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ABSTRACT

Li, Huang, Ph.D., Purdue University, August 2019. Visual Analytics and Interactive
Machine Learning for Human Brain Data. Major Professor: Shiaofen Fang.

This study mainly focuses on applying visualization techniques on human brain

data for data exploration, quality control, and hypothesis discovery. It mainly consists

of two parts: multi-modal data visualization and interactive machine learning.

For multi-modal data visualization, a major challenge is how to integrate struc-

tural, functional and connectivity data to form a comprehensive visual context. We

develop a new integrated visualization solution for brain imaging data by combin-

ing scientific and information visualization techniques within the context of the same

anatomic structure. In this study, new surface texture techniques are developed to

map non-spatial attributes onto both 3D brain surfaces and a planar volume map

which is generated by the proposed volume rendering technique, Spherical Volume

Rendering. Two types of non-spatial information are represented: (1) time-series data

from resting-state functional MRI measuring brain activation; (2) network properties

derived from structural connectivity data for different groups of subjects, which may

help guide the detection of differentiation features. Through visual exploration, this

integrated solution can help identify brain regions with highly correlated functional

activations as well as their activation patterns. Visual detection of differentiation

features can also potentially discover image based phenotypic biomarkers for brain

diseases.

For interactive machine learning, nowadays machine learning algorithms usually

require a large volume of data to train the algorithm-specific models, with little or no

user feedback during the model building process. Such a big data based automatic

learning strategy is sometimes unrealistic for applications where data collection or



x

processing is very expensive or difficult. Furthermore, expert knowledge can be very

valuable in the model building process in some fields such as biomedical sciences. In

this study, we propose a new visual analytics approach to interactive machine learn-

ing. In this approach, multi-dimensional data visualization techniques are employed

to facilitate user interactions with the machine learning process. This allows dynamic

user feedback in different forms, such as data selection, data labeling, and data cor-

rection, to enhance the efficiency of model building. In particular, this approach can

significantly reduce the amount of data required for training an accurate model, and

therefore can be highly impactful for applications where large amount of data is hard

to obtain. The proposed approach is tested on two application problems: the hand-

writing recognition (classification) problem and the human cognitive score prediction

(regression) problem. Both experiments show that visualization supported interactive

machine learning can achieve the same accuracy as an automatic process can with

much smaller training data sets.
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1. INTRODUCTION

Human brain data including structural-MRI, function-MRI and diffusion MRI [1]

hold great promise for a systematic characterization of human brain connectivity and

its relationship with cognition and behavior. This study mainly focus on applying

visualization techniques on human brain data for data exploration, quality control,

and hypothesis discovery.

The analysis of human brain data faces two major challenges:

1. How to seamlessly integrate computational methods with human knowledge and

how to translate this into user-friendly, interactive software tools that optimally

combines human expertise and machine intelligence to enable novel contextually

meaningful discoveries. Both challenges require the development of highly inter-

active and comprehensive visualization tools that can guide researchers through

a complex sea of data and information for knowledge discovery.

2. How to incorporate modern machine learning methods such as neural networks

and support vector machines that use data to build computational models that

are representations of nonlinear surfaces in high dimensional space. The trained

models can then be used for analysis tasks such as classifications, regressions and

predictions. Recent progress in deep learning has further empowered machine

learning as an effective approach to a large set of big data analysis problems. As

an automatic method, machine learning algorithms act mostly as a black box,

i.e. the users have very little information about how and why the algorithm work

or fail. The underlying machine learning models are also designed primarily for

the convenience of learning from data, but they are not easy for the users to

understand or interact with.
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To address these challenges, this study breaks down to mainly two parts: the first

part is multi-modal data visualization which focus on using advance techniques to

give users an integrate view various the human brain data; the second part is about

interactive machine learning which aims to provide a mechanism through visualization

to allow users to understand and interact with the learning process.

For the first part, scientific visualization has traditionally been playing a role of

visually interpreting and displaying complex scientific data, such as medical image

data, to reveal structural and material details so as to help the understanding of

the scientific phenomena. Example studies include diffusion tensor imaging (DTI)

fiber tract visualization [2–7], network visualization [8–11], and multi-modal data vi-

sualization [12–14]. In this context, recent development in information visualization

provides new ways to visualize non-structural attributes or in-depth analysis data,

such as graph/network visualization and time-series data visualization. These, how-

ever, are usually separate visual representations away from the anatomic structures.

In order to maximize human cognitive abilities during visual exploration, this

study proposes to integrate the visual representations of the connectome network

attributes onto the surfaces of the anatomical structures of human brain. Multiple

visual encoding schemes, combined with various interactive visualization tools, can

provide an effective and dynamic data exploration environment for neuroscientists

to better identify patterns, trends and markers. In addition, we develop a spherical

volume rendering (SVR) algorithm using omni-directional ray casting and information

encoded texture mapping. It provides a single 2D map of the entire rendered volume

to provide better support for global visual evaluation and feature selection for analysis

purpose.

Our primary contributions in the first part of this study include:

1. Development of a method to represent rich attribute information using infor-

mation encoded textures.
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2. Development of a new spherical volume rendering (SVR) technique that can

generate a complete and camera-invariant view (volume map) of the entire

structure.

3. Application of this approach to human brain visualization. Our experiments

show great potential that this approach can be very useful in the analysis of

neuroimaging data.

As to the second part, visualization, particularly multi-dimensional data visualiza-

tion, has been playing an increasing important role in data mining and data analytics.

This transformation of visualization from data viewing to being an integrated part

of the analysis process led to the birth of the field of visual analytics [15]. In visual

analytics, carefully designed visualization processes can effectively decode the insight

of the data through visual transformations and interactive exploration. Many suc-

cessful applications of visual analytics have been published in recent years, ranging

from bioinformatics and medicine to engineering and social science. These success ex-

amples demonstrate that visualization is a powerful tool in data analytics that needs

to be seriously considered in any big data application. On the other hand, automatic

data mining and data analytics have made tremendous progress in the past decade.

Machine learning, particularly deep learning, has become the mainstream analytics

method in most big data analysis problems. The effective integration of visualization

and machine learning/data mining is a new challenge in big data research.

Interactive machine learning aims to provide a mechanism through visualization

to allow users to understand and interact with the learning process [16]. It has several

important potential benefits.

1. Understanding. It is often difficult to improve the efficiency and performance

of the algorithms without a clear understanding of how and why the different

components work in machine learning algorithms. It is even more so in deep

learning where there are large number of layers and interconnected components.
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2. Knowledge Input. Human knowledge input can significantly improve the per-

formance of machine learning algorithms, particularly in areas involving profes-

sional expertise such as medicine, science and engineering. Human instinct from

visual perception can also out-perform computer algorithms. Hence, it is impor-

tant to develop a visualization supported user feedback platform to allow user

input to the machine learning system in the form of feature selection, dimension

reduction, parameter setting, or addition / revision of rules and associations.

3. Data Reduction. Automatic machine learning usually requires a large volume

of data to train the underlying computational model. This strategy sometimes

is not realistic for applications in which data collection, labeling or processing

is very expensive or difficult (for example, in clinical trials). Interactive visual-

ization of the machine learning process allows the user to iteratively select the

most critical and useful subset of data to be added to the training process so

that the model building process is more data efficient (Figure 1.1). This is also

our primary focus in this paper.

Fig. 1.1. An example of iterative model improvement by interactively
adding new samples.

Our goal in the second part of this study is to develop a visualization supported

user interaction platform in a machine learning environment such that the user can

observe the evolution and performance of the internal structures of the model and
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provide feedback that may improve the efficiency of the algorithm or correct the

direction of the model building process. Although the visualization platform we

develop can be used to support understanding and knowledge input functions, we

focus specifically in this paper on data reduction. In our approach, the interactive

system will allow the user to identify potential areas (in some visual space) where

additional data is needed to improve or correct the model (as shown in Figure 1.1).

This way, only the necessary amount of data is used for learning a model. The aim is

to solve a big data problem using a small data solution. In practice, this approach can

not only save costs for data acquisitions / collections in applications such as clinical

trials, medical analyses, and environmental studies, but also improve the efficiency

and robustness of machine learning algorithms as the current somewhat brute-force

approach (e.g. in deep learning) may not be necessary with smaller and higher quality

data. To achieve this goal, we will need to overcome the following two challenges:

1. How to visualize the dynamics of a machine learning model is technically chal-

lenging. Previous works often depend on the specific machine learning algo-

rithms. But in this paper, we will develop an approach and a general strategy

that can be applied to most machine learning algorithms. In our test applica-

tions, support vector machines will be used as an example to demonstrate the

effectiveness of this approach.

2. How to identify problematic areas from the visualization to revise the model,

and how to efficiently and effectively provide user feedback to the algorithm

are challenging. This is because machine learning features are often non-trivial

properties of the data which cannot be easily used to pre-screen potential data

collection target in real world applications.

In interactive machine learning, we will present a solution to these two challenges.

Our approach will be tested on two practical applications with real world datasets.

In the following, we will first, in Section 2, discuss previous work related to human

brain data visualization and interactive machine learning or other visual analytics
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solutions. In Section 3 we will describe the human brain data we used in this study.

In Section 4, we will introduce the two parts of this study in detail, respectively.

