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ABSTRACT

Mueterthies, Michael J. Ph.D., Purdue University, August 2019. A Re-Reanalysis
of the Eötvös Experiment and Time-Variation of Nuclear Decay Rates. Major
Professor: Ephraim Fischbach.

We consider the existence of a force that could produce a non-null result in the

Eötvös experiment while producing a null result in the Eöt-Wash experiment. We

introduce a general force, in the form of its Taylor series expansion, and determine

the response of each experiment to that force. We can then determine which terms

of the expansion are important to each experiment. A trial force, in the form of

a mixed vector-scalar interaction is introduced and we analyze the resulting Eötvös

parameters for various values of the strengths and ranges of the interactions. We find

that under certain conditions the Eötvös parameter for the Eöt-Wash experiment can

be made zero while the Eötvös parameter for the Eötvös experiment is nonzero.

Next, we examine the possibility of a wind force appearing in the Microscope

experiment. This wind would be due to the satellite’s motion through a particle

background which couples to the differential accelerometer through a baryon-number

dependent interaction. We determine the signal that would be measured by Mi-

croscope satellite and compare the power spectrum density of this signal to the

published power spectrum density of the experiment.

Additionally, we present a new theoretical framework for the time-variation of

nuclear decay rates. This new framework is motivated by the results of numerous

experiments which show a periodicity of one year. The fractional decay rate of these

experiments are constant, regardless of isotope. We find that a novel neutrino in-

teraction, in the form of an index of refraction, successfully generates the constant

fractional decay rates. Using the optical theorem and the relativistic Breit-Wigner
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distribution makes the index of refraction consistent with neutrino speed measure-

ments. We conclude by describing other systems where the index of refraction could

create observable oscillations.

Finally, we consider the suppression of beta decay rates through the Puali ex-

clusion principle due to the presence of background cosmic and solar neutrinos. We

derive the suppression factor for both thermalized and non-thermalized neutrinos.
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1. INTRODUCTION

1.1 Fifth Force/Non-Newtonian Gravity

The idea of universality of free fall (UFF) has it’s origins in the unhistorical story of

Galileo dropping masses off the Leaning Tower of Pisa. In reality, he used an inclined

plane to test whether objects fall at the same rate. This concept was further codified

as the Weak Equivalence Principle (WEP) by Isaac Newton [1] when he set out to

measure whether the gravitational and inertial masses of an object were identical.

Newton and later Bessel [2] used the period of different pendulums to measure the

WEP violation. Guyòt [2] later tried to measure and WEP violation using the angle

of a plumb bob relative to a liquid mercury surface.

The next big stride in the study of WEP violations and the impetus for part of

this work was the experiment of Eötvös, Pekár and Fekete (EPF) [2]. Over the span

of several years, EPF measure the differential acceleration of a number of materials

using the recently-invented torsion balance, which proved to be significantly more

sensitive than previous versions. Strangely, the results of the experiment were not

published for several years, eventually being published in 1922, three years after the

death of Eötvös. The paper claims that the results were consistent with no effect,

but later work calls that result into doubt.

In the 1950’s the work of Lee and Yang [3] showed that additional, short range

forces could mimic violations of the weak equivalence principle or universality of free

fall. Lee and Yang’s focus shifted to parity violation and they did not return to WEP

violations. However, their work spurred renewed interest in WEP experiments. Roll,

Krotkov, and Dicke [4], Braginskii and Panov [5], and Keiser and Faller [6] performed

torsion balance experiments using the Sun as the source in 1964, 1971, and 1982,

respectively.
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Perhaps the biggest stimulus for the revival of WEP/UFF/fifth force experiments

was the work of Fischbach et al. in 1986 [7]. They went back and reanalyzed the pub-

lished results of Eötvös, Pekár and Fekete from 1922 [2]. Fischbach et al. reconsidered

the problem from the perspective of a baryon-number dependent Yukawa force and

not a WEP violation. They found a clear correlation between baryon number and

the measured results of EPF at a level of 8σ.

The results of Fischbach et al. sparked even more experiments, most now specif-

ically looking for new forces. In the years since the Fischbach paper, the Eö-Wash

group [8] [9] [10] has performed a number of torsion balance experiments searching

for new forces using a number of sources, from the hills near the University of Wash-

ington campus in Seattle, to the Sun and the center of the galaxy. The Eöt-Wash

group has not found an evidence for new forces.

In addition to torsion balance experiments, other groups have performed Galileo

(or free fall experiments). The groups have included Niebauer, HcHugh and Faller

in 1987 [11], Kuroda and Mio in 1989 [12] and 1990 [13] and Carusotto et al. in

1992 [14]. These experiments used laser interferometry to measure the differential

rotation rate of test mass with two different compositions. None of these groups

reported positive results. Thieberger in 1987 [15] and Bizzeti in 1989 [16] used buoyant

forces on floating balls to search for a fifth force. Thieberger reported a positive result

while Bizzeti reported a negative result. Despite other authors trying to explain

Thieberger’s results as being due to systemic effects, Thieberger has stood by his

results. While interesting, we will not be focusing on the Thieberger experiment in

this work.

