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PREFACE

Advancements in technology have allowed us to collect and analyze data, captur-

ing and exposing information that may have otherwise been buried within the large

amounts of data we produce each day. Each day, billions of bytes of healthcare data

are collected via smart devices and in care settings. Similarly to the data, billions

of dollars in healthcare costs are collected annually for COPD care and treatments.

According to the National Institutes of Health (NIH) [1], 12 million adults in the U.S.

are diagnosed with COPD and, each year, 120,000 die from the incurable disease.

COPD is a slow-developing disease whose origins are not fully understood. The

more information we know about COPD, the more we understand the impact that it

has on our community and the opportunities we have to develop tools for informed

decision-making and treatment selection using the technological advances and data

made available to us. Thus, this dissertation leverages Computer Science concepts

and applications to provide a framework for analyzing raw clinical data collected

from ICU patients. The methods in this body of work can potentially enable medical

researchers to study the history of millions of individual COPD patients to learn what

they were treated for prior to being diagnosed with COPD.
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ABSTRACT

Johnson, Amber M. Ph.D., Purdue University, August 2019. Generating Evidence
for COPD Clinical Guidelines Using EHRs. Major Professor: Bharat Bhargava.

The Global Initiative for Chronic Obstructive Lung Disease (GOLD) guidelines

are used to guide clinical practices for treating Chronic Obstructive Pulmonary Dis-

ease (COPD). GOLD focuses heavily on stable COPD patients, limiting its use for

non-stable COPD patients such as those with severe, acute exacerbations of COPD

(AECOPD) that require hospitalization. Although AECOPD can be heterogeneous,

it can lead to deterioration of health and early death. Electronic health records

(EHRs) can be used to analyze patient data for understanding disease progression

and generating guideline evidence for AECOPD patients. However, because of its

structure and representation, retrieving, analyzing, and properly interpreting EHR

data can be challenging, and existing tools do not provide granular analytic capabil-

ities for this data.

This dissertation presents, develops, and implements a novel approach that sys-

tematically captures the effect of interventions during patient medical encounters,

and hence may support evidence generation for clinical guidelines in a systematic

and principled way. A conceptual framework that structures components, such as

data storage, aggregation, extraction, and visualization, to support EHR data ana-

lytics for granular analysis is introduced. We develop a software framework in Python

based on these components to create longitudinal representations of raw medical data

extracted from the Medical Information Mart for Intensive Care (MIMIC-III) clinical

database. The software framework consists of two tools: Patient Aggregated Care

Events (PACE), a novel tool for constructing and visualizing entire medical histo-

ries of both individual patients and patient cohorts, and MarkSIM, a Markov Chain
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Monte Carlo modeling and simulation tool for predicting clinical outcomes through

probabilistic analysis that captures granular temporal aspects of aggregated, clinical

data.

We assess the efficacy of antibiotic treatment and the optimal time of initiation

for in-hospitalized AECOPD patients as an application to probabilistic modeling. We

identify 697 AECOPD patients of which 26.0% were administered antibiotics. Our

model simulations show a 50% decrease in mortality rate as the number of patients

administered antibiotics increase, and an estimated 5.5% mortality rate when antibi-

otics are initially administrated after 48 hours vs 1.8% when antibiotics are initially

administrated between 24 and 48 hours. Our findings suggest that there may be a

mortality benefit in initiation of antibiotics early in patients with acute respiratory

failure in ICU patients with severe AECOPD.

Thus, we show that it is feasible to enhance representation of EHRs to aggregate

patients’ entire medical histories with temporal trends and support complex clinical

questions to drive clinical guidelines for COPD.
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1 INTRODUCTION

The Global Initiative for Chronic Obstructive Lung Disease (GOLD) national clinical

practice guidelines [2] have been used worldwide by healthcare professionals for treat-

ing and managing chronic obstructive pulmonary disease (COPD). COPD refers to a

group of diseases (e.g., chronic bronchitis and emphysema) that affects over 16 million

people in the US and is the fourth leading cause of death in the world [2, 3]. GOLD

recommends antibiotic therapy for patients with severe acute exacerbation of COPD

(AECOPD), a sudden worsening of respiratory symptoms [2, 4], as they can shorten

hospital length-of-stay (LOS) and decrease mortality [5]. Though several studies [6]

have been conducted to assess the short-term and long-term efficacy of antibiotics for

AECOPD, none have explored the effect of the timing of antibiotic administration

on mortality for AECOPD patients in the intensive care unit (ICU). Hence, there are

no guidelines or recommendations for the initial timing for administering antibiotics.

This dissertation presents a framework for using electronic health records (EHRs) to

systematically generate evidence for such guidelines.

Acute exacerbations can have a significant impact on health status, potentially

leading to deterioration of health and early death [7–9]. AECOPD not only accounts

for a majority proportion of the total cost that COPD inflicts on the healthcare

system, but are associated with a 6% risk of inpatient mortality [10]. According to

the American Lung Association, in 2010, nearly $50 billion was attributed to COPD

costs, and of that, nearly $30 billion was spent on direct healthcare costs alone [11].

During AECOPD hospitalizations, physician care decisions are collected in a patients’

EHRs and clinical notes. Each visit is a source of patient information (e.g., diagnosis,

treatment, outcome) about clinical events that affect their health state during their

hospital encounters. While this information is crucial for treating patients, there is

often not a standardized method of processing and documenting the information [12].
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The current state of COPD treatment generation is a largely manual process.

“Currently, [emergency department] physicians must rely largely on their experience

and the patient’s personal criteria for gauging how an [exacerbation of COPD] will

evolve.” [13]. Creating treatments based on human knowledge without evidence can

introduce bias and inaccuracy into this process. For instance, several investigators

found that the benefits of some treatments administered to COPD patients were

widely-adopted without evidence, which later resulted in safety concerns [14, 15].

While the highest quality of evidence for clinical guidelines comes from published sys-

tematic reviews and meta-analyses, the GOLD Science Committee members, a group

of recognized leaders in COPD research and clinical practice, meet twice annually

to discuss publications that potentially have an impact on COPD management [2].

During these two, yearly meetings, the committee reaches a consensus on whether to

reference the information as support of the current recommendations or modify the

guidelines to reflect new findings [2]. While this approach has been widely adopted

and valuable, there are potential limitations surrounding the availability and access to

new findings and relevant information that is yet to be published during the process

of developing and updating the guidelines [16]. Clinical practice can become quickly

outdated and it is important to have timely mechanisms for updating guidelines to

incorporate new evidence [17]. Thus, there is ”a significant gap between up-to-date

clinical evidence for best practices, as reflected by the clinical guidelines and actual

practice patterns.” [18]

To address this issue, longitudinal, clinical data such as EHRs can be used for

discovering trends as well as monitoring and tracking patients over time by analyzing

treatments (e.g., antibiotics administrations) and outcomes (e.g., mortality) found

in patient medical histories [19]. However, representing a patient’s medical history

coherently is challenging as this information is typically scattered across different

clinical databases (DBs) such as pharmacy, ICU, and Emergency medicine, and can

be challenging to retrieve, analyze, and properly interpret as a consequence of its high

volume and unstructured nature [20,21]. Even more, existing software systems [22,23]
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do not allow for granular analysis and longitudinal processes such as chronic disease

progression to be observed directly, nor do they support analysis of how patients

transition from one clinical condition (e.g., mild to severe exacerbation) to another as

a direct cause of an intervention (e.g., drug administration, oxygen therapy, surgery).

While several previous studies have used probabilistic modeling approaches such as

Markov chains (or models) to provide support for decision-making under uncertainty

and identify medical trends for COPD, directly using EHR data as input for such

models is challenging [24–27]. Typically models used for analyzing temporal data

assume that data is time-invariant, collected with some fixed sampling frequency [28].

However, EHRs contain highly-dimensional, time-variant data that is observed at

irregular time intervals. Hence, the nature of EHR data limits the ability to represent

the granular timing of clinical events, which can lead to process misrepresentation in

the model. Thus, in addition to transforming temporal aspects of EHR data into

input parameters for such models, methods for estimating model parameters must be

developed.

This dissertation presents a novel approach that curates clinical data, systemati-

cally captures the effect of interventions during medical encounters, and hence, may

support evidence generation for clinical guidelines in a systematic and principled way.

An outline of the contributions of this work is as follows:

1. Provide a framework for large integrated EHR data for access and extraction.

We introduce a conceptual framework that includes a series of components to

structure EHR data, enhancing its representation to allow capture of under-

lying temporal characteristics and injection of clinical domain knowledge. We

develop a unified extraction application programming interface (API) for a clin-

ical database, providing flexibility in data extraction and a structured way to

formulate and execute complex queries to curate patient histories.

2. Generate caretrails with temporal trend from EHR data to aggregate patients’

medical histories. A care-trail is defined as: a chronological collection of
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events, occurring during a patient’s hospital encounter, integrated

with clinical domain knowledge. We introduce a tool with a rule-based

state coding engine that encodes patient histories using clinical domain knowl-

edge to define health states based on clinical conditions. Our tool also has

capabilities for generating multiple caretrails for different patients and organiz-

ing patient cohorts for studies and analysis. These caretrails not only introduce

an enhanced structure of EHRs but provide a way to aggregate, visualize, and

model patients’ entire medical histories coupled with clinical domain knowledge.

3. Develop computational methods to answer clinical questions using patient histo-

ries. We introduce a Markov Chain Monte Carlo modeling and simulation tool

that encodes clinical conditions as computable definitions of health states using

raw EHR data. Our methods capture exact timing information from patient

histories to estimate model parameters as a function of time, by calculating

the time between changes in health states. We are the first to use this ap-

proach to estimate the efficacy of the initial timing of antibiotics treatment for

in-hospitalized AECOPD patients.

1.1 Thesis Statement

Data found in EHRs is heterogeneous and complex, making it difficult to represent

it in a way that captures data characteristics, such as temporality, necessary for

reproducible granular analysis. Using prior EHRs from several thousands of patients

to influence treatment generation could revolutionize many health regimens, including

COPD [29]. However, current tools that provide methods for analyzing EHR data

require processes that can cause data loss and only allow limited statistical analysis.

We hypothesize that:

It is feasible to generate evidence for clinical guidelines by enhancing

the representation of electronic health records to aggregate patients’ en-

tire medical histories and support complex clinical questions.
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According to the Centers for Disease Control and Prevention [30], six in ten adults

in the U.S., have a chronic disease and four in ten have two or or more. These diseases

are the leading causes of death and disability, driving 3.3 trillion in annual health care

costs [30]. While this dissertation is presented as a case study in using computational

analysis of EHRs to improve the GOLD best practices for COPD, we believe the

approach taken, methodology, and tools are applicable to a wide range of chronic

conditions such as heart disease, cancer, stroke, Alzheimer’s diabetes, and chronic

kidney disease [30].

1.2 Dissertation Order

The remainder of this dissertation is divided into six chapters as illustrated in

Figure 1.1.

Figure 1.1.: Dissertation order.
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2 BACKGROUND

In this chapter, we review the available literature regarding clinical guidelines for

COPD, benefits and challenges of data analysis with electronic health records, and

introduce some mathematical concepts for modeling.

2.1 Chronic Obstructive Pulmonary Disease (COPD)

2.1.1 Definition and Overview

Chronic Obstructive Pulmonary Disease (COPD), the fourth leading cause of

death in the world, affects an estimated 65 million people worldwide and is projected

to be the 3rd leading cause of death by 2020 [2, 31, 32]. The Global Initiative for

Chronic Obstructive Lung Disease (GOLD) clinical guidelines [2] define COPD,

”a common, preventable and treatable disease that is characterized by

persistent respiratory symptoms and airflow limitation that is due to air-

way and/or alveolar abnormalities usually caused by significant exposure

to noxious particles or gases.”

There are two main forms of COPD: chronic bronchitis, a long-term cough with

mucus, and emphysema, irreversible damage to the lungs over time [9]. The slow

progression of the disease causes the airways of the lungs to be inflamed and become

obstructed (i.e., blocked) [9]. All forms of COPD are caused by exposure to air

pollution, cigarette smoking, or a rarely inherited, alpha 1-antitrypsin deficiency [2].

Spirometry, a test to assess lung function, is used to measure airflow limitation, which

is required to make the diagnosis in this clinical context [2]. The severity of airflow

limitation is based on forced expiratory volume (FEV1), the amount of air a person

can exhale during a forced breath. There are four stages, shown in Figure 2.1, that
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classify the severity of COPD. Though there is no cure for the life-long, terminal

Figure 2.1.: GOLD classifications [2].

disease, healthcare costs continue to rise as a result of managing and treating the

disease. According to the American Lung Association, in 2010, nearly 50 billion

dollars was attributed to COPD costs, and of that, nearly 30 billion dollars was spent

on direct healthcare costs alone [11]. Acute exacerbations of COPD (AECOPD), a

sudden worsening of symptoms, account for a majority of the total cost that COPD

inflicts on the healthcare system [7–9]. Even more, AECOPD has a significant impact

on health status, potentially leading to deterioration of health and early death [7–9].

2.1.2 Clinical Guidelines

Clinical practice guidelines are systematically developed statements to assist prac-

titioner and patient decisions about appropriate health care for specific clinical cir-

cumstances. [33] Clinical practice guidelines are one the foundations to improving care
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for patients and providing a collective effort for improving healthcare [34]. They are

typically developed through either evaluation of the “best” available evidence, which

is measured by the level of evidence of the study [35]. That is, there is a hierarchy of

evidence assigned to studies based on the method, design, validity, and applicability

to patient care [36]. Evidence obtained from systematic reviews or meta-analyses of

randomized controlled trials are considered the highest form of evidence [37,38].

Development

Several guidelines, including North American and European [39, 40], have been

developed and published regarding COPD management. Among these, GOLD, is the

most widely distributed international COPD guidelines [2]. The GOLD program was

formed in 1998 to increase awareness regarding the management and prevention of

COPD as well as to produce recommendations for management based on scientific

information available during that time. In 2001, the GOLD organization released

its first consensus report (i.e., guidelines) entitled, Global Strategy for the Diagnosis,

Management, and Prevention of COPD [2]. Since then, complete revisions, based on

public research, have been published in 2006, 2011, and 2017. The GOLD Science

Committee members, a group of recognized leaders in COPD research and clinical

practice, review and evaluate published research on COPD management and preven-

tion to produce the GOLD report. The published information is found by searching

for keywords such as COPD and clinical trial via PubMed, a search engine maintained

by The United States National Library of Medicine [2]. Such literature typically de-

rives from clinical studies that are intended to answer clinical questions regarding

risk factors diagnostics and prognostic criteria for conditions and treatments [17,34].

These clinical questions are typically well-formulated, using methods such as PICO

(patient/population/problem, intervention, comparison, and outcome), and target

specific patient groups [41, 42]. Each publication that is considered to potentially

have an impact on COPD management is discussed by the committee during two,



9

yearly meetings. The committee reaches a consensus on whether to reference the in-

formation as support of the current recommendations or modify the report to reflect

new findings [2].

The GOLD document is a global document [43] that serves as a basis for expan-

sion in both developed and under-developed countries and on a local scale within

countries. Therefore, the recommendations, assessments, and principles provided by

GOLD can be tailored to a particular setting. The University of Michigan Health

System developed clinical care guidelines for hospitalized patients with AECOPD

using material from the GOLD guidelines as a reference point for comparison and

support throughout their publication [44]. When Wexner Medical Center at The

Ohio State University [45] created their guidelines entitled, Inpatient Management of

Chronic Obstructive Pulmonary Disease (COPD) Exacerbations, they also adopted

recommendations from GOLD. In addition to referencing information provided by

GOLD, these organizations conduct a similar process as GOLD by reviewing pub-

lished literature and agreeing on a final report.

On a global and local scale, developers of clinical guidelines consist of clinical

experts who form committees to review the most current evidence found in published

literature, and make decisions regarding the best practices that should be included in

the guidelines [17]. While this approach has been widely adopted and valuable, there

are challenges. Specifically, there are limitations surrounding the availability and ac-

cess to new findings and relevant information that is yet to be published during the

process of developing and releasing the guidelines [16]. This presents motivation to

develop and implement new methods for evaluating and discovering evidence during

the guideline creation process. Clinical practice become quickly outdated, and there

are no timely mechanisms to update guidelines and incorporate new evidence [17].

Thus, there is ”a significant gap between up-to-date clinical evidence for best prac-

tices, as reflected by the clinical guidelines and actual practice patterns.” [18]
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Recommendations

Though not standardized, GOLD recommendations are used in clinical practice

to help select treatments for COPD patients. The guidelines are updated from year-

to-year to include or exclude these recommendations based on the best available

evidence. For example, earlier versions of the GOLD guidelines used airflow lim-

itation as a measure to assess the severity of COPD and further make treatment

selections accordingly. Later, studies found that FEV1 alone is not sufficient for de-

termining therapeutic options on an individual level. This led to the development and

enhancement of the ABCD assessment tool, which incorporates a comprehensive as-

sessment of symptoms as well as other clinical parameters, risk of exacerbations, and

lung function. GOLD states that a management approach should match assessment

to treatment objectives such that it ”can be used in any clinical setting anywhere

in the world and moves COPD treatment towards individualized medicine” [2]. The

assessment tool (see Appendix A.1), assigns a grade (i.e., A, B, C, D) to patients

by separating airflow limitation from clinical parameters; thereby encouraging better

treatment selection that reflects parameters that are influencing a patient’s symptoms

at any given time [2]. Based on information used in the ABCD assessment, the doc-

ument includes pharmacological treatment algorithms and pathways (Figure A.2) for

each GOLD Grade. However, the treatments associated with each assessment group,

defined by the ABCD assessment tool, are for patients with stable COPD, implying

that patients experiencing severe episodes (e.g., AECOPD) that lead to hospitaliza-

tion are not considered. This may be attributed to the complexity of COPD and

various impacting factors such as comorbidities, lifestyle, and environment.

