tweet (uid: user_id) (str: string) =

let tweet_id = UUID.new () in

let e1 = Tweet.new tweet_id str in

let e2 = Userline.add uid tweet_id in

let fids = User.get_followers uid in

let e3 = Timeline.add

(Set.map (fun fid -> (fid ,tweet_id)) fids) in

(e1 ,e2 ,e3)

end

Figure 3.3.: Microblog application’s txn new tweet transaction

transaction’s effect is a composition of effects on multiple RDT objects in the same

way as the object it manipulates is a composition of multiple RDT objects. For

instance, txn transfer of Bank returns a pair of BankAccount effects for the type

it manipulates ( Bank.t ) is a pair of BankAccount.t objects.

Microblog. Fig. 3.3 shows a more complex transaction from a Twitter-like mi-

croblogging application in explicit effect representation. The transaction manipulates

objects of three different types: Tweet.t , Userline.t , and Timeline.t . Each ob-

ject can be thought of as a set of records of a similar type, akin to a table in a

relational database. For instance, Tweet.t represents a set of tweets. The trans-

action first constructs an effect ( e1 ) for adding the new tweet to the collection of

tweets, followed by an effect ( e2 ) to add the corresponding tweet id to userline of the

author (identified by uid: user id ), and finally an effect ( e3 ) to add the tweet

id to the timeline of every follower of the author. It returns a tuple of these effects

to be applied on first, second and third components of Microblog.t object, respec-



70

Application Server
R2R1 Rn

......
x ! {ex

1 , ex
2}

y ! {ey
1, e

y
2}...

ey
3

ex
3

y ! {ey
3} x ! {ex

1 , ex
3}

...
Session� Session�

... ....Session
Order

v1 x.foo(arg1); hex
4i

v2 x.bar(arg2); hex
5i

Figure 3.4.: Q9 system model.

tively. We shall revisit this transaction in Sec. 4.5, where we describe the anomalies

it exhibits, along with the fixes that Q9 discovers.

3.3 System Model

Figure 3.4 presents a schematic diagram of the system model adopted by Q9.

An application’s state is composed of multiple objects (x, y, . . .), each of which is

replicated across multiple locations. Each location is called a replica. Each replica

maintains an unordered history of an object’s effects known to that replica. For

example, the history of of the object x at replica R1 (in Fig. 3.4) is the set {ex1 , ex2},
whereas its history at replica n is the set {ex1 , ex3}. The difference in histories is due

to asynchronous replication which allows effects to be propagated lazily (through

the network) and delivered asynchronously. Under a reasonable assumption that

the network offers eventual delivery guarantees, all generated effects will be present

on all replicas eventually. The state of an object at a replica is a function of the

object’s history; it is computed by applying the effects, in no particular order, to

the initial object of the RDT. For instance, if x is a BankAccount object, and ex1 is

Deposit(10) , and ex2 is Withdraw(5) , then a possible state of x at R1 is:
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x = J Deposit(10) K (J Withdraw(5) K ( BankAccount.init ))

= (λs. s+ 10) ((λs. s− 5) 0)

= 5

The clients of the application interact with the system by invoking operations (e.g.,

deposit ) on objects. The sequence of operations invoked by a particular client on

an object is called a session, and the operations found in this sequence are said to be

in a session order with one another. Session order also relates the operations within

a transaction. For e.g., in the txn transfer transaction of Fig. 3.2, the withdraw

operation precedes the deposit operation in session order. At any given instant,

an application could be serving multiple concurrent clients/sessions. An operation or

a transaction invoked by a client is executed at one of the replicas (e.g., operation

foo executes at R1 in Fig. 3.4). Due to transient system conditions (e.g., network

partitions, load balancing etc), it is possible that the operations of the same session

get executed at different replicas. For example, operation bar from the same session

as foo executes at a different replica. When an operation (e.g., foo) is executed on an

object (x) at a replica (R1), it is supplied the state of the object (x) computed from

its history at the replica (R1). In this case, we say that the effects in the history (ex1

and ex2) are visible to the operation (foo).

The system described above is quite general insofar as it makes no assumptions

on either the timing or order in which effects are generated and propagated. Indeed,

the model abstracts many realworld distributed data stores [15,16,58,59], and is con-

sistent with the models used in a number of research prototypes such as Walter [45],

Chapar [51], Antidote [60], and Quelea [61].
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x, y, f ∈ Variables c ∈ Z ∪ {true, false} Wi∈[1,N ] ∈ Eff Constructors

B ∈ Base Types := int | bool | B set | B → B

T ∈ Types := B | eff | T set | T → T

p ∈ Patterns := true | false | Wi∈[1,N ](x) | ∅ | {x} | x ∪ y

e ∈ Expressions := c | x | λx.e | fix e | e e | ∅ | {e} | e ∪ e

| Wi∈[1,N ](e) | match e with p ⇒ e else e | [e]T

π ∈ Programs := [λx.e]B→ eff | π ||π

Figure 3.5.: λR: The core calculus of Q9

3.4 The Q9 Verification Engine

3.4.1 Core Calculus

Fig. 3.5 shows the syntax of the core calculus (λR) of Q9 that lets us capture

the essence of Q9 programs abstractly. The calculus operates on integer and boolean

values, sets, and functions. A special type eff for effects is also present, and it is

assumed to be a (non-recursive) sum type of N effect constructors - Wi∈[1,N ], where

each constructor has exactly one argument of a base type (B). The syntactic class

of expressions includes the usual suspects - lambda abstractions, applications etc.,

along with set expressions which include an empty set constructor (∅), a singleton

constructor ({e}), and a set union constructor (e1 ∪ e2). Applications of effect con-

structors (Wi∈[1,N ]) are expressions of type eff . A match-with-else expression lets

a value be matched against a pattern (p), and if the match is successful, evaluates the

corresponding expression. Any λR expression can be annotated with its type ([e]T ).

At the top-level, a λR program (π) is a parallel composition of functions of type

B → eff , where B is a non-effect (base) type. Intuitively, a λR program models a

Q9 application operating over a single RDT maintaining a state of type B (e.g., B
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could be int in our running BankAccount example). Each function represents an

invocation of an operation on the RDT; this construction models the generation of

operations by a client in a given session; invocations can proceed in parallel (π || π).

When an operation is invoked, it reads the current state at some replica, which is a

value of type B, and generates a new effect (an eff ). Since our system model does not

mandate that all replicas witness the effect generated by an operation instantaneously,

any operation may witness a subset (say, S) of effects generated so far by operations

that executed previously. The state an operation witnesses is the result of applying

the effects in S to an initial state. We write ι : B to denote the initial state of the

RDT being modeled.

Recall that the denotation of an effect is a function that defines what it means

to apply that effect (e.g., from Sec. 3.2: J Deposit(amt) K = λ s . s + amt ). The

denotation of a set of effects is simply a functional composition of the denotation of

its constituents (in the following, ] denotes a disjoint union, ε stands for an effect,

and ◦ is the function composition operator as in f ◦ g):

J∅K = λx. x

JS ] {ε}K = JSK ◦ JεK

Thus, the result of applying a set S of effects to ι is defined by (JSK ι).

Our calculus does not support transactions - each invocation ([λx.e]B→ eff ) op-

erates over a single RDT, and produces a single effect. Supporting transactions is

however straightforward - invocations would need to be supplied multiple RDTs to

operate over, may produce multiple effects, and each of these effects may have inter-

nal (session) ordering guarantees that would need to be preserved. We revisit these

issues in Sec. 3.5.

Having defined what it means to apply a set of effects, we can now capture the

essence of the operational semantics of a λR program in a single rule defined over sets

of effects, rather than replicas, or other system-level artifacts:

S ⊆ A (λx.e) (JSK ι) ⇓ Wj(v)

(A, [λx.e]B→ eff ||π) −→ (A ∪ {Wj(v)}, π)

[E-Oper]
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The rule uses the set of effects generated thus far (A) as a proxy for the overall system

state, and JSK, where S ⊆ A as a proxy for a replica state. Since this covers all possible

system configurations and replica states, the semantics is general enough to admit

all possible behaviors of a distributed program interacting within asynchronously

replicated state.

The E-Oper rule describes a small-step evaluation relation of λR programs (π)

with the following signature:

(A, π) −→ (A′, π′)

As described above, A is the set of effects generated in the system, and π denotes

the program being reduced. E-Oper is the only computation rule of the small-step

relation; the rest are congruence rules that let s morph into a form suitable for E-

Oper. The antecedent uses a big-step evaluation relation (⇓) to interpret expressions.

The definition of this relation is standard and elided here.

Safety Recall that Q9 applications define their safety properties as boolean func-

tions. Let I = [λx. e]B→ bool denote such an invariant. We say that a certain RDT

state s : B satisfies the invariant iff I(s) evaluates to true as per the big-step se-

mantics of λR. Using I, we can informally capture the safety of the application as

follows:

• The initial state ι at every replica satisfies the invariant I, and

• At any given instance, if the state at every replica satisfies the invariant I, and

if we execute any operation f at some replica R generating an effect ε, then

applying ε at any replica R′ results in a state that still satisfies I.

We can transplant this informal characterization into the framework of our calculus

thus:

Definition 3.4.1 An execution of a program π is safe with respect to invariant I if

and only if ∀A,A′, ι, if:
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• I ι ⇓ true

• ∀S ⊆ A, I(JSK ι) ⇓ true

• (A, π) −→ (A′, π′)

then ∀S ′ ⊆ A′, I(JS ′K ι) ⇓ true .

Note that the definition folds the generation of effect ε into the small-step transition

(A, π) −→ (A′, π′); it is expected that A′ = A ∪ {ε}. The definition also takes into

account the effects that are generated concurrently with ε: these are the effects that

are present in A, but not in the set S ⊆ A witnessed by ε. The effects in A−S may have

been generated before or been concurrent with ε in realtime, but our asynchronous

model doesn’t make such distinctions: if an effect is not visible to ε (i.e., not present on

the replica where ε was generated), it is a concurrent effect insofar as the operational

semantics is concerned.

A subtle yet consequential aspect of the above formal development is that it

only loosely constrains the notion of an initial state ι. Def. 3.4.1 defines the safety

of a concrete execution starting from any state ι that satisfies the invariant I. In

particular, ι is not obligated to denote either an empty state (i.e., a state with no

effects), or a state reachable from an empty state; instead, it need only be a state

that satisfies the invariant I. This rather broad definition of ι nonetheless captures

the reality of a database application, which is allowed to start its execution from an

arbitrary database state created independently of the application’s interface, as long

as the state satisfies the application’s integrity constraints I. For instance, TPC-C’s

reference implementation [56] ships with a sample workload generator that executes

the application against a database state not reachable from an empty state by a TPC-

C execution, but one that satisfies all of the TPC-C’s stated integrity constraints. A

downside to this relaxed specification of ι however is that it may require I to be

strengthened to include all valid database states, failing which the application could

be judged unsafe by Def. 3.4.1. This problem is revisited in Sec. 3.4.3, and again in

Sec. 4.5 in the context of real applications.
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The calculus and operational semantics described here succinctly capture the se-

mantics of concurrent programs under asynchronous state replication without having

to concretize low-level aspects of the system model such as message communication,

process creation, replica organization, etc. Notwithstanding its succinctness, checking

safety in the sense described above by naively exploring a concrete state space of

executions is clearly infeasible given the large set of behaviors that are possible. We

therefore refine our semantics to leverage symbolic reasoning to enable us to charac-

terize and represent many concrete states at once.

3.4.2 Abstract Relations

In this section, we introduce the formal vocabulary that lets Q9 represent anoma-

lies and consistency specifications abstractly. We say effect e1 is visible to another

effect e2 (vis(e1, e2)) if the operation that generated e2 was executed against a state to

which e1 has already been applied. For instance, in Fig. 3.1b, the effect (call it e1) of

Alice’s Deposit is visible to the effect (call it e2) of Bob’s Withdraw . The visibility

relation is irreflexive - effects cannot see themselves; asymmetric - if e1 is visible to e2,

then e1 necessarily happened before e2, therefore cannot see e2; and, non-transitive

- if e1 is visible to e2, and e2 is visible to e3, then e1 need not necessarily be visible

to e3; Fig. 3.1b captures such a scenario. Another important aspect of visibility is

that it only ever relates effects on the same object. This follows from the fact that

an operation is only allowed to access the state of a single object, hence can only

witness the effects of previous operations on that object. Given a relation sameobj

that relates effects on the same object, we have:

∀e1, e2. vis(e1, e2)⇒ sameobj(e1, e2)

The session-order relation relates effects of the same session in the order they are

generated. For instance, in Fig. 3.4, effects ex4 and ex5 are in a session order (written

so(ex4 , e
x
5)). Session order is irreflexive and asymmetric for the same reason as visibility,

but it is transitive because the order of operations in a session is a total order.
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Having formalized visibility (vis) and session order (so), we can define what it

means for an effect e1 to happen before an effect e2. Clearly, e1 has happened before e2

if vis(e1, e2) or so(e1, e2). Moreover, if we already know that an effect e0 has happened

before e1, and if vis(e1, e2) or so(e1, e2), then it follows that e0 has happened before

e2. Observe that these are the only two ways that the asynchronous system model

we defined in Sec. 3.3 lets us define a happens-before ordering of effects. Thus, the

happens-before relation (denoted hb) is simply a transitive closure of vis ∪ so:

hb = (vis ∪ so)+

Visibility, session order, and happens-before are the major (binary) relations that

let us capture dependencies among effects generated by an application. To aid our

exposition, we also define various helper (unary) functions - oper and arg, that let

us project various attributes of an effect. Recall that the type of effects in Q9’s IR

(Sec. 3.2) is a tagged union of effect arguments. Functions oper and arg project the

tag and the argument, respectively, of an effect. For instance, oper( Withdraw (5)) =

Withdraw and arg( Withdraw (5)) = 5.

3.4.3 Symbolic Execution

In this section, we consider a replacement of the concrete evaluation relations (→,

⇓) with symbolic counterparts (↪→, ↓) to facilitate symbolic reasoning over states

and effects. In the process, we also take into account the specific characteristics of

asynchronous state replication so as to bound the state space and expedite the process

of anomaly detection.

Intuition

Recall that the semantics of λR tracks the state of a program’s execution as A, the

set of effects generated thus far, and the state of a replica as a subset S of A. This

construction accounts for any number of replicas, and a liberal network semantics

with arbitrary latency and message reordering. (In reality though, there are only a
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finite number of replicas), and inter-replica latency is usually comparable to (i.e., a

small multiple of) replica-local execution time. As a result, in practice, a non-trivial

subset Sb of effects in A can be expected to be already present on all replicas [62].

The corresponding state b = JSbK is therefore a “common prefix” of all the replica

states, which is extended at each replica by applying a subset of effects from Sc =

A − Sb. The effects in Sc are called concurrent effects. A concurrent effect is an

effect that is not present on (i.e., not applied to the state of) at least one replica.

Each replica contains a subset of concurrent effects, which are applied to the common

prefix b to compute the state at that replica. Let k denote the number of concurrent

effects. Lower k values represent concrete executions where replicas are more-or-less

in sync with each other. Conversely, high k values indicate executions characterized

by, e.g., network partitions, process crashes, high network latency etc, that result in

divergence between replicas.

