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This thesis explores a data driven machine learning based solution for Facial reconstruction 

from three dimensional (3D) skull shape for recognizing or identifying unknown subjects during 

forensic investigation. With over 8000 unidentified bodies during the past 3 decades, facial 

reconstruction of disintegrated bodies in helping with identification has been a critical issue for 

forensic practitioners. Historically, clay modelling has been used for facial reconstruction that not 

only requires an expert in the field but also demands a substantial amount of time for modelling, 

even after acquiring the skull model. Such manual reconstruction typically takes from a month to 

over 3 months of time and effort. The solution presented in this thesis uses 3D Cone Beam 

Computed Tomography (CBCT) data collected from many people to build a model of the 

relationship of facial skin to skull bone over a dense set of locations on the face. It then uses this 

skin-to-bone relationship model learned from the data to reconstruct the predicted face model from 

a skull shape of an unknown subject. The thesis also extends the algorithm in a way that could 

help modify the reconstructed face model interactively to account for the effects of age or weight. 

This uses the predicted face model as a starting point and creates different hypotheses of the facial 

appearances for different physical attributes. Attributes like age and body mass index (BMI) are 

used to show the physical facial appearance changes with the help of a tool we constructed. This 

could improve the identification process. The thesis also presents a methods designed for testing 

and validating the facial reconstruction algorithm.  
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1. INTRODUCTION 

 This thesis involves building a predicted 3D shape of a face by reconstructing the skin 

from the 3D skull shape that can be used for forensic identification purposes. This is a novel 

method for Cranio-Facial Reconstruction and Identification because in addition to the prediction 

of approximate 3D facial shape from the 3D skull shape it also includes modeling factors like age 

and weight as represented by body mass index (BMI) value. This allows an expert to generate 

possible facial shape predictions interactively making the task of successful recognition more 

probable. 

 Motivation 

There have been many technological developments in the past two decades. With the 

increase in technology and advancement, many areas of forensic science tried to improve their 

functionality by incorporating contemporary techniques into solving practical problems. An 

example is Missing Person and Unidentified Person cases in which the usual data for identification 

is not available except for skeletal remains found. The Federal Bureau of Investigation’s National 

Crime Information Center (NCIC) is reported with thousands of Missing Person cases per year. 

The active cases of NCIC by the end of December, 2018, was around 85,459. Almost 8,135 

unidentified person records have been reported since 1983 and approximately 1300 were canceled 

by the end of December, 2018, due to being invalid or being identified (National Crime 

Information Center’s (NCIC's), 2018). Although DNA analysis has been helpful in identifying 

many of these cases, the fact that so many thousands of cases are still unidentified suggests that 

additional methods of identification are necessary.  

Often, in a crime scene there could be human corpses which are to be identified to proceed 

with further investigation. In cases when a partially damaged body is found, the investigators use 

existing forensic methods to identify the individual. These methods include identifying the DNA 

samples of the body, dental identification, identifying fingerprints, etc. But this identification 

becomes extremely difficult when the cadaver is decomposed, skeletonized or mutilated. This is 

when the bone structure could be used as a basis for identification as it is less affected by the 

external conditions. One way of identifying the body is to build a predicted face using the skull 
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structure, if the skull is not mutilated, damaged, or destroyed. This method of constructing the face 

using unidentified skull is known as Cranio-Facial Reconstruction (C. Wilkinson et al., 2006). 

In recent years, different reconstruction techniques have been developed to help in the 

identification process. Studies are based on data from different racial populations and different 

criteria are used for finding a certain race’s soft tissue thickness on the face that could be used for 

facial reconstruction (Tedeschi-Oliveira, Melani, de Almeida, & de Paiva, 2009). Despite the 

extensive increase in efforts, there have been shortcomings when it came to diverse data collection, 

testing and showing efficient results (Bon-Woo & Seong-Whan, 2003). The results can differ 

depending on what type of data is used (MRI, CT or CBCT), number of data samples, methods 

used, etc. There is a definite possibility of improvement in the current methodologies as most of 

them do not consider the multivariate nature of human features but simply use the univariate 

features like tissue depths and regression equations.   

 Problem Statement 

 The purpose of this study is to build an automated and interactive tool which can help in 

the reconstruction of 3D face shape from the skull shape. This study also presents a graphical user 

interface (GUI) for viewing the changes in the facial appearance with change in physical variants 

like age and weight as represented by body mass index (BMI). Primarily called the cranio-facial 

reconstruction, the process is used to generate an approximate shape of the face using the outer 

surface of the skull and soft tissue thickness layered over the skull. The approach is a data driven 

approach in which a collection of 3D Cone Beam CT (CBCT) scan images are used to learn the 

tissue thickness over the skull in a given population of humans. The underlying assumption is that 

the tissue thickness across the face follows the same trends across different people and the variation 

in the face shapes are, to a first approximation, due to the underlying shape of the skull’s bone 

shape. Machine learning techniques are used for determining the facial soft and hard tissue 

relationships, predicting the facial form from the data collected. The goal of this method is to 

generate a predicted facial shape that is closest to the actual facial shape using the available 

information that could help in recognizing the unidentified body. This generation process might 

sometimes lead to positive identification, but many times the age or the BMI of the face generated 

could be different from the face familiar and identifiable and this could lead to a lack of 

identification. To overcome this disadvantage, this study also presents a method by which after the 
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predicted face is reconstructed over the skull shape, it is then interactively deformed to predict the 

face shape for different ages and/or BMI values giving the examiner a tool for generating various 

hypotheses. To assess the precision and accuracy of the reconstruction, we created a resemblance 

rating or a survey with a pool of faces by choosing the closest matched face with the reconstructed 

face. 

 Contributions of this Thesis 

 This thesis presents an approach to predicting the 3D face shape of an unidentified body 

with the aim of recognizing or identifying the unknown subject. The approach involves 

considering three-dimensional cone-beam computed tomography (3D CBCT) data of healthy 

subjects’ heads as the basis of learning the relationship of soft tissue thickness relative to bone on 

various locations on the skull. The contributions are listed below: 

 

 Predicting a face model  

The dense mesh representation of tissue thickness data by fitting a 3D mesh model 

of bone and skin to the 3D CBCT data was developed. By using the same mesh model that 

is fit to the data, the correspondence of the same point on the bone and skin is established 

by default, thus giving us the tissue thickness at that point. The mesh resolution can be 

adjusted, resulting in less or more dense data.  

 

 Machine learning for predicting the face shape 

A method was developed to learn the dense tissue thickness using the bone and skin 

meshes applied to the CBCT data. 

 

 Validation using qualitative analysis 

A method was developed to assess whether and how well the reconstructed face 

was helpful in recognizing the subject. A live survey is conducted where participants are 

asked to match the algorithmically generated face against a pool of face images, one of 

them being the correct original match. Mimicking the Forensics’ missing person 

identification, this step is used in validating and assessing the reliability of the algorithm.  
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 Facial Appearance Changed at different BMI and age 

Modeling the effects of age and weight on the appearance of the 3D face shape was 

developed. A tool was also developed that allowed an examiner to interactively change the 

appearance according to these parameters. This interface can be used by anyone without 

the knowledge of coding and software.  

 Organization of Thesis 

The remainder of this thesis is organized as follows. Chapter 2 gives the background and 

literature survey of related work. Chapter 3 describes the methodology used in predicting the facial 

reconstruction from a skull. Chapter 4 presents the results. Chapter 5 discusses the results, and 

finally Chapter 6 gives some conclusions. 
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2. BACKGROUND 

 Previous Work 

 The state of the art in facial reconstruction has been manual reconstruction by an expert 

using different techniques like sculpting muscles over the skull with clay and later sculpting skin 

onto the whole model called Russian method; or using thickness dowels or pegs that are placed at 

many points on the skull which represent the soft tissue thicknesses over the face at predetermined 

points and then sculpting the face using these dowels [American]; or using both methods together 

[Manchester] as mentioned in (Shrimpton et al., 2014). The main disadvantages of the 3D manual 

reconstruction are (i) the large amount of time to reconstruct the face; (ii) the dependence on 

subjective interpretation of the expert doing the sculpting; and (iii) the variability of the 

reconstructed faces among experts doing the reconstruction. Often it takes somewhere between a 

month to around 3 months to sculpt and reconstruct a face depending on the expertise of the artist. 

To overcome this disadvantage, the development of computer technology has been used for Facial 

reconstruction, known as Computer Aided Cranio-Facial Reconstruction, where computerized 

techniques and algorithms have been used to generate face and to make the generation process 

quick and smooth.  

 

Figure 2-1 : American method of manual facial reconstruction (Caroline Wilkinson, 2010). 

 Prior Work on Facial Registration and Reconstruction  

 Facial reconstruction using computer-based methods has evolved over time. The most 

commonly used methods and the evolution is explained in (De Greef & Willems, 2005). Starting 
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from capturing the skull data, Manhein et al. (Manhein et al., 2000) is the first to use ultrasound to 

get the soft tissue and bone structure visuals which were used to find the soft tissue thickness data. 

This was replaced by the usage of CT and MRI scanning techniques to get the bone and soft tissue 

data for building 2D facial reconstruction as in (Phillips & Smuts, 1996) and (Vignal & Schuliar, 

2002). Later, 3D CT volume data was used for the precise soft tissue depth data. Another usage of 

the CT volume data is to study new techniques to predict the facial soft tissue features. Once the 

volume data is successfully gathered, then registration (Subsol & Quatrehomme, 2005) of 3D 

shapes is used for capturing the skull and skin shapes, by creating a generic model and fitting and 

deforming it to the newly found samples. The 3D model mask generated by registration is used to 

map the 3D skull structure of new data by scaling and warping the model onto the 3D skull 

structure. Statistical methods are later used for reconstruction.  