While GOLD does not mention the use of the tool for non-stable COPD, utilizing

the ABCD methodology and other GOLD recommendations can be a starting point

for developing a methodology to identify treatment selection tools for AECOPD pa-

tients. AECOPD can negatively impact the overall health status of patients, the

frequency of hospitalization and readmission, and disease progression [2]. Thus, the
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main goal in treating these episodes is to prevent and minimize the negative im-

pact that they introduce, as they can lead to health deterioration and early death.

Corticosteroids, antibiotics, and oxygen therapy are all forms of treatment options

used for exacerbations [13,46]. COPD exacerbations are complex events that can be

triggered and/or amplified by respiratory viral infections and environmental factors.

GOLD recommends the following classifications exacerbations based on the additional

therapy needed as follows [2]:

Mild – treated with short acting bronchodilators (SABDs) only

Moderate – treated with SABDs plus antibiotics and/or oral corticosteroids

Severe – patient requires hospitalization or visits to the emergency room

These classifications potentially lack sufficient information and recommendations

regarding the course of action to be taken before or during the exacerbation. Ex-

acerbations are heterogeneous in that determining cause is difficult to identify, and

GOLD suggests that severe exacerbations be based on the patients clinical signs [2].

The guidelines state that severe exacerbations may be associated with acute respira-

tory failure (ARF), which is a buildup of fluid in the air sacs of the lungs that inhibits

the release of oxygen into the blood [2,4,47]. Appendix A.1 contains the classifications

of exacerbations for hospitalized AECOPD. These classifications provide more details

about the condition of the patient and the clinical signs to measure for assessing the

severity of the exacerbation.

2.2 Electronic Health Records (EHRs)

While medicine has been practiced for thousands of years, dating back at least to

2000BC 1, technology’s application to medicine is relatively new. Despite its relatively

short time in use, dating to the 1500s 2, technology has impacted medical practice in

various ways. One area where technology has advanced clinical practice and research

deals with the collection of data. Data collection healthcare is defined as:

1https://blogs.uoregon.edu/hgoldenw14gateway/timeline/
2https://www.infoplease.com/math-science/health/medical-advances-timeline

https://blogs.uoregon.edu/hgoldenw14gateway/timeline/
https://www.infoplease.com/math-science/health/medical-advances-timeline
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“the on-going, systematic assembling and measuring of information, anal-

ysis and illustration of health data necessary for integration, implement-

ing, designing, and evaluating public health prevention [programs], which

then enables one to answer relevant questions and evaluate outcomes”.

From data collection through wearables to data storage on servers to data analysis

on state-of-the-art processing machines, the impact of technology has increased the

diversity, availability, and volume of healthcare data such as genomic, sensor, public

health, and electronic health record. Such data is made available through various

collection mechanisms and for a range of purposes, creating a paradigm shift for data-

driven, evidence-based analytics and discoveries in the healthcare industry. Genomic

data, the genome and DNA sequences of an organism, is used to discover and analyze

genome structures and other genomic parameters [48]. Public health data derives from

monitoring population health via national surveys and reports from clinical studies,

claims, and costs. Sensor and behavior data is collected via social media networks and

wearable devices (e.g., fitness trackers, medical devices, and smart-watches) that have

enabling technologies such as sensors that capture bodily or environmental impulses

and transmitters that send data for analysis [49]. Clinical data found in electronic

health records is a critical component of healthcare data and the building block for

healthcare data digitization [50].

Dating back to the 1990s, EHRs, digital, comprehensive, and longitudinal collec-

tion of a patient’s healthcare data [52], have evolved to become a valuable source of

information to a variety of stakeholders (e.g., insurance companies, researchers, med-

ical professionals). EHR data is collected directly from the patient at the time of care

via medical monitoring devices and medical professionals (e.g., clinicians, nurses).

They are comprised of patient information such as demographics, laboratory results,

vital sign measurements, diagnosis and procedure codes.

EHR data was, which once consisted of handwritten and typed reports, is primar-

ily designed for internal use in medical settings as well as medical billing purposes

(e.g., insurance claims) [52]. However, the digitization of healthcare data has al-
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lowed for secondary use of EHRs in clinical analysis and research [19]. The American

Medical Informatics Association (AMIA) states,

“Secondary use of health data can enhance healthcare experiences for in-

dividuals, expand knowledge about disease and appropriate treatments,

strengthen understanding about the effectiveness and efficiency of our

healthcare systems, support public health and security goals, and aid busi-

nesses in meeting the needs of their customers.” [53].

On a population scale, EHRs assist in better understanding of disease progression and

patient trajectories as well as informed decision-making at the point of care [51]. In

recent years, several institutions such as the National Patient-Centered Clinical Re-

search Network (PCORnet) [54], Informatics for Integrating Biology and the Bedside

(i2b2) [55], and the Observational Health Data Science and Informatics (OHDSI) [22]

have created clinical data repositories in conjunction with analytic, cohort identifi-

cation, and data sharing tools for advancing clinical research as well. Additionally,

clinical datasets such as Medical Information Mart for Intensive Care III (MIMIC-

III) have been made available for clinical research. While these data sources and

others include large amounts of granular clinical information that have be useful for

pushing clinical research forward, researchers are tasked with overcoming challenges

that effect the utilization of EHRs. [56] states, “Using [EHR] data for research is

fundamentally different from using prospectively collected data, as has historically

been done in randomized controlled clinical trials.” In this section, we discuss access,

storage and preprocessing, and data sources regarding analyzing EHR data.

2.2.1 Data Access

The number of healthcare data sources continues to increase as innovative tech-

nologies surface. This leads to the assumption that the availability of such data may

be abundant, allowing for simpler access. While this assumption may hold for data

obtained from sources such as public health initiatives and social network crowd-
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sourcing, one of the largest barriers for utilizing EHR data is its inaccessibility to

researchers [57]. Challenges regarding access to patient medical data are ongoing for

clinical researchers despite efforts [58] that promote and address issues across the

healthcare domain. We focus on three main areas of concern in relation to data

access: patient privacy, data sharing, and interoperability.

Privacy Clinical data reveals unique, personal, sensitive, and critical information

about an individual. While such information can be used to gain clinical insight re-

garding a patient, the misuse of such data, leading to violation of a patient’s privacy,

is an abuse from both an ethical perspective and a legal standpoint. The importance

of patient privacy was realized in 1951 when Henrietta Lacks’ medical information

not only became public but was used for research unbeknownst to her and her fam-

ily [59]. Though Ms. Lacks’ data resulted in one of the most important discoveries

in medical research history, the HeLa cell line [59], the misuse by researchers caused

great controversy and inflicted devastation on the Lacks family. This later lead to the

creation and modification of local and federal privacy laws such as the Health Insur-

ance Portability and Accountability Act (HIPAA) [60]. HIPAA protects patients and

their medical information by defining protocols for accessing and handling medical

data, mainly a de-identification process that requires the removal and/or generaliza-

tion of protected health information such as name, address, phone number, and dates.

The de-identification process preserves the rights and privacy of patients [61] while

providing datasets for analysis and evaluation. In addition to HIPAA requirements,

clinical research involving human subjects may be subject to an approval from an in-

stitutional review board (IRB), a committee that ensures proposed research methods

are ethical [62]. While the IRB process is designed to protect subjects as well as add

structure to the clinical research pipeline, IRB review and approval is time-consuming

and burdensome and can impede or even prevent research [62].

Data Sharing Violation of privacy laws (i.e., HIPAA) can result in fines, penalties,

and felony offenses [63], which are consequences that could discourage clinical data
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providers from sharing patient data out of fear of litigation [64]. While laws have

been established to protect the privacy of patient data, data accessibility is impacted

by other factors such as data governance: the process by which responsibilities of

collecting and securing information while also getting value from that information [65].

EHR data is usually collected for a specific purpose and, traditionally, not intended

nor expected to be used beyond the purposes in-which it is collected. EHRs can

be viewed as professional medical opinions that reflect the clinicians and institutions

that interact with patients. This information is collected and stored on systems that

are in the possession of the care providers, who in essence, have access and control

over patients’ health data, making them the primary stewards of EHRs [66]. Data

holders are more-likely to manage this data in ways that are most conducive to their

needs, creating data silos. Furthermore, providers may not want to share the data

or have the resources in place to do so. Even after patient data is de-identified and

data owners are willing to give access to researchers, data sharing in the absence of

interoperability is an issue.

Interoperability Lack of interoperability, caused by the lack of technological com-

patibility and lack of standardize coding, has plagued the healthcare system for

years [67]. In 2009, President Barack Obama signed the American Recovery and

Reinvestment Act, an initiative supporting the development of a national system of

EHRs, digitizing all patient health records, in hopes to achieve interoperability across

care settings and promote the meaningful use and value in EHR development [68].

Despite the development of this initiative, healthcare systems that are tailored to fit

the needs of individual organizations continue to be developed, limiting the ability

for EHR systems to exchange information among providers. Further, patients may

have multiple providers, leaving their medical information scattered across organi-

zations. Initiatives, such as the Standard Health Record [69], are intended to solve

interoperability by standardizing EHR data, creating a unifying template across the

medical field that contains all of a patient’s health data from multiple clinicians [69].
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While such a standardized template is befitting, it requires a restructuring of an en-

tire domain of systems that have been adapted by medical institutions and created

specifically to fit their needs.

Researchers have made several attempts to solve data sharing issues using more

technical approaches such as blockchain. For instance, MedRec uses a blockchain

solution to allow distributed data collection and access to address data fragmentation,

slow access to medical data, and system interoperability [66]. Other researchers [50,

70] have also adopted blockchain technology to promote distributed management and

access of patient data. Such solutions help to avoid data silos and data cemeteries [71]

as well as target challenges relating to data access and availability. On a wider scale,

data warehouses and clinical research networks have been developed to efficiently

integrate data from various sources and provide a platform for sharing data as well as

reproducible research. Data warehouses are recent trends in healthcare data analytics

and gathering, which consist of repositories of information from clinical and research

records, usually with integration to query de-identified data [72]. Platforms such

as the i2b2 [55] facilitate data access by linking multiple data sources together in

one place. The main goal is to have a common data representation that encompasses

standards across the healthcare domain [72], strengthening the link between a network

of providers, researchers, and other stakeholders.

2.2.2 Data Storage and Structure

EHR systems are primarily designed for “routine clinical care,” and in-turn, the

wealth of information that they store is not in “readily minable formats” [73]. Issues

related to data structure and representation are common hurdles in healthcare re-

search using EHRs. Many of these issues are attributed to lack of EHR data standard-

ization. One attempt at standardization is the use of common coding terminologies

within EHR for billing purposes. Various clinical and administrative terminologies

such as International Classification of Diseases, Ninth Revision, Clinical Modification
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(ICD-9), Current Procedural Terminology (CPT), RxNorm, and National Drug Codes

(NDC) have been adopted across EHR systems for clinical diagnoses, procedures, and

drugs representation. These different coding terminologies provide flexibility to prac-

titioners as they generate EHR data for patients, but introduce challenges to analysts

as they must identify and learn coding terminologies across datasets. Moreover, cur-

rent medical systems differ in their acceptance and support of international standards,

protocols, and formats and semantics [74]. Because there is no standard data rep-

resentation of EHRs across medical systems [75], generating broad data models that

can be widely applied across medical systems remains a challenge.

Traditionally, DB technologies [76] have been used to handle various forms of

clinical data for storage, accessibility, and retrieval. DBs provide direct access to data

and dynamic extraction of specific data entities. Some DB technologies are optimized

to handle more structured data while others are built to handle both structured

and unstructured data. Relational DBs such as MySQL, Oracle DB, and Microsoft

SQL Server were developed with a corresponding query language model, structured

query language (SQL), to store structured data, following a relational model. The

data is organized as tables that include rows for representing records and columns

for representing attributes of records [77, 78]. These relational databases are often

structured and work with a well-defined schema, a physical implementation of a data

model. DB schemas include details such as data types, constraints, foreign or primary

keys [76].

As data continued to grow and change, a newer DB technology, called Non-

relational or NoSQL, was developed to support both structured and unstructured

data as well as scalability [79]. NoSQL DBs differ from relational DBs as they do

not follow a relational model nor a fixed schema [80]. This is an important difference

because NoSQL is a form of unstructured storage, allowing a simpler, more flexible

structure [80]. NoSQL databases store types include document, column, key-value,

and graph, where each value in the DB usually has a key [80]. Both schema or

schema-less databases define how data is stored for specific database technologies.
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Data representation and functionality of these database technologies are limited by

the features available in specific DB platforms. Because of complexity issues with

representing complex relationships, object relational databases such as MySQL and

PostgreSQL (or Postgres) were developed [81].

Once data extracted from EHR systems is made available to researchers, they must

perform costly and time-intensive processes such as restructuring of the data before

it is analyzed [82]. Aside from current traditional database schemas, there exists

data models. Current approaches used to rectify issues surrounding data structure

include attempts to standardize data terminology through the development of data

models [83,84]. Data models, similar to database schemas, describe how data is stored.

However, unlike a DB schema, a data model is not specific to an implementation but

rather is a data design [76]. Data models are general organization/architecture of data

elements and their relationships and data schemas are the specific implementation of a

data model in a particular database management system. These models are developed

to accommodate healthcare data from disparate data sources such as administrative

claims, EHRs, longitudinal surveys, and registries [85]. They determine the structure

of data and describe data organization regardless of how the data is represented in the

underlying system [76]. Organizations such as i2b2 [23] and OHDSI [22] attempt to

standardize representation and define structure by developing common data models

(CDMs), a way of organizing data into a standard structure [56].

i2b2 developed a core data model based on an Entity-Attribute Value (EAV) star

schema to provide a common structure to all of the data sources it houses from het-

erogeneous sources (e.g., clinical trials, EHR systems, and other clinical data systems)

and allow data to be aggregated and optimized efficiently. i2b2’s star schema data

model consists of five tables. At the center of this model is a fact table that represents

a patient object. Each row of the fact table represents a single observation about a pa-

tient. Facts, which are quantitative or factual data, include diagnosis, procedure, lab

data, demographics, health history, genetic data, and provider data. The remaining

four tables, called dimension tables, represent attributes such as provider numbers,
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concept codes, start and end dates, and other parameters, regarding a patient ob-

ject. Dimensions are groups of hierarchies and descriptors that define facts [23]. The

remaining tables are dimension tables, which contain descriptive information about

facts. i2b2 requires standardization across its system. Hence, the star schema, which

maps concepts and other clinical information. The extracted data must be trans-

formed into an i2b2 compatible star schema [86,87]. i2b2’s star schema data model is

instantiated similar to a single relational model and is considered to be the simplest

style of schema for a data warehouse [23].

OHDSI’s Observational Medical Outcomes Partnership (OMOP) CDM was de-

veloped to provide consistency and standardization for healthcare data from hetero-

geneous sources. Like i2b2, OHDSI achieves this by requiring data to be transformed

from varying sources into a database with a common format or model with common

representations (e.g., terms, vocabulary, coding schemes) [88].

2.2.3 Data Preprocessing

EHR data is optimized to support activities related to billing and reviewing clini-

cal observations as opposed to research [89]. Understanding the context in which data

is collected is important for leveraging EHRs for data analysis. Data is routinely col-

lected from various departments within clinical settings, categorizing data according

to the clinical and administrative activities performed. [89] et al., categorized com-

mon issues with raw clinical data (Table 2.2). Such issues affect the quality of clinical

data used for secondary purposes and requires data to be preprocessed. Data pre-

processing includes a series of steps that can be an iterative and repetitive process to

properly organize the data for analysis. These steps include data cleaning, integra-

tion, transformation, and reduction. Specifically, data cleaning and transformation

are important for data analysis using EHR data.

Data cleaning involves removing erroneous data, handling missing, noisy, and

duplicate data [90]. These issues can be introduced at the point of data entry or the
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point of conversion when prepared for secondary use [91]. Missing data is handled by

ignoring the record, manual completion, and filling with predictive values [91]. Noisy

data refers to random error in an observed variable (e.g., abnormal values differing

from expected baseline), which is a common problem EHR data [91]. EHR data

that contains duplicate, erroneous, or missing data can produce misleading results

when used as input analysis [90]. While there are several tools to automate the data

cleaning process, correcting all possible data inconsistencies and errors would have to

occur during data entry or extraction [72,91].

Data transformation is intended to represent the data in a format that is suitable

for analysis [91]. Processes such as data aggregation involve combining values of the

same data attribute or simply gathering all information pertaining to a patient. Data

transformation is a common approach required by data warehouses. They require

a time-consuming process called extraction, transform, and load (ETL) to convert

data into a desired syntactic and semantic standard, usually defined as a platform-

specific CDM [72, 90]. This process is often not automated and requires additional

steps to assure the underlying data has been processed properly. While preprocessing

steps such as data cleaning is considered to be a common problem in data warehous-

ing, additional preprocessing for transforming the data to fit CDMs introduces other

challenges such as data loss.