Searches for violation of WEP and UFF and searches for new forces continue

this day. To obtain even more accuracy, groups have begun proposing space-based

missions such as STEP [17], which was eventually cancelled and Microscope [18]

which launched in 2016.

Despite numerous attempts, no one has been able to explain why the Eötvös ex-

periment has a correlation to baryon number, a concept that did not exist when the
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experiment was performed. In this work we will focus on comparing the Eötvös exper-

iment to the most precise modern torsion balance experiments, namely the Eötwash

experiment.

The term fifth force is a bit of a misnomer, invented by the press. Most students

are taught that there are four forces: gravity, electromagnetic, weak nuclear force, and

strong nuclear force. However, any particle exchange can give rise to a force. Meson

exchanges bind neutrons and protons together in the nucleus. neutrino-antineutrino

exchange can give rise to long range forces and become particularly important in

neutron stars. Higgs bosons, axions, and W and Z bosons could also give rise to

forces. For this reason it is probably more apt to refer to the forces considered in this

work as “non-Newtonian gravity”, but we will keep the “fifth force” nomenclature,

as it is popular parlance and it rolls off the tongue more easily.

1.2 Time-Varying Nuclear Decay Rates

Becquerel’s [19] discovery of radioactivity in 1896 sparked a flurry of research

in the early 20th century. Many sources of radioactivity were discovered and many

experiments were performed to determine the variability of nuclear decay rates; by

1930, no change in decay rates had been discovered and they were thought to be

constant [20].

Developments such as quantum theory and Fermi’s [21] weak interaction provided

a foundation for theoretical investigation into the constancy of decay rates. Consider

the process of electron capture, a proton captures an orbiting electron, converting into

a neutron and emitting an electron neutrino. We must note positron emission also

involves the conversion of a proton into a neutron. In this case, instead of capturing

an electron, a positron is emitted in the final state. Any isotope that can undergo

positron emission has the potential to decay via electron capture; however, there are

isotopes where the mass difference between the initial (“parent”) nucleus and the

final (“daughter”) nucleus is insufficient to produce a positron. These isotopes can
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only decay by capturing an electron, which obviously requires orbiting electrons to

be present. If we remove electrons from the atom, the decay rate decreases, as there

are fewer electrons to capture; if we fully ionize the atom, decay is not possible.

This effect was used to isolate the contribution from positron emission [22] and to

study the K-orbit electron capture [23]. We see a similar phenomenon in electron

emission. 163Dy is normally a stable element, but when fully ionized, 163Dy66+ decays

by emitting an electron into a low lying orbital with a half-life of 47 days [24].

The examples above are quite drastic as they involving removing nearly all of

the atom’s electrons. There also exist more subtle modifications to the decay rates.

Emery [25] discussed the influence of pressure and temperature on the radioactive

decay, particularly electron capture. Chemical bonds can affect decay rates; Wang

et al. measured the decay rate of 7Be inside a metal and found a 1% change in the

decay rates. To accurately measure the mass of the electron neutrino, the KATRIN

experiment must account for the molecular effects in the decay of tritium [26]. Matese

and O’Connell [27] and Fasio-Canuto [28] showed that incredibly strong magnetic

fields (strong enough to quantize the emitted electrons into Landau Levels) could

significantly alter decay rates.

The recent interest in time-varying nuclear decay rates began with a desire to test

the inherent randomness of nuclear decays [29]. In an effort to design an experiment,

Fischbach found a paper by Alburger, Harbottle, and Norton [30] at Brookhaven

National Laboratory (BNL) who compared the decay of 32Si to 36Cl. Their data

showed unexpected time oscillations. Further research uncovered the work of Siegert,

Schrader, and Schötzig [31] (PTB) who compared the decay of Eu isotopes to that of

226Ra with both 152Eu and 226Ra showing oscillations. Analysis of both sets of data

showed strong correlation with 1/R(t)2, where R(t) is the Earth-Sun distance. [32].

These correlations, and correlations between the two data sets during the time they

were simultaneously operating, point to the effect coming from the Sun as opposed to

environmental effects. A power spectrum analysis of the data revealed several other
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periods associated with the Sun, including the solar rotation period, providing further

evidence of solar influences.

The puzzling oscillations in the BNL and PTB data led to an experiment at

Purdue to measure the decay of 54Mn. This experiment provided perhaps the most

compelling evidence of solar influences on decay rates. A large solar flare occurred that

appears to be correlated with a perturbation in the measured decay of the Mn sample

during the same time period [33]. Care was taken to eliminate possible flare-induced

environmental effects to reach the conclusion that the dip in the decay rate was caused

by the solar flare. The flare also serendipitously may have revealed information about

the form of the perturbation. When the dip in the decay data occurred, Purdue was

on the night side of the planet, meaning that whatever particle was responsible for the

perturbation must have traveled through the Earth unaffected. Particles that best fit

this description are neutrinos. It was proposed that the perturbation comes from a

novel neutrino-neutrino interaction. The magnitude of the perturbation would depend

on the flux of neutrinos at the experiment location. The flux of solar neutrinos falls

off as 1/R2, matching the behavior of the BNL and PTB experiments. It is presumed

that the physical process that creates solar flares also creates a burst of neutrinos,

accounting for the dip during the December 2006 solar flare.