Note that representing executions as a pair of a common prefix state b, and a set

Sc of concurrent effects is not any less general than the scheme used by operational

semantics, which tracks the set A of all effects. We can let the former simulate the

latter by setting b = ι (ι is the initial state) and Sc = A. However, the advantage of

using the (b, Sc) scheme instead of A is that it lets us perform bounded verification by

allowing us to bound the amount of concurrency (i.e., the size k of the set Sc) without

having to constrain the pre-state (b). The pre-state is constrained only inasmuch as

the application allows it. For instance, in the BankAccount application, where the

invariant allows the balance to be any non-negative quantity, setting k = 3 and b ≥ 0

lets us explore all executions with an unknown (but non-negative) initial balance,

and at most 3 concurrent effects, a setting sufficient to detect the anomalies given

in Fig. 3.1. In practice, we find that small values of k are sufficient to discover all

anomalies an application may exhibit under arbitrary asynchronous replication.
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Γ ` e ↓ ν

S-Match-EffSym

Γ ` e ↓ ν• ν = oper(ν•) = Wi

Γ ∧ ν ` [arg(ν•)/x] e1 ↓ ν1 Γ ∧ ¬ν ` e2 ↓ ν2

Γ ` match e with Wi(x) ⇒ e1 else e2 ↓ if ν then ν1 else ν2

S-Match-BoolSym

Γ ` e ↓ ν• Γ ∧ ν ` e1 ↓ ν1 Γ ∧ ¬ν ` e2 ↓ ν2

Γ ` match e with true ⇒ e1 else e2 ↓ ν•?ν1 : ν2

S-Match-SetSym

Γ ` e ↓ ν• H(Γ, [ν•, x ∪ y, e1, e2]) = z

Γ ` match e with x ∪ y ⇒ e1 else e2 ↓ z

Figure 3.6.: Symbolic evauation rules for λR expressions

Formalization

Symbolic execution is formalized in terms of evaluation relations for λR expressions

(↓), and λR programs (↪→). These relations are symbolic counterparts to λR’s big-

step concrete expression evaluation relation (⇓), and small-step program evaluation

relation (−→). The class of symbolic values is defined as follows:

ν := c | x | λx. e | ν ν | ν? ν : ν | ∅ | {ν} | ν ∪ ν | Wi∈[1,N ](ν)

Constants (integer and boolean) and variables are symbols. An application of a

symbolic value to a symbolic value is a symbolic value. For instance, x + y is an

application of the built-in function + to x, and the result to y. A guarded symbolic

value is a value of the form ν1? ν2 : ν3. An example is (x > 10)?2 : 3. Sets of symbolic

values are also symbolic values. Finally, application of an effect constructor to a

symbolic value results in a symbolic value of type eff .
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Based on their structure, symbolic values can be divided into two categories:

values that are either constants or applications of the constructors (e.g., Wi∈[1,N ],

{·} etc.) at the top level, and the rest (e.g., a variable or a guarded value). The

values of the former kind are destructible, meaning that they can be deconstructed

and matched against a pattern in a match expression, with execution proceeding

as if it were a concrete execution. We let ν↓ denote destructible symbolic values.

In contrast, non-destructible values (denoted ν•) require the symbolic execution to

explicitly handle the case of such values being matched against patterns. Fig. 3.6

contains a few symbolic execution rules that illustrate the point. The rule S-Match-

EffSym describes how non-destructible symbolic values of type eff are handled in

a match expression. Γ is a conjunction of path constraints, which are simply boolean

symbolic values. The scrutinee of match is a non-destructive eff value (ν•), which

is matched against an eff constructor. Unable to destruct ν•, the rule evaluates

both the branches under appropriate path constraints (involving the application of

oper special function), and returns a guarded value. The rule S-Match-BoolSym

does guarded symbolic execution over match expressions involving non-destructible

boolean values. The rule S-Match-SetSym describes a case where the symbolic

execution cannot make progress even by constructing guarded values. Here, a set

expression e evaluates a non-destructible symbolic value ν•, which is matched against

a union pattern x∪y. Since the execution cannot determine whether ν matches x∪y
or not (ν could be a variable, for example), it has no way to make progress. Attempts

to execute both the branches (e1 and e2), and return a guarded value may lead to

divergence if either of e1 or e2 contains a recursive call on either x or y (because each

recursive call branches further, which never ends). The symbolic evaluation prevents

this by halting the evaluation and returning a fresh symbol with the same type as

the match expression. It uses a (meta) function H for this purpose. The function

H essentially performs memoization; it takes enough arguments to ensure that if the

symbolic execution evaluates the same match expression again in the same context

(Γ), it returns the same symbol (z). To avoid cluttering the rule with technicalities,
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we assume that the type binding for z is already present in Γ, and z does not occur

free in the match expression. The rule S-App deals

Example. Consider the following version of apply eff , which is slightly modified

from Sec. 3.2 to make it conform to the syntax of λR (for brevity, we use D for

Deposit , and W for Withdraw ):

λ(s : int ).λ(e : eff ). match e with D (a) ⇒ s+ a

else match e with W (a) ⇒ s− a else s

The result of symbolically evaluating the body of the function is a guarded symbolic

value shown below. We name it νapp, and parameterize it on the free symbols e and

s:

νapp(e, s) = if (oper(e) = D ) then (s+ arg(e))

else if (oper(e) = W ) then (s− arg(e)) else s

As mentioned previously, symbolic evaluation explores the state space of the appli-

cation starting from a symbolic state (b) that satisfies the invariant (I), and assuming

that the number of concurrent effects (|Sc|) never exceeds a fixed value k. We write

Skc to explicitly denote a set Sc that has cardinality k. Let us name the k concurrent

effects as Ei∈[1,k]. Thus:

Skc =
k⋃
i=1

{Ei}

A replica state (s) is computed by applying a subset of Skc to b. Let us say an

operation f executes against the state s at replica R and generates an effect ε. From

the definition of vis, it follows that a subset of Skc effects at R is visible to ε; this

subset can be constructed thus:

k⋃
i=1

if vis(Ei, ε) then {Ei} else ∅
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where Ei ∈ Skc . That is, the effect Ei is included in the set only if it is visible to ε.

We call this set a projection of Skc on ε, and denote it as Skc � ε. We define what it

means to apply such a set of visible effects by defining its denotation as follows:

J∅� εK = λs. s

J(S ] {Ei}) � εK = JS � εK ◦ λs. if vis(Ei, ε) then (JEiK s) else s

Intuitively, the state at replica R witnessed is JSkc �εK b, where b is the common prefix

state.

Having defined what it means to apply a projection, we can now define a symbolic

equivalent of the concrete small-step evaluation rule. The rule represents the global

state as a tuple of the common prefix and concurrent effect set (b, Skc ), instead of the

set of all effects (A):

(λx.e) (JSkc � εK b) ↓ ε

((b, Skc ), [λx.e]B→ eff ||π)
ε
↪−→ π

[S-Oper]

The conclusion of the rule indicates that the λR program [λx.e]B→ eff || π symbolically

reduces to π under the state (b, Skc ) while generating an effect ε. The antecedent

requires that the effect ε be the result of symbolically executing λx.e against a state

that applies a subset of effects visible to ε to b.

We now redefine our notion of safety to consider k-bounded symbolic execution:

Definition 3.4.2 (k-safety) A symbolic execution of a program π bounded by k con-

current effects is k-safe with respect to invariant I if ∀b, k, Skc , ε, εf s.t:

• I(JSkc � εfK b) ↓ true

• ∀π, π′, ((b, Skc ), π)
ε
↪−→ π′

then I(J(Skc ∪ {ε}) � εfK b) ↓ true

In the above definition, ε is the effect generated by the small-step reduction of the

program π, whereas εf is an effect generated by some operation f witnessing the state.

The first premise asserts that f initially sees an invariant-satisfying state regardless
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of what subset of concurrent effects it witnesses. In the context of a replicated state

system, it means that all replicas initially satisfy the invariant. Invariant satisfiability

is defined by asserting that the symbolic value resulting from symbolically evaluating

the invariant function is equal to true . The second premise (interpreted using the S-

Oper rule) states that the effect ε is the result of symbolically evaluating an operation

in π against a state containing a subset of concurrent effects. Concretely, it means

that ε is an effect generated by executing an operation in π at some replica. Under

these premises, proving k-safety of π requires proving that f continues to see an

invariant satisfying state even when the set Skc of concurrent effects is extended with

ε. That is, even if f is executed on a replica that includes the newly generated effect

ε, it still sees an invariant satisfying state.

Note that, since k-bounded verification only explores a limited state space, k-safety

does not guarantee the unconditional safety of λR programs, but it does guarantee

that any counterexample to safety it discovers is a real counterexample, assuming the

invariant I is a complete specification of valid program states, i.e., any assignment to

the symbolic pre-state b that satisfies I is a valid assignment5. We call the counterex-

ample discovered by symbolic execution of program π as a witness to the k-unsafety

of π, and a counterexample discovered by the concrete execution as a witness to the

unsafety of π. The soundness of bounded verification can now be stated thus:

Theorem 3.4.1 If a λR program is k-unsafe with witness ω, then it unsafe with

witness ω, provided that its invariant I is a complete specification of valid program

states.

The proof of the theorem follows from the fact that the symbolic execution computes

an underapproximation of the set of behaviors a λR program can exhibit. Thus,

any execution captured by the symbolic encoding of the program is a valid program

execution, including an unsafe execution.

5This assumption is already captured by Def. 3.4.1, which defines a valid concrete execution as one
starting from any invariant satisfying state. To avoid potential sources of confusion, we explicitly
qualify our soundness guarantees with this assumption wherever required.
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The soundness guarantee of Theorem 3.4.1 is conditional to the invariant I being

a complete specification of valid program states. If on the other hand I is only a

partial specification, then symbolic execution may capture executions that do not

manifest concretely, thereby leading to false k-safety violations. However, as ex-

plained in Sec. 3.4.1, completeness of I is a reasonable assumption to make in the

context of database programs, which are often executed against databases populated

independently of such programs. In this setting, the only valid assumptions about

the database state are the stated integrity constraints (I).

Example

Let us say we would like to verify the 3-safety of a withdraw(amt) operation,

i.e., safety of withdraw(amt) assuming three concurrent effects S3
c = {E1, E2, E3}.

As per Def. 3.4.2 the invariant can be assumed to be valid in any pre-state. That

is, for some effect εf , assume inv non neg bal (JS3
c � εfK b) ↓ true . The term

JS3
c�εfK denotes the application of effects visible to εf via BankAccount ’s apply eff .

Recall (from the previous example) the symbolic value νapp(e, s), which is the result

of symbolically executing apply eff on a symbolic effect e and a symbolic state s.

Since JS3
c � εfK applies an effect Ei ∈ S3

c only if vis(Ei, εf ), it reduces to the following

symbolic value ( let bindings are used for the sake of clarity):

let s1 = if vis(E1, εf ) then νapp(E1, b) else b in

let s2 = if vis(E2, εf ) then νapp(E2, s1) else s1 in

if vis(E3, εf ) then νapp(E3, s2) else s2

Let us name the above symbolic value νpres (εf ). The parameterization on εf under-

scores that εf could be any effect witnessing the pre-state. Since the invariant is valid

initially, νpres (εf ) ≥ 0.

Next, Def. 3.4.2 lets us assert the conditions under which the program π generates

the effect ε. In other words, it lets us capture the local safety of ε. Here, π is simply

the withdraw(amt) operation, and ε is a Withdraw effect. The operation generates
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the effect only if the balance it reads is not less than amt . The symbolic execution

captures this condition as a path constraint (i.e., a logical formula whose satisfiability

determines the feasibility of the current program path), which is then allowed to be

asserted as a premise of k-safety. The balance that withdraw(amt) reads is JS3
c�εK b,

which expands to νpres (ε). Thus, the premise that withdraw(amt) is locally-safe

translates to the assertion νpres (ε) ≥ amt .

Having captured the two premises of Def. 3.4.2 as constraints on symbolic values,

we are now required to prove that if we include ε in the set of concurrent effects, the

invariant still evaluates to true , i.e., inv non neg bal (J{S3
c ∪ {ε}}� εfK b) ↓ true .

The expression J{S3
c ∪ {ε}} � εfK b essentially applies ε to the result of JS3

c � εfK if

and only if vis(ε, εf ). Recalling that the result of applying a symbolic BankAccount

effect e on a symbolic state s is νapp(e, s), and that JS3
c � εfK = νpres (εf ), we deduce

that the result of J{S3
c ∪ {ε}}� εfK b is the following symbolic value:

if vis(ε, εf ) then νapp(ε, ν
pre
s )(εf ) else νpres (εf )

Let us call the above value νposts (εf ). The proof obligation generated by Def. 3.4.2 is:

νpres (εf ) ≥ 0 ∧ νpres (ε) ≥ amt ⇒ νposts (εf ) ≥ 0

The validity of the above implication is equivalent to the unsatisfiability of the fol-

lowing conjunction:

νpres (εf ) ≥ 0 ∧ νpres (ε) ≥ amt ∧ ¬(νposts (εf ) ≥ 0)

An SMT solver, such as Z3 determines the conjunction to be satisfiable6, thus proving

that withdraw is 3-unsafe. The counterexample that Z3 returns involves assigning

amt = 1, and making E1 a Deposit(1) effect that is visible to the current ef-

fect ε = Withdraw(1) , but not making it visible to the (reference) effect εf . The

counterexample is visualized in Fig. 3.7a, and is an abstract representation of the

concrete anomaly described in Fig. 3.1b. Fixing the anomaly (as described in the

6In general, the efficacy of bounded verification in Q9 depends on the ability of the solver to rea-
son about the theories required to encode the path constraints of the program and the invariant.
Fortunately, there exist decidable theories, such as linear arithmetic, that are useful in practice.



86

Deposit(1)

Withdraw(1)

εf

vis

vis

(a)

Withdraw(1)

Withdraw(1)

vis

vis

εf

(b)

Figure 3.7.: Counterexamples to 3-safety.

next section), and rechecking the satisfiability lets us discover another counterexam-

ple, visualized in Fig. 3.7b. This counterexample is an abstraction of the concurrent

withdraws anomaly of Fig. 3.1a. Fixing the second anomaly is enough to show that

the constraints are unsatisfiable, thus withdraw is 3-safe.

3.4.4 Automated Repair

Once a counterexample demonstrating an anomaly has been discovered, Q9 helps

to automatically repair the application by appropriately strengthening the consis-

tency of the offending operation. We equip Q9 with a set of consistency levels, each

designed to exempt a few classes of anomalous executions. Realization of these levels

incurs a performance penalty in proportion to their strength (stronger consistency

levels prohibit more anomalies and incur heavier penalty). The challenge is to de-

termine the weakest consistency model that prohibits the anomaly exhibited by the

counterexample. Fortunately, this step can be automated by observing that consis-

tency levels can be captured in the same abstract language as the counterexamples

that the symbolic execution discovers.
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Consider the counterexample execution depicted in Fig 3.7a. We can formally

express behaviors that admit this execution as the following counterexample (call it

ϕcex):

oper(E1) = Deposit ∧ oper(ε) = Withdraw ∧ sameobj(E1, ε) ∧ sameobj(ε, εf )

∧vis(E1, ε) ∧ vis(ε, εf ) ∧ ¬vis(E1, εf ) ∧ ¬vis(εf , E1)

Given this characterization, we are interested in finding the weakest consistency as-

signment to withdraw (the operation that generated ε) that would prevent the coun-

terexample. Here, we are aided by the fact that consistency levels can be specified

in terms of the anomalies they prohibit. For instance, consider causal write, a con-

sistency level that ensures a write is applied at a replica only after all the causally

preceding writes have been applied. Thus, if ε is a causal write, then any anomalous

execution involving three effects a, ε, and b, where (i). a causally precedes ε, and

(ii). ε is visible to b, but (iii). a is not visible to b, is prohibited. Causal precedence

is effectively captured by the happens-before relation (hb), which is a composition of

vis and so (recall: hb = (vis ∪ so)+). Thus, if ε is a causal write, then the following

must be true:

∀a, b. ¬(hb(a, ε) ∧ vis(ε, b) ∧ ¬vis(a, b))

Or, equivalently:

∀a, b. hb(a, ε) ∧ vis(ε, b)⇒ vis(a, b)

If we name the above proposition ϕcw, and can prove that ϕcex ∧ ϕcw is UNSAT , then

it would be sufficient to make withdraw a causal write to prevent this anomaly.

