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Alzheimer’s disease (AD), is a devastating neurodegenerative disorder that destroys the 

patient’s ability to perform daily living task and eventually, takes their lives. Currently, there are 

5.8 million people in North America that suffer from AD. This number is projected to by 13.8 

million by the year of 2050. For many years, researchers have been dedicated on performing 

automated diagnosis based on neuroimaging. There are critical needs in two aspects of AD: 1) 

computer-based AD classification with MRI images; 2) computer-based tools/system to enhance 

the AD patient’s quality of life. We are addressing these two gaps via two specific objectives in 

this study. 

For objective 1, the task is to develop a machine-learning based intelligent model for 

classification of AD conditions (Normal Control [NC], Mild Cognitive Impairment [MCI], 

Alzheimer’s disease [AD]) based on MRI images. Specifically, four different deep learning models 

were developed and assessed. The overall average accuracy for AD classification is 81.5%, 

provided by Multi-Layer-Output model. 

. For objective 2, a deep learning model was developed and evaluated to recognitze three 

specific type of indoor scenes (bedroom, living room and dining room). An accuracy of 97% was 

obtained. 

This study showed the potential of application in deep learning models for two different 

aspects of AD - disease classification and intelligent model-based assistive device for AD patients. 

Further research and development activities are recommended to further validate these findings on 

larger and different datasets. 
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 INTRODUCTION 

1.1 Introduction 

For many years, the temptation of achieving machine intelligence has drawn the interests 

of many researchers and the public. Many films on artificial intelligence have been made, 

demonstrating people’s constant attention on the subject matter. However, not many advances 

have been accomplished in the meantime. This is due to two major obstacles. One obstacle is the 

difficulty in performing accurate and efficient feature engineering (Domingos, 2012). Feature 

engineering refers to the process of mathematical characterization of unique evidences that relate 

to a target task. It involves the utilization of domain knowledge, which is problematic because it 

requires the developer to be an expert in the target domain. Even if the developer did acquire 

such experience, it could still be difficult if the scientific understanding of such a domain was 

still indefinite. The features engineered from uncertain observations and questionable 

speculations would not lead to a discriminative representation. Most of the time, what happened 

to manual feature engineering was constantly tuning the crafted features to find the best 

approximation. The second obstacle is the inability to process large amounts of data and complex 

feature representation. Many classification tasks are very complex. Naturally, for such a task, we 

anticipate a feature representation with huge complexity or, its most straightforward form, a 

representation with a huge number of features. Statistically, to train a classifier to use such a 

huge feature representation, a gigantic dataset is needed to avoid the overfitting problem. 

Unfortunately, computation hardware back in the day was not capable of handling heavy 

computation load like this.  

Since 2008, an advanced form of machine learning known as deep learning has caught 

the interest of many researchers and industries. The idea of deep learning is to perform multiple 
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levels of feature extraction, creating a high-level feature embedding automatically. Compared 

with conventional machine learning, deep learning applies classification using similar methods 

such as artificial neural network (ANN), support vector machine (SVM) and so on. The 

difference is deep learning performs feature extraction on the raw data while the conventional 

machine learning uses manually crafted features. This advance from shallow learning to deep 

learning theoretically solved the feature engineering problem mentioned earlier. Another critical 

factor behind this advancement was the improvement on the computing hardware, as shown in 

Figure 1.1. Given this opportunity, many deep learning models have been introduced and proved 

to be very effective in many tasks, such as AlexNet (Krizhevsky, Sutskever, & Hinton, 2012), 

GoogLeNet (Szegedy, Liu, Jia, & Sermanet, 2015), ResNet (He, Zhang, Ren, & Sun , 2016), and 

DenseNet (Huang, Liu, Van Der Maaten, & Weinberger, 2017). The rapid development of deep 

learning has altered the landscape of many scientific and industrial areas. Machine intelligence 

techniques have boosted the performance of facial recognition, speech recognition, natural 

language processing, and many other applications. Among other applications, computer vision 

related machine intelligence is one the most popular research field. Visual cognition is the most 

common and direct method of how human interact with the world. Ideally, by mimicking human 

visual perception, we could teach machine recognize the world the same way as we do.  

One of the rising research foci in imaging powered machine learning is the learning of 

medical imaging. To care the wellness of human being is always one of the most significant 

tasks of scientists. Medical imaging, benefited from the advancement of equipment, has become 

more and more favored by physicians. Instead of looking at data from charts, medical imaging 

now can help physicians visually reconstruct patients’ situation from two or even three 
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dimensions. Also, medical imaging brings less discomfort to the patients because it is non-

invasive.  

Of all the human organs and systems, the brain and nervous system benefit the most from 

advanced medical imaging. Being the most important and delicate organ in humans, the brain is 

always prominent in medical research. Consisting of numerous brain cells, matters, and bodily 

fluids, the brain controls and coordinates the human body to work collectively and form the 

world’s most robust system. The study of the brain, or neurology, has always been limited by 

how to effectively examine the brain. So far, other than postmortem dissection, neuroimaging is 

the most common technique of obtaining evidence from the brain. The common imaging 

acquisition includes magnetic resonance imaging (MRI) and positron emission tomography 

(PET).  

One common brain disease that is worth investigating is Alzheimer’s disease (AD). 

Alzheimer’s disease is a chronic neurodegenerative disease that slowly destroys the patient’s 

brain. It was named after Dr. Alois Alzheimer who gave the first description of the disease in 

1906 (Berchtold & Cotman, 1998). Alzheimer’s is the most common form of dementia, 

contributing to 60% to 80% of the cases (World Health Organization, 2018). Currently, the 

clinical diagnosis of AD is determined by measuring the patient’s cognitive decline. However, 

studies show that a definite diagnosis of cognitive impairment appears in the late stage of AD 

(Pawlowski, Meuth, & Duning, 2017). If neurologists could manage to provide a diagnosis in 

AD’s moderate stage, or mild cognitive impairment (MCI), treatment and preventive care could 

be provided to the patients, improving the family’s wellness. 

Most of the research done in this field focuses on using biomarkers in the nervous system 

to perform an automated diagnosis. According to our current biochemical and pathological 
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understanding, abnormal existence of biomarkers could be found in patients of AD (Hashimoto, 

Rockenstein, Crews, & Masliah, 2003; Wenk, 2003). However, given the limited understanding 

on the disease, these biomarkers might not be accurately related to the disease, leading to the 

relative unreliability of these methods.  

Aside from the damage caused by the disease to the patients, it also brings massive 

damage to the caregivers and the families. Alzheimer’s patients gradually lose their ability to live 

by themselves. Sooner or later, caregivers need to intervene in patients’ daily life. However, in 

the early stage of AD, patients tend to have more lucidity than confusion, meaning that, 

technically, they do not require as much attention as patients in late stage AD. In reality, the 

caregivers, who often are unpaid or are family members, would not take the risk and provide the 

care anyway to be safe. This process can be very prolonged because the progressiveness of AD is 

highly unpredictable, leading to anxiety and agony for both patients and caregivers.  

Therefore, in this work, I reported several models targeted on improving the wellness of 

both AD patients and their caregivers. Specifically, several deep learning models were developed 

and investigated to increase the performance of the AD stage classification (normal control [NC], 

mild cognitive impairment [MCI], Alzheimer’s disease [AD]). Additionally, an intelligent model 

was developed specifically for identifying general indoor environments which would serve as a 

segment of AD assistive system. I report the development of the indoor scene understanding 

model based on deep learning, targeting three indoor room types: living room, bedroom, and 

dining room. The proposed model will be capable of identifying these typical indoor room types 

based on a single image. The model hyper-parameters were selected through a grid search to 

obtain the optimal combination. 
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1.2 Organization 

This dissertation contains five major chapters and several appendices. Chapter 1 provides 

an overall introduction to the research area and a general statement to the objectives of this work.  

Chapter 2 provides a thorough review of related works. It begins with the pathology and 

biochemistry of Alzheimer’s disease and the current development of Alzheimer’s caregiving and 

assistive devices. Next, prior research on the automated diagnosis of AD is reviewed from both 

shallow learning and deep learning perspectives. Then, the prior research on indoor scene 

understanding is outlined. Finally, a detailed analysis of current research illustrates the existing 

gaps in the target research domain.  

Chapter 3 elaborates the objectives of this dissertation. 

Chapter 4 reports the proposed methodologies for the mentioned objectives. In this 

chapter, the deep 3D convolutional neural network (CNN) model and the deep 3D residual 

neural network (ResNet) model are first elaborated. The novel revision of Multi-Layer-Output 

(MLO) is presented for each of the two proposed models. Finally, a deep 2D ResNet model is 

proposed for indoor scene understanding. 

Chapter 5 describes the experiment results and discusses the observed data. A 

comparison between the proposed methods and other state-of-the-art frameworks is also 

conducted in Chapter 5. 

Chapter 6 provides the conclusion of the proposed work, discusses the limitations of the 

framework, and provides recommendations for future research.
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Figure 1.1 Transistors per microprocessor. 
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 LITERATURE REVIEW 

Being able to differentiate the progressiveness of Alzheimer’s disease patients has always 

been challenging. Due to our lack of understanding on this disease, such judgement can only be 

done by very experienced neurologists with unavoidable deviation. Therefore, to automatically 

perform such judgement through computer-aided system is very valuable. On the other hand, to 

assist early stage Alzheimer’s patients, to enhance their ability of individual living, has both 

scientific and realistic implications.  

In this chapter, the basic pathology and biochemistry of AD were first briefly reviewed. 

After that, the clinical diagnosis criteria of AD was introduced. Following was the review on the 

previous conducted research, from both shallow learning perspective and deep learning 

perspective. Finally, the review of AD assistive device and indoor scene understanding was 

provided. 

2.1 Automated Diagnosis of Alzheimer’s Disease 

The Alzheimer’s disease (AD), the major form elder cognitive impairment, is an 

irreversible, progressive neurodegenerative brain disorder that slowly destroys patients’ 

cognitive function and eventually, takes their lives. For the past 20 years, the reported death from 

AD has increased by 145% while other major disease showed significant decreases (Gaugler et 

al., 2019). It is reported that there are 5.9 million adults aged 65 and more, with Alzheimer’s 

disease and related dementia (ADRD) in North America, and this number is estimated to be 13.9 

million by the year 2060 (Gaugler et al., 2019). This translates into a new case every 33 seconds 

(Corrada et al., 2010; Hebert et al., 2001). Given its significance, the World Health Organization 

officially recognized AD as the most common form of dementia and possibly contributes to 60% 

- 70% of cases (World Health Organization, 2012). 
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2.1.1 Pathology and Biochemistry 

In 2008, the World Health Organization (WHO) declared that dementia is a priority 

condition through the Mental Health Gap Action Program. Duthey (2013) gave a comprehensive 

overview on the current mental healthcare situation and related research. The author emphasized 

the significance in early mental risk identification and diagnosis. The author also identified that 

Alzheimer’s disease is the most common and arduous form of dementia because Alzheimer’s 

disease is currently irreversible and incurable. To make things worse, there are no biomarkers 

that could identify Alzheimer’s disease perfectly before the disease progresses. The most 

common approaches are combining brain imaging and clinical memory assessment. The 

common symptoms of Alzheimer’s disease was shown in Table 2.1 (World Health Organization, 

2012). 

The current pathological understanding of AD is, abnormal processing of the 

transmembrane Aβ precursor protein, causing a family of peptides that form the Beta-amyloids. 

The insoluble of these peptides, mostly Aβ42, have a propensity for self-aggregation into fibrils 

that form the senile plaques. Also the abnormal aggregation of microtubule-associated tau 

protein, will disrupt and kill the nerve cells (Iqbal, Liu, Gong, & Grundke-Iqbal, 2010; Medeiros, 

BagliettoVargas, & LaFerla, 2011; Mietelska-Porowska et al., 2014; Singh, Srivastav, Yadav, 

Srikrishna, & Perry, 2016). Observation of damaged neurons and synapses in the cerebral cortex 

and subcortical regions can be found from patients. These damages caused the degeneration in 

the brain, affecting patient’s cognitive function. 

2.1.2 Clinical Diagnosis of Alzheimer’s Disease 

The major difficulty in prodromal Alzheimer’s disease diagnosis is because there is no 

clear biomarker to identify it. According to WHO (World Health Organization, 2012), 
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Alzheimer’s disease is most likely to develop after age 65. Clinical reports showed that 

prodromal Alzheimer’s disease, amnestic mild cognitive impairment and aging cognitive normal 

share very similar symptoms. Petersen et al. (1999) launched a research targeted on 

characterizing clinical subjects with mild cognitive impairment. The researchers conducted an 

experiment among 76 mild cognitive impairment patients with 234 healthy control subjects and 

106 mild Alzheimer’s disease patients. The test subjects were divided into three groups. Six 

mental function evaluations were conducted on the subjects. The classification of dementia and 

Alzheimer’s disease were done using criteria published by Spitzer and Williams (1980). The 

results showed that the primary difference between healthy normal and mild cognitive 

impairment is the appearance of amnesia while other cognitive functions showed similar result. 

For mild cognitive impairment and mild Alzheimer’s disease, these patients had similar 

evaluation in amnesia but Alzheimer’s disease patients also had other cognitive difficulties. 

Dubois and Albert (2004) also conducted research on the topic with biological interpretation 

rather than clinical performance. The researcher later revised the diagnostic criteria of 

Alzheimer’s disease on the basis of National Institute of Neurological Disorders and Stroke 

Alzheimer Disease and Related Disorders [NINCDS—ADRDA] criteria (Dubois et al., 2007). A 

detailed clinical diagnostic criteria can be found in Table 2.2. The new criteria group the 

symptoms into one core diagnostic criteria and four supportive features. A subject with a 

symptom from core criteria (cognitive impairments) and one or more supportive features (e.g., 

abnormal biomarker, cerebrospinal fluid, functional/structural MRI, etc.) could be diagnosed as 

Alzheimer’s disease. This set of diagnostic criteria has been widely adopted by future research. 

To perform the clinical diagnosis of AD, according to the National Institute of Aging’s 

revised core diagnostic criteria, largely relies on the observation of cognitive function 
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impairment, deficit and insidious onset (McKhann et al., 2011). Another way for definite 

diagnosis is through postmortem autopsy (Klppel et al., 2008). The biomarker evidence, such as 

low cerebrospinal fluid (CSF) Aβ42 and elevated CSF tau, can help increase the accuracy of 

diagnosing the clinical dementia is AD pathophysiological process. But it is not suggested to add 

AD biomarker test to routine diagnostic process due to lack of understanding and therefore need 

further research (McKhann et al., 2011). The objectives of AD research partially focus on 

prodromal diagnosis using noninvasive examination. Recently, researchers have been 

investigating the possibility of using neuroimaging as evidence to perform AD diagnosis and 

have made great progress. These work are inspired by the massive tangible and latent 

information embedded in different imaging modalities like Magnetic Resonance Imaging (MRI) 

and Positron Emission Tomography (PET). Some early successes were achieved using statistical 

based method like SVM and Bayesian classifier (Plant et al., 2010). And soon the community 

has shifted towards deep learning oriented research. 

2.1.3 Automated Diagnosis by Machine Learning 

2.1.3.1 Shallow Learning 

The use of machine learning and neuroimaging had been very popular since 21st century. 

This is mostly because machine learning is capable of processing massive high-dimensional data 

while humans perform diagnosis on very limited amount of data and personal experience. 

In early years, most of researchers used methods based on volumetric measurement of 

regions of interest (Convit et al., 2000; Juottonen et al., 1998). De Leon et al. (1997) proposed to 

use the volume reduction of hippocampal as major criteria to distinguish dementia of the 

Alzheimer’s type (DAT) from mild cognitive normal (MCI) and elderly (NL). The researchers 

conducted the experiment on three groups of screened age- and education-matched subjects. 
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Additionally, when discriminating DAT from MCI subjects, the use of gyrus volume had 

further improved the classification accuracy. Thus they reached a conclusion that the 

hippocampal volume reduction in temporal lobe and the gyrus volume reduction in the lateral 

lobe could be adopted as a major feature in prodromal Alzheimer’s disease prediction. Similar 

results were obtained by other researchers also (Colliot et al., 2008; Gerardin et al., 2009). 

The second category used voxel-based methods and it has been the most popular 

structural MRI based approach. In this class, the features are created by the density of voxel. 

Many research had been done using this method (Davatzikos, Fan, Wu, Shen, & Resnick, 2008; 

Good et al., 2002; Lao et al., 2004; Misra, Fan, & Davatzikos, 2009). 

A straightforward voxel-based was introduced by Kloppel et al. (2008). In their research, 

the tissue density of grey matter was directly extracted as a feature. The researcher adopted 

support vector machine as classifier and first ran the test using feature extracted from whole 

brain MRI. Ninety-six percent of the verified Alzheimer’s subjects were correctly discriminated. 

They also introduced extended version which they train the classifier only with the features from 

frontotemporal lobe image acquired by one equipment, and later tested this classifier with data 

collected from another scanner. The results showed a discrimination of 89% correctness. 

Fan, Shen, Gur, Gur, and Davatzikos (2007) had introduced another representative voxel-

based algorithm called COMPARE. In their work, the brain MRIs were segmented into 

differentiated regions and the total voxel values were extracted as feature representations. These 

regions were segmented according to the density map of tissue class in the brain (grey matter, 

white matter and cerebrospinal fluid) and the regions that highly correlated with classification 

were discriminated. The selected feature representations were fed to a support-vector-machine-

based classifier and tested using a leave-one-out cross-validation strategy. The test results 
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showed that their approach achieved a 91.8% accuracy for females and 90.8% accuracy for 

males. 

The third category is based on cortical thickness (Desikan et al., 2009; Lerch et al., 2005). 

The features are usually the value of thickness at designated surface, which represent the atrophy 

of brain. Desikan et al. (2009) conducted an experiment on 313 subjects from two separate 

populations and their volume and mean of thickness were measured. The cortical thickness, the 

hippocampal volume and the gyrus thickness were combined to form a feature space for 

classification. The test in first group had a specificity of 94% and a sensitivity of 74%. The test 

in second group had a specificity of 91% and a sensitivity of 90% when discriminating mild 

cognitive impairment subject. The results showed that this proposed cortex-based approach is a 

cost-effective and efficient method in prodromal Alzheimer’s diagnosis. 

2.1.3.2 Deep Learning 

The concept of artificial neural networks has been popular through 1980s but then 

gradually replaced by statistical based approaches like support vector machine. But recently with 

the explosion of massive data, the drawback of SVM has been revealed. When facing high-

dimensional data, it is very difficult to create kernels to separate inputs. Hinton and 

Salakhutdinov (2006) proposed a neural network based learning method which is later known as 

deep learning. In their research, the high-dimensional inputs could be converted to low-

dimensional feature representation through multilayer training. Followed by fine-tuning weights 

using gradient descent, this stacked autoencoder could reconstruct the input vector and was 

claimed to be more efficient and robust than principal components analysis. 
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Given this observation, researchers have used deep learning based methodologies to 

further explore the possibility of automated AD diagnosis and have reached substantial results. 

These work could be further grouped into three categories based on their applied modality. 

2.1.3.2.1 Structural Information 

Structural information used in deep learning aided diagnosis is mostly to be structural 

Magnetic Resonance Imaging (sMRI). Researchers found that AD process will cause damage to 

synapses, axons and perikaryon (Serrano-Pozo, Frosch, Masliah, & Hyman, 2011) and is more 

likely to be severe in temporal gyri, hippocampus and precuneus (Baron et al., 2001; Busatto et 

al., 2003). Structural brain imaging contains typical anatomical and morphological brain features 

such as ventricle size, hippocampus shape, cortical thickness and brain volume. Thus sMRI is 

often used in automated diagnosis research (Suk, Lee, & Shen, 2017). 

Some early success have been achieved using Stacked Auto-Encoder (SAE). SAE is 

mostly used as feature extraction given it can be effectively used as input reconstruction 

(Supratak, Li, & Guo, 2014; Vincent, Larochelle, Lajoie, Bengio, & Manzagol, 2010; Xing, Ma, 

& Yang, 2016). B. Shi, Chen, Zhang, Smith, and Liu (2017) used a multimodel SAE to perform 

feature extraction and feature fusion. The features, which learnt from different Grey Matter 

(GM) and Deformation Magnitude (DM) patches, includes many nondiscriminative components 

and therefore were further transformed or so-called denoised with a SAE to obtain the final 

feature representations. 

Other than SAE based frameworks, deep convolutional neural network (CNN; 

Krizhevsky, Sutskever, & Hinton, 2012) models are also very popular, given the desire of 

building deeper architecture. It is wide believed that deeper models have better ability to capture 
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latent feature representation. Given that SAEs layer-wised fully connected structure, training 

deep SAE would result in huge amount of network parameters as opposed to CNN architecture.  

Billones, Demetria, Hostallero, and Naval (2016) modified VGG architecture into a 16-

layered 2D convolutional neural network to perform three-way classification (AD/MCI/NC). 

Each of the 20 slices in the center of sMRI scan were input to the network separately. Aderghal, 

Benois-Pineau, Afdel, and Gwenalle (2017) proposed to train three 2D-CNNs separately on three 

different projections of the hippocampus: Sagittal, Coronal and Axial. Their outputs were later 

fused in a fully connected layer to generate the final output score. Ortiz-Suarez et al 

Ortiz-Surez, Ramos-Polln, and Romero (2017) also used the projections of brain and 2D-

CNN to differentiate which ROI is more discriminative for AD diagnosis. The authors concluded 

that the frontal pole region demonstrate the greatest discriminative power and thus provide 

validity in using CNN for AD diagnosis. Hosseini-Asl et al. (2016) used a deep 3D convolutional 

neural network to extract the morphological feature of subjects structural MRI and the 

classification was done using 3D adaptable Convolutional Neural Network. This classifier 

applied Net2Net initialization which accelerate update training when having a pretrained 

different model by avoids the brief period of low performance exists in methods that initialize 

some layers of a deeper network from a trained network and others randomly. This 

implementation makes it adaptable to different data size and increase the ability to generalize 

learnt feature. Li et al. (2017) created a multimode scheme using two different feature extracting 

method: multiscale convolutional autoencoder and a 3D convolutional neural network. 

Those features were later concatenated and used as the input of upper-fully connected 

Multi-Layer Perceptron for classification. Payan and Montana (2015) used a two-stage approach 

which used sparse autoencoder initially to learn filters for convolution operations, whose result 
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was later used as the first layer of the convolutional neural network. Specifically, a 3-layer sparse 

autoencoder was adopted to extract features from images. For all the basis of the learned sparse 

encoder, the authors used the set of learned weights of that basis as a 3D filter of a 3D 

convolution. The feature maps obtained from the convolution layer were fed into a max-pooling 

layer to reduce the size of the feature maps. Other work has reported similar result (Karasawa, 

Liu, & Ohwada, 2018). 

These mentioned studies used structural neuroimaging as classification evidence and 

have proven achieving great success. As we can observe, there is a clear favor in convolutional 

neural network architecture in these studies and the trend of migrating from 2D to 3D topology. 

This is largely due to the believing of 3D predictive models could cope with the dimensionality 

of used evidence and thus be capable of extract higher-leveled feature representation. By doing 

so, voxel-based features, which are invisible in 2D images, now become available for training. A 

detail studies comparison is shown in the Table 2.3. 

2.1.3.2.2 Functional Information 

As opposed to the structural information, functional information reveals the functional 

activities in the brain and the connectivity between brain regions. As mentioned earlier, the AD 

introduces great changes in the cognitive functions and therefore thought to be reflected on the 

functional measurements. These studies majorly used functional neuroimaging whilst some 

adoption of EEG recordings. 

Hu, Ju, Shen, Zhou, and Li (2016) divided subjects fMRI into 90 regions of interest and 

the correlation between regions were obtained using Pearsons correlation coefficient, thus 

forming a correlation matrix which was treated as features. The network was later optimized 

using Limited BroydenFletcherGoldfarbShanno algorithm (L-BFGS). Morabito et al. (2016) 
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used EEG to reveal the functional information of brain. To cope with nature of EEG data, the 

classification was done using multichannel CNN which is able to handle multivariate time-series 

data. The EEG recording was decomposed into 5s epochs for each channel, and the time-

frequency representation was computed in each channel using continues wavelet transform. 

