
USING MACHINE LEARNING TECHNIQUES TO IMPROVE

STATIC CODE ANALYSIS TOOLS USEFULNESS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Enas A. Alikhashashneh

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2019

Purdue University

Indianapolis, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. James H. Hill, Chair

Department of Computer and Information Science

Dr. Rajeev R. Raje

Department of Computer and Information Science

Dr. Mihran Tuceryan

Department of Computer and Information Science

Dr. Mohammad Al Hasan

Department of Computer and Information Science

Approved by:

Dr. Shiaofen Fang

Head of the School Graduate Program

iii

To My Parents, My Husband, and My Kids.

iv

ACKNOWLEDGMENTS

I would first like to thank my advisor, Dr. James H. Hill, for his guidance, advice,

and knowledge, without whom, this work would not have been possible. Another

thanks goes out to Dr. Rajeev R. Raje, Dr. Mohammad Al Hasan, and Dr. Mihran

Tuceryan for being on my thesis defense committee and for their assistance in answering

various questions I had. Finally, I want to thank my family for their support.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . x

ABBREVIATIONS . xii

ABSTRACT . xiii

1 INTRODUCTION . 1

2 RELATED WORK . 7

2.1 Evaluating SCA Tools . 7

2.2 Classifying SCA Tools’ Warnings 8

2.3 Ranking SCA Tools’ Warnings . 10

2.3.1 History-Based Warning Prioritization (HWP) 10

2.3.2 Statistical Analysis-Based Ranking 11

3 EVALUATION OF STATIC CODE ANALYSIS (SCA) TOOLS
USING SOFTWARE ENGINEERING METRICS 13

3.1 Challenges Addressed by the Proposed Framework 13

3.2 The Approach of SCATE . 14

3.2.1 Commands Supported in the Framework 17

3.2.2 Integrating With the SWAMP 18

3.2.3 Classifying SCA Tools Output 19

3.3 Case Study . 22

3.3.1 Selected Code Base . 22

3.3.2 Selected Static Code Analysis (SCA) Tools 23

3.3.3 Selected Weaknesses (CWEs) 24

3.3.4 Selected Software Engineering Metrics 26

3.4 Experimental Evaluation of SCATE 32

vi

Page

3.4.1 Experimental Setup . 32

3.4.2 Experimental Results for SCATE 33

3.4.2.1 CountOutput (Fan-Out) 34

3.4.2.2 CountInput (Fan-In) 35

3.4.2.3 Lack of Cohesion in Methods (LCOM/LOCM) . 36

3.4.2.4 MinEssentialKnots (MinKnots) 38

3.4.2.5 CountPath . 40

3.4.3 Threats to Validity . 42

3.5 Summary of Contributions . 42

4 CLASSIFICATION OF STATIC CODE ANALYSIS (SCA) TOOL
WARNINGS . 43

4.1 Challenges Addressed by the Proposed Framework 43

4.2 The Approach of SCATWC . 44

4.2.1 Dataset Generation Stage 46

4.2.2 Learning Stage . 48

4.3 Case Study . 50

4.3.1 Selected Machine Learning (ML) Techniques 50

4.3.1.1 Feature Selection 50

4.3.1.2 Synthetic Minority Over-sampling Technique
(SMOTE) . 51

4.3.1.3 Classification Techniques 51

4.3.2 Selected SCA Tools . 52

4.3.3 Selected Code Base . 53

4.3.4 Selected Weaknesses (CWEs) 53

4.3.5 Selected Performance Evaluation Metric 57

4.3.6 Selected Software Engineering Metrics 57

4.4 Experimental Evaluation of SCATWC 59

4.4.1 Experimental Setup . 59

4.4.2 Experimental Results for SCATWC 60

vii

Page

4.4.3 CFS Results Analysis . 60

4.4.4 Discussion of Results . 61

4.4.5 RIPPER Results Analysis 63

4.4.6 Threat to Validity . 66

4.5 Summary of Contributions . 66

5 RANKING STATIC CODE ANALYSIS (SCA) TOOL WARNINGS 67

5.1 Challenges Addressed by the Proposed Approach 67

5.2 Motivating Example . 68

5.3 The Approach of SCATWR . 69

5.3.1 Phase #1: Generate Datasets for the Synthetic Source
Code . 69

5.3.2 Phase #2: Generate Datasets for the Open-Source Soft-
ware . 71

5.3.3 Phase #3: Compute Score of the SCA Tool Warnings . 71

5.3.4 Phase #4: Check the List of Rankings 72

5.4 Case Study . 73

5.4.1 Selected Code Base . 73

5.4.1.1 NIST Juliet test suite 73

5.4.1.2 Open-Source Software 73

5.4.2 Selected Weaknesses (CWEs) 74

5.4.3 Selected Static Code Analysis (SCA) Tools 76

5.4.4 Selected Software Engineering Metrics 76

5.4.5 Selected Machine Learning (ML) Technique 77

5.4.6 Selected Performance Metric 78

5.4.7 Selected Domain Adaptation (DA) Technique 78

5.4.7.1 Problem Settings 79

5.4.7.2 Instance Weighting Technique 80

5.5 Experimental Evaluation of SCATWR 82

5.5.1 Experimental Setup . 82

viii

Page

5.5.2 Dataset Statistics . 83

5.5.3 Experimental Results . 84

5.5.3.1 Experiment #1: Using a Source Baseline Model
for Ranking . 84

5.5.3.2 Experiment #2: Using a Target Baseline Model
for Ranking . 86

5.5.3.3 Experiment #3: Using a Baseline Model Trained
Over Ds and Dt,l . 89

5.5.3.4 Experiment #4: Baseline Model Trained Using
α and Juliet Suite 93

5.5.3.5 Experiment #5: Baseline Model Trained Using
β and Juliet Suit . 96

5.5.3.6 Experiment #6: Baseline Model Trained Over
Ds and Dt,l Using β 99

5.5.4 Discussion . 102

5.5.5 Most Important Software Engineering Metrics 102

5.5.6 Reorder Warnings . 105

5.5.7 Threat to Validity . 107

5.6 Summary of Contributions . 107

6 CONCLUDING REMARKS . 108

REFERENCES . 111

VITA . 118

ix

LIST OF TABLES

Table Page

3.1 The different Tags used by the Framework to correctly label locations of
interest. 17

3.2 Some important information about the real-world applications used as case
study . 23

4.1 Description of ML Techniques Used in Work 52

4.2 Summary Description of the data sets . 60

4.3 Relevant Software Engineering Metrics . 61

4.4 Experimental Results Based on F1-score metric. 62

5.1 Emitted Warnings for SCA tool on Juliet test suite 69

5.2 Open-source software information . 74

5.3 Description of Source Code Metrics [62] 77

5.4 Summary Description of the datasets . 84

5.5 Threshold for each CWEs . 105

5.6 Spearman rank correlation comparing with optimal 106

5.7 Spearman rank correlation comparing with random 106

x

LIST OF FIGURES

Figure Page

3.1 General design of our extensible framework for evaluating static code
analysis tools. 15

3.2 Entities that make the knowledge base for a Test Suite in the framework. . 16

3.3 The behavior of SCA tools based on CountOutput for CWE-369. 34

3.4 The behavior of SCA tools based on CountInput for CWE-457. 35

3.5 SCA tools behavior based on LCOM for CWE-382. 36

3.6 SCA tools behavior based on LCOM for Open-Source software 37

3.7 SCA tools behavior based on MinEssentialKnots for CWE-484 38

3.8 SCA tools behavior based on MinEssentialKnots for Open-Source software 39

3.9 SCA tools behavior based on CountPath for CWE-476 40

3.10 SCA tools behavior based on CountPath for Open-Source software 41

4.1 The overview of the proposed approach. 45

4.2 The new design of SCATE framework . 47

4.3 Dataset sample of Tool1 warnings for CWE-762 49

4.4 CWE-426-Tool2 Datase Sample of Rules. 63

4.5 CWE-369-Tool1 Dataset Sample of Rules. 65

5.1 Overview of SCATWR . 70

5.2 Using Source Baseline Model to Rank Open-World Software Warnings . . . 85

5.3 Source Baseline Model Results . 86

5.4 Using a Target Baseline Model to Rank Open-World Software Warnings . . 87

5.5 Target Baseline Model Results for CWE-126 88

5.6 Target Baseline Model Results for CWE-134 89

5.7 Using a Baseline Model Trained Over Ds and Dt,l to Rank Open-Source
Software Warnings . 90

xi

Figure Page

5.8 Result of Baseline Model Trained Over Ds and Dt,l for CWE-126 91

5.9 Result of Baseline Model Trained Over Ds and Dt,l for CWE-134 92

5.10 Using a Baseline Model Trained Using α and Juliet Test Suite to Rank
Open-Source Software Warnings . 93

5.11 Result of a Baseline Model Trained Using α and the Juliet Test Suite . . . 96

5.12 Using a Baseline Model Trained Using β and the Juliet Test Suite to Rank
Open-Source Software Warnings . 97

5.13 Evaluate the Performance of the Source Baseline Model, Baseline Model
with β, and Baseline Model with α for CWE-126 98

5.14 Evaluate the Performance of the Source Baseline Model, Baseline Model
with β, and Baseline Model with α for CWE-134 99

5.15 Using a Baseline Model Trained Using β, Ds, and Dt,l to Rank Open-Source
Software Warnings . 100

5.16 Evaluate the Performance of the Baseline Model with β Only and Baseline
Model Trained Over Ds and Dt,l using β for CWE-126 101

5.17 Evaluate the Performance of the Baseline Model with β Only and Baseline
Model Trained Over Ds and Dt,l using β for CWE-134 102

5.18 Important Software Engineering Metrics for CWE-126-Tool6-open-source 103

5.19 Important Software Engineering Metrics for CWE-134-Tool6-open-source. 104

xii

ABBREVIATIONS

XML eXtensible Markup Language

CWE Common Weakness Enumeration

CVE Common Vulnerabilities and Exposures

NIST National Institute of Standards and Technology

FN False Negative

FP False Positive

TP True Positive

SCA Static Code Analysis

DA Domain Adaptation

SCATE Test Suite Code Analysis Tool Evaluator

SCATWR Static Code Analysis Tool’s Warnings Ranking

SCATWC Static Code Analysis Tool’s Warnings Classification

ARFF Attribute-Relation File Format

ML Machine Learning

DM Data Mining

LOC Lines Of Code

BLOC Blank Lines of Code

CLOC Lines with Comments

SMOTE Synthetic Minority Over-sampling Technique

KNN K-Nearest Neighbor

SVM Support Vector Machine

RF Random Forest

RIPPER Repeated Incremental Pruning to Produce Error Reduction

CFS Correlation-based Feature Selection

xiii

ABSTRACT

Alikhashashneh, Enas A. Ph.D., Purdue University, August 2019. Using Machine
Learning Techniques to Improve Static Code Analysis Tools Usefulness. Major
Professor: James H. Hill.

This dissertation proposes an approach to reduce the cost of manual inspections

for as large a number of false positive warnings that are being reported by Static Code

Analysis (SCA) tools as much as possible using Machine Learning (ML) techniques.

The proposed approach neither assume to use the particular SCA tools nor depends

on the specific programming language used to write the target source code or the

application. To reduce the number of false positive warnings we first evaluated a

number of SCA tools in terms of software engineering metrics using a highlighted

synthetic source code named the Juliet test suite. From this evaluation, we concluded

that the SCA tools report plenty of false positive warnings that need a manual

inspection. Then we generated a number of datasets from the source code that forced

the SCA tool to generate either true positive, false positive, or false negative warnings.

The datasets, then, were used to train four of ML classifiers in order to classify the

collected warnings from the synthetic source code. From the experimental results of

the ML classifiers, we observed that the classifier that built using the Random Forests

(RF) technique outperformed the rest of the classifiers. Lastly, using this classifier

and an instance-based transfer learning technique, we ranked a number of warnings

that were aggregated from various open-source software projects. The experimental

results show that the proposed approach to reduce the cost of the manual inspection

of the false positive warnings outperformed the random ranking algorithm and was

highly correlated with the ranked list that the optimal ranking algorithm generated.

1

1. INTRODUCTION

The most critical goal of the software engineering today is how to build secure software

that continues functioning properly under malicious attack [1]. There are several of

procedures that software developers use to build secure software, such as designing

software to be secure, testing software for security issues, educating themselves by

leveraging best practices of software engineering, detecting common software defects

and threats such as buffer overflows and SQL injection early in the software life cycle,

and minimizing potential security holes in the software by reducing its complexity and

extensibility.

Additionally, there are several practices that can be applied to various software

artifacts to increase the security and enhance quality. For example, abuse cases,

security requirements, and risk analysis can be applied to software requirements and

use cases. Further, enforcing different code analysis approaches to the software source

code and/or to the compiled versions of the source code can help uncover possible

security vulnerabilities. In general, the code analysis approaches can be divided

into two main groups: Static Code Analysis (SCA) and Dynamic Program Analysis

(DPA) [2].

DPA has proven to be an effective technique for finding potential security defects

in the source code by analyzing the proprieties of a program while it is executing [3] [4].

Moreover, the DPA technique relies on program instrumentation to modify the original

program source code for the purpose of gathering traces and collecting an efficient

collection of run-time information to find and understand the problematic code [5].

However, DPA suffers from the overhead of program execution. Likewise, DPA can

only find defects in the part of the code that is actually executed. Moreover, relying

on DPA to detect possible flaws in software source code can be costly, as flaws are

reported late in the software development life cycle.

2

Contrary to DPA, SCA examines software source code or the binary code without

execution to identify potential defects as a warning message [6]. Warnings generated

by SCA tools can be categorized into three main groups: false positive warnings,

which incorrectly report potential defects in the source code; true positive warnings,

which correctly report potential defects in the source code; and false negative warnings,

which do not generate messages for buggy code [7].

As SCA does not need to run the software code and check the output, the security

vulnerabilities can be detected early when it is still inexpensive to fix them. The tools

that automated SCA process inspects the source code using different techniques, such

as bug patterns, control-flow analysis, data-flow analysis, or lexical analysis instead

of relying on input stimuli; therefore, SCA tools can be generalized for all possible

program behaviors, not just to the current environment [8] [9] [10] [11]. In general,

SCA tools’ rules are written in ways to assist the software developers identify common

software errors that the compiler cannot find, such as Common Weakness Enumeration

(CWE) and SEI CERT coding rules violations.

Furthermore, some SCA tools operate on the source code, while others check

the intermediate code and libraries created. Moreover, different SCA tools support

different programming languages. For example, FindBugs, which is an open-source

SCA tool that supports Java [12]; Pylint, which is an open-source SCA tool widely used

by the Python community to reveal potential defects in the python source code [13];

and Klocwork, which is a commercial SCA tool that analyzes C/C++, C#, and Java

programming languages [14] [15].

Therefore, developers may choose from a mix of open-source and commercial

SCA tools, as different tools may produce different results [16]. Because software

developers and testers have many SCA tools to choose from, a common challenge

they face is identifying which tool to use against their code base. As mentioned

above, different SCA tools have unique strengths, weaknesses, and performance

characteristics, which we call their quality, in terms of being able to correctly identify

potential vulnerabilities. The problem is exacerbated when multiple SCA tools claim

3

to check the same vulnerabilities but generate different results. In this scenario, at

least one of the SCA tools is generating both false positives and false negatives.

In the past, there have been several attempts to evaluate the quality of SCA tools.

For example, Knudsen [17] evaluated the ability of Visual Code Grepper, FindBugs,

and SonarQube to detect SQL, OS command, and LDAP injection vulnerabilities

against the Java Juliet Test Suite [18]. Likewise, McLean [19] evaluated several

SCA tools against widely used open-source applications, such as Apache OpenOffice

(AOO) [20], PuTTY [21], NMAP [22], and Wireshark [23]. Further, Velicheti et al. [24]

developed a framework for evaluating different SCA tools against the Juliet test suite

for C++ and Java. We further discuss the related literature on SCA tools evaluation

in Chapter 2.

Although there have been several attempts in the past to evaluate the quality of

SCA tools, none of the existing studies has performed an in-depth analysis of SCA tools

based on well-known software engineering metrics. For example, it is unknown how

software engineering metrics such as Knots [25], Essential Complexity [25], Cyclomatic

Complexity [25], Fan-Out (CountOutput) [26], and Fan-In (i.e., CountInput) [26]

impact an SCA tool’s true positive rate, which is an SCA tool’s ability to correctly

label a flaw, false positive rate, and false negative rate. Likewise, it is unknown which

software engineering metrics have the most impact on the true positive, false positive,

and false negative rates for an SCA tool.

These are important questions that need to be answered because if we can under-

stand how different software engineering metrics impact an SCA tool, then there is

potential to assist tool developers in understanding the weak spots in their analytical

capabilities. More important, we can provide guidelines for software engineers on

how to write better code, so that SCA tools will generate fewer false positives and

false negatives and, potentially, more true positives. We further defend our proposed

framework for evaluating the SCA tools in Chapter 3.

However, like many other tools and techniques, SCA tools have some demerits, one

of which is that the SCA tool cannot assist software developers in detecting when the

4

software performs an unexpected operation. The second demerit of using SCA is that

the SCA tool may generate a massive number of false positives and false negatives. In

fact, Kremenek and Engler [27] observed that the false positive rates for some SCA

tools range between 30%—100%. Other studies, such as [28] [29] [30] have indicated

that 35%—91% of generated warnings are false positive.

One possible solution to this problem is to manually inspect all generated warnings

and identify them as either false or true positive warnings. Manually inspecting

generated warnings, however, is an expensive, time-consuming process that commonly

leads software developers to reject using SCA tools or ignore warnings that may

represent actual defects [31] [32]. Another solution is to automate post-processing

of warning messages to reduce cost of manual inspection using ML techniques that

classify and rank the generated warnings [33]. For example, if we assume that each

warning needs 2 minutes to determine if it is a true or positive warning, and the

software developer has 3,000 generated warnings, manual inspection will require 4.16

workdays. Conversely, ML techniques will need only 3–6 minutes.

Using ML techniques in the SCA field improves the usefulness of the SCA tools

and encourages software developers to use them. Unfortunately, there are two main

limitations to using the ML techniques. First, such techniques assume that there is

a large training set that can be used to identify and analyze relationships between

the features and label value. Generating of such a labeled dataset manually can be

considered as a time-consuming, costly, and boring process. To solve this challenge,

we extended the proposed framework in Chapter 3 to automatically compute the

software engineering metrics and automatically generate a number of labeled datasets

for the synthetic source code and a number of unlabeled datasets for open-source

software projects. Then, by using the generated datasets, we show how we utilize the

ML techniques to predict the SCA tool warnings based on the value of the software

engineering metrics. We further discuss the proposed framework in Chapter 4.

The second limitation of using ML techniques is that the prediction model that is

trained using the aggregated warnings from the synthetic source code can correctly

5

classify and rank the warnings from the same or other synthetic source code. However,

in some cases the warnings generated from an open-source software project can be

too small for training and testing the prediction model. Thus, we cannot retrain the

prediction model that we used in Chapter 4 to classify or rank the warnings in the

open-source software projects. The best solution for this problem is for the developers

or testers to take a trained prediction model from another open-source software project

or form synthetic source code to successfully predict and rank the SCA tool warnings

in their software.

Unfortunately, an applying prediction model obtained from synthetic source code

and used in an open-source software project directly may decrease the prediction

model performance, and this may lead to misclassifying some important and actual

defects in the open-source software projects into false or fake warnings. Based on our

knowledge, none of the current studies addresses this problem. To solve this challenge,

in Chapter 5 we propose a framework for generating a number of unlabeled datasets

for a set of open-source software projects and transfer the prediction model that we

used in Chapter 4 to rank the warnings in the open-source software projects.

To reduce the number of false positive warnings, we hypothesize the following:

• Software engineering metrics values impact the true positive, false positive, and

false negative rates of the SCA tools.

• ML techniques can be used along with a collection of software engineering metrics

to predict if the source code will lead the SCA tool to emit either true positive,

false positive, or false negative warnings.

• Reducing false positive warnings by using ML techniques to rank the warnings.

Our approach is as follows: we evaluate a set of SCA tools using Juliet test

suite in terms of software engineering metrics. Next, we automatically generate a

number of labeled datasets from the synthetic source code that force the SCA tool to

generate false positive, true positive, and false negative warning. Then we train four

of ML techniques using the labeled datasets to predict and classify the SCA tools’

6

warnings. Following, we use the best prediction model that outperformed the rest

of techniques to rank the SCA tool warnings generated using open-source software

projects. Finally, we validate our work with open-source software developers by having

them provide feedback on our warnings ranking list. Finally, sixty of computer science

and engineering undergraduate students verify our work over their source code.

With this understanding, the contributions of this thesis are as follows:

• We evaluate SCA tools using a number of open-source software projects and

a standardized test suite, such as the Juliet test suite in terms of software

engineering metrics.

• We generate twelve datasets to better represent the source code snippets that

forces the SCA tools to report a warning.

• We show the practicality of using ML techniques to classify the SCA tool

warnings.

• We design a framework for ranking SCA tool’s warnings and for eliminating

false positive warnings from the SCA tool’s output.

Our experimental results show that the proposed approach can reduce the amount

of time developers must spend triaging warning messages generated by SCA tools.

This is because developers can focus on warning messages that fall within a certain

threshold, as opposed to investigating all generated warning messages.

The remainder of this dissertation is organized as follows: Chapter 2 discusses

existing approaches from the literature for evaluating and mitigating false positives

in SCA tools; Chapter 3 presents our framework for evaluating SCA tools in terms

of source code metrics; Chapter 4 describes our approach for classifying SCA tool

warnings into false positives, true positives, and false negatives; Chapter 5 presents our

framework on filtering out and ranking false positives from a tool’s output based on

the confidence value that was computed using the prediction model; Finally, Chapter 6

concludes the thesis.