Conclusions and future work will be given in Section 5.
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2. RELATED WORK

Human brain connectomics involves several different imaging modalities that require

different visualization techniques. More importantly, multi-modal visualization tech-

niques need to be developed to combine the multiple modalities and present both

details and context for connectome related data analysis. Margulies, et al [3] provided

an excellent overview of the various available visualization tools for brain anatomical

and functional connectivity data. Some of these techniques are capable of carrying out

multi-modal visualization involving magnetic resonance imaging (MRI), fiber-tracts

as obtained from DTI and overlaying network connections. Various graphics render-

ing tools, along with special techniques such as edge bundling (to reduce clutter), have

been applied to visualize DTI fiber tracts [2–5]. Due to tracking uncertainties in DTI

fibers, these deterministic rendering can sometimes be misleading. Hence, rendering

techniques for probabilistic DTI tractography have also been proposed [6, 7]. Sev-

eral techniques have been developed to provide anatomical context around the DTI

fiber tracts [12–14]. This typically require semi-transparent rendering with carefully

defined transfer functions.

Multi-modal visualization is typically applied in the scientific visualization do-

main. The integration of information visualization and scientific visualization re-

mains a challenge. In brain connectomics, connectome networks connectivity data

are usually visualized as graphs. Graph visualization have been extensively studied

in information visualization. For connectomics application, the networks can be ei-

ther visualized as separate graphs, away from the anatomical context, but connected

through interactive interfaces [8–11] or embedded into the brain anatomical con-

text [17–19]. The embedded graphs, however, have their nodes constrained to their

anatomical locations, and therefore do not need a separate graph layout process as in

other graph visualization algorithms. Aside from embedded graphs, there has been
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little work in integrating more sophisticated information visualization, such as time-

series data and multi-dimensional attributes, within the context of brain anatomical

structures.

Many visualization techniques for time-series data have been developed in in-

formation visualization, such as time-series plot [20], spiral curves [21], and The-

meRiver [22], for non-spatial information and time-variant attributes. Several varia-

tions of ThemeRiver styled techniques have been applied in different time-series visu-

alization applications, in particular in text visualization [23]. Depicting connectivity

dynamics has been mostly done via traditional key-frame based approach [24, 25] or

key frames combined with time-series plots [26, 27].

Texture-based visualization techniques have been widely used for vector field data,

in particular, flow visualization. Typically, a grayscale texture is smeared in the

direction of the vector field by a convolution filter, for example, the Line Integral

Convolution (LIC), such that the texture reflects the properties of the vector field

[28–30]. Similar techniques have also been applied to tensor fields [31,32]].

As to volume datasets, volume rendering is a classic visualization technique. Both

image-space and object-space volume rendering algorithms have been thoroughly

studied in the past several decades. The typical image-space algorithm is ray cast-

ing, which was first proposed by Levoy [33]. Many improvements of ray casting have

since been developed [34–37]. Splatting is the most common object-space approach.

It directly projects voxels to the 2D screen to create screen footprints which can be

blended to form composite images [38–42]. Hybrid approaches such as shearwrap

algorithm [43] and GPU based algorithms provide significant speedup for interactive

applications [44, 45]. Although iso-surfaces are typically extracted from volume data

as polygon meshes [46], ray casting methods can also be applied towards volumetric

isosurfacing [47,48].

Although interactive machine learning has been previously proposed in the ma-

chine learning and AI communities [16,49], applying visualization and visual analytics

principles in interactive machine learning has only been an active research topic in
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recent years. Most of the existing studies focus on using visualization for better un-

derstanding of the machine learning algorithms. There have also been some recent

works on using visual analytics for improving the performance of machine learning

algorithms through better feature selection or parameter setting.

While there have been many literatures on using interactive visualization to di-

rectly accomplish analysis tasks such as classification and regression [50, 51], we will

focus mostly on approaches that deal with some machine learning models [52]. Pre-

vious works on using visualization to help understand the machine learning processes

are usually designed for specific types of algorithms, for example, support vector

machines, neural networks, and deep learning neural networks.

Neural Networks received the most attention due to its black box nature of the

learning model and the complexity of its internal components. Multi-dimensional

visualization techniques such as scatterplot matrix have been used to depict the re-

lationships between different components of the neural networks [53, 54]. Typically,

a learned component is represented as a higher dimensional point. The 2D pro-

jections of these points in either principal component analysis (PCA) spaces or a

multi-dimensional scaling (MDS) space can better reveal the relationships of these

components that are not easily understood, such as clusters and outliers. Several

techniques have applied graph visualization techniques to visualize the topological

structures of the neural networks [55–57]. Visual attributes of the graph can be used

to represent various properties of the neural network models and processes.

Several recent studies tackle specific challenges in the visualization of deep neural

networks due to the large number of components, connections and layers. In [58].

Liu et al. developed a visual analytics system, CNNVis, that helps machine learning

experts understand deep convolutional neural networks by clustering the layers and

neurons. Edge bundling is also used to reduce visual clutter. Techniques have also

been developed to visualize the response of a deep neural network to a specific input

in a real-time dynamic fashion [59,60]. Observing the live activations that change in

response to user input helps build valuable intuitions about how convnets work.
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There are several literatures discussing visualizations roles in support vector ma-

chines. In [61], visualization methods are used to provide access to the distance

measure of each data point to the optimal hyperplane as well as the distribution of

distance values in the feature space. In [62], multi-dimensional scaling technique is

used to project high-dimensional data points and their clusters onto a two-dimensional

map preserving the topologies of the original clusters as much as possible to preserve

their support vector models.

Visualization and visual analytics methods have been proposed for the perfor-

mance analysis of machine learning algorithms in different applications [63–65]. In-

teractive methods have also been proposed to improve the performance of machine

learning algorithms through feature selection and optimization of parameter settings.

Some general discussions are given in [52] and [66]. In [67], a visual analytics system

for machine learning support called Prospector is described. Prospector supports

model interpretability and actionable insights, and provides diagnostic capabilities

that communicate interactively how features affect the prediction. In [68], a multi-

graph visualization method is proposed to select better features through an interac-

tive process for the classification of brain networks. Other performance improvement

methods include training sample selection and classifier tuning [69] and model ma-

nipulations by user knowledge [70–72].

The incremental visual data classification method proposed in [69] has some sim-

ilarities conceptually to what we propose in this paper. In [69], neighbor joining tree

is used to classify 2D image data. The model building process is done incremen-

tally by adding additional images that are visually similar to the test samples that

were misclassified. This approach puts a very heavy burden on the user as finding

similar images by the user from a large image database or other sources is difficult

and time-consuming. Our approach, on the other hand, is a more general framework

that works for all machine learning algorithms and all data types. It is designed

to allow incremental addition of training data with any user defined characteristics

(attributes) that are easy to identify and collect.
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There have been a number of previous works on using visualization to help under-

stand the machine learning processes. Neural Networks received the most attention

due to its black box nature of the learning model and the complexity of its internal

components. Multi-dimensional visualization techniques such as scatterplot matrix

have been used to depict the relationships between different components of the neural

networks [73, 74]. Typically, a learned component is represented as a higher dimen-

sional point. The 2D projections of these points in either principal component analysis

(PCA) spaces or a multi-dimensional scaling (MDS) space can better reveal the re-

lationships of these components that are not easily understood, such as clusters and

outliers. Several techniques have applied graph visualization techniques to visualize

the topological structures of the neural networks [75–77]. Visual attributes of the

graph can be used to represent various properties of the neural network models and

processes.

Several recent studies tackle specific challenges in the visualization of deep neural

networks due to the large number of components, connections and layers. In [78].

Liu et al. developed a visual analytics system, CNNVis, that helps machine learning

experts understand deep convolutional neural networks by clustering the layers and

neurons. Edge bundling is also used to reduce visual clutter. Techniques have also

been developed to visualize the response of a deep neural network to a specific input

in a real-time dynamic fashion [79,80]. Observing the live activations that change in

response to user input helps build valuable intuitions about how convnets work. The

DQNViz system [81] provides a visual analytics environment for the understanding

of a deep reinforcement learning model. GAN Lab system [82] uses visualization to

help non-expert users to learn how a Deep Generative Model works.

Several studies focus on visualizing the features captured by deep neural network.

Class Activation Mapping (CAM) [83] was proposed by Zhou et al as a method for

identifying discriminative locations used by the convolutional layers in deep learning

model without any fully-connected layer. By extending CAM with gradient, Selvaraju

et al proposed Grad-CAM [84] which works with fully-connected layers. But these
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methods did not reveal how the nodes in the hidden layer capture features from those

discriminative locations and aggregate them together in the feed-forward process,

which is important for users to make sense of the deep learning model.

Visualization and visual analytics methods have been proposed for the perfor-

mance analysis of machine learning algorithms in different applications [85–87]. In-

teractive methods have also been proposed to improve the performance of machine

learning algorithms through feature selection and optimization of parameter settings.

Some general discussions are given in [88] and [89]. In [90], a visual analytics system

for machine learning support called Prospector is described. Prospector supports

model interpretability and actionable insights, and provides diagnostic capabilities

that communicate interactively how features affect the prediction. In [91], a multi-

graph visualization method is proposed to select better features through an interac-

tive process for the classification of brain networks. Other performance improvement

methods include training sample selection and classifier tuning [92] and model ma-

nipulations by user knowledge [93–95].