1.3 Organization of this Work

The remainder of this work proceeds as follows. Chapter 2 will review the early

experiments and modern torsion balance experiments that searched for equivalence

principle violations, and fifth force. Chapter 3 will be our attempt to reconcile the

Eötvös results with the Eöt-Wash results by modeling a general force in each experi-

ment. Chapter 4 will investigate whether the Microscope Experiment can measure

a background wind force. Beginning with Chapter 5, we switch gears, and begin

consider the time-varying nuclear decay rates. Chapter 5 will give a review of the

experiments showing oscillations of one year and we tabulate relevant date. In Chap-
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ter 6 we consider two possibilities for perturbing the decay rates and consider their

ramifications. In Chapter 7, we consider the perturbation due to the Pauli blocking

of background neutrinos. Chapter 8 will summarize the results and give suggestions

for future work. Finally, the work ends with several Appendices containing math

computations that might be of interest to the reader, but that may distract from the

flow of the main chapters.
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2. THE EÖTVÖS EXPERIMENT: FROM EQUIVALENCE

PRINCIPLE VIOLATION TO FIFTH FORCE SEARCHES

2.1 Equivalence Principle Violation

Today, we associate the Eötvös experiment with fifth force searches, but it has it’s

roots in searches for violations of the universality of free fall (UFF), today referred to

as the weak equivalence principle (WEP). Tests for the violation of UFF have their

origin of the rolling ball tests of Galileo, but it was the work of Isaac Newton that

allowed a mathematical description of the problem. Newton’s second law of motion

relates the acceleration, ~a, of an object of mass, mI , to the force, ~F applied as shown

in Eq. (2.1),

mI~a = ~F . (2.1)

Newton’s Law of universal gravitation states that the force of gravity on an object is

proportional to the local gravitational field, ~g(~r), with the proportionality constant

being the mass, mG,

~Fgrav = mG~g(r). (2.2)

We can combine Eqs. (2.1) and (2.2) to describe the motion of a body in the local

gravitational field, where mI is defined as the inertial mass and mG is defined as the

gravitational mass.

mI~a = mG~g(r). (2.3)

Both sides of this equation have a mass term, and the question can be posed as to

whether these masses are the same. The inertial mass has its origin in a body’s

resistance to its acceleration, while gravitational mass comes from coupling to the

gravitational field. Galileo’s experiments on the universality of free fall tell us that

the two masses should be identical, but Galileo’s experiments have a very limited
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precision and we cannot guarantee the conclusions beyond that precision. Therefore,

we label the two masses as mI and mG and consider other experiments.

Fig. 2.1. Schematic of Newton’s Pendulum Experiment. Reproduced from [7].

2.2 Pre-Eötvös Experiments

2.2.1 Double Pendulum - Newton and Bessel

Isaac Newton himself performed the first test of the weak equivalence principle [1].

His experiment consisted to two pendulums with the same length and mass, but

constructed with different materials. The dynamics of the pendulums are given by

mI,j`
2θ̈j = −mG,jg` sin θj, (2.4)

θ̈j = −mG,j

mI,j

g

`
sin θj, (2.5)

= −Ωj sin θj, (2.6)

where j = 1, 2 refer to the two test masses.
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The periods of the pendulums are

Tj =
2π

Ω
= 2π

√
mI,j

mG,j

√
`

g
. (2.7)

Hence, the shift in the periods due to the appearance of the fifth force interactions is

given by
∆T12
T

=

√
mI,1

mG,1

−
√
mI,2

mG,2

, (2.8)

where T the unperturbed period. If we now introduce the common parameterization

for the WEP violation,

mG,j = mI,j (1 + κj) , (2.9)

then we can finally write the relative WEP violation parameter in terms of the mea-

sured period difference

∆κ12 = −2
∆T12
T

. (2.10)

.

Newton performed the dual pendulum experiment and found a limit of the WEP

parameter of ∆κ12 ≤
∣∣∣ 1
1,000

∣∣∣, while Bessel repeated the experiment and extended the

lower bound to ∆κ12 ≤
∣∣∣ 1
60,000

∣∣∣ (Reported in [2]).

2.2.2 The Guyòt Experiment

The next evolution of WEP violation experiments was the experiment of Guyòt,

shown in Fig. 2.3. The motivation behind this experiment is the fact that when

suspended, a plumb bob points in the direction of the total force vector. This is not

simply towards the center of the Earth, but slightly displaced due to the centrifugal

force from the Earth’s rotation. Thus, the angle of the bob will be determined by an

inertial term (centrifugal) and a gravitational term, so a WEP violation can result in

different materials hanging at different angles.