7

2. RELATED WORK

This chapter discusses other approaches in the literature for evaluating the static code

analysis tools and for reducing the number of false positive reports from static code

analysis tools.

2.1 Evaluating SCA Tools

Many studies have evaluated SCA tools using different test cases. For example,

Knudsen et al. [17] tested the ability of three of the open-source SCA tools (Visual

Code Grepper, FindBugs, and SonarQube) to detect SQL, OS command, and LDAP

injection vulnerabilities against the Juliet Test Suite v1.2 for Java. The performance

of these tools is evaluated using the OWASP Benchmark Project, which provides a

system to test the performance of the SCA tools using the Youden index metric [34].

They conclude that FindBugs may be considered as the best tool in detecting LDAP

injections. This work differs from ours in two ways. First, our work evaluates SCA

tools in the context of different software engineering metrics; second, we evaluate the

SCA tools against 91 CWEs, while Knudsen et al. evaluated the SCA tools against

only three CWEs.

McLean et al. [19] compared two SCA tools, RATS and Flawfinder, and their

ability to find vulnerabilities in three open-source applications. The results of their

study concluded that the Flawfinder uncovered 3,189 flaws, while RATS found only

1,415 flaws. On the other hand, both SCA tools produce a large number of false

positives. Last, these authors recommend that the developers analyze their source code

using Flawfinder because this tool reports more valuable information to the developer

than RATS. Our work differs from McLean et al. in that our work evaluates the

8

SCA tools in the context of software engineering metrics, and focuses on well-known

weaknesses (i.e., CWEs) in the Juliet Test Suite.

Baca et al. [35] ran a single SCA tool over four commercial software systems from

Ericsson. They concluded from the SCA tool outputs that the tool generated a large

number of false positive warnings and a low percentage of true warnings. Only 37.5%

of the false positive warnings were identified manually by the developers, a process

that consumed much of the developers’ time. Our work differs from Baca et al. in

that we evaluate five SCA tools in terms of the source code metrics using the Juliet

Test Suite.

Emanuelsson et al. [36] compared the performance of three SCA tools (Polyspace

Verifier, Coverity Prevent and Klocwork Insight) using a set of applications from

Ericsson. The authors in this study concluded that the Coverity and Klocwork tools

have a high value of true positive warnings. In other words, both of these tools

highlighted the most security vulnerabilities in the source code, while PolySpace tool

did not. Importantly, both Coverity and Klocwork produced a low rate of false positive

warnings, while PolySpace produced a high rate of false positive warnings. The work

presented in this paper evaluates the SCA tools in term of software engineering metrics

not only in terms of true positive and false positive warnings generated by these tools.

2.2 Classifying SCA Tools’ Warnings

A number of studies have applied machine learning techniques on characteristics

describing the warning generated by static code analysis tools.

Barstad et al. [37] investigated if they can predict the quality of the source code

based on the static metrics’ value (e.g., McCabe Cyclomatic Complexity and Halsted

metrics) using ML techniques (e.g., Naive Bayes (NB), KNN, and decision tree). In

their work, the source code was classified as "well written" or "badly written". Based on

their results, the NB outperforms the other classifiers. Our work differs their work in

three main ways. First, our work investigates the relationship between the SCA tools’

9

warnings and the software engineering metrics. Second, we evaluate the proposed

approach against seven CWEs using two SCA tools, while Barstad et al. used the

SCA tools to compute the metrics value only. Lastly, they apply ML techniques to

predict the source code quality; while in this work we predict how the SCA tool will

behave on the given source code.

Yuksel et al. [38] proposed an approach to reduce the number of the false-positive

warnings that are emitted by SCA tools by applying 34 ML techniques over datasets

containing 10 different artifact characteristics. They conclude that the ML techniques

can be a useful approach to classify the SCA tools’ warnings because they achieved

87% accuracy. Our work is similar to their work in that we want to reduce the number

of false-positive warnings. The main difference between their work and our work,

however, is that we use the source code characteristic to predict the SCA tool behavior

(i.e., the SCA tool will generate true positive, false positive, or false negative warnings)

on the source code.

Koc et al. [39] trained both a Bayesian classifier and a long short-term memories

(LSTM) neural network on bytecode instructions to predicate the false positive

warnings. In our work, we train our models on the source code, not on bytecode

instructions, which are simplified and easier to analyze with ML techniques as compared

to the source code. On the other hand, we evaluate which metrics are highly correlated

with each type of warning generated by the SCA tool, while in their work the authors

evaluated which source code structures force the SCA tools to generate false positive

warnings.

Reynolds et al. [40] identified and documented 14 of different kinds of false positive

patterns, by running three of SCA tools against C/C++ Juliet test suite. Then the

authors reduced the source code manually in order to remove the unrelated instructions.

In our work, we run a number of ML techniques and infer which of software engineering

metrics are related to each type of SCA tools’ warnings.

Lastly, Tripp et al. [41] tackled the problem of false-positive warnings by combining

the SCA tool user interaction with ML techniques. For example, users classify some of

10

SCA tool warnings into either actionable or spurious. Based on the user input the ML

techniques predict the remaining SCA tool warnings automatically. In our work, we

do not consider user interaction to classify the SCA tool warnings. We will consider

the user interactions in future work.

2.3 Ranking SCA Tools’ Warnings

In this section, we discuss related work on SCA tool warning prioritization methods

either the historical data or statistical analysis techniques.

2.3.1 History-Based Warning Prioritization (HWP)

In this subsection we describe some of the popular history-based warning Prioriti-

zation (HWP) techniques. These techniques rank the SCA tool warnings using the

software change history for warnings removed during bug fixes [30] [42].

Kim and Ernst [30] proposed a history-based warning prioritization algorithm

by mining warning fix experience recorded in the software change histories. The

proposed algorithm was evaluated by running three of SCA tools (FindBugs, JLint,

and PMD) on three programs (Columba, Lucene, and Scarab). The main idea of

this study was if the warnings were eliminated by fix-changes, this indicated that the

warnings were important because they reported a real bug in the software source code.

The experimental results showed that the algorithm improves warning precision by

17%–67%.

Likewise, Ruthruff et al. [43] developed a logistic regression model to predict

and rank whether a generated warning represents a real defect in the given source

code. Screening methodology was used to build an effective model by removing the

factors with low predictive power from the dataset. The authors selected 33 factors to

generate the required models. These factors were extracted from FindBugs warnings

descriptions, Google warning descriptions, file characteristics, source code warning

histories, source code factors, and code churn factors.

11

Our technique differs from the above works in that we utilize characteristics derived

from the source code associated with the collected warnings to rank the new warnings.

Because the proposed framework uses the value of the source code metric to rank the

warnings, the proposed framework might be more practical and better at classifying

the SCA tool warnings. Furthermore, The main limitation of the above works is that

they depend on information from software histories, such as warning fix activities.

Also, the software developers’ prior knowledge and practices can reduce the efficiency

of these methods by increasing the likelihood of missing new potential defects that

the developers have not encountered before. Likewise, these methods can be biased

toward the SCA tool warnings that have a similar flavor [44].

To overcome this restriction and to build an unbiased model, we use Juliet test

suite to build our model. Juliet test suite is a set of thousands of small test programs

written in C/C++ to present over 100 classes of a common software weaknesses, such

as deadlock and buffer overflow [45]

2.3.2 Statistical Analysis-Based Ranking

Kremenek and Engler [27] proposed z-ranking, a technique that ranks the warnings

emitted by SCA tools by employing a simple statistical model. The main idea of this

technique is that code containing many successful checks (safe cases analyzed by the

tool) and a small number of warnings, tends to contain a real error.

On the other hand, Yungbum et al. [46] tackled the problem of false positive

warnings by proposing an analyzer called Airac (Array Index Range Analyzer for C),

which collects all the true buffer overrun points in ANSI C programs. This analyzer

uses the Bayesian statistics to compute the probability that a warning indicates a true

defect. Warnings are sorted by the probabilities value.

Likewise, Ribeiro et al. [47] ranks SCA tool warnings during software development,

allowing developers to fix only the true positive warnings. To rank the warnings, the

authors first ran three of open-source SCA tools (CppCheck, Clang Static Analyzer,

12

and Frama-C) that supported C/C++ programming language on the source code to

collect the warnings. They then trained a set of decision trees using AdaBoost to

create a stronger classifier using a set of features obtained from the labeled aggregated

warnings, such as tool name, number warnings in the same file, category(buffer,

overflow, etc.), redundancy level, and number of neighbors. Finally, They used

AdaBoost classifier probabilities to rank the warnings as either true positive or false

positive. The experimental results showed that the generated classifier achieved 80%

classification accuracy. This work differs from ours in two principal ways. First, our

work ranks SCA tool warnings using a different of software engineering metrics (source

code metrics); second, our datasets represent some of the most common software

weaknesses, such as CWE-134.

The main limitation of these techniques is that they require a large number of

labeled aggregated warnings to build and train the classifier. Producing these datasets

requires a significant manual effort.

13

3. EVALUATION OF STATIC CODE ANALYSIS (SCA)
TOOLS USING SOFTWARE ENGINEERING METRICS

In Chapter 1, we have presented why we need to evaluate the SCA tools and why we

need to generate a number of datasets. In Section 2.1 of Chapter 2, we have already

discussed the related research on evaluating SCA tools. In this chapter, we first

describe the challenges associated with evaluating SCA tools in Section 3.1. Then, we

formally present the Static Code Analysis Tool Evaluator (SCATE) framework, which

is our novel contribution for evaluating SCA tools in term of software engineering

metrics in Section 3.2. Section 3.3 illustrates the Case Study that we use to evaluate

the proposed framework. In Section 3.4, we describe results of applying SCATE to

the selected code base. Finally, we summarize our main contributions in Section 3.5.

3.1 Challenges Addressed by the Proposed Framework

We address several challenges in this chapter, including the following:

• A wide range of SCA tools is available to software developers and companies.

These tools improve source code quality and increase software security by

revealing potential security vulnerabilities early in the software development

process [48]. Therefore, selecting the best tool or set of tools can pose a significant

challenge because manual operation of the tool, as well as manual checking of a

large number of generated reports, is necessary to determine which SCA tools are

suitable for a given source code [15]. Manual SCA tool selection is an extremely

time-consuming and tedious task [7].

• Most current research evaluates the effectiveness of SCA tools by confirming

whether their use improves source code quality and software security. In other

14

words, the tool that highlights the largest number of potential defects in the

source code is considered the best. Few current studies, if any, investigate the

effects of how the source code was written on the ability of the SCA tools’ ability

to identify potential defects [49] .

• Not all the SCA tools can identify the same source code weaknesses. Developers

therefore find it difficult to decide which SCA tools are best for their source

code by considering only the total number of uncovered security defects [48] .

To overcome these challenges, we extended the SCATE 1 framework, a framework

for evaluating the quality of static code analysis tools.

3.2 The Approach of SCATE

This section discusses the design of the framework that we have created to evaluate

the quality of SCA tools, which is illustrated in Figure 3.1. The framework is written

in Python, and is designed to be extensible to any SCA tool we want to evaluate either

locally or remotely. The framework is also designed to be extensible to different code

bases used to evaluate an SCA tool. The key entities in the framework are as follows:

• Command. The Command is an interface that defines the different tasks and

operations supported by the framework. Such commands currently include:

parsing the source code; building the knowledge base from a source code base

acting as the test suite; analyzing an SCA tool’s report; and analyzing source

code metrics like code complexity, dependency between the functions, and source

lines of code (SLOC).

• Tool. The Tool is an interface that defines how SCA tool integrates with the

framework. The Tool interface allows the framework to perform several key
1SCATE is an acronym for Static Code Analysis Tool Evaluator.

15

Command
<<interface>>

+	name():	string
+	parse_args(args):	void
+	execute():	void

Import

SCATE
(main)

Build Export Report

DataManager

+	write(ResultSet):	void

+	read_datapointset():	void

+	write_datapointset(datapointset):	void

Tool
<<interface>>

+	name():	string
+	correct_checker(bug,weakness):	bool
+	supports_weakness	(weakness):	bool
+	build_result_set(language):	instance

XML	ManagerCSV	Manager

C++	JulietJava	Juliet

Latex	Manager SWAMP	ManagerMetrics	Manager

TestSuite
<<interface>>

+	type():	void
+	HandleResultset():	void

Preprocessor
<<interface>>

+	read():	void
+	execute():	void

Preprocessor

Metrics

Undersatnd

Metrics	Manager

SCATool

AbstractSCATool Swamp	Tool<<use>>

Tool1 Tool4Tool2 Tool3 Tool5

RW

Fig. 3.1.: General design of our extensible framework
for evaluating static code analysis tools.

operations offered by SCA tool, such as checking if the SCA tool supports a

specific weakness, and checking if the reported bug has the target type (i.e., the

type of flaw that the test case under testing targets).

• DataManager. The DataManager is used to define the output file format for

each command in this framework. For example, the import command will use

the DataManager to generate the knowledge base of the known flaws from the

16

test cases. Likewise, the build command will use the DataManager to read the

SCA tools’ report and convert it into a hierarchical abstraction (see Figure 3.2).

Each SCA tool generates a different format of report which makes the comparison

hard. To solve this problem we use the hierarchical abstraction to normalize the

SCA tool’s report.

ResultSet

-	source
-	weaknesses
-	import
-	build

Weakness

-	name
-	resultSet
-	suites

Suite

-	directory
-	weakness
-	files File

-	filename
-	suite
-	function
-	metrics

Function

-	name
-	file
-	lines
-	metrics

Line

-	line_number
-	function
-	flaw
-	bug
-	metrics

Flaw

-	line
-	severity
-	description
-	source

MetricSet

-	CountInput
-	CountOutput
-	CountPath
-	Knots
-	Cyclomatic_Complexity
-	CountLineCode

Bug

-	line
-	type
-	message
-	source

Fig. 3.2.: Entities that make the knowledge base
for a Test Suite in the framework.

• Preprocessor. The Preprocessor is an interface that allows the framework to

preprocess the source code and complete any information that will be missing

from an SCA tool report, like the name of the function that contains the known

flaws.

• TestSuite. The TestSuite is an interface for integrating different Test Suites

into the framework. The Test Suite is then used by the framework to construct

17

a knowledge base (or test oracle) from the code base. The knowledge base is

then used to determine the true positive, false positive, and false negative rate

of an SCA tool for the corresponding TestSuite.

3.2.1 Commands Supported in the Framework

Each command in the framework is responsible for a given task in evaluating the

SCA tools. Currently, we have implemented the following set of commands:

• Import. The import command is used to create a knowledge base from the

source code in a TestSuite. The source code must contain the tags identified

in Table 3.1, which originate from the Juliet test suite, to generate the correct

knowledge base that is comprised of the entities listed in Figure 3.2. However,

we simulated these tags in real-world applications using the information available

at (https://www.cvedetails.com).

Table 3.1.: The different Tags used by the Framework
to correctly label locations of interest.

Tag name Description
POTENTIAL FLAW Indicates a flaw that has the target type and

it appears based on specific conditions.
INCIDENTAL FLAW Indicates a flaw that may be detected, but is

not the main focus of the test case.
FIXED Indicates a place in the source code that orig-

inally had a flaw and is no longer present.

• Build. The build command executes different operations supported by a SCA

tool. This includes executing the SCA tool against the Test Suite either locally

or remotely; extracting results; and building an actionable knowledge base from

the reported bugs.

https://www.cvedetails.com

18

• Metric. The metric command is used to compute the different software engineer-

ing metrics for each source file in a Test Suite. The software engineering metrics

are then integrated back into the knowledge base. Currently, we are using the

Understand (https://scitools.com/) tool to generate our software engineering

metrics. Our framework, however, is not limited to only using Understand.

• Export. The export command computes the true positive, false positive, and

false negative rate for the SCA tool by comparing its generated output against

the constructed knowledge base. An output is identified as a true positive when

the SCA tool correctly labels the flaw. The output is identified as a false positive

in three situations: (1) when the SCA tool reports there is a flaw in the source

code, but it really does not; (2) when the SCA tool reports the fix tag in the

good function or in the good class as flaw; and (3) when the SCA tool reports

the flaw tag in the bad function or in the bad class with wrong type. Lastly, an

output is identified as a false negative when the SCA tool does report a known

flaw in a bad function or bad class.

• Report. The report command converts the output from the export command

into a human-readable report.

3.2.2 Integrating With the SWAMP

The SoftWare Assurance Marketrue positivelace (SWAMP) is a cloud environment

for running source code against different static code analysis tools. The SWAMP

provides 19 open-source SCA tool and 4 commercial SCA tools. Its SCA tools support

five programming languages: C/C++, Java, Python, and Ruby. There are two

ways to use the SWAMP. Either use it via their hosted cloud computing platform

(mir-swamp.org), or use the SWAMP-in-a-Box(SiB) open-source distribution [50].

19

Integrating our framework with SWAMP allows the developer to evaluate a wide

variety of SCA tools in the context of software engineering metrics. To perform this

integration, we implemented the following two components:

• SWAMPManager. The SWAMPManager reads the SWAMP Common Assess-

ment Result Format (SCARF) files, which is the common format the SWAMP

uses to for reporting the results of an SCA tool, and builds the abstract model

hierarchy (see Figure 3.2) for our framework.

• SWAMPTool. The SWAMPTool acts as a proxy for running SCA tools run

remotely in the SWAMP.

3.2.3 Classifying SCA Tools Output

We faced several challenges when evaluating the quality of SCA tools. For example,

many of the open-source SCA tools do not document the CWEs [51] their checkers

identify, which is the single entity in an SCA tool responsible for identifying a single

problem. This is important because it allows us to correctly identify when an SCA

tool is generating a true positive, false positive, or a false negative. In our work, we

use the following approach to classify an SCA tool error message as a true positive,

false positive, or false negative:

• True positive. We consider an error message to be a true positive if the SCA

tool highlights the predefined flaw of the target type in the correct location. For

example, in the Juliet test suite the reported flaw should be either in the function

or class with the word bad in its name. To better understand the true positive,

Listing 3.1 shows a simplified code snippet from the Juliet test suite that causes

Tool2 to generate a true positive. The code snippet uses the data pointer to

print out the ASCII code of "A" in Hexadecimal using printHexCharLine

function after delete the pointer using delete. Tool2 successfully detected this

flaw [52].

20

1 //CWE416_Use_After_Free__new_delete_char_18 . cpp

2 void bad () {

3 char ∗ data ;

4 // I n i t i a l i z e data

5 data = NULL;

6 goto source ;

7 source :

8 data = new char ;

9 ∗ data = 'A ' ;

10 //POTENTIAL FLAW: Dele te data in the source

11 // the bad s ink at tempts to use data

12 delete data ;

13 goto s ink ;

14 s ink :

15 //POTENTIAL FLAW: Use o f data t h a t may have

16 // been d e l e t e d

17 printHexCharLine (∗ data) ; // True P o s i t i v e By Tool

18 //POTENTIAL INCIDENTAL: P o s s i b l e memory l e a k

19 // here i f data was not d e l e t e d

20 }

Listing 3.1: True positive example from CWE-416 test case

• False positive. We consider an error message to be an false positive if the SCA

tool highlights a flaw with incorrect type or the fix tag as a flaw. Likewise, the

SCA tool reports a flaw in the source code where in actual there is none. To

better understand the false positives, Listing 3.2 shows a simplified code snippet

from the Juliet test suite that causes Tool1 to generate a false positive. Tool1

generates an Uninitialized dataPtr1 variable, but the source code assign the

memory address of data in line 4 [53].

1 //CWE124_Buffer_Underwrite__char_declare_loop_32 . c

2 void bad () {

3 char ∗ data ;

4 char ∗ ∗ dataPtr1 = &data ;

5 char ∗ ∗ dataPtr2 = &data ;

6 char dataBuf f e r [1 0 0] ;

7 memset (dataBuf fer , 'A ' , 100−1) ;

8 dataBuf fe r [100−1] = ' \o ' ;

9 {

21

10 // False P o s i t i v e : U n i n i t i a l i z e d Var iab le .

11 char ∗ data = ∗ dataPtr1 ;

12 //Flaw : Set data p o i n t e r to b e f o r e the

13 // a l l o c a t e d memory b u f f e r

14 data = dataBuf fe r − 8 ;

15 ∗ dataPtr1 = data ;

16 }

17 }

Listing 3.2: False positive example from CWE-124 test case.

• False negative. If the SCA tool does not identify the flaw for the corresponding

weakness in a function or class that contains the word bad this flaw will be

considered as an false negative. To better understand the false negatives,

Listing 3.3 shows a simplified code snippet from the Juliet test suite that causes

Tool3 to generate a false negative. Tool3 could not highlight the potential flaw

in the source code. This tool did not examine the new value of the data before

executing printLine(100/data) instruction. In other words, bad function

calls bad_source function by passing the reference of data variable, then

bad_source function uses a random function to assign new value to data.

This new value may be zero, so when bad function use this value without

checking if it equals zero a divide-by-zero weakness may be raise [54].

1 //CWE369_Divide_by_Zero__int_rand_divide_43 . cpp

2 stat ic void bad_source (int &data)

3 {

4 data = RAND32() ;

5 }

6

7 void bad ()

8 {

9 int data ;

10 data = −1;

11 bad_source (data) ;

12 //POTENTIAL FLAW: P o s s i b l y d i v i d e by zero

13 p r i n t I n t L i n e (100 / data) ;

14 }

Listing 3.3: False negative example from CWE-369 test case.