2.2.4 Data Analysis

To evaluate data analytics for longitudinal EHRs in clinical research, we define

three types of healthcare data analytics models: (i) descriptive, (ii) predictive, (iii)

prescriptive. Each analytic model is designed to address questions such as “What

happened?”, “What could happen?”, or “What should be done?” Techniques such as

computational modeling, text mining, natural language processing (NLP), and visual

based processing of data are used to generate these three types of data analytic

models and derive insights from data [92]. The data analytics pipeline can be viewed
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as an iterative, not sequential process that encompasses a range of steps to answer

clinical questions and delve deeper into informed clinical decision-making. For the

remainder of this subsection, we discuss the aforementioned types of data analytics

models further.

Descriptive Descriptive healthcare analytic models are considered the most com-

monly used type of analytics [93], providing insight into the past. Descriptive ana-

lytics helps answer questions such as: “How many patients were administered antibi-

otics? How many patients over the age of 65 were treated?” Descriptive analytics,

which emphasizes the use of the underlying data, rather than information, was in-

troduced to describe data without complex calculations, allowing reporting of sim-

ple statistics of data. Healthcare professionals and researchers use descriptive data

analytics as a starting point to understand past and current healthcare decisions.

Descriptive data models are structured by categorizing, classifying, characterizing,

aggregating, and converting data to analyze what actually happened in the form of

summaries [93]. They summarize raw data for human interpretability such as a count

or aggregate that can be input to basic mathematical formulas (e.g., summations,

averages). These summaries are usually presented as charts, reports, or visualiza-

tions that illustrate patient outcomes, characteristics of cohort study participants,

healthcare costs, etc. Specifically, visualizations are used often, as it allows data to

be analyzed in a graphical format by constructing graphs, histograms, etc. to identify

and explore trends.

Predictive While predictive analytics is more advanced than descriptive analytics

in that it emphasizes the use of information versus the data, descriptive analytics

can be used as a building block for predictive analytics. Predictive analytics target

“understanding the future,” determining what might happen given summarized and

historical data. Simulation and modeling techniques are the most common approaches

in predictive data analytics, where predictions are made by estimating the likelihood

of a future outcome with some certainty. [93]. For instance, questions such as “What
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is the efficacy of oral antibiotics in patients with lung diseases?” and “Which patients

are most likely to survive a heart transplant after receiving mechanical ventilation?”

can be answered through predictive analytics. One benefit to developing predictive

analytics models with EHRs is that predictive algorithms attempt to optimize the use

of available data by filling in missing data. This is especially useful in EHRs, as they

contain longitudinal time-series data points that are susceptible to error and missing

information. The temporal dynamics of EHRs can be exploited using predictive

models such as Markov Chains and Gaussian processes [94].

Prescriptive Prescriptive analytics uses medical knowledge and expertise in addi-

tion to data and information to determine what should be done [93]. For example, the

choice of antibiotic versus steroids during a COPD exacerbation may be determined

based on the severity of the exacerbation and the treatment that maximizes the best

outcome. Given a situation, prescriptive analytics target optimizing possible courses

of actions, going beyond descriptive and predictive analytics [93].

2.2.5 Data Sources

Clinical DBs contain routinely collected for administrative healthcare data or data

collected specifically to assess particular clinical outcomes [95]. EHR, administrative,

claims, clinical trial, and health surveys are type of data found in clinical DBs that

are made available both privately and publicly [95]. Private DBs [96] are obtained

through private clinical networks and medical institutions. Such DBs can be difficult

to access, as they are legally bound to the entities which holds the data. Some

DBs offer data to researchers through partnerships and collaborations that align with

their institutional goals. There are a limited number of publicly available resources

for EHR clinical DBs that contain information for diverse patient populations [97],

and even less than with a range of granular clinical information. Cerner’s APACHE

Outcomes DB includes data from roughly 150,000 ICU stays, but lacks physician

notes, waveform data, and complete physiological and lab measurements [97]. Phillips
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eICU DB [98] is populated with data from over 160,000 patients who were admitted

to critical care units in 2014 and 2015. eICU also does not contain complete physician

notes, and is only made available to selected researchers by submitting a proposal to

the eICU Research Institute [97]. The MIMIC-III database is the only publicly and

freely available critical care database of its kind.

MIMIC-III is a nationally recognized relational DB curated by the MIT Labora-

tory for Computational Physiology from Beth Israel Deaconess Medical center [99].

The MIMIC-III (or MIMIC) database contains both high resolution waveform data as

well as clinical information on Intensive Care Unit (ICU) patients, admitted between

2001 and 2012. MIMIC-III is publicly available and comprised of deidentified data for

roughly 46,520 distinct patients and 58,976 hospital admissions for patients in criti-

cal care units [99]. The database includes a range of detailed, granular patient-level,

medical information such as time-stamped, physiological measurements, laboratory

tests, and demographics (See Figure 2.2).

Figure 2.2.: Overview of the MIMIC-III clinical database [99].
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MIMIC-III consists of 26 tables (Figure 2.3) that are linked by identifiers using

a suffix ‘ID’ [99]. Specifically, subject id and hadm id refer to a unique patient and

hospital admission, respectively. Charted events such as notes, lab results, and vital

signs are stored in several ‘events’ tables that include measurement values as well

as time-stamps of when the event or measurement was recorded [99]. Other tables

include demographics information such as date of birth, date of death (if the patient

died), admission and discharge time-stamps, prescriptions, and dictionaries to identify

concepts. Tables for medical information such as ICD-9 and CPT are also included

to identify diagnoses and procedures that were recorded during hospital stays.

The MIMIC-III database is HIPAA compliant, and IRB determined that individ-

ual patient consent be waved [57]. Prior to incorporating data into the MIMIC-III

database, it was first deidentified in accordance with HIPAA standards through a

process of structured data cleansing and date shifting, removing all identifying data

elements such as patient name, address, and dates [99]. Time of day, day of the week,

and dates related to clinical observations were shifted to preserve intervals regarding

patient stays. MIMIC-III access is granted to researchers after signing a data user

agreement and completing a course in protecting human research participants. This

process, along with a relaxed IRB requirement allows researchers unrestricted anal-

ysis to use the MIMIC-III dataset, bridging the gap between research studies and

access to real-world, clinical data. Access to MIMIC-III data is originally provided

as a collection of comma separated value (CSV) files that can be used to import into

databases systems such as PostgreSQL and BigQuery to create new instances of the

MIMIC-III DB.

The MIMIC Code Repository is an online, open source repository comprised

of standardized scripts in languages including Structured Query Language (SQL),

Python, and R [101]. This repository is shared and actively contributed to by the

research community (i.e. individuals who have been granted access to the MIMIC-III

database).
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Figure 2.3.: The MIMIC-III reconstruction (PostgreSQL) [100].

Properties of Clinical Data Sources

EHRs also have data characteristics issues that make analyzing EHRs difficult. To

show how these issues manifest in a collection of medical data, MIMIC-III is used [99]

to illustrate challenges in analyzing the longitudinal representation of EHR data.

The MIMIC-III database has limitations such as redundancy across tables, sparsity,

heterogeneity, and temporality, making it useful for the context of this research.
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Challenges effecting large-scale analysis of EHR data that are exemplified in the

MIMIC-III database include:

1. Heterogeneity EHRs contain many types of data, having unique character-

istics; thereby, making it difficult to analyze such heterogeneous data. They

are multi-dimensional in that they contain transactions, time-series data, and

unstructured text. These dimensions have data types such as date/time, cate-

gorical (e.g., demographic attributes), and units of measurements.

2. Sparsity Data sparsity is a common issue in longitudinal data analysis and

representation. Data may be missing or erroneous as a result of human error

or machine failure. For example, there are clinical variables in MIMIC-III that

are measured continuously such as vital signs, while others are measure infre-

quently such as laboratory tests. A patient’s blood pressure may be measured

continuously for several hours during a hospital stay. This measurement could

be recorded in their EHR both manually by a care provider or via a medical

monitoring device. However, because of error or missing information, the pa-

tient’s blood pressure measurement may be unsuitable for use. This can be

caused by errors in the measuring process or the fact that the patient’s blood

pressure was no longer measured.

3. Redundancy EHR data, such as the information collected in the ICU, contains

clinical data that can also introduce a considerable amount of redundancy [102].

The same observations with varying and/or duplicate values may be repeated

during a patient’s medical encounter. For instance, MIMIC-III contains infor-

mation regarding drugs administered to a patient during their ICU visit in sev-

eral different tables: PRESCRIPTIONS, INPUTEVENTS MV, and LABEVENTS. Each

of these tables contain time-stamps, drug names, dosage amounts, and other

information. As shown in Figure 2.4, these drug observations are associated

with multiple unique identifiers and value sets in each table. Also, to gather

this data, several tables were accessed to obtain this information. This suggests
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that EHR data can be duplicated across multiple tables, making it difficult to

reconstruct a single medical encounter.

Figure 2.4.: Administration of vancomycin, an antibiotic drug, during one unique

ICU stay via the MIMIC-III database.

4. Temporality Accurately capturing the temporal characteristics of medical ob-

servations is challenging as a result of poor documentation of temporal ordering.

This makes it difficult when developing mechanisms to represent a patient’s

medical history using EHRs. A patient’s EHR for a single hospital encounter

may contain multiple clinical events, and each clinical event may be repeated.

Many observations, such as lab results and vital signs, are continuously recorded

during a patient’s hospital encounter, resulting in a collection of time-series in-

formation [103]. This time-series is susceptible to irregularity as observations

are recorded in various intervals. Also, several observations may be recorded

simultaneously. For instance, a heart rate monitor and a device to measure

blood oxygen may be connected to a patient to measure both heart rate and

blood oxygen levels. The measurements are then sent to a EHR system and ap-

pend to the patient’s EHR. Though this information is captured simultaneously

and they will have the same time-stamps in the EHR, they will be recorded in

separate rows in the database table.

While these challenges can make data analysis difficult, the promises of leveraging

EHR data for secondary purposes rely on several factors. Specifically, the ability to
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understand the underlying data source and identifying the preprocessing steps needed

to transform EHR data representations for analysis. Researcher and analyst must be

aware of these challenges to reap the full value of EHR data and reduce or remove

errors and biases that may impact the data.

2.3 Mathematical Concepts

2.3.1 Markov Chain

A discrete first-order Markov chain is a type of stochastic process that describes

a sequence of possible events, where the probability of the next event depends only

on the current event [104]. Such events are called states, si, which make up a finite

state space, S = {s0, s1, s2, ..., sn} used to model the changes in a system over time.

The system moves randomly between states, where each move is considered a step.

State changes are called transitions, and the corresponding probabilities for different

state changes are called transition probabilities. Transition probabilities, pij, represent

the likelihood (or probability) of changing to another state or remaining in the same

state, pii, where i and j are states. Transition probabilities can be represented by a

transition probability matrix (TPM), P , or a graph (Figure 2.5). A TPM consists of

rows and columns with probabilities for each state.

Absorbing states are states that are impossible to leave and terminate the Markov

process once reached. Transition probabilities must follow the constraint that each

row sums to 1.

2.3.2 Monte Carlo Simulations

Monte Carlo simulations are a technique for understanding the impact of uncer-

tainty in a model [105] and are used to “assess the validity, reliability, and plausi-

bility of inferential techniques” [106]. A main feature of Monte Carlo simulations is

its ability to estimate the likelihood of outcomes. They can be used to estimate the
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(b) Transition probability graph.

Figure 2.5.: A simple 3-state Markov chain with transition probabilities represented

by (a) TPM. Rows represent the probability of moving from the corresponding state

to the state corresponding to the column. (b) Transition probability graph. Nodes

represent states. Edges represent probability of moving from one state to another or

remaining in the same state.

probability of different outcomes in processes, such as Markov chains, that are diffi-

cult to predict or too complex to solve analytically [105, 106]. The simulation is an

iterative process, which repeatedly generates random values and selects next states

based on the range of the model parameter estimates (i.e., transition probabilities).

The simulation ends once a particular state has been reached or a specified number

of random draws has been completed. The results are based on repeated sampling

from a probability distribution for a random process.
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3 A CONCEPTUAL EHR DATA ANALYTICS FRAMEWORK

3.1 Introduction

A conceptual framework is a way to organize components and ideas needed to

achieve a goal [107]. It provides a representation of an overall picture of what is

needed. Understanding the overall picture is an important aspect of data analytics.

Thousands of terabytes of data are generated each day from various sources (e.g.,

social networks, online shopping, medical sensors), focusing more attention onto big

data analytics [108]. Big data analytics is the process of collecting, organizing and

analyzing large amounts of data [109, 110]. The ability to leverage large amounts of

data from various sources has presented opportunities for analytics in areas of the

healthcare industry such as population health, business, and clinical research [111].

While these areas differ according to the data sources (e.g., EHR, claims, clinical

trials) used for analysis, they all intend to extract meaningful insights from data.

Data analytics solutions can differ across areas in healthcare (e.g., business, clini-

cal) as well as within the same area. Thus, depending on the underlying data, as well

as the information and analytics needed, various tools and frameworks can be devel-

oped. Specifically, the EHR data analysis pipeline is comprised of several components

that are useful and/or necessary for generating evidence and providing insight into

healthcare processes. EHR analysis tools provide research and medical professionals

the ability to analyze various forms of data (e.g., structured, unstructured). However,

depending on the form of the data, tools equipped with specific capabilities may be

required to perform analysis. These specialized tools can create data silos, which are

isolated sources of data that are only accessible or usable by a small population of

medical professionals or analysis [71].



33

Despite the potential for data silos and isolation in practice, a conceptual frame-

work can be developed that encompasses the main components of an EHR analysis

system. While the components represent the architectural structure of the system,

the capabilities of those components provide the ability to manipulate (e.g., remove

errors, label) the data for analysis. Once the components and corresponding capabil-

ities are identified, tools and techniques that have such capabilities can be mapped

to the components, creating a framework. This chapter presents a novel conceptual

framework that identifies and explains five major components necessary for EHR data

analysis. These components are: i) data storage ii) data extraction and preprocessing

iii) data aggregation iv) data analysis and v) data visualization. We explain how

longitudinal EHR data impacts the capabilities of each component to show how a

conceptual framework can be developed to define the comprehensive requirements for

generating clinical evidence.

3.2 Related Work

Designing analytics frameworks can be challenging, as developers must have knowl-

edge of the analytics goals to capture data without loss of information and preserving

data integrity. Previously developed frameworks [110, 112, 113] for healthcare data

analytics are structured around the following architectural components: data storage,

aggregation, analysis, and visualization. While these main components support anal-

ysis for various types of healthcare data (e.g., insurance claims, health surveys, phar-

macological, EHRs), the capabilities of each component must be able to support the

domain of the data used for input. For example, analyzing health survey data differs

from analyzing longitudinal EHR data. Health surveys provide prevalence estimates

to evaluate population health, while EHRs contain routinely collected, time-series

clinical information regarding medical encounters for individual patients. Further,

EHRs include various types of data, (i.e., structured and unstructured) which may

require a variation of processing techniques for analysis. For example, SemEHR [114]
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is an information extraction and retrieval framework. While the performance capa-

bilities of SemEHR have been demonstrated through querying concepts in EHR DBs

and lab tests measurements [113], the SemEHR framework provides two different

components for handling structured and unstructured data. Structured data (e.g.,

ICD-9 codes, vital signs) are extracted and processed using SQL queries, while BioY-

ODIE [115], a clinical NLP system, is used to extract concepts in the unstructured

EHR data (i.e., “free-text” clinical notes).

Various analytics frameworks have been created to fit the underlying data, while

others have been developed for a specific need, as detailed [108, 116]. Though these

frameworks are developed for specific analytics needs, they are all based on similar

components. For example, Wang et al., [112] defined a framework based on data ag-

gregation, data processing, and data visualization to evaluate the business value of big

data in healthcare. Khazaei1 et al., [117] describes a cloud-based reference framework

for providing health-analytics-as-a-service for both real-time and retrospective anal-

ysis using componenets such as data acquisition, transformation, storage, analytics,

knowledge extraction, and visualization. Chawla et al., [116] describes a data-driven,

personalized healthcare framework using a collaborative filtering approach, express-

ing the importance of data aggregation. Sarkar et al., [108] introduced a framework

for a secure healthcare system that includes data extraction and aggregations and

components. Saggi et al., [110] provides an overview of an architecture for a big

data analytics framework for value-creation in business based on several components,

including: data generation, data acquisition, data storage, advanced data analytics,

and data visualization [110].While each of these frameworks were created for a spe-

cific need, they all conceptualized the solutions needed to achieve the corresponding

analytic goal.

In addition to frameworks, several tools have been developed and integrated into

existing healthcare analytics platforms and infrastructures. Specifically, several re-

search networks [22, 54, 55] offer tools that can be utilized with their specific data

models. For example, OHDSI [22] offers a suite of data analytic tools for explor-
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ing data and generating evidence to improve health decisions. HERMES (Health

Entity Relationship and Metadata Exploration System), a vocabulary browsing tool

that allows searching and exploring of terms and concepts, PLATO (Patient-Level

Assessment of Treatment Outcomes), a predictive modeling tool to assess patient

outcome probability, ACHILLES (Automated Characterization of Health Informa-

tion at Large-scale Longitudinal Exploration System), a visualization tool for clinical

databases [85], and ATLAS [118], a tool for researchers to conduct scientific analy-

ses, are among the tools were designed to facilitate data exploration, data analysis,

and cohort definition. Each of these tools serve a specific purpose that can generate

output that is used by a separate tool as input. For example, clinical concepts found

using HERMES can be used to identify and explore patient cohorts with ATLAS.