More generic visualization methods for general machine learning models have been

developed in recent years. The Manifold system [96] provides a generic framework

that does not rely on or access the internal logic of the model and solely observes the

input and output. An ontology, VIS4ML, is proposed in [97] for VA-Assisted machine

learning. [98], A generic visualization method for machine learning model is proposed

to help select the optimal set of sample input data.

Compared to the existing methods on visualization in machine learning and deep

learning applications, our approach emphasizes building association relationships be-

tween hidden layer nodes and the brain image features (phenotypes) such that user

can observe and interact directly with the complex anatomical structures of the brain

during the deep learning process. This work is also a good example of how to integrate

scientific visualization and information visualization techniques in a deep learning vi-

sual analytics platform.
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3. BRAIN IMAGING DATA AND CONNECTOME

CONSTRUCTION

We first describe the MRI and DTI data used in this study, then present our methods

for constructing connectome networks from the MRI and DTI data, and finally discuss

the resting state functional MRI (fMRI) data used in our time-series visualization

study.

The MRI and DTI data used in the preparation of this article were obtained from

the Alzheimers Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu).

The ADNI was launched in 2003 as a public-private partnership, led by Principal In-

vestigator Michael W. Weiner, MD. The primary goal of ADNI has been to test

whether serial MRI, positron emission tomography (PET), other biological markers,

and clinical and neuropsychological assessment can be combined to measure the pro-

gression of mild cognitive impairment (MCI) and early Alzheimers disease (AD). For

up-to-date information, see www.adni-info.org.

We downloaded the baseline 3T MRI (SPGR) and DTI scans together with the

corresponding clinical data of 134 ADNI participants, including 30 cognitively normal

older adults without complaints (CN), 31 cognitively normal older adults with signif-

icant memory concerns (SMC), 15 early MCI (EMCI), 35 late MCI (LMCI), and 23

AD participants. In our multi-class disease classification experiment, we group these

subjects into three categories: Healthy Control (HC, including both CN and SMC

participants, N=61), MCI (including both EMCI and LMCI participants, N=50), and

AD (N=23).

Using their MRI and DTI data, we constructed a structural connectivity network

for each of the above 134 participants. Our processing pipeline is divided into three

major steps described below: (1) Generation of regions of interest (ROIs), (2) DTI

tractography, and (3) connectivity network construction.



14

(1) ROI Generation. Anatomical parcellation was performed on the high-resolution

T1-weighted anatomical MRI scan. The parcellation is an automated operation on

each subject to obtain 68 gyral-based ROIs, with 34 cortical ROIs in each hemisphere,

using the FreeSurfer software package (http://freesurfer.net/). The Lausanne parcel-

lation scheme [99] was applied to further subdivide these ROIs into smaller ROIs,

so that brain networks at different scales (e.g., N roi = 83, 129, 234, 463, or 1015

ROIs/nodes) could be constructed. The T1-weighted MRI image was registered to

the low resolution b0 image of DTI data using the FLIRT toolbox in FSL, and the

warping parameters were applied to the ROIs so that a new set of ROIs in the DTI

image space were created. These new ROIs were used for constructing the structural

network.

(2) DTI tractography. The DTI data were analyzed using FSL. Preprocessing in-

cluded correction for motion and eddy current effects in DTI images. The processed

images were then output to Diffusion Toolkit (http://trackvis.org/) for fiber track-

ing, using the streamline tractography algorithm called FACT (fiber assignment by

continuous tracking). The FACT algorithm initializes tracks from many seed points

and propagates these tracks along the vector of the largest principle axis within each

voxel until certain termination criteria are met. In our study, stop angle threshold

was set to 35 degree, which meant if the angle change between two voxels was greater

than 35 degree, the tracking process stopped. A spline filtering was then applied to

smooth the tracks.

(3) Network Construction. Nodes and edges are defined from the previous results

in constructing the weighted, undirected network. The nodes are chosen to be N roi

ROIs obtained from Lausanne parcellation. The weight of the edge between each

pair of nodes is defined as the density of the fibers connecting the pair, which is the

number of tracks between two ROIs divided by the mean volume of two ROIs [100].

A fiber is considered to connect two ROIs if and only if its end points fall in two

ROIs respectively. The weighted network can be described by a matrix. The rows
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and columns correspond to the nodes, and the elements of the matrix correspond to

the weights.

To demonstrate our visualization scheme for integrative exploration of the time-

series of resting-state fMRI (rs-fMRI) data with brain anatomy, we employed an

additional local (non-ADNI) subject, who was scanned in a Siemens PRISMA 3T

scanner (Erlangen Germany). A T1-weighted sagittal MP-RAGE was obtained (TE

=2.98 ms, TR partition = 2300ms, TI = 900ms, flip angle = 9, 128 slices with

111mmvoxels). A resting-state session of 10 minutes was also obtained. Subject was

asked to stay still and awake, and to keep eyes closed. BOLD acquisition parameters

were: TE = 29ms, TR = 1.25s, Flip angle = 79, 41 contiguous interleaved 2.5 mm

axial slices, with in-plane resolution = 2.5 2.5 mm. BOLD time-series acquired were

then processed according to the following steps (for details see [101]): mode 1000 nor-

malization; z-scoring and detrending; regression of 18 detrended nuisance variables

(6 motion regressors [X Y Z pitch jaw roll], average gray matter (GM), white matter

(WM) and cerebral spinal fluid (CSF) signals, and all their derivatives computed as

backwards difference); band-pass filter of 0.009 to 0.08 Hz using a zero-phase 2nd

order Butterworth filter; spatial blurring using a Gaussian filter (FWHM=2mm); re-

gression of the first 3 principal components of WM (mask eroded 3 times) and CSF

(ventricles only, mask eroded 1 time). The Desikan-Killiany Atlas (68 cortical ROIs,

as available in the Freesurfer software) was registered to the subject. The resulting

processed BOLD time-series where then averaged for each ROI. Note that the Lau-

sanne parcellation scheme (mentioned above) at the level of N roi = 83 consists of the

above 68 cortical ROIs together with the brain stem (as 1 ROI) and 14 subcortical

ROIs. As a result, we will use 68 time series (one for each cortical ROI) in our time

series visualization experiments.
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4. METHODS AND RESULTS

4.1 Multi-modal Visualization

In this section, we propose a few information visualization methods. Using the

VTK (www.vtk.org) C++ library, we have implemented and packaged these methods

into a software tool named as BECA, standing for Brain Explorer for Connectomic

Analysis. A prototype software is available at http://www.iu.edu/~beca/.

4.1.1 Visualizing Structural Connectivity Networks

3D visualization of a connectivity network within an anatomical structure can

provide valuable insight and better understanding of the brain networks and their

functions. In a brain network, we render nodes as ROI surfaces, which are generated

using an iso-surface extraction algorithm from the MRI voxel sets of the ROIs. Draw-

ing the network edges is, however, more challenging since straight edges will be buried

inside the brain structures. We apply the cubic Bezier curves to draw curved edges

above the brain structure. The four control points of each edge are defined by the

centers of the ROI surfaces and the extension points from the centroid of the brain,

as shown in Figure 4.1. Figure 4.2 shows visualization examples of a connectome

network, along with the cortical surface, the ROIs, and the DTI fibers.

http://www.iu.edu/~beca/
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Fig. 4.1. Building a Bezier curve connecting two ROIs.

Brain connectivity networks obtained through the above pipeline can be further

taken into complex network analysis. Network measures (e.g., node degree, between-

ness, closeness) can be calculated from individuals or average of a population. Dif-

ferent measures may characterize different aspects of the brain connectivity [102]. In

order to visualize these network attributes, we propose a surface texture based ap-

proach. The main idea is to take advantage of the available surface area of each ROI,

and encode the attribute information in a texture image, and then texture-map this

image to the ROI surface. Since the surface shape of each ROI (as a triangle mesh)

is highly irregular, it becomes difficult to assign texture coordinates for mapping the

texture images. We apply a simple projection plane technique. A projection plane

of an ROI is defined as the plane with a normal vector that connects the center of

the ROI surface and the centroid of the entire brain. The ROI surface can then be

projected onto its projection plane, and the reverse projection defines the texture

mapping process. Thus, we can define our attribute-encoded texture image on this

project plane to depict a visual pattern on the ROI surface. Visually encoding at-

tribute information onto a texture image is an effective way to represent multiple
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(a) (b)

(c) (d)

Fig. 4.2. (a) DTI fiber tracts; (b) MRI-ROIs and DTI fibers; (c,d) Network
edges as Bezier curves (thresholded by edge intensity)

attributes or time-series attributes. Below we will demonstrate this idea in two dif-

ferent scenarios: Time-series data from rs-fMRI and multi-class disease classification.

4.1.2 Visualizing fMRI Data and Functional Connectivity

As a functional imaging method, rs-fMRI can measure interactions between ROIs

when a subject is resting [103]. Resting brain activity is observed through changes in
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blood flow in the brain which can be measured using fMRI. The resting state approach

is useful to explore the brain’s functional organization and to examine if it is altered

in neurological or psychiatric diseases. Brain activation levels in each ROI represent

a time-series that can be analyzed to compute correlations between different ROIs.