An off-the-shelf SMT solver like Z3 confirms that this is indeed the case7. Similar

reasoning can be applied to second counterexample execution in 3.7b to determine

that withdraw also needs to be totally-ordered w.r.t other withdraw s, i.e., it must

be a Total Write.

The state space of consistency models found in the literature and implemented on

various systems can be characterized in terms of a finite partially-ordered lattice [14],

7 We adopt an approach similar to [63] to encode an overapproximation of hb, a transitive closure
relation, in first-order logic



88

Table 3.1.: Consistency Models

Model Name Specification Description

Causal Write

(CW)

∀a, b. hb(a, ε) ∧ vis(ε, b)

⇒ vis(a, b)

A write ε is applied only after all the

causally preceding writes (a) are ap-

plied. [64]

Monotonic

Write (MW)

∀a, b. so(a, ε) ∧ vis(ε, b)

⇒ vis(a, b)

A write ε is applied only after all the

previous writes (a) from the session are

applied [23].

Total-Order

Write (TW)

∀a. oper(a) = oper(ε) ∧ a 6= ε

⇒ vis(a, ε) ∨ vis(ε, a)

All writes of the same operation as ε

are applied in the same order every-

where.

SC Write

(SC)

∀a. sameobj(a, ε) ∧ a 6= ε

⇒ vis(a, ε) ∨ vis(ε, a)

All writes on the same object as ε are

applied in the same order everywhere.

Atomicity

(ATOM)

∀a, b, c. txn(τ, {a, b})∧
¬txn(τ, {c}) ∧ vis(a, c)∧

sameobj(b, c)⇒ vis(b, c)

Writes from a transaction τ are applied

atomically

Parallel

Snapshot

Isolation

(PSI)

ATOM ∧
∀a, b. txn(τ, {a}) ∧ ¬txn(τ, {b})

∧ sameobj(a, b)⇒
vis(a, b) ∨ vis(b, a)

Writes from a transaction τ are made

SC, and applied atomically.

where the partial order denotes the relative strength of the models under consider-

ation. It is therefore possible to determine the consistency level of an operation by

systematically traversing the lattice and checking whether each consistency model is

sufficient to prevent the counterexample. Among the consistency models that are at

the same level of the lattice, the order of traversal can be heuristic, perhaps based
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on their relative run-time costs on a specific system. Systematic traversal of the

consistency lattice is indeed the search strategy adopted by Q9.

The consistency models that Q9 considers in its search are shown in Table 3.1.

The relation txn relates a transaction (its name τ) to the set of its constituent effects.

Note that Atomicity is a property of a transaction. It is in fact a transaction’s baseline

consistency level in Q9. A transaction’s consistency and isolation properties can also

be strengthened in various ways, just like an operation’s. One such way is to obtain a

(conceptual) write lock on an object each time a write is performed, releasing all locks

only when the transaction commits. The resultant consistency level, called Parallel

Snapshot Isolation (PSI) [45], is specified in Table 3.1. As shown, it results in the

writes outside a PSI transaction τ being totally ordered with τ ’s writes on the same

objects. Other consistency levels found in the literature, e.g., Session Guarantees [23],

can be specified in a similar way.

3.5 Transactions

In our exposition thus far, we have focused on operations that generate a single ef-

fect. Q9 programming framework also supports transactions that operate on multiple

RDT objects, and generate multiple effects. To deal with such transactions, symbolic

execution and verification require a few extensions, which we describe below.

First, the concept of state has to be generalized from a single object to a collection

of objects. Thus, the common prefix state is b instead of b, and bi denotes the common

prefix state for the i’th object. The denotation of an effect ε, i.e., JεK is now a function

that operates on a sequence of objects, but only updates (i.e., computes an updated

value for) the object for which ε was generated. Building on these refined notions of

state and effect denotation, we now generalize the S-Oper symbolic execution rule

to deal with transactions. In λR, we formalize transactions simply as functions that
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accept multiple arguments, and generate a set σ of effects. The generalized S-Oper

is shown below:

S ⊆ Skc (λx.e) (JSK b) ↓ σ

∀(ε′ ∈ S), (ε ∈ σ).sameobj(ε′, ε)⇒ vis(ε′, ε)

((b, Skc ), [λx.e]B→ eff ||π)
σ
↪−→ π

[S-Oper]

The rule reflects the system model of Q9, where a transaction, is executed at a

single replica atomically, leading to all of its effects (ε) witnessing the same state that

includes a set S ⊆ Skc of concurrent effects. The quantified assertion in the premise

captures the constraint that all effects ε ∈ σ witness the same set of concurrent effects

that are on the same object as ε.

Safety is defined w.r.t an invariant function I, which relates multiple objects, i.e.,

it is a boolean function on multiple objects. The generalized k-safety definition that

extends k-safety to transactions is defined thus:

Definition 3.5.1 (k-safety) A symbolic execution of a program π bounded by k con-

current effects is k-safe with respect to invariant I if ∀b, k, S, Skc , ε, σ s.t:

• S ⊆ Skc

• I(JSK b) ↓ true

• ∀π, π′, ((b, Skc ), π)
σ
↪−→ π′

then I((JSK ◦ JσK) b) ↓ true

The generalized definition is similar to the previous definition in the sense that it

allows us to assume invariant on any subset S of the pre-state, and asks us to prove

the invariant in the post state when S is extended with all the effects (σ) generated

by the transaction, thus guaranteeing atomicity. Note that JSK ◦ JσK denotes the

functional composition of denotations of the sets S and σ. With the updated k-safety

definition, anomaly detection and repair can work just as described in the previous

section.
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3.6 Implementation and Evaluation

The Q9 programming framework is implemented in OCaml as a collection of data

and module type definitions, and modules that implement various CRDT semantics,

such as counters, sets, maps, and boolean flags [65]. The Q9 symbolic execution en-

gine is implemented as a compiler pass that follows typechecking in the OCaml 4.03

compiler8. Its first component is a translator that translates high-level RDT pro-

grams with implicit effects to their intermediate representation with explicit effects

in preparation for analysis and verification. The second component performs bounded

verification, given the k-bound as an input, and works in a tight loop with an SMT

solver. The third component handles consistency repair. Verification progresses one

operation at a time, followed by one transaction at a time. Each operation/transac-

tion is verified for safety against its current consistency setting, starting with eventual

consistency; this baseline reflects the system model described in Sec. 3.3. If verifica-

tion fails, the verifier obtains a counterexample from the solver, computes its abstract

representation, and passes it on to the repair engine, which then traverses a lattice

of consistency models as described in Sec. 3.4.4, using the solver to check if a partic-

ular model is sufficient to preempt the counterexample. It returns the weakest such

model to the verifier, which repeats verification with the new setting. This process

continues until the verification of the operation/transaction succeeds, or the top of

the consistency lattice has been reached, and no consistency setting was found to be

adequate to guarantee safety9.

The main component of the verifier is a symbolic execution engine that executes

the body of an operation/transaction against symbolic inputs. The crux of the sym-

bolic execution algorithm is as described in Sec. 3.4.3, but the engine also includes a

number of optimizations aimed at rewriting symbolic values so as to keep their size

8https://github.com/tycon/q9
9This might happen if the consistency lattice given to the analysis is not strong enough. If the
lattice describes the consistency levels of a data store, then the failure means that the safety of the
program cannot be guaranteed on that store.

https://github.com/tycon/q9
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roughly proportional to the length of the program traversed. An example of such a

rewrite rule is shown below:

if (if ν1 then ν2 else ν3) then ν4 else ν5 −→ if ((ν1 ∧ ν2) ∨ (¬ν1 ∧ ν3)) then ν4 else ν5

Symbolic execution generates verification conditions (VCs) based on the k-safety

definition (Def. 3.4.2). A VC-Encode component encodes these VCs as satisfiability

queries in Z3, after asserting the required axioms on special relations such as vis and

so (e.g., so is transitive, hb is irreflexive etc). If the query is satisfiable, then a model

is obtained and passed on to the verifier, which then uses it for consistency repair as

described above.

3.6.1 Verification Experiments

To test the effectiveness of Q9 in detecting and fixing replication anomalies, we

ported a range of applications, including several standard database benchmarks, to

the Q9 programming model, and verified them under various values of bound (k).

The applications are briefly described below:

• eBanking: A banking application that extends the running example with ad-

ditional functionality.

• Twissandra: A Twitter-like microblogging application based on a popular

Cassandra application with the same name [66].

• RUBiS: Rice University Bidding System [67] - an eBay-like auction site.

• eCart: An eCommerce application that lets users jointly control a shopping

cart.

• TPC-C: A database benchmark that emulates a warehouse application.

• TPC-E: A database benchmark that emulates a brokerage application.
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Table 3.2.: A sample of the anomalies found and fixes discovered by Q9

Oper/Txn Violated Inv. Anomalies Fix

Twissandra

txn new tweet Timeline
ref−−→ Tweet

Write to Timeline is applied before

the previous write to Tweet

MW

add username

Uniqueness of usernames Concurrent checks for the uniqueness

of a username succeed independently,

resulting in duplicates.

TW

RUBiS

txn bid for item WalletBids
ref−−→ Bids

Write to WalletBids is applied be-

fore the previous write to Bids

MW

eCart

checkout

∀(a ∈ stock). qty(a) ≥ 0 Concurrent checkouts of same items

succeed independently resulting in

negative stock.

TW

TPC-C

txn new order

Per-district order ids are

unique and sequential

Concurrent txn new order transac-

tions read the same next oid from a

District record, and insert new or-

ders with this id, resulting in orders

with duplicate ids.

PSI

TPC-E

complete trade Broker
ref−−→ COUNT ( Trade )

Update to Trade is applied before

the previous insert to Trade .

CW

txn trade result Broker
ref−−→ COUNT ( Trade )

Concurrent trade result txns

complete the same trade, and in-

dependently increment Broker ’

num trades .

PSI
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Both TPC-C and TPC-E, which were originally written for testing relational databases [56],

were reimplemented to leverage CRDTs to make them amenable for execution in a

distributed environment. Specifically, each TPC-C/TPC-E table translates into an

RDT. For instance, TPC-C’s Order table is implemented by an Order.t RDT,

which internally uses a set CRDT to manage its contents. Every INSERT, UPDATE

and DELETE operation on the table is implemented by a dedicated operation on the

RDT. For example, a SQL INSERT operation that inserts an order record is im-

plemented by an operation do add order that adds the order information to the

set. The operation is eventually translated into an AddOrder effect, and symbolic

reasoning is performed on such effect representations.

Each application described above defines one or more invariants that capture its

salient safety properties. During verification, we found anomalies that violate a subset

of the invariants for each application. Table 3.2 presents an interesting sample of the

violations we found. These anomalies can be broadly classified into the following

categories:

• (In)equality invariants: Invariants on integers involving equalities and in-

equalities. An example is bal ≥ 0 found in the eBanking application.

• Uniqueness invariants: Invariants that require a value of a particular type

to be unique. An example is TPC-C’s requirement that every order under a

district to have a unique identifier. Another example is the requirement that

user names be unique in Twissandra.

• One-to-one referential integrity: Invariants that require references between

objects to be valid. That is, if an object of type A refers to another object

of type B, then the corresponding B object must be present whenever an A

object is present. We denote such one-to-one referential integrity relations as

A
ref−→ B, whenever A and B are both objects. For example, Twissandra requires

references from users’ timelines to tweets to be valid.
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• One-to-many referential integrity: Whenever an object of type A refers to

a certain property (f) of (some) objects of type B, then the property must hold

of the corresponding B objects whenever an A object is present. We denote such

a relation as A
ref−→ f(B), and call it one-to-many referential integrity provided

A and B are both object types, and f is a function from B to some base type.

Usually, whenever A
ref−→ f(B) there is also an inverse one-to-one relation, i.e.,

B
ref−→ A. An example of one-to-many referential integrity is the Order

ref−→
COUNT ( OrderLine ) invariant in TPC-C, which requires an order’s o ol count

field to accurately reflect the number of OrderLine records referring back to

the order. Another example is TPC-C’s Warehouse
ref−→ SUM ( History ) that

requires a warehouse’s year-to-date balance to agree with its ledger stored in

the History table. Similar constraints are also present in TPC-E.

Table 3.2 lists various operations and transactions that violate the invariants of the

kind described above. For each violation, the table briefly describes the anomaly

that was discovered, and also lists the consistency level suggested to preempt the

anomaly (c.f., Table 3.1 for a description of consistency levels). As an example of the

kind of repair Q9 was able to perform, consider TPC-C’s txn new order transac-

tion, which adds a new Order record with an id ( Order.o id ) equal to the sequence

number of the next order for the corresponding district ( District.next o id ). The

transaction also increments the district’s order sequence number. During the verifi-

cation of txn new order , Q9 was able to discover an anomaly that violates TPC-C’s

safety requirement that every order must have a unique id. The anomaly consists

of two concurrent txn new order s reading the same id of the district’s next order

( District.next o id ), and inserting duplicate Order records with that id. Sub-

sequent to the discovery of anomaly, Q9 was also able to use the counterexample

to reason that if txn new order is executed under Parallel Snapshot Isolation (PSI)

consistency model, then the anomaly can be preempted. While Q9 found a violation

of uniqueness invariant in TPC-C, through a similar reasoning it found a violation of
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Table 3.3.: Verification Statistics

Application Opers Txns Anomalies

found

Max k for

an anomaly

Max time (s)

for an anomaly

Max k

verified

eBanking 3 2 3 5 0.28 60

Twissandra 20 10 5 5 6.59 50

RUBiS 17 6 5 5 3.03 50

eCart 10 5 5 6 1.09 60

TPC-C 18 5 6 10 51.79 18

TPC-E 44 10 3 10 113.53 17

one-to-many referential integrity invariant ( Broker
ref−→ COUNT ( Trade )) in TPC-E.

The fix, again, is to strengthen the transaction’s consistency level to PSI.

Q9 was also able to perform the reasoning in the opposite direction, i.e., it was

able to discover that certain transactions need not be atomic when we made atomicity

optional for transactions. Instead, Q9 suggested weaker alternatives to atomicity that

are nonetheless safe in that context. For instance, consider txn new tweet transac-

tion in Twissandra, which adds a new tweet to the Tweet table, and then adds the

corresponding tweet id to a subset of objects in the Timeline table. Without atom-

icity (ATOM), the transaction (temporarily) violates the referential integrity between

timelines and tweets if the latter write to Timeline is applied before the former

write to Tweet , and the intermediate state becomes visible to an operation. While

atomicity is sufficient to restore the safety, it is however not necessary; Q9 discovers

that the anomaly can be preempted by executing the transaction under Monotonic

Writes consistency model, which is weaker than atomicity, and is cheaper on some

systems [23,68]. Similar deductions were made for txn bid for item transaction in

RUBiS.
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Table 3.3 shows various statistics quantifying the cost and efficacy of bounded

verification. The table demonstrates Q9 was able to successfully find a number of

anomalies for each application. The fact that anomalies were found in TPC-C and

TPC-E might be surprising, considering that these benchmarks were well-studied.

Clearly, as our experiments demonstrate, migration of concurrent applications to

replicated environments is error-prone without tool support of the kind that Q9

provides.

