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10 (solid symbols). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
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ABSTRACT

Zhang, Qian MSME, Purdue University, August 2019. Direct Numerical Simulation
of Marangoni Flows: Dynamical Regimes and Transitions. Major Professor: Carlos
M. Corvalan Associate Professor, Department of Food Science and Paul E. Sojka
Professor, School of Mechanical Engineering.

Marangoni flows are free-surface flows driven by gradients of surface tension. Be-

cause surface tension depends on chemical composition, Marangoni flows may be

generated by the uneven distribution of surface-active species at an interface. The

primary goal of this thesis is to develop a rigorous computational framework for the

simulation of the fluid dynamical and interfacial phenomena underlying the physics

of Marangoni flows. The focus is on characterizing the different dynamical regimes

generated by the presence of surface-active species (surfactants) at an interface. The

computational framework was developed using direct numerical simulation, that is, by

simultaneously solving the full system of partial differential equations governing the

free-surface flow and the surfactant transport on a continually deforming interface.

Results from the simulations enabled detailed examination of the interfacial mecha-

nisms of surfactant transport and provided a comprehensive picture of the free-surface

flow. Analysis of the results established limits of applicability of scaling solutions pre-

viously proposed in the literature, calculated the necessary corrections, and also lead

to the discovery of previously unobserved scaling laws in viscous Marangoni flows.

New findings from this research not only enhance the fundamental understanding

of the physics of Marangoni flows, but also the ability to accurately predict the be-

haviour of Marangoni flows and the associated transport of surface-active species,

which is critical to the understanding of important natural and biomedical processes,

ranging from the surfactant-driven propulsion of insects and microorganisms to the

spreading of drugs and natural surfactants (proteins) in the eye and lungs. Con-
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trolled Marangoni transport of chemical species is also relevant to a wide range of

environmental and technological processes, with applications ranging from cleaning

of oil spills to coating of microfluidic devices.
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1. INTRODUCTION

1.1 Overview

Marangoni flows are flows driven by surface tension gradients. Since surface ten-

sion depends on chemical composition, Marangoni flows may be generated by gradi-

ents in chemical concentration at an interface (Figure 1.1).

This work discusses in detail results from a rigorous numerical model capable

of accurately simulating Marangoni flows generated by gradients in concentration of

surface-active species (surfactants) at an interface. By simultaneously solving the

full system of governing equations, the multi-scale model enables both a detailed

examination of the microscopic physical mechanisms of surfactant transport, and a

comprehensive picture of the macroscopic free-surface flow. Particular attention is

given to characterize how the Marangoni dynamics is influenced by the geometry of

the system, the properties of the fluid, and the properties of the surfactant.

An enhanced understanding of the fundamental physics of Marangoni flows and

the resulting transport of chemical species is relevant to important natural and

biomedical processes, from the surfactant driven propulsion of microorganisms to the

spreading of drugs in the eye and lungs. Controlled Marangoni transport of chemical

species is also relevant to a wide range of environmental and technological processes,

with applications ranging from cleaning of oil spills to interfacial transport in mi-

crofluidic devices. Moreover, precise understanding of the mechanisms of Marangoni

transport of surfactants and chemical species at the microscale provides opportunity

for tuning the interfacial surfactant coverage, and therefore the interfacial properties

of films, droplets, and bubbles.
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Fig. 1.1. Schematic of a surfactant drop spreading on a liq-
uid film. A drop of insoluble surfactant on the surface of a liquid
film generates an interfacial concentration profile γ. The concentra-
tion profile creates a difference in surface tension (Marangoni stress,
red arrow) that pulls the surfactant forward, from the region of high
surfactant concentration to the region of low concentration.



3

1.2 Research Objective and Thesis Outline

1.2.1 Research Objective

The overall goal of this thesis is to develop a rigorous computational framework

to enhance the understanding of the fundamental flow physics of Marangoni flows,

with focus on characterizing the different flow and spreading regimes of an insoluble

surfactant on the surface of a liquid film (Figure 1.2).

By accurately solving the full system of governing equations, the computations

determine the accuracy of limiting scaling solutions previously proposed in the lit-

erature for different Marangoni regimes, establish their limits of applicability, and

calculate necessary corrections. Importantly, the rigorous computational framework

develop in this thesis also leads to the discovery of previously unobserved features of

Marangoni flows that suggest new avenues of research.

1.2.2 Thesis Outline

To support the research objectives, a realistic computational model is developed in

Chapter 2 to characterize the effect of geometry and material properties on Marangoni

flows generated by gradients of surfactant concentration. Chapter 2 describes how

unnecessary simplifications on the description of the free-surface dynamics are avoided

by solving the full Navier-Stokes system of governing equations that describes the

flow dynamics. By solving the full Navier-Stokes system, the resulting model has no

limitations to Euler or Stokes flow, and the full interaction between inertial, viscous

and interfacial forces in the flow dynamics can, in principle, be explored.

In this realistic framework, the influence of interfacial forces is described using the

Young-Laplace pressure jump coupling the normal interfacial stresses (capillary pres-

sure) to the shape of the fluid interface. Critically, the interfacial stress condition is

extended to account for tangential interfacial forces (Marangoni stresses) that couple

the surface tension gradients at the interface with the bulk fluid flow. The coupling of
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Fig. 1.2. Surfactant drop diluting and spreading on a contin-
uously deforming liquid film. Direct numerical simulations en-
able accurate temporal and spatial characterization of the free-surface
Marangoni problem, which involves strongly coupled fluid flow, inter-
facial surfactant transport (red drop), and large interfacial deforma-
tions in a liquid film (grey).
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the bulk flow and the spreading of the chemical species at the interface is described by

the full convection-diffusion equation governing the interfacial surfactant transport.

The free-surface model is solved using direct numerical simulation. The high-

fidelity direct numerical simulation scheme is based on the finite element method

for discretization in space, and adaptive finite difference for discretization in time.

Because of the presence of a free surface, the scheme uses an arbitrary Lagrangian-

Eulerian method to trace the deforming fluid interface. The direct numerical simu-

lation scheme is able to accurately characterize this challenging free-surface problem

that involves strongly coupled and highly nonlinear equations governing fluid flow,

interfacial mass transport, and large interfacial deformations.

The second part of Chapter 2 summarizes and discusses the model results for

Marangoni flows in highly-viscous liquid films. The direct numerical simulations en-

able a detailed analysis of the microscopic physical mechanisms of surfactant trans-

port, and a comprehensive picture of the macroscopic free-surface flow. Initially, both

experiments and limiting theoretical predictions from the literature are benchmarked

against the solutions of the full Navier-Stokes system. Then, scaling arguments are de-

veloped to identify different dynamical regimes and their transitions for a wide range

of film thickness. Parametric studies demonstrate, apparently for the first time, that

in highly-viscous films the surfactant spreads faster than expected from theoretical

predictions, and the difference with the expected spreading speed increases rapidly

as the film thickness increases.

Chapter 3 extends the results of Chapter 2 to arbitrary fluid viscosities. The

chapter provides a thorough quantitative study of the influence of film thickness and

the material properties of both fluid and surfactant on the Marangoni flow dynamics.

By contrasting approximate similarity solutions proposed in the literature against the

results from the numerical solution of the full governing equations, results establish

their limits of applicability. During the process a number of limitations of the theoret-

ical predictions are identified, and the necessary corrections are calculated. Moreover,

computations enable the construction of master curves in function of film thickness,
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fluid properties and surfactant properties to accurately determine the transitions be-

tween different Marangoni dynamical regimes.

Finally, Chapter 4 presents concluding remarks and suggestions for future work,

highlighting the need of experimental work to test previously unobserved features

uncovered by the simulations, and to extend the numerical study to characterize the

effect of surfactant solubility on the different Marangoni regimes and their transitions.

1.3 Background

The motivation for this work is twofold: a fundamental fluid mechanics interest

on free-surface flows driven by gradients of surface tension, and its practical implica-

tions for a large number of important natural and technological processes which are

summarized below.

The presence of uneven surface tension at an interface often causes liquid to flow

from regions of low surface tension to regions of high surface tension. This type

of flows, driven by surface tension gradients, are called Marangoni flows, after the

physicist Carlo Marangoni who studied this flow for his dissertation. In general, a

surface tension gradient can be induced by either temperature difference [1] or uneven

chemical compositions at a liquid interface. The focus of this work is on Marangoni

flows generated by gradients in chemical composition. Marangoni flows, especially

Marangoni flows modulated using surface-active species (surfactant) [2] [3] [4], have

been extensively studied for several decades due to how common yet important the

phenomenon is in nature and in medical, environmental and technological applica-

tions.

In nature, the movement of microorganisms, such as the expansion of bacterial

colonies, frequently relies on Marangoni flows [5] [6]. Often, the spreading of bacterial

colonies is not only result of the mobility of individual bacteria. Instead, bacteria

produce surfactant molecules to locally reduce the surface tension of a biofilm and
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thus generate a surface tension gradient. Consequently, a convective Marangoni flow

is induced and colonies expand by convecting with the bulk flow of the biofilm.

The surfactant-induced Marangoni flow is an important phenomenon not only in

nature, but also in many biomedical processes. One of the most important medical

applications of Marangoni flows is in the treatment of respiratory distress syndrome

(RDS), which is a common problem for premature babies [7] [8] [9] [10]. This syndrome

occurs when the lungs cannot produce enough surfactant to keep the airways open,

and therefore a common treatment is inhaling artificial surfactants. The inhaled

surfactant attaches to the surface of the mucus layer in the lung airways, reducing

the local surface tension and consequently generating a convective Marangoni flow.

Understanding the Marangoni dynamics on the mucus layer is extremely important to

the success of the treatment because increasing the amount of surfactant enhances its

effectiveness but, at the same time, increases the risk of further blocking the airways

by inducing interfacial disturbances on the mucus layer (Figure 1.2).

The surfactant-induced Marangoni flows is critical to coating technologies because

surface tension plays a major role in lessening irregularities on the coating layer

[11]. In general, uniform surface tension reduces surface irregularities and produces

a consistent and level coating. However, capillarity can also create coating defects in

the form of a thick coating layer, especially when the underlying substrate is highly

curved [12]. To correct these coating defects and ensure a uniform film, surfactants

are commonly used to induce Marangoni flows to reverse the net mass transfer away

from the defects.

Another important application is related to ink-jet printing [13]. One of the major

issues of ink-jet printing is that particles suspended in the ink often accumulate at the

edge of the printed ink droplet forming a non-uniform impression on the substrate.

The accumulation of the suspended particles is due to a Marangoni convective flow

created by the uneven evaporation of the ink solvent. To solve this issue, solvent

composition is changed to create surface tension gradients between the periphery and
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the interior of the droplet to counterbalances the flow that drives the accumulations

of particles at the edge of the droplet [14].

Marangoni flows are also important for integrated circuit manufacture [15] [16];

where it is used as a method for drying silicon wafers. Silicon wafers are normally dried

by centrifugation (spin drying); however, centrifugation can add contaminants to the

substrate. Surfactant-induced Marangoni flow have been introduced as a cleaner way

of drying [17]. In this method, a surfactant is applied to induce surface tension

gradients on the wet surface and initiate a Marangoni convective flow. As a result of

the Marangoni flow, the wetting film quickly drains into a rinse bath, resulting in a

dry and uncontaminated silicon wafer.

Because of the important fundamental and practical implications of Maranogni

flows, this work develops high-fidelity numberical simulations to enhance the un-

derstanding of the Marangoni flow physics, considering the full interaction between

inertial, viscous and interfacial forces in the dynamics.
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2. MARANGONI FLOW IN VISCOUS FILMS:
IDENTIFYING REGIMES AND TRANSITIONS

In this chapter, high-fidelity simulations are used to gain new insight into the dy-

namics of viscous Marangoni flows induced by surfactant concentration gradients.

Results from the simulations enable accurate characterization of different dynamical

regimes and the transitions between these regimes, as well as uncover previously un-

observed scalings for Marangoni flows in purely-viscous liquid films. In addition to

the fundamental fluid mechanics interest, the new findings have implications for a

range of important natural and biomedical processes in viscous films ranging from

the surfactant driven propulsion of microorganisms to pulmonary drug delivery.

2.1 Introduction

Surfactant-driven Marangoni flows are flows induced by the uneven distribution

of surface-active species (surfactants) at an interface [2] [3] [4]. In this chapter, direct

numerical simulations are used to gain new insight into the dynamics of surfactant-

driven Marangoni flows in highly-viscous liquid films.

Characterizing the different dynamics of Marangoni flows in viscous films is critical

to understand, predict, and ultimately control important natural and technological

processes including coating processes [11] [12], pulmonary drug delivery [7] [8] [9]

[10], and surfactant-driven propulsion of microorganisms [5] [6]. Motivated by both

practical applications and fundamental fluid mechanical interest, Marangoni flows in

viscous liquid films have been studied theoretically and experimentally for several

decades [2] [3] [4] [18].

