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A better way to improve understanding and quantification of nitrous oxide (N2O) emitted from 

intensive maize cropping systems is to develop an advanced emissions measurement method 

This study developed an open path (OP) method to measure N2O emissions from four adjacent 

maize plots managed by tillage practices of no-till (NT) and chisel plow (ChP), and different 

nitrogen (N) treatments from 2014 to 2016. Anhydrous ammonia (220 kg NH3-N ha
-1

) was 

applied in once or equally split (full vs. split rate) and applied in different timing (Fall vs. 

Spring). The spring N application occurred either before planting (pre-plant) or in season (side-

dress). Emissions measurements were conducted by using the OP method (the scanning OP 

Fourier transform infrared spectrometry (OP-FTIR) + the gas point-sampling system + a 

backward Lagrangian stochastic (bLS) dispersion model) and static closed chamber methods. 

The performance and feasibility of the OP  measurements were assessed by a sensitivity analysis, 

starting with errors associated with the OP-FTIR for calculating N2O concentrations, and then 

errors associated with the bLS model for estimating N2O emissions. The quantification of N2O 

concentrations using the OP-FTIR spectrum was influenced by ambient humidity, temperature, 

and the path length between a spectrometer and a retro-reflector. The optimal quantitative 

method mitigated these ambient interference effects on N2O quantification. The averaged bias of 

the calculated N2O concentrations from the spectra acquired from wide ranges of humidity (0.5 – 

2.0 % water vapor content), temperature (10 – 35 °C), and path length (100 – 135 meters) was 

1.4 %. The precision of the OP-FTIR N2O concentrations was 5.4 part per billion
 
(3σ) in a 

stationary flow condition for a 30-minute averaging period. The emissions measurement from 

multiple sources showed that the field of interest was likely interfered by adjacent fields. Fields 

with low emission rates were more sensitive to the adjacent fields with high emissions, resulting 

in substantial biases and uncertainties. The minimum detection limit of the N2O emission rates 

was 1.2 µg m
-2

 s
-1

 (MDL; 3σ). The OP measurements showed that the NT practice potentially 
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reduced N2O emission compared with ChP. Under the long-term NT treatments, the split-N rate 

application (110 kg NH3-N ha
-1

 in the fall and spring) resulted in lower N2O emissions than the 

full application (220 kg NH3-N ha
-1

 in the fall). The management of NT coupled with split-N rate 

application minimized N2O emissions among treatments in this study, resulting in N2O-N losses 

of 3.8, 13.2, and 6.6 N kg ha
-1

 over 9-, 35-, and 20-days after the spring NH3 application in 2014, 

2015, and 2016, respectively. The spring pre-plant N application in 2015 also resulted in higher 

N2O emissions than the spring side-dress application in 2016, and the increased N2O-N loss was 

corresponding to lower N recovery efficiency in 2015 measurements. A comparison of chamber 

and OP measurements showed that soil N2O emissions were likely underestimated by 10x 

without considering the wind-induced effect on gas transport at the ground-atmospheric interface. 

This study showed that the OP method provides a great opportunity to study agricultural N2O 

emissions as well as management optimization for the sustainability of the agroecosystems. 
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 INTRODUCTION CHAPTER 1.

1.1 Background and Research Needs 

The awareness of agricultural contribution to the global greenhouse gas (GHG) burden in the 

atmosphere has been increasing in the past decade (e.g., 54% of non-CO2 emissions from 

agriculture in 2005) (IPCC, 2007; Smith et al., 2008; US-EPA, 2012; Reay et al., 2012; 

Davidson and Kanter, 2014). In 2010, agricultural activities contributed between 5.2 and 5.8 

GtCO2eq yr
-1

 (n x 10
9
 tons of CO2 equivalent per year) non-CO2 emissions, accounting for 10-12% 

global anthropogenic emissions (IPCC, 2014). Approximately 2.0 GtCO2eq (i.e., 34% of non-

CO2 emissions) are N2O emitted from agricultural soils predominantly because of nitrogen (N) 

fertilizer uses and field management practices. This value was projected to increase to 2.5 

GtCO2eq yr
-1

 by 2030 (Davidson, 2009; US-EPA, 2012). The atmospheric N2O concentration 

has significantly increased from 270 (pre-industrial era) to 329 (NOAA) part per billion (ppb) 

and likely increases to 350 ppb by 2050 (Davidson, 2012) due to a growing human population 

and activities (IPCC, 2007). Soil N cascades result in a great negative impact on the environment. 

For instance, N2O is a strong ozone-depleting substance and a potent GHG that is a highly 

effective trap of infrared radiation (i.e., a global warming potential value of 310 on a 100-year 

timescale) (Mosier, 2004; Ravishankara et al., 2009). From an economic standpoint, N losses via 

the fertilizer-induced N2O and NH3 emissions from soils during growing seasons indicate 

inefficient uses of N fertilizers for cereal production (Raun and Johnson, 1999; USDA-ERS, 

2018). Fulfilling the growing demands of food for feeding the expanding world populations will 

increase N fertilizer uses (FAO, 2017) as well as soil N2O and NH3 emissions. Therefore, 

efficiently using N fertilizers to benefit the agroecosystem needs for action (Akiyama, 2010; 

Linquist et al., 2012; Decock, 2014). Different field (e.g., reduced tillage) and N (e.g., 

appropriate N source, rate, timing, placement, and uses of nitrification inhibitors) management 

practices have been proposed to reduce soil N2O emissions (Snyder et al., 2009, Venterea et al., 

2011; Decock, 2014; Lam et al., 2017). 

 

Soil N2O emissions are mainly a result of microbial transformation (i.e., nitrification and 

denitrification) of reactive nitrogen (Nr) from biological-fixed N, the decomposed agricultural 
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residues, and N fertilizers (Mosier et al., 1996). Dynamic changes in the environment (e.g., 

climate or soil properties) make N2O emissions highly variable and complex (Mosier at al., 1998; 

Butterbach-Bahl and Dannenmann, 2011; Venterea et al., 2012; Butterbach-Bahl et al., 2013). 

Closed chamber methods are the most common approach to measure soil N2O fluxes for 

establishing the ecologically friendly practices (e.g., zero tillage) or land-uses to mitigate N2O 

emissions mostly due to their simple concept and operation (Hutchinson and Mosier, 1981; 

Eichner, 1990; IPCC, 2006; Smith et al., 1995; Denmead, 2008). The inherent limitations of 

chamber methods (e.g., footprint < 1 m
2
; daily-to-weekly sampling intervals) could lead to biases 

in N2O estimations because of the temporal and spatial heterogeneity of soil N2O emissions 

(Laville et al., 1999; Rochette and Eriksen-Hamel, 2008; Denmead, 2008; Venterea et al., 2009; 

Butterbach-Bahl et al., 2013). The low sampling frequency, for instance, resulted in a temporal 

gap of missing data between two sampled periods. Simply using mathematical functions (e.g., 

linear) to interpolate these missing data likely caused the unknown bias in flux estimations 

(Smith and Dobbie, 2001; Parkin, 2008; Decock, 2014). As a result of chambers’ small footprints, 

the selected locations for gas samplings need to represent the area of interest (Ambus and 

Christensen, 1994; Bouwman at al., 2002; Parkin and Rodney, 2010). To effectively investigate 

the impact of the land-uses or agronomic practices on N2O emissions, these unknown biases led 

by chambers’ limitations became an obstacle for side-by-side comparisons. 

 

Gas emissions from the terrestrial biosphere can be estimated by the ‘bottom-up’ method, 

estimating the regional-scale emissions by compiling the statistical information of the local 

sources, or ‘top-down’ method, inferring the global-scale emissions based on gas accumulations 

in the atmosphere (Crutzen at al., 2008; IPCC, 2007; Nisbet and Weiss, 2010; Griffs et al., 2013). 

The most common ‘bottom-up’ method is the use of chamber measurements which have been 

used to create inventories of agricultural and forestry N2O emissions (IPCC, 2006); however, 

many studies, mostly based on ‘top-down’ measurements, show that N2O emissions from 

agricultural soils are underestimated by chamber measurements (Del Grosso et al., 2008; Griffs 

et al., 2013; Turner et al., 2015; Chen et al., 2016). The wind (or turbulence) might play a critical 

role in influencing gas exchanges between the soil-atmosphere interface. For instance, chamber 

methods measure the accumulation rate of gas diffused from soils in the chamber headspace. The 

wind-induced emissions tended to be larger than the emissions only via molecular diffusion 
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(Chapter 3 Gas Diffusion in Soil, 1985; Nazaroff, 1992; Denmead and Reicosky, 2003; Redeker 

et al., 2015; Pourbakhitar, 2017). The wind-induced emissions is also a function of the 

atmospheric stability (stable, neutral, and unstable) which affects air mixing and gas transport. 

Unfortunately, most of the chamber measurements have not considered these meteorological 

factors (e.g., wind, turbulence, and thermal stability) in flux estimations (Denmead, 2008; 

Monson and Baldocchi, 2014). 

 

Measuring soil gas emissions in the open system using micrometeorological methods (e.g., mass 

balance, eddy covariance, flux gradients, dispersion models, etc.) offers numerous advantages for 

flux estimations: 1) inclusion of ambient environmental conditions on emission rates, 2) 

provision of better spatial representatives, and 3) near-continuous measurements (Baldocchi et 

al., 1988; Denmead, 2008). The most significant advantage of the open system measurements 

over chamber measurements is to continuously acquire gas samples with a high frequency and a 

large footprint. The large footprint (e.g., > 6 ha), however, makes flux comparisons among 

treatments more challenging. The interferences of adjacent sources via advection even raise the 

difficulties in field comparisons (Smith et al., 1994; Christensen et al., 1996; Molodovskaya et 

al., 2011; Mukherjee et al., 2015). The backward Lagrangian stochastic (bLS) dispersion 

technique was developed to measure gas fluxes from field-scale areas (e.g., 1-3 ha) (Flesch et al., 

1995 and 2004). This method has been often applied in measuring trace gases (e.g., NH3, CH4, 

VOCs) from livestock facilities, animal waste lagoons, and increasingly used to measure gas 

emissions from the fertilized soils (Bjorneberg et al., 2009; Grant and Boehm, 2015; Bai et al., 

2014). The methodology of using the bLS technique to measure gas fluxes from a single source 

area has been well described and documented (e.g., criteria for quality assurance and control, 

QA/QC) (Flesch et al., 2004 and 2005). Implementing this technique in a multiple source 

condition, however, becomes more complicated, and is still an on-going research question 

(Crenna et al., 2008; Flesch et al., 2009; Hrad et al., 2014; Huo et al., 2014; VanderZaag et al., 

2014; Mukherjee et al., 2015).  

 

In corn (Zea mays L.) cropping systems, gas emissions from multisource areas are very common 

due to implementing different agricultural management practices. For instance, N fertilizer 

applications, tillage farming systems, crop rotations, or irrigation systems substantially influence 
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the magnitude of soil N2O emissions (Decock, 2014; Venterea et al., 2011; Omonode et al., 

2017). Because of the dynamics of N2O emissions, there is an urgent need to develop a technique 

that can measure N2O-N loss from multiple field management scenarios continuously and 

simultaneously. The bLS technique is capable of measuring gas fluxes from multiple sources as 

long as a sufficient amount of concentration sensors are provided (e.g., number of sensors ≥ 

number of sources) (Crenna et al., 2008; Gao et al., 2008; Flesch et al., 2009; Hrad et al., 2014; 

Huo et al., 2014). For treatment comparisons, gas concentration sensors require high sensitivity 

and precision to detect the concentration differences among the sampled points (e.g., heights, 

sampled timing, or treatments) (Denmead, 2008). Lab-based gas chromatography (GC), for 

instance, can precisely analyze gas concentrations of the extractive sample collected from 

chambers. Mid-IR laser-based analyzers (e.g., a Difference Frequency Generation absorption or 

Cavity Ring-Down Spectroscopy) were designed to continuously measure gas concentrations 

from an air stream with high precision. For both analyzers, gas samples need to be collected and 

delivered into in instruments (e.g., a gas column or cell) to measure gas concentrations. Most gas 

samples are point-sampled, meaning that selecting appropriate positions for gas samples is still 

an issue for minimizing the spatial variability in gas emissions. 

 

Open path (OP) Fourier transform infrared spectroscopy (OP-FTIR) is capable of measuring 

concentrations of multiple atmospheric gas components (e.g., N2O, CO2, CH4, and NH3) 

simultaneously without collecting physical gas samples (Russwurm et al., 1991; Childers et al., 

2001; Loh et al., 2008; Barrancos et al., 2013; Bia et al., 2014 and 2018; Ni et al., 2015). The 

OP-FTIR measures the path-averaged concentrations with high temporal resolution (seconds to 

minutes), showing better spatial and temporal representatives than the extractive concentration 

sensors (ASTM, 2013). The accuracy and precision of gas concentrations derived from the mid-

infrared absorption spectra were substantially influenced by spectral qualities as well as the 

absorption features (Griffiths and de Haseth, 2007). Each gas species has unique mid-IR 

absorption characteristics and these features have different sensitivities to concentration, optical 

path distance, humidity, and air temperature (Lacome et al., 1984; Russwurm and Childers, 1999; 

Muller et al., 1999; Horrocks et al., 2001; Briz et al., 2007; Smith et al., 2011). For N2O, its 

rotation-vibrational absorption features are even more complicated and sensitive to 

environmental variables than other gases (e.g., CO2, CH4, and NH3). Changes in the absorption 
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feature led to biases and a variable precision in N2O concentration measurements (Russwurm 

and Childers, 1999; Griffiths and de Haseth, 2007). These uncertainties in N2O concentrations, 

fortunately, can be minimized by optimizing the methodology of processing FTIR spectra (Hart 

et al., 1999 and 2000; Jiang et al., 2002; Briz et al., 2007; Shao et al., 2010; Smith at al., 2011; 

Lin et al., 2019). Since the bLS technique needs concentration measurements from fields of 

interest and the atmospheric background to estimate gas fluxes, introducing the concentrations 

with a certain confidence interval is critical to assess the uncertainties in the bLS-estimated 

fluxes. For multiple emission measurements, adequate gas sensors are required to measure gas 

concentrations from different sources. An OP-FTIR sensor joining to a horizontally rotating 

scanner can measure concentrations from numerous sources sequentially, likely reducing 

economic costs for measurements. We integrated a scanning OP-FTIR spectrometer, gas 

sampling systems, and bLS technique to continuously measure multiple N2O fluxes, which was 

called the scanning OP measurements. 

  

Both chamber and micrometeorological methods provide their unique strengths for gas flux 

measurements (Denmead, 2008). In a way, the strengths of chamber methods are complementary 

to the weaknesses of micrometeorological measurements, and vice versa. For instance, chamber 

approaches can be responsible for measuring nighttime emissions which are technically difficult 

for micrometeorological approaches in low wind conditions (Flesch et al., 2004; Grant and 

Omonode, 2018). Also, chamber methods are able to minimize flux interferences from adjacent 

sources, which often exists in the open systems, and can be used to compare the effects of 

different field treatments on soil N2O emissions from small-scale areas as long as the sampled 

position was appropriately selected to represent the entire field (Rochette and Eriksen-Hamel, 

2008). In this study, both the static chamber and the scanning OP methods were integrated to 

measure N2O emissions from soils. Many management strategies were proposed to mitigate 

N2O-N loss as well as improve nitrogen use efficiency; however, the effectiveness of these 

“single-factor” practices (e.g., crop rotation, N applications, and tillage system) is not universal 

because of environment changes (Decock, 2014). Tillage practices (e.g., zero-, reduced, and 

conventional tillage), for instance, showed different benefits to N2O mitigation in terms of the 

field- and yield-scale emissions (Venterea et al., 2011). These conflicting results were partially 

due to the sensitivity of measurement methods, and even more substantially influenced by the 
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environmental conditions (e.g., climate). Based on the matrix of genotype-environment-

management (i.e., G x E x M), these individual practices need to be integrated and optimized to 

mitigate N2O-N loss while adapting to changing environments (Hatfield et al., 2015 and 2018). 

1.2 Research Hypothesis and Objectives 

The general goal of this dissertation is to establish the methodology of using the scanning OP 

method to measure N2O emissions from multiple treatments, mainly focusing on the quality 

assurance and control, and the effectiveness of this method to measure multiple emissions 

simultaneously. To investigate the optimal management for mitigating N2O-N loss from corn 

cropping systems, we focus on integrating the commonly used practices in the US Midwest, 

including tillage systems of NT and chisel plow, and timing for anhydrous ammonia (NH3) 

applications. A total N rate can be applied in once or equally split and applied separately (full vs. 

split rate). The application timing can be in the prior fall and current spring. For spring N 

application, N fertilizer can be applied before planting or in-season (pre-plant vs. side-dress). 

The general hypothesis for optimal management is that integration of NT, split N, and the spring 

side-dress N application is the most effective management to efficiently use NH3-N fertilizers in 

terms of mitigating the N fertilizer-induced N2O emissions and increasing plant N recovery 

(Decock, 2014; Omonode and Vyn, 2019; Tenuta et al., 2016). 

 

The objectives of this study were: (i) to develop a methodology (including spectra collections, 

processes, and chemometrics methods) to quantify N2O concentrations accurately and precisely 

using an OP-FTIR spectrometer (Chapter 2), (ii) to investigate sources of error of OP-FTIR-

derived N2O concentrations (Chapter 3), (iii) to evaluate the feasibility and effectiveness of 

applying OP-FTIR and bLS technique to measure N2O emissions (Chapter 4), (iv) to integrate 

the chamber and the OP measurements to examine management effects on the relationship 

between N2O-N losses and N use efficiency (Chapter 5). 
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 APPLICATION OF OPEN PATH FOURIER CHAPTER 2.

TRANSFORM INFRARED SPECTROSCOPY (OP-FTIR) TO 

MEASURE GREENHOUSE GAS CONCENTRATIONS FROM 

AGRICULTURAL FIELDS 

This chapter has been published to the open-access journal of Atmospheric Measurement 

Techniques under license CC BY 4.0.  

Citation: Lin, C. H., Grant, R. H., Heber, A. J., and Johnston, C. T. (2019). Application of open-

path Fourier transform infrared spectroscopy (OP-FTIR) to measure greenhouse gas 

concentrations from agricultural fields, Atmos. Meas. Tech., 12, 3403-3415, doi:10.5194/amt-

12-3403-2019. 

2.1 Abstract 

Open-path Fourier transform infrared spectroscopy (OP-FTIR) has often been used to measure 

hazardous or trace gases from ‘hot’ point sources (e.g., volcano, industrial or agricultural 

facilities) but seldom used to measure greenhouse gases (GHGs) from field-scale sources (e.g., 

agricultural soils). Closed-path mid-IR laser-based N2O, nondispersive-IR CO2 analyzers, and 

OP-FTIR were used to measure concentrations of N2O and CO2 at a maize cropping system 

during 09-19 Jun. 2014. To measure N2O/CO2 concentrations accurately, we developed a 

quantitative method of N2O/CO2 analysis that minimized interferences from diurnal changes of 

humidity and temperature. Two chemometric multivariate models: classical least squares (CLS) 

and partial least squares (PLS), were developed. This study evaluated various methods to 

generate the single beam background spectra and different spectral regions for determining 

N2O/CO2 concentrations from OP-FTIR spectra. A standard extractive method was used to 

measure the ‘actual’ path-averaged concentrations along an OP-FTIR optical path in situ, as a 

benchmark to assess the feasibilities of these quantitative methods. Within an absolute humidity 

range of 5,000-20,000 ppmv and a temperature range of 10-35 °C, we found that the CLS model 

underestimated N2O concentrations (bias = -4.9±3.1 %) calculated from OP-FTIR spectra, and 

the PLS model improved the accuracy of calculated N2O concentrations (bias = 1.4±2.3 %). The 

bias of calculated CO2 concentrations was -1.0±2.8 % using the CLS model. These methods 

suggested that environmental variables potentially lead to biases in N2O/CO2 estimations from 

OP-FTIR spectra and may help OP-FTIR users avoid dependency on extractive methods of 

calibrations. 
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2.2 Introduction 

Agriculture contributes a substantial amount of greenhouse gas (GHG) emissions (N2O, CO2, 

and CH4) to the global GHG budget (IPCC, 2007; Cole et al., 1997; Smith et al., 2008). Among 

these gases, N2O is mainly emitted from agricultural soils, accounting for 38% of the global 

anthropogenic non-CO2 GHG emissions from agricultural activities (US-EPA, 2006; Smith et al., 

2007). Nitrous oxide is produced from biological reactions that transform available N in soils via 

microbial nitrification and denitrification (Mosier et al., 2004). Considering that the global 

warming potential value of N2O is 310, it is estimated that overall GHG emission from soils 

(based on CO2 equivalents) is approximately 2500 MtCO2-eq yr
-1

. A significant fraction of soil 

N2O emissions results from the use of nitrogen (N) fertilizers in agricultural soils. In addition to 

contributing to the overall GHG burden of the atmosphere, N2O emissions also represent a direct 

loss of N applied to the field, contributing to the decreased nitrogen use efficiency (NUE) 

(Eichner, 1990; Ryden and Lund, 1980; Bremner et al., 1981; Omonode et al., 2017). Also, soils 

play the role of a sink or a source for atmospheric CO2 (Paustian et al., 1997; Smith et al., 2008). 

Changing land use of crop production, especially agriculture-related uses such as tile drainage 

and tillage management, and agricultural lime application (e,g., CaCO3 and MgCa(CO3)2) 

potentially become a large source of CO2 released to the atmosphere via microbial 

decomposition of soil organic carbon (Smith, 2004; IPCC, 2007; Cole et al., 1997, West et al., 

2005). 

 

The flux chamber measurement has been the most common method to measure GHG emissions 

from soils (Denmead, 2008; Rochette and Eriksen-Hamel, 2008). Chamber measurements, 

however, are subject to significant limitations that lead to uncertainties and biases in estimated 

GHG emissions. For instance, because chambers have a small footprint (~0.5 m
2
) and generally 

wide sampling intervals (usually once to twice a week), they are poorly suited for evaluating 

spatial and temporal variabilities of GHGs from agricultural soils (Laville et al., 1999; Rowlings 

et al., 2012; Schelde et al., 2012). Also, wind turbulence is known to substantially induce more 

gas transportation from soils to the atmosphere. Chamber methods do not take this wind-induced 

effect into account, and this likely results in underestimations of gas emissions (Denmead and 

Reicoshky, 2003; Poulsen et al., 2017; Pourbakhtiar et al., 2017). It is worth mentioning that the 

eddy covariance flux measurement method, one of the most common micro-meteorological 



38 

 

techniques used to investigate gas exchanges in the agroecosystem, is capable of measuring gas 

fluxes frequently with an increased footprint (Baldocchi, 2003). A large-scale flux measurement 

(hundred meters to several kilometers) using this method, however, make comparisons among 

field-scale treatments (1-5 ha) more difficult than chamber methods (Schmid, 1994; Denmead, 

2008). 

 

Open-path Fourier transform infrared spectroscopy (OP-FTIR) is a non-intrusive sensing 

approach and capable of detecting multiple components simultaneously, acquiring real-time data 

at a relatively high temporal resolution (seconds to minutes), and providing path-averaged gas 

concentrations (Russwurm and Childers, 1996). OP-FTIR has been applied to measuring 

atmospheric gases since the 1970s (e.g., hazardous air pollutants, fugitive volatile organic 

compounds (VOCs), and trace gases) (Herget and Brasher, 1980; Gosz et al., 1988; Russwurm et 

al., 1991; Bacsik et al., 2006; Briz et al., 2007; Lin et al., 2008). More recently, OP-FTIR has 

been increasingly used to measure GHGs or other trace gases in agriculture, mostly in animal 

facilities (e.g., N2O, CO2, CH4, and NH3 from swine or dairy production) (Childers et al., 2001a; 

Loh et al., 2008; Bjorneberg et al., 2009; Barrancos et al., 2013; Naylor et al., 2016). Only a few 

studies, however, implemented OP-FTIR to measure gas emissions from vegetable production 

fields or fertilized soils (Bai et al., 2014 and 2018; Ni et al., 2015). Integrating OP-FTIR with 

micrometeorological techniques (e.g., flux gradient or backward Lagrangian stochastic 

dispersion methods) can measure gas fluxes from the field-scale source of interest with high 

temporal and spatial representations that are less prone to artefacts induced by point-based 

sampling (Flesch et al., 2004 and 2016; Bai et al., 2014 and 2018; Ni et al., 2015). Moreover, the 

OP-FTIR combined with a scanning system can potentially be applied to horizontally or 

vertically survey numerous fields of interest and measure their gas emissions simultaneously 

(Flesch et al., 2016). 

 

Despite these advantages, OP-FTIR also faces a number of challenges. In order to resolve the 

spectral features of GHGs, high spectral resolution (< 0.5 cm
-1

) is required to resolve the 

rotation-vibrational absorption bands of the GHGs of interest (Griffiths and de Haseth, 2007). 

