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ABSTRACT

Li, Chengzhang Ph.D., Purdue University, August 2019. Emerging Topics in Supply
Chain Management: Product Substitution, Demand Ambiguity, and Environmental
and Social Responsibility. Major Professors: Qi Annabelle Feng, Mengshi Lu.

This study examines several emerging topics in supply chain management in-

cluding the dynamic product substitution, the joint optimization of price and order

quantity with demand ambiguity, and the implementation of the environmental and

social responsibility (ESR) programs. We provide below a brief description of the

results obtained for the specific problems considered in this study.

In the first problem discussed in Chapter 2, we present a dynamic model, in

which the firm replenishes product inventories from uncertain sources and dynami-

cally allocates available products to meet the uncertain demands with the flexibility

of substitution. To address the analytical challenge associated with multi-product

management, we develop an approximation algorithm that leverages the value of

substitution, while allowing separability of the future profit among the products.

Through extensive numerical analysis, we demonstrate that our approximation yields

good performance measured by the percentage profit gap against an upper bound

problem. We show that substitution can generate significant benefits when the sup-

ply capacities are moderate, the supply and demand uncertainties are high, or the

replenishment cycle is short.

In the second problem discussed in Chapter 3, we study the problem of jointly

optimizing the price and order quantity for a perishable product in the presence of

demand ambiguity. We employ the minimax regret decision criterion to minimize

the worst-case regret, which is defined as the difference between the optimal profit

that could be obtained with perfect information and the realized profit using the



xi

decision made with ambiguous demand information. We characterize the optimal

pricing and ordering decisions under the minimax regret criterion and compare their

properties with those in the classical models that seek to maximize the expected

profit. We compare the minimax regret approach with two other approaches that

are commonly used under demand ambiguity, namely the max-min robust approach

and the regression-based data-driven approach. In the demand ambiguity setting, we

show that the minimax regret approach avoids the high degree of conservativeness

that is often incurred in the max-min approach. In the data-driven setting, we show

via a numerical study that the minimax regret approach outperforms the classical

regression-based approach when data is scarce, when the demand has high volatility,

or when the demand model is misspecified.

In the third problem discussed in Chapter 4, we focus on the problem of admin-

istering ESR programs throughout a complex supply network. We apply a bilateral

bargaining framework to analyze to what extent an ESR initiator should directly en-

gage higher-tier suppliers, as opposed to delegating the assurance of ESR compliance

to its first-tier suppliers. We show that the eventual structure of negotiation relation-

ships can be derived by finding a shortest path tree in the supply network with the

arc cost defined as a monotone function of the negotiating parties’ relative bargaining

power. We find that the ESR initiator tends to delegate ESR compliance negotia-

tion to a supplier that is strong in negotiations with higher-tier suppliers. When the

supply network is complex (i.e., wide and deep), directly engaging all suppliers for

ESR compliance can lead to a larger gain by the initiator than fully delegating the

negotiations with higher-tier suppliers to the first-tier ones.
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1. INTRODUCTION

This study examines several emerging issues in supply chain management. First,

while the uncertainties from both supply and demand sides increase the complexity

of managing a mix of supplies and demands, with the advancement of information

technology, production substitution is proposed as an operational strategy to mitigate

the mismatch between the supplies and demands. However, the design of the substi-

tution policy can be challenging and the coordination between the substitution and

replenishment decisions can be complex. We study the dynamic substitution policy

in the presence of supply and demand uncertainties with a dynamic model. With the

notion of stochastic linearity and an efficient approximation algorithm, we investigate

the value of the dynamic substitution.

Second, the coordination of the inventory and the pricing decisions plays an impor-

tant role in the marketing-operations interfaces. While the conventional approaches

assume that the firms have the complete information of the customer demand, the

exact distributional information of the random demand is unknown or ambiguous in

practice. To facilitate the decision making with the demand ambiguity, we employ

the minimax regret framework to coordinate the price and inventory decisions. We

characterize the structural properties of the optimal decisions. We also compare the

minimax regret criterion with other two widely-used approaches, namely the max-min

robust approach and the regression-based data-driven approach.

Third, with increasing customers’ awareness of the environmental and social im-

pact of the supply chains, the compliance of ESR policy has become a core of the

business. Specifically, responsible sourcing has become an important strategy for the

firms to ensure the compliance of the supply chains with the ESR requirements. With

the increasing complexity in the supply networks, a common problem faced by the

brand retailers and manufactures is, how should the initiator implement the ESR pro-
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gram and ensure the compliance of all members involved? We apply the multi-unit

bilateral bargaining framework to investigate to what extent an ESR initiator should

directly engage higher-tier suppliers, or as opposed to delegating the assurance of

ESR compliance to its first-tier suppliers.

A brief introduction of this dissertation is provided below.

1.1 Dynamic Product Substitution

In recent years, the advancement of e-commerce and information technology has

enabled retailers to fulfill consumer demands with unprecedented flexibility. Take

online grocery delivery as an example. Due to the highly uncertain supply processes,

it is common that the originally ordered items may be out-of-stock or may not have

the desired qualities. To address the supply uncertainty, Instacart—one of the leading

start-up companies in online grocery delivery—asks customers to select replacement

options when placing the orders, which include substituting with customer-specified

items or allowing Instacart’s employees to choose what they consider to be the best

alternatives (Instacart, 2018). Another example arises in omnichannel retailing. More

often than not, traditional brick-and-mortar stores are involved in online sales to

increase revenue, and in the meantime use their physical outlets to enhance customer

experiences (Kumar et al., 2018). While omnichannel selling allows customers to

buy online and pick up at store, it is generally believed that fulfilling online orders

through central warehouses allows for demand pooling and therefore reduces inventory

costs. Interestingly, recent studies by Pulse Commerce (2018) find that “some of

the most successful [omnichannel retailers] fulfill an increasing proportion of online

orders by shipping from stores, instead of from warehouses.” Compared with shipping

solely from warehouses, shipping from stores can provide faster and cheaper delivery,

increase inventory turnover when shipping from overstocked stores, and avoid lost

sales when an item is out of stock online (Pulse Commerce, 2018).
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The common strategy in both examples is the dynamic remixing of the supplies

(for different products or from different locations) using substitution to match the

mix of demands. Such dynamic substitution has become popular in many industries.

However, due to the nature of uncertain and likely dependent product demands,

the design of efficient substitution policy is challenging. As a result, the existing

studies on product substitution focus heavily on the case of upgrade (or downward

substitution), which greatly limits the applicability of the results developed. In the

aforementioned examples, the products or locations may not have a rank order of

their values and the existing development does not address such situations.

Moreover, the supply planning for a multi-product system can also be complex,

imposing added difficulties in coordinating replenishment decisions with substitution

decisions. It is nevertheless believed that the replenishment and substitution can be

operated separately in the sense that if the firm can make appropriate replenishment

decisions to obtain the right supply mix, it does not have much need for product

substitution (see, e.g., Shumsky and Zhang, 2009; Yu et al., 2015; Yao et al., 2016).

However, this conclusion is drawn under condition where possible complications in

the supply process are ignored. It is unclear how the supply conditions can affect the

synergy between replenishment and substitution decisions.

In Chapter 2, we formulate a dynamic model, in which the firm replenishes prod-

uct inventories from uncertain sources and dynamically allocates available products

to meet the uncertain demands with the flexibility of substitution. To address the

analytical challenge associated with multi-product management, we develop an ap-

proximation algorithm that leverages the value of substitution, while allowing sep-

arability of the future profit among the products. This approximation algorithm

iteratively solves a transportation problem in a network with the Monge property.

The application of the Monge property allows for dealing with general substitution

structures, which generalizes the commonly studied downward substitution models.

Through extensive numerical analysis, we demonstrate that our approximation yields

good performance measured by the percentage profit gap against an upper bound



4

problem. We also show that substitution can generate significant benefit when the

supply capacities are moderate, when the supply and demand uncertainties are high,

or when the replenishment cycle is short.

1.2 Demand Ambiguity

Coordinating pricing and inventory decisions plays an important role in managing

the marketing-operations interface. Pricing strategies can effectually shape customer

demand as well as demand uncertainty, which is the main consideration of inventory

management; inventory decisions can improve operational efficiency and further en-

hance the effectiveness of pricing. Joint price-inventory management problems have

been widely studied in the operations research literature. Among various joint price-

inventory models, a fundamental one is the pricing newsvendor problem where the

firm needs to determine the price and order quantity of a perishable product before

the selling period. Despite its parsimonious setting, the pricing newsvendor problem

forms the building block of many operations management models involving pricing

and inventory decisions.

With the advancement of technology, firms can now collect real-time information

of the customer demand and adjust the selling price based on the information. The

conventional modeling approach for pricing and inventory management problem re-

quires the complete distributional information of the random demand. However, in

practice, the exact distributional form is typically unknown or ambiguous. In other

words, there is a gap between the information available in practice and the modeling

approach used in research. To bridge this gap, inspired by recent development in

inventory management and pricing with demand ambiguity (Perakis and Roels, 2008;

Caldentey et al., 2016), we develop a robust and tractable approach in the context of

the pricing newsvendor problem, which can tackle demand ambiguity and is viable

for data integration.
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Specifically, we consider a widely used demand model where the demand is a

function of the unit selling price and an uncertain factor. To allow direct comparison

with the conventional approach, we consider the case where the form of the demand

function is known, but the distributional information of the uncertain factor remains

ambiguous. We assume that the firm only knows the support of the uncertain fac-

tor, e.g., the interval within which the uncertain factor lies with high confidence.

With such demand ambiguity, the firm cannot maximize the expected profit using

the traditional approach. Therefore, we adopt the minimax regret decision criterion

to determine the price and order quantity that minimizes the worst-case regret. The

regret is defined as the gap between the optimal profit that the firm could obtain

with perfect demand information and the realized profit using decisions made with

ambiguous demand information. The minimax regret criterion is an important al-

ternative to maximizing expected payoff in decision theory. It has been adopted in

inventory management or pricing to tackle ambiguity and generate new insights (see,

Perakis and Roels, 2008; Caldentey et al., 2016).

In Chapter 3, we employ the minimax regret decision criterion to minimize the

worst-case regret, which is defined as the difference between the optimal profit that

could be obtained with perfect information and the realized profit using the deci-

sion made with ambiguous demand information. First, we characterize the optimal

pricing and ordering decisions under the minimax regret criterion and compare their

properties with those in the classical models that seek to maximize the expected

profit. Specifically, we explore the impact of inventory risk by comparing the opti-

mal price and the risk-free price, and study comparative statics with respect to the

degree of demand ambiguity and the unit ordering cost. Second, we compare the

minimax regret approach with two other approaches that are commonly used under

demand ambiguity, namely the max-min robust approach and the regression-based

data-driven approach. In the demand ambiguity setting, we show that the minimax

regret approach avoids the high degree of conservativeness that is often incurred in

the max-min approach. In the data-driven setting, we show via a numerical study
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that the minimax regret approach outperforms the classical regression-based approach

when data is scarce, when the demand has high volatility, or when the demand model

is misspecified.

1.3 Environmental and Social Responsibility

Consumers have become increasingly conscious about the environmental and social

impact of the supply chains that generate the products or services they consume

(Agrawal and Lee, 2016). Responsible sourcing has become an important part of

corporate responsibility and many firms have started working with their suppliers and

investing on environmental and social responsibility (ESR) initiatives. According to

the International Association of Contract and Commercial Managers, nearly three-

quarters of companies include a sustainability clause in their procurement contracts

(Ecovadis, 2018). Based on 1,409 interviews with CEOs in 83 countries, PwC (2016)

finds that 64% of CEOs consider ESR to be core to their business rather than a

stand-alone program.

Years ago, many firms would treat ESR effort as a pure cost. Increasingly, firms re-

alize that well implemented ESR measures can induce significant increase in customer

loyalty, thereby generating long-term value to the firm. A survey by Nielsen reports

that 55 percent of global online customers across 60 countries express their willingness

to pay more for products and services provided by companies that are committed to

positive social and environmental impact (Nielsen, 2014). Cone Communications also

confirms that 91 percent of global consumers are likely to switch brands to one associ-

ated with a good cause, given comparable price and quality (Cone Communications,

2013).

A non-compliance instance, even if occurring at an upstream supplier with no

direct relationship, can greatly damage the brand image of the downstream firm. For

example, the entire organic eggs industry in Germany suffered significantly from a

loss of trust among consumers due to an instance of dioxin contamination discovery
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in 2010. The source of contamination was found to be the maize meal imported from

Ukraine (Wiese and Toporowski, 2013). With the relentless move of globalization,

ensuring ESR throughout a large scale supply network is a challenging task. A recent

study by Sedex, one of the largest non-profit organizations for promoting responsible

sourcing, concerns ten companies with collectively 3,922 supplier relationships (Sedex,

2013). This study suggests that the average number of ESR non-compliance by tier-

two and tier-three suppliers are 18% and 27% higher than that by tier-one suppliers,

concluding that “[the] greatest and most critical [ESR] risks are found deeper down

the supply chain.”

Aware of the impact of far upstream suppliers on ESR success, many companies

have gone deep into their supply network to emphasize the importance of full com-

pliance for their ESR campaigns. Starbucks commits itself to 100 percent ethically

sourced coffee from more than 170,000 farmers. H&M, a Swedish fashion firm, aims

toward full traceability of their supply process involving 1.6 million workers across

more than 800 suppliers (Chen, 2017). In many cases, a narrowly focused ESR effort

that intends to solve issues in one part of the supply network but overlooks others

would backfire. An instance occurred at PUMA, a German sportswear manufacturer.

Shortly after PUMA’s corrective measures to address the worker safety and fairness

issues at one of its Chinese suppliers, Taiway Sports Inc., devastating labor conditions

are reported at another supplier, Dongguan Surpassing Shoe Co. Ltd. The report

quickly prompted significant criticisms and questions on PUMA’s commitment to

social responsibility.

The assurance of full compliance of an ESR initiative throughout the supply chain

can be achieved with different ways of implementation. A recent study by Ecovadis

(2018) shows that most companies delegate the responsibility of ensuring higher-tier

compliance to their immediate tier-one suppliers. For example, Kroger, the largest

supermarket chain in the U.S., requires its tier-one suppliers to comply with its ESR

policies including anti child labor, anti discrimination, and anti harassment. In addi-

tion, suppliers must ensure that any of their contractors, distributors, and suppliers
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also comply with the same code of conduct.1 In contrast, Walmart is known for direct

engagement with its entire supply network. For example, in the program for improv-

ing labor conditions in Mexico produce supply chain, Walmart directly works with

growers in Mexico. In the program for improving workplace safety in Bangladesh

apparel supply chain, Walmart closely engages the local garment factories.

In Chapter 4, we apply a bilateral bargaining framework to analyze to what extent

an ESR initiator should directly engage higher-tier suppliers, as opposed to delegating

the assurance of ESR compliance to its first-tier suppliers. Our bargaining framework

not only generalizes the conventional Shapley value approach by allowing the flexi-

bility of modeling imbalanced power distribution among the firms, but also provides

an explicit way of implementing the resulting gain sharing among the firms through

negotiated contract terms. We show that the eventual structure of negotiation rela-

tionships can be derived by finding a shortest path tree in the supply network with the

arc cost defined as a monotone function of the negotiating parties’ relative bargaining

power. These developments allow us to analyze ESR implementation in generally

extended supply networks. We find that the ESR initiator tends to delegate ESR

compliance negotiation to a supplier that is strong in negotiations with higher-tier

suppliers. When the supply network is complex (i.e., wide and deep), directly engag-

ing all suppliers for ESR compliance can lead to a larger gain by the initiator than

fully delegating the negotiations with higher-tier suppliers to the first-tier ones.

1.4 Organization of the Dissertation

In Chapter 2, we formulate a dynamic model, in which the firm replenishes product

inventories from uncertain sources and dynamically allocates available products to

meet the uncertain demands with the flexibility of substitution. Through extensive

numerical analysis, we demonstrate the performance of the approximation algorithm

and investigate the benefit of the dynamic product substitution.

1https://www.thekrogerco.com/wp-content/uploads/2017/09/code-of-conduct.pdf
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In Chapter 3, we study the problem of jointly optimizing the price and order quan-

tity for a perishable product in the presence of demand ambiguity. We characterize

the optimal pricing and ordering decisions under the minimax regret criterion and

compare their properties with those in the classical models that seek to maximize

the expected profit. We also compare the minimax regret approach with two other

approaches that are commonly used under demand ambiguity, namely the max-min

robust approach and the regression-based data-driven approach.

In Chapter 4, we apply a bilateral bargaining framework to analyze to what extent

an ESR initiator should directly engage higher-tier suppliers, as opposed to delegating

the assurance of ESR compliance to its first-tier suppliers. We show that how to

derive the eventual structure of negotiation relationships. With such development,

we investigate the effect of the supply networks on the ESR implementations.

Chapter 5 concludes the dissertation and provides suggestions for future research.

Chapter 2 is based on Feng et al. (2019a). Chapter 3 is based on Feng et al.

(2019b). Chapter 4 is based on Feng et al. (2019c). I would like to express my sincere

appreciation to my co-authors, Professors Qi Annabelle Feng, Mengshi Lu, and J.

George Shanthikumar for their invaluable contributions.
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2. DYNAMIC SUBSTITUTION FOR SELLING

MULTIPLE PRODUCTS UNDER SUPPLY AND

DEMAND UNCERTAINTIES

2.1 Synopsis

To derive a general substitution policy under both supply and demand uncer-

tainties, we study the problem of replenishment for multiple products and inventory-

demand allocation among those products. At the beginning of a replenishment cycle,

the firm determines the supply orders issued for the products. The amount delivered

for each product is a stochastic function of the order placed for that product. In each

period within a replenishment cycle, the firm decides how to allocate the available

inventories to meet the demand observed. The value of using one product to substi-

tute for another product is less than the value of using that product to meet its own

demand.

To understand the general substitution structure (that is not restricted to down-

ward substitution), we first examine the single-period version of the problem. We

show that downward substitution is a special case of a general substitution structure

under which the benefits of substitution between products reveal the reverse Monge

property (Monge, 1781). The product allocation decision in our model is a solution

of the transportation problem, for which it is well-known that the problem can be

solved efficiently when the transportation cost (benefit) reveals the (reverse) Monge

property. For our product allocation problem, we construct a network of the cor-

responding transportation problem by inserting a fictitious demand node for each

actual demand. The flow from a supply node to an actual demand node represents

the product allocation decision, while the flow from a supply node to a fictitious

demand node represents the leftover stock after the allocation. We show that the
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reverse Monge property is preserved with the addition of the fictitious demands, and

thus the network problem can be solved efficiently with the algorithm developed by

Vaidyanathan (2013).

When there are multiple periods of demand occurrence, the problem becomes

significantly complex because the allocation of products depends not only on the

substitution benefits, but also on the future values of the products. The future

value of one product, in view of possible future substitutions, depends heavily on

the inventory levels on all other products. Consequently, the time complexity of the

dynamic substitution problem grows exponentially with the number of products due

to the curse of dimensionality. Given that the optimal policy is difficult to compute,

we propose an approximation that allows the firm, in addition to allocating on-hand

inventories to the demands in the current period, to “convert” the leftover inventories

among the products, while forgoing the opportunities of substitution in any future

periods. By converting one product to another, the former product is then reserved

to meet the future demand for the latter one. Though this approach excludes the

possibility of future substitutions, the product conversion makes up for the loss by

remixing the leftover inventories in anticipation of possible future demand scenarios.

The immediate advantage of this approach is the separability of the future profit

function in the remixed product inventories. With separable future profit functions,

we can apply the development by Hochbaum and Shanthikumar (1990) to solve the

product allocation problem through a series of linear programs, and the number of

linear programs is of the polynomial order of the number of products. Furthermore, we

show that the solution of each linear program can be derived by constructing a network

in the way similar to that for the single-period setting. The main difference is that

we now iteratively insert appropriate fictitious demands to represent the approximate

marginal profit at different levels of leftover inventories. The constructed networks

preserve the Monge property, with which the computational time can be significantly

reduced.



12

With the substitution policy developed, we then examine the firm’s stocking deci-

sions at the beginning of each replenishment cycle. Applying the notion of stochastic

linearity in midpoint (Feng and Shanthikumar, 2018), we show that the stocking

problem can be converted to a concave maximization problem for general stochastic

supply functions. Thus, the stocking decisions can be computed efficiently.

Because the optimal solution of the problem is difficult to compute, we evaluate

the performance of our approximated solution against an upper bound problem. The

upper bound of the firm’s profit is computed by assuming that the firm can observe

all future demands at the beginning of a replenishment cycle. In this case, the firm

can simply aggregate the demands during the cycle by product, and replenish the ag-

gregate quantities accordingly. Our analysis suggests that the approximated solution

results in a profit gap from the upper bound problem that is increasing in both supply

and demand uncertainties, while decreasing in the replenishment cycle. We further

examine the value of substitution generated from the approximated solution against

a lower bound problem, in which no substitution is ever allowed. We show that the

characteristics of the supply function can have a major impact on the effectiveness of

substitution. While an increased supply uncertainty generally increases the benefit

generated from product substitution, the limits on supply capacities can increase or

decrease the value of substitution. These observations highlight the importance of

modeling the supply process in studying substitution policies.

The remainder of the chapter is organized as follows. We summarize the related

literature and spell out our contribution in the next section. In Section 2.3, we lay out

the dynamic model and establish the concavity of the profit functions. We treat the

special case of the single-period model in Section 2.4, which becomes a building block

of the approximation developed for the multi-period setting in Section 2.5. Section

2.6 presents the evaluation of the approximation algorithm and analyzes the value

of substitution. Section 2.7 concludes our study. Proofs of all formal results are

relegated to the appendix.
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2.2 Literature Review

There is a vast literature studying product substitution or resource allocation in

the context of inventory management. Our work develops a framework for dynamic

product allocation under general substitution structure and uncertain supplies.

Pasternack and Drezner (1991) is one of the earliest papers that study the inven-

tory control problem with product substitution under special substitution structures.

They consider a single-period inventory model for two products that can be used as

substitutes for each other, though at different revenue levels. They find that the to-

tal optimal stocking levels with substitution may be more or less than those without

substitution. Bassok et al. (1999) extend the model of Pasternack and Drezner (1991)

to a multi-product case. They consider multiple demand classes with downward sub-

stitution and propose a greedy policy that derives the optimal solution. Through

numerical analysis, they show that the benefit of substitution is higher when demand

variability is higher, substitution cost is lower, profit margins are lower, salvage values

are higher, and product prices and costs are similar. Hsu and Bassok (1999) further

extend this study by introducing random supply yields. Under a more general set-

ting, Kalagnanam et al. (2000) analyze the problem of matching items in an order

book with available surplus inventory, for which they present an efficient network-

flow-based heuristic. Netessine et al. (2002) study the effect of demand correlation on

the optimal capacity decisions with upgrading. When the demands follow the mul-

tivariate normal distribution, the change of demand correlation affects the optimal

capacity for adjacent resources in opposite directions. In contrast to all these studies

that focus on the single-period case, we consider dynamic product substitution under

uncertain supply and demand processes.

Our work is also closely related to the stream of literature on revenue management

with upgrading. Shumsky and Zhang (2009) consider a dynamic capacity manage-

ment problem with downward substitution for products in adjacent classes, i.e., the

unmet demand in a class can be fulfilled only by the products from the next higher
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class. The optimal policy calls for allocating the products for its class first, and then

satisfy the lower-end unmet demand before the leftover stock reaches a certain thresh-

old. Xu et al. (2011) consider a similar setting with two substitutable products and

allow the customers to decide whether or not to accept the product substitution. They

characterize an optimal substitution policy similar to the one in Shumsky and Zhang

(2009). Yu et al. (2015) extend the setting in Shumsky and Zhang (2009) to allow

general downward substitution that can go beyond adjacent products. The results

derived from these papers rely heavily on the downward substitutable relationships

among the products. Our development, in contrast, applies to general substitutions

under which the products may not have a rank order of their values.

Another distinct feature of our model is the consideration of supply uncertainty

in the context of dynamic product substitution, which is a key driver of the mismatch

between supply and demand in reality. Feng et al. (2018) presents a thorough review

of the literature in multi-sourcing under supply uncertainties, which focus on how

to diversify the supplier base by trading off between suppliers’ cost and reliability

(see, e.g., Feng and Shi, 2012; Chen et al., 2013; Feng et al., 2018). Different from

the multi-sourcing problem, our work considers replenishment decisions for multiple

products under uncertain supplies with product substitution. Moreover, we do not

restrict the form of supply uncertainty (e.g., proportional random yield).

Our framework can also be applied to the reactive transshipment problem. Specif-

ically, inventories at different locations can be regarded as inventories for multiple

products and the transportation costs between different locations correspond to the

substitution costs in our setting. The majority of the literature focuses on analyz-

ing the effect of transshipment on the stocking decisions with specific transshipment

networks and designing efficient heuristics for the transshipment decisions (see, Krish-

nan and Rao, 1965; Karmarkar, 1981; Robinson, 1990; Archibald et al., 1997; Axsäter,

2003, etc.). All these papers consider the multi-period setting, and replenishment is

allowed in each period. In our model, replenishment is only allowed at the beginning

of each replenishment cycle but not allowed within the replenishment cycle, which
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increases the complexity of the problem. Yao et al. (2016) studies the two-location

transshipment problem with fixed initial inventory levels, where the transshipment

decisions are made without future demand information or additional replenishment

opportunities. They show that with proper initial inventory levels, the relative benefit

of dynamic transshipment diminishes as the length of the planning horizon increases.

We obtain similar observations under general substitution structures through nu-

merical analysis. Hu et al. (2008) and Chen et al. (2015) study the two-location

transshipment problem with uncertain capacities. We consider a general class of sup-

ply functions, which includes the uncertain capacities in Hu et al. (2008) and Chen

et al. (2015) as special cases.

Our work is also related to network revenue management (see, e.g., Talluri and

Van Ryzin, 2006), where the firm needs to decide the allocation of limited resources to

demands arriving over multiple periods. Due to computational intractability, most ex-

isting literature focus on designing heuristics for resource allocation (see, e.g., Cooper,

2002; Reiman and Wang, 2008; Jasin and Kumar, 2012). Whereas these studies in-

vestigate the resource allocation policy upon each demand arrival, we consider the

allocation of products/resources to meet batch demands. Another stream of liter-

ature studies network revenue management with discrete choice models where cus-

tomers choose from the assortment of products offered by the firm (see, e.g., Liu

and Van Ryzin, 2008; Kunnumkal and Topaloglu, 2010; Zhang and Cooper, 2005).

Different from this stream of study, we are concerned with the firm-driven scheme

where the firm decides the quantities of products substituted for meeting demands.

In terms of methodology, to determine the substitution policy, the key challenge is

to solve the allocation problem efficiently in each period, which reduces to the stochas-

tic transportation problem (see Williams, 1963). With convex objective and linear

constraints, most existing study apply nonlinear optimization techniques and show the

convergence of the algorithm (see., e.g., Shetty, 1959; Holmberg, 1995). However, the

existing approaches are restricted to continuous demands though the firms typically

deal with discrete ones in reality. In addition, the time complexity of those proposed
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algorithms remains unknown. Different from these works, we propose a polynomial-

time algorithm based on the framework developed in Hochbaum and Shanthikumar

(1990) that requires solving a series of linear programs. By constructing appropri-

ate networks and exploiting the Monge property of the cost matrix, we can solve

each linear program efficiently with the algorithm developed in Vaidyanathan (2013).

Unlike most convex optimization algorithms which require approximating discrete

products with continuous inventory levels, our approach can handle discrete supply

and demand, which are common in multi-product replenishment and substitution,

and results in the exact optimal solution.

2.3 The Model

2.3.1 Problem Formulation

The firm under consideration manages multiple products to satisfy customers’

demands over a planning horizon of T periods. The products are indexed by j ∈

N = {1, 2, . . . , n}. The demand for product i in period t, denoted by a random

variable Dt,i, is independent of other products’ demand. Also, the demands in period

t, denoted by Dt = (Dt,1, Dt,2, . . . , Dt,n), is independent of those in other periods. The

unit selling price for product j is pj. The firm incurs a per-unit holding cost of hj for

each unsold product and a per-unit good-will loss of gj for each unmet demand in a

period. The firm may substitute one product with another in meeting the demands.

We use ki,j to denote the per-unit cost of using product i to meet the demand for

product j, while allowing the possibility of ki,j =∞. We define the per-unit net gain

of using product i to meet demand j as

ri,j = pi + hi + gj − ki,j. (2.1)

It is natural to assume that ri,i ≥ ri,j and ri,i ≥ rj,i for j 6= i so that matching a unit

with its own demand generates a higher value than substituting.
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The firm faces a replenishment cycle of C periods, i.e., procurement orders can

only be placed in periods C = {1, 1 + C, 1 + 2C, . . .}. The replenishment cycle C

is often highly product and firm specific. For example, it is typical in apparel re-

tailing that stocks are replenished from overseas suppliers with a time window of

three months, while it is often the case that fast-moving grocery items are replen-

ished daily in large retail stores. We consider uncertain supply streams and as-

sume zero delivery lead time. Specifically, when ordering qt,j units of product j,

the firm receives a random amount of St,j(qt,j). Let qt = (qt,1, qt,2, . . . , qt,n) and

St(qt) = (St,1(qt,1), St,2(qt,2), . . . , St,n(qt,n)) denote the vectors of order quantities and

delivery quantities for period t ∈ C, respectively. We assume that the supply process

of one product is independent of those of other products and the supply process in

one period is independent of those in other periods.

At the beginning of period t, t = 1, 2, . . . , T , the firm reviews the on-hand in-

ventory xt = (xt,1, xt,2, . . . , xt,n) and, if t ∈ C, determines the order quantities qt.

After observing the demands dt = (dt,1, dt,2, . . . , dt,n) and receiving the replenish-

ment quantities st = (st,1, st,2, . . . , st,n) if t ∈ C, the firm decides an allocation policy

yt = {yi,jt : i, j ∈ N}, where yi,jt is the amount of product i allocated to meet the

demand for product j. Thus, the dynamics of the on-hand inventory levels are given

by

xt+1 =

 xt − yt1 if t /∈ C,

xt − yt1 + st if t ∈ C.

The sequence of events is depicted in Figure 2.1. Let Vt(xt) denote the firm’s

optimal expected profit at the beginning of period t when the on-hand inventories are

xt. Then the dynamic programming equation can be written as

Vt(xt) =

{
maxqt≥0{E[Wt(xt + S(qt),Dt)− g>Dt − h>(xt + S(qt))− c>S(qt)]} if t ∈ C,

E[Wt(xt,Dt)− g>Dt]− h>xt if t /∈ C,
(2.2)
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Receive 𝑆𝑆𝑡𝑡(𝑞𝑞𝑡𝑡)

Order 𝒒𝒒𝑡𝑡

Review 𝒙𝒙𝑡𝑡 Observe 𝑫𝑫𝑡𝑡

Decide 𝒚𝒚𝑡𝑡
Review 𝒙𝒙𝑡𝑡′ Observe 𝑫𝑫𝑡𝑡′

Decide 𝒚𝒚𝑡𝑡′

Receive 𝑆𝑆𝑡𝑡+𝐶𝐶(𝑞𝑞𝑡𝑡+𝐶𝐶)

Order 𝒒𝒒𝑡𝑡+𝐶𝐶

Review 𝒙𝒙𝑡𝑡+𝐶𝐶 Observe 𝑫𝑫𝑡𝑡+𝐶𝐶

Decide 𝒚𝒚𝑡𝑡+𝐶𝐶

period 𝑡𝑡 period 𝑡𝑡 + 𝐶𝐶period 𝑡𝑡𝑡

…… ……

Fig. 2.1.: Sequence of events

where

Wt(zt,dt) = max
yt∈Rn×n+

R� yt + Vt+1(zt − yt1) (2.3)

s.t. zt − yt1 ≥ 0, (2.4)

dt − y>t 1 ≥ 0. (2.5)

Here, R = (ri,j)i,j∈N and R� yt =
∑

i,j∈N ri,jy
i,j
t . The function Wt(zt,dt) computes

the firm’s optimal expected profit in period t when the available inventories are zt

and the realized demands are dt. The terminal condition is

VT+1(xT+1) = v>xT+1, (2.6)

where v = (v1, v2, . . . , vn) is the vector of salvage values of unsold inventories.

2.3.2 Preliminaries: The Concavity of the Profit Function

In this subsection, we investigate the structural property of the multi-period re-

plenishment and allocation problem defined in (2.2)–(2.5). As discussed in §2.2, most

existing literature rely on specific substitution structures (see, e.g., Shumsky and

Zhang, 2009; Chen et al., 2015; Yu et al., 2015) or random supply functions (see, e.g.,

Hsu and Bassok, 1999). We do not impose these restrictions. Feng and Shanthikumar

(2018) develop the theory of stochastic linearity in midpoint, which enables the anal-

ysis of general demand and supply functions in operations management problems.
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Equipped with the notion of stochastic linearity in midpoint, we can transform the

original optimization problem in (2.2)–(2.5) into an equivalent concave problem for

a general class of stochastic supply functions. This notion is defined based on the

concave ordering. Specifically, a random variable Y1 is said to be smaller than another

random variable Y2 in the concave order, written as Y1 ≤cv Y2, if E[φ(Y1)] ≤ E[φ(Y2)]

for all concave functions (see., Shaked and Shanthikumar, 2007).

Definition 2.3.1 (Feng and Shanthikumar, 2018) A function {Y (x), x ∈ X}

for some convex X is stochastically linear in midpoint, written as {Y (x), x ∈ X} ∈

SL(mp), if for any x1, x2 ∈ X , there exist Ŷ (x1) and Ŷ (x2) defined on a common

probability space such that

(i) Ŷ (xi) =d Y (xi), i = 1, 2, and

(ii) Ŷ (x1)+Ŷ (x2)
2

≤cv Y (x1+x2
2

).

Let µt,i(q) = E[St,i(q)], which we assume to be continuous and non-decreasing.

Let µ̄t,i = limq→+∞E[St,i(q)], defined on the extended real numbers, and µ̄t =

(µ̄t,1, µ̄t,2, . . . , µ̄t,n). Let qt,i(µ) = inf{q : µt,i(q) ≥ µ}, which is the inverse of

µt,i(q), and µt = (µt,1, µt,2, . . . , µt,n). Define Ŝt,i(µ) =d St,i(qt,i(µ)) and Ŝt(µt) =

(Ŝt,1(µt,1), Ŝt,2(µt,2), . . . , Ŝt,n(µt,n)). The value function Vt(xt) in (2.2) for t ∈ C can

be written as,

Vt(xt) = max0≤µt≤µ̄

{
V̂t(xt,µt) := E[Wt(xt + Ŝt(µt),Dt)]− g>E[Dt]− h>(xt + µt)− c>µt

}
.(2.7)

The following theorem establishes the concavity of the problem in (2.2)–(2.5) when

the transformed supply functions Ŝt,i, i = 1, 2, . . . , n, are stochastically linear in

midpoint.