We will work in a North-East-Down frame, as shown in Fig. 2.2. The N̂ vector

points from the local location towards the North Pole of the Earth, D̂ points toward

the center of Earth, and Ê points toward the East, completing a right-handed vector
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X̂

Ŷ

Ẑ

N̂

Ê

D̂

L

λ

Fig. 2.2. Representation of the N-E-D reference frame.

set. The X-Y-Z and N-E-D frames are related by a 3-2 rotation through the angles of

longitude and latitude, respectively. The longitude and latitude do not change. The

X-Y-Z frame is an Earth fixed frame which rotates relative to the inertial frame with

a rate

~ω = Ω⊕ẑ = Ω⊕cλN̂ − Ω⊕sλD̂, (2.11)

where cλ = cosλ and sλ = sinλ. The total force on the plumb bob is

~Ftot = mGgND̂ −mI~ω × ~ω ×
(
−R⊕ ~D

)
=

(
mGgN −mIR⊕Ω2

⊕c
2
λ

)
D̂ −mIR⊕Ω2

⊕cλsλN̂ (2.12)

= FtotcβD̂ − FtotsβN̂ ,

where we introduced the magnitude of the total force and the angle β between the

total force and the D̂ vector. Then,

tan β =
mIR⊕Ω2

⊕cλsλ
mGgN −mIR⊕Ω2

⊕c
2
λ

. (2.13)
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Since the inertial component is much smaller than the gravitational component,

we can simplify the denominator and approximate tan β ≈ β, so that

β ≈ mIR⊕Ω2
⊕cλsλ

mGgN

= (1− κ)
R3
⊕Ω2
⊕

GM⊕
cλsλ. (2.14)

We see that the presence of κ makes β composition-dependent, so that comparing

two materials, we find

∆β = −∆κ
R3
⊕Ω2
⊕

GM⊕
cλsλ. (2.15)

The Guyòt experiment, shown in Fig. 2.3, consisted of a pendant suspended over

a vat of mercury. The surface of the mercury will align perpendicular to its local

vertical, so ∆β is a measure of the angle that the pendant makes with the mercury

normal, visualized using the reflection of the pendant on the mercury surface. While

Guyòt initially found a nonzero ∆β, he eventually concluded that he was finding a

null result.

2.2.3 The Torsion Balance and the Eötvös Experiment

The next step forward with in the study of the weak equivalence principle was

the introduction of the torsion balance. Originally built to measure very small elec-

trostatic and gravitational forces between objects, the sensitivity of torsion balances

proved to be very useful in the study of inertial and gravitational masses.

The simplest torsion balance, shown if Fig. 2.4, essentially consists of two of

Guyòt’s pendants. Instead of trying to find a difference in their hanging angles as in

Eq. 2.15, the pendants are hung from a rigid bar that is suspended by a stiff wire.

The difference in accelerations felt by the two pendants results in a torque about the

wire, causing the wire to twist, which is easier to observe than the relative angle of

the two pendulums.
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Fig. 2.3. The Guyòt experiment. Reproduced from [7].

One drawback of the torsion balance is that any intrinsic twist in the fiber can

give a false positive. This problem can be mitigated by taking two measurements 180

degrees apart; the intrinsic twist will give a contribution in the same direction for

both measurements, while the actual signal will switch sign. Taking the difference of

the two signals will then eliminate the intrinsic twist.

The Eötvös experiment of Eötvös, Fekete, and Pekár (EPF), was the first experi-

ment to use torsion balances to attempt to observe a WEP violation. Lorand Eötvös

(1848-1919) was a Hungarian physicist, considered to be a very careful experimen-

talist. Eötvös began his experiments in 1889, reporting a ∆κ < 1/20, 000, 000. He

returned to the problem in 1904, performing a set of observations until 1909. He used

a variety of materials and compared most to a copper standard. Interestingly, Eötvös
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Fig. 2.4. Schematic of a two mass torsion balance. Reproduced from [7].

did not publish his results. In fact, the results were published by his aides in 1922

after Eötvös passed away in 1919.

A drawing of the torsion balances used by Eötvös is shown in Fig. 2.5. This

specific design has some drawbacks. In addition to intrinsic twist, gravity gradients

can also masquerade as positive WEP signals and must be dealt with carefully. If we

consider the drawing of the Eötvös balance, we see that the two masses are held at

two vertical heights, which makes the balance susceptible to vertical gradients. The

fact that the balance only has a twofold symmetry means that it is susceptible to

gradients in the plane of the balance as well. While modern experiments go to great

lengths to eliminate gravity gradients, the Eötvös torsion balance was specifically

designed to measure gravity gradients. His balance was originally built to measure

gradients in order to locate gravitational anomalies associated with buried oil fields.