Sarraf and Tofighi (2016) achieved the highest reported accuracy with functional data of 96.85% 

over cross-validation using a modified LeNet-5 model (Lecun, Bottou, Bengio, & Haffner, 

1998). Cheng and Liu (2017) combined CNN and Recurrent Neural Network (RNN) to capture 

both intra and inter slice features in batches of PET slices. Suk, Wee, Lee, and Shen (2016) 

proposed a methodological architecture that combines deep learning and state-space modelling, 

and apply it to resting-state fMRI based Mild Cognitive Impairment (MCI) diagnosis. In this 

study, the author used two independent datasets, a public ADNI2 dataset and in-house dataset. 

The mean time series of ROIs were extracted from the preprocessed images. Then the mean 

intensities of ROIs in a volume at one time point were used as inputs to a deep Auto-Encoder 

(DAE). This is to discover the nonlinear association among ROIs in an unsupervised and 

hierarchical manner. To learn these encoded time series of ROIs, the authors trained two state-

space model with hidden Markov model for functional dynamics in resting-state fMRI of NC and 

MCI. The performance comparison was conducted on the two mentioned dataset and between 

the proposed method and three other methods and the baseline. In both of the datasets, the 

proposed method achieved the best diagnostic accuracy (72.58% in ADNI2, 81.08% in in-

house). This could be because of this proposed method considered the potential functional 

dynamics inherent in the rs-fMRI. 

In general, researchers rarely used functional information solely in their work and also 

the achieved performance is comparably worse than the works using structural data. This could 
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be because the resting state functional neuroimaging, in fact, could not reflect the entire 

functional connectives in the brain. Strong intra/inter subjects variation is repeatedly reported by 

researchers (Adelstein et al., 2011; Heuvel, Stam, Kahn, & Pol, 2009; Honey et al., 2009; Meindl 

et al., 2010; Song et al., 2008; Wei et al., 2011). Also these proposed frameworks usually have 

much smaller data size compared with structural studies. Summarized result in shown in the 

Table 2.4. 

2.1.3.2.3 Multimodality Information  

As mentioned earlier, both structural and functional information oriented methods have 

certain validity in performing accurate diagnosis. Given this circumstances, frameworks adopted 

multimodality features are now thriving in the research community, in the scope of finding better 

feature representations (Bhatkoti & Paul, 2016; Feng et al., 2018; Liu, Cheng, Wang, Wang, & 

the Alzheimers Disease Neuroimaging Initiative, 2018; Suk et al., 2017; Suk, Lee, & Shen, 

2014;). Ortiz, Munilla, Gorriz, and Ramirez (2016) preselected the discriminative regions among 

those defined by Automated Anatomical Labeling (AAL) Atlas (Tzourio-Mazoyer et al., 2002) 

from both MRI and PET imaging, and applied them to a Deep Belief Network (DBN). J. Shi, 

Zheng, Li, Zhang, and Ying (2018) investigated the possibility of solving this task by adopting 

stacked deep polynomial network that trained on MRI and PET. 

Additionally, clinical data such as mental assessments were considered valuable and thus 

were included in studies. Li et al. (2015) used multimodality data of structural MRI and PET. 

Initially, the researchers used principle component analysis to extract PCs from ROI and 

biomarkers as features. Then they used stability selection techniques with the least absolute 

shrinkage for a further selection. These neuroimaging features were later combined with 

subjects’ mental assessments as the input to a stack of Restricted Boltzmann machine with 
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dropout mechanism. Suk and Shen (2015) performed 3 two-way binary classifications (i.e., AD 

vs HC, MCI vs HC, and pMCI vs sMCI) using stacked auto-encoder, multikernel support vector 

machine and deep Boltzmann machine (DBM). Specifically, they used baseline MRI, 18-fluoro-

deoxygllucose PET and cerebral spinal fluid data acquired from ADNI dataset. Other than the 

neuroimaging data, two clinical scores, mini-mental state examination (MMSE) and Alzheimer’s 

disease Assessment Scale-Cognitive subscale (ADAS-Cog), were also included as the low-level 

features. The three modalities were used on three separate SAE models to extract the high-level 

feature representations. These representations were later concatenated with the original low-level 

features and thus constructed an augmented feature vector. A deep Boltzmann machine was 

adopted to remedy the drawback of the ROI-based method which is failing to handle subtle 

changes in an ROI or across ROIs. Moreover, because simple concatenation of the features of 

multiple modalities in a shallow architecture can cause strong connections among the variables 

of an individual modality and failed to find intermodality relations, the authors devised a 

discriminative multimodal DBM which yield to better result. Khvostikov, Aderghal, Krylov, 

Catheline, and Benois-Pineau (2018) proposed a modified 3D version of inception-based CNN 

using both sMRI and Mean Diffusivity (MD)-DTI. Both sMRI and MD-DTI have been 

segmented into different region of interests (ROIs) and each ROI was considered as the input of 

a pipeline of inception modules. The output features were eventually processed by a 3D average-

pooling layer as oppose to the conventional fully connected layer, then concatenated to produce 

the classification results. 

Generally, studies that using multimodality information outperformed the ones with 

single modality, especially for studies that added clinical information. Intuitively, modalities that 

reveal either functional or structural information of the brain, when jointly analyzed together, 
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should provide the classification with strengthened evidence and latent intramodalities features. 

Thus, it would make up the oversight of pathological changes that only partially captured by 

single modality. Summarized works that used multimodal information was shown in Table 2.5.  

2.1.4 Summary 

In this section, I have introduced some examples of deep learning based frameworks in 

AD automated diagnosis. Recently, there is clear shift in the research community from shallow 

machine learning toward deep learning due to the following reasons: 

1. The complex nature of evidence 

 Restricted by our limited understanding of AD, feature engineering is far more difficult 

this particular research area compared with other fields of application. Considering the limited 

standardization of variated brain structure, hand-engineered features suffer from insufficient 

feature representation. Deep learning on the other hand, could automatically learn end-to-end 

feature without too much preprocessing. 

2. The supremacy of algorithm 

 Deep learning has been proven to outperform previous existing algorithm in other data-

driven field of research. Ideally, we believe that deeper architecture has better capability to 

capture latent features, assuming the architecture topology and hyper-parameter are carefully 

optimized. Moreover, advanced architectures and computation power have further enabled the 

exploration of deep learning based method. 

 However, there are still several existing concerns and pitfalls, despite the reported 

excellent performance: 

1. Classification comparison and evaluation metrics 
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 The reviewed works are purposed to provide an overview of the framework and not for 

comparison. In fact, authors stated that the proposed research outperform existing ones for 

having only higher accuracies, for most of the time. Others may include sensitivity and 

specificity in their evaluation metrics. However, given that most of the studies have very limited 

and imbalanced datasets, an area under the curve (AUC) for receiver operating characteristic 

(ROC) or F1- score (harmonic mean of precision and recall) should also be reported for a more 

intuitionistic result. 

2. Sample size and generalization 

 Compared to other data-driven research, the available data for AD research are very 

limited and imbalanced. The major drawback is that one can argue that the population 

characteristic could not be reflected from reached conclusion. 

 This is due to not being able to capture enough variation in the population from 

questionable dataset and thus lack of ability for data generalization. 

 Additionally, another aspect of data generalization is using decentralized data. Currently, 

the majority of the researchers used pre-existing dataset in their work. However, whether their 

work can be extended and operates on data collected from different machines and protocols is 

untested. 

3. Classification of disease subtypes 

Most of the reviewed work have reported single or more binary classification (AD/HC, 

AD/MCI, MCI/HC). These results seemed promising but lack of real-world implications. Instead 

of trying distinguish patients from healthy normal, researches should focus more on the method 

to differentiate alternative diseases or progressiveness of disease at various stages. This resulting 
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in the need of performing multiclass classification, and subtype classifications (AD,sMCI, 

pMCI). 

4. Further clinical data 

 In the reviewed work we have reviewed several frameworks that included clinical testing 

data as part of the prediction evidence. These works averagely showed superior results 

compared with neuroimaging-only works. This brought the attention of adding more clinical 

data into the process of classification. This may include but not limited to genome data, 

behavioral data and family history data. 

5. Model optimization and overfitting 

 As come to the model architecture, despite the recent huge success achieved in basically 

all data-driven fields of research, deep learning is known for being a black-box system. Its 

decision-making process cannot be intuitively explained, used separately, or back-traced to 

original input. This nature of lacking transparency has made model optimization difficult and 

uninformative. Currently there is no systematic guideline for model design, optimization or 

hyper-parameter tuning.  

One other challenge is overfitting. While overfitting is common for machine learning 

models, the high dimensionality of medical neuroimaging and limited dataset has made 

overfitting incredibly crucial for this particular field of research. So far, standard strategies like 

regularization and dimension reduction are usually applied while more sophisticated methods 

need to be investigated. 

In the reviewed work, we have introduced an aspect of deep learning methods that were 

adopted in the research of Alzheimer’s disease diagnosis. These works both achieved promising 

result and raised further questions. As mentioned in the previous section, couple of the key 
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challenges need to be taken with full consideration. Meanwhile, scientists should also focus on 

the caregiving application and techniques for AD related personals. 

2.2 Assistive Technology for Alzheimer’s Disease Patients 

Recently, the development of smart accessories has caught the attention of both research 

and industries. By actively connecting your devices to a smart IoT system, home living can now 

be a lot more convenient and efficient than ever before. Especially, assistive living system for 

cognitively impaired elders can significantly benefit from such application.  

Among other aspects, the ability to automatically identify the indoor room is a very 

important feature of the assistive living system for Alzheimer patients. By accurately identifying 

the patient’s whereabouts, the smart home system could effectively estimate their potential 

action and provide help accordingly, or send alert to the caregivers in an emergency situation. 

2.2.1 Assistive Technology 

Lately, the prosperity of machine learning has advanced people’s everyday living 

significantly from many directions. Technology realizations like smart home have been widely 

popular and implemented. Such system controls all the smart devices in the household through 

home automation to improve efficiency, security and convenience. User can easily setup the 

smart system through customized user preferences and monitor/supervise the operation from 

their control hub. Moreover, devices that connected together through IoT system, can actively 

share the information between each other and collaborate. For example, a passive motion 

detector could pick up the irregular movement and wake up the video surveillance camera to 

capture the appearance of this intruder. The system could then run facial recognition with known 

authorized personnel to determine if law enforcement needs to be alerted. Other than security, 
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another important feature of smart home system is to enhance people’s quality of life. The 

standard usage includes but not limit to smart lighting control and thermal control. Smart lighting 

system can adjust the lighting condition in the household either based on customized preference, 

or adapt to the situation. For instance, a smart lighting system could automatically detect the 

amount of occupants in the room and adjust illuminance, or regulate lighting condition based on 

daylight illuminance. A more common application is smart thermostats. These thermostats could 

detect owner’s activities based on action heat map and adjust temperature in each room 

respectively. They can also learn owner’s activity pattern such as when do they leave for/ return 

from work, and thus adjust temperature accordingly. 

One of the most significant advantage of smart home is to reduce owner’s involvement in 

everyday life. A well-established smart home system will allow the owner to easily interact with 

home appliance without too much tending of the equipment. This feature has made such system 

capable of housekeeping, home security, and providing full home functionalities to person with 

less ability to maneuver home appliances such as seniors, children and disabilities.  

2.2.2 Assistive Technology for Alzheimer’s Disease Patients 

The cognitively impaired seniors, due to their severely low capabilities of handling 

everyday tasks, are the ones that would benefit the most from smart home, or smart assistive 

system in this case, among all the aforementioned groups. The Alzheimer’s disease (AD), the 

major form elder cognitive impairment, is an irreversible, progressive neurodegenerative brain 

disorder that slowly destroys patients’ cognitive function and eventually, takes their lives. For 

the past 20 years, the reported death from AD has increased by 145% while other major disease 

showed significant decreases (Gaugler et al., 2019). It is reported that there are 5.9 million adults 

aged 65 and more, with Alzheimer’s disease and related dementia (ADRD) in North America, 
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and this number is estimated to be 13.9 million by the year 2060 (Gaugler et al., 2019). This 

translates into a new case every 33 seconds (Corrada et al., 2010; Hebert et al., 2001). Given its 

significance, the World Health Organization officially recognized AD as the most common form 

of dementia and possibly contributes to 60% - 70% of cases (World Health Organization, 2012). 

Alzheimer’s disease has massive impacts on the patients, families, both physically, and 

financially. Aside from the disease itself, caregiving is an equally concerned aspect. It is reported 

that, in 2018, more than 18.5 billion hours of informal care were provided by the caregivers 

(with a worth of $234 billion). Among all the caregivers, 83% of them are unpaid caregivers like 

family members (Gaugler et al., 2019) and caregiving was a huge burden for them. Surprisingly, 

research showed that the burden on the caregivers was largely contributed by the emotional 

stress (Sales et al., 2016) rather than the physical stress. In the early stages, caregivers tend to 

consistently worry about the patients’ capability of individual living and struggled about how to 

balance between their own life and providing care. 

To that end, one common solution is to provide the patients with assistive technology that 

can improve their quality of life, and enhance their ability of independent living. These 

technologies include, but not limited to video surveillance, assistive phone system, or geo-fence. 

However such solutions usually need continuous attention from the caregivers and therefore 

would not help with relieving the aforementioned stress on the caregivers. 

2.2.3 Related Work 

Given these circumstances, automated event detection for patients with cognitive 

impairment is worth the investigation and research. Research in this domain involves many 

aspects including wandering detection (Kim et al., 2009; Lin et al., 2012; Vuong et al., 2011), 

fall detection (Ko et al., 2014; Wang et al., 2017) and indoor scene understanding (Gupta et al., 
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2015; Khan et al., 2016; Zhu et al., 2016). Among other aspects, scene understanding based on 

pervasive information is very useful as it could utilize the ubiquitous information instead of 

requiring carefully deployed sensors or knowledge about room layout. Identification of the 

patient’s location or the surrounding environment can assist the patient in making a better 

decision. Many research have been done in this field. Typically, the identification of the scene 

was done by classification based on various evidence. Imaging for example, is proven to be very 

efficient since it is the same way human use to identify their whereabouts. Classification though 

imaging and computer vision can be categorized as learning detailed features that are significant 

to their respective classes. One of the early successes was achieved by Mozos et al. (2005), 

where the researchers used Adaboost (Freund & Schapire, 1997) to classify different laser range 

scans into their respective semantic categories. Specifically, each data observation contained a 

set of beams from a 360° field of view range sensor. These raw beams and the area covered by 

these beam were obtained as raw data. To calculate the features, a set of nine simple geometric 

features were captured from the raw beams of the training samples. Furthermore, another 13 

features were calculated from the area covered by the beams in each training sample. These 

features were combined together as the final feature representation. Six binary classifications 

were then conducted using this representation between three indoor class – rooms, corridors, and 

doorways. The classification accuracy ranged from 80.10% (for corridor – doorway) to 93.94% 

(for room – doorway). To expand their method from binary classification to multiclass 

classification, a sequence of proposed Adaboost classifiers were arranged to form a decision list 

for the final outcome. For the three provided multiclass test scenarios, the multi-Adaboost model 

achieved 89.52%, 92.10%, and 93.94% on the classification accuracies. 
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Later, the authors further expanded their research to using multimodel data (i.e., imaging 

and range data; Mozos et al., 2007; Rottmann et al., 2005). In these subsequent studies, 

geometric features and imaging features were both adopted to find better representation. In short, 

321 geometric features were calculated using range sensor data in the same way that described 

previously. For imaging, a panoramic view, which was consisted of a set of eight images for 

each data observation, was captured using cameras. From there, eight carefully selected common 

objects in these scenes were targeted to find their descriptive features. These features represented 

the evidential presence of such object in the scene and therefore used as supplementary feature 

for the overall classification task. Additionally, the authors incorporated a hidden Markov model 

(HMM) in their classifier. This was due to the desire of not only predict the room type based on 

the current data, but the previous data as well. The idea was that certain room type transition 

would be less possible (e.g., from kitchen to office directly). Specifically, the probable class of 

current location was estimated by the previous predicted room class and the transition 

probabilities between rooms. Such probabilities were estimated by running numerous 

simulations. The author summarized that the room types between two time stamps were most 

likely to remain the same. The next highest probable transition was from a room to doorway 

while the least likely transition was from one room to another room. This meant the person 

needed to get to the doorway first if he wanted to switch room. As a result, the authors achieved 

75.4% without HMM and 91.2% with HMM. 

Related works also used Adaboost only on imaging data (Ayers & Boutell, 2007). In their 

work, the Scale – Invariant Feature Transform (SIFT; Lowe, 1999) was applied to the data to 

extract key points as features and achieved average accuracy of 77% on binary classification 

between seven classes. 
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These early attempts (Ayers & Boutell, 2007; Mozos et al., 2005; Mozos et al., 2007; 

Rottmann et al., 2005) on the indoor scene type classification showed promising efforts and 

valuable ideas on the task. However, also they showed some serious drawbacks. First of all, all 

the features were created very carefully with specific and complicated requirements on the 

hardware setup. A very sophisticated system could neither be necessary, nor be feasible to 

deploy on other related task. Secondly, the calculated features were very specific to the test 

environments. The authors mentioned the classification accuracy dropped from 91.83% to 

82.23% when moved to a different building (Mozos et al., 2005). 

For the past 10 years, convolutional neural network (CNN) inspired models have shown 

tremendous success in many research fields especially in imaging based studies (Rawat & Wang, 

2017). A properly tuned deep CNN model could effectively learn features from raw input 

without carefully performing feature engineering. Another key advantage is that convolutional 

layer, compared with traditional fully connected layer, is computationally less intensive. Ursic et 

al. (2016) developed a hybrid - CNN to perform classification on part-based images. The dataset 

used in this work is the MIT Indoor67 dataset (Quattoni & Torralba, 2009). The authors first 

extracted image regions using a gestalt-principle-inspired selective search (Uijlings et al., 2013). 

Such method was capable of preforming more robust and accurate generation of discriminative 

regions. Thus, images were transformed into collections of unordered segmented image regions. 

The model was then trained to learn the discriminative regions that were significant to the target 

classes. The same model was also tested on the modified dataset where images were distorted to 

create noises. This method achieved 85.16% accuracy on the original images and average 

72.58% accuracy on all distorted datasets. Zhou et al. (2014) explore the classification 

performance between scene-centric database and object-centric database. The proposed hybrid- 
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CNN model achieved 70.80% on MIT Indoor67 and 91.59% on 15-Scene (Fei-Fei & Perona, 

2005; Lazebnik et al., 2006; Oliva & Torralba, 2001).  

The accuracies of these reported neural networks have ranged from 70 to 90. This 

supports the common challenge of recognizing natural scene with high accuracies all the time. In 

other word, natural scene recognition is a complex task. Thus, recent research effort has been 

made on developing intelligent model/techniques for recognition of natural scenes with high 

accuracies. This process can be very case specific. Therefore, one aspect of this research is to use 

a large rang of natural scene. 

2.3 Background Information 

In this section, I would briefly introduce the common technique and components. 

Specifically, this review would focus on the information related to the deep neural network. This 

would serve as the background information for the latter chapter, which would not further 

elaborate on the details. 

2.3.1 Network Layers 

Neural networks are mostly consisted of several or more layers. An early example, the 

“perceptron,” was developed by Rosenblatt (1961). Such model only contained two layers – one 

input layer and one output layer, as shown in Figure 2.1. Inspired by this work, some more 

complex models were introduced, such as “Multilayer Perceptron” (Rumelhart, Hinton, & 

Williams, 1985). The simplest multilayer perceptron, compared with the original perceptron, has 

one additional hidden layer between the input and the output layer. Depending on the application 

and training methods, more hidden layers can be added as well. An example of MLP with two 

hidden layers was shown in Figure 2.2. The total amount of layers has become bigger as the 
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technology advances. Network nowadays can have thousands of layers of different types. In this 

section, all the neural network layers that were adopted in this research were introduced. 

2.3.1.1 Fully Connected Layer 

The most fundamental layer is the fully connected layer. As the name suggested, each 

neurons in the FC layer connects with all the neuro in the previous layer. Each of these neurons 

is an instance of the perceptron. In short, each neuron receives information from all the neurons 

from previous layer in an unordered manner. As shown in Figure 2.2, the two hidden layers in 

the middle were the examples of fully connected layer. The first FC layer has 12 neurons and the 

second FC layer has eight neurons. The total amount of parameters in these two layers is 9 × 12 

+12 + 12 × 8 + 8 = 224. 

2.3.1.2 Convolutional Layer 

In imaging related classification task, convolutional layers were massively favored for 

feature extraction. FC layer on the other hand, has several drawbacks when dealing with image-

based classification for three reasons. One is that the computation burden is very huge. Imagine 

an input grayscale image with size of m × n, connects to a hidden layer with i hidden neurons 

and then finally connects to an output layer with j output nodes. This simple structure contains a 

total number of m×n×i×j parameters that need to be calculated. Secondly, this structure 

suggested the model treats the input as a one-dimensional vector which would ignore the patterns 

in the surrounding neighborhood. Finally, this structure needs to see the whole image input 

before producing an output. However, in most of the cases, one could and should be able to 

identify the input by its fragments. Therefore, convolutional layer was introduced to that end 

(LeCun et al., 1998). Following, several variations of convolutional layers were explained. 

1. 2D Convolutional Layer 
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A 2D convolutional layer convolves in both axes in a 2D plane with given filter size. 

Convolution in imaging-related tasks often relates to extracting features such as edge detection. 

The result is usually referred to as a feature map. When more convolutional layers are applied, 

the embedded information of the original images gets transformed from raw information like 

pixel intensity value, to some intermediate features such as edge, shape (lower level), and 

eventually into high-level features (deeper level). See Figures 2.3 and 2.4 for 2D convolution 

demonstration. Theoretically, to calculate the 2D convolution y[m,n] for a given 2D signal 

x[m,n] using 2D filter h[m,n] (Nielsen, 2015):  

 

In reality, the filter would slide from the top left corner of the image, all way to the 

bottom right corner. If the step size, or stride, of this sliding operation is one, then this operation 

would result in a feature map that is smaller than the original input. However, the underlying 

problem is that the feature for all the pixels on the edge will not be calculated. By stacking 

convolutional layers like this, we will end up with a model that will keep losing edge features. A 

typical solution to this problem (Figure 2.3), requires the filter to calculate the pixel values that 

are out of the image boundary. To do so, we will pad zeros to the perimeter of the original image 

to increase its size. In summary, the following equation 2 can be used to calculate the output 

feature map size O, given W as the input dimension on given axis, F as the filter size, P as the 

padded amount and S as the stride (Nielson, 2015). 

 

𝑦[𝑚, 𝑛] = 𝑥 [𝑚, 𝑛] ∗ ℎ[𝑚, 𝑛] = ∑ ∑ 𝑥[𝑖, 𝑗] ∙ ℎ[𝑚 − 𝑖, 𝑛 − 𝑗]

∞

𝑖=−∞

∞

𝑗=−∞

           (1) 

𝑂 =
𝑊 − 𝐹 + (2 × 𝑃)

𝑆
+ 1                                       (2) 
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Here (Figure 2.3), the input image size is 5 × 5 with filter size of 3 × 3. After zero 

padding, the input image is now 7 × 7, which would bring the output size to 5 × 5 (𝑂 =

5−3+(2×1)

1
+ 1 = 5).  

By performing 2D convolution, not only the feature from the pixel itself, but also the 

spatial features from its surround neighborhood, are all captured by the filter. Moreover, a 

neuron with a filter size of m × n, only needs to update its own weights and a bias. This would 

bring the total number of parameters that need to be trained to (m × n) + 1, which is much less 

than aforementioned Multilayer Perceptron. 

2. 3D Convolutional Layer 

When target task evolved from 2D to 3D domain, naturally the filters need to be expand 

to 3D domain as well. As shown in Figure 2.5, a 3D convolution is the generalized version of 2D 

convolution. In such operation, the 3D filter performs similar operation as the 2D filter. Except 

the filter would move at three dimensions and convolves around three axes instead of two. 