(Blanz & Vetter, 1999) presented two different ways for image registration or mapping for 

postmortem identification. In the first approach, Thin Plate Splines (TPS), a non-rigid registration 

method that helps warping a reference template onto unidentified skull was used. The second 

method creates a template of the skull using automatic segmentation that can then be mapped or 

morphed onto new skull samples and registers the test samples simultaneously. (Berar, Desvignes, 

Bailly, & Payan, 2005) and (Tu et al., 2005) presented different techniques for facial reconstruction 

in which both use marching cubes algorithm for skin and skull extraction from computer 

tomography data and statistical methods are then used for reconstruction. (Tu et al., 2005) uses 

alignment points for rigid and non-rigid deformations to register the skull and face and the 

projected models are converted into 2D data with depth intensities in a cylindrical coordinate 

system that is further used for statistical reconstruction. (Berar et al., 2005), on the other hand, uses 

a symmetric matching algorithm to register the 3D meshes which are later projected into 2D space 

and used for reconstruction using statistical methods. (Bon-Woo & Seong-Whan, 2003) proposed 

a framework for reconstruction of partially damaged faces using a morphable face model. This 

framework particularly uses 2D images where the shape and texture information are used to 

estimate the shape and texture of the partially deformed face with the help of Least Squares 

Minimization. Forward and backward warping are used to reconstruct the new face with estimated 

shape and texture. (Claes, Vandermeulen, De Greef, Willems, & Suetens, 2006) presented a 

framework of deformable face models for Cranio-Facial reconstruction which uses TPS-PCA-

based Model Fitting which is a combination of statistical method, Principal component analysis 
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(PCA) and Thin Plate Spline (TPS) procedure. The fitting of the model is done using a few skull 

landmark points and TPS’s minimal bending and then applied to face specific statistical model 

parameters. The main difference between the existing methods and our method is that all the data 

generated is in 3D format and all the operations are done on the 3D data, preserving the data and 

the importance of the facial structure and also the registration undergone, matches the skull and 

skin models as close as possible to improve and provide accurate results for the reconstruction. 

In our method, we try to capture as much variation as possible from the skull and the face 

by matching the skulls closely to the generic templates using local deformations and global 

deformations multiple times.  Another difference is that our method also models other facial 

properties like BMI and age effects after the reconstructing the unknown face is done.  

Once the best registration is captured, statistical and machine learning methods are used 

for the reconstruction of the face. In most methods, this reconstructed face is used for recognition 

purposes but the main disadvantage of using the reconstructed face directly could be that the face 

generated might be familiar when the person was a particular age or when the person was 

overweight or when the person was thin and these changes cannot be incorporated to generating a 

face appearing a little old or young or appearing a little fat or thin. This aspect brings into context 

a whole variety of identifications and not appearing at a certain age or weight might lead to wrong 

identification. (Claes et al., 2006) proposed a framework which includes the age, BMI and gender 

to generate a property-dependent reconstruction of the face using statistical methods but this 

method is not interactive and has to be executed every time there is a change in the age or BMI or 

gender.  
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3. METHODOLOGY 

In this section we describe our approach to predicting the 3D face shape from the skull 

geometry using collected 3D CBCT data. In addition, we also describe our modeling of the effects 

of weight (parameterized by BMI) and of age on the face shape. The aim is to be able to generate 

many possible predicted faces that may result in the successful identification of the unknown 

subject from the facial shape.  

The overall approach relies on a collection of 3D CBCT data from which the relationship of 

bone to skin tissue thickness is learned over a dense set of points over the face. This learned 

knowledge is then used to reconstruct the predicted face from the 3D skull shape of an unknown 

subject. The method is divided into 4 stages which is demonstrated using the flow chart in Figure 

3-1. These 4 stages are explained in detail in the sections below. 

 

 

Figure 3-1: Flow chart of experimentation 

 

All the CBCT data obtained are from a single machine thus making the data in the set 

comparable. For extracting the skull and face surfaces from the head scans, a simple segmentation 

method is used to identify points in the volume data that represent the bone surface of the skull 

and the skin surface.  This process is repeated over all the CBCT scans and the skull and face 

surfaces of all the subjects are extracted.  

Following the extraction of bone and skin surfaces from the volume data, these surfaces 

are converted to a 3D mesh model. This is accomplished by using a generic mesh model which is 
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deformed to fit the extracted surfaces from the data. The same 3D mesh model is used for both 

skin and bone surfaces. Using the vertices in these two fitted mesh models, we also get the point 

correspondences by default in the two surfaces Once the fitted meshes are generated, this data is 

treated as an extremely high dimensional vector and statistical and machine learning methods and 

Principal Components Analysis (PCA) is used to represent the valid skull and skin face subspace 

(Berar et al., 2005). This computed subspace which is computed from the training data is then used 

to predict the face shape of an unknown subject by obtaining the skull mesh for it and using it to 

obtain the missing skin vertices using least squares fitting. Finally, the effects of age and weight 

are modeled by deforming the basic predicted face shape via the above process through an 

interactive user interface.  

Once the faces are reconstructed using the techniques mentioned, the efficacy and accuracy 

of the system is evaluated using a survey with respondent of all age groups. The results from this 

survey are further used for reliability and validity of the system.  

 Materials and Data  

  For this framework, we considered a collection of anonymized 3D Cone Beam 

Computed Tomography (CBCT) volume images as our database upon which the facial 

reconstruction is based. Our project has been approved by the Institutional Review Board (IRB). 

The CBCT data is obtained with i-CAT CBCT (Imaging Sciences, Hatfield, PA) set for full 13 cm 

field of view, 20 sec of scanning time, and a resolution of 0.4 mm voxel size of the School of 

Dentistry, Indiana University. Consent was received from a total of 70 patients to undergo a 3D 

CBCT scan to capture their head data. The number of males and females are 55 and 15, 

respectively. The age range of males is 18-35 and the age range of females is 19-27. The scans of 

the head are stored in a DICOM format whose size is 768 X 768 X 576. Each sample’s file 

consisted of the head scan from the top of the eyebrows i.e., from the supraorbital line until the 

upper neck part, i.e., beneath the chin. With the head scans, we also gathered the patients’ 

characteristic attributes, such as Code, Last Name, First Name, Patient #/CBCT #, Gender, 

Ethnicity, Age (Years), Age (Months), Total Age (months) to distinguish the patients during 

results. All this information was first consented and then gathered. Due to a smaller number of 

female scans, we were only able to consider the male head scans for reconstruction, and we were 

unable to include female patients’ scans in the reconstruction. All the scans used for this project 
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are Caucasian males. The whole framework was run on a Windows 7 Enterprise OS including a 4 

core Intel Core i5 processor with 8 GB RAM using Matlab R2016a. 

 Data Processing 

  The data processing step involves data collection and processing whose flow is as 

follows: 

 

Figure 3-2: Flow chart for data processing 

 

3.2.1 Preprocessing and Data Extraction 

 The CBCT scans obtained were inconsistent with each other in terms of the region of the 

head scanned. Many of the scans were obtained from the eyebrows downward, missing the 

forehead or supraorbital information. Many other scans had been taken up to the chin and not 

beneath the chin. In order to have our data comparable and consistent, we considered the head 

scans starting from just below the supraorbital line, between the eyebrows and supraorbital line to 

the chin line, shown in Error! Reference source not found., for reconstruction.  
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Figure 3-3: Valid skin sample (a) frontal view (b) side view 

 

The data between these limits is complete and consistent. An example is shown in Figure 

3-3, where the eyes, most of the nose structures, cheeks and mouth including the teeth structure 

were fully present. The missing information had some effect on our facial appearance computation, 

which we will be discussing in the results section, as the information on the forehead plays an 

important role in computing the face shape with different BMIs (Zhao, Jin, Huang, Chai, & Zhou, 

2018). In the 55 male patient head scans, we were only able to consider 48 samples as 2 males 

were way out of the age range and 5 male scans had some missing information (e.g., the tip of the 

nose to a quarter of the nose was missing as shown in the Figure 3-4). 

 

 

Figure 3-4: Samples that are not considered due to missing information. (a) missing 

supraorbital and eyebrows information (b) missing nose information (c) missing nose 

information. 
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This missing data is due to the CBCT scan and is not due to the algorithm. In the male head 

scans that were considered for the reconstruction, there were 4 head scans that had a 0.3 mm to 0.6 

mm of the tip of the nose trimmed off but we had to consider these scans due to the immense 

reduction in the number of training data otherwise. Also 3 patient scans out of 48 scans considered, 

had a surgically repaired cleft lip and palate, as shown in Figure 3-5, which were used in training 

and reconstruction as decrease in the training data could cause problems with overfitting.  

 

       

Figure 3-5: Head scans of sample who had cleft palate (a) front view (b) side view. 

 

In this thesis, one patient CBCT scan is left to be a common sample for isosurface mapping. 

In the remaining 45 sample scans, 35 CBCT scans are used as training data and the remaining 10 

sample CBCT scans are used as testing data.  

All 48 scan data are first converted into a workable format as follows. The pixel intensities 

are used to extract the relevant information from the volume data. Firstly, each patient sample is 

considered, and the bone or skull data is extracted. For this, all the pixels with an intensity below 

1300 are marked 0 and the ones above 1300 are considered to form the skull surface. For the skin 

surface, all the pixels above the intensity 400 are considered and once both the soft tissue and skull 

tissue surfaces are identified, the inside regions for each are filled as they have no bearing to the 

external surface shapes. After this, isosurfaces are identified for both the skull and skin. Then a 

registration method is performed.  
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3.2.2 Generating Face Meshes 

A generic mesh model is used for representing the bone and skin 3D shape information in 

the sample volumes. This generic mesh model is extracted from one of the volume data samples 

by identifying the bone and skin isosurface and using the marching cubes algorithm to generate 

the triangular mesh. This extracted mesh is then used as the generic mesh which is fitted to the 

other meshes by rigid alignment followed by a deformable registration. The registration process 

starts with global alignment using rigid iterative closest points (ICP) where the two meshes 

features are aligned such that they are overlapping each other and make rigid transformations to 

map one surface onto another globally on whole. Once the two surfaces are rigidly aligned, local 

transformations are made so that the surface that is mapped is close to the target. The local 

transformations are done using Optimal Step Nonrigid ICP (Amberg, Romdhani, & Vetter, 2007) 

where a stiffness measure is considered using which the source surface maps itself closely to the 

target surface along the normal of the source mesh. The registration process starts with assigning 

each vertex on the source surface to the closest point on the target surface by nearest-point search. 