22

3.3 Case Study

In this section the case study that we utilize in order to evaluate the effectiveness

of the proposed framework.

3.3.1 Selected Code Base

In this study, we have used two different types of test suites: the synthesized

(Juliet test suite) and real-world (Xerces-C++ and Apache Tomcat) source codes to

evaluate the SCA tools.

In the first phase of the evaluation process, we ran each SCA tool against the Juliet

Test Suite for either C++ or Java to evaluate their quality. The Juliet Test Suite was

created by the National Security Agency’s (NSA) Center for Assured Software (CAS) to

evaluate any SCA tools’ ability. The Juliet Test Suite for C++ programming language

contains 61,387 test cases and covers 118 CWEs (Common Weakness Enumeration),

aiming to create a catalog of software weaknesses and vulnerabilities [55]. On the

other hand, the NIST Juliet suite for Java programming language contains 23,957 test

cases and covers 113 CWEs [56]. In the second phase of the evaluation process, we

ran the open-source SCA tools (Tool1, Tool4, and Tool5) against two of real-world

applications, which are listed below:

1. Xerces-C++ (http://xerces.apache.org/xerces-c/). An XML parser framework

written in the C++ programming language; it can parse, generate, and validate

XML documents using the DOM, SAX, and SAX2 APIs. It is one of the most

widely used C++ XML parsers..

2. Apache Tomcat (tomcat.apache.org). An implementation of the Java Servlet [57]

and JavaServer Pages [58] technology. One of the most widely used Java web-

based application servers, Tomcat is embedded in many enterprise application

servers that serve very high volumes of requests.

23

Table 3.2 shows important information about the real-world applications used as

case studies in this study to evaluate open-source SCA tools in the context of software

engineering metrics values.

Table 3.2.: Some important information about the
real-world applications used as case study

Name Language Number
of vulner-
abilities

Version CWE

Xerces-C++ C++ 9 3.0.0 476, 20, 119
Apache Tom-
cat

Java 32 9.0.0.M1 22, 254, 284,
434,79

To explore the performance of open-source SCA tools on two of real-world ap-

plications, we determine potential security vulnerabilities and their locations using

the information in the newer version, which has the fixed the vulnerabilities and the

security reports available at the application website. On the other hand, to identify

the type of the actual security vulnerabilities, we used the information available at

(https://www.cvedetails.com) [59].

3.3.2 Selected Static Code Analysis (SCA) Tools

The proposed framework evaluates five SCA tools, which are listed below 2:

• Tool1. An open-source SCA tool for C/C++ code. This tool uses Lexical

Analysis to find the flaws in C++ source code. Lexical Analysis matches the

tokenized source code with a list of checkers and reports if it finds a suspicious

pattern. Ignoring the data flow of the source code causes the Tool1 to not able

to detect vulnerabilities caused by the invalidated external input.
2At the time of writing this dissertation we keep the name of the SCA tools confidential because we
do not have time to discuss the results with the SCA tools’ vendors

https://www.cvedetails.com

24

• Tool2. A commercial SCA tool for C/C++ and Java code. This tool analyzes

both the source code and binaries. To find flaws in C++ and Java source code,

Tool2 builds an abstract model from the source code, then explores it with the

symbolic execution engine to test every execution path.

• Tool3. A commercial SCA tool for C/C++, Java, and C# code. This tool

analyzes the source code after building the control flow and data flow. Also,

this tool provides a range of security checkers to detect the potential security

vulnerabilities in the source code. However, Tool3 ranks the uncovered defects

in order to consider only the four most severe levels of warnings to avoid false

positive warnings problem.

• Tool4. An open-source SCA tool for Java code. This tool focuses on finding

bugs or potential performance problems, not style or formatting errors, using a

list of bug patterns and by using data flow analysis for source code. In contrast

to the previous tools, this tool uses byte-code, not source code. The potential

errors reported by Tool4 are classified into four ranks: "scariest" (rank 1-4),

"scary" (rank 5- 9), "troubling" (rank 10-14), and "of concern" (rank 15-20).

These ranks reflect the severity and impact of errors in the software.

• Tool5. An open-source SCA tool for Java and JavaScript code. Tool5 includes

a set of built-in rules in order to detect common programming flaws such as

unused variables, empty catch blocks, and so forth, as well as supporting the

ability to write custom rules. Tool5 includes CPD (Copy-Paste Detector), which

attempts to find the duplicated code in Java, C, C++, PHP, Ruby, FORTRAN,

JavaScript, PLSQL, Python, and other programming languages.

3.3.3 Selected Weaknesses (CWEs)

Although the five SCA tools have been evaluated against 91 CWEs in the test

cases. The results of the following CWEs have been discussed in detail:

25

• CWE-369: Divide by Zero. This weakness occurs when an unexpected value

is provided to the product/calculation, or if an error occurs that is not properly

detected [54]. To better understand this weakness, Listing 3.4 shows a simplified

code snippet that contains a function that computes the average of student

grades.

1 //CWE−369_Divide_by_Zero_example

2 f loat compte_avg (f loat t o t a l , f loat num_grads) {

3 // //POTENTIAL FLAW

4 return t o t a l /num_grads ;

5 }

Listing 3.4: CWE-369 Example

Without validating the parameter value (num_grads) used as the denominator

is not zero a divide by zero error can be occurred. To avoid this error we just

need to ensure that the input value of the num_grads will be always not zero.

• CWE-457: Use of Uninitialized Variable. This weakness occurs when the

source code uses a variable that has not been initialized. This weakness may lead

to unpredictable or unintended results [60]. To better understand this weakness,

Listing 3.5 shows a simplified code snippet that contains a function that print

out the value of the local variable.

1 //CWE−457_Use_of_Uninitalized_Variable_example

2 void print_out () {

3 double dvalue ;

4 //POTENTIAL FLAW

5 pr intDoubleLine (dvalue) ;

6 }

Listing 3.5: CWE-457 Example

The variable dvalue is never assigned any value before using it. The SCA tool

should be able to identify this error as CWE-457 warning message.

26

• CWE-476: NULL Pointer Dereference. This weakness occurs when the

application dereferences a pointer that it expects to be valid, but it is NULL.

This weakness may lead to crash or exit.

1 //CWE−476_NULL_Pointer_Dereference_example

2 void bad () {

3 int ∗ ptr = NULL;

4 /∗ P o t e n t i a l FLAW: Dereferencing o f the n u l l p o i n t e r ' p t r ' ∗/

5 i f (∗ ptr == 17)

6 cout << (" ptr = 17 ") << endl ;

7 }

Listing 3.6: CWE-476 Example

Listing 3.6 shows that the analyzer has to identify the fragment of code that

uses a null pointer. In the if condition, there is a logical error that leads to

dereferencing of the null pointer. The error may be introduced into the code

during code refactoring or through a misprint [61].

• CWE-382: J2EE Bad Practices: Use of System.exit(). This weakness

occurs when access to a function that can shut down the application by calling

System.exit().

• CWE-484: Omitted Break Statement in Switch. This weakness occurs

when the source code omits a break statement within a switch or similar construct,

causing code associated with multiple conditions to execute. However, when the

software developers intended to execute code associated with one condition this

weakness can cause some problems.

3.3.4 Selected Software Engineering Metrics

The software engineering metrics we used to evaluate the SCA tools are a set of

source code metrics, including Volume, Object-Oriented, and Complexity metrics. To

compute the value of the software engineering metrics from the source code, we ran

27

the Understand tool, which is a SCA tool designed to compute the values of most

traditional software engineering metrics for C++ and Java programs. The Understand

tool supports more than 39 software engineering metrics. Moreover, a different number

of techniques can be used to acquire metrics from the source code, either by using the

source code tokens, a data-flow graph, or a control-flow graph. The metrics that were

employed in this work are categorized as below [62]:

1. Basic Count Line Metrics. These metrics retrieve information about each

line in the source code in the scope of a function, a class, or a file. Within this fam-

ily of metrics, we used CountLineBlank, CountLineCode, CountLineComment,

CountLineCodeDecl, CountLineCodeExe, CountLineInactive, and CountLinePre-

processor.

2. Basic Count Metrics. These metrics are divided into two main sets: CountDe-

clClass, which retrieve the number of classes in the file; and, CountDeclFunction,

which retrieve the number of functions declared in the file.

3. Basic Token Metrics. These metrics retrieve information about the source

code complexity. Within this family of metrics, we used Cyclomatic, Cyclomat-

icModified, CyclomaticStrict, Countsemicolon, and MaxNesting.

4. Control Flow Metrics. These metrics are computed from the control flow

graph of the function. Within this family of metrics, we used Knots, Essential,

MinEssentialKnots, MaxEssentialKnots, and CountPaths.

5. Miscellaneous. We used CountInput and CountOutput metric. These metrics

are generally estimated at three levels: project-level, file-level, and function-level.

The software engineering metrics are generally estimated at four levels: project,

class, file, and function. In this work, we estimated the software engineering metrics

at the class, file, and function levels only [62]. However, we will discuss the following

metrics in detail [62]:

28

1. Essential Complexity. This metric computes the source code complexity

after iteratively replacing all the well-structured control structures, such as the

if-then-else and while loops, with a single statement. The Essential complexity

is given with the following equation.

Essential = (number_of_jumps_for_each_node_

that_has_multiple_children− 1) + 1
(3.1)

2. Cyclomatic Complexity. This metric computes the source code complexity

by using the McCabe Cyclomatic technique [63], where the complexity of any

structured source code with only one entrance and one exit point is equal to the

number of decision points contained in that source code, plus one.

3. CountPathLog. This metric belongs to the category of Complexity Metrics

and computes the logarithm of the total number of unique paths in the function

by excluding the abnormal exits and the GoTo statements. This software

engineering metric is assessed by the Understand static tool at the function level.

4. CountOutput. This metric belongs to the category of Object-Oriented metrics

and computes the number of outputs of the function in source code. The

outputs may be classified into functions calls, parameters set/modify, and global

variables set/modify. We computed the value of this software engineering metric

at function or method level by running the Understand static tool, which

follows the information approach of the Fan-Out to calculate the value of the

CountOutput metric.

5. CountPath. This metric belongs to the category of Complexity Metrics and

computes the total number of unique and possible paths in the function by ex-

cluding the abnormal exits and the GoTo statements. This software engineering

metric is assessed by the Understand static tool at the function level.

29

6. Knots. This metric belongs to the category of Complexity metrics, and is a

measure of overlapping jumps. In the given source code, the Knots value equals

the number of line-crossings that determine where every jump in the flow of

control occurs.

7. MaxNesting. This metric belongs to the category of Complexity Metrics, and

computes the complexity of the given function or method in terms of the level

of the control constructs, such as if, while, for, and switch in the function or

method.

8. CountInput. This metric belongs to the category of Object-Oriented metrics

and computes the number of inputs the function uses. The inputs may be

classified into the function calleby, global variables used in the function, and

the in parameters used in the function. We compute the value of this software

engineering metric at the function or method level by running the Understand

static tool, which follows the information approach of the Fan-In to calculate

the CountInput metric value [62].

9. CyclomaticStrict. This metric computes the source code complexity, which

equals the Cyclomatic Complexity metric with logical ANDs and ORs in the

conditional expressions, and also adds 1 to the complexity for each occurrences.

10. RatioCommentToCode. This metric computes the ratio of the number of

comment lines to the number of code lines in a given source code. In some cases,

the value of this metrics is higher than 100, because some lines in the source

code contains both the code and comments.

11. MinEssentialKnots (MinKnots). This metric reflects the minimum value

of Knots metric that computed after all the structured programming constructs

have been removed from a given source code.

12. CyclomaticModified. This metric computes the source code complexity,

which equals the Cyclomatic Complexity metric except that each decision in a

30

multi-decision structure (such as switch) statement is not counted and instead

the entire multi-way decision structure counts as 1.

13. CountStmtExe. This metric counts the number of executable statements in a

given source code. A line in the source code can be executable and declarative,

but a statement must be one or the other (or empty).

14. CountStmtDecl. This metric counts the number of declarative statements in

a given source code.

15. CountStmt. This metric counts the number of declarative plus executable

statements, given with the following equation:

CountStmt = CountStmtDecl + CountStmtExe+ CountStmtEmpty (3.2)

16. CountSemicolon. This metric counts the number of semicolons in a given

source code.

17. CountLineCodeExe. This metric is used to compute the number of lines that

contain executable source code.

18. CountLineInactive. This metric is used to compute the number of lines that

are inactive from the view of the preprocessor.

19. Preprocessor Lines. This metric is used to compute the number of preproces-

sor lines.

20. MaxEssentialKnots (MaxKnots). This metric computes the max value of

the Knots metric after the structure programming constructs have been removed

in the given source code.

21. CountLineComment (aka CLOC). This metric reflects the number of lines

containing a comment. This metric can overlap with other code-counting metrics.

31

22. CountLine (aka NL). This metric counts the number of physical lines in a

given source code.

23. CountLineCode (aka LOC, SLOC). This metric reflects the total number

of lines that contain source code, but only in a given function. For classes,

the value of this metric will be the sum of the CountLineCode for the member

functions.

24. CountLineCodeDecl. This metric counts the number of lines containing

declarative source code. A line can be declarative and executable at the same

time.

25. CountLineBlank (aka BLOC). This metric counts the number of blank lines

in a given source code, excluding in inactive regions.

26. CountDeclFunction. This metric reflects the number of functions in the file.

27. AltCountLineBlank. This metric reflects the number of blank lines, including

in inactive regions.

28. AltCountLineComment. This metric counts the number of lines containing

comments, including comments within inactive regions.

29. AltCountLineCode. This metric counts the number of lines containing source

code, including inactive regions.

30. CountDeclClass. This metric counts the number of classes in the file.

31. CountDeclClassMethod. This metric counts the number of static class

methods.

32. CountDeclClassVariable (aka NV). This metric counts the number of class

variables.

33. CountDeclInstanceMethod (aka NIM). This metric counts the number of

instance methods.

32

34. CountDeclInstanceVariable (aka NIV). This metric counts the number of

instance variables.

35. CountDeclMethod. This metric counts the number of local (not inherited)

class methods.

36. CountDeclMethodDefault. This metric counts the number of local default

visibility methods.

37. CountDeclMethodPrivate (aka NPM). This metric counts the number of

local (not inherited) private methods.

38. CountDeclMethodProtected. This metric counts the number of local pro-

tected methods.

39. CountDeclMethodPublic (aka NPM). This metric counts the number of

public methods, but only local (not inherited) methods.

3.4 Experimental Evaluation of SCATE

This section discusses our experimental results for evaluating SCA tools in the

context of different software engineering metrics.

3.4.1 Experimental Setup

We used the Juliet test suites to perform our experiments against the SCA tools.

To setup and execute our experiment, we executed the following steps:

• We used the import command to parse the source files in the test suite (Juliet

test suites and real-world applications) and build a knowledge base with the

ground truth. The ground truth contains information about the flaws, such

as function name and line number, labeled in the test cases. In this step, the

33

framework parses approximately 61,000 C++ or Java files depending on what

SCA tool we are targeting for evaluation.

• We ran the SCA tools either locally or remotely in the SWAMP against the

source code in the Juliet test suite and real-world applications. We then capture

the generated output of the SCA tool because we need this to evaluate if the

SCA tool is correctly labeling the flaws in the source code.

• Next, we assessed the value of the software engineering metrics for each CWE by

executing Understand against the source code for the corresponding test cases.

• Last, we compared the ground truth with the output generated by the SCA

tool, and assessed the performance of the SCA tool with respect to the different

software engineering metrics.

We applied the steps above against the following SCA tools: an open-source

SCA tool that supports C++ programming language (aka Tool1), two open-source

SCA tools that support Java programming language(aka Tool4 and Tool5), and two

commercial SCA tools that support C++ programming language(aka Tool2 and

Tool3). The proposed framework, however, is not limited to only using these tools.

3.4.2 Experimental Results for SCATE

Although the five SCA tools have been evaluated against 91 CWEs in the test

cases. The results of the following CWEs have been discussed in detail:

• CWE-369: Divide by Zero.

• CWE-382: J2EE Bad Practices: Use of System.exit().

• CWE-457: Use of Uninitialized Variable.

• CWE-484: Omitted Break Statement in Switch.

• CWE-476: NULL Pointer Dereference.

34

Following the behavior of SCA tools based on a set of software engineering metrics

have been discussed in detail.

3.4.2.1 CountOutput (Fan-Out)

Figure 3.3 shows the results of the SCA tools for CWE-369 based on the values

of the CountOutput (Fan-Out) metric. As shown in this figure, Tool3 initially finds

more flaws than the other tools when the value of the CountOutput metric is low.

On the other hand, as the value of the CountOutput metric increases, which means

the functions in the source code have high degree of coupling, Tool3 finds fewer flaws

than Tool2 and the other tools. Likewise, Tool2 finds more flaws than the other tools

when the value of the metric increases. Unfortunately, none of the tools can find any

flaws in the source code when the value of the metric becomes more than six.

Fig. 3.3.: The behavior of SCA tools based
on CountOutput for CWE-369.

However, based on the results shown in Figure 3.3 we can conclude that the SCA

tools cannot understand the source code of function f when there are a large number of

35

functions that depend on it or when function f heavily uses global variables. Therefore,

the tools can miss some of the potential defects in the source code. To improve the

ability of the SCA tools the software developers could rewrite their source code to

reduce the coupling degree. For example, they can avoid using the global variables in

their source code.

3.4.2.2 CountInput (Fan-In)

Figure 3.4 illustrates the behavior of the SCA tools for CWE-457 based on the

CountInput. As shown in the figure, the number of uncovered flaws by both Tool2

and Tool3 decrease as the value of the CountInput increases. Tool2 finds more flaws

than Tool3 when the source code has a high degree of Fan-In. In other words, when

the functions in the given source code have a high number of calling functions and

global variables read, Tool2 performs better than Tool3.

Fig. 3.4.: The behavior of SCA tools based
on CountInput for CWE-457.

36

However, only Tool2 and Tool3 support this weakness so these tools will generate

a number of warnings which can be either true positives or false positives. Therefore,

we can use these warnings to analyze the behavior of these tools only.

3.4.2.3 Lack of Cohesion in Methods (LCOM/LOCM)

The Understand static tool uses the Chidamber and Kemerer method to compute

the value of the LCOM metric [62]. For our experiments, Understand computed the

value of this software engineering metric at the class level. Figure 3.5 illustrates the

behavior of the SCA tools for CWE-382 based on the LCOM.

Only Tool4 and Tool5 support this weakness so these tools will generate a number

of warnings which can be either true positives or false positives. Thus, we can use

these warnings to analyze the behavior of these tools.

Fig. 3.5.: SCA tools behavior based on
LCOM for CWE-382.

37

As shown in this figure, the number of fake warnings generated by both Tool4 and

Tool5 decrease as the value of the LCOM metric increases. Tool5 generates more false

positive warnings than Tool4 when the class has a high degree of LCOM. In other

words, when the class in the given source code has a low degree of cohesion, Tool4

performs better than Tool5.

Likewise, Figure 3.6 showcases the behavior of the SCA tools for open-source

software project based on the LCOM. From this figure, we can observe that Tool5

does not generate any fake warnings for the given source code. On the other hand,

the number of generated fake warnings by Tool4 increases as the value of the LCOM

metric increases. From these figures, we cannot conclude that Tool4 is better than

Tool5. Likewise, we cannot conclude that Tool5 is better than Tool4. It depends on

the structure of the given source code.

Fig. 3.6.: SCA tools behavior based on
LCOM for Open-Source software

38

3.4.2.4 MinEssentialKnots (MinKnots)

Figure 3.7 illustrates the behavior of the SCA tools for CWE-484 based on the

MinEssentialKnots. As shown in this figure, Tool5 generates a large number of false

positive warnings when the given source code has a low number of overlapping jumps

after all the structured programming constructs have been removed. On the other

hand, Tool4 does not emit any false warnings for this weakness. Furthermore, the

number of false positive warnings generated by Tool5 declines as the value of the

MinEssentialKnots metric increases.

Fig. 3.7.: SCA tools behavior based on
MinEssentialKnots for CWE-484

On the other hand, Figure 3.8 showcases the behavior of the SCA tools for Java real-

world application based on the MinEssentialKnots. From this figure, we can observe

39

that SCA tools do not behave in the same way when we use the real-world source

code. This can be observed from the number of the false positive warnings generated

by both the SCA tools. In other words, Tool4 does not generate any false positive

warnings for the synthetic source code, while for the real-world source code it reports a

number of false positive warnings when the value of the MinEssentialKnots metric was

less than 13. However, the number of false positive warnings generated by Tool4 and

Tool5 for the real-world application decreases as the value of the MinEssentialKnots

increases. However, the developers can reduce the amount of knots in their source

code by removing the misuse of "break", "continue", "goto", or "return" to improve the

SCA tool performance.

Fig. 3.8.: SCA tools behavior based on
MinEssentialKnots for Open-Source software

40

3.4.2.5 CountPath

Figure 3.9 showcases the behavior of Tool13 for CWE-476 based on the value of the

CountPath metric. As shown in this figure, Tool1 finds more flaws when the source

code either does not include any control constructs and decision structures or includes

a low number of unique paths. As the number of paths in the source code increases,

Tool1 cannot find more of the potential flaws.

Fig. 3.9.: SCA tools behavior based on
CountPath for CWE-476

Contrary to Figure 3.9, Figure 3.10 displays that Tool1 finds most of the potential

defects in the real-world source code when the value of the CountPath metric increases.
3 Since, currently, we do not have the license for the commercial SCA tools we decided to use the
only Tool1, which is an open-source tool to compare the behavior of SCA tools using Juliet test suite
and open-source software

41

This can be informed from the number of the true positive warnings for Tool1 when

the value of the CountPath metric is higher than 100. On the other hand, Tool1

misses most of the defects when the source code has a low number of unique paths.