2.3.1.3 Pooling and Flatten 

Pooling layers are used to downsample feature map to reduce computation burden and 

avoid overfitting. Also, in computer vision, pooling layers could effectively reduce the size of 

receptive field (Nielson, 2015). Receptive field was defined as “a portion of sensory space that 

can elicit neuronal responses when stimulated” (Alonso & Chen, 2009, para. 2). Cognitive 

theorists suggest that, features in bigger receptive fields tends to be low-level features. As the 

receptive field get smaller, the level of extracted features become more sophisticated. This way, 

the model could imitate how human vision system extract feature and thus produce better feature 

representation. Specifically, pooling layer works similarly as the convolutional layer, also 

perform sliding window operation on the feature map and output the maximum/average value in 
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the window. However, the stride of pooling layer is the same as the filter size to effectively 

downsample the feature map. A special type of pooling layer, the global average pooling layer is 

often applied as the last layer in the feature extraction model. The difference between a global 

pooling layer and a standard pooling layer is, the global pooling layer has a filter with its size 

same as the feature map. This way, the output size of each feature map is 1 × 1. An example of 

the average pooling, the max pooling, and the global max pooling was shown in Figure 2.6. 

Flatten layer usually follows the last pooling layer in the feature extraction model. The 

purpose of the flatten layer is to provide a feature representation for the classifier. An example of 

flatten layer was shown in Figure 2.7.  

2.3.1.4 Dropout 

The dropout layer was introduced by Srivastava et al. (2014) for the purpose of reducing 

overfitting. Overfitting is mostly due to model learnt unwanted statistical noise during training. 

Thus fail to perform adequately when evaluating new data. When connecting the output feature 

maps to the dropout layer, as shown in Figure 2.8, it would randomly reset selective amount of 

feature maps to zero, also called deactivate a selection of nodes/neurons, according to the preset 

drop rate p. Then these neurons would be reactivated during testing but suffers a penalty of p on 

activation. In a way, dropout forces the model to learn different combinations of features 

parallelly, and later average these models during testing. 

2.3.2 Activation 

As the name suggested, the artificial neural network was inspired by the biological form 

of human brain neurons. So similarly, the artificial neurons can also be fired up if given the 

correct input. And activation function is what we used to quantify the rate of action. Given the 
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neuron describe in Figure 2.1, the output of the neuron is calculated by equation (3), where xi are 

the inputs from previous layer, wi are the corresponding weights to xi and b is the bias of the 

neuron: 

 

The activation function is then applied to the output of the neuron. Typically, there are 

four major types of activation function: Sigmoid, Hyperbolic Tangent (tanh), Rectified Linear 

Unit (ReLU), and Soft Argument of the Maxima (softmax).  

2.3.2.1 Sigmoid and Tanh 

The sigmoid function was described in equation (4), where z denotes the input: 

  

The hyperbolic tangent function was described in equation (5), where z denotes the input: 

  

Detailed plots of the sigmoid function and the tanh function were shown in Figure 2.9 

and 2.10. In short, the sigmoid function maps the inputs to outputs ranged from 0 to 1, while the 

tanh produces the outputs to [-1, 1]. Both functions symbolize the activation of an artificial 

neuron. The difference is tanh has slightly stronger gradient than sigmoid (Nielson, 2015). 

Sigmoid and tanh functions have been widely used in the early machine learning works 

but quickly has been abandoned in the deep learning regime. This is due to their glaring 

disadvantage, which is the “vanishing gradient” problem. It is well-known that neural networks 

are trained using gradient based methods. Therefore, whether the gradient can be effectively 

𝑦 = ∑ 𝑤𝑖𝑥𝑖 + 𝑏

𝑖

                                                 (3) 

𝑔(𝑧) =  
1

1 + 𝑒−𝑧
                                                (4) 

ℎ(𝑧) =  
𝑒𝑧 − 𝑒−𝑧

𝑒𝑧 + 𝑒−𝑧
                                                (5) 
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propagated back to the layers in the network is very important. According to the equations(4) and 

(5), their derivative were describe in equation (6) and (7): 

 

It is clear that when the input of activation function is strong positive or strong negative, 

the gradient of the function tends to approach 0, which would cause the network not being able 

to update parameters. This “vanishing gradient” problem is exceptionally destructive in deep 

learning, as there are much more layers than the conventional neural network. 

2.3.2.2 ReLU and Leaky ReLU 

To effectively train deep network, the Rectified Liner Unit (ReLU) was introduced by 

Nair and Hinton (2010). ReLU is rectified for input below zero and produce identical output 

when input is greater than zero. The diagram of ReLU layer was shown in Figure 2.11. Its 

mathematic equation can be interpreted as (Nair & Hinton, 2010): 

 
Compared with sigmoid-like function, ReLU has several advantages. First of all, as 

shown in the right half of the plane in Figure 2.11, when input is greater than zero, the gradient 

of the function is constant 1. This solves the vanishing gradient problem. Second of all, as shown 

in the left half of the plane, when input is less than zero, the gradient of the function is rectified 

to zero. This results a very sparse feature representation, because only the positive inputs will 

contribute to the representation. On the contrary, sigmoid-like function will calculate a feature 

for every input, leaving a heavily dense representation. Moreover, the computation burden of 

ReLU is trivial compared with sigmoid function, given no costly operations are required like 

exponential function. In summary, ReLU activation is more suitable for deep learning model and 

𝑔′(𝑧) =  𝑔(𝑧)(1 − 𝑔(𝑧))                                          (6) 

ℎ′(𝑧) =  1 −  ℎ2(𝑧)                                                    (7) 

𝑅 =  max(0, 𝑖𝑛𝑝𝑢𝑡)                                                 (8) 
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was proven to have much better performance and convergence speed (Krizhevsky, Sutskever, & 

Hinton, 2012). 

Despite the astonishing success of ReLU in deep learning, it suffers from a dramatic 

drawback known as the “Dying ReLU.” Basically, a neuron that was rectified by ReLU will 

remain in the “dead” situation and can no longer participate in training. A variation of the ReLU, 

known as the “Leaky ReLU” (Maas, Hannun, & Ng, 2013) was then created to resolve this issue. 

In this variation, as shown in Figure 2.12, a very tiny gradient was given to the negative section 

of the function. Mathematically, the Leaky ReLU function can be described as equation (9): 

 

Such design would allow the rectified neurons to have small gradients, that could bring 

them back to life, in long term of parameter updates. 

2.3.2.3 Softmax 

A softmax function, also known as softargmax function, is a mathematic function that 

converts a series of real numbers that indicates the likelihoods of each represented category, into 

normalized probabilities. The function was derived from argmax function, or arguments of the 

maxima. Such function would find the maxima among inputs and its corresponding index. Then 

the function would return an output vector with the same length as the input. In this vector, all 

the elements would be 0 except the element bears the previous found index, which would be 1. 

For example, for a given input vector [1, 0, 5, 4], the output would be [0, 0, 1, 0]. A softmax 

function is basically a smoothed arg max function. In short, it converts the input values to 

probabilities in the range of [0, 1] and all the probabilities would add up to 1. Softmax function 

𝐿𝑅 =  {
𝑥,         𝑖𝑓 𝑥 > 0
𝛼 ∙ 𝑥,   𝑖𝑓 𝑥 ≤ 0

                                               (9) 
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was extensively used in machine learning because it is capable of converting the outputs of the 

model to probability distribution over the classification task categories.  

2.3.3 Regularization 

Overfitting is the most common and significant problem when trying to train a machine 

learning model. Often times, restricted by either nature of data set or poor generalization, the 

model would try to converge to every data point in the training set and thus lose the ability to 

predict new, un-seen data. To avoid overfitting, the common methodology is to penalize the 

weights update in the training process, which is known as “Regularization.” Here, two 

regularization methods that were used in this research are introduced. 

2.3.3.1 L2 Regularization 

The L2 Regularization provides a weight penalty to the update process. Such 

regularization, depending on the sum of the square of feature weights, applies a decay factor, or 

λ, to the penalty term. This penalty would force the weight decays towards zero. In some way, 

the less import features would thus become negligible and therefore are practically removed 

from the model. On the other hand, if the decay factor was selected too big, some significant 

features would also be penalized and therefore leads to an under-fitting. Currently, the selection 

of λ is done by conducting grid search.  

2.3.3.2 Batch Normalization 

The purpose of batch normalization is to reduce the covariate shift existing between 

layers. The covariate shift in artificial neural network refers to the fact that the input distribution 

of each layers changes drastically during training, causing each layer has to adjust the parameter 

greatly to adapt to this change (Ioffe & Szegedy, 2015). This situation is even more dire when 
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training deep network because the changes in distribution would enlarge greatly when propagate 

through layers. By doing batch normalization, the activation is effectively scaled to have zero 

mean and unit variance, which would allow the training to be more effective. Specifically, given 

a batch with m data points, the batch mean µB and batch variance σ2B were calculated (Ioffe & 

Szegedy, 2015): 

 
Then input is normalized to: 

 

𝜇𝐵 ←
1

𝑚
∑ 𝑥𝑖

𝑚

𝑖=1

                                                 (10) 

𝜎𝐵
2 ←

1

𝑚
∑(𝑥𝑖 − 𝜇𝐵)2

𝑚

𝑖=1

                                 (11) 

𝑥𝑖̂ ←
𝑥𝑖 − 𝜇𝐵

√𝜎𝐵
2 + 𝜖

                                                (12) 
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Table 2.1 Common Symptoms of AD Patients in different stages 

Early Stage Middle Stage Late Stage 

The early stage is often overlooked. 

Relatives and friends (and sometimes 

professionals as well) see it as “old age,” 

just a normal part of ageing process. 

Because the onset of the disease is 

gradual, it is difficult to be sure exactly 

when it begins. 

• Become forgetful, especially 

regarding things that just happened 

• May have some difficulty with 

communication, such as difficulty 

in finding words 

• Become lost in familiar places 

• Lose track of the time, including 

time of day, month, year, season 

• Have difficulty making decisions 

and handling personal finances 

• Have difficulty carrying out 

complex household tasks 

• Mood and behavior:  

• may become less active 

and motivated and lose 

interest in activities and 

hobbies 

• may show mood changes, 

including depression or 

anxiety 

• may react unusually 

angrily or aggressively on 

occasion 

As the disease progresses, limitations 

become clearer and more restricting. 

• Become very forgetful, especially 

of recent events and people’s 

names 

• Have difficulty comprehending 

time, date, place, and events; may 

become lost at home and in the 

community 

• Have increasing difficulty with 

communication (speech and 

comprehension) 

• Need help with personal care (e.g., 

toileting, washing, dressing) 

• Unable to successfully prepare 

food, cook, clean or shop 

• Unable to live alone safely without 

considerable support 

• Behavior changes may include 

wandering, repeated questioning, 

calling out, clinging, disturbed 

sleeping, hallucinations (seeing or 

hearing things which are not there) 

• May display inappropriate 

behavior in the home or in the 

community (e.g., disinhibition, 

aggression) 

The last stage is one of nearly total 

dependence and inactivity. Memory 

disturbances are very serious and the 

physical side of the disease becomes more 

obvious. 

• Usually unaware of time and place 

• Have difficulty understanding 

what is happening around them 

• Unable to recognize relatives, 

friends and familiar objects 

• Unable to eat without assistance, 

may have difficulty in swallowing 

• Increasing need for assisted self-

care (bathing and toileting) 

• May have bladder and bowel 

incontinence 

• Change in mobility, may be unable 

to walk or be confined to a 

wheelchair or bed 

• Behavior changes, may escalate 

and include aggression towards 

carer, nonverbal agitation (kicking, 

hitting, screaming or moaning) 

• Unable to find their way around in 

the home 
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Table 2.2 Clinical Diagnostic Criteria for AD 

Core Diagnostic Criteria Supportive Features Exclusion Criteria 

A. Presence of an early and significant 

episodic memory impairment that includes the 
following features:  

1. Gradual and progressive change in 

memory function reported by patients 

or informants over more than 6 
months 

2. Objective evidence of significantly 

impaired episodic memory on testing: 
this generally consists of recall deficit 

that does not improve significantly or 

does not normalize with cueing or 

recognition testing and after effective 
encoding of information has been 

previously controlled 

3. The episodic memory impairment can 
be isolated or associated with other 

cognitive changes at the onset of AD 

or as AD advances 

B. Presence of medial temporal lobe atrophy 

• Volume loss of hippocampi, 

entorhinal cortex, amygdala 
evidenced on MRI with qualitative 

ratings using visual scoring 

(referenced to well characterized 

population with age norms) or 
quantitative volumetry of regions of 

interest (referenced to well 

characterized population with age 
norms 

 

C. Abnormal cerebrospinal fluid biomarker 

• Low amyloid β1–42 concentrations, 

increased total tau concentrations, or 
increased phosphor-tau 

concentrations, or combinations of the 

three 

• Other well validated markers to be 
discovered in the future 

 

D. Specific pattern on functional 
neuroimaging with PET 

• Reduced glucose metabolism in 

bilateral temporal parietal regions 

• Other well validated ligands, 

including those that foreseeably will 

emerge such as Pittsburg compound B 
or FDDNP 

 

E. Proven AD autosomal dominant mutation 
in the immediate family 

History 

• Sudden onset 

• Early occurrence of the following 

symptoms: gait disturbances, seizures, 
behavioral changes 

 

Clinical feature 

• Focal neurological features including 

hemiparesis, sensory loss, visual field 
deficits 

• Early extrapyramidal signs 

 

Other medical disorders severe enough to 
account for memory and related symptoms 

• Non-AD dementia 

• Major depression 

• Cerebrovascular disease 

• Toxic and metabolic abnormalities, 

all of which may require specific 

investigations 

• MRI FLAIR or T2 signal 
abnormalities in the medial temporal 

lobe that are consistent with 

infectious or vascular insults 
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Table 2.3 Related Work Using Structural Information 

Author Evaluation Architecture Sample Size Dataset 

 

B. Shi et al. (2017) 
AD/HC 89.0  

SAE 

 

338 

 

ADNI 
MCI/HC 81.7 

 

 

Billones et al. (2016) 

AD/HC 98.33  

 

CNN 

 

 

900 

 

 

ADNI 
AD/MCI 93.89 

MCI/HC 91.67 

AD/MCI/HC 91.85 

 

 

Aderghal et al. (2017) 

AD/HC 91.41  

 

CNN 

 

 

815 

 

 

ADNI AD/MCI 69.53 

AD/MCI/HC 65.62 

Ortiz-Surez et al. (2017) HC/Mild Dementia 87.5 CNN 86 OASIS 

 

 

Hosseini-Asl, Keynto, and El-Baz (2016) 

AD/HC 99.3  

 

CNN/CAE 

 

 

30+210 

 

 

CADDementia; 

ADNI 

MCI/HC 94.2 

AD/MCI 100 

AD/MCI/HC 94.8 

Li, Cheng, and Liu (2017) AD/NC 88.31 CNN/CAE 428 ADNI 

 

 

Payan and Montana (2015) 

AD/HC 95.4  

 

CNN 

 

 

2265 

 

 

ADNI 
MCI/HC 92.1 

AD/MCI 86.8 

AD/MCI/HC 89.5 
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Table 2.4 Related Works Using Functional Information 

Author Evaluation Architecture Sample Size Dataset 

Hu et al. (2016) MCI/HC 87.58 SAE 100 ADNI 

 

 

Morabito et al. (2016) 

AD/HC 85  

 

CNN 

 

 

119 

 

 

Self-Recruited 
MCI/HC 85 

AD/MCI 78 

AD/MCI/HC 82 

Sarraf and Tofighi (2016) AD/HC 96.85 CNN 43 ADNI 

 

Suk et al. (2016) 
 

MCI/HC 
72.6 

81.1 

 

SAE 
 

62+37 
ADNI 

Self-Recruited 

 
Cheng and Liu (2017) 

AD/HC 91.19  
CNN+RNN 

 
339 

 
ADNI 

MCI/HC 78.86 
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Table 2.5 Related Works Using Multimodal Information 

Author Evaluation Architecture Sample Size Dataset 

 

 

Li et al. (2015) 

AD/HC 91.4  

 

RBM 

 

 

202 

 

 

ADNI 
MCI/HC 77.4 

AD/MCI 70.1 

MCI.Convert/MCI.Stable 57.4 

 

 

 

Ortiz et al. (2016) 

AD/HC 90  

 

 

DBN 

 

 

 

818 

 

 

 

ADNI 

MCI.Stable/HC 80 

MCI.Convert/HC 83 

AD/MCI.Stable 84 

MCI.Stable/MCI.Convert 78 

 

 

J. Shi et al. (2018) 

AD/HC 97.13  

 

DPN 

 

 

202 

 

 

ADNI 
MCI/HC 87.24 

MCI.Stable/MCI.Convert 78.88 

AD/HC/MCI.Stable/MCI.Convert 57.00 

 

Suk and Shen (2015) 
MCI/HC 88.8  

SAE+DBM 

 

202 

 

ADNI 
MCI.Stable/MCI.Convert 77.9 

 

 

Khvostikov et al. (2018) 

AD/HC 93.3  

 

CNN 

 

 

531 

 

 

ADNI 
AD/MCI 86.7 

MCI/HC 73.3 

AD/MCI/HC 68.9 
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Figure 2.1 Illustration of perceptron. 
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Figure 2.2 Illustration of multilayer perceptron. 
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Figure 2.3 Window operation of 2D convolution. 

 

Figure 2.4 2D convolution computation. 
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Figure 2.5 Illustration of 3D convolution. 

 

Figure 2.6 Max pooling, average pooling, and global max pooling. 
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Figure 2.7 Example of flatten layer. 
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Figure 2.8 Model without dropout (left) vs. model with dropout (right). 

 

 

Figure 2.9 Sigmoid activation function. 
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Figure 2.10 Hyperbolic tangent activation function. 
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Figure 2.11 Rectified linear unit (ReLU) activation function. 
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Figure 2.12 Leaky ReLU activation function. 
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 OBJECTIVES 

Based on the introduction and discussion, the specific objectives of this work are: 

1. Improving Alzheimer’s disease diagnostic 

 To develop a machine-learning based intelligent model for prediction of specific disease 

conditions associated with Alzheimer’s disease. The specific tasks associated with this objective 

are: 

a. Implement and evaluate a deep 3D convolutional neural network model for prediction 

of Alzheimer’s disease stages between Health Control (HC)/Mild Cognitive 

Impairment (MCI) /Alzheimer’s disease (AD) 

b. Implement and evaluate a deep 3D residual neural network model for the prediction 

of AD stages (HC / MCI / AD). 

c. Implement the Multi-Layer-Output (MLO) architecture on the models in (a) and (b). 

Evaluate the performance improvement on the models. 

2. Improving Alzheimer’s patients’ quality of individual living 

 To develop an indoor scene understanding model that would predict the patients’ 

whereabouts with single taken images, without facilitation of the sensor network or prior 

knowledge of the room layout. This idea was inspired by Dr.Panigrahi. 
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 METHODOLOGY 

4.1 Deep 3D Convolutional Neural Network for AD classification 

This work explores, investigates, and reports four classification models for multiclass 

Alzheimer’s disease diagnosis. These models use structural magnetic resonance imaging (sMRI) 

as classification evidence and is capable of revealing the latent causality between patients’ 

structural changes in their brain and their progressiveness of the disease. 

In this study, the sMRI acquired from Alzheimer’s Disease Neuroimaging Initiatives 

(ADNI) were used to conduct experiments in conjunction with two 3D convolutional neural 

network-based models and effect of Multi-Layer-Output mechanism. The classification is 

performed by a fully connected classifier. Their performances were compared between their own 

variations and other state-of-art methodologies.  

The result obtained from this study revealed that the proposed 3D models showed good 

accuracy on 3-class (Normal Control, Mild Cognitive Impairment, and Alzheimer’s disease) 

classification. The proposed Multi-Layer-Output structure also boosted the performance of 

classification, compared with the native models. The detailed program implementation can be 

found in Appendix A. 

4.1.1 Data Acquisition and Preprocessing 

4.1.1.1 Dataset 

The dataset used in this work was the ADNI1: Annual 2 Yr 1.5T dataset. These data were 

obtained from the Alzheimer’s disease Neuroimaging Initiative (ADNI) database 

(adni.loni.usc.edu). As per the condition of the acknowledgement for the use of this data set, the 

following specific italicized texts are presented below within the quotation marks.  
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“The ADNI was launched in 2003 by the National Institute on Aging (NIA), the National 

Institute of Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug Administration 

(FDA), private pharmaceutical companies and nonprofit organizations, as a $60 million, 5-year 

public-private partnership. The primary goal of ADNI has been to test whether serial magnetic 

resonance imaging (MRI), positron emission tomography (PET), other biological markers, and 

clinical and neuropsychological assessment can be combined to measure the progression of mild 

cognitive impairment (MCI) and early Alzheimer’s disease (AD). Determination of sensitive and 

specific markers of very early AD progression is intended to aid researchers and clinicians in 

developing new treatments, monitoring their effectiveness, and lessening the time and cost of 

clinical trials. 

The principal investigator of this initiative is Michael W. Weiner, MD, VA Medical Center 

and University of California - San Francisco. ADNI is the result of efforts of many co-

investigators from a broad range of academic institutions and private corporations, and subjects 

have been recruited from over 50 sites across the United States and Canada. The initial goal of 

ADNI was to recruit 800 subjects but ADNI has been followed by ADNI-GO and ADNI-2. The 

follow up duration of each group is specified in the protocols for ADNI-1, ADNI-2 and ADNI-

GO. Subjects originally recruited for ADNI-1 and ADNI-GO had the option to be followed in 

ADNI-2.” 

The dataset obtained in this work is a subset of the entire ADNI dataset, namely ADNI1 

dataset. It contained 1725 structural MRI scans, with 346 AD scans, 573 NC scans and 806 MCI 

scans. The MRIs were collected with 1.5T scanner using T1-Weighted sequence. A detailed 

demographics of this dataset was shown in Table 4.1. Sample images of NC, MCI and AD was 

shown in Figure 4.1. 
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This work was approved by Purdue University Institutional Review Board (IRB) protocol 

#1906022293 under determined exemption (Category 4) (Appendix D). 

4.1.1.2 Data Preprocessing 

The MRI scans from ADNI were reportedly acquired using Magnetization Prepared 

Rapid Gradient Echo (MPRAGE; Mugler & Brookeman, 1990). MPRAGE is a fast 3D gradient 

echo pulse sequence that considerably providing excellent scan quality. Each MPRAGE scan in 

the dataset were then corrected by the routines provided by the vendor of scanner (GE) when 

they were collected by the researchers in ADNI. These routines included Gradwarp, B1 

Correction and N3 Correction. In our research, preprocessing was not conducted at Purdue. 

4.1.1.3 Data Postprocessing 

4.1.1.3.1 Denoising 

The brain MRI acquisition is long process and the image is reconstructed by stacking the 

frames of scanning. The usual noises in MRI are Gaussian and Rician (Gudbjartsson & Patz, 1995; 

Macovski, 1996). Therefore, removal of these noises and slices registration are very crucial but 

often neglected. This is due to the level of denoising is hard to calibrated thus endanger the 

information integrity. 

Nevertheless, the denoising method proposed in this framework is the optimized nonlocal 

mean 3D filter that described in Buades, Coll, and Morel (2005). This method uses the 

redundancy of information in the image under study to remove the noise. A routine developed by 

Manjon et al. (2010) was run in MATLAB R2018b at Purdue. Specifically, a MRI scan was 

divided into blocks with overlap voxels. For a given voxel included in several blocks, the nonlocal 

mean restorations were computed and averaged to obtain the final estimation. This routine was 
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implemented by Manjon et al. (2010) and run in MATLAB R2018b. A pre/post denoising 

comparison was shown in Figure 4.2. 

4.1.1.3.2 Non-Brain Tissue Removal 

Typical non-brain tissue removal involves skull stripping and cerebellum removal. Without 

non-brain tissue removal, the follow up procedures like co-registration and normalization could 

be complicated. Detailed comparisons between various brain extraction methods have been 

conducted by Iglesias, Liu, and Thompson (2011), leading to a conclusion that all algorithms 

(e.g., Statistical parametric mapping [SPM; Penny et al., 2011], Brain extraction tool [BET; 

Smith, 2002], Brain surface extractor [BSE; Shattuck, Sandor-Leahy, Schaper, Rottenberg, & 

Leahy, 2001], and Minneapolis Consensus Strip [Rehm et al., 2004]) perform similarly and are 

subject to small variation depending on the specific dataset. The tool used in this proposed work is 

the brain extraction tool (BET; Smith, 2002), embedded in FSL neuroimaging library. In this 

routine, the first step was to use the histogram of voxel intensities to determine the threshold of 

the intensity values. From there, the center of gravity was estimated, as was an initial sphere. 