To eliminate the gravity gradients inherent in measurements, Eötvös was forced to
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Fig. 2.5. Drawing of the torsion balance used in EPF experiment [2].

combine measurements in multiple directions and with multiple materials, a process

that will be described in Chapter 3.
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2.2.4 Post-Eötvös: Roll, Krotkov, and Dicke

In 1964, Roll, Krotkov, and Dicke (RKD) performed a torsion balance experiment

to improve the limits on WEP violation as found by Eötvös. Mindful of some of the

drawbacks of the Eötvös balance, RKD designed their balance to eliminate as much

of the gravity gradients as possible. They used three samples, two identical and one

of a different composition mounted on the corners of an equilateral triangle which

eliminated the in plane gradients. The three masses were also at the same height,

eliminating the vertical gravity gradients. To combat the intrinsic twist in the wire,

previous experiments were forced to rotate the torsion balance 180 degrees, which

introduced noise and error into the measurements. To avoid that noise, RKD use the

Sun as the source of the gravitational field instead of the Earth. The rotation of the

Earth then moves the source from one side of the apparatus to the other, allowing

RKD to eliminate intrinsic twist in the wire by subtracting measurements taken 12

hours apart, with no need to move the apparatus. RKD were able to achieve results

on the order of ∆κ . 10−11 for gold-aluminum and copper-lead chloride.

2.3 Weak Equivalence Principle and Fifth Forces

In 1955, Lee and Yang [3] showed that an additional force coupling to baryon

number could appear as an apparent violation of WEP, which implied that all of

the experiments mentioned above could be recast as searches for extra forces. To

see this consider that any search for short range forces will require samples being

brought close together. While the samples can be kept electrically neutral to avoid

electromagnetic forces, we cannot eliminate the gravitational field. So as we consider

the physics of the experiment we must include both the Newtonian gravity and a
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Fig. 2.6. Drawing of the torsion balance used in the RKD experiment
[4]. The three masses arranged at the corner of the triangle eliminate
gravity gradients that were intrinsic to The EPF measurements.

possible non-gravitational fifth-force. The potential energy of such a system, where

the additional interaction is in the form of a simple Yukawa, it given by

VN(~r) = −Gmimj

r
, (2.16)

V5(~r) = ±f 2Q5iQ5j

r
e−r/λ. (2.17)
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The sign on V5 depends on the interaction (attractive for scalar and tensor, attractive

for vector). The total potential energy of the system is then

Vtot(~r) = VN(~r) + V5(~r)

= −Gmimj

r
± f 2Q5iQ5j

r
e−r/λ

= −Gmimj

r

(
1∓ f 2Q5iQ5j

Gmimj

e−r/λ
)

= −Gmimj

r

(
1 + αije

−r/λ) , (2.18)

with

αij = ∓f
2Q5iQ5j

Gmimj

= ∓Q5i

µi

Q5j

µj
ξ = ∓q5iq5jξ, (2.19)

µk =
mk

mH

, (2.20)

ξ =
f 2

Gm2
H

. (2.21)

In our original Yukawa potential, the “fifth force charge” Q5k; however, since we

will be comparing the accelerations of different particles, the actual ”charge” is more

appropriately Q5k/mk. So, we rewrite the particle masses in terms of the hydrogen

mass (mk = µkmH) so that our ”proper” fifth force charge, q5k = Q5k/µk, becomes

unitless.

Taking the gradient of Eq. (2.18), we can find the total force acting on the sample

~Ftot = −∇Vtot = −Gmimj

r2
r̂
[
1 + αij

(
1 +

r

λ

)
e−r/λ

]
. (2.22)

Using the definition of the local gravitational field

~g(r) = −Gmi

r2
r̂,

we then have

~Ftot = mj~a = mj

[
1 + αij

(
1 +

r

λ

)
e−r/λ

]
~g. (2.23)

Comparing Eqs. (2.3) and (2.23), we can write the ratio of the effective gravitational

mass and the inertial mass as

mG

mI

= 1 + κ =
[
1 + αij

(
1 +

r

λ

)
e−r/λ

]
. (2.24)
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We can also write Eq. (2.22) as

~Ftot(~r) = −G(r)
mimj

r2
r̂ (2.25)

G(r) = G∞

[
1 + αij

(
1 +

r

λ

)
e−r/λ

]
. (2.26)

Here, the Yukawa factor e−r/λ appears to modify Newton’s gravitational constant.

There remains the composition dependence in αij, so different experiments would ob-

tain different results. However, Eq. (2.26) is still valid for composition independent-

forces. Any WEP-violation experiments, or variable-G - experiments, are also inher-

ently searches for short-range fifth forces. The variable-G experiments are not covered

in this work, but we mention their presence for the sake of completeness.

2.3.1 A Reanalysis of the Eötvös Experiment

The 1955 work of Lee and Yang eventually led Fischbach et. al [7] to undertake

a reanalysis of Eötvös Experiment to look for evidence of fifth forces. Their model

assumed a baryon-number dependent Yukawa potential

V5 = ξ

(
B

µ

)
i

(
B

µ

)
⊕

e−R⊕/λ

r
. (2.27)

Since some of the samples were molecules comprised of different atoms, care had to

be taken when defining B/µ. The total baryon number and total mass for the entire

sample was simply the baryon number and mass for each atom multiplied by the

number of atoms of that species

B

µ
=

∑k
i=1 niBi∑k
i=1 niµi

. (2.28)

It should be noted that EPF would never have been able to search for this force

as the concepts of baryon number and Yukawa potentials would not be introduced

until the 1930’s and 1950’s, respectively.

Fischbach et. al began by translating the EPF paper from German to English.