Calculating concentrations from FTIR spectra requires both a ‘sample’ single beam spectrum and 

a reference/background spectrum that does not contain spectral contributions from GHGs of 
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interest, which is not possible at the field scale (e.g., evacuation of the field); thus, mathematical 

methods have been developed which strip the spectral bands from a ‘sample’ single beam 

spectrum. This challenge requires the use of instrumental- or spectral-processing methods to 

create a background spectrum, and these methods are subject to biases in determining GHG 

concentrations (Griffiths and de Haseth, 2007; Russwurm and Childers, 1996). Furthermore, the 

atmosphere contains a high concentration of water vapor that interferes with the detection and 

quantification of GHGs of interest (Russwurm and Childers, 1996; Horrocks et al., 2001; Briz et 

al., 2007; Smith et al., 2011). These challenges of data processing and the interferences from 

water vapor likely introduce biases and uncertainties in GHG quantification. Using error-prone 

concentrations in flux prediction models (micrometeorological techniques) possibly leads to 

unknown uncertainties in estimated gas fluxes. Thus, it is essential to develop a comprehensive 

quantitative method to improve and assure the quality of gas quantification using OP-FTIR. 

 

Testing the feasibility of quantitative methods and qualities (accuracy and precision) of OP-FTIR 

is challenging because a reliable reference is required to validate FTIR-derived concentrations. 

One of the most common approaches was to position a gas cell filled with known gas 

concentrations of interest in the optical path and test their quantitative methods (Russwurm et al., 

1991; Horrocks et al., 2001; Smith et al., 2011). This approach, however, somewhat controlled 

the environment and neglected the effect of ambient interferences, such as water vapor, on the 

quality of gas quantification. The alternative approach is to compare the derived concentrations 

with ambient concentrations. The ambient concentration of a gas of interest can be determined 

by averaging the global background concentrations (e.g. N2O~310 ppbv or CO2~400 ppmv) or 

measured from the gas samples that were collected along the OP-FTIR path and analyzing their 

concentrations using laboratory-based gas chromatography (GC) (ASTM, 2013; Childers et al., 

1995; Kelliher et al., 2002; Bai et al., 2014). The experimental designs of these assessment 

approaches, either the point sampling setup or low sampling frequency or both, became the 

major problem for cross-validating their OP-FTIR quantitative methods. Since the ambient 

concentrations likely fluctuate from place to place (e.g., different land uses) and at different 

times (e.g., diurnal or seasonal variation), the spatial and temporal variations of the ambient 

concentration were potentially misconceived as ‘bias’ in gas quantification. Up to now, only 

three studies continuously measured real-time ambient concentration to logically cross-validate 
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quantitative methods and data qualities under fluctuating environmental factors (e.g., the 

dynamic water vapor), but none of the prior studies actually assessed their methodologies for 

quantifying N2O concentrations (Briz et al., 2007; Reiche et al., 2014; Frey et al., 2015). 

 

Therefore, the objectives of this study were to 1) develop a long-path gas sampling system that 

can continuously collect numerous gas samples simultaneously along an optical path of OP-FTIR 

and measure path-averaged concentrations  to evaluate quantitative qualities of N2O/CO2 

concentrations derived from OP-FTIR spectra, and 2) optimize the quantitative method, 

including post-data processing, analytical window selections, and chemometric multivariate 

algorithms, that is less sensitive to interferences of ambient humidity and temperature, and 

capable of determining N2O and CO2 concentrations accurately. 

2.3 Materials and Methods 

2.3.1 Site description 

This study was conducted at the Purdue University Agronomy Center for Research and 

Education near West Lafayette, Indiana, in the United States (86°56  ́W, 40°49  ́N, elevation 215 

m). The experimental site was located between two fields (~3.5 ha per field) with a continuous 

corn system since 2013. Gas measurements began just after an anhydrous ammonia application 

with total N rate of 220 kg NH3-N ha
-1

 on 09 Jun. and ended on 19 Jun. 2014. The soils were 

classified as Drummer silty clay loam (fine-silty, mixed, mesic Typic Endoaquoll) with a bulk 

density of 1.6 g·m
-3

, organic matter of 3.4 %, soil pH of 6.0, and cation exchange capacity of 23 

cmolc·kg
-1

 (0-20 cm). During 09-19 Jun., the cumulative precipitation was 57 mm, and the 

average soil temperature and moisture from the depth of 0-10 cm were 23±3 °C and 0.32±0.06 

cm
3
·cm

-3
, respectively, which were determined by the on-site weather station. 

2.3.2 Instrumentation setup 

The spectrometer was a monostatic open path FTIR air monitoring system (Model2501-C, 

MIDAC Corporation, Irvine, CA). This instrument included the IR source, interferometer, 

transmitting/receiving telescope, mercury cadmium telluride (MCT) detector and ZnSe optics. A 

mid-IR beam in the spectrometer passed through the atmosphere along an optical path and 

returned to the telescope after reflection from a retro-reflector to collect spectra that included 
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information about the gas of interest. A cube-corner retroreflector with 26 cubes was mounted on 

a retractable tripod with 150 m physical path length from the telescope, corresponding to an 

optical path length of 300 m (Figure 2.1). 

 

Ambient concentrations of N2O and CO2 were also determined independently to assess the bias 

and precision. A difference frequency generation (DFG) mid-IR laser-based N2O/H2O analyzer 

(IRIS 4600, Thermo Fisher Scientific Inc., Waltham, MA) and the non-dispersive infrared 

(NDIR) spectrometer CO2/H2O gas analyzer (LI-840, LI-COR Inc., Lincoln, NE) were used to 

measure N2O and CO2 concentrations of the sampled gases from a synthetic open path gas 

sampling system (S-OPS) (Figure 2.1). The DFG laser-based N2O analyzer determined N2O 

concentrations in the mid-infrared wavelength with high precision of < 0.15 ppbv (1σ, 3 min 

averaging). An NDIR CO2 analyzer exhibited high accuracy (< 1.5 % of reading) and low noise 

(< 1.0 ppmv) to determine CO2 concentrations using a single path, dual-wavelength, and infrared 

detections system. 

 

A 50-m long S-OPS combined with a gas sampling system (GSS) was used to collect gas 

samples along an optical path of OP-FTIR. An S-OPS consisted of 9.5-mm diameter Teflon○R  

tubes and ten inlets fitted with 1.0-μm Teflon○R  filters. The inlet flow rates were adjusted by 

critical orifices to 0.70 L·min
-1

 (±10 %). Gas samples were drawn through an S-OPS line by a 

sampling pump in the GSS at approximately 7 L·min
-1

 and collected into a Teflon○R  ambient 

pressure chamber. Then, N2O and CO2 analyzers drew air samples from the ambient pressure 

chamber to measure the ‘actual’ path-averaged concentrations of N2O and CO2 along the OP-

FTIR path (Heber et al., 2006). The measured N2O/CO2 concentrations were used to benchmark 

concentrations calculated from the OP-FTIR spectrum. Temperature, relative humidity, and 

pressure in the ambient pressure chamber were also recorded every 30 s to monitor the 

performance of the GSS. 

 

Meteorological measurements of air temperature and relative humidity were measured using an 

HMP45C probe (Vaisala Oyj, Helsinki, Finland) at 1.5-m above ground level (a.g.l.). The 

meteorological data were collected by a data logger (Model CR1000, Campbell Scientific, Logan, 

Utah) and averaged every 30 min. Wind speed and direction were acquired from a 3D sonic 
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anemometer (Model 81000, RM Young Inc., Traverse City, MI) mounted at 2.5-m height on the 

meteorological mast and recorded at 16 Hz. The recorded data were telemetered to the on-site 

instrumentation trailer. 

2.3.3 Overview of ambient temperature and concentrations of N2O/CO2/water vapor 

The 30-min averages of ambient N2O and CO2 concentrations were determined by the S-OPS, 

and water vapor content and air temperature were measured at the meteorological station (Figure 

2.2). During the test, 793 valid OP-FTIR spectra with known concentrations of N2O, CO2, water 

vapor, and air temperature were collected. Ninety spectra containing 338±0.3 ppbv N2O and 

ninety-three spectra containing 400±3.0 ppmv CO2 were selected from these valid spectra to 

calculate concentrations of N2O and CO2, respectively, using different quantitative methods. 

These groups of spectra with consistent N2O/CO2 concentrations but covered by broad ranges of 

water vapor content and air temperature were used to examine the effect of water vapor and 

temperature on concentration calculations. 

2.3.4 OP-FTIR data acquisition and QA/QC procedure 

A spectral range of 500.0-4000.0 cm
-1

 and a resolution of 0.5 cm
-1

 were selected for spectra 

acquisition. Each sampled spectrum was acquired by co-adding 64 single-sided interferograms 

(IFGs) using the AutoQuant Pro4.0 software package (MIDAC Corporation, Irvine, CA). The 

IFGs were converted to single beam (SB) spectra using a zero-filling factor of 1, triangular 

apodization, and Mertz phase correction. A stray light SB spectrum was also acquired by daily 

pointing the transmitting/receiving telescope away from the retroreflector at the beginning of the 

experiment using the same parameters (Russwurm and Childers, 1996). Each sampled SB 

spectrum was stray-light corrected by subtracting the stray-light SB spectrum from the sampled 

SB spectrum before converting to the absorbance spectrum. 

 

The IFGs and corresponding SB spectra were influenced by ambient factors that included wind-

derived vibrations, scintillation induced by air mixing, water vapor content, dust accumulation 

and condensation on the retro-reflector. Criteria of quality assurance were based on the 

inspection of the IFG and SB spectra, following the standard guideline in the MIDAC 

instrumentation manual and the FTIR open-path monitoring guidance documents (Russwurm and 
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Childers, 1996) with the supplement criteria published by Childers et al. (2001b) and Shao et al. 

(2007) to acquire high-quality spectra. The maximum and minimum of the IFG centerburst were 

controlled between approximately 0.61 and 1.14 VDC based on the physical path length of 150-

m. Any IFG centerburst signals > 2.25 VDC were rejected to avoid a non-linear response of the 

MCT detector. 

2.3.5 Spectral analysis 

2.3.5.1 Absorbance spectra 

To calculate a concentration for a given solute, a stray-light corrected SB spectrum is ratioed 

against an SB background spectrum (GHGs-free) to produce an absorbance spectrum from which 

the gas concentration is determined using the Beer-Lambert law. As discussed earlier, OP-FTIR 

measurements do not permit the collection of a background spectrum that is ‘free’ of GHGs. 

Two different approaches were used in this study to overcome this constraint. Both methods 

required a ‘normal’ SB spectrum corresponding to the path length of interest that was then 

mathematically manipulated to produce a background spectrum. A representative field SB 

spectrum and the regions of interest for each GHG are shown in Figure 2.3(a). For the ‘zapped’ 

background method, a background (zap-bkg) was obtained by drawing a straight line between 

two selected points which removed, or ‘zapped,’ any spectral contributions below the line using 

OMINC Macro Basic 8.0 commercial software (Thermo Fisher Scientific, Inc.). This is 

illustrated for the N2O region of interest in Figure 2.3(b), with the two points and the line labeled 

as ‘zapped’ background. For the zap-bkg method, one quality SB spectrum was selected to create 

a zap-bkg each day, and all of the sampled SB spectra collected from one day were converted to 

absorbance spectra using this zap-bkg. Another method, referred to as the ‘synthetic’ background 

method, was generated from this same original SB spectrum using IMACC software (Industrial 

Monitoring and Control Corp., Round Rock, TX). In this case, numerous points in the ‘non-

absorbing’ region of the SB spectrum were selected as ‘base points,’ and a high-order fitting 

function was used to construct a background spectrum. An example in the N2O/CO2 regions is 

illustrated in Figure 2.3(b) and labeled ‘synthetic’ background (syn-bkg). Six points within 

2050.0-2500.0 cm
-1

 were selected to fit the curvature of the SB spectrum using a polynomial 

function to create a syn-bkg SB spectrum (Figure 2.3b). The mathematically manipulated SB 

spectra were used as background files to convert the sampled SB spectra into absorbance spectra 
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(Figure 2.3 c and d). For the syn-bkg method, all data points were stored as one data file, and this 

file was applied to each sampled SB spectrum to create its syn-bkg. Since the selected points 

determined the curvature of the syn-bkg SB spectrum, it is critical to choose the data points that 

do not introduce any distortion (e.g., artificial dips and peaks) into the syn-bkg. In general, we 

avoided selecting data points within the absorption feature of interest (e.g., 2170.0-2224.0 cm
-1

 

for N2O analysis), and the number of data points used to fit the curvature of the SB spectrum was 

considered adequate if it produced a smooth function (Russwurm and Childers, 1996). Adding 

too many data points may lead to artificial distortion in a syn-bkg. Because the syn-bkg is one of 

the recommended methods for spectral analysis (ASTM, 2013), it was used to assess the 

feasibility of the zap-bkg method. 

  

2.3.5.2 Gas quantifications: Multivariate models and spectral window selections 

Based on the Beer-Lambert law, we used reference spectra to predict gas concentrations from 

field absorbance spectra. In this study, classical least squares (CLS) and partial least squares 

(PLS) regressions were used to calculate N2O and CO2 concentrations. The details of these two 

methods are described as follows: 

 

CLS prediction model: Each of the reference spectra used in the CLS model contained only one 

gas component (e.g., N2O, CO2, or water vapor), and these reference spectra were generated 

from the high-resolution transmission molecular absorption (HITRAN) database (Rothman et al., 

2005). The CLS model (AutoQuant Pro4.0) predicted gas concentrations from the field 

absorbance spectra converted using the zap-bkg method. In addition, CLS spectra were also 

calculated using the IMACC software to predict gas concentrations from the spectra converted 

by the syn-bkg method. The non-linear function between the actual and predicted gas 

concentrations of the reference spectra was selected in the CLS model in both quantitative 

packages. 

 

PLS prediction model: Each of the reference spectra used in the PLS model consisted of multiple 

gas components (e.g., an N2O/H2O mixing spectrum). Gas samples were delivered to a multi-

pass gas cell (White cell) with an optical path length of 33-m (Model MARS-8L/40L, Gemini 
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Scientific Instruments, CA). Spectra were collected by a laboratory-based FTIR spectrometer 

(Nexus 670, Thermo Electron Corporation, Palatine, IL), which included a globar IR source, a 

KBr beam splitter, and a mercury cadmium telluride High D* (MCT-High D*) detector. The 

FTIR spectrometer was purged with dry air (-20 °C dew point) produced by a zero air generator 

(Model 701H, Teledyne, Thousand Oaks, CA). Certified N2O was diluted with ultra-pure N2 gas 

using a diluter (Series 4040, Environics Inc, Tolland, CT), and the water vapor content was 

controlled by a Nafion tube (Perma Pure, Lakewood, NJ) contained within a sealed container of 

saturated water vapor. Temperature and humidity were monitored using a humidity and 

temperature transmitter (Model HMT330, Vaisala Oyj, Helsinki, Finland). The N2O 

concentrations were diluted from 30 ppmv to 0.30, 0.40, 0.50, 0.60 and 0.70 ppmv and mixed 

with water vapor to the relative humidity of 20, 40, 60, and 80 % at 303 K. Spectra were 

acquired at 0.5 cm
-1

 resolution and averaged from 64 sample scans with triangular apodization. A 

total of 60 spectra of N2O/H2O mixtures were used to build the PLS model using quantitative 

spectral processing software (Thermo Fisher Scientific TQ Analyst Version 8.0). In order to 

avoid over-fitting the models, the optimum set of factors used in PLS models were determined 

by cross-validation and justified by the prediction of residual error sum of squares (PRESS) 

function. The correlation between known and PLS-predicted concentrations was used to quantify 

N2O from the field absorbance spectrum converted by syn-bkg within given spectral windows. 

 

Spectral window selections: The window selection (Figure 2.4) was critical because of 

interferences of water vapor. While a broader window contained more information of the gas of 

interest and potentially improved the spectral fit between the modeled and sampled spectra and 

the quantitative accuracy, it also included more features of water vapor and led to biases in gas 

quantifications. On the other hand, a narrow window can minimize the interfering effect of the 

uninteresting gases but may reduce the spectral information of the targeted gas which leads to 

biases in gas calculations (e.g., underestimation of gas quantification). The window used for N2O 

quantifications was 2130.0 to 2224.0 cm
-1

 that mainly includes the absorbance features of N2O 

(P-branch) and water vapor, and other regions (WN1-4 shown in Figure 2.4a) were also selected 

for calculating N2O concentrations. For CO2, the spectral windows of 2070.0-2085.0 cm
-1

 and 

722.0-800.0 cm
-1

 (not shown) contain features of CO2 and water vapor (Rothman et al., 2005). 
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Multiple windows (WC1-3 shown in Figure 2.4c) were selected to calculate CO2 concentrations 

and assess the effect of water vapor on gas predictions. 

2.3.6 The accuracy of the FTIR-calculated concentration and statistical analysis 

Bias, the relative error between the S-OPS and OP-FTIR measured N2O/CO2, indicated the 

accuracy of the calculated N2O and CO2 concentrations using different spectral analyses (i.e., 

background types, multivariate models, and spectral windows) and can be calculated with Eq. (1): 

𝐵𝑖𝑎𝑠 =
(𝑥𝑖−𝑥𝑡) 

𝑥𝑡
× 100%         [1] 

, where 𝑥𝑖 is the N2O or CO2 concentration calculated from the OP-FTIR spectrum, and 𝑥𝑡 is the 

known N2O or CO2 concentration measured from the S-OPS. The calculated biases were 

statistically analyzed by ANOVA procedures and protected least significant difference (LSD) 

was used for multiple comparisons among population mean biases (α=0.05) (SAS 9.3; SAS 

Institute Inc., 2012). 

2.4 Results and Discussion 

2.4.1 Quantitative methods (SB backgrounds, spectral windows, and multivariate models) 

Both SB background methods (zap- and syn-bkg) were used to convert the sampled SB spectra 

to absorbance spectra for gas quantifications. Different windows (WN1-4 for N2O and WC1-3 for 

CO2) were used to calculate N2O/CO2 concentrations from absorbance spectra using CLS and 

PLS models. A series of the OP-FTIR spectra acquired from broad ranges of humidity (i.e., 

5,000-20,000 ppmv water vapor) and temperature (10-35 °C) were used to calculate N2O and 

CO2 concentrations. Within these ranges, the mean bias (%) indicated the accuracy of N2O or 

CO2 quantification and the standard deviation (SD) referred to the sensitivity of quantitative 

methods to water vapor content and air temperature. 

2.4.2 Nitrous oxide (338 ppbv) 

Spectral windows that were less interfered by water vapor absorption features generally 

improved the accuracy of N2O quantification. In the CLS model, N2O concentrations calculated 

from the absorbance spectra converted by zap-bkg were underestimated by 10.7±2.3 % using the 

broadest window (WN1: 2170.0-2223.7 cm
-1

 shown in Figure 2.4a). This bias was reduced using 
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WN2 (2188.5-2223.7 cm
-1

) (i.e. bias = -9.1±2.5 % shown in Figure 2.5a). Likewise, N2O 

concentrations derived from the absorbance spectra converted by syn-bkg were underestimated 

by 8.2±2.6 % using the WN1. This bias was reduced using WN3 (2215.8-2223.7 + 2188.5-2204.1 

cm
-1

) (i.e., bias = -5.6±2.6 % shown in Figure 2.5b). Although interferences of water vapor can 

be mitigated by narrowing down spectral windows, the narrowest window (WN4: 2188.5-2204.1 

cm
-1

) used in the CLS model resulted in greater biases than the WN3 in both zap- and syn-bkg 

procedures (Figure 2.5 a and b). The narrowed window also lost N2O absorption features and 

presumably increased biases if the analytical window was over confined. The P-branch feature of 

N2O extended from 2130.0 to 2223.7 cm
-1

, and this region was also used to calculate N2O 

concentrations. In the CLS model, the window of 2130.0-2223.7 cm
-1

 showed the minimum 

mean bias of -0.4 % of the calculated N2O concentrations using syn-bkg (data not shown); 

however, this window was sensitive to interfering water vapor and led to the highest variability 

in N2O estimations (i.e., -0.4±5.3 %).  

 

As previously mentioned, it was important to generate a reasonable background for the spectral 

analysis. In the CLS model, the bias of N2O quantification using the syn-bkg was significantly 

lower than the zap-bkg based on the same spectral window (WN1-3; p < 0.05) (Figure 2.5 a and 

b). The syn-bkg method coupled with the integrated window of 2215.8-2223.7 cm
-1

 and 2188.7-

2204.1 cm
-1

 (WN3) were considered as the optimal combination for N2O quantifications using 

CLS models (i.e., lowest bias = -5.6±2.6 % in CLS shown in Figure 2.5b). This optimal 

combination was also used in the PLS model to predict N2O concentrations. The mean bias of 

the calculated N2O was reduced from -5.6 % (CLS model) to -0.3 % (PLS model) (Figure 2.5 b 

and c). As compared with the CLS model, the PLS model significantly improved the accuracy of 

N2O quantification (p < 0.05) presumably because the PLS algorithm can extract useful latent 

factors from the N2O/H2O mixing spectra (e.g., the contribution of water vapor to N2O). 

2.4.3 Carbon dioxide (400 ppmv) 

For CO2 estimations, three spectral windows were used in the 2070.0-2084.0 cm
-1

 range (Figure 

2.4c). The accuracy of CO2 quantification was also improved by narrowing down spectral 

windows (Figure 2.6). In the CLS model, CO2 concentrations calculated from the absorbance 

spectra converted by zap-bkg were underestimated by 6.4±4.1 % using the broadest window 
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(WC1: 2070.0-2084.0 cm
-1

). This bias was reduced by the narrowed window of WC2 (2075.5-

2084.0 cm
-1

) (i.e., bias = -0.1±4.2 % shown in Figure 2.6a). The bias of the calculated CO2 

concentrations was -4.7±2.5 % using WC1 coupled with syn-bkg and reduced to -0.3±2.4 % 

using WC2 (Figure 2.6b). The most confined window (WC3: 2075.5-2080.5 cm
-1

) resulted in 

greater biases than WC2, and particularly in conjunction with zap-bkg (i.e. bias = 3.2±3.4 % 

shown in Figure 2.6a). Thus, the range from 2075.5 to 2084.0 cm
-1

 (WC2) was the optimal 

window for CO2 quantification using the CLS model (Figure 2.4c).  

 

The zap-bkg led to a greater underestimate in N2O (bias = -10±2.3 % shown in Figure 2.5a) than 

CO2 calculations (bias = -0.1±4.2 % shown in Figure 2.6a) based on the optimal window (WN3 

and WC2) used in CLS models. Since the absorbance feature of CO2 at 2076.9 cm
-1

 (the band 

center) was less complicated than the P-branch of N2O from 2170.0 to 2223.7 cm
-1

, the CO2 

absorbance converted by zap-bkg was similar to syn-bkg (Figure 2.3 c and d). Therefore, the 

calculated bias showed that there was no significant difference between zap- and syn-bkg 

methods for CO2 concentration calculations using the WC2 (Figure 2.6). Zap-bkg, however, led 

to the higher variability in the calculated CO2, indicating that simply removing the CO2 feature 

by the linear function potentially resulted in biases for CO2 quantification. 

 

The other potential region for CO2 quantification was within 722.0-800.0 cm
-1

 (the R-branch of 

CO2 ν2 band shown in Figure 2.3a). Different windows were examined for calculating CO2 

concentrations using the CLS model in this region, and the CO2 concentrations were 

underestimated by 40-70 % no matter which window was used in conjunction with zap-bkg. The 

mean bias was minimized (bias = -9.0±2.9 %) by using two windows of 723.0-727.7 cm
-1

 and 

732.0-738.5 cm
-1

 in conjunction with syn-bkg (data not shown). As compared with the results 

from the 2070.0-2084.0 cm
-1

 range (Figure 2.4c), the 722.0-800.0 cm
-1

 window resulted in a 

significant underestimation of CO2 concentration because 1) more water vapor features 

interfered with the R-branch of CO2 features in the 722.0-800.0 cm
-1

 range than CO2 in the 

2070.0-2084.0 cm
-1

 range, and 2) it was difficult to simulate the appropriate background at the 

low wavenumber region in the SB spectrum. 
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2.4.4 Diurnal N2O/CO2 estimations 

The quantitative approach leading to the minimum bias in N2O estimations was to use syn-bkg 

with the WN3 window in the PLS model (Figure 2.5c). For CO2, only the CLS model was used 

for calculating concentrations because of missing CO2/H2O mixing spectra for PLS models. The 

approach leading to the minimum bias in CO2 estimations in this study was to use syn-bkg with 

the WC2 window in the CLS model (Figure 2.6b). These procedures were used to estimate N2O 

and CO2 concentrations from the OP-FTIR spectra collected from 09 to 19 Jun. 2014 (Figure 

2.7). The diurnal fluctuations in N2O and CO2 concentrations corresponded to diurnal changes of 

wind speed and air temperature. The higher N2O/CO2 concentrations were usually measured 

during the night because of N2O and CO2 accumulations. The accumulation of N2O/CO2 

occurred near the ground when turbulent mixing was low, resulting from decreasing buoyancy 

from the ground surface (i.e., a stable atmosphere). The greater density of air parcels due to 

decreasing temperature also led to gas accumulation. The diurnal variation in CO2 was greater 

than N2O (Figure 2.7b), and we hypothesized it was due to multiple sources of CO2. While N2O 

was mostly produced from soils via microbial nitrification and denitrification, CO2 was emitted 

via soil respiration (including microbes and corn root) as well as respiration from grass and corn 

leaves. 