Finally, the tessellated sphere was gradually decomposed outward towards the surface of the 

brain, until the contoured region reached the outliers in the histogram (Figure 4.3). This 

procedure was completed in Vmware workstation 15 with CentOS virtual Linux system.  

Another typical tissue often proposed to remove is the cerebellum (Zhang et al., 2011; 

Zhang, Shen, & Alzheimer's Disease Neuroimaging Initiative, 2012) as it was considered mainly 

controlling human motor functions. However, lately, researcher started to investigate the role of 

cerebellum plays in cognitive functions (Jacobs et al., 2017). Therefore, in this proposed research, 

the cerebellum will be preserved for feature analysis. Masked views of brain matters included 
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white matter (WM), grey matter (GM), cerebral spinal fluid (CSF) and skull were shown in 

Figures 4.4 – 4.7. The final skull-striped MRI scan was shown in the top of Figure 4.8  

4.1.1.3.3 Resize and Normalization 

The original MRI scans were stored as nifti files. The nifti format, or the Neuroimaging 

Informatics Technology Initiative, is an advanced version of widely used ANALYZE 7.5 format, 

with additional supplementary information in the header such as affine coordinates that mapping 

between voxels and spatial location. Each MRI scan obtained from ADNI-1 dataset was of size 

of 256 by 256 by 166. Due to memory constraint on the computation unit, these original scans 

were first resized to remove the background. Specifically, a new 3D scan with a size of 96 by 96 

by 64 was cropped from each of the original scan. The cropped image was centered at its 

hippocampus and dilated from three axes. An example of resized image was shown in the bottom 

of Figure 4.8. 

Afterward, a standard normalization was adopted on these cropped scans. Specifically, 

for each scan, its data object was first read as 3D numpy array with data type of 32-bit float. 

These data arrays were then scaled to the range of [0, 1]. Finally, the means of each scans were 

subtracted from these images. Denotes the cropped MRI scan data array as I, the scaled array as 

Iscale and the final centered image as Icentered, the steps was shown in equation (13) and (14): 

𝐼𝑠𝑐𝑎𝑙𝑒 =
𝐼 − min(𝐼)

max(𝐼) − min(𝐼)
=

𝐼

max(𝐼)
                (13) 

𝐼𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑 = 𝐼𝑛𝑜𝑟𝑚 − mean(𝐼𝑠𝑐𝑎𝑙𝑒)                      (14) 
 

After completion of these processing steps, the final output format of each MRI scan was 

3D data array with a size of 96 by 96 by 64. Each of the voxels in these data arrays contained an 

intensity value with zero mean and unit variance. The overall processing flowchart was shown in 

Figure 4.9. 
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4.1.2 Model Architecture 

To develop accurate predictive model of AD stages was the scope of this objective. In 

this research, various model was implemented to examine the performance on the targeted task. 

Specifically, two deep 3D convolutional neural network models were proposed and tested at 

first. Later on, the ideology of Multi-Layer-Output (MLO) was introduced and explained. 

Finally, the MLO was implemented on the existing two models to boost their performance. The 

detailed code implementation could be found in Appendix A. 

4.1.2.1 Deep 3D Neural Network Model (Model A) 

The detailed graphical model overview was shown in Figure 4.10. This conventional 

deep neural network contained seven trainable hidden layers and various other components. 

Systematically, this model could be divided into a feature extraction model and an artificial 

neural network classifier. Some global setting was implemented for all the layers that applied. 

First of all, zero padding (see Section 2.3.1.2) was applied to all the convolutional layers to make 

sure all the voxels had been used in the convolution. Secondly, L2 regularization (see Section 

2.3.3) was applied to all the convolutional layers to further reduce overfitting. In the rest of the 

paper, this model will be referred as Model A. The entire model can be described in a top to 

bottom manner, as following: 

1. Input layer – Output size: (96 × 96 × 64, 1 channel) 

The input layer read the data array from the batches that were prepared for the model. As 

discussed in Section 4.1.1, the MRI scans had dimension of 96 × 96 × 64. The input layer thus 

had the same size as the input data. 

2. 3D convolutional layer: Conv_1 – Output size: (48 × 48 × 32, 32 filters) 
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A 3D convolutional layer was connected to the input layer. Such layer had a kernel of 

size 7 × 7 × 7 and stride of (2, 2, 2). A kernel with stride of 2 would reduce the dimension on the 

given axis by half. The intension of giving big receptive field to this layer was to quickly extract 

low-level feature. Additionally, a batch normalization was added to reduce covariant shift. This 

was because batch normalization could scale the outputs of the neurons to have zero mean and 

unit variance. After that, a leaky ReLU activation (which had a very small gradient for the 

negative inputs compared with ReLU), was added. A total number of 32 filters were included in 

this layer, creating an output size of 48 × 48 × 32, 32 filters (reduce by half from 96 × 96 × 64 on 

all axes). 

3. Average pooling layer – Output size: (24 × 24 × 16, 32 filters) 

An average pooling layer was then connected to Conv_1. As described in Section 2.3.1, 

the pooling layer can effectively downsample the size of feature map while preserving the 

information. In this case, the layer had a kernel size of 5 × 5 × 5 and a stride of (2, 2, 2). The 

output size was then downsampled to 24 × 24 × 16, 32 filters (reduce by half from 48 × 48 × 32 

on all axes). 

4. 3D convolutional layers: Conv_2, Conv_3, Conv_4 – Output size: (3 × 3 × 2, 256 filters) 

Sequentially, three 3D convolutional layers were attached to the previous layer. These 

layers served the purpose of gradually increase the level of extracted features. Therefore, they 

had relatively smaller receptive field (3 × 3 × 3) than the previous convolutional layer (Conv_1). 

The number of filters in each layer also gradually increased, namely, 64, 128 and 256. The same 

stride of (2, 2, 2) was applied to the convolutional layers, the same batch normalization, and the 

leaky ReLU. The output sizes of the convolutional layers were: 

Conv_2: 12 × 12 × 8, 64 filters (reduce by half from 24 × 24 × 16 on all axes). 
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Conv_3: 6 × 6 × 4, 128 filters (reduce by half from 12 × 12 × 8 on all axes). 

Conv_4: 3 × 3 × 2, 256 filters (reduce by half from 6 × 6 × 4 on all axes). 

5. Global average pooling layer – Output size : (256) 

The final feature maps were pooled by a global average pooling layer (see Section 

2.3.1.3) afterwards. This layer was to produce a feasible feature representation for the upcoming 

classification. The output size of this layer was a vector of 256 elements (Each 3 × 3 × 2 feature 

map produce one feature value). 

6. Dropout layer 

The dropout layer was the final layer of the feature extraction model. This layer aimed at 

reducing overfitting by penalizing the feature maps. It would randomly reset selective amount of 

feature maps to zero, also called deactivate a selection of nodes/neurons, according to the preset 

drop rate dp. The output size of this layer was still 256.  

7. Fully Connected layers –Output size : (3) 

Three fully connected layers consisted the classifier in this model. Effectively, such 

classifier can be described as a multilayer perceptron (see Section 2.3.1) with three hidden 

layers, where the input was obtained from the feature extraction model. The first two layers had 

ReLU activation. They had 128 and 64 neurons respectively. The last layer had three neurons 

with softmax activation (see Section 2.3.2) to produce the output probability. 

8. Output layer – Output size: (3) 

Based on the calculated probability, the final prediction was conducted by applying 

argmax function to the probabilities. 
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4.1.2.2 Deep 3D Residual Neural Network Model (Model B)  

To examine whether increasing the depth of network could improve the classification 

performance, a much deeper 3D Residual neural network was derived from He et al. (2016). This 

model expand the idea of residual block to the 3D environment to enable us building very deep 

neural network. Compared with the model proposed earlier, this 3D residual network had 13 

trainable layers. A detailed model was shown in Figure 4.11. In the rest of the work this model 

will be referred as model B. 

To compare with result from previous model, the majority of the model remained the 

same. That included the first three layers and the last six layers. The difference between them 

was the new model replaced the three convolutional layers with three “ResBlock.” As 

demonstrated in Figure 4.12, the residual block, or “ResBlock,” had three convolutional layers in 

it. The first convolutional layer in the main branch had a kernel size of 3 × 3 × 3, an adjustable 

number of filters, n1, and a stride of (2, 2, 2). The second convolutional layer had a kernel size of 

3 × 3 × 3, an adjustable number of filters, n2, and a stride of (1, 1, 1). The third convolutional 

layer that was on the shortcut branch had a kernel size of 1 × 1 × 1, the same number of filters, 

n2, as the second layer, and a stride of (2, 2, 2).  

By giving n1 and n2 values, multiple instances of ResBlock can be implemented in the 

model. In this case, three ResBlocks were declared with [32, 32], [64, 64] and [128, 128] filters, 

respectively. The output feature map size was 3 × 3 × 2, which was the same as the first model. 

4.1.2.3 Deep 3D Models with Multi-Layer-Output (Models C and D) 

Moreover, a new concept of Multi-Layer-Output (MLO) was developed for this 

application. The goal was to explore if combining features that were created at different level can 

increase the classification accuracy. 
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4.1.2.3.1 Intuition 

Generally, there is a perception that deep learning performs better than shallow learning 

because its ability to automatically learn high level features. Such features were either too costly 

for human to manually engineer, or researchers didn’t understand the task well enough to create 

discriminant features. Often times, restrained by the limited observation, researcher constantly 

drew conclusions that seemed convincing at the moment but overtime got proven to be wrong. 

Nowadays, empowered by the exploding amount of data, deep learning models can effectively 

draw conclusion from data without human conjecture, such as speech recognition and natural 

language processing. However, deeper models were not always better. Model optimization is 

always a challenging research focus that needs constant attention. Despite the consistent attempts 

on building deeper network, as shown in Figure 4.13, results showed that simply increase the 

depth of the network may cause the performance to decline (He et al., 2016). The same 

researchers made another interesting observation that a well-trained model would quickly 

degrade if some plain identity layers were added to it. 

These observation indicated that even though deep models showed strong performance in 

automatic learning, the tuning of model topology was still a challenging job for researchers (He 

et al., 2016). Given the fact that there are millions of tasks in the world, it is unthinkable to 

request a fine-tuned model for every one of them. However, if we could provide the classifier 

with a combination of multiple feature representations, it is possible for the classifier to select the 

best features based on the training data.     

4.1.2.3.2 Implementation 

Inspired by the discussion, two modification were applied to the existing models. In 

Figure 4.14, the new model (Model C), which was originated from the model in Figure 4.10 
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(Model A), had output three feature representations separately from the three convolutional 

layers. As mentioned in Section 4.1.2.1, item 4, the out sizes of these layers were 12 × 12 × 8 × 

64, 6 × 6 × 4 × 128, and 3 × 3 × 2 × 256. To produce a useable feature representation, these 

feature maps were connected with global average pooling layers. Therefore, three feature 

vectors, with sizes of 64, 128 and 256, were created. Later on, these feature vectors were 

concatenated sequentially and resulted in the final feature vector which had a size of 64 + 128 + 

256 = 448. The rest of the model was the same setup as the Model A except the size of the 

dropout layer was now 448 to adapt the changes in the feature vector. In the rest of the work, this 

model will be referred as Model C. 

Similarly, as shown in Figure 4.15, the model was modified based on the model in Figure 

4.11. The output feature maps of the three 3D ResBlocks had sizes of 12 × 12 × 8 × 32, 6 × 6 × 4 

× 64, and 3 × 3 × 2 × 128. After separated pooling operations, three feature vectors of size 32, 

64, and 128 were created. After concatenation, the final feature vector was thus created with a 

size of 32 + 64 + 128 = 224. The rest of the model was the same as the model in Figure 4.11 

except the size of the dropout layer was now 224. In the rest of the work, this model will be 

referred as Model D. 

4.1.3 Grid Search 

Other than the specifications mentioned in Section 4.1.2, there were many hyper-

parameters that were not specified. In machine learning, “parameter” refers to the characteristic 

of the model that can be gradually approximated by optimized training process. An example of 

parameter can be the weights in a kernel, which is gradually derived and updated based on the 

model performance on the training data (Nielson, 2015). On the other hand, “hyper-parameter” 

refers to the set of model specifications that were determined before the training process and 
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cannot be further tuned by the training data (Kuhn & Johnson, 2013). Examples of the hyper-

parameters can be number of layers in the network or the value of the drop rate in a dropout 

layer. To find the optimal combination of the hyper-parameters, grid search was often adopted in 

the training process. The fundamental idea of grid search was to conduct exhaust search on all 

the combinations in a given hyper-parameter space. This process would return the combination 

that achieve the highest performance on the monitored metrics. 

In this work, three hyper-parameters were remained to be determined by grid search, 

namely, the drop rate, dp, the coefficient of the L2 regularizations, λ (equation 15), and the leak 

rate of the leakyReLU units, leakR (equation 16).  

𝐸𝑟𝑟𝑜𝑟𝑛𝑒𝑤 = 𝐸𝑟𝑟𝑜𝑟 +  𝜆 ∑ 𝛽                                     (15) 

𝑜𝑢𝑡𝑝𝑢𝑡 =  {
𝑥,     𝑖𝑓 𝑥 > 0

𝑙𝑒𝑎𝑘𝑅 ∙ 𝑥, 𝑖𝑓 𝑥 ≤ 0
                         (16) 

The scan range of dp was [0.1, 0.7] with step size of 0.1. The scan range of λ was [0.01, 

0.05] with step size of 0.01. The scan range of leakR was [0.01, 0.03] with step size of 0.01. 

Given the targeted classification task was multiclass classification, the monitored metric will be 

the average accuracy of cross validation. For each combination, a 5-fold cross validation was 

conducted and their accuracies will be recorded. The combination of hyper-parameter that 

achieved the highest average accuracy was selected for the final model. 

4.1.4 Train and Testing Method 

4.1.4.1 Training 

Due to the limited amount of data, a 5-fold validation was conducted for all the proposed 

model to reduce bias. The training scheme was shown in Figure 4.16. The global training hyper-

parameters were: 
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• Learning rate:  

The initial learning rate was 1e-4. A learning rate reduce on plateau was incorporated. 

That is, reduce the learning rate by a factor of 0.5 when validation loss doesn’t decrease 

for three consecutive epoch. The minimum learning rate was 1e-5.  

• Epoch and batch size: 

The total number of epochs was 80. The batch size was 20 

• Optimizer 

The optimizer adopted in this work was adaptive moment estimation (ADAM; Kingma & 

Ba, 2014). Additionally, a save-best strategy was adopted, which would only update the 

weights when validation loss improves. 

The whole process can be broken down into five steps.  

Step A - The dataset used was the processed ADNI1 dataset (totally 1725 scans). Eighty-

five percent of the data were randomly sampled from the entire dataset (totally 1466 scans). This 

proportion was used for cross validation while the remainder was preserved for testing (totally 

259 scans). These 85% of the data were divided into five folds evenly (17% of the data in each 

fold). 

Step B - The prepared five folds of data were reorganized as shown in Figure 4.16. The 

idea was to make sure that each fold had been selected for validation just once. This way, all the 

data observation are validated once and therefore, reduce the bias that came with the imbalanced 

dataset. 

Step C - The training then began with one of the combinations in Step B. To relieve the 

computation burden and accelerate the learning, a progressive loading routine, denoted as “Data 

Generator” was adopted in this work. Basically, instead of reading all the data into memory, the 
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training and the validation data were prepared into batches of 20 scans. In all time, only 10 

batches were read into the memory simultaneously. The detailed implementation of the data 

generator could be found in Appendix A. 

Step D - The prepared batches of data were then fed into the model, one at a time. The 

model to be trained was one of the four models proposed in Section 4.1.2 (Models A-D). The 

grid search methods, described in Section 4.1.3, was implemented in this step. One combination 

from the hyper-parameters space was used throughout the cross validation. As one batch of 

training data finished, the training accuracy and the training loss was recorded for evaluation 

purpose. This process was repeated until the entire training data had been used. After that, a 

similar progressive batch loading was adopted for validation data as well. The final validation 

accuracy was recorded when all the validation batches had been used. This entire maneuver, also 

known as one epoch, was repeated 80 times, giving the model enough time to converge. Upon 

competition of all the epochs, one of the 5- fold cross validation was considered as completed. 

The next step was to route back to Step B, where a new data split was prepared for the next cross 

validation test. The entire process (Steps B through D) were repeated five times to complete the 

cross validation. 

Step E – One set of 5-fold cross validation was conducted for each combination in the 

hyper-parameter space. As described in Section 4.1.3, the hyper-parameters to be determined by 

grid search were drop rate, dp; Leak rate, leakR; and the L2 coefficient, λ. Based on the search 

range, each model was trained 7 (# of dp)× 3 (# of leakR) × 5 (# of λ) = 105 times. The 

corresponding training performance was recorded to determine which hyper-parameter setting 

achieved the best classification accuracy. 
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4.1.4.2 Testing 

As shown in Figure 4.17, 15% data that were hold out in the training were used for 

testing. Progressive loading was used to prepare the batches for testing. For each model proposed 

in Section 4.1.2, among its 105 trainings, one model that achieved the best average validation 

accuracy was selected for testing. The models predicted the labels (Stages of subject – NC, MCI, 

or AD) of the testing data and then later compare with the ground truth labels. The test accuracy 

will be recorded for comparison. 

4.2 Indoor Scene Understanding 

4.2.1 Dataset 

In this study, we focused on identifying the most common home indoor scene. Typically, 

datasets with the image collection of bedroom, dining room, and living room were considered. 

To thoroughly test the performance of our model and further test the model’s generalization 

ability, we collected the following datasets: 

1) Large-scale Scene Understanding (LSUN; Yu et al., 2015) 

• Includes 10 indoor/outdoor scene categories and 20 object categories. See Figure 4.18. 

• The total number of images with indoor scenes is over five million. 

2) MIT Indoor67 (Quattoni & Torralba, 2009) 

• Includes 67 indoor scene categories. See Figure 4.19. 

• The total number of images with indoor scenes is 15,620. 

3) 15-Scene (Fei-Fei & Perona, 2005; Lazebnik Schmid, & Ponce, 2016; Oliva & Torralba, 

2001) 

• Includes 15 indoor/outdoor scene categories. See Figure 4.20. 
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• The total number of images is 4490. 

In our experiment, the data from LSUN dataset was used for fine-tuning the model and 

testing. The data from MIT Indoor67 and 15-Scene were prepared for validating the model’s 

ability for data generalization. Three sets of approaches were designed to thoroughly test the 

performance. 

Approach A:  

Specifically, 30,000 images were randomly sampled out of the LSUN dataset with 10,000 

images from each categories respectively. These images were later divided and resulted in 3,000 

images for testing and 27,000 for training and validation. The model was then fine-tuned and 

validated using 5-fold cross validation. 

Approach B: 

Moreover the entire LSUN dataset which contains 5,006,415 images belonging to three 

indoor scene categories (bedroom, living room, dining room) were used for training. These 

images were randomly split into training, validation, and testing with 60%, 20%, and 20% ratios 

respectively. This resulted in a training size of 3,151,092, and validation/test size of 938,472. 

 Generalization tests were conducted in both approaches. Extensively, 211 images were 

collected from the MIT Indoor67 dataset and 505 images were collected from the 15-Scene 

dataset that belonged to the target classes. 

Approaches C: 

To avoid the collection bias in the existing dataset and to better simulate the real-world 

environment for testing. 15 real-life images were collected using various daily equipment such as 

cellphone camera and webcam. These images were used finally on the optimized model. See 

Figure 4.21. 
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4.2.2 Model Architecture 

In this work, we transferred a deep Residual Neural Network (ResNet; He et al., 2016) 

that was intended for object detection to our targeted domain for feature extraction (see detailed 

code implementation in Appendix B). The reason of choosing ResNet – based model is because 

it has two major advantages. Firstly, the ResNet model, compared with other popular 

architectures, has much smaller model size considering its depth and performance. As shown in 

the Figure 4.22 (Canziani, Paszke & Culurciello, 2016), compared with VGG models (Simonyan 

& Zisserman, 2014) that had approximately 138 million parameters, ResNet models had model 

sizes ranged from 25 million to 65 million parameter depending on specific variation. This 

would greatly accelerate the training speed when trying to go deeper on the model. Secondly, the 

shortcut connection in each block could effectively solve another major problem when having 

very deep model, which is the gradient vanishing problem (He et al., 2016). 

Deep Residual Neural Network (ResNet) has various variation and topology/depth. 

Depending on the specific task, the ResNet model can 18 layers, 34 layers, 50 layers, 101 layers 

and 152 layers. The detailed models were summarized in Table 4.2. The model adopted in this 

work was a native ResNet-50 model (He et al., 2016) that was pretrained on ImageNet. The idea 

of transferring learning is, if the source classification task is similar to the target classification 

task, the knowledge learned from the source task would ideally be very similar to the knowledge 

required to perform the target classification task. Similarly, in machine learning, transfer learning 

refers to the method that adopt the prior knowledge of another task that was related to the current 

target task. To do so, the trained weights in the source model will be copied to the target 

classification model as the weigh initialization. The model with this transferred weights will then 

be fine-tuned with the data in the target domain. This would significantly improve the training 

convergence and the classification performance. 
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Naturally, the complexity of interior design has brought very serious challenges for 

feature extraction given the diverse intraclass and interclass variation (Khan et al., 2015). Simple 

low-level semantic understanding of the objects in the scene would not contribute greatly to the 

scene classification due to its inconsistency (Khan et al., 2015). Therefore, high-level feature 

representation needs to be established to capture such characteristic. In our circumstances, the 

pretrained model was targeted on object detection. However, considering the large resemblance 

on low-level features between the source domain and the targeted domain, it was reasonable to 

transfer the prior knowledge from object detection to scene understanding with proper domain 

adaption. 

Traditionally, neural network with very deep architecture can be severely problematic in 

training. The gradient vanishing problem (He et al., 2016) would cause the gradient to become 

very slow as it transmitted through layers. This would lead to the weights in the bottom layers to 

be not updating effectively. Conversely, a deeper network was believed to has better ability to 

extract high-level features (Eldan & Shamir, 2016). To that end, we adopted a ResNet-50 model 

which would be able to extract high-level features through very deep network while avoiding the 

vanishing gradient problem. ResNet model has been proven very powerful in many machine 

learning scenario. Its strength comes from the unique shortcut connection and the residual block 

design. Model with such topology could effectively solve the gradient vanishing problem when 

using very deep network to extract high-level feature (Akiba, Suzuki & Fukuda, 2017; Jung et 

al., 2017; Xie et al., 2017). In this case, the gradients would not pass through all the layers but 

instead, would transmit through the identity mapping. So in a way, the model is both deep when 

performing feature extraction and shallow when back-propagating the gradients (He et al., 2016). 
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4.2.2.1 Model Summary 

A detailed training flowchart can be found in left segment of Figure 4.23. Specifically, 

the following describe the model: 

1. Segment A: input layer 

This layer read the input data from the batches prepared for the model. The output shape 

is 224 × 224 pixels to comply with the size of images. 

2. Segment B: 2D Convolution with padding 

This layer was a 2D convolutional layer with kernel size of 7 × 7. The stride of the filters 

was 2 and the number of filters was 64 (layer denoted as conv1). Zero padding of 3 was applied 

to the layer before convolution. Therefore, the actual input size of 2D convolution is 230 × 230 

(224 + 3 + 3 = 230). After the convolution, the output feature map size was changed from 224 to 

112 (see equation 15) and resulted in an output size of 112 × 112 × 64. 

𝑜 =
224 − 7 + (3 × 2)

2
+ 1 = 112.5 ≈ 112                (17) 

3. Segment C: 2D Max pooling with padding 

This layer was a 2D max pooling layer with kernel size of 3 × 3 and stride of 2. Similarly, 

zero padding of 1 was applied to the layer, increased the input size to 114 × 114 × 64 (112 +1 +1 

= 114). The max pooling was then applied and produced output feature maps with a size of 56 × 

56 × 64 (see equation 16). 