Previous studies have identified two qualitatively different dynamical regimes

for Marangoni flows in viscous films: a slower thin-film dynamical regime and a
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faster deep-film dynamical regime. In the thin-film regime, the dynamics of viscous

Marangoni flow has been studied since the pioneering works by Levich [3] and Yih [4];

and mathematical analysis and modeling using lubrication approximations [19] [20],

as well as experiments [21] [22] [23] showed that the characteristic length (radius) of

a spreading drop of surfactant on a viscous film scales as t1/4 with time.

Similarly, the dynamics of viscous Marangoni flows has been studied in the limit

of deep films by Foda and Cox [24] and Hoult [25], and mathematical analysis using

boundary-layer approximation [26] showed that the characteristic length of a spread-

ing drop of surfactant scales as t3/8 with time. Although much progress has been made

in the understanding of viscous Marangoni hydrodynamics and associated surfactant

transport over the last several decades, the spreading of surfactant in purely-viscous

flow environments still poses unsolved questions that require predictive modeling un-

der more realistic conditions.

Here, direct numerical simulation is used to advance the understanding of physical

mechanisms behind Marangoni flows in highly-viscous liquid films. By simultaneously

solving the full Navier-Stokes system and the convection-diffusion equation that gov-

erns the transport of surfactant, the rigorous numerical model enabled a detailed

examination of the microscopic physical mechanisms of surfactant transport, and a

comprehensive picture of the macroscopic free-surface flow induced by Marangoni

stress in highly-viscous films.

Section 2.2 describes the model system under study, and presents the equations

governing the fluid mechanics of Marangoni flows. Section 2.3 first validates the simu-

lation results against experimental data and previous theoretical work for Marangoni

flows in thin viscous films, and then extends the study to Marangoni flows in deep

viscous films. By varying the film thickness over about three decades, the compu-

tations determine the accuracy of limiting scaling solutions previously proposed in

the literature, establish their limits of applicability, and calculate necessary correc-

tions for deep films. Moreover, results lead to the discovery of previously unobserved

scaling laws describing the dynamics of Marangoni flows in deep and purely-viscous
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liquid films. Finally, Section 2.4 studies the early-time dynamics of Marangoni flows

in viscous films. Results establish, apparently for the first time, the existence of a

waiting-time regime — an early-time regime in which the interfacial shape becomes

suddenly motionless, and remains quasi-static for some finite time before moving

again, despite the presence of strong surfactant-induced stresses.

2.2 System Description and Governing Equations

2.2.1 The Fluid Mechanics of Marangoni Flows

The free-surface dynamics of surfactant-induced Marangoni flows is studied here

by following the spreading of a drop of insoluble surfactant on the surface of an

incompressible liquid film of density ρ and viscosity µ.

At time t̂ = 0, the undisturbed film thickness is Ĥ0, and the surfactant drop has

an initial radius of R̂0. The initial surface tension in the region covered by surfactant

is σ̂0, which corresponds to a uniform initial concentration of surfactant γ̂0. Since

the system is considered axisymmetric, it is described using a cylindrical coordinate

system (r̂, ẑ) as shown in Figure 2.1. The dimensional velocity components in r̂ and

ẑ directions are v̂ and û respectively. The height of the gas-liquid interface ĥ is a

function of both time t̂ and radial distance r̂.

The system and results are described in dimensionless forms in the thesis. The

system is cast dimensionless using capillary velocity σ̂0/µ as characteristic velocity

scale, and initial film thickness Ĥ0 as characteristic length scale. Accordingly, the

characteristic time scale is τ = Ĥ0µ/σ̂0. The dimensionless concentration of surfactant

γ is measured in units of initial dimensional concentration γ̂0, and the corresponding

dimensionless surface tension σ is measured in units of the initial surface tension σ̂0.

The relationship between the dimensional variables and dimensionless variables are

given as:

h =
ĥ

Ĥ0

, r =
r̂

Ĥ0

, σ =
σ̂

σ̂0
, γ =

γ̂

γ̂0
, (2.1)
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h(r, t)
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Fig. 2.1. Schematic of surfactant spreading on a liquid film.
A drop of surfactant (red) on the surface of a clean liquid film (blue)
generates Marangoni flow and interfacial deformation. The dimen-
sionless radius of the spreading surfactant drop is rs(t), the initial
drop radius is R0, and the local dimensionless height of the film is
h(r, t). The Newtonian liquid has constant density ρ and viscosity µ.
The local dimensionless surface tension is σ(r, t) and corresponds to
a local surfactant concentration γ(r, t).
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t =
σ̂0

Ĥ0µ
t̂, (v, u) =

µ

σ̂0
(v̂, û), p =

Ĥ0

σ̂0
p̂ (2.2)

where a hat (̂ ) specify dimensional variables. The aspect ratio between initial film

thickness and initial drop radius is defined as:

ε = Ĥ0/R̂0 (2.3)

thus, a large aspect ratio ε � 1 describes a film that is deep in relation to the

surfactant drop, whereas ε� 1 describes a comparatively thin liquid film.

The evolution of the velocity field v(v, u) and pressure p in the liquid films is

governed by the axisymmetric dimensionless continuity equation,

∇ · v = 0, (2.4)

and the conservation of momentum,

Re(
∂v
∂t

+ v · ∇v) = ∇ ·T, (2.5)

where T is the viscous stress tensor and is given by

T = −pI+ (∇v+∇vT ). (2.6)

Since the the choice of characteristic length scale and characteristic velocity scale are

Ĥ0 and σ̂0/µ respectively, the Reynolds number in Equation (2.5) is

Re =
ρσ̂0Ĥ0

µ2
, (2.7)

which measures the relative significance of the inertial and viscous forces.

At the liquid film surface, the traction boundary condition is applied [27]

2Hσn+∇sσ = n ·T, (2.8)

where n is the unit vector normal to the interface and 2H is the mean interface

curvature 2H = −∇s· n. The traction boundary condition includes both normal

capillary stresses 2Hσn and tangential (Marangoni) stresses ∇sσ induced by surface

tension gradient due to the presence of surfactant.
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At the liquid film surface z = h, kinematic boundary condition is also imposed

assuring that there is no mass transfer across the gas-liquid interface

n · (v− vs) = 0, (2.9)

where vs(r, t) is the velocity of the free surface.

At the lower solid boundary of the liquid film, z = 0, the no-slip and no-penetration

boundary conditions are applied:

u(r, 0) = 0, v(r, 0) = 0. (2.10)

Since the system is considered axisymmetric, at the centerline, r = 0, the sym-

metric boundary condition is applied:

v(0, z) = 0,
dv

dr
(0, z) = 0. (2.11)

The simulations start with undisturbed liquid film with spatially uniform thickness

and liquid is considered at rest. Thus, at t = 0, the initial conditions are:

u(r, z) = 0, v(r, z) = 0, h(r) = 1. (2.12)

2.2.2 Surfactant Transport and Marangoni Stress

The transport of surfactant on the surface of liquid films is described by the full

convection-diffusion equation [28] [29] [30], and is solved simultaneously with the full

Navier-Stokes system of equations,

(
∂γ

∂t
)s + γ(vs · n)(∇s · n) +∇s · (γvs · t)t− Pe−1∇2

sγ = 0, (2.13)

where t is the unit vector tangent to the interface and ∇s = (I − nn) · ∇ is the

surface gradient operator. The second term of Equation (2.13) describes changes

in surfactant concentration due to changes in local surface area, the third term is

changes in surfactant concentration due to convection and the fourth term is changes
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in surfactant concentration due to diffusion. In the diffusion term, the Peclet number

is given as:

Pe = (Ĥ0

2
/D)/τ, (2.14)

where D is the diffusion coefficient and τ = Ĥ0µ/σ̂0 is the viscous time scale. In the

simulations presented in this thesis, the Peclet number is set to be Pe = 106 since the

time scale for surfactant diffusion Ĥ0

2
/D is typically much larger than the viscous

time scale τ .

The surfactant transportation is strongly coupled with the free-surface hydrody-

namics since both terms in the left side of Equation (2.8) depend on the surfactant

concentration distribution γ(r, t) through surface tension σ(r, t). Here, a linear equa-

tion of state is used to represent the relationship between surfactant concentration γ

and surface tension σ [31] [32] [33]:

σ = 1−Ma(γ − 1), (2.15)

where Ma is the Marangoni number, which characterizes the surfactant strength.

Larger Marangoni numbers create greater surface tension gradients and consequently

higher Marangoni stress. The Marangoni number is given as:

Ma =
dσ̂

dγ̂

γ̂0
σ̂0
. (2.16)

As stated in the previous section, simulations start with an initially uniform liquid

substrate of thickness h = 1. The center of the liquid film is covered by a surfactant

drop with initial dimensionless radius of R0,

γ(r, t = 0) =

 1 : r ≤ R0,

0 : r > R0.
(2.17)

2.2.3 Direct Numerical Simulation

This section presents the numerical methods used to solve the theoretical model in

sections 2.2.1 and 2.2.2. The non-linear system of partial differential equations (Equa-

tions (2.4), (2.5), and (2.13)) describing the free-surface dynamics of Marangoni flows
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induced by surfactant is solved based on a finite element algorithm. The algorithm

used in this Chapter is also applied to the simulations in Chapter 3.

The complexity of the numerical algorithm is considerable since the problem of

surfactant-induced Marangoni flows is highly nonlinear and strongly coupled. The

transport of surfactant is coupled with the bulk liquid flow. Indeed, the surfactant

concentration over the liquid film surface, through the surface tension, determines the

Marangoni stress. The Marangoni stress drives the Marangoni flow, which in turn

determines the surfactant concentration distribution on the liquid interface. Thus

leading to a strongly coupled moving boundary problem.

To solve for velocity field v(r, z, t), pressure field p(r, z, t), surfactant concentra-

tion γ(r, t), and shape of the liquid interface h(r, t); the full Navier-Stokes system

(Equations (2.4) and (2.5)) and full convection-diffusion equation (Equation (2.13))

are solved simultaneously using direct numerical simulation [34] and the algorithm

described in detail in papers by Lu and Corvalan [35], Xue et al. [36] and Lu et al. [37].

This numerical algorithm uses a finite-element method with arbitrary Lagrangian-

Eulerian method of spines [38] to parametrize the deforming liquid film surface and

incorporates with the interfacial surfactant transport following the scheme described

by Campana et al. [39]. The time derivatives are discretized using a second-order

Adam-Bashforth predictor with a trapezoidal rule [40]. The time steps are adaptively

chosen using first-order continuation [41]. As proposed by Kheshgi and Scriven [42],

the first four transient solutions are smoothed using a backward difference method

with constant time step. The set of coupled non-linear equations resulting from the

spatial and temporal discretization is simultaneously solved using Newton’s method

with analytical Jacobian [38].

2.3 Regimes and Transitions in Highly-Viscous Marangoni Flows

The free-surface dynamics of Marangoni flows in a thin liquid film is different from

that of a deep liquid film. Unimpeded by the presence of the solid lower boundary, a
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surfactant drop spreads faster on the surface of a deep film than on the surface of a

thin film.

Remarkably, the surfactant spreading dynamics on a deep liquid film changes

as time progresses. Indeed, the initially faster dynamics on a deep film eventually

transition to the slower dynamics characteristic of a thin liquid film. The reason for

this later-time transition can be understood by considering that, from the point of

view of the flow dynamics, the liquid film behaves as either deep or thin in relation

to the size of the surfactant drop. A liquid film that is initially considered deep in

relation to the small initial size of the surfactant drop becomes dynamically thin as

the size of the spreading surfactant drop increases on the surface of the liquid film.

Here, high-fidelity simulations are used to characterize the faster dynamics of deep

viscous films and identify the transition to the slower thin-film dynamics.

The dynamics of surfactant-induced Marangoni flows is first illustrated for a thin

viscous film where theoretical scalings and experimental data from the literature are

benchmarked against the solutions of the full Navier-Stokes system (Section 2.3.1).

Next, the influence of the film thickness on the dynamics of Marangoni flows is exam-

ined and scaling arguments are developed to predict the characteristic time and length

scales of a surfactant drop spreading on deep and highly-viscous liquid films (Section

2.3.2). By varying the film thickness over about three decades, the computations test

the accuracy of the limiting scaling solutions previously proposed in the literature,

establish their limits of applicability, and calculate necessary corrections for deep-film

dynamics. Moreover, results lead to the discovery of previously unobserved scaling

laws describing the dynamics of highly-viscous Marangoni flows in deep films. Finally,

the crossover time and radius at which the Marangoni dynamics of a deep viscous

film transition to the dynamics of a thin viscous film is fully characterized (Section

2.3.3).
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2.3.1 Dynamics of Highly-Viscous Marangoni Flows in Thin Films

In this section, the free-surface dynamics of viscous Marangoni flows is illustrated

for the case of thin films. Both limiting theoretical predictions by Jensen and Grotberg

[43] and experiments by Dussaud et al. [22] are benchmarked against the solutions of

the full Navier-Stokes system. Results show that for thin viscous films, both theory

and experiments agree well with the solution of the full system of governing equations.