This correlation based network represents the functional connectivity networks and,

analogously to structural connectivity, it may be represented as a square symmetric

matrix.

Using the surface texture mapping approach, we need to first encode this time-

series data on a 2D texture image. We propose an offset contour method to generate

patterns of contours based on the boundary of each projected ROI. The offset contours

are generated by offsetting the boundary curve toward the interior of the region,

creating multiple offset boundary curves, as shown in Figure 4.3. There are several

offset curve algorithms available in curve/surface modeling. Since in our application,

the offset curves do not need to be very accurate, we opt to use a simple image erosion

algorithm [104] directly on the 2D image of the map to generate the offset contours.

Fig. 4.3. Offset contours with different colors or different shades of the
same color.

In time-series data visualization, the time dimension can be divided into multiple

time intervals and represented by the offset contours. Varying shades of a color hue

can be used to represent the attribute changes over time. Figure 4.4 shows the steps
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for constructing the contour-based texture. First, we map each ROI onto a projection

plane perpendicular to the line connecting the centroid of the brain and the center of

this ROI. The algorithm then iteratively erodes the mapped shape and assigns colors

according to the activity level of this ROI at each time point. Lastly we overlay the

eroded regions to generate a contour-based texture. We also apply a Gaussian filter to

smooth the eroded texture image to generate more gradual changes of the activities

over time. Figure 4.5 shows a few examples of the offset contours mapped to the

ROIs. The original data has 632 time points, which will be divided evenly across the

contours depending on the number of contours that can be fitted in to the available

pixels within the projected ROI.

Fig. 4.4. (a) Original ROI. (b) ROI mapping. (c) Iterative erosion. (d)
Overlaying. (e) Gaussian blurring. (f) Applying the texture.
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(a) (b)

(c) (d)

Fig. 4.5. Some examples of a connectome network with time-series data.
Various transparencies are applied.

4.1.3 Visualizing Discriminative Patterns among Multiple Classes

In this case study, we performed the experiment on the ADNI cohort mentioned

before, including 61 HC, 50 MCI and 23 AD participants. The goal is to gener-

ate intuitive visualization to provide cognitively intuitive evidence for discriminating

ROIs that can separate subjects in different classes. This can be the first step of a

diagnostic biomarker discovery process.
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The goal of the visual encoding in this case is to generate a color pattern that

can easily distinguish bias toward any of the three classes. To do so, we first assign

a distinct color to each class. Various color patterns can be generated using different

color blending and distribution methods. In our experiment, a noise pattern is applied

with 3 colors representing the 3 classes. The same noise pattern approach can also

accommodate more colors.

Since color blending is involved in a noise pattern, we choose to use an RYB color

model, instead of the RGB model. This is because color mix using RYB model is

more intuitive in a way that the mixed colors still carry the proper amount of color

hues of the original color components. For example, Red and Yellow mix to form

Orange, and Blue and Red mix to form Purple. Thus, RYB model can create color

mixtures that more closely resemble the expectations of a viewer. Of course these

RYB colors still need to be eventually converted into the RGB values for display.

For the conversion between these two color models, we adopt the approach proposed

in [105, 106], in which a color cube is used to model the relationship between RYB

and RGB values. For each RYB color, its approximated RGB value can be computed

by a trilinear interpolation in the RYB color cube.

We first construct noise patterns to create a random variation in color intensity,

similar to the approach in [105]. Different color hues are used to represent the at-

tributes in different classes of subjects. Any network measurement can be used for

color mapping. In our experiment, we use the node degrees averaged across subjects

in each class. A turbulence function [107] is used to generate the noise patterns of dif-

ferent frequencies (sizes of the sub-regions of the noise pattern). An example is shown

in Figure 4.6, we blend RYB channels with weights 0.5, 0.25and 0.25 respectively. The

blended texture is red-dominated with a little yellow and blue color.

Figure 4.7 shows some examples of the texture mapped views of the three classes:

HC (Red), MCI (Yellow) and AD (Blue). The colors of the edges also represent the

blended RYB color values, based on the average edge weights in the three classes.

From the resulting images, we can identify a specific ROI that exhibits bias toward
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Fig. 4.6. Blending RYB channels with weights 0.5, 0.25 and 0.25.

one or two base colors. This can be a potential indication that this ROI may be a

good candidate for further analysis as a potential imaging phenotypic biomarker.

4.1.4 Spherical Volume Rendering (SVR)

In previous sections, we mapped attributes onto the ROI surface. However, each

rendering shows only one perspective, and subcortical structures remain unseen.

Therefore, it does not provide an overall view of the complete structure. In this

section, we develop a spherical volume rendering algorithm that provides a single 2D

map of the entire brain volume to provide better support for global visual evaluation

and feature selection for analysis purpose.

Traditional volume rendering projects voxels to a 2D screen defined in a specific

viewing direction. Each new viewing direction will require a new rendering. There-

fore, users need to continuously rotate and transform the volumetric object to gener-

ate different views, but never have the complete view in one image. Spherical volume

rendering employs a spherical camera with a spherical screen. Thus, the projection

process only happens once, providing a complete image from all angles.

Spherical ray casting

A spherical ray casting approach is taken to produce a rendering image on a

spherical surface. A map projection will then be applied to construct a planar image

(volume map). The algorithm includes three main steps:
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(a) ROIs with noise textures (perspective 1) (b) ROIs with noise textures (perspective 2)

(c) ROIs with noise textures and color

bended edges (perspective 1)

(d) ROIs with noise textures and color

bended edges (perspective 2)

Fig. 4.7. Examples of connectome networks with noise patterns.

1. Define a globe as a sphere containing the volume. The center and radius of the

sphere may be predefined or adjusted interactively.

2. Apply spherical ray casting to produce an image on the globes spherical surface

(ray casting algorithm).
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3. Apply a map projection to unwrap the spherical surface onto a planar image

(similar to the world map).

Rays are casted towards the center of the global from each latitude-longitude grid

point on the sphere surface. In brain applications, the center of the global needs to

be carefully defined so that the resulting image preserves proper symmetry, as shown

in Figure 4.8.

Fig. 4.8. Ray casting towards the center of the brain (sliced).

Along each ray, the sampling, shading and blending process is very similar to

the regular ray casting algorithm [33, 36]. The image produced by this ray casting

process on the spherical surface will be mapped to a planar image using a map

projection transformation, which projects each latitudelongitude grid point on the

spherical surface into a location on a planar image. There are many types of map

projections, each preserving some properties while tolerating some distortions. For

our application, we choose to use Hammer-Aitoff Projection, which preserves areas

but not angles. Details of this map projection can be found in [108].
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Layered Rendering

Volume rendering often cannot clearly show the deep interior structures. One

remedy is to use layered rendering. When objects within the volume are labelled

(e.g. segmented brain regions), we can first sort the objects in the spherical viewing

direction (i.e. along the radius of the sphere), and then render one layer at a time.

The spherical viewing order can usually be established by the ray casting process

itself as the rays travel through the first layer of objects first, and then the second

layer, etc. If we record the orders in which rays travel through these objects, we can

construct a directed graph based on their occlusion relationships, as shown in Figure

4.9. Applying a topological sorting on the nodes of this graph will lead to the correct

viewing order.

Since the shapes of these labelled objects may not be regular or even convex,

the occlusion orders recorded by the rays may contradict each other (e.g. cyclic

occlusions). Our solution is to define the weight of each directed edge as the number

of rays that recorded this occlusion relationship. During the topologic sorting, the

node with minimum combined incoming edge weight will be picked each time. This

way, incorrect occlusion relationship will be kept to the minimum.

Using a spherical volume rendering algorithm, we can generate a 2D brain map

that contains all the ROIs in one image. This allows the users to view clearly rela-

tionships between different ROIs and the global distributions of network attributes

and measurements for feature selection and comparison.

Figure 4.10(a) shows a brain map generated by SVR without any ROI labelling.

Figure 4.10(b) shows the same brain map with color coded ROI labels.

Layered rendering was also applied to brain ROIs. With opacity at 1, Figure 4.10

shows the first layer of the ROIs. Figure 4.11 shows all the layers. Different scaling

factors are applied to the layers to adjust their relative sizes. This is necessary because

the spherical ray casting will create enlarged internal ROIs, just like perspective

projection will make closer objects larger, except that in this case the order is reversed.
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(a) 6 Rays and 5 ROIs (b) Occlusion information of each ray.

(c) Occlusion graph and layers.

Fig. 4.9. An example of layer sorting for regions of interest (ROIs).

In the following two subsections, we demonstrate two approaches to overlay ad-

ditional information on top of the brain map: (1) Encoding attribute information

onto a texture image and then mapping the texture to the ROI surface; (2) Drawing

network edges directly over the brain map. Below, we apply the first approach to an

application of visualizing discriminative patterns among multiple classes. In addition,

we combine both approaches to visualize fMRI data and the corresponding functional

connectivity network.
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(a) Without ROI labels

(b) With ROI labels.

Fig. 4.10. A brain map.
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(a) 2nd layer. (b) 3rd layer.

(c) all layers stacked.