𝑜 =
112 − 3 + (1 × 2)

2
+ 1 = 56.5 ≈ 56                (18) 

4. Segment D: Bottleneck Residual Blocks (He et al., 2016) 

As shown in Figure 4.25, a bottleneck residual block consist of three 2D convolutional 

layers: two layers with filter size of 1 × 1, and one intermediate layer with filter size of 3 × 3 in 

between. Additionally, a short cut connection (with an optional 2D convolutional layer with filter 
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size of 1 × 1, when the input filter number is different from the output filter numbers) from the 

input to the output is also included. 16 residual blocks were concatenated sequentially with 

different number of filters. Specifically, four different types of residual block were created in this 

worked, namely, conv2 to conv5 (see Table 4.2).  

Conv2 blocks have 64 1 × 1 filters in the first layer, 64 3 × 3 filters in the second layer 

and 256 1 × 1 filters in the third layer. Conv2 block had repeated three times. The first 

convolution was performed with a stride of 2 while the rest of the convolutions had stride of 1. 

The final output size of conv2 blocks was 56 × 56 × 256. 

Conv3 blocks have 128 1 × 1 filters in the first layer, 128 3 × 3 filters in the second layer 

and 512 1 × 1 filters in the third layer. Conv3 block had repeated four times. The first 

convolution was performed with a stride of 2 while the rest of the convolutions had stride of 1. 

The final output size of conv3 blocks was 28 × 28 × 512. 

Conv4 blocks have 256 1 × 1 filters in the first layer, 256 3 × 3 filters in the second layer 

and 1024 1 × 1 filters in the third layer. Conv4 block had repeated six times. The first 

convolution was performed with a stride of 2 while the rest of the convolutions had stride of 1. 

The final output size of conv4 blocks was 14 × 14 × 1024. 

Conv5 blocks have 512 1 × 1 filters in the first layer, 512 3 × 3 filters in the second layer 

and 2048 1 × 1 filters in the third layer. Conv5 block had repeated three times. The first 

convolution was performed with a stride of 2 while the rest of the convolutions had stride of 1. 

The final output size of conv5 blocks was 7 × 7 × 2048. 

5. Segment E: Global average pooling 

This layer performed global average pooling on the output of segment D. A global 

average pooling layer (see Section 2.3.1.3) will extract the average value across the entire feature 
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map. Given the input size was 7 × 7 × 2048, for each feature map (7 × 7), one average value will 

be calculate and therefore resulted in an output size of 1 × 1 × 2048. 

6. Segment F: Dropout 

This layer performed Dropout operation on the feature representation to avoid overfitting. 

The dropout rate, dp, was remained to be selected using grid search techniques. The output size 

of this layer remained 1 × 1 × 2048. 

7. Segment G: Fully Connected Layer 

Following the dropout layer was a fully connected layer with ReLU activation (see 

Section 2.3.2). All the neurons in this layer connected to all the 2048 features. This constructed a 

linear classifier. The number of the filters in this layer, nf, was remained to be selected using grid 

search techniques. The output size of this layer was 1 × 1 × nf. 

8. Segment H: Fully Connected Layer and Output 

The final output layer was a fully connected layer with three neurons that used softmax 

activation (see Section 2.3.2). This layer would use the output of the previous layer and calculate 

the probabilities of input belonging to the 3 targeted categories – bedroom, living room and 

dining room. This input data would then be labeled with the category that has the highest 

probability.  

4.2.2.2 Grid Search for Hyper-parameter 

As mentioned in Section 4.1.3, “hyper-parameter” refers to the set of model 

specifications that were determined before the training process and cannot be further tuned by 

the training data (Kuhn & Johnson, 2013). Therefore, hyper-parameters needs to be preemptively 

decided.  
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Tuning the hyper parameters of the model can be very arbitrary. So far, there is no 

systematic approach in finding the optimal combination of parameters except grid search. In this 

study, two hyper parameters are left to be determined by grid search to find the model with 

optimal performance. Namely, the drop rate of the dropout layer and the number of filters in the 

fully connected layer. The testing range for dropout is [0.1, 0.5] with step size of 0.1. The testing 

range for number of filters is [100, 500, 1000]. 

4.2.3 Training and Testing Process 

The right segment of Figure 4.23 graphically depicted the training and the validation of 

the given dataset. Specifically, the dataset was first divided into training set, validation set and 

testing set. The training and the validation of this model used the LSUN dataset (Yu et al., 2015). 

The whole LUSN dataset contains more than five million images. By image preprocessing, each 

image was formatted into a 224 × 224 grayscale image with 8bit integer pixel intensity. To 

accelerate the training, all the pixels are then scaled to [0,1] and subtract from their mean. 

Therefore, as a result, each image is stored as a 2D numpy array with size of 224 × 224, data 

type of float32, zero mean and unit variance. A processed image like this takes up 224 × 224 × 

32 = 1605632 bits = 200704 bytes which is 0.2 MB. Attempting to read all five million images 

into memory would then requires 0.2MB*5000000= 1000GB. Such hardware requirement is 

impossible to meet. Therefore, a customized data streamer (denoted as “Data Generator”) was 

used to create batches of data and streamed to the model, batch by batch. Each batch contained 

images of size 224 × 224, accompanied by their ground truth labels. In all time, only 10 batches 

of images would be queued and stored in the memory for the model. The training and the 

validation were then performed orderly in four steps.  
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4.2.3.1 Step A: Cross validation with LSUN subsets. 

To accelerate training and to perform rapid model validation, we randomly sampled five 

subsets from the whole LSUN dataset. Each subset contained 30,000 images with 10,000 from 

each categories respectively. These data subsets, namely LSUN-1 through LSUN-5, were then 

used for initial model training and validation. A 5-fold stratified Cross Validation was conducted 

on each of the data subsets to reduce overfitting. Specifically, for each LSUN subset (totally 

30,000 images), 3000 images (1000 images for each class) were reserved for testing. The rest of 

the images (27,000 images – 9000 images for each class) were used for training and validation. 

In each fold of cross validation, 21600 images (7200 images for each class) were used for 

training and 5400 images (1800 images for each class) were used for validation.  

For each fold of the validation, the training was done the same way described in right 

segment of Figure 4.23. That is, 21600 images were used for training and 5400 images were used 

for validation. The model was optimized by Stochastic Gradient Decent (SGD; Robbins & 

Monro, 1951) optimizer, the initial learning rate was 0.0001 and the training run 10 epochs. 

After each epoch, the training accuracy, training loss, validation accuracy and validation loss 

would be recorded in the training history. Among them, the validation loss would be used as the 

benchmark for training performance. Neural network training is known for easily converge to 

local minimum on the loss function instead of the global minimum. Therefore a learning rate 

scheduler was used when the monitored metric is on plateau. In this case, the learning rate will 

decayed by a factor of 0.2 when the monitored metric, validation loss, never improved for three 

consecutive epochs. The minimum learning rate was set to 1e-5 and cannot be decayed further. 

Once the training and validation was finished, the rest of the data in LSUN subsets (3000 

images) would be used for testing. Also the MIT Indoor67 dataset and the 15-Scene dataset 

would be used for additional testing to examine the model’s performance on the unseen data. 
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Generally, this was to test whether the model could generalize new data. Hence, all the tests 

conducted in this work that did not use the LSUN dataset would be categorized as 

“generalization tests.” The testing process was shown in Figure 4.24. 

In summary, for each LUSN subset, five models were trained using cross validation. 

Each trained model was tested with the remainder of the LSUN subset, the MIT Indoor67 dataset 

and the 15-Scene dataset. The batch size for all LSUN datasets (training, validation, testing) was 

60 and the batch size for all generalization tests (MIT Indoor67, 15-Scene) was 10. 

The recorded metrics included training accuracies, training losses, validation accuracies, 

validation losses and testing accuracies. 

4.2.3.2 Step B: Grid Search 

As described in Section 4.2.2.2, grid searches were conducted to obtain the optimal 

hyper-parameters for this particular model. In this study, two hyper-parameters were considered 

to be adjustable, namely the drop rate (Step F in Section 4.2.2.1) and the number of neurons in 

the first fully connected layer (nf; Step G in Section 4.2.2.1). The tested values for drop rate 

ranged from 0.1 to 0.7 with a step size of 0.1. The tested values for nf were [100, 500, 1000]. 

This translated into 21 grid search experiments. To further increase the confidence of this grid 

search, a new, larger subset of LSUN, which contained 300,000 images (100,000 for each class), 

were randomly sampled from the entire dataset. This dataset was divided into training set, 

validation set and testing set with the sizes of 240000, 3000 and 3000 images respectively. The 

training (without cross-validation) and the testing was then conducted the same way described in 

Figures 4.23 and 4.24. The additional generalization tests were also conducted with MIT 

Indoor67 and 15-Scene.  
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In summary, 21 models with different combination of hyper-parameters were trained on 

LSUN subset and tested on LSUN subset, MIT Indoor67 dataset and 15-Scene dataset. The batch 

size for all LSUN datasets (training, validation, testing) was 60 and the batch size for all 

generalization tests (MIT Indoor67, 15-Scene) was 10. The testing accuracies were recorded as 

the benchmarks of model performance. The ideal combination of hyper-parameter should 

achieve good performance on all the test sets. 

4.2.3.3 Step C: Fine-tune with entire LSUN dataset 

Later on, a more comprehension model training was conducted using the whole LSUN 

dataset. The dataset was divided into training set, validation set, and testing set with ratios of 

60%, 20%, and 20%. This resulted in a training set with a size of 3,151,092 images, a validation 

set with a size of 938,472 images, and a test set with a size of 938,472 images. Because of the 

ample data size, no k-fold validation was conducted for this experiment. Moreover, dataset with 

such gigantic size was most likely to increase the duration of training and testing. To accelerate 

the process, the batch size of all LSUN dataset was increased from 60 to 200. The training and 

testing were then conducted with this updated hyper-parameter and the optimal hyper-parameter 

obtained in Step B (dp, nf). Similarly, the generalization tests with the MIT Indoor67 dataset and 

the 15-Scene dataset were also conducted afterwards. And the testing accuracies were recorded 

for performance evaluation. 

4.2.3.4 Step D: Real scene 

Lastly, 15 real life images from these three categories were also collected separately. All 

the images were taken using cameras of smartphones under natural environmental lighting, with 

no postprocessing. The reason of collecting such images was because a lot of the images in the 

LSUN dataset were very standard scenes that most likely taken from model show rooms. Traces 
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of photo editing can also be found in those images, such as lighting compensation. The most 

alarming concern, as shown in Figure 4.26, was the placements of objects were very clean and 

neat, which was uncommon in real life environment. Using the trained model from Step C, these 

15 real-life images were tested to evaluate the performances of this model in classifying into one 

of the three scenes.  
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Table 4.1 Demographics of ADNI1 Dataset 

 ADNI-1 

Acquisition Scanner: 1.5T Voxel sizes: 1.2mm x 1.25mm x 1.25mm 

Diagnosis 346 AD; 573 NC; 806 MCI;  

Sex Male: 949; Female: 776 

Age in years (mean, stdev) (75, 6.7) 

Education in years (mean, stdev) (15.5, 3.1) 

ADAS-13 (mean, stdev, [min, max]) (18.4, 9.2, [1.0, 54.7]) 

MMSE (mean, stdev, [min, max]) (26.7, 2.7, [18.0, 30.0]) 
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Table 4.2 Detailed Model Architecture for Native ResNet Models (He et al., 2016) 

Layer 

Name 

Output 

Size 
ResNet-18 ResNet-34 ResNet-50 ResNet-101 ResNet-152 

Conv1 112 × 112 7 × 7, 64 filters, stride 2 

Conv2_x 56 × 56 

3 × 3, max pooling, stride 2 

[
3 × 3 64
3 × 3 64

]  × 2 [
3 × 3 64
3 × 3 64

]  × 3 [
1 × 1 64
3 × 3 64
1 × 1 256

] × 3 [
1 × 1 64
3 × 3 64
1 × 1 256

] × 3 [
1 × 1 64
3 × 3 64
1 × 1 256

] × 3 

Conv3_x 28 × 28 [
3 × 3 128
3 × 3 128

]  × 2 [
3 × 3 128
3 × 3 128

]  × 4 [
1 × 1 128
3 × 3 128
1 × 1 512

] × 4 [
1 × 1 128
3 × 3 128
1 × 1 512

] × 4 [
1 × 1 128
3 × 3 128
1 × 1 512

] × 8 

Conv4_x 14 × 14 [
3 × 3 256
3 × 3 256

]  × 2 [
3 × 3 256
3 × 3 256

]  × 6 [
1 × 1 256
3 × 3 256
1 × 1 1024

] × 6 [
1 × 1 256
3 × 3 256
1 × 1 1024

] × 23 [
1 × 1 256
3 × 3 256
1 × 1 1024

] × 36 

Conv5_x 7 × 7 [3 × 3 512
3 × 3 512

]  × 2 [3 × 3 512
3 × 3 512

]  × 3 [
1 × 1 512
3 × 3 512
1 × 1 2048

] × 3 [
1 × 1 512
3 × 3 512
1 × 1 2048

] × 3 [
1 × 1 512
3 × 3 512
1 × 1 2048

] × 3 

Classifier 1 

Global Average Pooling 

Fully Connected Layer, 1000, Softmax 
Output label 
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(Normal Control / NC) 

 

(Mild Cognitive Impairment / MCI) 

 

(Alzheimer’s Disease / AD) 

Figure 4.1 Example the subjects in different stages. 
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Figure 4.2 Denoised MRI scan. 

 

 

Figure 4.3 Demonstration of brain extraction tool (BET; Smith, 2002). 
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Figure 4.4 Isolated grey matter (top left: coronal plane; top right: sagittal plane; bottom left: axial 

plane). 

 

Figure 4.5 Isolated white matters (top left: coronal plane; top right: sagittal plane; bottom left: 

axial plane). 

 



98 

 

 

 

Figure 4.6 Isolated cerebral spinal fluid (top left: coronal plane; top right: sagittal plane; bottom 

left: axial plane). 

 

 

Figure 4.7 Isolated skull and other non-brain (top left: coronal plane; top right: sagittal plane; 

bottom left: axial plane). 
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Figure 4.8 Effect of data processing. Original (top) versus processed (Bottom). 
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Figure 4.9 MRI data processing flowchart. 
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Figure 4.10 Model architecture for deep 3D neural network – Model A, with output shape of 

each layer listed in the parentheses.  
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Figure 4.11 Model architecture for 3D Residual neural network – Model B, with output shape of 

each layer listed in the parentheses. 
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Figure 4.12 3D Residual Block, with n1 and n2 being the number of filters.  

 

 

Figure 4.13 Error increased when simply increased depth (He et al., 2016). 
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Figure 4.14 Deep 3D convolutional network with Multi-Layer-Output (Model C).  
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Figure 4.15 3D ResNet model with MLO (Model D).. 
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Figure 4.16 Demonstration of cross validation for AD diagnosis models. 
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Figure 4.17 Demonstration of model testing. 
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Figure 4.18 Typical indoor scene from LSUN dataset (Yu et al., 2015). 

 
Figure 4.19 Typical indoor scene from MIT Indoor67 dataset (Quattoni & Torralba, 2009). 

 
Figure 4.20 Typical indoor scene from 15-Scene dataset (Fei-Fei & Perona, 2005; Lazebnik, 

Schmid, & Ponce, 2016; Oliva & Torralba, 2001). 

 

 
Figure 4.21 Examples from self-collect dataset. 
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Figure 4.22 Model comparison on top-1 accuracy, number of operations and model size 

(Canziani, Paszke, & Culurciello, 2016). 
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Figure 4.23 Training flowchart for scene understanding. 
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Figure 4.24 Testing flowchart for scene understanding. 

 



112 

 

 

Figure 4.25 Bottleneck residual block. 
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Figure 4.26 Comparison between showroom image (top) and real-life image (bottom). 
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 RESULT AND ANALYSIS 

5.1 Development Environment 

The model proposed in this work were developed and tested in Python 3.6.6. The major 

supporting development libraries included: Tensorflow 1.12.0 (Abadi et al., 2016), Keras 2.2.4 

(Chollet, 2015), Scikit-Learn 0.20.1 (Pedregos et al., 2011), NumPy 1.12.1 (Oliphant, 2006), and 

Nibabel 2.3.1 (Brett et al., 2018). The front-end independent development environment was 

Spyder 3.2.4 under Window 10 Education operating system. 

With the courtesy of Purdue University Rosen Center for Advanced Computing (RCAC), 

all the test and analysis were done on their “Gilbreth” back-end computation cluster. For every 

job submitted, two computation nodes were requested which contained 384 GB of memory and 

two Nvidia Tesla P100 graphic computation units. This cluster was run with CentOS 7.6 

operation system. The graphic computation was supported by CuDA 9.0.176 (Nvidia, 2010) 

development kit and CuDNN 9.0 deep neural network optimization library (Chetlur et al., 2014).   

5.2 Experiments Results Deep 3D Convolutional Neural Network for AD classification   

5.2.1 Grid Search Result 

As described in Section 4.1.4, grid search with 5-fold cross validations were conducted to 

find the best hyper-parameter for the model. The search range for drop rate (dp) was [0.1, 0.7] 

with a step size of 0.1. The search range for L2 coefficient, λ, was [0.01, 0.05] with a step size of 

0.01. The search range for leak rate (leakR) was [0.01, 0.03] with a step size of 0.01. The total 

size of ADNI1 dataset was 1,725. Fifteen percent of the data were reserved for testing, which 

was 1725 * 0.15 = 258.75 ≈ 259 scans. The rest of 1467 scans were used for a 5-fold cross 

validation. The detail results were reported later. 
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5.2.1.1 Deep 3D Convolutional Neural Network – Model A 

As listed in Tables 5.1 to 5.7, the average accuracies of Model A in 5-fold cross 

validations were reported. The highest average validation accuracy was 77.1%, achieved with dp 

= 0.1, leakR = 0.02 and λ = 0.02. Although, the leak rate and the L2 coefficient didn’t showed 

significant impact on the performance. However, an obvious decreasing trend was observed in 

the accuracy when the drop rate increased. The accuracies started to dramatically decrease (from 

around 75.0% to around 55.0%) when drop rate was set to greater than 0.3. The final model, 

whose dp = 0.7, showed accuracies only between 50% and 60%, and an overall minimum 

accuracy of 50.0%. This minimum performance occurred when dp = 0.7, leakR = 0.02 and λ = 

0.01. The training and validation performance of the best model was shown in Figure 5.1.  

5.2.1.2 Deep 3D Residual Neural Network – Model B 

As listed in Table 5.8 to 5.14, the average accuracies of model B in cross validations 

were reported. The highest accuracy was 72.5%, achieved with dp = 0.1, leakR = 0.01 and λ = 

0.01. Throughout the entire set of validations, no obvious trend in validation accuracy could be 

observed. The majority of the validation accuracies were around 70%. The lowest accuracy was 

62.5%, achieved with dp = 0.6, leakR = 0.03 and λ = 0.05. The training and validation 

performance of the best model was shown in Figure 5.2.  

5.2.1.3 Deep 3D Convolutional Neural Network with Multi-Layer-Output – Model C 

As listed in Tables 5.15 to 5.21, the average accuracies of Model C in cross validations 

were reported. The highest accuracy was 80.4%, achieved with dp = 0.1, leakR = 0.03 and λ = 

0.03. Validation accuracies started to decrease when the drop rate was greater than 0.3. The 

training and the validation performance of the best model was shown in Figure 5.3. 
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5.2.1.4 Deep 3D Residual Neural Network with Multi-Layer-Output –Model D   

As listed in Tables 5.22 to 5.28, the average accuracies of Model D in cross validations 

were reported. The highest accuracy was 82.0%, achieved with dp = 0.2, leakR = 0.01 and λ = 

0.04. Validation accuracies showed no significant trend when changing hyper-parameters. The 

majority of the models showed validation accuracies around 78%. The training and the validation 

performance of the best model was shown in Figure 5.4 

5.2.2 Testing Results 

Based on the cross-validation results, four best models were selected from the grid search 

cross validation. These four models were: 

• Model A with dp = 0.1, leakR = 0.02 and λ = 0.02. Average validation accuracy 77.1%. 

• Model B with dp = 0.1, leakR = 0.01 and λ = 0.01. Average validation accuracy 72.5%. 

• Model C with dp = 0.1, leakR = 0.03 and λ = 0.03. Average validation accuracy 80.4%. 

• Model D with dp = 0.2, leakR = 0.01 and λ = 0.04. Average validation accuracy 82.0%. 

The same testing dataset was used to evaluate the classification accuracies of these 

models. The detailed performance was shown in Table 5.29. Additionally, six rounds of testing 

were conducted to find out the average testing performance (the result for these additional tests 

were shown in Appendix C). 

Overall, on the testing set that contained 259 scans (88 NC, 117 MCI and 54 AD), the 

testing accuracies were summarized (The detailed confusion matrices for these tests can be found 

in Figures 5.5 through 5.8): 

Model A achieved 74.9% multiclass classification accuracy. For in-class accuracy, 61 out 

of total 88 NC (69.3%), 92 out of total 117 MCI (78.6%) and 41 out of total 54 AD (75.9%) were 
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classified correctly. For additional tests, the average accuracy was 75.4% and the standard 

deviation was 0.8%. 

Model B achieved 71.4% multiclass classification accuracy. For in-class accuracy, 59 out 

of total 88 NC (67.0%), 89 out of total 117 MCI (76.1%) and 37 out of total 54 AD (68.5%) were 

classified correctly. For additional tests, the average accuracy was 69.6% and the standard 

deviation was 1.4%. 

Model C achieved 79.9% multiclass classification accuracy. For in-class accuracy, 74 out 

of total 88 NC (84.1%), 93 out of total 117 MCI (79.5%) and 40 out of total 54 AD (74.1%) were 

classified correctly. For additional tests, the average accuracy was 78.0% and the standard 

deviation was 1.1%. 

Model D achieved 81.5% multiclass classification accuracy. For in-class accuracy, 72 out 

of total 88 NC (81.8%), 102 out of total 117 MCI (87.2%) and 37 out of total 54 AD (68.5%) 

were classified correctly. For additional tests, the average accuracy was 80.5% and the standard 

deviation was 1.4%. 

5.2.3 Analysis and Discussion 

5.2.3.1 Grid Search 

In this work, the proposed models were first trained and validated on 85% of the entire 

ADNI1 dataset. There were 105 different variation for each model. This brought the total amount 

of models to 105 × 4 = 420 and the total amount of training to 420 × 5 (5-fold cross validation) = 

2100. Several observations can be made from these 5-fold cross validation result. 

1. Between native models (Model A and Model B) 

Model A (7 hidden layers) and model B (13 hidden layers) were designed to explore the 

effect of simply increasing the depth of the network. Based on the results listed in Tables 5.1 to 
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5.14, the best average validation accuracy achieved by Model A was 77.1% which was better 

than that of model B (72.5%). Evidently, this suggested that, for this particular dataset, deeper 

network did not necessarily extract better feature than shallower network.  

However, another interesting fact was that as the drop rate increased, Model A showed 

significant decreased classification accuracies (from around 75% to around 55%). Meanwhile, 

Model B showed no such significant drop (from around 70% to around 67%). This indicated that 

even though the features extracted by Model B were not very significant, the majority of them 

were still related to the classification task. This relation could explain why penalizing the 

features would not affect the classification much. On the other hand, for Model A, the feature 

representations were more likely to contain several significant features while the rest of them 

were mostly nuisance to the task. Therefore, when the significant features got penalized, the rest 

of the features could not support the same classification performance as before. In a word, even 

though the high-level features extracted by the deeper network was not necessarily better, it 

could still serve as strong supporting features to the classification task.  

2. Between native models and their variations (Model A/C, Model B/D) 

Compared with the two native models, the two models with MLO showed an observable 

improvement on the classification accuracy (A/C: from 77.1% to 80.4%, B/D: from 72.5% to 

82.0%). Especially, the improvement for Model D was very significant. As we suspected earlier, 

the high-level features from deeper network may not be very discriminative but can still serve as 

supporting features. In Model D, feature representations were created every two convolutional 

layers and concatenated together. Because of this two layers between each representation, more 

feature transformations were completed and representation was more refined. This could be the 

reason of why the performance showed better improvement than Model C.  
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3. Between MLO models (Model C and Model D) 

Model C and Model D were the advanced modification of their native models (Model A 

and Model B). The idea was to examine if combining high-level features with low-level features 

could improve the classification accuracies. The results listed in Tables 5.15 to 5.28 indicated an 

observable improvement on the metrics. Unlike their native models, Model D showed better 

performance (82.0%) than Model C (80.4%). This result supported the previous proposition that 

high-level and low-level features should be combined. Both models showed improved accuracy 

when combining different levels of representation, especially for deeper networks. We can then 

speculate that the deeper network may not be better at producing final feature representation, but 

did perform better feature extraction throughout the entire process. 