 

Mixing of the surface layer of air tended to result in greater homogeneity along the optical path. 

Under low wind speed, the presumably poorly-mixed air increased the variability of the path-

averaged N2O/CO2 concentrations along the optical path, resulting in the difference between the 

50-m S-OPS and the 150-m OP-FTIR. The calculated biases of N2O and CO2 were 1.3±2.6 % 

(n=363) and -0.7±5.8 % (n=327), respectively, while the mean wind velocity ranged from 0.1 to 

8.4 m·s
-1

 (Figure 2.7). The variability of the calculated biases of N2O and CO2 were reduced 

when the data that were collected in low wind speeds (< 1.7 m·s
-1

) were excluded, i.e. 𝑏𝑖𝑎𝑠𝑁2𝑂 = 

1.4±2.3 % (n=298) and 𝑏𝑖𝑎𝑠𝐶𝑂2
 = -1.0±2.8 % (n=272). 

2.5 Conclusion 

We have developed and evaluated different methods for quantifying concentrations of nitrous 

oxide and carbon dioxide using open-path FTIR based on combinations of single beam 
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backgrounds (zap-bkg and syn-bkg), analytical windows (WN1-4 and WC1-3), and chemometric 

multivariate calibration models (CLS and PLS). It is challenging to generate the P-branch N2O 

absorbance within 2170.0-2223.7 cm
-1

 to predict N2O accurately but feasible to generate 

absorbance within 2075.5-2084.0 cm
-1

 for CO2 prediction using the zap-bkg method. The 

principle for selecting spectral windows is that using the region with less water vapor features, 

while over confining the analytical region may lead to biases in gas predictions. The CLS model, 

the most common approach used for gas retrievals in OP-FTIR commercial packages, 

underestimates N2O concentrations but predicts CO2 accurately within an absolute humidity 

range of 5,000-20,000 ppmv and a temperature range of 10-35 °C. In this study, the method 

resulting in the minimum bias for N2O quantification is to use the combination of syn-bkg, a two 

bands window (2188.7-2204.1 + 2215.8-2223.7 cm
-1

), and the PLS model (N2O bias = 1.4±2.3 

%). The method leading to the minimum bias in CO2 quantification is to use the combination of 

syn-bkg, the 2075.5-2084.0 cm
-1

 window, and the CLS model (CO2 bias = -1.0±2.8 %). We 

describe comprehensive methods of N2O/CO2 analyses for the increasing number of OP-FTIR 

users who are interested in greenhouse gas emissions from agricultural fields. 
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Figure 2.1 Schematic of the instrumentation used to assess the accuracy of N2O and CO2 concentration determined by OP-FTIR in this 

study. DFG N2O and LI-840 CO2 analyzers combined with the synthetic open path air-sampling system (S-OPS) were used to measure 

the ‘actual’ path-averaged N2O/CO2 concentrations and benchmark the N2O and CO2 concentrations calculated from OP-FTIR 

spectral analyses. The humidity, air temperature, and wind information were measured from the weather station. 
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Figure 2.2 The 30-min averaged concentrations of (a) N2O and (b) CO2 were measured using 

N2O and CO2 analyzers by sampling the air from S-OPS, and the 30-min averages of (c) water 

vapor content and (d) air temperature were also measured from the on-site weather station during 

09-19 Jun. 2014. The concentrations of N2O, CO2, and water vapor shown in these figures were 

measured while the air was well-mixed (U > 1.5 m·s-1). The light gray bars mean the OP-FTIR 

spectra contained 338±0.3 ppbv N2O and the dark gray bars mean the OP-FTIR spectra 

contained 400±3.0 ppmv CO2. Both selected spectra (N2O 338 ppbv, n=90; CO2 400 ppmv, n=93) 

covered the broad ranges of water vapor and air temperature and were used to assess the 

sensitivity of the OP-FTIR quantitative methods to dynamic ambient variables. 
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Figure 2.3 The illustrations of (a) a field single beam (SB) OP-FTIR spectrum containing the 

regions of N2O, CO2, and water vapor was collected through an optical path length of 300 m; (b) 

zapped and synthetic SB backgrounds (zap-bkg and syn-bkg) were generated from this field SB 

spectrum and used to convert the sampled SB spectrum to (c) the absorbance spectra that allow 

us to calculate N2O/CO2 concentrations using the Beer-Lambert law. 
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Figure 2.4 Field and HITRAN reference absorbance spectra: (a) field spectrum containing the 

features of N2O and water vapor, (b) reference spectra of N2O and water vapor at 2170.0 – 

2224.0 cm
-1

, (c) field spectrum containing the features of CO2 and water vapor, and (d) reference 

spectra of CO2 and water vapor at 2070.0 – 2084.0 cm
-1

. WN(1-4) and WC(1-3) denote the 

spectral windows used to calculate N2O and CO2 concentrations from field spectra. 
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Figure 2.5 The box plots of the calculated N2O concentrations and the corresponding biases from 

a series of OP-FTIR spectra (n=90) that contain 338±0.3 ppbv N2O with varying humidity and 

air temperature using different SB background-processing methods (zap-bkg and syn-bkg), and 

four spectral windows (WN1-4) in the CLS and PLS models: (a) zap-bkg + CLS model, (b) syn-

bkg + CLS model, and (c) syn-bkg + PLS model. The plot displays the mean (□), median (―), 

interquartile ranges (box), and extreme values (whiskers). Different letters indicate significant 

differences (p < 0.05) among the means calculated by different quantitative methods by the least 

significant difference (LSD). 
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Figure 2.6 The box plots of the calculated CO2 concentrations and the corresponding biases from 

a series of OP-FTIR spectra (n=93) that contain 400±3.0 ppmv CO2 with varying humidity and 

air temperature using different SB background-processing methods (zap-bkg and syn-bkg), and 

three spectral windows (WC1-3) in the CLS model: (a) zap-bkg, and (b) syn-bkg. The plot 

displays the mean (□), median (―), interquartile ranges (box), and extreme values (whiskers). 

Different letters indicate significant differences (p < 0.05) among the means calculated by 

different quantitative methods by the least significant difference (LSD). 
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Figure 2.7 Measurements of air temperature, wind speed, N2O and CO2 concentrations from 09-

19 Jun. 2014. The 30-min averages of (a) air temperature and wind speed, (b) N2O 

concentrations measured from S-OPS using the DFG N2O analyzer and calculated from OP-

FTIR using the method of (syn-bkg + WN3 + PLS), and the corresponding biases, and (c) CO2 

concentrations measured from S-OPS using LI-840 CO2 analyzer and calculated from OP-FTIR 

using the method of (syn-bkg + WC2 + CLS), and the corresponding biases.
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 SOURCES OF ERROR IN OPEN PATH FTIR CHAPTER 3.

MEASUREMENTS OF N2O AND CO2 EMITTED FROM 

AGRICULTURAL FIELDS 

A version of this chapter has been submitted for review to the open-access journal of 

Atmospheric Measurement Techniques. 

3.1 Abstract 

Open-path Fourier transform infrared spectroscopy (OP-FTIR) is susceptible to environmental 

variables which can become sources of errors for gas quantification. In this study, we assessed 

the effects of water vapor, temperature, path length, and wind speed on the uncertainty of nitrous 

oxide (N2O) and carbon dioxide (CO2) concentrations derived from OP-FTIR spectra. The 

presence of water vapor resulted in underestimating N2O in both lab (−3 %) and field (−12 %) 

experiments at 30 °C using a classical least squares (CLS) model. Differences in temperature 

between the sample and reference spectra also underestimated N2O concentrations due to 

temperature broadening and the increased interferences of water vapor in spectra of wet samples. 

Changes in path length resulted in a non-linear response of spectra and bias (e.g., N2O and CO2 

concentrations were underestimated by 30 % and 7.5 %, respectively, at the optical path of 100-

m using CLS models). For N2O quantification, partial least squares (PLS) models were less 

sensitive than CLS to the influence of water vapor, temperature, and path length, and provided 

more accurate estimations. Uncertainties in the path-averaged concentrations increased in low 

wind conditions (< 2 m s
-1

). This study identified the most common interferences that affect OP-

FTIR measurements of N2O and CO2. The quantified errors can be used as references for current 

or future OP-FTIR users. 

3.2 Introduction 

Agriculture substantially contributes greenhouse gases (GHGs), mostly N2O and CH4, to the 

atmosphere (IPCC, 2007). In 2010, emissions led by agricultural activities (e.g., crop production 

and livestock management) were estimated between 5.2 and 5.8 Gt of CO2 equivalent per year, 

accounting for 10-12 % global anthropogenic emissions (IPCC, 2014). Estimations of gas fluxes 

over an extended period (e.g., growing seasons) is complicated due to the dynamic and episodic 
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nature of gas emissions and measurement complexities. The integrated uses of fast-response gas 

concentration sensors and micrometeorological techniques were developed to measure long-term 

gas fluxes continuously (Baldocchi, 2003; Denmead, 2008; Flesch et al., 2016). Open-path 

Fourier transform spectroscopy (OP-FTIR) is capable of measuring concentrations of multiple 

gases simultaneously with high temporal and spatial resolution through real-time measurements 

and path-averaged concentrations (Russwurm and Childers, 2002). OP-FTIR has been applied to 

measure GHGs, and other trace gases (e.g., NH3) emitted from agricultural fields (Childers et al., 

2001a and 2001b; Bjorneberg et al., 2009; Flesch et al., 2016; Lam et al., 2017). Using OP-FTIR 

to quantify gas concentrations, however, is a complicated process. Each step in data collection 

and spectral analyses influences the accuracy and precision of gas quantifications, including 

spectral resolution, apodization function, choice of background (e.g., zero-path or synthetic 

backgrounds), and chemometric models (Russwurm and Childers, 1999; Griffiths and de Haseth, 

2007; Hart and Griffiths, 2000; Hart et al., 2000). Also, OP-FTIR spectra are sensitive to ambient 

environmental conditions (e.g., humidity, air temperature, optical distance, and wind speed), 

which interferes with spectral analyses and quantification of gas concentrations (Griffiths and de 

Haseth, 2007; Muller et al., 1999; Shao et al., 2007 and 2010). 

 

Water vapor is a major interference in FTIR-derived trace gas quantification due to its strong 

absorption features within the mid-infrared region (400-4000 cm
-1

) (Russwurm and Childers, 

1999; ASTM, 2013). For the interference-free spectra, a single absorption line can be easily 

isolated to calculate gas concentrations (i.e., univariate methods). Using this method, however, is 

challenging to adequately isolate the absorption feature of the gas of interest from water vapor 

(Muller et al., 1999; Briz et al., 2007). Multivariate methods have been proposed to improve gas 

quantification from spectral interferences including water vapor by selecting broad spectral 

windows of gases of interest (Haaland and Easterling, 1980; Haaland and Thomas, 1988; Hart 

and Griffiths, 1998 and 2000; Hart et al., 1999 and 2000; Muller et al., 1999). The most common 

method in commercial quantification packages is the classical least squares (CLS) quantitative 

model (Griffiths and de Haseth, 2007). Studies showed that the interference of water vapor was 

mitigated by either considering reference spectra of water vapor or through selection of 

appropriate spectral windows in CLS models (ASTM, 2013; Haaland and Easterling, 1980; Hart 

and Griffiths, 2000; Horrocks et al., 2001; Jiang et al., 2002; Du et al., 2004; Briz et al., 2007; 
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Lin et al., 2019). Other studies, however, found that CLS models resulted in substantial 

quantification errors of the targeted gas under the interference of the non-targeted gases (mostly 

water vapor) even if the reference spectra of all gas species and the optimal spectral window 

were considered (Hart et al., 1999; Briz et al., 2007; Shao et al., 2010; Lin et al., 2019). As a 

result, the partial least squares (PLS) algorithm was proposed to improve the accuracy of gas 

quantification (Haaland and Thomas, 1988; Hart et al., 2000; Shao et al., 2010; Lin et al., 2019). 

 

The features of gas rotation-vibrational absorption bands are temperature dependent (Lacome et 

al., 1984; Rothman et al., 2005). Ideally, sample and reference spectra should be collected at the 

same temperature to avoid temperature-related bias (Russwurm and Childers, 1999; ASTM, 

2013). Training spectra for building quantitative models, such as CLS, were generally collected 

at the same temperature. The non-linear responses of spectral absorbance to significant diurnal 

variations in temperature will lead to errors in gas quantification (Russwurm and Phillips, 1999; 

de Castro et al., 2007; Smith et al., 2011). For continuous field measurements, it is time-

consuming to create piecewise models to cover the entire ranges of 1) the path-integrated 

concentrations of gases of interest and interferences, and 2) temperature. A PLS model was 

developed to cover the wide ranges of environmental variables, including concentrations, path 

lengths, humidity, and temperature (Bjorneberg et al., 2009; Griffiths et al., 2009; Shao et al., 

2010 and 2011). 

 

Besides changes in water vapor content and temperature, the experimental configuration and 

optical parameters also influence OP-FTIR spectra. Compared with extractive methods, one of 

the advantages of OP-FTIR is the ability to use different path lengths to measure gases from 

multiple sources (Russwurm and Childers, 1999; Bacsik et al., 2006). OP-FTIR measurements 

require electronic gain to fill the analogue-to-digital converter of the instrument. Consequently, 

short optical path lengths can over saturate the detector that introduces error in gas quantification 

(Bartoli et al., 1974; Chase, 1984; Griffiths and de Haseth, 2007). A long path length increases 

the sensitivity for gas quantification, but the increased length reduces the intensity of the incident 

signal and decreases the signal-to-noise ratio (Griffith and Jamie, 2006; Nelson et al., 1996; 

Kosterev et al., 2008). Spectral resolution and apodization also affect the spectral linearity 

(Griffiths, 1994; Zhu and Griffiths, 1994; Russwurm and Phillips, 1999; Childers et al., 2002). 
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Lower resolution spectra are incapable of resolving absorption features. Even though the 

apodized interferogram (IFG) can reduce noises (or spurious oscillations) of a single-bean (SB) 

spectrum converted by Fourier transformation, different apodization functions affect spectrum 

linearity differently. The non-linear relationship between absorbance and concentrations 

disobeys Beer-Lambert Law and leads to biases in gas quantification (Russwurm and Phillips, 

1999; Childers et al., 2001a). 

 

For OP-FTIR measurements, many studies minimized environmental interferences (e.g., water 

vapor or wind speed) by developing methods for spectral analyses and gas quantification (Hong 

and Cho, 2003; Hart et al., 1999 and 2000; Muller et al., 1999; Childers et al., 2002; Briz et al., 

2007; Shao et al., 2007; Griffiths et al, 2009; Shao et al., 2010; Lin et al., 2019). Briz et al. (2007) 

examined the difference in water vapor content (0.5 % vs. 2.5 %) on trace gas quantification but 

their study did not include N2O. Shao et al. (2007) investigated the effect of wind on 

spectrometer vibrations and spectra qualities but did not address its influence on gas 

quantification. The influences of temperature on trace gas absorption intensity and bandwidth 

have been established for some simple systems (e.g., single gas component shown in the high-

resolution transmission molecular absorption (HITRAN) database published by Rothman et al., 

2005); however, only limited studies assessed temperature effect on gas quantification using OP-

FTIR. Horrocks et al. (2001) and Smith et al. (2011) used OP-FTIR spectrometer and a gas cell 

purged with dry samples to measure the temperature-related error in SO2, CO, CO2, and CH4 

quantification, but not for N2O. 

 

To the best of our knowledge, there has never been a study of exploring the influence of 

changing temperature and path length on N2O quantification under interferences of water vapor 

in spectra. It is challenging to test the quality of OP-FTIR methods for multiple gas 

quantification due to interferences and the lack of proper measurement benchmarks. Also, the 

influence of water vapor is confounded by temperature and path length effects. In this study, the 

influence of water vapor, temperature, path length, and wind speed on N2O and CO2 

quantification are examined using lab and field-based (OP-FTIR) methods. 
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3.3 Materials and Methods 

3.3.1 Lab FTIR experiment 

The lab FTIR experiment was used to assess the effects of water vapor and air temperature on 

N2O quantification from spectra. An FTIR spectrometer equipped with a variable-path length gas 

cell was used to acquire reference spectra of N2O, water vapor, and N2O plus water vapor 

mixtures (i.e., wet N2O) as shown in Figure 3.1a. 

3.3.1.1 Instrumentation setup 

The lab FTIR spectrometer (Nexus 670, Thermo Electron Corporation, Madison, WI) was 

equipped with a KBr beam splitter, and a high-D* MCT detector was used to analyze gas 

samples using a multi-pass gas cell (White cell) (model MARS-8L/40L, Gemini Scientific 

Instruments, CA) with an optical path length of 33-m. Spectra range of 700.0-4000.0 cm
-1

, 

optical velocity of 0.6 cm s
-1

, and a resolution of 0.5 cm
-1

 were selected for spectra acquisition. 

Each spectrum was acquired by co-adding 64 IFGs using the OMNIC software package (Thermo 

Fisher Scientific, Inc.) A triangular function was applied to apodize an IFG for converting an SB 

spectrum using the Fourier transform. A sampled SB spectrum contained the visible information 

of gases of interest and interferences. A background SB spectrum was collected from pure N2 

and used to convert a sampled SB spectrum to an absorbance spectrum. The temperature of the 

gas cell was controlled and monitored (model 689-0005, Barnant Co., Barrington, IL). The 

spectrometer was purged with dry air (−20 °C dew point) from a zero air generator (model 701H, 

Teledyne, Thousand Oaks, CA). Gas samples were produced using a diluter (series 4040, 

Environics Inc, Tolland, CT). The mixing ratio (or concentration, ppbv) of N2O was diluted with 

ultra-pure N2 gas. Water vapor concentrations (ppmv) were controlled by a Nafion tube (Perma 

Pure, Lakewood, NJ) enclosed within a sealed container containing saturated water vapor. The 

concentration of saturated water vapor in the container was adjusted by controlling temperature 

of the water bath. Wet N2O gas samples were produced by passing dry N2O from the diluter 

through Nafion tube with a constant flow rate (4 L·min
-1

). Gas samples were continuously 

introduced into the white cell. Humidity and temperature probes (model HMT330, Vaisala Oyj, 

Helsinki, Finland) were used to monitor the humidity and temperature of the introduced gas 

samples. In this study, N2O (dry and wet) was diluted from 30.0 ppmv (N2O in N2) to 310.0, 
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400.0, 500.0, 600.0 and 700.0 ppbv with various water vapor contents (a relative humidity of 20 

%, 40 %, 60 %, and 80 % at 30 °C). 

3.3.1.2 Data collections and gas quantification 

Spectra were collected when the N2O and water vapor concentrations and temperature of the 

introduced samples were steady. Concentrations of N2O and water vapor were calculated from 

the mixed-gas (wet N2O) absorbance spectra by CLS and PLS models using TQ Analyst 

software Version 8.0 (Thermo Fisher Scientific, Inc.) A total of 9 single-gas spectra of dry N2O 

(310.0-700.0 ppbv) and water vapor (7000-28000 ppmv) were used to build CLS models. A total 

of 60 mixed-gas spectra were used to build PLS models. Spectral windows (Table 3.1) and linear 

baseline correction were applied in CLS and PLS models to calculate N2O. Two windows 

reported by Lin et al. (2019) were used for N2O quantification (WN1: 2170.0-2223.7 cm
-1

 and 

WN3: 2188.7-2204.1 + 2215.8-2223.7 cm
-1

). In PLS models, optimum factors were determined 

by cross validation and justified by the prediction of residual error sum of squares (PRESS) 

function to avoid over-fitting issues (see Table S2 in the Supplement published by Lin et al., 

2019). The influence of air temperature on N2O quantification using CLS and PLS was examined 

by collecting spectra at 30, 35, and 40 °C. 

3.3.2 Open-path FTIR experiment 

The OP-FTIR experiment was used to assess the effects of water vapor, air temperature, path 

lengths, and wind speed on the quantification of N2O and CO2 from field spectra. The field 

instrumentation and configuration were shown in Figure 3.1b. 

3.3.2.1 Site description and instrumentation setup 

The field study was conducted at Purdue University Agronomy Center for Research and 

Education of West Lafayette, Indiana, the United States (86°56  ́W, 40°49  ́N). The predominant 

soil series at the study site was a Drummer silty clay loam (fine-silty, mixed, mesic Typic 

Endoaquoll). The bulk density of topsoil (0-10 cm) and organic matter (0-20 cm) was measured 

1.6 g·cm
-3

 and 3.8 %, respectively. The experimental site (Purdue Field Trace Gas Flux Facility) 

was between two maize cropping fields (~10-m apart) with anhydrous ammonia applications. A 

monostatic OP-FTIR (IR source, interferometer, transmitting and receiving telescope, and 

detector combined in one instrument) spectrometer (model 2501-C, MIDAC Corporation, Irvine, 
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CA) was used to collect field-IR spectra. A retroreflector with 26 corner-cubes (cube-length of 

76-mm) was mounted on a tripod 150-m from the spectrometer corresponding to an optical path 

of 300-m. The experiment of varying path lengths was conducted using optical path lengths of 

100-, 200- and 300-m. 

3.3.2.2 Data collection and gas quantification 

The same sample collection parameters were used to collect both OP-FTIR and lab-FTIR spectra. 

OP-FTIR spectra were collected using the AutoQuant Pro4.0 software package (MIDAC 

Corporation, Irvine, CA). Each field spectrum was collected by co-adding 64 IFGs and a 

resolution of 0.5 cm
-1

. A zero-filling factor of one, triangular apodization, and Mertz phase 

correction were applied to convert an IFG into an SB spectrum. A stray-light SB spectrum was 

collected by pointing the spectrometer telescope away from the retroreflector and subtracted 

from sampled SB spectra for stray-light correction. Quality control and assurance procedures 

(Russwurm, 1999; ASTM, 2013; Russwurm and Childers, 1999; Childers et al., 2001b; Shao et 

al., 2007) were used to evaluate spectra qualities and the influence of wind-induced vibrations. 

The corrected field SB spectra were converted to absorbance spectra using the synthetic SB 

background spectra shown by Lin et al. (2019). 

 

Gas concentrations derived from the OP-FTIR absorbance spectra were also calculated by CLS 

and PLS models. Single-gas reference spectra were generated from the HITRAN database 

(Rothman et al., 2005) and used to create CLS models using the IMACC software (Industrial 

Monitoring and Control Corp., Round Rock, TX). Identical parameters, including resolution, 

apodization, zero-filling factor, were used to acquire both reference and field spectra. The 

HITRAN reference spectra, including N2O, CO2, and water vapor, were generated at 30 °C to 

calculate N2O and CO2 concentrations from field spectra using optimum windows (WN3 for N2O 

and WC2 for CO2 shown in Table 3.1) published by Lin et al. (2019). Non-linear least square 

regressions between absorbance and the path-integrated concentrations of reference spectra were 

used to create CLS models. PLS models were built using lab-FTIR measurements and only used 

for estimating N2O concentrations. 
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Ambient temperature and relative humidity in the field were measured using an HMP45C probe 

(Vaisala Oyj, Helsinki, Finland) at 1.5-m above ground level (a.g.l.). The mean wind speed was 

measured by a 3-D sonic anemometer (model 81000, RM Young Inc., Traverse City, MI) 

mounted at 2.5-m a.g.l. and recorded at 16 Hz. A 50-m synthetic open path gas sampling system 

(S-OPS) (Heber et al., 2006) was used to collect gas samples along the OP-FTIR optical path to 

analyze the path-averaged concentrations of N2O and CO2 using a difference frequency 

generation mid-IR (DFG-IR) laser-based N2O gas analyzer (IRIS 4600, Thermo Fisher Scientific 

Inc., Waltham, MA) and a non-dispersive IR (ND-IR) CO2 gas analyzer (LI-840, LI-COR Inc., 

Lincoln, NE), respectively. The N2O and CO2 analyzers provided a high precision for N2O (< 

0.15 ppbv, 1σ) and CO2 (< 1.0 ppmv, 1σ) measurements, so the path-averaged concentrations 

measured from the S-OPS were used as benchmarks to examine the accuracy and the sensitivity 

of OP-FTIR on gas quantification. 

3.3.2.3 Path lengths experiment 

A variable path length between an OP-FTIR spectrometer and a retroreflector resulted in 

different path-integrated concentrations and the depth of gas absorbance in SB spectra. The 

complexities of N2O absorption features within the 2170.0-2224.0 cm
-1

 range required high 

spectral resolution (Figure 3.3). For N2O, the increased absorbance, resulting from a longer path 

length, likely improves its quantitative sensitivity and accuracy. Spectra were collected from 

physical lengths of 50-, 100-, and 150-m (Figure 3.1b) using the same parameters. During the 

measurement (14:30-18:30, local time (LT) on 6 May 2016), background concentrations of N2O 

(349.0±0.5 ppbv) and CO2 (400.0±4.4 ppmv), ambient temperature and humidity (the relative 

humidity of 35.0 % at 25 °C) remained nearly constant. The spectra acquired from different path 

lengths were analyzed by CLS models for N2O and CO2 concentrations and by PLS models only 

for N2O. 