Fig. 3.10.: SCA tools behavior based on
CountPath for Open-Source software

From the above-mentioned results, we can conclude that selecting the best SCA

tool for our source code depends on the structure of the source code and the type of

weakness that we want to uncover. Furthermore, the source code of the Juliet test

suite is relatively simple compared to the source code of the real-world applications in

terms of the number and types of the loops, control structures, and function calls that

used in the real-world applications. This may force the SCA tool that generates a

large number of either true or false positive warnings for the source code in the Juliet

42

test suite to not report any fake or true positive warnings for the source code of the

real-world applications.

3.4.3 Threats to Validity

For this framework, the main threat to external validity is most SCA tools do

not have an easily accessible mapping of CWEs to checkers, which we use to classify

the tools’ reported bugs as true positive, false positive, or false negative. This threat

causes many of the reported bugs considered as an false negative not as true positive

and in sometimes increases the number of false positive.

Another threat to validity is that the evaluation performed in this chapter should,

however, be replicated using many other open-source software projects in order to

draw more general conclusions. We investigated the relationship between software

engineering metrics and SCA tool behavior using only two open-source software

projects, which is a relatively small number of projects.

3.5 Summary of Contributions

In this chapter, we have presented the Static Code Analysis Tool Evaluator

(SCATE), which is a framework to evaluate SCA tools using synthetic source code in

term of software engineering metrics. The following are the key contributions of the

SCATE.

• Providing an extensible framework for evaluating SCA tools;

• Evaluating two commercial SCA tools and three open-source SCA tools in terms

of software engineering metrics (source code metrics) against the Juliet test

suite [55] [56] and real-world applications; and

• Discussing how software engineering metrics (such as Coupling and Cyclomatic

Complexity) impact the true positive, false positive, and false negative rates of

the SCA tools.

43

4. CLASSIFICATION OF STATIC CODE ANALYSIS
(SCA) TOOL WARNINGS

In Chapter 1, we have presented why we need to classify the SCA tool warnings.

In Section 2.2 of Chapter 2, we have already discussed the related research on

classification SCA tool warnings. In this chapter, we first describe the challenges

associated with classifying SCA tools in Section 4.1. Then, we formally present the

Static Code Analysis Tool Warnings Classification (SCATWC) framework, which is

our contribution for classifying SCA tool warnings using software engineering metrics

in Section 4.2. Section 4.3 illustrates the Case Study that we use to evaluate the

proposed framework. In Section 4.4, we describe results of applying SCATWC to

Juliet test suite. Finally, we summarize our main contributions in Section 4.5.

4.1 Challenges Addressed by the Proposed Framework

Developing ML prediction model to classify SCA tool warnings and predict future

warnings is challenging. This section presents some of these challenges that we tried

to address. In short, we encountered the following challenges:

• ML techniques have been widely used to build prediction models to classify and

predict SCA tool warnings. To train an ML classifiers, many current studies

have derived a number of features from the meta-data of SCA tools’ warnings,

such as the file name, function name, line number, and total number of warnings

generated for a given function. However, to improve the performance of the

classifier we want to build, we have to use features that actually reflect the

syntax of the source code that forces the SCA tool to generate a true positive,

false positive, or false negative warning. Therefore, using the meta-data of the

44

generated warnings to train a classifier will diminish its accuracy since those

features do not truly reflect the source code’s syntax.

• The availability of datasets has always been a constraint in research predicting

SCA tool warnings and reducing false positive warnings. In other words, a

number of professionals are usually hired to manually annotate the warnings

and source code as true positive, false positive, or false negative. Annotating

datasets in this way is considered a time-consuming process and is prone to

inaccurate labeling.

• The main issue in predicting and classifying SCA tool warnings is that the

underlying training dataset suffers from an imbalanced distribution problem, in

that the training set for false positive and false negative warnings (the majority

classes) is far larger than the training set of the true positive warnings (the

minority class). This issue leads the classifier to correctly classify and predict

all of the SCA tool warnings from the majority classes (false positives and false

negatives) but to misclassify most of the SCA tool warnings of the minority

class (true positives) [64] [65].

To overcome these challenges, we proposed the SCATWC 1 framework, a framework

for classifying the warnings of SCA tools.

4.2 The Approach of SCATWC

In order to classify the warnings created by SCA tools based on the software

engineering metrics (i.e., source code metrics) new datasets have been created and a

set of ML techniques have been utilized in the proposed approach. Fig. 4.1 indicates

the overview of our approach. As shown in this figure, our approach includes two

stages.
1SCATWC is an acronym for Static Code Analysis Tool Warnings Classification.

45

In the first stage, we generate a number of datasets by analyzing a given source

code in two different ways; first, we compute the software engineering metrics such as

Volume, Complexity, and Object-Oriented Metrics metrics. Second, we extract the

SCA tools’ warnings by utilizing a framework SCATE [7].

In the second stage, we utilize four of the common ML techniques. Our proposed ap-

proach, however, is not limited to only the four ML techniques discussed in this chapter.

SCATE
Framework

Code
Base

Understand Static
Tool

<<use>>
DataSet

Step#1: Data set generation phase

Preprocessing

Step#2: Learning phase

Model

Training
Data set

Testing
Data set

Predicate

create

Results

DataSet

Fig. 4.1.: The overview of the proposed approach.

46

4.2.1 Dataset Generation Stage

In order to apply the ML techniques on a given source code, we have to follow a

set of important steps:

1. Extract SCA tools’ warnings. To extract the class values (i.e., true positive,

false positive, and false negative), we use SCATE [7], which is an open-source

framework for evaluating the quality of a SCA tool based on the number of true

positives, false positives, and false negatives it generates. This framework was

extended to evaluate more open-source and commercial SCA tools either by

running them locally or remotely in the SWAMP [50] (see Chapter 3).

The main reason for using this framework in our research, is to run the SCA

tools against Juliet test suite for the C++ language to highlight source code

snippet that causes the SCA tool to:

(a) Uncover the target security flaws in either the bad function or in the bad

class implementation (aka true positive tag),

(b) Report that there is a flaw while in reality there is not one (aka false

positive tag), or

(c) Report that there is no flaw while in reality there is one (aka false negative

tag).

These tags will represent class variable value in the generated dataset. Further-

more, the highlighted source code snippets will be used as inputs to the next

step.

2. Compute software engineering metrics. To extract the most important

attributes, or features, from a given source code, we integrated SCATE with

the Understand tool (https://scitools.com/). Understand is a static analysis

tool focused on source code comprehension, metrics, and standards testing.

We use the Understand tool by executing it against the highlighted source code

snippet from the Juliet test suite to compute different software engineering

https://scitools.com/

47

metrics at the function-level. The software engineering metrics (see Section

4.3.6) are then integrated back into the SCA tool report managed by SCATE.

Our proposed approach, however, is not limited to only using the Understand

tool, but is generic in nature.

Figure 4.2 showcases how we extended the design of the SCATE framework to

achieve the dataset generation stage by adding a new command namedDSGenerating

command. The DSGenerating command is used to generate a number of datasets

by comparing and integrated the outputs of the above-mentioned steps.

Command

<<interface>>

+	name():	string

+	parse_args(args):	void

+	execute():	void

Import

SCATE

(main)

Build Export Report

DataManager

+	write(ResultSet):	void

+	read_datapointset():	void

+	write_datapointset(datapointset):	void

Tool

<<interface>>

+	name():	string

+	correct_checker(bug,weakness):	bool

+	supports_weakness	(weakness):	bool

+	build_result_set(language):	instance

XML	ManagerCSV	Manager

C++	JulietJava	Juliet

Latex	Manager SWAMP	ManagerMetrics	Manager

TestSuite

<<interface>>

+	type():	void

+	HandleResultset():	void

Preprocessor

<<interface>>

+	read():	void

+	execute():	void

Preprocessor

Metrics

Undersatnd

Metrics	Manager

SCATool

AbstractSCATool Swamp	Tool<<use>>

Tool1 Tool4Tool2 Tool3 Tool5

DS	Manager

DSGenerating

Fig. 4.2.: The new design of SCATE framework

48

The output of this stage is a numerical dataset, which corresponds to the contents

of a data matrix, where every column of the matrix represents a particular software

engineering metric. The last column, however, represents a class value (i.e, true positive

(which is represented by 1), false positive (which is represented by 2), and false negative

(which is represented by 3)). Likewise, each row in the matrix corresponds to a given

function in the source code. The dataset is, therefore, a multi-class dataset. However,

in some special cases, when the SCA tool generates only two type of tags, or classes,

the generated dataset will be a binary dataset.

To better understand the structure of the generated dataset, Figure 4.3 shows a

sample dataset that is generated as an Attribute-Relation File Format (ARFF) file.

From Figure 4.3, we can observe that the ARFF file contains two main sections: the

header and the data section. The header section contains the name of the relation (in

our example CWE-762-Tool1); a list of the attributes (software engineering metrics

and whether Tool1 will generate true positive (1), false positive (2), or false negative

(3) warning), and their types. In the data section, each line represents a function in a

given source code, and each line contains both the values of the software engineering

metrics for that function and what the warning Tool1 generated.

4.2.2 Learning Stage

The main goal of this stage is to build a classifier (i.e., statistical model) by

applying a set of ML techniques to the datasets generated in Stage 1 (see Section

4.2.1). The classifier is then used to predict a classification value for unknown source

files. Another important goal of this stage is to learn which software engineering

metrics are correlated with true positive, false positive, and false negative warnings

generated by a SCA tool. This stage includes three phases:

1. Preprocessing. The generated dataset contains a set of data points representing

a function that will cause the SCA tool to generate a true positive, false positive,

or false negative message. The data points are represented by a collection of

49

Fig. 4.3.: Dataset sample of Tool1 warnings for CWE-762

software engineering metrics that measure a function’s complexity, coupling,

function’s cohesion, and other metrics. Unfortunately, a SCA tool can generate

more than one warnings (i.e., false positive, false negative, and true positive) for

the same function. This can result in contradicting data points in the generated

datasets. To address this problem, we remove the contradicting data points as

Hernández et al. [66] suggest.

2. Model Learning. This phase involves constructing a classifier by using the

training dataset and by examining four of the ML techniques: Support Vector

Machine (SVM) [67], K-Nearest Neighbor (KNN) [68], RF [69], and Repeated

Incremental Pruning to Produce Error Reduction (RIPPER) [70].

3. Prediction. The generated classifiers (from the model Learning phase) are

used to predict whether a function in unknown source code will cause a SCA

50

tool to generate a true positive, false positive, or false negative message based

on the value of software engineering metrics for the corresponding function.

4.3 Case Study

We use the following case study to evaluate the effectiveness of the proposed

approach.

4.3.1 Selected Machine Learning (ML) Techniques

In this section, we briefly discuss the ML techniques used in this chapter.

4.3.1.1 Feature Selection

In this work, feature selection is important because it filters redundant and the

inefficient software engineering metrics. We use the Correlation-based Feature Selection

(CFS) technique [71] [72] to identify the most significant software engineering metrics.

The CFS technique searches all the combinations of the software engineering metrics

to find the best combination of the metrics [71].

The CFS technique evaluates the correlation between the software engineering

metrics and the class. The selected software engineering metrics are highly correlated

with the class and less correlated amongst themselves. To do that, the CFS technique

51

uses the Pearson coefficient [73], where a high value, or correlation, indicates the best

combination of software engineering metrics.

4.3.1.2 Synthetic Minority Over-sampling Technique (SMOTE)

SCA tools generate a large number of false positive and false negative warnings,

which results in generating datasets that have a disproportionate ratio of true positive,

false positive, and false negative warnings, or classes. This problem is known as

unbalanced data [65]. To solve this problem and enhance the classifier’s ability, we

used the SMOTE technique [74] to balance the training dataset.

The SMOTE technique balances the binary dataset (in our case: CWE-252-Tool2

and CWE-457-Tool2 see Section 4.4.1) by adjusting the class distribution of a dataset.

We apply the SMOTE on our multi-class datasets by following the strategy, proposed

by Fernandez et al. [75], in two steps. First, we use the binarization schemes, such

as one versus one (OVO), to transform the multi-class dataset into a set of binary

datasets.

Second, we apply the SMOTE approach on each binary dataset to solve the

imbalance problem. However, using the oversampling technique, such as SMOTE, to

balance the datasets may cause overfitting problem. To overcome this problem, we

use the cross-validation technique [76].

4.3.1.3 Classification Techniques

We selected four kinds of classification techniques for our work: instance-based

learning, ensemble learning, rule-based learning, and statistical learning. The tech-

niques are used as benchmarking algorithms to learn and predict the SCA tools warning

for a given source code based on its corresponding software engineering metrics.

52

We also selected ML techniques that have successfully been used in the software

defect detection field [77] [78]. We used the Weka Machine Learning workbench

(https://www.cs.waikato.ac.nz/ml/weka/) and Scikit-learn Machine Learning li-

brary (https://scikit-learn.org/stable/) to train and test the selected ML tech-

niques. Table 4.1 presents the summary of the four ML techniques we used in the

work.

Table 4.1.: Description of ML Techniques Used in Work

ML Technique Description
K-Nearest Neighbor (KNN) It is an instance-based learning algorithm that generalizes

the training data when the time comes to predict a new
data point rather than when the training dataset is
processed [68].

Support Vector Machine
(SVM)

It is developed from statistical learning to build a su-
pervised learning model from either binary datasets or
multi-class datasets. In this work, for the multi-class
datasets, we use OVO and binary SVM technique to
predict the SCA tool warning [67].

Random Forest (RF) It is an ensemble learning method that constructs a series
of unpruned classification trees from bootstrap functions
and software engineering metrics of the training dataset.
The predicted SCA tool warning is determined using the
majority vote as a decision rule [69].

Repeated Incremental Prun-
ing to Produce Error Reduc-
tion (RIPPER)

It is a rule induction algorithm that generates the initial
set of rules for the minority class using incrementally
reduced error. These rules must cover all the functions
of that class. Afterward, the algorithm fills up to the
next class and repeats the same steps until all the classes
have been covered [70].

4.3.2 Selected SCA Tools

We used an open source and a commercial tool for evaluating our work. Since

most source code in the Juliet test suite is written in C/C++ and Java, we selected

https://www.cs.waikato.ac.nz/ml/weka/
https://scikit-learn.org/stable/

53

tools that supported at least one of these two languages. The selected SCA tools are

listed below 2:

1. Tool1. An open-source SCA tool that uses Lexical analysis to find the flaws in

C++ source code. Lexical analysis matches the tokenized source code with a

list of checkers, and reports if it finds a suspicious pattern. (See section 3.3.2).

2. Tool2. A commercial SCA tool that analyzes both the source code and binaries.

To find the flaws in C++ and Java source code, Tool2 builds an abstract model

from the source code and then the symbolic execution engine explores the

source code to test every execution path and the variables to find the flaws (See

section 3.3.2).

We selected an open-source SCA tool because it is freely available and can be

used as a base case in order to compare it with a commercial SCA tool. On the other

hand, we selected a commercial SCA tool because the commercial tools are usually

considered to be more trustworthy than the open-source tools [79].

4.3.3 Selected Code Base

We run each SCA tool against the Juliet test suite for C++ to generate the

true positive, false positive, and false negative warnings. The NIST Juliet suite

contains 61,387 test cases covers 118 CWEs, which aim to create a catalog of software

weaknesses and vulnerabilities [55] (see Section 3.3.1).

4.3.4 Selected Weaknesses (CWEs)

In this work, we focus on the following CWEs as they have a bigger dataset for

SCA tools’ warnings when compared to the other weaknesses (see Section 4.4.1) [51],

However, the proposed approach is not restricted to a specific number or type of

CWEs:
2For privacy reasons, we do not disclose the names of the SCA tools.

54

1. CWE-252: Unchecked Return Value. This weakness occurs when the

software does not check the return value from the function. This weakness may

lead to prevent the software from detecting unexpected states and conditions.

To better understand this weakness, Listing 4.1 shows a simplified code snippet

that contains a function that prints out the value of data.

1 //CWE−252_Unchecked_Return_Value_example

2 void bad_code () {

3 char dataBuf f e r [1 0 0] = " " ;

4 char ∗ data = dataBuf fe r ;

5 p r i n t L i n e (" Please ente r a s t r i n g : ") ;

6 //POTENTIAL FLAW

7 f g e t s (data , 100 , s t d i n) ;

8 p r i n t L i n e (data) ;

9 }

Listing 4.1: CWE-252 Example

Without validating the return value of the (fgets) function an unchecked return

value flaw can be occurred. To avoid this flaw we just need to ensure that the

return value of the fgets function will be always not Null.

2. CWE-369: Divide by Zero. There are two reasons for this weakness; first

one is when an unexpected value is provided to the product. The second reason

is, if an error occurs that is not properly detected (See section 3.3.3).

3. CWE-415: Double Free. This weakness occurs when the product calls free()

twice on the same memory address. This weakness may lead to modification of

unexpected memory locations. To better understand this weakness, Listing 4.2

shows a simplified code snippet that initialize data pointer and then freeing the

memory.

1 //CWE−415_Double_Free_example

2 void bad_code () {

3 char ∗ data ;

4 data = NULL;

55

5 data = (char ∗) mal loc (100∗ s izeof (char)) ;

6 f r e e (data) ;

7 /∗ POTENTIAL FLAW: P o s s i b l y f r e e i n g memory twice ∗/

8 f r e e (data) ;

9 }

Listing 4.2: CWE-415 Example

There is a potential flaw in line 8 because the data pointer may free the memory

twice.

4. CWE-457: Use of Uninitialized Variable. This weakness occurs when the

source code uses a variable that has not been initialized. This weakness may

lead to unpredictable or unintended results (See section 3.3.3).

5. CWE-426: Untrusted Search Path. This weakness occurs when the software

looks out for critical resources using an externally-supplied search path that

can point to resources that are not under the application’s direct control. To

better understand this weakness, Listing 4.3 shows a simplified code snippet that

contains a function that use the POPEN function, which call opens a process

by creating a pipe, forking, and invoking the shell. It does this by executing the

command specified by the incoming string function parameter. It creates a pipe

between the calling program and the executed command, and returns a pointer

to a stream that can be used to write to the pipe.

1 //CWE−426_Untrusted_Search_Path_example

2 #define BAD_OS_COMMAND " l s −l a "

3 void bad_code () {

4 {

5 char ∗ data ;

6 char dataBuf f e r [1 0 0] = " " ;

7 data = dataBuf fe r ;

8 i f (g l o b a l F i v e==5)

9 {

10 /∗ FLAW: the f u l l path i s not s p e c i f i e d ∗/

11 s t r cpy (data , BAD_OS_COMMAND) ;

12 }

56

13 {

14 FILE ∗ pipe ;

15 /∗ POTENTIAL FLAW: Executing the popen () func t i on wi thout

↪→ s p e c i f y i n g the f u l l path to the e x e c u t a b l e

16 ∗ can a l l ow an a t t a c k e r to run t h e i r own program ∗/

17 pipe = POPEN(data , "wb") ;

18 i f (p ipe != NULL)

19 {

20 PCLOSE(pipe) ;

21 }

22 }

23 }

24 }

Listing 4.3: CWE-426 Example

SCA tool must highlight the potential defects in line 11 and line 17.

6. CWE-762: Mismatched Memory Management Routines. This weakness

occurs when the application attempts to return a memory resource to the system,

but it calls a release function [80].

1 //CWE−762_Mismatched_Memory_Management_Routines_example

2 void bad_code (char ∗ n) {

3 char ∗ empname = (char ∗) c a l l o c (s t r l e n (n) + 1 , s izeof (char)) ;

4 s t r cpy (empname , n) ;

5 //POTENTIAL FLAW

6 delete empname ;

7 }

Listing 4.4: CWE-762 Example

In this example, the function allocates an empname using calloc, however, the

function uses delete function to deallocate empname instead of using free(). The

SCA tool should be able to detect this defect as a CWE-762 warning message.

7. CWE-476: NULL Pointer Dereference. This weakness occurs when the

application dereferences a pointer that it expects to be valid, but it is NULL.

This weakness may lead to crash or exit (See section 3.3.3).

57

SCA tools may be able to correctly detect these CWEs, and might also report a

set of false positive and false negative warnings, which reduces the usability of the

SCA tools. Likewise, going through all the false positive warnings manually, in order

to check if the SCA tool correctly detects a real weakness in the source code, will

consume a lot of developer time.

4.3.5 Selected Performance Evaluation Metric

We have carefully selected a suitable performance measure that examines the

strength and the predictive ability of the developed models. SCA tools generate a

large number of false positive and false negative warnings and the generated datasets

have a disproportionate ratio of the true positive, false positive, and false negative

classes. This problem is known as unbalanced data. In such a case, when we create a

classification model, we will get a high accuracy metric value (such as 90%).

But, this accuracy value is only reflecting the underlying class distribution. This

problem is called accuracy paradox. For this reason, it is better to avoid using accuracy

as the metric to assess the performance of the prediction models [81]. The precision

and recall are commonly used as a performance measure in an unbalanced dataset

problem [82]. However, there is a trade-off between the precision and recall. Thus it

is, therefore, better to use the F1-score, which selects the best model based on the

balance between the precision and recall, as a performance measure for our comparative

needs.