In an iterative loop, the optimal deformations and stiffness are calculated for the source mesh 

vertices and the new coordinates are found which are used again with new deformation and 

stiffness until the two meshes converge to a closest epsilon value. The deformation on the mesh 

are applied more locally with the changes in the values of stiffness, denoting strongly regularized 

deformations make global deformations with large values of stiffness and the smaller values allow 

more localized deformations. For each iteration, the stiffness values are decreased to acquire more 

local deformations, mapping the source close to the target. Using this technique, all the common 

source isosurface is mapped onto all the other isosurfaces and the final coordinates are obtained, 

ultimately registering the isosurfaces.  

These process described above is discussed in details in different steps in the later sections.  

3.2.2.1 Data Preparation 

In each of the patient head CBCT scan folder, there are 576 number of images pertaining 

to the horizontal slices of the head as shown in Figure 3-6. Our goal is to reconstruct the face and 

examine the appearance changes in the face with age and BMI. For this, the data we need is the 

front half of the face from the supraglenoid ie., the front of the ear without including the ears. For 

this, we considered a middle slice from the head scan, which is the 250th slice which would 
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approximately be a slice of the nose. In this slice, we calculate the two extreme points in the y-

axis, which is the tip of the nose and the back of the skull from that horizon. We calculate the 

number of pixels in the y-axis between these extreme points and divide the number of pixels by 

2.2 to get the approximate center of the skull. To consider the first half of the face, this center point 

is considered as a limit in all the slices and all the pixels in the y-axis that come after the center 

point are equaled to zero. With this, the front half of the face is extracted from each scan. As the 

head scans are not consistent with the height of the head, ie., from the supraorbital line to beneath 

the chin, we first try to control the data and keep it consistent. For this, we consider the slices 

between the 40th and 500th slices, to have consistent data from beneath the supraorbital line to the 

chin.  

 

Figure 3-6: Horizontal 250th slice of a whole head scan (a) original cross-section of the 250th 

slice, with 2 extremes on top and bottom being the tip of the nose and the back of the skull 

(b)front half of the face which includes all the facial features as in eyes, nose, lips, etc. 

3.2.2.2 Skull Surface Extraction (Segmentation) 

The extraction of the skull and skin are done differently using isosurface identification, 

because in this particular application we are interested only in the external surface of the skull and 

not the interior surfaces. The bone surface and the skin on the head have different intensities in the 

CBCT data. Extracting the isosurfaces for the bone and skin at the corresponding intensity 

isosurfaces results in the extraction of the geometry of these two structures. All our scans are 

obtained from the same machine resulting in the pixel intensities over different scans to be 

comparable. Therefore, to capture the skull from all the slices around all the scans, we set a 
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threshold intensity of 1300 and all the pixels above this intensity are considered. With this, the 

interior and the exterior of the skull is extracted as in Figure 3-7.  

 

  

Figure 3-7: Horizontal 250th slice, by the tip of the nose, represented at different stages of 

segmentation and processing. (a) Original 250th slice without any manipulation (b)Face front 

extracted from original 250th slice (b) Segmented skull (c) Skull holes filled filled according to 

algorithm. 
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Figure 3-8: Horizontal 400th slice, by the lower jaw, represented at different stages of 

segmentation and processing. (a) Original 400th slice without any manipulation (b)Face front 

extracted from original 400th slice (c) Segmented skull (d) Skull holes filled according to 

algorithm. 

 

Using all this information for creating an isosurface could complicate the process of 

reconstruction as the algorithm requires the shape of the skull and not the inner parts of the skull. 

For this reason, the extracted skull shape is filled to eliminate the internal structures such as nasal 

passages, etc from consideration resulting only in the outer bone surface of the skull. To fill the 

skull, each slice is considered and the first x-axis pixel encountered in the y-axis, going downwards 
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is considered and the pixels between that point and y-axis center of the skull are filled, as shown 

in Figure 3-7 and Figure 3-8. This process is continued for all the x-axes in all the slices. Once all 

the slices are filled, we have a solid skull model with holes at the optic canal, nasal concha and the 

extremes of the teeth.  

3.2.2.3 Outer Skin Extraction (Segmentation) 

After the data processing step, similar to the skull extraction technique, we use the pixel 

intensity variation for extracting the soft tissue from the scans. Unlike skull data, the soft tissue 

pixel intensity value is smaller and if the threshold frequency is not set properly extra pixels may 

be included or they may be lost due to noise. In our CBCT data, the intensity of the background 

pixels and the noisy pixels are less 350 and all the pixels above 400 represent the soft tissue.  

For skin extraction, our goal is to capture the outer appearance of the face and compared 

to the bone/skull data, extracting the skin surface is more straightforward. Just like the skull, all 

the pixels with intensity above 400 are extracted. All the extracted pixels whose intensity is above 

400 are converted to 400 and all the pixels with intensity less than 400 are changed to intensity -

1000. Once the face is discovered in all the slices, there are many inner details and holes in the 

slices which are not required and these could interfere with the reconstruction later. For this, the 

slices are filled so that there are no holes in a process similar to the extraction of the skull. To fill 

the holes each slice’s first x-coordinate pixel in every y-axis that is 400 is taken and all the slices 

between the x-coordinate pixel and the center of the skull horizontal layer are filled with pixel 

intensities of 400. Doing this through all the y-axes for all the slices would fill the slices of the 

face resulting in no holes, as shown in the Figure 3-9 and Figure 3-10.
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Figure 3-9: Horizontal 250th slice, by the tip of the nose, represented at different stages 

of skin segmentation and processing. (a) Original 250th slice without any manipulation (b)Face 

front extracted from original 250th slice (b) Segmented skin (c) Skin holes filled filled according 

to algorithm.
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Figure 3-10: Horizontal 400th slice, by the lower jaw, represented at different stages of skin 

segmentation and processing. (a) Original 400th slice without any manipulation (b)Face front 

extracted from original 400th slice (c) Segmented skin (d) Skin holes filled according to 

algorithm 

3.2.2.4 Isosurface Creation 

Once the skull and face are extracted from the slices, a mesh or a 3D surface is formed 

from extracted data. The filled skull and face are converted into an isosurface using Matlab’s 

isosurface function. The isosurface function returns a structure array with the triangulation data 

consisting vertices and faces of the outer skull and skin surfaces. This surface data obtained from 
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isosurface is very large with 2202684 faces and 1101344 vertices, as shown in the Figure 3-11 and 

Figure 3-12. This amount of data would need a lot of memory and processing and would consume 

a lot of time for processing and to avoid this problem we reduce the surface to 2000 faces. This is 

done using the reducepatch (MathWorks Isosurface, 2016 )method of Matlab. With the faces and 

vertices, the vertex normal are also calculated and included into the structure array for further 

processing and all this structure array is saved in a mat format as “PatientBone” or “PatientSkin” 

followed by the number assigned to each patient. This process is carried on for the extraction of 

skull and skin around all the scans. 

 

    

Figure 3-11: Isosurface generated on a sample patient data, PatientSkin1. (a) Raw face isosurface 

with 2202684 faces and 1101344 vertices. (b) Raw face isosurface zoomed-in in the highlighted 

spot. 
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Figure 3-12: Reduced isosurface generated on a sample patient data, PatientSkin1. (a) Reduced 

face isosurface with 2000 faces and 1002 vertices. (b) Reduced face isosurface showing the 

triangulation (faces and vertices). 

 Surface Registration 

Once all the scans are converted into skull and skin meshes, they need to be represented in 

a uniform parameterization to continue with the reconstruction. The word uniform 

parameterization signifies that all the data obtained needs to be in one coordinate system. This is 

done by registration where one surface is mapped or warped onto another surface to take its shape 

and deformations by forcing some constraints on the algorithm. In this thesis, the Rigid (ICP) (Besl 

& McKay, 1992) and Non Rigid ICP (NRICP) Algorithms (Amberg et al., 2007) are used for 

registration of the surfaces. To begin with the implementation, the algorithm starts by considering 

one template mesh to fit or deform to other meshes. All the created meshes or isosurfaces are 

inspected closely and “Patient1” skull and face meshes are used as a template to map to the other 

skull and skin meshes.  

3.3.1 Rigid Iterative Closest Point (ICP) 

Before the NRICP, the Rigid Iterative Closest Point (ICP) is performed which optimally 

aligns the template mesh with the target mesh by transforming and scaling the template mesh close 

to the target mesh, as shown in Figure 3-13Error! Reference source not found.. If the meshes 

are in a different coordinate system, are reversed or are wide apart, the Rigid ICP positions both 

the meshes on the same plane and scales the template mesh close to the target mesh.  
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Figure 3-13: Overlapping the meshes for registration purposes. (a)Source bone mesh of 

one of the Patient overlapped onto the target bone mesh (PatientBone1). (b)Source skin mesh 

overlapped onto the target skin mesh (PatientSkin1). 
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Figure 3-14: Meshes after Rigid ICP. (a) Source and target bone meshes after Rigid ICP 

(b) Source and target skin meshes after Rigid ICP.  
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The reason why ICP alone doesn’t work is because all the transformations are done 

globally and the template mesh is not actually taking the shape or features of the target mesh. This 

is why Non-Rigid ICP techniques is applied to deform the source mesh locally to the target mesh. 

Therefore, once the meshes are all aligned properly, the NRICP is conducted.  

3.3.2 Optimal Step Non-Rigid Iterative Closest Point (NRICP) 

The goal of the NRICP algorithm is achieved by first finding the relations to transform 

from the target vertices to the source vertices. Using these relations, the deformation is applied to 

the template and new vertices are created, after which are used iteratively to deform closely to the 

target.   