The main takeaway from Table 3.3 is that all the anomalies were found within a

small k bound, the maximum being 10 for TPC-C and TPC-E. The time that Q9

took to discover an anomaly is also reasonable, with the worst case being around 2

minutes for an anomaly in TPC-E. To test the limits of bounded verification through

symbolic execution, we ran Q9 overnight (6-8 hours) on select (typically the most

complex) transactions from each application and noted the maximum k for which it

was able to verify the transaction (for TPC-C and TPC-E, we were able to verify

all transactions). The maximum k thus found is listed against each application in

Table 3.3. As shown, we were able to verify k-safety of some applications to k values

that are significantly higher than the k values at which anomalies were discovered.

Taken together, these statistics vindicate Q9’s approach of using symbolic execution-

driven bounded verification to discover anomalies in real distributed applications.

3.6.2 Validation Experiments

Since Q9 does bounded verification, we validate the consistency assignments dis-

covered by Q9 by testing the applications on a distributed database. Our goal is

two-fold. First, we would like to check if the consistency assignments discovered

by Q9 through bounded verification are indeed sufficient to avert anomalies in the

general case. And second, we would like to ascertain that any weaker consistency

assignment invariably leads to the anomalies discovered by Q9 during verification;

i.e., there are no false positives.



98

Our experimental setup consists of a distributed database equipped with RDT

operations, with support for various consistency levels for operations and transactions.

The distributed database itself is implemented as a shim layer on top of Cassandra [15]

in the same vein as [61, 69]. We instantiated 2 replicas within the same data center

with a inter-replica latency of 5ms, and 16 clients in total performing transactions.

In order to tease out the anomalies that arise due to the asynchronous nature of the

distributed database, we induced the shim layer to drop 50% of the effects transmitted

over the network between the replicas. The replicas perform retransmission of the

dropped effects until all the effects are received everywhere. Consequently, every

replica receives every effect eventually, but the effects may be applied out of order.

We evaluated the TPC-C benchmark, where each client simulates the workflow

for purchasing by performing a series of NEW-ORDER , PAYMENT and DELIVERY trans-

actions. We call one such sequence of three transactions as a purchase. First, we

ran the TPC-C workload with Q9 recommended consistency levels. We observed no

anomalies for 1000 purchases per client. On the other hand, running the NEW-ORDER

transaction at a level weaker than PSI consistency level (i.e., with only atomicity

(ATOM)) led to anomalies; there were multiple orders with the same id, thus violat-

ing the safety requirement of TPC-C. The results demonstrate that Q9 is effective

at finding appropriate consistency configuration: no anomalies were observed at the

recommended consistency configuration, while any weaker configuration leads to man-

ifestation of anomalies.

3.7 Related Work

There is a large body of work focused on the safety aspect of distributed applica-

tions with weakly-consistent replicated state.

CRDTs [65] define abstract data types such as counters, sets, etc., with commuta-

tive operations such that the state of the data type always converges. This property

makes them especially attractive as a basis for dealing with replication in highly-
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available distributed systems. However, reasoning over CRDTs can be difficult, and

the nuances of their implementations relate poorly to understanding if and how they

might preserve high-level application invariants.

Burckhardt et al. [70] presents an operational model of a replicated data store

that is based on the abstract system model presented in [71]. As with the system

model from Sec. 3.3, coordination among replicas involves transmitting operations on

replicated objects that are performed locally on each replica. The verification strat-

egy given in [71] is based on a replication-aware simulation argument that does not

have an obvious automation pathway. Gotsman et al. [36] develop a rely-guarantee

methodology and proof rule that can establish whether a particular choice of consis-

tency guarantees for various operations on a replicated database is enough to ensure

preservation of a given data integrity invariant. The previous chapter presents a sim-

ilar framework for reasoning about weak isolation [8,9], which is different from weak

consistency in the sense that it relates to groups of operations manipulating multiple

objects. Ivy [72] is a tool for verifying the correctness of distributed protocols as

sophisticated as Paxos [73].

These efforts require support from developers who must define deep specifications

within a mechanized theorem prover [51, 74], state and prove various kinds of local

and global assertions within the context of a program logic [36], and/or fix counterex-

amples that prevent inductive generalization [72]. Given such input, these approaches

are capable of addressing important verification challenges in realistic distributed sys-

tems. The work presented here contrasts significantly from these other efforts because

it demands no additional effort from the programmer other than a specification of a

safety property. While Q9 cannot provide the same level of guarantees that full ver-

ification can, empirical evidence suggests that it nonetheless provides a high degree

of utility, effectively serving as a principled anomaly detection tool for geo-replicated

distributed programs, with minimal overhead demanded of the developer.
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Context-bounded model-checking [75, 76], a bounded verification technique com-

parable to ours but for shared memory, critically assumes SC semantics, making it

ineffective in discovering any of the anomalies discussed in Table 3.2.

Some of the challenges faced in reasoning about replicated data types are remi-

niscent of issues that arise in reasoning about weak memory systems. However, the

differences between weak memory and weak consistency are sufficiently significant

that reasoning techniques possible in the former are difficult to transparently migrate

to the latter. In particular, weak memory models usually guarantee coherence (total

ordering) of writes to a single location, a property not feasible under weak consistency

since it requires global coordination [8]; reads in a single thread witness a monoton-

ically progressing state under weak memory, but the same is not guaranteed under

weak consistency; and, formalizations of the former reason over memory operations

(reads and writes), whereas our formalization reasons at the level of abstract atomic

effects (e.g., Deposit ). This generalization allows us to scale the reasoning beyond

litmus tests [77, 78] to real programs. Finally, repair mechanisms for weak memory

are defined in terms of fences - low-level architecture-dependent artifacts that ”flush”

the local state. In contrast, the repair mechanisms for weak consistency are defined

in terms of fine-grained high-level consistency models (Table 3.1) expressed in terms

of causality, ordering, and visibility relations over groups of related objects. Col-

lectively, these differences make reasonsing techniques proposed for weak (shared)

memory ineffective in reasoning about weak (distributed) consistency, and mandate

new formalizations of the kind proposed in this chapter.

Representative examples of testing and checking frameworks for distributed sys-

tems include MaceMC [79] a model-checker that discovers liveness bugs in distributed

programs, and [80], a random testing tool that checks partition tolerance of NoSQL

distributed database systems with varying consistency levels to enable high-availability.

Q9 differs from these systems in significant ways: among other things, MaceMC does

not consider safety issues related to replication, while Jepsen is purely a dynamic
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analysis that does not leverage semantic properties of the application in searching for

faulty executions.

Finally, there has been a vast body of work produced over the years that ex-

plore the use of symbolic execution as a means for more effective testing and bug-

finding [81]. Surprisingly, we are unaware of any effort in this space that exam-

ines the applicability of symbolic execution to the problem of anomaly detection for

highly-available geo-replicated distributed applications, a class of programs that are

becoming increasingly important and pervasive.
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4 DERIVATION OF MERGEABLE REPLICATED DATA TYPES

The Q9 programming framework presented in the previous chapter lets develop-

ers build distributed applications around a library of carefully-engineered convergent

replicated data types (CRDTs). The focus there is on detecting and repairing consis-

tency anomalies that manifest as high-level invariant violations in such applications.

In this paper, we1 propose a fundamentally different approach to programming with

replicated state that enables the automatic derivation of correct distributed (repli-

cated) variants of ordinary data types. Key to our approach is the use of invertible

relational specifications of an inductive data type definition. These specifications cap-

ture salient aspects of the data type that are independent of its execution under any

system model, thus greatly reducing the cognitive overhead of having to explicitly

reason about low-level operational issues related to replication, asynchrony, visibility,

etc that have been on the centerstage in the previous chapter. The specifications,

however, provides sufficient guidance on structural properties maintained by the type

(e.g., element ordering) critical to how we might correctly merge multiple instances

in a replicated setting.

The approach presented in this chapter is based on a model of replication centered

around versioned states and explicit merges. In particular, we model replicated state

in terms of concurrently evolving versions of a data type that trace their origin

to a common ancestor version. We assume implementations synchronize pairs of

replicas by merging concurrent versions into a single convergent version that captures

salient characteristics of its parents. The merge operation is further aided by context

information provided by the lowest common ancestor (LCA) version of the merging

versions.

1This work was done in collaboration with Samodya Abeysiriwardane, Swarn Priya, KC Sivara-
makrishan, and Suresh Jagannathan.
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module Counter: COUNTER =

struct

type t = int

let zero = 0

let add x v = v + x

let sub x v = v - x

let mult x v = x * v

let read v = v

end

Figure 4.1.: A Counter data type in OCaml

Because the exact semantics of merging depends on the type and structure of repli-

cated state, data types define merge semantics via a three-way merge function that

merges pairs of concurrent versions in the context of their LCA version. The version

control model of replication, therefore, allows any ordinary data type equipped with

a three-way merge function to become a distributed data type. The full expressivity

of merge functions can be exploited to define bespoke distributed semantics for data

types that need not necessarily mirror their sequential behavior (i.e., distributed ob-

jects that are not linearizable or serializable), but which are nonetheless well-defined

(i.e., convergent) and have clear utility.

Our focus in this paper is on deriving such correct merge functions automatically

over arbitrarily complex (i.e, composable) data type definitions, and in the process,

ascribe to them a meaningful and useful distributed semantics. By doing so, we elimi-

nate the need to reason about low-level operational or axiomatic details of replication

when transforming sequential data types to their replicated equivalents.

The approach presented in this chapter towards deriving data type-specific merge

functions is informed by two fundamental observations about replicated data type

state and its type. First, we note that it is possible to define an intuitive notion of

a merge operation on concurrent versions of an abstract object state regardless of
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its type. We illustrate this notion in the context of a simple integer counter, whose

OCaml implementation is shown in Fig. 4.1. Suppose we wish to replicate the state of

the counter across multiple machines, each of which is allowed to perform concurrent

conflicting updates to its local instance. As long as clients just use the counter’s

add and sub operations, conflicts are benign - since integer addition and subtraction

commute, add and sub operations can be asynchronously propagated and applied

in any order on all replicas, with the resulting final state guaranteed to be the result

of a linearization of all concurrently generated operations2. However, since integer

multiplication does not commute with addition and subtraction, we cannot simply

apply mult on various replicas asynchronously, and expect the state to converge.

Global synchronization for every multiplication is certainly helpful, but is typically

too expensive to be practical [7, 82] at scale. Under such circumstances, it is not

readily apparent if we can define replicated counters that support multiplication and

yet still have a well-defined semantics that guarantees all replicas will converge to the

same counter state.

Fortunately, a state- and merge-centric view of replication lets us arrive at such a

semantics naturally. In the current example, we view the replicated counter state as

progressing linearly in terms of versions on different replica. Synchronization between

replicas merges their respective (latest) versions into a new version in the context of

their lowest common ancestor (LCA) version. We can define the merge operation by

focusing on the difference between the LCA version and the state on each replica.

Fig. 4.2 illustrates this intuition through an example. Here, two concurrent versions

of a counter, 10 and 4, emerge on different replicas starting from a common ancestor

(LCA) version 5. The first version 10 is a result of applying mult 2 to LCA 5, whereas

the second version 4 is a result of performing sub 1 . To merge these concurrent

versions, we ignore the operations and instead focus on the difference between each

version and the LCA. Here, the differences (literally) are +5 and −1, respectively.

2Implicit here is the assumption of an operation-centric model of replication, where an operation is
immediately applied at one replica, and lazily propagated to other replicas [49,61,65,71].
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Figure 4.2.: Counter merge visualized

The merged version can now be obtained by composing the differences and applying

the composition on the LCA. Here, composing +5 and −1 gives +4, and applying it

to the LCA 5 gives us 9 as the merged version. In general, the merge strategy for an

integer counter can be defined in terms of a three-way merge function as follows:

let merge l v1 v2 = l + (v1 - l) + (v2 - l)

In the above definition, l is the common ancestor version, whereas v1 and v2 are

the concurrent versions. Note that the mergeable counter described above does not

guarantee linearizability (for instance, if the concurrent operations in Fig. 4.2 are

mult 2 and mult 3 , then the merge result would be 25 and not 30). Nonetheless, it

guarantees convergence, and has a meaningful semantics in the sense that the effect

of each operation is preserved in the final state. Indeed, such a counter type would be

useful in practice, for instance, to record the balance in a banking application, which

might use mult to compute an account’s interest.3

The Counter example demonstrates the utility of a state- and merge-centric view

of replication, and the benefit of using differences as a means of reasoning about merge

semantics. Indeed, the abstract notion of a difference is general enough that it would

appear to make sense (intuitively) to apply a similar approach for other data types.

However, this notion does not easily generalize because data types often have com-

plex inductive definitions built using other data types, making it hard to uniformly

define concepts involving differences, their application, and their composition. It is

3Contrary to popular belief, real-world banking applications are weakly consistent [83]
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Figure 4.3.: Merging values in relational domain with help of abstraction (α) and

concretization (γ) functions. Solid (resp. dashed) unlabeled arrows represent a merge

in the concrete (resp. abstract) domain.

in this context that we find our second observation useful. While data types are by

themselves quite diverse, we note that they can nonetheless be mapped losslessly to

the rich domain of relations over sets, wherein relations so merged can be mapped

back to the concrete domain to yield consistent and useful definitions of these afore-

mentioned concepts. The semantics of a merge in the relational set domain, albeit

non-trivial, is nonetheless standard in the sense that it is independent of the concrete

interpretations (in the data type domain) of the merging relations, and hence can be

defined once and for all. This suggests that the merge semantics for arbitrary data

types can be automatically derived, given a pair of abstraction (α) and concretization

(γ) functions for each data type that map the values of that type to and from the

relational domain (the pair (α, γ) is an invertible relational specification of the type).

The approach, summarized in Fig. 4.3, is indeed the one we use to automatically de-

rive merges in this paper. The resultant mergeable replicated data types (MRDTs or

mergeable types, for short) have well-defined distributed semantics in the same sense

as the mergeable counter (i.e., a merge operation applied at each replica results in

the same state that preserves the effects of all operations performed on all replicas).
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To make MRDTs an effective component of a distributed programming model

that yield tangible benefits to programmers, they must be supported by an underly-

ing runtime system that facilitates efficient three-way merges and state replication.

Such a system would have to track the provenance (i.e., full history) of concurrently

evolving versions, facilitate detection and sharing of common sub-structure across

multiple versions, allow efficient computation and propagation of succinct “diffs” be-

tween versions, and ideally also support persistence of replicated state. Fortunately,

these demands can be readily met by a content-addressable storage abstraction un-

derlying modern version control systems such as Git. In the later sections of this

chapter, We describe Quark, an implementation of mergeable data types in OCaml

built on top of a distributed, content-addressable, version-based, persistent storage

abstraction that enables highly efficient merge operations. A detailed experimental

study over a collection of data structure benchmarks as well as well-studied large-scale

applications is also presented.

4.1 Motivation

Consider a queue data structure whose OCaml interface is shown in Fig. 4.4.

Queue supports two operations: push a that adds an element a to the tail end of

the queue, and pop that removes and returns the element at the head of the queue

(or returns None if the queue is empty). We say the client that performed pop has

consumed the popped element. For simplicity, we realize queue as a list of elements,

i.e., we concretize the type ’a Queue.t as ’a list for this discussion. Like Counter

with mult , Queue ’s implementation does not qualify it as a CRDT, since push and

pop do not commute. Hence, its semantics under (operation-centric) asynchronous

replication is ill-founded as illustrated in Fig. 4.5.

The execution shown in Fig. 4.5a starts with two replicas, R1 and R2, of a queue

containing the elements 1 followed by 2. Two distinct clients connect to each of the

replicas and concurrently perform pop operations, simultaneously consuming 1. The
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module Queue: sig

type ’a t

val push: ’a -> ’a t -> ’a t

val pop: ’a t -> ’a option * ’a t

end = ...