Fig. 4.11. Layers of a brain map.
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4.1.5 Visualizing fMRI Data and Discriminative Pattern

Figure 4.12 shows the fMRI textured brain map for the first two layers. Figure 4.14

shows the network edges across multiple layers for both time-series and multi-disease

textures.

4.1.6 User Interface and Interaction

Compared with traditional volume rendering in the native 3D space, this approach

views the brain from its center. On one hand, this can reduce the volume depth it

sees through. On the other hand, it renders ROIs in a polar fashion and arranges

ROIs more effectively in a bigger space. With more space available, it is easier to map

attributes onto the ROIs and plot the brain networks among ROIs. Compared with

traditional 2D image slice view, this approach can render the entire brain using much

fewer layers. The user interface (Figure 4.15) is flexible enough for users to adjust

camera locations and viewing direction. Users can conveniently place the camera into

an ideal location to get an optimized view. Users can also easily navigate not only

inside but also outside the brain volume to focus on the structures of their interest

or view the brain from a unique angle of their interest.

4.1.7 Performance and Evaluation

The SVR algorithm is implemented on GPU with OpenCL [32] on NVIDIA

GeForce GTX 970 graphics card with 4GB memory. We pass the volume data to

kernel function as image3d t objects in OpenCL in order to make use of the hardware-

accelerated bilinear interpolation when sampling along each ray. The normal of each

voxel, which is required in BlinnPhong shading model, is pre-calculated on CPU

when the MRI volume is loaded. The normal is also treated as a color image3d ob-

jects in OpenCL, which can save lots on time on interpolation. We make each ray one

OpenCL work-item in order to render each pixel in parallel. The global work-item
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(a) 1st layer textures

(b) 2nd layer textures.

Fig. 4.12. Textured brain map for fMRI data.

size is the size of the viewport. The performance depends on the output image size,
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(a) 1st layer textures.

(b) 2nd layer textures. A noise pattern is applied with 3 colors repre-

senting the 3 categories (i.e., red for HC, yellow for MCI, and blue for

AD).

Fig. 4.13. Textured brain map for disease classification.
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(a) Network edges over multiple layers for time-

series textures.

(b) Network edges over multiple layers for multi-

disease textures.

Fig. 4.14. Displaying network edges between layers.

which is shown in Table 4.1. With an 800 × 600 viewport size, the performance is

around 29.41 frames per second.

We have developed tools using Qt framework and VTK to allow user to interact

with the 2D map [33, 34]. Users can drag the sphere camera around in the 3D view

and the 2D map will update in real-time. A screenshot of the user interface is shown

in Figure 4.15. The upper half is the brain in 3D perspective view while the lower half
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Fig. 4.15. A screenshot of the user interface. When user drag the camera
(intersection of the white lines) on the top, the 2D map on the bottom
which will be re-rendered in real-time.

Table 4.1.
Frame rates for different output resolutions on NVIDIA GTX 970

Output Resolution Avg. fps

640× 480 45.45

800× 600 29.41

1024× 768 11.76

1600× 1200 7.04

is the 2D brain map generated by the SVR algorithm. When user move the position

of spherical camera (intersection of the white lines in Figure 4.15) in the 3D view,
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the 2D map will change accordingly. The software enable user to navigate in the 3D

brain and build the visual correspondence between the 3D and 2D representation.

We also provide users with a switch to reverse the direction of rays. As shown in

Figure 4.16(a), rays are travels outward and we can see the exterior of the brain.

On the contrary, when we reverse the direction of the ray in Figure 4.16(b), we can

see the interior structures of the brain. We demonstrated our prototype system and

the resulting visualization to the domain experts in Indiana University Center for

Neuroimaging. The following is a summary of their evaluation comments.
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(a) Rays travel outwards

(b) Rays travel inwards.

Fig. 4.16. Reverse the direction of rays.

Evaluation on the visualization of the discriminative pattern. The discriminative

pattern shown in Figure 4.13 has the promise to guide further detailed analysis for

identifying disease-relevant network biomarkers. For example, in a recent Nature

Review Neuroscience paper [35], C. Stam reviewed modern network science findings in
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neurological disorders including Alzheimers disease. The most consistent pattern the

author identified is the disruption of hub nodes in the temporal, parietal and frontal

regions. In Figure 4.13, red regions in superior temporal gyri and inferior temporal

gyri indicate that these regions have higher connectivity in HC than MCI and AD.

This is in accordance with the findings reported in [35]. In addition, in Figure 4.13,

the left rostral middle frontal gyrus shows higher connectivity in HC (i.e., red color)

while the right rostral middle frontal gyrus shows higher connectivity in AD (i.e., blue

color). This also matches the pattern shown in the Figure 4.3 of [35], where the hubs

at left middle frontal gyrus (MFG) were reported in controls and those at right MFG

were reported in AD patients. These encouraging observations demonstrate that our

visual discriminative patterns have the potential to guide subsequent analyses.

Evaluation on the visualization of fMRI data and functional network. It is helpful

to see all the fMRI signals on the entire brain in a single 2D image (Figure 4.14).

Drawing a functional network directly on the flattened spherical volume rendering

image (Figure 4.14) offers an alternative and effective strategy to present the brain

networks. Compared with traditional approach of direct rendering in the 3D brain

space, while still maintaining an intuitive anatomically meaningful spatial arrange-

ment, this new approach has more spatial room to work with to render an attractive

network visualization on the background of interpretable brain anatomy. The net-

work plot on a multi-layer visualization (Figure 4.14) renders the brain connectivity

data more clearly and effectively.

Evaluation on the user interface and interaction. Compared with traditional vol-

ume rendering in the native 3D space, this approach views the brain from its center.

On one hand, this can reduce the volume depth it sees through. On the other hand, it

renders ROIs in a polar fashion and arranges ROIs more effectively in a bigger space.

With more space available, it is easier to map attributes onto the ROIs and plot the

brain networks among ROIs. Compared with traditional 2D image slice view, this

approach can render the entire brain using much fewer layers (4 in our case) than the

number of image slices (e.g., 256 slices in a conformed 1 mm3 isotropic brain volume).
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The user interface (Figure 4.15) is flexible enough for users to adjust camera locations

and viewing direction. Users can conveniently place the camera into an ideal location

to get an optimized view. Users can also easily navigate not only inside but also

outside the brain volume to focus on the structures of their interest or view the brain

from a unique angle of their interest.

4.2 Interactive Machine Learning

In this section, I will introduce the second part of my study: a framework of

interactive machine learning by visualization, and the application of this framework

to two test examples.

4.2.1 System Overview

Our goal is to develop a new interactive and iterative learning technique built on

top of any machine learning algorithm so that the user can interact with the machine

learning model dynamically to provide feedback to incrementally and iteratively im-

prove the performance of the model. Although there can be many different forms of

user feedback, such as knowledge input, features selection and parameters setting, in

this paper we focus primarily on adding the optimal subset of training data samples

such that the added training samples can provide maximal improvement of the model

using minimum number of additional training points. Hence, the problem statement

can be formulated as follows:

Let F be the feature space of a machine learning algorithm, X =
{
x1, x2, ..., xn

}
⊂

F be the starting training set, and Y =
{
y1, y2, ..., ym

}
⊂ F be an internal test set.

We define U as user space of the same dataset containing some user defined attributes.

These user defined attributes are selected based on two criteria: (1) they are part of

the attributes of the original dataset; and (2) they can be used to identify data points

(to be collected) easily. Let Z =
{
z1, z2, ..., zm

}
⊂ U be set Y represented in the user
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space U, and M0(y) : F → C be the learned model using the initial training set X,

where C is the application value range (e.g. class labels or regression function values).

We want to find a set of k new data points (where k is a constant), X ′ ⊂ F , such

that points in X ′ satisfy a set of user defined conditions of attribute values in U.

These conditions in U is defined interactively from the visualization of the model and

its test results on set Z in the user space U . The users goal is to provide additional

training samples such that the learned model M1(y) using training set X ∪X ′ ⊂ F

is an improved model over M0(y).

The above process can continue iteratively until the performance of the model is

satisfactory or until the model can no longer be improved.

This framework can be summarized by the structural flowchart in Figure 4.17.

At each iteration, a machine learning model is constructed using the current training

set. The model will be tested on an internal test set. The visualization engine will

then visualize the model along with the labeled internal test results. Based on this

visualization, the user can decide to add new samples in the areas where the model

performed poorly. These new samples will be added to the current training set to

enter the next iteration.
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Fig. 4.17. A structural flowchart of the interactive machine learning sys-
tem.

4.2.2 User Space and User Interactions

A critical idea in our interactive machine learning framework is the separation of

feature space and user space. During each iteration of the learning process, the addi-

tional training data is often not readily available, and needs to be acquired separately

using some easy to use attributes.

A machine learning algorithm learns a model based on the features of the training

samples. These features are either pre-computed by some dimension reduction meth-

ods (e.g. PCA) or selected through some feature selection algorithms. It is generally

not feasible to obtain features of any data item before the data is collected. This is
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particularly true for complex datasets where the collection of each data item requires

significant effort and cost. For example, in medical analysis, the collection of detailed

medical and health data for each patient or a control individual is very expensive and

time-consuming.