NRICP is performed by recursively moving the template towards the target with decreasing 

stiffness. Unlike the Rigid ICP, NRICP performs more localized transformations to help shape the 

template mesh through the deformities of the target mesh. Simply put, the process of NRICP goes 

as follows: Each vertex in the template is considered and the preliminary correspondences on the 

target mesh are found with the nearest point search using the Hierarchical bounding spheres 

structure. The target is moved towards these preliminary correspondences with different stiffness 

values. The optimal deformations are determined depending on how flexible or stiff the mesh could 

be deformed. The stiffness weight starts with a larger value causing global alignment of the 

template mesh and decreasing the stiffness term further where the lower stiffness helps in more 

localized deformations. Once the deformation is performed on the template mesh, new vertices are 

captured. This new template’s vertices are considered and the preliminary correspondences and 

later deformation is determined using a lower stiffness and the process continues iteratively with 

the newly created template meshes until the meshes converge, as shown in the Figure 3-15. 
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Figure 3-15: Meshes after Non Rigid ICP, completing the registration step. (a) Source 

and target bone meshes overlapped at the end of registration. (b) Source and target skin meshes 

overlapped at the end of registration.  
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In this process, the deformations are determined using a cost function which includes a 

distance function (𝐸𝑑), a stiffness function (𝐸𝑠) and a landmark function (𝐸𝑙). The cost function is 

represented as follows (Amberg et al., 2007) 

𝐸(𝑋) = 𝐸𝑑(𝑋) + 𝛼𝐸𝑠(𝑋) + 𝛽𝐸𝑙(𝑋) 

The unknowns X are a 4n x 3 matrix, where 𝑛 is the number of training samples.  

𝑋 ∶= [𝑋1 𝑋2 … 𝑋𝑛]𝑇 

The distance function is used to force the distance between the template and target to be 

small and is represented as: 

𝐸𝑑(𝑋) =  ∑ 𝑊𝑖 𝑑𝑖𝑠𝑡2(𝒯, 𝑋𝑖 𝑣𝑖)

𝑣𝑖∈𝑉

 

𝑊𝑖  represents the weight of the matched template vertices depending on the target vertices. 

The weight 𝑊𝑖 is set to 1 if the template vertex finds a match with the target vertices and if there 

is not correspondence in the target vertices, then the template vertex weight 𝑊𝑖 is marked as 0. 𝑣𝑖 

is the homogeneous coordinates of the template vertices which is in the form: 

𝑣𝑖 = [𝑥, 𝑦, 𝑧, 1]𝑇 

Considering a point A and its closest point on the target, point B,  𝑑𝑖𝑠𝑡2(𝐴, 𝐵) represents 

the distance between A and B and the goal is to capture point B such that the distance between A 

and B is minimal.  

The second term in the cost function that helps control the deformation of the template is 

the stiffness term. The stiffness keeps changing iteratively to generate global to localized 

deformations. This stiffness term is changed iteratively by constraining the weighted difference of 

the neighboring vertices transformation. The rotational and skew weighted difference 𝛾 in the 

weighted matrix G along with the difference of the neighbor’s vertices transformation are used 

with a Frobenius norm. The 𝛾 value is set to 1 in our experiment. The stiffness term is represented 

by: 

𝐸𝑠(𝑋) =  ∑ ||(𝑋𝑖 − 𝑋𝑗)𝐺||𝐹
2

{𝑖,𝑗}∈ℰ

 

for 𝐺 = 𝑑𝑖𝑎𝑔(1,1,1, 𝛾) 

The stiffness weight is given by 𝛼 which changes with every iteration. The stiffness weight 

as the name says controls the stiffness and flexibility of the template mesh to deform around the 

target mesh. The larger the stiffness weight, the lesser the flexibility implying more global 
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deformation and the smaller the stiffness weight, the higher the flexibility resulting in localized 

deformations. Considering this strategy, the stiffness weights are taken in a decreasing order by 

first undergoing global deformations, for example fitting to the target mesh and later performing 

local deformations for taking the shape of the target. In this experiment, 𝛼 is set between the range 

of 100 – 10, with 20 decreasing values of stiffness used for bone and 500 decreasing values of 

stiffness for skin.  

The last term used in the cost function is the Landmark cost which can be used for correct 

initialization and registration. Adding these landmark terms makes the calculation easy as the 

equations are made quadratic. Using the landmark term helps find a local minima for a number of 

initial conditions, having quite a few points for collapsing the template mesh onto the target instead 

of having one point (global minima) on which the whole template mesh has to fall on, leading to 

correct initialization and registration. The landmark cost for mapping the template vertices onto 

the target is given as follows for a set of landmarks  

ℒ = {(𝜈𝑖1 , 𝑙1), (𝜈𝑖2 , 𝑙2), . . ., (𝜈𝑖𝑙 , 𝑙𝑙)} 

𝐸𝑙(𝑋) =  ∑ ||𝑋𝑖𝑣𝑖 − 𝑙||2

(𝑣𝑖,𝑙)∈ℒ

 

The term β represents the landmark weight. By the end of the registrations, the landmarks 

considered are controlled using the landmark weight where the noisy point’s priority keeps 

decreasing which ensures good initialization.  

The new registration vertices are compared to the last iteration’s vertices and if the 

difference is less than 𝜀, the new iteration is considered as the final product from registration. Once 

the final registration is done and the deformed template mesh is captured for one Patient Scan, the 

vertices of the deformed bone and skin are saved, and the same procedure is continued for the 

remaining 47 scans. Using the above method, the skin and skull deformed meshes of all the scans 

are obtained.  The registered vertices of the skull and skin are put to together in a 1D array. The x, 

y and z columns of each skin and skull vertices are separately concatenated vertically as a 1D array. 

Each patient’s new bone and skin 1D vertices are concatenated to the already existing skin and 

bone vertices array, forming 2 separate data structures of bone vertices and skin vertices. These 

newly formed skin and bone vertices are used in reconstructing an unknown face discussed in 

Section 3.4. 
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3.3.3 Registration Algorithm 

The algorithm for the registration procedure is below: 

 Initialize the template and target vertices and vertex normals. 

 Perform Rigid ICP registration. Initialize the rotational matrix TR and translational 

matrix TT. 

 For the iterations >50 

 Until the root mean square error is minimized. 

 Find the nearest neighbors of template mesh on target mesh. 

 Apply the transformation on template mesh and considered as the new 

source mesh. The optimal transformation matrix with the new fitted 

vertices. 

 Perform Non-Rigid ICP registration for local deformations. Initialize the template vertex 

data, 𝛼 and epsilon values.  

 For each 𝛼, i.e. the stiffness 𝛼𝑖  ∈ {𝛼1, 𝛼2, … 𝛼𝑛};  𝛼𝑖 > 𝛼𝑖+1 which is a decreasing order 

of𝛼. 

 Until ||𝑋𝑖 − 𝑋𝑖−1|| < 𝜀, where 𝑋𝑖 and 𝑋𝑖−1 are the new and old deformations of 

the target vertices.  

 Evaluate preliminary correspondences for template vertices.  

 Consider these new preliminary correspondences for next iteration’s 

deformation and find optimal deformations with changing 𝛼𝑖.  

 Reconstruction of Facial Data 

Once the registered skin and bone vertices of all the scans are captured, the experiment can 

proceed to the reconstruction of missing data. As mentioned earlier, in 48 patient scans, 38 are 

used as training samples for the statistical method and the remaining 10 scans are used to testing 

purposes. For reconstruction, the experiment uses the reconstruction of missing data using 

Principal Component Analysis as mentioned in (Berar et al., 2005). The purpose behind using PCA 

is that it is good in capturing the variations in the database and considering sensitive data like facial 

data, this technique seeks n-dimensional basis which by maximizing the variance would also 

reduce the mean squared error. To start with, the training data is set up where all the registered 
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skin and bone vertices are grouped into different arrays separately. The registered bone vertices 

array B and registered skin vertices array S are formed with each column containing each scans 

bone and skin vertices respectively and all the columns being a multiple of 3 representing the sets 

of x, y and z axis locations of the vertices respectively.  

𝐵 = [𝐵1 𝐵2 𝐵3 . . . 𝐵𝑛]; 

𝐵𝑖 = [𝑥𝑖1 𝑦𝑖1 𝑧𝑖1 𝑥𝑖2 𝑦𝑖2 𝑧𝑖3 . . . 𝑥𝑖𝑛 𝑦𝑖𝑛 𝑧𝑖𝑛]𝑇 

Similarly representing the skin vertices as follows: 

𝑆 = [𝑆1 𝑆2 𝑆3 . . . 𝑆𝑚]; 

𝑆𝑖 = [𝑥𝑖1 𝑦𝑖1 𝑧𝑖1 𝑥𝑖2 𝑦𝑖2 𝑧𝑖3 . . . 𝑥𝑖𝑚 𝑦𝑖𝑚 𝑧𝑖𝑚]𝑇 

In the representation above, each column of B and S are the corresponding bone and skin 

registered vertices, i.e., 𝐵2 and 𝑆2 are the registered skin and bone of the same patient scan “Scan 

2”. This concatenation is done later where the bone vertices and skin vertices are joined as follows.  

𝑋 = [𝑋1𝑋2 𝑋3 . . . 𝑋38] 

𝑋𝑖 = [𝐵𝑖 𝑆𝑖]
𝑇 

This yields a (3n+3m) x 38 matrix for X which contains all the training data with the registered 

bone and skin vertices. The dimensionality of the data is now (3n+3m) x 38 which is very high 

and could affect the data analysis. For this reason, the dimensionality of the data is reduced while 

preserving its important properties (Zaki & Meira, 2014). To do this, the eigenvalues and 

eigenvectors of the covariance matrix of the centered vertices data is found. Using these 

eigenvalues and eigenvectors, the dimensionality is reduced by the following steps: 

 Consider the eigenvalues (𝛿1, 𝛿2, 𝛿3, . . . 𝛿𝑟), sorted in a descending order as the largest 

eigenvalues are to be captured, and the eigenvectors 𝜃 = (𝜃1 𝜃2 𝜃3 . . . 𝜃𝑟) of the 

covariance matrix of centered vertices data where r is the present dimensionality of the 

data being (3n+3m). 

 Choose the smallest d such that 𝑓(𝑑)  ≥  𝛼 where 𝛼 is 0.95 that would help capture the 

largest eigenvalues with the most variation.  