Figure 4.4.: The signature of a queue in OCaml

pop s are then propagated over the network and applied at the respective remote

replicas to keep them consistent with the origin. However, due to a concurrent pop

already being applied at the remote replica, the subsequently arriving pop opera-

tion pops a different and yet-to-be-consumed element 2 in each case. The result is a

convergent yet incorrect final state, where the element 2 vanishes without ever being

consumed. Fig. 4.5b shows a very similar execution that involves push es instead of

pop s. Starting from a singleton queue containing 1, two concurrent push opera-

tions push elements 2 and 3 resp. on different replicas. When these operations are

eventually applied at the remotes, they are applied in different orders, resulting in

the divergence of replica states. Fig. 4.5c shows another example of divergence, this

time involving both push es and pop s. The execution starts with two replicas, R1

and R2, of a singleton queue containing the 1. Two pop operations are concurrently

issued by clients, both (independently) consuming 1. The pop s are then applied at

the respective remotes after a delay. During this delay, R1 sees no activity, leaving

the queue empty for R2’s pop , which effectively becomes a Nop . On R2 however,

a push 2 operation is performed meanwhile, so when R1’s pop is subsequently ap-

plied, it pops the (yet unconsumed) element 2. As a result, the final state of the

queue on R2 is empty. Like the pop s, the push 2 operation is also propagated and

eventually applied on R1, resulting in the final state on R1 being a singleton queue.

Thus the replicas R1 and R2 of the final state of the queue diverge, which preempts
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any consistent semantics of the queue operations from being applied to explain the

execution.

[1;2] [1;2]

[2] [2]

pop()➝ 1pop()➝1

pop()

[]

pop()

[]

R1 R2

(a)

[1] [1]

[1;2] [1;3]

push 3push 2

push 2

[1;3;2]

push 3

[1;2;3]

R1 R2

(b)

[1] [1]

[] []

pop()➝ 1pop()➝1

push 2

[2]

[]

pop()

[]

[2]

push 2 pop()➝ 2

R1 R2

(c)

Figure 4.5.: Ill-formed queue executions

Bad executions such as those in Fig. 4.5 can be avoided if every queue operation

globally synchronized. However, as explained before, enforcing global synchronization

requires sacrificing availability (i.e., latency), an undesirable tradeoff for most appli-

cations [12]. It may therefore seem impossible to replicate queues with meaningful

and useful semantics without losing availability. Fortunately, this turns out not to be

the case. In the context of real applications, there exist implementations of highly

available replicated queues whose semantics, albeit non-standard, i.e., not linearizable

or serializable, have nonetheless proven to be useful. Amazon’s Simple Queue Ser-

vice (SQS) [84] is one such queue implementation with a non-standard at-least-once

delivery semantics, which guarantees, among other things, that a queued message is

delivered to a client for consumption at least once. Devoid of a formal context, such

semantics may seem ad hoc; however, casting the Queue data type as a mergeable

type would let us derive such semantics from first principles, thus giving us a formal

basis to reason about its correctness.

Recall that our underlying execution model is based on state-centric model of

replication with versioned state and explicit three-way merges (which we show how

to synthesize). Under this model, two concurrent versions v1 and v2 of a queue can
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independently evolve from a common ancestor (LCA) version l. The semantics of

the queue under replication depends on how these versions are merged into a single

version v (Fig. 4.3). The concurrent versions v1 and v2 would have evolved from l

through several push and pop applications, however let us ignore the operations for a

while and focus on the relationship between the queue states l, v1, and v2. Intuitively,

the following relationships must hold among the three queues:

1. For every element x ∈ l, if x ∈ v1 and x ∈ v2, i.e., if x is not popped in either

of the concurrent versions, then x ∈ v, i.e., x must be in the merged version. In

other words, a queue element that was never consumed should not be deleted.

2. For every x ∈ l if x 6∈ v1 or x 6∈ v2, i.e., if x is popped in either v1 or v2,

then x 6∈ v. That is, a consumed element (regardless of how many times it was

consumed) should never reappear in the queue.

3. For every x ∈ v1 (resp. v2), if x 6∈ l, that is x is newly pushed into v1 (resp.

v2), then x ∈ v. That is, an element that is newly added in either concurrent

versions must be present in the merged version.

4. For every x, y ∈ l (resp. v1 and v2), if x occurs before y in l (resp. v1 and v2),

and if x, y ∈ v, i.e., x and y are not deleted, then x also occurs before y in v.

In other words, the order of elements in each queue must be preserved in the

merged queue.

To formalize these properties more succinctly, we define two relations on lists: (1).

A membership relation on a list l (written Rmem(l)) is a unary relation, i.e., a set,

containing all the elements in l, and (2). An occurs-before relation on l (written

Rob(l)) is a binary relation relating every pair of elements x and y in l, such that x

occurs before y in l. For a concrete list l = [1; 2; 3], Rmem(l) is the set {1, 2, 3},
and Rob(l) is the set {(1, 2), (1, 3), (2, 3)}. Note that for any list l Rob(l) ⊆ Rmem(l)×
Rmem(l), i.e., Rob(l) is only defined for the elements in Rmem(l). Using Rmem, we
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can succinctly specify the relationship among the members of l, v1, v2, and v, where

v = merge l v1 v2, as follows4:

Rmem(v) = Rmem(l) ∩Rmem(v1) ∩Rmem(v2)

∪ Rmem(v1)−Rmem(l) ∪ Rmem(v2)−Rmem(l)

(4.1)

The left hand side denotes the set of elements in the merged version v. The right

hand side is a union of three components: (1). The elements common among three

versions l, v1, and v2, (2). The elements in v1 not in l, i.e., newly added in v1, and (3).

The elements in v2 not in l, i.e., newly added in v2. Observe that we applied the same

intuitions as the counter merge described at the beginning of this chapter to arrive

at the above specification, namely merging concurrent versions by computing, com-

posing and applying their respective differences to the common ancestor. However,

we have interpreted the difference through the means of a relation over sets that ab-

stracts the structure of a queue and captures only its membership property. Another

important point to note is that the specification does not appeal to any operational

characteristics of queues, either sequentially or in the context of replication.

Similar intuitions can be applied to manage the structural aspects of merging

queues by capturing their respective orders via the occurs-before relation (Rob) over

lists, but after accounting for a couple of caveats. First, since Rob ⊆ Rmem × Rmem,

Rob(v) has to be confined to the the domain of Rmem(v) × Rmem(v). Second, the

order between a pair of elements where each comes from a distinct concurrent version

is indeterminate, thus Rob(v) can only be underspecified. Taking these caveats into

account, Rob(v) of the merged version v can be specified thus:

Rob(v) ⊇ (Rob(l) ∩Rob(v1) ∩Rob(v2)

∪ Rob(v1)−Rob(l) ∪ Rob(v2)−Rob(l))

∩ (Rmem(v)×Rmem(v))

(4.2)

4We elide parentheses for perspicuity. Any ambiguity in parsing should be resolved by assuming
that ∩ and − bind tighter than ∪
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Figure 4.6.: State-centric view of queue replication aided by context-aware merges

(shown in dotted lines)

Note the ⊇ capturing the underspecification. The right hand side is essentially same

as the right hand side of the Rmem equation (above), except that Rob replaces Rmem,

and we compute an intersection with Rmem(v)× Rmem(v) at the top level to confine

Rob(v) to the elements in v. As mentioned earlier, the specification does not induce

a fixed order among elements coming from different queues. To recover convergence,

a merge function on queues can choose to order such elements through a consistent

ordering relation, such as a lexicographic order.

The membership and occurs-before specifications together characterize the merge

semantics of the queue data type that we derived from basic principles we enumerated

above. We shall now reconsider the executions from Fig. 4.5, this time under a state-

centric model of replication, and demonstrate how our merge specification leads us to

a consistent distributed semantics for queue, which subsumes a at-least-once delivery

semantics. The corresponding executions under this model are shown in Fig. 4.6.

Fig. 4.6a is the same execution in Fig. 4.5a with the dotted line representing

a version propagation followed by a merge, rather than an operation propagation

followed by an application. For each version, the Rmem and Rob relations are shown

below its actual value. If the version is a result of a merge, then we compute its
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Rmem and Rob sets using equations 4.1 and 4.2 of the merge specification above.

For both the merges shown in the figure, the concurrent versions (v1 and v2) are

the same: the singleton queue [2] , and their LCA version (l) is the initial queue

[1;2] . Thus each concurrent version is a result of popping 1 from the LCA (which

is consumed/delivered twice as acceptable under at-least-once delivery semantics).

Intuitively, the result of the merge should be a version that incorporates the effect of

popping 1, while leaving the rest of the queue unchanged from the LCA. This leaves

the queue [2] as the only possible result of the merge (and the execution). Indeed,

this is the result we would obtain if reconstruct the queue from the merged Rmem and

Rob relations shown in the figure. Execution in Fig. 4.6b corresponds to the one in

Fig. 4.5b. Here we have two merges: one into R1 and other into R2. The concurrent

versions for both the merges are the same: [1;2] and [1;3] , and their LCA is the

queue [1] . Each concurrent version pushes a new element (2 and 3, resp.) to the

queue after the existing element 1. Intuitively, the merged queue should contain both

the new elements ordered after 1. Indeed, this is also what the merged Rmem and

Rob relations suggest. The order between new elements, however, is left unspecified

by Rob. As mentioned earlier, a consistent ordering relation has to be used to order

such elements. Choosing the less-than relation, we obtain the result of the merge as

[1;2;3] . In Fig. 4.6c, there are three merges: two into R1 and one into R2. For the

first merge into R1, the concurrent versions are both empty queues, and their LCA is

the singleton queue [1] . Thus both versions represent a pop of 1, and their merged

version, which reconciles both the pops, should be an empty queue, which is also

what the merged relations suggest. The second merge into R1 and the only merge

into R2, both merge an empty queue ( [] ) and a singleton queue [2] , with the LCA

version being the initial queue [1] . While the version [] can be understood as

resulting from the popping an element from LCA, the concurrent version [2] goes

one step ahead and pushes a new element 2. Consequently, the merged version should

be a queue not containing 1, but containing the new element 2, i.e., [2] , which is

again consistent with the result obtained by merging Rmem and Rob relations. Thus
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let rec Rmem = function

| [] -> ∅
| x::xs -> {x} ∪ Rmem(xs)

let rec Rob = function

| [] -> ∅
| x::xs -> {x}×Rmem(xs) ∪ Rob(xs)

Figure 4.7.: Functions that compute Rmem and Rob relations for a list. Syntax is

stylized to aid comprehension.

in all three executions discussed above, the relational merge specification (Eqs. 4.1

and 4.2) consistently guides us towards a meaningful result, imparting a well-defined

distributed semantics to the queue data type in the process.

To operationalize the merge specification discussed above, i.e., to derive a merge

function that implements the specification, we require functions (α and γ resp.) to

map a queue to the relational domain and back. The abstraction function α is simply

a pair-wise composition of functions that compute Rmem and Rob relations for a

given list. The eponymous functions are shown in Fig. 4.7. The Rmem function

computes the set of elements in a given list l, which is its unary membership relation.

The function Rob computes the set of all pairs (x, y) such that x occurs before y in

l. The concretization function γ reconstructs a list/queue given its Rmem and Rob

relations. One way this can be done is by constructing a directed graph G whose

vertices are Rmem(v), and edges are Rob(v). A topological ordering of vertices in G,

where ties are broken as per a consistent arbitration order (e.g., lexicographic order)

yields the merged list/queue. We have generalized the aforementioned graph-based

approach for concretizing ordering relations, and have abstracted it away as a library

function γord that concretizes (any subset of) an ordering relation of a data structure

as a graph isomorphic to that structure, given ord an arbitration order to break

ties; we provide details in Sec. 4.4. For an integer list v for example, γ<(Rob(v)),

where (<) is the less-than relation on integers, is a linear graph (i.e., a linked list),

which can be straightforwardly translated to a list. The γord function thus (mostly)

automates the task of concretizing orders, which is usually the non-trivial part of

writing γ. Given both α and γ, the merge function for queues (lists, in general)

follows straightforwardly from the merge specification as shown in Fig. 4.8. For



115

let merge l v1 v2 =

let (rmem_l , robs_l) = α(l) in

let (rmem_v1 , robs_v1) = α(v1) in

let (rmem_v2 , robs_v2) = α(v2) in

let rmem_v = rmem_l � rmem_v1 � rmem_v2 in

let robs_v = (robs_l � robs_v1 � robs_v2) ∩ (rmem_v × rmem_v) in

γ(rmem_v , robs_v)

Figure 4.8.: A merge function for queues derived via the relational approach to merge

brevity, we write A �B �C to denote the three-way merge of sets A, B, and C, which

is defined thus:

A �B � C = (A ∩B ∩ C) ∪ (B −A) ∪ (C −A)

4.2 Abstracting Data Structures as Relations

The various data structures defined by a program differ in terms of the patterns

of data access they choose to support, e.g., value lookups in case of a tree and in-

sertions in case of an unordered list. Nonetheless, regardless of its access pattern

priorities, a data structure can be uniquely characterized by the contents it holds,

and the structural relationships defined among them. This observation lets us cap-

ture salient aspects of an arbitrary data structure using concrete artifacts, such as

sets and relations.

The relational encoding of the list data type has already been demonstrated in

Sec. 4.1. As shown, membership and order properties of a list l, represented by

relations Rmem(l) and Rob(l), characterize l in the sense the one can reconstruct the

list l given these two relations5. We call such relations the characteristic relations of

a data type, a notion we shall formalize shortly. Note that characteristic relations

5One might think Rob itself is sufficient, but that is not true. Rob is empty for both singleton and
empty lists, making it impossible to distinguish between them.
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need not be unique. For instance, we could equivalently have defined an occurs-after

(Roa) relation - a dual of the occurs-before relation, that relates the list elements in

reverse order, and use it in place of Rob as a characteristic relation for lists without

any loss of generality.

Relational abstractions can be computed for other data types too, but before

describing a general procedure for doing so, we first make explicit certain heretofore

implicit conventions we have been using in the presentation thus far. First, we often

use a relation name (e.g., Rmem) interchangeably to refer to the relation as well as

the function that computes that relation. To be precise, Rmem(l) is the membership

relation for a list l, whereas Rmem is a function that computes such a relation for any

list l. But we prefer to call them both relations, with the latter being thought of as

a relation parameterized on lists. Second, we use relations and sets to characterize

data structures in this presentation, when the proper abstraction is multi-sets, i.e.,

sets where each element carries a unique cardinal number. While using sets leads

to a simpler formulation and typically does not result in any loss of generality, we

explicitly use multi-sets when they are indeed required.

As another example of a relational specification, consider the characteristic rela-

tions that specify a binary tree whose OCaml type signature is given below:

type ’a tree = | E

| N of ’a tree * ’a * ’a tree

An Rmem function can be defined for trees similar to lists that computes the set of

elements in a tree. A tree may denote a binary heap, in which case an ancestor

relation is enough to capture its structure (since relative order between siblings does

not matter). The definition is shown below:

let rec Rans = function

| E -> ∅
| N(l,x,r) -> Rans(l) ∪ {x}×Rmem(l) ∪ {x}×Rmem(r) ∪ Rans(r)

The full structure of the tree, including the relative order between siblings, can be

captured via as a ternary tree-order relation (Rto) that extends the ancestor relation
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Table 4.1.: Characteristic relations for various data types

Data Type Characteristic Relations

Binary Heap Membership (Rmem), Ancestor (Rans ⊆ Rmem ×Rmem)

Priority Queue Membership (Rmem)

Set Membership (Rmem)

Graph Vertex (RV ), Edge (RE)

Functional Map Key-Value (Rkv)

List Membership (Rmem), Order (Rob)

Binary Tree Membership (Rmem), Tree-order (Rto ⊆ Rmem × label ×Rmem)

Binary Search Tree Membership (Rmem)

with labels denoting whether an element is to the left of its ancestor or to its right.