3.3.3 Quantification accuracy 

Quantitative accuracy/bias was determined by the relative error of the path-averaged 

concentrations between FTIR (𝑥𝑖) and the true gas concentrations (𝑥𝑡) of either the introduced 

gas (Lab) or the S-OPS measurements (Field), following Eq. (1): 

𝐵𝑖𝑎𝑠 = [(𝑥𝑖 − 𝑥𝑡)/𝑥𝑡] × 100%                                                  [1] 
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3.4 Results and Discussion 

Quantification of target gas concentrations from either lab- or field-based FTIR spectra requires 

knowledge of the optimum spectral window (the spectral region used for quantification). In 

general, broadening the spectral windows will contain more spectral features that can be used for 

quantification. At the same time, however, broader windows will also contain more contributions 

from interfering constituents (e.g., water vapor). The optimum window would have clean 

spectral features of the target species with minimal spectral interference from other gases. For 

N2O quantification, our previous work showed that the optimum window was to integrate two 

intervals of 2215.8-2223.7 and 2188.5-2204.1 cm
-1

 (WN3 shown in Lin et al., 2019). In this paper, 

two windows (WN1 and WN3) and models (CLS and PLS) from the previous study were used to 

predict N2O concentrations. 

3.4.1 Lab FTIR experiment 

3.4.1.1 Water vapor effect 

Water vapor interfered with spectral windows and resulted in underestimations of N2O 

concentrations using CLS models; increased water vapor increased the bias (Figure 3.2). The 

PLS model provided more accurate predictions for N2O than the CLS. The CLS accurately 

predicted gas concentrations only when the water vapor was absent or limited in spectra (Hong 

and Cho, 2003; Esler et al., 2000; Shao et al., 2010; Smith et al., 2011). In open-path 

measurements, CLS was often observed to underestimate gas concentrations, as reported by 

Childers et al. (2002), Briz et al. (2007), Shao et al. (2010), and Lin et al. (2019). Absorbance 

spectra of dry and wet N2O (Figure 3.3) showed that the interference of water vapor 

compromised the intensity of N2O absorbance (P branch). The reduced N2O absorbance in wet 

samples resulted in underestimations of N2O concentrations using CLS models created based on 

references of dry N2O samples and water vapor. PLS models, created by wet N2O references, 

showed improved accuracy in wet samples but overestimated N2O in dry samples (Figure 3.2). It 

is still unclear how water vapor interfered with gas quantification. The N2O underestimation 

(based on the CLS model predictions) resulting from the attenuated absorbance was 

hypothesized due to the inadequate spectral resolution. High resolution is required to resolve 

rotation-vibrational gas spectral features (e.g., full-width at half height ~ 0.2 cm
-1

) to avoid 

spectral nonlinearity to concentrations (ASTM, 2013; Griffiths and de Haseth, 2007; Russwurm 
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and Phillip, 1999; Muller et al., 1999). Absorption features of N2O were strongly overlapped by 

water vapor within 2170.0-2224.0 cm
-1

. In order to resolve absorbance spectra of multiple gases 

and spectral overlaps, spectral resolution higher than 0.2 cm
-1

 would be suggested. 

3.4.1.2 Temperature effect 

The temperature-sensitivity of gas-phase FTIR spectra results in non-linearity of absorbance to 

temperature. Bias will be introduced if there is a temperature difference between reference and 

sample spectra (Russwurm and Phillip, 1999; Smith et al., 2011). The effect of this delta 

temperature on N2O quantification is shown in Figure 3.4a. Spectra of wet N2O (310 ppbv N2O 

blending with 21000 ppmv water vapor) were collected at 30 °C, 35 °C, and 40 °C. Reference 

spectra of dry N2O, water vapor, and wet N2O were acquired at 30 °C and used to calculate N2O 

concentrations from spectra collected at temperatures of 35 °C and 40 °C. The difference in 

temperature led to biases in N2O calculations (Figure 3.4a). Smith et al. (2011) calculated 

concentrations of CO2, CH4, and CO using the Multi-Atmospheric Layer Transmission (MALT) 

(Griffith, 1996) and showed that temperature-related error was approximately 3.0 % when the 

delta temperature was within 10 °C. The interference of water vapor, however, was not 

considered in their study. As mentioned, water vapor present in spectra resulted in 

underestimations of N2O by CLS models (Figure 3.2), and this bias further increased with 

increasing the delta temperature. For instance, the bias increased from −3.0 to −5.0 % with 

increasing temperature from 30 to 40 °C using CLS models (Figure 3.4a). Sources to this bias 

appeared to include 1) temperature-broadening of N2O and 2) temperature-induced interference 

of water vapor (i.e., greater interference at increased temperature). The increased strength of 

water vapor led to more interference in spectral analyses and great biases (Figure 3.4b). PLS 

methods showed less sensitivity to temperature (Figure 3.4a). 

3.4.2 Open-path FTIR experiment 

3.4.2.1 Water vapor effect 

In fields, water vapor ranged from 5000 to 20000 ppmv during 9-19 June 2014, and the increased 

water vapor increased N2O biases using CLS (Figure 3.5a). In the lab experiment, the increased 

water vapor from 5000 to 20000 ppmv at 30 °C only showed consistent underestimations of N2O 

by approximately 3.0 % using CLS (Figure 3.2). Since water vapor and air temperature are 
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confounding variables, it is difficult to isolate their contributions to quantitative errors in the 

field. The negligible correlation (R
2
 = 0.20 shown in Figure 3.5a) between water vapor content 

and the N2O bias was because water vapor was confounded by temperature (i.e., temperature 

ranged from 10 °C to 35 °C in fields) and became insignificant when the calculated biases were 

categorized by temperature (i.e., R
2
 = 0.01 at the interval of 25-30 °C, data not shown). CO2 

measured by CLS was less sensitive to changing water vapor content (R
2
 = 0.05) than N2O 

(Figure 3.5b) in field measurements, presumably due to the less water vapor absorption features 

in 2075.5-2084.0 cm
-1

 than 2170.0-2224.0 cm
-1

 (Lin et al., 2019). For PLS calculations, N2O 

biases became consistent but slightly increased with increasing water vapor (Figure 3.5c). 

3.4.2.2 Temperature effect 

Increased air temperature increased both N2O and CO2 bias estimations from CLS models 

(Figure 3.5d and 3.5e). Since the temperature-dependent absorbance varied with species and 

wavelengths, gas quantification reacts differently to a changing environmental temperature 

(Smith et al., 2011). The strong correlation of air temperature to N2O biases (R
2
 = 0.86) showed 

the N2O quantification was more sensitive to temperature effects than CO2 (R
2
 = 0.39). The lab 

experiment (Figure 3.4) showed that CLS underestimated N2O by 3.0 % in wet air for samples 

with a low delta-temperature. N2O calculations from OP-FTIR spectra, however, were 

underestimated by 12.0 % (approximately 36 ppbv less than the true value) even if the HITRAN 

reference and sample spectra were collected at the same temperature (i.e., 30 °C). The excess 

bias (12.0 % minus 3.0 %) presumably resulted from interferences from CO and CO2 in 2170.0-

2224.0 cm
-1

 and inherent uncertainties in line intensities and bandwidths of gas absorbance from 

HITRAN database (Rothman et al., 2005). CLS-calculated CO2 values were less influenced by 

temperature (R
2
 = 0.39) than N2O (Figure 3.5e), attributed to the reduced complexity of CO2 

absorption features in the 2075.0-2085.0 cm
-1

 region, and less interference of water vapor within 

this region (Lin et al., 2019). The PLS models were less influenced by temperature for N2O 

quantification (R
2
 = 0.05) and provided better accuracy for N2O estimations (Figure 3.5f). 

3.4.2.3 Path length effect 

OP-FTIR spectra containing N2O concentrations of 349.0±0.5 ppbv and CO2 concentrations of 

400.0±4.4 ppmv were collected from optical lengths of 100-, 200-, and 300-m. As path lengths 
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decreased, both N2O and CO2 concentrations were underestimated (Figure 3.6a and 3.6b). For 

N2O, CLS-derived concentrations were more sensitive to changing path lengths than PLS (Figure 

3.6a). The Beer-Lambert law should show a linear response of absorbance to the path-integrated 

concentration. Nevertheless, the path-averaged absorbance of N2O and CO2 (i.e., 
Absorbance

𝑃𝑎𝑡ℎ 𝑙𝑒𝑛𝑔𝑡ℎ(𝑚)
) 

did not conform to the Beer-Lambert law even though background concentrations of N2O and 

CO2 were consistent (Figure 3.6c and 3.6d), showing that there was a non-linear response of OP-

FTIR spectra to the path-integrated concentrations. Several reasons may have caused non-

linearity issues, such as detector saturation, spectral resolution, and apodization (ASTM, 2013; 

Russwurm and Childers, 1999; Griffiths and de Haseth, 2007). Detector saturation at short 

distances was avoided by examinations of the IFG centre burst and SB spectra (i.e., the elevated 

baseline below the detector cut-off, usually 600.0 cm
-1

) in this study (ASTM, 2013). 

 

Presumably, this short-path-derived bias (Figure 3.6a and 3.6b) resulted from the inadequate 

spectral resolution. Short path lengths reduced the absorbance depth in an SB spectrum and 

sensitivity for quantification. Poorly resolved absorbance spectra could lead to a spectral non-

linear response with different path-integrated concentrations (Zhu and Griffiths, 1994; 

Russwurm and Phillips, 1999). Also, N2O quantification was more sensitive to path lengths than 

CO2. With increasing optical path lengths from 100-m to 300-m, the accuracy of N2O calculated 

from CLS models increased by approximately 20.0 % (N2O biases reduced from −30.0 % to 

−10.0 % shown in Figure 3.6a). For CO2, the accuracy only increased 2.5 % (CO2 biases reduced 

from −7.5 % to −5.0 % shown in Figure 3.6b). The difference in sensitivity between gas 

quantification and path length was attributed to the complexity of absorbance spectra. N2O 

absorption features in 2170.0-2224.0 cm
-1

 were more complicated than CO2 in 2075.0-2085.0 

cm
-1

; furthermore, more interfering gases (CO, CO2, and water vapor in 2170.0-2224.0 cm
-1

) 

interfered with N2O quantification (Lin et al., 2019). A triangular apodization function applied in 

spectra results in a non-linear response (Russwurm and Phillips, 1999). The poorly-resolved 

spectra containing multiple gas species likely complicated the magnitude of the non-linearity led 

by apodization, which, however, was not evaluated by this study. The PLS methods reduced N2O 

biases and showed less sensitivity to path length than CLS (Figure 3.6a). 
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3.4.2.4 Wind speed effect 

Nitrous oxide is predominately produced via soil microbial activities (nitrification and 

denitrification) and CO2 is from respirations from soil microbes and vegetation (Mosier et al., 

1996). As a result of soil and crop heterogeneities, multiple sources, and intermittent fluxes of 

N2O and CO2 from soil and/or canopy result in inhomogeneous gas concentrations under low 

winds. Since the path length of the S-OPS (50-m) was different from the OP-FTIR (the physical 

length of 150-m), the gas uniformity across the 150-m influenced their path-averaged 

concentrations. The difference in the path-averaged N2O and CO2 concentrations between the S-

OPS and OP-FTIR was used to calculate quantification bias (Figure 3.7). Variabilities of N2O 

and CO2 biases were small but increased when the wind speed was less than 2 m s
-1

 (Figure 3.7c 

and Supplementary Table 3.1). This increased variability inferred the poorly-mixed air (< 2 m s
-

1
). Thus, decreasing wind speed and turbulent mixing tended to increase gas concentration 

differences between the S-OPS and OP-FTIR. During the low wind environment, CO2 bias 

showed higher variability than N2O presumably due to a greater environmental variation in CO2 

concentrations than N2O (Lin et al., 2019). Low wind conditions likely occurred during the night 

period. For instance, 22.0 % (57 out of 259) of the collected data (30-min-averaged N2O) 

collected from low winds (< 2 m s
-1

) was from daytime measurements (06:00-20:00, LT), and 

36.2 % (47 out of 130) was from nighttime measurements (20:00-06:00, LT) (Figure 3.7a). 

3.5 Conclusion 

In this study, we have evaluated the effects of water vapor, temperature, path length, and wind 

speed on open-path FTIR measurements of N2O and CO2 quantified by CLS and PLS models. 

Water vapor in spectra underestimated N2O concentrations by 3.0 % (lab experiment) and 12.0 

% (field experiment) at 30 °C using CLS models. PLS models improved the accuracy of N2O 

quantification (lab bias = −0.6±0.4 % and field bias = 2.0±0.8 %). Differences in temperature 

between reference and sample spectra led to errors in gas quantification. Increased air 

temperature significantly increased quantification bias using CLS models. For wet N2O, 10 °C 

difference introduced 1.9 % (Lab) and 9.1 % (Field) more biases in gas concentrations. PLS 

models were less sensitive to temperature. Short path lengths reduced the sensitivity and 

accuracy for gas quantification, and CLS models were more sensitive to changing path lengths 
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than PLS. These short-path-led biases were presumably due to the inadequate spectral resolution. 

CO2 quantification using CLS model was less influenced by environmental variables than N2O 

likely due to the less complex absorption features. The wind affected the mixings of gases and 

the low wind speed (< 2 m s
-1

) led uncertainties in the path-averaged concentrations. 

 

The partial least squares model generally provided more accurate measurements than CLS if the 

gas of interest is strongly interfered by water vapor (or other interferences) (e.g., strong overlap 

of water vapor absorbance features or broad spectral windows). PLS is also less sensitive to 

environmental variables than CLS. For OP-FTIR measurements, the CLS-calculated 

concentrations need to be verified carefully for quality assurance and to avoid substantial 

underestimations. Path lengths must be adequate, which can be checked by conducting a path 

length experiment before measurements. For the users interested in multi-source measurements, 

we suggested avoiding a great difference in path lengths if CLS models are used for gas 

quantification. High spectral resolution (< 0.5 cm
-1

) is recommended to resolve complex spectral 

features of either gas of interest or interferences. A high resolution also introduces more noises 

and increasing the scan time is suggested to increase the single-to-noise ratio (Griffiths and de 

Haseth, 2007). 
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Table 3.1 Spectral windows for quantification of N2O and CO2. 
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Supplementary Table 3.1 Quantification biases (%) of N2O and CO2 were categorized by wind speed (e.g., 1 m s
-1

 interval), and 

statistics of biases were calculated from seven groups. Levene’s test was used to compare variances of biases among the group to test 

the low wind speed threshold. Levene’s hypothesis test is defined as: 𝐻0: 𝜎7
2 = 𝜎6

2 ⋯ 𝜎𝑛
2(𝑛 ≥ 1) and 

𝐻𝑎: 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑖𝑠 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡. 
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Figure 3.1 Schematic of the instrumentation used to assess the effects of water vapor and temperature on gas quantification: (a) lab-

FTIR with a multi-pass gas cell (optical path length of 33-m); (b) DFG-IR N2O and ND-IR CO2 analyzers combined with synthetic 

open path gas sampling system (S-OPS) were used as benchmarks to assess quantification of N2O and CO2 from OP-FTIR.  
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Figure 3.2 Effects of water vapor on N2O quantification: the lab-FTIR spectra of dry N2O and 

N2O/water vapor mixtures (310 ppbv N2O at the relative humidity of 20 %, 40 %, 60 %, and 80 % 

at 30 °C) were used to calculate N2O concentrations using CLS and PLS models and two spectral 

windows (WN1 and WN3). 
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Figure 3.3 The lab-FTIR spectra of dry N2O (i.e., 310 ppbv), wet N2O (i.e., 310 ppbv N2O + 

28,000 ppmv water vapor), and water vapor (28,000 ppmv) were acquired at 30 °C. 
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Figure 3.4 Effects of temperature on N2O quantification: the lab FTIR spectra containing wet 

N2O (310 ppbv N2O plus 21 500 ppmv water vapor) were acquired at 30 °C, 35 °C, and 40 °C. 

Temperature affected (a) N2O concentrations calculated by the CLS and PLS models and two 

spectral windows (WN1 and WN3) and (b) spectral differences in wet N2O absorbance (310 ppbv 

N2O plus 21 500 ppmv water vapor) among different temperature. 
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Figure 3.5 Effects of water vapor and temperature on N2O and CO2 concentrations from OP-

FTIR spectra using CLS and PLS models and the optimal windows (i.e., WN3 for N2O and WC2 

for CO2) during 09-19 Jun. 2014. Assumed temperature and bias are a linear relationship. 
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Figure 3.6 Effects of path lengths on N2O and CO2 quantification: OP-FTIR spectra were 

acquired under backgrounds of N2O (349.0±0.5 ppbv) and CO2 (400.0 ± 4.4 ppmv), and relative 

humidity of 35 % at 25 °C from optical path lengths of 100-, 200-, and 300-m for quantification 

of (a) N2O using CLS and PLS and windows of WN1 and WN3, (b) CO2 using a CLS model and 

the window of WC2. The path-averaged absorbance spectra of (c) N2O and (d) CO2 showed the 

inconsistency of absorbance spectra. 
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Figure 3.7 Effects of the wind speed on differences in the path-averaged concentrations between 

the OP-FTIR and S-OPS: (a) N2O, (b) CO2, and (c) variability of biases (Standard deviation, SD).
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 MEASURING N2O EMISSIONS FROM MULTIPLE CHAPTER 4.

SOURCES USING A BACKWARD LAGRANGIAN STOCHASTIC 

MODEL 

A version of this chapter will be submitted for review to the open-access journal of Atmosphere. 

4.1 Abstract 

Nitrous oxide (N2O) emissions from agricultural soil are substantially influenced by nitrogen and 

field management practices. It is challenging and an ongoing research question to implement a 

backward Lagrangian stochastic (bLS) technique to measure gas emissions from different 

treatments (multiple sources) simultaneously. A scanning open-path (OP) Fourier transform 

infrared spectrometer (OP-FTIR), and a bLS emissions model were integrated to measure N2O 

emissions from four adjoining fields with differing management in 2015. The field practices 

were no-till (NT) and chisel plow (ChP). For nitrogen (N) management, the total rate of 220 kg 

NH3-N ha
-1

 was applied as full-N or split-N rate application in the fall or spring before planting. 

This method (scanning OP-FTIR + bLS) showed that the minimum detection limit (MDL) for 

the multi-source N2O emission measurements was ±1.2 µg m
-2

 s
-1

 (3σ). The averaged emission 

rates of the treatments ranged from 0.4 to 2.5 µg m
-2

 s
-1

 over 44 days after spring fertilizer 

application. This study showed that the management of the full-N rate applied in fall led to 

higher N2O emissions than the split-N rates applied in the fall and spring. Based on the same N 

application (i.e., split-N rates applied in the fall and spring), the ChP practice tended to increase 

N2O emissions compared with NT. The uncertainty (1σ) in emissions measurements was 0.5±0.3 

µg m
-2

 s
-1

 if the field of interest received a clean upwind background. Increased advective 

interferences from the upwind treatments increased uncertainties to 0.6±0.4 µg m
-2

 s
-1

 (one 

predominant source), and 1.1±0.5 µg m
-2

 s
-1

 (three upwind sources). 

4.2 Introduction 

At present, more than 50% of non-CO2 greenhouse gas (GHG) emissions (mainly N2O and CH4) 

come from agricultural sources (US-EPA, 2012; IPCC, 2013; Smith et al., 2008; Reay et al., 

2012). N2O emitted from agricultural soils is mainly attributed to the application of nitrogen (N) 

fertilizers (Bouwman, 1996; Mosier et al., 1998). Nitrogen losses via N2O emissions not only 
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give rise to a negative impact on the environment (strong GHG input into the atmosphere) but 

also reduce N fertilizer use efficiency (NUE) (Decock, 2014; USDA-ERS, 2018). Several N 

management practices were proposed to mitigate N2O emissions, such as reducing application 

rates (right rate) or applying N fertilizers at the timing to meet the crop N demands (right timing) 

(Akiyama, 2010; Decock, 2014). Conservation field practices (e.g., zero tillage) has been 

suggested to reduce soil CO2 emissions, but their effects on N2O emissions are still unclear 

(Decock, 2014; Snyder et al., 2009; Venterea et al., 2011). 

 

A backward Lagrangian stochastic (bLS) dispersion technique has been developed to estimate 

gas emissions from field-scale source areas (e.g., 100-300 m), such as feedlots, animal waste 

lagoons, and fertilized soils (Flesch et al., 1995 and 2004; Yang et al., 2013; Grant and Boehm, 

2015; Huo et al., 2015; Flesch et al., 2016; Lam et al., 2018). A bLS technique can predict 

trajectories of trace gases (gas particles) from sensors to sources based on Monin-Obukhov 

similarity theory (MOST). The MOST theory uses friction velocity (u*), Monin-Obukhov (MO) 

length (L), and surface roughness (z) to describe statistical properties of the surface wind field. 

The principle of the MOST theory, as well as the bLS-simulated trajectories, were considered as 

valid if the MOST-descriptive variables meet the criteria of u* > 0.15 m s
-1

 and |L| > 5 m (Flesch 

et al., 1995 and 2004). During the ‘backward travels’ from the downwind sensor to the upwind 

source, gas particles intersect with the surface of the source (touchdowns), providing a predictive 

relationship between gas concentrations and emission rates ((𝐶/𝑄)𝑠𝑖𝑚) (Flesch et al., 1995 and 

2004). Given the known downwind concentrations, the bLS model estimates emissions (𝑄) from 

the source of interest.  

 

The bLS method has been usually used to predict emission rates from a single source. (McBain 

and Desjardins, 2005; Flesch et al., 2004). Implementing the bLS method to measure multiple 

source emissions is more complicated than single-source emissions when a gas concentration 

sensor can simultaneously detect gas concentrations from several sources (Crenna et al., 2008; 

Gao et al., 2008; Flesch et al., 2009; Hrad et al., 2014; Huo et al., 2014). For multi-source 

emissions measurements, the minimum requirement in the bLS model is that the number of 

concentration sensors (n) must be at least equal to emission sources (m) (i.e., n ≥ m) (Crenna et 

al., 2008; Flesch et al., 2009). The placement of sensors deployed in sources of interest 
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substantially influenced the quality of emissions quantification. The ideal sensor-source 

geometry was that each sensor only detects gas from one source (Crenna et al., 2008; Gao et al., 

2008; Flesch et al., 2009; Hrad et al., 2014). Some studies, however, showed that such ‘optimal’ 

sensor placement did not improve the accuracy of emissions measured from multiple sources (Ro 

et al., 2011 and 2013). 

 

Most studies of multi-source emissions have focused on optimizing the sensor-source geometry 

to improve flux calculations (Crenna et al., 2008; Gao et al., 2008; Flesch et al., 2009; Hrad et al., 

2014). Few papers have investigated the effect of interferences from adjacent fields on emission 

estimations via advection (In meteorology, advection refers to the horizontal transport of the 

atmospheric properties, such as heat or matter) (Ro et al., 2011; Mukherjee et al., 2014; Huo et 

al., 2014). Also, the criteria used for quality assurance of the single-source estimation cannot be 

directly applied for multi-source estimations. For instance, the fraction of source region of 

interest covered by touchdowns (TDF) is used to assure the quality of emissions estimation, and 

at least 10% of a field needs to be covered by touchdowns (TDF > 0.1) for emission estimations 

(Flesch et al., 2004 and 2005). Higher TDF (0.1 – 0.6) was often used to improve the accuracy of 

flux measurements (Flesch et al., 2009; Ro et al., 2011 and 2013; VanderZaag et al., 2014). 

 

In order to investigate the effect of these management practices on GHG emissions and optimize 

the management to mitigate GHG emissions, there is an increasing demand to develop a method 

to measure multiple-source emissions continuously and simultaneously. Emissions from adjacent 

treatments create multiple sources in close proximity (e.g., N fertilizer application, tillage 

practices, or irrigation). In this study, a scanning open-path Fourier transform spectrometer (OP-

FTIR), and the bLS technique were integrated to measure N2O emissions from four adjoining 

fields with contrasting management (i.e., Fall vs. Spring N application; full- vs. split-N rate 

application; no-till (NT) vs. chisel plow (ChP)). The objective of this study was to evaluate the 

feasibility of bLS methods to measure multi-source emissions, including uncertainty analysis of 

N2O concentrations and emissions. 
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4.3 Materials and Methods 

4.3.1 Field description and management 

The field experiment was located and operated in the field of Agronomy Center for Research and 

Education (ACRE) of Purdue University (86°59'41.09"W, 40°29'44.46"N). The soil type was 

mainly categorized as Drummer silty clay loam (fine-silty, mixed, mesic Typic Endoaquoll). 