4.3.6 Selected Software Engineering Metrics

As indicated earlier, we compute the source code metrics using the Understand

tool at the function-level. We do this because we are interested in predicting the

behavior of a SCA tool based on how the given function was written not how the whole

file was written. For this reason, twenty-one software engineering metrics, which are

supported by the Understand tool, are selected to generate the datasets. The selected

58

software engineering metrics are listed below, Section 3.3.4 shows a brief description

for these metrics.

1. CountInput (Fan-In).

2. CountOutput (Fan-Out).

3. Knots.

4. CountLineCode.

5. CountLineCodeExe.

6. CountPath.

7. Essential.

8. Cyclomatic.

9. CyclomaticStrict.

10. CyclomaticModified.

11. MaxNesting.

12. MinEssentialKnots.

13. MaxEssentialKnots.

14. RatioCommentToCode.

15. AltCountLineBlank.

16. CountLineBlank (BLOC).

17. CountLineCodeDecl.

18. CountLineComment (CLOC).

19. CountLineInactive.

59

20. Preprocessor Lines.

21. CountDeclFunction.

However, our proposed approach is not restricted to the selected CWEs or SCA

tools. Furthermore, we believe that the proposed approach can work for multiple SCA

tools and for different weakness types.

4.4 Experimental Evaluation of SCATWC

This section evaluates the effectiveness of the selected ML techniques. This section

also analyzes their performance using the F1-score.

4.4.1 Experimental Setup

In all the experiments, we have adopted a 10-fold cross-validation as a validation

method to address the overfitting problem and to obtain a realistic insight about the

prediction of the model. In 10-fold cross-validation, the dataset is randomly divided

into 10 folds—each one containing the 10% of the data points of the dataset. This

means that nine folds were used for training and one fold was used for testing. This

procedure is repeated ten times and the final performance value for each ML model is

averaged [76].

Table 4.2 summarizes the properties of the generated datasets that we used in our

experiments. This table shows the number of data points, the number of features, and

the number of classes for each dataset. A majority of the datasets used in this work

have either two classes (i.e., true positive and false positive) or three classes (i.e., true

positive, false positive, and false negative).

60

Table 4.2.: Summary Description of the data sets

Data set #DataPoints #Features #Classes
CWE-369-Tool1 1836 21 3
CWE-476-Tool1 805 21 3
CWE-762-Tool1 7277 21 3
CWE-252-Tool2 1263 21 2
CWE-369-Tool2 11186 21 3
CWE-415-Tool2 10388 21 3
CWE-426-Tool2 1064 21 3
CWE-457-Tool2 9165 21 2

4.4.2 Experimental Results for SCATWC

4.4.3 CFS Results Analysis

For our research, we are interested in building a classifier model that can predict

the SCA tool warnings for a given function, but we also interested in finding which

of the software engineering metrics are highly correlated with the true positive, false

positive, and false negative warnings.

Table 4.3 shows the relevant software engineering metrics that we identified in

each dataset after applying CFS to it. Each of these subsets has the highest merit

value among 221 other subsets.

To select the best software engineering metrics subset with the highest merit value,

the CFS technique uses the Best First Search algorithm [83] to select the software

engineering metrics that are highly correlated with the warning type, and they are

uncorrelated with each other at the same time.

In this work, to run the CFS technique, we utilized all the features in the generated

datasets. In other words, we ran the CFS technique to compute the merit value by

61

investigating all the software engineering metrics that have either positive, negative,

or zero correlation values.

On the other hand, we can observe from this table that the most frequent selected

software engineering metrics among the eight datasets were CountInput, Knots,

CountOutput, CountPath, Cyclomatic, and Essential.

Table 4.3.: Relevant Software Engineering Metrics

Dataset Software Engineering Metrics Merit
CWE-369-Tool1 CountOutput, CountPath, Knots, Cyclomatic, and

CountInput
0.45

CWE-476-Tool1 CountInput, CountLineCode, CountPath, and
MaxEssentialKnots

0.45

CWE-762-Tool1 CountPath, Knots,CountInput, and MinEssential-
Knots

0.73

CWE-252-Tool2 CountInput, Knots, Cyclomatic, CyclomaticStrict,
and Essential

0.78

CWE-369-Tool2 CountInput, Knots, CountOutput, CountLineCode,
Essential,and CountPath

0.32

CWE-415-Tool2 CountInput, Knots, CountOutput, Essential, and
CountPath

0.31

CWE-426-Tool2 CountInput, Knots, Cyclomatic, Essential, Count-
Path, and CountDeclFunction

0.40

CWE-457-Tool2 CountInput, Knots, Cyclomatic, and MaxNesting 0.55

4.4.4 Discussion of Results

Table 4.4 presents the F1-score for the eight datasets and four classification

techniques after using CFS to select the most important software engineering metrics.

As shown in this table, we can observe that the RF technique is better than the other

ML techniques at predicting the functions that force the SCA tools to emit either the

true positive, false positive, or false negative warnings.

For example, for the CWE-369-Tool1 dataset, the RF can correctly predict 94% of

the given functions which warnings the SCA tool will emit, while the RIPPER can

62

correctly predict 92% of these functions. Likewise, KNN and SVM predict correctly

87% and 70% what warnings the given function will force the SCA tool to emit.

Table 4.4.: Experimental Results Based on F1-score metric.

Dataset SVM KNN Random Forest RIPPER
CWE-369-Tool1 70% 87% 94% 92%
CWE-476-Tool1 58% 76% 83% 81%
CWE-762-Tool1 76% 81% 87% 83%
CWE-252-Tool2 84% 85% 87% 86%
CWE-369-Tool2 72% 86% 91% 87%
CWE-415-Tool2 83% 87% 94% 92%
CWE-426-Tool2 67% 83% 89% 87%
CWE-457-Tool2 93% 94% 98% 95%

The results show that predicted models generated using the RF and RIPPER

techniques have F1-score greater than 80% corresponding to most of the datasets. On

the other hand, the predicted models that generated using SVM technique have a low

value of F1-score among the multi-class datasets. However, SVM technique has a high

F1-score (i.e., larger than 80%) among the binary datasets.

The F1-score of the RF models were between 83% - 98% in the eight datasets. The

results show that the RF is better than the other ML techniques. It also demonstrates

that the RF is the most effective in SCA tool warnings prediction. One reason that

the RF technique has better performance is that the RF technique works especially

well on large datasets [84] such as CWE-415-Tool2. Another reason is that the CFS

selects the optimal subset of software engineering metrics and passes them to RF.

This means RF uses the optimal subset of software engineering metrics—giving it a

better F1-score score in classifying the SCA tool warnings.

The SVM technique was not able to do well in one dataset of the Tool1 (CWE-

476-Tool1), where the F1-score value is only 58%. This is because the SVM technique

was not able to make an accurate prediction of the SCA tool warnings on the basis of

63

only the Volume (e.g., CountDeclFunction and CountLineCode) and Object-Oriented

metrics (e.g., CountInput).

4.4.5 RIPPER Results Analysis

As shown in the experimental results, the RIPPER comes in second place after the

RF in achieving high predicting performance. In this section, we display an example

of the RIPPER rules learned from the CWE-426-Tool2 dataset, and how we try to

interpret these rules. Fig. 4.4 shows sample rules for the Tool2, which are as follows:

1) CountInput >= 2 && CountPath >= 2
 True-Positive-Alter
2) CountInput >= 2 && Essential >= 1

&& Essential <= 2 True-Positive-Alter

3) CountInput >= 2 && Knots <= 0 True-Positive-Alter

5) Knots >= 0
4) CountDeclFun <= 1 && Essential >= 1 Fasle-Negative-Alter

Fasle-Negative-Alter
6) Fasle-Positive-Alter

Fig. 4.4.: CWE-426-Tool2 Datase Sample of Rules.

1. If the given source code (function) has a Fan-In value larger than or equal 2

(which means that the total number of parameters and global variables that are

used in the function is greater than or equal to 2), and also the given function

has at least 2 unique paths, then Tool2 can find the existing security flaw in the

given function.

2. If the given source code (function) has a Fan-In value larger than or equal 2

(which means that the total number of parameters and global variables that are

used in the function is greater than or equal to 2), and also the given function

has a complexity larger than or equal to 1 and less than or equal to 2 after all

the control-flow structures are replaced with a single statement, then Tool2 can

find the existing security flaw in the given function.

64

3. If the given source code (function) has a Fan-In value larger than or equal 2

(which means that the total number of parameters and global variables that are

used in the function is greater than or equal to 2), and also the given function

complexity (Knots) equals zero, then Tool2 can find the existing security flaw in

the given function.

4. If the number of the function in the given source code equals one and the given

source code has a complexity at least 1 after all the control-flow structures are

replaced with a single statement, then Tool2 cannot find the existing security

flaw in the given function.

5. If the number of the overlapping jumps (i.e., for the corresponding source code,

Knots equals to the number of crossing of the lines that determine where every

jump in the flow of control occurs) in the given source code(function) larger than

zero, then Tool2 cannot find the existing security flaw in the given function.

Lastly, if there exists a data point, or source code, that does not meet the conditions

of the previous rules, then the prediction model assigns the majority class in the

dataset, which is a false positive warning. In other words, the prediction model

assumes that the Tool2 will report that there is a security flaw in the given source

code, while in reality there is no one.

From the previous rules, we can conclude that Tool2 can find the defect, or the

flaw, in the given function that has a high degree of Fan-In. On the other hand, the

ability of the Tool2 in finding the defects in the given function will be reduced when

the source code has a high degree of complexity. In this situation, we can infer that

the value of the software engineering metrics for the given function affects on the

ability of the SCA tool in finding the potential defects in the source code.

Fig. 4.5 shows sample rules for the Tool1, which are as follows:

1. If the given source code (function) has a Fan-In value lower than or equal 2

(which means that the total number of parameters and global variables that

are used in function is less than or equal to 2), on the other hand, if the given

65

1) (CountOutput <= 1). and (CountPath >= 1)
 and (CountPath. <= 3) and (CountInput <= 2).

True-Positive-Alter

2) (Cyclomatic >= 5) and (Knots <= 0) True-Positive-Alter

3) (CountOutput >= 2) and (Knots <= 6)
 and (Knots >= 1)

False-Positive-Alter

False-Negative-Alter4)

Fig. 4.5.: CWE-369-Tool1 Dataset Sample of Rules.

function has a Fan-Out value less than or equal to 1. Likewise, if the given

function has at most 3 unique paths then the Tool1 can find the existing security

flaw in the given function.

2. If the number of crossing of the lines that determine where every jump in the

flow of control occurs in the given function equal zero. Also, if the complexity

of the given function larger than or equal 5, then Tool1 can find the existing

security flaw in the given function.

3. If the given function has a Fan-Out value larger than or equal 2, and the Knots

metric value ranges from 1 to 6, then Tool1 will generate a fake warning.

If there exists a data point, or function, that does not meet the conditions of the

previous rules the prediction model assigns the majority class in the dataset, which is

a false negative warning. In other words, the prediction model assumes that the Tool1

will not report that there is a security flaw in the given source code when in reality

there is one.

From the previous rules, we can conclude that Tool1 can find the defect in the

given function if it has a low degree of coupling (Fan-In and Fan-Out). On the other

hand, Tool1 will generate a false warning when the given function has a high degree

of Fan-Out. In this situation, we can infer that the value of the software engineering

metrics for the given function affects the ability of the SCA tool in finding the potential

66

defects in the source code. For example, Tool2 cannot highlight the potential defects

when the given source code has a high degree of Knots.

Due to a large number of decision trees that the RF technique builds for each

dataset (i.e., for the first dataset in Table 4.2 the RF technique creates more than 50

decision trees.), we cannot list and describe the results for each developed model by

the RF technique.

4.4.6 Threat to Validity

For this work, the threats to validity are related to the software engineering metrics

computed by Understand. In most of the software engineering tools, the metrics

are computed either at a file or at a function level. We have computed metrics at

the function level, which leads results in generating contradictory data points in the

datasets.

Another threat to validity is the generalization of the results of the proposed

approach. We have analyzed 7,508 test cases from the Juliet test suite for C/C++,

which may not truly represent real-world source code.

4.5 Summary of Contributions

In this chapter, we have presented the Static Code Analysis Tool Warnings Classi-

fication (SCATWC), which is a framework to rank SCA tool warnings using software

engineering metrics. The following are the key contributions of the SCATWC.

• Showing how we use ML and data mining techniques along with a collection of

software engineering metrics to predict if the source code will lead the SCA tool

to emit either true positive, false positive, or false negative warnings; and

• Evaluating which of software engineering metrics are highly correlated with the

true positive, false positive, and false negative warnings generated by a SCA

tool.

67

5. RANKING STATIC CODE ANALYSIS (SCA) TOOL
WARNINGS

In Chapter 4, we proved that we can use the RF model to classify the generated SCA

tools’ warnings for Juliet test suite into either true positive, false positive, or false

negative. So, in this chapter, we transfer the RF model that trained using Juliet test

suite to classify and rank the SCA tools’ warnings generated for the real-world source

code (open-source software projects). In Section 2.3 of Chapter 2, we have already

discussed the related research on ranking SCA tool’s warnings. We first describe the

challenges associated with ranking SCA tool’s warnings generated from the real-world

source code in Section 5.1. Next, we present a motivate example in section 5.2. Then,

we formally present the Static Code Analysis Tool’s Warnings Ranking (SCATWR),

which is our novel contribution for ranking warnings and reducing the number of

generated fake warnings in efficient way in Section 5.3. In Section 5.5, we describe

results of applying SCATWR to different open-source software applications. Finally,

we summarize our main contributions in Section 5.6.

5.1 Challenges Addressed by the Proposed Approach

The main limitation of ranking SCA tool warnings is that it is impossible to build

and train accurate prediction models for some of the software projects; the software

projects either do not have enough developmental historical information (historical

data) or have too little historical data. For example, not all software developers

maintain a clear list of historical bug information or assemble a set of adequate

information from the previous versions of their software. Another example, can be

seen when the software developers intend to rank the SCA tool warnings for the first

release of a software, which has no historical data. The historical data of the software

68

project was used in current studies to label the generated warnings into true positives

or false positives. Then this warnings were used to create a training set to build

prediction model.

This model can be used later to predict and rank the future warnings for the

new open-source project software release or for the warnings that generated after the

current source code was changed to add new functionality or correct some security

defect. To address this challenge, plenty of current studies attempt to use the following

strategies:

• Gathering warnings for various kinds of open-source software projects to generate

a training dataset. The main drawback of this strategy is that it needs human

effort to label a large number of warnings and these efforts are too expensive.

• Utilizing another prediction model that trained on another open-source project

or synthetic source code to rank the warnings of the target software without

retraining the model. Unfortunately, this strategy will harm the predictive

performance of the prediction model and may lead to the generation of an

inaccurate ranking list of warnings.

To solve these challenges, we proposed the Static Code Analysis Tool’s Warnings

Ranking (SCATWR) framework, which utilizes one of the most common domain

adaptation techniques to rank SCA tool warnings. However, first, we will show a

simple example to explain the importance of the proposed framework.

5.2 Motivating Example

To demonstrate the importance of reducing false positive warnings, we provide the

following concrete example. Table 5.1 summarizes the outputs of one of the SCA tools

that run over the Juliet test suite. The output shows the number and percentages of

true and false positives reported by the tool.

69

Table 5.1.: Emitted Warnings for SCA tool on Juliet test suite

CWE-ID #TP #FP Warnings Percent of FP Percent of TP
CWE-126 496 5348 5844 92% 8%
CWE-134 576 16918 17494 96% 4%

From this table, we can observe that 92% and 96% of the emitted warnings were

false positives. If we suppose that each warning requires three minutes for manual

inspection. The time that the developers need to inspect the emitted warnings for

CWE-126 would take 12.18 workdays as to four minutes using our framework. The

proposed framework, therefore, can save the developers’ time by guiding the software

developers toward the most serious warnings only.

5.3 The Approach of SCATWR

This section discusses the design and implementation of the Static Code Analysis

Tool Warnings Ranking (SCATWR). The main goal of the SCATWR is to prioritize

the warnings reported by the SCA tools for both open-source and synthetic source

code using the value of source code metrics computed by the Understand static tool.

Figure 5.1 gives an overview of the SCATWR. From this figure, we can observe that

the SCATWR framework design is divided into the four main phases, listed below.

5.3.1 Phase #1: Generate Datasets for the Synthetic Source Code

The first phase in the proposed framework was to generate a number of datasets

that represent the important characteristics of the functions that forced the SCA tool

to emit the warning. Later in this chapter, these datasets were used to train a classifier

to rank the warnings as either true or false positives. The input of this phase is the

C/C++ Juliet test suite. To generate the datasets we performed the following steps:

1. Collected the SCA tool warnings by running a SCATE framework, which evalu-

ates the quality of the SCA tools in terms of source code metrics [49] [7].

70

Juliet test
suite

RF Classifier

Confidence
Rate

Datasets

Train

compute

Ranking
warningsRanking

warningsRanking
warnings

update

Generate Open-
Source

software

Understand Static
Tool

SCATE

Phase #2: Generate Datasets for the Open-
source Software

Understand Static
Tool SCATE

Ph
as

e
#1

: G
en

er
at

e
D

at
as

et
s

fo
r t

he
Sy

nt
he

tic
 S

ou
rc

e
C

od
e

Datasets

Generate

Test

Ph
as

e
#3

: C
om

pu
te

 S
co

re
of

 S
C

A
to

ol
 w

ar
ni

ng
s

Oracle

review

Ph
as

e
#4

: C
he

ck
 th

e
Li

st
 o

f
R

an
ki

ng
s

Fig. 5.1.: Overview of SCATWR

71

2. Computed the value of software engineering metrics for the labeled source code

by running the Understand static tool (https://scitools.com). Where the

value of source code metrics was computed at the function level.

3. Last, created a binary dataset for each CWE. Where the value of the dependent

variable (class/label) in the generated dataset is either true or false positive.

Furthermore, this dataset was considered as a labeled source domain. For more

details see Section 4.2.1

5.3.2 Phase #2: Generate Datasets for the Open-Source Software

In this phase, fourteen of open-source software programs were used in order to

evaluate the proposed framework. To do that, we created a number of datasets to

represent the source code of the open-source software projects that forced the SCA

tool to generate the warnings by performing the following steps:

1. Collected the SCA tool warnings by running a SCATE framework after extending

this framework to evaluate the SCA tools using some open-source software.

2. Computed the value of software engineering metrics for the labeled source code

by running the Understand static tool. As in the previous phase, the value of

software engineering metrics was computed at the function level.

3. Last, created an unlabeled dataset for each CWE. This dataset was considered

as a target domain.

5.3.3 Phase #3: Compute Score of the SCA Tool Warnings

To rank the SCA tool warnings, we first used the RF algorithm to build a strong

classifier by creating a forest with a number of weak decision trees. Using the RF

algorithm allowed us to overcome the over-fitting problem [85]. In order to train this

https://scitools.com

72

classifier, we used the generated datasets from Phase #1. Next, the trained classifier

was used to predict the label value for each warning aggregated from the open-source

software (output of Phase #2).

However, the output of Phase #2 (aka target domain), in some experiments that

we did later in this work, was randomly divided into two parts (validation set and

testing set). The validation set was labeled using the Active Learning (AL) technique,

where the instances with the highest entropy value were sent to the professional

(oracle) to correctly label them (see Section 5.3.4). Then this validation set was used

as labeled target domain to improve the performance of the trained RF classifier. On

the other hand, the testing set was used in most of the experiments to evaluate the

performance of the proposed approach.

Finally, we used the probabilistic value computed for each warning by using the

optimal RF classifier as a confidence rate, in order to rank the warnings as either true

or false positive. Based on the confidence rate, the warnings were reordered in a list,

where the warnings with the higher confidence rate were at the top of the list and the

warnings with the lower confidence rate were at the bottom.

5.3.4 Phase #4: Check the List of Rankings

In the last phase of the proposed framework, both the validation set and the ranked

list of warnings were sent to professionals to label the validation set correctly and

to check the correctness of the ranked list. Based on the professional feedback the

training dataset was updated by using the ranked list and the validation set in order

to generalize the RF classifier.

In this manner, we mitigated the cost of the manual inspection process for the

false positive warnings by forcing the coders and the developers to inspect only the

warnings at the top of the ranked list and to ignore the warnings at the bottom. In

other words, software developers will omit only the warnings that have a confidence

rate below a given threshold.

73

5.4 Case Study

We use the following case study to evaluate the effectiveness of the proposed

framework.

5.4.1 Selected Code Base

In this work, we evaluated the proposed framework using two different kinds of

source code as a test cases.

5.4.1.1 NIST Juliet test suite

We ran the SCA tool against the Juliet test suite for C++ to generate the warnings

messages. Juliet test suite contains 61,387 test cases covering 118 CWEs and aims to

create a catalog of software weaknesses and vulnerabilities [55] [45] (see Section 3.3.1).

5.4.1.2 Open-Source Software

We used fourteen open-source software projects written in C++. As shown in

Table 5.2, we selected a wide range of open-source projects. For example, we had

projects that we consider small in size (e.g., App2 and App5) and projects we consider

large in size (e.g., App7 and App10). We also have projects we consider to be mature

by their version number (e.g., App4). Table 5.2 shows some important information

about the open-source software projects used to evaluate the proposed framework 1.
1For privacy reasons, we do not disclose the names of the open-source software projects

74

Table 5.2.: Open-source software information

App Name Version Language SLOC Number of files Size
App1 3.0.0 C/C++ 425682 918 38.6 M
App2 2.14 C/C++ 76877 918 7.3M
App3 1.0.1e C/C++ 361381 2203 6.7M
App4 9.2.4 C/C++ 650097 5458 38M
App5 1.7.0 C/C++ 80676 412 2.3M
App6 1.8.3 C/C++ 967716 1728 12M
App7 1.10.2 C/C++ 2333668 5109 34M
App8 1.2.2 C/C++ 615317 3478 93M
App9 2.8.8 C/C++ 736084 6117 35M
App10 1.8.0 C/C++ 2538702 3279 32M
App11 1.0.0 C/C++ 95676 623 3.4 M
App12 0.26.0 C/C++ 80680 502 31.2 M
App13 1.0.0 C/C++ 76977 765 70.3 M
App14 3.0.0 C/C++ 160195 918 38M

5.4.2 Selected Weaknesses (CWEs)

We used the following Common Weakness Enumerations (CWEs) to investigate

the effectiveness of our framework.