𝑓(𝑑) =  
∑ 𝛿𝑖

𝑑
𝑖=1

∑ 𝛿𝑖
𝑟
𝑖=1

 ∀ 𝑑 = 1,2,3, . . . 𝑟 

 The reduced basis 𝜃 = (𝜃1 𝜃2 𝜃3 . . . 𝜃𝑑), a (3n + 3m) x d matrix is extracted which is 

further used in the missing data reconstruction.  
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Once the reduced eigenvector or the reduced basis is found, the missing data is reconstructed 

using least square method. Since our dimensionality d is always <n, the problem is solved using 

least square approximation with missing data. The data is solved as the following optimization 

problem 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ||𝐴𝑥 − 𝐵||
𝐹

2
 

Considering the equation from [Berar], the data is constructed into 2 matrices A and B, A 

being the independent variables and B having the dependent variables. Using these 2 matrices, the 

regression coefficients and the missing data are evaluated which would minimize the squared error 

between the model Ax and the dependent variables B [Alex William, website]. The two matrices 

as constructed as below 

𝐴 = 

[
 
 
 
 
 

𝜃1,1 ⋯ 𝜃1,𝑑

⋮ ⋮ ⋮
𝜃3𝑛,1 … 𝜃3𝑛,𝑑

0 … 0
⋮ ⋮ ⋮
0 … 0

𝜃3𝑛+1,1 … 𝜃3𝑛+1,𝑑

⋮ ⋮ ⋮
𝜃3𝑛+3𝑚,1 … 𝜃3𝑛+3𝑚,𝑑

−1 … 0
⋮ ⋱ ⋮
0 … −1]

 
 
 
 
 

 

where A is (3n+3m) x (d+3m) matrix which contains all the independent variables, which 

are the eigenvectors, zero matrix of size 3n x 3m and a diagonal matrix of size 3m x3m. The matrix 

B contains the bone vertices of the Patient scan whose skin vertices are to be reconstructed. As the 

problem is to minimize the square error and find the optimized fitting points for the bone vertices 

considered, the skin vertices are set to zero and the whole B matrix is centered with all the vertices 

mean, thus appearing as below 

𝐵 =

[
 
 
 
 
 
 

𝑏𝑖,1 − 𝑉̅1

⋮
𝑏𝑖,3𝑛 − 𝑉̅3𝑛

−𝑉̅3𝑛+1

⋮
−𝑉̅3𝑛+3𝑚 ]

 
 
 
 
 
 

 

where 𝑏𝑖,1, 𝑏𝑖,2, … 𝑏𝑖,3𝑛 are the bone vertices of the patient scan whose skin vertices are to 

be reconstructed and 𝑉̅1, 𝑉̅2, … 𝑉̅3𝑛 … 𝑉̅3𝑛+3𝑚is the mean of the all vertices of all the 38 patient test 

data. 

Once the A and B matrices are constructed, the x is solved for using the Matlab’s least 

square solution to solve the system of equations, mldivide (\) (MathWorks mldivide, 2016). 
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𝑥  would be a (d+3m) x 1 matrix with the optimized coefficients and skin vertices 

reconstructed using the A and B matrices that is in the form  

𝑥 =  

[
 
 
 
 
 
𝐶1

⋮
𝐶𝑑
𝑠1

⋮
𝑠3𝑚]

 
 
 
 
 

 

The matrix  𝑥  contains the regression coefficients 𝐶1, 𝐶2, … 𝐶𝑑  and the skin vertices 

𝑠1, 𝑠2, … 𝑠3𝑚  of the skull/bone vertices, therefore reconstructing the unknown skin data. The 

unknown face that has been reconstructed is generated with a particular BMI, at a particular age, 

which is 19-35 years that has been restricted. A few samples of reconstructed faces, both front and 

side views are shown in Figure 3-16 and Figure 3-17: 
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Figure 3-16: Original and reconstructed faces of one test data. (top-left) Original face of the test 

data, frontal view (top-right) Reconstructed face of the test data, frontal view (bottom-left) 

Original face of the test data, side view (bottom-right) Reconstructed face of the test data, side 

view. 
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Figure 3-17: Original and reconstructed faces of one of the test data. (top-left) Original 

face of the test data, frontal view (top-right) Reconstructed face of the test data, frontal view 

(bottom-left) Original face of the test data, side view (bottom-right) Reconstructed face of the 

test data, side view.  

 

As mentioned earlier, the face appearance changes at different ages and at different BMI’s 

and this is addressed in the next section. A range of potential faces are generated at different ages 

and BMI levels for each particular skull making the identification more straightforward. This 

would be a whole other process that can only be done once the reconstructed faces are generated 

and the next steps of the experiment are conducted using the reconstructed face and its 

corresponding skulls.  
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 Facial Appearance Transition with Physical Variants 

After reconstructing the face using above methodology, the results can be used for 

identification purposes. But this would sometimes lead to false positives or missed identifications, 

as the person’s age and BMI captured by the algorithm are represented at a certain range. A person 

could have interacted with many people since childhood and many of these acquaintances might 

recognize the person, when he was at a particular age or at a particular BMI. For example, consider 

John who had a friend Alex from college whom he hasn’t seen for more than 10 years. When met 

after a long time (considering one of the friends has put on weight), it could be hard to recognize 

due to the changes in the physical appearance of his face. Similarly, if John is presented with a 

latest picture of Alex, it could be a little difficult for john to recognize Alex. But if he had a way 

to identify the face of the same person at a particular age or at particular body mass index he 

remembered, it would help in easy identification. In the example mentioned above, if John had to 

identify Alex and he remembers Alex to be thin at the age of 25, but the image that he was 

presented to was of a person with similar appearance or if it was a picture of Alex with a completely 

different appearance, it would either lead to false positives or false negatives respectively. In such 

situations, if the person is presented with the reconstruction of the face as he remembered, being 

at a particular age or thickness, portraying the changes in the image, it would help lead to a correct 

identification. This ideology is what is used in the second phase of our experimentation.  

Instead of directly presenting the reconstructed face for identification, the appearance of the 

face is changed depending on the examiners request of how he remembered the person to be. An 

interactive platform is presented where the reconstructed face is presented with two sliders, one 

for changing the age and the other for changing the BMI of the reconstructed face and a reset 

button that will portray the original reconstructed face undoing all the changes made to the face.   
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Figure 3-18: Interactive interface for observing facial changes depending on age and BMI. 

 

As mentioned in 1.3, an interactive model is created for visualizing the appearance changes 

in the face due to age or BMI. This interactive model is a Matlab GUI window, which contains 4 

separate blocks that help in visualization as shown in Figure 3-18. The first block is to display the 

reconstructed 3D skin mesh that is also used to show the changes in the appearance of the face, 

whose default value is the original reconstructed face. Two sliders control the values of the age 

and BMI parameters and the effect is reflected in the rendered face shape. In the implemented GUI, 

the horizontal slider controls the BMI value and the vertical slider controls age. The BMI slider 

ranges between -15 to +15 with a default value of zero. The positive values for BMI represent 

increase in the weight or Thickness of the face and the negative BMI values represent the decrease 

in the body weight from the initial default thickness. The age slider ranges between the values -15 

and 70 with a default value of 0. The positive values represent increasing age and the negative 
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values represent decreasing age from the original value. The last block is a button for resetting and 

clearing all the changes made to the reconstructed skin mesh. Once any of the slider position is 

changed, a trigger is raised and the Output_Fcn for each of these changes are called. As the BMI 

and age slider positions are changed, the new slider values are logged, calling the FaceDeformation 

Function.  

3.5.1 Evaluating Face Thickness Changes 

The main concept considered for this processing is the changes in the face thickness at 

different ages and BMI’s. A few points show much more difference that the other points in the 

face during aging or losing and gaining weight. For example, as the BMI increases, the inferior 

malar or the cheeks have more thickness difference than the supraorbital or the forehead but both 

of these changes are very critical to predict the final shape of the face. These crucial points are 

marked on the model skull mesh and the corresponding skin intersection points are calculated, 

assuming the changes in the thickness are in the normal direction of the vertex. Once the skin 

points are obtained, the mean square errors are calculated using the age and BMI and this error is 

added to each of the vertex position leading to a new set of skin points. These new set of skin 

points are used to manipulate and displace the neighboring unmodified vertices, creating a whole 

new set of skin vertices that generate a new face for the new age and BMI. 

Before beginning the processing for facial deformation, these crucial points have to be 

marked on the skull. Since our model considers triangulation mesh for representing the surface 

and this triangulation surface comprises of triangles which are represented by faces and vertices, 

any point on this surface can be represented by the face index or its corresponding vertex. As we 

are interested in marking a point on the surface, the vertex index is used for marking these crucial 

points on the model skull. These vertices are used as markers for labelling these important points 

on the skull. The vertices marked are going to remain the same all over the samples as all the skull 

and skin meshes have been registered from the model skull and skin during the registration step. 