5.2.3.2 Testing 

After the hyper-parameter were selected, the models were tested with the remaining 15% 

of data (259 scans, 88 NC, 117 MCI, and 54 AD) for overall and in-class accuracy. Model D 

showed the best performance (81.5%) and Model C achieved the second (79.9%). Both of the 

models showed improvements compared with their original models (5% improvement between 

Model A/C, and 10% improvement between Model B/D). Also, although misclassification 

happened in all models, it was noticed that the misclassification was more likely to happen 

between classes with similarity. In all models, when NC subjects were wrongly classified, they 

were majorly classified as MCI and not AD. Similar thing happened to MCI subjects and AD 

subjects. MCI misclassifications were majorly NC and AD misclassifications were majorly MCI. 

Considering the gradual structural changes when AD progress, these results suggested that the 

model successfully captured a moderately discriminative feature representation. 
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For AD classification, all models showed similar accuracies (37-41 correct classifications 

out of 54). This could be a sign of model underfitting (the feature cannot fully describe the 

characteristic of the class). However, this was considerably understandable because there were 

only 346 AD subjects in the entire dataset. Such characteristic might not be presented in the 

dataset in the first place. 

For NC and MCI classification, models showed significant improvements when adopted 

MLO structures. For Model A/C, the in-class accuracy boosted from 69.3% (NC) and 78.6% 

(MCI) to 84.1% (NC) and (79.5%). For Model B/D, the in-class accuracy boosted from 67.0% 

(NC) and 76.1% (MCI) to 81.8% (NC) and 87.2% (MCI). These results suggested that when 

combining low-level and high-level features, the final feature representation might have better 

ability to interpret the data. 

Compared with other popular works, the proposed models did not showed improvements. 

Billones et al. (2016) used 2D slices of MRI scan (around hippocampus) in a 17-layer 

convolutional neural network and achieved 91.8% accuracy on three-way classification 

(AD/MCI/NC). Hosseini-Asl et al.(2016) first extracted preliminary features using an 

autoencoder, then performed three-way classification through a 6-layer convolutional neural 

network. The classification results reached 89.1%. Based on their results and the results obtained 

in this work, several conjectures can be made: First, even though the models developed in this 

work did not achieve very high performance, they still achieved an accuracy greater than 81%. 

The proposed Multi-Layer-Output (MLO) structure significantly increased the classification 

accuracies of the conventional models. The standard models (model A and model B) when 

trained without MLO, only showed 74.9% and 71.4% respectively. After adopted the MLO 

architecture, the models (model C and model D) showed 5% and 10% improvement respectively, 
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on the overall classification accuracies (model C - 79.9% and model D - 81.5%). The 

advancement was, in model C and D, the features extracted at different levels were concatenated 

to the final feature representation. The models were them be able to learn much more 

comprehensive features and therefore led to a significant performance improvement. This 

architecture demonstrated a foreseeable potential in refining the model. For future work, instead 

of trying to increase the depth, it is worthwhile to explore how to optimize the model’s topology 

so that it could use the evidence to the fullest. 

Secondly, deep learning was not necessarily better than other shallow learning methods 

in this field of research. Deep learning is known for being an end-to-end methodology, which 

means to draw final conclusions from raw input. However, the collection of AD evidence is 

known for being notoriously difficult and costly. ADNI, being the largest organization for 

conducting such data collection, is well-funded by the National Institute of Aging (NIA) and 

National Institute of Health (NIH) and only recruited about 2,000 subjects in their 15-year study. 

Given this limited data size, deep learning models are not likely to be able to effectively refine 

the model and perform accurate classification.  

Lastly, instead of looking at the whole brain, methods that narrow the region of interest 

seem to have better performance. Billones et al. (2016) only focused on the slices that contained 

the hippocampus. Other research has used the density of brain matter as the evidence and 

achieved good results on binary classification (Davatzikos et al., 2008; Good et al., 2002; Lao et 

al., 2004; Misra et al., 2009). These methods were all inspired by neurological observation. 

Therefore, it might be helpful to obtain advice from medical professionals when developing 

models.  
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5.3 Indoor Scene Understanding 

5.3.1 Cross Validation 

In this experiment setup, the average training time for one epoch is 274s. The total 

training time for each 5-fold validation test is about 4 hours. As shown in the Table 5.30, the 

average training accuracy for the five LSUN subsets were, 99.8%, 99.8%, 99.8%, 99.7%, and 

99.7%. The total average training accuracy is 99.8% Also, the average testing accuracy for the 

five LSUN subsets are 94.3%, 94.1%, 94.4%, 94.6%, and 93.9% respectively. The total average 

testing accuracy is 94.3%. Finally, the average in-class accuracies for these three scene 

categories are 95.6%, 95.2%, and 91.9%.  

The generalization tests (testing model with unseen datasets) were also conducted using 

the trained models (Table 5.31). The average test accuracy for the MIT Indoor67 was 87.7% with 

in-class accuracies being 81.2%, 91.7%, and 90.0%. The average test accuracy for the 15-Scene 

was 89.7% with in-class accuracies being 96.3% (Bedroom) and 84.8% (Dining Room). 

5.3.2 Grid Search 

Mentioned in Section 4.2.2, grid searches were conducted to find the optimal hyper-

parameter settings. The results were shown in Figures 5.5 through 5.7, Tables 5.32 to 5.34. 

In summary, on the LSUN subset, as shown in Table 5.32, the testing accuracies ranged 

from 95.2% (achieved with dp = 0.1 and nf = 100), to 96.7% (achieved with dp = 0.7, and nf = 

500). The best achieved accuracies were around 96.7%. Generally, an obvious improvement on 

the accuracies can be observed when the drop rate increased (Figure 5.5). The highest accuracies 

occurred when the hyper-parameters were set to (0.7, 500), (0.6, 100), and (0.7, 100). 

On the MIT Indoor67 dataset, as shown in Table 5.33, the testing accuracies ranged from 

86.7% (achieved with dp = 0.1, nf = 500), to 92.4% (achieved with dp = 0.7, nf = 100). From 
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Figure 5.6, no obvious performance adjustment could be observed when changing hyper-

parameter. However, the model did show good performance when the drop rate was greater than 

0.2 and nf was less than or equal to 500.  

On the 15-Scene dataset, as shown in Table 5.34, the testing accuracies ranged from 

87.7% (achieved with dp = 0.1, nf = 100), to 95.6 % (achieved with dp = 0.4, nf =500 and dp = 

0.5, nf = 100). As shown in Figure 5.7, the model showed particular poor performance when the 

drop rate was set to be less than 0.3. As long as the drop rate was greater than or equal to 0.3, the 

model achieved 95% accuracies with no obvious fluctuation.  

Aggregated the testing results from the three datasets (LSUN, MIT Indoor67 and 15-

Scene), we could conclude that for this particular model to achieve good classification 

performance, the drop rate of the model should be greater than 0.2 and the nf should be less than 

or equal to 500. Among all the combinations, the model with dp = 0.7 and nf =100 seemed to 

achieve the best performance on all three datasets. Therefore, this set of hyper-parameters was 

selected for the final model training. 

5.3.3 Testing Results 

After the hyper-parameter was selected, the model was fine-tuned with the entire LUSN 

dataset. Mentioned in Section 4.2.3, the model was trained with three million images (LSUN 

dataset) and validated with one million images (LSUN dataset). Upon completion of the training, 

the model was tested with the remainder of LSUN dataset (one million images). Additionally, 

three generalization tests (MIT Indoor67, 15-Scene, self-collected) were conducted. The results 

were summarized in Table 5.35. 

As we can observe the proposed model achieved 97.2% overall accuracy on the LSUN 

testing set. It also achieved 93.8% and 96.0% accuracy on the generalization test sets. For in- 
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class accuracies (bedroom vs living room vs dining room), the model achieved 97.8%, 96.9%, 

and 95.4% on LSUN dataset. The model also achieved 91.3%, 91.7%, and 98.6% on MIT 

Indoor67 dataset. Finally, the model achieved 98.6% (bedroom) and 91.1 % (dining room) on the 

15-Scene dataset. The detailed confusion matrixes on these three tests can be found in Figure 5.8. 

As for the test with self-collected real scenes, the model achieved 100% accuracy on the 

classification task. The model output of these 15 images were listed in Table 5.36. In short, the 

model predicted likelihood of the input image belong to each of the classes. Obviously, the 

model successfully classified the images into their ground truth class with extreme confidence 

(mostly more than 99% of confidence). 

5.3.4 Analysis and Discussion 

In these experiments, a set of small-scale experiments were first conducted to examine 

the validity of the model. By using small but balanced datasets parallelly, the proposed model 

was rapidly evaluated for its ability to converge on the target classification task. The model 

showed perfect convergence on the training sets but also a slightly decrease of approximately 5% 

on the testing sets. Furthermore, the generalization tests showed an acceptable performance but 

still decreased slightly from the original testing accuracies. These phenomena indicated that: 

• The model showed excellent discriminant power on the proposed classification task by 

capturing significant features. 

• The small decrease on the testing accuracies indicated that the model also captured a 

small proportion of features that were not relevant to the task but related to the bias came 

with the datasets. 

• Such overfitting problem needed to be further reduced through hyper parameter tuning 

and increasing the dataset size. 
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From there, totally 21 grid search experiments were conducted to examine how tuning 

the hyper parameters could affect the classification performance. The model was tested with 

different combinations of drop rate and number of filters in the classifier, under three different 

datasets (LSUN, MIT Indoor67, and 15-Scene). This resulted in 63 measured metrics for 

performance evaluation. To goal is to find an optimal combination that would demonstrate 

excellent discrimination ability on all datasets. From Table 4.6, we can observe that the model 

showed very diminutive fluctuation when changing the number of filters in the classifier. 

However, changing drop rate showed great impact on the performance. Under all three datasets, 

the accuracies appeared to increase when the drop rate was increased. This phenomenon was 

particular significant on the generalization tests. When drop rate was changed from 0.1 to 0.7, 

the LSUN tests gained about 1% accuracy while both of the generalization tests gained about 4% 

accuracy. This proved that even though the model could generalize well on the unseen data from 

its own dataset (LSUN), it failed to achieve the similar ability on the two other datasets (MIT 

Indoor67, 15-Scene). Consequently, the majority of the features learnt were relevant to the task 

while a limited proportion of the features were the learnt bias noise from the dataset. And this 

bias noise was what causing the accuracies to drop on the two other tests. Nevertheless, such bias 

noise was inevitable in machine learning model, given that human even sometimes do the same 

on cognition.  

To thoroughly test the performance of the model, the model was finally trained with the 

entire LSUN dataset (three million images) with optimal obtained hyper-parameter. As a result, 

the model showed 97.2% accuracy on the LSUN test set, 93.8% accuracy on the MIT Indoor67 

test set and 96.0% on the 15-Scene test set. These accuracies were slightly better than the results 

obtained with LSUN subset. Several other works used the same dataset. Uršič, Leonardis, and 
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Kristan (2016) reached 85.15% on the MIT Indoor67 dataset. Zhou et al (2014) reached 70.8% 

on the MIT Indoor67 and 91.6% on the 15-Scene. Needless to say, the results obtained in this 

work outperformed them by more than 5%.  

These results demonstrated that the model’s excellent ability to discriminate typical 

indoor room types. However, misclassification of room types still happened. One possible reason 

could be these room types may share very similar graphical features, but such variation was not 

fully captured by the dataset. For example, if chair appeared very often in dining room scenes 

and living room scenes but not in the bedroom scenes, a bedroom photo with a chair in it would 

be more likely to be classified as a living room or dining room because of that. However, such 

bias was created by the collection bias of the dataset. Therefore, to further improve the 

performance, the model should ideally be able to capture more scene-centric features instead of 

the object-centric features. Secondly, given that the ground truth labels were manually assigned 

by human, there were chances that the some of the images were wrongly labeled or images 

themselves were utterly impossible to label, causing the confusion on the model. Like the 

example in Figure 5.9, the images were labeled as living room while in my opinion should be 

labeled as bedrooms. In Figure 5.10, the room clearly served both as living room and dining 

room but only labeled with dining room. 

Despite all the mentioned problems, this proposed model still yielded to a very good 

classification performance. Moreover, even though the training of the model consumed gigantic 

computation resources, deploying such model would require a fairly insignificant amount of 

resources. The goal of this research was to develop an indoor scene understanding model that 

would not only achieve acceptable accuracy but also be feasible to be implemented on portable 

devices. One of the concerns was the execution time. The average runtime for each prediction of 
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images using this trained model was 0.35 seconds on desktop machines, which could be 

considered as fast for real-time execution. Further testing was needed to determine the runtime 

on micro-controllers. Another concern was the complexity of deployment. Currently, the 

proposed model contained more than 25 million parameters and the trained model would take 

195 MB of storage space. Such model could be easily deployed on any micro-controller with 

some effort to set up the run-time environment (see Section 5.1 for the required packages). As 

shown in Figure 5.15, for a given platform, the prediction can be done with a simple program. In 

such program, the previously trained model would be preemptively loaded and wait for the input 

from I/O. Once the image was captured, the model would perform the prediction based on this 

image. The suspected label of the image would then be produced and be further used by other 

routines in the system such as action prediction.  
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Table 5.1 Model A 5-Fold Cross Validation Average Validation Accuracies, Drop rate, dp = 0.1 

Leak Rate, 

leakR 

L2 Coefficient, λ 

0.01 0.02 0.03 0.04 0.05 

0.01 76.7% 77.1% 76.3% 76.7% 75.4% 

0.02 74.6% 74.6% 75.4% 75.4% 74.2% 

0.03 74.2% 75.4% 75.4% 75.8% 72.5% 

 

Table 5.2 Model A 5-Fold Cross Validation Average Validation Accuracies, Drop rate, dp = 0.2 

Leak Rate, 

leakR 

L2 Coefficient, λ 

0.01 0.02 0.03 0.04 0.05 

0.01 75.4% 75.0% 75.4% 74.6% 73.8% 

0.02 72.9% 76.3% 76.3% 75.8% 74.6% 

0.03 73.8% 75.4% 74.2% 75.4% 75.4% 

 

Table 5.3 Model A 5-Fold Cross Validation Average Validation Accuracies, Drop rate, dp = 0.3 

Leak Rate, 

leakR 

L2 Coefficient, λ 

0.01 0.02 0.03 0.04 0.05 

0.01 75.4% 75.4% 75.0% 75.0% 74.6% 

0.02 73.3% 75.8% 75.4% 74.6% 75.4% 

0.03 71.7% 74.2% 74.6% 74.6% 74.6% 

 

Table 5.4 Model A 5-Fold Cross Validation Average Validation Accuracies, Drop rate, dp = 0.4 

Leak Rate, 

leakR 

L2 Coefficient, λ 

0.01 0.02 0.03 0.04 0.05 

0.01 70.4% 74.2% 75.0% 72.9% 70.0% 

0.02 68.3% 72.5% 72.9% 74.6% 75.0% 

0.03 72.1% 74.2% 69.6% 73.3% 75.8% 

 

Table 5.5 Model A 5-Fold Cross Validation Average Validation Accuracies, Drop rate, dp = 0.5 

Leak Rate, 

leakR 

L2 Coefficient, λ 

0.01 0.02 0.03 0.04 0.05 

0.01 66.7% 70.8% 74.6% 70.0% 73.3% 

0.02 66.3% 66.3% 70.0% 72.9% 75.4% 

0.03 69.2% 71.7% 72.5% 73.8% 72.5% 
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Table 5.6 Model A 5-Fold Cross Validation Average Validation Accuracies, Drop rate, dp = 0.6 

Leak Rate, 

leakR 

L2 Coefficient, λ 

0.01 0.02 0.03 0.04 0.05 

0.01 62.9% 60.0% 62.5% 68.8% 63.3% 

0.02 62.9% 65.4% 61.3% 64.2% 71.7% 

0.03 62.1% 64.2% 62.1% 63.8% 67.5% 

 

Table 5.7 Model A 5-Fold Cross Validation Average Validation Accuracies, Drop rate, dp = 0.7 

Leak Rate, 

leakR 

L2 Coefficient, λ 

0.01 0.02 0.03 0.04 0.05 

0.01 52.9% 50.8% 55.0% 57.8% 57.1% 

0.02 50.0% 55.4% 54.6% 56.7% 60.4% 

0.03 53.8% 54.6% 55.8% 59.2% 59.2% 

 

Table 5.8 Model B 5-Fold Cross Validation Average Validation Accuracies, Drop rate, dp = 0.1 

Leak Rate, 

leakR 

L2 Coefficient, λ 

0.01 0.02 0.03 0.04 0.05 

0.01 72.5% 70.4% 66.7% 68.3% 69.2% 

0.02 68.3% 69.6% 67.9% 68.3% 66.7% 

0.03 69.6% 68.3% 69.6% 67.9% 69.6% 

 

Table 5.9 Model B 5-Fold Cross Validation Average Validation Accuracies, Drop rate, dp = 0.2 

Leak Rate, 

leakR 

L2 Coefficient, λ 

0.01 0.02 0.03 0.04 0.05 

0.01 68.3% 68.3% 66.3% 68.8% 66.7% 

0.02 67.5% 67.1% 67.9% 70.4% 66.3% 

0.03 66.3% 69.6% 65.8% 70.4% 65.4% 

 

Table 5.10 Model B 5-Fold Cross Validation Average Validation Accuracies, Drop rate, dp = 0.3 

Leak Rate, 

leakR 

L2 Coefficient, λ 

0.01 0.02 0.03 0.04 0.05 

0.01 70.4% 65.8% 65.4% 69.6% 67.9% 

0.02 70.0% 65.8% 67.9% 67.9% 71.3% 

0.03 67.1% 66.3% 68.3% 68.3% 63.3% 
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Table 5.11 Model B 5-Fold Cross Validation Average Validation Accuracies, Drop rate, dp = 0.4 

Leak Rate, 

leakR 

L2 Coefficient, λ 

0.01 0.02 0.03 0.04 0.05 

0.01 67.1% 66.7% 71.3% 69.6% 68.8% 

0.02 70.0% 68.3% 68.8% 67.9% 70.0% 

0.03 70.4% 69.2% 71.7% 70.0% 66.3% 

 

Table 5.12 Model B 5-Fold Cross Validation Average Validation Accuracies, Drop rate, dp = 0.5 

Leak Rate, 

leakR 

L2 Coefficient, λ 

0.01 0.02 0.03 0.04 0.05 

0.01 69.6% 69.6% 67.1% 67.5% 68.8% 

0.02 65.8% 66.3% 69.6% 70.4% 70.4% 

0.03 67.1% 68.8% 69.6% 70.4% 68.8% 

 

Table 5.13 Model B 5-Fold Cross Validation Average Validation Accuracies, Drop rate, dp = 0.6 

Leak Rate, 

leakR 

L2 Coefficient, λ 

0.01 0.02 0.03 0.04 0.05 

0.01 69.6% 68.3% 64.2% 68.8% 67.9% 

0.02 67.9% 68.3% 70.4% 68.8% 69.2% 

0.03 71.3% 67.5% 69.6% 70.8% 62.5% 

 

Table 5.14 Model B 5-Fold Cross Validation Average Validation Accuracies, Drop rate, dp = 0.7 

Leak Rate, 

leakR 

L2 Coefficient, λ 

0.01 0.02 0.03 0.04 0.05 

0.01 67.9% 65.4% 65.4% 67.5% 68.8% 

0.02 67.1% 65.4% 69.6% 68.8% 70.4% 

0.03 67.9% 63.3% 67.9% 69.6% 67.5% 

 

Table 5.15 Model C 5-Fold Cross Validation Average Validation Accuracies, Drop rate, dp = 0.1 

Leak Rate, 

leakR 

L2 Coefficient, λ 

0.01 0.02 0.03 0.04 0.05 

0.01 77.5% 72.9% 77.5% 79.6% 78.8% 

0.02 76.7% 75.4% 76.7% 77.9% 76.3% 

0.03 74.2% 76.7% 80.4% 75.4% 76.3% 
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Table 5.16 Model C 5-Fold Cross Validation Average Validation Accuracies, Drop rate, dp = 0.2 

Leak Rate, 

leakR 

L2 Coefficient, λ 

0.01 0.02 0.03 0.04 0.05 

0.01 77.1% 77.9% 75.8% 79.6% 76.3% 

0.02 75.8% 74.2% 75.8% 76.3% 71.3% 

0.03 76.7% 75.0% 76.7% 77.9% 77.1% 

 

Table 5.17 Model C 5-Fold Cross Validation Average Validation Accuracies, Drop rate, dp = 0.3 

Leak Rate, 

leakR 

L2 Coefficient, λ 

0.01 0.02 0.03 0.04 0.05 

0.01 77.5% 74.6% 74.2% 78.8% 76.7% 

0.02 75.0% 76.7% 76.7% 77.1% 73.3% 

0.03 74.2% 74.2% 76.7% 77.5% 77.9% 

 

Table 5.18 Model C 5-Fold Cross Validation Average Validation Accuracies, Drop rate, dp = 0.4 

Leak Rate, 

leakR 

L2 Coefficient, λ 

0.01 0.02 0.03 0.04 0.05 

0.01 75.8% 72.9% 72.1% 76.7% 76.7% 

0.02 72.1% 72.5% 75.4% 75.8% 75.8% 

0.03 75.0% 74.2% 73.8% 75.4% 75.0% 

 

Table 5.19 Model C 5-Fold Cross Validation Average Validation Accuracies, Drop rate, dp = 0.5 

Leak Rate, 

leakR 

L2 Coefficient, λ 

0.01 0.02 0.03 0.04 0.05 

0.01 70.8% 70.0% 75.4% 74.6% 73.8% 

0.02 69.6% 67.5% 76.3% 75.0% 75.8% 

0.03 69.2% 69.6% 67.1% 75.8% 74.6% 

 

Table 5.20 Model C 5-Fold Cross Validation Average Validation Accuracies, Drop rate, dp = 0.6 

Leak Rate, 

leakR 

L2 Coefficient, λ 

0.01 0.02 0.03 0.04 0.05 

0.01 65.0% 62.9% 64.2% 67.5% 70.4% 

0.02 52.1% 66.7% 67.1% 66.3% 72.9% 

0.03 52.5% 64.6% 63.3% 63.8% 69.2% 
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Table 5.21 Model C 5-Fold Cross Validation Average Validation Accuracies, Drop rate, dp = 0.7 

Leak Rate, 

leakR 

L2 Coefficient, λ 

0.01 0.02 0.03 0.04 0.05 

0.01 50.0% 54.6% 54.6% 40.8% 59.6% 

0.02 54.2% 55.8% 55.8% 56.7% 58.8% 

0.03 50.4% 53.3% 55.8% 57.9% 56.7% 

 

Table 5.22 Model D 5-Fold Cross Validation Average Validation Accuracies, Drop rate, dp = 0.1 

Leak Rate, 

leakR 

L2 Coefficient, λ 

0.01 0.02 0.03 0.04 0.05 

0.01 78.7% 76.8% 77.8% 80.1% 80.3% 

0.02 78.7% 77.1% 76.3% 80.5% 80.8% 

0.03 77.2% 77.4% 78.1% 78.3% 79.9% 

 

Table 5.23 Model D 5-Fold Cross Validation Average Validation Accuracies, Drop rate, dp = 0.2 

Leak Rate, 

leakR 

L2 Coefficient, λ 

0.01 0.02 0.03 0.04 0.05 

0.01 79.8% 77.5% 77.3% 82.0% 81.1% 

0.02 77.4% 78.5% 78.3% 81.3% 79.9% 

0.03 76.8% 78.6% 78.1% 81.1% 79.2% 

 

Table 5.24 Model D 5-Fold Cross Validation Average Validation Accuracies, Drop rate, dp = 0.3 

Leak Rate, 

leakR 

L2 Coefficient, λ 

0.01 0.02 0.03 0.04 0.05 

0.01 78.6% 79.0% 77.4% 79.3% 80.3% 

0.02 77.9% 79.0% 77.3% 79.1% 80.1% 

0.03 79.8% 78.8% 78.9% 79.3% 79.6% 

 