Drainage type was classified from somewhat poorly to poorly drained (Soil survey, USDA). The 

bulk density (0-10 cm) and organic matter (0-20 cm) was measured 1.4-1.6 g cm
-3

 and 3.5-4.5 %, 

respectively. The cropping system was continuous corn fields grouped into four treatments based 

on the different field (NT vs. ChP) and N (Fall vs. Spring N application; full vs. split N rate) 

management practices since 2013 shown in Figure 4.1. All fields used NT with the exception of 

T3 that used ChP. In 2015, anhydrous ammonia (AA) was used as an N source, and the total N 

rate was 220 kg NH3-N ha
-1

 applied as a full or split application at the different timing (Fall vs. 

Spring). For instance, the full-N rate was applied in T1 after harvest in the prior fall and T4 

before planting in the spring of 2015. The split-N application, 110 kg NH3-N ha
-1

 in the previous 

fall and the present spring, was applied in T2 and T3 (Table 4.1). 

4.3.2 Experimental configuration 

N2O concentrations were measured using an open path line-sampling (LS) and point-sampling 

(PS) concentration sensors (Figure 4.1). The open path LS sensor was a monostatic OP-FTIR 

spectrometer (MIDAC Model2501-C, MIDAC Corporation, Irvine, CA)  bounded by a cube-

corner retroreflector (i.e., 26 cubes). The LS length was between 100- and 150-m, and at a 

measurement height of approximately 1.5-m above ground level (a.g.l). An OP-FTIR was 

mounted on a scanner with horizontal and vertical rotaries (YUASA computer numerical control, 

CNC) to scan seven retroreflectors deployed in or on borders of four fields to create seven open 

path sampling lines (LS-1 – LS-7) and it took nearly thirty minutes to complete one cycle of the 

scanning (i.e., from LS-1 to LS-7). The scanner and OP-FTIR were not synchronized. A dwell 

time of each path was approximately three minutes to collect two-to-three FTIR spectra per 

retroreflector (one spectrum per minute). The LS sensors were placed in emission sources to 

increase the sensitivity of concentration measurements (e.g., relatively high concentrations from 

an emission source) (Flesch et al., 2007). Each spectrum was acquired by co-adding 64 

interferograms (IFG) at a resolution of 0.5 cm
-1

, and a co-added IFG was apodized using a 
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triangular function and converted to a single beam (SB) spectrum by Fourier transform using 

AutoQuant Pro4.0 software package (MIDAC Corporation, Irvine, CA). Details of acquiring OP-

FTIR spectra were described in Lin et al. (2019). 

 

A difference frequency generation (DFG) mid-IR laser-based N2O/ H2O analyzer (IRIS 4600, 

Thermo Fisher Scientific Inc., Waltham, MA) was conjoined with a gas sampling system (GSS) 

to measure N2O concentrations from multiple air streams. The DFG N2O analyzer was capable 

of measuring N2O concentration precisely (i.e., σ < 0.15 ppbv for three-minute average) with 

calibration checked with a standard N2O concentration of 520 ppbv every four hours. The GSS 

system included a sampling pump and four DC power solenoids connected to four sampling lines 

to collect gas samples by drawing the air through lines. Each sampling line consisted of a 9.5-

mm diameter Teflon○R  tube and fitted with 1.0-μm Teflon○R  filter (Heber et al., 2006). Then, 

lines were located on a border of the field (N, W, E) (Figure 4.1). In addition to three PS lines, a 

50-m synthetic open path sampling system (SOPS) was made up ten tubes (i.e., ten inlets) and 

deployed along one of the OP-FTIR paths (LS-4 between T2 and T3) to measure the path-

averaged N2O concentration and benchmark N2O concentrations measured by OP-FTIR (Chapter 

2). Thus, four sampling lines included three PS lines on the edges of the field and one SOPS line 

between the T2 and T3 treatments (i.e., NT and ChP). Each line was used to collect gas samples 

at approximately 7 L min
-1

, and the sampling interval was five minutes which was controlled by 

electrifying solenoids. 

 

Wind information (i.e., direction, velocity, and turbulence statistics) was measured using a 3D 

sonic anemometer (Model 81000, RM Young Inc., Traverse City, MI) which was installed at 

2.5-m height on the meteorological mast and recorded at 16Hz. Ambient temperature, humidity, 

and barometric pressure were measured using a temperature-humidity sensor (Model HMP45C, 

Vaisala Oyj, Helsinki, Finland) and a pressure sensor (278, Setra, Inc., Boxborough, MA) which 

were installed at 1.5-m a.g.l. mast. These meteorological data were averaged every five minutes 

by a data logger (Model CR1000, Campbell Scientific, Logan, Utah). 
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4.3.3 Open-path FTIR 

Calculations: A synthetic SB background was generated using IMACC software (Industrial 

Monitoring and Control Corp., Round Rock, TX) to convert sample SB spectra to absorbance 

spectra. N2O concentrations were quantified by partial least square (PLS) algorithms based on 

the Beer’s law quantitative spectral processing software (Thermo Fisher Scientific TQ Analyst 

Version 8.0). Sixty spectra of mixed-gas standards (water vapor + N2O) were generated using a 

laboratory FTIR spectrometry joined with a multi-pass gas cell (i.e., optical path = 33-m) and 

used to build PLS quantitative models. The analytical region for N2O calculations was used the 

combination window of 2188.7-2204.1 cm
-1

 and 2215.8-2223.7 cm
-1

. Details of the quantitative 

method of calculating N2O concentrations from OP-FTIR spectra was shown in Chapter 2. 

 

Calibrations: Fluctuations of ambient humidity, temperature, and path length substantially 

influenced the accuracy and precision of N2O calculations. The bias of the N2O concentrations 

derived from the OP-FTIR was calibrated by the path-averaged N2O concentration measured 

from the SOPS. The relative error between the FTIR- and SOPS-measured N2O concentrations 

(i.e., 𝑏𝑖𝑎𝑠 = [(𝑥𝐹𝑇𝐼𝑅 𝑥𝑆𝑂𝑃𝑠) − 1⁄ ] × 100% ) was calculated to infer the accuracy of N2O 

concentrations determined by OP-FTIR. The variations in ambient humidity and temperature are 

regarded as leading error sources for OP-FTIR quantification (Chapter 3). We assumed that 

ambient humidity and temperature were relatively constant within thirty minutes; as a result, the 

offset of the path-averaged concentration between the SOPS and OP-FTIR (LS-4) was 

considered as a constant within each 30-min interval and applied to calibrate other OP-FTIR 

paths (LS-1 to LS-7). 

 

Uncertainty: N2O background concentrations (i.e., 349±0.5 ppbv) (measured by the SOPS), 

ambient temperature (i.e., 23.6±0.8 °C), and humidity (i.e., RH = 29.4±2.9%) remained nearly 

constant between 14:30-18:30, local time (LT) on 6 May 2016. It was assumed that ambient 

humidity, temperature, and N2O concentrations remained stationary in a well-mixed surface 

layer within thirty-minute intervals. For each path length (i.e., optical path = 100-, 200-, and 300-

m), ten OP-FTIR spectra were acquired in the 30-min interval and calculated for N2O 

concentrations. A standard deviation of N2O concentration from ten spectra represented the 
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uncertainty in N2O concentrations measured by  the OP-FTIR using a PLS algorithm in specific 

path lengths. 

4.3.4 Emission measurements 

4.3.4.1 A backward Lagrangian Stochastic (bLS) model 

Emission rates ( 𝑄 ) of N2O were estimated by bLS model (Windtrax2.0: Thunder Beach 

Scientific, http://www.thunderbeachscientific.com). Given the measured turbulence statistics of a 

wind field in a surface layer (i.e., u*, L, z, β), the bLS model can simulate the ratio of gas 

concentration (𝐶) to the surface emission rate (𝑄) by ‘backward’ tracing trajectories of gas 

particles from sensors (downwind) to source (upwind). Emission rates can be inferred based on 

the deviation of concentration between the downwind fields and background (Cbg) (i.e., 

Δ𝐶𝑑𝑜𝑤𝑛𝑤𝑖𝑛𝑑−𝐶𝑏𝑔
), which is described as: 

𝑄 =
Δ𝐶(𝑑𝑜𝑤𝑛𝑤𝑖𝑛𝑑−𝐶𝑏𝑔)

(𝐶 𝑄⁄ )𝑠𝑖𝑚
                                                 [ 1 ] 

, where (𝐶 𝑄⁄ )𝑠𝑖𝑚 is the bLS-simulated ratio of concentration to emission rate, 𝑄 is the inferred 

surface emissions from the source of interest, ΔC and is the deviation of gas concentrations. 

  

Both point-sampled, measured by the PS sensor, and path-averaged, measured by the LS sensor, 

concentrations were used in this study. For the PS sensors, the simulated ratio can be calculated 

as the following equation: 

(𝐶 𝑄⁄ )𝑠𝑖𝑚 =
1

𝑁
∑ |

2

𝑤0
|                                               [ 2 ] 

, where N is the number of the released particles from a sensor, and 𝑤0 is the vertical velocity of 

‘touchdowns’ which is the function of 𝑢∗, 𝐿, 𝑍0, 𝑎𝑛𝑑 𝛽. For LS sensors (i.e., LS-1 to LS-7), thirty 

equidistant points were defined within the path, and the same number of particles (N) is released 

from each point. The equation can be described as: 

(𝐶 𝑄⁄ )𝑠𝑖𝑚 =
1

30
∑ (

1

𝑁
∑ |

2

𝑤0
|)30

𝑗=1                                             [ 3 ] 

 

For a single-source area, one sensor would be needed to estimate emissions by solving Eq.1 if 

the 𝐶𝑏𝑔 is known. For a multi-source area, the number of sensors (n) needs to be at least equal to 
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the number of sources (m) (i.e., n ≥ m) to estimate the unknown emissions (Crenna et al., 2008; 

Flesch et al., 2009). Then, the concentration can be expressed as: 

𝑎𝑖𝑗𝑄𝑗 + 𝐶𝑏𝑔 = 𝐶𝑖                                                         [ 4 ] 

, where 𝑎𝑖𝑗 represents the ratio of concentrations to emission rates simulated ((𝐶 𝑄⁄ )𝑠𝑖𝑚), from 

the contribution of the 𝑗𝑡ℎ  source (𝑗 = 1,2, … , 𝑚) to the 𝑖𝑡ℎ  sensor (𝑖 = 1,2, … , 𝑛). Thus, the 

entire system of equations can be expressed as an algebraic formula: 

[

𝑎11 … 𝑎1𝑚

⋮ ⋱ ⋮
𝑎𝑛1 … 𝑎𝑛𝑚

]

𝑛𝑥𝑚

[
𝑄1

⋮
𝑄𝑚

]

𝑚×1

+ 𝐶𝑏𝑔 [
1
⋮
1

]

𝑛×1

= [
𝐶1

⋮
𝐶𝑛

]

𝑛×1

                                [5] 

In this study, there were four N2O sources (m = 4) and up to ten gas sensors (n = 10), meaning 

that the source-sensor equations are over-determined (Flesch et al., 2009). Consequently, the four 

emissions (𝑄) and single 𝐶𝑏𝑔 can be calculated by simultaneous solution of ten equations (seven 

LS + three PS sensors) using a standard singular value decomposition (SVD) algorithm. 

 

4.3.4.2 A forward Lagrangian Stochastic (fLS) model 

Given the measured turbulence statistics, the Lagrangian stochastic model can simulate the 

(𝐶 𝑄⁄ )𝑠𝑖𝑚. This ratio can be used to estimate either emission rates of sources of interest or gas 

concentrations detected by sensors of interest. The downwind gas concentrations can be 

predicted based on the measured emission rates of the upwind source using a fLS model.  

4.3.4.3 Emissions quality assurance 

Numerous filtering criteria have been published for quality assurance of the bLS-estimated 

emissions. Thresholds of low wind conditions (i.e., u* < 0.15 m s
-1

), and exclusion of extremely 

stable and unstable atmosphere (i.e., |L| ≤ 5 m) are likely universal criteria for using the bLS 

model. Other published criteria vary with different experimental configurations. For instance, a 

TDF > 0.1 was the most commonly used threshold in the literature. Since the threshold for TDF 

has not been standardized (e.g., varied from 0.1 to 0.7) (Flesch et al., 2004; Ro et al., 2011 and 

2013; VanderZaag et al., 2014), this study investigated the effect of TDF on emissions 

estimations from multiple sources. Also, the sensitivity of N2O concentrations determined by 

OP-FTIR (i.e., σ ppbv) was used to provide additional criteria for checking the model 
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performance. Ideally, the minimum concentration of the measured N2O among sensors (i.e., 7 

LSs + 3 PSs) should be the same with the modeled background (Cbg) (Eq. 5). The Cbg was 

compared with the lowest N2O concentration within all of the gas sensors (including SOPS), and 

data were considered abnormal and excluded if the deviation between Cbg and the lowest 

concentrations was out of the range of ±3σ ppbv (|N2Omin – Cbg| > 3σ ppbv). 

4.3.4.4 Assumptions for field measurements 

Assumptions required for this experiment included: (1) Stationary variables: the averaged 

quantities of variables were invariant within thirty minutes. (2) Homogeneous variables: the 30-

min averaged quantities of variables are invariant under a spatial translation. (3) Identical N 

sources: N source for N2O production was predominately from the applied NH3 within sixty days 

after applications. The atmospheric N deposition (i.e., NH3), (a)biotic N fixation, and (in)organic 

N residues (i.e., soil organic matter, or 2:1 clay minerals) were neglected. Gas measurements 

began just after NH3 application from 29 Apr. to 12 Jun. 2015. There were 691 emission data 

(30-min averages) were measured, but only 357 passed QA criteria. 

4.3.4.5 Wind-induced interferences 

In a multi-source configuration, air parcels advected from adjacent fields can be detected by 

sensors deployed in a field of interest and interfere with bLS gas emission estimations. The 

output TDF and the known areas of emission fields (T1-T4) were used to evaluate the magnitude 

of air parcels from adjacent fields. For instance, T2 was interfered by T1, T3, and T4 when the 

wind came from NW (Figure 4.1). In order to evaluate the magnitude of interferences from T1, 

T3, and T4, only the LS sensors of LS-2 - LS-4 deployed in the T2 treatment were used to 

calculate TDFs. First of all, the T1-T4 treatments were assumed to have the same emission rates. 

Based on the same turbulent statistics, the TDFs were calculated by changing the sizes of areas 

(i.e., T2 only, T2+T1, T2+T3, and T2+T4). Given the known TDF and area, the released 

particles from LS-2, LS-3, and LS-4 sensors covered 0.36, 0.76, 0.93, and 1.12 hectares of the 

areas of T2 (1.5 ha), T2+T1 (2.7 ha), T2+T3 (2.9 ha), and T2+T4 (2.6 ha), respectively (Table 

4.2). The individual field (ha) covered by touchdowns was calculated and fractionized to 

represent the fraction of air parcels (FRACair, %) from either the field of interest (i.e., T2) or 

adjacent fields (i.e., T1, T3, and T4). These fractions (%) of T1, T3, and T4 were inferred as 
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adjacent interferences to the T2 treatment. In this case, more interferences came from the T4 (36% 

of FRACair) than the T1 (19% of FRACair) treatment for the T2 treatment at NW wind. 

4.3.4.6 Emissions uncertainty analysis 

According to Eq.1, the uncertainty in gas concentrations influences emission estimations. In this 

scanning system, the uncertainty in N2O concentrations was introduced in the bLS emissions 

model to estimate the uncertainty in emission measurements. The procedure for estimating the 

uncertainty in emission rates is shown in Figure 4.2. 

 

First of all, the known emission rates of the T1-4 treatments were used to ‘forward’ calculate 

N2O concentrations of seven LS and three PS sensors using the measured turbulence statistic. 

The background (Cbg) of N2O was assumed 350 ppbv, and 50,000 particles (N) were considered 

in the bLS model (step-1). Secondly, the uncertainty in N2O concentrations (σ ppbv) was 

introduced into the forward-calculated concentrations to infer emission rates using the bLS 

model. It was assumed that the uncertainties in N2O measured from three PS sensors were 

negligible. Only the uncertainty from seven LS sensors was considered in the model. As a result 

of two possibilities (N2O±σ ppbv) for each LS sensor, there were 128 possible permutations (2
7
) 

of N2O concentrations of LS-1 – LS-7 (step 2). Lastly, 128 combinations of N2O concentrations 

of LS-1 – LS-7 were used to ‘backward’ calculate128 possible emissions for each treatment at 

each 30-min interval. The standard deviation of the 128 emissions represented the uncertainty in 

N2O emissions. Different turbulence statistics were used to examine the effect of wind conditions 

(n=357) on emission uncertainties (step 3). 

4.4 Results and Discussion 

Emissions measurements from multiple sources were influenced by the sensitivity of gas sensors 

(i.e., OP-FTIR) (Eq.1) and advection from adjacent fields. Uncertainties in N2O concentrations 

were determined by the path length experiment. The FRACair (%), an index described the 

proportion of air parcels coming from the field of interest or adjacent fields, was used to estimate 

the magnitude of advective interferences from adjacent fields. The OP-FTIR sensitivity analysis 

showed uncertainty in N2O concentrations was ±1.8 ppbv (Figure 4.3). A FRACair of adjacent 

fields of less than 20% indicated minimum advective interferences (Figure 4.4). Under these 



103 

 

conditions, the emission estimations had high TDFs (> 0.9) of fields of interest (Figure 4.4) and 

low uncertainties (i.e., 0.5±0.3 µg m
-2

 s
-1

 shown in Figure 4.6). Higher FRACair from adjacent 

fields reduced TDFs (< 0.9) of fields of interest and led to higher uncertainties in emission 

measurements. The mean uncertainties were measured 1.1±0.5 µg m
-2

 s
-1

 when TDFs were less 

than 0.5. The minimum detection limit (MDL) of this scanning OP method for N2O emission 

measurements was ±1.2 µg m
-2

 s
-1

 (3σ) (grey bars shown in Figure 4.5). 

4.4.1 OP-FTIR sensitivity 

Both the precision and accuracy of N2O concentrations increased with increasing path lengths. 

Uncertainties in N2O concentrations (standard deviation) reduced from ±3.3 to ±1.4 ppbv by 

increasing optical path lengths from 100-m to 300-m (Figure 4.3). N2O concentrations were 

underestimated by 14%, relative to the background concentration of 349 ppbv, at the optical path 

length of 100-m. By increasing path lengths to 300 m, the quantification bias was reduced from -

14% to -4%. The chapter-3 reported that increased path length increased the path-integrated 

concentrations (i.e., concentration x path length) as well as improved gas quantification. Since 

the OP lengths were between 200- (i.e., LS-2 and LS-6) and 300-m (i.e., LS-1, -3, -4, -5, and LS-

7) in this scanning system, the uncertainties determined from the OP paths of 200-m (±2.3 ppbv) 

and 300-m (±1.4 ppbv) were averaged to calculate the overall uncertainty in N2O concentration 

of each OP sensor (i.e., ±1.8 ppbv). Concentration biases (~ -4%) were calibrated by the S-OPS 

before flux calculations. The uncertainty in N2O concentrations (±1.8 ppbv) was used to 

calculate the uncertainty in N2O emission rates using the perturbation experiment (Figure 4.2). 

4.4.2 Emission measurements 

In bLS models for one source, the minimum requirement of TDF is generally 0.1 (10% of the 

sensor-released gas particles covered the field of interest). Some studies used higher TDFs to 

improve the accuracy of flux estimations in multi-source conditions (Balde et al., 2016; 

VanderZaag et al., 2014; Ro et al., 2011 and 2013). None of these studies interpreted how the 

‘higher’ TDFs improved flux measurements and the effect of interferences from adjacent fields 

on flux measurements. We investigated the relationship between advective interferences 

(denoted by FRACair) and TDFs (Figure 4.4). Also, the measured emissions were sorted into 
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three categories based on high (> 0.9), median (0.9 > TDF > 0.5), and low (0.5 > TDF > 0.1) 

TDFs to examine the relationships between emissions and TDFs (Figure 4.5). 

4.4.2.1 High TDFs (> 0.9) 

In the high TDF (> 0.9) category, the averaged FRACair of the T1 – T4 treatments were 89±12 %, 

87±14 %, 84±16 %, and 80±19 %, respectively (Figure 4.4). A targeted field received a ‘clean’ 

upwind background and resulted in high TDFs (~1.0) when FRACair ~ 100%. For instance, T1 

received a clean background when the wind came from SW (202.5-247.5°) as well as high TDFs 

(1.0) (Figure 4.4). Likewise, the wind direction of SE (112.5-157.5°), NE (22.5-67.5°), and NW 

(292.5-337.5°) led the TDFs of 1.0 to T2, T3, and T4 treatments, respectively. Increased 

interference (0-20% of the FRACair of the adjacent upwind field) reduced TDFs from 1.0 to 0.9. 

For instance, T1 was interfered by T2 (~ 12 % of FRACair from T2) at wind directions of 180-

202.5°, and interfered by T4 (~ 6% of FRACair from T4) at the direction of 247.5-292.5° (Figure 

4.4a). The averaged emissions of the T1-T4 treatments from this category were 3.9±3.2, 0.8±1.1, 

1.5±1.1, and 1.5±2.1 µg m
-2

 s
-1

, respectively (Figure 4.5). The corresponding averaged 

uncertainties of the T1-T4 were 0.6±0.2, 0.3±0.1, 0.1±0.1, and 0.5±0.3 µg m
-2

 s
-1

, respectively 

(Figure 4.6). The emission rates measured from this category implied that the integration of NT 

and full N rates applied in the fall (T1) resulted in higher N2O losses than other treatments. 

 

Negative emissions implied a ‘sink.’ Soil uptake of N2O, however, was unlikely when the soil 

enriched with available N-substrates after NH3 application. One of the assumptions of the bLS 

model required a substantial difference in emission rates between the source (hotspot) and 

background to make the ‘delta concentration’ (Eq.1) detectable. Negative emissions measured 

from a clean background and minimum interferences (Figure 4.5) were attributed to emissions 

lower than the detection limit. The standard deviation of the ‘negative’ emissions of T1-4 (TDF 

> 0.9) was 0.4 µg m
-2

 s
-1

, so the MDL of the OP method was calculated as ±1.2 µg m
-2

 s
-1

 (3σ) 

(Figure 4.5). 

4.4.2.2 Median TDFs (0.9 > TDF > 0.5) 

In the median TDF (0.9 > TDF > 0.5) category, the averaged FRACair of the T1 – T4 treatments 

were 52±20 %, 65±19 %, 43±15 %, and 40±11 %, respectively (Figure 4.4). The averaged 
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emission rates of the T1-T4 treatments were 1.1±1.9, -0.3±1.6, 1.0±2.2, and -1.2±1.4 µg m
-2

 s
-1

, 

respectively (Figure 4.5). The averaged uncertainties in emissions were 0.8±0.5, 0.4±0.3, 0.3±0.3, 

and 0.5±0.4 µg m
-2

 s
-1

, respectively (Figure 4.6). For TDF between 0.5 and 0.9, fields of interest 

were interfered by one predominant upwind field. For instance, the T2 treatment predominately 

interfered with the T1 treatment at the direction of 90 - 225° (Figure 4.4a). Increased T2 

interferences (i.e., the FRACair of T2 increased from approximately 20 to 80%) reduced the 

TDFs of T1 from 0.9 to 0.5. 

 

Adjacent field interferences not only led to increased uncertainties but also increased biases in 

flux measurements. The bias became substantial if the upwind treatment emitted higher rates 

than the downwind field. For instance, high N2O emissions were measured from T1 at the S wind 

(180-225°) (Figure 4.5a). During the S wind, the T1 plot substantially interfered with the T4 

measurements (FRACair of T1 = 60 % in Figure 4.4d), and great ‘negative’ emissions (lower than 

the MDL of ±1.2 ug m
-2

 s
-1

) were measured from the T4 treatments (Figure 4.5d). Since the T1 

(upwind) treatment emitted more N2O than T4 (downwind), the air parcels from T1 treatment 

carried higher N2O concentrations over the surroundings of T4 plot (i.e., Field-to-field carryover) 

and introduced substantial biases in the downwind flux measurements. Emissions lower than the 

MDL (< -1.2 µg m
-2

 s
-1

) were considered as ‘false’ estimations and excluded. 

4.4.2.3 Low TDFs (0.5 > TDF > 0.1) 

In the low TDF (0.5 > TDF > 0.1) category, the averaged FRACair of the T1 – T4 treatments 

were only 20±5 %, 16±6 %, 19±6 %, and 22±5 %, respectively (Figure 4.4), showing that 

substantial interferences from adjacent fields. The averaged emission rates of the T1-T4 

treatments were 0.2±1.9, -1.2±2.1, 3.0±3.3, and -1.1±1.4 µg m
-2

 s
-1

, respectively (Figure 4.5). 

The averaged uncertainties were 1.0±0.4, 1.2±0.4, 0.5±0.5, and 1.0±0.6 µg m
-2

 s
-1

, respectively 

(Figure 4.6). The previous categories (high and median TDFs) showed that the field of interest 

was interfered by one predominant upwind field (e.g., T4 was predominately interfered by T1 at 

the S wind). In this low TDFs category, the increased FRACair (%) of adjacent fields showed that 

more than two adjacent fields interfered with fields of interest (Figure 4.4). For example, the T1 

treatment was interfered by T2, T3, and T4 treatments at the direction of 0-90° (Figure 4.4a). 