The positions that are to be marked on the skull are gathered from (De Greef et al., 2006). There 

are a total of 52 crucial points that are mentioned in (De Greef et al., 2006) but due to limited data 

availability, our experiment is considering 47 crucial points for facial deformation.  
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Table 1: TABLE for vertex markers (De Greef et al., 2006) 

Landmark 
Number 

Landmark Name Landmark Description Landmark Vertex 

1 Supraglabella  Most anterior point on midline 560 

2 
 Glabella 

 Crosspoint between midline and 
supraorbital line 

498 

3 Nasion  Midpoint of the fronto-nasal suture 528 

4 
End of nasal  

Passage between bone and cartrilage 
of the nose 

509 

5 
 Mid-philtrum  

Centered between nose and mouth on 
midline 

538 

6 Upper lip  Midline on the upperlip 505 

7 Lower lip Midline on the lower lip 506 

8 
Chin–lip fold  

Midline centered in fold chin, below 
lips 

478 

9 
Mental eminence  

Centered on forward most projecting 
point of chin 

501 

    

10/29 
Frontal eminence 

 Centered on eyepupil, most anterior 
point of the forehead 

855/ 173 

11/30 
Supraorbital  

Centered on eyepupil, just above 
eyebrow 

866/ 176 

12/31 
Lateral glabella  

Junction of the frontal, maxillary, and 
lacrimal bones on the medial bone of 
the orbit 

612/ 421 

13/32 

Lateral nasal 

Side of the bridge of the nose, 
horizontal just above the end of a 
vertical line with the inner canthus of 
the eye    

624/ 402 

14/33 
Suborbital 

Centered on eyepupil on eyepupil, just 
under inferior orbita margin       

853/ 208 

15/34 
Inferior malar 

Centered on the eyepupil, just under 
the zygomatic process     

646/ 374 

16/35 
Lateral 

Next to the most lateral point of the ala 
nasi    

666/ 346 

17/36 
Naso-labial ridge 

The prominence next to the Mid-
philtrum        

628/ 423 

18/37 

Supra canina 

Vertically lined up with the cheilion, on 
the horizontal level of the Mid-
philtrum        

707/ 338 

19/38 
Sub canina 

Vertically lined up with the cheilion, on 
the horizontal level of the Chin-lip fold 

671/ 321 

20/39 Mental tubercle 
anterior 

 Most prominent point on the lateral 
bulge of the chin mound  

606/ 308 

21/40 
Mid lateral orbit 

 Vertically centered on the orbit, next 
to the lateral orbit border  

926/ 67 
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Table 1 continued 

22/41 
Zygomatic arch 

Maximum, most lateral curvature of 
the zygomatic bone      

967/ 7 

23/42 

Lateral orbit 

Lined up with the lateral border of the 
eye on the center of the zygomatic 
process 

935/ 100 

24/43 

 Supra M2 

Cheek region, lateral: lined up with 
bottom of nose; vertical: lined up 
beneath lateral border of the eye 

754/ 276 

25/44 

Mid masseter 

Middle of the masseter, the halfway 
point between the supraglenoid and 
the gonion      

899/ 69 

26/45 
Occlusal line 

Border of the masseter,on vertical level 
of the cheilion     

847/ 120 

27/46 
Sub M2 

Below the second molar on 
horizontally lined up with Supra M2   

765/ 265 

28/47 
Mid mandibular 

Inferior border of the mandible, 
vertically lined up with Supra M2   

777/ 200 

 

The vertices considered as markers are presented in the fourth column of the Table 1 

besides their landmark names and all these points plotted on the skull, with the triangulation is as 

shown in Figure 3-19. 

 

     

Figure 3-19: Model skull surfaces with vertex makers labelled as ‘X’ (a) Skull frontal view with 

vertex markers (b) Skull side view with vertex markers 
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Since we are interested in calculating the thickness from the bone to the skin and the data 

we have available are the vertex markers on bone, we calculate the corresponding intersection 

points on the skin with respect to these bone vertex markers. To calculate the corresponding skin 

points for the bone vertex markers, we consider the vertex normal of the bone vertex markers. A 

line is drawn in the direction of the vertex normal from the marked bone vertex and the intersection 

point on the skin is considered as the skin vertex marker as in Figure 3-20.  
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Figure 3-20: Bone and corresponding skin vertex marker. (top) Bone and skin mesh overlapped 

highlighting the bone vertex marker and its corresponding closest skin vertex. 

(bottom)Highlighted patch from the top image showing bone vertex marker [855] and its closest 

skin vertex [743] 
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3.5.2 Reshaping and Deformation 

3.5.2.1 Skin Depths Evaluation for Reshaping 

Once all the skin vertices corresponding to the bone vertex markers are calculated using 

the method above, the actual thickness at a certain age and BMI are calculated. The skin depths 

are calculated at different ages and BMI using the calculations below.  

The new skin depths are calculated using the linear regression method mentioned in (Zhao 

et al., 2018). The change in the skin depths/ thickness are calculated using the formula below: 

𝑇 = 𝐶0 + 𝐶1 ∗ (𝑎𝑔𝑒𝑛𝑒𝑤) + 𝐶2 ∗ 𝐵𝑀𝐼𝑛𝑒𝑤  

where 𝑎𝑔𝑒𝑛𝑒𝑤 , 𝐵𝑀𝐼𝑛𝑒𝑤  are the reported changes from the interact 𝐶0, 𝐶1, 𝐶2  are the partial 

regression coefficients whose structure is a follows: 

𝐶0 = [𝑐0
1  , 𝑐0

2, 𝑐0
3, … , 𝑐0

47]; 

𝐶1 = [𝑐1
1  , 𝑐1

2, 𝑐1
3, … , 𝑐1

47]; 

𝐶2 = [𝑐2
1  , 𝑐2

2, 𝑐2
3, … , 𝑐2

47]; 

These coefficient values are obtained from (De Greef et al., 2006)paper that are showed in 

Table 2.  
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Table 2: Partial Regression coefficients at the selected landmarks 

Landmark 
Number 

Landmark Name 𝐶0 𝐶1 𝐶2 

1 Supraglabella  2.7 2 62 

2  Glabella 3.4 -2 77 

3 Nasion 4.8 15 42 

4 End of nasal  1.7 -2 36 

5  Mid-philtrum  9.7 -39 39 

6 Upper lip  10.6 -18 -21 

7 Lower lip 10.1 -9 37 

8 Chin–lip fold  7.9 23 54 

9 Mental eminence  5.5 12 174 

     

10/29 Frontal eminence 2.3 1 76 

11/30 Supraorbital  3.3 0 95 

12/31 Lateral glabella  4.9 -15 48 

13/32 Lateral nasal 3.9 -14 10 

14/33 Suborbital 7.7 -29 130 

15/34 Inferior malar 12.3 6 249 

16/35 Lateral 9.9 -32 14 

17/36 Naso-labial ridge 9.6 -55 70 

18/37 Supra canina 10.6 -57 20 

19/38 Sub canina 9.2 -31 82 

20/39 Mental tubercle anterior 6.6 8 129 

21/40 Mid lateral orbit 4.1 -1 42 

22/41 Zygomatic arch 3 -15 194 

23/42 Lateral orbit 5.2 -44 266 

24/43  Supra M2 22.5 -56 275 

25/44 Mid masseter 13.4 -47 194 

26/45 Occlusal line 13.1 -58 340 

27/46 Sub M2 14.2 -27 250 

28/47 Mid mandibular 3.8 12 329 

 

Using these available coefficients, the changed age and BMI, the change in the skin depths 

are calculated. Once the difference in the skin depths are calculated, the modified skin 

depths/thickness is generated. As mentioned earlier, we consider the thickness difference to be 

affective in the direction of the vertex normal and therefore, these calculated difference in skin 

depths are added to the actual skin depths along the normal direction as below.  

𝑆𝑉𝑖
′ = 𝑆𝑉𝑖 + (𝑇 ∗ 𝑉𝑁𝑖) 

where 𝑆𝑉𝑖
′ and 𝑆𝑉𝑖 are the new and old skin thickness at the ith bone vertex marker point 

respectively, before and after the modified age and BMI are applied, 𝑇 is the thickness difference 
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calculated from the new age and BMI and 𝑉𝑁𝑖 is the skin vertex normal at the corresponding ith 

bone vertex marker point.  

 

 

Figure 3-21: The above figures show the skin vertices (X) corresponding to the bone vertex 

markers before and after modifying with respect to the increase in BMI to 2. The figure (a) and 

figure (b), when observed has marked skin vertex points that are displaced depending on the 

thickness difference calculated. 

3.5.3 Deforming Face Shape 

Once the skin vertices corresponding to the bone vertices markers are calculated, the 

remaining skin vertices are calculated using these modified skin vertices. The remaining skin 

vertices are to be deformed depending on the already modified skin vertices and this is done using 

Laplacian Deformation method as mentioned in (Zhao et al., 2018) (Liao, Jin, & Zeng, 2012), 

which helps deform the surrounding vertices without hugely effecting the geometry of the surface 

and also preserving the already existing vertices. The deformed skin vertices are obtained using 

quadratic minimization problem as following: 

𝐴 ∗ 𝑥 = 𝐵                                                                  

where 𝑥, the deformed skin vertices that are to be solved for using A which is a topological 

Laplacian of the face mesh and B, being the Laplacian coordinate matrix (delta). 
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For calculating the A and B vertices to solve for 𝑥, we need the Laplacian matrices that are 

calculated as follows: 

The topological Laplacian is calculated as below: 

𝐿 = 𝐼 − 𝐷−1𝐴 

where A is the adjacency matrix of the skin vertices 𝑆 = {𝑆1, 𝑆2, 𝑆3, … , 𝑆𝑛}, 𝐷 is the degree 

matrix of the skin vertices and 𝐼 is the identity matrix of size n * n. Once the Laplacian operator is 

calculated, A can be generated as follows: 

𝐴 =  [
[
1 ⋯ 1
⋮ ⋱ ⋮
1 ⋯ 1

]

𝑚∗𝑚

[
0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

]

𝑚∗(𝑛−𝑚)

𝐿𝑛∗𝑛

] 

 

where n is the number of skin vertices and m is the number of bone/skin vertex markers, 

which is 47 in our experiment.  

The delta () which is the difference between the vertex and the average of the neighboring 

vertices is calculated, and hence is known as the Laplacian coordinate of the vertex. As mentioned 

in (Sorkine et al., 2004),  is not affected by translation but is affected by linear transformation, 

which makes it an ideal for consideration. Therefore,  is calculated as follows: 

𝑖 = 𝑆𝑖 − 
∑ 𝑆𝑘𝑘  𝑁𝑉𝑖

𝐷𝑖
 

where 𝑆𝑖 is the skin vertices and 𝑁𝑉𝑖 are the neighboring vertices at the 𝑖𝑡ℎskin vertex and 

𝐷𝑖 being the degree of the 𝑖𝑡ℎskin vertex. This  is used to constructing B as follows: 

𝐵 =  

[
 
 
 
 
 

[
 
 
 
 
𝑆𝑉1

𝑆𝑉2

𝑆𝑉3

⋮
𝑆𝑉𝑚]

 
 
 
 

[] ]
 
 
 
 
 

 

where 𝑆𝑉𝑖  are the skin vertices with the modified thickness at the corresponding bone 

vertex markers.  