Table 5.25 Model D 5-Fold Cross Validation Average Validation Accuracies, Drop rate, dp = 0.4 

Leak Rate, 

leakR 

L2 Coefficient, λ 

0.01 0.02 0.03 0.04 0.05 

0.01 78.3% 77.8% 79.2% 80.8% 79.2% 

0.02 78.8% 78.3% 77.3% 79.1% 79.2% 

0.03 77.0% 77.8% 75.6% 79.7% 79.0% 
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Table 5.26 Model D 5-Fold Cross Validation Average Validation Accuracies, Drop rate, dp = 0.5 

Leak Rate, 

leakR 

L2 Coefficient, λ 

0.01 0.02 0.03 0.04 0.05 

0.01 78.3% 77.6% 78.7% 79.3% 80.6% 

0.02 78.7% 79.5% 78.6% 80.3% 80.7% 

0.03 79.9% 79.1% 77.5% 80.3% 80.3% 

 

Table 5.27 Model D 5-Fold Cross Validation Average Validation Accuracies, Drop rate, dp = 0.6 

Leak Rate, 

leakR 

L2 Coefficient, λ 

0.01 0.02 0.03 0.04 0.05 

0.01 77.7% 79.8% 80.3% 80.3% 79.3% 

0.02 78.3% 76.8% 77.6% 79.8% 80.9% 

0.03 78.9% 78.7% 78.7% 79.5% 79.6% 

 

Table 5.28 Model D 5-Fold Cross Validation Average Validation Accuracies, Drop rate, dp = 0.7 

Leak Rate, 

leakR 

L2 Coefficient, λ 

0.01 0.02 0.03 0.04 0.05 

0.01 78.5% 78.9% 79.8% 78.0% 80.0% 

0.02 77.6% 78.3% 79.0% 80.4% 78.1% 

0.03 78.5% 78.3% 80.2% 80.3% 79.3% 

 

Table 5.29 Testing Result for the Best Models 

Models 
Testing 

Accuracy 

In- Class Accuracy (Number of Scans) 

NC  

(correct/total) 

MCI 

(correct/total) 

AD 

(correct/total) 

Model A 74.9% 
69.3% 

(61/88) 

78.6% 

(92/117) 

75.9% 

(41/54) 

Model B 71.4% 
67.0% 

(59/88) 

76.1% 

(89/117) 

68.5% 

(37/54) 

Model C 79.9% 
84.1% 

(74/88) 

79.5% 

(93/117) 

74.1% 

(40/54) 

Model D 81.5% 
81.8% 

(72/88) 

87.2% 

(102/117) 

68.5% 

(37/54) 
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Table 5.30 Cross Validation Performance on LSUN Subsets 

 
Avg. Training Accuracy (%) 

Training Size 21,600 

Avg. Training Time  

(seconds per epoch) 

Avg. Testing Accuracy (%) 

Testing Size 3,000 

LSUN - 1 99.78 294 94.31 

LSUN - 2 99.75 266 94.07 

LSUN - 3 99.78 241 94.42 

LSUN - 4 99.74 273 94.60 

LSUN - 5 99.73 296 93.94 

Overall 99.76 274 94.27 

 

Table 5.31 Average Testing Performance on LSUN Subsets and Generalization Tests 

Test Set (size) 
Overall 

Accuracy 

In- Class Accuracy 

Bedroom Living Room Dining Room 

LSUN (3,000) 94.27% 95.63% 95.23% 91.87% 

MIT Indoor67 (211) 87.68% 81.16% 91.67% 90.0% 

15 – Scene (505) 89.70% 96.30% N/A 84.78% 
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Table 5.32 Grid Search Result on LSUN 

Number of 

filters (nf) 

Drop Rate (dp) 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 

100 0.952121 0.960438 0.964043 0.964908 0.964783 0.966616 0.966411 

500 0.955373 0.961785 0.963572 0.964510 0.964779 0.966116 0.966928 

1000 0.954033 0.960794 0.961595 0.963431 0.964352 0.965939 0.964981 

 

Table 5.33 Grid Search Result on MIT Indoor67 

Number of 

filters (nf) 

Drop Rate (dp) 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 

100 0.886256 0.905213 0.914692 0.914692 0.895735 0.909953 0.924171 

500 0.867299 0.890995 0.905213 0.890995 0.914692 0.905213 0.900474 

1000 0.895735 0.895735 0.890995 0.895735 0.895735 0.905213 0.895735 

 

Table 5.34 Grid Search Result on 15-Scene 

Number of 

filters (nf) 

Drop Rate (dp) 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 

100 0.877228 0.938614 0.944554 0.952475 0.956436 0.946535 0.954455 

500 0.916832 0.930693 0.954455 0.956436 0.950495 0.954455 0.948515 

1000 0.934653 0.948515 0.950495 0.948515 0.944554 0.952475 0.946535 
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Table 5.35 Testing Performance on All Datasets 

Test Set (size) 
Overall 

Accuracy 

In- Class Accuracy 

Bedroom Living Room Dining Room 

LSUN (938,472) 97.16% 97.80% 96.87% 95.42% 

MIT Indoor67 (211) 93.84% 91.30% 91.67% 98.57% 

15 – Scene (505) 96.04% 98.61% N/A 94.12% 

Self-collected (15) 100% 100% 100% 100% 
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Table 5.36 Prediction Confidence on the Real Scenes 

Image Index 

Prediction (Probability) 
Ground Truth 

Label Bedroom  

(Class 0) 

Living Room  

(Class 1) 

Dining Room  

(Class 2) 

1 0.998473 2.55452e-07 0.00152729 0 

2 0.999976 1.85987e-07 2.37907e-05 0 

3 0.999414 2.05452e-09 0.000586021 0 

4 0.995284 1.92134e-06 0.00471381 0 

5 0.932796 0.00128309 0.0659209 0 

6 1.98696e-05 0.999937 4.35367e-05 1 

7 0.000944164 0.994802 0.00425355 1 

8 0.015924 0.981498 0.0025777 1 

9 5.98542e-05 0.998747 0.00119291 1 

10 0.000258657 0.999459 0.000282051 1 

11 0.00369191 0.00025444 0.996054 2 

12 0.00247314 0.000732423 0.996794 2 

13 0.000932294 0.00150781 0.99756 2 

14 0.00087074 0.000553563 0.998576 2 

15 0.000863768 0.00238603 0.99675 2 
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Figure 5.1 Best Model A- Average training and validation accuracies with error band 

 

Figure 5.2 Best Model B – Average training and validation accuracies with error band 
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Figure 5.3 Best Model C- Average training and validation accuracies with error band 

 

Figure 5.4 Best Model D- Average training and validation accuracies with error band 
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Figure 5.5 Confusion matrix for testing, Model A 

 

Figure 5.6 Confusion matrix for testing, Model B 
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Figure 5.7 Confusion matrix for testing, Model C 

 

Figure 5.8 Confusion matrix for testing, Model D 
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Figure 5.9 Grid search result with LSUN dataset. (Top-3 accuracies were labeled)  
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Figure 5.10 Grid search result with MIT Indoor67 dataset. (Top-3 accuracies were labeled) 
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Figure 5.11 Grid search result with 15-Scene dataset. (Top-3 accuracies were labeled) 
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Figure 5.12 Confusion Matrix- Testing on the final model (LSUN, MIT Indoor67, 15-Scene) 
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Figure 5.13 Wrongly labeled images (labeled as living room) 
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Figure 5.14 Room with multiple functions 

 

 

Figure 5.15 Flowchart of how to deploy classification model on portable platform 
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 CONCLUSION AND FUTURE WORK 

In this work, two objectives related to Alzheimer’s disease were proposed. The first 

objective target on the evaluation of the classification performance in automated Alzheimer’s 

disease diagnosis using deep learning. The second objective involved performing quick indoor 

scene recognition using deep learning, which will serve as a segment of assistive system for 

Alzheimer’s patients. 

6.1 Automated Alzheimer’s Disease Stages Classification 

Four deep convolutional neural network models (model A, B, C and D) were developed 

in objective 1. This was to evaluate the multiclass classification accuracy and investigate why 

deep learning models struggled when perform such classification. In detail, Model A achieved an 

overall accuracy of 74.9% for classifying a give MRI scan into one of the three possible classes 

(NC: normal control, MCI: mild cognitive impairment, AD: Alzheimer’s disease). The 

individual-class classification accuracies provided by this model were 69.3% for NC 

classification, 78.6% for MCI classification, and 75.9% for AD classification, respectively. 

Similarly, model B achieved an overall accuracy of 71.4% with individual-class classification 

accuracies of 67.0%, 76.1% and 68.5% for NC, MCI and AD, respectively. Model C (model A 

with MLO architecture) achieved an overall accuracy of 79.9% and individual-class 

classification accuracies of 84.1%, 79.5%, and 74.1% for NC, MCI and AD respectively. On the 

other hand, model D (model B with MLO architecture) achieved the highest overall accuracy of 

81.5%. The individual-class accuracies for both NC and MCI were greater than 80% (81.8% and 

87.2%, respectively). However, for classification of AD, the accuracy stayed at 68.5%. 
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Our analysis indicates that, because of the limited data, deep learning models might not 

have been able to effectively extract generalized high-level features and this might have caused 

overfitting. In this work, the proposed Multi-Layer-Output (MLO) mechanism (in model C and 

D) combined low-level features with high-level features. This combination helped to some extent 

in enhancing the performance of the model. While this work (models) is not ready for practical 

application. We believe that this platform/pathway has potential for further investigation and 

development. 

The following suggestions are recommended for future research.  

1. The developed models need to be further validated on larger and different datasets. 

Additional hyper-parameters could have been tuned for this model (such as learning rate, decay 

rate and different optimizers) 

2. One may look into using data augmentation (Tanner & Wong, 1987) to answer the 

limited dataset problem. Standard data augmentation could also be adopted like rotation. Mirror 

flipping was on the other hand not recommended as hemispheres handled different 

functionalities. Some advanced technique such as Generative-Adversarial-Network (GAN; 

Goodfellow et al., 2014) have been adopted for other medical imaging like Computer 

Tomography (Mirsky et al., 2019).  

3. Another thrust for future investigation could involve in refining the region of interest 

by adopting expert neurological suggestion.consultation. Hand-crafting the entire feature could 

be time-consuming and unreliable because it highly depends on the understanding of the subject 

(Domingos, 2012). 

4. Lastly, one can combine the hand-crafted feature and deep-learning-extracted feature 

to assese their capability in enhancing the performance of the model. 
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The limitation of this work included the following. Firstly, the research was restrained by 

limited and unbalanced dataset. Secondly, the access to computation resources was limited. 

6.2 Indoor Scene Understanding 

In this work, we proposed a deep learning model inspired and transferred from ResNet-50 

for indoor scene recognition. Such model was targeted on further helping cognitive impaired 

elders and enhance their quality of individual living by suggesting potential actions and as well 

automatically alert the caregivers. Three datasets were collected to fine-tune and test the 

proposed model. Different training schemes were implemented and their performance were 

assessed. The model showed 97.2% overall accuracy for three-class classification which is a 

state-of-the-art performance. Specifically, the individual-class classification accuracies were 

97.8%, 96.9%, and 95.4% for bedroom, living room and dining room respectively. On the 

generalization datasets, the model achieved overall accuracy of 93.8% on MIT-indoor67 and 

96.0% on 15-scene. For the test on the self-collected real life scenes, the model achieved overall 

accuracy of 100%. 

This model shows very high potential for its use in real world setting. However additional 

research is needed for further validation of the model in using larger and different real wolf 

dataset. One could investigate how to improve the performance through online training. The 

concept is that the training data are gradually provided and the model was fine-tuned based on 

that. The idea was to create a case-specific model for the particular environment. Also, additional 

investigation is needed to implement the hardware system based on the developed model. 

Despite the promising results obtained, there are some limitations to this study. In our 

model, all the hyper-parameters were frozen except the drop rate and the number of filters in the 

classifier. To further explore the model’s ability on the subject matter, a more thorough hyper-
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parameters search should be conducted, including but not limit to: number of layers, number of 

filters in each convolutional layer, different optimizers, and different learning rates. Furthermore, 

the model was only tested with three room categories on the collected datasets. 
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APPENDIX A SOURCE CODE FOR AUOTMATED AD DIAGNOSIS 

#################################################################### 

#Major of the functions used were imported from Keras library (Chollet,F, et al. 2015). Please see 

https://keras.io/ for #more documentation. 

##################################################################### 

import numpy as np 

import os 

from keras.models import Sequential 

from keras.layers import Dense, Activation 

from DataGenerator import DataGenerator 

import csv 

from keras.layers.convolutional import ( 

    Conv3D, 

    AveragePooling3D, 

    MaxPooling3D, 

    ZeroPadding3D 

) 

from keras.layers.normalization import BatchNormalization 

from keras.layers import Flatten, Activation, Input,Dropout, LeakyReLU, concatenate 

from keras.layers.merge import add 

from keras.models import Model, load_model 

from keras.regularizers import l2 

from keras.initializers import he_normal, Zeros 

from keras.layers import Dense, GlobalAveragePooling3D 

import nibabel as nib 

from keras.optimizers import Adam 

from keras.callbacks import ReduceLROnPlateau, ModelCheckpoint 

import argparse 

import datetime 

import tensorflow as tf 

https://keras.io/
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from keras.utils import plot_model 

from scipy.ndimage import rotate 

import pickle 

 

########################### Model A  figure 4.10 ################################# 

def modela(dim1,dim2,dim3,dp=0.2,n_channels=1,num_classes=3,leakR=0.02, 

reg_lambda=0.03): 

 

#input arguments: 

#      dim1,dim2,dim3:the size of 3D input tensor 

#      dp: drop rate, default rate 0.2 

#      n_channels: number of channels in the input,1-grayscal,3-color 

#      num_classes: number of output classes, default numbe is 3 

#      leakR: leak rate of the leaky relu unit. default rate is 0.02 

#      reg_lambda: lambda coefficient of the L2 regularizer. default value is 0.03 

     

    #define global parameter 

    global reg, kinit, binit 

     

    #define convolutional layer regularizer - L2 regularization with variable lambda 

    reg=l2(reg_lambda) 

     

    #define kernel weights initializer - glorot normal distribution 

    kinit = glorot_normal() 

     

    #define kernel bias initializer - all zeros 

    binit = Zeros() 

     

#define batch normalization axis - 4 means on the 4th axis which is the axis representing color 

#channel 

    axis_batchnorm =4 
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    #create input layer, size matches to the given input argument and the color channel 

    tensor_input = Input(shape=(dim1,dim2,dim3,n_channels)) 

     

    #parse input tensor to the next layer, x is an iterable object to store intermediate object 

    x = tensor_input 

     

#create Conv_1 layer (32 filters, 7 × 7 × 7 kernel size, strides = (2,2,2)) 

#create its batch normalization layer and activation layer 

    x = Conv3D(32,7,strides=2, padding='same',kernel_regularizer=reg,kernel_initializer=kinit, 

bias_initializer=binit,name='conv1_1')(x) 

    x = BatchNormalization(axis=axis_batchnorm,name=‘batchnorm_1')(x) 

    x = LeakyReLU(leakR)(x) 

     

    #create average pooling layer (kernel size 5 × 5 × 5, strides = (2,2,2) 

    x = AveragePooling3D((5,5,5),strides=(2,2,2),padding='same')(x) 

     

#create conv_2 layer(64 filters, 3 × 3 × 3 kernel size, strides = (2,2,2)) 

#create batch normalization layer and activation layer 

    x = Conv3D(64,3,strides=2, padding='same',kernel_regularizer=reg,kernel_initializer=kinit, 

bias_initializer=binit,name='conv2_1')(x) 

    x = BatchNormalization(axis=axis_batchnorm,name=‘batchnorm_2')(x) 

    x = LeakyReLU(leakR)(x) 

     

#create conv_3 layer(128 filters, 3 × 3 × 3 kernel size, strides = (2,2,2)) 

#create batch normalization layer and activation layer 

    x = Conv3D(128,3,strides=2, padding='same',kernel_regularizer=reg,kernel_initializer=kinit, 

bias_initializer=binit,name='conv3_1')(x) 

    x = BatchNormalization(axis=axis_batchnorm,name=‘batchnorm_3')(x) 

    x = LeakyReLU(leakR)(x) 
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#create conv_4 layer(256 filters, 3 × 3 × 3 kernel size, strides = (2,2,2)) 

#create batch normalization layer and activation layer 

    x = Conv3D(256,3,strides=2, padding='same',kernel_regularizer=reg,kernel_initializer=kinit, 

bias_initializer=binit,name='conv4_1')(x) 

    x = BatchNormalization(axis=axis_batchnorm,name=‘batchnorm_4')(x) 

    x = LeakyReLU(leakR)(x) 

     

    #create global average pooling layer 

    x = GlobalAveragePooling3D()(x) 

     

    #create dropout layer with drop rate dp. 

    x = Dropout(dp)(x) 

     

    #create fully-connected layers with 128 neurons 

    x = Dense(128,activation='relu')(x) 

     

    #create fully-connected layers with 64 neurons 

    x = Dense(64,activation='relu')(x) 

     

    #create prediction layers with 3 neurons 

    prediction = Dense(3,activation='softmax')(x) 

     

    #envelop the model by defining overall input and output 

    model = Model(inputs=tensor_input,outputs=prediction) 

     

    return model 

 

############################## Model B  figure 4.11############################## 

     

#define Residual Blk for model B, see figure 4.12 



156 

 

     

def conv_blk(tensor_in, kernel_size, filters, stg, blk,leakRate, strides=(2, 2, 2)): 

#input arguments: 

#        tensor_in: the input tensor object 

#        kernel_size: the size of kernel in this blk. by default it is a 3D kernel with the same size #on 

all axes 

#        filter: number of filters in the two conv layers in the blk 

#        stg, blk: naming scheme. used as identifier when checking model 

#        leakRate: leak rate of the leaky relu unit. 

#        strides: strides for the conv layers. default value is (2,2,2) 

    

#define batch normalization axis - 4 means on the 4th axis which is the axis representing the 

#color channel 

    axis_batchnorm =4 

     

    #retrive filer number from input argument 

    if len(filters)==3: 

        nb_filter1, nb_filter2, nb_filter3 = filters 

    elif len(filters)==2: 

        nb_filter1, nb_filter2 = filters 

     

    #define layer's naming pattern     

    conv_root = 'res' + str(stg) + blk + '_branch' 

    batchnorm_root = 'bn' + str(stg) + blk + '_branch' 

     

    #create the first 3D convolutional layer on the main branch, as well as its batch normalization 

layer and activation layer 

    x = 

Conv3D(nb_filter1,3,strides=2,padding='same',kernel_regularizer=reg,kernel_initializer=kinit, 

bias_initializer=binit,name=conv_root + '2a')(tensor_in) 

    x = BatchNormalization(axis=axis_batchnorm, name=batchnorm_root + '2a')(x) 
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    x = LeakyReLU(leakRate)(x) 

 

    #create the second 3D convolutional layer on the main branch, as well as its batch normalization 

layer 

    x = 

Conv3D(nb_filter2,3,strides=1,padding='same',kernel_regularizer=reg,kernel_initializer=kinit, 

bias_initializer=binit,name=conv_root + '2b')(x) 

    x = BatchNormalization(axis=axis_batchnorm, name=batchnorm_root + '2b')(x) 

     

    #create the 3D convolutional layer on the shortcut, as well as its batch normalization layer  

    shortcut = Conv3D(nb_filter2, 1, strides=2,kernel_regularizer=reg,kernel_initializer=kinit, 

bias_initializer=binit, name=conv_root + '1')(tensor_in) 

    shortcut = BatchNormalization(axis=axis_batchnorm, name=batchnorm_root + '1')(shortcut) 

     

    #merge the shortcut back to the main branch 

    x = add([x, shortcut]) 

     

    #create activation 

    x = LeakyReLU(leakRate)(x) 

 

    return x 

 

#define model B, see figure 4.11 

     

def modelb(img_dim1,img_dim2,img_dim3, dp =0.2, color_type=1, 

num_classes=3,leakR=0.02,reg_lambda=0.03): 

 

#input arguments: 

#      dim1,dim2,dim3:the size of 3D input tensor 

#      dp: drop rate, default rate 0.2 

#      n_channels: number of channels in the input,1-grayscal,3-color 
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#      num_classes: number of output classes, default numbe is 3 

#      leakR: leak rate of the leaky relu unit. default rate is 0.02 

#      reg_lambda: lambda coefficient of the L2 regularizer. default value is 0.03 

     

    #define global parameter 

    global reg, kinit, binit 

     

    #define convolutional layer regularizer - L2 regularization with variable lambda 

    reg=l2(reg_lambda) 

     

    #define kernel weights initializer - glorot normal distribution 

    kinit = glorot_normal() 

     

    #define kernel bias initializer - all zeros 

    binit = Zeros() 

     

#define batch normalization axis - 4 means on the 4th axis which is the axis representing the  

#color channel 

    axis_batchnorm =4 

     

    #create input layer 

    tensor_input = Input(shape=(img_dim1,img_dim2,img_dim3,color_type)) 

     

    #parse input tensor to the next layer, x is an iterable object to store intermediate object 

    x = tensor_input 

 

    #create Conv_1 layer, its batch normalization layer and activation layer 

    x = Conv3D(32,3,strides=2, padding='same',kernel_regularizer=reg,kernel_initializer=kinit, 

bias_initializer=binit,name='conv1_1')(x) 

    x = BatchNormalization(axis=axis_batchnorm,name=‘batchnorm_1')(x) 

    x = LeakyReLU(leakR)(x) 
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    #create max pooling layer 

    x = MaxPooling3D((3,3,3),strides=(2,2,2),padding='same')(x) 

     

    #create ResBlk_1, 3 × 3 × 3 kernel, [32,32]filters 

    x = conv_blk(x, 3, [32,32],stg=2,blk='a',leakRate=leakR) 

     

    #create ResBlk_2, 3 × 3 × 3 kernel, [64,64]filters 

    x = conv_blk(x, 3, [64,64],stg=3,blk='a',leakRate=leakR) 

     

    #create ResBlk_3, 3 × 3 × 3 kernel, [128,128]filters 

    x = conv_blk(x, 3, [128,128],stg=4,blk='a',leakRate=leakR) 

     

    #create global average pooling layer 

    x = GlobalAveragePooling3D()(x) 

     

    #create dropout layer with drop rate dp. 

    x = Dropout(dp)(x) 

     

    #create fully-connected layers with 128 neurons 

    x = Dense(128,activation='relu')(x) 

     

    #create fully-connected layers with 64 neurons 

    x = Dense(64,activation='relu')(x) 

     

    #create prediction layers with 3 neurons 

    prediction = Dense(3,activation='softmax')(x) 

     

    #envelop the model 

    new_model = Model(inputs=tensor_input, outputs=prediction) 
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    return new_model 

 

##########################Model c see figure 4.14 ################################# 

     

def modelc(dim1,dim2,dim3,dp=0.2,n_channels=1,num_classes=3,leakR=0.02, 

reg_lambda=0.03): 

#input arguments: 

#      dim1,dim2,dim3:the size of 3D input tensor 

#      dp: drop rate, default rate 0.2 

#      n_channels: number of channels in the input,1-grayscal,3-color 

#      num_classes: number of output classes, default numbe is 3 

#      leakR: leak rate of the leaky relu unit. default rate is 0.02 

#      reg_lambda: lambda coefficient of the L2 regularizer. default value is 0.03 

     

    #define global parameter 

    global reg, kinit, binit 

     

    #define convolutional layer regularizer - L2 regularization with variable lambda 

    reg=l2(reg_lambda) 

     

    #define kernel weights initializer - glorot normal distribution 

    kinit = glorot_normal() 

     

    #define kernel bias initializer - all zeros 

    binit = Zeros() 

     

#define batch normalization axis - 4 means on the 4th axis which is the axis representing the  

#color channel 

    axis_batchnorm =4 
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    #create input layer 

    tensor_input = Input(shape=(dim1,dim2,dim3,n_channels)) 

     

    #parse input tensor to the next layer, x is an iterable object to store intermediate object 

    x = tensor_input 

     