To gain preliminary insight into the physics of Marangoni flows, the dynamics

of a surfactant drop spreading on a thin viscous film is briefly illustrated in Figures

2.2 to 2.4. When a drop of insoluble surfactant (red in Figure 2.2) is placed over

the free surface of a liquid film (grey in Figure 2.2), a Marangoni convective flow

is spontaneously developed. The uneven concentration of surfactant on the surface

of the liquid film (Figure 2.2a) creates a surface tension gradient ∇sσ (Marangoni

stress, Equation (2.8)) that drives the liquid radially outward from the low surface

tension region to the high surface tension region (Figure 2.2b). In a viscous film, the

Marangoni flow is opposed by viscous stress, which creates an upward motion of the

free surface, forming a liquid ridge near the leading edge of surfactant drop. At the

same time, the central region of the film depresses due to mass conservation.

Figure 2.3 illustrates the temporal evolution of both the rising liquid ridge and

the thinning central region. The figure shows the film thickness h at five different

dimensionless times t for Marangoni flow in a purely-viscous liquid film (Re = 0).

The liquid film is very thin compared to the initial size of the surfactant drop, with a

small aspect ratio of ε = 0.05. Clearly, the liquid ridge — which at time t = 0 starts

to form at the leading edge of the surfactant drop R0 = 1/ε = 20 — rises to heights

comparable to the film thickness and travels outwards for very long distances as time

progresses. This behavior is highly relevant to applications involving coating films,

particularly at the microscale [11] [12].

The direct numerical simulations enable a precise examination of the interfacial

shapes — which have been observed in careful experiments using fluorescent visual-
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Fig. 2.3. Temporal evolution of liquid film surface. Shape of the
liquid film surface h at dimensionless times t ≈ 0, 5×101, 5×102, 3×103
and 104 for a moderate (Ma = 1) surfactant drop spreading on a thin
(ε = 0.05) and purely-viscous (Re = 0) liquid film. The liquid ridge
formed by the upward motion of liquid film surface spreads radially
outward as time progresses.
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ization [23]. Moreover, they also enable detailed observation of the Marangoni flow

field, and the surface tension gradients that drives the Marangoni flow — which are

much more challenging to observe experimentally. This is exemplified in Figure 2.4,

which shows the cross-sectional velocity field, the distribution of surfactant concen-

tration γ, and the Marangoni stress ∇sσ for the system shown in Figure 2.3 at time

t = 500. The non-uniform distribution of surfactant concentration (Figure 2.4b)

creates a large Marangoni stress ∇sσ tangential to the interface (Figure 2.4c). The

interfacial Marangoni stress drives the Marangoni flow as illustrated by the velocity

field of Figure 2.4a. At this time step, the largest radial velocities (red in the Fig-

ure 2.4a) occur at approximately r ≈ 40, where opposing viscous stresses create an

upward motion that forms a liquid ridge downstream of the Marangoni stress.

Similarity and theoretical scaling

Here, the limiting theoretical predictions by Jensen and Grotberg [43] and ex-

periments by Dussaud et al. [22] are benchmarked against the solutions of the full

Navier-Stokes system.

According to a scaling theory developed by Jensen and Grotberg [43] using lu-

brication approximation with the extra assumptions of no capillary or gravitational

forces, the shape of the interface h(r, t) in the vicinity of the liquid ridge for a thin

(ε� 1) and viscous (Re� 1) liquid film is expected to follow a similarity solution

h =
( r

(16ε−2Ma)1/4t1/4
)2

(2.18)

at later times.

In Figure 2.5, the temporal evolution of the interfacial shapes of the liquid film

from the solution of the full Navier-Stokes system (black lines) is compared against

the similarity shape of Equation (2.18) (red dashed line) for two orders of magnitude

in time. To emulate the limiting conditions of the lubrication approximation, the

computed shapes correspond to a thin film with small thickness ε = 0.05 in the

Stokes regime Re = 0. Results show that the similarity solution cannot reproduce
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Fig. 2.4. Cross-sectional velocity field, surfactant concentra-
tion distribution, and Marangoni stress for a surfactant drop
spreading on a thin viscous film. Cross-sectional velocity field,
surfactant concentration distribution, and Marangoni stress for the
system shown in Figure 2.3 at time t = 500. (a) Cross-sectional veloc-
ity field and stream path, with red representing high radial velocity.
(b) Dashed line represents initial surfactant concentration distribu-
tion. As time progresses, surfactant concentration approaches zero
asymptotically (solid line). The leading edge of the surfactant drop
rs is marked by the red dot. (c) Non-uniform concentration distribu-
tion creates a large Marangoni stress ∇sσ which drives the convective
flow from low surface tension region to high surface tension region.
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the early time evolution, but the similarity shapes agree well with the simulations at

times larger than approximately t ≈ 5000, when the height of the liquid ridge has

reached approximately h ≈ 1.5.

The convergence of the inner part of the ridge toward the similarity solution is

further illustrated in Figure 2.6. This figure shows the interfacial shapes of a liquid

film as a function of the similarity coordinate ξ = r/(16ε−2Mat)1/4, which combines

both time and spatial coordinates. Results show that after t ≈ 5000, the computed

shapes agree well with the similarity solution in the range −0.5 < ξ < 1.

By considering the balance of viscous and Marangoni stresses, Jensen and Grot-

berg derived a theoretical equation that predicts the location of the spreading surfac-

tant front rs as a function of relative film thickness ε, Marangoni number Ma, and

time t in the lubrication limit [43].

The Marangoni flow is driven by Marangoni stress ∇sσ, which can be approxi-

mated as

∇sσ ≈ dσ/dr (2.19)

because in the lubrication approximation, the curvature of the liquid film is small. The

surface tension σ is related to the local surfactant concentration γ through a linear

equation of state σ = 1 − Ma(γ − 1) (Equation (2.15)); therefore, the Marangoni

stress can be further written as

∇sσ ≈ Madγ/dr (2.20)

where, following the analysis by Jensen [26], defining the total mass of surfactant as

M , the concentration scales as γ ∼M/r2s ∼ πε−2r−2
s , yielding

∇sσ ∼ Maπε−2r−3
s . (2.21)

Over the film surface, the Marangoni stress is balanced by the viscous stress ap-

proximated as dV/dz, where V is the radial velocity scale given by the average velocity

of the surfactant front V ∼ rs/t. Because the liquid film is thin the characteristic
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Fig. 2.5. Temporal evolution of interfacial shapes of a liquid
film. Temporal evolution of interfacial shapes for the system shown
in Figure 2.2. The computed shapes (black lines) are compared with
corresponding similarity shapes (red dashed lines) calculated from
Equation (2.18). After t ≈ 5000 the simulation results agree well
with the similarity shapes.
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Fig. 2.6. Interfacial shapes of a liquid film in similarity co-
ordinates. As time t increases, shapes of the liquid film presented
in Figure 2.5 approach the similarity solution defined in Equation
(2.18) (red dashed line). Here interfacial shapes corresponds to times
t = 750, 2500, 5000, 1× 104 and 2.5× 104.
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length in the axial direction is the film thickness ẑ = Ĥ0, or z = 1 in dimensionless

form. Rearranging the equations, the viscous stress can be estimated by

dV/dz ∼ rs/t. (2.22)

Finally, using the stress balance over the liquid film surface

dσ/dr ∼ dV/dz (2.23)

yeilds the scaling for the radius of the surfactant front

rs ∼ (πε−2Mat)1/4. (2.24)

Jensen and Grotberg [43] combined the balance of viscous and Marangoni stresses

(Equation (2.23)) with an extra assumption that the speed of the leading edge of

the surfactant drop equals the velocity of the film at the leading edge. Through

rigorous mathematical derivation using similarity analysis, they found the prefactor

to Equation (2.24) as

rs = (16Maε−2t)1/4. (2.25)

In Figure 2.7, the solutions of the full Navier-Stokes system are benchmarked

against the theoretical Equation (2.25). This figure illustrates the temporal evolution

of the surfactant front rs for the spreading of a drop of moderate surfactant (Ma = 1)

on the surface of two purely viscous (Re = 0) liquid films with different film thickness

(ε = 0.05 and 0.1). For Marangoni flows in thin and purely viscous liquid films,

the simulations (symbols) show good agreement with the theoretical Equation (2.25)

(black lines).

Figure 2.8 illustrates the temporal evolution of the surfactant front rs for the

spreading of surfactant drops with three different Marangoni numbers Ma = 0.5, 1

and 2 on the surface of a purely-viscous (Re = 0) liquid film. The liquid film is very

thin compared with the initial sizes of the surfactant drops (ε = 0.05). Results from

the simulations (symbols) shows good agreement with the theoretical Equation (2.25)

(black lines).
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According to Equation (2.25), the location of the surfactant front rs follows a

power law of (16ε−2Ma)1/4t1/4. This power law is confirmed in Figure 2.9. The

figure illustrates the evolution of the surfactant front rs as a function of the scaling

coordinate (16ε−2Ma)1/4t1/4 for systems shown in Figures 2.7 and 2.8. Simulation

results (symbols) show good agreement with Equation (2.25) (black line).

The location of surfactant front rs plays a critical role in the analysis of the

dynamics of Marangoni flows. However, due to both convection and diffusion, the

initially sharp concentration front (Figure 2.4b, dashed line) spreads and approaches

zero asymptotically at later times (Figure 2.4b, solid line). Therefore, the way in

which rs is calculated as time progresses requires clarification. Following the method

proposed by Gaver and Grotberg [20], the radius of the spreading drop rs is defined as

the radius that contains exactly 99.5% of the total mass M̂ of the spreading surfactant

(Figure 2.4b, red dot). Specifically, the location rs at each instant t̂ is calculated by

numerical solution of the integral equation

0.995M̂ = 2π

∫ r̂s

0

γ̂(r̂, t̂)r̂dr̂, (2.26)

where γ̂(r̂, t̂) is the instantaneous surfactant concentration over the surface of the

liquid film. Because of mass conservation, the total mass of surfactant M̂ in Equation

(2.26) remains constant and can thus be calculated as its value at time t̂ = 0

M̂ = 2πR̂0
2
γ̂0 (2.27)

where γ̂0 is the initial surfactant concentration and R̂0 is the initial radius of the area

covered by surfactant. Finally, the surfactant front r̂s is made non-dimensional as

rs = r̂s/Ĥ0.

The solution of full Navier-Stokes system is finally compared against experimental

results of surfactant spreading on thin films by Dussaud et al. [22]. Figure 2.10

compares simulation results (black line) with experiments identified as Experiment 3

(red circles) and Experiment 4 (blue squares) in Dussaud et al. [22]. The experiments

were carried out using an aqueous mixture of 60% wt glycerol as liquid substrate.
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Fig. 2.9. Evolution of the surfactant front as a function of scal-
ing coordinates. Locations of the surfactant front rs as a function
of the scaling coordinate (16Maε−2t)1/4 for the simulations in Figures
2.7 and 2.8. Simulation results (symbols) show good agreement with
Equation (2.25) (black line). Film thicknesses are ε = 0.05 (circle)
and 0.1 (square), and Marangoni numbers are Ma = 0.5 (blue), 1
(red) and 2 (green).
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The density and dynamic viscosity of the liquid substrate are ρ = 1.15 g/cm3 and

µ = 0.107 poise respectively. In the experiments, 0.5 µl oleic acid was deposited on

the liquid film of approximately 250µm in thickness. The initial radius of the area

covered by oleic acid was R̂0 ≈ 0.2 cm, and the surface tension in the region covered by

surfactant was around σ̂0 ≈ 40.2 dyn/cm. Converting all the dimensional parameters

to dimensionless forms described in section 2.2 results in Re ≈ 100, Ma ≈ 0.6 and

ε ≈ 0.125. Clearly, the simulation results (black line) in Figure 2.10 agree very well

with both the experimental data (symbols) and the theoretical scaling t1/4 of Equation

(2.25).

Together, the comparisons between simulation results, experiments, and theoret-

ical works strengthen the confidence in the findings in this work.

2.3.2 Dynamics of Highly-Viscous Marangoni Flows in Deep Films

This section extends the study of Marangoni flows to deep viscous films. Results

from the simulations enable accurate characterization of physical mechanisms govern-

ing the distinct early-time and late-time dynamics of Marangoni flows in deep viscous

films. By varying the film thicknesses over about three decades, the computations

test the accuracy of the limiting scaling solutions previously proposed in the liter-

ature, establish their limits of applicability, and calculate necessary corrections for

deep films. Moreover, results lead to the discovery of previously unobserved scaling

laws describing the dynamics of purely-viscous Marangoni flows in deep films.