However, OHDSI, like other research networks, requires data to be transformed to

their (i.e., OMOP) platform-specific CDM to use these tools.

Several frameworks have been developed for specific analytics needs, while others

have developed software packages to accompany CDMs for existing platforms. Cur-

rently, there is no single tool that encompasses all of the necessary features to provide

comprehensive and granular analysis for longitudinal data; however a combination of

several tools with the capabilities necessary for meeting analytics needs can be iden-

tified with a conceptual framework. EHR data analytics frameworks must support

key functions that are necessary for the anlytics goal [119]. While frameworks have

been developed for specific analytics needs, they are structured by common archi-

tectural components (i.e., storage, aggregation, analysis, and visualization). Thus,

the development of EHR frameworks that are equipped with capabilities to manip-

ulate the data at various levels of granularity are conceivable through through these

components.
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3.3 Methodology

EHR data analytics is driven by the overall analytics goal. Some analytic goals

target the identification of trends in the data (e.g., what has happened), while others

are interested in what will potentially happen in the future. Clinical data collected

over time requires specific techniques for understanding temporal characteristics, as

time is the most important parameter when analyzing longitudinal data.

Time-series data is represented by timestamps and generates a temporal ordering

of data points that are based on when an event occurs. Incorporating timing infor-

mation such as the exact time when an event occurred as a key analysis input adds

more specificity and granularity to the analysis. For the purposes of this study, we

consider time to be comprised of two parts, continuous and discrete. Discrete time

includes events (e.g., hospital discharge) or time measures at a specific time (e.g.,

drug administration). In the medical field, these events include X-Ray results, lab

tests, interventions, etc. Discrete time events are used to identify change of measure-

ment values using static data points. Continuous time includes data that is measured

repeatedly. Examples of continuous time events include singular physiological wave-

form data such as heart rate, blood oxygen level and other data that can be monitored

via medical monitoring devices [120]. Both discrete and continuous data capture the

temporal nature of the time context that can be used for data analysis.

The components presented in Figure 3.1 represent a framework of an EHR analysis

system. This framework is comprised of a group of sequential steps that transform

raw EHR data into usable inputs for visualization and/or modeling and simulation

algorithms. This framework is an exhaustive explanation of the major components

of an EHR data analytics system.

3.3.1 Data Storage and Access Architecture

Data is at the core of the EHR data analytics framework. Identifying data storage

formats that establishing the foundation for accessing and extracting the data with
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Figure 3.1.: Conceptual framework for EHR data analytics.
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limited complexity in regards to our needs is important. EHR data is typically made

available as a relational DBs, a collection of tables that are linked together by shared

keys (Figure 3.2). This structure helps maintain data integrity and enable faster

analysis and more efficient storage [89]. EHR is can also be exported from a DB as

Figure 3.2.: Example of tables in the MIMIC-III relational database pk is primary

key. fk is foreign key. [89]

a file, most common being a CSV file [89]. CSV files can be loaded as a spreadsheet

in existing software packages such as Microsoft Excel, edited with text editor such

as Microsoft Word, and imported and processed by most data analysis packages,

making them an intermediate data format used to hold data [89]. Privacy laws such

as HIPAA have storage and security requirements for data that contain personal and

identifiable information. While access control measures and data policies are put in

place for EHR data access, such methods are beyond the scope of this research.
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3.3.2 Data Extraction and Preprocessing

Data Extraction Once data is collected and stored, outside researchers and other

medical practitioners can extract the data to perform additional analysis [120]. Data

acquisition resulting in useful information requires background knowledge of the

dataset characteristics. For example, determining a patient’s age requires knowl-

edge of the structure of the data. Patients can have multiple hospital stays, and their

age can change between stays, and their information can be spread across several

tables. The PATIENTS table contains a unique identifier, subject id, used to iden-

tify the patient and a field, dob, which represents the patient’s date of birth. The

ADMISSIONS table contains timestamps and unique identifiers for each hospital stay

related to the patient. These two tables must be joined using the subject id to

retrieve this information. Once extracted, the dob timestamp and hospital admission

timestamps are used to compute the patient’s age for each hospital stay event for the

patient. This extraction depends on the data storage technique as well as the type of

data being extracted. Without this information, the extraction can not occur in way

that is digestable by the tool; thus, the desired data will not be analyzed. This need

forces data extraction techniques to be developed that align with the structure and

semantics of the underlying data source. Data can be extracted from the DB by con-

structing SQL queries or via an application programming interface (API) that maps

pre-constructed and customized queries to functions that are applied to the data.

API methods with pre-constructed queries do not require comprehensive knowledge

of the underlying storage and structure of data. For example, the API can include a

function to return a patient’s age based on all hospital admissions. Such a function

does not require the user to know the necessary tables to access. API functions that

allow customizable queries as input will require the user to have some knowledge

of the underlying data and structure. These functions provide flexibility and allow

dynamic data extraction for more complex or advanced data acquisition.
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Data Preprocessing Once extracted, the EHR data may have to be preprocessed

(or transformed) before it can be used as input to analysis algorithms. This trans-

formation involves cleaning, sorting, and validating the data. Preprocessing steps for

data cleaning includes removing duplicate, implausible, and incomplete data records.

Data can be simulated to fill in the missing data; however, generating synthetic data

is outside the scope of this work. Mathematical operations can be performed on the

data to generate new summary data or change individual EHR values. For example,

the data could contain multiple measurements for heart rate, all measured within a

five minute period. These measurements combined by calculating the average of their

values to create a single measurement for heart rate with a single timestamp. Data

sorting adds order to the data based a numerical (e.g., subject id) or timestamp

(e.g., charttime) field.

Data preprocessing is an iterative task that is not only implemented for clean-

ing and sorting data. Preprocessing and transforming patient data into meaningful

information that supports data analysis for generating evidence is necessary to use

the data as input into analysis functions. Thus, additional preprocessing steps may

include integrating clinical domain knowledge into the data.

3.3.3 Data Aggregation

Data preprocessing transforms the data so that it can be analyzed for discovering

trends and underlying information. Data aggregation tools organize information to

create a holistic summary of patient events. Such tools can integrate clinical domain

knowledge into patient aggregated data to understand and analyze patient health

changes. Belle et al., [120] state

“Understanding and [analyzing] clinical conditions and disease progression

requires an aggregated approach where structured and unstructured data

stemming from a myriad of clinical and nonclinical modalities are utilized

for a more comprehensive perspective of [health and] disease states.”
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This will enable analysis that reflects the current state of clinical practice as well as

care decisions captured in the EHR.

3.3.4 Data Analysis

Data analysis is characterized by the type of data as well as the purpose of the

analysis [112]. There are three main kinds of data analytics: descriptive, predictive,

and prescriptive [112]. To select the most appropriate kind of analytics approach,

there must be an understanding of the type of question being asked and the level of

measurement being used for input variables [121]. Prescriptive data analytics provide

optimal solutions or potential courses of action to help understand what should be

done in the future [112]. While this research intends to generate evidence through

EHR data analytics to drive clinical guidelines, prescriptive analytics is beyond the

scope of this research. Below, we describe the remaining two data analytic types,

descriptive and predictive analysis.

Descriptive Analysis In healthcare, descriptive studies are considered the most

commonly used type of analytics, providing insight into the past [93]. Data can be

presented in the form of summary statistics or by creating patient trajectories to

understand past medical events and how such events could potentially affect patient

outcomes. Descriptive analyses using summary statistics can also be used to compare

results between studies such as mean mortality rate among men and women with

COPD. Chapter 5 discusses aggregating care events of patients’ EHR data, which is

a type of descriptive analysis.

Predictive Analysis Predictive analytics techniques predict outcomes based on

probability estimation [112]. Predictive analytics approaches include probabilistic

modeling and simulation such as Markov chains and Monte Carlo and machine learn-

ing algorithms such as Bayesian networks, can be used to capture granular temporal

information regarding EHR events and patient behaviors. Specifically, probabilistic



42

modeling and simulation can be used to answer both temporal and atemporal clinical

research questions using time-aware and time-agnostic techniques [122]. Probabilis-

tic modeling algorithms are based probability distributions that are realized through

knowledge of past values. While, these algorithms provide additional insight into tem-

poral trends and can identify patterns and hidden relationships regarding clinical vari-

ables, models must be developed that support analysis of time-series data [28,112,123].

Analyzing longitudinal data requires more than what common modeling methods such

as Markov chains and Bayesian networks alone can provide [124]. Such models assume

fixed sampling frequencies, such as evenly spaced time events. However, such models

cannot be directly applied to EHRs as they contain irregularly sampled data. Using

data that does not meet these assumptions can fail to capture what is present in the

data and can lead to spurious and inaccurate results [124]. Thus, analysis compo-

nents with modeling capabilities must support the temporal dynamics of EHR data.

Additionally, predictive analytics techniques such as probabilistic modeling should

be accompanied by validation approaches to evaluate the robustness of the model

predictions. Chapter 6 discusses time-based modeling and how complex queries can

be generated and analyzed, which can be categorized as a prescriptive analysis.

3.3.5 Data Visualization

The data visualization component generates outputs derived from the analysis

component [112]. Visualization encompasses any visual transformation of the raw

data or mathematically transformed data. Visualizations can be presented as in-

dividual patient and cohort summaries using scatter graphs and charts, as well as

timelines of time-series data to provide a comprehensive view of the evolution of pa-

tient conditions. Visualizations of longitudinal data should reveal any changes that

exist within individual patient data as well as data from patient cohorts. Generating

comprehensive views of longitudinal EHR data using graphical methods provide a

sense of the time elapsed and the events that occurred during a hospital stay. Ad-
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ditionally, visualizing the data can provide greater insight into overall trends in the

data, expose anomalies, and identify subsets of data for additional analysis.

3.3.6 Framework Development

An EHR data analytics framework can be be developed using an object-oriented

programming (OOP) language such as Python [125]. Python is particularly useful for

creating visualizations, processing data, and performing granular analysis. Its modu-

lar programming structure streamlines maintenance and existing code modification,

defines abstract data types, and creates objects that can be reused within and across

applications [125]. Python is equipped with a variety of libraries that can be adapted

and modified to develop components that, together, create a comprehensive analytics

framework.

3.4 Discussion

The contribution here is a generic EHR data analytics framework. We develop a

conceptual framework that is consistent with the healthcare data analytics paradigm.

We show this consistency by describing framework components and their correspond-

ing capabilities. While the structure of data analysis systems should be driven by the

data and the desired output, the five components described will be the foundation

of this structure. A comprehensive framework with capabilities that not only allows

analysis for deriving answers to clinical questions but also integrates the complexity

of the clinical question itself [126] provides a platform for generating evidence for

clinical guidelines.
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4 MIMIC-PURDUE: A DATA EXTRACTION AND PREPROCESSING API

4.1 Introduction

Working with EHR data can be challenging because of its disorganized, redun-

dant, and error-prone nature [82]. In addition to these challenges, EHRs can originate

from various sources such as different vendors with different database schemas, intro-

ducing issues such as sparsity, complexity, incompatibility, and heterogeneity [127].

All of these challenges can make data extraction and preprocessing difficult. Extract-

ing and preprocessing large volumes of EHR data accurately when some or all of

these challenges are present in the data can be time-consuming and require extensive

knowledge of the underlying data elements [72]. To extract data efficiently, a tool

that addresses such challenges needs to be designed and implemented in a way that

does not require extensive human interaction. To address these challenges, we intro-

duce MIMIC-Purdue for storage, extraction and preprocessing MIMIC-III data. This

novel and unified extraction API was developed in Python and provides a structured

way to formulate complex queries and interfaces directly with a PostgreSQL schema

of the MIMIC-III DB.

4.2 Related Work

Common Data Models Clinical research networks target unlocking the value of

clinical data by structuring data, providing analytic tools, providing visualization ca-

pabilities, or a combination of the above. EHR data sharing networks such as i2b2 [55]

and OHDSI [22] provide platforms for clinical research with informatics solutions and

are well-suited for performing simple inquiries regarding clinical characterization as

well as patient and population level analysis. For example, the i2b2 system, consists
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of two components: 1. the Hive, a back-end infrastructure for security and success

management, and 2. the Workbench, a querying and mining tool [55]. The system

is optimized to identify cohorts of patients. The i2b2 web-based Query and Analysis

Tool allows users to create Boolean query combinations and returns a summary count

of patients matching the query [128]. However, the i2b2 system, similar to others,

are less effective when more complex queries are presented, such as those that are

convoluted and granular in detail. Though networks such as i2b2 and OHDSI may

use different approaches to structure observational and clinical data, all of the afore-

mentioned platforms share the concept of a common data format or model to achieve

some standard structure for their datasets. Each platform requires an ETL process

to convert data into a desired syntactic and semantic standard, usually defined as a

platform-specific CDM [72].

Post et al. extended their software, Eureka!, a metadata-driven ETL tool that

can be customized for different data marts (or networks). They showed the value of

their tool with an application to multiple EHR DBs [87]. While their approach could

potentially reduce the burden of ETL processes, there are concerns of data loss, as

some of the concepts may not be mapped correctly as a result of lack of support for

inclusion and exclusion criteria. While, there are other organization-specific tools to

help with the ETL process such as WhiteRabbit [129], a tool for the OMOP CDM,

and Integrated Data Repository Toolkit [130], an i2b2 setup and administration tool,

the lack of a standard model can lead to further segregation of healthcare data sources.

For example, for MIMIC-III to be used within the i2b2 community, it must first be

transformed to the i2b2 star schema data format. This requires data cleaning and

mapping of concepts and vocabulary, among other procedures. A separate process,

however, must be executed to use the OMOP CDM. This requirement to execute a

new process to first prepare the data is present for each new network that is chosen.

Such a taxing conversion processes can discourage data holders by forcing them to

choose between networks, increasing disparity across the available data sources that

are from these networks.
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One of the main advantages for constructing a common data model is to provide

structure to heterogeneous data and data sources. This is the most widely applied

solution used by existing networks to represent data uniformly [131]. While these

platforms are useful for mitigating EHR data challenges such as inconsistency, het-

erogeneity, and interoperability limit the amount of information that is represented.

This is because the process of transforming datasets to fit the data models causes in-

formation loss and can create inaccurate information as a result of the encoding and

standardized relationships among data elements [132]. The configuration and imple-

mentation designs of the data source systems can result in complexity issues when

attempting to store EHRs using such data models [133]. These source systems vary

in the way they are created, which impacts the extracted data when it is imported to

systems such as i2b2. For instance, Deshmukh et al. [133] exposed unique challenges

when attempting to reproduce data captured via structured clinical documentation

because of the way different clinical systems were created.

One solution to address the challenge of standardization is to extend current plat-

forms/models by applying data profiling, assessment data quality in source systems,

during the ETL process [134]. Current systems use data models to correlate disparate

data sources, such as claims and clinical data, to hospital data. Creating an additional

feature that defines the underlying data source, providing the context to how it was

derived can preserve the uniformity of the models. For example, in i2b2, both claims

and clinical EHR data are transformed into the common star schema [55]. During this

transformation, procedures, facts, observations, etc. are not differentiated between

these two EHR data sources. When a researcher attempts to perform a more in-depth

analysis on EHR data, the extended functionality will allow the intended and correct

data to be presented.

Data Harmonization Data harmonization, the process of combining data from

various sources, of common data models and APIs for both individual and multi-

ple data sources is another idea that have been developed for EHR data extrac-
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tion [135–137]. Fast Healthcare Interoperability Resources (FHIR) [138] has received

attention by adopting a standard for exchanging and accessing healthcare informa-

tion electronically. Their EHR standard structure is defined by modular components,

called resource references, to combine resources together through extensions of the

FHIR RESTful API. FHIR can be used alone or together with existing standards and

data models such as i2b2 and OMOP [139].

The Patient-Centered Informatics Common: Standard Unification of Research El-

ements (PIC-SURE) at Harvard Medical School, [140, 141] has been developing an

open source infrastructure to incorporate multiple heterogeneous patient level data

including clinical, omics (i.e., genomics, proteomics, metabolomics), and environmen-

tal data. The core idea of PIC-SURE is to aggregate distributed data resources

of various types and protocols within a single communication interface to perform

queries and computations across different resources such as i2b2 and OHDSI. For

this purpose, the PIC-SURE team developed the Big Data to Knowledge (BD2K)

PIC-SURE RESTful API. The PIC-SURE API is resource-driven and allows new re-

sources to be integrated. Any action executed by users will be passed to the resource

interfaces, where each resource interface translates the action to the supported pro-

tocols. A query constitutes several clauses and in PIC-SURE clauses are limited to

only be of types Select, Where and Join. However, to perform more in-depth and

insightful analysis, supporting complex query generation and execution as well as

post-processing is necessary. The PIC-SURE API has been leveraged to access data

through integration with programming packages for accessing and analyzing various

types of clinical data [142]. Gutiérrez-Sacristán et al., [142] developed Rcupcake, an

R package, for analyzing different databases through the BD2K PIC-SURE RESTful

API.

While the standardized structure and extraction methods provided by OMOP,

i2b2, FHIR, and PIC-SURE are beneficial for harvesting data from various sources

and achieving interoperability, they limit functionality regarding longitudinal analy-

sis of healthcare data. The “one size fits all” epidemic that data warehouses have
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adopted is not conducive for the multitude of types and sources of data. The way the

data models structure data from different sources (e.g., claims, EHR) may result in

loss of information. For instance, a patient with COPD may have their blood oxygen

level checked at a medical lab in July, an ICU visit in October, and a prescription

re-filled at a pharmacy in November. Claims data will contain operational infor-

mation about the patient’s interaction with the healthcare system (e.g., procedures,

diagnoses, providers), while EHR data will contain more clinical information about

the patient such as lab results and vital sign measurements.