Theorem 2.3.1 If {Ŝt,i(µ), 0 ≤ µ ≤ µ̄t,i} ∈ SL(mp) for i = 1, 2, . . . , n, then

V̂t(xt,µt) is concave in (xt,µt) for t ∈ C; Vt(xt) is concave in xt and Wt(zt,dt) is

concave in (zt,dt), for t = 1, 2, . . . , T .
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As pointed out by Feng and Shanthikumar (2018), there is a rich class of random

supply functions that are stochastically linear in midpoint, including the widely used

proportional random yield model and the random capacity model. Theorem 2.3.1

enables us to analyze inventory management with product substitution under general

uncertain supply processes.

2.4 The Single-Period Problem

In this section, we focus on the single-period version of the model formulated in

(2.2)–(2.5). Specifically, we examine the following two-stage stochastic program:

max
q∈Rn+

{
E[W (S(q),D)− c>S(q)]

}
− g>E[D], (2.8)

where

W (x,d) =

{
max

y∈Rn×n+

R� y : x− y1 ≥ 0,d− y>1 ≥ 0

}
. (2.9)

Several versions of this problem have been studied in the literature. Pasternack

and Drezner (1991) formulate a two-product model in which demand of one can be

substituted by the other in the event of stockout of the former. Bassok et al. (1999)

extends the analysis to multi-product substitution, while imposing the restriction

of downward substitution (i.e., only a high-value product can be used to meet the

shortage of a low-value product). Netessine et al. (2002) study a similar model with a

focus of understanding the effect of demand correlation on the value of substitution.

Hsu and Bassok (1999) extends the downward substitution model to consider the

case where the supply of the products comes from a production process with random

yields proportional to the input. In our formulation, the restriction of downward

substitution translates into the requirement that ri,j ≤ 0 whenever pi > pj. We do

not impose such a restriction in our model. Moreover, we allow the supply processes

of the products follow general stochastic input-output relationships.
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2.4.1 The Monge Property

The allocation problem defined in (2.9) is known as a transportation problem.

The fastest min-cost flow algorithm designed by Orlin (1993) solves this problem

with a run-time of O(n log n(m + n log n)), where n is the total number of nodes

(i.e., supplies and demands) and m is the number of arcs (i.e., feasible substitution

relations). Monge (1781) first observes that an optimal solution of this problem can

be computed faster if the total supply equals the total demand (i.e., the network is

balanced) and the matrix R satisfies a certain property, which Hoffman (1963) later

names after Monge.

Definition 2.4.1 A n1 × n2 matrix C = {ci,j : i = 1, 2, ..., n1, j = 1, 2, ..., n2} is a

Monge matrix (or Monge array) if ci1,j1 + ci2,j2 ≤ ci1,j2 + ci2,j1 for 1 ≤ i1 < i2 ≤ n1

and 1 ≤ j1 < j2 ≤ n2.

To test the Monge property in a matrix, it is sufficient to check the adjacent rows

and columns, which results in a complexity of O(n1n2). In fact, Hoffman (1963)

described a slightly more general property by introducing the Monge sequence.

Definition 2.4.2 (Hoffman, 1963) Given a n1×n2 matrix C = {ci,j : i = 1, 2, ..., n1, j =

1, 2, ..., n2}, let πM = (z1, ...zn1n2) be a permutation of Sz = {(i, j) : i = 1, ...,m; j =

1, ..., n} and let n(i, j) be the position of (i, j) in the permutation πM such that zn(i,j) =

(i, j). We say πM is a Monge sequence if min{(n(i1, j1), n(i2, j2)} < min{n(i1, j2), n(i2, j1)}

implies ci1,j1 + ci2,j2 ≤ ci1,j2 + ci2,j1 for all possible i1, i2, j1, j2.

Clearly, a Monge sequence exists in a Monge matrix. For a general matrix

C, the complexity of judging the existence and constructing a Monge sequence is

O(n2
1n2 log n2); see Alon et al. (1989). It is well known that for a balanced trans-

portation problem with a Monge cost matrix, a greedy allocation along the Monge

sequence is optimal. Burkard (2007) describes several examples of Monge matrices

that often appear in practice:
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• ci,j = ai + bj for any real ai, 1 ≤ i ≤ n1 and bj, 1 ≤ j ≤ n2.

• ci,j = aibj for any increasing ai, 1 ≤ i ≤ n1 and decreasing bj, 1 ≤ i ≤ n2.

• ci,j = min{ai, bj} for any increasing ai, 1 ≤ i ≤ n1 and decreasing bj, 1 ≤ i ≤ n2.

• ci,j = d(Pi, Qj) where P1, P2, . . . , Pn1 and Q1, Q2, . . . , Qn2 are points on disjoint

paths P and Q on a convex polygon, and d(·, ·) is the Euclidean distance.

Because our problem involves profit maximization instead of cost minimization,

we focus on the reverse Monge property (i.e., ri1,j1 + ri2,j2 ≥ ri1,j2 + ri2,j1 for 1 ≤

i1 ≤ i2 ≤ n and 1 ≤ j1 ≤ j2 ≤ n) as benefits can be treated as negative costs. In

the first example described above, the additive cost (reward) often arises in product

substitution and two-sided market matching. Specifically, in the product substitution

context, the substitution reward is determined by the benefit of meeting demand for

type j and the cost of using product of type i. For example, the practice of free

upgrading in airline industry or auto rental industry naturally results in the linear

additive form (Shumsky and Zhang, 2009; Yu et al., 2015). In two-sided market

matching, for example, Hu and Zhou (2016) describe that the matching reward in

the carpooling platforms generally has two additive components: the first one is

the dis-utility associated with the distance traveled by the driver to pick up the

passenger, and the other is the reward related to the distance between the pickup

and drop-off locations of the passenger. Another example is the centralized medical

residency assignment that matches the medical residents to residency programs in

order to achieve a stable matching (Agarwal, 2015). The utility of a pair of a medical

resident and a residency program depends on the preferences of two sides on each

other. Both the additive form and the multiplicative form are commonly used to

define the reward of a pair, which are special cases of the Monge property (i.e.,

supermodular reward functions). The last example described above is the discrete

version of Monge’s original observation (i.e., transportation problems). Specifically,

in the transportation problem that aims to minimize the total cost of shipping goods

from one set of locations to another, the transportation costs are related to the
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distances between those locations. Therefore, when applying our framework to the

transshipment problem, the substitution costs can be regarded as the transportation

costs between different locations, which would result in Monge matrices.

Hoffman (1963) shows that when a (reverse) Monge sequence exists in the cost

(benefit) matrix, it is optimal to follow a greedy allocation rule. Specifically, in

the context of our problem, the allocation is prioritized according to the sequence

(z1, z2, . . . , zn1n2). At the kth step with zk = (ik, jk), one allocates the available

supply (i.e., excluding the amount assigned in previous steps) of ik to meet the de-

mand of jk to the extent possible. Such a greedy algorithm significantly reduces the

computational complexity.

The result developed by Hoffman (1963), however, is not directly applicable to

solve the allocation problem in (2.9) when the total supply does not necessarily match

the total demand (i.e.,
∑n1

i=1 xt,i 6=
∑n2

i=1 dt,i), which is likely the situation in practice.

We focus on the case when the total supply exceeds the total demand. This is a more

relevant case when we try to extend the results for the multi-period setting in §2.5.

The case with the total demand exceeding the total supply can be treated similarly.

2.4.2 The Network Construction

For a transportation problem with over supply, one would naturally add a fictitious

demand that may consume a quantity of
∑n

i=1 di −
∑n

i=1 xi ≥ 0. Any supply to this

node results in zero benefit. While such an approach makes the network balanced,

the added zero benefit vector destroys the Monge property in the extended matrix.

As a result, there is no guarantee that the greedy allocation along the original Monge

sequence is optimal.

Many studies attempt to address the unbalanced transportation problem with a

Monge cost matrix. The latest algorithm is developed by Vaidyanathan (2013). He

constructs a network with a source node connecting all the supply nodes and the

supply nodes connecting to the demand nodes according to the cost matrix R. His
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algorithm iteratively augments flows from the source to each demand node along the

shortest path. The complexity of this algorithm is O(mlogn), where m is the number

of arcs and n is the number of demand nodes. Although the developments for the

transportation problem are usually for cost minimization, their applications to profit

maximization problems can be easily done by reversing the signs (i.e., considering the

negative of the cost matrix as the benefit matrix).

The algorithm developed by Vaidyanathan (2013) certainly solves our single-

period allocation problem defined in (2.9), while not offering too much insights into

the specific substitution problem. Moreover, it does not help when we extend the

problem to multiple periods. Therefore, we propose an alternative network construc-

tion. Specifically, define an n× 2n matrix R̂ with

r̂i,j =

 ri,j for j = 2k − 1,

ri,j −∆j for j = 2k,
for k = 1, 2, . . . , n,

where ∆j ∈ (0, rj,j]. In other words, the (2k − 1)st column of matrix R̂ is simply the

kth column of matrix R, and the (2k)th column of matrix R̂ is the kth column of

matrix R minus a constant ∆j ∈ (0, rj,j].

Lemma 2.4.1 If the original benefit matrix R has the reverse Monge property (i.e.,

ri1,j1 + ri2,j2 ≥ ri1,j2 + ri2,j1 for 1 ≤ i1 < i2 ≤ n and 1 ≤ j1 < j2 ≤ n), then so does

the extended matrix R̂.

We construct the network G based on matrix R̂ as follows (see also the graphical

illustration in Figure 2.2). The source nodes, which are also the supply nodes, are

indexed by i = 1, 2, . . . , n. Node 2n+1 is the sink. The demand nodes are indexed by

i, i = n+ 1, n+ 2, . . . , 2n, and the capacity on arcs (n+ i, 2n+ 1) corresponds to the

demand for product i. Moreover, we replicate each demand i as i′, which corresponds
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to the virtual demand node that can consume left-over inventories. The excess flows

at each node are defined as

e(i) =


−
∑n

i=1 xi if i = 2n+ 1,

xi if i = 1, 2, . . . , n,

0 otherwise.

The arc benefits and arc capacities are, respectively,

λi,j =


ri,j−n if i = 1, 2, . . . , n, j = n+ 1, n+ 2, . . . , 2n,

ri,j−n −∆j−n if i = 1, 2, . . . , n, j = (n+ 1)′, (n+ 2)′, . . . , (2n)′,

0 if j = 2n+ 1.

ui,j =

 di−n if i = n+ 1, n+ 2, . . . , 2n, j = 2n+ 1,

∞ otherwise,

where, with a slight abuse of notation, we take (n+ j)′−n = j for j = 1, 2, . . . , n. In

other words, the matrix R̂ defines the benefits for arcs that connecting the (virtual)

demand and the supply. The benefit of all other arcs are set to be zero. For the arc

connecting a demand node n+ j to the sink node 2n+ 1, which is called as demand

arc, its capacity is the demand amount dj. All other arcs have infinite capacities.

The arcs that connect supply nodes and the demand nodes (including the virtual

demand nodes) are transportation arcs. The next result suggests that a solution to

the transportation problem defined in graph G also solves our substitution problem.

Theorem 2.4.1 If the original benefit matrix R has the reverse Monge property,

then

i) the max-benefit flow solution for G corresponds to an optimal allocation for

problem (2.9) when ∆i = ri,i for i = 1, 2, . . . , n;

ii) the algorithm developed by Vaidyanathan (2013) finds the optimal solution in

network G with a run time of O(n2logn).
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Fig. 2.2.: Network G

2.4.3 Interpretation Using the Special Case of Downward Substitution

To understand the allocation policy established in Theorem 2.4.1, we consider

examples of downward substitution, the most studied situation in the literature. The

products are ordered based on their values with a higher value product given a smaller

index. Downward substitution happens when the supply of a higher value product is

used to meet the demand of a lower value product.

In the example in Figure 2.3-(a), substitution is only possible between adjacent

products (i.e., ri,j ≥ 0 if j − 1 ≤ i ≤ j and ri,j = −ε for any ε > 0 otherwise).

An allocation sequence is marked using arrows between nonnegative entries of ri,j

in the figure. According to this sequence, we use the supply for product 1 to meet

the demand for product 1, the supply for product 2 to the demand for product 2,

the remaining supply for product 1 to the demand for product 2,..., and finally the

remaining supply for product 3 to the remaining demand for product 4. This sequence



27

is a Monge sequence under three conditions. Specifically, using the product supply to

meet its own demand is more profitable than either downgrading the supply to meet a

lower valued demand (i.e., ri,i ≥ ri,i+1) or meeting the demand by substituting with a

higher value supply (i.e., ri,i ≥ ri−1,i). Moreover, it is not profitable to use a product’s

supply to meet a lower value demand, while meeting that product’s demand using

a higher value supply (i.e., ri,i ≥ ri,i+1 + ri−1,i). With these conditions, the optimal

allocation along the Monge sequence suggests one should first use the supply to meet

its own demand. If a product has excess supply and the adjacent lower value product

has unmet demand, then allocate the former to the latter to the extent possible.

A special case of the example in Figure 2.3-(a) is analyzed by Shumsky and Zhang

(2009). They assume that the substitution cost is independent of the demand being

substituted, i.e., ki,j = k̄i for all j = 1, 2, . . . , n. For j − 1 ≤ i ≤ j, pi + gi ≥ pj + gj

and k̄i ≥ k̄j. It is easy to verify that these conditions imply the conditions needed for

the Monge sequence identified in Figure 2.3-(a).

In Figure 2.3-(b), general downward substitutions are allowed (i.e., ri,j ≥ 0 if

i ≤ j, and ri,j = −ε for any ε > 0 otherwise). For the sequence identified in the

figure to be a Monge sequence, one needs to make sure that substitution between

products with a closer value is more profitable (i.e., ri,j ≥ ri,j+1 and ri,j ≥ ri−1,j for

i ≤ j). Moreover, it is more profitable to assign the high (low) value supply to the

low (high) value demand than to match the supplies and demands with the similar

value ranks (i.e., ri,j + ri−1,j+1 ≥ ri−1,j + ri,j+1 for i ≤ j). According to this Monge

sequence, the greedy allocation calls for prioritizing the demands according to their

values. The supply of a product is allocated to its own demand. In the event of

shortage, the available supply with a closer value is used to substitute before one

with a more different value is.

Special cases of the setting presented in Figure 2.3-(b) have been studied by several

authors. Bassok et al. (1999) and Netessine et al. (2002) assume pi + gi ≥ pj + gj,
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k̄i ≥ k̄j and ri,j ≥ 0 for i ≤ j.1 Yu et al. (2015) impose conditions pi > pj, gi ≥ gj

and k̄i ≥ k̄j for i ≤ j. It is easy to see that assumptions imposed in these studies

imply the conditions in Figure 2.3-(b).

𝑟𝑟1,1 𝑟𝑟1,2 -𝜖𝜖 −𝜖𝜖

−𝜖𝜖 𝑟𝑟2,2 𝑟𝑟2,3 −𝜖𝜖

−𝜖𝜖 −𝜖𝜖 𝑟𝑟3,3 𝑟𝑟3,4

−𝜖𝜖 −𝜖𝜖 −𝜖𝜖 𝑟𝑟4,4

Demand

Su
pp

ly

𝑟𝑟1,1 𝑟𝑟1,2 𝑟𝑟1,3 𝑟𝑟1,4

−𝜖𝜖 𝑟𝑟2,2 𝑟𝑟2,3 𝑟𝑟2,4

−𝜖𝜖 −𝜖𝜖 𝑟𝑟3,3 𝑟𝑟3,4

−𝜖𝜖 −𝜖𝜖 −𝜖𝜖 𝑟𝑟4,4

Demand

Su
pp

ly

(a) Adjacent Product Downward Substitution (b) General Downward Substitution

Conditions:  𝑗𝑗 − 1 ≤ 𝑖𝑖 ≤ 𝑗𝑗
𝑟𝑟𝑖𝑖,𝑖𝑖 ≥ 𝑟𝑟𝑖𝑖,𝑖𝑖+1
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Fig. 2.3.: Benefit matrix for downward substitution

2.4.4 The Stocking Decisions

Recall that Theorem 2.3.1 establishes the concavity of the multi-period replen-

ishment and product substitution problem. Applying the concavity result to the

single-period problem, we can show that the expected profit is concave in the mean

supplies. In specific, using the notations defined in §3.3 and suppressing the subscripts

for time periods, problem (2.8) can be transformed to the following problem,

max
0≤µ≤µ̄

{
V̂ (µ) := E[W (Ŝ(µ),D)]− g>E[D]− c>µ

}
. (2.10)

By Theorem 2.3.1, V̂ (µ) is concave in µ for a general class of supply functions that

are stochastically linear in midpoint. In addition, the development in §§2.4.2 enables

1Bassok et al. (1999) also consider a salvage value vj of unsold items and assume vi ≥ vj for i < j.
Note that one can transform their model into ours by redefine unit price as pj −vj and procurement
cost as cj − vj .
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us to evaluate W (x,d) efficiently for given available inventory x and demand real-

ization d. Therefore, we can apply standard approaches for concave maximization

with the transformed objective function and find the optimal mean supply vector

µ. The optimal vector of stocking decisions q can be recovered using its one-to-one

correspondence to µ.

2.5 The Multi-Period Problem

For the multi-period problem, the optimal product allocation policy based on

the Monge sequence no longer applies because of the nonlinear value-to-go function.

Furthermore, even though Theorem 2.3.1 guarantees the concavity of the problem for

general uncertain supply processes, the time complexity of the dynamic programming

increases exponentially in the number of products, known as the curse of dimension-

ality, making the problem computationally intractable for practical applications. In

view of these, the focus of this section is to develop close-to-optimal solutions that can

be computed efficiently. The algorithm developed below has three essential elements,

namely, the additively separable value function approximation, the efficient concave

separable optimization, and the efficient optimal allocation based on the Monge prop-

erty. In §2.6, we demonstrate the performance of this algorithm as well as discussing

the insights generated.

2.5.1 An Approximation of the Value Function

To solve the allocation problem defined in (2.3)–(2.5) efficiently, the crux of the

computational challenge lies in evaluating the value-to-go function Vt+1(xt+1), which

is the optimal expected profit from period t+1 onward given available inventory xt+1.

Instead of evaluating it exactly, we approximate Vt+1(xt+1) with the expected profit

under the following simple policy.

Suppose that we are in period t, and from period t+1 onwards, we do not allow any

product substitution. Then, it is easy to see that the future expected profit becomes
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separable in xt+1. Specifically, let Ṽt+1,i(xi), xi ≥ 0 denote the expected profit from

product i when the beginning inventory for that product in period t+ 1 is xi. Then,

we can compute Ṽt+1,i(·) recursively using the following expressions:

Ṽk,i(x) =


max
q≥0

E
[
Wi(x+ Si(q), Dk,i)− ciSi(q) + Ṽk+1,i

(
(x+ Si(q)−Dk,i)

+
)]
,

if k ∈ {t+ 1, . . . , T} ∩ C,

E
[
Wi(x,Dk,i) + Ṽk+1,i

(
(x−Dk,i)

+
)]
, if k ∈ {t+ 1, . . . , T} \ C,

(2.11)

Wi(z, d) = ri,i min{z, d} − gid− hiz, (2.12)

ṼT+1,i(x) = vix. (2.13)

Applying Theorem 2.3.1 to the special case with a single product, we have that if

{Ŝi(µ), 0 ≤ µ ≤ µ̄i} is stochastically linear in midpoint, then Ṽt+1,i(x) is concave in

x for all i ∈ N and t = 1, . . . , T . Therefore, the single-dimensional function Ṽt+1,i(x)

can be evaluated efficiently.

The restriction of no future substitution certainly reduces the computational bur-

den. However, it also induces the loss of value from substitution. To make up for

that, we allow the firm to “convert” certain amount of product i’s inventory into

additional product j’s inventory at the end of period t. Through such conversions,

the firm can re-balance its stocks based on its anticipation of future demands. Recall

the omnichannel example in §4.1. Product “conversion” in this case can be viewed

as proactive transshipment between the stores. The per-unit conversion cost from

production i to product j is

mi,j := (pj − pi) + (hj − hi) + ki,j = rj,j − ri,j,

which consists of the potential loss of revenue, (pj − pi), the potential increase in

inventory holding cost, (hj − hi), and the substitution cost ki,j.

Let ỹi,jt denote the amount of product i’s inventory “converted” to product j’s

inventory at the end of period t, and x̃t+1,i the amount of product i’s inventory at the

beginning of period t+1 after the “conversion.” Let M = (mi,j)i,j∈N , ỹt = (ỹi,jt )i,j∈N ,
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and x̃t+1 = (x̃t+1,i)i∈N . Incorporating the product conversion decisions in the original

allocation problem (2.3)–(2.5) and replacing the value-to-go function Vt+1(xt+1) with

the sum of the approximation functions Ṽt+1,i(xt+1,i) defined in (2.11)–(2.13), we have

the following optimization problem,

W̃ (zt,dt) = max R� yt −M� ỹt +
∑
i∈N

Ṽt+1,i(x̃t+1,i) (2.14)

s.t. yt1 + ỹt1 = zt (2.15)

y>t 1 ≤ dt (2.16)

ỹ>t 1 = x̃t+1 (2.17)

yt, ỹt ∈ Rn×n
+ , x̃t+1 ∈ Rn

+. (2.18)

Solving the above problem optimally, we obtain an allocation decision yt given on-

hand inventories zt and realized demands dt. Note that the “conversion” decision ỹt is

only used to approximate the value function but not actually implemented. Whereas

other approximation methods may also apply, the additive separability of the above

approximation enables us to further reduce the allocation problem in (2.14)–(2.18) to

a series of linear programs (Hochbaum and Shanthikumar, 1990), which we present

in the next subsection.

2.5.2 Efficient Optimization with Separable Concave Value Functions

The problem defined in (2.14)–(2.18) is a variant of the stochastic transportation

problem. Holmberg (1995) reviews efficient solution methods for this problem and

develops an approach combining separable programming with piecewise linear ap-

proximation and mean value cross decomposition, which is so far the most efficient

method for this problem. However, the separable programming approach in Holm-

berg (1995) does not provide any guarantee of the accuracy of the approximation. In

this subsection, we present an efficient algorithm based on the framework developed

by Hochbaum and Shanthikumar (1990). Our approach not only guarantees that the



32

approximation achieves an arbitrary level of accuracy, but also limits the size of the

linear program solved in each iteration.

A direct application of Hochbaum and Shanthikumar (1990)’s method to our prob-

lem suggests solving a total of
⌈
log2

(
2n
ε
‖(zt,dt)‖∞

)⌉
linear programs to achieve ε-

optimality (i.e., the difference between the approximate solution and the true optimal

solution has a supremum norm less than or equal to ε) and the number of variables of

each linear program is at most 16n3 + 8n2. These complexities are established for the

case when the supplies and demands take continuous values, a common assumption in

the product substitution literature. In reality, however, the supplies and demands in-

volved in multi-product substitution are often discrete (recall the examples discussed

in §4.1). The continuous approximation often provides easier analysis on the marginal

benefits or allows for deriving the structural properties of the policy. For our purpose

of computation, however, we can in fact achieve a reduced computational complexity

and find the exact optimal solution with discrete supplies and demands.

We note that Ṽt+1,i(xi) is a piecewise linear function when the demand is discrete.

We can further approximate this function by a set of piecewise linear functions defined

base on a scaling factor s:

V s
t+1,i(xi) =

( ⌊
xi
s

+ 1
⌋
− xi

s

)
Ṽt+1,i

(
s
⌊
xi
s

⌋ )
+
(
xi
s
−
⌊
xi
s

⌋ )
Ṽt+1,i

(
s
⌊
xi
s

+ 1
⌋ )
, i ∈ N. (2.19)

It is clear that s is the length of the segments of the piecewise linear function and

V 1
t+1,i(·) = Ṽt+1,i(·).

The main idea is to solve the problem with the approximated function V s
t+1,i(xi)

iteratively by gradually reducing the scaling factor s. Specifically, let the scaling

factor in the l-th iteration be sl = 2l0−l, l = 1, 2, . . . , l0, where l0 is determined based

on problem parameters. Then, we solve the following optimization problem for the

allocation decisions:
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(IP−sl) : W̃ sl
t (zt,dt) = max R� (slyt)−M� (slỹt) +

∑
i∈N

V sl
t+1,i

(
slx̃t+1,i

)
s.t. yt1 + ỹt1 = bzt/slc

(yt)
>1 ≤ bdt/slc

(ỹt)
>1 = x̃t+1

x
(l)
t+1 ≤ x̃t+1 ≤ x̄

(l)
t+1

yt, ỹt ∈ Zn×n+ , x̃t+1 ∈ Zn+

We shall note that the linear relaxation of the integer constraints in the above

formulation does not change the optimal solution as it is well known for transportation

problems. Let
(
sly

(l)
t , slỹ

(l)
t , slx̃

(l)
t+1

)
denote the optimal solution of the above linear

program. As shown by Hochbaum and Shanthikumar (1990), the following bound on

the difference between the exact and approximate solutions holds∥∥∥(y∗t , ỹ∗t , x̃∗t+1

)
− sl

(
y

(l)
t , ỹ

(l)
t , x̃

(l)
t+1

)∥∥∥
∞
≤ n(2n+ 1)sl. (2.20)

Therefore, we set x
(l)
t+1 = 2x̃

(l−1)
t+1 − (4n2 + 2n)1 and x̄

(l)
t+1 = 2x̃

(l−1)
t+1 + (4n2 + 2n)1.

With the above formulation, we can solve the allocation problem (2.14)–(2.18)

exactly using Algorithm 1. The total number of linear programs that are solved in

Algorithm 1 is
⌈
log2

(
2

2n+1
‖(zt,dt)‖∞

)⌉
and the number of variables of each linear

program is 8n3 +4n2. Whereas these linear programs can be solved with any standard

off-the-shelf solver, in the next subsection, we present a more efficient algorithm based

on network optimization.
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Algorithm 1 Optimal Allocation for Discrete Demand (Hochbaum and Shanthiku-

mar, 1990).

1: Initialization

2: l0 ←
⌈
log2

(
2

2n+1
‖(zt,dt)‖∞

)⌉
, x̃

(0)
t+1 ← 0

3: Optimization

4: for l← 1, 2, . . . , l0 do

5: sl ← 2l0−l, x
(l)
t+1 ← 2x̃

(l−1)
t+1 − (4n2 + 2n)1, x̄

(l)
t+1 ← 2x̃

(l−1)
t+1 + (4n2 + 2n)1

6: Solve (IP− sl)

7: end for

8: yt ← y
(l0)
t

2.5.3 Improvement on Allocation Using Network Optimization

In this subsection, we discuss a network representation of the linear program (IP-

sl) formulated in the previous subsection. By exploring the reverse Monge property

in the network, we devise an algorithm that solves the allocation problem more effi-

ciently than the usual linear programming algorithm. Similar to the algorithm for the

one-period allocation problem, we first construct a network with nodes representing

initial on-hand inventory, fulfilled demand, or leftover inventory, and arcs represent-

ing inventory allocation. We then show that the max-benefit flow in the constructed

network corresponds to the optimal solution to the original problem. Moreover, the

benefit matrix of the constructed network satisfies the reverse Monge property, and

therefore, the max-benefit flow in the network can be found efficiently with a greedy

algorithm similar to the one in §§2.4.2.

Let Gsl denote the constructed network for (IP−sl) (see the graphical illustration

in Figure 2.4). There are n supply nodes corresponding to the on-hand inventory

of the n products. The amount of product i’s supply equals to the scaled on-hand

inventory bzt,i/slc. There are n actual demand nodes, and the actual demand volume

for product i is equal to the scaled demand bdt,i/slc. In addition to actual demands, we



35

create virtual demand nodes to represent inventory conversion. The virtual demands

of product i correspond to the segments of the piecewise linear function V sl
t+1,i(x̃t+1,i).

Recall that x
(l−1)
t+1,i and x̄

(l−1)
t+1,i are lower and upper limits of x̃t+1,i, and sl is the length

of the linear segments. Therefore, the number of virtual demands introduced for

each product is equal to K + 1, where K :=
(
x̄

(l−1)
t+1,i − x

(l−1)
t+1,i

)
/sl. For each product

i, its virtual demands are indexed from 0 to K. Virtual demand 0 of product i

represents the linear segment from 0 to slx
(l)
t+1,i (recall that x

(l)
t+1,i is the lower limit of

xt+1,i). Accordingly, its demand volume is set to x
(l)
t+1,i units of the scaled inventory

bzt,i/slc. Virtual demand k, for k = 1, 2, . . . , K, represents the linear segment from

sl
(
x

(l)
t+1,i + k − 1

)
to sl

(
x

(l)
t+1,i + k

)
and has demand volume equal to one unit of the

scaled inventory. In total, there are n(K+2) demand nodes (either actual or virtual).

The demand nodes are indexed in such a way that the actual demand of product i

has index j = (i − 1)(K + 1) + i and virtual demand k of product i has index

j = (i−1)(K+1)+ i+1+k, for k = 0, 1, 2, . . . , K. We use the n(K+2)-dimensional

vector d
(l)
t =

(
d

(l)
t,1, d

(l)
t,2, . . . , d

(l)
t,n(K+2)

)
to represent the amount of actual and virtual

demand, where d
(l)
t,j is defined as

d
(l)
t,j =


bdt,i/slc , if j = (i− 1)(K + 1) + i,

x
(l)
t+1,i, if j = (i− 1)(K + 1) + i+ 1,

1, if j = (i− 1)(K + 1) + i+ 1 + k, ∀k = 1, 2, . . . , K,

for some i = 1, 2, . . . , n.

Let r
(l)
i,j denote the unit benefit of allocation from supply i to demand j. First,

consider allocation from supply i to demand j = (j′ − 1)(K + 1) + j′, that is, the

actual demand of product j′. The benefit per unit is sl times the original per unit

net gain, that is, r
(l)
i,j = slri,j′ . Next, consider allocation from supply i to demand

j = (j′−1)(K+1)+j′+1+k, that is, virtual demand k of product j′, for k = 0, . . . , K.

In this case, allocation means converting product i’s inventory into that of product

j′. The benefit corresponds to the increase in the expected value of product (j′)’s
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inventory minus the loss incurred in the conversion. We have r
(l)
i,j = slri,j′ − ∆

(l)
j′,k,

where

∆
(l)
j,k =

{
slrj,j −

(
V sl
t+1,j

(
slx

(l)
t+1,j

)
− V sl

t+1,j(0)
)
/x

(l)
t+1,j , if k = 0,

slrj,j −
(
V sl
t+1,j

(
sl
(
x
(l)
t+1,j + k

))
− V sl

t+1,j

(
sl
(
x
(l)
t+1,j + k − 1

)))
, if k = 1, 2, . . . ,K.

Let R(l) denote the n×n(K+2) matrix with element r
(l)
i,j , which we refer to as the

extended benefit matrix. The following lemma establishes that the extended benefit

matrix preserves the reverse Monge property of the original benefit matrix.

Lemma 2.5.1 If the original benefit matrix R has the reverse Monge property (i.e.,

ri1,j1 + ri2,j2 ≥ ri1,j2 + ri2,j1 for 1 ≤ i1 < i2 ≤ n and 1 ≤ j1 < j2 ≤ n), then so does

the extended matrix R(l).

In network Gsl as depicted in Figure 2.4, the supply of product i is represented

by the source node i, i = 1, 2, . . . , n. The actual demand of product i is represented

by node n+ i, i = 1, 2, . . . , n. Virtual demand k of product i is represented by node

(n + i)k, k = 0, 1, . . . , K, i = 1, 2, . . . , n. Node 2n + 1 is the sink node. The amount

of excess flow at each node is defined as

e(i) =


bzt,i/slc , if i = 1, 2, . . . , n, (a supply node)

−
∑n

i=1 bzt,i/slc , if i = 2n+ 1, (the sink node)

0, otherwise (a demand node).

There are two types of arcs. Arcs from the source nodes to the demand nodes represent

inventory allocation or conversion, and the weight λi,j of these arcs correspond to

benefits in the extended benefit matrix R(l). These arcs have unlimited capacities.

Arcs from the demand nodes to the sink node have limited capacities ui,j which
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correspond to the scaled demand vector d
(l)
t . These arcs have zero benefit. The arc

benefits and capacities are summarized as follows.

λi,j =



slri,j−n, if i = 1, . . . , n, j = n+ 1, . . . , 2n,

slri,j−n −∆
(l)
j−n,k, if i = 1, . . . , n,

j = (n+ j′)k, for some j′ = 1, . . . , n, k = 0, . . . , K,

0, otherwise.

ui,j =



bdt,i−n/slc , if i = n+ j′, for some j′ = 1, 2, . . . , n, j = 2n+ 1,

x
(l)
t+1,i−n, if i = (n+ j′)0, for some j′ = 1, 2, . . . , n, j = 2n+ 1,

1, if i = (n+ j′)k, for some j′ = 1, 2, . . . , n, k = 1, . . . , K, j = 2n+ 1,

∞, otherwise,

where we take (n+ i)k − n = i.
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Fig. 2.4.: Network Gsl
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Lemma 2.5.2 The max-benefit flow in network Gsl corresponds to an optimal allo-

cation for problem (IP − sl). Moreover, if the original benefit matrix R satisfies the

reserve Monge property, then the algorithm developed by Vaidyanathan (2013) finds

the max-benefit flow in network Gsl with a run time of O(n4logn).

Lemma 2.5.2 suggests that the linear program (IP−sl) can be solved efficiently as a

network optimization problem when the benefit matrix of our problem has the reverse

Monge property. Combining this result with the development by Hochbaum and

Shanthikumar (1990), we conclude the optimality and time complexity of Algorithm

1.

Theorem 2.5.1 If the original benefit matrix R satisfies the reserve Monge property,

then Algorithm 1 finds an optimal solution for problem (2.14)-(2.18) with a run time

of O
(
n4lognlog

(
2

2n+1
‖(zt,dt)‖∞

))
.

2.6 Numerical Analysis and Observations

In this section, we evaluate the performance of the approximate algorithm devel-

oped in the previous section, as well as examining the firms’ substitution policies. For

these purposes, we define two benchmark models, which give a lower bound and an

upper bound of the optimal expected profit.

Consider the special case in which the demands over the entire planning horizon

T are observed at the beginning of period 1. In this case, the problem reduces to the

single-period planning described in §2.4 for a demand mix of
∑T

t=1 dt. The resulting

optimal profit can be easily obtained as

V = max
q∈Rn+

{
E

[
W

(
S(q),

T∑
t=1

dt

)
− c>S(q)

]}
− g>

( T∑
t=1

E[Dt]

)
, (2.21)

where W (·, ·) is defined in (2.9). In view of the concavity of the profit functions (recall

Theorem 2.3.1), we can easily deduce that V is an upper bound of the optimal profit

for our problem defined in (2.2)–(2.5).
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Consider another special case in which there is no benefit of substitution, i.e., ri,j =

0 whenever i 6= j. In this case, the problem reduces to one of managing replenishment

for each product separately. The resulting optimal profit can be computed as

V =
n∑
i=1

Ṽ1,i(0), (2.22)

where Ṽt,i(·) is defined in (2.11). Clearly, the restriction on substitution leads to

suboptimality. We have the following relationship:

V ≤ Ṽ ≤ V ∗ ≤ V , (2.23)

where Ṽ is the profit under the heuristic developed in §2.5 and V ∗ = V1(0) is the

optimal profit.