In our approach, a specific subset of conditions for data is identified through

the interactive visualization process and targeted for collection. Thus, the attribute

conditions for this subset of data need to be something that are easy to be used for

the identification and collection of data. For this reason, we define user space as a

data representation space containing attributes that can be used as the identifiers

of the target data subset for iterative data collection. This also means that the

interactive visualization also needs to be presented in this user space so that the user

can interactively define the attribute conditions for additional data samples.

A user space is typically defined by the user based on the application needs. The

attributes in the user space may contain:

• Common attributes. These include simple common characteristics of data

that can be used to identify the data easily. For instance, in medical diagnosis

applications, these may include common demographic information and behavior

data such as age, gender, race, height, weight, social behavior, smoking habit,

etc.

• Special attributes. These are attributes the analysts have special interests

in. For example, in bioinformatics, certain group of genes or proteins may be

of special interests to a particular research problem, and can be extracted from

a large database.

• Visual attributes. Visual data such as images or shape data maybe directly

visualized as part of the user space so that the user can visually identify similar

shapes or images as new samples.
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Through the visualization of the model and the associated labels of the testing

samples, the user can specify conditions for user space attributes to identify new

training samples. This is done based on several different principles:

• Model Smoothness. The visualization will show the shape of the learned

model at each iteration. Visual inspection of the shape of the model can reveal

potential problem areas. For example, if the model is mostly smooth but is very

fragmented in a certain region, it is possible that the learning process does not

have sufficient data in that region.

• Testing Errors. Errors from the test samples can provide hints about areas

where the model performs poorly. These may include misclassified samples and

regression function errors. In areas with significant errors, new samples may be

necessary to correct the model.

• Data Distribution. There may be a lack of training data in some area in the

user space. This can affect the models accuracy and reliability. For example, a

medical data analysis problem may lack sufficient data from older Asian female

patients. To show this type of potential issues, the visualization system will

need to draw not only the test samples, but also the training samples within

the user space.

4.2.3 The Visualization Platform

The visualization platform in our interactive machine learning framework serves

as the user interface to support user interaction and the visualization of data and the

model.

Although there are many different visualization techniques for multi-dimensional

data [27], we choose scatterplot matrix as our main visualization tool as it provides

the best interaction support and flexibility. We also choose to use heatmap images

to visualize the machine learning model within the scatterplots since it treats the
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machine learning model as a black box function and thus allows the approach to be

machine learning algorithm independent.

Figure 4.18 shows a general configuration of the scatterplot visualization interface.

The upper-right half of the matrix shows the feature space scatterplots, the lower-

left half shows the user space scatterplots and the diagonal shows the errors of the

corresponding feature space dimensions. Within each scatterplot sub-window, two

types of visualizations will be displayed: (1) the data (training or testing data points);

(2) the current learned model. Each of the 2D sub-windows can also be enlarged

for detailed viewing and interaction. In principle, the dimensionality of the feature

space and the dimensionality of the user space are not necessarily the same. But for

convenience, we may select the same number of features and user space attributes to

visualize in this scatterplot matrix. It is certainly not hard to use different numbers

of variables in these two spaces.

Fig. 4.18. A configuration of the scatterplot matrix visualization.

The primary challenge in this visualization strategy is the visualization of a ma-

chine learning model in a 2D subspace of the feature space or user space. A heatmap
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image filling approach will be used to visualize the model. Each pixel of the 2D sub-

window will be sampled against the model function, and the result will be color-coded

to generate a heatmap-like image. An example is shown in Figure 4.19 for a 3-class

classification model.

Fig. 4.19. Model visualization example.

Let the machine learning model be a function over the feature space, M(y) : F →

C, where F is the feature space and C is the range of the model function. The

projection of the model in a 2D subspace is, however, not well defined, and hard to

visualize and understand. A better way to understand and visualize the model in a

2D subspace is to draw a cross-section surface (over the 2D subspace) of the model

function that passes through all training points. Mathematically, this is equivalent

to the following:

For a pixel point P = (a, b) in a 2D subspace where a and b are either two feature

values or two user space attributes, compute M(y), where the feature vector yF at P
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is calculated by interpolating the feature vectors of the training samples on this 2D

subspace.

Any 2D scattered data interpolation algorithm can be used here to interpolate

the feature vectors. In our implementation, since we need to interpolate all pixels

in a 2D sub-window, a triangulation-based interpolation method is more efficient as

the triangulated interpolants only need to be constructed once. The training data

samples are triangulated by Delaunay triangulation first. A piecewise smooth cubic

Bezier spline interpolant is constructed over the triangulation using a Clough-Tocher

scheme [28]. An alternative method is to apply piecewise linear interpolation over the

triangular mesh. But the cubic interpolation provides better smoothness. Please note

that this interpolation scheme interpolates only the feature vectors, which will then

be inputted to the model function to generate model output values for color coding.

Figure 4.20 shows two types of cross-sections. For simplicity of illustration, we

use a 1D analog to the 2D cross-sections. So, the sample points on a 1D axis in the

figure should be understood as the sampling points on a 2D scatterplot sub-window.

Here (f1, f2) is the feature space. C is the model value, U is a 1D subspace of the

user space. P1 to P5 are the training samples we use for interpolation. In Figure

4.20(a), f1 axis is a subspace we use to visualize the model in the feature space. In

Figure 4.20(b), U is a subspace we use to visualize the model in the user space. In

this figure, we assume U is a linear combination (rotation) of the feature dimensions.

But U sometimes can be wholly or partially independent of the features. In that

case, interpolation will just simply be done within the user space similarly as in

Figure 4.20(a). Since we have many 2D sub-windows in the scatterplot matrix, the

combinations of these cross-sections provide a cumulative visual display of the model

function at every iteration of the learning process.
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(a)

(b)

Fig. 4.20. 1D illustrations of model visualization as cross-sections in fea-
ture space and in user space.

4.2.4 Test Applications

The framework described in the last section has been implemented using Python

and a Python 2D plotting library: Matplotlib. In this section, we will apply this

framework to two different types of test applications: handwriting recognition (clas-

sification) and human cognitive score prediction (regression) using real world datasets.
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Handwriting Recognition

In this case study, we apply our interactive machine learning approach to the

classification (recognition) of handwriting digits. The well-known publicly available

MNIST handwritten digits dataset from the MNIST database [29] is used. For better

illustration effect, we will narrow the recognition scope to four classes of digits: 0s,

1s, 2s, and 3s. For these 4 classes, we have 24673 training points and 4159 testing

points. We also picked 123 points (0.5%) out of the training set for internal test to

guide the interactive process.

Each original data point contains a fixed sized 2D image. Principal Component

Analysis (PCA) is applied to the pixel arrays of these images. The top 10 principal

components are used as feature vector in a Support Vector Machines classification

algorithm. This SVM process is very similar to a typical face recognition system [30].

In this application, the feature space is the principal component space. If we only

use the top four features (PCs) for visualization and interaction, we will have a 4

by 4 scatterplot matrix. Since this is an image dataset, the user space contains the

original pixels. It is easier to simply display small icons of some of the original images

within the user space scatterplots. These icons can be enlarged when clicked by the

user.

Figure 4.21 shows an interface for this interactive session with four features. The

scatterplot matrix is symmetric, but the lower-left sub-windows show icons of some of

the original images, which serve as a user space. Each diagonal sub-window shows a

histogram of the distribution of the misclassified points in each feature dimension. It

is certainly possible to use the shape information of the misclassified points to retrieve

similar new samples from the large database, which can perhaps be automated. In

our experiment, we focus only on interactive operations. New samples are added in

areas where there are too many misclassified samples or the classification boundaries

appear fragmented. The process started with only 10 training samples. In each

iteration, 5 new samples are added at an area clicked by the user.
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Fig. 4.21. Interactive machine learning interface for 4-class handwriting
classification.

Figure 4.22 shows a performance chart for this experiment. The orange line repre-

sents the performance using randomly selected samples, and the blue line represents

the performance using interactively selected samples. Since this problem is relatively

easy, the performance curve converges quickly after about 250 points. But the blue

line reaches the near-peak performance much earlier at about 75 points. Figure 4.23

shows a sequence of the interactions that led to iterative model improvement.

Human Cognitive Score Prediction

Understanding the structural basis of human cognition is a fundamental problem

in brain science. Many studies have been performed to predict the cognitive out-

comes from measures captured by Magnetic Resonance Imaging (MRI) scans of the

brain [31-34]. In this case study, we apply our interactive machine learning approach

to the prediction of cognitive performance using MRI data coupled with relevant

demographics and behavior information.
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Fig. 4.22. Performance chart for handwriting classification experiment.

The data studied in this work were downloaded from the Human Connectome

Project (HCP) database [35-37]. HCP is a major NIH-sponsored endeavor that has

acquired and published brain connectivity data plus other neuroimaging, behavioral,

and genetic data from 1200 healthy young adults. Its goal is to build human brain

network map (i.e., connectome) to better understand the anatomical and functional

connectivity in relation to cognitive and behavior outcomes within the healthy human

brain.