Data may contain erroneous, incomplete, or duplicate information as a result of

the manner in which it was entered or stored [91]. Failure to remove or correct such

data may result in inaccurate analysis results. For example, Just et al. [143] discusses

the effects of duplication and erroneous data in EHRs on data analysis, such as

various entries of lab tests, frequency of invalid fields, and missing data within the

care setting. Thus, data extraction and processing (e.g., querying, extraction, and

transformation) are critical components for data analysis [112]. Regardless of the

data model or structure chosen for EHRs, preprocessing must be performed upon

extraction before data can be analyzed.

4.3 Methodology

4.3.1 Data Storage and Access

The MIMIC-Purdue storage platform is a PostgreSQL relational database man-

agement system (RDBMS), built with MIMIC-III data. The DB is stored on a Dell

PowerEdge R430, Linux-based machine with 16 cores, 8 terabytes (TB) disk, and 64

gigabytes (GBs) of random access memory (RAM), located at the Regenstrief Center

for Healthcare Engineering (RCHE) at Purdue University. Access to the system is

granted to researchers at RCHE upon completing the data use agreement [99] for

MIMIC-III. By storing the MIMIC-III data in a central location, users (i.e., RCHE

researchers) are granted unlimited remote access to the system. Users can interact
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with the data via command-line interface, DB (e.g., DataGrip) and analysis software

(e.g., Excel, Tableau), or through other web-based tools (e.g., Adminer). The system

(Figure 4.1) has been integrated with SciDB, a column-oriented database manage-

ment system, that allows additional functionality for exploration, visualization, clin-

ical and waveform database integration, as well as complex analysis with distributed

computing architecture [144]. For example, each user is assigned their own directory

on the MIMIC-Purdue server. The directories are used to develop interactive web

applications in R or Python, allowing direct interaction with applications written by

researchers at RCHE.

Figure 4.1.: MIMIC-Purdue: Software architecture and data flow of the MIMIC-

Purdue DB system [144].

The MIMIC-Purdue storage system is equipped with data security mechanisms,

such as firewalls, to adhere to data privacy and storage requirements of deidentified

patient data. The user access is constrained with data use agreements, password

authentication, as well as public-private key mechanisms.

The MIMIC-III DB is 80GB, and attempting to query the DB from a web-based

tool can slow performance. This is mainly because data needs to be downloaded

and then imported into the web-based application that is being used for analysis or

generating visualizations. Thus, we access the MIMIC-III database through a remote
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connection to the PostgreSQL DB via Python code with embedded SQL queries. This

method provides a user-friendly interface to the DB for extracting data rather than

using a command prompt. Furthermore, by querying the DB through Python, we

remove the need to download query results and import them for analysis.

4.3.2 Data Extraction

To extract data from the MIMIC-Purdue DB a connection must be established

using required credentials (e.g., user-name, password), and a query must be executed

to retrieve results. The MIMIC-Purdue extraction API is an extension of methods for

extracting clinical notes for input to SemEHR, an information and extraction system

for clinical notes [145]. The main contribution of the MIMIC-Purdue extraction API

is added flexibility in data extraction by providing enhanced functionality to execute

dynamic and complex queries. Table 4.1 provides definitions for the two query types,

static and dynamic, that are accessible to the user through a collection of wrapper

functions.

Static queries are pre-constructed and require user input for an identifier such

as subject id, hadm id, and icd9 code. Dynamic queries are queries that are not

pre-constructed and are executed by passing a custom SQL statement as a string

to the applicable API function. These queries are customizable, allowing for specific

extraction and manipulation of the data. Allowing dynamic queries can potentially be

harmful if permissions and privileges for the DB are not in place. The MIMIC-Purdue

DB configuration restricts modification of the DB itself (e.g., inserting and deleting

tables). Both dynamic and static queries can be complex or simple. Complex queries

are queries that include combining data from multiple tables, and simple queries

gather data from a single table. The MIMIC-Purdue API also includes wrapper

functions to connect and disconnect from the DB. The DB connection is made by

creating a secure shell (SSH) tunnel and taking parameters for user credentials to

establish a connection to the MIMIC-Purdue.
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Figure 4.2.: Flow for data extraction API.
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Table 4.1.: Definitions of query types for MIMIC-Purdue data extraction API.

Query Type Name Definition

Static
static-simple

pre-constructed; extracts data from a

single table; optional input value for field

name in WHERE condition

static-complex

pre-constructed; extracts data from mul-

tiple tables using JOIN; requires an input

value for field name in WHERE condi-

tion

Dynamic
dynamic-simple

partially pre-constructed and customiz-

able; requires an input value for SE-

LECT, FROM, and WHERE

dynamic-complex
constructed by the user; customizable

query with user input

Figure 4.2 illustrates the process of extracting data with the MIMIC-Purdue ex-

traction API. When there is data acquisition, either a static or dynamic query function

is called and the required parameters are passed. Next, a function call to connect

to the MIMIC-Purdue DB is made. If the connection is not successful because of

reasons such as incorrect DB credentials, failed network connection, or system fail-

ure, the process is terminated and an error message describing the connection error

is displayed. Otherwise, the query is sent to the DB. If the query contains misspelled

or undefined table names or variable/field names, the query will fail, terminating the

process by disconnecting from the DB and displaying an error. Upon the execution of

a successful query, results are stored as a Python DataFrame, a 2-dimensional labeled

data structure that is later used for preprocessing. The database connection is closed

and the extraction process is complete. The API also provides functions that enables

query results to be ”pickled”. Pickle, a Python package, allows query results to be
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serialized to files on disk and deserialized back into the program when needed. This

is beneficial when the same data is needed repeatedly or when extracting data for

cohorts. Also, this method reduces a portion of the consumption of network services

and database resources when connecting to the DB multiple times for the same data

acquisition.

4.3.3 Data Preprocessing

Once data has been extracted it enters a preprocessing stage. During this stage,

the query results are checked for null values and for temporal data acquisitions all

erroneous and implausible data records are removed. This is done through vari-

ous mechanisms that the MIMIC-III DB includes as well as ones we define. The

CHARTEVENTS table contains all charted (e.g., lab results, vital signs, interventions)

data collected for patients during their hospital stay. The table includes a field, error,

that indicates if an error occurred during the time the measurement was recorded.

Thus, we use this field to identify and remove data that have been labeled erroneous

within the DB.

Temporal data acquisitions are those that return query results based on time-

stamps. For example, a simple extraction of a list of patient subject id values is

not validated for errors, while a more complex, temporal data extraction that in-

cludes time-stamps is checked for valid dates and times. Any temporal extractions

are checked for erroneous and implausible data values. For example, if query results

return data from a patient with a time-stamp for a measurement that was recorded

after their discharge time-stamp, the patient data is excluded from the extracted data.

The API also includes functionality to relabel the data fields using a dictionary of

identifiers (or item id) and corresponding names to replace duplicate names for the

same measurement type. For example, there are four identifiers for respiratory rate in

the MIMIC-III DB, each having a different name (e.g., RR, Resp Rate, Respiratory

Rate). Once extracted, any respiratory rate identifier is renamed to Respiratory Rate.
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In addition to renaming identifiers, measurements for the same variable are all con-

verted to the same unit. For example, the measurement for weight is listed in the DB

in kilograms, pounds, and ounces for different patient records. For consistent analy-

sis, we convert all measurements for weight to pounds. Our preprocessing stage also

applies clinical knowledge to identify and remove clinical measurement values that are

potentially inaccurate by implementing range and consistency checks. For example,

if a measurement for a patient’s oxygen saturation is greater than 100%, which is

physically impossible, the measurement is considered erroneous and discarded.

4.4 Discussion

Our approach to data extraction coupled with the preprocessing methods pro-

vided in the API allows for more granular data extraction and aggregation, as well

as structured and semi-direct interaction with the raw data. The flexibility of the

MIMIC-Purdue API has the ability to extract data from the DB by providing func-

tions that have predefined queries and accept user input. Even more, it allows users to

issue completely customizable, complex queries for dynamic data acquisition, which

is a major difference from the capabilities of existing systems. Additionally, the meth-

ods presented for storing and extracting data reduces the risk of loss of information

beyond the point of its original structure. That is, we do not define nor use a specific

data model as done in previous work [22, 55]. Rather, we store the MIMIC-III data

in the form (i.e., relational DB) in which it is provided by the provider (Laboratory

for Computational Physiology at MIT) [99].

4.4.1 Limitations

Generally, common limitations of data-driven research are quality and accuracy

of the data received [146]. While beyond our control, it is possible that faulty data

entered at the source (e.g., hospital), as a result of human error, is included in the

analysis. Another limitation of our approach is that each time a function is called
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to extract data from MIMIC-Purdue, a new DB connection is established and closed

when the function returns. If a large number of function calls are made, performance

issues can arise. The API includes functionality to serialize files so that they can be

saved on disk. This helps with potentially reducing the number of DB connections

when gathering data for the same patients repeatedly to maintain persistence in the

data that is being gathered. The extraction API does not have input validation

for dynamic queries issued by the user. While the MIMIC-Purdue DB prohibits

queries for data modification in the DB, an improperly constructed (e.g., misspelled

table names), dynamic query which will fail will be sent to the DB as long as the

DB connection has been established. This also occurs when interacting with DBs

directly. Constructing dynamic queries could potentially be a usability limitation

for users who are unfamiliar with SQL. Though the extraction API is built for the

MIMIC-III DB schema, SQL is the underlying language used to extract the data.

The same extraction approach can thus be for other types of SQL DBs, but must be

modified to fit the corresponding DB schema.

4.4.2 Future work

To mitigate the limitation of connecting the DB each time an extraction function

is called, a wrapper class for API functions can be created that keeps information

such as connection credentials, manages DB sessions, and organizes logic necessary

to make API calls as objects. Input validation solutions for dynamic queries can be

integrated by developing a Python dictionary that translates the underlying MIMIC-

III DB schema into the API. That is, parameters passed to the API functions will be

checked against the MIMIC-III tables and field names so that there is input validation

for dynamic-simple queries. Functionality for automatic preprocessing of the data can

be incorporated by creating a rule-based engine that checks for known, potential errors

in the data such as those discussed in the preprocessing section.
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5 PACE: PATIENT AGGREGATED CARE EVENTS

5.1 Introduction

Information extraction for large clinical databases can be time-consuming when

applied to an individual patient, and even more so when applied to large cohorts of

patients [147]. A patient’s EHR tells a story of their medical history. This medical

history is composed of temporal clinical data, data collected over time, that can be

used to understand the care process and the health state of a patient. Large amounts

of raw data points, containing clinical information, such as timestamp observations,

are stored in EHR DBs [21]. Because of the high volume of data, critical informa-

tion can be buried within the EHR, causing an information overload. This makes

it difficult to represent a patient’s medical history coherently, as this information

is typically scattered across different DBs such as pharmacy, ICU, and Emergency

medicine, or multiple tables within a single DB [21]. Moreover, performing analysis

can be challenging, given the representation and structure of the data. Attempts to

analyze several variables with this information overload often leads to overlooking

and misinterpreting critical information [20] that could potentially impact the care

process. For example, vital signs (i.e., heart rate, blood pressure, and respiratory

rate) are measurements of the body’s basic functionality. They are a subset of clini-

cal variables that are measured repeatedly and stored in EHRs. Such measurements

are a source of critical information that is used to detect and monitor a patient’s

overall health state. This critical information can be overlooked when attempting to

observe, gather, and analyze patient EHRs without proper representation [20]. Thus,

to understand a patient’s health journey and make more informed decisions, clinicians

need a comprehensive view of the available and necessary information in a patient’s

EHR.
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One method to provide comprehensive views is to use longitudinal time-series data

to capture the temporal dynamics of the care process. The representation of patients’

EHR data can be enhanced by aggregating and organizing time-series information.

The data can then be used to create visualizations that provide comprehensive views

of raw, clinical data. The ability to capture temporal granularity can provide more

in-depth and descriptive analysis.

While several tools [85,118] have been created to generate visualizations of longi-

tudinal clinical data, they lack the ability to capture granular temporal dynamics of

data, limiting the type of data they can analyze and the visual representations they

can generate [21]. This chapter presents Patient Aggregated Care Events (PACE), a

novel tool for constructing and visualizing entire medical histories of both individual

patients and patient cohorts. Our approach transforms each patient’s EHR into a

caretrail, a chronological collection of events, occurring during a patient’s hospital

encounter, integrated with clinical domain knowledge. We demonstrate the novelty

of our approach by identifying patient cohorts using the MIMIC-Purdue extraction

and preprocessing API, defining health states using recommendations from clinical

guidelines and knowledge from clinical experts, and generating caretrails integrated

clinical domain knowledge. This form of integration provides insight into the clin-

ical condition of patients as they move between various health states during their

hospitalization. We further demonstrate the usefulness of caretrails by providing vi-

sual representations of treatments, outcomes, and clinical measurements for patients

diagnosed with AECOPD.

5.2 Related Work

Several clinical research networks have provided tools and afforded others opportu-

nities to develop tools that leverage CDMs to perform large-scale observational clinical

studies using retrospective data [148]. One tool is OHDSI’s ATLAS, a web-based tool

that shows a patient’s health care records in a timeline view and allows users to create
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cohorts based on specific conditions, drug exposures, etc [148]. ACHILLES, another

OHDSI tool, is a browser-based, exploratory, interactive framework, designed to pro-

vide visualizations of pre-extracted summary statistics from OMOP CDM formatted

datasets [85]. ACHILLES has two main components: (1) an R package to generate

summary statistics and (2) an HTML/JavaScript website for exploring and visualizing

the results. i2b2 developed a web-based Query and Analysis Tool that allows users

to create simple Boolean query combinations to identify patient cohorts [128]. For

example, one could construct a simple query that calculates the number of COPD pa-

tients who have been administered antibiotics. These discovery or exploratory queries

provide insight into cohort statistics, but more granular analytics, specifically dealing

with time, patient health states, and visual representations are not possible using this

system.

Using temporal data to create timelines and other visualizations is a common

approach for longitudinal analytics [149]. A timeline should capture granular tempo-

ral information such as the exact time a patient was administered antibiotics or the

exact time blood samples were extracted. The i2b2 system provides a timeline view

that gives limited information regarding timing of clinical events. In the timeline

view, observations are plotted as vertical bars and grouped by categories according to

times when the observations occurred [23]. However, observations (e.g., lab tests or

diagnoses) regarding a patient are recorded using their start and end dates, but are

not representative of the patient’s entire medical record. Furthermore, i2b2 does not

offer analytical tools to perform tasks such as statistical analysis or pattern discovery

on query results. For example, to perform data analysis on a selected cohort, i2b2

can be used to extract the necessary data, but to perform additional analysis, other

tools must be used. These tools could be made available to medical professionals

and analysts as part of a group of i2b2 plug-ins or developed independently by re-

searchers, but they are not native to the tool [150]. An example of a plugin for i2b2

is TimeAlign, a visual analysis tool for visualizing multiple patient records in a linear

timeline [151], that was derived from another i2b2 tool, Lifelines2 [152]. TimeAlign
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generates visualizations of categorical events (e.g., diagnosis, intervention, discharge),

allowing temporal relationships between events to be aligned across patient timelines.

While these tools are useful for browsing and exploratory analytics, they do not

allow either granular or comprehensive representations of clinical data. Also, their

analytic capabilities are limited because they are based on CDMs, which can cause

data loss during the ETL process that converts data into a standard format [153].

Other efforts have been made for analyzing longitudinal EHR data [159–161].

Table 5.1 compares characteristics of several tools used for summarizing EHR data

and visual analytics. Specifically, these techniques aggregate patient data and create

temporal event sequences [122,159,162]. For example, HARVEST, allows interactive

temporal visualization for longitudinal EHRs by extracting clinical notes and aggre-

gating information from multiple care settings [156, 163]. The idea of aggregating

temporal sequences is beneficial for creating comprehensive views of EHRs; however,

tools developed based on these techniques, such as [157] and [164], are better for

use with discrete timing data rather than continuous timing data. Further, they do

not allow for visual analysis of clinical conditions, defined using the underlying data

points.

5.3 Methodology

5.3.1 Rule-based State Coding Engine

There are several terms used to describe a patient’s condition in the hospital.

While terms such as mild, moderate, or severe, are all used in care settings when treat-

ing and managing patients, they are broadly defined, lack detail, and are not context

specific [165]. Clinical domain knowledge is needed to interpret the underlying mean-

ing of these terms, as they are not intuitive and are typically associated with specific

medical events or diseases. This domain knowledge can be obtained from clinical

guidelines, medical literature, and medical experts. For example, GOLD guidelines

classify exacerbations based on the additional therapy needed, as discussed in Chapter
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2.1.2. Specifically, severe exacerbations are those that require hospitalization and are

identified by symptoms that are used to describe a patient’s clinical condition in more

detail. These symptoms are observed by assessing the patient’s physical appearance,

performing medical exams, and/or clinical measurements. GOLD guidelines suggest

that severe exacerbations may be associated with acute respiratory failure (ARF),

which is a buildup of fluid in the air sac of the lungs that inhibits the release of

oxygen into the blood [2, 4, 47]. There are two types of ARF that can be identified

via arterial blood gas (ABG) analysis for partial pressure of oxygen (PaO2), partial

pressure of carbon dioxide (PaCO2), and pH, defined as [166]:

• Type 1 (hypoxemic): PaO2 ≤ 60 and PaCO2 ≤ 50.