In the numerical analysis below, we consider n = 4 products with discretized log-

normal demands in each period (i.e., log(Dt) follows a joint normal distribution). The

mean demands are µ = 9 and the coefficient of variation of the demand cv varying

from 0.5 to 3. We consider positively correlated, uncorrelated, and negatively cor-

related scenarios with the correlation matrices of the underlying normal distribution

are given by, respectively,

ρ+ =


1 0.5 0.2 0

0.5 1 0.5 0.2

0.2 0.5 1 0.5

0 0.2 0.5 1

 , ρ0 = I, ρ− =


1 −0.5 −0.2 0

−0.5 1 −0.5 −0.2

−0.2 −0.5 1 −0.5

0 −0.2 −0.5 1

 .
We set h = v = 0, g = (0.4, 0.3, 0.2, 0.1) and

R =


3.0 2.0 1.3 0.7

1.8 2.5 1.8 1.2

0.8 1.5 2.0 1.4

0.1 0.8 1.3 1.8

 .
We vary the procurement costs c within [0.4, 1.6] and the planning horizon T within

〈5, 20〉. Only one replenishment is allowed at the beginning of the planning horizon.

The supply function is of the form Si(qi) = min{qi, Ki}, where Ki is the nonnegative

random capacity for product i. We take Pr{Ki = K} = 1− Pr{Ki = K} = 0.2.
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2.6.1 Performance of the Approximation Algorithm

Given that it is difficult to compute the optimal solution to our problem, we

measure the performance of the approximate algorithm against the upper bound

problem instead. That is, we compute the percentage profit gap

V − Ṽ
V

× 100%.

The actual optimality gap, measured against V ∗ as opposed to V , is certainly smaller

than the above in view of (2.23).

In the instances reported in Table 2.1, the performance gap is within the range of

[5%, 11.57%]. The instances of high performance gaps occur when the optimal profit

is extremely small. We observe that the relative performance gap reduces when the

procurement cost decreases, the demand variability decreases, the supply uncertainty

decreases, or the length of the replenishment cycle increases.

Intuitively, demand correlation can have a major effect on the product substitu-

tions, and our approximation, assuming substitution only in the current period, would

lead to a large profit loss with negatively correlated demands. Interestingly, the per-

formance gap reported in Table 2.1 is not very sensitive to the demand correlation.

This suggests that once product “conversion” allows for capturing most of the ben-

efit from product substitution. This observation further justifies our approximation

approach.

2.6.2 Benefit of Dynamic Product Substitution

To measure the benefit of substitution using the policy generated by our approx-

imate algorithm, we measure the profit gap against the lower bound profit V (recall

that V is computed in (2.22) by assuming no substitution is allowed). That is,

Ṽ − V
V

× 100%.

From Table 2.2, we observe that the value of product substitution increases when

the product procurement cost increases. A higher procurement cost induces a lower
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Table 2.1.: Performance of the approximation algorithm measured by (V̄ − Ṽ )/V̄ ×

100%

Capacities
Deterministic Uncertain

Unlimited Limited Limited Unlimited

(Low) (Med) (High)

c = 0.4 0.18 0.53 0.54 0.78 1.26 1.02

0.8 0.60 0.74 0.80 1.21 2.00 2.42

1.2 1.50 1.58 1.63 2.24 5.02 6.34

1.6 4.40 4.30 4.56 5.61 8.57 11.57

T = 5 2.10 2.17 2.20 2.67 4.07 5.45

10 1.50 1.58 1.63 2.24 5.02 6.34

15 1.23 1.26 1.36 2.03 3.35 4.50

20 1.04 1.06 1.16 1.88 3.10 4.14

cv = 0.5 0.83 0.89 0.96 1.65 2.89 3.97

1 1.50 1.58 1.63 2.24 5.02 6.34

2 2.73 2.87 2.88 3.37 4.78 6.26

3 3.75 3.83 3.86 4.24 5.69 7.32

ρ = ρ+ 1.23 1.18 1.28 2.02 3.44 4.76

ρ0 1.50 1.58 1.63 2.24 5.02 6.34

ρ− 1.43 1.74 1.74 2.31 3.62 4.90

Notes. The base setting is highlighted with boldface values in the first column. log(Dt) ∼

N(µ,Σ) with µt = 9. Pr{K = k} = 1 − Pr{K = k} = 0.2. We set k = k = 9T under

unlimited deterministic supplies, k = k = ∞ under limited and deterministic supplies, and

k = 0 and k = ∞ under unlimited random supplies. For limited random supplies, we choose

k ∈ {0.8, 0.5, 0.2} with µK = 0.2k + 0.8k fixed to represent low, medium, and high supply

variabilities.
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replenishment quantity and thus increases the chance of stockout. Consequently,

product substitution becomes more useful.

The benefit derived from substitution decreases when the replenishment cycle

becomes longer or the demand variability becomes smaller. This is simply because

the chance of using a product’s own supply to meet its own demand becomes higher.

We further note that product substitution leads to a larger value when the demands

are negatively correlated than when they are positively correlated, as intuition may

suggest.

Table 2.2.: Performance of the approximation algorithm measured by (Ṽ − V )/V ×

100%

Capacities
Deterministic Uncertain

Unlimited Limited Limited Unlimited

(Low) (Med) (High)

c = 0.4 0.18 0.53 0.54 0.78 1.26 1.02

0.8 0.60 0.74 0.80 1.21 2.00 2.42

1.2 1.50 1.58 1.63 2.24 5.02 6.34

1.6 4.40 4.30 4.56 5.61 8.57 11.57

T = 5 2.10 2.17 2.20 2.67 4.07 5.45

10 1.50 1.58 1.63 2.24 5.02 6.34

15 1.23 1.26 1.36 2.03 3.35 4.50

20 1.04 1.06 1.16 1.88 3.10 4.14

cv = 0.5 0.83 0.89 0.96 1.65 2.89 3.97

1 1.50 1.58 1.63 2.24 5.02 6.34

2 2.73 2.87 2.88 3.37 4.78 6.26

3 3.75 3.83 3.86 4.24 5.69 7.32

ρ = ρ+ 1.23 1.18 1.28 2.02 3.44 4.76

ρ0 1.50 1.58 1.63 2.24 5.02 6.34

ρ− 1.43 1.74 1.74 2.31 3.62 4.90

Notes. The base setting is highlighted with boldface values in the first column. log(Dt) ∼

N(µ,Σ) with µt = 9. Pr{K = k} = 1 − Pr{K = k} = 0.2. We set k = k = 9T under

unlimited deterministic supplies, k = k = ∞ under limited and deterministic supplies, and

k = 0 and k = ∞ under unlimited random supplies. For limited random supplies, we choose

k ∈ {0.8, 0.5, 0.2} with µK = 0.2k + 0.8k fixed to represent low, medium, and high supply

variabilities.
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In general, a higher level of supply uncertainty leads to a larger benefit derived

from product substitution, because there is a greater chance of the mismatch between

the supply mix and the demand mix. The presence of supply limitation, however,

can increase or decrease the value of product substitution, as we observe from the in-

stances with deterministic capacities. On the one hand, extremely limited capacities

induce a high likelihood of stockout across all products in the early periods during

a replenishment cycle, leaving little overstock of any product to be used for other

demands. On the other hand, extremely ample capacities allow the firm to freely

choose the right replenishment quantities to match the demand mix, reducing the

need for product substitution. Therefore, product substitution is most valuable when

the capacities are moderate, with which a careful cost and benefit trade-off can lead

to close supply and demand levels. As demand uncertainties materialize after replen-

ishment, there is a good chance of understock for certain products and overstock for

other products. The scarcity or ampleness of capacities is relative to the procure-

ment cost—a given capacity level is ample (scarce) when the procurement cost is low

(high), as suggested by Table 2.2.

In all the instances reported in Table 2.2, the value of product substitution under

our approximate algorithm is significant, between 4.30% and 30.88%. This makes an

interesting contrast to a common observation from the literature (see, e.g., Shumsky

and Zhang, 2009; Yu et al., 2015; Yao et al., 2016) that dynamic product substitution

does not generate much value unless the replenishment decisions are made subopti-

mally. This contrast is due to the fact that most previous studies do not model the

supply processes (i.e., assuming any replenishment quantities are fully delivered). Our

model, taking into account general supply functions, is more realistic and provides a

strong justification for the wide adoption of substitution policies. The significance of

the values reported here also suggests that our approximation appropriately explores

the relationships among the products in generating the allocation solutions.
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2.7 Concluding Remarks

We study the problem of coordinating product replenishment and substitution de-

cisions in a dynamic environment with both supply and demand uncertainties. There

are two key features of our model. The first is the general substitution structure with

the benefit matrix revealing the reverse Monge property. The reverse Monge prop-

erty allows us to generalize the existing studies on downward product substitution,

yet develop an efficient approach to derive the decisions of multi-product allocation

to meet the demands. The second feature of our model is the consideration of general

supply functions that are stochastically linear in midpoint. We show that the value

of product substitution is greatly affected by both the limits and the variabilities of

the supplies.
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3. DATA-DRIVEN INVENTORY AND PRICING

MANAGEMENT WITH ADVERSARIAL MODELS

3.1 Synopsis

To study the problem of joint optimizing the price and the inventory decisions with

ambiguous demand information, we consider a widely used demand model where the

demand is a function of the unit selling price and an uncertain factor. To allow direct

comparison with the conventional approach, we consider the case where the form of

the demand function is known, but the distributional information of the uncertain

factor remains ambiguous. We assume that the firm only knows the support of the

uncertain factor, e.g., the interval within which the uncertain factor lies with high

confidence. With such demand ambiguity, the firm cannot maximize the expected

profit using the traditional approach. Therefore, we adopt the minimax regret decision

criterion to determine the price and order quantity that minimizes the worst-case

regret. The regret is defined as the gap between the optimal profit that the firm could

obtain with perfect demand information and the realized profit using decisions made

with ambiguous demand information. The minimax regret criterion is an important

alternative to maximizing expected payoff in decision theory. It has been adopted in

inventory management or pricing to tackle ambiguity and generate new insights (see,

Perakis and Roels, 2008; Caldentey et al., 2016).

Our contributions are summarized as follows:

1. We propose a robust and tractable approach for joint price and inventory

optimization under demand ambiguity to minimize the worst-case regret. We explore

the properties of the optimization problem and characterize the optimal solutions,

which can be computed efficiently.



46

2. We study the properties of the optimal minimax regret decisions, such as the

impact of inventory risk and monotone comparative statics with respect to the degree

of demand ambiguity and unit ordering cost. Comparison of these properties with

those of the classical models unveils both similarities and distinctions between the

minimax regret model and the classical models.

3. We compare the minimax regret approach with two other widely used ap-

proaches that can tackle demand ambiguity. Compared with the max-min robust

approach that maximizes the worst-case profit, the minimax regret approach avoids

extreme conservativeness and provides robust performance that does not depend on

the choice of uncertainty sets. Compared with the regression-based data-driven ap-

proach, the minimax regret approach leads to higher realized profit when data is

scarce, when demand is highly volatile, or when the demand model is misspecified.

The rest of this chapter is organized as follows. Section 3.2 reviews related litera-

ture. Section 3.3 presents the model for pricing newsvendor problem under minimax

regret. Section 3.4 characterizes the optimal ordering and pricing decision under

the minimax regret framework. Section 3.5 compares the properties of the minimax

regret decisions with the optimal solutions of the classical models. Section 3.6 de-

scribes the implementation of the minimax regret approach in a data-driven setting

and compares its performance with other approaches.

3.2 Literature Review

There exists a vast literature on coordinating pricing and inventory decisions (El-

maghraby and Keskinocak, 2003; Chan et al., 2004; Yano and Gilbert, 2005; Chen and

Simchi-Levi, 2012). The price-demand relationship is typically modeled by a certain

parametric form, and the distribution of the random factor is given. Petruzzi and

Dada (1999) presented a unified framework for the additive demand (Mills, 1959), the

multiplicative demand (Karlin and Carr, 1962), and the more general multiplicative-

additive demand (Young, 1978). More general conditions that can guarantee the



47

unimodality of the expected profit function were provided by Yao et al. (2006), Lu

and Simchi-Levi (2013), Roels (2013), and Luo et al. (2016). Kocabiyikoglu and

Popescu (2011) took a different approach with a new demand model based on lost-

sales rate (LSR) elasticity and show that structural properties of the problem can

be fully characterized by conditions regarding LSR elasticity. Feng and Shanthiku-

mar (2018) considered general supply and demand functions in pricing and inventory

models. They introduced the notion of stochastic linearity in mid-point and showed

that it can guarantee the concavity of the expected profit function for a much more

general class of demand and supply functions. Different from studies on the standard

pricing newsvendor problem, Chou et al. (2012) considered the pricing and inventory

problem in a two-sided market given the cross-side network effect, where an interme-

diary coordinates the price and the order quantity of platforms sold to consumers as

well as the royalty charged to content developers for software. An interesting research

question that has been extensively discussed for the pricing newsvendor problem is

what effect demand uncertainty and inventory risk have on the optimal price decision.

Mills (1959) found that, with additive demand, the optimal price is smaller than the

risk-free price, i.e., the price that maximizes the product of price and expected de-

mand. Karlin and Carr (1962) found that the optimal price is larger than the risk-free

price with multiplicative demand. Petruzzi and Dada (1999) summarized these results

in the previous literature with a unified framework. Lu and Simchi-Levi (2013) and

Roels (2013) also studied the effect of additive-multiplicative demand model on the

relationship between the optimal price and the risk-free price. Instead of assuming a

risk-neutral objective, Agrawal and Seshadri (2000) and Chen et al. (2009) considered

the effect of risk-aversion in the pricing newsvendor problem.

All the aforementioned papers assume that the demand function and the distribu-

tion of the random factor are known. These approaches may have some limitations for

application when the complete demand information is not available. Therefore, robust

optimization and data-driven approaches were proposed to overcome these limitations

under demand ambiguity. For the standard newsvendor problem where the firm only
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determines the order quantity, Scarf (1958) first presented the distributionally-robust

optimization approach under ambiguous demand specified by the first and second mo-

ments. A detailed discussion on this modeling framework was given in Gallego and

Moon (1993). Natarajan et al. (2017) further incorporated distribution asymmetry

to improve the performance of the robust solution. Another stream of literature de-

vises data-driven approaches to determine the ordering quantities based on historical

data. Levi et al. (2007) proposed sampling-based policies for the newsvendor problem.

They solved the sample average approximation counterpart of the problem and proved

bounds for the number of samples required such that the expected cost associated

with their approximate solutions is close to the true optimal one with high probability.

Levi et al. (2015) extended the work of Levi et al. (2007) by identifying the conditions

for the demand distribution where the sample-based approach is effective and proves

tighter bounds. Godfrey and Powell (2001) approximated the objective cost function

with a sequence of piecewise linear functions using a technique called Concave Adap-

tive Value Estimation (CAVE). Bookbinder and Lordahl (1989) proposed estimating

the critical quantile of the demand distribution using the bootstrap method. Liyan-

age and Shanthikumar (2005) and Chu et al. (2008) introduced a new approach called

operational statistics, which integrates parameter estimation and optimization. Jain

et al. (2011) introduced operational objective learning for the newsvendor problem

with inventory-dependent demand. Rudin and Vahn (2014) studied the newsvendor

problem with feature information, which may include the price as a feature. They

proposed machine learning methods with or without regularization to determine the

optimal order quantity.

There are fewer papers that consider joint pricing-ordering problems using robust

optimization or data-driven approaches. Burnetas and Smith (2000) proposed a fully

data-driven approach for the pricing newsvendor problem. The pricing problem is

modeled as a multi-arm bandit problem where the price is selected from a set of price

levels. Given the price level, the optimal order quantity is determined using stochastic

approximation with historical observations. This approach can be applied to the set-
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ting where the number of feasible prices is small and the observations for each price

level are adequate. Chu et al. (2017) applied operational statistics in the pricing

newsvendor problem that integrates parameter estimation and profit maximization.

They considered the multiplicative demand of which the random factor follows the

exponential distribution. The elasticity parameter that determines the price deci-

sion and the scale parameter that governs the quantity decisions is unknown. They

proposed approaches for both scenarios when the scale parameter is unknown and

when neither of the parameters is known. Feng et al. (2013) studied the dynamic

pricing and inventory management over multiple periods with demand estimation.

They identified the sufficient conditions under which a base-stock list-price policy is

optimal and developed the constrained maximum likelihood estimation approach to

obtain estimates with the generalized additive model (GAM). Recently, Chen et al.

(2017) presented a non-parametric algorithm for the joint pricing and inventory man-

agement problem where the demand distribution is unknown and the estimated profit

function based on the historical data is not necessarily unimodal. They designed a

learning-while-doing algorithm that integrates exploration and exploitation and miti-

gates estimation biases due to demand censoring. They showed that the convergence

rate of the regret of their approach is of order T−
1
5 (logT )

1
4 . Lu et al. (2016) presented

a data-driven approach for the pricing-newsvendor problem. Based on historical data

and domain knowledge, without assuming parametric forms of the demand model,

they estimated the conditional quantile path of the demand using parametric pro-

gramming. They further enhanced the estimates and decisions using smoothing and

kernelization as well as additional domain knowledge. Harsha et al. (2016) proposed

a data-driven framework that translates the data-driven optimization problem into

statistical estimations of mean, quantile, and superquantile of the demand distribu-

tion. Additional drivers besides the price can be incorporated into the demand model

for statistical accuracy. Fu et al. (2017) considered the profit sharing problem in an

ambiguity averse supply chain under price and demand uncertainty. They developed

a distributionally robust Stackelberg game model with limited price and demand in-
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formation. Compared with the wholesale price contract, the profit sharing agreement

is shown to be more beneficial to both supplier and retailer.

Our work is different from the aforementioned papers as we adopt the minimax

regret framework while considering both pricing and ordering decisions. The regret is

defined as the gap between the optimal profit that the firm can acquire with perfect

demand information and the realized profit with ambiguous demand information. The

minimax regret decision rule was originally proposed by Savage (1951), and has since

been adopted in various settings such as operations research, economics, marketing,

and computer science. Yue et al. (2006) and Perakis and Roels (2008) adopted this

framework where the firm aims to minimize the maximum opportunity cost from not

making the optimal decision with moment information of the demand. Levi et al.

(2011) solved the minimax regret problem with absolute mean spread information.

Zhu et al. (2013) also applied the minimax regret approach in the newsvendor model

where the regret is defined as the ratio between the expected cost with partial infor-

mation and the expected cost with complete information. Jiang et al. (2013) adopted

the minimax regret framework for the unit commitment problem in power systems.

Bergemann and Schlag (2008) studied the static pricing problem where the firm only

knows the interval of the customer valuations. They proposed a randomized pricing

algorithm to minimize the maximum regret since the nature will adversely choose the

customer valuation from the interval. Caldentey et al. (2016) considered intertem-

poral pricing under minimax regret. They characterized the optimal price trajectory

to minimize the maximum regret associated with ambiguous information regarding

customers’ valuations and the delay in the purchase of strategic customers. Handel

and Misra (2015) studied a two-period dynamic pricing problem with ambiguous de-

mand information under minimax regret framework. Since pricing decisions are made

sequentially for two periods and the underlying demand curve must be consistent, the

pricing decision for the first selling period will affect the learning outcome and thus

further influence the decision in the second period. Given this interaction between

the firm and the nature, the optimal pricing decision can be found by solving the



51

dynamic pricing problem backward. Chen et al. (2016) considered a similar setting

as in Handel and Misra (2015) but with a fixed initial inventory. The pricing de-

cisions are contingent on the remaining inventory at the beginning of each period.

Their computational study shows that the expected profit of using such approach

can closely approximate that of the conventional approach that requires complete

demand information. These papers considered either inventory or pricing decisions.

To the best of our knowledge, the only paper that considers pricing and inventory

jointly under minimax regret is Wang et al. (2014). They considered a robust pricing

newsvendor problem where only upper and lower limits of the market size and the

interval of possible consumer’s willingness-to-pay are known. The realized demand is

determined by the actual market size and the willingness-to-pay function. Different

from Wang et al. (2014), we consider the multiplicative-additive demand model, which

is widely used in classical pricing newsvendor models. Our model can be viewed as a

robust counterpart of the classical models (e.g., Petruzzi and Dada, 1999) under the

minimax regret framework.

3.3 Model

The firm under consideration sells a single type of product in a single period. The

demand denoted by D(p, θ) is a function of the selling price p and an uncertain factor

θ. D(p, θ) is assumed to be decreasing in the unit price p and increasing in θ without

loss of generality. We assume that unsold inventory is of zero salvage value at the

end of the selling period. The profit from ordering y units of products and setting

the selling price as p for a given θ is of the form:

π(p, y; θ) = pmin{D(p, θ), y} − cy.

In the classical model with complete distributional information, the uncertain

factor θ is known to have a cumulative distribution function Φ. In this case, we
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refer to the uncertain factor as the random factor. The firm seeks to maximize the

expected profit, i.e.,

max
p,y

EΦ

[
π(p, y; θ)

]
. (3.1)

3.3.1 Minimax Regret Model with Demand Ambiguity

Under ambiguous demand, assume the firm only knows the support of the random

factor θ denoted by [θ, θ̄]. Before the selling period starts, the firm needs to determine

the unit selling price p and the order quantity y where the unit procurement cost

of the product is c. Let [p, p̄] denote the range of feasible unit selling prices that

the firm can set. For example, the lower bound p can be set at the discretion of

the firm or simply set as the unit procurement cost c. For the upper bound, it can

be set as the maximum price that guarantees the demand to be nonnegative, i.e.,

p̄ = sup{p : D(p, θ) ≥ 0,∀θ ∈ [θ, θ̄], p ≥ p}. Without complete demand information,

the firm cannot maximize the expected profit. Therefore, we adopt the minimax

regret framework that the firm aims at minimizing the worst-case regret. The regret

is defined as the gap between the optimal profit that the firm can generate with perfect

demand information and the realized profit using the decisions made with ambiguous

demand information. First, we consider a benchmark (hindsight) model where the

firm determines order quantity and price decisions after observing the realized value

of θ. Since the firm has the perfect demand information, the optimal order quantity

is y∗(p̃) = D(p̃, θ) given the unit selling price p̃. The optimal profit of the firm with

perfect demand information is φ(p̃, θ) = (p̃ − c)D(p̃, θ) and the optimal hindsight

profit, φ∗(θ), is defined as follows:

φ∗(θ) = max
p̃

(p̃− c)D(p̃, θ). (3.2)

Given the uncertain factor θ, we have φ∗(θ) ≥ π(p, y; θ) for any (p, y). The regret

of the firm with order quantity y and selling price p is defined as follows:

R(p, y; θ) = φ∗(θ)− π(p, y; θ) = max
p̃

(p̃− c)D(p̃, θ)− pmin{D(p, θ), y}+ cy. (3.3)
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Due to the demand ambiguity, the firm aims at minimizing the worst-case regret.

Specifically, the firm first decides the order quantity y and the selling price p. Then,

an adversarial nature can choose the uncertain factor θ from the interval [θ, θ̄] to

maximize the regret given the order quantity y and the selling price p. Therefore, the

maximum regret of the firm with (p, y) is of the form:

R(p, y) = max
θ∈[θ,θ̄]

R(p, y; θ).

Then, given the response from the nature, the firm chooses (p, y) to minimize the

maximum regret R(p, y). Thus, the optimization problem for the firm is defined as

follows:

min
p,y

max
θ∈[θ,θ̄]

R(p, y; θ). (3.4)

3.4 Optimal Ordering and Pricing Decisions

In this section, we first consider a general class of demand functions of the additive-

multiplicative form. Given the unit price p and the uncertain factor θ, the realized

demand is of the form:

D(p, θ) = µ(p) + σ(p)θ. (3.5)

In the classical pricing newsvendor model, the additive-multiplicative demand

function is similar to the form in (3.5) and the distribution of the random factor is

known. Specifically, when µ(p) = 0, it becomes the multiplicative form and when

σ(p) = 1, it becomes the additive form. Due to the demand ambiguity, we assume

that the firm only knows the interval in which θ lie with high probability, denoted

by [θ, θ̄], which is defined as the uncertainty set. Therefore, our definition of the

demand function can be regarded as a counterpart of the one in the traditional pricing

newsvendor problem under demand ambiguity.

Assumption 1 We make the following assumptions on the demand function.

(i) φ(p, θ) = (p− c)D(p, θ) is concave in p, θ ∈ {θ, θ̄}.
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(ii) σ(p) ≥ 0 and pσ(p) is concave in p.

Assumption (i) ensures the concavity of the profit function for the extreme cases

of θ. Similar assumptions are common in existing literature. For example, Federgruen

and Heching (1999) assumes that demand function D(p, θ) is decreasing and concave

in p, which is a sufficient condition for assumption (i). For assumption (ii), the

condition of σ(p) ≥ 0 essentially guarantees the monotonicity of demand function

with respect to θ. For the second part, the concavity of pσ(p) is also common in the

literature of pricing-newsvendor model. For example, Kocabiyikoglu and Popescu

(2011) and Luo et al. (2016) assume that both pµ(p) and pσ(p) are concave in p. Luo

et al. (2016) summarize some classes of functions that satisfy this assumption. Note

that when Assumption 1 holds, the objective function of the optimization problem

(3.2) is concave and there exists a unique optimal solution given the uncertain factor

θ. Let p∗ denote the optimal solution when θ = θ and p̄∗ the optimal solution when

θ = θ̄. Equivalently, we have φ∗(θ) = φ(p∗, θ) and φ∗(θ̄) = φ(p̄∗, θ̄).

To obtain the optimal decisions for the pricing newsvendor problem under the

minimax regret framework, we investigate the properties of the objective function in

(3.4). The following proposition establishes the convexity of the regret function and

characterizes the maximum regret.

Proposition 3.4.1 The optimal hindsight profit φ∗(θ) is convex and increasing in θ

and the regret function R(p, y; θ) is convex in θ. Consequently, the maximum regret

is R(p, y) = max{R(p, y; θ), R(p, y; θ)}.

Since φ(p, θ) is linear in θ and the maximum of convex functions is still convex, the

optimal hindsight profit φ∗(θ) is convex in θ. Then, we can show that the regret

function R(p, y; θ) is convex in θ as well. To maximize the regret, the nature will set

θ to the lower bound or the upper bound of the interval [θ, θ̄] due to the convexity of

the regret function. Therefore, we can rewrite the minimax regret problem as follows:

min
p,y

max
{
R(p, y; θ), R(p, y; θ̄)

}
. (3.6)
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Instead of deciding p and y simultaneously, we can determine p and y sequentially as

follows:

min
p

min
y

max
{
R(p, y; θ), R(p, y; θ̄)

}
. (3.7)

Consider the inner optimization of (3.7), the firm first determines the order quantity

y given the unit selling price p. The following proposition characterizes the optimal

order quantity y∗(p) that minimizes the maximum regret and the resulting optimal

regret function R
(
p, y∗(p)

)
for a given unit selling price p.

Proposition 3.4.2 When Assumption 1 holds,1 there exists pl and ph such that p ≤

pl < ph ≤ p̄ and the optimal order quantity:

y∗(p) =

 1
p

(
φ∗(θ̄)− φ∗(θ)

)
+D(p, θ), if p ∈ [pl, ph],

D(p, θ̄), otherwise.

The maximum regret associated with the optimal order quantity:

R
(
p, y∗(p)

)
=

 c
p
φ∗(θ̄) +

(
1− c

p

)
φ∗(θ)− (p− c)D(p, θ), if p ∈ [pl, ph],

φ∗(θ̄)− (p− c)D(p, θ̄), otherwise.

The regret function R
(
p, y∗(p)

)
is convex on [p, p̄] and the optimal selling price p∗ =

arg min
{
p : R

(
p, y∗(p)

)
, p ∈ [p, p̄]

}
lies in the interval [pl, ph].

Proposition 3.4.2 first explicitly characterizes the optimal order quantity given the

unit selling price p. When the unit selling price is optimally chosen, which means it

lies in [pl, ph], then, the role of the ordering decision is to balance between the overage

regret and the underage regret, both of which are associated with the inventory risk.

Otherwise, when p /∈ [pl, ph], the regret associated with the realization of θ = θ̄

dominates the one with θ = θ, and thus, the optimal order quantity will always be

D(p, θ̄). Hence, with the optimal ordering decision, we can further characterize the

maximum regret as a function of the unit selling price p. Specifically, we find the

regret function is convex and identify the interval which always contains the optimal

solution. Therefore, the optimal unit selling price and order quantity can be efficiently

calculated.
1For part (ii) of Assumption 1, Proposition 3.4.2 only requires that pσ(p) is unimodal.



56

3.5 Properties of the Minimax Regret Decisions

As mentioned earlier, the minimax regret pricing newsvendor problem can be

viewed as a robust counterpart to the classical model that seeks to maximize the

expected profit with complete distributional information. In this section, we compare

the properties of the optimal decisions under these two frameworks and discuss the in-

tuition behind both similarities and differences between these properties. Specifically,

we first observe the monotone relationship between the optimal order quantity and

the unit selling price, which does not necessarily hold in the classical models. Second,

we further investigate the effect of inventory risk on the optimal decisions by compar-

ing the optimal price and the risk-free price (i.e., the optimal price that minimizes the

regret of the firm when there is no risk of inventory mismatch). Third, we study how

the optimal price changes with respect to the degree of demand ambiguity. At last,

we show with counterexamples that the monotone relationship between the optimal

decision variables and the unit ordering cost in the classical pricing newsvendor model

does not necessarily hold under the minimax regret framework. We summarize the

comparison results in Table 3.1, and present the details in the following sections.

3.5.1 Monotone Optimal Order Quantity

Corollary 3.5.1 When Assumption 1 holds, the optimal order quantity y∗(p) is

strictly decreasing in the unit selling price p.

The above corollary is a direct result from Proposition 3.4.2 and it indicates a mono-

tone relationship between the optimal order quantity and the given unit selling price

p. However, in the classical pricing newsvendor model, the optimal order quantity

for a given price p is defined as: y∗(p) = σ(p)Φ−1(p−c
p

) in the multiplicative demand

and y∗(p) = µ(p) + Φ−1(p−c
p

) in the additive demand where Φ(·) is the cumulative

distribution function of the random factor. The monotonicity of the inventory-price

relationship, which depends on the form of the demand function and the distribution

of the random factor, does not necessarily hold.
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Table 3.1.: Comparison between the minimax regret model and the classical model.

Demand Model Decision

Properties and Comparative Statics

Classical Model Minimax Regret Model

Additive

Price

Smaller than risk-free price (i) Linear-additive: smaller than risk-free price

(ii) General-additive: may be larger than risk-free price

Decreasing in demand variability2 (i) Linear-additive: decreasing in demand ambiguity

(ii) General-additive: may be non-monotone

Strictly increasing in unit ordering cost May be non-monotone

Order

Quantity

µ(p) + Φ−1(1− c/p) µ(p) + θ +
(
φ∗(θ̄)− φ∗(θ)

)
/p, if p ∈ [pl, ph]

May be non-monotone in price Strictly decreasing in price

Strictly decreasing in unit ordering cost May be non-monotone

Multiplicative

Price

Larger than risk-free price Larger than risk-free price

Increasing in demand variability3 Increasing in demand ambiguity

Strictly increasing in ordering cost May be non-monotone

Order

Quantity

σ(p)Φ−1(1− c/p) σ(p)θ + φ∗(1)
(
θ̄ − θ

)
/p, if p ∈ [pl, ph]

May be non-monotone in price Strictly decreasing in price

Strictly decreasing in unit ordering cost Strictly decreasing in unit ordering cost

3.5.2 Effect of Inventory Risk

In this section, we study the effect of inventory risk by comparing the optimal

price and the risk-free price under the minimax regret framework, which is the price

that minimizes the regret without inventory risk. Specifically, we can rewrite the

regret function in (3) as follows:

R(p, y; θ) = φ∗(θ)− (p− c)D(p, θ)︸ ︷︷ ︸
Regret of Price

+ (p− c)
(
D(p, θ)− y

)+
+ c
(
y −D(p, θ)

)+︸ ︷︷ ︸
Regret of Inventory

.

(3.8)

The total regret can be decomposed into two parts: one is associated with the

regret from choosing the selling price indicated by the difference of the first two

terms in (3.8), and the second part is the regret associated with the order quantity

y represented by the last two terms. Now we consider a scenario where the firm

always meets the realized demand perfectly given the price (e.g., the firm does not

need to pre-order and always receives ample supply). Equivalently, there is no risk
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of mismatch between supply and demand. Therefore, the risk-free pricing problem

under the minimax regret framework can be formulated as follows:4

min
p

{
max
θ∈[θ,θ̄]

φ∗(θ)− (p− c)D(p, θ)

}
. (3.9)

Let p0 be the solution to the above problem, which we refer to as the risk-free

price. The following proposition characterizes the risk-free price under the additive-

multiplicative demand model.

Proposition 3.5.1 If Assumption 1 holds, let ¯̄p = max{p∗, p̄∗} and p = min{p∗, p̄∗},

then p0 is the unique price in [ ¯̄p, p] that satisfies the following equation:

(p− c)σ(p) =
φ∗(θ̄)− φ∗(θ)

θ̄ − θ
. (3.10)

Specifically, when the demand function is of the additive form, the risk-free price is

p0 = c+ φ∗(θ̄)−φ∗(θ)
θ̄−θ . When the demand function is of the multiplicative form, we have

p0 = p̄∗ = p∗.

Proposition 3.5.1 first characterizes the solution to (3.9) with the additive-multiplicative

demand function. With additional information of the demand form, we can further

specify the form of the risk-free price. Next, we consider two widely-used subcases

of the general demand model which are the additive demand and the multiplicative

demand. We identify the relationship between the optimal selling price p∗ and the

risk-free price p0 under the additive demand and the multiplicative demand.

Proposition 3.5.2 If the demand function is of the form D(p, θ) = µ(p) + θ where

µ(p) is linearly decreasing in p, then the optimal selling price is smaller than the

risk-free price, p∗ ≤ p0. If the demand function is of the form D(p, θ) = σ(p)θ, then

the optimal selling price is larger than the risk-free price, p∗ ≥ p0.

4An alternative setting for the risk-free pricing problem is when the firm has perfect demand infor-
mation. We consider the case where demand is still ambiguous, but the firm is relieved of the risk
of inventory mismatch, i.e., it does not need to pre-order and always receives ample supply. For the
classical model with expected profit maximization and additive-multiplicative demand, these two
settings are equivalent. In contrast, for the minimax regret model, they are different. Our analysis
in Section 3.5.3 can be used to study the alternative setting under minimax regret by setting demand
ambiguity to zero. The results parallel those in Section 3.5.2.
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To establish that the optimal price is smaller than the risk-free price with the

additive demand, we impose the assumption that the demand function is of linear

form. If we relax this assumption, the relationship between the optimal price and

the risk-free price becomes less clear. Specifically, we provide an example where the

risk-free price is smaller than the optimal price in the additive demand case when the

demand function is not of linear form.