1. CWE-126: Buffer Over-Read. This weakness occurs when the pointer or

its index is incremented to a position beyond the bounds of the buffer or when

pointer arithmetic results in a position outside of the valid memory location to

name a few. This may result in exposure of sensitive information or possibly a

crash [86]. To better understand this weakness, Listing 5.1 shows a simplified

code snippet that contains a function that print out the value of the dest

variable.

1 //CWE−126_Buffer_Overread_example

2 #include <wchar . h>

3

4 void bad_code () {

5 wchar_t data [1 5 0] , des t [1 0 0] ;

75

6 /∗ I n i t i a l i z e data ∗/

7 wmemset(data , L 'A ' , 149) ;

8 data [1 4 9] = L ' \0 ' ;

9 wcsncpy (dest , data , 99) ;

10 /∗ P o t e n t i a l FLAW: do not e x p l i c i t l y n u l l

11 terminate d e s t a f t e r the use o f wcsncpy () ∗/

12 printWLine (des t) ;

13 }

Listing 5.1: CWE-126 Example

In this example, since the number of characters that being copied to the dest

is lower than the size of the data; wcsncpy function will not explicitly null

terminal dest. So, SCA tool should be able to identify the potential flaw that

may occur when using printWLine function to print out the value of dest as

CWE-126 warning message.

2. CWE-134: Use of Externally-Controlled Format String. This weakness

occurs when the function has a format string as one of its arguments, and this

format string constructs from an external source. This may result in denial of

service or data representation problems [87]. To better understand this weakness,

Listing 5.2

1 //CWE−134_Use_of_Externally_Controlled_Format_String_example

2 #include <s t d i o . h>

3 #include <s t r i n g . h>

4 #include <s t d l i b . h>

5

6 void main (int argc , char ∗∗ argv) {

7 char buf [1 0 0] ;

8 int x = 1 ;

9 s n p r i n t f (buf , s izeof buf , argv [1]) ;

10 buf [s izeof buf −1] = 0 ;

11 // P o t e n t i a l Flaw

12 p r i n t f (" Buf f e r s i z e i s : (%d) \nData input : %s \n" , s t r l e n (buf)

↪→ , buf) ;

13 p r i n t f ("X equa l s : %d/ in hex : %#x\nMemory address f o r x : (%p) \n"

↪→ , x , x , &x) ;

76

14 }

Listing 5.2: CWE-134 Example

Now, If the code snippet received the string "John %x %x" as input the format

function snprintf parses the input string and the output will be the name John

and the contents of the memory address [88].

We selected these CWEs because they have a bigger dataset for SCA tool warnings

when compared to the other weaknesses (see Section 5.5.2). Although, we are using

the CWEs mentioned above for our work, the proposed framework is not limited to a

specific number or type of CWE. The challenge for us, however, is finding datasets

that contain enough warnings for a CWE to validate the proposed framework.

5.4.3 Selected Static Code Analysis (SCA) Tools

We used one open-source SCA tool (Tool6) to evaluate our work. Tool6 supports

C/C++ programming language. The selected SCA tool is a quite simple tool. This

tool examines C/C++ source code and reports any possible security vulnerabilities

sorted by risk level.

Tool6 uncovers many common software weaknesses, such as buffer overflow risks,

format string problems, and race conditions, using a built-in database of dangerous

C/C++ constructions. We selected an open-source tool because it is freely available.

On the other hand, we chose Tool6 from a long list of open-source tools because it

supports the most common software weaknesses, such as CWEs.

5.4.4 Selected Software Engineering Metrics

To rank SCA tool warnings, 21 of source code metrics were computed at a function

level for the given source code. These metrics were categorized into three main

groups. Table 5.3 shows a brief description of these groups for more information see

Section 3.3.4 and 4.3.6.

77

Table 5.3.: Description of Source Code Metrics [62]

Source Code Metric Description
Complexity Metrics Compute the complexity of a given function.

For example, Knots metric reflects the struc-
tural complexity of a given source code by
measuring the overlapping jumps.
From this group we used Knots, Essential, Cy-
clomatic, CyclomaticStrict, CyclomaticModi-
fied, MaxNesting, CountPath, MaxEssential-
Knots, and MinEssentialKnots.

Volume Metrics Reflect the number of line in a given source
code that satisfies some conditions. For exam-
ple, CountLineCode metric reflects the total
number of lines that contain source code only
in a given function.
From this group we used CountLineCode,
CountLineCodeExe, RatioCommentToCode,
AltCountLineBlank, CountLineBlank, Count-
LineCodeDecl, CountLineComment, Count-
LineInactive, Preprocessor Lines, and Count-
DeclFunction.

Object-Oriented Metrics Compute the coupling for a given function.
For example, CountInput metric Computes
the Fan-In for given source code.
From this group we used CountInput and
CountOutput.

5.4.5 Selected Machine Learning (ML) Technique

In Chapter 4, we demonstrated that we can use source code metrics to classify

warnings generated by two SCA tools (open-source and commercial tools) as a true

positive, false positive, or false negative warnings.

Likewise, the experimental results show that the classifier generated by RF tech-

nique outperformed the other classifiers generated by the other ML techniques. For

this reason, we decided to use RF to rank the SCA tool warnings as either true positive

78

or false positive. The RF classifier is an ensemble classifier that produces multiple

decision trees using a randomly selected subset of training samples and variables [85].

5.4.6 Selected Performance Metric

We used F1-score [89] to evaluate the performance of the classifier used in our

framework [90]. We selected F1-score because the generated datasets from both NIST

Juliet test suite and the open-source software suffer from an imbalance issue.

We, therefore, cannot use the accuracy metric, which measures the number of

correct predictions made by the model over all kinds of predictions made [90], to

measure classifier performance. F1-score provides the weighted average of the precision

and recall—where an F1-score reaches its best value at 1 and the worst value at 0.

The relative contribution of precision and recall to the F1-score are equal. F1-score is

given with the following equation.

F1− score = 2 ∗ (precision ∗ recall)
(precision+ recall) (5.1)

5.4.7 Selected Domain Adaptation (DA) Technique

Traditional ML techniques work well when both the training and testing datasets are

drawn from the same feature space and the same distribution. When the distribution

changes, most statistical methods need to be rebuilt from scratch using newly collected

training data.

To solve this problem Transform Learning (TL) suggests applying the knowledge

that learned previously(from the source domain) to solve new problems (target domain)

faster or with better solutions [91]. In the following subsections, we briefly review

79

some basics of notations and concepts that are usually used in the domain adaptation

field.

5.4.7.1 Problem Settings

Given the labeled functions in the source domain as DS = {(xs1, ys1), ..., (xsns, ysns} =

{XS, yS} and the unlabeled functions in the target domain asDT,U = {(xt,u1), ..., (xt,unt,u} =

{XT,U}. Sometimes, we may also have a small amount of labeled data from the target

domain as DT,L = {(xt,l1 , y
t,l
1), ..., (xt,lnt,l, y

t,l
nt,l} = {XT,L, yT,L}. Moreover, the entries in

yS and yT,L denote their corresponding labels(1 (true positive warning) and 2(false

positive warning)).

Therefore, our proposed framework aims at predicting the label value for the

unlabeled target domain using the source domain and the labeled data from the target

domain by building the optimal model that minimizes the expected loss with respect

to the true distribution P (X, Y).

In general, there is two main distributional difference between the source and target

domains, namely, Instance difference and labeling difference. The difference between

the source and target domains may come from the difference between the marginal

distribution. In another word, Ps(X) 6= Pt(X) but Ps(Y |X) = Pt(Y |X). This problem

can be referred to as a covariate shift [92] [93] or sample selection bias [94].

On the other hand, the difference between the source and target domains may come

from the difference between the conditional probability distribution. In another word,

Ps(Y |X) 6= Pt(Y |X) but Ps(X) = Pt(X). This problem can be referred to as labeling

difference. In order to discover if our datasets (Juliet test suite and open-source

software projects) have labeling difference, we need first to label some of instances

from the target domain.

If label the target domain instances is a time-consuming and costly process in

this situation we have to assume that there is no labeling difference between the

80

source and target domains. To solve the above problems we used instance weighting

technique [95] [96]. The main goal of this technique is to assign instance-dependent

weights to the loss function when minimizing the expected loss over the data distribu-

tion [95] [96].

To find the optimal prediction model for target domain from a pool of models we

should find the model that will minimize the expected loss with respect to the joint

distribution P (X, Y).

f ∗ = argmin
f∈H

∑
(x,y)∈X×Y

P (x, y)L(x, y, f) (5.2)

Where f ∗ is the optimal model and L(x, y, f) is a loss function. To find the optimal

model for the target domain (open-source software projects), we follow the approach

proposed by Jiang [96].

5.4.7.2 Instance Weighting Technique

Instance-based transfer learning techniques is considered as one of the common TL

technique that can be used to solve the domain adaptation problem. Instance-based

transfer learning assumes that certain parts of the data in the source domain can be

reused for learning in the target domain by re-weighting.

There are two major techniques can be used to re-weight source domain instances:

instance re-weighting and importance sampling. In this research we used the framework

proposed by Jiang [97] to remove the misleading warnings in the Juliet test suite

datasets, re-weight the Juliet test suite warnings to simulate the unlabeled open-source

software projects’ warnings, and finally, use a small set of labeled warnings from the

open-source software project’s warnings to improve the predictive capability of the

ML model.

The proposed weighting framework suggest using three datasets: labeled source

(Ds), labeled target (Dt,l), and unlabeled target domains (Dt,u). First source domain

81

instances were used to approximate the expected loss in the target domain using the

following formula [97].

f ∗t = argmin
f∈H

∑
(x,y)∈X×Y

Pt(x, y)
Ps(x, y)Ps(x, y)L(x, y, f) (5.3)

≈ argmin
f∈H

Ns∑
i=1

Pt(xsi)
Ps(xsi)

Pt(ysi |xsi)
Ps(ysi |xsi)

L(xsi , ysi , f) (5.4)

= argmin
f∈H

Ns∑
i=1

αiβiL(xsi , ysi , f) (5.5)

Second, the labeled target domain instances only were utilized to approximate the

expected loss in the target domain using the following formula.

f ∗t = argmin
f∈H

∑
(x,y)∈X×Y

Pt(x, y)L(x, y, f) (5.6)

≈ argmin
f∈H

∑
(x,y)∈X×Y

P̃t(x, y)L(x, y, f) (5.7)

= argmin
f∈H

Nt,l∑
i=1

L(xt,li , y
t,l
i , f) (5.8)

Third, the unlabeled target domain instances could be used to find the optimal

learning model for the target domain using the following formula.

f ∗t = argmin
f∈H

∑
(x,y)∈X×Y

Pt(x)Pt(y|x)L(x, y, f) (5.9)

≈ argmin
f∈H

∑
(x,y)∈X×Y

P̃t(x)Pt(y|x)L(x, y, f) (5.10)

= argmin
f∈H

Nt,u∑
i=1

∑
y∈Y

Pt(y|xt,ui)L(xt,ui , y, f) (5.11)

82

= argmin
f∈H

Nt,u∑
i=1

∑
y∈Y

γi(y)L(xt,ui , y, f) (5.12)

Finally, all the previous formulas were combined into a single objective function.

As shown below.

ft = argmin
f∈H

[
λs

Ns∑
i=1

αiβiL(xsi , ysi , f) + λt,l

Nt,l∑
i=1

L(xt,li , y
t,l
i , f)

+λt,u
Nt,u∑
i=1

∑
y∈Y

γi(y)L(xt,ui , y, f) + λR(f)
] (5.13)

The last formula (5.13) was employed in this work in order to approximately find

the optimal learning model for the target domain. We selected this technique because

it has successfully been used in the Natural Processing Language (NPL) field [98].

5.5 Experimental Evaluation of SCATWR

In this section, we present and discuss the experimental results obtained with the

proposed framework.

5.5.1 Experimental Setup

To setup and execute our experiment, we executed the following steps:

1. We selected the SCA tool that involves CWEs in its rules.

2. We selected the code base to generate SCA tool warnings. The code base includes

Juliet test suite and open-source software.

3. We ran SCA tool against the source code in both the Juliet test suite and the

open-source software. We then capture the emitted warnings of the SCA tool

because we need this to generate a number of datasets.

83

4. We assessed the value of the software engineering metrics for each CWE by

executing Understand static tool against the source code for the corresponding

test cases in Juliet and open-source software.

5. We used scikit-learn, which is a free software machine learning library for the

Python programming language to train the RF classifier over the emitted datasets

from the Juliet test suite.

6. We classified and ranked the open-source software warnings as true or false

positives using the trained RF classifier after transfer it using instance weighting

technique;

7. We computed the threshold for the false positive warnings for each CWE.

8. We created the warnings ranked list by comparing the probability value for each

warning with the threshold.

9. Last, we asked the professional to review and check the ranked list of warnings.

5.5.2 Dataset Statistics

To evaluate the proposed framework we generate four of datasets from the Juliet

test suite and open-source software projects. Table 5.4 summarizes the properties of

the emitted datasets that we used in our experiments. This table shows the number of

data points (warnings), the number of features (source code metrics), and the number

of classes for each dataset. A majority of the datasets used in this chapter have two

classes (i.e., true positive and false positive).

84

Table 5.4.: Summary Description of the datasets

Dataset Name Data Points Features Classes
CWE-126-Tool6-open-source 1200 21 2
CWE-134-Tool6-open-source 351 21 2
CWE-126-Tool6-Juliet 5844 21 2
CWE-134-Tool6-Juliet 17494 21 2

5.5.3 Experimental Results

Since the false positive warnings reduction approach proposed in this work heavily

depends on the confidence value computed by the RF Classifier, we perform a set of

experiments to select the optimal classifier, which will transfer the knowledge from the

source domain (Juliet test suite) to the target domain (open-source software projects).

The setting and result for each experiment are listed below.

5.5.3.1 Experiment #1: Using a Source Baseline Model for Ranking

In Chapter 4, we demonstrated that the RF classifier is well suited for predicting

and classifying SCA tool warnings across a wide range of synthetic test cases. In this

experiment, an RF classifier has been trained using only the warnings aggregated

from the Juliet test suite to accurately rank the open-world software warnings. This

classifier will be considered as a source baseline model for our work.

Figure 5.2 showcases the steps that we followed to train and test the effectiveness

of the source baseline model. This figure depicts our attempt to explore the efficiency

of the source baseline model by directly applying the supervised learning model (RF)

trained using Ds without weighing the source domain instances for the target domain.

85

Labeled

warnings
Juliet test suite

Open-Source

Projects

Unlabeled

warnings

Baseline

Classifier

Test

Training

Results

Fig. 5.2.: Using Source Baseline Model to Rank
Open-World Software Warnings

In other words, we used this model to directly obtain a classifier for the target domain

utilizing the following formula.

ft = argmin
f∈H

Ns∑
i=1

L(xsi , ysi , f) (5.14)

By analyzing the source baseline model results given in Figure 5.3, we can make

the following observations:

• The source baseline model is not appropriate to predict or rank the warnings of

the open-source software. This can be inferred from the value of the F1-score

for the CWE-134-open-source and CWE-126-open-source datasets.

• Since the Juliet test suite is a synthetic source code, the source code will be

relatively simple compared to the source code of the open-source software projects.

In other words, the number and type of the loops, control structure and function

calls used in the open-source software projects differ from those used in the

Juliet test suite. This difference causes the software engineering metrics to have

a varying range of values that may be larger or smaller than Juliet test suite

metrics. Likewise, this difference leads the proposed framework to generate

86

-10%

0%

10%

20%

30%

40%

50%

F1
-s
co
re

Fig. 5.3.: Source Baseline Model Results

training and testing datasets that are drawn from different distributions, which

decreases the performance of the source baseline model.

From these observations, we can conclude that the source baseline model will not

be the optimal classifier to rank the SCA tool warnings. Therefore, we need to perform

another experiment with different settings and datasets.

5.5.3.2 Experiment #2: Using a Target Baseline Model for Ranking

As seen in the previous experiment, using only the Juliet test suite warnings only

to train the RF classifier and then directly predict the open-source software project

warnings led the classifier to perform badly. So, in this experiment, instead of using

Juliet test suite warnings to train the classifier, we used a subset of the open-source

87

software project warnings after labeling them using the AL technique. Therefore,

formula (5.6) was used in this experiment.

Labeled

warnings

Open-Source

Projects

Unlabeled

warnings

Target Baseline

Classifier

Test

Train

Results

Fig. 5.4.: Using a Target Baseline Model to Rank
Open-World Software Warnings

Figure 5.4 showcases the steps that we followed to train and test the effectiveness

of the target baseline model. This figure depicts our attempts to explore the efficiency

of the target baseline model by directly applying the supervised learning model (RF)

trained using Dt,l without considering the source domain instances (Juliet test suite

warnings) for the unlabeled target domain (open-source software project warnings of

unknown type).

However, by analyzing the target baseline model results that are given in Figures 5.5

and 5.6, we can make the following observations:

• The target baseline model is an appropriate to predict or rank the warnings of

the open-source software. This can be inferred from the value of the F1-score

for CWE-134-Tool6-open-source and CWE-126-Tool6-open-source datasets.

• Increasing the number of labeled warnings from the target domain to train the

model can improve the performance of the model and enhance the correctness of

the open-source warnings list. This is because more warnings in the validation

set or the labeled target domain mean that the approximate distribution will be

better.

88

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 24 48 72 96 120 144 168

Target Baseline Model -- CWE-126

F1
-s

co
re

Size of validation set

Fig. 5.5.: Target Baseline Model Results
for CWE-126

From these observations, we can conclude that the target baseline model can be

an optimal classifier to rank SCA tool warnings if we have enough labeled warnings

from the open-source software projects to start the AL technique. Unfortunately,

as we mentioned before, we cannot depend solely on the labeled target domain to

train the classifier because some software projects do not have any historical data or

bug lists to build a training dataset. On the other hand, depending on humans to

label some target domain warnings may generate training datasets with mislabeled

warnings. Therefore, we need to perform another experiment to explore whether the

89

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 24 48 72 96 120 144 168

Target Baseline Model -- CWE-134

F1
-s

co
re

Size of validation set

Fig. 5.6.: Target Baseline Model Results
for CWE-134

performance of the classifier will be improved when we use both the labeled warnings

from the open-source software projects and the warnings from the Juliet test suite.

5.5.3.3 Experiment #3: Using a Baseline Model Trained Over Ds and Dt,l

Figure 5.7 displays the steps that we followed in this experiment to train the RF

classifier and test it with the unlabeled open-source software projects. From this

figure, we can observe that we did not reweigh any Juliet test suite warnings to train

the model. In other words, all the Juliet test suite warnings equally collaborated to

extract the important pattern from the source code of the Juliet test suite, such as

the number of unique paths that the source code could use to achieve specific tasks.

90

Likewise, we utilized some of the labeled open-source warnings to train the model. In

this experiment we utilized the following formula to build the RF classifier.

ft = argmin
f∈H

Ns+t,l∑
i=1

L(xi, yi, f) (5.15)

Labeled

warnings
Juliet test

suite (Source

Domain)

Labeled

warnings

Baseline

Classifier

Test

Results

Open-Source

Projects

(Target

Domain)

Training

Unlabeled

warnings

Open-Source

Projects

(Target

Domain)

Training

Dataset

Fig. 5.7.: Using a Baseline Model Trained Over Ds and Dt,l

to Rank Open-Source Software Warnings

However, by analyzing the model results that are given in Figures 5.8 and 5.9, we

can make the following observations:

• The RF classifier trained using both the SCA tool warnings that aggregated

from a synthetic source code and the warnings collected from some open-source

software projects is appropriate to predict or rank the rest of the warnings from

the other open-source software projects. This can be inferred from the values

of the F1-score for the CWE-134-Tool6-open-source and CWE-126-Tool6-open-

source datasets.

• Using a labeled target domain to train the RF classifier helps the model to learn

new patterns appearing in the target domain warnings (open-source software

projects) only. These patterns do not exist in the dataset that generated using

91

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 20 40 60 80 100 120 140 160

F1
-s

co
re

Size of validation set

Fig. 5.8.: Result of Baseline Model Trained
Over Ds and Dt,l for CWE-126

the Juliet test suite, as the real-world source code structure, which could increase

the complexity of the source code and make it difficult for SCA tool to understand

and analyze the source code to determine the potential defects.

• Again, increasing the number of labeled warnings from the target domain to

train the model can improve the performance of the model and enhance the

correctness of the open-source warnings list. This is because more warnings

in the validation set or labeled target domain means that the approximate

distribution will be better.

• Last, using warnings from synthetic source code such as Juliet test suite can

reduce the likelihood of having some of the mislabeling warnings in the training

dataset, because usually synthetic test cases were built to evaluate the SCA tools

92

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 20 40 60 80 100 120 140 160

F1
-s

co
re

Size of validation set

Fig. 5.9.: Result of Baseline Model Trained
Over Ds and Dt,l for CWE-134

by adding some annotation to the source code in order to determine the type

and the location of the potential defects in the source code. These annotations

help us to correctly label the SCA tool warnings, which improve the performance

of the classifier.