• Type 2 (hypercapnic): PaCO2 > 50 and pH ≤ 7.25.

This information describes the condition (i.e., severe AECOPD), provides context

(i.e., possible ARF), and includes details (i.e., ABG measurements) for determining

the patient’s state of health. This granularity can be hidden within EHR data and

current tools do not expose this type of information.

Health States

We use clinical domain knowledge to define health states that represent the

clinical conditions in which a patient can be categorized. For our approach, this

knowledge derives from recommendations in the GOLD clinical guidelines as well

as input from a COPD expert 1 on our team of researchers to identify and define

health states on the basis of established clinical criteria in terms of the variables

listed in Table 5.2 [2]. Health states (e.g., Type 1 ARF) are identified and defined by

setting constraints on time-varying clinical variables (e.g., PaCO2, PaO2, pH). They

are represented by a numerical state identifier (column 1 in the table), which can be

used to obtain the text name from the dictionary of health states (i.e., definitions of

1Marvi Bikak, MD, Indiana University School of Medicine, Indianapolis, Indiana, USA
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Table 5.2.: Description of health and outcome states.

State Identifier State Name State Type Definition

0 NARF Health no ARF

1 ARF1 Health
PaO2 ≤ 60

PaCO2 ≤ 50

2 ARF2 Health

PaCO2 > 50

pH ≤ 7.25

PaO2≤60

PaCO2 > 50

pH ≤ 7.25

3 Discharge Outcome discharge from hospital

4 Death Outcome in-hospital death
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clinical conditions) provided by the API. For example, Type 1 ARF, a defined health

state, is given the name, ARF1, and can be obtained using the numerical identifier 1

from within the code.

Outcome States

Outcome states, similar to health states, are also represented by a numerical

identifier. However, outcome states, such as death and discharge, are defined without

the need for clinical knowledge. They are used to describe the final state of a patient

when they are released from the care setting, indicating the completion of the patient’s

hospital stay.

5.3.2 Data Aggregation: Patient Histories

Each individual patient in MIMIC has unique characteristics and properties as-

sociated with their hospital stay and other medical encounters. This information is

scattered across multiple tables and can be difficult to aggregate. For example, a

single patient can have records for multiple hospital stays and each hospital stay can

have several ICU stays, where data is collected for each specific stay. Thus, extracting

data for a single patient can be a convoluted process. Figure 5.1 is an illustration

of this process regarding data extraction for a single patient with multiple hospital

stays in MIMIC, as well as the tables that must be queried to obtain the desired

information.

From these various tables, we curate data from the MIMIC-Purdue DB using the

MIMIC-Purdue data extraction and preprocessing API (Chapter 4). The flexibility of

MIMIC-Purdue extraction and preprocessing API allows for simpler extraction that

would otherwise be a convoluted or impossible task with existing systems [55, 145].

Our approach aggregates this scattered data for individual patients and organizes

patient histories. Patient histories are comprised of various data points such as
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Figure 5.1.: Conceptual process of curating data for a patient.
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demographics (e.g., ethnicity, gender), clinical measurements (e.g., heart rate, blood

pressure), and other information documented during a patient’s hospital stay.

Data Structure

We develop an object in Python (using a Python class), Patient, to construct

and structure patient histories. This approach allows us to create multiple objects

of the Patient class, each representing a unique patient and storing different values

for their individual characteristics and properties. An instance of the class is created

by passing a subject id to initialize the instance. Once initialized, class methods and

other functions from the MIMIC-Purdue extraction and preprocessing API are called

to extract and store both static and time-series information for the corresponding

patient. Figure 5.2 illustrates the process of extracting data from MIMIC-Purdue

and aggregating the two data types for a patient.

Figure 5.2.: Flow of data aggregated with the Patient class and identification of

health and outcome states for caretrail creation.



66

Data Types

Patient histories contain two types of data: (1) static and (2) time-series (i.e.,

discrete and continuous). Static data includes data points that do not change, such

as ethnicity and date of birth. Time-series data consist of any data point with an

associated timestamp, such as measurements for vital signs and administration of

medication. Each hospital admission for a patient in MIMIC has a timestamp field

(i.e., dischtime and deathtime) that are used to determine if the patient was dis-

charged from the hospital or died within the given hospitalization session. Though

these types of data points do not change, they are unique and only recorded once for

each hospital admission. Thus, such data points are considered to be both static and

time-series, as they do not change and have a corresponding time-stamp.

Time-series data can be discrete or continuous. For example, in MIMIC blood

pressure in measured at least once every hour for patients whose records contain

such measurements [99]. There is a timestamp and value associated with each blood

pressure measurement, as both the timestamp and measurement values change over

time. Thus, blood pressure measurement is considered continuous time-series data.

Antibiotics such as vancomycin, may be administered to patients periodically during

their hospital stay, where each dose administered is associated with a timestamp. A

patient may be given various dosage amounts of the same drug, which can be viewed

as continuous data. However, for simplicity and to focus on clinical measurements and

events, interventions that are considered to be infrequent (e.g., medications, meals,

hygienic care) are considered to be discrete data.

5.3.3 Caretrail Generation

Caretrails are generated by encoding patient histories with clinical domain knowl-

edge that is represented by health as well as information contained in the EHR (e.g.,

hospital discharge time) represented by outcome states. Once health states have been

defined, given a combination of clinical variable constraints, the corresponding clinical



67

variables are first located in the MIMIC-Purdue DB and included in patient histo-

ries. As discussed in Section 2.2.5, some clinical variables are measured repeatedly

and scattered across several tables. For example, some clinical measurements are du-

plicated between the LABEVENTS and CHARTEVENTS tables, and some are only found

in one of these tables. Even more, each of these tables has a corresponding dictionary

table that contains definitions for all measurements and items in the LABEVENTS and

CHARTEVENTS tables. We process this information by aggregating both tables and

removing duplicate measurements as well as relabeling multiple labels of the same

measurement to have the same name (e.g., respiratory failure, RR). We extract the

time-series data (i.e, data points with corresponding timestamps) from the patient

histories to identify health and outcome states within the patient histories. Patient

histories are then encoded with states, forming temporal paths, represented by pairs

of ordered timestamps and state sequences. Figure 5.2 illustrates the process of gen-

erating a caretrail by aggregating data with the Patient class, and processing the

time-series data to identify health and outcome states.

5.3.4 Patient Cohorts

The Patient class allows us to create multiple objects for each patient. Aggregat-

ing an individual patient’s EHR data with other patient’s EHR data creates patient

cohorts. Members of an individual cohort share a common characteristic that matches

a DB query. This is done by using functions from the MIMIC-Purdue extraction API

to identify and extract patients based on similar characteristics and their unique iden-

tifiers. The identifiers are then used as inputs for the PACE tool to create Patient

objects and generate corresponding caretrails for each individual patient to form a

cohort of patients for conducting studies. For example, identifying and extracting in-

formation for distinct patient populations using ICD-9 codes has been shown to have

good recall, precision, and specificity [147]. The MIMIC-Purdue API has a function

that returns a list of subject ids for patients who have a given ICD-9 diagnosis asso-
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ciated with their hospital stay. The results returned by the function can be stored

in a list where each element is an instance of the Patient class. Each Patient object

corresponds to a subject id that is returned from the ICD-9 query and the list of

Patient objects is a patient cohort, with each member sharing the same ICD-9 code.

Additionally, both query results and patient objects can be saved for later access and

analysis. Caretrails generated for individual patients as well as patient cohorts are

“pickled” to save them to disk.

5.3.5 Visualizations

All visual representations of the data that are extracted and aggregated are de-

veloped in Python. These visualizations of patient data are created to generate a

comprehensive view of EHRs to help medical professionals understand the data. Vi-

sualizations include both longitudinal and descriptive plots as well as graphs that

display statistics regarding both individual patients and patient cohorts. Interactive,

graphical timelines are also created to provide a holistic view of patient histories and

caretrails. Visualizations of patient histories are represented by timelines that include

clinical measurements (e.g., vital signs, labs) and interventions (e.g., drugs adminis-

tration). Clinical measurements and interventions are plotted using line graphs and

scatter data points, respectively. Visualizations of caretrails also include color-coded

health and outcome states as vertical lines or bars. These states are placed in the

background, while data contained in the patient history is included as an overlay (see

Figure 5.6 below for a caretrail example).

5.4 Caretrail Analysis

To analyze the potential impact of caretrails, we aggregate clinical data for in-

hospitalized AECOPD patients. We create visualizations of granular clinical data and

observe changes between health states and assess the care process and progression of

exacerbations in regards to treatments and outcomes.
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5.4.1 Patient Selection

We construct complex queries using the MIMIC-Purdue extraction and prepro-

cessing API to identify AECOPD patients. Each patient visit is associated with mul-

tiple diagnoses, which are labeled according to ICD-9 diagnosis codes and ordered

by priority. While there are a number of COPD-related ICD-9 codes, there are only

three that are used to identify AECOPD-related visits [167,168]. We define a primary

diagnosis of AECOPD as a hospital admission having at least one of the following

ICD-9 codes as either primary, secondary, or tertiary diagnosis : 491.21 (obstructive

chronic bronchitis with acute bronchitis), 491.22 (obstructive chronic bronchitis with

acute exacerbation), and 494.1 (bronchiectasis with acute exacerbation) [9]. Inclusion

criteria was limited to these three codes to analyze patients with ARF secondary to

AECOPD primarily, without other confounding etiologies that may be present. A

total of 697 patients satisfied this criteria (Figure 5.3).

Figure 5.3.: Cohort selection criteria for AECOPD patients.
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5.4.2 Descriptive Visualizations

Descriptive visualizations provide summary representations of the AECOPD pa-

tient cohort being analyzed. The overall death rate for the entire cohort of 697

patients was 8.5%. 181 of the patients were administered antibiotics and had a death

rate of 4.4%, and 516 were not administered and had a death rate of 9.9%. Figure

5.4 is a histogram depicting the initial time in hours from admission for AECOPD

patients that were administered antibiotics. This illustration reveals that on aver-

age, patients were administered antibiotics within the first 27 hours of their hospital

admission.

Figure 5.4.: Histogram of initial timing of antibiotics as hours since hospital admis-

sion.
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5.4.3 Longitudinal Visualizations

Figure 5.5 is a visual representation of a patient history for an AECOPD patient.

This illustration provides a view of clinical measurements (i.e., PaO2, PaCO2, and pH)

that are used to classify an exacerbation, additional variables that are used to assess

a patient’s condition, and the times antibiotics were administered. The additional

variables include: heart rate (HR), systolic blood pressure (SBP), respiratory rate

(RR), and carbon dioxide (CO2). The figure reveals a significant decrease in PaO2,

which is indicative of ARF.

Figure 5.5.: An AECOPD patient history, including clinical measurements, repre-

sented by horizontal lines, and administration times of antibiotics, represented by

small data points.

Similar to Figure 5.6, this same information is illustrated as a caretrail for the

same patient. As depicted in Figure 5.6, the caretrail provides more granular details

that include color-coded visuals of the health state of the patient at the exact time the

antibiotic was administered. The caretrail reveals that the patient was in the ARF2

state when their PaO2 significantly decreased. The patient began in the NARF state,



72

changing between NARF and ARF2 throughout their hospital encounter, with a final

outcome of hospital discharge.

Figure 5.6.: Caretrail for an AECOPD patient. Health states are represented by

vertical lines. Vital signs are represented by horizontal lines plots, and administration

times of antibiotics are represented by small data points.

5.5 Discussion

Aggregating retrospective data can be valuable for understanding what happened

in the past, providing insight for more advanced analytics to predict what will happen

in the future. We present a novel tool for constructing caretrails by aggregating ret-

rospective EHR data, integrating clinical domain knowledge to define health states,

and providing visualizations of granular timing information through enhanced repre-

sentations of EHR data. Our tool not only aggregates data for individual patients,

but is also equipped with features for aggregating data for patient cohorts that can

be stored for reuse. While previous systems [23, 148] have features for identifying

patient cohorts, our tool extends beyond the capabilities of these systems by allowing

cohorts to be identified from user-defined data acquisitions (i.e., complex queries)
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and storing the extracted data for reuse. We demonstrate this capability by identi-

fying AECOPD patients and specifying the granularity of the clinical diagnosis (i.e.,

primary). Additionally, the tool provides a color-coded scheme that correspond to

the states produced by the rule-based state coding engine. This feature enhances the

timeline visualizations by highlighting the health state of a patient during various

observations and interventions.

Caretrails can be used by medical professionals and analysts to observe trends in

EHR data. Figure 5.6 shows a caretrail for a patient who was in the ARF2 health

state when antibiotics were initially administered. For example, the analysis of the

caretrails revealed that AECOPD patients who were administered antibiotics during

their hospital stay had a lower mortality rate than those who were not. Using this

information gathered from the data, the caretrails can be used as input for compu-

tational models for predicting patient outcomes (e.g., mortality) based on antibiotic

administration, or even more, the timing of antibiotic administration. Previously,

these trends would require some medical knowledge to read and understand the out-

put. Moreover, capturing the granularity of such trends potentially required deep

understanding of the data and technical skills for processing the data.

5.5.1 Limitations

The methodologies presented can also be applied to both common and more com-

plex clinical conditions. That is, we defined health states that encompassed several

clinical variables. However, although we defined states based on clinical experience

and clinical guidelines, given the vast space of clinical conditions and corresponding

clinical criteria that defines the conditions, some health states may not be well rep-

resented. For example, in our state space NARF is defined as no acute respiratory

failure, which means that the only criteria that determines if a patient is in NARF

is that the constraints used to define ARF1 and ARF2 are not met. In this case,

NARF does not reveal other conditions of the patient. To address this, information



74

from various data sources such as past research studies [23], clinical trials [169], and

medical devices can be combined to define additional clinical states. Time-variant

measurements (e.g., vital signs and labs) used to identify health states are suscep-

tible to missing values and varying timestamps. ABGs are measured by obtaining

invasive arterial blood samples [170]. Thus, the clinical variables (i.e., ABG mea-

surements) we used to define health states are typically measured simultaneously.

However, when defining other clinical conditions, it is not always the case that the

measurements used for defining the condition are measured simultaneously. Thus,

creating additional health states may require mechanisms to handle clinical variables

that are not measured together. Also, if there is a value present for at least one of the

clinical variables, we assume the other variables were not measured. This is a limita-

tion of missing data, which is common in using retrospective clinical measurements

for analysis. Applying approximations such as grouping multiple measurements for

variables not measured simultaneously through window-based segmentation methods

(e.g., fixed-sized time windows), as well as imputing missing data are techniques that

have been used to mitigate such limitations [28,171,172].

5.5.2 Future work

The work presented in this chapter can be extended to include functionality for

enhancing the rule-based state coding engine for automatically defining and discover-

ing additional health states. The rule-based state coding engine can be equipped with

definitions for known clinical conditions, and advanced machine learning techniques

such as deep learning can be used to potentially discover new conditions. Patient

histories can be processed through the engine to automatically identify health states

within a patient history. Another opportunity for extending this work is to extend

the interactive visualizations to allow direct manipulation of caretrails through inter-

active dashboards. Such dashboards can provide visualizations for clinical variables

that are specified by selecting from a list of available clinical measurements.
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6 MARKSIM: TIME-BASED MODELING AND SIMULATION

6.1 Introduction

Existing software systems [22, 23] do not allow for longitudinal processes such

as chronic disease progression to be observed directly, nor do they support analysis

of how patients transition from one health state to another as a direct cause of an

intervention (e.g., drug administration, oxygen therapy, surgery). Several previous

studies have developed approaches that identify medical trends for a patient popu-

lation with chronic conditions [25, 173, 174]. Markov chain models are one approach

that have been used to estimate healthcare costs, utilization, and disease progression

over time [25–27]. They provide support for decision-making under uncertainty by

approximating patient transitions through a set of “health states,” each of which

corresponds to a clinical event [24]. For example, Bartolomeo et al., [175] lever-

aged Markov model techniques to model patient care pathways, defining states based

on age, gender, clinical status, and information from the GOLD guidelines. Sood

et al., [176] also used the GOLD guidelines to asses the diagnosis of COPD using the

spirometry test.

While using Markov chains has been helpful for critical illnesses and chronic con-

ditions such as COPD, directly using EHR data in Markov models presents certain

challenges. In particular, Markov chains assume a one-step time-invariant transition.

The assumption that values are collected with some fixed sampling frequency is typ-

ical with such time-series models [28]. However, EHRs contain highly-dimensional,

time-variant, clinical data observed at irregular time intervals. Hence, the nature of

EHR data limits the ability to represent the granular timing of transitions, which can

lead to process misrepresentation in the model.
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We present a novel approach that systematically captures the effect of interven-

tions during medical encounters, and hence, may support evidence generation for

clinical guidelines in a systematic and principled way. A Markov Chain Monte Carlo

(MCMC) modeling and simulation package, MarkSIM, in Python that encodes clinical

conditions as computable definitions of health states using raw EHR data is described.