Likewise, T2, T3, and T4 fields were interfered by their neighbors when the wind came from the 
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directions of 270-360°, 180-270°, and 90-180°, respective (Figure 4.4). These ‘two-source’ 

interferences resulted in low TDFs (< 0.5) as well as high flux uncertainties (Figure 4.6). 

 

The interference-led biases in emission measurements substantially influenced the field with low 

emission rates. For instance, emissions lower than MDL (< -1.2 µg m
-2

 s
-1

) were measured in T4 

measurements at the S wind because of the interferences from the T1 treatment (Figure 4.4 and 

Figure 4.5). The T3 treatment was subjected to interferences from T1, T2, and T4 at the wind 

direction of 180-270° (prevailing SW wind in 2015 measurements). In contrast to the T4 

treatment, most of the emissions from the T3 treatment were still measurable and greater than the 

MDL (±1.2 µg m
-2

 s
-1

) (Figure 4.5c) even under the interferences of T1, T2, and T4 plots. 

Emissions less than -1.2 µg m
-2

 s
-1

 (MDL) resulting from the advective interferences were 

excluded in this study. Then, the averaged emissions of the T1 – T4 treatments were 2.5±3.0 (n = 

347), 0.4±1.1 (n = 291), 2.5±2.8 (n = 339), and 0.4±1.6 (n = 255) µg m
-2

 s
-1

, respectively, over 

44 days (Figure 4.5). 

4.4.3 Influence of sensor placement 

Uncertainties in emissions measurements were affected by the placement of sensors and 

estimated by the permutation experiment (Figure 4.2). Good sensor placement, adequate upwind 

and downwind sensors to ‘see’ the source of interest and adjacent fields, was important for multi-

source emissions measurements (Crenna et al., 2008; Flesch et al., 2009). The averages of the T1 

– T4 emissions (2.5, 0.4, 2.5, and 0.4 µg m
-2

 s
-1

, respectively) and the uncertainty of N2O 

concentration (±1.8 ppbv) were used to estimate the uncertainty in emissions using the procedure 

shown in Figure 4.2. 

 

Lack of upwind or downwind sensors resulted in errors in flux estimations. An LS sensor 

between T1 and T4 and a PS sensor at the S of the field were absent in this study. An extra LS 

(i.e., LS-8 between T1 and T4) and PS (i.e., at the S of the field) sensors were added in the bLS 

model, and concentrations of the LS-1 – LS-8 were permuted (i.e., 2
8
) to investigate the effect of 

the sensor placement on emission uncertainties. Uncertainties were estimated from the two types 

of sensor placement (i.e., 7 LS + 3 PS sensors and 8 LS + 4 PS sensors), shown in Figure 4.6. 

The T1 treatment ideally received a clean upwind background and resulted in low uncertainties 
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(< 0.4 µg m
-2

 s
-1

) for emission measurements under S (160-180°) winds. The placement of seven 

LS joined with three PS sensors, however, showed irregularly high uncertainties (up to 2.0 µg m
-

2
 s

-1
) in emission measurements under S winds (Figure 4.6a). These uncertainties were reduced 

by order of two by adding the LS-8 sensor between T1 and T4 plots and the PS sensor at the S of 

the field (Figure 4.6a). Likewise, high uncertainties (~1.8 µg m
-2

 s
-1

) occurred in the T4 

measurement under N (360°) winds and were reduced by adding LS-8 sensors. Uncertainties in 

the T3 measurement were not affected by these additional sensors (Figure 4.6c) because the 

upwind and downwind sensors were well deployed in T3 plot (LS-4 – LS-6 and two PS sensors 

at the N and E of the field shown in Figure 4.1). For T2, the decreased uncertainties occurred 

from wind direction of 0-90° due to adding the south PS sensor, and LS-8 sensor also created the 

additional downwind sensor for T4 from wind direction of 270-360° (Figure 4.6b and 4.6d). 

Although the uncertainty led by advective interferences was inevitable, the deployment of the 

sensors is critical to avoid the irregularly high uncertainties. A good sensor-source deployment is 

to create a well-mapped upwind and downwind sensor for each source (Flesch et al., 2009). 

4.4.4 Treatment comparisons 

Soil N2O emissions were substantially influenced by N and field management practices (Decock, 

2014; Robertson and Vitousek, 2009; Venterea et al., 2011; van Kessel et al., 2013). In multiple 

source emissions measurements, fields with low emissions were more sensitive to interferences 

from the upwind field with high emissions. For the T2 (NT+F110/S100) and T4 (NT+F0/S220) 

treatments, up to 18% and 29% of the emissions (n = 357) were less than the MDL (-1.2 µg m
-2

 

s
-1

) and excluded. For T1 (NT+F220/S0) and T3 (ChP+F110/S100) treatments, only 3% and 5% 

of the qualified emissions were excluded. The averaged emissions of the T1-T4 treatments (2.5, 

0.4, 2.5, and 0.4 µg m
-2

 s
-1

, respectively) showed that the split-N rate application resulted in 

lower N2O emissions than the full-N rate application in the NT field. The ChP practices led to 

higher N2O emissions compared with the NT treatment under the same N management. The 

split-N rate application was consistently reported to result in lower N2O emissions than the full-

N rate application (e.g., T1 vs. T2) (Decock, 2014; Robertson and Vitousek, 2009; Burton et al., 

2008). For tillage system, however, many studies showed that inconsistent results of the NT 

effect on N2O emissions (e.g., reduced tillage practice either increased or decreased N2O 

emissions) (Decock, 2014; Venterea et al., 2011; van Kessel et al., 2013). In this experiment site 
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(Purdue ACRE), the NT practices were continuously reported to reduce N fertilizer-induced N2O 

emissions (e.g., T2 vs. T3) (Omonode et al., 2011, 2015, and 2019).  

4.4.5 Combined influences of wind speed and direction 

Both wind direction and velocity influenced advective interferences and measurement qualities 

(i.e., biases and uncertainties). Increased wind speed resulted in great ‘biased’ measurements (i.e., 

emissions < MDL) (Figure 4.7a) and increased measurement uncertainties (Figure 4.7b). For 

instance, increased wind speed amplified the interferences from T1 and emission biases for the 

T4 measurements at the S wind (Figure 4.7a). Wind speed affected the horizontal transport of air 

parcels (an air parcel refers to a body of air which thermodynamic properties were approximately 

uniform) and field-to-field carryover via advection. Advective interferences and the 

corresponding uncertainties in emissions were highly wind-dependent. For instance, the wind of 

0-90 resulted in high TDFs (> 0.9) and low uncertainties (0.1±0.1 µg m
-2

 s
-1

) for T3 

measurements. Interferences and emission uncertainties (0.5±0.5 µg m
-2

 s
-1

) increased at the 

wind from 180-270° for T3 measurements. These uncertainties increased with increasing the 

wind velocity (e.g., R
2
 = 0.20 from 0-90°; R

2
 = 0.68 from 90-180°; R

2
 = 0.90 from 180-270°; R

2
 

= 0.42 from 270-360°), shown in Figure 4.7b. 

4.5 Conclusion 

This study shows that wind direction and speeds significantly influence the modeled footprint, 

interferences from adjacent fields, emission estimations for multi-source measurements. The 

universal threshold of touchdown criteria (i.e., TDF > 0.1) are unlikely applicable to a multi-

source situation. In this study, the fraction of touchdowns (TDF) greater than 0.9 indicated that a 

field of interest received a clean upwind background and resulted in low emission uncertainties 

(0.5±0.3 µg m
-2

 s
-1

). Reduced TDF (< 0.9) resulted from the increased interference from the 

upwind fields. The TDFs ranging from 0.5 and 0.9 showed that one predominant upwind source 

interfered with the downwind field of interest and increased emission uncertainties (i.e., 0.6±0.4 

µg m
-2

 s
-1

). The 0.1-0.5 TDFs indicated three upwind interferences and resulted in high emission 

uncertainties (i.e., 1.1±0.5 µg m
-2

 s
-1

). High emission rates from the upwind field ‘contaminate’ 

the downwind field emission estimations resulting in large biases. Emissions less than the 

minimum detection limit (MDL) of -1.2 µg m
-2

 s
-1

 were removed. Although advective 
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interferences were inevitable, proper deployment of upwind and downwind gas sensors can 

avoid the irregularly high uncertainty in emission measurements. Implementing the bLS method 

in a multi-source area is still ongoing research and becoming interesting to many users. This 

study provides the current or future users with the approaches to identify the issues, potential 

solutions, and uncertainty analyses in a multi-source situation. 
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Table 4.1 Four treatments (T1-4) were conducted to represent four N2O sources. Field practices 

were no-till (NT) and chisel plow (ChP). With the total N rate of 220 kg NH3-N ha
-1

, NH3 was 

applied as a full (220 kg N ha
-1

 in the fall or spring) or a split (total N rate was equally split and 

applied in the fall and spring) application at two timings of the fall (F) in 2014 and the spring (S) 

before planting in 2015. The management of each field was: (T1) NT + full application in the 

Fall and zero N input in the Spring (F220/S0); (T2) NT + split application in the Fall and Spring 

(F110/S110); (T3) ChP + F110/S110; (T4) NT + F0/S220. 
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Table 4.2 An example of determining the fraction of air parcel (FRACair) that traveled from adjacent fields (i.e., T1, T3, and T4) to the 

field of interest (i.e., T2), representing the magnitude of interferences, under a particular wind condition. 
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Figure 4.1 The experimental site was at the Purdue Agronomy Center for Research and Education (ACRE). The field experiment was 

operated by (a) a scanning OP-FTIR and seven retroreflectors created seven line-sampling (LS) concentration sensors (LS-1 – LS-7) 

concentrations sensors to ‘scan’ four treatments (T1-T4) managed by contrasting field and N practices shown in Table 4.1. Three 

point-sampling (PS) inlets were deployed at the edges of fields (W, N, and E) to measure the background N2O concentrations or 

provided additional downwind sensors for fields of interest. (b) the prevailing wind came from the SSW and the mean wind velocity 

was 3.6±1.8 m s
-1

. 
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Figure 4.2 The procedure used to estimate uncertainties in emission rates measured by the bLS 

model. Step1: N2O concentrations of the seven line-sampling (LS) and three point-sampling (LS) 

sensors were ‘forward’ calculated based on the known emission rates of the T1-T4 treatments. 

Step2: the ‘biased’ concentrations (N2O±σ) of the LS-1 – LS-7 sensors were permuted. Step3: 

128 N2O emissions were ‘backward’ calculated, and their standard deviation represented 

emission uncertainties at every 30-min interval. 
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Figure 4.3 Open path FTIR spectra were acquired from optical paths of 100-, 200-, and 300-m 

and calculated for N2O concentrations using a partial least square (PLS) algorithm. The mean 

concentration (�̅�) and standard deviation (σ) represented the accuracy and uncertainties in the 

PLS-calculated concentrations. 
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Figure 4.4 The relationship between the ‘touchdowns’ fraction (TDFs) of fields of interest and the interferences from the adjacent 

fields. For the field of interest, the fraction of air parcels (FRACair) traveling from adjacent fields was used to represent the magnitude 

of the upwind interferences. 
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Figure 4.5 The relationship between the estimated emissions and the touchdowns fraction (TDFs) of fields of interest, (a) T1 (circle), 

(b) T2 (square), (c) T3 (diamond), and (d) T4 (hexagon). Emissions were classified into three categories of TDF > 0.9 (grey), 0.9 > 

TDF > 0.5 (light grey), and 0.5 > TDF > 0.1 (white). 
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Figure 4.6 The effect of the sensor placement on the estimated uncertainties in emission measurements. Uncertainties were estimated 

by two types of the sensor placement, (1) seven LS and three PS sensors used in this study (grey) and (2) eight LS and four PS sensors 

considered as ideal sensor placement (white). The eighth LS (LS-8) was added between the T1 and T4 treatments, and the fourth PS 

sensor was added at the S of the field. All symbols were with a dot in the center to differentiate from Figure 4.5. 
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Figure 4.7 The effect of the mean wind speed on interferences from the upwind fields: (a) the T1 

treatment interfered with the T4 treatment at the S wind and these interferences increased with 

increasing the wind speed. The increased wind speed led great biases (emissions < MDL of -1.2 

µg m
-2

 s
-1

) in the T4 measurements; (b) the increased wind speed increased uncertainties in the 

T3 measurements. 
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 DETERMINE DIRECT N2O EMISSIONS FROM MAIZE CHAPTER 5.

CROPPING SYSTEM BY INTEGRATING THE CHAMBER AND 

OPEN PATH METHODS 

A version of this chapter will be submitted for review to the Journal of Environmental Quality. 

5.1 Summary of Chapter 5 

Toward a better understanding and quantification of nitrous oxide (N2O) emissions from 

fertilizer-intensive corn cropping systems needed to integrate different emissions measurement 

methods. An open path (OP) method (a scanning OP Fourier transform infrared spectrometer + 

the backward Lagrangian stochastic model) and vented static closed chamber method were used 

to continuously measure N2O emissions from a continuous corn system after the spring nitrogen 

(N) application (220 kg NH3-N ha
-1

) for 11-, 44-, and 21-day in 2014, 2015, and 2016, 

respectively. The effect of different N application timing and a long-term no-till (NT) practices 

on N2O emissions and N recovery efficiency (NRE) were assessed in this study. This study 

showed that N2O emissions increased with increasing wind speed (> 4 m s
-1

) and the static 

chamber measurements could underestimate soil N2O emissions by 10x without considering the 

wind-induced emissions. In NT farming systems, the split-N rate application (split-N: a total of 

220 N kg ha
-1

 was equally split and applied in prior fall and current spring) resulted in lower N2O 

emissions (0.42, 0.38, and 0.33 N2O-N kg ha
-1

 day
-1

 in 2014, 2015, and 2016, respectively) than 

the full-N rate (a total N was applied in once) applied in fall (0.78, 1.13, and 0.47 N2O-N kg ha
-1

 

day
-1

 in 2014, 2015, and 2016, respectively). Based on the same N application (split-N), the 

chisel plow (ChP) practice showed higher N2O emissions (0.79, 1.08, and 0.46 N2O-N kg ha
-1

 

day
-1

 in 2014, 2015, and 2016, respectively) than NT. The spring N application before planting 

(pre-plant) resulted in lower NRE than the application in season (side-dress) presumably due to 

more N loss before plant N uptake. Reduced NRE was also corresponding to higher N2O 

emissions.  

5.2 Introduction 

Soil N2O is produced from a series of microbial transformation of reactive nitrogen (Nr) (e.g., N 

fertilizers, biological-fixed N, and N mineralized from soil organic matter and crop residues) via 



124 

 

nitrification and denitrification (Bouwman, 1996; Mosier et al., 1998; Butterbach-Bahl et al., 

2013). Microbial communities and activities are substantially influenced by the environment, 

including soil conditions, textures, topography, field practices, and climate (Bailey, 1976; 

Bremner and Blackmer, 1978; Parkin, 1985; Smith, 1990; Bouwman, 1996; Maag, 1996; 

Schaufler et al., 2010; Kong et al., 2013; Signor and Cerri, 2013). For instance, the concave and 

convex topography of fields influences soil physical and chemical properties (e.g., moisture, 

organic matter content, cation exchange capacity, pH, redox, etc.), Changed properties result in 

different spatial distributions of soil microbes across a field (Ambus and Christensen, 1994; 

Schelde et al., 2012; Li et al., 2013). The dynamic changes in environmental variables (e.g., 

diurnal or seasonal fluctuations in solar radiation, soil temperature, and moisture) led to highly 

temporal variations in microbial activities as well as N2O productions (Smith et al., 1998; Xu et 

al., 2017). Since winds influence gas exchange between the soil and atmosphere, increased wind 

speeds potentially increase N2O emissions (Maier et al., 2012; Poulsen et al., 2017; Pourbakhtiar 

et al., 2017). 

 

Emissions of N2O from soils are complex biogeochemical processes (i.e., continuous, dynamic, 

and episodic emissions) (Mosier at al., 1998; Butterbach-Bahl and Dannenmann, 2011; 

Butterbach-Bahl et al., 2013). Field management effects (e.g., N and tillage practices) on soil 

conditions increase the complexity of N2O emission processes (Six et al., 2004; Venterea et al., 

2012; Lenka and Lal, 2013; Kong et al., 2013). For instance, N2O emitted from cereal cropping 

systems during growing seasons mainly resulted from N fertilizer (Bouwman, 1996). Different N 

fertilizer management (e.g., N source, application rate, timing, and placement) substantially 

influences the amount of the applied-N taken up by crops. The extra N-substrates potentially 

became sources of N2O (Decock, 2014; Shcherbak et al., 2014; Abalos et al., 2016; Venterea et 

al., 2016). For N management, the strategies proposed to mitigate N2O emissions (e.g., reduced 

N rate or changing application timing close to actual crop N demands) (Decock, 2014; Omonode 

et al., 2017). The effect of tillage practices on N2O emissions, however, is highly variable and 

has been reported to conflicting results (Rochette et al., 2008; Venterea et al., 2011; van Kessel 

et al., 2013). For instance, reduced (RT) or no-tillage (NT) practices were reported to mitigate 

N2O emissions (Omonode and Vyn, 2019). Other studies reported higher N2O emissions (Ball et 

al., 1999) or no difference between RT/NT and conventional tillage (Decock, 2014). These 
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inconsistent conclusions of tillage effects on N2O emissions were not only attributed to changing 

environments (Six et al., 2004; van Kessel et al., 2013) but presumably the uncertainties led by 

the emissions measurement method. 

Chamber techniques have been used to measure gas emission rates for almost 100 years and 

remain the most common method for direct/indirect N2O emission measurements from soils 

(Lundegårdh, 1927; Rochette and Eriksen-Hamel, 2008). Many field practices proposed to 

mitigate soil N2O-N loss were based on chamber measurements because of their simple 

implementation and widespread use (Eichner, 1990; Denmead, 2008; IPCC, 2006; Decock, 

2014). Chamber measurements, however, have a small footprint (i.e., < 1.0 m
2
) and low 

sampling frequencies (i.e., usually 1-2 samples a week). Because of spatial variability, sampling 

location must be selected to represent the entire field (Röver et al., 1999; Yanai et al., 2003). 

Low sampling frequency not only results in a temporal gap of missing data between two sampled 

periods but may not capture the N ‘loss events’ (e.g., intermittent rainfall or spring thawing) 

(Mosier et al., 1996; Parkin, 2008; Schelde et al., 2012; Decock, 2014). These limitations led 

uncertainties in long term flux measurements (e.g., cumulative N2O-N loss during growing 

seasons) due to the spatial and temporal heterogeneity of soil N2O emissions (Laville et al., 1999; 

Denmead, 2008; Rochette and Eriksen-Hamel, 2008; Venterea et al., 2009; Butterbach-Bahl et 

al., 2013). Alternative approaches with higher sampling frequency and larger footprints, such as 

open chamber systems or micrometeorological techniques (e.g., mass balance, or eddy 

covariance methods), can be used to measure gas emissions for missing data gaps (Baldocchi et 

al., 1988; Laville et al., 1999; Denmead, 2008; Jones et al., 2011). 

 

‘Optimal’ management ideally meets the requirement of increasing N uptake and use efficiency 

and mitigating the environmental impacts (N losses via gas emissions and leaching) 

simultaneously. Simply investigating the relationship of management practices to a single 

outcome (e.g., area-scale emissions) likely resulted in a questionable conclusion for optimizing 

management (Venterea et al., 2011 and 2012). It is important to investigate management effects 

on the relationship between N2O emissions, and crop yield, or other N uptake-derived parameters, 

including N uptake and use efficiency, and N balance in soils. For instance, the N recovery 

efficiency (NRE: total aboveground N uptake (TNU) in fertilized treatments minus TNU in 

control treatment relative to applied N-fertilizer rate) is one of the useful parameters to 
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recommend suitable management for achieving both efficiency and environmental purposes. The 

common hypothesis is that increased NRE likely reduces N2O emissions (Snyder et al., 2014; 

Venterea et al., 2016; Omonode et al., 2017). In this study, a scanning open path Fourier 

transform spectrometer (OP-FTIR) coupled with a backward Lagrangian stochastic (bLS) 

dispersion technique (an open path (OP) method) was integrated to measure gas emission from 

multiple sources at high spatial and temporal resolution (Chapter 1-3). This method, however, 

was limited to measure emissions in low wind conditions, mostly during the night. The missed 

‘nighttime emissions’ can be compensated by chamber measurements (Grant and Omonode, 

2018). Thus, the objectives of this chapter were 1) to integrate an OP and chamber methods to 

measure N2O emissions from four treatments with contrasting management by integrating 

different tillage system and N application timings; 2) to investigate management effects on the 

relationship between corn N uptake and use efficiency and N2O emissions.  

5.3 Materials and Methods 

5.3.1 Site description and management 

This study was conducted at the field of Agronomy Center for Research and Education (ACRE) 

of Purdue University near West Lafayette, IN (86°59'41.09"W, 40°29'44.46"N, elevation 215 m). 

The soil type was mainly classified as Drummer silty clay loam (fine-silty, mixed, mesic Typic 

Endoaquoll). Drainage type was classified from somewhat poorly to dominantly poorly drained 

(Soil survey, USDA). The organic matter (OM), pH, and cation exchange capacity (CEC) of the 

soil of 0-20 cm were analyzed by a commercial laboratory (Midwest Laboratories, Inc.) in 2017. 

The soil OM was determined by the loss-on-ignition (LOI) method (Nelson and Sommers, 1996). 

The soil pH was measured by the ratio of soil to water of 1:1. The ranges of the OM, pH, and 

CEC over treatments were 3.3 - 3.9 %, 6 - 6.9, and 21 - 25 cmolc kg
-1

, respectively. The Illinois 

soil nitrogen test (ISNT) was used to estimate the potential soil nitrogen (N) supply for crop use 

during the growing season (Khan et al., 2007). The increased ISNT value inferred that the 

increased amount of the ‘readily used’ soil organic N (e.g., amino sugar). More details were 

shown in Supplementary Table 5.1. 
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The cropping system was continuous corn (Zea mays L.) from 2013 to 2016 and managed by 

different tillage and N practices (Table 5.1). Tillage practices were no-till (NT) and chisel plow 

(ChP) which was performed in the fall to the depth of 0-20 cm and followed by spring secondary 

tillage. The corn was planted with a population of approximate 85,000 seeds ha
-1

 with N added 

as a result of 143 L ha
-1

 of 10-34-0 starter in a 50 x 50 mm
2
 band placement. For N management, 

anhydrous ammonia (NH3) was used as N sources with a total N rate of 220 kg NH3-N ha
-1

, 

which was applied either one time (full application: 220 kg N ha
-1

) or separately (split 

application: a total N rate was equally split) (Table 5.1). NH3 was applied by coulter injection (~ 

10 cm deep into the soil) after harvest during the fall or the following spring. The fall N 

application occurred when the soil temperature was below 10 °C; the spring N application was 

conducted either before planting (pre-plant) or in-season when the corn stage was between V5 

and V6 (side-dress). The experimental field was grouped into four treatment based on different 

management. The placement of each treatment (T1 – T4) was shown in Figure 5.1, and the land 

area was approximately 1.0 hectare for each treatment. The tillage of the T1 and T2 plots was 

consistently NT practice, and the T3 was ChP each year. The T4 plot was converted from ChP in 

2013 to NT in the fall of 2014 (Table 5.1). NH3 treatments were identical in 2014-2016. A full N 

rate application (220 kg NH3-N ha
-1

) was performed at T1 in the fall and T4 in the spring, and a 

split N rate application (110 kg-N ha
-1

 in the prior fall and the following spring) was completed 

at T2 and T3. For the spring N application, NH3 was applied as a side-dress application in 2014 

and 2016, and as a pre-plant application in 2015.  

5.3.2 Scanning open path (OP) system operations 

Nitrous oxide emissions from four treatments were measured by the scanning open path (OP) 

emissions measurement system. This scanning OP system was integrated by the OP line-

sampling (LS) and point-sampling (PS) N2O concentration sensors, and the bLS emissions 

measurement technique. The LS sensor was a monostatic OP-FTIR spectrometer (MIDAC 

Model2501-C, MIDAC Corporation, Irvine, CA) bounded by a distant retro-reflector (between 

100 and 135 meters) to measure path-averaged N2O concentrations. An OP-FTIR was installed 

on a scanner with vertical and horizontal rotaries (YUASA computer numerical control, CNC) 

and 6-7 retro-reflectors were mounted in fields or on field edges to create LS sensors to scan four 

treatments (Figure 5.1). The PS sensor was a difference frequency generation (DFG) mid-IR 



128 

 

laser-based N2O/H2O analyzer (IRIS 4600, Thermo Fisher Scientific Inc., Waltham, MA) 

coupled with a gas sampling system (GSS) to measure background concentrations of N2O and 

upwind or downwind point measurements for the field of interest. Emission measurements began 

just after the spring N application and stopped until the corn crop canopy was higher than the LS 

sensors (i.e., the OP-FTIR spectrometer was at approximately 1.5-m height above ground level 

(a.g.l.)). The measurement periods from 2014-16 were 09 – 20 Jun. 2014, 30 Apr. – 12 Jun. 2015, 

and 07 – 26 Jun. 2016, respectively.  