Late-time dynamics in deep viscous films

Here, simulations of surfactant spreading on deep liquid films (ε � 1) are used

to establish the appropriate late-time dynamics in the Stokes regime (Re = 0). The

computations calculate necessary corrections to the scaling laws previously proposed

in the literature.
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Fig. 2.10. Comparison between experimental data and simu-
lation results. Location of surfactant front rs as a function of time
t for Re = 100, Ma = 0.6 and ε = 0.125. Simulation results (black
solid line) show good agreement with experimental data identified as
Experiment 3 (red circles) and Experimentv4 (blue squares) in Dus-
saud et al. [22]. Both simulations and experiments show the scaling
rs ∼ t1/4 in the thin film limit.
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To gain preliminary insight into the dynamics of surfactant-induced Marangoni

flows in deep films, Figure 2.11 illustrates the spreading of a drop of moderate sur-

factant (Ma = 1) on the surface of four increasingly deeper films (ε = 0.1, 1, 10 and

100) in the Stokes limit (Re = 0). For the thin film (Figure 2.11a), the simulations

(symbols) confirm that the surfactant front follows a power law t1/4 with time (black

line) as discussed in Section 2.3.1. The dynamics in the deeper liquid films, however,

is different from the dynamics in the thinner films. At early times, the surfactant

drop spreads faster on the surface of the deep films (Figures 2.11c and 2.11d) than

on the surface of the thinner films (Figures 2.11a and 2.11b).

In addition, results in Figures 2.11c and 2.11d show that the spreading dynamics

on the deeper films (ε� 1) change as time progresses. The faster early-time dynamics

eventually transitions to the slower dynamics, although the physical thickness of the

film does not change. For example, consider the spreading surfactant drop in Figure

2.11c, which corresponds to a moderately deep film with a ratio of film thickness

to initial surfactant drop radius ε = 10. The surfactant front (symbols) follows the

faster early-time dynamics for about three decades in time (10−1 < t < 102). But after

a crossover at t ≈ 102 (red dot), the deep film dynamics transitions to a dynamics

similar to that of a thin film (t1/4, black line). The reason for this later-time transition

can be understood by considering that the instantaneous ratio of film thickness to

drop radius becomes progressively smaller as the size of the spreading surfactant drop

increases on the surface of the liquid film.

Although both follow a power law t1/4 with time, simulation results reveal a dis-

crepancy between the late-time dynamics of deep viscous films and the dynamics of

thin viscous films. This discrepancy will play a critical role in the characterization

of the crossover between the early and late dynamics of deep viscous films as will be

discussed in Section 2.3.3 (see red dots in Figures 2.11c and 2.11d). Here, this dis-

crepancy is quantified by introducing a correction factor C0. Based on the lubrication
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approximation, Equation (2.25) predicts that on a thin viscous film, the surfactant

front follows a power-law that can be extended by including the correction factor as

rs = C0(16Maε−2t)1/4. (2.28)

For thin viscous films, the correction factor C0 was confirmed from results in Section

2.3.1 to be C0 ≈ 1 (Figure 2.9). For deep viscous films, however, the simulations show

that C0 6= 1. The correction factor C0 for deep viscous film is thus characterized by

fitting a scaling line through the simulation results as shown in Figure 2.11 (black

line). The characterized values of correction factor C0 are summarized in Figure 2.12

for a wide range of film thicknesses (0.05 < ε < 100). Figure 2.12 clearly identifies two

regions based on film thickness ε. For deep films, the correction factor is estimated

to be approximately C0 ≈ 0.64 by taking the average of the values of C0 in the region

ε ≥ 1.

The calculated value of correction factor C0 for deep films is further verified in

Figure 2.13. Here, the temporal evolution of the surfactant front rs for Marangoni

flows in purely viscous (Re = 0) liquid films with different film thicknesses ε = 1

(red squares), 10 (green squares) and 20 (blue squares) is shown. The Marangoni

number for these simulations are Ma = 1 (hollowed symbols) and Ma = 2 (filled

symbols). The simulation results (symbols) collapse onto a single master line under

the scaling coordinate (16ε−2Ma)1/4t1/4, which confirms the power law suggested by

Equation (2.28). Equation (2.28) with the correction factor C0 = 0.64 (black line)

fits throughout the collapsed region of the simulation results (symbols), confirming

the accuracy of the characterized value of C0.

Early-time dynamics in deep viscous films

Here, simulations of Marangoni flows in deep liquid films (ε � 1) are used to

establish the appropriate early-time dynamics for the Stokes regime (Re = 0). Sim-

ulations are also contrasted against the scaling laws derived by Jensen [26] for the

surfactant-induced Marangoni flows in deep viscous films. Results demonstrate — for
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Fig. 2.12. Correction factor C0 as a function of film thickness.
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Fig. 2.13. Evolution of the surfactant front as a function of
scaling coordinate. Location of the surfactant front rs as a function
of scaling coordinate (16ε−2Ma)1/4t1/4 for Marangoni flows in purely-
viscous (Re = 0) liquid films of thicknesses ε = 1 (red squares), ε = 10
(green squares) and ε = 20 (blue squares). Marangoni numbers for
the simulations are Ma = 1 (hollowed symbols) and Ma = 2 (filled
symbols). Equation (2.28) with the correction factor C0 = 0.64 (black
line) fits well the simulation results (symbols).
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the first time — that in the Stokes limit Re → 0, the surfactant spreads faster than

expected and the difference in the expected velocity increases as the film thickness ε

increases (by a factor ε1/4).

According to the scaling analysis developed by Jensen using a boundary-layer

approach [26], the surfactant front rs for a drop of surfactant spreading on the free

surface of a deep viscous film follows the scaling

rs ∼ (
π2Ma2

ε4Re
)1/8t3/8, (2.29)

in the dimensionless terms of Section 2.2. The objective is to establish the appropriate

dynamics for the Stokes limit Re → 0. To this end, Figure 2.14 shows the temporal

evolution of the surfactant front rs for Marangoni flows in three different (deep) films

with relative thickness ε = 10, 20, and 100 in the Stokes limit (Re = 0). Results from

the direct numerical simulation for a moderate surfactant with Ma = 1 (symbols)

confirm that the early-time dynamics follows a power law t3/8 with time (black lines)

as predicted by Equation (2.29). Therefore, the location of surfactant front rs can be

written as

rs = K∗t3/8, (2.30)

whereK∗ is the prefactor that depends on the film thickness ε and Marangoni number

Ma.

Figure 2.15 shows the values of the prefactor K∗ as a function of the film thick-

ness ε calculated by fitting Equation (2.30) to the simulation results, as illustrated

by the black lines in Figure 2.14. Results in Figure 2.15 demonstrate that the calcu-

lated prefactors (symbols) follow a power law ε−3/4 with film thickness (black line).

Consequently, the location of the surfactant front scales as

rs ∼ ε−3/4t3/8. (2.31)

This scaling is further confirmed in Figure 2.16. The figure shows the surfactant

front radius rs as a function of the scaling coordinate ε−3/4t3/8 for the systems shown

in Figure 2.14. Simulation results collapse (symbols) onto one master line under the

scaling coordinate, confirming rs ∼ ε−3/4 suggested by Equation (2.31).
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Fig. 2.15. Coefficient K∗ as a function of film thickness. The co-
efficient K∗ (symbols) follows a scaling K∗ ∼ ε−3/4 with film thickness
(dashed line).
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Fig. 2.16. Evolution of the surfactant front as a function of
scaling coordinates. Location of the surfactant front rs as a func-
tion of the scaling coordinate ε−3/4t3/8 for the systems shown in Figure
2.14. Here, film thicknesses for the simulations are ε = 10 (red), 20
(blue) and 100 (green). Simulation results (symbols) confirm the scal-
ing of Equation (2.31) (black line).



42

Having established the influence of film thickness on the dynamics, the influence

of surfactant properties can now be similarly studied. To establish the influence of

Marangoni number on the Stokes dynamics, Figure 2.17 shows the temporal evolution

of surfactant front rs for the spreading of different surfactant drops with three different

Marangoni numbers Ma = 0.5, 1 and 2 on a purely-viscous liquid film (Re = 0).

Results from the simulations for a moderately deep film with ε = 10 (symbols) confirm

the location of surfactant front rs follows a power law of t3/8 and also show the

prefactor K∗ in Equation (2.30) is a function of Marangoni number.

Figure 2.18 shows the values of the prefactor K∗ as a function of the Marangoni

number Ma calculated by fitting Equation (2.30) to the simulation results, as il-

lustrated by the black lines in Figure 2.17. In Figure 2.18, results from the fitting

demonstrate that the calculated prefactor K∗ (symbols) follows a power law Ma1/4

relationship with Marangoni number (black line). Therefore, the location of the sur-

factant front scales as

rs ∼ Ma1/4t3/8. (2.32)

The scaling in Equation (2.32) is further tested in Figure 2.19. This figure shows

the location of surfactant front rs as a function of the scaling coordinate Ma1/4t3/8 for

the systems shown in Figure 2.17. Simulation results collapse onto one master line

under the scaling coordinate confirming rs ∼ Ma1/4 suggested by Equation (2.32).

Having established the individual influence of both film thickness (Figure 2.14) and

Marangoni number (Figure 2.17), their combined effect on the dynamics of Marangoni

flows can now be summarized by combining the results in Equations (2.31) and (2.32)

as:

rs = KMa1/4ε−3/4t3/8 (2.33)

The dynamics can be further characterized by quantifying the prefactor K in the

power-law relationship of Equation (2.33).

To quantify K, Figure 2.20 shows the evolution of the surfactant front rs for

systems shown in Figures 2.14 (influence of ε) and 2.17 (influence of Ma) as a function

of the combined scaling coordinate Ma1/4ε−3/4t3/8. The results from Figure 2.20 are
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Fig. 2.18. Coefficient K∗ as a function of Marangoni num-
ber. The coefficient K∗ (symbols) follows a scaling K∗ ∼ Ma1/4 with
Marangoni number (dashed line).
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Fig. 2.19. Evolution of the surfactant front as a function of
scaling coordinates. Location of the surfactant fronts rs as a func-
tion of scaling coordinate Ma1/4t3/8 for the systems of Figure 2.17.
Here, Marangoni numbers are Ma = 0.5 (red), 1 (blue) and 2 (green).
Simulation results (symbols) confirm the scaling of Equation (2.32)
(black line).
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twofold. First, it further confirms the scalings in Equation (2.33) because the results

collapse onto one master curve. Second, the prefactor can be quantified as K ≈ 1.4 by

fitting Equation (2.33) onto the collapsed results. Consequently, the full Marangoni

dynamics can be finally established as

rs = 1.4Ma1/4ε−3/4t3/8, (2.34)

In conclusion, simulations of Marangoni flows in deep liquid films were used to

establish the appropriate early-time dynamics for the Stokes regime. The dynamics

— summarized by Equation (2.34) — demonstrates that in the Stokes limit Re→ 0,

the surfactant spreads faster than expected from the boundary layer approximation

for deep viscous films of Equation (2.29), and the difference with the expected velocity

increases as the film thickness ε increases by a factor ε1/4.

2.3.3 Dynamical Transitions in Highly-Viscous Films

Here, the dynamics of surfactant-induced Marangoni flows in deep films character-

ized in the previous sections are used to identify the crossover where the Marangoni

flow will transition from the faster early-time dynamics, in which the surfactant drop

radius rs spreads as rs ∼ t3/8, to the slower late-time dynamic, in which the surfactant

spreads as rs ∼ t1/4.

Results in Section 2.3.2 show that the early-time dynamics of Marangoni flows in

deep films follows a power-law (Equation (2.34))

rs = 1.4Ma1/4ε−3/4t3/8, (2.35)

in the Stokes regime. On the other hand, results in Section 2.3.2 show that, at later

times the dynamics transition to Equation (2.28)

rs = C0(16Maε−2t)1/4 (2.36)

with a departure from unity in the correction factor, which was characterized as

C0 ≈ 0.64.
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Fig. 2.20. Evolution of the surfactant front as a function of
scaling coordinate. Evolution of surfactant fronts rs as a function
of the scaling coordinateMa1/4ε−3/4t3/8 for the systems of Figures 2.14
and 2.17. Simulation results confirm the scaling of Equation (2.33)
with a prefactor K ≈ 1.4. Film thicknesses are ε = 10 (red), 20
(blue) and 100 (green), and Marangoni numbers Ma = 0.5 (triangle),
1 (square) and 2 (diamond).
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Consequently, the crossover time t∗ and corresponding crossover radius r∗ where

the Marangoni flow will transition from the early-time dynamics to the late-time

dynamics can be readily identified as

t∗ = 0.47ε2, r∗ = 1.05Ma1/4, (2.37)

by equating Equations (2.35) and (2.36). Interestingly, for a given film, the size of

the surfactant drop at the crossover radius r∗ is independent of the initial drop size

R0 = 1/ε; although the crossover occurs earlier if the initial drop size is larger.

In conclusion, the results in Section 2.3 are summarized and further verified in

the phase diagram of Figure 2.21:

For deep films, the viscous Marangoni flow initially proceeds in the faster dynamics

t3/8 until the radius of the spreading surfactant drop becomes larger than approxi-

mately rs ≈ Ma1/4. This crossover between the faster dynamics t3/8 of Equation

(2.34) (blue region) and the slower dynamics t1/4 of Equation (2.28) with C0 = 0.64

(yellow region) is illustrated by the black diagonal line, which represents Equation

(2.37) in the phase diagram. The measured transition radius (see Figure 2.11, red

dashed line) (symbols) show good agreement with Equation (2.37).