The definition of Rto is shown below:

type label = L | R

let rec Rto = function

| E -> ∅
| N(l,x,r) ->

Rto(l) ∪ {x}×{L}×Rmem(l) ∪ {x}×{R}×Rmem(r) ∪ Rto(r)

However, the shape of a data structure may not always be relevant. For instance,

given two binary search trees with the same set of elements, it does not matter

whether they have the same shape. Their extensional behavior is presumably indis-

tinguishable since they would give the same answers to the same queries. In such

cases, a membership relation is enough to completely characterize a tree. Indeed,

different data types have different definitions of extensional equality, so we take that

into account in formalizing the notion of characteristic relations:
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Definition 4.2.1 A sequence of relations RT is called the characteristic relations of

a data type T , if for every x : T and y : T , RT (x) = RT (y) implies x =T y, where =T

denotes the extensional equality relation as interpreted by T .

Our formalization requires the type of each characteristic relation to be specified in

order to derive a merge function for that relation. This type is not necessarily the

same as its OCaml type for we let additional constraints be specified to precisely

characterize the relation. The syntax of relation types and other technicalities are

discussed in Sec. 4.3.

The approach of characterizing data structures in terms of relations is applicable

to many interesting data types as shown in Table 4.1. The vertex and edge relations

of a graph are essentially its vertex and edge sets respectively. The key-value relation

of a functional map is a semantic relation that relates each key to a value. Concretely,

it is just a set of key-value pairs.

Basic data types, such as natural numbers and integers, can also be given a re-

lational interpretation in terms of multi-sets, although such an interpretation is not

particularly enlightening. For example, a natural number n can be represented as

a multi-set {1 : n}, meaning that it is equal to a set containing n ones. Zero is

the empty set {}. Addition corresponds to multi-set union, subtraction to multi-set

difference, and a minimum operation to multi-set intersection.

4.3 Deriving Relational Merge Specifications

In Sec. 4.1, we presented a merge specification for queues expressed in terms of the

membership (Rmem) and order (Rob) relations of the list data type. The specification

realizes the abstract idea of merging concurrent versions by computing, composing

and applying differences to the LCA. Similar specifications can be derived for other

inductive data types, such as trees, graphs, etc. in terms of their characteristic rela-

tions listed in Table 4.1. Beyond these data types, however, the approach suggested

thus far is presumably hard to generalize as it ignores an important aspect of data type
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(?,?)
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Figure 4.9.: Incorrect merge of integer pairs

construction, namely composition. In this section, we first demonstrate the challenges

posed by data structure composition, and subsequently generalize our approach to

include such compositions. We also formalize our approach as a set of (algorithmic)

rules to derive merge specifications for arbitrary data structures and their composi-

tions, given their characteristic relations, and abstraction/concretization functions.

4.3.1 Compositionality

Consider an integer pair type - int*int . One might define relations Rfst and Rsnd

on int*int as follows: Rfst and Rsnd comprise the characteristic relations of integer

let Rfst = fun (x,_) -> {x} let Rsnd = fun (_,y) -> {y}

pairs since if the relations are equal for two integer pairs, then the pairs themselves

must be equal. Using these relations, one might try to specify the merge semantics

of the pair type by emulating the membership (Rmem) specification from the queue

example of Sec. 4.1. Let v1 and v2, each an integer pair, denote the merging versions,

and let l be their LCA version. Let v be the result of their three-way merge, i.e.,
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v = merge l v1 v2. Substituting Rmem with Rfst (resp. Rsnd) in queue’s merge

specification leads to the following:

Rfst(v) = Rfst(l) ∩Rfst(v1) ∩Rfst(v2)

∪ Rfst(v1)−Rfst(l) ∪ Rfst(v2)−Rfst(l)

Rsnd(v) = . . . (respectively for Rsnd)

Unfortunately, the specification is meaningless in the context of a pair. Fig. 4.9

illustrates why. Here, two concurrent int*int versions, (3,4) and (5,6), evolve from

an initial version (1,2). Their respective Rfst and Rsnd relations are as shown in the

figure. Applying the above specification for the int*int merge function, we deduce

that the Rfst and Rsnd relations for the merged version should be the sets {3, 5}
and {4, 6}, respectively. However, the sets do not correspond to any integer pair,

since Rfst and Rsnd for any such pair is expected to be a singleton set. Hence the

specification is incorrect.

Clearly, the approach we took for queue does not generalize to a pair. The problem

lies in how we view these two data structures from the perspective of merging. While

the merge specification we wrote for queue treats it as a collection of unmergeable

atoms, such an interpretation is not sensible for pairs, as the example in Fig. 4.9

demonstrates. Unlike a queue, a pair defines a fixed-size container that assigns an

ordinal number (“first”, “second” etc) to each of its elements. Two versions of a pair

are mergeable only if their elements with corresponding ordinals are mergeable. In

Fig. 4.9, if we assume the integers are in fact (mergeable) counters (i.e., Counter.t

objects), we can use Counter.merge to merge the first and second components of

the merging pairs independently, composing them into a merged pair as described

below:

let merge l v1 v2 = (Counter.merge (fst l) (fst v1) (fst v2),

Counter.merge (snd l) (snd v1) (snd v2))

Recall that the Counter.merge is the following function:

let merge l v1 v2 = l + (v1 - l) + (v2 - l)
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Thus the result of merging the pair of counters and their LCA from Fig. 4.9 is:

(Counter.merge 1 3 5, Counter.merge 2 4 6) = (7,8)

The pair example demonstrates the need and opportunity to make merges composi-

tional. The specification of such a composite merge function is invariably composi-

tional in terms of the merge specifications of the types involved. Let φc(l, v1, v2, v)

denote the counter merge specification defined, for instance, thus:

φc(l, v1, v2, v)⇔ v = l + (v1 − l) + (v2 − l)

We can now define a merge specification (φc×c) for counter pairs in terms of φc, and

the relations Rfst and Rsnd as follows:

φc×c(l, v1, v2, v) ⇔ ∀x, y, z, s. x ∈ Rfst(l) ∧ y ∈ Rfst(v1) ∧ z ∈ Rfst(v2)

∧φc(x, y, z, s)⇒ s ∈ Rfst(v)

∧∀s. s ∈ Rfst(v)⇒ ∃x, y, z. x ∈ Rfst(l) ∧ y ∈ Rfst(v1)

∧z ∈ Rfst(v2) ∧ φc(x, y, z, s)

∧ . . . (respectively for Rsnd)

The first conjunct on the right hand side essentially says that if (counters) x, y,

and z are respectively the first components of the pairs l, v1 and v2, and s is the

result of merging x, y and z via Counter.merge , then s is the first component of the

merged pair v. The second conjunct states the converse. Similar propositions also

apply for the second components (accessible via Rsnd), but elided. Observe that the

specification captures the merge semantics of a pair while abstracting away the merge

semantics of its component types. In other words, φa×b, the merge specification of

the type a*b is parametric on the merge specifications φa and φb of types a and

b respectively. Thus, the merge specification for a pair of queues, i.e., φq×q, can be

obtained by replacing φc with φq, the queue merge specification (Sec. 4.1) in the above

definition. The ability to compose merge specifications in this way is key to deriving

a sensible merge semantics for any composition of data structures.

A pair is an example of a composite data structure that assigns implicit ordinals

to its constituents. Alternatively, a data structure may assign explicit ordinals or
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T, τ ∈ Data Types R ∈ Relation Names

ρ ∈ Tuple Types := T | R(ν) | ρ× ρ

s ∈ Relation Types := {ν : T} → P (ρ)

Figure 4.10.: Type specification syntax for (functions that compute) relations

identifiers to its members. For instance, a map abstract data type (implemented

using balanced trees or hash tables) identifies its constituent values with explicit

keys. In either case, the top-level merge is essentially similar to the one described

for pair, and involves merging constituent values that bear corresponding ordinals

or identifiers. Note that this assumes that the values are indeed mergeable. Data

structures may be composed of types that are not mergeable by design, e.g., the keys

in a map data type are not mergeable, although they serve to identify the values which

are mergeable. Since the merge strategy of a data structure should work differently

for its mergeable and non-mergeable constituents, we need a way to identify them

as such. This can be done through the type specification of relations, as described

below.

4.3.2 Type Specifications for Characteristic Relations

As mentioned in Sec. 4.2, characteristic relations of a data type need to be ex-

plicitly typed. Fig. 4.10 shows the syntax of type specifications for such relations.

We use both T and τ to refer to data types, with the latter used to highlight that

the type being referred to is mergeable. A relation maps a value ν of a data type T

to a set of tuples each of type ρ. A tuple type is specified in terms of the set from

which it is drawn. It could be the set of all values of a (different) type T , or the set

defined by a (different) relation R on ν, or a cross product of such sets. Note that the

cross-product operator is treated as associative in this context, hence for any three
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sets A, B and C, A× (B × C) = (A×B)× C = A×B × C. The syntax allows the

type of a relation R on ν : T to refer another relation R′ on ν : T to constrain the

domain of its tuples. Some examples of relations with type specifications are given

below.

Example The characteristic relations of int list data type can be specified thus:

Rmem : {ν : int list} → P ( int ),

Rob : {ν : int list} → P (Rmem(ν)×Rmem(ν))

Example The characteristic relations of a map data type with string keys and

counter values can be specified thus:

Rk : {ν : (string ,int) map} → P ( string ),

Rkv : {ν : (string ,int) map} → P (Rk(ν)× counter )

Type constraints, as described above, ensure syntactic correctness of relations.

However, not all syntactically valid relations lead to semantically meaningful merge

specifications. To identify those that do, we define a well-formedness condition on

type specifications of relations. Let ρR denote the type of tuples in a relation R

defined over ν : T , for some data type T (i.e., R : ν : T → P (ρR)). Since tuple types

can refer to other relations (see ρ in Fig. 4.10, and the Rob and Rkv type definitions

above), ρR could be composed of R′(ν), where R′ is another relation on ν : T . We

consider “flattening” such ρR by recursively substituting every occurrence of R′(ν)

with the tuple type ρR′ of R′ in ρR (i.e., [ρ′R/R
′(v)] ρR). For instance, the flattened

tuple types of Rob and Rkv are int × int and string × int , respectively. In

general, the flattened tuple type of ρR (denoted bρRc) is a non-empty cross product

of the form T1 × T2 × . . . Tn, which we shorten as T . We define the well-formedness

of a relation’s type specification by examining its flattened tuple type as follows.

Definition 4.3.1 A relation R : {ν : T} → P (ρ) is said to have a well-formed type

specification if and only if there exists a non-empty T and a (possibly empty) τ such

that:
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• bρc = T × τ , and

• Every Ti ∈ T is not mergeable, whereas

• Every τi ∈ τ is mergeable.

Informally, a mergeable type is a data type for which a merge specification can be

derived, and a merge function that meets the specification exists (e.g., queues and

counters). Basic data types, such as strings and floats, are considered not mergeable

for the sake of this discussion. The well-formedness definition presented above effec-

tively constrains relations to be one of the following two kinds based on the type of

their tuples: (a). those containing tuples composed only of non-mergeable types (i.e.,

τ = ∅ and bρc = T ), and (b). those containing tuples composed of non-mergeable

types followed by mergeable types (i.e., bρc = T × τ and τ 6= ∅). The former are

relations that capture the contents and the structural relationships among the con-

tents in a data structure (e.g., Rmem, Rob, and Rk), and the latter are those that

capture their semantic relationships6 (e.g., Rkv - a relation that identifies key-value

relationship latent in each element of a map). Based on this categorization, we can

now formalize the rules to derive merge specifications of an arbitrary data type from

the well-formed type specification of its characteristic relations.

4.3.3 Derivation Rules

Fig. 4.11 shows the derivation rules for merge specifications. The rules define the

judgment

φT (l, v1, v2, v) ⊇ ϕ

where φT is the merge specification for a type T parameterized on the merging versions

(v1 and v2), their LCA (l), and the merge result (v), and ϕ is a first-order logic (FOL)

formula. The interpretation is that the merge specification φT should subsume the

6This categorization corresponds exactly to the properties of interest that were said to uniformly
characterize all data structures (Sec. 4.2).
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FOL formula ϕ. The rules let us derive such constraints for every R on type T with a

well-formed type specification R : T → P (ρ). Accumulating the constraints derived

over several such applications of the rules (until fixpoint) results in the full merge

specification of type T . The rules invoke the definitions of flattening, well-formedness,

etc. that we introduced above.

Recall that the tuple type of a relation is a cross product involving data types

and other relations. We use its set interpretation in set operations such as in-

tersection. For instance, if the characteristic relation on int list has the type

ν : int list → P ( int ×Rmem(ν)), then its tuple type ρ = int × Rmem(ν) has a

natural set interpretation as the cross product of the set of all integers and Rmem(ν),

and hence can be used in set expressions such as Rob(ν) ∩ ρ, as the rules in Fig. 4.11

do. The notation A�B �C denotes three-way merge of sets A, B, and C, defined for-

mally in Sec. 4.1. We define an extension operation on relations that relate ordinals

or identifiers of non-mergeable type(s) T with values of mergeable type(s) τ . Let R

be such a relation on type T , and let 0i denote the “zero” or “empty” value of type

τi. We call 0 an empty value of a type if R(0) = ∅ for all characteristic relations R

on that type (e.g., an empty list for type list ). An extension of R is a relation R+

that relates ordinals or identifiers not already related by R to empty or zero values.

Formally, we define R+ by defining its containment relation as follows:

∀(k : T ).∀(x : τ). (k, x) ∈ R+ ⇔ (k, x) ∈ R ∨ (@(y : τ). (k, y) ∈ R ∧∧i xi = 0i)

A tuple (k, x) is in R+ if and only if it is already in R, or R does not relate k to

anything, and each xi is an empty value. We also define a projection of R, denoted

Rk, that is simply the set of ordinals or identifiers in R. The definition is as follows:

∀(k : T ). k ∈ Rk ⇔ ∃(x : τ). (k, x) ∈ R

Note that R+ and Rk are merely notations to simplify the rules in Fig. 4.11, as will

be evident shortly.

The rule Set-Merge derives merge constraints for a relation R that is composed

of only non-mergeable types (T ), and do not draw on other relations, i.e., its tuple

type ρ is not a cross product of other relations. Thus, R capture the elements of T
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φT (l, v1, v2, v) ⊇ ϕ

Set-Merge

R : {ν : T} → P
(
T
)

φT (l, v1, v2, v) ⊇ ∀(x : T ). x ∈ (R(l) �R(v1) �R(v2))⇔ x ∈ R(v)

Order-Merge-1

R : {ν : T} → P (ρ) bρc = T

φT (l, v1, v2, v) ⊇ ∀(x : T ). x ∈ (R(l) �R(v1) �R(v2) ∩ ρ)⇒ x ∈ R(v)

Order-Merge-2

R : {ν : T} → P (ρ) bρc = T

φT (l, v1, v2, v) ⊇ ∀(x : T ). x ∈ R(v)⇒ x ∈ ρ

Rel-Merge-1

R : {ν : T} → P (ρ) bρc = T × τ τ 6= ∅

φT (l, v1, v2, v) ⊇ ∀(k : T ).∀(x, y, z, s : τ). (k, x) ∈ R+(l) ∧ (k, y) ∈ R+(v1) ∧ (k, z) ∈ R+(v2)

∧k ∈ (Rk(l) �Rk(v1) �Rk(v2)) ∧
∧
i φτi(xi, yi, zi, si) ∧ (k, s) ∈ ρ⇒ (k, s) ∈ R(v)

Rel-Merge-2

R : {ν : T} → P (ρ) bρc = T × τ τ 6= ∅

φT (l, v1, v2, v) ⊇ ∀(k : T ).∀(s : τ). (k, s) ∈ R(v)⇒ (k, s) ∈ ρ

∧∃(x, y, z : τ). (k, x) ∈ R+(l) ∧ (k, y) ∈ R+(v1) ∧ (k, z) ∈ R+(v2)

∧k ∈ (Rk(l) �Rk(v1) �Rk(v2)) ∧
∧
i φτi(xi, yi, zi, si)

Figure 4.11.: Rules to derive a merge specification for a data type T

rather than their relative order. Examples include Rmem (list) and Rk (map). The

consequent of Set-Merge enforces the set merge semantics on R, and is an exact



127

specification of the merge result, leaving no room for the merge function to conjure

new elements of its own. As an example, one can apply the Set-Merge rule to the

int list type to obtain a constraint on Rmem as described in Sec. 4.1.