Once the Laplacian matrices A and B are generated, 𝑥  is solved using the quadratic 

minimization problem, for obtaining the modified face mesh at a certain age and BMI.  
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4. RESULTS 

The outcomes and the results from the experimentation are shown in this section. We 

consider the validation of our results in two steps, one for facial reconstruction and one for facial 

appearance with BMI and age. Therefore, we discuss 2 sets of results for our whole 

experimentation. 

 Facial Reconstruction Results 

The results from the facial reconstruction are measured quantitatively and qualitatively. 

4.1.1 Quantitative Analysis 

In quantitative analysis, we measure the mean squared error between the original face mesh 

and the reconstructed face mesh. The mean result of quantitative analysis of the reconstructed face 

meshes is 0.71 mm. All the reconstructed face meshes had an error less than 0.87mm. The majority 

differences where seen in the lips region, the lower cheek region and the eyes which constitute for 

the most error. But, we could not consider the quantitative analysis alone as the differences in the 

position of a few vertices on the nose or eyes can change the appearance of the whole face, which 

may not show a huge mean square error but when examined by looking at the face can seem 

completely different, hence leading to false identification. Therefore, we do a qualitative analysis 

for the results obtained to correctly verify and validate the results of the face meshes reconstructed. 

4.1.2 Qualitative Analysis 

For the qualitative analysis, we need to evaluate how well the reconstructed face reflects 

the actual face shape. This is evaluated by assessing the ease of recognizing the reconstructed face 

by human subjects. The qualitative validation is, therefore, designed with this goal in mind. In 

order to acquire the qualitative analysis results without bias, we conducted a live survey with 

people of different age groups and genders, to get the most reliable results.  

The survey consists of 15 multiple choice questions. In each question the participants are 

presented with a reconstructed face at the top and a set of 6 images, all the original face meshes of 

different samples, where one of the images the original shape of the reconstructed face. The correct 

face is randomly placed among the 6 faces. The participants are asked to choose a face they think 
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that is a match to the reconstructed face mesh. This method of analysis is an attempt to duplicate 

the original forensic identification process, where a model of the face of the deceased is 

reconstructed and is shown to the relatives who would be identifying this reconstructed face. This 

survey was not a timed survey but was completed by the respondents in an average of 13 minutes. 

The survey was not restricted to any gender or age group. The respondent group consisted of men 

and women between the ages of 17 to 80 years. The survey participants were individuals from the 

general public, students from different departments and at different class levels, and staff from 

different departments. Most of them had minimum to no knowledge on the working of the 

algorithm and solely concentrated on picking the matches for the reconstructed image shown. All 

participants are almost always satisfied with the survey questions and no difference in satisfaction 

was found between young and older respondents.  

The number of respondents who finished the survey successfully are 72, where 41 were 

female and 31 were male respondents. The age group break-down of the participants are tabulated 

as follows: 
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Figure 4-1: Pie chart showing the number of participants in each age group. The age group 

considered are given below. 

 

In order to generate reliable results, the survey was always conducted using the same 

computer. The respondents are requested to come to the location where the computer is set up with 

fixed surroundings and were asked to take the survey, making sure that no other environmental 

conditions such as lighting, machine height, were changed. The computer is setup at eyelevel, 

placing the screen at an approximate distance of 70cm from the respondent. The survey computer 

is set up in a closed room with bright white lighting and this environment was kept unchanged. 

This survey is a new contribution to the facial reconstruction research area as most of the external 
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features that could affect the credibility of the survey are disregarded and the results are collected 

in a constant environment with unbiased approach towards verifying the algorithm with live 

respondents who have no knowledge in this area of research. Another unique feature is that this is 

the only computer aided 3D facial reconstruction algorithm using machine learning techniques that 

has been validated using a survey that contains 15 slides of different face pools that was taken by 

live respondents. 

The idea for validating the algorithm using a live survey was taken from the paper (C. 

Wilkinson et al., 2006) who also validated their results of facial reconstruction generated by using 

the Manchester method of sculpting. They consider computer tomography data of males and 

females, place dowels on the skull and build the muscle and skin using Manchester method and 

generated 2 slides/posters of face pools for testing. These posters were shown to different 

individuals in different environments and are asked to match to one face in the pool. We try to use 

the same method but have simplified the approach by always having our surroundings constant 

and also considered 15 slides, more than 7 times the test sample size, which would increase the 

probability for effectiveness. Each slide, as mentioned earlier, has a reconstructed face that must 

be matched to one of the faces from the pool of images as shown in Figure 4-2: 
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Figure 4-2: Slide 1. Top image is the test image which is also the reconstructed image that must 

be matched with one of the 6 images (2nd and 3rd row face pool). Click on one of the pictures 

from the face pool selects the respondent’s choice. 

 

As mentioned earlier, the survey was taken by 72 individuals, 41 being female respondents 

and 31 being male respondents. In the live survey conducted, the correct match expected for the 

reconstructed test image/question acquired the majority percentage in all the slides. The hit rate of 

the expected match in all the slides is almost always above 50% which is above chance.  The 
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majority pick from the face pool from all the slides is always the expected face. One of the slides 

with the results is presented in Figure 4-3, Figure 4-4 and Figure 4-5. 

 

 

Figure 4-3: Slide 13. Top image in row 1 is the test image that is to be matched to one of the six 

images in row 2 and 3. The correct answer being the first image from left in row 3. The statistics 

are shown in the figures below.
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Figure 4-4: A breakdown view of the responses report for slide 13. The top pick being the 

expected image with a hit rate of 58 responses that is picked about 80.56% when compared to 

other faces in the pool. If observed, the total count of responses is 72 for 5 faces where one face 

did not get a single response (first face from the left in row 2 in figure) showing majorly chosen 

face to be the expected answer.
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Figure 4-5: The bar chart of the choice count of the responses of slide 13 of figure. The most 

prominent bar being the expected face choice count from the live respondents. 

 

The hit rate for all the slides, being the total count of respondents choosing the right answer 

and percentages of this hit count for all the slides are represented in Table 3. 

 

Table 3: Hit rate of each slide in column 2, Choice count and the percentage of hit rate of each 

slide in column 3, Percentage. 

 Choice count Percentage (%) 

Slide 1 65 90.28 

Slide 2 32 44.44 

Slide 3 48 66.67 

Slide 4 40 55.56 

Slide 5 43 59.72 

Slide 6 37 51.39 

Slide 7 58 80.56 

Slide 8 60 83.33 

Slide 9 42 58.33 

Slide 10 44 61.11 

Slide 11 48 66.67 

Slide 12 47 65.28 

Slide 13 44 61.11 

Slide 14 49 68.06 

Slide 15 31 43.06 

 

More statistical analysis is done on the results in further sections where the survey and the 

responses are statistically evaluated by conducting reliability and validity testing. 
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4.1.2.1 Testing 

The reliability and validity of the survey, as mentioned earlier, is also accounted for that 

measures how reproducible the survey data is. We conduct three tests each for the reliability and 

validity of the survey.  

4.1.2.2 Validity Testing 

Validity testing for a survey measures how well the survey is measuring the quantities that 

it is set out to measure. These measures are not particularly formulated or scientific methods but 

are rather used validate the procedure with diligent assessment. In our case, the survey created has 

to measure how well the results from the algorithm can be useful for identification. To do this, we 

need to make sure the survey is actually comparing the same data and is setup in the form that 

could help decide the results obtained are accurate. The three tests of validity are: 

4.1.2.2.1 Face Validity 

Face validity as the name says is like a primary test that can be done to see if the survey is 

doing what it’s intended to do. It is a cursory review done by unexperienced people and the 

feedback is used to change the survey accordingly. It is like a third opinion about the survey, 

making sure its measuring the right value. In our case, a couple people from different departments 

who have no experience in Facial Reconstruction have gone through the slides before making the 

survey live. The goal of the survey is explained to these people and are asked to give feedback on 

how well the survey illustrates its tasks. This feedback is considered, and changes are made to the 

survey. The changes proposed were to increase the image size when we considered 10 images in 

1 slide. Therefore, we considered 6 images per slide, preserving the features of the face image, 

hence improving the face validity of the survey.  

4.1.2.2.2 Content Validity 

Like Face validity, content validity is also a test that measures if the survey is measuring 

the correct value but it is a little complicated that is based on an expert’s subjective opinion. This 

is a more organized way of reviewing the survey, which is conducted by a group of experienced 

individuals who area of expertise matches with the one survey related field. An in-depth analysis 

is done on the prepared survey and is checked if the survey has everything necessary for validating 
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the algorithm. In my case, Dr. Tuceryan and Dr. Kula reviewed the survey and forwarded the 

feedback with changes required. One of the things that was added based on the review is the 

reliability testing for the survey that increased the credibility of the algorithm and functionality.  

4.1.2.2.3 Concurrent Validity 

Once the survey is deemed to be working, a new step is added to check the validity which 

is by comparing the present test with an already existing, most reliable test and checking if they 

are assessing the right variable. In our case, we are comparing our survey against (C. Wilkinson et 

al., 2006) which talks about the surveys conducted before and how their measures accuracy. We 

consider this as our “gold standard” and built the survey accordingly, adding and improving the 

techniques on testing the accuracy of our functionality.  

4.1.2.3 Reliability Testing 

Like validity testing, we conduct a few tests for reliability of the algorithm and the survey. 

Reliability tests are used to check for the random error that could be difficult to compensate for as 

it is an unpredictable error. In order to compensate for these random errors, the below tests are 

done and if the correlation coefficient value falls below a certain number then we can conclude 

that the survey or the procedure have been returning ambiguous results. This is a statistical way of 

measuring how stable the survey and the algorithm is. The reliability test that we conducted are:  

4.1.2.3.1 Test-Retest 

In order to say that the survey created is reliable, a simple test that can be done is the test-

retest where a slide is repeated with the same reconstructed face and the same image pool in the 

same order. The goal of this test is to measure the stability of the respondent and to measure the 

survey being our instrument to validation of our algorithm. The correlation coefficients are then 

calculated for the 2 observed slides and if the value is 0.70 or more then the values are considered 

to be good and the survey is considered reliable. To test the test-retest method in our survey, we 

created slide 1 and slide 8 with the same data, having the same test image and the same face pool 

in the same order as in Figure 4-6.
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Figure 4-6: Slide 1 repeated as slide 8 in the survey. 