For thin films, the Marangoni flow always proceeds in the slower dynamics t1/4. In-

deed, if the predicted crossover radius r∗ = 1.05Ma1/4 is smaller than the initial drop

radius R0 = 1/ε, the initial faster dynamics t3/8 no longer exists, and the Marangoni

flow proceeds in the slower dynamics t1/4 from the beginning. The crossover to the

thin-film dynamics of Equation (2.28) with C0 = 1 (red region) is illustrated by the

vertical dashed line εMa1/4 = 1, which represents the boundary r∗ ≈ R0 in the phase

diagram.

This section presented a numerical analysis on the Marangoni flow dynamics in

the Stokes limit. After comparing the solutions of full Navier-Stokes system with

limiting theoretical predictions and experimental data in thin films, computations

were used to study the Marangoni flow dynamics in deep films. Simulations tested

the accuracy of limiting scaling solutions previously proposed in the literature, and
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Fig. 2.21. Phase diagram. For deep films (ε > 1), the Marangoni
flow initially proceeds in the t3/8 dynamics (blue region) and eventu-
ally transition to the slower t1/4 dynamics (yellow region). For thin
films (ε < 1) the flow proceeds in the t1/4 dynamics since the begin-
ning (red region). The calculated crossover radii (symbols) show good
agreement with the theoretical Equation (2.37) (black diagonal line).
Reynolds numbers is Re = 0, and Marangoni numbers are Ma = 0.5
(green), 1 (blue) and 2 (orange).
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calculated necessary correction factors. Simulation results eventually lead to scaling

laws describing the dynamics of purely-viscous Marangoni flows in deep films, and to

equations characterizing the crossover from deep-film dynamics to thin-film dynamics

in the Stokes limit.

2.4 Stationary Liquid Ridge

When a drop of surfactant is placed over the free surface of a liquid film, a

Marangoni convective flow is spontaneously developed. The Marangoni flow not only

drives the horizontal spreading of the surfactant but also drives a vertical upward

motion of the free surface. The upward motion of the free-surface forms a liquid

ridge, which is initially formed at the leading edge of the surfactant drop.

Understanding the evolution of the liquid ridge on the free surface is relevant

to the prediction and control of interfacial defects, and therefore critical to indus-

trial processes such as coating, drying, and painting; particularly at the microscale.

Here, the simulation results of the full Navier-Stokes system of equations are used to

characterize the motion of the liquid ridge at early times.

Results demonstrate — apparently for the first time — that the liquid ridge ex-

hibits a “waiting-time" behavior: The ridge, which initially travels in the outward

radial direction at a velocity much larger than the velocity of the surfactant front,

essentially stops moving after a finite time. The ridge then remains quasi-static (the

waiting-time period), forming a stationary circular ring with near constant size.

In this section, the establishment of the stationary ridge is first illustrated on a

viscous film and simple scaling arguments are developed to predict the characteristic

time and length scales of the stationary ridge (Section 2.4.1). Then, the influence of

the film thickness and viscosity (Reynolds number) is examined, and the predicted

lengths and time scales of the stationary ridge are compared to the solution of the

full Navier-Stokes system (Section 2.4.2).
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2.4.1 Development of a Stationary Liquid Ridge

Here, numerical experiments were developed to characterize the "waiting-time"

behavior. The focus is on estimating the time scale T to establish the stationary

ridge as well as the length scale R of the quasi-static ring.

To this end, Figure 2.22 illustrates both the spreading of a moderate surfactant

(Ma = 1, red disk) and the evolution of the liquid ridge (black dashed line) on a highly

viscous film. The location of the liquid ridge rm, is measured at the highest point of

the ridge. The relative thickness of the film is ε = 1, and the Reynolds number is

Re = 10−2. As shown in Figure 2.22a, the liquid ridge (dashed line) initially develops

at the edge of the surfactant droplet (red disk). The ridge then propagates radially

outwards from time t ≈ 0 to t ≈ 10−2 while the surfactant drop remains stationary

at rs = 1 (Figures 2.22a to 2.22c). Unexpectedly, the liquid ridge essentially stops

propagating in the radial direction after a finite time t ≈ 10−2 (Figures 2.22c) and

forms a stationary circular ring with near constant size rm ≈ 2.3 while the surfactant

drop still remains stationary at rs ≈ 1 (Figures 2.22c to 2.22f). The figure also

makes clear that the stationary ridge develops rapidly. Compared to the surfactant

dynamics, the time to develop the stationary ridge is much shorter than the surfactant

spreading timescale. Similar results have been observed experimentally by Kim et

al. [44] for the spreading of soluble drops, although the flow physics is different.

Time scale to establish the stationary ridge

The Marangoni convective flow at the surfactant leading edge (r = rs) originates

a boundary layer that grows in the downward vertical direction. The thickness of this

boundary layer can be estimated from a balance of radial momentum as δ̂ ≈ (µt̂/ρ)1/2

[45] or, in dimensionless terms, as

δ ≈ (t/Re)1/2. (2.38)
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To estimate the time scale T to establish the stationary liquid ridge, it is assumed

that when the boundary layer δ reaches the lower solid boundary of the liquid layer,

the ridge velocity reduces significantly, and the liquid ridge essentially stops prop-

agating on the liquid surface. From Equation (2.38) and the assumption that the

liquid ridge stops propagating when the dimensionless boundary layer reaches lower

boundary δ̂ ≈ Ĥ0 (or δ ≈ 1 in dimensionless terms), results that the required time

scale T to establish the stationary ridge is approximately

T ≈ Re, (2.39)

which agrees well with the results in Figure 2.23 (red circles).

Figure 2.23 shows the early-time evolution of both the radius of the liquid ridge

rm (red circles) and the location of the surfactant front rs (red squares) for the system

shown in Figure 2.22. This figure shows that the liquid ridge initially develops at the

leading edge of the surfactant drop (t < 10−4) but then the ridge propagates at a

significantly larger speed than the surfactant front (10−4 < t < 10−2). The liquid

ridge stops propagating radially outwards after time t ≈ 10−2, which shows good

agreement with the estimation from Equation (2.39) since the Reynolds number of

the liquid film is Re = 10−2.

For times t ≥ 10−2 (Figure 2.23), the ridge forms a stationary ring with a near

constant size rm ≈ 2.34, or approximately twice the radius of the original surfactant

drop. The “waiting-time” behavior of the ridge extends up to a time t ≈ 1. For times

t ≥ 1, the radius of the liquid ridge increases at the same rate t1/4 as the radius of

the surfactant front.

Length scale of the stationary ridge

Taking x = 0 to be the location of the surfactant front at t = 0, the liquid ridge

propagates a growing distance x(t) = rm(t) − R0 with time, where R0 is the initial

radius of the surfactant drop. In this translated radial coordinate, a stationary ridge
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Fig. 2.23. Temporal evolution of the locations of the liquid
ridge and surfactant front. Locations of the liquid ridge rm (circle)
and surfactant front rs (squares) as a function of time t for the system
of Figure 2.22. The liquid ridge forms a stationary ring at rm ≈ 2.34
after t ≈ 10−2 in good agreement with Equation (2.39). The radius
of the liquid ridge rm (black line) and the surfactant front rs (black
dashed line) for Re = 0 are shown for comparison.
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of characteristic size R is established at a radial distance x(T ) = R − R0 from the

surfactant front.

Figure 2.24 shows the temporal evolution of the distance x = rm−R0 between the

liquid ridge and the location of the surfactant front. Results show that the distance x

(red circle) follows a power-law behavior with time x ∼ t1/2 (dashed line). Using this

result and Equation (2.39) results in x(t)/x(T ) ∼ (t/Re)1/2, so that the liquid ridge

propagates proportionally to the growth of the boundary layer. The resulting velocity

is thus um ∼ (Ret)−1/2. Taking the characteristic velocity scale as U ≡ um(T ), results

U ∼ 1

Re
. (2.40)

The time and velocity scales are corroborated by the size of the stationary ridge

observed from the simulations. Indeed, from Equations (2.39) and (2.40) the length

scale of distance x(T ) = R−R0 results

x(T ) ≈ UT = O(1), (2.41)

which agrees well with the results in Figure 2.23.

2.4.2 Influence of Film Viscosity, Thickness and Surfactant Strength on

the Stationary Ridge

The time scale T and length scale x(T ) to establish the stationary ridge has been

discussed in the previous section. However, how liquid viscosity, film thickness, and

surfactant strength affect the findings remains unclear.

Influence of the Reynolds number

Figure 2.25 illustrates the influence of the Reynolds number on the early-time

evolution of both the location of the liquid ridge rm (solid lines) and the location

of the surfactant front rs (dashed line) for the conditions of Figure 2.22. The figure

shows as Re increases, the stationary ridge is formed at a later time. For example,



56

t

x

10
­6

10
­4

10
­2

10
0

10
­2

10
­1

10
0

slope: 1/2

Fig. 2.24. Temporal evolution of the distance x(t). Evolution of
the distance x(t) ≡ rm(t)− R0 as a function of time t for the system
shown in Figure 2.22. The distance x(t) from the original drop size
to the instantaneous liquid ridge grows as t1/2 (dashed line).
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the liquid ridge with Reynolds number Re = 10−3 (blue line) stops propagating and

becomes motionless at approximately t ≈ 10−3 while the liquid ridge with Reynolds

number Re = 10−2 (green line) reaches the constant radius R at a later time, around

t ≈ 10−2, which confirms Equation (2.39). It is also shown in the figure that the

constant radius R does not change with Reynolds number, which agrees well with

Equation (2.41). The surfactant fronts rs on the other hand are not affected by the

viscosity of the liquid film as shown in Figure 2.25.

Influence of the film thickness

Apart from the liquid viscosity, film thickness also plays an important role in the

formation of the stationary liquid ridge. In this section, simulation results with a

wide range of aspect ratios 0.05 ≤ ε ≤ 10 are analyzed and discussed in order to

understand how film thickness affects the stationary ridge.

The simulation results are summarized in Figures 2.25 to 2.27. Figure 2.26 illus-

trates the early-time evolution of the locations of the liquid ridge rm (solid lines) and

surfactant front rs (dashed lines) for Marangoni flows in a viscous liquid film with film

thicknesses of ε = 0.05. In this figure, the stationary ridge is approached at around

T ≈ Re. Using the simulation results with Reynolds number of Re = 10−3 (blue line)

as an example, the stationary ridge R ≈ 21 is reached at around T ≈ 10−3, which

shows good agreement with Equation (2.39). Figure 2.27 illustrates the early-time

evolution of the liquid ridge rm (solid lines) and surfactant front rs (dashed lines)

for Marangoni flows in a viscous liquid film with film thicknesses of ε = 10. Results

in this figure also shows the the stationary ridge is approached at around T ≈ Re,

further confirming Equation (2.39).

Comparing the simulation results for Marangoni flows in a thin film with ε = 0.05

(Figure 2.26), a film with intermediate thickness ε = 1 (Figure 2.25), and a deep film

with ε = 10 (Figure 2.27) shows a slight increase in the length scale x(T ) as the film

thickness increases. As shown in Figure 2.26, for Marangoni flows in a thin liquid
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Fig. 2.25. Influence of Reynolds number on the evolution of
the liquid ridge rm in a liquid film of thickness ε = 1. The
radius of the stationary ridge is R = R0 + O(1), and the time scale
to establish the stationary ridge is T ≈ Re. The Reynolds numbers
are Re = 0 (black line), 10−3 (blue line), 10−2 (green line), 10−1 (red
line) and 1 (orange line), and the Marangoni number is Ma = 1. The
surfactant front rs for Re = 0 (black dashed line) is also shown for
reference.
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film with thickness of ε = 0.05, the length scale distance is x(T ) ≈ 1.0. The length

scale increases to x(T ) ≈ 1.8 when the liquid film thickness is ε = 10 as shown in

Figure 2.27. However, the characteristic length scale x(T ) only increases slightly for

an increase of over two orders of magnitude in film thickness, and still results in a

value that is O(1), showing good agreement with Equation (2.41).

Influence of surfactant strength

Here, simulations for a wide range of Marangoni numbers (0.1 ≤ Ma ≤ 10) were

performed to understand the influence of Maranogni number on the characteristic

time and length scales of the stationary ridge.

Figure 2.28 illustrates the evolution of the liquid ridge rm (solid lines) and sur-

factant front rs (dashed lines) for three different Marangoni numbers in a liquid film

of thickness ε = 1, and Reynolds number Re = 10−2. As shown in Figure 2.28, the

early-time (t < 10−2) evolution of the liquid ridge rm is similar for the three cases.

The liquid ridge for Ma = 10 (green), Ma = 1 (blue) and Ma = 0.1 (red) reaches a

radius R ≈ 2.34 at similar time T ≈ 10−2 = Re, as estimated by Equations (2.39)

and (2.41).