Example 3.5.1 Consider the following demand function, which satisfies Assumption

1:

d(p) =

 1
8
(87− p+ 9975

p−1
), 1 < p ≤ 6,

559.5− 50p, p > 6.
(3.11)

We set the unit purchase cost c = 1 and the uncertainty set [θ, θ̄] = [−10.5, 10.5]. We

find that the risk-free price p0 = 6 and the optimal price p∗ = 6.019.5 Thus, p0 < p∗

with the demand function defined in (3.11). Therefore, with additive demand, if the

demand function is not of linear form, the optimal price is not guaranteed to be smaller

than the risk-free price.

To further describe the intuition behind Proposition 3.5.2 and the above observa-

tion, we discuss the interplay between the regret associated with the pricing decision

and that of the inventory. By Proposition 3.4.1, the nature will choose either θ or

θ̄ whichever can lead to the maximum regret of the firm. Let R̄ (R) denote the to-

tal regret when θ = θ̄ (θ) and we use subscript p (y) to indicate the regrets that is

associated with the pricing decision (inventory risk). By Proposition 3.4.2, we can

substitute the formula of the optimal order quantity in (3.8) for θ ∈ {θ, θ̄}:

R̄ = φ∗(θ̄)− (p− c)D(p, θ̄)︸ ︷︷ ︸
R̄p

+ (p− c)
(
D(p, θ̄)−D(p, θ)

)
− (1− c/p)

(
φ∗(θ̄)− φ∗(θ)

)︸ ︷︷ ︸
R̄y

.

R = φ∗(θ)− (p− c)D(p, θ)︸ ︷︷ ︸
Rp

+ c/p
(
φ∗(θ̄)− φ∗(θ)

)︸ ︷︷ ︸
Ry

.

5For more details, please refer to the online appendix.
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We first consider the additive demand and discuss how these regrets change with

respect to p in the neighborhood of the risk-free price p0. For the regrets associated

with the pricing decision, it is easy to verify that R̄p is decreasing in p and Rp is

increasing in p in the neighborhood of p0. Because p0 is the price that perfectly

balances R̄p and Rp, and we have p̄∗ > p∗ with additive demand, which is a direct

result from Lemma A.0.4 in the appendix. Second, it can be shown that R̄y is

increasing in p while Ry is decreasing in p. By Corollary 3.5.1, the optimal order

quantity y∗(p) is decreasing in p. In addition, the range of realized demand does not

depend on p. Thus, the regret R̄y, which is associated with the shortage of inventory,

is increasing in p while Ry, which is associated with the overage of inventory, is

decreasing in p. Finally we note that the role of the optimal price p∗ is to balance

R̄p (Rp) and R̄y (Ry). Specifically, when the additive demand is of linear form, we

prove that the effect of p on Rp is larger than the one on Ry in the neighborhood of

p0. Consequently, the derivative of the total regret with respect to the selling price p

in the neighborhood of p0 is positive. Therefore, the optimal price is smaller than the

risk-free price in the linear additive demand case. However, in general, the direction

at which p∗ should move from p0 depends on the magnitudes of the effects of the unit

selling price p in the neighborhood of p0 on both Rp and Ry. In the above example, we

find a setting in which the effect of the unit selling price p on Rp in the neighborhood

of p0 is smaller than the one on Ry and consequently we have p∗ > p0 for this specific

demand function.

For the multiplicative demand, we observe that both R̄p and Rp are increasing in

p and both R̄y and Ry are decreasing in p. As shown by Proposition 3.5.1, we have

p0 = p̄∗ = p∗, thus, any deviation from the risk-free price will lead to increase in

the regrets associated with the pricing decision but with relatively small magnitude.

However, since the range of realized demand can be significantly reduced by increasing

the unit selling price p, for both cases with θ̄ and θ, the regrets associated with

inventory risk are decreasing in p. Therefore, it is straight forward to conclude that



61

p∗ is larger than the risk-free price p0 as the effect of the unit selling price p on R̄y

(Ry) dominates the one on R̄p (Rp).

Petruzzi and Dada (1999) summarize the relationship between the optimal price

and the risk-free price in the classical pricing newsvendor model. Specifically, they

show that the optimal price is larger than the risk-free price in the multiplicative

demand case and is smaller than the risk-free price in the additive demand case.

They argue that such difference can be explained by the monotonicity of variance and

coefficient of variation of the demand. Under the minimax regret framework, the firm

chooses the order quantity and the selling price to balance between the regret with

pricing decision and the regret with inventory risk. We can summarize the relationship

between the optimal price and the risk-free price in a similar fashion as in Petruzzi and

Dada (1999). The effect of the selling price on the regret associated with inventory

depends on the demand form. In other words, the range of demand realization does

not change as the price differs with the additive demand while the range of demand

realization is decreasing in the price with the multiplicative demand. Such difference

in demand form will consequently affect the interplay between regrets and thus, may

drive the optimal price from the risk-free price towards opposite directions.

3.5.3 Effect of Demand Ambiguity

In this section, we investigate the effect of degree of demand ambiguity on the

optimal price. Specifically, we consider the relationship between the optimal pricing

decision p∗ and the range of the uncertainty set, which is defined as the degree of

demand ambiguity. When the demand is of additive form, the uncertainty set is

constructed as [−δ, δ]. When the demand is of multiplicative form, the uncertainty

set is constructed as [θ0−δ, θ0+δ] where θ0 is a constant and 0 < δ < θ0. In both cases,

δ represents the degree of demand ambiguity. The following proposition characterizes

the relationship between the degree of demand ambiguity and the optimal price p∗.
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Proposition 3.5.3 When the demand is of additive form and µ(p) is linearly de-

creasing in p, let the uncertainty set be denoted as [−δ, δ] where δ > 0, the optimal

price p∗ is decreasing in δ. When Assumption 1 holds and the demand is of multi-

plicative form and the uncertainty set is of the form [θ0− δ, θ0 + δ] where 0 < δ < θ0,

then the optimal price p∗ is increasing in δ.

The intuition for the (opposite) effects of demand ambiguity with different demand

models is similar to the discussion in Section 3.5.2 on the relationship between the

optimal price and the risk-free price. However, for additive demand, if the demand

function is not of linear-additive form, we show with the following counterexample

that the optimal price is not necessarily decreasing in the degree of demand ambiguity.

Example 3.5.2 Consider the following demand function,which satisfies Assumption

1:

d(p) =

 55− 5p, 1 < p ≤ 6,

0.55− 0.05p+ 123.75
p−1

, p > 6.
(3.12)

We set the unit purchase cost c = 1 and the uncertainty set [θ, θ̄] = [−δ, δ] where δ

is ranging from 0 to 5. Optimal prices under the minimax regret framework with the

demand function defined in (3.12) under different degree of demand ambiguity are

presented in Figure 3.1. As can be seen, the optimal price first decreases and then

increases in demand ambiguity.

Demand ambiguity is analogous to demand variability under complete distributional

information. Li and Atkins (2005) studied monotone optimal price with respect to

demand variability ordered by the mean-preserving transformation. Xu et al. (2010)

generalized the result of Li and Atkins (2005) in the notion of the convex stochastic

order under one additional condition. An alternative variability stochastic order that

is more general than the mean-preserving transformation family is the excess wealth

order (Shaked and Shanthikumar, 1998, 2007). It can be shown that the optimal

price in the classical pricing newsvendor model is decreasing (increasing) in demand

variability in the notion of excess wealth order for the additive (multiplicative) case
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Fig. 3.1.: Optimal price with different demand ambiguity levels under a general ad-

ditive demand model.

with no additional condition. Our results uncover both similarities and distinctions

between the minimax regret and the classical models in how the optimal price changes

with respect to demand uncertainty.

3.5.4 Effect of Unit Ordering Cost

In this section, we study the comparative statics of the optimal pricing decision

p∗ with different unit procurement costs. In classical pricing newsvendor models (i.e.,

Yao et al., 2006), it has been shown that the optimal price p∗NV is monotonically

increasing in the unit procurement cost c with mild assumptions. However, we show

with numerical examples that the optimal price p∗ may not have a monotone rela-

tionship with the unit procurement cost c. For the additive demand, as pointed out

by Proposition 3.4.2, the optimal price must lie in the interval [pl, ph]. Specifically,

we find that pl is decreasing in c and p∗ is equal to pl when c is small, which are

demonstrated in the left panel of Figure 3.2. Consequently, the optimal price is not

necessarily increasing with respect to c. In the multiplicative demand, the optimal

price does not have the monotone relationship with c either.
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In terms of the optimal order quantity, the drivers behind the change of the

optimal order quantity with different unit ordering costs can be decomposed into

two parts. On one hand, the higher cost directly leads to a lower optimal order

quantity. On the other hand, Corollary 3.5.1 points out the monotonicity between

the optimal order quantity and the unit selling price. Thus, the change of the unit

ordering cost can indirectly affect the optimal order quantity through the optimal

selling price. Specifically, for the additive demand, as shown in Figure 3.2, the change

of the optimal order quantity is mainly driven by the optimal price, which is not

monotonically increasing in c. For the multiplicative demand, although the optimal

price starts to decrease in c when c is relatively large, we prove in Proposition 3.5.4

that the direct effect of the unit ordering cost on y∗ is larger than the indirect effect of

the unit ordering cost c through the optimal price. Consequently, in the multiplicative

demand case, the optimal order quantity is decreasing in the unit ordering cost, which

is formally summarized in the following proposition.

Proposition 3.5.4 When Assumption 1 holds and the demand function is of the

multiplicative form, the optimal order quantity y∗(p∗) is decreasing in c.

3.5.5 Comparison with Max-min Robust Optimization

To tackle demand ambiguity, one alternative is the widely-used max-min robust

optimization approach. The firm aims to maximize the worst-case profit by choosing

optimally the unit selling price and the order quantity. Specifically, after the firm

determines the unit selling price and the order quantity, an adversarial nature will

choose θ ∈ [θ, θ̄] that minimizes the firm’s profit. The max-min robust optimization

problem in the context of pricing newsvendor problem is formulated as follows:

max
p,y

{
min
θ∈[θ,θ̄]

pmin{D(p, θ), y} − cy
}
.

For the inner minimization problem, the nature will choose θ to minimize the firm’s

profit since the objective function is increasing in θ when the firm’s price and inventory
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Fig. 3.2.: Optimal price and order quantity with different unit ordering cost.
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decisions are fixed. Based on the response of the adversarial nature, the firm will

choose y∗(p) = D(p, θ) given the unit selling price p to avoid the overage cost. Thus,

the firm’s optimization problem will be of the following form:

max
p

(p− c)D(p, θ).

The following proposition formally states the relationship between the optimal prices

under two robust optimization frameworks, where p∗max−min denotes the optimal price

derived from the max-min robust optimization and p∗ is the optimal price derived by

the minimax regret approach.

Proposition 3.5.5 When Assumption 1 holds, the price derived from the minimax

regret framework is higher than the price derived from the max-min robust optimiza-

tion, that is, p∗ > p∗max−min.

Proposition 3.5.5 indicates that the optimal price derived from the max-min ro-

bust optimization is smaller than that of the minimax regret approach as the former

is known to be more conservative (see, Perakis and Roels, 2008; Caldentey et al.,

2016). We conduct experiments to compare the performance of the two approaches

and present results in the appendix. The numerical results show that while the ex-

pected profits using decisions made with the minimax regret approach is increasing in

the mean of the random factor, the framework that adopts the max-min robust opti-

mization cannot benefit from such changes in the underlying distribution. Moreover,

we also find that the performance of the max-min approach is robust with different

choices of uncertainty sets while that of the max-min robust optimization highly de-

pends on such choices. We refer readers to the appendix for a detailed performance

comparison between the two approaches.

3.6 Data-Driven Implementation

In this section, we consider a data-driven setting where the firm decides the order

quantity and the selling price based on the limited historical data. The conventional
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approach that requires specifications of the distributional forms of the random de-

mand is not applicable due to demand ambiguity in this data-driven setting. Even if

the firm obtains the complete information of the random demand, the conventional

approach may need to impose certain conditions for the tractability of the optimiza-

tion problem. For example, some of classical models assume that the random factor

has generalized increasing failure rate (GIFR) so that the expected profit function is

unimodal or quasi-concave (i.e., Yao et al., 2006). We show with a numerical exam-

ple in the appendix that the minimax regret framework does not require complete

information of the random factor and can provide robust performance.

Next, we will demonstrate how to make robust decisions using the approach that

we developed under the minimax regret framework based on available data. Consider

the scenario where the firm observes a set of data (pi, di), i = 1, 2, · · ·n, where pi is the

unit selling price and di is the realized demand for the i-th observation. Suppose the

firm estimates the demand function using limited observations with linear regression

and constructs the estimated empirical distribution of the random factor with the

residuals from the linear regression. Then, the firm defines the uncertainty set by

setting the upper and lower limits to the (1 − α/2)% and (α/2)% quantiles of the

estimated empirical distribution of the random factor where α ∈ [0, 1]. Specifically,

we choose α = 0.4 in this numerical study.6 With the estimated demand function and

the corresponding uncertainty set, the firm decides the order quantity and the unit

selling price with the approach that we develop under the minimax regret framework.

In addition, we adopt the traditional approach for the pricing newsvendor prob-

lem as a benchmark. The firm can estimate the expected profit function using the

estimated demand function and the estimated empirical distribution of the random

factor. The traditional approach chooses the order quantity and the selling price that

can maximize the estimated expected profit. Finally, with complete demand informa-

tion, we compare the two approaches by evaluating the expected profit using decisions

6In the appendix, we conduct the robustness check for the minimax regret approach using different
confidence levels α for constructing the uncertainty sets and the performance of minimax regret
approach is robust when α is ranging from 0.2 to 0.6.
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obtained by the two approaches. In the following sections, we study the effects of

different factors such as sample size, demand variability, and model misspecification

on the performance of the minimax regret approach.

3.6.1 Effect of Sample Size

We investigate the effect of sample size by comparing the performance of the two

approaches with different sample sizes while other factors, such as demand variability,

are fixed. For each sample size, we repeat the experiments for 5000 times. Table

3.2 summarizes the statistics of expected profits obtained with the two approaches.

Figure 3.3 compares the boxplots of expected profits generated by the two approaches

when the sample size is 4, 12, and 20 and the star indicates the average expected

profits. Figure 3.4 compares the 25%, 50%, and 75% quantiles.

Since the firm assumes the correct form of the underlying demand function, more

accurate estimations of the demand function and the distribution of the random factor

are obtained with larger sample sizes. Therefore, with the increase in the sample size,

the performance of the minimax regret approach and the traditional approach will

be improved. Second, when the sample size is small to moderate, the performance of

the minimax regret framework is better than that of the traditional approach, which

means our approach is more robust to uncertainty arising from limited sample sizes.

Furthermore, we find that the lower quantiles (e.g., 10% quantiles) of realized profits

using decisions obtained by our approach are consistently larger than those associated

with the traditional approach, although the traditional approach performs slightly

better than the minimax regret approach for the median and higher quantiles. Thus,

the robust minimax regret framework can avoid significant loss due to inaccurate

estimations and demand ambiguity.
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Table 3.2.: Performance comparison with different sample sizes

Sample Size 4 6 8 10 12 14 16 18 20

Mean
minimax 21.15 22.79 23.65 24.11 24.41 24.55 24.70 24.78 24.84

traditional 20.26 21.93 23.02 23.66 24.08 24.32 24.51 24.66 24.75

Std.
minimax 7.76 5.62 3.90 2.81 2.10 1.48 1.06 0.72 0.59

traditional 9.16 7.18 5.33 4.00 3.09 2.37 1.77 1.29 1.06

10th percentile
minimax 16.61 20.90 22.35 23.08 23.54 23.71 23.97 24.10 24.20

traditional 11.69 18.27 20.76 22.08 22.87 23.30 23.60 23.82 23.98
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Fig. 3.3.: Performance comparison with different sample sizes

3.6.2 Effect of Demand Variability

We compare the performance of the minimax regret framework and the traditional

approach with varying demand variability while the sample size is fixed to 10. The

results are presented and summarized in Figure 3.5 and Table 3.3. First, the average

expected profits of both approaches are decreasing in demand variability. Because

higher demand variability leads to higher inventory costs as well as causes higher

variance in the estimates of the demand information. Second, when the demand

variability is relatively small, the performance of the minimax regret framework is

close to that of the traditional approach. Third, we also observe that when the
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Notes. Consider the linear additive demand function, d(p) = a − bp, where a = 30, b = 5. The unit ordering cost

c = 1. The random factor θ ∼ N (0, σ2), where σ = 2. Sample size ranges from 4 to 20.

Fig. 3.4.: Comparison of 25th, 50th, and 75th percentiles with different sample sizes

demand variability is moderate to large, using the decisions made under the minimax

regret framework, the firm can obtain a higher average but smaller standard deviation

of the expected profits compared to those of the traditional approach. In addition,

the benefit of the minimax regret approach is evident in terms of lower quantiles (e.g.,

10% quantiles). This further indicates the robustness of the minimax regret approach

as it is less sensitive to randomness from the sampling process.

Table 3.3.: Performance comparison with different demand variance.

Demand Std. Dev. 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Mean
minimax 29.93 29.26 28.57 27.88 27.17 26.43 25.69 24.92 24.15 23.36 22.58

traditional 29.94 29.26 28.57 27.86 27.11 26.33 25.51 24.64 23.73 22.79 21.84

Std.
minimax 0.16 0.26 0.39 0.62 0.84 1.21 1.62 2.10 2.61 3.17 3.72

traditional 0.16 0.27 0.47 0.75 1.12 1.67 2.29 3.04 3.82 4.65 5.44

10th percentile
minimax 29.74 28.97 28.18 27.37 26.54 25.69 24.82 23.96 23.09 22.18 21.29

traditional 29.76 28.97 28.16 27.32 26.43 25.49 24.49 23.39 22.18 20.85 19.39
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Notes. Consider the additive demand function, d(p) = a − bp, where a = 30, b = 5. The unit ordering cost c = 1.

Sample size is 10. The random factor θ ∼ N (0, σ2), where σ ranges from 1 to 6.

Fig. 3.5.: Performance comparison with different demand variability

Based on our previous observation regarding the performance of the two ap-

proaches, we propose a numerical experiment that compares the two approaches with

different sample sizes and different levels of demand variability. We illustrate the

numerical results in Figure 3.6. In summary, if the firm assumes the correct form of

the demand function, when the sample size is large or the demand variability is small,

the performance of the minimax regret framework is close to that of the traditional

approach. When the sample size is small to moderate and the demand variability is

moderate to large, the minimax regret framework provides robust solutions compared

to the traditional approach of which the performance highly depends on the realized

estimates.

3.6.3 Effect of Model Misspecification

In Section 3.6.1 and Section 3.6.2, a critical assumption is imposed that the deci-

sion maker assumes the correct demand form, which is not necessarily true in prac-

tice. Thus, in this section, we investigate the effect of model misspecification on
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Fig. 3.6.: Performance comparison with different sample sizes and demand variability.

the performance of the minimax regret framework with the traditional approach as

a benchmark. Specifically, the firm still assumes that the demand model is of lin-

ear additive form but the true demand function is actually of additive-multiplicative

form, e.g., D(p, θ) = a− bp+α−βpθ. Model misspecification of this sort cannot easily

be identified as the information regarding the demand form is typically unavailable

in practice and the number of observations is limited. With model misspecification,

we conduct the numerical experiment that compares the performance of the two ap-

proaches with different sample sizes and the comparison results are summarized in

Table 3.4, Figure 3.7, and Figure 3.8. We first find that the performance of both

approaches are indeed affected under model misspecification. In other words, there

is a larger gap between the average expected profits of the two approaches and the

true optimal profit. Moreover, we observe that the minimax regret approach derives

higher average expected profits and results in smaller standard deviations of expected

profits than those of the traditional one in the presence of model misspecification. Fi-

nally, based on the comparison between the lower quantiles of expected profits, e.g.,

the 10% quantiles, we find that the minimax regret approach can avoid significant
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loss due to the combined effects of model misspecification and uncertainty in observed

data.

Table 3.4.: Performance comparison under model misspecification.

Sample Size 7 8 9 10 11 12 13 14 15 16

Mean
minimax 19.69 20.11 20.41 20.89 21.19 21.41 21.52 21.59 21.75 21.89

traditional 18.26 18.73 19.22 19.75 20.15 20.51 20.74 20.92 21.17 21.35

Std.
minimax 6.87 6.31 5.77 4.79 4.20 3.77 3.60 3.47 3.09 2.68

traditional 9.39 8.96 8.32 7.42 6.82 6.21 5.81 5.63 5.05 4.62

10th percentile
minimax 17.28 18.18 18.61 19.34 19.86 20.19 20.29 20.37 20.59 20.79

traditional 9.68 11.72 14.31 15.73 17.16 17.88 18.48 18.98 19.40 19.79

8 12 16
Sample Size

15

16

17

18

19

20

21

22

23

24

E
xp

ec
te

d
 P

ro
fi

t

Min-max Regret
Traditional

Fig. 3.7.: Performance comparison under model misspecification.

3.7 Concluding Remarks

We adopt the minimax regret framework to study the pricing newsvendor problem

with ambiguous demand information. We first identify the optimal order quantity for

a given unit price and show that the optimal quantity is decreasing in the price, which

is not necessarily true in the classical models. By further exploring the properties

of the minimax objective, we characterize the optimal price decision, which can be
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Notes. Consider an additive-multiplicative demand model, D(p, θ) = a−bp+αe−β(p−pm)θ, where a = 30, b = 5, pm =

3.5, α = 2, β = 0.1. The unit ordering cost c = 1. The random factor θ ∼ N (0, σ2) where σ = 3.5.

Fig. 3.8.: Comparison of 25th, 50th, and 75th percentiles under model misspecifica-

tion.

computed efficiently. We then conduct a series of analyses to investigate the effects

of important factors such as the presence of inventory risk, the unit cost, and the

degree of demand ambiguity on the optimal decisions and compare these results with

those in classical models. In specific, we show that the optimal price is larger than

the risk-free price with multiplicative demand and smaller than the risk-free price

with linear-additive demand. For general-additive demand, however, the relationship

does not necessarily hold. Similarly, we show that the optimal price is increasing

(decreasing) in the degree of demand ambiguity with multiplicative (linear-additive)

demand, while monotonicity may not hold for general-additive demand. Further, we

show that the optimal order quantity is decreasing in the unit ordering cost with

multiplicative demand, but may not be monotone with additive demand. We show

with counterexamples that the optimal price is not monotone in the unit ordering cost
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for either additive or multiplicative demand. In addition, we compare our minimax

regret approach with the widely-used max-min robust optimization approach in which

the firm aims to maximize the worst-case profit. We first show that the optimal price

under the minimax regret framework is larger than the one using the max-min robust

optimization.

We implement the minimax regret approach in a data-driven setting where his-

torical data of price and demand are available, and compare its performance with

the classical pricing newsvendor model that maximizes the expected profit. First,

we find that our approach outperforms the traditional one when the sample size is

small to moderate, e.g., when a new product is launched or the firm sells long-tail

items. In addition, the lower quantiles of the expected profits using decisions obtained

with the minimax regret approach always dominate those of the traditional approach.

This suggests our approach may have significant advantage over the traditional one

when the firm is risk or loss averse. Second, we find that when the sample size is

fixed, the advantage of our approach over the traditional one is larger when demand

variability is higher. Third, we study the effect of model misspecification where the

demand is generated by an additive-multiplicative model, but misrepresented as a

linear-additive model. We find that our approach consistently outperforms the tradi-

tional one with different sample sizes, and the lower quantiles of the expected profits

of our approach are significantly larger than those of the traditional approach. In

summary, our approach can provide robust solutions to avoid significant loss from

inaccurate demand estimates and achieve substantial advantage over the traditional

approach in a data-scarce or volatile demand environment. We also compare the per-

formance of the minimax regret approach and the max-min robust approach. We find

that the performance of the minimax regret approach is more robust and stable with

different choices of uncertainty sets compared to the max-min robust optimization

approach.
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4. IMPLEMENTING ENVIRONMENTAL AND SOCIAL

RESPONSIBILITY PROGRAMS IN SUPPLY

NETWORKS THROUGH MULTI-UNIT BILATERAL

NEGOTIATION

4.1 Synopsis

We study the implementation of an ESR program in a general supply network.

The material flows in this network eventually come to a retailer, who owns the brand

of the product or services offered to the eventual consumer. When the retailer initi-

ates an ESR campaign, a successful implementation requires all firms’ commitment

to compliance efforts. Examples of such efforts may include use of biodegradable ma-

terial for product recyclability, change of production technology for organic produce,

installation of devices and procedures to ensure worker safety, and adoption of green-

house gas emission reduction technologies, depending on the specific goal of the ESR

program. In addition to interacting with the immediate tier-one suppliers, the retailer

may choose to directly approach the higher-tier suppliers, or delegate the dealing with

higher tiers to the tier-one suppliers. In general, we allow any downstream firm to

choose between direct engagement and delegation of an upstream firm, with whom

the downstream has no direct material exchange but is connected with material flows

in the supply network. Thus, to describe possible ESR relationships, we extend the

material supply network to the ESR network, in which links are added between firms

to reflect the possible ESR relationships.

Modeling of the ESR network allows us to analyze the ESR implementation and

the resulting gain allocation. An ESR implementation structure specifies the in-

teractions among the firms that facilitate full compliance of the ESR requirements

throughout the network. In particular, each chosen link in the ESR implementation
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structure connects a downstream firm and an upstream firm, who directly interact

with each other on ESR terms. The contract ensures a payment by the downstream

firm in exchange for the upstream’s ESR compliance. An agreeable payment cer-

tainly depends on the relative bargaining power of the two parties. We adopt the

multi-unit Nash bargaining framework (Davidson, 1988; Horn and Wolinsky, 1988) to

analyze the negotiated outcome for ESR terms. We show that our bargaining solution

generalizes the gain allocation derived based on individual firms’ Shapley values, a

commonly applied method for multi-firm cooperation. Specifically, the outcome based

on Shapley value corresponds to the bargaining solution when the bargaining power is

equally distributed in any downstream-upstream relationships. Clearly, the bargain-

ing model is flexible to capture imbalanced power distribution in the supply network.

More importantly, the bargaining framework specifies implementable contract terms

that are highly dependent on the ESR relationships formed in the network, while the

Shapley value approach is vacuous about the interactions among the firms.

The equilibrium negotiated payments lead to a gain allocation within each bar-

gaining unit that is proportional to the trading parties’ bargaining power. With this

observation, the problem of identifying the retailer’s most favorable implementation

structure is shown to be equivalent to finding a shortest path tree (see, e.g., Lawler,

1976; Ahuja et al., 2017) in the extended ESR network. Exploring the characteris-

tics specific to supply networks, the retailer’s best implementation structure can be

identified using efficient algorithms within a run time linear to the number of possi-

ble relationships. This development allows us to analyze problems with large scale

networks.

In a large network, it may not be feasible for the retailer to dictate all the re-

lationships for ESR implementation. Instead, the ESR relationships may be formed

sequentially as the downstream firms approach their upstream suppliers and the sup-

pliers in turn approach their upstream suppliers. Interestingly, we show that such a

sequential relationship formation leads to an implementation structure that coincides

with the retailer’s most preferred one. Moreover, the analysis and results are robust
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when we allow each individual firm to choose among multiple levels of ESR effort,

and the chosen effort levels by all firms collectively determine the overall benefit of

ESR implementation.

As intuition may suggest, the retailer would intend to delegate the ESR negotiation

with a higher-tier supplier when her bargaining power is low, and she would directly

engage a higher-tier supplier when her bargaining power is high. In general, the

choice between delegation and direct control also highly depends on the depth (i.e.,

number of tiers) and width (i.e., number of immediate suppliers) of the material

supply network. We observe that with a fixed number of firms, the retailer tends to

work directly with a larger percentage of higher-tier firms when the network is deeper

and narrower, while delegating more ESR assurance responsibilities to the first-tier

suppliers when the network is flatter and wider.

We further demonstrate that our model and analysis can be extended to examine

the synergy among different ESR initiatives in the supply network. In this case, the

retailer can enhance her bargaining position by leveraging other ESR programs in

the negotiation for one program. As a result, even if the implementation of individ-

ual programs induces an economic loss, all firms in the supply network can enjoy a

positive gain when multiple programs are implemented. In other words, the multi-

unit bargaining over ESR implementation can induce synergy among multiple ESR

programs. We also prove that the gain allocation based on Shapley value in this

case corresponds to the equilibrium outcome of the negotiation game with a specific

bargaining power distribution in the network.

The remainder of the chapter is organized as follows. We review the related liter-

ature and spell out our contributions in the next section. In Section 4.3, we introduce

the model and present the analysis using Shapley value as a benchmark. In Section

4.4, we analyze the problem of ESR implementation using the multi-unit bargaining

framework and identify the retailer’s most preferred implementation structure from

the ESR network. We also analyze how the ESR implementation and gain allocation

depend on the key characteristics of the supply network. Several extensions of our
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model and analysis are discussed in Section 4.5. Section 4.6 concludes our study.

Proofs of all formal results are relegated to the appendix.

4.2 Literature Review

An increasingly growing amount of research has been devoted to understanding

environmental and social responsibility (ESR) in supply chains. A recent survey by

Atasu (2016) provides a thorough overview of the developments on a variety of topics

in this domain. Our work, in terms of application, is at the intersection of responsible

sourcing and structure design for environmentally and socially responsible supply

chains.

Many authors have contributed to developing sourcing and procurement strate-

gies with ESR awareness. The existing studies have taken various angles, including

supplier selection based on their compliance risks and the level of consumer aware-

ness (Guo et al., 2016), incentive contracts to mitigate suppliers’ adulteration (e.g.,

Babich and Tang, 2012; Chen and Lee, 2017), supplier compliance auditing (Plam-

beck and Taylor, 2016; Chen and Lee, 2017; Caro et al., 2018; Chen et al., 2015; Fang

and Cho, 2015), policy design for supplier compliance and performance improvement

(e.g., Corbett and DeCroix, 2001; Karaer et al., 2017; Agrawal and Lee, 2017; Cho

et al., 2017; Nguyen et al., 2018), information sharing among suppliers (e.g., Karaer

et al., 2017), and management of reverse material flows to suppliers (e.g., Ata et al.,

2012). Different from this body of literature, we do not model detailed issues in the

sourcing processes. Instead, we focus on the formation of ESR relationships among

an existing supply base through extending the physical sourcing network.

Several studies analyze supply chain structures with the concern of ESR. For ex-

ample, Guo et al. (2016) investigate the impact of supply chain structures on firms’

responsible sourcing behaviors. They compare two supply chains with dedicated and

shared suppliers, respectively, and find that firms have greater incentives for responsi-

ble sourcing when faced with shared suppliers. Letizia and Hendrikse (2016) analyze
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possible alliance between two suppliers when trading with a common downstream.

They take the perspective of property ownership to examine firms’ investments for

ESR under different alliance structures. Chen et al. (2018) consider two buyers sourc-

ing from a common supplier, as well as from their respective dedicated suppliers. They

find that buyer coalition can mitigate the issue of reduced common supplier audit

induced by buyer competition. Gui et al. (2018) study a network of firms that inde-

pendently design their products for recycling. They compare the collective system, in

which firms cooperate in return flows and waste processing, against the independently

managed recycle process. Esenduran and Kemahlıoğlu-Ziya (2015) study a similar

problem and compare collective and individual compliance schemes. They also in-

vestigate the impact of regulation on the firm’s design choice and the possibility of

increasing collection rates. Orsdemir et al. (2016) analyze a supply chain consisting

of two competing buyers and their respective dedicated suppliers. They analyze the

impact of buyer’s backward integration and horizontal sourcing on ESR compliance

incentive. Different from these studies, the ESR implementation structure in our

model arises endogenously as decisions made by the network members. The ESR

implementation structure distributes the gain from the downstream and shares the

costs incurred by the upstream throughout a complex supply network.

More importantly, our approach, in terms of methodology, allows for analyzing

general power distribution in the network structures. The existing studies usually

examine firm interactions in supply chains by assuming exogenously given contracts

(e.g., Corbett and DeCroix, 2001), Stackelberg or principle-agent setting, or coopera-

tive game. In bilateral relationships modeled using the Stackelberg or principle-agent

approach (e.g., Chen and Lee, 2017; Guo et al., 2017), one party is extremely pow-

erful to dictate the trading terms. A cooperative game (e.g., Letizia and Hendrikse,

2016; Gui et al., 2016), in contrast, typically grants equal power to all parties in-

volved. Our bargaining framework, in contrast, enables the flexibility of modeling

varying bargaining power and enriches the understanding on how the shifts of supply

chain power impact the formation of ESR implementation structure. Feng and Lu
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(2013b) provide a comparison between the Stackelberg game and bargaining game in

a two-tier supply chain network, pointing out the fundamental difference between the

two games, while our analysis suggests that the cooperative game is a special case of

the bargaining game in our context. The solution concept we adopt for our network

bargaining problem is the so called Nash-Nash solution developed by Davidson (1988)

and Horn and Wolinsky (1988). Several authors have applied this solution concept to

supply chain settings (see, e.g., Dukes et al., 2006; Feng and Lu, 2013a; Chen et al.,

2016; Chu et al., 2017).

Restricted by tractability, all the aforementioned studies in ESR, as well as most

studies on cost or gain sharing in supply chains, assume two or three-tier supply

chains. This is because in a complex network, identifying the core or computing

the Shapley value often involve combinatorial analysis and the number of possible

coalitions grows rapidly with the number of firms involved in the network (see, e.g.,

Granot and Sošić, 2003; Nagarajan and Bassok, 2008; Chen and Yin, 2010; Gui et al.,

2016). Our multi-unit bilateral bargaining model, in contrast, overcomes the ana-

lytical difficulty. Our analysis suggests that the equilibrium negotiation relationships

correspond to a shortest path tree problem (see, e.g., Lawler, 1976; Ahuja et al., 2017),

which can be solved efficiently in large supply networks. More importantly, unlike

the cooperative game approach, which is silent on how the cost or gain sharing can

be implemented, the bargaining solution describes explicit ways of firm interactions

to pass the gain and cost across the entire network.

4.3 The Problem

We consider a general supply chain led by one retailer sourcing from a network of

suppliers. The retailer has already established direct or indirect trading relationships

with the suppliers in the network through contracts that specify monetary exchange

for goods or services among the firms within this network. The material flows and

the associated contractual relationships are assumed to be given in our study. We,
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instead, focus on understanding how the retailer may push for the implementation of

an ESR program throughout the entire supply network.