There are four types of attributes from the HCP database: (1) the MiniMental

State Examination (MMSE) score, which is the cognitive outcome studied in this

work; (2) structural MRI measures, including volume measures and cortical thickness

measures of regions of interests generated by the FreeSurfer software tool [38]; (3)

demographical measures such as age, race, weight, height, BMI, etc.; and (4) behav-

ioral measures. Our computational task is to predict the MMSE score using the MRI,

demographical and behavior measures.

A total of 1177 subjects with complete cognitive, imaging, demographical, and

behavior information were included in our study. 589 subjects are used as test set

and 588 subjects are used as training set. We selected 5% (about 30 samples) of this

training set as internal test set to guide the user interaction. A principal component

analysis (PCA) is used for feature selection. A support vector regression (SVR)
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Fig. 4.23. A sequence of model improvement iterations.

technique is applied to the top 10 principal components (PCs) to obtain a regression

model in each iteration for the prediction the MMSE scores [39, 40]. The predicted

MMSE scores are then color coded to generate the heatmap images in the 2D sub-

windows. The iteration starts with 10 initial training samples. In each iteration, 5

new samples are added at an area clicked by the user.

Figure 4.24 shows a screen shot of the interface. The top four principal components

are used as the features in the scatterplots. The user space attributes used in this

visualization include the patients weight, height, age, and body mass index (BMI).

The diagonal sub-windows show the histograms of the distributions of the regression
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errors for the individual feature dimensions. We again only focus on adding new

samples in areas where there are too many mismatches of colors between the model

and the samples or the regression heatmap appears too fragmented. In practice,

experts may also use other professional knowledge to add samples that relate to a

particular hypothesis. From Figure 4.24, we can see that the scores are very flat in

most of the regions but can change quite drastically within some isolated small region.

Fig. 4.24. Interactive machine learning interface for human brain data
regression.

Figure 4.25 shows the performance chart for this iteratively built model. The

orange line represents the results using randomly selected samples, and the blue

line represents the results using interactively selected samples. We first applied the

support vector regression using the entire 588 training set. The resulting mean error

is 0.8. The chart shows that the interactive model converge quickly to the optimal

performance (0.8 error) after about 80 training samples while the randomly selected
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training samples struggle to converge. Figure 4.26 shows a sequence of interactions

that led to iterative model improvement.

Fig. 4.25. Performance chart for brain data regression.

4.3 Interactive Visualization of Deep Learning for 3D Brain Data Anal-

ysis

Recent advances in deep neural networks and other machine learning techniques

have led to unprecedented breakthroughs in many big data analysis problems and

applications. The intrinsic complexity in deep learning, introduced by multiple hid-

den layers and massive combinations of features and weights, makes the model hard

to interpret. Therefore, in most scenarios, deep learning models are used as black

boxes [109]. Visualization has been playing an increasingly important role in data

mining and data analytics. This transformation of visualization from data viewing

to becoming an integrated part of the analysis process led to the birth of the field of

visual analytics [110]. In visual analytics, carefully designed visualization processes

can effectively decode the insight of the data through visual transformations and
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Fig. 4.26. A sequence of model improvement iterations for MMSE score
prediction.

interactive exploration. Many successful applications of visual analytics have been

published in recent years, ranging from bioinformatics and medicine to engineering

and social sciences.

As automatic methods, machine learning algorithms, particularly deep learning al-

gorithms, provide the users very little information about how and why the algorithms

work or fail. The underlying deep learning models are also designed primarily for the
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convenience of learning from data, but they are not easy for the users to understand

or interact with. Interactive visualization can provide an effective mechanism to help

the users understand and interact with the deep learning process [111]. This has two

important potential benefits.

(1) Understanding. Understanding the deep learning process in the context of

the application is particularly important for biomedical applications in which how

the biological processes and pathways are involved is sometimes more important than

the result itself. It is also difficult to improve the efficiency and performance of the

algorithms without a clear understanding of how and why the different components

work in deep learning algorithms with many layers and interconnected components.

(2) Knowledge Input. In the biomedical field, human knowledge and expertise is

critical in producing biologically meaningful results. Therefore, human input during

the deep learning process is sometimes desirable and even necessary to generate the

best and the most meaningful result.

Our goal is to develop an interactive visualization framework in a deep learning

environment to provide contextual associations with the application such that the

user can observe and understand the evolution and performance of the internal layers

and their feature selections. Furthermore, user will also be able to interact with the

system through the visualization tools to provide feedback that may alter the learning

process, for example changing the weight of an edge or adding/removing a node.

In order to better understand and effectively interact with the deep learning pro-

cess, the user needs to be able to associate the deep learning models intermediate

layers and their nodes with application specific information to make contextual judge-

ments. This requires the visualization system to provide not only a visual representa-

tion for the deep neural networks, but also the application specific visual information

associated with the various components of the neural networks. In other words, the

system needs to be able to trace from the intermediate nodes and edges back to the

original input data to generate meaningful information in the context of the applica-

tion. Such contextual associations can also help the user make decisions on whether
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there is a valid reason to alter the learning process, and if so how this can be achieved

through the editing operations of the intermediate layers.

In this chapter, we propose an interactive visualization approach to the under-

standing of and interaction with a deep learning algorithm for 3D brain images data.

The goal is to train a classifier for the diagnosis of Alzheimer’s Disease (AD). Although

Alzheimer’s Disease is currently not curable, early diagnosis is extremely important

for patients quality of life. Furthermore, interactive visualization of the deep learning

process may reveal interesting and meaningful biological interpretations that could

provide potential benefits for the development of a cure. Our primary contributions

in this paper include:

(1) An effective interactive visualization framework that provides direct visual

associations of the deep neural network structures with the anatomical structures

of the brain. It also provides user editing operations to alter the internal layers to

re-train the model (with a new initial condition) when necessary.

(2) A recursive backpropagation algorithm to compute the weights of the input

features in each node in the hidden layers, which can lead to the anatomical or

biological interpretation of the hidden layer nodes.

(3) An effective interactive brain rendering tool that combines 3D rendering and

a 2D atlas rendering based on a spherical ray-casting algorithm.

4.3.1 The Visualization Framework

The overall design of our deep learning visualization system is shown in Figure 1.

The system has three visual components:

(1) Network structure window. It shows the structures of the different layers

of the deep neural network. All layers are drawn with their nodes and the edges

connecting nodes between neighboring layers. The intensity / transparency of these

edges are weighted by their edge weights. Zooming and scaling are implemented to

allow the user to explore large networks. This window provides a structural overview



56

of the learning process. It allows user to pick any of the nodes in the hidden layers to

show the corresponding brain regions and their weights, calculated by our importance

backpropagation algorithm. The user can also interactively edit and manipulate nodes

and edges to make changes to the model. The interaction part will be further discussed

in Section 4.3.3.

(2) Rendering window. This is where the 3D anatomical structure of a brain will

be rendered. The regions of interest are segmented, and can be rendered differently.

For a given (picked) node, the weights of the different brain regions associated with

this node will be color-coded in the rendering window. Two different types of brain

image rendering will be provided. One is the regular 3D rendering of brain cortex

surfaces with rotation and zooming. The weights of the brain regions will be mapped

to different colors and transparencies for surface rendering. The second type is an

innovative brain map as a flattened brain atlas, generated using a spherical volume

rendering algorithm. This complements the 3D surface rendering in the sense that it

shows all regions in one static 2D brain map to facilitate comparisons and grouping.

(3) Control window. This is a sub-window that controls various parameters for

the visualization system such as intensity and transparency mapping, color mapping

and thresholding.

Figure 4.27 shows the overall system architecture and flow. This chart only shows

the interactive visual exploration part of the deep learning process. The formal cross-

validation process is not shown in this flowchart, as cross-validation is carried out

after the visual exploration stage. Thus, we can consider these visual test subjects an

internal test set that is used to improve the performance of the learning model before

cross-validation is applied.

4.3.2 Importance Factor Backpropagation

Once a deep learning model is trained, the user can run the model on a given test

subject as input to observe how the model works with a certain type of input subject.
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Fig. 4.27. Overall system flowchart.

Within our visualization system, the user can pick any node in the intermediate layers

to show what the node represents in terms of weights of different brain regions. This

provides the required contextual information to interpret the intermediate hidden

layers. For example, when a brain region is consistently weighted high by some

nodes in every layer, this could be an indication that this region is an important

image phenotype for the Alzheimer’s Disease classification problem. On the other

hand, when a certain brain region is known to be associated with Alzheimer’s Disease

(e.g. the Hippocampus), nodes that carry high weights on this region may have

more significance in the hidden layers, and could be a candidate to manipulate (e.g.
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increasing associated edge weights) when there is a need to re-train the mode to

improve performance. To compute the weights of brain regions for some node S (we

will call it source node) in a hidden layer for a given input subject, we use a recursive

method to backpropagate the importance factors from any node in a hidden layer

back to the nodes in the input layer, which represents the network degrees of the

different regions of interest (ROIs). Let Nk
i denotes the is node in the ks layer, with

layer number 0 being the input layer. Let W k
ij be the edge weight between node

Nk
i and node Nk−1

j , and Ak
i be the activation value of node Nk

i (for the given input

subject). We define the importance factor of node Nk−1
j (relative to the source nde)

as:

rk−1j =
∑
i

Rk−1
ij

where Rk−1
ij is the importance factor along edge Nk−1

j Nk
i , and is calculated by:

Rk−1
ij =

|W k
ij| ∗ Ak−1

j∑
l (|W k

il | ∗ A
k−1
jl )

× rki

For example, the importance factor of node I1 along the edge J1I1 in Figure 4.28

is calculated as:

|w1| ∗ a1
|w1| ∗ a1 + |w2| ∗ a2 + |w3| ∗ a2

× rJ1

Intuitively, the importance factor of a node represents how much this node con-

tributes to the activation of the source node S. Starting from a source node S, the

algorithm recursively computes an importance factor for every node in all possible

paths from S back to the input layer. When a node can be reached by multiple paths,

multiple importance factors will be computed, and their sum will be the final im-

portance factor for this node. This process is recursively carried out backwards until

reaching the input layer. At that point, we will have all r0i , which are the weights of

all input brain regions for the given source node S. It is easy to prove that the sum

of all final importance factors of all nodes in any given layer is 1.
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Fig. 4.28. An example of the importance backpropagation.