They then compiled the Eötvös’ measured values of ∆κ for the various samples, which

are tabulated in Table 2.1.
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Table 2.1.
Measurements of ∆κ from EPF [2] and calculations of ∆(B/µ) from
Fischbach et al. [34] used in the curve fitting.

Samples 109∆κ 105∆(B/µ)

Magnalium-Pt 4± 1 +50.0

Brass-Pt 1± 2 +93.2

Cu-Pt 4± 2 +94.3

Ag-Fe-SO4 0 0.0

CuSO4 (dissolution) 2± 2 0.0

Snakewood-Pt −1± 2 −50.9

Asbestos-Cu −3± 2 −74.0

CuSO4· 5H2O-Cu −5± 2 −85.7

CuSO4 (sol’n)-Cu −7± 2 -146.3

H2O-Cu −10± 2 −171.8

Tallow-Cu −6± 2 −203.1

If we compare the torque expected from a WEP violation to the torque expected

from a fifth force signal, we can relate the measured values of ∆κ to the computed

values of ∆(B/µ)

∆κ =

[
f 2ε(R⊕/λ)

Gm2
H

(
B

µ

)
⊕

]
∆

(
B

µ

)
(2.29)

= a∆

(
B

µ

)
+ b.

Here ε(R⊕/λ) is the spatial dependence of the Yukawa potential integrated over

the source (Earth). In the second line we have introduced arbitrary parameters a and

b that can be determined from a curve fit of the ∆κ-∆(B/µ) data. The parameter a

then relates the strength of the interaction f to its length scale λ, while parameter b

should be nominally zero.
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Fig. 2.7. Plot of ∆κ vs ∆(B/µ) for the Eötvös experiment. The solid
line shows the linear curve fit of the data. The data are listed in
Table 2.1. The plot was reproduced from [35].

The plot of the ∆κ-∆(B/µ) data along with its curve fit is shown in Fig. 2.7. In

their initial paper, Fischbach et al. determined from the fit

a = (5.65± 0.71)× 10−6

b = (0.48± 0.64)× 10−9

χ2 = 2.1 (5 degrees of freedom),
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while in [35] the values were updated to

a = (4.51± 0.56)× 10−6

b = (0.47± 0.55)× 10−9

χ2 = 10.4 (9 degrees of freedom).

We note that the updated value of the constant a differs from zero by eight

standard deviations, while b is consistent with zero. Fischbach et. al concluded that

this result supported the existence of an unseen force coupling to baryon number. This

conclusion prompted a large number of experiments over the last 30 years to test for

WEP violations or to directly search for new forces (See Fischbach and Talmadge [35]

for a discussion of the various experiments). Two of the most prominent groups are the

Eöt-Wash group of the University of Washington and the Microscope collaboration.

Their experiments will be discussed below.

2.3.2 Eöt-Wash (E-W) Experiment

The original Eöt-Wash [8] experiment was performed near a hill on the University

of Washington Campus. The choice of placing the apparatus near a local mass dis-

tribution may seem odd (EPF placed their apparatus in the basement of a building),

but the local mass may actually lead to higher sensitivities. The gravitational force,

and any Yukawa force with the Earth as a source point in the down (D̂) direction.

If we aligned the fiber of the torsion balance with the down direction as well, these

forces would not be able to cause a torque as torsion balances are sensitive only to

forces in the plane of the balance. Due to the centripetal force arising from the Earth’s

rotation, the fiber is instead aligned along the local vertical which deviates from down

by the small angle β. Thus, a portion of the gravitational and Earth Yukawa forces

end up lying in the plane of the torsion balance, but they are suppressed by a factor

of sin β which is small. Alternatively, a force in the North or East directions is sup-

pressed by cos β which is approximately one. Thus, most modern experiments use a
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large local mass distribution (a hill or mountain) or laboratory masses in searches for

WEP violations and fifth forces.

A drawing of the torsion balance used by Eöt-Wash is shown in Fig. 2.8 with

a enlarged picture of the test masses shown in Fig. 2.9. This balance has numer-

ous improvements over previous experiments. Instead of using three mass like RKD,

Eöt-Wash used four masses (two aluminum, two beryllium). This makes the balance

insesitive to higher gravitational multipole moments. The test masses themselves are

machined in such a way as to have the same exterior dimensions despite differences

in density. The entire balance is placed inside a vacuum chamber to eliminate air

currents and the chamber is mounted on a turntable. The turntable helps to elimi-

nate the intrinsic twist in the wire without having to move the apparatus by hand,

introducing more noise. This rotation also helps with data analysis as they can simply

read off the Fourier component with the same frequency as the turntable. Finally,

the entire apparatus was given a thin coating in gold to eliminate electrostatic forces.

2.3.3 The MICROSCOPE Experiment

Microscope is a satellite-based experiment that launched in 2016 to search for a

WEP violation using the Earth as a source. The space environment eliminates many

of the disturbances seen on the Earth, and a special control system compensates for

the drag due to the atmosphere, solar wind, and solar radiation pressure, giving the

experiment an expected accuracy of 10−15.