The network of material flows. All suppliers, providing materials or services that

collectively lead to the eventual offering by the retailer to the end consumers, are

connected with the retailer through the physical material flows. In this network, each

node i ∈ N = {0, 1, 2, . . . , n} represents a firm, with node 0 being the retailer. A

direct trading relationship of the physical material flow (i.e., an exchange of products

or services) between firm i and firm j is represented through a directed arc, (i, j), in

the network, which suggests a purchase by firm i from firm j. In other words, firm i

is the downstream and firm j is the upstream in this trade. We use A to denote the

set of all arcs in this network. Then, the graph (N,A) describes the material network

of this supply chain. Because the material flows in the supply network should lead to

the eventual product or service offered by the retailer, all arcs should belong to some

directed paths originated from the retailer, node 0, and all nodes should be connected

with the retailer through some directed paths.

An example of a material network is provided in Figure 4.1(i). In general, we allow

multiple firms to have a common upstream or downstream. We also do not exclude

the situation where firms in the same tier trade with one another (e.g., allowing firm

2 to purchase from firm 1 in Figure 4.1(i)). As our focus is on the ESR program im-

plementation, the trading agreements along the material network concerning material

exchanges are assumed to be given.

The ESR program. The retailer, who enjoys an enhanced brand image through

the ESR program, acts as the initiator of the program. The success of the program

requires participation of all firms in the network1. As we exemplified in §4.1, lack of

compliance by even a single upstream supplier can jeopardize the program, preventing

the supply chain from deriving the value from the ESR initiative. By participating in

1Other entities such as brand manufactures can also act as the initiator of an ESR program that
requires the participation of all firms in their supply networks. Without loss of generality, we assume
that the retailer is the initiator.
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Fig. 4.1.: The material network, ESR network and ESR implementation structures.

the program, firm i ∈ N agrees to comply with the ESR requirements through making

an investment of ci. This investment is needed for capability building or certification

acquisition (Chen and Deng, 2013). If all firms commit to investing, the retailer can

materialize an increased revenue, R, as a result of consumers’ positive reception of

the program. We shall note that, while ESR implementation requires sincere effort,

the addition of revenue generated can be significant. Recent studies commissioned by

Verizon and Campbell Soup show that well-implemented ESR programs can increase

revenue by as much as 20 percent, command price premiums up to 20 percent, and

increase customer commitment by as much as 60 percent (Hardcastle, 2015).

We use x = {xi : i ∈ N} to denote the vector of investment decisions, where

xi = 1 indicates firm i’s commitment to complying with the ESR requirements and

xi = 0 suggests the absence of firm i’s participation. Then, the gain of the ESR

program can be defined as

V (x) = R
∏
i∈N

xi −
∑
i∈N

cixi. (4.1)
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It is easy to see that V (x) ≤ 0 if any xi = 0, i ∈ N . It is natural to assume that

R >
∑

i∈N ci so that the gain of the ESR program for the supply chain is positive to

avoid the trivial case.

The ESR negotiation network. For a successful implementation of the ESR pro-

gram, the gain Π ≡ R−
∑

i∈N ci should be appropriately allocated among the supply

chain members to sustain the outcome. As we mentioned in §4.2, the existing liter-

ature focuses on identifying a fair allocation without paying much attention to how

such an allocation can be attained in implementation. In reality, the firms involved

usually go through extensive communications and negotiations to reach consensus. An

agreement states the contractual parties’ commitment to invest and the associated

transfer payment. The parties engaged in an ESR negotiation may or may not have

direct material transfers between them. Recall our examples in §1.3, Kroger inter-

acts mostly with its immediate tier-one suppliers, from whom they directly purchase

products. These suppliers, in turn, take the responsibility to ensure the compliance

of their upstream suppliers. In contrast, Walmart works with every member along

the supply chain to ensure ESR compliance, even though it may not purchase directly

from some of the suppliers. Thus, the network of ESR implementation may not be the

same as the network of physical material flows, as two firms without direct material

exchange may work together and agree on an ESR contract. However, the negotia-

tion on ESR terms would not take place between two firms that are not connected in

the physical material network. For instance, a wholesaler of fresh produce would not

work with a cotton grower for ESR compliance because the wholesaler does not trade

the grower’s outputs or products (e.g., garment) made from the grower’s outputs. In

the modeling language, let P(i,j)(A) denote the set of directed paths connecting firms

i and j in the material network (N,A). Then, negotiation is allowed between i and j

if and only if P(i,j)(A) 6= ∅.

We extend the material flow network (N,A) to the ESR negotiation network,

denoted by (N,AESR), by adding additional directed arcs, along which negotiations

of ESR terms can be conducted. Specifically, AESR = {(i, j) : P(i,j)(A) 6= ∅, i, j ∈
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N} ⊃ A. In other words, if and only if firms have a direct or indirect material

exchange, they may work together on ESR compliance. In Figure 4.1(ii), we present

the ESR network corresponding to the material network given in this example.

The ESR implementation structure. In the process of implementing the ESR

program, multiple bilateral negotiations are conducted. Our choice of multi-unit

bilateral bargaining, instead of collusion bargaining, is consistent with the practice

in which bilateral negotiation is most commonly observed. Within each bargaining

unit, the negotiation outcome depends on the parties’ relative bargaining power.

Specifically, in a negotiation between firm i and firm j, the bargaining power of the

former is θi,j ∈ [0, 1], while that of the latter is θj,i = 1− θi,j.

To ensure participation of all firms in the network, each firm must be engaged

in at least one negotiation. A feasible ESR implementation structure is described

by a selection of negotiation relations (represented by arcs) that connects all the

firms (represented by nodes) in the network. In other words, the ESR program is

implemented through a rooted tree that spans over all the nodes in the ESR network

(N,AESR). We use ti,j to indicate whether or not the tree contains arc (i, j). In other

words, ti,j = 1 if firms i and j engage in negotiation for ESR compliance and ti,j = 0

otherwise. The feasible set of implementation structures can be defined as

T (AESR) =
{
T : ti,j = 1 for (i, j) ∈ T and ti,j = 0 for (i, j) ∈ AESR\T ;

∑
i∈N ti,j = 1, j ∈ N \ {0}

}
.(4.2)

The above expression suggests that each supplier firm is working with exactly one

downstream firm for ESR negotiation. It is easy to verify that this condition leads

to a tree in the ESR network (N,AESR) that spans over all the nodes in the network.

Moreover, in this tree, there is exactly one directed path from the retailer node reach-

ing every supplier firm. Figure 4.1(iii) gives all possible implementation structures

for the given example. The darkened arcs in each graph form a tree T in (N,AESR),

which specifies the negotiation relationships for ESR implementation. In this exam-

ple, structure (a) reflects the strategy of Kroger, who delegates the negotiations with

the second-tier suppliers to its first-tier ones. Structure (d) represents Walmart’s ap-
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proach of working with every member in the network. Structures (b) and (c) consist

of a combination of full delegation and direct engagement.

The sequence of events. An ESR program is implemented through the following

sequence of activities.

1. (Relationship Formation) The implementation structure T of the ESR program,

which consists of multiple pairs of firms engaging in bilateral bargaining, is

formed in network (N,AESR) based on gain maximizing choices made by the

firms involved. This structure specifies the interactions between the firms in

ESR contract negotiations.

2. (Contract Negotiations) The retailer initiates the ESR program by committing

to investing c0, provided that all firms in the network participate. The negoti-

ations of all bargaining units take place. Within each negotiation, a contract

specifies the upstream’s commitment of complying with ESR requirements in

exchange for a transfer payment from the downstream. If all bargaining units

reach agreements, an industry-wide alliance is formed.

3. (Program Execution) Given the formation of an alliance, firm i invests ci to

ensure the compliance of ESR requirements and the retailer realizes a revenue

increase of R. Firms make or receive transfer payments based on the negotiated

contracts.

Before analyzing our model, we provide a brief discussion on the commonly used

approach that applies the concept of Shapley value. The discussion in the next

subsection allows us to provide a clear comparison and demonstrate the advantage of

the multi-unit bilateral bargaining framework.

4.3.1 Benchmark: The Shapley Value Based Approach

In studies of gain sharing among the multiple supply chain members, a common

approach is to allocate the benefit based on the Shapley value (see., e.g. Granot
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and Sošić, 2003; Leng and Parlar, 2008; Letizia and Hendrikse, 2016). In this subsec-

tion, we briefly derive the solution of our problem using this approach, which serves

the purpose of a comparison with our bargaining-based approach discussed in §4.4.

Specifically for our model, let V (S) denote the gain generated by the subset S ⊂ N

of firms who agree to collude in the ESR program. Because the ESR program can

realize its benefit only if a grand coalition (i.e., an industry-wide alliance) is formed,

we must have

V (S) =

 R−
∑

i∈N ci, if S = N,

0, otherwise.
(4.3)

Now suppose firms in a set C have agreed to collude and firm i is not part of it.

The marginal contribution of firm i joining the set C is simply

V (C ∪ {i})− V (C) =

 R−
∑

i∈N ci, if C = N \ {i},

0, otherwise.
(4.4)

Then, the Shapley value of firm i in some coalition S is thus computed as

φi(S) =
∑

C⊂S\{i}

|C|!(|S| − |C| − 1)!

|S|!
(
V (C ∪ {i})− V (C)

)
.

In computing the Shapley value, it is assumed that during the process of forming

coalition S, all possible sequences of the firms joining the coalition have equal chance

to occur. Thus, we average the marginal contributions of firm i over all possible

permutations of firms within S. In our model, φi(S) = 0 for any S ( N and

φi(N) =
∑

C⊂N\{i}

|C|!(n− |C|)!
(n+ 1)!

(
V (C ∪ {i})− V (C)

)
=

1

n+ 1

(
R−

∑
i∈N

ci

)
. (4.5)

In other words, when an industry-wide alliance is formed, the allocation based on the

Shapley value distributes the gain of ESR equally among all firms.

Naturally, one may argue that equally sharing the benefit derived from the ESR

program may not be reasonable in practice. Some firms in the supply chain may have

stronger positions than others because they possess specialized technology or have

deep market penetration. Also, some firms may play more crucial roles in a specific
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ESR initiative than others. All these considerations can lead to discrepancies in the

gains received by participating firms. However, the Shapley value based approach

treats all firms equally important, reflected by the fact that the sequences of firms

joining the alliance are equally likely. Another aspect missing in the Shapley value is

the means of gain distribution. It does not specify how payment transfers take place

among the participating firms to achieve the resulting allocation. In our discussion

below, we show that a bargaining based framework overcomes these shortcomings.

4.4 ESR Implementation through Bargaining

In this section, we discuss in detail the multi-unit bilateral bargaining framework

for ESR implementation. In §§4.4.1 we introduce the Nash–Nash bargaining solution

and derive the transfer payments between firms under a given implementation struc-

ture. In §§4.4.2, we analyze the ESR implementation structure through the lens of

the ESR initiator, the retailer. Implications of the derived solutions are discussed in

§§4.4.3.

4.4.1 The Multi-Unit Nash Bargaining Framework

Given an implementation structure, i.e., a tree T in the ESR network (N,AESR),

two firms linked by an arc in the tree engage in bilateral negotiation on ESR imple-

mentation. If the negotiation is successful, the agreement specifies a transfer payment

from the downstream firm to the upstream firm, as well as a commitment by the up-

stream on ESR investment. Because the ESR program can only be successful with

the participation of all firms, the absence of any firm’s commitment suggests a zero

gain for all firms. Therefore, the transfer payment should depend on all firms’ com-

mitment to ESR investment x ≡ (x0, x1, . . . , xn). Let wi,j(x) denote a payment from

firm i to j given x if the arc (i, j) is in tree T , i.e., ti,j = 1. A firm in the network
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may make payments to and receive payments from multiple firms. If all negotiations

in T are successful, firm i’s net contract receivable is

Wi(T,x) =
∑

v∈{u:(u,i)∈T}

wv,i(x)−
∑

v∈{u:(i,u)∈T}

wi,v(x).

Then, firm i’s gain can be computed as

πi(T,x) = Wi(T,x) +R · I{i=0} ·
∏
j∈N

xj − cixi, i ∈ N. (4.6)

Because a breakdown of one negotiation suggests a zero gain for all firms, firm i’s

disagreement point is Dj
i = 0, when negotiating with firm j.

Applying the Nash bargaining solution concept (Nash, 1950), the contract pa-

rameters, which consist of the downstream’s payment wi,j(x) and the upstream’s

investment choice xj, are determined through the following maximization problem:

(recall θi,j ∈ [0, 1] is firm i’s bargaining power vis-à-vis firm j and θj,i = 1− θi,j.){
maxxj∈{0,1},wi,j(x)(πi(T,x)−Dj

i )
θi,j(πj(T,x)−Di

j)
θj,i : πi(T,x) ≥ Dj

i and πj(T,x) ≥ Di
j

}
, (4.7)

for (i, j) ∈ T . It is easy to check that, if the total gain of firms i and j is positive,

an optimal wi,j(x) of the above problem must satisfy

θi,j
θj,i

=
Wi(T,x) + I{i=0}R

∏
`∈N x` − cixi

Wj(T,x) + I{j=0}R
∏

`∈N x` − cjxj
=
πi(T,x)

πj(T,x)
, (4.8)

suggesting that a positive trade gain is proportionally allocated between the trad-

ing parties according to their respective bargaining power. Given that the tree T

consists of n directed arcs connecting all (n + 1) firms, there are n bargaining units

negotiating in parallel. The equilibrium contracts is the Nash equilibrium of the n

Nash bargaining solutions. This solution is called the Nash-Nash solution (see, e.g.,

Davidson, 1988; Horn and Wolinsky, 1988; Feng and Lu, 2013b).

Theorem 4.4.1 (The Negotiation Equilibrium) Given any feasible implemen-

tation structure T , the equilibrium contract payments satisfy

wi,j(1) =

∑
v∈{j}∪{u:P(j,u)(T )6=∅}

∏
a∈Pv(T ) ρa

1 +
∑

v∈N\{0}
∏

a∈Pv(T ) ρa
Π +

∑
v∈{j}∪{u:P(j,u)(T )6=∅}

cv,
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and wi,j(x) = 0, if x 6= 1, for all i, j such that ti,j = 1. In the Pareto-dominant

equilibrium, all firms invest to comply with the ESR requirements and share a positive

portion of the ESR gain Π ≡ R−
∑

i∈N ci > 0.

We use the example described in Figure 4.1 to demonstrate the equilibrium out-

come of ESR negotiation. This network consists of five firms and there are four

feasible implementation structures as depicted in Figure 4.1. Assume that in any ne-

gotiation, the bargaining power of the downstream firm is θ and that of the upstream

firm is (1 − θ). Then, we can compute each firm’s share of the ESR gain by solving

the system of equations (4.8), which leads to the results in Table 4.1. It is easy to

analyze the allocations in the table to find that the more the retailer delegates the

negotiations with the second-tier suppliers to the first tier, the less (more) the retailer

gains from ESR when the downstream is stronger (weaker) than the upstream, i.e.,

θ > (<)0.5. Also, a second tier supplier gains more (less) from ESR when negotiating

directly with its immediate downstream than with the retailer when the negotiation

power is more (less) concentrated toward the downstream, i.e., θ > (<)0.5.

Table 4.1.: The negotiated gain allocation for the example in Figure 4.1 when θi,j = θ

for (i, j) ∈ T

Full Delegation Partial Delegation Direct Engagement

Tree (a) Tree (b) Tree (c) Tree (d)

π0(T ; 1)/Π θ2

2−2θ+θ2
θ2

1+θ−θ2
θ2

1+θ−θ2
θ

4−3θ

π1(T ; 1)/Π θ(1−θ)
2−2θ+θ2

θ(1−θ)
1+θ−θ2

θ(1−θ)
1+θ−θ2

1−θ
4−3θ

π2(T ; 1)/Π θ(1−θ)
2−2θ+θ2

θ(1−θ)
1+θ−θ2

θ(1−θ)
1+θ−θ2

1−θ
4−3θ

π3(T ; 1)/Π (1−θ)2
2−2θ+θ2

θ(1−θ)
1+θ−θ2

(1−θ)2
1+θ−θ2

1−θ
4−3θ

π4(T ; 1)/Π (1−θ)2
2−2θ+θ2

(1−θ)2
1+θ−θ2

θ(1−θ)
1+θ−θ2

1−θ
4−3θ

We note in Table 4.1 that if the bargaining power is balanced throughout the

network, i.e., θi,j = θ = 0.5 for all (i, j), then all firms obtain an equal share (i.e.,
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20%) of the ESR gain under any implementation structure. This outcome coincides

with that derived under the Shapley value based approach; recall equation (4.5). In

the next corollary, we formalize this observation.

Corollary 4.4.1 (Connection to the Shapley Value Based Approach) If firms

are equally powerful in any ESR negotiations (i.e., θi,j = θj,i = 0.5 for any (i, j) ∈

AESR), then regardless of the implementation structure T , the equilibrium negotia-

tion outcome from the multi-unit bargaining coincides with the allocation based on the

Shapley value.

As suggested from the above corollary, the model based on the Shapley value is a

very special case of the multi-unit bargaining framework. This observation is in line

with the conclusion made by Gul (1989), who shows that the subgame perfect equi-

librium of a bargaining game with random matching of trading parties in a network

converges to the solution based on Shapley value when the time between negotiation

rounds gets close to zero. Different from the Shapley value approach, our multi-unit

bargaining game with given trading relationships corresponds to the limit of a si-

multaneous alternating offer process (Davidson, 1988). Compared with the random

matching process, the alternating offer process captures possibly imbalanced power

distribution.

Another important implication of Corollary 4.4.1 is that the solution based on

Shapley value is silent on the implementation structure in terms of how the ESR

gain is passed along among the participating firms, whereas the multi-unit bargain-

ing outcome is specific to the implementation structure in general. This is evident

from Table 4.1 that the gain allocation among firms is generally different under dif-

ferent implementation structures. Our next task is to determine an implementation

structure.
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4.4.2 The Retailer Preferred Implementation Structure

In most of the ESR programs, the retailer owns the brand of the product or service

provided to the end consumer. In the examples quoted in §4.1, the ESR program is

pushed by a powerful retailer throughout its supply chain. It is thus natural that

the retailer dictates the implementation structure. In this subsection, we use the lens

of the retailer in our model to understand the determination of an implementation

structure. Later in §§4.5.2, we discuss alternative means for this choice.

To see how the implementation structure T affects the gain allocation in the

network, we define Pi(T ) as the path in tree T that starts from the retailer and

ends at firm i. Based on the description in §4.3, this path is unique in any feasible T .

Suppose there are k(≥ 0) firms in between the retailer and firm i in tree T , then Pi(T )

consists of a set of (k+ 1) directed arcs, {(0, i1), (i1, i2), . . . , (ik, i)}. For (i, j) ∈ AESR,

let

ρi,j = θj,i/θi,j

denote the upstream’s bargaining power relative to the downstream’s in the ESR

network. From (4.8), this quantity is also the ratio of gain obtained by the upstream

to that by the downstream. We can derive

πi(T,1) = πik(T,1) · ρik,i = πik−1
(T,1) · ρik−1,ikρik,i = · · · = π0(T,1)

∏
a∈Pi(T )

ρa. (4.9)

In other words, any firm’s profit can be expressed as that of the retailer’s based on

the equilibrium negotiation outcome. Because the ESR gain of the entire network is

Π = R−
∑

i∈N ci, we deduce

π0(T,1) =
(

1 +
∑

v∈N\{0}

∏
a∈Pv(T )

ρa

)−1

Π, (4.10)

πi(T,1) =

∏
a∈Pi(T ) ρa

1 +
∑

v∈N\{0}
∏

a∈Pv(T ) ρa
Π, i ∈ N \ {0}. (4.11)

The retailer would prefer an implementation structure T that maximizes π0(T,1),

which reduces to minimizing
∑

v∈N\{0}
∏

a∈Pv(T ) ρa over all possible T within the fea-
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sible set defined in (4.2). Thus, the retailer’s choice of implementation structure is a

spanning tree that solves the following optimization problem:

min
T∈T (AESR)

{
Γ(T ) ≡

∑
v∈N\{0}

∏
a∈Pv(T )

ρa

}
. (4.12)

The objective in this optimization problem reflects the magnitude of the ESR gain

against the portion retained by the retailer.

For the example in Figure 4.1, the feasible set T (AESR) consists of four trees.

Comparing the gain allocations in Table 4.1, it is immediate that the retailer would

prefer direct engagement (full delegation) when the downstream is more (less) pow-

erful than the upstream in negotiation, i.e., θ > (<)0.5.

In general, there can be a large number of feasible implementation structures.

If one were to solve the minimization problem defined in (4.12) as a mathematical

program, one needs to deal with integer decision variables and a nonlinear objective.

We, instead, explore the ESR network and solve the problem using the combinatorial

optimization approach. As indicated from (4.12), our goal is to find a tree T that

reaches each node in the network. The “cost” of reaching each node is the product

of the relative bargaining powers (i.e., ρi,j) along the path from the source (i.e., the

retailer) to that node. And the objective is to minimize the total cost of reaching all

the nodes.

It turns out that a solution of (4.12) corresponds to a shortest path tree (see, e.g.,

Lawler, 1976; Ahuja et al., 2017) in the network with appropriately defined arc costs.

However, the total cost of the shortest path tree does not equal to the objective in

(4.12). This is because, unlike in the classical shortest path tree problem in which

the objective is the sum of the path costs, the objective in (4.12) involves both

multiplicative and additive operations.

Theorem 4.4.2 (The Optimal Implementation Structure) If T ∗ ∈ T (AESR)

is a shortest path tree in network (N,AESR) with arc costs di,j = log ρi,j, then T ∗

minimizes Γ(T ) over T ∈ T (AESR) in (4.12).
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The shortest path tree problem can be solved efficiently for general networks that

are acyclic. For example, when firm 2 also sources from firm 1 in Figure 4.1(i), the

material network is acyclic but is not a tree. If, in addition, firm 4 sources from firm

2, then a cycle 1→ 4→ 2→ 1, is formed in the material network. Such a situation is

uncommon in supply chains, though efficient algorithms exist to solve such problems

as long as the length of the cycle is nonnegative (i.e., ρ1,4ρ4,2ρ2,1 > 1). The detailed

discussion on the shortest path tree problem can be found in Appendix A.1. With

the result in Theorem 4.4.2, one can analyze the implementation structure in a large

scale supply network.

4.4.3 The Extent of Delegation for ESR Implementation

In this subsection, we discuss the retailer’s incentive for delegation, as opposed

to direct engagement, in ESR implementation. To derive clear insights, we focus on

material supply networks that exhibit tree structures. In this case, each supplier sells

material to a unique downstream; recall our discussion in §4.3. Thus, the suppliers

can be grouped into tiers (with retailer in tier 0) and the number of tiers represents

the depth of the supply chain.

From (4.10), the distribution of bargaining power in the ESR network plays a

critical role in determining the implementation structure. To obtain some intuition,

we first derive some formal results for several special settings and then test the general

case using an extensive numerical analysis.

Theorem 4.4.3 Suppose the supply network (N,A) is a tree with one retailer (tier 0)

and d tiers of suppliers, and a firm in tier k has bargaining power θk, k ∈ {0, 1, . . . , d−

1}, when negotiating with any of its upstream firms.

i) If there exists a k ∈ {1, 2, . . . , d − 1} such that ρk ≡ (1 − θk)/θk < 1, then the

retailer does not interact directly with suppliers in tiers {k+ 1, k+ 2, . . . , d} for

ESR implementation.
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ii) If there exists a k ∈ {1, 2, . . . , d − 1} such that ρk0 = (1 − θk0)/θk0 > 1 for all

k0 ∈ {1, 2, . . . , k− 1}, then the retailer directly negotiates with suppliers in tiers

{1, 2, . . . , k} for ESR implementation.

Theorem 4.4.3 suggests that the retailer tends to delegate the ESR negotiation

with a supplier if there is a powerful firm in between the retailer and that supplier

along the path of the material flow. If, however, all firms in between the retailer

and that supplier are weak in negotiation, the retailer tends to deal with the supplier

directly.

Corollary 4.4.2 For the network described in Theorem 4.4.3,

i) if θk is decreasing in k ∈ {1, 2, . . . , d}, then there exists a kD such that the re-

tailer delegates the negotiations with tier-k suppliers to their immediate down-

stream firms for k ≤ kD, and to those in tier (kD − 1) for k > kD.

ii) if θk is increasing in k ∈ {1, 2, . . . , d}, then there exists a kI such that the retailer

negotiates directly with tier-k suppliers for k ≤ kI and delegates the negotiation

with tier-k suppliers to their immediate downstream firms in tier (k − 1) for

k > kI .

Corollary 1 explores the implementation structure under monotonically distributed

bargaining power. When the suppliers’ bargaining power vis-à-vis their respective

downstream firms is decreasing along the tiers, the retailer would only deal with

tier-one suppliers directly, while delegating ESR assurance of higher tiers. This del-

egation, interestingly, is to the immediate downstream firms unless the immediate

downstream is weak in negotiation (note that ρk > 1 for any k > kD from the proof

of the corollary). When the suppliers’ bargaining power is increasing along the tiers,

the retailer would choose to directly deal with suppliers in lower tiers, while leaving

the higher tiers to their immediate downstream firms.

We shall remark that, though the results in Theorem 4.4.3 and Corollary 4.4.2 are

stated under the assumption that firms in each tier have the same bargaining power,
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this assumption can be relaxed. Given that the supply network is a tree, there is a

unique path from the retailer to each supplier firm. As long as the conditions hold

along a path, the corresponding results hold for that path.

In general, the bargaining power distribution can have many variations in view of

the large number of possible relationships in the ESR network. To understand how

the characteristics of the supply network affect the ESR implementation with general

bargaining power distributions, we perform an extensive simulation analysis. In our

numerical test, we consider tree-type supply networks with one retailer and n suppli-

ers. The bargaining power in the ESR negotiation is generated as random samples

of a random variable Θ ∈ [0, 1], which follows some Beta distribution. By varying

the shape parameters of the Beta distribution, we can capture different concentra-

tions of bargaining power. While we report the results for Beta(2, 2), changing the

distribution parameters does not alter the main insights obtained. For each metric of

interest, we simulate 1000 instances of the problem and report the average value.

In Table 4.2, the variable l indicates the number of suppliers trading materials with

each downstream firm. When fixing the number of firms n, an increased l implies an

increased number of suppliers in each tier and a decreased number of tiers d. Thus,

l measures the width of the supply chain. We observe that the width/depth of the

supply network has a major impact on the retailer’s gain as well as the implementation

structure. When the network becomes deeper (i.e., l becomes smaller), the retailer’s

share of ESR gain increases rapidly. At the same time, the retailer significantly

reduces the number of suppliers that it directly interacts with. This is because, when

the supply network becomes deeper, there are more possible paths in the ESR network

that lead from the retailer to a specific firm. As a result, the retailer has more choices

when determining the best implementation structure, leading to an increased retailer’s

gain. Interestingly, when the size of the network n becomes larger, the retailer tends

to delegate more. However, the retailer’s share on ESR gain does not seem to be

sensitive to the network size.
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Table 4.2.: The effect of width/depth of the supply network

Retailer’s % share of ESR gain % of higher-tier suppliers engaged by retailer

l = 1 l = 2 l = 3 l = 4 l = 5 l = n l = 1 l = 2 l = 3 l = 4 l = 5

n = 100 31.93 5.59 2.88 2.09 1.80 0.52 0.98 8.98 19.13 27.35 31.56

n = 200 32.21 4.60 2.05 1.45 1.14 0.26 0.48 5.32 13.21 19.36 24.66

n = 300 31.93 4.10 1.68 1.11 0.93 0.17 0.33 3.76 10.67 16.86 20.57

n = 400 32.28 3.82 1.44 0.95 0.76 0.13 0.25 2.90 9.04 14.39 18.63

n = 500 31.76 3.48 1.31 0.85 0.65 0.10 0.20 2.46 7.78 12.86 17.24

Notes. The left panel gives the retailer’s % gain from ESR, and the right panel provides the average % of

(n − l) higher-tier suppliers (i.e., excluding tier-1 suppliers) that are directly negotiated by the retailer under

the optimal implementation structure. The width measure l is the number of suppliers of each downstream

firm, and therefore, the depth of the network is d = mind0
{∑d0

k=1 l
k ≥ n

}
. The bargaining power is randomly

generated from Θ ∼ Beta(2, 2). The reported number is the average of 1000 instances.

As discussed earlier, most ESR programs are implemented through a full delega-

tion structure. Under such structures, the retailers tend to engage only the first-tier

suppliers while delegating the responsibility of ensuring ESR compliance of upstream

firms to their associated downstream firms. Walmart is one of the few firms known

for direct engagement, working directly with every supplier along the material flows.

For example, they went directly to growers in Mexico in their produce supply chain

and garment factories in Bangladesh in their apparel supply chain. In Table 4.3, we

evaluate the retailer’s gain under the optimal implementation structure against those

under full delegation and direct engagement. We observe from the upper panel of the

table that the optimality gaps (measured by the percentage of profit difference com-

pared with the optimal structure) are larger as the network becomes more complex.

Moreover, the optimality gap of direct engagement is more sensitive to the depth

than to the width of the network, while that of full delegation is more sensitive to

the width than to the depth. These observations suggest the importance for the re-

tailer to carefully plan the implementation structure when sourcing from an extended

supply chain.

Comparing between the cases of direct engagement and full delegation, we also

observe that full delegation results in a larger optimality gap than direct engagement
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does when the supply network is wider and deeper (marked by the dividing line in the

table). This observation supports Walmart’s practices as it manages a very complex

supply chain.

Table 4.3.: The benefit of optimizing the implementation structure

Optimality gap of direct engagement (%) Optimality gap of full delegation (%)

l = 1 l = 2 l = 3 l = 4 l = 5 l = 1 l = 2 l = 3 l = 4 l = 5

d = 2 21.72 38.60 45.98 48.54 49.78 12.33 31.48 42.15 51.29 57.00

d = 3 41.79 64.03 70.28 71.77 73.86 24.76 61.16 77.01 83.74 86.28

d = 4 54.31 79.08 83.58 85.06 85.89 32.16 79.06 91.56 94.61 96.09

d = 5 61.66 87.06 90.51 91.69 92.33 40.57 90.95 97.36 98.51 98.85

d = 6 68.17 92.31 94.60 95.40 95.67 44.20 96.70 99.19 99.55 99.67

Optimal Implementation Structure

Percentage of direct engagement (%) Longest implementation path

l = 1 l = 2 l = 3 l = 4 l = 5 l = 1 l = 2 l = 3 l = 4 l = 5

d = 2 50.09 50.10 49.89 49.93 50.01 1.50 1.92 1.99 2.00 2.00

d = 3 38.25 33.99 31.07 30.13 29.14 2.06 2.79 2.98 3.00 3.00

d = 4 27.97 20.65 17.60 16.41 15.50 2.66 3.70 3.98 4.00 4.00

d = 5 24.00 13.21 9.66 8.41 7.60 3.16 4.63 4.97 5.00 5.00

d = 6 19.46 7.56 5.00 3.96 3.61 3.73 5.61 5.96 6.00 6.00

Notes. The upper panel computes the percentage profit gap from that under the optimal structure (i.e.,

(π0(T ∗,1) − π0(T,1))/π0(T ∗,1) × 100 for T being the structure under direct engagement or full delegation).

The dividing line indicates whether direct engagement or full delegation results in the larger optimality gap.

The left-bottom panel computes the average % of (n− l) higher-tier suppliers that are directly engaged by the

retailer under the optimal structure T ∗ and the right-bottom panel computes the average length (i.e., number

of arcs) of the longest path in the optimal structure T ∗. The measure l is the number of suppliers of each

downstream firm and d is the depth of the network. Thus, the total number of suppliers (excluding retailer) is

n =
∑d
k=1 l

k. The bargaining power is randomly generated from Θ ∼ Beta(2, 2) and the reported number is

the average of 1000 instances.

Consistent with the observations from Table 4.2, we find from the left-bottom

panel of Table 4.3 that the retailer tends to directly engage less portion of suppliers

when the network gets wider. In this case, downstream firms are more likely to

engage only their immediate upstreams, as suggested from the right-bottom panel of



99

the table that the average length of the longest paths in the optimal implementation

structures becomes longer.

4.5 Extensions

In this section, we discuss extensions and alternatives of the model analyzed in

the previous section.

4.5.1 Multiple Effort Levels for ESR Compliance

The model analyzed in §4.4 assumes that there is a fixed investment required

from each firm to implement the ESR program. We extend our analysis to the

case where the firms may choose different effort levels to participate and the benefit

generated by the ESR program depends on the collective efforts. Specifically, when

firm i exerts an effort of xi ∈ [0, 1], it results in an investment of ci(xi), which is

a nonnegative and increasing convex function. The revenue generated by the ESR

program is R(x), where x = (x0, x1, . . . , xn) ∈ [0, 1]n+1. We assume that R(x) = 0

if
∏

i∈N xi = 0 and R(x) > 0 is increasing and concave over x ∈ [0, 1]n+1. Note

that it is without loss of generality to assume that the highest feasible effort level

is one because we can always scale the effort levels in the investment functions and

the revenue function. We shall also assume that there exists a feasible vector of

effort levels such that an implementation of the ESR program is beneficial, i.e., Π ≡

maxx∈[0,1]n{R(x) −
∑

i∈N ci(xi)} > 0. Without loss of generality, we assume that

R(x)−
∑

i∈N ci(xi) is strictly concave such that there exists a unique optimal vector

of investment levels that maximizes the net benefit of the entire ESR program.

Since the retailer is the initiator of the ESR program, when deciding the imple-

mentation structure, the retailer also commits its effort level x0 to implement the

ESR program. The subsequent contract negotiations should involve the suppliers’
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effort levels. Thus, the bargaining problem in (4.7) between firm i and firm j now

becomes{
maxwi,j(x),xj∈[0,1](πi(T,x)−Dj

i )
θi,j(πj(T,x)−Di

j)
θj,i : πi(T,x) ≥ Dj

i and πj(T,x) ≥ Di
j

}
,

with cixi replaced by ci(xi) and R · I{i=0} ·
∏

j∈N xj replaced by R(x) · I{i=0} in firm

i’s profit defined in (4.6).

Theorem 4.5.1 (Multiple ESR Compliance Effort Levels) Given any feasible

implementation structure T ∈ T (AESR), the equilibrium contract payments satisfy

wi,j(x) =

∑
v∈{j}∪{u:P(j,u)(T )6=∅}

∏
a∈Pv(T ) ρa

1+
∑
v∈N\{0}

∏
a∈Pv(T ) ρa

(
R(x)−

∑
v∈N cv(xv)

)
+
∑

v∈{j}∪{u:P(j,u)(T )6=∅} cv(xv),

if R(x)−
∑

v∈N cv(xv) > 0, and wi,j(x) = 0, otherwise, for all i, j such that ti,j = 1.

In the Pareto-dominant equilibrium, all firms invest to comply with ESR requirements

at the centralized optimal investment level x∗ = arg max{R(x) −
∑

i∈N ci(xi) : x ∈

[0, 1]n+1} and share a positive portion of the ESR gain Π = R(x∗)−
∑

i∈N ci(x
∗
i ).

Theorem 4.5.1 suggests that the multi-unit bargaining framework leads to efficient

effort exertion by all firms in the sense that the gain of the ESR program is maximized.