The rule Order-Merge-1 constrains a relation R whose tuple type ρ involves

cross-product of other relations. Thus the relation R can be construed as an ordering

relation over tuples captured by other relations over the same data structure. Exam-

ples include Rob (binary relation on lists) and Rto (ternary relation on trees). The

conclusion of Order-Merge-1 adds a constraint to φT that merely enforces the set

merge semantics over the ordering relation R, while retaining only those tuples that

belong to the set ρ. The constraint is only an implication (and not a bi-implication),

thereby underspecifying the merge result, and letting the merge function add new

orders on existing elements. However, in order to prevent the merge from creating

elements out of thin air, we need a constraint in reverse direction, albeit a weaker

one. The rule Order-Merge-2 fulfills this need, by restricting the tuples in the

merged order relation to be drawn from the cross product of existing relations (ρ).

Observe that these two rules together give us the constraints on Rob that we wrote

for the queue data structure in Sec. 4.1.

The rules Rel-Merge-1 and Rel-Merge-2 are concerned with the last category

of relations that relate a data structure composed of multiple types to the (mergeable)

values of those types through (non-mergeable) ordinals or identifiers. The premise of

both rules assert this expectation on R by constraining its tuple type ρ to be of the

form T × τ , where τ stands for a mergeable type. An example of such an R is the Rkv

relation over a map ν that relates its keys to mergeable values. The Rel-Merge-1

requires a tuple (k, s) to be present in the merged relation if k is related to x, y, and

z of type τ respectively by the (extended) relations R(l), R(v1), and R(v2), and each

si is the result of merging xi, yi, and zi as per the merge semantics of τi (captured

by φτi). The rule thus composes the merge specification φT of T using the merge

specifications φτ of its constituent mergeable types τ . Using the extended relation

R+ instead of R for l, v1, and v2 lets us cover the case where k is related to something
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in one (resp. two) of the three versions, but is left unrelated in the remaining two

(resp. one) versions. The extended relation R+ lets us assume a zero value for x,

y, or z, whichever is appropriate, in such cases. We also ensure that k needs to be

related to something in the merged version by separately merging the sets of ordinals

in each merging relation as captured by the constraint k ∈ Rk(l)�Rk(v1)�Rk(v2). The

rule Rel-Merge-2 asserts the converse of the constraint added in Rel-Merge-1,

effectively making the merge specification an exact specification like in Set-Merge.

Thus, for instance, a merge function of a map cannot introduce new key-value pairs

that cannot be derived from the existing pairs by merging their values.

Example The merge specification presented earlier for a pair of counters can now be

formally derived, albeit with a few minor changes: we use the Rpair relation instead of

Rfst and Rsnd, which assigns an explicit (integer) ordinal to each pair component:

let Rpair (x,y) = {(1,x), (2,y)}

The type specification is Rpair : {ν : counter ∗ counter } → P ( int × counter ).

The tuple type is of the form T × τ , where T is not mergeable and τ is mergeable (an

ordinal type can be defined separately from integers to be non-mergeable). Applying

Rel-Merge-1 and Rel-Merge-2 rules yields the following merge specification for

counter pairs (simplified for presentation):

φc×c = ∀(k : int ).∀(x, y, z, s : counter ). (k, x) ∈ Rpair(l) ∧ (k, y) ∈ Rpair(v1)

∧(k, z) ∈ Rpair(v2) ∧ φc(x, y, z, s)⇒ (k, s) ∈ R(v)

∧ ∀(k : int ).∀(s : counter ). (k, s) ∈ Rpair(v)⇒ ∃(x, y, z : counter ). (k, x) ∈ Rpair(l)

∧(k, y) ∈ Rpair(v1) ∧ (k, z) ∈ Rpair(v2) ∧ φc(x, y, z, s)

To check that the above is indeed a correct merge specification for counter pairs, one

can observe that a function that directly implements this specification would correctly

merge the example in Fig. 4.9.
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4.4 Deriving Merge Functions

We have thus far focused on deriving a merge specification for a data type, given

the type specification of its characteristic relations. We now describe how to synthe-

size a function that operationalizes the specification, given these relation definitions.

The synthesis problem is formalized thus:

Definition 4.4.1 (Merge Synthesis Problem) Given a data type T , a function α

that computes the characteristic relations for values of T , a function γ that maps the

characteristic relations back to the values of T , and a (derived) merge specification φT

of T expressed in terms of its characteristic relations, synthesize a function F such

that for all l, v1, and v2 of type T , φT (l, v1, v2, F (l, v1, v2)) holds.

The synthesis process is quite straightforward as the expressive merge specifica-

tion φT already describes what the result of a relational merge should be. For each

FOL constraint ϕ in φT that specifies the necessary tuples in the merged relation (i.e.,

of the form . . . ⇒ x ∈ R(v) or . . . ⇔ x ∈ R(v) in Fig. 4.11), we describe its opera-

tional interpretation JϕK that computes the merged relation in a way that satisfies the

constraint. We start with the simplest such ϕ, which is the constraint added to φT

by Set-Merge. Recall that α is a pair-wise composition of characteristic relations

of type T (i.e., α = λx.R(x)). Let R be a characteristic relation, which we obtain

by projecting from α, and let r l , r v1 , and r v2 be variables denoting the sets

R(l), R(v1), and R(v2), resp. Using these definitions, we translate the Set-Merge

constraint almost identically as shown below:

J∀(x : T ). x ∈ (R(l) �R(v1) �R(v2))⇔ x ∈ R(v)K = r_l � r_v1 � r_v2

Order-Merge-1 can be similarly operationalized. One aspect that needs attention

is the intersection with the set ρ denoting the tuple space of R. Since ρ could be

composed of an infinite set like int , intersection with ρ cannot be näıvely interpreted.

Instead, we synthesize a Boolean function Bρ that returns true for elements present

in the set ρ, and implement the intersection in terms of a Set.filter operation that

filters a set to contain only those elements that satisfy this predicate:
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let ks_r_l = Set.map fst r_l in

let ks_r_v1 = Set.map fst r_v1 in

let ks_r_v2 = Set.map fst r_v2 in

let ks = ks_r_l � ks_r_v1 � ks_r_v2 in

let r_l ’ = r_l ∪ (ks - ks_r_l) × {M.empty} in

let r_v1 ’ = r_v1 ∪ (ks - ks_r_v1) × {M.empty} in

let r_v2 ’ = r_v2 ∪ (ks - ks_r_v2) × {M.empty} in

Set.map (fun (k,x) ->

let (x,y,z) = (r_l(k), r_v1(k), r_v2(k)) in

let s = M.merge x y z in

(k,s)) ks

Figure 4.12.: Operational interpretation of the constraint imposed by Rel-Merge-1

rule from Fig. 4.11

J∀(x : T ). x ∈ (R(l) �R(v1) �R(v2) ∩ ρ)⇒ x ∈ R(v)K =

let x = r_l � r_v1 � r_v2 in

Set.filter Bρ x

Rel-Merge-1 covers the interesting case of compositional merges. In this case, the

tuples in R have a sequence of ordinals or identifiers (k : T , which we call keys)

followed by values of mergeable types (τ). Each τi is required to have a zero value 0i

for which each characteristic relation has to evaluate to ∅. In practice, this is enforced

by requiring the module M that defines τi (i.e., M.t = τi) to have a value empty:t ,

and checking if R( empty ) evaluates to ∅ for each R. Since τi is a mergeable type, its

implementation M should contain a merge function for τi. The R+ definition used by

Rel-Merge-1 effectively homogenizes the keys of R(l), R(v1), and R(v2), mapping

new keys to empty . The values with the corresponding keys are then merged using

M.merge to compute the key-value pairs in the merged relation. Fig. 4.12 shows the

operational interpretation. For brevity, we assume R to be a binary relation relating

a single key to a value. Set.map is the usual map function with type: ’a set →
( ’a → ’b ) → ’b set .
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The operational interpretation of derivation rules from Fig. 4.11 let us merge

characteristic relations. Applying the concretization function γ on merged relations

maps the relations back to the concrete domain, thus yielding the final merged value.

Letting � denote relational merges as described above, the whole process can be now

succinctly described:

let merge l v1 v2 = γ(α(l) � α(v1) � α(v2))

4.4.1 Concretizing Orders

The concretization function γord aids in the process of concretizing orders, such as

Rob, into data structures. An inherent assumption behind γord is that there is a single

ordering relation that guides concretization. This is indeed true for the data structures

listed in Table. 4.1. The ordering relation is required to be ternary, and is naturally

interpreted as a directed graph G where each tuple (u, a, v) denotes an edge from u to

v with a label a. Binary orders, such as Rob, are a special case where the labels are all

same7 Concretization works in the context G. The first step is transitive reduction,

where an edge (u, v) is removed if there exists edges (u, v′) and (v′, v) for some v′.

A transitively reduced graph is said to be conflict-free if for every vertex u, there do

not exist two edges with the same label a. We assume that α always generates orders

that are conflict-free after transitive reduction (like Rob and Rto). If there indeed are

two edges of form (u, a, v) and (u, a, v′), they are said to be in conflict. Conflicts that

may arise due to a merge are resolved by inducing an order between v and v′ using

a provided arbitration relation ord , which adds either a (v, b, v′) or (v′, b, v) edge for

some label b. Transitive reduction at this point removes one of the conflicting edges,

thus resolving the conflict. This process is repeated until all conflicts are resolved, at

which point the graph is isomorphic to the merged data structure, and the latter can

be reconstructed by simply traversing the former. The process is illustrated for the

Rto relation shown in Fig. 4.13. On the left hand side of the figure is the graph G

7We shorten (u, a, v) in the presentation to (u, v) when appropriate.
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Figure 4.13.: Resolving conflicts while concretizing Rto

of the Rto relation that is obtained by merging the Rto relations of two trees. Both

trees add d and e (resp.) as a right child to b, which results in tuples (b, R, d) and

(b, R, e) in Rto. The tuples translate into conflicting edges shown (colored) in G. To

resolve conflicts and generate an Rto relation consistent with the tree structure, we

can invoke γord with (for instance) the following definition of ord :

let ord x y = if x<y then (y,L,x) else (x,L,y)

Assuming d < e, ord adds an edge (e, L, d), which lets (b, R, d) to be removed during

transitive reduction, resulting in the graph shown on the right, which is clearly a

tree. We have implemented concretization functions using this interpretation for all

the data structures shown in Table 4.1.

4.5 Implementation

Quark is an implementation of MRDTs realized in OCaml and built on top of

a distributed storage abstraction. Its key innovation is the use of a storage layer

that exposes a Git-like API, supporting common Git operations such as cloning a

remote repository, forking off branches and merging branches using a three-way merge

function. Quark builds on top of these features to achieve a fault-tolerant, highly-

available geo-replicated data storage system. For example, creating a new replica is
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Figure 4.14.: The behavior of Quark content-addressable storage layer for a stack

MRDT. A and B are two versions of the stack MRDT. Diamonds represent the

commits and circles represent data objects.

realized by cloning a repository, and remote pushes and pulls are used to achieve inter-

replica communication. Quark also supports a variety of storage backends including

in-memory, file systems and fast key-value storage databases, and distributed data

stores.

4.5.1 Quark store

The main challenge in realizing MRDTs as a practical programming model is

the need to efficiently store, compute and retrieve the LCA given two concurrent

versions. Quark uses a content-addressable block store for storing the data objects

corresponding to concurrent versions of the MRDT as well as the history of each of

the versions. Given that any data structure is likely to share most of the contents with

concurrent and historical versions, content-addressability maximizes sharing between

the different versions.

Consider the example presented in Fig. 4.14a which shows an execution trace on

a stack MRDT. There are two versions A and B. Version B is forked off from A
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and is merged on to A. Since B pops the element 2, it is no longer present in the

merged version. B is of course free to further evolve concurrently with respect to A.

The diamonds represent the commits that correspond to each historical version of the

stack and circles represent data objects.

Fig. 4.14b and Fig. 4.14c represent the layout of the Quark store before and after

the merge. Quark uses a content-addressable append-only block store for data and

commit information. Objects in the block store are addressed by the content of their

hashes. Correspondingly, links between the objects are hashes of the contents of the

objects. The reference to the two versions A and B are stored in a mutable ref store.

The versions point to a particular commit. The commits in turn may point to parent

commits (represented by dashed lines between the diamonds), and additionally may

point to a single data object. Data objects stored in the block store may only point

to other data objects.

Observe that in Fig. 4.14b, there is only one copy of the stack which is shared

among both the concurrent and historical versions. Notice also that the branching

structure of the history is apparent in the commit graph. In this example, we are

merging the commits c3 and c4. Quark traverses the commit graph to identify the

lowest common ancestor c2 and fetches the version of the stack that corresponds to

the commit. After the merge, a new commit object c5 is added along with a new

data object for 3 which points to the existing data object 1 in the block store. The

version ref for A in the ref store is updated to point to the new commit c5. As our

experimental results indicate, the use of a content-addressable store makes it efficient

to implement MRDTs in practice.

4.6 Evaluation

We have evaluated our approach implemented in Quark on a collection of data

structure and applications.
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Table 4.2.: A description of data structure benchmarks used in Quark evaluation.

Data Structure Description

Set From OCaml stdlib. Implemented using AVL Trees.

Heap Okasaki’s Leftist Heap [85]

RBSet & RBMap Okasaki’s Red-Black Tree with Kahrs’s deletion [86]

Graph From the Functional Graph Library [87,88]

List Standard implementation of a cons list

Queue From OCaml stdlib.

Rope A data structure for fast string concatenation from [89]

TreeDoc A CRDT for collaborative editing [24] but

without replication awareness.

Canvas A data structure for collaborative freehand drawing

4.6.1 Data Structure Benchmarks

The summary of data structures that we consider is given in Table. 4.2. Some

of these benchmarks are taken directly from the standard library, and span over 500

lines of code defining tens of functions. Quark lets these data structures be used as

MRDTs as such with just a few (less than 10) additional lines of code to define a

relational specification and derive merges. To evaluate how these MRDTs fare under

the version control-inspired asynchronous model of replication that is central to our

approach, we constructed experiments that specifically answer two questions:

1. How does the size of the diff between versions change relative to the size of the

data structure as the latter grows over time, and

2. How much is the overhead of merge relative to the computational time on the

data structure.
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Figure 4.15.: Diff vs total-size for Heap and List

As replicas periodically sync, they perform three-way merges to reconcile their ver-

sions, which requires both remote and local versions be present. Since transmitting

a version in its entirety for each merge operation is redundant and inefficient, Quark

computes the diff between the current version and the last version that was merged

(using the content-addressable abstraction from Sec. 4.5), and transmits this diff in-

stead. Smaller diff size (relative to the total size of the data structure) indicates

that the data structure is well-suited to be a mergeable type, and the corresponding

MRDT can be efficiently realized over Quark.