The MCMC package calculates transition probabilities (or model parameters) as a

function of time using exact timing information extracted from patient caretrails to

construct Markov Chains. Monte Carlo sampling methods are then applied to the

model parameters to perform simulations. We use this approach to estimate the effi-

cacy of antibiotics treatment for in-hospitalized AECOPD patients. We demonstrate

the functionality of MarkSIM by modeling the pathway of AECOPD using retrospec-

tive EHR data collected during critical care encounters. Recommendations from the

national GOLD guidelines [2] and physicians are incorporated to define model com-

ponents. We estimate outcomes for two questions related to antibiotic treatment for

AECOPD patients, namely: i) the impact of antibiotic administration on in-hospital

death and ii) the impact on in-hospital death based on the initial timing of antibi-

otic administration. We perform Monte Carlo simulations, which are validated by

comparing estimated model outcomes to actual outcomes from the EHR data, and

conduct sensitivity analyses to evaluate the robustness of model projections.

6.2 Related Work

Several traditional algorithms and modeling techniques have been developed for

time-series data, data observed at unequal time intervals, such as EHRs [122, 172].

Such data points are irregularly sampled within individual patient records and across

other individual patients. Past techniques typically abstract patterns using state rep-

resentations (e.g., mild, moderate, severe) [122]. Sherman et al., [177] extracted longi-

tudinal clinical data as irregularly sampled, timestamp features to predict in-hospital

mortality and hypokalemia. Shah et al., [172] proposed a finite-state machine-based
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approach for predicting COPD exacerbations, focusing on telemonitoring of patients.

They used a combination of three vital signs (i.e., peripheral capillary oxygen sat-

uration (SpO2), respiratory rate, and pulse rate) to define states that reflect seven

day time periods. Their work found that using combinations of variables as such can

be used to define model symptoms of exacerbations and improve the understanding

of how symptoms worsen, leading to exacerbation events. Their techniques extract

the temporal dynamics of the data by grouping the vital sign measurements into sets

and applying least squares criterion to each set in seven day intervals. This allowed

them to predict the length (i.e., number of days) of an exacerbation. Their ideas

can be leveraged to capture more granularity by decreasing the time period in which

they observe vital sign measurement sets to capture the exact time a patient enters

a particular state in the model.

Dynamic Bayesian networks have been used to model EHRs for forecasting patient

outcomes [178], reconstruct medical states of patients using lab tests [179], and ana-

lyze interactions between predictors and outcomes [122]. Inoue et al., [180] proposed

an approach for modeling disease progression based on the age at which the disease

was detected and disease status at diagnosis. Huang et al., [181] combined Bayesian

hidden Markov model methods and hierarchical clustering to group patient paths by

related treatment behaviors. Although they used timestamp information to define

treatment events in inpatient EHRs as a timestamp and event type pair, they made

the assumption that each event was regularly recorded. Such assumptions dismiss

the idea that clinical time-series data is recorded irregularly. Bayesian networks are

atemporal in that they only consider single points in time and lack the ability to

capture granular time information [122].

Markov chain models have also been used to model temporal data. Wang et al.,

[182] presents a Markov jump process to model transition behaviors between disease

stages in COPD patients. Bueno et al., [183] identified clusters of states by using hid-

den Markov models, associating similar observations and defining transition patterns.

Rodina-Theocharaki et al., [184] developed Markov chains to predict the number of
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end-stage renal disease patients. They defined state-based treatment interventions

and estimated model parameters using statistical data extracted from annual public

health reports that spanned nearly a decade. The authors [26] further extended their

work by combining the Markov chain models with Monte Carlo techniques to include

cost calculations for treatments, based on predictions from the previous work. They

developed MCMC methods to predict the number of patients with end-stage renal

disease and perform a cost-effectiveness analysis for renal replacement therapy treat-

ment. In both studies, the modeling approaches were applied to temporal data that

represented equal time intervals. While their modeling techniques are suited for such

data, temporal data such as time-series observations are among the most challenging

models to develop [185].

Another technique to handle irregularly sampled data is by converting data into

observation sequences and using a window-based segmentation approach, which seg-

ments time-series data to fixed-sized windows [28]. This approach was introduced by

Liu et al., [28] who developed models by combining a linear dynamical system and

a Gaussian process model by defining time windows and extending model methods

to treat observations as a function of time. Similar to other work discussed, the

limitation of their work is that their approach only works with univariate time-series

data.

Previous modeling strategies that address the task of analyzing and mining tempo-

ral, time-series data are limited by their ability to work with multivariate time-series

data observed at irregular intervals [186]. Such strategies mainly support irregular

univariate time-series data and target providing insight to questions where time is not

relevant. Thus, more approaches that can capture and model the granular temporality

of multiple observations collected over uneven time periods are needed.
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6.3 Methodology

6.3.1 Markov Chain Model Formulation

ChainX, the Markov chain modeling component of MarkSIM, is a Python class

that contains methods for structuring a Markov chain model. The Markov chain

model approach is formulated by defining a set of states and computing transition

probabilities to represent the likelihood of moving between states. There are two

types of model states:

1. Health states are mutually exclusive (transient) states that are defined using

clinical domain knowledge. These states are defined using clinical domain

knowledge to represent the clinical conditions in which a patient can be cat-

egorized.

2. Outcome states are absorbing states that are defined without the need for clin-

ical knowledge. They are used to describe the final state of a patient when

they are released from the care setting, indicating the completion of the pa-

tient’s hospital stay. Thus, once a patient enters an outcome state, no other

transitions can occur.

An instance of the ChainX class is created by passing a model name (optional), the

total number of states, a list of identifiers for health states, and a list of identifiers

for outcome states. Table 5.2 describes health and outcome states, as well as the

corresponding identifiers.

Input Data

Once a ChainX object is created, caretrails (Section 5.3.3) are generated from

longitudinal EHR data extracted from the MIMIC-Purdue DB to form granular,

temporal sequences to use as inputs for the model. The temporal sequences extracted

from caretrails are represented by a chronological set of events, hk = {e0, e1, . . . , en},
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that occurred during a patient’s hospital stay. Each event is represented by a pair,

e = (si, ti), where ti is the time (i.e., timestamp) the state, si, was entered by patient,

k.

Transitions

Generally, Markov models are developed with time-invariant parameters such as

age – a standard time-parameter across patients and EHRs. Our time-variant data

includes clinical observations that are measured at different times during a patient’s

hospital encounter and across patient populations. Timestamps from the granular

temporal sequences, H = {hk, hk+1, . . . , hn}, extracted from the caretrails are used to

compute transitions as a function of time using class methods, giving us the flexibility

needed to model temporal data with irregularly sampled observations. The sequences

are aggregated to construct the state transition matrix as:

T =


x11 x12 x13 . . . x1n

x21 x22 x23 . . . x2n

...
...

...
. . .

...

xd1 xd2 xd3 . . . xdn

 (6.1)

where N = {0, 1, 2, . . .} denotes the total number of states and xij denotes the total

number of hours spent in state i before moving to state j (i.e., a transition). That

is, for every sequential pair of transition events for a patient, we calculate the actual

time between them in hours as (ti+1 − ti).

Transition Types

There are two possible transitions illustrated in Figure 6.1 that can occur. The

occurrence of each of the transition types triggers a different action for updating T .

For simplicity, we use ChainX attribute names to explain the action that is triggered

when a transition occurs. These attributes names and descriptions are:
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• current state - current state patient is in (also denoted by si)

• current time - timestamp corresponding to current state (also denoted by ti)

• next state - state to which a patient transitions (also denoted by si+1)

• next time - timestamp corresponding to next state (also denoted by ti+1)

• continued time - temporary attribute to store timestamp when a transition

occurs that results in the patient remaining in the same state (i.e., type 1

transition)

Figure 6.1.: Possible transitions for Markov chain model.

For transition type 2, the difference in hours of the current time and next time

is calculated to update T , and the current state and current time attributes are

updated to reflect the values of next time and next state. Type 1 transitions

are more complex. Several attributes are maintained to obtain the full duration

that a patient spends in a state. When the patient enters a state consecutively,

the current time and current state attributes are not updated until a type 2

transition occurs. The continued time attribute is updated to the timestamp of
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each subsequent transition. For example, consider the following temporal sequence

for a patient:

h0 = {(2, 1/9/19 3:00),(0, 1/9/19 5:00), (0, 1/9/19 6:30),(3, 1/9/19 7:00)}

The patient first starts in state 2, and the current time and current state

attributes are set to 2 and 1/9/19 3:00, respectively. T is not updated, as the patient

has yet to make a transition. Following the sequence, the first transition is of Type

2, where the patient enters state 0. T is updated as x20 = x20 + (next time −

current time), and the current state and current time attributes are set to 0 and

1/9/19 5:00, respectively. The next transition is a type 1 transition, and the patient

remains in state 0. Here, T is updated as x00 = x00 + (next time− current time),

and continued time is updated with the value of next time (i.e., 1/9/19 6:30). The

next and final transition in the sequence is of type 2, and the patient enters state

3. T is updated as x03 = x03 + (next time − current time). Note that the value

of current time is 1/9/19 5:00, which is the initial time that the patient entered

state 0. Because state 3 is an outcome state, another caretrail for a new patient is

aggregated, and the steps for computing T are repeated until the last caretrail is

aggregated. Listing 6.1 is a Python code snippet, demonstrating the programming

logic for handling the occurrence of both transition types.

1 def transitionX(next_state , next_time):

2 if current_state == next_state: # Type 2 transtion

3 if continued_time is not None:

4 T[current_state ][ next_state] = next_time -

continued_time

5 continued_time = next_time

6 else:

7 T[current_state ][ next_state] = next_time -

current_time

8 continued_time = next_time
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9 else: # Type 2 transtion

10 T[current_state ][ next_state ]= next_time - current_time

11 current_state = next_state

12 current_time = next_time

13 continued_time = None

Listing 6.1: Example Python code for handling transitions.

Transition Probabilities

A transition probability matrix (TPM) for the Markov model is estimated using

the ratio of the number of hours spent in a specific state before transitioning over

the total number of hours spent in that state, which is extracted from T (i.e., the

transition matrix). Each transition probability (or model parameter) represents the

estimated likelihood of a patient changing from one state to another during their

hospital stay. Specifically, we calculated transition probabilities by:

pij =
xij∑n
i=0 xi

(6.2)

where pij is the probability of transitioning from state i to state j at any given time.

We set pij equal to the percentage of hours spent by individuals in state i and ending

in state j relative to the total amount of time spent in state i. Note that pii = 1

for an outcome state. Once the TPM is created it is stored in a ChainX attribute

for later use in the simulation. While the TPM are stored as matrices, MarkSIM

includes functionality to generate visualizations of state transitions from the TPM.

Figure 6.2 is a diagram for a 5-state Markov chain model, generated using MarkSIM.

Initial State Probabilities

The initial state counts are stored in a ChainX list, where each index represents a

health state. Once all caretrails gave been aggregated for building the model, the list



84

Figure 6.2.: Visualizations generated by MarkSIM of a 5-state Markov chain model

for AECOPD patients.
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is used to calculate initial state probabilities. The model has a corresponding initial

probability vector that represents the quantities of patients in each health state at

the beginning of their caretrail.

6.3.2 Monte Carlo Simulation

Monte Carlo simulations are performed to estimate the outcomes for patients

based on clinical questions. SiMzy, the Monte Carlo simulations component of Mark-

SIM, is a Python class that contains methods for structuring a simulation. The class

instantiated by passing a ChainX object of a previously built Markov chain model.

The Monte Carlo approach simulates the transitions of individual patients over time.

Simulations for patients are terminated by specifying an outcome state or the number

of transitions for each patient. For each model generated, the simulation is run for

100 replications (or cohorts), each of size 1000 patients. Each patient is assigned

to an initial health state based on the initial state probabilities. The occurrence of

transitioning between two states is determined by generating a uniform random num-

ber on the interval [0,1] and selecting the next state based on the possible range of

values from the transition probabilities. Because the probability of a patient leaving

an outcome state is zero, once a patient enters an outcome state, the process ends,

and a new patient is simulated. The mean, minimum, maximum, and variance of

the patient outcomes for the 100 replications is calculated and used for simulation

statistics and model validation. To validate the model, we obtain a baseline from the

raw EHR data and compare the observed outcomes (mean and variance) to results

estimated from the simulation.

6.3.3 Sensitivity Analysis

Probabilistic sensitivity analysis is conducted to quantify the effects of changes in

model parameters (i.e., transition probabilities) and quantify confidence levels. We

use variance reduction to assess the variability of model parameters by changing their
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values. A small change randomly chosen between plus or minus 10% of each transition

probability value is applied to the model parameters using,

p′ij = (pij − (.1 ∗ pij)) + (r ∗ (.1 ∗ pij)) (6.3)

and normalized using the row sum for each state. A new TPM is obtained by nor-

malizing the generated values so that the row sums equalled 1. The outcomes are

then re-computed from the simulation using the new TPM.

6.4 MarkSIM Evaluation

We evaluate the value of MarkSIM by developing models and performing simula-

tions to answer both atemporal and temporal clinical questions. Formulating clinical

questions and identifying relevant results are steps used to conduct clinical studies.

Results from such studies are evaluated by clinical experts and used as recommenda-

tions for clinical guidelines. These questions are well-formulated to provide a basis

for collecting and analyzing data to derive answers. We use retrospective EHR data,

and thus, must structure the data to fit the question as opposed to structuring the

question to fit the data. We pose the following two questions of interest:

i. What is the impact of administration of antibiotics on death for hospitalized

AECOPD patients?

ii. What is the initial timing of antibiotics for hospitalized AECOPD patients and

the impact on death?

AECOPD has been widely studied as a major outcome in clinical studies and

research [172]. While these studies have been mainly focused on identifying and

predicting COPD exacerbations, we are interested in analyzing the progression of an

exacerbation and the impact of treatment interventions on outcomes.
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6.4.1 Cohort Selection

We construct complex queries using the MIMIC-Purdue extraction API to identify

AECOPD patients. Each patient visit is associated with multiple diagnoses, which

were labeled according to ICD-9 diagnosis codes and ordered by priority. While

there are a number of COPD-related ICD-9 codes, there are only a few that are

used to identify AECOPD-related visits [167,168]. We defined a primary diagnosis of

AECOPD as a hospital admission having at least one of the following ICD-9 codes [9]

as either primary, secondary, or tertiary diagnosis:

ICD-9 Code Diagnosis

491.21 Obstructive chronic bronchitis with (acute) exacerbation

491.22 Obstructive chronic bronchitis with acute bronchitis

494.1 Bronchiectasis with acute exacerbation

Inclusion criteria is limited to these three codes to analyze patients with ARF sec-

ondary to AECOPD primarily, without other confounding etiologies that may be

present. Based on this selection criteria (Figure 6.3), we identified 697 unique AE-

COPD patients with at least one ICU admission.

Antibiotics Treatment

We compile a comprehensive list of antibiotics names and codes used to treat

COPD by extracting information from the NDC directory [167] and the National Li-

brary of Medicine’s RXNorm database [187]. We perform an exhaustive search within

the group of AECOPD patients to compile another list of antibiotics that were used to

treat the patients. These two lists are compared to identify patients who were admin-

istered antibiotics that are specifically used to treat COPD. Once compared, a COPD

clinical expert verified the list. The antibiotics used to treat a subset of patients in

our cohort were: doxycycline, azithromycin, levofloxacin, oseltamivir, vancomycin,

trimethoprim, fluoroquinolones, vibramycin, ofloxacin, clarithromycin, telithromycin,

amoxicillin, cefuroxime, pipericillin-tazobactam, cefepime.
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Figure 6.3.: Cohort selection criteria for AECOPD patients administered and not

administered antibiotics.
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6.4.2 Model Formulation

The Markov chain model consists of three health states: NARF, ARF1, and ARF2,

and two outcome states: discharge and death. Clinical criteria used to define the

health states are provided in Table 5.2. For the purposes of this research and after

consulting with a clinician, the definition for ARF2 encompasses clinical variable con-

straints for type 2 (hypercapnic) and/or type 1 (hypoxemic) and type 2 respiratory

failure. Figure 6.2 is an illustration of the 5-state first-order Markov model for AE-

COPD based on clinical criteria. Nodes represent health and outcome states. Health

states are colored white and appear above the outcome states, which are blue and

black. Edges are labeled with values that represent the probability of returning to the

same state or transitioning to a different state. Once an outcome had been entered,

transitions can no longer occur. Thus, edges returning to outcome states are labeled

with probability, 1.000. Section 5.3.1 discuses the details of defining and identifying

health and outcome states.

6.4.3 Clinical Question 1: Antibiotics Treatment

Overview

The first clinical question we on which we focus is: “What is the impact of an-

tibiotics on death for hospitalized AECOPD patients?”

Rationale: Antibiotics treatment has been shown to reduce treatment failures

in hospitalized AECOPD patients with severe exacerbations [188]. We verify

this as well as assess the validity and robustness of models generated using

MarkSIM.

Clinical Significance: This is the first study to evaluate the effect of antibi-

otics treatment of severe AECOPD requiring hospitalization using probabilistic

modeling and simulation retrospective EHR data. This study facilities simula-
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tions of various scenarios to observe the changes regarding the administration

of antibiotics and the impact of the changes.

Methods: Patients from the AECOPD cohort are classified into four groups,

ALL (the full population), ANTIBIOTICS (those for whom antibiotics were

administered), and NO ANTIBIOTICS (those who did not receive antibiotics).

For simplification and to observe individual diagnoses of AECOPD, a caretrail is

generated for each distinct hospital stay with a primary diagnosis of AECOPD.