With the result in Theorem 4.5.1, one can then apply Theorem 4.4.2 to find the

optimal implementation structure.

4.5.2 Sequential Formation of ESR Implementation Structure

In the model analyzed in §4.4, the ESR implementation structure is dictated by

the retailer. In this subsection, we consider an alternative process of implementation,

in which the ESR relationships are formed sequentially. Specifically, the retailer initi-

ates the ESR program by approaching some of the suppliers in the network to partner

with. The chosen firms, in turn, take the responsibility to ensure the participation

of all their upstream suppliers by appropriately choosing their ESR partners. An im-

plementation structure is formed until all firms in the network are connected through

ESR partnerships. From the retailer’s perspective, such a sequential process can be
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attractive, as environmental and social responsibility management in an extensive

supply chain requires significant governance (see the discussions in, e.g., Huang et al.,

2018).

The sequence of events corresponding to a sequentially formed implementation is

elaborated below.

1. (Relationship Formation) The ESR implementation structure is formed through

a sequential process.

1.1 In the 1st round of relationship development, the retailer chooses a subset

N1 ⊂ N to interact directly on ESR terms.

1.2 In the kth round of relationship development, firms in set Nk−1 choose

their respective upstream negotiation parties within the set N \ ∪k−1
`=1N`.

Let Nk denote the set of chosen firms in this round. The formation of ESR

relationships within the kth round can take one of the two ways.

(a) [Simultaneous] All firms in set Nk−1 simultaneously approach their

preferred upstream trading parties. When firm i ∈ Nk is approached

by two or more firms in Nk−1, firm i can choose at most one to form

a trading relationship. If firm i declines to partner with all, then the

ESR program fails and the game ends.

(b) [Sequential] Firms in set Nk−1 sequentially approach their preferred

upstream parties to form trading relationships. We assume that this

sequence is randomly determined (i.e., each of the |Nk−1|! permuta-

tions occurs with equal chance). If a chosen firm in Nk refuses to form

a relationship, then the ESR program fails and the game ends.

If N = ∪k`=1N`, an implementation structure is formed; otherwise, the

game enters the (k + 1)st round of relationship development.

2. (Contract Negotiations) The retailer initiates the ESR program by committing

to investing c0, provided that all firms in the network participate. The negoti-

ations of all bargaining units take place. Within each negotiation, a contract



102

specifies the upstream’s commitment of complying with ESR requirements in

exchange for a transfer payment from the downstream. If all bargaining units

reach agreements, an industry-wide alliance is formed.

3. (Program Execution) Given the formation of an alliance, firm i invests ci to

ensure the compliance of ESR requirements and the retailer realizes a revenue

increase of R. Firms make or receive transfer payments based on the negotiated

contracts.

It is easy to see that at the end of the kth round of relationship development,

a subtree Tk is formed which specifies the current implementation structure. The

nodes in Nk are the leaf nodes of the subtree Tk. If all firms have established ESR

negotiation relationships at the end of the mth round, then Tm = T is the complete

implementation structure, which is a spanning tree of the network (N,AESR).

Consider the game at the beginning of round k and the currently established

structure is Tk−1. The firms in set Nk−1, which corresponds to the leaves in Tk−1,

are choosing firms in set N \ ∪k−1
`=1N` to establish trading relationships. The eventual

equilibrium structure must be an element of Tk−1(Tk−1), which is the set of all span-

ning trees in (N,AESR) containing the subtree Tk−1. For any T ∈ Tk−1(Tk−1) and

i ∈ N , we have from (4.10)–(4.11)

πi(T,1) = π0(T,1) ·
∏

a∈Pi(T )

ρa.

If firm i is a leaf node of the subtree Tk−1 (i.e., i ∈ Nk−1), the path from node 0

to node i at the beginning of the kth round of relationship development stays fixed,

i.e., Pi(T ) = Pi(Tk), regardless of the eventual structure T ∈ Tk−1(Tk−1). Then, the

above expression suggests that all firms in the set Nk−1 have the same incentive as

the retailer; that is, these firms would like to form ESR partnerships according to

the structure that is most preferred by the retailer. However, if firm i is not part

of the subtree Tk−1 (i.e., i ∈ N \ ∪k−1
`=1N`), the path from node 0 to node i depends

on which downstream firms is chosen by firm i to interact within the ESR program.
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In this case, firm i’s incentive is not aligned with that of the retailer. With these

observations, we derive the subgame perfect equilibrium of sequentially formed ESR

implementation structure.

Theorem 4.5.2 (Sequential Delegation of Relationship Development) When

the ESR relationships are sequentially formed from the downstream firms to the up-

stream firms, the retailer preferred implementation structure corresponds to a sub-

game perfect equilibrium, whether the firms move simultaneously or sequentially in

each round of relationship development.

Theorem 4.5.2 formally establishes that the implementation structure identified

in §§4.4.2 corresponds to the equilibrium when the firms sequentially form ESR rela-

tionships.

4.5.3 Coordination of Multiple ESR Programs

In this subsection, we consider a setting where revenues can be generated by

different ESR programs, each requiring the participation of a subset of suppliers. Take

Starbucks’ supply network as an example. Starbucks manages suppliers who provide

raw materials such as coffee beans and tea leaves, while it also deals with suppliers

who produce packing materials like paper cups. These two groups of suppliers work

on different product families and operate independently from one another. Starbucks

may initiate separate ESR programs with specific groups of suppliers. A commitment

for offering organic beverage would rely on the first group of suppliers, while an

initiative to ensure 100% recycled materials would definitely concern the second group.

To understand the coordination of different ESR programs, we need to extend our

model and analysis.

For ease of exposition, we demonstrate a model with two product families and

with two first-tier suppliers directly trading with the retailer. Our analysis can be

extended to multiple product families and multiple first-tier suppliers. As demon-

strated in Figure 4.2, let 1 and 2 index the tier-1 suppliers for product families
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1 and 2, respectively. The suppliers for product family k ∈ {1, 2} form a subset

Nk = {k}∪{j ∈ N : P(k,j)(A) 6= ∅, P(3−k,j)(A) = ∅} with N = N1∪N2∪{0}. In other

words, a supplier in subgroup Nk is connected with tier-1 supplier k ∈ {1, 2}, and the

sets N1 and N2 are disjoint. The firms related to product family k form a subnet-

work ({0} ∪Nk, A
ESR
k ), where AESR

k is the set of arcs indicating possible negotiations

associated with program k. It is clear that AESR = AESR
1 ∪ AESR

2 . Implementation

of the ESR program for product family k in the subnetwork (Nk, A
ESR
k ) generates a

revenue of Rk, k = 1, 2. If the retailer is able to roll out both programs in (N,AESR),

a revenue of R is generated. The retailer invests c0,k for implementing only ESR

program k = 1, 2 and c0 for implementing both. Let Π = R − C1 − C2 − c0 and

Πk = Rk − Ck − c0,k, k = 1, 2, where Ck =
∑

j∈Nk cj. In view of the possible synergy

between the two programs in enhancing the retailer’s brand image, we assume

Π ≥ (Π1)+ + (Π2)+.

This condition suggests that the gain from ESR programs is super-additive, so that

there is a positive synergy between the two programs. In other words, the marginal

contribution of an additional ESR program is assumed to be greater than or equal to

the corresponding investment cost to avoid trivial cases. Note that we do not require

the individual program to be profitable.

Consider a feasible structure T under which both ESR programs are implemented.

The disagreement point for each firm in N1 ∪ N2 remains zero, i.e., Dj
i = 0 for

i, j ∈ N1 ∪ N2 and (i, j) ∈ T or (j, i) ∈ T , as is in the model analyzed in §4.4.

The retailer, however, may obtain a nonzero value in the event of negotiation break-

down. Specifically, if the retailer and firm i ∈ Nk fail to reach an agreement, the

retailer may still implement the ESR program for product family (3 − k). Let

xk = (xj : j ∈ {0} ∪Nk) denote the ESR investment commitment of the retailer and

the suppliers in Nk. The retailer’s disagreement point when negotiating with a firm

in Nk is

Di
0(T,x3−k) = Dk

0(T,x3−k) ≡ R3−k ·
∏

j∈N3−k

xj −
∑

j∈{u∈N3−k:t0,u=1}

w0,j(x
3−k)− c0,3−k · x0.
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Retailer  

0

1 2

Product family 1
𝑁𝑁1

Tier 1

Fig. 4.2.: Multiple ESR programs

Updating the retailer’s disagreement point in (4.7), we can solve for the equilibrium

negotiated contracts. For any negotiation without the retailer, i.e., i 6= 0, the relation

in (4.8) continues to hold, i.e., ρi,j = πj(T,x)/πi(T,x). For negotiations involving the

retailer, this relationship is changed to

ρ0,i =
θi,0
θ0,i

=
πi(T,x)

π0(T,x)−Dk
0(T,x3−k)

, i ∈ Nk. (4.13)

With these relations, (4.9) is modified to

πi(T,1) = (π0(T,1)−Dk
0(T,1))

∏
a∈Pi(T )

ρa, i ∈ Nk and k ∈ {1, 2}. (4.14)

Given that the gain of the entire supply chain is Π, we deduce

π0(T,1) + Γ1(T )(π0(T,1)−D1
0(T,1)) + Γ2(T )(π0(T,1)−D2

0(T,1)) = Π, (4.15)

where Γk(T ) =
∑

v∈Nk

∏
a∈Pv(T ) ρa is the sum of gain ratios of firms related to product

family k ∈ {1, 2}. The following theorem identifies the retailer’s equilibrium gain.

Theorem 4.5.3 (Multiple ESR Programs: The Retailer’s Gain) Given a fea-

sible structure T ∈ T (AESR) with which both ESR programs are implemented, the

retailer’s gain is

π0(T,1) =
1− Γ1(T )Γ2(T )

(1 + Γ1(T ))(1 + Γ2(T ))
Π +

Γ2(T )

1 + Γ2(T )
Π1 +

Γ1(T )

1 + Γ1(T )
Π2,
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and her disagreement points are

Dk
0(T,1) = Π3−k −

Γ3−k(T )

1 + Γ3−k(T )
(Π− Πk), k ∈ {1, 2}.

The supplier i’s gain is

πi(T,1) =
Π− Π3−k

1 + Γk(T )

∏
a∈Pi(T )

ρa,

for i ∈ Nk, k = 1, 2.

From Theorem 4.5.3, the retailer may not benefit from an increased gain Π of the

entire supply chain (i.e., when Γ1(T )Γ2(T ) > 1). Such a situation may happen when

the upstream firms are very powerful (e.g., the bargaining power of an upstream firm

vis-à-vis a downstream one is always above 0.5). An increased value Πk, k ∈ {1, 2},

of individual ESR program, however, always leads to an increased gain obtained by

the retailer. This is because the retailer enjoys an enhanced bargaining position with

an increased disagreement point when negotiating with firms belonging to set N3−k.

If the retailer chooses to implement only program k ∈ {1, 2}, we can obtain the

solution by applying the analysis in §4.4 to the subnetwork (Nk, A
ESR
k ). From (4.10),

the retailer’s gain in this case is simply (Πk)
+(1 + Γk(T ))−1. With Theorem 4.5.3, we

can easily derive the retailer’s choice of ESR program, as depicted in Figure 4.3. From

(4.14) and (4.15), Γk(T ) represents the ratio of gain taken by the suppliers associated

with product family k to the trade surplus enjoyed by the retailer. It is intuitive

that the retailer would choose to initiate both ESR programs if Γ1(T ) and Γ2(T ) are

sufficiently small. Also if Γ1(T ) < (>)Γ2(T ), then implementing program 1 is more

(less) profitable to the retailer than implementing program 2. It is interesting to note

that the retailer would implement both programs when only one of Γ1(T ) and Γ2(T )

is extremely small. When an extremely small share is taken by the firms in N1 (N2),

the retailer enjoys not only a large surplus from the trade of product family 1 (2),

but also a strengthened bargaining position (i.e., an increased disagreement point) in

the negotiations with firms in N2 (N1). Working on both ESR programs allows the

retailer to reap both benefits.
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Γ1(𝑇𝑇)

Γ2(𝑇𝑇)

Both
𝜋𝜋0 𝑇𝑇, 1 = Π2 1 + Γ2 𝑇𝑇

−1

Program 2 only

i) 𝚷𝚷𝟏𝟏 ≥ 𝚷𝚷𝟐𝟐 ≥ 𝟎𝟎

Program 1 only

Γ1(𝑇𝑇)

Γ2(𝑇𝑇)

Program 1 only

ii) 𝚷𝚷𝟏𝟏 ≥ 𝟎𝟎 > 𝚷𝚷𝟐𝟐

Both

Π1 − Π
Π2

Γ1(𝑇𝑇)

Γ2(𝑇𝑇)

Both

iii) 𝟎𝟎 > 𝚷𝚷𝟏𝟏 ≥ 𝚷𝚷𝟐𝟐

No implementation

Π
−Π2

Π
−Π1

Fig. 4.3.: The retailer’s choice of ESR programs

The next theorem suggests that the optimal implementation structure for both

ESR programs can be obtained by simply combining the optimal implementation

structures for individual ESR programs. Thus, Theorem 4.4.2 can be applied to

obtain the optimal implementation structure.

Theorem 4.5.4 (Multiple ESR Programs: Implementation Structure) If Tk

is the retailer preferred structure for implementing program k, k = 1, 2, in the sub-

network (Nk, A
ESR
k ), then the retailer preferred structure for implementing both ESR

programs is T = T1 ∪ T2.

When only one ESR program is considered, we have shown that the multi-unit bi-

lateral framework generalizes that based on the Shapley value (recall Theorem 4.4.1).

Next, we establish a similar relationship. For the problem with two ESR programs,

the characteristic function is defined as

V (S) =


Π, if S = N,

(Πk)
+, if S = {0} ∪Nk ∪ S0, S0 ( N3−k,

0, otherwise.

(4.16)
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Following our discussions in §§4.3.1, we can derive the Shapley values of the firms as

s0 =
1

|N |!

(
(|N | − 1)!Π +

2∑
k=1

|N3−k|−1∑
m=0

(
|N3−k|
m

)
(|Nk|+m)!(Πk)

+
)
, (4.17)

sj =
1

|N |!

(
(|N | − 1)!(Π− (Π3−k)

+) +

|N3−k|−1∑
m=0

(
|N3−k|
m

)
(|Nk| − 1 +m)!(Πk)

+
)
,(4.18)

for all j ∈ Nk, k ∈ {1, 2}. We observe that suppliers within the same product family

have the same Shapley values, while those belonging to different product families

have different Shapley values in general. With (4.17) and (4.18), we can extend the

observation in Corollary 4.4.1.

Corollary 4.5.1 When a grand coalition is formed, the allocation based on the Shap-

ley value corresponds to that using the multi-unit bilateral bargaining approach under

any feasible implementation structure when ρ0,i = sk
Π−Π3−k−|Nk|sk

> 0, i ∈ Nk, k ∈

{1, 2} and ρi,j = 1 for i 6= 0 and (i, j) ∈ AESR.

According to Corollary 4.5.1, the gain allocation generated using the Shapley value

is a special instance of that using the multi-unit bilateral approach.

4.6 Concluding Remarks

In this chapter, we analyze the implementation of ESR initiative through a general

supply network. The multi-unit bargaining framework allows us to model various

power distributions among the firms in the network, which determine the formation

of ESR relationships and the ESR gain allocation across the network. We demonstrate

the advantage of our approach over the conventional Shapley value based approach,

leading to new understandings of ESR implementation.
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5. CONCLUSION AND DIRECTION FOR FUTURE

RESEARCH

This chapter concludes the findings of this research. This study dealt with supply

chain management and inventory management problems arising in the business world.

Several emerging topics are considered, including dynamic product substitution, joint

price and inventory decisions under demand ambiguity, and the implementation of

ESR program in general supply networks. The first problem concerns the dynamic

product substitution policy to meet the mix of demands using the mix of supplies. The

second problem studies the robust decisions making for selling perishable products

with ambiguous demand information. The third problem examines the implemen-

tation of ESR programs in general supply networks under the multi-unit bargaining

framework.

For the first problem, we study the coordination of product replenishment and

substitution decisions in a dynamic environment with both supply and demand uncer-

tainties. There are two key features of our model. The first is the general substitution

structure with the benefit matrix revealing the reverse Monge property. The reverse

Monge property allows us to generalize the existing studies on downward product sub-

stitution, yet develop an efficient approach to derive the decisions of multi-product

allocation to meet the demands. The second feature of our model is the considera-

tion of general supply functions that are stochastically linear in midpoint. We show

that the value of product substitution is greatly affected by both the limits and the

variabilities of the supplies.

For the second problem, we adopt the minimax regret framework to study the

pricing newsvendor problem with ambiguous demand information. We first identify

the optimal order quantity for a given unit price and show that the optimal quantity is

decreasing in the price, which is not necessarily true in the classical models. By further
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exploring the properties of the minimax objective, we characterize the optimal price

decision, which can be computed efficiently. We then conduct a series of analyses to

investigate the effects of important factors such as the presence of inventory risk, the

unit cost, and the degree of demand ambiguity on the optimal decisions and compare

these results with those in classical models. We also implement the minimax regret

approach in a data-driven setting where historical data of price and demand are

available, and compare its performance with the classical pricing newsvendor model

that maximizes the expectation.

For the third problem, we analyze the implementation of ESR initiative through

a general supply network. The multi-unit bargaining framework allows us to model

various power distributions among the firms in the network, which determine the

formation of ESR relationships and the ESR gain allocation across the network. We

demonstrate the advantage of our approach over the conventional Shapley value based

approach, leading to new understandings of ESR implementation.

There are several interesting questions that we leave open for future research. In

the first problem that considers the supply uncertainty, in addition to product sub-

stitution, responsive pricing after observing the supply can also be used to effectively

reshape consumer demand. The theory of stochastic linearity in midpoint allows

for generalizing our framework to revenue management with both uncertain supply

processes and general price-demand relationships.

In the second problem, we have focused on the scenarios where the firm only

knows the support information. If the firm obtains additional information, such as the

mean or the mode of the random factor, we could further improve the performance

of the minimax regret approach by incorporating such additional information. In

addition, while our model setting assumes that the parametric form of the demand

model is known, a more interesting problem is to model the price-demand relationship

with a more general functional form. Specifically, if the firm has partial information

regarding the customer valuation distribution, the adversarial nature could choose

the functional form of the demand function to maximize the firm’s regret. Finally,
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another valuable question to be investigated is whether a randomized pricing policy

could reduce the firm’s regret.

In the third problem, the network bargaining framework allows us to analyze

complex supply networks, making our model close to reality. There are a number of

directions one may take to extend our existing analysis. In our study, we have as-

sumed given material trading terms and focused only on ESR implementation. When

the downstream brand firm is in the process of developing a new product or expand-

ing to a new market, it may need to develop the supplier base along with its ESR

initiative. In this case, one also needs to model the contracting relationships for the

material flow. Incorporating the material exchange into our bargaining framework

requires a careful modification of the firms’ disagreement points as well as the bar-

gaining power distribution. The trade-off between efficient sourcing and successful

ESR implementation is an interesting aspect for future exploration. When leading

a new ESR initiative, the downstream brand firm may not be able to implement all

measures in one step. Instead, establishing compliance requirements may entail sig-

nificant capability development as well as supplier education, and the initiative may

need to roll out in stages. One may extend the network framework developed in this

model to consider sequential roll out of ESR initiatives and possibly diffusion of ESR

standards (see, e.g., Castka and Corbett, 2016).
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A. PROOFS OF FORMAL RESULTS

Proof of Theorem 2.3.1. The proof of Theorem 2.3.1 requires the following lemma.

Lemma A.0.1 For t = 1, 2, . . . , T , if Wt(zt,dt) is concave in (zt,dt) and {Ŝt,i(µ), 0 ≤

µ ≤ µ̄t,i} ∈ SL(mp) for i = 1, 2, . . . , n, then V̂t(xt, µt) is concave in (xt,µt) for t ∈ C,

and Vt(xt) is concave in xt.

Proof. If t /∈ C, then Vt(xt) = E[Wt(xt,Dt)] is concave in xt because concavity is

preserved under expectation. If t ∈ C, we show that E[Wt(xt+ Ŝt(µt),Dt)] is concave

in (xt,µt). Consider x1,x2 ∈ R+
n and µ1,µ2 ∈ [0, µ̄t]. By the concavity of Wt, given

demand realization dt, we have

1
2
E
[
Wt

(
x1 + Ŝt(µ1),dt

)]
+ 1

2
E
[
Wt

(
x2 + Ŝt(µ2),dt

)]
≤ E

[
Wt

(
1
2

(
x1 + x2 + Ŝt(µ1) + Ŝt(µ2)

)
,dt

)]
.(A.1)

Since Ŝt,i(µi) ∈ SL(mp), there exist
ˆ̂
St,i(µi,1) and

ˆ̂
St,i(µi,2) defined on a common

probability space such that

ˆ̂
St,i(µi,1) =d Ŝt,i(µi,1), (A.2)

ˆ̂
St,i(µi,2) =d Ŝt,i(µi,2), (A.3)

and

1

2
ˆ̂
St,i(µi,1) +

1

2
ˆ̂
St,i(µi,2) ≤cv Ŝt,i

(µi,1 + µi,2
2

)
. (A.4)

Since the supply processes Ŝt,i, i = 1, . . . , n are independent, and
ˆ̂
St,i, i = 1, . . . , n

can be constructed such that they are also independent, by Theorem 7.A.8 in Shaked

and Shanthikumar (2007),

1

2
ˆ̂
St(µ1) +

1

2
ˆ̂
St(µ2) ≤cv Ŝt

(µ1 + µ2

2

)
.
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Consequently, by the concavity of Wt, we have

E

[
Wt

(
1
2

(
x1 + x2

)
+ 1

2
Ŝt(µ1) + 1

2
Ŝt(µ2),dt

)]
≤ E

[
Wt

(
1
2

(
x1 + x2

)
+ Ŝt

(
µ1+µ2

2

)
,dt

)]
. (A.5)

Combining the above equations,

1
2
E
[
Wt

(
x1 + Ŝt(µ1),dt

)]
+ 1

2
E
[
Wt

(
x2 + Ŝt(µ2),dt

)]
≤ E

[
Wt

(
1
2

(
x1 + x2

)
+ Ŝt

(
µ1+µ2

2

)
,dt

)]
. (A.6)

Taking the expectation of both sides with respect to Dt,

1
2
E
[
Wt

(
x1 + Ŝt(µ1),Dt

)]
+ 1

2
E
[
Wt

(
x2 + Ŝt(µ2),Dt

)]
≤ E

[
Wt

(
1
2

(
x1 + x2

)
+ Ŝt

(
µ1+µ2

2

)
,Dt

)]
.(A.7)

Since E[Wt(xt + Ŝ(µt),Dt)] is continuous, the above midpoint concavity implies that

it is concave in (xt,µt). Consequently, V̂t(xt,µt) is jointly concave in (xt,µt) since all

other terms in (2.7) are linear in (xt,µt). Hence, Vt(xt) is concave in xt when t ∈ C,

as concavity is preserved under maximization. This completes the proof. �

We prove Theorem 2.3.1 by induction. First, consider the last period t = T . Since

VT+1(x) is linear, WT (zT ,dT ) is concave. By Lemma A.0.1, we can verify that the

claim in Theorem 2.3.1 holds for t = T . Assume the claim holds for t = k + 1. Since

Wk+1(zk+1,dk+1) is concave in (zk+1,dk+1) according to the induction hypothesis, by

Lemma A.0.1, V̂k(xk,µk) is concave in (xk,µk) if k ∈ C and Vk(xk) is concave in xk.

Since Vk+1(xk+1) is concave in xk+1 by the induction hypothesis, the objective function

in (2.3) is concave. Furthermore, since the constraints (2.4) and (2.5) are linear, the

optimal profit function Wk(zk,dk) is concave in (zk,dk) (see, e.g., Rockafellar, 2015).

Therefore, the claim in Theorem 2.3.1 holds for t = k. This completes the proof.

�

Proof of Lemma 2.4.1. We first claim that given a matrix R with n rows and

n + k columns that has the reverse Monge property, for any column, R·,j = {ri,j :

i = 1, 2, . . . , n}, 1 ≤ j ≤ n + k, if we insert a column, R̃·,j = R·,j − ∆1, where

∆ is a constant, to R as the (j + 1)-th column, then the extended matrix R̃ also

has the reserve Monge property. To prove the claim, for 1 ≤ i1 < i2 ≤ n and

1 ≤ j1 < j2 ≤ n + k, we consider the following three cases: (i) j1 6= j + 1 and
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j2 6= j + 1. We have r̃i1,j1 + r̃i2,j2 = ri1,j1 + ri2,j2 ≥ ri1,i2 + ri2,j1 = r̃i1,i2 + r̃i2,j1

as the original benefit matrix R has the reverse Monge property. (ii) j1 = j + 1.

r̃i1,j1 + r̃i2,j2 = ri1,j −∆ + ri2,j2 ≥ ri1,j2 + ri2,j −∆ = r̃i1,j2 + r̃i2,j1 . The inequality holds

because the original benefit matrix has the reverse Monge property. (iii) j2 = j+1. By

the similar argument in (ii), we can show that r̃i1,j1 + r̃i2,j2 ≥ r̃i1,j2 + r̃i2,j1 . Therefore,

we can conclude that the extended benefit matrix R̃ has the reverse Monge property.

By applying the above claim for n times, we find that the extended matrix R̂ has

the reverse Monge property. �

Proof of Theorem 2.4.1. The proof of Theorem 2.4.1 requires the following lemma.

Lemma A.0.2 The benefit maximization problem defined in the network G is equiva-

lent to a min-cost problem defined in the network G′ (see also the graphical illustration

in Figure A.1), where the excess flows at each node are defined as,

e(i) =


∑n

i=1 xi if i = 2n+ 1,

0 if i = n+ 1, (n+ 1)′, n+ 2, (n+ 2)′, . . . , 2n, (2n)′,

−xi if i = 1, 2, . . . , n,

and the arc costs and arc capacities are, respectively,

ci,j =


∆− rj,i−n if i = n+ 1, n+ 2, . . . , 2n, j = 1, 2, . . . , n,

∆− rj,i−n + ∆j if i = (n+ 1)′, (n+ 2)′, . . . , (2n)′, j = 1, 2, . . . , n,

0 if i = 2n+ 1,

ui,j =

 dj−n if i = 2n+ 1, j = n+ 1, n+ 2, . . . , 2n,

∞ otherwise,

and ∆ = max{ri,j : 1 ≤ i, j ≤ n}.
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Proof. Let f̂i,j denote the flow from node i to node j on the transportation arcs in

the network G, where i = 1, 2, . . . , n, j = n+1, n+2, . . . , 2n, (n+1)′, (n+2)′, . . . , (2n)′.

Then, the benefit maximization problem defined in the network G can be written as,

min
f̂∈Rn×2n

+

(1∆1> − R̂)� f̂ (A.8)

s.t.
2n∑

j=n+1

f̂i,j +

(2n)′∑
j=(n+1)′

f̂i,j = xi, i = 1, 2, . . . , n, (A.9)

n∑
i=1

f̂i,j ≤ dj−n, j = n+ 1, n+ 2, . . . , 2n. (A.10)

Let f̃i,j denote the flow from node i to node j on the transportation arcs in the

network G′, where i = n+ 1, n+ 2, . . . , 2n, (n+ 1)′, (n+ 2)′, . . . , (2n)′, j = 1, 2, . . . , n.

Let c̃i,j = ∆−r̂j,i and C̃ = {c̃i,j : i = n+1, n+2, . . . , 2n, (n+1)′, (n+2)′, . . . , (2n)′, j =

1, 2, . . . , n}, then the problem in (A.8)–(A.10) can be transformed to the following

optimization problem,

min
f̃∈R2n×n

+

C̃� f̃ (A.11)

s.t.
n∑
j=1

f̃i,j ≤ di−n, i = n+ 1, n+ 2, . . . , 2n, (A.12)

2n∑
i=n+1

f̃i,j +

(2n)′∑
i=(n+1)′

f̃i,j = xj, j = 1, 2, . . . , n. (A.13)

Let f̂∗ and f̃∗ denote the optimal solutions to (A.8)–(A.10) and (A.11)–(A.13)

respectively. We have f̂∗ =
(
f̃∗
)>

by the definition of these two optimization problems.

In addition, the optimization problem defined in (A.11)–(A.13) is equivalent to the

min-cost problem in the network G′ defined in Lemma A.0.2, which is illustrated in

Figure A.1. �

i) Let f∗ = {fi,j : i = 1, 2, . . . , n, j = (n + 1), (n + 1)′, . . . , 2n, (2n)′} denote the

optimal max-benefit flow on the transportation arcs in the network G and y(f∗) =

{yi,j = f ∗i,n+j : 1 ≤ i ≤ n, 1 ≤ j ≤ n}. It is straightforward to verify that y(f∗) is a

feasible solution to the optimization problem defined in (2.9) as f∗ is a feasible flow

that satisfies capacity and balance constraints.



126

Based on the definition of the benefits on the transportation arcs in G, we have

r̂i,j = ri,j−n −∆j−n = ri,j−n − rj−n,j−n ≤ 0 for j = (n+ 1)′, (n+ 2)′, . . . , (2n)′. Thus,∑n
i=1

∑(2n)′

j=(n+1)′ r̂i,jf
∗
i,j ≤ 0. Therefore, we have,

R̂� f∗ =
n∑
i=1

2n∑
j=n+1

r̂i,jf
∗
i,j +

n∑
i=1

(2n)′∑
j=(n+1)′

r̂i,jf
∗
i,j ≤

n∑
i=1

2n∑
j=n+1

r̂i,jf
∗
i,j = R� y(f∗).(A.14)

The last equality in the above equation holds by the definition of R̂ and y(f∗). In

addition, let y∗ denote the optimal solution to the optimization problem defined in

(2.9). we can construct a feasible solution f̃ to the max-benefit flow problem in G

based on y∗. Specifically, let

f̃ =



f̃i,j = y∗i,j−n for i = 1, 2, . . . , n, j = n+ 1, n+ 2, . . . , 2n,

f̃i,j = xi −
∑

k∈N y
∗
i,k for i = 1, 2, . . . , n, j = (n+ i)′,

f̃j,2n+1 =
∑

i∈N y
∗
i,j−n for j = n+ 1, . . . , 2n,

f̃j,2n+1 = xi −
∑

k∈N y
∗
i,k for i = 1, 2, . . . , n, j = (n+ i)′,

f̃i,j = 0 o.w.,

(A.15)

and it is straightforward to verify that f̃ is a feasible flow in the network G by checking

the capacity and balance constraints. By the definition of R̂ and the assumption that

∆i = ri,i, we know that r̂i,(n+i)′ = 0 for i = 1, 2, . . . , n. Thus, we have r̂i,j f̃i,j = 0

for 1 ≤ i ≤ n, j = (n + 1)′, (n + 2)′, . . . , (2n)′. Hence,
∑n

i=1

∑(2n)′

j=(n+1)′ r̂i,j f̃i,j = 0.

Therefore, we have

R� y∗ =
∑
i∈N

∑
j∈N

ri,jyi,j =
n∑
i=1

2n∑
j=n+1

r̂i,j f̃i,j +
n∑
i=1

(2n)′∑
j=(n+1)′

r̂i,j f̃i,j (A.16)

≤
n∑
i=1

2n∑
j=n+1

r̂i,jf
∗
i,j +

n∑
i=1

(2n)′∑
j=(n+1)′

r̂i,jf
∗
i,j (A.17)

≤ R� y(f∗). (A.18)

The first inequality holds due to the definition of f∗. Thus, by the above observations,

we have,

R� y(f∗) ≥ R� y∗. (A.19)
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Note that when Delta_i = r_ii, the solution in this network should 
correspond to the optimal solution for our single period problem 

n+1

n+j

2n

(2n)’

1

i

n

2 1

…
…
.

…
…
.

…
…
.

…
…
.

Figure 3

(n+j)’

(n+1)’

2n+1

Fig. A.1.: Minimize the total cost in the network G′

By the definition of y∗, which is an optimal solution to (2.9), we have R � y∗ ≥

R � y(f∗). Thus, we have R � y(f∗) = R � y∗. Therefore, y(f∗) is the optimal

solution to the optimization problem defined in (2.9).

ii) By Lemma 2.4.1 and the definition of R̂, the benefit matrix R̂ also has the

reverse Monge property. Thus, the cost matrix C̃ has the Monge property. Therefore,

the following algorithm 2 described in Vaidyanathan (2013) can solve optimally the

problem in G′. Finally, by Lemma A.0.2, Algorithm 2 finds the optimal solution in

the network G.

By Vaidyanathan (2013), the run time is O(mlogn1) where m = n1n2 is the

number of transportation arcs and n1 is the number of supply nodes in the min-cost

flow network G′. The number of transportation arcs in the network G′ is 2n2 and

the number of supply nodes is 2n, where n is the number of products in the product

substitution setting. Therefore, Algorithm 2 can solve the optimization problem

defined in G with a run time of O(n2logn). �
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Algorithm 2 Vaidyanathan (2013)

1: Initialize the excess flow e

2: e(0) =
∑n

i=1 xt,i

3: for i = 1, 2, . . . , n do

4: e(i) = −xi
5: end for

6: Initialize the flow f in network G′

7: f = 0

8: Successive shortest path algorithm

9: for k = 1, 2, . . . , n do

10: while e(k) < 0 do

11: find the shortest non-crossing path P from 0 to k;

12: compute δ = min{ui,j : (i, j) ∈ P};

13: augment δf = min{δ,−e(k)} along the path P , for (i, j) ∈ P , update

ui,j = ui,j − δf , uj,i = uj,i + δf , and fi,j = fi,j + δf ;

14: update e(k) = e(k) + δf , e(0) = e(0)− δf .

15: end while

16: end for
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Proof of Lemma 2.5.1. Similar to the proof of Lemma 2.4.1, we can show that

s−1
l R(l) has the reverse Monge property. By multiplying with a positive constant sl,

the benefit matrix R(l) also has the reverse Monge property. �

Proof of Lemma 2.5.2. Let δi,0 ∈ [0, x
(l)
t+1,i] and δi,k ∈ [0, 1], k = 0, 1, . . . , K, denote

the decision variable corresponding to the (k + 1)-st segment of the piecewise linear

function V sl
t+1,i(xi) and define δk = (δ1,k, δ2,k, . . . , δn,k) and δ = (δ0, δ1, . . . , δK). We

define the following linear program.

max R� (slyt)−M� (slỹt) +
∑
i∈N

K∑
k=0

(
slri,i −∆

(l)
i,k

)
δi,k (A.20)

s.t. bzt/slc − yt1− ỹt1 = 0, (A.21)

bdt/slc − (yt)
>1 ≥ 0, (A.22)

(ỹt)
>1− x

(l)
t+1 −

K∑
k=0

δk = 0, (A.23)

0 ≤ δk ≤ 1, k = 1, 2, . . . , K, (A.24)

0 ≤ δ0 ≤ x
(l)
t+1, (A.25)

yt, ỹt ∈ Rn×n
+ . (A.26)

The optimal solution to (2.14)–(2.18) with the piecewise linear functions V sl
t+1,i(xi), i ∈

N are multiples of sl as the constraint matrix is totally unimodular, and, by Theorem

3.7 in Hochbaum and Shanthikumar (1990), satisfies slx
(l)
t+1 ≤ x̃t+1 ≤ slx̄

(l)
t+1. Thus,

the optimal solution to the above problem satisfies sl
∑K

k=0 δi,k ≥ slx
(l)
t+1,i for i ∈ N .