Although the surfactant strength has little influence on the formation of the sta-

tionary ridge, it significantly affects the duration of the stationary ridge (waiting

time). As shown in Figure 2.28, the ridge immediately starts to propagate again at

t ≈ 10−2 for the simulation with Ma = 10 (green) but lasts until t ≈ 1 for the liquid

ridge with Ma = 10, a significantly longer time. Incidentally, the figure also shows

that the surfactant strength has also a significant influence on the surfactant front rs:

whereas the surfactant starts spreading at t ≈ 10−2 for the surfactant with Ma = 10,

it remains almost stationary until t ≈ 1 for the surfactant with Ma = 0.1.

This section focused on establishing the existance of a waiting-waiting regime —

an early-time regime in which the interfacial shape becomes suddenly motionless,

and remains quasi-static for some finite time. By varying Reynolds number over four



60

t

r

10
­6

10
­4

10
­2

10
0

20

21

22

Fig. 2.26. Influence of Reynolds number on the evolution of
the liquid ridge rm in a liquid film of thickness ε = 0.05. The
radius of the stationary ridge is R = R0 + O(1), and the time scale
to establish the stationary ridge is T ≈ Re. The Reynolds numbers
are Re = 0 (black line), 10−3 (blue line), 10−2 (green line), 10−1 (red
line) and 1 (orange line), and the Marangoni number is Ma = 1. The
surfactant front rs for Re = 0 (black dashed line) is also shown for
reference.
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Fig. 2.27. Influence of Reynolds number on the evolution of
the liquid ridge rm in a liquid film of thickness ε = 10. The
radius of the stationary ridge is R = R0 + O(1), and the time scale
to establish the stationary ridge is T ≈ Re. The Reynolds numbers
are Re = 0 (black line), 10−3 (blue line), 10−2 (green line), 10−1 (red
line) and 1 (orange line), and the Marangoni number is Ma = 1. The
surfactant front rs for Re = 0 (black dashed line) is also shown for
reference.
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Fig. 2.28. Influence of Marangoni number on the evolution
of the liquid ridge . Temporal evolution of the location of the
liquid ridge rm (solid lines) and surfactant front rs (dashed lines) in
a viscous film (Re = 10−2) of thickness ε = 1. The length scale
x(T ) and the time scale T are essentially independent of Ma. The
Marangoni numbers for the simulations are Ma = 0.1 (red line), 1
(blue line), and 10 (green line).
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decades, simulation results enabled the characterizations the length and time scales

of the static liquid ridge.

2.5 Conclusion

In this chapter, a direct numerical simulation scheme was developed and used

to gain new insight into the dynamics of viscous Marangoni flows. Results from the

simulations enabled accurate characterization of different dynamical regimes and their

transitions, and uncovered previously unobserved features for Marangoni flows driven

by surfactant gradients in highly-viscous fluids.

Simulation results were first validated against both experiments and previous the-

oretical works in thin films, and then used to analyze the Marangoni dynamics in

deep viscous films. By studying a wide range of film thicknesses, the computations

tested the accuracy of limiting scaling solutions previously proposed in the literature,

and established their limits of applicability. Moreover, necessary correction factors

were identified and calculated by contrasting the approximate theoretical solutions

against the solutions of the full Navier-Stokes system.

In addition, results lead to the discovery of previously unobserved scaling laws

describing the dynamics of purely-viscous Marangoni flows in deep films. Results

demonstrate — apparently for the first time — that approaching the Stokes limit

Re → 0, the surfactant spreads faster than previously expected, and the difference

with the expected velocity was calculated as a power-law of the film thickness.

Finally, simulations were used to gain new insight into the early-time Marangoni

dynamics. Results established, apparently for the first time, the existence of a waiting-

time regime — a regime in which the interfacial shape becomes suddenly motionless,

and remains quasi-static for some finite time despite the presence of strong surface

tension gradients.

In addition to the fundamental fluid mechanics interest, the new findings may

have important implications for natural and biomedical processes developing in highly
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viscous environments, including viscous coating, surfactant driven propulsion of mi-

croorganisms on biofilms, and the spreading of surface active pulmonary drugs on the

lung lining fluid.
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3. MARANGONI FLOW IN INERTIAL FILMS:
IDENTIFYING REGIMES AND TRANSITIONS

In this chapter, high-fidelity simulations are used to gain new insight into the dynam-

ics of Marangoni flows induced by surfactant concentration gradients. The chapter

extends the results of Chapter 2 to arbitrary liquid viscosities. Results enable a thor-

ough quantitative study of the influence of film thickness and material properties on

the Marangoni dynamics. The computations test the accuracy of limiting scaling

solutions previously proposed in the literature, establish their limits of applicability,

and calculate necessary corrections. Moreover, computations enable the construction

of master curves in function of measurable physical properties to characterize the

transitions between different dynamical regimes. In addition to the fundamental fluid

mechanics interest, the new findings have implications for a range of natural and

technological processes, ranging from oil pollution remediation to the production of

finely tuned emulsions in microfluidic devices.

3.1 Introduction

The dynamics of Marangoni flows generated by gradients of chemical concentra-

tion plays a central role in many technological and biomedical processes, ranging from

silicon wafer drying during the production of microchips [15] [16] [17] to the spread-

ing of drugs and natural surfactants in the eye and lung [7] [8] [9] [10]. Moreover,

Marangoni transport of surface active agents provide opportunities for controlling

surfactant coverage — and therefore interfacial properties — of films, bubbles, and

droplets with a wide range of applications from film coating [11] [12] to the production

of carefully tuned foams and emulsions in microfluidic devices [46] [47].
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Previous theoretical works have shown that Marangoni flows driven by surfactant

concentration gradients in a liquid film may exhibit two dynamical regimes: an in-

ertial regime that either dominates at early times or does not occur, and a viscous

regime that dominates at later times. In general, these regimes have been studied

using limiting flow approximations in which either viscous or inertial forces dominate

the dynamics. The viscous regime has been largely studied using lubrication approx-

imation [19] [20] [43], while the inertial regime has been studied using boundary layer

approximations [26], or high Reynolds number asymptotic approximations [48].

Here, direct numerical simulations are used to gain detailed insight into the dy-

namics of Marangoni flows in liquid films with arbitrary liquid viscosities. The direct

numerical simulations solve the full Navier-Stokes and convection-diffusion system

of governing equations, allowing the examination of the competition between all the

different forces involved. By following surfactant-induced Marangoni flows for more

than five decades in time, and about six decades in Reynolds number, results from the

simulations enable a thorough quantitative study of the influence of film thickness,

and liquid and surfactant properties on the Marangoni flow dynamics.

First, section 3.3 analyzes the free-surface dynamics of Marangoni flows in thin

inertial films. By contrasting the limiting theoretical predictions proposed in the

literature against the solutions of full Navier-Stokes system, results establish their

limits of applicability. By varying Reynolds number over six decades, simulations

enables the calculation of the necessary correction factors. Then, section 3.4 extends

the study to Marangoni flows in deep and inertial liquid films. Results lead to the

construction of master curves that accurately characterize the transitions between

different dynamical regimes.

3.2 System Description

This section summarizes the problem description and governing equations, which

were described in more detail in Chapter 2 (section 2.2).
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The free-surface dynamics of surfactant-induced Marangoni flows is studied here

by following the spreading of a drop of insoluble surfactant on the surface of an

incompressible liquid film of density ρ and viscosity µ.

At time t̂ = 0, simulations start with an undisturbed, spatially-uniform liquid film

of thickness Ĥ0 with the center region covered by a surfactant drop. The surfactant

drop has a inital radius of R̂0. The initial surface tension in the region covered by

surfactant is σ̂0, which corresponds to a uniform initial concentration of surfactant

γ̂0. The system is considered axisymmetric and thus is described using a cylindrical

coordinate system (r̂, ẑ) as shown in Figure 3.1. The velocity components in r and

z directions are v̂ and û respectively. The height of the gas-liquid interface ĥ is a

function of both time t̂ and radial distance r̂.

In this thesis, the system and results are described in dimensionless numbers.

The choice of characteristic velocity scale and characteristic length scales are capillary

velocity σ̂0/µ and initial film thickness Ĥ0 respectively. Accordingly, the characteristic

time scale is τ = Ĥ0µ/σ̂0. The surfactant concentration γ and corresponding surface

tension σ are measured in units of initial dimensional concentration γ̂0 and initial

dimensional surface tension σ̂0 respectively. Therefore, the relationships between the

dimensional variables and dimensionless variables are given as:

h =
ĥ

Ĥ0

, r =
r̂

Ĥ0

, σ =
σ̂

σ̂0
, γ =

γ̂

γ̂0
, (3.1)

t =
σ̂0

Ĥ0µ
t̂, (v, u) =

µ

σ̂0
(v̂, û), p =

Ĥ0

σ̂0
p̂ (3.2)

where (̂ ) represents dimensional numbers. The aspect ratio between initial film

thickness and initial drop radius is defined as:

ε = Ĥ0/R̂0 (3.3)

thus, a large aspect ratio ε � 1 describes a film that is deep in relation to the

surfactant drop, whereas ε� 1 describes a comparatively thin liquid film.



68

r
s

z

r

h(r, t)

(σ, γ)

Fig. 3.1. Schematic of surfactant spreading on a liquid film.
A drop of surfactant (red) on the surface of a clean liquid film (blue)
generates Marangoni flow and interfacial deformation. The dimen-
sionless radius of the spreading surfactant drop is rs(t), the initial
drop radius is R0, and the local dimensionless height of the film is
h(r, t). The Newtonian liquid has constant density ρ and viscosity µ.
The local dimensionless surface tension is σ(r, t) and corresponds to
a local surfactant concentration γ(r, t).
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The evolution of the velocity field v(v, u) and pressure p in the liquid films is

calculated by solving the full Navier-Stokes system:

∇ · v = 0, (3.4)

Re(
∂v
∂t

+ v · ∇v) = ∇ ·T. (3.5)

where T is the viscous stress tensor (see Equation (2.6)) and Re is the Reynolds

number. Since the chosen length scale is Ĥ0 and velocity scale is σ̂0/µ, Reynolds

number can be written as

Re =
ρσ̂0Ĥ0

µ2
, (3.6)

which measures the relative significance of the inertial and viscous forces.

The transport of surfactant at the free surface is described by the full convection-

diffusion equation [28] [29] [30], and is solved simultaneously with the full Navier-

Stokes system of equations,

(
∂γ

∂t
)s + γ(vs · n)(∇s · n) +∇s · (γvs · t)t− Pe−1∇2

sγ = 0, (3.7)

The relationship between surfactant concentration and surface tension is described

using a linear equation of state [31] [32] [33]

σ = 1−Ma(γ − 1), (3.8)

where Ma is the Marangoni number which characterizes the surfactant strength. A

larger Marangoni number creates a greater surface tension gradient and consequently,

generates a higher Marangoni stress which drives the Marangoni flow. The Marangoni

number is given as:

Ma =
dσ̂

dγ̂

γ̂0
σ̂0
. (3.9)

The governing equations, boundary conditions, and initial conditions for simula-

tions in this chapter are the same as the ones used in Chapter 2 and are discussed in

detail in Section 2.2.
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3.3 Transitions in the Dynamics of Low-Viscosity Marangoni Flows in

Thin Films

The free-surface dynamics of Marangoni flows in thin low-viscosity films are dif-

ferent from that in thin viscous films. The surfactant spreads faster on the surface of

an inertial liquid film than on the surface of a viscous film. However, the spreading

dynamics in the inertial film change as time progresses, and eventually transition to

the slower dynamic characteristic of Marangoni flows in viscous films.

Characterizing the late inertial-to-viscous transition in low-viscosity films is im-

portant to predict and ultimately control surfactant coverage. Therefore, it is critical

to many natural and biomedical processes, ranging from silicon wafer drying to the

production of controled emulsions in microfluidic devices. In this section, solutions

of the full Navier-Stokes system are compared against limiting theoretical predictions

proposed in the literature to establish limits of applicability and calculate necessary

corrections. Finally, results lead to the construction of a master curve that accurately

characterize the late inertial-to-viscous transition in thin low-viscosity films.

In this section, Marangoni flows in thin films with different liquid viscosity will be

discussed first (Section 3.3.1). Next, the influence of surfactant property on the

Marangoni flow dynamics is discussed (Section 3.3.2). The results from the full

Navier-Stokes system are compared with limiting theoretical predictions proposed

in literature, establish the limits of applicability, and calculate the necessary correc-

tion factor. Simulations also enable the accurate characterization of the crossover

from the faster inertial dynamics to the slower viscous dynamics (Section 3.3.3).