4.3.3 Interactions

The interactive component of our visualization framework consists of two types

of interactions: (1) brain structure exploration; and (2) editing of the deep neural

network structure.

In brain structure exploration, the user will pick a node in a hidden layer. The

brain rendering window will show the color-coded 3D rendering of the brain as well

as the 2D color-coded brain map. Rotation and zooming can be used for the user to

examine and understand which brain regions are activated by this node. By examining

multiple nodes in different layers, the user will gain understanding about how different

brain regions are affected by the evolution of the neural networks to draw a conclusion

for different labelled test subjects (e.g. an AD patient vs a control). It may also

provide clues about why certain test subjects are classified incorrectly. This could

potentially lead to changes to the network structure for re-training.

The edit functions are designed to allow the user to make changes to nodes and

edges based on user observations and domain knowledge. After changes are made,

the deep neural network model will need to be re-trained using the revised network
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structure and weights as the new initial condition. Three types of edit operators are

defined in our system:

• Deleting a node

• Adding a new node

• Changing the weight of an edge

Fig. 4.29. User interface for editing a node.
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(a)

(b)

Fig. 4.30. (a) the interactive visualization system. (b) the discriminative
ROIs for class AD
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These operations can be carried out interactively through combinations of user

mouse clicking and control panel editing. As an example, when a particular node

has strong weight on a brain region that is known to be associated with Alzheimer’s

Disease, the user may decide to increase the weights of the edges that lead this node

to the next layer. Another scenario is when the model does not perform well with

internal test set, we may increase the number of nodes or even layers to generate more

feature combinations.

From an optimization point of view, these changes can be considered an educated

perturbation of the initial conditions of learning process. When a modified neural

network structure is used as the initial condition, it can potentially move the system

out of a local minimum.

4.3.4 Experimental Results

As a pilot study, we trained a three-layer fully connected neural network as a

classifier to distinguish healthy controls from patients diagnosed with Alzheimer’s

Disease (AD). These fibre density values are then used as the edge weights of the

connectome network for each subject. The connectome network is now modelled as

an undirected graph. We calculate the degree of each node (ROI) as the sum of

weights of all connected edges to this node. This is our initial feature set for our deep

learning analysis experiment.

In our study, we focus on the analysis of the brain connectome data from 62

subjects in 2 categories: HC (Healthy Control, 43 subjects) and AD (Alzheimer’s

Disease, 19 subjects). The brain connectome network data from the 62 subjects are

62 graphs. Since all the subjects share the same parcellation, they have the same set

of node labels (the brain ROIs) but different connectivity (edges) between the nodes

as the fibre densities are different for different subjects between the same pairs of ROI

labels
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The inputs consist of 62 subjects. Each subject is a vector of 83 elements rep-

resenting the fiber densities of 83 regions of interest (ROIs) in the brain. We built

an interactive exploration system that allows user to click any of the nodes in the

neural network to show the corresponding features with respect to the input layer

calculated by our proposed importance backpropagation algorithm. We also mapped

the importance of each input ROI on a 3D brain, to help neuroscientist to have an

intuitive understanding of which ROIs are correlative with each class. The discrimi-

native ROIs for class AD are shown in Figure 4.30(b). By visualizing the calculated

importance of each ROI with a heatmap, we can see there are a small subset of the

ROIs that is correlative with AD class, which are highlighted in red.

We also demonstrate the ability to change the neural network structure by inter-

actively adding or deleting nodes with the system. As shown in Figure 4.31(a), we

start with a three-layer fully connected neural network, in which the 2nd layer consist

of 4 nodes. Then we add 4 extra nodes for the 2nd layer by right clicking at any node

in the that layer, as shown in Figure 4.31(b). After re-training, the classification

accuracy raises from 62.2% to 64.7%. We then add an extra layer of 4 nodes right

before the output, which further boosts the classification results to 67.8%, which is

shown in Figure 4.31(c).
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(a) Network structure before adding nodes

(b) Network structure after adding 4 nodes in the second

layer

(c) Network structure after adding extra layer with 4

nodes.

Fig. 4.31. Interactively adding nodes and layers. Classification accuracies
are (a) 62.2%, (b) 64.7% and (c) 67.8%.
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5. CONCLUSIONS

In this study, firstly, we have presented an integrated visualization solution for human

brain data. Multiple modalities of images are involved including structural-MRI,

funtinoal-MRI and DTI. Our focus is on the integration of analysis properties of the

connectome networks into the anatomical brain structures. We apply a surface texture

based approach to encode network properties and attributes onto the surfaces of the

brain structures to establish visual connections and context. Surface texture is an

effective approach to integrate information visualization and scientific visualization

since scientific data typically have spatial structures containing surface areas, which

can be taken advantage of for visual encoding. In the future, we would like to continue

developing the integrated visualization tool for public domain distribution. Currently,

a prototype BECA software tool is available at http://www.iu.edu/~beca/, and we

will continue improving it. We would also like to study interesting visual analytic

topics to compare multiple networks from different network construction procedures,

in particular, between structural networks and functional networks.

Secondly, We have presented a general framework for a visualization supported in-

teractive machine learning approach, and have tested the framework on two different

types of application problems using real world datasets: handwriting recognition and

human cognitive score prediction. The experiments show that interactively selected

training samples can reach high performance quicker than randomly selected samples.

This approach provides a new way to train a machine learning model using a small

set of training samples. Since human knowledge and perceptual instincts are used in

the selection of the training samples, this approach is potentially smarter and more

efficient than traditional big data solutions. It is particularly useful for applications

where high quality big data is not readily available or if the collection and labeling

of the data is too expensive (e.g. in some biomedical data analysis applications). On

http://www.iu.edu/~beca/
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the other hand, since this approach requires human in the learning loop, it may not

be suitable for applications that require total automation (e.g. in real time robot

vision). Although this paper focuses on the small data solution, the visual analytics

framework proposed here can be applied to other types of interactive machine learn-

ing problems such as human knowledge integration and model optimization. In the

future, we would like to explore new solutions to interactive machine learning with

knowledge (e.g. rules and constraints) input, parameter settings and other model

optimization functions. We would also like to investigate ways to automatically eval-

uate the models so that the additional samples can be added automatically. The

proposed interactive visualization framework for a deep neural network system with

brain image data. We have tested the system on a brain classification problem for

the diagnosis of Alzheimer’s Disease using a real world ADNI dataset. While the con-

cept of visualizing deep neural networks to help user understand the learning model

has been discussed before, we believe the key is to provide contextual information

specific for the underlying applications. Our work focuses on building visual associ-

ations between deep neural network nodes and the complex brain structures. The

backpropagation algorithm for computing the importance factors is efficient and easy

to implement. Our system provides the needed biological and anatomical interpreta-

tion of the evolution of the deep neural network. Furthermore, it allows the users to

make changes to the hidden layer nodes and edges based on their visual observations

and domain knowledge to potentially improve the systems performance. This can

be particularly useful for applications that require highly specialized knowledge and

domain expertise (e.g. biomedical applications). We also have presented an inter-

active visualization framework for a deep neural network system with brain image

data. We have tested the system on a brain classification problem for the diagnosis

of Alzheimer’s Disease using a real world ADNI dataset. While the concept of vi-

sualizing deep neural networks to help user understand the learning model has been

discussed before, we believe the key is to provide contextual information specific for

the underlying applications. Our work focuses on building visual associations between



67

deep neural network nodes and the complex brain structures. The backpropagation

algorithm for computing the importance factors is efficient and easy to implement.

Our system provides the needed biological and anatomical interpretation of the evo-

lution of the deep neural network. Furthermore, it allows the users to make changes

to the hidden layer nodes and edges based on their visual observations and domain

knowledge to potentially improve the systems performance. This can be particularly

useful for applications that require highly specialized knowledge and domain expertise

(e.g. biomedical applications). User interference and re-direction can also be helpful

when automatic deep learning performs poorly. Although this paper focuses on the

brain data classification problem, the visual analytics framework proposed here can

be applied to a wide range of potential applications using deep learning techniques.

In the future, we would like to develop more sophisticated interaction tools to facil-

itate better knowledge input and user feedback. We would also like to work with

domain experts to collect more user experience to better evaluate the benefits of such

a system.
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