In addition, since Ṽt+1,i(xi) is concave in xi, (slri,i −∆
(l)
i,k) is decreasing in k. We can

verify that δi,0 ≥ δi,1 ≥ ... ≥ δi,K , and consequently, δ0 = x
(l)
t+1. Therefore, the above

optimization problem is equivalent to the problem (IP− sl).
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Next, we show that the optimal solution to the above optimization problem is

connected with the max-benefit flow in the network Gsl . Let f denote the flow in Gsl .

We can construct a solution to the above linear program based on f . Specifically,

yi,jt (f) = fi,n+j, i = 1, 2, . . . , n, j = 1, 2, . . . , n, (A.27)

ỹi,jt (f) =
K∑
k=0

fi,(n+j)k , i = 1, 2, . . . , n, j = 1, 2, . . . , n, (A.28)

δj,k(f) =
∑
i∈N

fi,(n+j)k , j = 1, 2, . . . , n, k = 0, 1, 2, . . . , K. (A.29)

Since f satisfies the balance constraints at the excess nodes and the capacity con-

straints at the demand nodes, it is easy to verify that
(
yt(f), ỹt(f), δ(f)

)
satisfies

the constraints of the problem defined in (A.20)–(A.26). Moreover, the value of the

objective function with
(
yt(f), ỹt(f), δ(f)

)
in (A.20) is

R�
(
slyt(f)

)
−M�

(
slỹt(f)

)
+
∑
i∈N

K∑
k=0

(
slri,i −∆

(l)
i,k

)
δi,k(f) (A.30)

=
∑
i∈N

∑
j∈N

ri,jfi,n+j +
∑
i∈N

∑
j∈N

K∑
k=0

(
slri,j −∆

(l)
j,k

)
fi,(n+j)k , (A.31)

where the left side is equal to the total benefit of the flow f in the network Gsl . Let f∗

denote the optimal benefit-flow in the network Gsl . Then, the solution
(
yt(f

∗), ỹt(f
∗),

δ(f∗)
)

that we construct based on f∗ as described in (A.27)–(A.29) satisfies the con-

straints and maximizes the objective value of the problem defined in (A.20)–(A.26).

Thus, we can conclude that the optimal flow in the network Gsl corresponds to the

optimal solution for the problem (IP − sl). �

Proof of Theorem 2.5.1. By Hochbaum and Shanthikumar (1990), the number of

optimization problems solved in Algorithm 1 is
⌈
log2

(
2

2n+1
‖(zt,dt)‖∞

)⌉
. By Lemmas

2.5.1 and 2.5.2, each of these problems can be solved by the network-flow-based

algorithm of Vaidyanathan (2013) with a run time of O(n4logn). Thus, the run time

of Algorithm 1 is O
(
n4lognlog

(
2

2n+1
‖(zt,dt)‖∞

))
. �

Proof of Proposition 3.4.1. The hindsight profit function φ(p, θ) is linear in θ

and the maximum of the linear functions of θ is convex in θ. When θ1 ≥ θ2, we
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have φ(p, θ1) ≥ φ(p, θ2) for any p ∈ [p, p̄] as σ(p) ≥ 0. Thus, we have φ∗(θ1) =

maxp̂ φ(p̂, θ1) ≥ maxp̂ φ(p̂, θ2) = φ∗(θ2). We can conclude that φ∗(θ) is increasing and

convex in θ.

In addition, pmin{D(p, θ), y} is concave in θ since D(p, θ) is linear in θ and h(x) =

min{x, y} is concave in x. Therefore, the regret function R(p, y; θ) is convex in θ. To

maximize the convex function over the interval [θ, θ̄], the nature will choose either the

upper bound or the lower bound of the interval whichever will lead to a higher regret.

Thus, the maximum regret R(p, y) is the maximum of the regret function evaluated

at θ and θ̄. �

Proof of Proposition 3.4.2. Let h1(p, y) = φ∗(θ̄)−pmin{D(p, θ̄), y}+cy, h2(p, y) =

φ∗(θ) − pmin{D(p, θ), y} + cy, and H(p, y) = h1(p, y) − h2(p, y). To solve the inner

optimization of (7), we restrict the range of y to [D(p, θ), D(p, θ̄)], otherwise it would

incur additionally either underage cost or overage cost. We first observe that h1(p, y)

is decreasing in y while h2(p, y) is increasing in y over the interval [D(p, θ), D(p, θ̄)]

when the unit selling price p is fixed. In addition, we can evaluate H(p, y) when

y = D(p, θ):

H
(
p,D(p, θ)

)
= φ∗(θ̄)− φ∗(θ) > 0. (A.32)

Consequently, we have h1(p, y) > h2(p, y) when y = D(p, θ). Therefore, the

optimal choice of order quantity given a fixed unit selling price p depends on the sign

of H
(
p,D(p, θ̄)

)
. In other words, if H

(
p,D(p, θ̄)

)
> 0, then h1(p, y) > h2(p, y) over

the interval [D(p, θ), D(p, θ̄)] and thus, in this case, the optimal order quantity would

be y∗(p) = D(p, θ̄). If H
(
p,D(p, θ̄)

)
< 0, we know that h1(p, y) and h2(p, y) will cross

once over the interval [D(p, θ), D(p, θ̄)] for a fixed unit selling price p, and the optimal

order quantity will satisfy the following:

h1(p, y∗) = h2(p, y∗). (A.33)

Then, we need to check the sign of H
(
p,D(p, θ̄)

)
. Specifically, we have,

H
(
p,D(p, θ̄)

)
= φ∗(θ̄)− φ∗(θ)− p

(
D(p, θ̄)−D(p, θ)

)
(A.34)

= φ∗(θ̄)− φ∗(θ)− pσ(p)(θ̄ − θ). (A.35)
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From the above analysis, the sign of H
(
p,D(p, θ̄)

)
depends on the unit selling price

p. Therefore, we can check the sign of H
(
p,D(p, θ̄)

)
over different regions for the unit

selling price p ∈ [p, p̄]. Evaluating H
(
p,D(p, θ̄)

)
at p̄∗, we have:

H
(
p̄∗, D(p̄∗, θ̄)

)
= φ∗(θ̄)− φ∗(θ)− p̄∗

(
D(p̄∗, θ̄)−D(p̄∗, θ)

)
= φ∗(θ̄)− φ∗(θ)− (p̄∗ − c)D(p̄∗, θ̄) + p̄∗D(p̄∗, θ) + cD(p̄∗, θ̄)

= (p̄∗ − c)D(p̄∗, θ)− φ∗(θ) + c
(
D(p̄∗, θ)−D(p̄∗, θ̄)

)
< 0.

Since H
(
p̄∗, D(p̄∗, θ̄)

)
< 0 and pσ(p) is assumed concave in p, there exists at most

two solutions to the equation, H
(
p,D(p, θ̄)

)
= 0. Subsequently, we have four cases

to analyze:

Case 1: H
(
p,D(p, θ̄)

)
= 0 has zero solutions on the interval [p, p̄]. In this case, we

have H
(
p,D(p, θ̄)

)
< 0, ∀p ∈ [p, p̄], and thus, we set pl = p and ph = p̄.

Since H
(
p,D(p, θ)

)
> 0 and H

(
p,D(p, θ̄)

)
< 0, there exists a unique y∗ ∈(

D(p, θ̄), D(p, θ)
)

such that H(p, y∗) = 0. Specifically,

φ∗(θ̄)− pmin{D(p, θ̄), y∗}+ cy∗ = φ∗(θ)− pmin{D(p, θ), y∗}+ cy∗. (A.36)

By solving the above equation given a fixed unit selling price p, we find the

optimal order quantity, y∗(p) = 1
p

(
φ∗(θ̄)− φ∗(θ)

)
+ D(p, θ). The corresponding

regret is R
(
p, y∗(p)

)
= c

p
φ∗(θ̄) + (1− c

p
)φ∗(θ)− (p− c)D(p, θ),∀p ∈ [pl, ph].

Case 2: H
(
p,D(p, θ̄)

)
= 0 has one solution p̂ on the interval [p, p̄] and p̂ < p̄∗. Then,

H
(
p,D(p, θ̄)

)
> 0 on (p, p̂) and H

(
p,D(p, θ̄)

)
< 0 on [p̂, p̄]. In this case, we set

pl = p̂ and ph = p̄. Therefore, when p ∈ [pl(p̂), ph(p̄)], by similar reasoning as

in Case 1, the optimal order quantity, y∗(p) = 1
p

(
φ∗(θ̄) − φ∗(θ)

)
+ D(p, θ), and

the regret function, R
(
p, y∗(p)

)
= c

p
φ∗(θ̄) + (1− c

p
)φ∗(θ)− (p− c)D(p, θ). When

p ∈ [p, pl), we have H
(
p,D(p, θ̄)

)
> 0. Therefore, h1(p, y) ≥ h2(p, y) over the

interval [D(p, θ), D(p, θ̄)]. Thus, the optimal order quantity y∗(p) = D(p, θ̄), and

the regret function is R
(
p, y∗(p)

)
= h1

(
p,D(p, θ̄)

)
= φ∗(θ̄)− φ(p, θ̄).
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Case 3: H
(
p,D(p, θ̄)

)
= 0 has one solution p̂ on the interval [p, p̄] and p̂ > p̄∗. In this

case, we set pl = p and ph = p̂. The rest of analysis will be the same as in Case

2.

Case 4: H
(
p,D(p, θ̄)

)
= 0 has two solution p̂ and ˆ̂p on the interval [p, p̄] where p ≤

p̂ < p̄∗ < ˆ̂p ≤ p̄. In this case, we set pl = p̂ and ph = ˆ̂p. Then, we have

H
(
p,D(p, θ̄)

)
< 0 on (p̂, ˆ̂p) and H

(
p,D(p, θ̄)

)
≥ 0 elsewhere. Thus, when p ∈

[pl, ph], the optimal order quantity, y∗(p) = 1
p

(
φ∗(θ̄) − φ∗(θ)

)
+ D(p, θ). And

the corresponding regret is R
(
p, y∗(p)

)
= c

p
φ∗(θ̄) + (1− c

p
)φ∗(θ) + (p− c)D(p, θ).

Otherwise, when p /∈ [p̂, ˆ̂p], we have y∗ = D(p, θ̄) and the regret function is

R
(
p, y∗(p)

)
= h1

(
p,D(p, θ̄)

)
= φ∗(θ̄)− φ(p, θ̄) .

By the above analysis, we can summarize the regret function R
(
p, y∗(p)

)
as follows:

R
(
p, y∗(p)

)
=

 R1(p) if p ∈ [pl, ph],

R2(p) o.w.,
(A.37)

where R1(p) = c
p
φ∗(θ̄)+(1− c

p
)φ∗(θ)−(p−c)D(p, θ) and R2(p) = φ∗(θ̄)−(p−c)D(p, θ̄).

Since we assume the concavity of φ(p, θ) and f(p) = 1
p

(
φ∗(θ̄)− φ∗(θ)

)
is convex in p,

both R1(p) and R2(p) are convex in p. Furthermore, R2(p) − R1(p) = p−c
p

(
φ∗(θ̄) −

φ∗(θ) − pσ(p)(θ̄ − θ)
)
. By the definition of pl and ph, we have R2(p) − R1(p) ≥ 0

when p ∈ [p, pl]∪ [ph, p̄], and R2(p)−R1(p) ≤ 0 when p ∈ [pl, ph]. Therefore, we have

R
(
p, y∗(p)

)
= max{R1(p), R2(p)}. Since the maximum of convex functions is also a

convex function, R
(
p, y∗(p)

)
is convex in p ∈ [p, p̄].

In addition, when p ∈ [p, pl], R
(
p, y∗(p)

)
= φ∗(θ̄) − φ(p, θ̄) is decreasing in p as

pl ≤ p̄∗ by definition. Thus, the unit selling price that minimizes the regret of the

firm on [p, pl] is pl. Similarly, when p ∈ [ph, p̄], R
(
p, y∗(p)

)
is minimized at ph. Thus,

we can conclude that the optimal unit selling price p∗ lies in the interval [pl, ph]. �

Proof of Proposition 3.5.1. Before we prove Proposition 3.5.1, we first introduce

Lemma A.0.3 that will be used in the proof for Lemma A.0.4, which characterizes the

relationship between p∗ and p̄∗.
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Lemma A.0.3 Let φ1(p) = (p − c)µ(p) and φ2(p) = (p − c)σ(p). Define pθ =

arg max{p : φ(p, θ)} where θ 6= 0 and p̃i = arg max{p : φi(p)} where i = 1, 2. If

φ′2(p̃1) ≥ 0, then
φ′1(pθ)

θ
≤ 0. If φ′2(p̃1) ≤ 0, then

φ′1(pθ)

θ
≥ 0.

Proof. We first consider the case where φ′2(p̃1) ≥ 0 and show the following claim:

Claim 1: φ′(p̃1, θ) ≥ 0 when θ > 0 and φ′(p̃1, θ) < 0 when θ < 0.

When θ > 0, we have:

φ′(p, θ) = φ′1(p) + φ′2(p)θ. (A.38)

φ′(p̃1, θ) = φ′1(p̃1) + φ′2(p̃1)θ (A.39)

= φ′2(p̃1)θ (A.40)

≥ 0. (A.41)

We can conduct similar analysis for the case when θ < 0. Thus, the Claim 1 is

verified.

When θ > 0, we have φ′(p̃1, θ) ≥ 0 by Claim 1. Then, we have pθ > p̃1 due to the

concavity of φ and thus, φ′(pθ, 0) = φ′1(pθ) < φ′1(p̃1) = 0. By similar reasoning, when

θ < 0, we have φ′(p̃1, θ) ≤ 0 and pθ < p̃1. Consequently, φ′(pθ, 0) > 0. Therefore we

can conclude that if φ′2(p̃1) ≥ 0, we have φ1(pθ)
θ

= φ′(pθ,0)
θ
≤ 0.

For the case where φ′2(p̃1) ≤ 0 satisfies, we can conduct similar analysis and

conclude that φ′(pθ,0)
θ
≥ 0. �

Lemma A.0.4 Let φ1(p) = (p−c)µ(p) and φ2(p) = (p−c)σ(p). Let p̃1 = arg max{p :

φ1(p)} and pθ = arg max{p : φ(p, θ)} . If φ′2(p̃1) ≥ 0, then pθ is increasing in θ.

Consequently we have p∗ ≤ p̄∗. If φ′2(p̃1) ≤ 0, then pθ is decreasing in θ. Consequently,

we have p∗ ≥ p̄∗.

Proof. When φ′2(p̃1) ≥ 0 holds, we first consider the case where θ2 > θ1 6= 0. Then,

let p∗i = arg max{p : φ(p, θi)} where i = 1, 2. Then, p∗1 satisfies the following:

φ′1(p∗1) + φ′2(p∗1)θ1 = 0. (A.42)
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Then, we evaluate φ′(p, θ2) at p∗1:

φ′(p, θ2) = φ′(p, θ1) + φ′2(p)(θ2 − θ1). (A.43)

φ′(p∗1, θ2) = φ′1(p∗1, θ1) + φ′2(p∗1)(θ2 − θ1) (A.44)

=
φ′1(p∗1)

−θ1

(θ2 − θ1) (A.45)

≥ 0. (A.46)

The second equality holds because of (A.42). The last inequality holds because of

Lemma A.0.3. Finally, we conclude that if φ′(p∗1, θ2) > 0 then p∗2 ≥ p∗1 when θ2 >

θ1 6= 0. When θ2 > θ1 = 0, by the results in Lemma A.0.3,
φ′(p∗2,θ1)

θ2
=

φ′1(p∗2)

θ2
≤ 0

as φ(p, θ1) = φ(p, 0) = φ1(p). Thus, we have, φ′(p∗2, θ1) ≤ 0 if θ2 > θ1 = 0 and

consequently, p∗2 ≥ p∗1. Combining the above arguments, we conclude that if θ2 ≥ θ1,

we have p∗2 ≥ p∗1. Consequently, we have p̄∗ ≥ p∗ if φ′2(p̃1) ≥ 0 holds.

For the case where φ′2(p̃1) ≤ 0 holds, we can conduct similar analysis and conclude

that pθ is decreasing in θ and consequently p̄∗ ≤ p∗. �

To prove Proposition 3.5.1, WLOG, we assume that p̄∗ ≥ p∗. It can be verified that

the objective function of the inner optimization (3.9) is convex in θ. The adversarial

nature would choose either θ or θ̄ whichever leads to a larger regret of the firm. Thus,

the worst-case regret is max{φ∗(θ̄)−φ(p, θ̄), φ∗(θ)−φ(p, θ)}. Let g1(p) = φ∗(θ̄)−φ(p, θ̄)

and g2(p) = φ∗(θ) − φ(p, θ). It can be verified that g1(p∗) > 0 and g2(p̄∗) > 0.

Additionally, we know that g1(p̄∗) = g2(p∗) = 0. Moreover, g1(p) is decreasing in

p and g2(p) is increasing in p over the interval [p∗, p̄∗]. Thus, g1(p) and g2(p) will

cross once over the interval [p∗, p̄∗] and the optimal risk-free price p0 must satisfy the

following:

φ∗(θ̄)− φ(p0, θ̄) = φ∗(θ)− φ(p0, θ), p0 ∈ [p∗, p̄∗]. (A.47)

Thus, we have,

p0 = arg{p : (p− c)σ(p) =
φ∗(θ̄)− φ∗(θ)

θ̄ − θ
, p ∈ [p∗, p̄∗]}. (A.48)

When the demand function is of the form D(p, θ) = µ(p) + θ and σ(p) = 1, from

the previous analysis we have p0 = c + φ∗(θ̄)−φ∗(θ)
θ̄−θ . When the demand is of the form
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D(p, θ) = σ(p)θ, it can be shown that p̄∗ = p∗. Moreover, for the risk-free price, p0,

we have the following:

φ∗(θ̄)− φ(p0, θ̄) = φ∗(θ)− φ(p0, θ). (A.49)

(p̄∗ − c)σ(p̄∗)θ̄ − (p∗ − c)σ(p∗)θ = (p0 − c)σ(p0)(θ̄ − θ). (A.50)

Since p̄∗ = p∗ and pσ(p) is concave in p, the risk-free price with the multiplicative

demand, p0 = p̄∗ = p∗. �

Proof of Proposition 3.5.2. When the demand is of the form D(p, θ) = µ(p) + θ

and the demand function µ(p, θ) is assumed to be linearly decreasing in p, we can

explicitly express the demand function as D(p, θ) = A−Bp+θ where A,B > 0. From

the proof of Proposition 3.4.2, we have σ(p) = 1 and thus p0 = c+ φ∗(θ̄)−φ∗(θ)
θ̄−θ with the

additive demand. WLOG, we assume that the firm sets the lower bound of the price

range p ≤ c + φ∗(θ̄)−φ∗(θ)
θ̄−θ , otherwise it will be trivial to conclude that p∗ ≥ p ≥ p0.

Therefore, we have pl = max{p, φ
∗(θ̄)−φ∗(θ)
θ̄−θ } < c+ φ∗(θ̄)−φ∗(θ)

θ̄−θ = p0. We then have two

subcases to consider. If p0 ≥ ph, we can conclude that p∗ ≤ ph ≤ p0. Otherwise, we

have p0 ∈ [pl, ph] and thus, the derivative of the regret function at the risk-free price

is calculated as follows. Recall that the regret function on the interval [pl, ph] is of

the form:

R
(
p, y∗(p)

)
=
c

p
φ∗(θ̄) +

(
1− c

p

)
φ∗(θ)− (p− c)D(p, θ). (A.51)

We take the first-order derivative of R
(
p, y∗(p)

)
with respect to p. WLOG, we assume

θ̄ + θ = 0.

∂

∂p
R
(
p, y∗(p)

)
= − c

p2

(
φ∗(θ̄)− φ∗(θ)

)
− φ′(p, θ) (A.52)

= − c

2Bp2
(A−Bc)(θ̄ − θ)− (A+Bc− 2Bp+ θ). (A.53)

By Proposition 3.5.1, the risk-free price p0 with linear additive demand is as follows:

p0 = c+
φ∗(θ̄)− φ∗(θ)

θ̄ − θ
(A.54)

=
1

2B
(A+Bc). (A.55)
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Then, we evaluate the derivative of the regret function at the risk-free price p0.

∂

∂p
R
(
p, y∗(p)

)
|p=p0 =

1

(p0)2

(
(p0)2

(
− φ′(p0, θ)

)
− c
(
φ∗(θ̄)− φ∗(θ)

))
(A.56)

=
θ̄ − θ

8B2(p0)2

(
(A−Bc)2 + 4B2c2

)
(A.57)

> 0. (A.58)

By Proposition 3.4.2, we know that the regret function R
(
p, y∗(p)

)
is convex on [pl, ph]

and we have shown that ∂
∂p
R
(
p, y∗(p)

)
|p=p0 ≥ 0. Thus, we can conclude that p∗ ≤ p0.

If the demand function is of the form: D(p, θ) = σ(p)θ. By Proposition 3.5.1, we

have p0 = p̄∗ = p∗. Moreover, we have φ′(p0, θ) = 0 due to the optimality condition.

By Proposition 3.4.2, we know that pl < p0 = p̄∗ < ph. Then, we can evaluate the

derivative of the regret function at the risk-free price p0:

∂

∂p
R
(
p, y∗(p)

)
= − c

p2
(p̄∗ − c)σ(p̄∗)(θ̄ − θ)− φ′(p, θ). (A.59)

∂

∂p
R
(
p, y∗(p)

)
|p=p0 = − c

(p0)2
(p̄∗ − c)σ(p̄∗)(θ̄ − θ)− φ′(p0, θ) (A.60)

= − c

(p0)2
(p̄∗ − c)σ(p̄∗)(θ̄ − θ) (A.61)

≤ 0. (A.62)

By a similar argument as in the additive demand case, the regret function is convex

on [pl, ph] and ∂
∂p
R
(
p, y∗(p)

)
|p=p0 ≤ 0, thus, we can conclude that the optimal price

with the multiplicative demand p∗ ≥ p0. �

Proof of the Result in Example 3.5.1. With the following demand function,

d(p) =

 1
8
(87− p+ 9975

p−1
), 1 < p ≤ 6,

559.5− 50p, p > 6,
(A.63)

and the unit purchase cost c = 1, the uncertainty set [θ, θ̄] = [−10.5, 10.5], the profit

function associated with θ is of the form,

φ(p, θ) =

 1
8

(
(p− 1)(3− p) + 9975

)
, 1 < p ≤ 6,

(p− 1)(549− 50p), p > 6,
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and the profit function associated with θ̄ is of the form:

φ(p, θ̄) =

 1
8

(
(p− 1)(171− p) + 9975

)
, 1 < p ≤ 6,

(p− 1)(570− 50p), p > 6.

It is easy to verify that both φ(p, θ) and φ(p, θ̄) are concave in p and the optimal

profits are φ∗(θ) = 1247 and φ∗(θ̄) = 1352. By Proposition 3.5.1 and the proof of

Proposition 3.4.2, we can find that p0 = c + φ∗(θ̄)−φ∗(θ)
θ̄−θ = 6 and pl = φ∗(θ̄)−φ∗(θ)

θ̄−θ = 5.

Then, by Proposition 3.4.2, we express the derivative of the regret function R
(
p, y∗(p)

)
as follows:

∂

∂p
R
(
p, y∗(p)

)
=

1

p2

(
p2
(
− φ′(p, θ)

)
− c
(
φ∗(θ̄)− φ∗(θ)

))
(A.64)

By setting ∂
∂p
R
(
p, y∗(p)

)
= 0, we obtain the optimal price p∗ = 6.019. Therefore,

the optimal solution p∗ is larger than the risk-free price p0 with the demand function

defined in (3.11). �

Proof of Proposition 3.5.3. When the demand is of multiplicative form, we have

D(p, θ) = σ(p)θ where θ ≥ 0. The regret function over the interval [pl, ph] is of the

form R1(p, y∗(p); δ) = 2cφ∗ δ
p

+ (θ0 − δ)φ∗ − (θ0 − δ)φ(p, 1). By Proposition 3.5.1,

Proposition 3.5.2, and the definitions of pl = max
{

arg{p : pσ(p) = φ∗, p ≤ p̄∗}, p
}

and ph = min
{

arg{p : pσ(p) = φ∗, p ≥ p̄∗}, p̄
}

, we have pl ≤ p0 ≤ p∗ ≤ ph and

pl, p0, ph are independent of δ. Thus, we have,

p∗ = arg min
p∈[p,p̄]

R
(
p, y∗(p); δ

)
= arg min

p∈[p0,ph]
R1(p, y∗(p); δ) (A.65)

Since p ∈ [p0, ph], where p0 = p̄∗ = p∗ by Proposition 3.5.1, and φ(p, 1) = (p −

c)σ(p) is concave by Assumption 1, φ(p, 1) is decreasing in p ∈ [p0, ph]. By Corol-

lary 2.6.3 in Topkis (2011), δ 1
p

and δφ(p, 1) are submodular in (p, δ) on [p0, ph] ×

[0, θ0] respetively. By Lemma 2.6.1 in Topkis (2011), the supermodularity preserves

under summation, thus, R1

(
p, y∗(p); δ

)
is also submodular in (p, δ) on [p0, ph] ×

[0, θ0]. Let R̃1(p, δ) = −R1

(
p, y∗(p); δ

)
, which is supermodular in (p, δ). By The-

orem 2.82 in Topkis (2011), we can claim that the optimal minimax regret price

p∗ = arg minp∈[p0,ph] R1

(
p, y∗(p); δ

)
= arg maxp∈[p0,ph] R̃1

(
p; δ
)

is increasing in δ.
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When the demand is of the linear additive form, we have D(p, θ) = µ(p) + θ and

µ(p) = A − B · p where A,B > 0. The regret function over the interval [pl, ph] is of

the form:

R1

(
p, y∗(p); δ

)
= cδ(A−Bc+θ0)

Bp
− (A−Bp+ θ0 − δ)(p− c) + (A+θ0−δ−Bc)2

4B
. (A.66)

Consider the price p̂ =
√

c(A−Bc+θ0)
B

, we have,

d

dp
R
(
p, y∗(p); δ

)
|p=p̂ = −

(
(
√
A−Bc+ θ0 −

√
Bc)2 +Bc

)
< 0. (A.67)

By Proposition 2, due to the convexity of the regret function, we have p̂ ≤ p∗. And

it is easy to verify that pl = 1
2B

(A + Bc + θ0) and ph = p̄ with the linear additive

demand, therefore, they are independent of δ. Thus,

p∗ = arg min
p∈[p,p̄]

R
(
p, y∗(p); δ

)
= arg min

p∈[max{p̂,pl},p̄]
R1

(
p, y∗(p); δ

)
. (A.68)

Since p ≥ p̂ =
√

c(A−Bc+θ0)
B

, we can verify that f(p) = p + c(A−Bc+θ0)
Bp

is increasing

in p ∈ [max{p̂, pl}, p̄]. Thus, by Corollary 2.6.3 and Lemma 2.6.1 in Topkis (2011),

R1

(
p, y∗(p); δ

)
=
(
p − c(A−Bc+θ0)

Bp

)
δ − (A − Bp + θ0)(p − c) − δc + (A+θ0−δ−Bc)2

4B
is

supermodular in (p, δ) over [max{p̂, pl}, p̄] × [0, θ0]. Let R̃1(p, δ) = −R1

(
p, y∗(p); δ

)
,

which is supermodular in (−p, δ). By Theorem 2.8.2 in Topkis (2011), we can claim

that the optimal minimax regret price p∗ = arg minp∈[max{p̂,pl},p̄] R1

(
p, y∗(p); δ

)
=

− arg max−p∈[−p̄,−max{p̂,pl}] R̃1(p, δ) is decreasing in δ. �

Proof of Proposition 3.5.4. Before we prove Proposition 3.5.4, we first introduce

the following two lemmas that will be used in the proof of Proposition 3.5.4.

Lemma A.0.5 Let φ̂(p) = pσ(p) and p∗ denote the optimal price under the minimax

regret framework, if the demand function is of multiplicative form and Assumption 1

holds, then φ̂′(p∗) ≤ 0.
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Proof. Let p̂∗ = arg max{p : pσ(p)}, then we have the following optimality

condition, σ(p̂∗) + p̂∗σ′(p̂∗) = 0. Then, we can evaluate the derivative of the regret

function at p̂∗:

R′
(
p, y∗(p)

)
|p=p̂∗ = − 1

(p̂∗)2
φ∗(θ̄ − θ)− φ′(p̂∗)θ (A.69)

= − 1

(p̂∗)2
φ∗(θ̄ − θ) + cσ′(p̂∗)θ (A.70)

< 0. (A.71)

The second equality follows from the optimality condition for p̂∗ and the last inequality

is derived by the monotone relationship between the multiplicative demand and the

unit selling price. Thus, due to the convexity of regret function, we can conclude that

p∗ ≥ p̂∗. Due to the concavity of φ̂(p) by Assumption 1, φ̂(p∗)′ ≤ 0. �

Lemma A.0.6 In the multiplicative demand, let φ̂(p) = pσ(p), φ∗ = maxp̃(p̃−c)σ(p̃)

and p0 denote the corresponding risk-free price, if ph = arg{p : pσ(p) = φ∗, p ≥ p0}

exists, then φ̂′(ph) ≤ 0.

Proof. Due to the concavity of φ̂(p), we only need to prove ph ≥ p̂∗ = arg max{p :

φ̂(p)}. We will prove this claim by contradiction by assuming that p0 ≤ ph < p̂∗.

We first have φ̂(p0) > φ(p0) by the definition of these two functions. In addition, by

Proposition 3.5.1, we have p0 = p̄∗ = p∗ and thus, φ∗ = (p0 − c)σ(p0). Therefore,

for ph ∈ (p0, p̂
∗), we have φ̂(ph) > φ̂(p0) > φ(p0) = φ∗. In short, φ̂(ph) > φ∗, which

contradicts the definition of ph. Thus, we can conclude that if ph exists, then ph ≥ p̂∗

and thus, φ̂′(ph) ≤ 0. �

As shown by Proposition 3.5.2, in the multiplicative demand, the optimal price

p∗ ≥ p0 > pl. Therefore, we need to consider two cases: (i) the optimal price p∗ is an

interior point solution on (pl, ph). (ii) the optimal solution p∗ = ph. Before we discuss

these two cases respectively, recall that in the multiplicative case, φ(p) = (p− c)σ(p)

and φ∗ = maxp(p− c)σ(p). Given the form of the optimal order quantity y∗(p) with
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a fixed price p as presented in Proposition 3.4.2, the derivative of the optimal order

quantity with respect to the unit ordering cost at the optimal price p∗ is of the form:

∂y∗(p∗)

∂c
=
(
− 1

(p∗)2
φ∗(θ̄ − θ) + σ′(p∗)θ

)∂p∗
∂c

+
1

p∗
(θ̄ − θ)∂φ

∗

∂c
. (A.72)

First we consider the case (i) where p∗ is an interior solution, then we have the

following optimality condition for p∗ that always holds in the neighborhood of p∗.

R′
(
p∗, y∗(p∗)

)
=

c

(p∗)2
φ∗(θ̄ − θ)− φ′(p∗)θ = 0. (A.73)

Then, we can take the derivative of equation (A.73) with respect to c:

1

(p∗)2
φ∗(θ̄ − θ) +

c

(p∗)2

∂φ∗

∂c
(θ̄ − θ)− σ′(p∗)θ

=
( 2c

(p∗)3
φ∗(θ̄ − θ)−

(
2σ′(p∗) + (p∗ − c)σ′′(p∗)

)
θ
)∂p∗
∂c

.

(A.74)

Let A = 2c
(p∗)3

φ∗(θ̄− θ)−
(
2σ′(p∗) + (p∗ − c)σ′′(p∗)

)
θ and we have A = 2c

(p∗)3
φ∗(θ̄−

θ) −
(
2σ′(p∗) + (p∗ − c)σ′′(p∗)

)
θ > −

(
2σ′(p∗) + (p∗ − c)σ′′(p∗)

)
θ = −φ′′(p∗) ≥ 0 due

to the concavity of φ(p). Therefore, we can substitute ∂p∗

∂c
in (A.72) with equation

(A.74):

∂y∗(p∗)

∂c
=

1

A

(( 1

(p∗)2
φ∗(θ̄ − θ) +

c

(p∗)2

∂φ∗

∂c
(θ̄ − θ)− σ′(p∗)θ

)(
− 1

(p∗)2
φ∗(θ̄ − θ) + σ′(p∗)θ

)
+

1

p∗
(θ̄ − θ)∂φ

∗

∂c

( 2c

(p∗)3
φ∗(θ̄ − θ)−

(
2σ′(p∗) + (p∗ − c)σ′′(p∗)

)
θ
))

=
1

A

(
(θ̄ − θ)θ

(2φ∗σ′(p∗)

(p∗)2
+ σ′(p∗)

c

(p∗)2

∂φ∗

∂c
− 1

p∗
∂φ∗

∂c

(
2σ′(p∗) + (p∗ − c)σ′′(p∗)

))
+ (θ̄ − θ)2

(
− (φ∗)2

(p∗)4
+

cφ∗

(p∗)4

∂φ∗

∂c

)
− θ2

(
σ′(p∗)

)2
)
.

(A.75)

By equation (A.73), we have θ = −
(

c
(p∗)2

φ∗(θ̄ − θ)
)
/φ′(p∗) since φ(p∗)′ < 0 6= 0 .

Then, we can substitute θ in equation (A.75):

∂y∗(p∗)

∂c
=

1

A

(θ̄ − θ)2

(p∗)4
(
φ′(p∗)

)2

(
− φ′(p∗)2φ∗2 − 2cφ∗2φ′(p∗)σ′(p∗)− σ′(p∗)2c2φ∗2

+ cφ∗φ′(p∗)
∂φ∗

∂c

(
φ′(p∗)− cσ′(p∗) + p∗

(
2σ′(p∗) + (p∗ − c)σ′′(p∗)

)))
<

1

A

(θ̄ − θ)2

(p∗)4
(
φ′(p∗)

)2

(
cφ∗φ′(p∗)

∂φ∗

∂c

(
φ′(p∗)− cσ′(p∗) + p∗

(
2σ′(p∗) + (p− c)σ′′(p∗)

)))
=

1

A

(θ̄ − θ)2

(p∗)4
(
φ′(p∗)

)2 cφ
∗φ′(p∗)

∂φ∗

∂c

((
p∗σ(p∗)

)′
+ (p∗ − c)

(
p∗σ(p∗)

)′′)
≤0.