    #create Conv_1 layer, its batch normalization layer and activation layer 

    x = Conv3D(32,7,strides=2, padding='same',kernel_regularizer=reg,kernel_initializer=kinit, 

bias_initializer=binit,name='conv1_1')(x) 

    x = BatchNormalization(axis=axis_batchnorm,name=‘batchnorm_1')(x) 

    x = LeakyReLU(leakR)(x) 

     

    #create average pooling layer 

    x = AveragePooling3D((5,5,5),strides=(2,2,2),padding='same')(x) 

     

    #create conv_2 layer, its batch normalization layer and activation layer 

    x = Conv3D(64,3,strides=2, padding='same',kernel_regularizer=reg,kernel_initializer=kinit, 

bias_initializer=binit,name='conv2_1')(x) 

    x = BatchNormalization(axis=axis_batchnorm,name=‘batchnorm_2')(x) 

    x = LeakyReLU(leakR)(x) 

     

    #output the feature from conv_2 to tensor object x1 

    x1 = GlobalAveragePooling3D()(x) 

 

    #create conv_3 layer, its batch normalization layer and activation layer 

    x = Conv3D(128,3,strides=2, padding='same',kernel_regularizer=reg,kernel_initializer=kinit, 

bias_initializer=binit,name='conv3_1')(x) 

    x = BatchNormalization(axis=axis_batchnorm,name=‘batchnorm_3')(x) 

    x = LeakyReLU(leakR)(x) 

     

    #output the feature from conv_3 to tensor object x2 



162 

 

    x2 = GlobalAveragePooling3D()(x) 

 

    #create conv_4 layer, its batch normalization layer and activation layer 

    x = Conv3D(256,3,strides=2, padding='same',kernel_regularizer=reg,kernel_initializer=kinit, 

bias_initializer=binit,name='conv4_1')(x) 

    x = BatchNormalization(axis=axis_batchnorm,name=‘batchnorm_4')(x) 

    x = LeakyReLU(leakR)(x) 

     

    #output the feature from conv_4 to tesnsor object x 

    x = GlobalAveragePooling3D()(x) 

 

    #concatenate features from different level to tensor object sx - sum of x 

    sx = concatenate([x,x1,x2],axis=-1) 

     

    #reate dropout layer with drop rate dp 

    sx = Dropout(dp)(sx) 

     

    #create fully-connected layers with 128 neurons 

    sx = Dense(128,activation='relu')(sx) 

 

    #create fully-connected layers with 64 neurons 

    sx = Dense(64,activation='relu')(sx) 

     

    #reate prediction layers with 3 neurons 

    prediction = Dense(3,activation='softmax')(sx) 

     

    #envelop the model 

    model = Model(inputs=tensor_input,outputs=prediction) 

     

    return model 

################### Model D see figure 4.15 ###################################### 
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def conv_blk_3D(tensor_in, kernel_size, filters, stg, blk,leakRate, strides=(2, 2, 2)): 

#input arguments: 

#        tensor_in: the input tensor object 

#        kernel_size: the size of kernel in this blk. by default it is a 3D kernel with the same size #on 

all axes 

#        filter: number of filters in the two conv layers in the blk 

#        stg, blk: naming scheme. used as identifier when checking model 

#        leakRate: leak rate of the leaky relu unit. 

#        strides: strides for the conv layers. default value is (2,2,2) 

 

#define batch normalization axis - 4 means on the 4th axis which is the axis representing the 

# color channel 

    axis_batchnorm =4 

     

    #retrive filer number from input argument 

    if len(filters)==3: 

        nb_filter1, nb_filter2, nb_filter3 = filters 

    elif len(filters)==2: 

        nb_filter1, nb_filter2 = filters 

         

    #define layer's naming pattern    

    conv_root = 'res' + str(stg) + blk + '_branch' 

    batchnorm_root = 'bn' + str(stg) + blk + '_branch' 

     

    #create the first 3D convolutional layer on the main branch, as well as its batch normalization 

layer and activation layer 

    x = 

Conv3D(nb_filter1,3,strides=2,padding='same',kernel_regularizer=reg,kernel_initializer=kinit, 

bias_initializer=binit,name=conv_root + '2a')(tensor_in) 

    x = BatchNormalization(axis=axis_batchnorm, name=batchnorm_root + '2a')(x) 



164 

 

    x = LeakyReLU(leakRate)(x) 

 

    #create the second 3D convolutional layer on the main branch, as well as its batch normalization 

layer 

    x = 

Conv3D(nb_filter2,3,strides=1,padding='same',kernel_regularizer=reg,kernel_initializer=kinit, 

bias_initializer=binit,name=conv_root + '2b')(x) 

    x = BatchNormalization(axis=axis_batchnorm, name=batchnorm_root + '2b')(x) 

     

    #create the 3D convolutional layer on the shortcut, as well as its batch normalization layer  

    shortcut = Conv3D(nb_filter2, 1, strides=2,kernel_regularizer=reg,kernel_initializer=kinit, 

bias_initializer=binit, name=conv_root + '1')(tensor_in) 

    shortcut = BatchNormalization(axis=axis_batchnorm, name=batchnorm_root + '1')(shortcut) 

     

    #merge the shortcut back to the main branch 

    x = add([x, shortcut]) 

     

    #create activation 

    x = LeakyReLU(leakRate)(x) 

 

    return x 

 

def modeld(img_dim1,img_dim2,img_dim3, dp =0.2, color_type=1, 

num_classes=3,leakR=0.02,reg_lambda=0.03): 

#input arguments: 

#      dim1,dim2,dim3:the size of 3D input tensor 

#      dp: drop rate, default rate 0.2 

#      color_type: number of channels in the input,1-grayscal,3-color 

#      num_classes: number of output classes, default numbe is 3 

#      leakR: leak rate of the leaky relu unit. default rate is 0.02 

#      reg_lambda: lambda coefficient of the L2 regularizer. default value is 0.03 
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    #define global parameter 

    global reg, kinit, binit 

     

    #define convolutional layer regularizer - L2 regularization with variable lambda 

    reg=l2(reg_lambda) 

     

    #define kernel weights initializer - glorot normal distribution 

    kinit = glorot_normal() 

     

    #define kernel bias initializer - all zeros 

    binit = Zeros() 

     

#define batch normalization axis - 4 means on the 4th axis which is the axis representing the  

#color channel 

    axis_batchnorm =4 

     

    #create input layer 

    tensor_input = Input(shape=(img_dim1,img_dim2,img_dim3,color_type)) 

     

    #parse input tensor to the next layer, x is an iterable object to store intermediate object 

    x = tensor_input 

     

    #create Conv_1 layer, its batch normalization layer and activation layer 

    x = Conv3D(32,3,strides=2, padding='same',kernel_regularizer=reg,kernel_initializer=kinit, 

bias_initializer=binit,name='conv1_1')(x) 

    x = BatchNormalization(axis=axis_batchnorm,name=‘batchnorm_1')(x) 

    x = LeakyReLU(leakR)(x) 

     

    #create max pooling layer 

    x = MaxPooling3D((3,3,3),strides=(2,2,2),padding='same')(x) 
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    #create ResBlk_1, 3X3X3 kernel, [32,32]filters 

    x = conv_blk_3D(x, 3, [32,32],stg=2,blk='a',leakRate=leakR) 

     

    #output the feature from Resblk_1 to tensor object x1 

    x1 = GlobalAveragePooling3D()(x) 

     

    #create ResBlk_2, 3X3X3 kernel, [64,64]filters 

    x = conv_blk_3D(x, 3, [64,64],stg=3,blk='a',leakRate=leakR) 

     

    #output the feature from Resblk_2 to tensor object x2 

    x2 = GlobalAveragePooling3D()(x) 

     

    #create ResBlk_3, 3X3X3 kernel, [128,128]filters 

    x = conv_blk_3D(x, 3, [128,128],stg=4,blk='a',leakRate=leakR) 

     

    #output the feature from ResBlk_3 to tesnsor object x 

    x = GlobalAveragePooling3D()(x) 

     

    #concatenate features from different level to tensor object sx - sum of x 

    x = concatenate([x,x1,x2],axis=-1) 

     

    #reate dropout layer with drop rate dp 

    x = Dropout(dp)(x) 

     

    #create fully-connected layers with 128 neurons 

    x = Dense(128,activation='relu')(x) 

     

    #create fully-connected layers with 64 neurons 

    x = Dense(64,activation='relu')(x) 

     



167 

 

    #reate prediction layers with 3 neurons 

    prediction = Dense(3,activation='softmax')(x) 

     

    #envelop the model 

    new_model = Model(inputs=tensor_input, outputs=prediction) 

     

    return new_model 

 

############################################################################## 

# 

#                End of model defination 

#     

############################################################################## 

 

################## Training process, see figure 4.16 ######################### 

     

################## Initialize argument parser ################################ 

 

#create parser handle 

parser = argparse.ArgumentParser(description="Hyper parameter for training") 

 

#create parser argument: dp-drop rate, model-which model (a/b/c/d) 

parser.add_argument('dp',type=float,help="drop rate") 

parser.add_argument('model', type=str,help="model to be trained") 

args = parser.parse_args() 

 

#parse value from keyboard input to variable 

dp_range = args.dp 

model_type = args.model 

 

#################### Step A&B ################################################ 
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""" 

prepare cross validation file list. 

""" 

 

#initilize ground truth label and ground truth id 

gt_label = [] 

gt_id = [] 

 

#Read MRI scan index and their ground truth label 

with open('//scratch//gilbreth//xu640/ADNI//ADNI1_Annual_2_Yr_1.5T_4_29_2019.csv') as 

gt_csv: 

    gt_reader = csv.reader(gt_csv) 

    next(gt_reader) 

 

    for line in gt_reader: 

        ind = line[1] 

        stg = line[2] 

         

        if stg == 'CN': 

            stg = 0 

        elif stg == 'MCI': 

            stg = 1 

        else:  

            stg = 2 

 

         

        if ind in gt_id: continue 

        gt_id.append(ind) 

        gt_label.append(stg) 
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#store the data into a dictionay for datagenerator 

labels = dict(zip(gt_id,gt_label)) 

 

######## Define Global Training Parameter ######## 

 

#data directorys: 

#trained_model: directory to store models with trained weights 

#test_output: directory to store testing outputs – validation accuracies, ground truth label, 

#                    prediction labels. 

#training_history: directory to store training history – training accuracies for each epoch 

#file_path : directory to the data file 

 

trained_model = '//scratch//gilbreth//xu640//ADNI_New//'+model_type+'//trained_model//' 

test_output = '//scratch//gilbreth//xu640//ADNI_New//'+model_type+'//test_output//' 

training_history = '//scratch//gilbreth//xu640//ADNI_New//'+model_type+'//training_history//' 

file_path = '//scratch//burst//xu640//ADNI_New//cv//' 

 

#Leak Rate search range 

leakR_range = [0.01,0.02,0.03] 

 

#L2 coefficient search range  

lambda_range = [0.01,0.02,0.03,0.04,0.05] 

 

#Cross Validation fold index 

folds = [0,1,2,3,4]   

 

#initial learning rate 

init_lr=0.0001 

 

#minimal learning rate 

min_rate =0.00001 
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#training epochs 

ep     =80 

 

#setup Adam optimizer  

op = Adam(lr=init_lr,beta_1=0.9, beta_2=0.999) 

 

#parameter for the data generator 

""" 

dimension:tuple of integers, input tensor size  

size:integer, number of training sample within one batch 

n_categories: integer, number of classes in the data 

color_mode: integer, number of channel: 1- grayscale; 3-color 

is_shuffle:boolean, shullfe the data in the batch or not 

""" 

params = {'dimension': (96,96,64), 

          size': 20, 

          'n_categories': 3, 

          'color_mode': 1, 

          'is_shuffle': True} 

 

#start training, loop through all possible hyper-parameter 

for j in leakR_range: 

    for k in lambda_range: 

        for l in folds: 

             

##################################Step C ###################################### 

             

            #open the file handle of the data used in this training  

            with open(os.path.join(file_path,'train_'+str(l)+'.pkl','rb')) as fp: 

                train_data = pickle.load(fp) 
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            with open(os.path.join(file_path,'val_'+str(l)+'.pkl','rb')) as fp: 

                val_data = pickle.load(fp) 

            with open(os.path.join(file_path,'test.pkl','rb')) as fp: 

                test_data = pickle.load(fp) 

             

            #prepare batches for training 

            train_batches = DataGenerator(train_data, labels, **params) 

            val_batches = DataGenerator(val_data,labels,**params) 

            test_batches = DataGenerator(test_data,labels,**params) 

             

#################################Step D #######################################  

             

            #create model instance, based on input argument 

             

            if model_type =='modela': 

                model = modela(96,96,64,dp=dp_range,leakR=j,reg_lambda=k) 

                          

            if model_type =='modelb': 

                model = modelb(96,96,64,dp=dp_range,leakR=j,reg_lambda=k) 

             

            if model_type =='modelc': 

                model = modelc(96,96,64,dp=dp_range,leakR=j,reg_lambda=k) 

                         

            if model_type =='modeld': 

                model = modeld(96,96,64,dp=dp_range,leakR=j,reg_lambda=k) 

             

            

            #compile the model             

            model.compile(op,loss='categorical_crossentropy', metrics=['accuracy']) 

                      

            #set up learning rate schedule 
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            reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.1, 

patience=3,verbose=1,min_lr=min_rate) 

             

            #set up model saving strategy 

            weightfile = 

trained_model+'dp_'+str(dp_range)+"_leakrate_"+str(j)+"_lambda_"+str(k)+'_fold_'+str(l)+'.h5' 

            checkpointer = ModelCheckpoint(filepath=weightfile, save_best_only=True,verbose=1) 

             

            #initialized training             

            

history=model.fit_generator(generator=train_batches,epochs=ep,verbose=2,callbacks=[reduce_lr, 

checkpointer],validation_data=val_batches,shuffle=True) 

             

            #load the best model after training 

            model=load_model(weightfile) 

             

            #perform testing 

            acc = model.evaluate_generator(test_batches,verbose=2) 

             

            #save training history 

            filename = 

training_history+"dp_"+str(dp_range)+"_leakrate_"+str(j)+"_lambda_"+str(k)+'_fold_'+str(l)+".

pkl" 

            f = open(filename,"wb") 

            pickle.dump(history.history,f) 

            f.close() 

             

            #output testing result to CSV file 

            csv_file = test_output+'dp_'+str(dp_range)+"_leakrate_"+str(j)+"_lambda_"+str(k)+'.csv' 

             

            with open(csv_file, mode='a') as log: 
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                log_writer = csv.writer(log) 

                log_writer.writerow(['CV Test, Fold='+str(l)]) 

                log_writer.writerow([str(acc[1])]) 

 

 

################################## Data Generator ########################## 

# This Data Gnerator class was modified by the author, based on the tutorial provided at 

#https://stanford.edu/~shervine/blog/keras-how-to-generate-data-on-the-fly (Amidi, n.d.). This 

#routine would prepare training batches according to the given parameter – size, dimensionensions, 

#etc. 

######################################################################### 

import numpy as np 

import keras 

import os 

import nibabel as nib 

 

class StreamGeneratorNew(keras.utils.Sequence): 

    def __init__(self, data_index, ground_truth_labels, size=4, dimension=(96,96,96), 

color_mode=1, n_categories=3, is_shuffle=True): 

        'Initialization' 

        self.dimension = dimension 

        self.size = size 

        self.ground_truth_labels = ground_truth_labels 

        self.data_index = data_index 

        self.color_mode = color_mode 

        self.n_categories = n_categories 

        self.is_shuffle = is_shuffle 

        self.end_of_each_epoch() 

 

    def __lenth__(self): 

        #Calculate the amount of batches 

https://stanford.edu/~shervine/blog/keras-how-to-generate-data-on-the-fly
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        num_batches = int(np.floor(len(self.data_index) / self.size)) 

        return num_batches 

 

    def __genbatch__(self, index): 

        # retrieve index for the current batch 

        indexes = self.indexes[index*self.size:(index+1)*self.size] 

 

        # Find corresponding data ID 

        data_index_temp = [self.data_index[k] for k in indexes] 

 

        # load data object 

        Data_array, Label = self.__data_generation(data_index_temp) 

 

        return Data_array, Label 

 

    def end_of_each_epoch(self): 

        #Obtain new indexes for the next epoch 

        self.indexes = np.arange(len(self.data_index)) 

        if self.is_shuffle == True: 

            np.random.shuffle(self.indexes) 

 

    def __data_preparation(self, data_index_tmp): 

        # Initialization 

        Data_array = np.empty((self.size, *self.dimension, self.color_mode)) 

        Label = np.empty((self.size), dtype=int) 

 

        # retrive data 

        outdir = '//scratch//burst//xu640//ADNI1_2Y_NPY' 

         

        for i, ID in enumerate(data_index_tmp): 
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            xpath = os.path.join(outdir,ID) 

             

 #retrive subject ID from file name 

            tmp = ID.split('.')[0] 

            tmp = tmp.split('_')[1]+'_'+tmp.split('_')[2]+'_'+tmp.split('_')[3] 

             

 #load data based on the file format 

            if ID.split('.')[1]=='nii' or ID.split('.')[1]=='mgz': 

                 

                mri = nib.load(xpath) 

                mri_array = np.array(mri.dataobj) 

                # Store sample 

                Data_array[i,] = mri_array[:,:,:,np.newaxis] 

                Label[i]= self.ground_truth_labels[tmp] 

                 

            elif ID.split('.')[1]=='npy': 

                mri = np.load(xpath) 

                 

                Data_array[i,]= mri[:,:,:,np.newaxis] 

 

                # Store class 

                Label[i]= self.ground_truth_labels[tmp] 

             

 

         Labels = keras.utils.to_categorical(Label, num_classes=self.n_categories) 

return Data, Labels 
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APPENDIX B SOURCE CODE FOR INDOOR SCENE UNDERSTANDING 

import numpy as np 

import keras 

from keras import backend as K 

from keras.preprocessing.image import ImageDataGenerator 

from keras.applications.resnet50 import ResNet50 

from keras.layers.core import Dense, Activation, Dropout 

from keras.models import Model, load_model 

from keras.optimizers import SGD 

from keras.utils import plot_model 

from keras.callbacks import ModelCheckpoint, History 

import pickle 

import csv 

import argparse 

 

# Argument Parser for the program 

parser = argparse.ArgumentParser(description="Hyper parameter for training") 

parser.add_argument('dp',type=float,help="drop rate") 

parser.add_argument('nf',type=int,help="Number of filters") 

args = parser.parse_args() 

 

 

dp_range = args.dp 

num_filters = args.nf 

 

#Define Global Parameters and Paths 

 

#LSUN paths 

train_path = '//scratch//burst//xu640//lsun//Train' 

val_path = '//scratch//burst//xu640//lsun//Val' 
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test_path = '//scratch//burst//xu640//lsun//Test' 

 

#Generalization test sets paths 

mit_path = '//scratch//gilbreth//xu640//Gen_test' 

fif_path = '//scratch//gilbreth//xu640//15_scene' 

 

#Number of Training Epochs 

 

num_ep = 10 

 

#Notation for saving result 

 

dataset = "lsun_whole" 

option = "full_fine_tune" 

 

#Preparing training batches/ validation batches / testing batches / generalization test batches 

train_batches = 

ImageDataGenerator().flow_from_directory(train_path,target_size=(224,224),batch_size=200) 

test_batches = 

ImageDataGenerator().flow_from_directory(test_path,target_size=(224,224),batch_size=60) 

valid_batches = 

ImageDataGenerator().flow_from_directory(val_path,target_size=(224,224),batch_size=60) 

mit_test_batches = 

ImageDataGenerator().flow_from_directory(mit_path,target_size=(224,224),batch_size=10) 

fif_test_batches = 

ImageDataGenerator().flow_from_directory(fif_path,target_size=(224,224),batch_size=10) 

 

#Save ground truth labels for test sets 

np.save('//scratch//gilbreth//xu640//LSUN_whole_result//final//LSUN_dp_'+str(dp_range)+'_nu

mfilter_'+str(num_filters)+'_test_label.npy',test_batches.classes) 
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np.save('//scratch//gilbreth//xu640//LSUN_whole_result//final//MIT_dp_'+str(dp_range)+'_numf

ilter_'+str(num_filters)+'_test_label.npy',mit_test_batches.classes) 

np.save('//scratch//gilbreth//xu640//LSUN_whole_result//final//FIF_dp_'+str(dp_range)+'_numfil

ter_'+str(num_filters)+'_test_label.npy',fif_test_batches.classes) 

 

#Model Initilization 

#Load Imagenet pre-trained ResNet 50  

feature_model = ResNet50(include_top = True,weights='imagenet') 

 

#remove the last two layers (classifer) 

x = feature_model.layers[-2].output 

 

#add dropout layer with dp = dp_range 

x = Dropout(dp_range)(x) 

 

#add fully-connected layer with filter amount = num_filters 

x = Dense(num_filters, activation='relu')(x) 

 

#add fully-connected layer with three neurons to perform three-class classification 

prediction = Dense(3,activation='softmax')(x) 

 

#Model Envelopped 

new_model = Model(inputs=feature_model.input, outputs=prediction) 

 

# Model Compilation 

new_model.compile(SGD(lr=0.0001, decay=1e-6, momentum=0.9, 

nesterov=False),loss='categorical_crossentropy', metrics=['accuracy']) 

 

# Define Training Callbacks 

# Define the weight matrix file which stores the best model during training 
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weightfile='//scratch//gilbreth//xu640//LSUN_whole_result//final//Model_epoch_'+str(num_ep)+

'_dp_'+str(dp_range)+'_numfilter_'+str(num_filters)+'.h5' 

 

checkpointer = ModelCheckpoint(filepath=weightfile, save_best_only=True,verbose=1) 

 

# Initilize Training 

acc_hist=new_model.fit_generator(train_batches,steps_per_epoch=15000, 

callbacks=[checkpointer],validation_data=valid_batches, validation_steps=50, epochs=num_ep, 

verbose=1) 

 

# Save Training History 

filename = 

"//scratch//gilbreth//xu640//LSUN_whole_result//final//history_whole_epoch_"+str(num_ep)+"_

"+dataset+"_"+option+'_dp_'+str(dp_range)+'_numfilter_'+str(num_filters)+".pkl" 

 

f = open(filename,"wb") 

pickle.dump(acc_hist.history,f) 

f.close() 

 

#Load the best model for testing 

model = load_model(weightfile) 

 

#Initilize Testing with evaluation 

acc1 = model.evaluate_generator(test_batches, steps=15642, verbose=2) 

acc2 = model.evaluate_generator(mit_test_batches, steps=22, verbose=2) 

acc3 = model.evaluate_generator(fif_test_batches, steps=51, verbose=2) 

 

# Save Testing performances of the tests to CSV file 

csv_file = '//scratch//gilbreth//xu640//LSUN_whole_result//final//output.csv' 

 

with open(csv_file, mode='a') as log: 
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        log_writer = csv.writer(log) 

        log_writer.writerow(['grid search,dp ='+str(dp_range)+',number of filters 

='+str(num_filters)]) 

        log_writer.writerow([str(acc1[1])]) 

        log_writer.writerow([str(acc2[1])]) 

        log_writer.writerow([str(acc3[1])]) 

        

#Initilize label prediction for confusion matrix 

predict1 = model.predict_generator(test_batches, steps=15642, verbose=2) 

predict2 = model.predict_generator(mit_test_batches, steps=22, verbose=2) 

predict3 = model.predict_generator(fif_test_batches, steps=51, verbose=2) 

 

#Save predict label 

np.save('//scratch//gilbreth//xu640//LSUN_whole_result//final//LSUN_dp_'+str(dp_range)+'_nu

mfilter_'+str(num_filters)+'.npy',predict1) 

np.save('//scratch//gilbreth//xu640//LSUN_whole_result//final//MIT_dp_'+str(dp_range)+'_numf

ilter_'+str(num_filters)+'.npy',predict2) 

np.save('//scratch//gilbreth//xu640//LSUN_whole_result//final//FIF_dp_'+str(dp_range)+'_numfil

ter_'+str(num_filters)+'.npy',predict3) 
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APPENDIX C EXTENDED TESTING RESULTS FOR AUTOMATED AD 

DIAGNOSIS 

C-1. Model A testing results 
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C-2. Model B testing results 
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C-3. Model C testing results 
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C-4. Model D testing results 
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APPENDIX D IRB PROTOCOL 
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