Building the RF classifier in this experiment depends on the availability of pro-

fessional or a large number of open-source software labeled warnings. However, in

some domains, it is very difficult to construct a large labeled dataset due to the costly

93

annotation. This can be considered as a major limitation for this experiment, which

the next experiment was intended to overcome.

5.5.3.4 Experiment #4: Baseline Model Trained Using α and Juliet Suite

Figure 5.10 summarizes the steps that we followed in this experiment to train

the RF classifier using the Juliet test suite warnings reweighed by α value. In this

experiment, we used the α to reduce the feature distribution divergence between the

Juliet test suite and open-source software warnings.

Labeled

warnings
Juliet test

suite (Source

Domain)

Unlabeled

warnings

Baseline

Classifier

Test

Results

Compute Alpha

value

Open-Source

Projects

(Target

Domain)

Training

Unlabeled

warnings

Open-Source

Projects

(Target

Domain)

Fig. 5.10.: Using a Baseline Model Trained Using α and Juliet Test Suite
to Rank Open-Source Software Warnings

94

To compute the value of α, we used both the unlabeled open-source software

projects and the logistic regression method proposed by Zadrozny [94] by rewriting
Pt(x)
Ps(x) as follows.

Pt(x)
Ps(x) = P (x|d = t)

P (x|d = s)

= P (d = t|x)P (x)
P (d = t) .

P (d = s)
P (d = s|x)P (x)

= P (d = s)
P (d = t) .

P (d = t|x)
P (d = s|x)

∝ P (d = t|x)
P (d = s|x)

(5.16)

Where d denotes either the source (Juliet test suite) or target (open-source software

projects) domain. To find the value of P (d = t|x) and of the P (d = s|x), we built a

logistic regression model as follows.

P (d = t|x) = 1
1 + exp(−θTx)

P (d = s|x) = 1− P (d = t|x)

= 1
1 + exp(θTx)

(5.17)

95

To learn the logistic regression (θ), we considered the Juliet test suite warnings

as belonging to one class and the open-source software warnings as belonging to the

other class. The value of αi was be computed as follows [97].

α′i = P (d = t|xsi ; θ)
P (d = s|xsi ; θ)

= 1 + exp(θTxsi)
1 + exp(−θTxsi)

C =
Ns∑
i=1

α′i

αi = Ns

C
α′i

(5.18)

On the other hand, we set λs = 1, λt,l = 0,and λt,u = 0. The final formula that we

used in this experiment is listed below.

f ∗t = argmin
f∈H

Ns∑
i=1

αiL(xsi , ysi , f) (5.19)

However, by analyzing the model results given in Figure 5.11, we can make the

following observations:

• The RF classifier trained using only the SCA tool warnings that aggregated from

a synthetic source code, having the highest weight and ignoring the Juliet test

suite warnings of low weight outperform the baseline model trained using only

Juliet test suite warnings. Unfortunately, F1-score was lower than 20%. Thus,

we cannot use this model to reduce the SCA tool’s false positive warnings. This

can be inferred from the values of the F1-score for CWE-134-Tool6-open-source

and CWE-126-Tool6-open-source datasets.

• From our experimental results, we can conclude that the Juliet test suite warn-

ings may have few or no labeled warnings representing the open-source software

warnings located in the dense regions. This decreases the RF classifier perfor-

mance.

96

-10%

0%

10%

20%

30%

40%

50%

F1
-s
co
re

Fig. 5.11.: Result of a Baseline Model Trained
Using α and the Juliet Test Suite

In the next experiments, we did not consider α approach to build the RF classifier

due to the low value of the F1-score. In the next experiment, we investigated the

effect of β in weighing the Juliet test suite warnings.

5.5.3.5 Experiment #5: Baseline Model Trained Using β and Juliet Suit

As shown in Figure 5.12, we used β only to weight the source domain instances.

Therefore, to compute the value of the β, we need to compute the value of Ps(ysi |xsi)

from the source domain. Likewise, we utilized the labeled target domain instances to

compute the value of Pt(ysi |xsi).

97

Labeled

warnings
Juliet test

suite (Source

Domain)

Labeled

warnings

Baseline

Classifier

Test

Results

Compute Beta

value

Open-Source

Projects

(Target

Domain)

Training

Unlabeled

warnings

Open-Source

Projects

(Target

Domain)

Fig. 5.12.: Using a Baseline Model Trained Using β and the Juliet Test Suite to Rank
Open-Source Software Warnings

In another words, a logistic regression model was learned from the labeled target

domain to compute Pt(Y |X) as follows.

θt = argmin
θt

[
−

Nt,l∑
i=1

lnP (yt,li |x
t,l
i , θt) + λ ‖θt‖2

]
(5.20)

To compute P (y|x, θt), we used the following formula.

P (y|x, θt) =
exp(θTt,yx)∑

y′∈Y exp(θTt,y′x) (5.21)

Next, the trained model was used to estimate Pt(ysi |xsi) as follows.

Pt(ysi |xsi) ≈ P (ysi |xsi , θt)

=
exp(θTt,ys

i
xsi)∑

y′∈Y exp(θTt,y′xsi)

(5.22)

98

Finally, the value of the βi can be computed as follows.

β′i = P (ysi |xsi , θt)
P (ysi |xsi , θs)

C =
Ns∑
i=1

β′i

βi = β′i
C

(5.23)

Lastly, we set λs = 1, λt,l = 0,and λt,u = 0. So, the final formula looks like below.

f ∗t = argmin
f∈H

Ns∑
i=1

βiL(xsi , ysi , f) (5.24)

Furthermore, only the weighted source domain instances were used to train the

RF classifier.

0%

10%

20%

30%

40%

0 20 40 60 80 100 120 140 160

Beta

Alpha

Baseline

F1
-s

co
re

Size of validation set

Fig. 5.13.: Evaluate the Performance of the Source Baseline Model,
Baseline Model with β, and Baseline Model with α for CWE-126

From Figures 5.14 and 5.13, we can conclude that the β approach outperforms

the baseline model and the α approach. On the other hand, increasing the number

99

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0 20 40 60 80 100 120 140 160

Beta

Alpha

Baseline

F1
-sc

or
e

Size of validation set

Fig. 5.14.: Evaluate the Performance of the Source Baseline Model,
Baseline Model with β, and Baseline Model with α for CWE-134

of labeled warnings from the target domain can improve the performance of the β

approach due to the need for the labeled target warnings to compute the value of

the β. From these observations, we can infer that the difference between the Juliet

test suite warnings and open-source software project warnings comes more from the

difference in the conditional distribution. In the next experiment, we explored the

effect of using both β and the labeled target domain to train the RF classifier and

check whether this setting will improve the classifier performance.

5.5.3.6 Experiment #6: Baseline Model Trained Over Ds and Dt,l Using β

In most of the previous experiments, the value of λs was set to 1 and the value

of λt,l was set to 0. In this experiment, the value of both λs and λt,l was set to 1

and the value of λt,u set to 0. In other worlds, we used the labeled warning from the

100

open-source software projects to estimate β to weight the Juliet test suite warnings.

Then, we combined the weighted warnings with the labeled open-source software

project warnings to train RF classifier.

Labeled

warnings
Juliet test

suite (Source

Domain)

Labeled

warnings

Baseline

Classifier

Test

Results

Open-Source

Projects

(Target

Domain)

Training

Unlabeled

warnings

Open-Source

Projects

(Target

Domain)

Training

Dataset

Compute Beta

value

Fig. 5.15.: Using a Baseline Model Trained Using β,
Ds, and Dt,l to Rank Open-Source Software Warnings

The formula that we used in this experiment ia as follows [97].

ft = argmin
f∈H

[
λs

Ns∑
i=1

βiL(xsi , ysi , f) + λt,l

Nt,l∑
i=1

L(xt,li , y
t,l
i , f)

]
(5.25)

From Figures 5.16 and 5.17, we can conclude that re-weighting the Juliet test suite

warnings using β and utilizing the labeled target domain warnings to train the RF

classifier will outperform the other proposed models even when the validation dataset

is small (has only 24 warnings).

101

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 20 40 60 80 100 120 140 160

 Baseline+Ds+Beta

 Baseline+Ds+Dt,l+Beta

F1
-s

co
re

Size of validation set

Fig. 5.16.: Evaluate the Performance of the Baseline Model with β Only
and Baseline Model Trained Over Ds and Dt,l using

β for CWE-126

Based on the observations from our experiments, we can conclude that using the

β to re-weight the Juliet test suite warnings and the labeled open-source software

warnings to train an optimal RF classifier outperforms the other proposed setting,

even though the difference between the target and source domains come from the

conditional distribution. Therefore, we used this model as an optimal classifier to

rank the false positive warnings aggregated from the real-world applications in the

next sections.

102

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 20 40 60 80 100 120 140 160

 Baseline+Ds+Beta

 Baseline+Ds+Dt,l+Beta

F1
-s

co
re

Size of validation set

Fig. 5.17.: Evaluate the Performance of the Baseline Model with β Only
and Baseline Model Trained Over Ds and Dt,l using

β for CWE-134

5.5.4 Discussion

This section discusses our experimental results for ranking SCA tool warnings in

terms of different software engineering metrics.

5.5.5 Most Important Software Engineering Metrics

For our research, we are interested in building a framework that can rank the SCA

tool warnings for a given function using a classifier model, but we also interested

in finding which of the software engineering metrics are highly correlated with the

true and false positives. Figure 5.18 and 5.19 show the relevant software engineering

metrics that we identified in each open-source dataset. The most frequent selected

103

software engineering metrics among the two datasets were: CountLineComment,

CountLineCode, CountLineCodeExe, CountLineCodeDecl, CountInput, CountOutput,

and Cyclomatic Strict.

Figure 5.18 showcases the most important software engineering metrics for the

dataset called CWE-126-Tool6-open-source. From this figure we can observe that

the most influenced software engineering metrics for classification and ranking the

CWE-126 false warnings were the Complexity metrics (MaxNesting, Cyclomatic,

and CountPath). Likewise, the some Coupling and Volume metrics (CountInput,

CountLineInactive, CountOutput, and CountLineBlank) take a second place in impact

on classification warnings.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

MaxNesting

Cyclomatic

CountInput

CountPath

CountLineInactive

CountOutput

CountLineBlank

CountDeclFunction

Essential

CountPathLog

CountLineCode

CountLineCodeExe

CountLinePreprocessor

CountLineCodeDecl

Feature Importance

Fig. 5.18.: Important Software Engineering Metrics for
CWE-126-Tool6-open-source

104

Figure 5.19 showcases the most important software engineering metrics for the

dataset called CWE-134-Tool6-open-source. From this figure we can observe that the

most influenced software engineering metrics for classification and ranking the CWE-

134 false warnings were the Volume metrics (AltCountLineBlank, CountLineComment,

CountLineBlank, and RatioCommentToCode). Likewise, the c]Complexity and Cou-

pling metrics (Essential, MaxNesting, and CountInput) take a second place in impact

on classification warnings.

0 0.05 0.1 0.15 0.2 0.25

AltCountLineBlank

CountLineComment

Essential

CountLineBlank

MaxNesting

RatioCommentToCode

CountLineCode

CountLineCodeExe

CountInput

Knots

CountPath

CountDeclFunction

CountOutput

CountLineCodeDecl

Feature Importance

Fig. 5.19.: Important Software Engineering Metrics for
CWE-134-Tool6-open-source.

From Figure 5.19 and Figure 5.18, we cannot determine what is the set of the

most frequent selected software engineering metrics among the two datasets. In other

words, there is no particular type of software engineering metrics that will be highly

105

correlated with the Tool6 warnings across the two CWEs. It depends on what CWE

is under investigation and the structure of the source code.

5.5.6 Reorder Warnings

To rank the emitted warnings from the open-source software, we use the probability

computed by the optimal RF classifier. The probability value determines if the warning

represents a potential defect in the given source code based on a specific type (e.g.,

buffer over-read). The warnings that have probability value greater than threshold for

a specific type of warnings such as CWE-126 is considered as true positives, while the

warnings that have probability value less than or equal threshold is considered as false

positives. This threshold was computed from the training datasets. Table 5.5 presents

the threshold that we used in this work.

Table 5.5.: Threshold for each CWEs

Dataset Name Threshold
CWE-126-Tool6-open-source 0.45
CWE-134-Tool6-open-source 0.36

To evaluate the proposed framework we follow the methodology presented by

Heckman and Williams [29]. The output of the optimal ranking algorithm is a list

that contains the true positive warnings at the top and all the false positive warnings

at the bottom. In this work, generating a ranking list close to the optimal ranking list

was are main objective. A secondary objective was to outperform the random ranking

algorithm, which randomly shuffles the warnings generated from the open-source

software.

To assess our work, we measured the strength of association between the optimal

and the generated ranking list and the direction of the relationship using the Kendall

and Spearman rank correlation measurement. A value of a positive one indicates

a perfect degree of association between the optimal and the generated ranking list,

which we tried to achieve.

106

Table 5.6 presents the Spearman rank correlation values between the optimal

ranking algorithm and the proposed framework. We used the Cohen’s standard to

determine the strength of the relationship between the generated and optimal. From

this table we can observe that all the correlation values were positive and greater

than, or equal to 0.877. This means there is a strong match between the optimal

ranking algorithm and the proposed framework. This also means that our framework

outperforms the previous studies.

Table 5.6.: Spearman rank correlation comparing with optimal

Dataset Name Proposed Framework
CWE-126-Tool6-open-source 0.970
CWE-134-Tool6-open-source 0.877

Table 5.7 presents the Spearman rank correlation values between the random

ranking algorithm and the proposed framework. From this table we can observe

that the correlation value between the proposed framework and the random ranking

algorithm are negative for the dataset that represents CWE-126 warnings. This

conclusion shows that there is no match between the random ranking algorithm and

the proposed framework. In other worlds, there is no similar ordering of the false

positive warnings between the algorithms.

Likewise, the correlation value between the random ranking algorithm and the

proposed framework was positive but less than 0.10 for the dataset that represents

CWE-134 warnings. This correlation value declares that there is a weak correlation

between the random ranking algorithm and the our framework based on the Cohen’s

standard. Finally, we can infer that the our framework also outperforms the random

ranking algorithm.

Table 5.7.: Spearman rank correlation comparing with random

Dataset Name Proposed Framework
CWE-126-Tool6-open-source -0.036
CWE-134-Tool6-open-source 0.0065

107

5.5.7 Threat to Validity

For this work, the threat to validity is related to the number of SCA tools used to

evaluate the framework. For example, we did not include any of the state-of-the-art

commercial tools because they are not freely available. We will work to address this

threat in our future work (see Chapter 6).

5.6 Summary of Contributions

In this chapter, we have presented the Static Code Analysis Tool’s Warnings

Ranking (SCATWR), which is a framework to rank the warnings generated for real-

world source code using software engineering metrics value. The following are the key

contributions of the SCATWR.

• Proposing a framework to mitigate the false positive issue by prioritizing the

SCA tool warnings for the purpose of guiding developers toward the most serious

ones.

• Using software engineering metrics to rank the SCA tool warnings.

• Using instance weighting technique to transfer the RF classifier trained using

Juliet test suite to rank the warnings collected from the open-source software.

108

6. CONCLUDING REMARKS

In this dissertation, we have proposed approach which can be used to improve the SCA

tools performance using the ML techniques based on the source code metrics value.

First, we presented the Static Code Analysis Tools Evaluator (SCATE) framework.

SCATE evaluates the SCA tools in terms of source code metrics by running them

either locally or remotely using the SWAMP. This framework uses the Understand

static tool to compute the Volume, Complexity, and Object-Oriented metrics from

the highlighted source code by the SCA tools. Likewise, the framework was used to

convert the given source codes into a set of attribute files (ARFF).

Second, we presented the Static Code Analysis Tool Warnings Classification

(SCATWC) framework, which is a framework to auto-construct a number of predictive

models (classifiers) using four of machine learning techniques (KNN, SVM, RF, and

RIPPER) from eight generated datasets. Each dataset represents a number of specific

CWE test cases and a SCA tool’s warnings. Where the dataset features show the

degree of complexity and coupling for the given source code (synthetic source code)

and the label or class value represents the type of SCA tool warning (true positive,

false positive, and false negative) for this source code. This framework uses F1-score

to evaluate the performance of each classifier. This metric shows that the Random

Forest classifier outperforms the rest of the classifiers.

On the other hand, we used this framework to evaluate which of source code

metrics are highly correlated with the true positive, false positive, and false negative

warnings generated by an SCA tool. We then described SCATWR a proposed

approach for ranking the SCA tool warnings collected from a number of open-source

software projects using both the source code metrics and the Domain Adaptation

(DA) technique (instance weighting technique). The following is a summary of lessons

109

learned from the research work presented in this dissertation and some future research

directions.

• Based on our current results for SCATE framework and the case study that we

used choosing an SCA tool for a given source code depends on several important

factors, such as the weakness the developers want to test for, the value of one or

more of the source code metrics, and finally the structure of the given source

code. For example, Tool1 does not perform well with the source code that has

a high number of CountPath for CWE-476. Tool 1, however, performs better

when the real-world source code (Xerces-C++) has a high number of paths.

• The experimental results of SCATE framework show that there is a relationship

between the number of the uncovered flaws by SCA tools and the value of the

software engineering metrics.

• Five of SCA tools that support both the C++ and Java programing language and

also its rules mapping to CWEs have been evaluated using SCATE framework.

In the future, we plan to extend this research to cover more open-source SCA

tools that analyze Python, Ruby, C++, and Java source code.

• SCA tools results report a large number of false warnings (e.g., false positive).

The manual inspections of the false warnings is an unavoidable, time-consuming,

and costly process.

• The overall results of the SCATWC show that the performance of the RF

technique is the best on average across the other examined ML techniques. Its

average F1-score is 90.4%, while the performance of the RIPPER technique is

the second best one. Its average F1-score is 87.7%.

• The CountInput, Knots, CountOutput, CountPath, Cyclomatic, and Essential

were considered as the most important software engineering metrics over the

eight datasets to predict the behavior of SCA tools against a given synthetic

source code.

110

• False positive and false negative warnings can be reduced if the developers

rewrite their source code in a way that reduces source code complexity, coupling,

and usage of global variables.

• The overall results of SCATWR framework show that the proposed framework

determines a threshold value where the warning that has a confidence value

larger than the threshold value can be considered as a true positive warning.

On the other hand, the developers do not need to check the warning that has

a confidence value less than the threshold value since the proposed framework

considers this warning as false positive.

• RF technique was used to build two different ranking models for two common

weaknesses (CWE-134 and CWE-126). Both of the models outperform the

random ranking algorithm and generate a ranking list that has a high positive

correlated with the optimal ranking algorithm.

• We only used a single SCA tools to validate SCATWR framework. But, we still

need to investigate applying the framework across different SCA tools (including

commercial tools), and against more CWEs. This will help us understand if the

framework is both tool and CWE independent.

For future research efforts, we will apply our approach to source code from various

open-source and commercial software projects. Likewise, we are planning to compute

the software engineering metrics at the line level in order to reduce the number of

contradictory data points in the generated datasets. Lastly, we plan to extend our

approach by covering more SCA tools and using other advanced ML techniques.

REFERENCES

111

REFERENCES

[1] G. McGraw, “Software security,” IEEE Security Privacy, vol. 2, no. 2, pp. 80–83,
2004.

[2] G. McGraw, Software Security: Building Security In. Addison-Wesley Profes-
sional, 2006.

[3] E. Andreasen, L. Gong, A. Møller, M. Pradel, M. Selakovic, K. Sen, and C.-A.
Staicu, “A survey of dynamic analysis and test generation for javascript,” ACM
Comput. Surv., vol. 50, no. 5, pp. 66:1–66:36, Sep. 2017. [Online]. Available:
http://doi.acm.org/10.1145/3106739

[4] S. C. Satapathy, B. N. Biswal, S. K. Udgata, and J. K. Mandal, Eds., Proceedings
of the 3rd International Conference on Frontiers of Intelligent Computing: Theory
and Applications (FICTA) 2014 - Volume 1, Bhubaneswar, Odisa, India, 14-15
November 2014, ser. Advances in Intelligent Systems and Computing, vol. 327.
Springer, 2015. [Online]. Available: https://doi.org/10.1007/978-3-319-11933-5

[5] J. R. Larus and T. Ball, “Rewriting executable files to measure program behavior,”
Softw., Pract. Exper., vol. 24, pp. 197–218, 1994.

[6] J. Zheng, L. Williams, N. Nagappan, W. Snipes, J. P. Hudepohl, and M. A. Vouk,
“On the value of static analysis for fault detection in software,” IEEE Transactions
on Software Engineering, vol. 32, no. 4, pp. 240–253, 2006.

[7] E. Alikhashashneh, R. Raje, and J. Hill, “Using software engineering metrics
to evaluate the quality of static code analysis tools,” in Proceedings of the 1st
International Conference on Data Intelligence and Security. South Padre Island,
TX, USA: IEEE Computer Society, 2018.

[8] D. Hovemeyer and W. Pugh, “Finding bugs is easy,” SIGPLAN Not.,
vol. 39, no. 12, pp. 92–106, Dec. 2004. [Online]. Available: http:
//doi.acm.org/10.1145/1052883.1052895

[9] V. D’Silva, D. Kroening, and G. Weissenbacher, “A survey of automated tech-
niques for formal software verification,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 27, no. 7, pp. 1165–1178, July
2008.