The experiment uses a differential accelerometer consisting of two concentric cylin-

ders of differing materials. As the satellite and test masses orbit the Earth, the control

system eliminates the unwanted forces, allowing the center of mass of the three bodies

to follow a geodesic path. This orbit is roughly circular , so the inertial force balances

gravity. This is true for the center of mass of the three bodies, but not for each body

individually. The test masses will drift from the total center of mass and we can
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Fig. 2.8. A drawing of the torsion balance used by Eöt-Wash taken
from [35]. This entire apparatus was mounted on a turntable and
rotated to eliminate any intrinsic twist in the fiber.

measure its acceleration, which will be proportional to the WEP violating factor κ.

Thus ∆κ can be obtained by taking the difference in the two accelerometers.

The initial results from the Microscope experiment are consistent with no WEP

violation. As with the other experiments discussed the Microscope experiment

could also be tasked with searching for new forces. These searches did not reveal any

new forces and served to put stricter limits on the strength and range of any short-

range force. We will revisit this idea and consider a short-range force that couples
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q1 q1

q2q2

Fig. 2.9. A drawing of the four masses attached to the fiber. Two of
the masses are aluminum while the other two are beryllium.

to a background field through which the apparatus moves. This will be discussed in

Chapter 4.

2.3.4 The Eötvös Experiment Endures

In the years since the reanalysis of the Eötvös experiment by Fischbach et. al,

many experiments have been performed to confirm or deny Fischbach’s conclusion

that buried in Eötvös’ data is evidence for a baryon-number dependent forces. Most

of these experiments returned null results. Some gave positive results, but these were

either attributed to errors or were set aside in favor of results such as Eöt-Wash.

During this time though, no one has made a convincing argument to explain why

Eötvös’ results correlate with baryon number. Some of the suggested explanations

include convection, thermal gradients, the presence of the experimenter affecting the

balance, and changes in gravity gradients due to rainfall. These suggestions have

been refuted based in part on Eötvös’ reputation as a meticulous experimenter, but
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also based on the fact that none of these suggested causes would yield an eight

standard deviation correlation with baryon number. Bod et. al [36] defend Eötvös’

reputation as an careful scientist, specifically mentioning the torsion balance being

placed on stone piers sunk deep into the ground to limit vibrations, and the balance

being allowed to equilibrate for two days before taking measurements. The most

fascinating evidence is the data point for Ag-Fe-SO4, which was taken before and

after the reaction

Ag2SO4 + 2FeSO4 → 2Ag + Fe2(SO4)3. (2.30)

The reactants were suspended in liquid, but after the reaction, the silver precipitates

out and collects on the bottom of the container. This would change the center of mass

of the sample, and would couple to the vertical gravity gradients giving a different

answer for the reactants and products. The fact that this data point is quoted at zero

leads observers to believe that Eötvös and his associates were careful enough to catch

this complication, and implies that they should have also recognized and corrected

for most systemic perturbations.

Unfortunately, as everyone involved in the Eötvös experiment has long since passed

away, and an exact re-enactment of the experiment is impossible 100 years later, we

can never know with absolute certainty that a systemic effect was not present in the

experiment. Nevertheless, the eight standard deviation affect is striking.

It should be noted that no group has ”repeated” the Eötvös experiment. All

modern experiments used custom-made balances specifically designed to eliminate

spurious forces. Perhaps this is the key: although it seems almost blasphemous to

describe an experiment as ”too well-designed”, perhaps there is a force that can

survive Eötvös’ software program, but is eliminated by the additional symmetries of

the RKD and Eöt-Wash experiments. This concept will be explored in more detail

in Chapter 3.
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3. A RE-REANALYSIS OF THE EÖTVÖS EXPERIMENT:

ARBITRARY FORCES IN TORSION BALANCE

EXPERIMENTS

In order to determine whether a force exists that could appear in the Eoẗvös experi-

ment, but not in later experiments such as Eöt-Wash, we need the most general form

of the response to both apparatus to outside forces.

We introduce a baryon-number dependent force of the form

F5i = ξGmqqsource

[
F5i(~R) +D5ij(~R)rj + · · ·

]
, (3.1)

where q is the baryon to mass number ratio, q is the average charge of the source,

~R is the coordinate of the pivot point of the torsion balance, and ~r is the coordinate

relative to the pivot point. Eq. (3.1) is the Taylor series expansion of the force. If we

introduce the potential V5 = ξGmqqsourceV5, then F5i is the gradient of V5, while D5ij

would be the gradient of F5i: F5i = −∂iV5; D5ij = ∂jF5i = −∂i∂jV5, and ∂i = ∂
∂Ri

.

To simplify the notation we introduce f5i = ξGqsourceF5i and d5ij = ξGqsourceD5ij.