5.3.2.1 Line-sampling sensors 

The process used to quantify gas concentrations from OP-FTIR spectra is described in Chapter 2. 

Briefly, the emitted IR radiation from a spectrometer traveled through the air and returned to the 

telescope which included Mercury Cadmium Telluride (MCT) detector after a reflection from a 

retro-reflector (26 cubes). An interferogram (IFG) was generated approximately every minute 

and transformed to a single bean (SB) spectrum using Fourier transform algorithms. The SB 

spectrum was converted to an N2O absorbance (ABS) spectrum, which was used to calculate 

N2O concentration using partial least squares quantitative models based on the Beer-Lambert law. 

One of the advantages of a monostatic OP-FTIR is high sensitivity for gas quantification because 

of doubling absorbance path length.  

5.3.2.2 Point-sampling sensors  

A GSS system, including a sampling pump and four DC-powered solenoids, linked to four 9.5-

mm diameter Teflon○R  tubing to create four sampling lines. Gas samples were drawn through the 

sampling inlets deployed in fields by a sampling pump in the GSS at approximately 7 L·min
-1

 

and collected into a Teflon○R  ambient pressure chamber. Then, N2O/H2O analyzer drew air 

samples from the ambient pressure chamber to measure N2O concentrations (Heber et al., 2006). 

One of the sampling lines was attached to a 50-m line sampling system to benchmark the N2O 

concentration calculated from OP-FTIR spectra (described in Chapter 2 and 3), and the other 

three lines were designed as the PS sensors deployed at the border of fields (Figure 5.1). 

5.3.2.3 Sensor layouts 

For a configuration with four emission sources, the ideal scanning system required eight LS 

sensors and four PS sensors to produce adequate upwind and downwind sensors under changing 
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wind direction shown in Figure 5.1. One of the limitations was the lack of complete upwind 

concentration measurements. The configuration in 2014 had only six LS sensors (i.e., LS-1 – LS-

5, and LS-7) and three PS sensors (i.e., east, south, and west) sensors deployed in the field (Table 

5.1). In 2015 and 2016, the LS-6 was installed between T3 and T4 plots to improve the scanning 

system; however, the LS-8 between T1 and T4 was still absent due to limited rotation of the 

scanner. The placement of the LS and PS sensors was varied from 2014-16 (Table 5.1). The 

scanner and OP-FTIR were not synchronized. A dwell time of each path (LS-1 to LS-7) was 

three minutes to collect two to three N2O samples (spectra) of each LS. The scan of all LS took 

nearly thirty minutes to complete one cycle. A 3D sonic anemometer (Model 81000, RM Young 

Inc., Traverse City, MI) was mounted on a meteorological mast (height ≈ 3-m a.g.l.) and 

measured 16Hz wind information and turbulent statistics. Ambient air temperature, humidity, 

and pressure were measured every minute using a temperature/humidity sensor (Model HMP45C, 

Vaisala Oyj, Helsinki, Finland) and a pressure sensor (Model 278, Setra, Inc., Boxborough, MA) 

at 1.5-m height a.g.l. All data were averaged at the thirty-minute interval for flux calculations 

using the bLS model. 

5.3.3 OP emission measurements and quality assurance 

Emission rates of N2O were estimated using the measured concentrations and turbulent statistics 

in a bLS model (Windtrax2.0: Thunder Beach Scientific, 

http://www.thunderbeachscientific.com). The bLS technique ‘backward’ models the trajectories 

of gas particles from sensors to a source of interest using turbulent statistics (i.e., u*, L, z, β) to 

simulate the ratio of gas concentration (𝐶) to the surface emission rate (𝑄) (i.e., (𝐶 𝑄⁄ )𝑠𝑖𝑚). 

Given the known downwind and background (Cbg) concentrations, the unknown emissions can 

be estimated from the model-simulated ratio (i.e., 𝑄𝑢𝑛𝑘𝑛𝑜𝑤𝑛 = (Δ𝐶𝑑𝑜𝑤𝑛𝑤𝑖𝑛𝑑−𝐶𝑏𝑔
) (𝐶 𝑄⁄ )𝑠𝑖𝑚⁄ ). 

This technique is flexible to use different types of gas sensors (e.g., LS or PS sensors). For multi-

source measurements, the minimum requirement is that the number of gas sensors (n) needs to be 

equal or greater than the number of emission sources (m) (i.e., n ≥ m) (Crenna et al., 2008; 

Flesch et al., 2009). In this study, ten gas sensors (i.e., seven LS + three PS sensors) were used to 

estimate N2O emissions from four sources (T1-4). Consequently, the source-sensor equations 

were over-determined (Flesch et al., 2009). Since the scanning OP-FTIR took thirty minutes (30-

min) to complete ‘one scanning cycle’ to measure N2O concentrations from four treatments, all 
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of the measured parameters (LS and PS concentrations, turbulent statistics, air temperature and 

humidity) were averaged at 30-min interval to calculate the 30-min N2O emissions. Assumptions 

required for the field measurements included that the averaged quantities of the environmental 

variables were (1) invariant within thirty minutes (stationary) and (2) invariant under a spatial 

translation (homogeneous). (3) Sources for N2O production was predominately from the NH3 

fertilizer over measurement periods after N applications. The N sources from (a)biotic N fixation, 

(in)organic N residues (i.e., soil organic matter, or 2:1 clay minerals), and  the atmospheric N 

deposition (i.e., NH3) were neglected.  

5.3.3.1 Inherent model errors 

The bLS technique is based upon the Monin-Obukhov (MO) similarity theory (MOST). The 

MOST theory can describe statistical properties of a wind field in a surface layer using friction 

velocity (u*), MO length (L), and surface roughness length (z0). The MOST theory, however, 

becomes inaccurate in conditions of low winds and extremely unstable or stable atmosphere. The 

estimated emissions were excluded when u* < 0.15 m s
-1

 and |L| < 5 m. In bLS model, 10% of 

the field covered by ‘touchdown’ particles (TDF > 0.1) was the minimum requirement for 

quality assurance of the inferred emissions. In addition to these criteria, the modeled background 

concentration (Cbg) was also applied to investigate the model performance as well as emission 

estimations. One of the purposes of PS sensors was to detect the upwind background 

concentration of N2O, and the minimum concentration (N2Omin) obtained from one of three PS 

sensors ideally represented the background concentration. The N2Omin occasionally occurred 

from one of seven LS sensors, meaning that PS sensors detected high N2O concentrations 

emitted from the outside sources. Theoretically, the N2Omin equals the Cbg inferred by the 

simultaneous solution of gas concentrations (Eq. 5 in Chapter 4). Based on the sensitivity of the 

OP-FTIR measurements of N2O (i.e., σ = 1.8 ppbv) (Chapter 3), the deviation between the 

N2Omin and Cbg should be within the range of ±5.4 ppbv (i.e., 3σ). Thus, the bLS model was 

considered ‘poorly-performed’ if |N2Omin - Cbg| > 5.4 ppbv, and the modeled emissions were 

excluded. 
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5.3.3.2 Advection errors 

Implementing the bLS technique to estimate multi-source emissions needs to be aware of 

interferences from adjacent fields via advection (advection refers to the horizontal transport of 

the atmospheric properties, such as heat or matter, in meteorology). The advective interference 

led to both biases and uncertainties in emission estimations. For instance, high emission rates 

from upwind fields tended to carry air parcels (an air parcel refers to a body of air which 

thermodynamic properties were approximately uniform) with high concentrations over 

downwind fields with low emission rates. This mass advection led to substantial biases in 

emission measurements of downwind fields. The minimum detection limit (MDL) of this 

scanning OP system for emission measurements was approximately ±1.2 µg m
-2

 s
-1

 (i.e., 3σ) 

(Chapter 4). Since N2O sinks were unlikely in N-enriched soils after NH3 applications, the 

estimated emission rates less than the MDL of -1.2 µg m
-2

 s
-1

 were considered as results of the 

advection-induced biases and excluded (Chapter 4). 

 

Gas sensors in fields not only detect air parcels from a treatment of interest but also from 

adjacent treatments via advection, resulting in emission uncertainties. These advection-induced 

uncertainties in emissions were estimated by introducing uncertainties of N2O concentrations 

measured by OP-FTIR (N2O±1.8 ppbv) into the bLS model, shown in Chapter 4. For multiple 

source measurements, enough sensors are required for upwind and downwind concentration 

measurements. Lack of gas sensors increased uncertainties in emission estimations (Crenna et al., 

2008; Flesch et al., 2009). For instance, eight LS coupled with four PS sensors were considered 

adequate and as an ideal scanning system in this study. Only seven LS and three PS sensors were 

used in 2015 and 2016 (and six LS and three PS sensors in 2014 shown in Table 5.1). The idea 

scanning system minimized emission uncertainties compared to the real scanning system (σideal ≤ 

σreal) in the same environment (e.g., the same wind velocity, direction, turbulent statistics, 

ambient temperature, and pressure). Thus, σideal was used as a baseline to examine the real 

scanning system. The estimated emissions were excluded if σreal is 50% greater than σideal (i.e., 

𝜎𝑟𝑒𝑎𝑙−𝜎𝑖𝑑𝑒𝑎𝑙

𝜎𝑖𝑑𝑒𝑎𝑙
> 0.5). 

  

Also, more fields interfering with the field of interest increased emission uncertainties. For 

instance, the uncertainty increased by orders of two or more if interferences from three adjacent 
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fields (TDFs of interest < 0.5) (e.g., Figure 4.6 in Chapter 4). Thus, the estimated emissions were 

excluded if the uncertainties measured from the real scanning system were greater than 50% of 

the emission rates (
𝜎𝑟𝑒𝑎𝑙

𝑄
> 0.5). 

5.3.4 Static chamber measurements 

Soil N2O emissions were also measured by the static vented chamber. Daily emissions of N2O 

were measured from 06 to 20 Jun. 2014, 08 May to 29 Jun. 2015, and from 06 Jun. to 10 Aug. 

2016 for a total of 6, 17, and 13 measurement days, respectively (Supplementary Table 5.2). 

Each chamber consisted of an aluminum anchor (0.74 m x 0.35 m x 0.12 m) driven into the soil 

to approximately 0.10 m depth. During sampling, a lid covered an anchor to make up a chamber 

with an approximate volume of 32.4 L. The anchors were positioned across rows to capture gas 

emissions from rows and inter-row areas. Three replicate chamber sets were equally deployed 

along the LS path in each treatment (Figure 5.1) and across the control plots (i.e., NT and ChP 

practices with zero N input). Gas sample collections were conducted between 11:30 and 14:00 

(local time, LT). Gas samples were collected from the chamber headspace through a sampling 

port consisted of rubber septa using a gas-tight polypropylene syringe (~25 mL) at intervals of 0, 

10, 20, and 30 minutes after chamber deployment. The collected gas samples were transferred 

into the pre-evacuated Labco Exetainer vials (~12 mL). Gas samples were injected into a gas 

chromatograph (GC, Varian 3800) using an automatic Combi-Pal injection system (Varian 

Mississauga, Canada). The injected gases were delivered by Argon (95%) carrier gas through a 

3.05m-long Porapak Q column. An electron capture detector set at 350 °C was used to determine 

N2O concentrations collected from different timing (i.e., 0-30 min). Ideally, multiple standard 

gases covering the range of N2O concentrations collected from chambers (e.g., 0 – 2,000 ppbv) 

are required to build a standard calibration curve. A single standard N2O gas with the 

concentration of 1430 ppbv was used to calibrate the GC for determining N2O concentrations in 

this study. The standard gas was regularly injected in the GC (once every 12-16 samples) to 

assure the stability of the instrument. Emission measurements were calculated using the 

following equation: 

𝐹𝑁2𝑂 =
∆𝐶

∆𝑡
×

𝑉

𝐴
                                                                            [1] 

, where ∆𝐶/∆𝑡 is the gradient of the changed concentration with time, V is the volume of a 

chamber (~32.4 L), and A is the surface area covered by the chamber (~0.26 m
2
). 
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5.3.5 Data transformation and statistical analysis 

The simulation of OP- and chamber-measured emission distributions during a given season were 

evaluated using the Chi-square Goodness-of-fit test, following the equation of: 

𝜒2 = ∑
(𝑜𝑖−𝑒𝑖)2

𝑒𝑖

𝑘
𝑖=1                                                                    [2] 

, where 𝑜𝑖  is the observed frequencies, 𝑒𝑖  is the expected frequencies, and 𝑘 is the number of 

class intervals (categories). The calculated 𝜒2 was compared with 𝜒(𝛼,𝜈)
2  table with the desired 

level (𝛼 = 0.05) and the degree of freedom (𝜈 = 𝑘 − 1 − 𝑝) for testing the hypothesis (the null 

hypothesis,𝐻0, means that there is no significant difference between 𝑜𝑖 and 𝑒𝑖. Two extra degrees 

of freedom were lost (𝑝) because two parameters from the estimated data set were used to fit the 

distribution (e.g., mean and standard deviation were used for fitting normal distribution. 

 

A square-root transformation was applied to transform the data to improve the normality of the 

N2O emissions estimated from the OP and chamber methods. Since emission rates less than the 

OP method minimum detection limit (MDL = 1.2 µg m
-2

 s
-1

, 3σ) possibly resulted in negative 

emissions (i.e., -1.2 µg m
-2

 s
-1

), the entire data set were shifted by adding extra 1.2 µg m
-2

 s
-1

 and 

converted to hourly average (i.e., µg m
-2

 hr
-1

) before the square-root transformation. The 

transformed data were statistically analyzed by ANOVA procedures, and the transformed means 

were compared using Tukey significant difference test (α=0.05) in OriginPro 8 (OriginLab, 

Massachusetts, USA). 

5.3.6 Daily emissions and cumulative N2O-N loss 

For multi-source emissions measurements, a great number of data were filtered using the 

scanning OP method. The remained data were sporadic. Treatments with high emission rates 

likely had higher data density than treatments with low emissions (e.g., T1 vs. T2). These 

episodic data points (30-min averages) resulted in inconsistent intervals of the daily averaged 

emissions (DAE). Thus, emissions measured from each treatment were averaged to calculate 

representative daily emissions over the measurement period in order to compare emission rates 

among treatments. 
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The mean value usually represented the entire population as a given normal-distributed data set. 

The measured emissions were transformed to meet the normal-distribution requirement for 

statistical comparisons among treatments. To ‘back-transform’ these mean emission, however, 

would not represent the actual populations. The mean value calculated from non-normally 

distributed data set was likely driven by the skewed tails of the population (e.g., OP-measured 

emissions followed gamma (ϒ) distribution). Therefore, the three ‘means’ were investigated to 

calculate the DAE in this study by averaging emissions measured from 1) the measurement 

period (MeanAll), 2) the interquartile range (IQR = 25% - 75%) (MeanIQR), and 3) the mode range 

of the population (Meanmode). 

 

The emission rates measured from the OP and chamber methods were integrated to estimate the 

DAE, so the measurement periods of these two methods were aligned. For instance, emissions 

measurements were from 30 Apr. – 12 Jun. using the OP method and 08 May – 29 Jun. using the 

chamber method in 2015. Only the period of 08 May – 11 Jun. was used to calculate the DAE of 

both methods. Because the OP method is limited to measure emissions in low wind conditions 

(mostly nighttime), the OP-measured emissions at the interval of 6:00-21:00 (LT) were used to 

calculate the daytime averaged emissions, and the chamber-measured emissions were used to 

calculate the nighttime averaged emissions from 21:00-6:00 (LT). The DAE was calculated by 

integrating daytime and nighttime averaged emissions. Then, the DAE multiplied by the 

measurement days to estimate the cumulative N2O-N loss over the measurement period. 

5.3.7 Grain yield, nitrogen uptake, and use efficiency 

The entire plant aboveground biomass was sampled for yield and N uptake measurements from 

the field of interest and control plots (zero N application) at physiological maturity. For each 

treatment, ten plants were sampled from the third or fourth row in the sampled area of 

approximately 1.2 m
2
, and three areas (replicates) were collected to represent the entire field. 

Ears were air-dried and shelled, and components (grains, cobs, and stover) further dried at 65 °C 

to a constant weight to obtain dry yields. Subsamples of the plant components were ground for 

analyzing total N content (%) in a commercial laboratory (A&L Great Lakes Laboratories, Fort 

Wayne, IN). Dry yield and N content (%) were used to calculate grain N uptake (GNU, kg ha
-1

) 

and total plant (grain + cob + stover) N uptake (TNU, kg ha
-1

). Grain yield (GY, Mg ha
-1

) was 
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adjusted from dry yields assuming 155 g kg
-1

 moisture content. Nitrogen use efficiency (NUE), 

N recovery efficiency (NRE), and surplus N (SN) were calculated as: 

𝑁𝑈𝐸(𝑘𝑔 𝑘𝑔−1) =
𝐺𝑌𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡−𝐺𝑌𝑐𝑜𝑛𝑡𝑟𝑜𝑙

∆𝑁𝑎𝑝𝑝𝑙𝑖𝑒𝑑
                                                     [3] 

𝑁𝑅𝐸(%) =
𝑇𝑁𝑈𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡−𝑇𝑁𝑈𝑐𝑜𝑛𝑡𝑟𝑜𝑙

∆𝑁𝑎𝑝𝑝𝑙𝑖𝑒𝑑
× 100%                                                      [4] 

𝑆𝑁(𝑘𝑔 𝑘𝑔−1) = 𝑁𝑟𝑎𝑡𝑒 − 𝑇𝑁𝑈                                                                         [5] 

, where 𝐺𝑌𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡  and 𝐺𝑌𝑐𝑜𝑛𝑡𝑟𝑜𝑙 (or 𝑇𝑁𝑈𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 and 𝑇𝑁𝑈𝑐𝑜𝑛𝑡𝑟𝑜𝑙 ) are 𝐺𝑌 (or 𝑇𝑁𝑈 ) for 

different treatments (T1-T4) and control plots (zero N input for NT and ChP practices), 

respectively. ∆𝑁𝑎𝑝𝑝𝑙𝑖𝑒𝑑  is the difference in NH3-N applied between treatments and controls, 

which is 220 kg NH3-N ha
-1

; 𝑁𝑟𝑎𝑡𝑒 is the applied N rate (kg N ha
-1

) 

5.4 Results and Discussion 

5.4.1 Data filtering 

The sampling frequency of the OP emissions measurement was 30-min intervals, so a total of 

forty-eight samples could be collected for each treatment every day. For instance, 2,016 half-

hour emission values (48 x 42 days) were ideally acquired for each treatment throughout 01 May 

– 11 Jun. 2015. The scanning OP-FTIR did not operate during intermittent rain events and field 

operations (e.g., herbicide spraying). Also, OP-FTIR was incapable of measuring concentrations 

from low-quality spectra resulting from the out-of-alignment led by strong wind-induced 

vibration, the dusty wind-blown events, and mostly condensation (often occurred during at night 

or early morning) on the spectrometer or retro-reflector. As a result, 691 half-hour emission 

estimations (approximate 34%) were available to assess treatment effects on emissions in 2015 

(Table 5.2). 

 

The half-hour estimated emissions were excluded during u* < 0.15 m s
-1

, |L| < 5 m (the MOST 

theory failed), TDF < 0.1, and |N2Omin - Cbg| > 5.4 ppbv. Nearly 49% of total collected half-hour 

emissions (n = 691) were remained for each treatment (error-1 shown in Table 5.2). Most of the 

excluded emissions were collected during the nighttime (i.e., 20:00 – 06:00, LT) which was 

frequently under conditions of low winds (u* < 0.15 m s
-1

) and stable atmosphere (L < 5 m). 
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Air parcels carrying high N2O concentrations can be transported horizontally via advection and 

lead to biases in emissions estimations of adjacent fields (error-2 shown in Table 5.2). Additional 

75 and 118 half-hour periods of estimated emissions were less than MDL (-1.2 µg m
-2

 s
-1

) and 

excluded from analysis for the T2 and T4 treatments, respectively (Table 5.2). For the T1 and T3 

measurements, only 17 and 24 half-hour emissions were excluded. In 2015, the T1 treatment 

(upwind) emissions substantially interfered with emission estimations for T4 treatment 

(downwind) because the prevailing wind was from the SSW (Chapter 4). The T1 emissions also 

interfered with the T2 emission estimations when the wind drifted from 180° to 270°. Although 

emissions estimations of the T3 treatment was interfered by emissions from three adjacent fields 

(T1, T2, T4), most of the emissions from T3 were measurable (> MDL). Emission rates from the 

T2 and T4 treatments were lower than the T1 and T3 treatments. 

  

Uncertainties in emissions measurements led by advective interferences increased if the number 

of sensors was inadequate (error-3 shown in Table 5.2). An additional 71 half-hour emissions 

were excluded from the T1 measurement if uncertainties measured from the ‘real’ scanning 

system (σreal) were 50% greater than uncertainties from the ‘ideal’ scanning system (σideal). Only 

an extra 16 and 15 half-hour emissions were excluded from the T2 and T4 measurements, 

respectively (Table 5.2). The 2015 configuration did not have N2O concentration measurements 

at the S of the field or between the T1 and T4 plots. Two sensors (LS and PS) were absent for the 

T1 emission estimations. Only one sensor was missing for estimating emissions from the T2 and 

T4 (Figure 5.1). For T3 measurements, none of the estimated half-hour emissions were excluded 

because T3 received good upwind-downwind sensor deployment (LS-4, -5, -6 and PS sensors at 

the E and N sides). 

  

The advection-induced uncertainties also increased with increasing interferences (error-4 shown 

in Table 5.2). The range of σreal was from 0.1 to 2.0 µg m
-2

 s
-1

 with changing wind conditions 

(Figure 4.6 in Chapter 4). A field of interest which received a clean upwind background resulted 

in low uncertainties in emissions measurements (i.e., σreal < 0.5 µg m
-2

 s
-1

). For instance, the T1 

emission estimations were advantaged by the prevalent (70%) SSW wind during measurements 

in 2015. An additional 68 half-hour emissions were excluded from the T1 measurements based 

on the threshold of (𝜎𝑟𝑒𝑎𝑙 𝑄⁄ ) > 0.5 (Table 5.2). For T3 measurements, an additional 119 half-
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hour emissions were excluded. Fields with lower emission rates were more vulnerable to these 

uncertainties. An additional 128 and 107 half-hour emissions were excluded from T2 and T4 

plots, respectively, because of their relatively low emission rates. 

5.4.2 N2O emissions (OP vs. Chambers) 

A general comparison between years showed that the OP-measured N2O emission rates averaged 

across treatments were 2.1±1.9 µg m
-2

 s
-1

 (n = 431), 2.7±2.9 µg m
-2

 s
-1

 (n = 635), and 1.5±1.6 µg 

m
-2

 s
-1

 (n = 306) from 2014, 2015, and 2016 measurements, respectively (Figure 5.2). The higher 

emission rates in 2015 than 2014 and 2016 were attributed to  1) the timing of the N-fertilizer 

application (Decock, 2014) and 2) the generally windy conditions (Nazaroff, 1992; Denmead and 

Reicosky, 2003; Redeker et al., 2015). In 2015, the spring NH3 was applied before planting 

(Table 5.1). The spring pre-plant N application enriched soil N-substrates before meeting corn 

needs for N, and these reactive N supplies likely induced more N2O emissions via the increased 

microbial activities (Drury et al., 2012; Roy et al., 2014). 

 

Furthermore, the higher wind speed (3.6±1.8 m s
-1

, P < 0.05) during the measurement in 2015 

tended to increase N2O emissions relative to 2014 and 2016 (Figure 5.2). Since chamber methods 

were limited to consider the ‘wind-induced effect’ into account, the emission rates determined by 

the OP and chamber methods were ratioed to investigate the impact of the wind velocity on gas 

emission rates. Within the interval of 11:30-14:00 (LT), one chamber and multiple OP 

measurements were conducted, and the emission ratio of the OP to chamber methods (ROP/chamber) 

was against the mean wind velocity (Figure 5.3). The emission ratio (ROP/chamber) exponentially 

increased (P < 0.05) with increasing the wind velocity. The magnitude of the wind-induced 

emissions became substantial when the wind speed was greater than 4 m s
-1

, and interestingly, 

the variances in ROP/chamber also increased. The increased variances in ROP/chamber (> 4 m s
-1

) were 

presumably due to different diffusive resistances between soil and the atmosphere (Chapter 3: 

Gas diffusion in soil, 1985; Monson and Baldocchi, 2014). Under the relatively and consistently 

high wind speed (> 4 m s
-1

), the lower emission rates consistently followed the high emission 

rate from the previous half an hour. The high wind speed tended to ‘flush out’ N2O near the 

surface soils, and the flushed N2O was slowly refilled because of the lower diffusion rate in soils 

(or the slow N2O production rate).  
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5.4.3 Treatment comparisons 

The estimated N2O fluxes, including the OP and chamber measurements, were shifted and 

transformed to meet the normally distributed dataset and to statistically examine the effect of 

management practices on mean N2O emissions over measurement periods. For the OP 

measurement, the transformed emissions were averaged either from the interval of 00:00 – 24:00 

(00 – 24, LT) or 06:00 – 21:00 (06 – 21, LT) over the measurement period. 