[10] M. Beller, R. Bholanath, S. McIntosh, and A. Zaidman, “Analyzing the State of
Static Analysis: A Large-Scale Evaluation in Open Source Software,” in Proc. of
the International Conference on Software Analysis, Evolution, and Reengineering
(SANER), 2016, pp. 470–481.

http://doi.acm.org/10.1145/3106739
https://doi.org/10.1007/978-3-319-11933-5
http://doi.acm.org/10.1145/1052883.1052895
http://doi.acm.org/10.1145/1052883.1052895

112

[11] M. Kulenovic and D. Donko, “A survey of static code analysis methods for security
vulnerabilities detection,” 2014 37th International Convention on Information
and Communication Technology, Electronics and Microelectronics (MIPRO), pp.
1381–1386, 2014.

[12] “Findbugs - find bugs in Java programs,” http://findbugs.sourceforge.net/, ac-
cessed: 2016-09-19.

[13] “Pylint star your python code!” https://www.pylint.org, accessed: 2019-0-23.

[14] “Klocwork-faster delivery of secure, reliable, and conformant code,” https://www.
roguewave.com/products-services/klocwork, accessed: 2019-05-19.

[15] J. Novak, A. Krajnc, and R. ï£¡ontar, “Taxonomy of static code analysis tools,”
in MIPRO, 2010 Proceedings of the 33rd International Convention, 2010, pp.
418–422.

[16] Wikipedia, “List of tools for static code analysis — Wikipedia, the
free encyclopedia,” 2016, [Online; accessed 13-September-2016]. [Online].
Available: https://en.wikipedia.org/w/index.php?title=List_of_tools_for_
static_code_analysis&oldid=739038439

[17] A. Ramos, “Evaluating the ability of static code analysis tools to detect injection
vulnerabilities,” Ph.D. dissertation, Umeȧ university, 2016.

[18] T. Boland and P. E. Black, “Juliet 1.1 C/C++ and Java Test Suite,” Computer,
pp. 88–90, 2012.

[19] R. K. McLean, “Comparing static security analysis tools using open source
software,” in Proceedings of IEEE 6th International Conference on Software
Security and Reliability Companion, 2012, pp. 68–74.

[20] J. Steinberg, Apache OpenOffice. Org 3. 4: Using Math. CreateSpace Independent
Publishing Platform, 2013.

[21] K. Dooley and I. Brown, Cisco IOS Cookbook, 2nd Edition Field-Tested Solutions
to Cisco Router Problems. O’Reilly Media, 2007.

[22] G. Lyon, Nmap Network Scanning: Official Nmap Project Guide to Network
Discovery and Security Scanning. Insecure.Com, LLC, 2008.

[23] A. Orebaugh, G. Ramirez, and J. Beale, Wireshark & Ethereal network protocol
analyzer toolkit. Syngress, 2006.

[24] L. M. R. Velicheti, D. C. Feiock, M. Peiris, R. Raje, and J. H. Hill, “Towards
modeling the behavior of static code analysis tools,” in Proceedings of the 9th
Annual Cyber and Information Security Research Conference, ser. CISR ’14’. New
York, NY, USA: ACM, 2014, pp. 17–20.

[25] D. Coupal and P. Robillard, “Factor analysis of source code metrics,” Journal of
Systems and Software, vol. 12, no. 3, pp. 263–269, 1990.

[26] G. Botterweck and C. Werner, Mastering Scale and Complexity in Software Reuse:
16th International. Springer, 2017.

http://findbugs.sourceforge.net/
https://www.pylint.org
https://www.roguewave.com/products-services/klocwork
https://www.roguewave.com/products-services/klocwork
https://en.wikipedia.org/w/index.php?title=List_of_tools_for_static_code_analysis&oldid=739038439
https://en.wikipedia.org/w/index.php?title=List_of_tools_for_static_code_analysis&oldid=739038439

113

[27] T. Kremenek and D. Engler, “Z-ranking: Using statistical analysis to counter the
impact of static analysis approximations,” in Static Analysis. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2003.

[28] C. Boogerd, “Prioritizing software inspection results using static profiling,” in
Proc. of the Sixth IEEE International Workshop on Source Code Analysis and
Manipulation (SCAM’06. In International Workshop on Source Code Analysis
and Manipulation, 2006.

[29] S. Heckman and L. Williams, “On establishing a benchmark for evaluating static
analysis alert prioritization and classification techniques,” in Proceedings of the
Second ACM-IEEE International Symposium on Empirical Software Engineering
and Measurement, ser. ESEM ’08. New York, NY, USA: ACM, 2008.

[30] S. Kim and M. D. Ernst, “Which warnings should i fix first?” in Proceedings of
the the 6th Joint Meeting of the European Software Engineering Conference and
the ACM SIGSOFT Symposium on The Foundations of Software Engineering,
ser. ESEC-FSE ’07. New York, NY, USA: ACM, 2007.

[31] S. Allier, N. Anquetil, A. Hora, and S. Ducasse, “A framework to compare alert
ranking algorithms,” in in "19th Working Conference on Reverse Engineering,
2012.

[32] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why don’t software
developers use static analysis tools to find bugs?” in Proceedings of the 2013
International Conference on Software Engineering, 2013.

[33] T. Muske and A. Serebrenik, “Survey of approaches for handling static analysis
alarms,” in 2016 IEEE 16th International Working Conference on Source Code
Analysis and Manipulation (SCAM), Oct 2016, pp. 157–166.

[34] OWASP.

[35] D. Baca, B. Carlsson, K. Petersen, and L. Lundberg, “Improving software security
with static automated code analysis in an industry setting,” Journal of Software:
Practice and Experience, vol. 43, no. 3, pp. 259–279, 2012.

[36] P. Emanuelsson and U. Nilsson, “A comparative study of industrial static analysis
tools (extended version),” Linköping University, Institute of technology, Link
ÌĹoping, Sweden, Tech. Rep., 2008.

[37] V. Barstad, M. Goodwin, and T. Gjø sæter, “Predicting source code quality with
static analysis and machine learning,” Norsk Informatikkonferanse, 2014.

[38] U. Yuksel and H. Sözer, “Automated classification of static code analysis alerts:
A case study.” in ICSM. IEEE Computer Society, 2013, pp. 532–535.

[39] U. Koc, P. Saadatpanah, J. S. Foster, and A. A. Porter, “Learning a Classifier
for False Positive Error Reports Emitted by Static Code Analysis Tools,” in
Workshop on Machine Learning and Programming Languages, 2017.

[40] Z. P. Reynolds, A. B. JayanthIndiana, U. Koc, A. A. Porter, R. R. Raje, and
J. H. Hill, “Identifying and documenting false positive patterns generated by
static code analysis tools,” in Proceedings of the 4th International Workshop on
Software Engineering Research and Industrial Practice, 2017.

114

[41] O. Tripp, S. Guarnieri, M. Pistoia, and Y. A. Aravkin, “ALETHEIA: improving
the usability of static security analysis,” in Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, 2014.

[42] S. Heckman and L. Williams, “A systematic literature review of actionable alert
identification techniques for automated static code analysis,” Inf. Softw. Technol.,
vol. 53, no. 4, pp. 363–387, 2011.

[43] J. R. Ruthruff, J. Penix, J. D. Morgenthaler, S. Elbaum, and G. Rothermel,
“Predicting accurate and actionable static analysis warnings: An experimental
approach,” in Proceedings of the 30th International Conference on Software
Engineering, ser. ICSE ’08. New York, NY, USA: ACM, 2008.

[44] L. Wei, Y. Liu, and S.-C. Cheung, “Oasis: prioritizing static analysis warnings
for android apps based on app user reviews,” in Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering, 08 2017, pp. 672–682.

[45] P. Black, I. T. L. N. I. of Standards, and Technology), Juliet 1.3 Test Suite:
Changes from 1.2, ser. NIST technical note; NIST tech note; NIST TN. U.S.
Department of Commerce, National Institute of Standards and Technology, 2018.

[46] Y. Jung, J. Kim, J. Shin, and K. Yi, “Taming false alarms from a domain-unaware
c analyzer by a bayesian statistical post analysis,” in Static Analysis. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2005.

[47] A. Ribeiro, P. Meirelles, N. Lago, and F. Kon, “Ranking source code static
analysis warnings for continuous monitoring of floss repositories,” in Open Source
Systems: Enterprise Software and Solutions. Cham: Springer International
Publishing, 2018.

[48] H. K. Brar and P. J. Kaur, “Static analysis tools for security : A comparative
evaluation,” 2015.

[49] L. M. R. Velicheti, D. C. Feiock, M. Peiris, R. Raje, and J. H. Hill, “Toward
modeling the behavior of static code analysis tools,” in Proceedings of the 9th
Cyber and Information Security Research Conference, 2014.

[50] M. Livny and B. Miller, “The Case for an Open and Evolving Software Assur-
ance Framework,” http://continuousassurance.org/wp-content/uploads/2013/11/
White-Paper-Evolving-Framework.pdf, 2016.

[51] U. D. of Homeland Security. (2018) The Common Weakness Enumeration (CWE)
Initiative. http://cwe.mitre.org/.

[52] MITRE, “Cwe-416: Use after free,” https://cwe.mitre.org/data/definitions/416.
html, 2018, accessed: 2018-06-15.

[53] ——, “Cwe-124: Buffer underwrite (’buffer underflow’),” https://cwe.mitre.org/
data/definitions/124.html, 2018, accessed: 2018-06-15.

[54] ——, “Cwe-369: Divide by zero,” https://cwe.mitre.org/data/definitions/369.
html, 2018, accessed: 2018-06-15.

[55] Center for Assured Software, National Security Agency, “Juliet Test Suite v1.2
for C/C++ User Guide,” 2011.

http://continuousassurance.org/wp-content/uploads/2013/11/White-Paper-Evolving-Framework.pdf
http://continuousassurance.org/wp-content/uploads/2013/11/White-Paper-Evolving-Framework.pdf
http://cwe.mitre.org/
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/124.html
https://cwe.mitre.org/data/definitions/124.html
https://cwe.mitre.org/data/definitions/369.html
https://cwe.mitre.org/data/definitions/369.html

115

[56] ——, “Juliet Test Suite v1.1 for Java User Guide,” 2011.

[57] Sun Micro Systems, Java Servlet Specification , 3.0 ed., SUN, Dec. 2009.

[58] ——, Java Server Pages Specification , Version 2.1 ed., SUN, May 2006.

[59] K. Goseva-Popstojanova and A. Perhinschi, “On the capability of static code
analysis to detect security vulnerabilities,” Inf. Softw. Technol., vol. 68, no. C, pp.
18–33, Dec. 2015. [Online]. Available: https://doi.org/10.1016/j.infsof.2015.08.002

[60] MITRE, “Cwe-457: Use of uninitialized variable,”
https://cwe.mitre.org/data/definitions/457.html, 2018, accessed: 2018-06-
15.

[61] “Cwe-476: Null pointer dereference,” https://cwe.mitre.org/data/definitions/476.
html, accessed: 2017-09-15.

[62] Scitools, “Understand tool,” https://scitools.com/, 2016, accessed: 2018-03-15.

[63] C. Artho and A. Biere, “Applying static analysis to large-scale, multi-threaded
java programs.” in In Proceedings of the 13th Australian Conference on Software
Engineering, 2001.

[64] A. Ali, S. M. H. Shamsuddin, and A. L. Ralescu, “Classification with class
imbalance problem: a review,” in SOCO 2015, 2015.

[65] V. Ganganwar, “An overview of classification algorithms for imbalanced datasets,”
International Journal of Emerging Technology and Advanced Engineering, 2012.

[66] M. Hernández and S. Stolfo, “Real-world data is dirty: Data cleansing and the
merge/purge problem,” Data Min. Knowl. Discov., 1998.

[67] I. Steinwart and A. Christmann, Support Vector Machines. Springer Publishing
Company, Incorporated, 2008.

[68] B. Dasarathy, Nearest Neighbor (NN) Norms: Nn Pattern Classification Tech-
niques. IEEE Computer Society Press, 1991.

[69] L. Breiman, “Random forests,” Mach. Learn., no. 1, pp. 5–32, 2001.

[70] A. Rajput, R. P. Aharwal, M. Dubey, S. Saxena, and M. Raghuvanshi, “J48 and
jrip rules for e-governance data,” International Journal of Computer Science and
Security (IJCSS), 2011.

[71] M. Hall, “Correlation-based feature selection for machine learning,” Ph.D. disser-
tation, Department of Computer Science, University of Waikato, Hamilton, New
Zealand, 1999.

[72] M. A. Hall, “Correlation-based feature selection for discrete and numeric class
machine learning,” in Proceedings of the Seventeenth International Conference
on Machine Learning. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2000.

[73] J. Benesty, J. Chen, Y. Huang, and I. Cohen, Pearson Correlation Coefficient.
Springer Berlin Heidelberg, 2009, pp. 1–4.

https://doi.org/10.1016/j.infsof.2015.08.002
https://cwe.mitre.org/data/definitions/476.html
https://cwe.mitre.org/data/definitions/476.html
https://scitools.com/

116

[74] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:
Synthetic minority over-sampling technique,” J. Artif. Int. Res., 2002.

[75] A. Fernández, V. López, M. Galar, M. del Jesus, and F. Herrera, “Analysing
the classification of imbalanced data-sets with multiple classes: Binarization
techniques and ad-hoc approaches,” Knowledge-Based Systems, 2013.

[76] M. Stone, “Cross-validatory choice and assessment of statistical predictions,”
Journal of the Royal Statistical Society, 1974.

[77] K. O. Elish and M. O. Elish, “Predicting defect-prone software modules using
support vector machines,” Journal of Systems and Software, 2008.

[78] Y. Awad, M. Yashwant, A. Charles, and R. Indrajit, “To fear or not to fear that
is the question: Code characteristics of a vulnerable functionwith an existing
exploit,” in Proceedings of the Sixth ACM Conference on Data and Application
Security and Privacy. New York, NY, USA: ACM, 2016.

[79] N. Ayewah, D. Hovemeyer, J. D. Morgenthaler, J. Penix, and W. Pugh, “Using
static analysis to find bugs,” IEEE software, 2008.

[80] MITRE, “Cwe-762: Mismatched memory management routines,” https://cwe.
mitre.org/data/definitions/762.html, 2018, accessed: 2018-06-15.

[81] S. Kotsiantis, D. Kanellopoulos, and P. Pintelas, “Handling imbalanced datasets:
A review,” GESTS International Transactions on Computer Science and Engi-
neering, 2006.

[82] M. Bekkar, H. K. Djemaa, and T. A. Alitouche, “Evaluation measures for models
assessment over imbalanced data sets,” Journal of Information Engineering and
Applications, 2013.

[83] E. Rich and K. Knight, Artificial intelligence (2. ed.). McGraw-Hill, 1991.

[84] G. Anderson, “Random relational rules,” Ph.D. dissertation, Department of
Computer Science, University of Waikato, Hamilton, New Zealand, 2009.

[85] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, 2001.

[86] “Cwe-126: Buffer over-read,” https://cwe.mitre.org/data/definitions/126.html,
accessed: 2019-01-15.

[87] “Cwe-134: Use of externally-controlled format string,” https://cwe.mitre.org/
data/definitions/134.html, accessed: 2019-01-15.

[88] “Format string attack,” https://www.owasp.org/index.php/Format_string_
attack, accessed: 2019-06-05.

[89] “sklearn.metrics.f1_score,” https://scikit-learn.org/stable/modules/generated/
sklearn.metrics.f1_score.html, accessed: 2019-01-15.

[90] I. Witten, E. Frank, M. Hall, and C. Pal, DATA MINING: Practical Machine
Learning Tools and Techniques. Todd Green, 2017.

[91] W. M. Kouw, “An introduction to domain adaptation and transfer learning,”
CoRR, 2018.

https://cwe.mitre.org/data/definitions/762.html
https://cwe.mitre.org/data/definitions/762.html
https://cwe.mitre.org/data/definitions/126.html
https://cwe.mitre.org/data/definitions/134.html
https://cwe.mitre.org/data/definitions/134.html
https://www.owasp.org/index.php/Format_string_attack
https://www.owasp.org/index.php/Format_string_attack
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html

117

[92] M. Sugiyama, S. Nakajima, H. Kashima, P. v. Bünau, and M. Kawanabe,
“Direct importance estimation with model selection and its application
to covariate shift adaptation,” in Proceedings of the 20th International
Conference on Neural Information Processing Systems, ser. NIPS’07.
USA: Curran Associates Inc., 2007, pp. 1433–1440. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2981562.2981742

[93] H. Shimodaira, “Improving predictive inference under covariate shift by
weighting the log-likelihood function,” Journal of Statistical Planning and
Inference, vol. 90, no. 2, pp. 227 – 244, 2000. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0378375800001154

[94] B. Zadrozny, “Learning and evaluating classifiers under sample selection bias,”
Proceedings, Twenty-First International Conference on Machine Learning, ICML
2004, vol. 2004, 09 2004.

[95] J. J. Jiang, “A literature survey on domain adaptation of statistical classifiers,”
2007.

[96] J. Blitzer, “Domain adaptation of natural language processing systems,” Ph.D.
dissertation, Philadelphia, PA, USA, 2008.

[97] J. Jiang and C. Zhai, “Instance weighting for domain adaptation in
NLP,” in Proceedings of the 45th Annual Meeting of the Association
of Computational Linguistics. Prague, Czech Republic: Association for
Computational Linguistics, Jun. 2007, pp. 264–271. [Online]. Available:
https://www.aclweb.org/anthology/P07-1034

[98] S. J. Pan, X. Ni, J.-T. Sun, Q. Yang, and Z. Chen, “Cross-domain sentiment clas-
sification via spectral feature alignment,” in Proceedings of the 19th International
Conference on World Wide Web. New York, NY, USA: ACM, 2010.

http://dl.acm.org/citation.cfm?id=2981562.2981742
http://www.sciencedirect.com/science/article/pii/S0378375800001154
https://www.aclweb.org/anthology/P07-1034

VITA

118

VITA

Enas Ahmad Alikhashashneh received her bachelor’s degree from Al-Balqa’ Applied

University, Jordan in 2006 and her Masters’ degree from Purdue University Indianapolis

in 2017. Before joining Purdue University she worked as a Full-time lecturer at

Yarmouk University. Upon receiving his Ph.D. from Purdue University Indianapolis

she will join Yarmouk University as an assistant professor.

	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	ABSTRACT
	INTRODUCTION
	RELATED WORK
	Evaluating SCA Tools
	Classifying SCA Tools' Warnings
	Ranking SCA Tools' Warnings
	History-Based Warning Prioritization (HWP)
	Statistical Analysis-Based Ranking

	EVALUATION OF STATIC CODE ANALYSIS (SCA) TOOLS USING SOFTWARE ENGINEERING METRICS
	Challenges Addressed by the Proposed Framework
	The Approach of SCATE
	Commands Supported in the Framework
	Integrating With the SWAMP
	Classifying SCA Tools Output

	Case Study
	Selected Code Base
	Selected Static Code Analysis (SCA) Tools
	Selected Weaknesses (CWEs)
	Selected Software Engineering Metrics

	Experimental Evaluation of SCATE
	Experimental Setup
	Experimental Results for SCATE
	CountOutput (Fan-Out)
	CountInput (Fan-In)
	Lack of Cohesion in Methods (LCOM/LOCM)
	MinEssentialKnots (MinKnots)
	CountPath

	Threats to Validity

	Summary of Contributions

	CLASSIFICATION OF STATIC CODE ANALYSIS (SCA) TOOL WARNINGS
	Challenges Addressed by the Proposed Framework
	The Approach of SCATWC
	Dataset Generation Stage
	Learning Stage

	Case Study
	Selected Machine Learning (ML) Techniques
	Feature Selection
	Synthetic Minority Over-sampling Technique (SMOTE)
	Classification Techniques

	Selected SCA Tools
	Selected Code Base
	Selected Weaknesses (CWEs)
	Selected Performance Evaluation Metric
	Selected Software Engineering Metrics

	Experimental Evaluation of SCATWC
	Experimental Setup
	Experimental Results for SCATWC
	CFS Results Analysis
	Discussion of Results
	RIPPER Results Analysis
	Threat to Validity

	Summary of Contributions

	RANKING STATIC CODE ANALYSIS (SCA) TOOL WARNINGS
	Challenges Addressed by the Proposed Approach
	Motivating Example
	The Approach of SCATWR
	Phase #1: Generate Datasets for the Synthetic Source Code
	Phase #2: Generate Datasets for the Open-Source Software
	Phase #3: Compute Score of the SCA Tool Warnings
	Phase #4: Check the List of Rankings

	Case Study
	Selected Code Base
	NIST Juliet test suite
	Open-Source Software

	Selected Weaknesses (CWEs)
	Selected Static Code Analysis (SCA) Tools
	Selected Software Engineering Metrics
	Selected Machine Learning (ML) Technique
	Selected Performance Metric
	Selected Domain Adaptation (DA) Technique
	Problem Settings
	Instance Weighting Technique

	Experimental Evaluation of SCATWR
	Experimental Setup
	 Dataset Statistics
	Experimental Results
	Experiment #1: Using a Source Baseline Model for Ranking
	Experiment #2: Using a Target Baseline Model for Ranking
	Experiment #3: Using a Baseline Model Trained Over Ds and Dt,l
	Experiment #4: Baseline Model Trained Using and Juliet Suite
	Experiment #5: Baseline Model Trained Using and Juliet Suit
	Experiment #6: Baseline Model Trained Over Ds and Dt,l Using

	Discussion
	Most Important Software Engineering Metrics
	Reorder Warnings
	Threat to Validity

	Summary of Contributions

	CONCLUDING REMARKS
	REFERENCES
	VITA