 

The majority pick is the first face image from left in row 2 in both the slides being the 

expected correct answer. The choice count of the face pool for both the slides is shown in Figure 

4-7 and Figure 4-8.
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Figure 4-7: Slide 1 face pool choice count and choice percentages.
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Figure 4-8: Slide 8 face pool choice count and choice percentages. The other 2 faces had 0 picks 

and so are not presented in the report. 

 

The correlation coefficients when calculated for the choice counts of both the slides is equal 

to 0.9981 which is way above the 0.7 threshold for being considered reliable under test-retest 

condition. 

4.1.2.3.2 Alternate Form 

The second test that could measure the reliability of the survey and is also used to avoid 

the learning that happens to participants while going through these slides is the alternate form. 

Brain being an intricate organ that can do data mining and learning instantly when introduced to 

new content, it is a natural phenomenon to remember or recognize things that are been visited in 

the same order. But the same question when posed in a different order, requires the attention of 

the survey taker, which in turn measures if the survey is doing a good job in alternate form test. 
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This alternate form is tested using one of the 15 slides where the slide is repeated with one of the 

existing slides but is rearranged in a different order. We can check using this method if the 

respondent is answering the right choice even in difficult or changed conditions, proving the 

credibility of the survey. The correlation coefficients are calculated for both original and 

rearranged slides and if these values are high, the alternate form reliability of the survey is said to 

be good.  

In the survey, to test alternate form reliability, slides 4 and slides 9 are used. The slides 4 

and 9 are created using the same data with the reconstructed test image and the same pool of faces 

but the difference being the order of the face pool from slide 4 and 9. The face pool is rearranged 

in slide 9 which is used to conduct the equivalent form test. The slides 4 and 9 are shown in Figure 

4-9 and Figure 4-10.
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Figure 4-9: Slide 4 from the survey 
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Figure 4-10: Slide 9 from the survey 

The choice counts of both the slides are shown in Figure 4-11 and Figure 4-12. 
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Figure 4-11: Slide 4 Choice count and choice percentage for each face in the pool.
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Figure 4-12: Slide 9 Choice count and choice percentage for each face in the pool. 

 

The correlation coefficients when calculated between both the choice counts of slides 4 

and 9 is 0.9652, proving the alternate form reliability of the algorithm and the survey. 

4.1.2.3.3 Equivalent Form 

We also test our survey for Equivalent form reliability which tests the equivalence of the 

survey by creating 2 slides with the same reconstructed face but with different pool of images, 

with one face amongst the pool being the correct original face mesh. The reason behind this test is 

to check if the survey created measures the same trait. This test of reliability ensures avoiding the 

learning from the slides previously filled. The correlation coefficient of both the original and the 
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changed slides are evaluated, and a high score signifies a good equivalent form reliability for the 

survey.  

To test our survey for equivalent form reliability, two slides 11 and 15 are created in such 

a way that they are questioned to match the same reconstructed test image with a different pool of 

face images with one being the correct match to the test image. To simulate the environment 

similar to equivalent form reliability test, we considered this approach. The two slides are shown 

in Figure 4-13 and Figure 4-14.
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Figure 4-13: Slide 11 from the survey
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Figure 4-14: Slide 15 from the survey 

 

The choice counts and choice percentages of the slides 11 and 15 are presented in Figure 

4-15 and Figure 4-16, for correlation coefficient calculation. 
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Figure 4-15: Slide 11 Choice count and choice percentage for each face in the pool.
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Figure 4-16: Slide 15 Choice count and choice percentage for each face in the pool. 

 

The correlation coefficient when calculated between the slides 11 and 15 is equal to 0.8911 

which also satisfies the condition for equivalent form reliability. These tests conducted on the 

survey have proved the reliability of the algorithm and hence testing our facial reconstruction 

algorithm with the live survey is considered as a golden standard for our algorithm.  

These are the results and validation of the results for facial reconstruction. The results from 

the second phase of experimentation which is changing the facial appearance based on BMI and 

age are discussed in further sections. 
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 Facial Appearance Change Results 

The second phase of our experiment shows the physical facial appearance changes in the 

reconstructed face at different ages and different levels of BMI. These results are visualized and 

discussed in this section.  

For the second phase, an interactive window is created that would allow the user to change 

the BMI and age of the reconstructed face. These changes are simultaneous incorporated, 

displaying the new face on the interactive window along with the new BMI and age information.  

4.2.1 Illustration 1 

This illustration is shows the facial appearance when the BMI is changed. The illustration 

is done using the Error! Reference source not found. below: 

 

:  

Figure 4.17 continued 
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Figure 4-17: BMI change results on Interactive tool. First image: original face with no BMI 

and age changes. 2nd image: Slider on the bottom moved to the right (highlighted by an oval 

shape). New age and BMI are displayed in a message box every time slider is moved. 3rd image: 

New facial appearance with the changed BMI.  
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4.2.2 Illustration 2 

In this illustration the age is changed using the vertical slider bar and the changes are shown 

below using Error! Reference source not found.. 
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Figure 4.18 continued  

Figure 4-18: Age change results on Interactive tool. First image: original face with no BMI and 

age changes. 2nd image: Vertical slider on the right has been moved upwards (highlighted by an oval 

shape). New age and BMI are displayed in a message box every time slider is moved where new age is 

77.5 years. 3rd image: New facial appearance with the changed age. 
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4.2.3 Illustration 3 

In this illustration, we change the age and BMI using the horizontal and vertical sliders 

from the interactive window. The facial changes and appearance once the sliders are moved are 

illustrated using the  below: 
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Figure 4.19 continued 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-19: Age and BMI change results on Interactive tool. First image: original face 

with no BMI and age changes. 2nd image: Horizontal slider for BMI is moved to the right changing 

the BMI to 5.08 and vertical slider on the right has been moved upwards (highlighted by an oval 

shape) changing the age to 58.5. The new age and BMI are displayed in the message box. 3rd 

image: New facial appearance with the changed age and BMI is displayed. 
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5. DISCUSSION 

The illustrations, the results from the survey and the reliability tests that are presented 

above indicates that the system generated is practical for consideration during real scenarios such 

as forensic face identification. This method could be efficiently used for identifying unknown 

decomposed bodies with an easy way of changing face appearance by the examiner. The use of 

such a system would minimize the amount of time it takes using the antiquated reconstruction 

techniques like sculpting using clay, etc., and mitigate the painstaking process of clay molding.  

Many computer-aided facial reconstruction techniques have emerged in the past century 

but the main feature that separates our work from other existing works is that our methodology is 

fully automated without human interaction while generating the reconstruction. All the faces with 

the skull are to be registered and once the registration process is done, the bone model of the test 

sample can be provided and the results of the facial reconstruction are generated automatically. 

Another important characteristic of our method is the interactive tool for changing the facial 

appearance of the predicted face that simplifies the identification by 80% and this tool being useful 

for any unknown sample. This feature has not been included in any existing works posing as one 

of our prominent features.  

Although there are many uses for this functionality, there are also many ways our present 

system could be enhanced to make a better Computer-aided Craniofacial Reconstruction technique. 

Firstly, the dataset that was available and was used to test our functionality has been found to have 

inconsistent data with missing forehead, chin and in some cases tip of the nose information. Due 

to data scarcity, we had to use the available data by regulating the information and not considering 

the complete forehead, excluding the supraglabella region and the lower chin area for all the 

samples we considered both during training and testing. Due to this reason, the results obtained by 

our systems could not hold a 100% accuracy. This could be improved by obtaining data with 

complete head scan, without any inconsistencies throughout the whole sample list.  

Secondly, the system requirements that was available for our experimentation was very 

minimal. The memory constraints were very high and the disk storage space available was less 

than 16 GB. To compensate for these memory requirements as well as computation time 

requirements, we reduced the resolution of the meshes by 94%, losing the feature details of the 

face. This yielded low resolution in the results as well, decreasing the effectiveness of the 
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functionality. Adding to this, our system was coded using MATLAB which is good for quick 

prototyping but is not optimal for production versions with fast run times. As performance is key 

in a real setting, using a better programming language to effectively work this functionality would 

massively improve the current system. Therefore, high resolutions of data and better programming 

environment are recommended to enhance the working and expediency of the system.  

The face displayed in the interactive tool has shading and lighting applied to it but have no 

texturing or facial features. The facial features like eyebrows, eyes, eye color, hair color, face color, 

etc., play a vital role in identification. The CBCT data collected has the color-coded information 

of the facial features. This color information can be used to learn the patterns and could be used to 

come up with colored facial features. Addition of these features would eliminate the further 

confusion during identification and therefore would be a good improvement in future work for 

more lively and realistic results. 

Lastly, the face reconstruction that is been done in the experimentation uses the full skull 

model for reconstructing the face. One good future development for the experimentation would be 

to reconstruct the face from partial skull data. When retrieving bodies from crime scenes for 

identification, it is possible that the body is already disfigured or damaged. The chances of 

retrieving an intact skull in such circumstances is not high. Therefore, extending the facial 

reconstruction to work with partial skull model would be a good addition to the present software, 

considering to extend over all real time scenarios.  
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6. CONCLUSION 

A computer-aided 3D dense facial reconstruction technique has been developed in this 

research that exhibited promising results both quantitatively and qualitatively. The use of machine 

learning techniques and various image processing techniques in the study has helped created a 

distinctive yet very obliging set of features. Starting from the data extraction and pre-processing, 

the two-step registration and statistical methods usage to create an accurate system for 

identification. Adding the reduced time complexity from months to minutes, this process has truly 

shown productivity and throughput improvements. With its ease of usage, this system has been 

proved to be very compatible to most of the age groups, making it very reliable in a real time 

environment.  

Without limiting to the functionality itself, this system has been rigorously tested. Being 

one of a kind in validation, this study has gone through extremes for setting up a survey, gathering 

results which have not only proved valuable but are challenging the golden standards set in this 

field of research. In the end, this research proved its feasibility and usability by achieving a 100% 

majority hit rate and a recognition rate of above 74%.  
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