5.4.3.1 Full vs. Split nitrogen application 

NT practices integrated with the full (220 kg NH3-N ha
-1

 in fall) and split (110 kg NH3-N ha
-1

 in 

fall and spring) N application rates were continuously conducted in the fields of T1 and T2, 

respectively. For the T2 treatment, the averages of the transformed OP emissions at the interval 

of 00 – 24 (LT) were 82±31, 75±30, and 74±27 (µg m
-2

 hr
-1

)
0.5

 in 2014, 2015, and 2016, 

respectively (Table 5.3). The OP measurements consistently showed that the split N rate 

application (T2) significantly reduced N2O emissions (P < 0.05) compared with other treatments 

(Table 5.3). The split application with ChP also showed less mean N2O emissions (T3 = 99±33 

(µg m
-2

 hr
-1

)
0.5

) than the full application (T4 = 113±27 (µg m
-2

 hr
-1

)
0.5

) in 2014. The split 

application can avoid a considerable amount of available N substrates in soils and ideally meet 

crop N demands, so N2O produced by soil microbes is likely mitigated (Burton et al., 2008; 

Robertson and Vitousek, 2009; Decock, 2014). 

5.4.3.2 No-till vs. Chisel plow 

The split N rate application under NT and ChP was continuously practiced in the fields of T2 and 

T3, respectively. The NT practice (T2) showed consistently lower mean N2O emissions than the 

ChP practice over the years (P < 0.05) (Table 5.3). Chamber measurements also showed a 

tendency of lower N2O emissions in the T2 plot (NT + split N rate), but statistical comparisons 

were weak. The reduced or zero tillage practices were reported to mitigate N2O emissions 

(Jacinthe and Dick, 1997; Mosier et al., 2006; Ussiri at al., 2009; Omonode et al., 2011 and 

2019). Many studies, however, showed inconsistent results of tillage effects on N2O emissions 

(e.g., reduced tillage could either increase or decrease N2O emissions) (Venterea et al., 2011; van 

Kessel et al., 2013; Decock, 2014). Tillage effects on N2O reductions were influenced by 

different environmental variables (e.g., soil properties, climate regions, and crop management) 
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and considered as ‘site-preference.’ NT practice with side-dress N application had been 

continuously reported to reduce fertilizer-derived N2O emissions in this experimental location 

(Purdue ACRE) for the entire growing seasons (Omonode et al., 2011, 2015, and 2019). The OP 

measurements showed that the integrated practice of NT and split N application (T2) consistently 

resulted in the lowest mean N2O emissions among four treatments (P < 0.05) (Table 5.3). 

5.4.3.3 Fall vs. Spring nitrogen application 

The full N application with previous fall or current spring was consistently practiced in the fields 

of T1 (fall) and T4 (spring). For the spring application, the NH3 was injected either in season 

(side-dress in 2014 and 2016) or before planting (pre-plant in 2015) in T4 (Table 5.1). In 2015, 

the OP measurement showed that the T1 plot resulted in higher N2O emissions than T4 (spring 

pre-plant) (P < 0.05) over the measurement period (Table 5.3). The pre-plant applications (fall 

and spring) likely led to a higher amount of reactive N in soils and risks of N loss via 

nitrification and denitrification (e.g., leaching and N2O/N2 emissions) before plant uptakes 

(Rochette et al., 2004). In 2014 and 2016, however, T1 and T4 (spring side-dress) showed no 

difference in the mean transformed N2O emission, presumably because the applied NH3-N from 

the previous Fall has been losing over warming soils in early spring (e.g., thawing) before 

starting the gas measurements on 09 Jun. 2014 and 07 Jun. 2016 (Table 5.1) (Tenuta et al., 2016). 

5.4.4 Daily emissions and cumulative N2O-N loss 

The mean emissions from the entire population (MeanAll) were consistently higher than MeanIQR 

over treatments (Table 5.4) because the MeanAll were substantially influenced by the 

occasionally high emissions from the tail (e.g., pulse emissions after rain events). Using MeanAll 

to calculate representative daily emissions possibly overestimated cumulative N2O emissions 

from measurement periods. Although the MeanIQR avoided the influence of the skewed tail on 

mean calculations, MeanIQR somehow neglected the contribution of the low emissions (e.g., 

MDL of the OP method = 1.2 µg m
-2

 s
-1

, grey bars in Figure 5.2). Likewise, the MeanIQR was 

likely overestimated without considering the low emission rates. Instead, the mean value from 

the mode of the population (Meanmode) was calculated to represent the entire population for both 

OP (bin range = 2 µg m
-2

 s
-1

) and chamber (bin range = 0.03 µg m
-2

 s
-1

) measurements.  
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The integrated practice of NT and split N rate (T2) consistently resulted in the lowest cumulative 

N2O-N loss among treatments over measurement periods, accounting for 3.81, 13.22, and 6.55 

kg N2O-N ha
-1

 over 9, 35, and 20 days in 2014-2016, respectively (Table 5.4). The ChP practice 

(T3), by contrast, continuously resulted in higher cumulative N2O-N losses (i.e., 7.07, 37.86, and 

9.23 kg N2O-N ha
-1

 over the 9, 35, and 20 measurement days in 2014, 2015, and 2016, 

respectively, shown in Table 5.4) than NT (T2). The NT and split N practices have been reported 

to mitigate the fertilizer-induced N2O-N loss (Burton et al., 2008; Robertson and Vitousek, 2009; 

Decock, 2014; Omonode et al., 2011, 2015, and 2019).  

 

In 2015, the combination of the full N rate and fall application (T1) resulted in 39.41 kg N2O-N 

ha
-1

 loss as emissions in 35 days, but only a 6.98 N2O-N ha
-1 

loss in 9 days in 2014 and a 9.31 kg 

N2O-N ha
-1

 loss in 20 days in 2016. The 2014 and 2016 measurements began right after the side-

dress NH3 applications when the crop was approximately at V5-6 stage. The excessive N2O-N 

loss from 2015 measurement (i.e., additional 32.43 kg N2O-N ha
-1 

(39.41 – 6.98) and 30.10 kg 

N2O-N ha
-1 

(39.41 – 9.31) emissions compared with 2014 and 2016, respectively) showed that a 

great amount of soil N was potentially lost via N2O emissions before the high demand for N in 

maize (V5-6) (the 2015 measurement started before planting, Table 5.1) (Rochette et al., 2004; 

Drury et al., 2012; Roy et al., 2014). Likewise, the T3 plot in 2015 resulted in additional 30.79 

and 28.63 kg ha
-1

 N2O-N losses compared with in 2014 and 2016 measurements, respectively. 

5.4.5 Grain yield, nitrogen uptake, and use efficiency 

Grain yield (GY), grain and total N uptake (GNU and TNU), surplus N in soils (SN), N use and 

recovery efficiency (NUE and NRE) among years and treatments were compared using the 

paired sample t-test (α = 0.05) (Table 5.5). The mean values of GNU, TNU, and NRE averaged 

across treatments (T1-4) were higher in 2016 than 2015 (P < 0.05, Table 5.5). Omonode (2019) 

also reported similar results for this location based on the same N rate (urea ammonium nitrate 

applied at a rate of 220 kg N ha
-1

). The increased crop performance was attributed to favorable 

weather conditions (e.g., the quantity and distribution rainfall in July and August) in 2016 

(Omonode et al., 2019). Cumulative precipitation during 01 Apr. – 31 Jul. was greater in 2015 

(460 mm) than 2016 (357 mm), likely resulting in N loss and lower GNU, TNU, and NRE. 
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The spring side-dress N application significantly increased NRE (i.e., 75% NRE averaged from 

T2, T3, and T4 in 2016) compared with the spring pre-plant application (i.e., 61% NRE averaged 

from T2, T3, and T4 in 2015) (P < 0.05). The averaged NRE values in both years were higher 

than the average from the North America maize cropping systems (55% NRE for N rates > 150 

kg N ha
-1

 shown in Omonode et al., 2017). The NRE value of 75% in this study was similar to 

the value of 70% reported by Omonode (2019) and higher than 59% reported by Burzaco (2014) 

for this location for the spring N side-dress application. In-season (at V5-6) or late-split (at R1) 

N application practices were reported to increase NRE, attributed to a better synchrony between 

N supply and crop N demand than the pre-plant application (Cassman et al., 2002; Shanahan et 

al., 2008; Burzaco et al., 2014; Mueller et al., 2017). The side-dress practice, however, might not 

be the only reason for increased NRE which is also significantly influenced by the applied N rate. 

Omonode (2017) proposed a model showing that NRE progressively increased with reducing N 

rate at the low rate of  < 100 kg N ha
-1

 and became leveled (~60%) if N rate exceeded than 150 

kg N ha
-1

. High risks of N loss via leaching or gas emissions from the fall N application could 

lead to an inconsistent amount of N in soils and affect NRE values. 

 

Statistical comparisons of crop GY and other N uptake-derived parameters among treatments 

were stronger in 2015 than 2016. In 2015, the T1 plot (full N rate + fall application) showed 

significant lower GY, GNU, TNU, NUE, and NRE than the T2 plot (split N rate + fall and spring 

pre-plant application) (P < 0.05 shown in Table 5.5). The low NUE and NRE of T1 were 

attributed to a great loss of fall-applied NH3 via emissions (e.g., 39.41 kg N2O-N ha
-1

 (T1) vs. 

13.22 kg N2O-N ha
-1

 (T2), Table 5.4) and leaching before plant uptakes (Rochette et al., 2004). 

Comparisons between T1 and T2 did not show any significant difference in 2016. In 2016, the 

ChP practice (T3) in this study only showed higher GY and NUE than NT (T2) (P < 0.05). 

Conventional tillage (e.g., moldboard plow, strip plow, and chisel plow) have been consistently 

reported to increase GY relative to NT (Omonode and Vyn, 2019; Omonode et al., 2015; 

Pittelkow et al., 2015) probably because tilled practices provided better seed beds for early plant 

establishment (Gentry et al., 2013).  
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5.4.6 N2O emissions vs. crop nitrogen use efficiency 

Both NRE and SN were used to investigate cropping management effects on N2O emissions 

(Grassini and Cassman, 2012; Omonode et al., 2017). The previous section showed that reduced 

NRE in 2015 possibly resulted from more N loss due to the increased precipitation. Significantly 

increased SN values in 2015 (averaged either across treatments or controls, Table 5.5) also 

inferred that more N-substrates potentially became N2O or NO3
-1

 sources in 2015 than 2016. 

Both reduced NRE and increased SN values corresponded to the increased N2O emission rates 

averaged across treatments (2015: 107±46 (µg m
-2

 hr
-1

)
0.5

 vs. 2016: 91±32 (µg m
-2

 hr
-1

)
0.5

, P < 

0.05). As previously mentioned, the spring pre-plant N application resulted in lower NRE 

(averaged across T2-4) than side-dress application. Reduced NRE was also corresponding to 

higher N2O emission rates in 2015 (pre-plant in 2015: 96±45 (µg m
-2

 hr
-1

)
0.5

 (n = 269) vs. side-

dress in 2016: 89±32 (µg m
-2

 hr
-1

)
0.5

 (n = 130), P = 0.06). 

  

Omonode (2017) consistently showed a ‘negative’ relationship of NRE or a ‘positive’ 

relationship of SN to N2O emissions based on the management focusing on N application rate or 

rate-by-timing combination. Comparisons among treatments in the same year, however, did not 

exactly show the negative correlation between NRE and N2O. For instance, the consistently low 

emission rates from the management of the NT practice coupled with the split N application (T2) 

was not corresponding to high NRE (Table 5.3 and Table 5.5). The reduced NRE corresponding 

to the increased N2O only occurred in the treatment of NT coupled with the full N rate 

application in fall (T1) in 2015. This inconsistent relationship between NRE and N2O was 

attributed to a single N rate (220 kg N ha
-1

) used in this study. Both NRE, N2O and their 

relationship were substantially influenced by N application rates. Reduced N rate not only 

improved NRE but also reduced N2O emissions (Omonode et al., 2017). Low N rates (< 150 kg 

N ha
-1

), however, usually reduce grain yield. Since a recommendation range of N rate for the 

North America states maize systems were from 150 kg N ha
-1

 (Minnesota) to 220 kg N ha
-1

 

(Indiana) for optimum yield, a reduced N rate practice within the 150-220 kg N ha
-1

 range can be 

integrated with different management practices to increase NRE and mitigate N2O emission 

simultaneously (Omonode et al., 2017).  
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5.4.7 Strengths and weaknesses of the open path and chamber methods 

Both OP and chamber methods have their strengths and limitations for measuring gas emissions 

from soils (Table 5.6). In this study, the OP method showed a high potential to measure emission 

rates with high temporal and spatial resolutions and to compensate for the weaknesses of 

chamber method (e.g., low sampling frequency and small footprint) for a long-term emissions 

measurement. The OP method was also able to investigate the ‘wind effect’ on emission rates, 

measure sticky gases (e.g., NH3), and operate semi-automatically to reduce labor intensity. This 

method, however, was limited to measure gas emissions in low wind conditions. For multi-

source measurements, the OP method was subject to advective interferences between fields, 

leading to biases and uncertainties in emissions estimations. Since the OP method measured gas 

emissions from entire cropping systems, it is difficult to identify gas exchanges within soils, 

canopies, and the atmosphere. 

 

Although it is challenging to measure dynamical N2O emissions using static closed chamber 

methods, chamber measurements provide a simple concept and operation for estimating soil gas 

emissions. Also, chambers require no power for sample collections and can be operated in most 

of the weather conditions (e.g., rain events or low winds). One of the powerful advantages of 

chamber methods is that gas emissions can be measured in multiple plots (> 10 plots) near 

simultaneously (daily-wise) for treatment comparisons because these methods do not require 

large experimental areas. Chamber methods also provide a higher sensitivity to distinguish 

differences in emission rates among treatments than the OP method because the accumulated 

gases in the headspace provide a large increase in gas concentrations (Denmead, 2008). 

 

Since different methods serve different purposes of studies, the weaknesses of methods could 

become advantages for measuring gas emissions. Small footprints of chambers, for instance, not 

only benefit chamber methods to measure gas emissions from multiple sources, but also the 

small-scale ‘hot spots’ of interest, such as different locations over terrains (e.g., slope profiles). 

For the small-area emissions measurements, the local information of soil (e.g., soil organic 

matter, temperature, moisture, N contents, and pH) and gas (isotopic ratios of N and O of N2O) 

can be measured to investigate the relationship between these variables and emissions (Rochette, 

2011; Yang et al., 2011; Oertel et al., 2016). Therefore, simply using one method to measure gas 
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emissions likely introduced unknown uncertainties into estimations due to the complexities of 

soils gas emissions. Emissions estimations can be improved by integrating different method 

strengths. 
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Table 5.1 Nitrogen (N) and field management of 2014-2016. Four treatments (T1-4) were 

managed by integrating different N applications: anhydrous ammonia (AA: 220 kg NH3-N ha-1) 

was applied as full or split rate in different timing (i.e., fall vs. spring) and tillage practices (no-

till, NT vs. chisel plow, ChP). The management for each field was: T1) full application in the fall 

and zero N input in the spring (F220/S0) + NT; T2) split application in the fall and spring 

(F110/S110) + NT; T3) F110/S110 + ChP; T4) F0/S220 + ChP in 2014 and NT in 2015 and 

2016. The spring N application occurred in-season at the corn growing stage of V5-6 (side-dress) 

in 2014 and 2016, and before planting (pre-plant) in 2015. Numerous line-sampling (LS) sensors 

(six in 2014 and seven in 2015 and 2016) were used to scan T1-T4, and three point-sampling (PS) 

sensors were deployed at the edges of fields. The OP emissions measurements began just after 

AA applications. 
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Table 5.2 Stepwise criteria for data filtering in the open path multiple flux measurements. The 

total of 691 samples collected from each treatment (T1-T4) in 2015 was used as an example. 
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Table 5.3 Effects of N and field management on N2O emissions in 2014-2016. The estimated fluxes were equally shifted, converted, 

and transformed to statistically compare the magnitude of N2O emission rates among treatments. The estimated flux was shifted by 

adding 1.2 µg m
-2

 s
-1

 to avoid the negative data. The shifted data were converted to hourly fluxes (µg m
-2

 hr
-1

). The converted data 

were transformed by square-root to improve the population normality. For each treatment, the transformed data were analyzed by 

ANOVA procedures, and the Tukey analysis was used to compare the means of the transformed emission among treatments (α=0.05). 
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Table 5.4 For 2014-2016 measurements, the collected N2O emissions at the interval of 6:00-21:00 (LT) were averaged over 1) the 

entire population (MeanAll), 2) the interquartile range of the population (MeanIQR), and 3) the mode of the population (MeanMode) 

categorized by the bin range of 2 µg m
-2

 s
-1

 and 0.03 µg m
-2

 s
-1

 for the OP- and chamber-measured emissions, respectively. The OP 

measurements represented daytime emissions (6:00-21:00, LT) and chamber measurements represented nighttime emissions (21:00-

6:00, LT). The daily representative emission rate was calculated by integrating the daytime and nighttime emissions (based on the 

MeanMode), and the cumulative N2O-N loss was calculated by multiplying the daily representative emission and the measurement days. 
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Table 5.5 Management effects on means of crop variables including grain yield (GY), grain N uptake (GNU), total plant N uptake 

(TNU), surplus N (SN), N use efficiency (NUE), and N recovery efficiency (%NRE) in 2015 and 2016. For each treatment, the crop 

data were compared using the paired sample t-test (α = 0.05). 
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Table 5.6 Strengths and limitations of the scanning open path (OP-FTIR + bLS) and the vented static closed chamber methods for 

multi-source N2O emissions measurements. 
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Supplementary Table 5.1 The basic soil information and the Illinois soil nitrogen test (ISNT) test of four treatments (T1-T4) in the 

experimental site (Purdue ACRE). 
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Supplementary Table 5.2 Dates of gas samplings using chamber methods. 
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Figure 5.1 Schematic of the ideal scanning system (eight line-sampling and four point-sampling concentration sensors) for the open 

path multiple gas emissions measurements (four emission sources) using the backward Lagrangian stochastic technique. Control plots 

(zero N application) of no-till and chisel plow were next to the T2 and T3 plots (not shown). Chamber sampling locations were across 

a field of each treatment. 
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Figure 5.2 Measurements of N2O emissions estimated by the static chamber and open path (OP) methods, precipitation (mm), and 

general wind information (direction and velocity) in (a) 2014, (b) 2015, and (c) 2016. The OP N2O emissions were cleaned by the 

stepwise criteria of error-1 – error-4. 
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Figure 5.3 The effect of the increased wind speed on N2O emission rates. N2O emissions were 

estimated by the OP and chamber methods within 11:30-14:00 (local time) from 2014-16 

measurements. The emission ratios of the OP to chamber measurements (ROP/chamber) were 

against the mean wind velocity. 
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 CONCLUSION CHAPTER 6.

6.1 Summary of Findings 

Implementing the scanning open path (OP) Fourier transform infrared spectrometry in the 

backward Lagrangian stochastic technique to measure N2O emissions from multiple plots is a 

complex process. As an open system, the OP measurement is subject to interferences from 

environmental variables, and its quantitative methodology needs to be optimized to ensure an 

adequate sensitivity to distinguish N2O fluxes from fields managed by different tillage and 

nitrogen (N) practices. Considering the propagation of measurement uncertainties, the process of 

optimization needs to start with the fundamental measurement of gas concentrations. Because of 

the complexity of the P-branch N2O spectral features (2170.0 – 2224.0 cm
-1

), the quantification 

of N2O concentrations are more susceptive to the diurnally fluctuated ambient humidity and 

temperature than other greenhouse gases (e.g., CO2). For N2O quantification, the optimal method 

by integrating the synthetic single beam background, a two bands window (2188.7-2204.1 + 

2215.8-2223.7 cm
-1

), and the partial least squares regressions (Chapter 1) was capable of 

minimizing the interferences of ambient variables and optical path lengths. Assuming stationary 

conditions over 30 min, the minimum detection limit of OP-FTIR N2O concentrations was 5.4 

ppmv (MDL; 3σ). For multisource emissions measurements, gas transport via advection between 

adjacent fields is inevitable and interfered with emission estimations. Thus, the emissions from 

adjacent fields lead to substantial biases and uncertainties in flux estimations. The absence of the 

upwind or downwind gas sensors likely increased uncertainties in flux estimations. Generally 

summarizing,  the MDL of the OP N2O flux measurements was 1.2 µg m
-2

 s
-1

 (3σ). Only 15-30% 

of the collected data remained based on the criteria of Error 1-4. Fields with lower N2O emission 

rates had a greater risk for advective interference and lost more data. 

 

The pre-plant full-N application during the fall resulted in higher N2O emissions than the split-N 

application (fall and spring). Compared with the chisel plow (ChP) tillage, the long-term no-till 

(NT) practice mitigated N loss via N2O emissions as consistent with prior literature. Owing to 

the lack of N2O emission measurements in the early spring, it is risky to claim that the 

integration of NT and the split application is the optimal management even though this 
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combination results in the lowest N2O-N loss during the measurement period. The timing of N 

application indicates that the full N rate applied during the spring tended to have a better NRE 

than the fall application, presumably due to N loss via leaching or gas emissions over the winter 

or the early spring. The OP and chamber measurements showed the same tendencies of 

management effects on N2O emissions. The OP method, however, showed a higher magnitude of 

emission rates for all treatments than chamber measurements, likely due to wind-induced 

emissions.  

6.2 Future research 

6.2.1 Limitations of this study 

To estimate the entire amount of the fertilizer-induced N2O-N losses, the continuous gas 

measurement needs to cover a longer duration (e.g., an entire growing season or ≥ 60 days) after 

fertilizer application. In this study, gas measurements were restricted to within 60 days of 

application (11-, 44-, and 21-day measurements in 2014-2016, respectively) because the fast-

growing corn likely blocks the IR traveling between spectrometer and retro-reflector after N 

application (e.g., side-dress). The scanning FTIR was limited to a full rotation of 0-300, so the 

path-averaging measurement was always absent between the T1 and T4 plots. In addition, only 

three point-sampling inlets were used to measure background concentrations of N2O because one 

inlet was used for bias corrections of the OP-FTIR, meaning that one of the N, E, S, and W of the 

fields had no inlet. Emissions measurements during the night were generally limited by the OP 

method due to mostly low wind conditions. Nocturnal emission measurements were roughly 

estimated using chamber methods and can be alternated by the mass accumulation method 

(Grant and Omonode, 2018). 

6.2.2 Future improvement and needs 

An adjustable height for the spectrometer and retro-reflectors are needed to adapt to the height of 

the canopy to extend the measurement time. The missed OP sensor can be fixed by adding more 

synthetic open path gas sampling systems, and adequate point-sampling inlets need to be 

deployed at the edge of fields to detect the background concentration of N2O from N, E, S, and 

W. 
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To complete the N budget of the applied N fertilizers, a number of questions remain unanswered 

in this study. The information of N loss via leaching or gas emissions (NH3/N2O/N2) over the 

winter and early spring is needed for fall applications. The other part is no estimate of N gas 

losses from June to the plant maturity. Even though the amount of N rate recovered by plants 

(NRE) and surplus N in soils (SN) roughly offers information on N fertilizer use efficiency, the 

proportion of the leached and emitted N are still mysteries. The missing N data may be the 

reason why the process of optimizing field management is difficult and ineffective (i.e., time-, 

labor-, cost-, and resource-consuming). Different perspectives (e.g., yield production, 

environmental impact, etc.) lead to different definitions of the ‘optimal’ management. Generally 

speaking, one of the reasons that makes the ‘optimization’ so complicated and gives rise to a lot 

of conflicting results regarding optimal management is the lack of efficient measurement 

methods. Because of the complexity and dynamic changes of N fluxes among phases (i.e., the 

soil, plants, water, and air), it is essential and demanded to keep developing methods to 

continuously and frequently measure N fluxes in a long-term period to understand the entire N 

budget in the agroecosystem. This scanning OP measurement is a cutting-edge method to 

measure N fluxes at the soil-atmospheric interface (i.e., N2O and NH3). The Water Quality Field 

Station (WQFS) could provide unique opportunities to measure N loss via leaching continuously. 

Integrating the OP and WQFS measurements would help understand the applied N budget 

further as well as optimize field and N management practices. Furthermore, integrating isotopic 

tracing techniques in this system to identify the microbial pathways of the input N among solid, 

liquid, and gas phases would be a powerful addition study in the dynamic N fluxes. 

6.2.3 Implications in Agriculture 

Because the scanning OP system is capable of measuring multiple gas species from different 

sources near simultaneously and continuously in a long-term period, this method is considered as 

more efficient if users want to extract the same amount of information by chamber measurements. 

This method also can be easily applied to capture the agricultural emissions of most greenhouse 

gases (i.e., CO2, CH4, and N2O) to study the entire global warming potential contributed by 

agricultural activities as well as the C and N cycles in the ecosystem. From economic standpoints, 

this method could provide crop modelers with useful information of the emitted N from the 

applied fertilizers for improving yield predictions. 