Markov chain models are generated for each group. Monte Carlo simulations

are performed to estimate the outcomes from antibiotic administration on AE-

COPD patients in the ICU. The simulation is run to compare the in-hospital

death for two populations, those who received antibiotics and those who did

not.

Results

After preprocessing the data, a total of 697 AECOPD patients were categorized

in the ALL group. This group has an 8.5% death rate. Breaking down the ALL

group, there are a total of 181 ANTIBIOTICS AECOPD patients with a death rate

of 4.1%, and 516 NO ANTIBIOTICS AECOPD patients with a 9.9% death rate.

Table 6.1 contains the characteristics of the patient groups, including the percentage

of patients who received antibiotics. Notably, the NO ANTIBIOTICS group had

the highest death rate (9.9%). Appendix B.1 shows the transition probabilities for

each group, which were derived from the Markov chain models created from the raw

data. The TPM for HALF is computed using the TPMs from the ANTIBIOTICS

and NO ANTIBIOTICS group. The HALF TPM is used to conduct an analysis

for administering antibiotics to 50% of the population. We used the initial state

probabilities from the ALL group to simulate each of the four models.

Figure 6.4 shows the estimated percentage deaths for AECOPD patients in the

ICU as a function of the percentage that received antibiotics. The x-axis is ordered by
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Table 6.1.: Descriptive characteristics of patients included. ALL represents the entire

AECOPD cohort, and the other groups are subsets of ALL.
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the percentage patients administered antibiotics and labeled by group. The top and

bottom horizontal lines are the maximum and minimum percentage of patient deaths,

respectively. The black data point represents the average percentage of patient deaths,

and the data point labeled, observed, represents the actual percentage of AECOPD

patients who died when antibiotics were administered. The actual number of patients

Figure 6.4.: Simulation results for the estimated percentage of AECOPD deaths based

on antibiotics administration. ALL represents the entire AECOPD cohort, and the

other groups are subsets of ALL.

that received antibiotics in the EHR was 26.0% with a death rate of 8.5% for the full

cohort. This falls within the death rate interval [5.3% (ANTIBIOTICS group), 9.6%

(NO ANTIBIOTICS group)] estimated by the simulation. As the number of patients

administered antibiotics increases, the percentage of deaths decreases. Specifically,

when all patients are given antibiotics, the death rate decreased exactly 50% compared
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to not administering antibiotics to anyone. Figure 6.5 is a whisker plot illustrating

the death percentage estimated using sensitivity analysis. Outliers are represented

by data points. The median death percentage is represented by the horizontal line

inside of the box. The top and bottom horizontal lines represent values maximum

and minimum values, respectively.

Figure 6.5.: Sensitivity analysis for estimated percentage of AECOPD deaths based

on antibiotics administration. ALL represents the entire AECOPD cohort, and the

other groups are subsets of ALL.
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6.4.4 Clinical Question 2: Timing of Antibiotics Treatment

Overview

The second clinical question on which we focus: “What is the initial timing of

antibiotics for hospitalized AECOPD patients and the impact on death?”

Rationale: Initiating antibiotics at the onset of AECOPD hospitalizations

may improve short-term outcomes, shorten recovery time, reduce the risk of

early relapse, treatment failure, and hospitalization duration [2,10]. The clinical

question targets providing evidence for the validity of this claim. The question

is posed by a clinical COPD expert on our team who is interested in determining

the optimal time at which antibiotics should be administered.

Clinical Significance: This is the first study to evaluate the effect of initial

timing of antibiotics treatment of severe AECOPD requiring hospitalization us-

ing retrospective EHR data. This study facilities simulations of various scenarios

to observe the changes regarding the initial timing of antibiotics administration

and the impact of the changes.

Methods: Patients from the AECOPD cohort who were administered antibi-

otics within the following specified time-frames are classified into four groups:

i) within 6 hours of hospital admission, ii) between 6 and 24 hours of admission,

iii) between 24 and 48 hours of admission, and iv) after 48 hours of admission.

For simplification and to observe individual diagnoses of AECOPD, a caretrail is

generated for each distinct hospital stay with a primary diagnosis of AECOPD.

Markov chain models are generated for each group. Initial state probabilities

from the ALL (the full population) group to simulate each of the four models.

Monte Carlo simulations are performed to estimate the outcomes from the ini-

tial timing of antibiotic administration on AECOPD patients in the ICU. The

simulation is run to compare the in-hospital death rate for two populations,

those that received antibiotics and those that did not.
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6.4.5 Results

The average time to antibiotic administration was 27 hours, and 32% of ANTIBI-

OTICS patients were administered vancomycin as the initial antibiotic Table 6.1.

Appendix B.2 shows the transition probabilities for each group, which were derived

from the Markov chain models created from the raw data.

Figure 6.6 shows the estimated percentage ICU patients with AECOPD who died

based on the initial timing of antibiotics administration. The x-axis represents the

time from admission when patients were administered antibiotics, labeled by group.

The y-axis represents the percentage who died. The top and bottom horizontal lines

are the maximum and minimum percentage of patient deaths, respectively, and the

black data point represents the average percentage of patient deaths.

Figure 6.6.: Simulation results for the estimated percentage of AECOPD deaths based

on the initial timing of antibiotics administration.
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As shown, there is a 5.5% mortality in the group of cohorts that received an-

tibiotics after 48 hours versus 1.8% in the group that received antibiotics between

24 and 48 hours. The sensitivity analyses were performed by the perturbation of

each probability in the transition probability matrix and then observing how that

perturbation changed the outcome (death). Figure 6.7 is a whisker plot illustrating

the death percentage estimated using sensitivity analysis. Outliers are represented

by data points. The median death percentage is represented by the horizontal line

inside of the box. The top and bottom horizontal lines represent values maximum

and minimum values, respectively.

Figure 6.7.: Sensitivity analysis for estimated percentage of AECOPD deaths based

on the initial timing of antibiotics administration.
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6.5 Discussion

Physicians frequently make critical decisions under inexact science [189], weighing

the risks and benefits of patient treatments and outcomes. Uncertainty is inevitable

in medical reasoning and decision-making, especially in critical care settings where

the complete patient history may not be available. This work introduced an approach

to systematically capture, analyze, and estimate the effect of treatment interventions

on outcomes through modeling and estimating uncertainties using EHR data. This

approach captures the duration of time that a patient spent in a particular state

and allows extraction of temporal inferences from mathematical models using EHR

data. The novelty of our approach for generating models is evident by two main

contributions:

(1) Definition of model states.

Model states are defined based on clinical conditions and outcomes. Integrating

clinical domain knowledge from guidelines and clinical experts into the model-

ing process, allows us to conduct analyses that are representative of the best

available evidence and captures clinical practice experience.

(2) Estimation of model parameters.

The function we developed for estimating model parameters (i.e., transition

probabilities) uses timestamps to calculate the exact time a patient enters and

leaves a state, as well as the total amount time a patient spends in a state. This

approach introduces a new level of granularity to stochastic, temporal models.

We demonstrate the value of this approach by estimating the impact of the ad-

ministration and timing of antibiotics for AECOPD on in-hospital mortality. While

we applied MarkSIM to EHRs by generating population models (i.e., models built

with data from multiple patients), the tool can also be used to generate individual

patient models. Such models will only be valuable when large amounts of clinical

data are accessible for an individual patient.
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6.5.1 Limitations

One limitation of our study is that all of our data comes from the ICU. Additional

patient history outside of the ICU might have helped to refine the findings. Another

limitation is the process of selecting patient cohorts. The retrospective EHR data

used required modeling patients who were assigned an AECOPD ICD-9 code. Though

ICD-9 codes have been used for identifying patients when conducting retrospective

clinical studies, accurately identifying COPD patients can be difficult in the absence

of patient medical history [168]. COPD is diagnosed by lung function tests and staged

according to the progression of the disease. Simply using ICD-9 codes may not be

sufficient to differentiate an individual with COPD from an individual with COPD-

like symptoms (e.g., wheezing, or noisy breathing, chest pain) who was given a COPD

ICD-9 diagnosis [190]. Such symptoms may be documented as free-text, unstructured

data in EHR clinical notes.

We acknowledge the limitations of modeling EHR data as Markov chains in that

state transitions in first-order Markov chains only depend on the current state. Thus,

such modeling does not account for confounding factors that previously impacted a

patient prior to entering their current state. While Markov models are valuable when

history is not important or available, they potentially lack accuracy when history

is important. [191] While our model shows administering antibiotics to everyone in-

creases survival likelihood, in practice there are many factors that may contribute to

such decisions by physicians, including the probability of development of antibiotic

resistance. Considering other factors such as severity of disease and comorbidities,

among others, can also be used to reduce model assumptions.

6.5.2 Future Work

The methods presented can be translated to real-world scenarios by extending

the methods for modeling and simulation. This includes additional functionality to

perform one-way sensitivity analyses. This will allow the identification health states
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that lead to undesired outcomes or states that are not conducive to improving the

patient’s condition. For example, if the model shows that patients who enter ARF2

have a higher probability of death than those who do not, a simulation can be run

using model parameters that have been recomputed to decrease likelihood of entering

ARF2. This can lead to the development of other clinical studies and techniques (e.g.,

causal inference) to understand factors that influence the health state of patients and

the underlying cause for them entering particular states, Even more, understanding

the impact that health states have on patients can drive improved treatment selection

and quality of care for patients.

The development of clinical data networks such as PCORnet [54], OHDSI [22],

and i2b2 [23], allow for the integration of various clinical and research data sources

into a single repository, increasing the amount and availability of clinical data. These

platforms offer tools for cohort discovery and analytics that are currently being used

for clinical research. Specifically, in addition to using ICD-9 codes, i2b2’s NLP feature

for cohort discovery can be used for identifying AECOPD patient by extracting med-

ications, smoking status, and diagnosis from clinical notes. While these tools allow

simple data analysis, they do not offer support for granular temporal data analysis.

Our methods can be integrated into such existing systems to allow more complete

analysis, and moreover, supplementing real-time analysis of data streams [169] from

medical systems in care settings. Our methodology can also be applied to both

common and more complex clinical conditions. That is, we defined health states for

our model that encompassed several clinical variables. However, given the vast space

of clinical conditions and corresponding clinical criteria that defines the conditions,

some health states may not be well-represented. For example, in our state space

NARF is defined as no acute respiratory failure, which means that the only criteria

that determines if a patient is in NARF is that the constraints used to define ARF1

and ARF2 are not met. In this case, NARF does not reveal other conditions of

the patient. To address this, information from various data sources such as past
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research studies [23], clinical trials [169], and medical devices can be combined to

define additional clinical states.

Clinical data warehouses [22, 23, 54] have proven to be valuable for overcoming

the barriers of data access and availability as they provide access and structure of

medical data from multiple sources as well as tools for clinical discoveries through

data analysis. Our work can be integrated as an API for platforms such as i2b2 [23]

for complex data analytics and generalized to fit clinical data standards such as

FHIR [192] for integration with healthcare systems.

”
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7 CONCLUSIONS

The highest quality of evidence for clinical guidelines comes from systematic reviews

and meta-analyses, which are developed by combining published results from clinical

studies such as observational and experimental studies [38]. The data used in these

studies is collected to analyze clinical problems or experiments; therefore, applying

data collected for specific research goals or documentation to other clinical research

can be challenging. Thus, generating additional evidence beyond the scope of the

original study may not be possible. While EHR data is originally collected for billing

purposes, it has been leveraged for secondary use, proving to be valuable for clinical

research [173]. Thus, in this research, we show that it is feasible to enhance represen-

tation of electronic health records to aggregate patients’ entire medical histories with

temporal trends and support complex clinical questions to drive clinical guidelines

for chronic obstructive pulmonary disease. To show the feasibility of enhancing EHR

representation, we present and discuss several topics.

First, we introduce a comprehensive framework for generating clinical evidence us-

ing EHR data by enhancing data representation, aggregating clinical data for patients,

and developing models for predicting outcomes. Our work extends the current state

of practice by embedding medical knowledge into EHR visualizations, allowing more

in-depth analysis, which can lead to improved decision-making and understanding

the progression of clinical diseases and their severity. We provide a tool to aggregate

patients’ entire EHRs for better understanding of their medical journey. Once the

health state of a patient is identified, visualizations corresponding to other clinical

indicators provide more insight into the patient’s overall health state. Identifying

cause or other confounding variables can be done using these visual representations

for modeling health states.
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In addition to enhancing visualizations, we demonstrate the process of modeling

aggregate observations of EHR data and how this can be enhanced through integrating

temporal aspects of time-variant data. We transform raw, clinical data to develop

statistical models that illustrate how patients move between health states. We define

health states using combinations of clinical variables measured during hospital visits.

We explore and approximate the results of our model by performing Monte Carlo

simulations to estimate probabilistic quantities such as the amount of time spent in

a health state. We show that our model produces valid results by performing formal

goodness-of-fit testing and comparing outcome results to the real data. Modeling

longitudinal clinical data that has repeated measurements of symptoms [183] that

are used to define clinical conditions allows for a more complete assessment of the

evolution of conditions such as AECOPD.

Finally, to show the impact of these enhancements, we demonstrate how these

models can be used to answer clinical questions that cannot be interpreted through

simple descriptive statistics. Specifically, our study examines the efficacy of antibiotics

treatment for in-hospitalized patients with chronic obstructive pulmonary disease.

Chronically ill patients are susceptible to frequent changes in health status, [193]

especially when under care in an ICU. For AECOPD patients in the ICU, clinical

indicators can change suddenly, causing a patient to move between health states

repeatedly. Our model is used to answer questions regarding the impact of antibiotics

on hospital discharge and death for patients with an acute exacerbation of COPD.

Using clinical evidence, we answer these questions and provide more in-depth analysis

than prior work by capturing granular time information within the analysis.

In our study we observe an overall reduced mortality rate (Figure 6.4) in patients

with AECOPD admitted to the ICU who received antibiotics in comparison to those

who did not. These findings are consistent with previous evidence that supports

the use of antibiotics in critically ill patients given they frequently have community

acquired pathogens [194]. Antibiotics were shown to reduce all-cause mortality in

critically ill patients and also reduce treatment failure after 4 weeks of discharge [5].
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Studies [2, 10, 195] have found that antibiotic therapy reduces mortality for COPD

exacerbations requiring intensive care, and reduces treatment failure in the inpatient

setting. Our findings suggest that there may be a reduction in mortality rate when

initiation of antibiotics occurs earlier in settings of AECOPD patients with severe

respiratory failure warranting an ICU admission. Thus, developing clinical questions

and identifying relevant results closely aligns with the steps taken by the GOLD

committee.

Techniques for coding can be improved to make analysis of EHRs both simpler

and more useful by developing automated data cleaning tools that integrate clinical

domain knowledge for identifying erroneous and implausible data points within the

EHR. For example, clinical domain knowledge can be used to define the normal

and abnormal ranges for a clinical measurements such as heart rate. The tool will

use the definitions to implement rules that trigger the automatic identification or

removal of measurements that are implausible (i.e., outside of both the normal and

abnormal ranges) within a patient’s EHR. Techniques for testing and evaluation could

also be improved to make analysis of EHRs both simpler and more useful. Such

techniques could express analysis results as mathematical expressions that represent

potential biases, such as confounding, selection, and population characteristics, within

the underlying data. Such methods for testing and evaluation can eventually lead to

a common framework for understanding the results across different datasets, data

collection methods, and populations. For example, testing and evaluation can be

performed using silico models with various populations/datasets (e.g. UK biobank

[196]), cross-validation, and prospective randomized trials.

Generating evidence by modeling and visualizing real-world data may advance

the adoption of research results into day to day clinical practice [74]. This research

provides enhancements to each stage of the EHR analysis system by incorporating

temporal data systematically. Future work in both clinical studies and big data

analysis will continue to enhance EHR representation, helping to improve patient

treatment and analytic capabilities for both data analysts and medical professionals.
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A RECOMMENDATIONS FROM GOLD GUIDELINES

A.1 ABCD Assessment Tool

Figure A.1.: GOLD ABCD assessment tool. Adapted from [2].
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A.2 Pharmacological Treatment Algorithm

Figure A.2.: GOLD pharmacological treatment algorithm. Adapted from [2].
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A.3 Classifications of Exacerbations

Table A.1.: Severity of exacerbations for AECOPD based on clinical signs. Adapted

from [2].

Classification
RR

(bpm)

Use of

accessory

muscles

Change in

mental status

Hypoxemia

improved with

supplemental O2

PaCO2

increased compared

with baseline

or elevated

No respiratory failure 20-30 No No FiO2 28-35% None

Acute respiratory failure

(non-life-threatening)
>30 Yes No FiO2 25-30% 50-60 mmHg

Acute respiratory failure

(life-threatening)
>30 Yes Yes

not improved

or requiring

FiO2 >40%;

60 mmHg or

presence of acidosis

(pH <7.25)

bpm - beats per minute

mmHg - millimeter of mercury
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B TRANSITION PROBABILITY MATRICES

B.1 Model Parameters for Clinical Question 1

Figure B.1.: Model parameter estimations for AECOPD based on antibiotics admin-

istration presented by group. ALL represents the entire AECOPD cohort, and the

other groups are subsets of ALL. Row and column labels correspond to health and

outcome states in Table 5.2.
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B.2 Model Parameters for Clinical Question 2

Figure B.2.: Model parameter estimations for AECOPD based on initial timing

(hours) of antibiotics administration presented by group. Row and column labels

correspond to health and outcome states in Table 5.2.
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