To measure the diff size relative to the data structure size for each data type, we

conduct controlled experiments where a single client performs a series of randomly

distributed operations on the data structure and commits a version. The exact na-

ture of operations is different for different data types (insertion and deletion for a

tree, remove min for a (min) heap etc), but in general the insertion-deletion split is

75%-25%, which lets the data structure grow over time. Since a client can perform

any number of operations before synchronizing, we conduct experiments by gradu-

ally increasing the number of operations between two successive commits (called a

round) in steps of 10 from 10 to 150. For every experiment, at the end of each round,

we measure the size of the data structure and the diff size between the version be-
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Figure 4.16.: Computation vs merge time for List and Red-Black Tree

ing committed and the previous version (computed by Quark’s content-addressable

abstraction). The experiments were conducted for all the data structures listed in

Table. 4.2, and the results for the best and worst performing ones (in terms of the

relative diff size are shown in Fig. 4.15. The graphs also show the size of the gzipped

diff size since this is the actual data transmitted over the network by Quark.

Heap performs the best, which is not surprising considering that its tree-like struc-

ture lends itself to natural sharing of objects between successive versions. Inserting a

new element into a heap, for instance, creates new objects only along the path from

the root to that element, leaving the rest same as the old heap (hence shared). Other

tree-like structures, including red-black and AVL trees, ropes, and document trees,

also perform similarly, with their results being only slightly worse than heap. List

performs the worst, again an unsurprising result considering that its linear structure

is not ideal for sharing. For instance, adding (or removing) an element close to the

end of a list creates a new list which only shares a small common suffix with the

previous list. Nonetheless, as evident from Fig. 4.15b, its diff size on average is still

less than the total size of the list, and grows sub-linearly relative to the latter. In

summary, diff experiments show that version control-inspired replication model can
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be efficiently supported for common data structures by transmitting succinct diffs

over the network rather than entire versions.

To measure the overhead of merges relative to the computational time, we per-

formed another set of experiments involving three replicas, each serving a client, con-

nected in a ring layout over a (virtual) network with latency distributed uniformly

between 10ms and 200ms. Each client behaves the same as with the previous (diff)

experiments, except that there is a synchronization that follows the commit at the

end of each round that merges the committed version with the remote version and

returns the result (remote version comes from the replica upstream in the ring). We

record the time spent merging the versions (“merge time”), and also the time spent

performing operations in each round. As before, we gradually increase the number

of operations per round, which inevitably increases the computational time and may

increase the merge time depending on the data structure. A better performing data

structure is one whose merge time increases sub-linearly, or remains constant, with

the increase in computation time. A worse performing one is where merge time in-

creases linearly or more. The results for best and worst performing data structures.

in this sense, are shown in Fig. 4.16. A list performs the best here as its insertion

and deletion operations are O(n), making its computational time degrade faster with

the increase in number of operations (kn time for computation vs n time for merge

in a round of k operations). Red-Black tree (-based set) performs the worst as its

O(log(n)) operations are asymptotically faster than O(n) merge. Nonetheless, both

metrics are the same order of magnitude, which is several orders of magnitude less

than the mean network latency. Moreover, since MRDTs do not require any coor-

dination, synchronization (hence merges) can always be performed off the fast path,

thus avoiding any latency overhead due to a merge.
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Table 4.3.: Quark application Benchmarks

Application SLOC Types Txns DB Size (MB) Avg. diff size (KB)

TPC-C 1081 9 3 37.9 - 47.19 19.37

TPC-E 1901 19 5 93.3 - 124.30 22.89

RUBiS 998 8 5 9.69 - 11.06 2.62

Twissandra 870 5 4 1.34 - 3.69 4.612

4.6.2 Application Benchmarks

We have also implemented four large application benchmarks by composing several

mergeable data types derived from their relational specifications. Table 4.3 lists their

attributes, and the summary of diff experiments we ran on them.

TPC-C and TPC-E are well-known online transaction processing (OLTP) bench-

marks in the database community [56]. TPC-C emulates a warehouse application con-

sisting of multiple warehouses with multiple districts, serving customers who place

orders for items in stock. Each such application type (e.g., customer ) is imple-

mented as a record with multiple fields, some of which are mergeable. For instance,

c ytd payment field of customer record is a mergeable counter recording the cus-

tomer’s year-to-date payment. Such records themselves are made mergeable through

a relational specification similar to that of a pair type (Sec. 4.3). In TPC-C, there

are a total of 9 such record types (Types column in Table 4.3). A mergeable red-

black tree-based map (“RBMap”) performs the role of a database table in our case.

The database, which is otherwise a collection of (named) tables, is simply another

mergeable record in our case that relates named fields to RBMaps corresponding to

each table. The type design is shown in Fig. 4.17. TPC-C has 3 transactions that

we implemented in our model as functions that map one version of the database to

other, returning a result in the process. Concretely:

type ’a txn = db -> ’a*db
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type warehouse = {w_id: id; w_ytd: counter}

type customer = {c_w_id: id; c_d_id: id; c_id: id;

c_name: string; c_bal: counter;

c_ytd_payment:counter ;}

type db = {warehouse_table: (id , warehouse) rbmap;

customer_table: (id*id*id , customer) rbmap;

...}

Figure 4.17.: Composition of mergeable data structures in TPC-C (simplified for

presentation). Database ( db ) is composed of mergeable RBMap, which is composed

of application-defined types, and ultimately, mergeable counters.

Since the database is not in-place updated, transactions are isolated by default. A

transaction commit translates to the commit of a new version of type db , which is

then merged with concurrent versions of db created by concurrently running trans-

actions. We evaluated our TPC-C application composed of mergeable types by first

populating the database ( db ) as per the TPC-C specification, and then performing

the diff experiments as described above with 500 transactions. The database size

grew from 37.9MB to 47.19MB during the experiment (DB Size column in Table 4.3),

with the average size of diff due to each transaction being constant around 20KB

(Avg. diff size column).

We have implemented three other applications, including the TPC-E and RU-

BiS [67] benchmarks, and a twitter-clone called Twissandra [66]. Our experience of

building and experimenting with these applications has been consistent with our ear-

lier observations that (a). complex data models of applications can be realized by

composing various mergeable data types (b). the resultant application state lends

itself to efficient replication under Quark’s replication model with well-defined and

useful semantics.
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4.7 Related Work

The idea of versioning state, which is the cornerstone of the approach presented

in the paper, bears resemblance to Concurrent Revisions [90, 91], a programming

abstraction that provides deterministic concurrent execution, and Tardis [92], a key-

value store that also supports a branch-and-merge concurrency control abstraction.

However, unlike these previous efforts which provide no principled methodology for

constructing merge functions, or reasoning about their correctness, the primary con-

tribution of this chapter is in the development of a type-based compositional deriva-

tion strategy for merge operations over inductive data types. It is expected that

the formalization provided in this paper significantly alleviates the burden of reason-

ing about state-based replication. Furthermore, the integration of a version-based

mechanism within OCaml allows a degree of type safety and enables profitable use of

polymorphism not available in related systems.

Burckhardt et al. [70] present an operational model of a replicated data store that

is based on the abstract system model presented in [71]; their design is similar to the

system model described in the previous chapter. In these approaches, coordination

among replicas involves transmitting operations on replicated objects that are per-

formed locally on each replica. In contrast, Quark fully abstracts away such details -

while programmers must provide abstraction and concretization functions that map

datatype semantics to the language of relations and sets, the reasoning principles

involved in performing this mapping are not dependent upon any specific storage or

system abstraction, such as eventual consistency [71,93]. Given a library of predefined

functions for common data types, and a methodology for deriving their composition,

the burden of migrating sequential data types to a replicated setting is substantially

reduced.

Modern distributed systems are often equipped with only parsimonious data mod-

els (e.g., key-value model) that complicate program reasoning, and make it hard to

enforce application integrity. Some authors [82] have demonstrated that it is possible
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to bolt-on high-level consistency guarantees (e.g., causal consistency) [64,94] as a shim

layer service over existing stores, but these approaches do not consider integration

of these services within the type abstractions provided by a high-level client-facing

language.

A number of verification techniques, programming abstractions, and tools have

been proposed to reason about program behavior in a geo-replicated weakly con-

sistent environment. These techniques treat replicated storage as a black box with

a fixed pre-defined consistency model [8, 36, 47–50]. On the other hand, composi-

tional proof techniques and mechanized verification frameworks have been developed

to rigorously reason about various components of a distributed data store [51, 74].

Quark is differentiated from these efforts in its attempt to mask details related to

distribution but unnecessary for defining meaningful (convergent) merge operations.

An important by-product of this principle is that Quark does not require algorith-

mic restructuring to transplant a sequential or concurrent program to a distributed,

replicated setting; the only additional burden imposed on the developer is the need

to provide abstraction and concretization functions for compositional data types that

can be used to derive well-formed merge functions. As demonstrated in this chapter,

this is significantly simpler than reasoning about weakly-consistent behaviors.

Quark shares some resemblance to conflict-free replicated data types (CRDT) [65].

CRDTs define abstract data types such as counters, sets, etc., with commutative op-

erations such that the state of the data type always converges. Unlike CRDTs, the

operations on mergeable types in Quark need not commute and the reconciliation

protocol is defined by merge functions derived from the semantics of the data types

whose instances are intended to be replicated. The lack of composability of CRDTs

is a major hindrance to their utility that forms an important point of distinction with

the approach presented here. A CRDT’s inability to take advantage of provenance in-

formation (i.e., LCAs) is another important drawback. As a result, constructing even

simple data types like counters are more complicated using CRDTs [65] compared to

their realization in Quark.
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Finally, on the language design front, there have been approaches where relations

feature prominently, e.g., Datalog [95] and Prolog [96]. In such languages, data is rep-

resented as “facts” described by relations, and computation on data is structured as

relational queries. In contrast, Quark does not advocate a new style of programming,

but rather uses relations to augment capabilities of data structures in an existing

model of programming. Relations have been employed to reason about programs and

data structures, for example in shape analysis [97–99], but the focus is always on

using relations to prove correctness of programs, not on using them as convenient

run-time representations.
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5 CONCLUDING REMARKS AND FUTURE WORK

In pursuit of low latency, high availability, trust decentralization, and other such lofty

goals, data-intensive applications have unraveled the elegant abstractions of data stor-

age systems that would otherwise guarantee their safety and integrity. While the per-

formance benefits have accrued as expected, the lack of suitable programming models

and a non-existent tool support has made it hard to recover the safety guarantees for

even simplest of such applications. The high complexity of these applications means

that it is almost impossible for developers to have a tractable mental model to reason

about their correctness, and obtain any measure of confidence in their ability to han-

dle safety-critical systems. Addressing this problem has been the focus of this thesis.

Towards this end, we presented several new formal systems, reasoning methods, au-

tomation techniques, and analysis tools that push the envelope in our understanding

of complex data-intensive systems.

In Chapter 2, we showed that weakly-isolated transactions, which have hitherto

been thought of as implementation hacks, can be put on the same formal footing

as their serializable counterparts. Importantly, we showed that this formalism need

not be based on low-level concepts such as read-write traces, as some authors have

proposed, but rather can be structured around high-level artifacts exposed to ap-

plications, such as database states and SQL operations, which are easier to reason

about in the context of application semantics. The simplicity of this formalism comes

to fore in the succinct and easy-to-understand specifications of weak isolation levels

implemented on various commercial databases, and in the lightweight compositional

proof system for database transactions that is a modest extension of well-studied

Rely-Guarantee reasoning framework. The simplicity of sets and relations – the logi-

cal artifacts used in the formalism, has paved way for considerable proof automation

implemented in ACIDifier tool.
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The work presented in Chapter 2 is only the beginning of what could be a long and

fruitful research exploration. Firstly, while the isolation specifications, in conjunction

with the Rely-Guarantee proof framework, allow rigorous reasoning about program

correctness, the specifications themselves are derived by clever and mostly-informal

reasoning about weak isolation implementations on databases (see Sec. 2.5.1 for an

example). To gain additional confidence in the verification process, there is a need

to formalize this aspect of reasoning. There are at least two ways this can be at-

tempted – either using the gradual refinement technique exemplified by the IronFleet

system [100], or by composing “litmus tests” ála weak memory models [78] that es-

tablish the fidelity of formal models of isolation to their implementations. Secondly,

despite considerable proof automation, ACIDifier still requires rely and guarantee

annotations to be provided by the programmer. Future research may alleviate this

burden either by synthesizing annotations from sample I/O traces [101], or by using

bounded verification instead of complete verification. Thirdly, the approach of ab-

stracting away complex lock-based implementations by simple specifications, which

was demonstrated for weak isolation, can be applied to concurrency control mecha-

nisms in general. For instance, reasoning about mutual exclusion algorithms, which

is currently done at a low level using, for e.g., Concurrent Separation Logic [102],

could be lifted to a high-level using appropriate logical abstractions that model the

state of a concurrent program as a whole rather than pointers and memory locations.

In Chapter 3, we showed that the operational semantics of a distributed program

under weakly-consistent state replication, can be captured succinctly using a single

evaluation rule that uses nothing more than sets and relations (Sec. 3.4.3). The rule

accounts for vagaries of asynchronous distributed systems, including network par-

titions, message losses and reorderings, system failures etc. The simple operational

semantics immediately led to a symbolic execution and bounded verification technique

that is parametric over declarative specifications of weak consistency. The technique,

implemented in a tool Q9, has proven to be surprisingly scalable and effective as

demonstrated by the statistics from Table 3.3. One direction that future research



146

could take is towards formulating a Q9-inspired approach for bounded verification of

relaxed-memory programs. Like weak consistency, weak memory is also specified via

axiomatic semantics operating over program traces, and like weak consistency vari-

ants, weak memory variants are comparable. It is therefore conceivable to formulate

an evaluation rule that relates the operational semantics of a weak memory program

to its axiomatic semantics, and then use weak memory specifications to control the

behavior of the program. The abstract machine thus obtained can be used as a basis

for symbolic execution and bounded verification. Another potential avenue for future

research is formulating an variant of partial-order reduction for Q9-style symbolic

model checking, that exploits the repeating patterns in the executions of weak con-

sistency programs. Successful partial-order reduction has the potential to push the

verification bound high enough that it can be enforced at runtime without significant

performance penalty, thus giving promoting bounded verification to full verification

essentially for free.

In Chapter 4, we demonstrated that the seemingly random choices (e.g., “add-

wins” or “remove-wins”) made by conflict-free replicated data types can in fact be

based on one underlying principle. We demonstrated how the principle can be used

to derive replicated data types from inductively-defined sequential data types that

are common in functional languages. The chapter also introduces a model of repli-

cation based on version control systems such as Git, and shows how it can support

mergeable replicated data types (MRDTs) that are more expressive that conflict-

free replicated data types. A programming framework embedded in OCaml, called

Quark, that natively supports MRDTs and includes the aforementioned principled

derivation logic for merge functions, has also been presented. One area of concern

in Quark is the computational efficiency of derived merges, which could be a topic

of future research. In particular, there is a need for an enhanced derivation/syn-

thesis algorithm that exploits the content-addressable abstraction offered by Quark

to synthesize efficient merges. Another direction for productive future research is

towards generalizing the merge derivation to take into account constraints imposed
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by complex application-specific invariants. This lets the benefits of Quark reach such

sophisticated applications as blockchains.
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