(A.76)
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By Proposition 3.5.1, we have p∗ ≥ p0 and consequently, φ′(p∗) ≤ 0. Thus, −φ′(p)2(φ∗)2−

2cφ∗φ′(p)σ′(p) − σ′(p)2c2(φ∗)2 < 0. We also showed that A > 0, therefore, the first

inequality is verified. The second equality follows straightforward algebra. For the

second inequality, we know that
(
pσ(p)

)′ |p=p∗ ≤ 0 by Lemma A.0.5 and
(
pσ(p)

)′′ ≤ 0

due to the concavity of pσ(p). Finally, it can be shown that φ∗ is decreasing in c and

thus, ∂φ∗

∂c
< 0. Thus, we can conclude that we have ∂y∗(p∗)

∂c
< 0 for the case (i) where

p∗ is an interior solution.

Consider the case (ii) where the optimal price p∗ = ph and ph is the upper bound

of the optimal price. Hence, the optimality condition (A.73) for p∗ does not always

hold in the neighborhood of p∗. By the definition of ph = arg{p : pσ(p) = φ∗, p ≥ p0},

phσ(ph) = φ∗ always holds and we can take derivative of this equation with respect

to c:

(
σ(ph) + phσ

′(ph)
)∂ph
∂c

=
∂φ∗

∂c
. (A.77)

In this case, ph must exists, otherwise, it reduces to case (i). Then by Lemma A.0.6,

σ(ph)+phσ
′(ph) =

(
pσ(p)

)′ |p=ph < 0 and ∂φ∗

∂c
< 0. Therefore, we have ∂ph

∂c
> 0, which

indicates ph is increasing in c. By equation (A.72), we have:

∂y∗(p∗)

∂c
=
(
− 1

p2
φ∗(θ̄ − θ) + σ′(p)θ

)∂p∗
∂c

+
1

p
(θ̄ − θ)∂φ

∗

∂c
< 0. (A.78)

Because − 1
p2
φ∗(θ̄ − θ) + σ′(p)θ < σ′(p)θ ≤ 0, ∂p∗

∂c
= ∂ph

∂c
> 0, and ∂φ∗

∂c
< 0. The

above inequality is verified consequently. Thus, when p∗ is not the interior solution,

specifically, p∗ = ph, we have ∂y∗(p∗)
∂c

< 0. Therefore, we can conclude that y∗(p∗) is

decreasing in c. �

Proof of Proposition 3.5.5. Using the max-min robust optimization approach,

the optimization problem is of the form:

max
p

(p− c)D(p, θ). (A.79)



143

Let pminimax = arg max{p : (p− c)D(p, θ)}, then we can evaluate the derivative of the

maximized regret R
(
p, y∗(p)

)
at pminimax.

∂

∂p
R
(
p, y∗(p)

)
|p=pminimax

=− c

(pminimax)2

(
φ∗(θ̄)− φ∗(θ)

)
− φ′

(
pminimax, θ

)
=− c

(pminimax)2

(
φ∗(θ̄)− φ∗(θ)

)
< 0.

(A.80)

The first equality follows from the definition of the regret function and the sec-

ond equality follows from the fact that pminimax is the minimizer of the objective

function using the minimax robust optimization. And the last inequality is due

to the fact that φ∗(θ̄) > φ∗(θ) by Proposition 3.4.1. By Proposition 3.5.5 and

∂
∂p
R
(
p, y∗(p)

)
|p=pminimax

< 0, we can conclude that p∗ ≥ pminimax. �

Proof of Theorem 4.4.1. Given all firms’ x, consider bargaining unit (i, j). Dif-

ferentiating the Nash product objective in (4.7) with respect to wi,j, we have

θi,jπj(T,x)− θj,iπi(T,x) = 0,

when πi(T,x), πj(T,x) ≥ 0. If x = 1,
∑

v∈N πv(T,1) = Π > 0. We have that

πi(T,x), πj(T,x) > 0 and the proportional gain allocation condition in (4.8) holds for

all bargaining units. Therefore, the net gain of firm v

πv(T,1) = π0(T,1)
∏

a∈Pv(T )

ρa =

∏
a∈Pv(T ) ρa

1 +
∑

u∈N\{0}
∏

a∈Pu(T ) ρa
Π,∀v ∈ N \ {0}.

The transfer payment wi,j(1) includes the net gains and costs of firm j and all its

successors in the implementation structure T . Therefore,

wi,j(1) =

∑
v∈{j}∪{u:P(j,u)(T )6=∅}

∏
a∈Pv(T ) ρa

1 +
∑

v∈N\{0}
∏

a∈Pv(T ) ρa
Π +

∑
v∈{j}∪{u:P(j,u)(T )6=∅}

cv.

If x 6= 1, either πi(T,x) = πj(T,x) = 0 and wi,j(x) = 0, or the negotiation breaks

down.

Given xl for all l 6= j, optimize the Nash product objective with respect to xj. If

xl = 0 for any l, then xj = 0 (otherwise the negotiation breaks down because firm

j’s disagreement point is violated). If xl = 1 for all l 6= j, then xj = 1. Based on the
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above analysis on the net gains, all firms committing to ESR investment (i.e., x = 1)

is the Pareto-dominant equilibrium. �

Proof of Corollary 4.4.1. For any feasible implementation structure T , when

θi,j = θj,i = 0.5 for all i, j ∈ N such that ti,j = 1, by (4.8), we have πi(T,x) =

πj(T,x) for all i, j ∈ N . By Theorem 4.4.1, we have the equilibrium x∗ = 1 and∑
i∈N πi(T,x

∗) = R −
∑

i∈N ci. Therefore, πi(T,x
∗) = 1

n+1
(R −

∑
i∈N ci), which is

equal to the Shapley value given in (4.5). �

Proof of Theorem 4.4.2. Let Pv(AESR) denote the set of all directed paths from

node 0 to node v in network (N,AESR). By exchanging the order of minimization and

summation, we have

∑
v∈N\{0}

min
P∈Pv(AESR)

∏
a∈P

ρa

=
∑

v∈N\{0}

min
T∈T (AESR)

∏
a∈Pv(T )

ρa

 ≤ min
T∈T (AESR)

∑
v∈N\{0}

∏
a∈Pv(T )

ρa

Let da = log ρa for all a ∈ AESR. Consider each term of the summation in the left-hand

side of the above inequality. By minimizing the logarithm of the product, each term

is equivalent to finding the shortest path from node 0 to node v in (N,AESR) with arc

weight da. When (N,AESR) is a directed acyclic graph and node 0 is connected with

all other nodes, it is well known that there exists a tree T rooted at node 0, such that

Pv(T ) is a shortest path from 0 to v for all v ∈ N \ {0}. This shortest path tree is

therefore the optimal implementation structure. �

Proof of Theorem 4.4.3. Part i) If the retailer chooses to negotiate with firm

j in tier k directly, then the ESR gain ratio of firm j is
πj(T,1)

π0(T,1)
= ρ0. If there

exists tier k′ such that ρk′ < 1, consider delegating the negotiation responsibility

to firm i in tier k′ where P(i,j)(A
ESR) 6= ∅, then the ESR gain ratio of firm j is

πj(T,1)

π0(T,1)
= πi(T,1)

π0(T,1)
ρk′ <

πi(T,1)
π0(T,1)

≤ ρ0. Therefore, in order to minimize the ESR gain ratio

of firm j in tier k, the retailer chooses not to negotiate with firm j in tier k directly.

Part ii) If ρk′ ≥ 1 for all k′ < k, then for any directed path that connects the

retailer and firm j in tier k in the ESR network, {(0, ik1), (ik1 , ik2), . . . , (ikm , j)}, where

iks is the firm in the intermediate tier ks, the resulting gain ratio of firm j is
πj(T,1)

π0(T,1)
=
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ρ0

∏m
s=1 ρks ≥ ρ0. Thus, in the retailer preferred implementation structure, the retailer

negotiates with firm i directly to minimize her ESR gain ratio. �

To prove Corollary 4.4.2 using the following stronger version of Theorem 4.4.3.

Theorem 4.4.3A For the network described in Theorem 4.4.3,

i) if there exists a k ∈ {1, 2, . . . , d − 1} such that ρk < 1, then firms in tier i ∈

{0, 1, k − 1} do not interact directly with suppliers in tiers {k + 1, k + 2, . . . , d}

in the retailer-preferred ESR implementation.

ii) if there exists a k ∈ {1, 2, . . . , d − 1} such that ρk > 1, then firms in tier k do

not interact with suppliers in tiers {k + 1, k + 2, . . . , d} in the retailer-preferred

ESR implementation.

Proof. The proof is similar to that of Theorem 4.4.3 by replacing the retailer with

a supplier in tier i < k. �

Proof of Corollary 4.4.2. (i) If ρd > 1, let kD = arg min{s : ρs > 1, s = 1, 2, . . . , d}.

If ρd ≤ 1, let kD = d. Because ρk is increasing, we have ρk ≤ 1, for k = 0, 1, 2, . . . , kD−

1, and ρk > 1, for k = kD, kD + 1, . . . , d − 1. First, consider tier k ≤ kD. If k = 1,

tier k suppliers are dealt with by their immediate downstream, that is, the retailer.

If k > 1, by the definition of kD, we have ρk−1 < 1. By Theorem 4.4.3A, firms in tiers

0, 1, . . . , k−2 do not interact directly with suppliers in tier k. Therefore, negotiations

with tier k suppliers are delegated to their immediate downstream, that is, tier k− 1.

(ii) If ρd ≥ 1, let kI = d. If ρd < 1, let kI = arg min{k : ρk < 1, k = 1, 2, . . . , d}.

Since ρk is decreasing, we have ρk ≥ 1, for k = 0, 1, 2, . . . , kI − 1, and ρk < 1, for

k = k, kI + 1, . . . , d− 1. By Theorem 4.4.3, the retailer negotiates directly with firms

in tier k = 1, 2, . . . , kI . Consider tier k > kI . By the definition of kI , we have ρk1 < 1.

Then, by Theorem 4.4.3A, firms in tiers 0, 1, . . . , k − 2 do not interact directly with

firms in tier k. Therefore, negotiations with firms in tier k are delegated to their

immediate downstream, that is, tier k − 1. �
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Proof of Theorem 4.5.1. Consider bargaining unit (i, j) for some ti,j = 1. For a

given x, differentiating the Nash product with respect to wi,j, we have

θi,jπj(T,x)− θj,iπi(T,x) = 0,

when πi(T,x), πj(T,x) ≥ 0. If R(x)−
∑

v∈N cv(xv) > 0, then the proportional alloca-

tion condition in (4.8) holds for all bargaining units. Similar to the proof of Theorem

4.4.1, we have the transfer payment given in Theorem 4.5.1. If R(x)−
∑

v∈N cv(xv) ≤

0, either πi(T,x) = πj(T,x) = 0 and wi,j(x) = 0 or the negotiation breaks down.

Given xl for all l 6= j (denoted by x−j), optimize the Nash product with respect

to xj. If maxxj{R(xj,x−j)−
∑

l∈N cl(xl)} > 0, then both πi and πj are positive and

proportional to R(x) −
∑

v∈N cv(xv) when xj is optimized. Therefore, the optimal

xj ∈ [0, 1] satisfies the following first-order condition, which is sufficient under our

assumption,

∂R

∂xj
− ∂cj
∂xj

+ λjI(xj = 0)− µjI(xj = 1) = 0, λj, µj ≥ 0. (A.81)

Note that condition (A.81) for all j ∈ N provides the optimality condition for the

centralized optimal investment problem. Therefore, x∗ is an equilibrium investment

level of the multi-unit bargaining. Furthermore, because R(x)−
∑

i∈N ci(xi) is strictly

concave, there does not exist any other equilibrium x such that R(x)−
∑

v∈N cv(xv) >

0. If maxxj{R(xj,x−j)−
∑

i∈N ci(xi)} ≤ 0, then xj = 0. (Otherwise the negotiation

breaks down because firm j’s disagreement point is violated.) Based on the above

analysis on the firms’ profits, all firms make the centralized optimal investment x∗

and receive positive gains in the Pareto-dominant equilibrium. �

Proof of Theorem 4.5.2. We first prove the result when in step 2 of the game, all

firms in the current partial implementation structure Tk (instead of only the leaf nodes

in Nk) can approach their upstream suppliers. We then show that in the equilibrium,

the non-leaf nodes at each stage will not approach any upstream suppliers.

Before going into the proof, we introduce some notations and define the strategy

profile corresponding to the retailer-preferred implementation structure. Let Tk denote
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the partial implementation structure after round k. Let Vk denote the nodes in

Tk, that is Vk = ∪kl=1Nl. Let V̄k = N\Vk. Let T (Tk) denote the set of spanning

trees on (N,AESR) containing subtree Tk. Let T ∗(Tk) denote the retailer-preferred

implementation structure within T (Tk), that is,

T ∗(Tk) = arg max
T∈T (Tk)

π0(T,1).

Let Ik(j) denote the set of nodes in Vk that offer to negotiate with j for some j ∈

V̄k. In the strategy profile corresponding to the retailer-preferred implementation

structure, given history Tk, a firm i ∈ Vk offers to negotiate with j ∈ V̄k, if and only if

(i, j) ∈ T ∗(Tk), and a firm j ∈ V̄k such that Ik(j) 6= ∅ chooses to negotiate with node

i∗k(j) = arg max
i∈Ik(j)

ρi,j ∏
a∈Pi(Tk)

ρa

 . (A.82)

Let Tk+1(Tk) denote the set of all possible partial implementation structures after

round k + 1, that is,

Tk+1(Tk) =
{
T ∈ T (Tk) : T\Tk ⊂

{
(i, j) ∈ AESR : i ∈ Vk, j ∈ V̄k

}}
.

Let T ∗k+1(Tk) denote the partial implementation structure after round k + 1, under

the strategy profile corresponding to the retailer-preferred implementation structure.

The proof is based on the following key observation. Consider round k + 1 given

history Tk. With some abuse of notation, let πi(T ) = πi(T,1) for all i ∈ N . For any

node i in Vk, and any implementation structure T in T (Tk), we have

πi(T ) = π0(T )
∏

a∈Pi(Tk)

ρa. (A.83)

In other words, the net gain of any node in Vk is a fixed proportion of the retailer’s

net gain, regardless of the final implementation structure. This suggests that in each

round, all firms in Vk have the same incentive as the retailer does.

Observe that there are at most |N |−1 rounds in the game. Assume there are m <

|N | rounds along an equilibrium path. The partial implementation structure before
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the last round takes place is Tm−1. Without loss of generality, assume T ∗m(Tm−1) =

T ∗(Tm−1).

First, consider the case of simultaneous moves in each round. There are two stages

in each round of the game. In Stage I, firms in Vk−1 approach certain nodes in V̄k−1

to initiate ESR negotiation. In Stage II, each firm in V̄k−1 who has been contacted

by at least one firm in Vk−1 can choose to partner with one of those firms or refuse

to partner with any firm. In the latter case, the game ends and the ESR program

fails. Consider Stage II of round m. For any node in V̄m−1, the choice specified in

(A.82) maximizes its payoff, regardless of others’ actions. Therefore, these choices

form a Nash equilibrium of the subgame starting from the second stage of round m.

Specifically, when firms in Vm−1 act according to T ∗m(Tm−1), each firm in V̄m−1 will

partner with the one and only one firm that has approached it, which is the unique

dominant strategy equilibrium. Next consider Stage I. The implementation struc-

ture T ∗m(Tm−1) = T ∗(Tm−1) maximizes the retailer’s net gain among all structures in

T (Tm−1). By (A.83), it also maximizes the net gain of any node in Vm−1. There-

fore, it is easy to see that the strategy profile corresponding to the retailer-preferred

implementation structure is a Nash equilibrium of the subgame in the last round.

Consider round k < m with history Tk−1. Assume that the strategy profile corre-

sponding to the retailer-preferred implementation structure is a Nash equilibrium for

any subgame starting from round k + 1 with history Tk. Furthermore, assume that

all players believe that the retailer-preferred implementation structure T ∗(Tk) will be

the equilibrium outcome of the subgame starting from round k + 1 with history Tk.

First, consider Stage II of round k. Following the argument for round m, it is easy to

see that for any firm i ∈ V̄k−1 with Ik−1(i) 6= ∅, the choices specified in (A.82) form a

Nash equilibrium of the subgame starting from Stage II of round k. Specifically, if the

firms in Vk−1 act according to T ∗k (Tk−1), then each firm in V̄k−1 will be approached by

at most one firm in Vk and will agree to partner with the firm (if any). Next, consider

Stage I of round k. Because T ∗
(
T ∗k (Tk−1)

)
= T ∗(Tk−1), we have

π0

(
T ∗
(
T ∗k (Tk−1)

))
= π0

(
T ∗(Tk−1)

)
≥ π0

(
T ∗(Tk)

)
, ∀Tk ∈ Tk(Tk−1).
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By (A.83), we have,

πi

(
T ∗
(
T ∗k (Tk−1)

))
≥ πi

(
T ∗(Tk)

)
, ∀Tk ∈ Tk(Tk−1), ∀i ∈ Vk.

Therefore, the strategy profile corresponding to the retailer-preferred implementation

structure is a Nash equilibrium of the subgame starting from round k. Furthermore,

note that under the strategy profile corresponding to the retailer-preferred imple-

mentation structure, non-leaf nodes in Tk will not approach any supplier. Therefore,

we can restrict the game to the original setting that only firms in Nk can approach

their suppliers. Using backward induction, this implies that the strategy profile cor-

responding to the retailer-preferred implementation structure is a subgame perfect

Nash equilibrium for the sequential ESR relationship formation game with simulta-

neous moves, and the equilibrium outcome is the retailer preferred implementation

structure, that is, the optimal solution to (4.12).

Next, consider the case of sequential moves in each round. In this case, the k-th

round of the game has 2|Tk−1| stages, including “virtual stages” in which all players

have empty action sets. In an odd-number stage, a firm in Tk−1 approaches certain

firms (which could be none) in V̄k−1. In the subsequent even-number stage, each

approached firm (which could be none) either agrees or refuses to negotiate with the

approaching firm. In the latter case, the game stops and the entire ESR program fails,

causing all firms to have zero payoff. Therefore, for any approached firm in any even-

number stage of any round, agreeing to negotiate with the approaching firm maximizes

its net gain regardless of all other actions. Now, consider odd-number stages. Let

σk = (σk1 , . . . , σ
k
|Tk|) denote the random permutation followed by the nodes in Tk in

round k+ 1. Let Tk,i denote the partial implementation structure after the i-th node

in σk has established all its negotiation relations, and let Vk,i denote the set of nodes

in Tk,i. Start with the last odd-number stage (i.e., stage 2|Tm−1|−1) of the last round

(i.e., round m). Without loss of generality, assume (σm−1
|Tm−1|, j) ∈ T

∗(Tm−1,|Tm−1|−1) for

all j ∈ V̄m−1,|Tm−1|−1. It is easy to see that acting according to the retailer-preferred

implementation structure T ∗(Tm−1,|Tm−1|−1) maximizes firm σm−1
|Tm−1|’s payoff. Consider

stage l < Tm−1. Assume acting according to T ∗(Tm−1,i−1) is optimal for σm−1
i , i =
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l + 1, . . . , |Tm−1|. The result in (A.83) implies that acting according to T ∗(Tm−1,l−1)

is optimal for σm−1
l . Therefore, the strategy profile corresponding to the retailer-

preferred implementation structure is a Nash equilibrium for the subgame in round

m. Using backward induction and following similar arguments, we can show that the

retailer-preferred implementation structure is a sub-game perfect Nash equilibrium.

Furthermore, a non-leaf node in Tk will not approach any node in V̄k. Therefore,

we can restrict the game to the original setting, that is, only the leaf nodes in Nk

can approach upstream firms. Consequently, the strategy profile corresponding to the

retailer-preferred implementation structure is a subgame perfect Nash equilibrium for

the sequential ESR implementation delegation game with sequential moves, and the

equilibrium outcome is the retailer preferred implementation structure, that is, the

optimal solution to (4.12). �

Proof of Theorem 4.5.3. Suppose that the retailer decides to initiate both ESR

programs. Consider a negotiation pair (i, j), with all other bilateral contracts fixed.

According to the Nash bargaining solution, the transfer payment allocates the total

trade surplus proportionally to firms according to their bargaining power. Thus, in

anticipation of a positive share of the total gain, the upstream firm will accept the

offer from the downstream firm. Similarly, we can obtain the negotiation outcome

of all other bargaining units. By applying the Nash-Nash solution, we derive the

equilibrium gains of all firms when both ESR programs are implemented by solving

the system of equations in the form of (4.9) and (4.13). Specifically, by (4.14), we

derive the following∑
i∈Nk

πi(T,1) = Γk(T )(π0(T,1)−Dk
0(T,1)), k ∈ {1, 2}. (A.84)

In addition, we observe that
∑

j∈{u∈N3−k:t0,u=1}w0,j(1) =
∑

j∈N3−k
πj(T,1) + C3−k.

Then, the disagreement of the retailer Di
0, i ∈ Nk can be computed as

Di
0(T,1) = Dk

0(T,1) ≡ R3−k − C3−k − c0,3−k −
∑

j∈N3−k
πj(T,1) = Π3−k −

∑
j∈N3−k

πj(T,1).(A.85)

Combining the above two equations, we have,

Πk −D3−k
0 (T,1) = Γk(T )(π0(T,1)−Dk

0(T,1)), k ∈ {1, 2}. (A.86)
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With the above relations between retailer’s disagreement points and gain, with equa-

tion (4.15), we can derive the retailer’s gain, which is given by

π0(T,1) =
1− Γ1(T )Γ2(T )

(1 + Γ1(T ))(1 + Γ2(T ))
Π +

Γ2(T )

1 + Γ2(T )
Π1 +

Γ1(T )

1 + Γ1(T )
Π2. (A.87)

Moreover, the disagreement point of the retailer is given by,

Di
0(T,1) = Dk

0(T,1) ≡ Π3−k −
Γ3−k(T )

1 + Γ3−k(T )
(Π− Πk), i ∈ Nk and k ∈ {1, 2}.(A.88)

In addition, we obtain the suppliers’ gains.

πi(T,1) =
Π− Π3−k

1 + Γk(T )

∏
a∈Pi(T )

ρa, i ∈ Nk and k ∈ {1, 2}. (A.89)

By the assumption, we have Π−Π3−k ≥ Π− (Π3−k)
+ ≥ (Πk)

+ ≥ 0. As indicated

by the above equations (A.89), the equilibrium gains of suppliers are nonnegative.

�

Proof of Theorem 4.5.4. By Theorem 4.5.3, the gain of the retailer by implement-

ing both ESR programs is given by

π0(T,1) =
1− Γ1(T )Γ2(T )

(1 + Γ1(T ))(1 + Γ2(T ))
Π +

Γ2(T )

1 + Γ2(T )
Π1 +

Γ1(T )

1 + Γ1(T )
Π2. (A.90)

Since N1 and N2 are disjoint sets, the value of Γk(T ) is independent of that of Γ3−k(T ).

Thus, we have

∂

∂Γk(T )
π0(T,1) =

−Π + Π3−k

(1 + Γk(T ))2
≤ 0, k ∈ {1, 2}. (A.91)

The above inequality holds due to the assumption on the gains of ESR programs.

Specifically, Π − Π3−k ≥ Π − (Π3−k)
+ ≥ (Πk)

+ ≥ 0. Therefore, the retailer’s gain is

maximized when both Γ1(T ) and Γ2(T ) are minimized, that is T = T1 ∪ T2 �

Proof of Corollary 4.5.1. By the assumptions that Π ≥ (Π1)+ + (Π2)+, the

allocation based on Shapley value can achieve the grand coalition. To show that this

allocation is a special case of the multi-unit bargaining approach, we consider the

case where the bargaining power of suppliers for the same product family are equal

such that the gain is distributed equally within a product family. Thus, ρi,j = 1 if
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i 6= 0 and (i, j) ∈ AESR. Let ρk denote the bargaining power of a supplier of product

family k relative to the retailer. In other words, ρ0,i = ρk, i ∈ Nk, k ∈ {1, 2}. For the

ease of exposition, let nk = |Nk|, k = 1, 2. By Theorem 4.5.3, the gains of all firms

are given by,

π0(T,1) =
1−

(
n1ρ1

)(
n2ρ2

)(
1 + n1ρ1

)(
1 + n2ρ2

)Π +
n2ρ2

1 + n2ρ2

Π1 +
n1ρ1

1 + n1ρ1

Π2, (A.92)

πi(T,1) =
ρk

1 + nkρk

(
Π− Π3−k

)
, i ∈ Nk, k ∈ {1, 2}. (A.93)

Suppose the gain sharing scheme from multi-unit bargaining coincides with the allo-

cation based on Shapley value. Then, we have,

ρk
1 + nkρk

(
Π− Π3−k

)
= φk(N), k ∈ {1, 2}. (A.94)

Note that π0(T,1) = φ0(N) is redundant as we have
∑

i∈N φi(N) =
∑

i∈N πi(T,1).

Since the grand coalition is achieved according to the allocation based on the Shapley

value, we have φ0(N) + n3−kφ3−k(N) ≥ (Π3−k)
+, k = 1, 2. In addition, Π = φ0(N) +

n1φ1(N) + n2φ2(N). Thus, we have

Π− Π3−k − nkφk(N) ≥ Π− (Π3−k)
+ − nkφk(N) ≥ 0. (A.95)

Thus, we can set

ρk =
φk(N)

Π− Π3−k − nkφk(N)
∈ [0,∞), k ∈ {1, 2} (A.96)

such that the above equations (A.94) hold. This completes the proof. �

A.1 Efficient Algorithms for Finding the Implementation Structure

Theorem 4.4.2 establishes that finding the retailer’s preferred implementation

structure is equivalent to a shortest path tree problem. Therefore, one can apply

known algorithms for the shortest path tree problem to find the optimal implementa-

tion structure in order to maximize its gain share from the ESR program. As we have

discussed in §§4.4.2, most supply chains are typically acyclic. It is well known that
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the shortest path tree problem on a directed acyclic graph can be solved in linear

time (see, e.g., Lawler, 1976). We describe a linear-time algorithm for finding the

optimal implementation structure.

Algorithm 3 The optimal implementation structure when (N,A) is acyclic.

1: Initialization

2: %(0)← 1, d(i)← 0, %(i)← +∞, p(i)← NULL, ∀i ∈ N \{0}, D ← {0}, C ← {0},

and U ← ∅

3: for (i, j) ∈ AESR do

4: d(j)← d(j) + 1

5: end for

6: Construction

7: while D 6= N do

8: for i ∈ C do

9: for j ∈ {k : (i, k) ∈ AESR} do

10: d(j)← d(j)− 1

11: if d(j) = 0 then

12: U ← U ∪ {j}

13: end if

14: if %(j) > %(i) · ρi,j then

15: %(j)← %(i) · ρi,j and p(j)← i

16: end if

17: end for

18: end for

19: C ← U , D ← D ∪ U , and U ← ∅

20: end while

Algorithm 3 iteratively updates the cost %(i) to reach node i ∈ N\{0}. Each

iteration starts with a subtree described by {p(i), i ∈ D}, where the set D contains

the nodes in the current subtree and p(i) indicates the predecessor of node i in the
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subtree. The set C records leaf nodes in the subtree. The set U consists of the supplier

nodes that can be added into the subtree in this iteration. This algorithm iteratively

finds the cheapest way to reach the nodes not in the subtree from the leaf nodes.

It is easy to see that the initialization stage of Algorithm 3 takes Θ(|N |+ |AESR|)

time and the construction stage takes Θ(|AESR|) time. The total running time is

therefore Θ(|N | + |AESR|). For general networks with cycles, if there does not exist

a cycle in the ESR network with a negative cycle length (in our problem, a negative-

length cycle corresponds to a cycle C with
∏

a∈C ρa < 1), then the Bellman-Ford

algorithm (Ford, 1956; Bellman, 1958) can be used to find the shortest path tree in

Θ(|N ||AESR|) time. As we have discussed in §§4.4.2, supply chains with cycles are

not common in practice. Therefore, we omit the detailed algorithm for this case.
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B. ADDITIONAL NUMERICAL RESULTS

B.1 An Example with Non-unimodal Profit Function

In the classical pricing newsvendor problem, certain conditions are imposed on

the random demand to guarantee that the expected profit function is unimodal or

quasiconcave. For example, a class of literature assumes that the distribution of

the random factor is generalized increasing failure rate (GIFR). Nevertheless, our

framework does not require the restrictive assumptions on the distribution of the

random factor. We will present a case in which our approach can find more robust

solutions compared to the traditional approach when the distribution of the random

factor is not necessarily GIFR. Specifically, we consider the additive demand of which

the demand function is of the quadratic form, i.e., d(p) = a − bp2. The underlying

distribution is the beta distribution with parameters (α, β), which does not have

GIFR (i.e., α, β ≤ 1). For the traditional approach, given the unit selling price p,

the firm can determine the optimal order quantity y using the quantile information

of demand distribution. Then, the firm searches along the dimension of unit selling

price to find the optimal one. Since the distribution of the random factor may not

be GIFR, the firm may obtain local optimal solutions as the objective function is not

necessarily unimodal. On the other hand, the firm can also apply the minimax regret

approach with the lower and upper limits of the random factor to determine the unit

selling price and the order quantity to minimize the maximum regret. Figure B.1

presents the expected profit function with respect to the unit selling price and marks

the optimal minimax price and the corresponding expected profit. We observe that

while the traditional approach may choose the decisions that lead to the sub-optimum,

the minimax regret approach could find a more robust one.
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Notes. Consider the additive demand function D(p, θ) = a− bp2 + θ, where a = 20, b = 2.2, and [θ, θ̄] = [−4, 6]. The

unit ordering cost c = 1. The underlying random factor follows the beta distribution with (α, β) = (0.01, 0.01).

Fig. B.1.: An numerical example when GIFR does not hold

B.2 Numerical Comparison of Minimax Regret and Max-min Robust

Frameworks

We conduct a numerical experiment that compares the performance of the mini-

max regret approach and the max-min robust optimization approach with the bench-

mark that adopts the traditional newsvendor model with complete demand informa-

tion. Since the max-min robust optimization approach only focuses on the worst-case

scenario, the decisions obtained by the max-min robust optimization approach are

conservative and the corresponding expected profit provides a lower bound of the

optimal expected profit. Specifically, if we fix the mean of the random factor and

vary its variance, we find that the minimax regret approach consistently outperforms

the max-min robust optimization approach. Specifically, we set the mean to 0.3, 0.5,

and 0.7 where the random factor follows the beta distribution. In Figure B.2, we

first observe that expected profits using decisions obtained by both approaches are
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decreasing in the demand variability with a fixed mean. In addition, when the mean

of the random factor is increasing, the expected profit using decisions obtained by

the minimax regret approach are improved. On the contrary, the performance of

the max-min robust optimization approach cannot benefit from such changes in the

underlying distribution.
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Notes. (i) Consider the additive demand function, D(p, θ) = a− bp+ θ, where a = 30, b = 5, and [θ, θ̄] = [−2, 2]. The

unit ordering cost c = 1. (ii) The underlying random factor follows the beta distribution.

Fig. B.2.: Performance comparison varying variance

In the previous analysis, we use the maximum and minimum of realizations of the

random factor as the upper and lower bounds to construct the uncertainty set for the

minimax regret framework and the max-min robust optimization approach. In the

following numerical study, we investigate the effect of the choice of the uncertainty

sets on the performance of both approaches. Specifically, suppose the firm only knows

the α/2 and (1− α/2) quantile of the random factor and constructs the uncertainty

set with this quantile information. We consider the linear additive demand and α

is set to 0.1, 0.2 and 0.3 respectively. As shown in Figure B.3, we compare the

performance of the two approaches with different uncertainty sets while varying the

variance with a fixed mean. We observe that the performance of the minimax regret
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framework is robust with different quantile-based uncertainty sets while that of the

max-min robust optimization approach highly depends on the choice of uncertainty

sets. Because when the lower limits of the uncertainty sets are increasing, the solution

derived by the max-min robust optimization approach becomes less conservative as

it is forced to order larger quantities.
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Notes. (i) Consider the additive demand function, D(p, θ) = a− bp+ θ, where a = 30, b = 5, and [θ, θ̄] = [−2, 2]. The

unit ordering cost c = 1. The underlying random factor follows the beta distribution. Confidence level α is set to 0.1,

0.2, and 0.3.

Fig. B.3.: Robust optimization with quantile-based intervals

In summary, we compare the minimax regret approach and the max-min robust

optimization approach numerically in this section. We first show that the minimax

approach can generate higher expected profits compared to the max-min robust opti-

mization approach when the mean of the random factor is moderate to large. Second,

decisions obtained by the minimax regret approach always leads to larger expected

consumption. Third, the performance of the minimax regret approach is robust with

different choices of the uncertainty sets while that of the max-min robust optimization

approach highly depends on such choices. Therefore, the minimax regret approach

can provide more robust solutions than the max-min robust optimization approach

in the context of pricing newsvendor problem.
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B.3 Robustness Check for the Choice of Uncertainty Sets

In this section, we will show that the performance of the minimax regret approach

does not highly depend on the choice of uncertainty set in the data-driven setting. We

evaluate and compare the performance of the minimax regret approach with different

sample sizes, demand variability, and confidence levels α in a data-driven setting

described as in Section 3.6 and summarize the results in Figure B.4. We find that the

performance of the minimax regret framework is stable when α is ranging from 0.2 to

0.6 with different sample sizes and small-to-moderate demand variability. When the

demand variability is large, the performance remains to be stable when α is ranging

from 0.3 to 0.6. Specifically, we define the following metric, relative variation, to

measure the robustness of the minimax regret framework over the interval [α, ᾱ]:

supα∈[α,ᾱ] Φ(α)− infα∈[α,ᾱ] Φ(α)

maxp,y E[φ(p, y)]
× 100%. (B.1)

where Φ(α) = Eθ

[
ED[φ

(
p∗α(D), y∗α(D)

)
]
]

is the expected profit with optimal decisions(
p∗α(D), y∗α(D)

)
derived from the minimax regret framework using observed data D.

The relative variation essentially measures the maximum fluctuation of the perfor-

mance of the minimax regret framework compared to the hindsight optimal expected

profit over a certain range of the confidence level α. When the demand variability

is small (σ = 1), the relative variation is ranging from 0.14% to 0.17%. When the

demand variability is moderate (σ = 3), the relative variation is ranging from 0.28%

to 0.37%. When the demand variability is large (σ = 5), the relative variation lies in

between 0.49% and 0.82%. Thus, the minimax regret approach is robust with differ-

ent choice of uncertainty sets and we choose α = 0.4 to construct the uncertainty set

for the numerical experiments in the main body.
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Notes. (i) Consider an additive demand function, D(p, θ) = a − bp + θ where a = 30, b = 5. The random factor

θ ∼ N (0, σ2), where σ is set to 1, 3, and 5. The unit ordering cost c = 1. (ii)The confidence level α ranges from 0.1

to 0.7. The sample size n is set to 8, 16, 24.

Fig. B.4.: Choice of confidence level
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