3.3.1 Influence of Reynolds Number on the Dynamics of Marangoni Flows

in Thin Low-Viscosity Films

To gain insight into the influence of inertia on the dynamics of thin films, Figure

3.2 shows the spreading of a drop of surfactant on the surface of three liquid films

spanning about four decades in Reynolds numbers. The figure shows the temporal
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evolution of the surfactant front rs for three different Reynolds numbers Re = 0,

10, and 1000 on a thin liquid film with small relative thickness ε = 0.05. For the

purely viscous film (Figure 3.2a) and for the moderately inertial film (Figure 3.2b),

the simulations (symbols) confirm that the surfactant front follows a power law t1/4

with time (black lines), as expected for thin films. Indeed, as predicted by Jensen and

Grotberg [43] and discussed in detail in Section 2.3.1 (Equation (2.25)), the scaling

rs ∼ t1/4 is associated to a thin film regime in which the viscous length scale lµ

is much larger than the film thickness (lµ � 1), and therefore the dominant (i.e.,

smaller) length scale is the film thickness.

The dynamics in the film of Figure 3.2c, however, is different from the dynamics

in the previous films. When the Reynolds number of the liquid film is Re = 1000, the

surfactant drop spreads faster at earlier times (102 < t < 103) and then transitions

to the slower dynamic t1/4 at later times (t > 103). This transition is marked by a

red dot in Figure 3.2c, and the transition time is marked by the red dashed line.

The faster early-time dynamics can be more clearly identified by increasing the

Reynolds number, as shown in Figure 3.3. The figure shows the evolution of the

surfactant front rs under the same conditions as the films of Figure 3.2, but for

a lower viscosity liquid with Re = 5000. Results from the simulations (symbols)

show that the early-time dynamics follow a scaling rs ∼ t3/8 with time (dashed line).

Together, the results in Figures 3.2 and 3.3 demonstrate that Marangoni flows in thin

films (ε� 1) can transition to the inertial regime provided that the Reynolds number

is sufficiently large.

Indeed, as predicted by Jensen [26], the scaling rs ∼ t3/8 corresponds to the

inertial regime in which the viscous length scale lµ is small in relation to the film

thickness (lµ � 1), and therefore the appropriate vertical length scale is the thickness

of the boundary layer below the spreading surfactant drop. The t3/8 scaling was

characterized by Jensen considering the balance of viscous and Marangoni stresses
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[26]. The Marangoni convective flow is driven by Marangoni stress ∇sσ, which can

be approximated as

∇sσ ≈ dσ/dr (3.10)

since the curvature of the liquid film is small. The surface tension σ of the liquid film

is related to the concentration of the surfactant through a linear equation of state

(Equation (3.8)); therefore, the Marangoni stress can be further written as

∇sσ ≈ Madγ/dr (3.11)

with γ being the concentration of the surfactant which, following the scaling analysis

by Jensen [26], scales as γ ∼ M/r2s ∼ πε−2r−2
s in dimensionless form. This yields a

Marangoni stress that scales as

∇sσ ∼ Maπε−2r−3
s . (3.12)

The Marangoni stress is balanced by viscous stress, which can be approximated as

dV/dz in dimensionless form, where V is the fluid radial velocity scale, which is

approximated by the average velocity of the surfactant front V ≈ rs/t. Since in highly

inertial films the viscous length scale is smaller than the film thickness, the dominant

vertical length scale is the boundary layer thickness ẑ ∼ (µt̂/ρ)1/2, or z ∼ (t/Re)1/2

in dimensionless term. This yields a viscous stress

dV/dz ∼ rsRe
1/2t−3/2. (3.13)

Finally, including Equations (3.10) to (3.13) in the interfacial stress balance approx-

imated as

dσ/dr ≈ dV/dz (3.14)

yields a scaling for the surfactant front

rs ∼
(π2Ma2

ε4Re

)1/8
t3/8. (3.15)

The existence of an initial inertial regime in the dynamics of thin films with

sufficiently large Reynolds numbers can be further verified by comparing the scaling
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Fig. 3.3. Temporal evolution of the surfactant front in thin
low-viscosity films. Temporal evolution of the surfactant front rs
in a thin (ε = 0.05) low viscosity (Re = 5000) film with Marangoni
number Ma = 1. The surfactant front (symbols) follows a scaling t3/8
with time (dashed line).



75

of Equation (3.15) to the solutions of the full Naviers-Stokes system. According

to Equation (3.15), the surfactant front rs should follow a power law rs ∼ Re−1/8

with Reynolds number. This scaling is tested in Figure 3.4. The figure shows the

evolution of the surfactant front rs as a function of scaling coordinate Re−1/8t3/8 for a

thin film (ε = 0.05) with three different Reynolds numbers Re = 500, 1000, and 5000.

After an initial transient, the simulation results (symbols) collapse onto one master

curve (black line), confirming the scaling with the Reynolds number rs ∼ Re−1/8 in

Equation (3.15).

3.3.2 Influence of Marangoni Number on the Dynamics of Marangoni

Flows in Thin Low-Viscosity Films

To gain insight into the influence of the Marangoni number on the Marangoni

dynamics in thin low-viscosity films, Figures 3.5 and 3.6 show the spreading of three

increasingly stronger surfactants on the surface of a thin film with a small relative

thickness ε = 0.05. Figure 3.5 shows the temporal evolution of the surfactant front

rs for three different Marangoni numbers Ma = 1, 2 and 3 on a low-viscosity (Re =

1000) thin liquid film. For the three Marangoni numbers, the simulations (symbols)

show little difference (although the spreading starts slightly earlier as the surfactant

strength increases), and confirm that the surfactant front follows a power law t3/8

with time (black lines).

According to Equation (3.15), the surfactant front rs should follow a power law

rs ∼ Ma1/4 with Marangoni number. This scaling is tested in Figure 3.6. The figure

shows the evolution of the surfactant front rs as a function of scaling coordinate

Ma1/4t3/8 for the three systems shown in Figure 3.5. After the initial transient period,

the simulations (symbols) collapse onto one master curve (black line), confirming the

scaling with Marangoni number rs ∼ Ma1/4 in Equation (3.15).
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Fig. 3.4. Evolution of the surfactant front as a function of
scaling coordinates. Location of the surfactant fronts rs as a func-
tion of the coordinate (Re−1/8t3/8) in thin liquid films with Reynolds
numbers Re = 500 (green), 1000 (blue) and 5000 (red). Simulation
results (symbols) confirm the scaling rs ∼ Re−1/8 in Equation (3.15).
Here, the Marangoni number Ma = 1 and film thickness ε = 0.05.
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Fig. 3.6. Evolution of the surfactant front as a function of
scaling coordinate. Location of the surfactant fronts rs as a func-
tion of the coordinate (Ma1/4t3/8) for the systems shown in Figure
3.5. The Marangoni numbers are Ma = 1 (green), 2 (blue) and 3
(red). Simulation results (symbols) confirm the scaling rs ∼ Ma1/4 in
Equation (3.15).



79

3.3.3 Inertial to Viscous Transition in Thin Low-Viscosity Films

Here, the dynamics of Marangoni flows in thin and inertial films characterized in

the previous sections are used to identify the crossover where the Marangoni dynamics

transitions from the early-time inertial dominated dynamics rs ∼ t3/8 to the late-time

viscous dominated dynamics rs ∼ t1/4.

The existence of a transition from the early-time inertial regime to the late-time

viscous regime (see Figure 3.2c) is not evident, but can be rationalized by defining

an instantaneous Reynolds number

Re∗ ≡ ρÛL̂

µ
= ReUL. (3.16)

which characterizes the relative importance of inertial and viscous forces as the sur-

factant drop spreads on the surface of the liquid film. As the drop spreads, the ap-

propriate length scale L corresponds to the growing drop radius, and the appropriate

velocity scale corresponds to the spreading velocity.

In the inertial regime, the characteristic length L scales as L = rs ∼ t3/8, and the

characteristic velocity scales as U = drs/dt ∼ t−5/8. According to Equation (3.16), in

the inertial regime, the instantaneous Reynolds number should scale with time as

Re∗ ∼ t−1/4. (3.17)

Therefore, as time t → ∞, the instantaneous Re∗ → 0, confirming that the inertial

Marangoni dynamics cannot remain in the inertial regime as time progresses. Con-

sequently, as the surfactant drop spreads, viscous forces should eventually become

sufficiently strong to impact the evolution of the liquid film, and a potential transi-

tion of the Marangoni dynamics from the inertial regime to a viscous regime has to

be considered (see Figure 3.2c).

As discussed in Section 2.3.1, the viscous regime in thin films has been previously

characterized by Jensen and Grotberg [43] using the lubrication approximation as

rs = (16Maε−2t)1/4. (3.18)
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Similarly, the boundary layer approximation of Equation (3.15) predicts that the

inertial regime in thin films follows a power-law scaling that can be extended by

including a correction factor as

rs = D0

(π2Ma2

ε4Re

)1/8
t3/8. (3.19)

The direct numerical simulations show, however, that the correction factor D0 6= 1

and has to be calculated.

The value of D0 is calculated by fitting a scaling line throughout the simulation

results, as shown in Figure 3.5 (black lines). Figure 3.7 summarizes the calculated

values of the correction factor D0 for Marangoni flows in thin liquid films (ε = 0.05

and ε = 0.1); by taking the average value, the correction factor for thin films is

approximated by D0 ≈ 1.41.

The estimated value of D0 is tested further in Figure 3.8. The figure illustrates

the evolution of the surfactant front rs as a function of scaling coordinate Bt3/8,

where B = (π2Ma2ε−4Re−1)1/8 in thin films (ε = 0.05 and 0.1) with a wide range of

(large) Reynolds numbers Re = 500, 800, 1000, and 5000. The results from Figure

3.8 are twofold. First, it further confirms the scalings in Equation (3.19) since the

simulation results collapse onto one master curve. Second, it confirms the accuracy

of the calculated value of D0 since the Equation (3.19) with D0 = 1.41 fits well

throughout the collapsed results (black line).

Having characterized the value of the correction factor D0, the crossover time tc

and crossover radius rc for the inertial-to-viscous dynamical transition for Marangoni

flows in thin liquid films (ε < 1) can be readily calculated as

tc = 1.66Re, (3.20)

rc = 2.27(MaReε−2)1/4, (3.21)

by equating Equations (3.18) and (3.19).

Finally, one important consequence of the newly calculated tc and rc is that the

full Marangoni dynamics for thin low-viscosity films can be re-scaled onto a master
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Fig. 3.7. Correction factor D0 as a function of Reynolds num-
ber. The average correction factor for thin, low viscosity films is
D0 ≈ 1.41. Here, film thicknesses are ε = 0.05 (red) and 0.1 (blue),
and the Marangoni numbers are Ma = 1 (square), 2 (circle), and 3
(triangle).
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Fig. 3.8. Evolution of the surfactant front as a function of scal-
ing coordinates. Location of the surfactant front rs as a function of
the scaling coordinate Bt3/8, where B = (π2Ma2ε−4Re−1)1/8, in thin
films with Reynolds numbers Re = 500 (red), 800 (green), 1000 (blue),
and 5000 (grey). Simulation results (symbols) show good agreement
with Equation (3.19) using a correction factor D0 = 1.41 (black line).
Here, the film thickness is ε = 0.05 (circle) and 0.1 (square), and the
Marangoni number is Ma = 1 (hollow symbols) and 2 (solid symbols).
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curve. In Figure 3.9, data from a large number of simulations are collapsed on a

master curve by simply rescaling the drop radius and time by the crossover values rc

and tc respectively. Importantly, the temporal evolution of the spreading dynamics

for thin low-viscosity films (collapsed symbols) are well described by

r/rc = (t/tc)
3/8, t/tc < 1, (3.22)

r/rc = (t/tc)
1/4, t/tc > 1, (3.23)

(dashed lines in Figure 3.9) as a function of film thickness, Reynolds number and

Marangoni number using the crossover values calculated from Equations (3.20) and

(3.21).

This section presented a numerical analysis of effects of liquid viscosity on the

Marangoni dynamics in thin films. Results from the simulations were compared

with limiting theoretical scalings proposed in literature to calculate the necessary

correction factor. Results from the simulations enabled accurate characterization of

the crossover from inertial dynamics to viscous dynamics in the limit of thin films.

3.4 Transitions in the Dynamics of Inertial Marangoni Flows in Deep

Films

As in the thin low-viscosity films discussed in the previous section, the dynamics of

surfactant spreading in deep films also transition from an inertia-dominated dynamics

to a viscous-dominated dynamics as time progresses. Characterizing the inertial-

to-viscous dynamical transition in deep low-viscosity films is relevant to important

technological processes, ranging from oil pollution remediation to the production of

finely tuned emulsions in microfluidic devices. In this section, solutions of the full

Navier-Stokes system are compared against limiting theoretical predictions proposed

in the literature to establish limits of applicability and calculate necessary corrections.

Finally, results lead to the construction of a master curve that accurately characterize

the late inertial-to-viscous transition in deep low-viscosity films.
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master curve r/rc = (t/tc)
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the Reynolds number Re = 500 (red), 800 (green), 1000 (blue) and
5000 (grey); and Marangoni number Ma = 1 (hollow symbols) and 2
(solid symbols).
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3.4.1 Influence of Reynolds Number on the Dynamics of Marangoni Flows

in Deep Low-Viscosity Films

To gain insight into the influence of inertia on the free-surface dynamics for

Marangoni flows in deep films, Figure 3.10 illustrates the temporal evolution of the

surfactant front rs for three different Reynolds number Re = 0, 10, and 1000 on a

deep liquid film with large relative thickness ε = 10. Interestingly, for all three cases,

results (symbols) show that the surfactant drops spread at a fast initial rate t3/8 and

then transition (red dots) to the slower t1/4 dynamics (black lines) characteristic of

thin viscous films.

However, the transition in the film of Figure 3.10c is slightly different from the

dynamics in the two previous films. Indeed, when the Reynolds number is Re =

1000, the dynamical transition occurs at approximately t ≈ 200 (Figure 3.10c, red

dashed line) but the dynamical transitions occur at approximately t ≈ 50 (Figure

3.10a and Figure 3.10b, red dashed lines) for the films with Re = 0 and Re =

10. Whether the late transition in the film of Figure 3.10c is a result of deep-to-

thin dynamical transition as discussed in Section 2.3 or inertial-to-viscous dynamic

transition discussed in Section 3.3 is unclear.

This issue can be addresses by examining the influence of Reynolds number. The

early time power law t3/8 characteristic of a deep-film dynamic is not a function of

Reynolds number (see Section 2.3.2, Equation (2.34)), but the power law t3/8 char-

acteristic of a inertial dynamic does depend on the Reynolds number (see Equation

(3.15)). According to Equation (3.15), the surfactant front rs should follow a scaling

rs ∼ Re−1/8 with Reynolds number. This scaling is tested in Figure 3.11. The fig-

ure illustrates the evolution of surfactant front rs as a function of scaling coordinate

Re−1/8t3/8 for a thin film (ε = 0.05) with three large Reynolds numbers Re = 500,

1000, and 2000. The simulation results collapse onto one curve (symbols), confirming

the scaling rs ∼ Re−1/8 with Reynolds number (solid line). This results suggest that

the dynamical transition shown in Figure 3.10c is an inertial-to-viscous transition.
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Fig. 3.11. Evolution of the surfactant front as a function of
scaling coordinates. Location of the surfactant fronts rs as a func-
tion of the coordinate Re−1/8t3/8 in a deep liquid films with Reynolds
numbers Re = 500 (red), 1000 (blue) and 2000 (green). Simulation
results (symbols) confirm the scaling rs ∼ Re−1/8 in Equation (3.15).
Here, the Marangoni numbers Ma = 1 and thickness ε = 10.
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3.4.2 Influence of Marangoni number on the Dynamics of Marangoni

Flows in Deep Low-Viscosity Films

To gain insight into the influence of the Marangoni number on the Marangoni

dynamics in deep low-viscosity films, the spreading of three increasingly stronger

surfactants on the surface of a deep film with large relative thickness ε = 10 is

illustrated in Figures 3.12 and 3.13.

Figures 3.12 illustrate the temporal evolution of surfactant front rs for three dif-

ferent Marangoni number Ma = 1, 5, and 10 on a deep liquid films with low viscosity

(Re = 1000). Comparing simulation results (symbols) with the t3/8 scaling (black

lines), the simulations confirm that the surfactant front follows a power law t3/8 with

time. Results also show the spreading starts slightly earlier as the surfactant strength

increases.

According to Equation (3.15), the surfactant front rs should follow a power law

rs ∼ Ma1/4 with the Marangoni number. This scaling is tested in Figure 3.13. The

figure illustrates the evolution of surfactant front rs as a function of scaling coordinate

Ma1/4t3/8 for the systems shown in Figure 3.12. After the initial transient, the sim-

ulation results (symbols) collapse onto one single curve confirming the scaling Ma1/4

with the Marangoni number (black line).

3.4.3 Inertial to Viscous Transition in Deep Low-Viscosity Films

Here, the free-surface dynamics of Marangoni flows in deep and inertial films

characterized in the previous sections are used to identify the crossover where the

Marangoni flow dynamics transitions from the faster inertial dynamics — in which

the surfactant front rs follows a power law of t3/8 — to the slower viscous dynamics

— in which the surfactant front rs follows a power law of t1/4 — as shown in the

preliminary results of Figure 3.10c.
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Fig. 3.13. Evolution of the surfactant front as a function of
scaling coordinates. Location of the surfactant fronts rs as a func-
tion of the coordinate (Ma1/4t3/8) for the systems shown in Figure
3.12. The Marangoni numbers are Ma = 1 (green), 5 (blue) and 10
(red). Simulation results (symbols) confirm the scaling rs ∼ Ma1/4 in
Equation (3.15).
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As discussed in detail in Section 2.3.2, the viscous regime in deep films can be

characterized as

rs = C0(16Maε−2t)1/4, (3.24)

where C0 = 0.64. Similarly, the boundary layer approximation of Equation (3.15)

predicts that the inertial regime in deep films follows a power-law scaling that can be

extended by including a correction factor as

rs = D0

(π2Ma2

ε4Re

)1/8
t3/8. (3.25)

However, the direct numerical simulations show that the correction factor D0 6= 1

and has to be calculated.

The value of D0 is calculated by fitting scaling lines through the simulation results

as shown in Figure 3.12 (black lines). Figure 3.14 summarizes the calculated values

of D0, and clearly identifies two regions based on film thickness ε. The correction

factor for thin low-viscosity films is D0 ≈ 1.41, as previously discussed in section

3.3.3. On the other extreme, by taking the average value in the deep region ε ≥ 10,

the correction factor for deep low-viscosity films is estimated as D0 ≈ 1.12.

The estimated value value of D0 is tested further in Figure 3.15. The figure

illustrates the surfactant front rs as a function of the scaling coordinate Bt3/8, where

B = (π2Ma2ε−4Re−1)1/8, for deep films (ε = 10, 20 and 100) with a wide range of

(large) Reynolds number Re = 200, 500, 1000, 2000 and 10000. The results from

Figure 3.15 are twofold. First, it further confirms the scalings in Equation (3.25)

since the results collapse onto one single curve. Second, it confirms the accuracy of

the calculated value of D0 since Equation (3.25) with D0 = 1.12 fits well throughout

the collapsed region of the simulation results (black line).

Having characterized the correction factor D0 for deep films, the crossover time tc

and radius rc for the inertial-to-viscous transition for Marangoni flows in deep liquid

films (ε ≥ 10) can be readily calculated by equating Equations (3.24) and (3.25) as

tc = 0.29Re, (3.26)
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Fig. 3.14. Correction factor D0 as a function of Reynolds
number. The average correction factor for deep low-viscosity films
is D0 ≈ 1.12. Here, Reynolds numbers are Re = 200 (gray), 500
(green), 800 (blue), 1000 (red), 5000 (cyan), and 10000 (black), and
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93

Bt
3/8

r s

10
­2

10
­1

10
0

10
­2

10
­1

10
0

slope:1

Fig. 3.15. Evolution of the surfactant front as a function of
scaling coordinates. Location of the surfactant front rs as a func-
tion of scaling coordinate Bt3/8, where B = (π2Ma2ε−4Re−1)1/8, in
deep films with Reynolds numbers Re = 200 (gray), 500 (blue), 1000
(red), 2000 (green), and 10000 (orange). Simulation results (symbols)
show good agreement with Equation (3.19) using a correction factor
D0 = 1.12 (black line). Here, the film thicknesses are ε = 10 (circle),
20 (square) and 100 (triangle); and Marangoni numbers are Ma = 1
(hollow symbols) and 2 (solid symbols).
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rc = 0.94(MaReε−2)1/4. (3.27)

Finally, one important consequence of the calculated tc and rc is that the full

Marangoni dynamics for deep and inertial films can be re-scaled onto a master curve.

In Figure 3.16, data from a large number of simulations are collapsed on a master curve

by rescaling the drop radius and time by the crossover values rc and tc respectively.

Importantly, the evolution of the spreading dynamics for deep low-viscosity films

(collapsed symbols) are well described by

r/rc = (t/tc)
3/8, t/tc < 1, (3.28)

r/rc = (t/tc)
1/4, t/tc > 1, (3.29)

(dashed lines in Figure 3.16) as a function of film thickness, Reynolds number and

Marangoni number using the crossover values from Equations 3.26 and 3.27.

3.5 Conclusion

In this chapter, a realistic computational model was used to gain insight into

the dynamics of Marangoni flows induced by surfactant concentration gradients on

liquid films. The chapter extends the highly viscous results of Chapter 2 to low liquid

viscosities. Results from the simulation enabled a quantitative study of the influences

of film thickness, liquid viscosity, and surfactant strength on the Marangoni dynamics.

By varying the Reynolds number over about six decades, and the film thickness for

about three decades, the simulations established limits of applicability of theoretical

solutions proposed in the literature, and identified necessary corrections. Results lead

to the accurate characterization of an inertial-to-viscous crossover in the dynamics of

Maranagoni flows in low-viscosity films, and enabled the construction of master curves

in function of film thickness, Marangoni number and Reynolds number to represent

the full Marangoni dynamics including both viscous and inertial regimes.

In addition to the fundamental fluid mechanics interest, the new findings may have

important implications for Marangoni driven processes developing in low-viscosity en-
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vironments, such as silicon wafer drying, oil pollution remediation, and the production

of controlled emulsions in microfluidic devices.



97

4. SUMMARY AND OUTLOOK

In this work, a rigurous computational model was developed to study the free-surface

dynamics of Marangoni flows driven by surfactant-concentration gradients. The free-

surface model was solved using direct numerical simulation. By simultaneously solving

the full Navier-Stokes equations that govern the free-surface hydrodynamics and the

full convection-diffusion equation that governs the interfacial transport of surfactant,

the direct numerical simulations enabled a better understanding of the fundamental

flow physics of Marangoni flows.

The first part of the thesis focused on characterizing Marangoni dynamical regimes

in viscous films. The direct numerical simulations enabled a detailed analysis of the

microscopic physical mechanisms of surfactant transport, and a comprehensive pic-

ture of the macroscopic free-surface flow. After benchmarking the simulation results

against experiments and limiting theoretical predictions, the computations were used

to study the influence of film thickness on viscous Marangoni flows. By varying film

thickness over several decades, the simulations tested the accuracy of scaling solutions

previously proposed in the literature, and established their limits of applicability. Nec-

essary corrections were also identified and calculated by comparing the results of the

full Navier-Stokes system against the theoretical scalings. Results uncovered previ-

ously unobserved scaling laws describing the dynamics of purely-viscous Marangoni

flows in deep films. It was found that when approaching the Stokes limit Re → 0,

the surfactant spreads faster than expected from previous works, and the difference

with the expected velocity was calculated as a power-law of the film thickness.

The early time dynamics of Marangoni flows in highly-viscous liquid films were

also studied using direct numerical simulations. Results established the existence of

a waiting-time regime during surfactant spreading — an early-time regime in which

the interfacial shape becomes suddenly motionless and remains quasi-static for some
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finite time despite the presence of strong surface tension gradients. Results from the

simulations enabled the characterization of both the time and the length scales for

the establishment of the stationary regime.

The second part of the thesis extended the study of viscous Marangoni flows to

arbitrary fluid viscosities. Results from the simulation enabled a thorough quantita-

tive understanding of the influence of film thickness, liquid viscosity, and surfactant

strength on the Marangoni dynamics. By accurately solving the full system of gov-

erning equations for a wider range of geometries and material properties, the com-

putations determined the accuracy of limiting scaling solutions previously proposed

in the literature for different Marangoni regimes, established their limits of applica-

bility, and computed necessary corrections. Computations also lead to the accurate

characterization of the crossover between inertial and viscous regimes in the dynamics

of surfactant driven Maranagoni flows, enabling the construction of a master curve

in function of film thickness, fluid properties and surfactant properties to accurately

represent the different Marangoni regimes and their transitions.

In addition to the fundamental fluid mechanics interest, the enhanced understand-

ing of the flow physics of Marangoni flows and the associated transport of chemical

species resulting from this research is relevant to important natural and biomedical

processes, from the surfactant driven propulsion of microorganisms to the spreading

of drugs in the eye and lungs. Controlled Marangoni transport of chemical species

is also relevant to a wide range of environmental and technological processes, with

applications ranging from coating to cleaning of oil spills, and from drying of silicon

wafers to interfacial transport in microfluidic devices. Moreover, precise understand-

ing of the mechanisms of Marangoni transport of surfactants and chemical species at

the microscale provides opportunity for tuning the interfacial surfactant coverage, and

therefore the interfacial properties, of films, droplets, and bubbles in food, chemical

and pharmaceutical industries.

The focus of this work was on computational modeling to characterize the differ-

ent flow and spreading regimes of an insoluble surfactant on the surface of a New-
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tonian liquid film. This focus highlights the need for further experimental work to

corroborate previously unobserved features uncovered by the simulations, and to ex-

tend the numerical study to characterize both the effect of surfactant solubility and

non-Newtonian viscoelastic effects on the different Marangoni regimes and their tran-

sitions.
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