Since we are treating our torsion balance experiments as extended sources, we need

to allow the fifth force charge to vary with position, and we replace the mass with the

differential mass: mq → q(~r)dm(~r). We can then write the force on the differential

element as

dF5i = q(~r)dm(~r) (f5i + d5ijrj + · · · ) , (3.2)

where we have further introduced f5i = F5i(~R)/mH , d5ij = D5ij(~R)/mH , and q =

B/µ. We make q a function of ~r to allow the composition of the sample to change

with position. In addition to the fifth force, we will also have the gravitational force

and the centripetal force due to the rotation of the Earth. The total force is then

Ftot,i = Fgrav,i + Fcent,i +mqf5i +mq`jd5ij, (3.3)
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where m =
∫

dm, q =
∫
q(~r)dm(~r)/m, and `j =

∫
q(~r)rjdm(~r)/mq,

We must now introduce the reference frames relevant to the system. The first

reference frame is a local North-East-Down (N-E-D) Frame for our experiments as

shown in Figure 3.1. Our forces are defined in this frame. In the N-E-D frame, we

align the axis of the torsion balance with the local vertical, found by hanging a plumb

bob. We can then define the rotation axis of the torsion balance as

b̂3 =
~Ftot∣∣∣~Ftot∣∣∣ . (3.4)

X̂

Ŷ

Ẑ

N̂

Ê

D̂

L

λ

Fig. 3.1. Representation of the N-E-D reference frame.
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The b̂1-axis will be along the axis of the torsion balance when the twist is zero.

We also want this axis to be roughly towards North, so we can define the b̂2-axis, the

axis perpendicular to the torsion balance as

b̂2 =
b̂3 × N̂∣∣∣b̂3 × N̂ ∣∣∣ . (3.5)

Finally, we introduce the B̂1 axis

b̂1 = b̂2 × b̂3. (3.6)

The B̂ frame is space-fixed in the zero-twist orientation of the beam and makes

an angle β with the NED frame. We also introduce the body fixed x-y-z frame which

is a rotation of the b̂ frame by the angle θ.

N̂ = x̂cφcβ − ŷsφcβ − ẑsβ
Ê = x̂sφ + ŷcφ (3.7)

D̂ = x̂cφsβ − ŷsφsβ + ẑcβ (3.8)

The frame relations are also sketched in Figure 3.2.

To find the torque on the torsion balance, we use the Lagrangian formulation

d

dt

(
∂L
∂φ̇

)
− ∂L
∂φ

= Qφ, (3.9)

where Qφ is the generalized force,

dQφ =
∂ri
∂φ
· dF5i

= q(~r)dm(~r)

(
f5i
∂ri
∂φ

+ d5ijrj
∂ri
∂φ

)
= q(~r)ρ(~r)dV

(
f5i
∂ri
∂φ

+ d5ijrj
∂ri
∂φ

)
. (3.10)
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3
ˆ ˆ,b z

1b̂

ŷ
2b̂

x̂

2
ˆˆ ,E b

N̂

1b̂

D̂





3b̂

Fig. 3.2. The transformations from the NED frame to the body frame.

Table 3.1.
Notation differences between EPF (Ref. [2]) and this work.

This work EPF Description

I K Moment of Inertia

Vgrav −U Gravitational Potential Energy

δ L Observation scale length

L `a Torsion Balance length

m Ma Sample mass

β ε Plumb bob angle

σ m = nE − nW East-West observation difference

We note that ~r is the same ~r that is in Eq. (3.1), the position of the particle in the

N-E-D frame. This position can be written as

~r = xx̂+ yŷ + zẑ

= (xcφcβ − ysφcβ − zsβ) N̂ + (xsφ + ycφ) Ê

+ (xcφsβ − ysφsβ + zcβ) D̂. (3.11)
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It is straightforward to show that the derivative of ~r is

∂~r

∂φ
= (−xsφcβ − ycφcβ) N̂ + (xcφ − ysφ) Ê + (−xsφsβ − ycφsβ) D̂. (3.12)

3.1 Eötvös Experiment

We begin with the Eötvös experiment. We note that we have made changes to

the notation of Ref. [2] to be more consistent with current practices. A summary of

the changes are listed in Table 3.1. The Eötvös experiment contained two masses.

Mass 1 was located along the balance towards North and hung a distance h below the

balance. Mass 2 was located along the balance towards the South and was located at

the same height as balance.

x̂

ŷ

ẑ

q2

q1

h

LL

φ

Fig. 3.3. Side view of the Eötvös Experiment.
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ŷ

ẑ

x̂

q2

L

L

φ

Fig. 3.4. Top view of the Eötvös Experiment.

We can write the product of the fifth force charge and the mass density of the

Eötvös experiment as

q (~r) ρ (~r) = q1δ (x− L) δ (y) δ (z − h) + q2δ (x+ L) δ (y) δ (z) . (3.13)
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The torque on the fiber can then be written as

T5 = −(q1 − q2)mLcβsφf5x + (q1 − q2)mLcφf5y − (q1 − q2)mLsβsφf5z
−(q1 + q2)

I

2
c2βcφsφd5xx + q1mLhsβcβsφd5xx

+(q1 + q2)
I

2
cβc

2
φd5yx − q1mLhsβcφd5yx

−(q1 + q2)
I

2
cβsβcφsφd5zx + q1mLhs

2
βsφd5zx

−(q1 + q2)
I

2
cβs

2
φd5xy + (q1 + q2)

I

2
cφsφd5yy − (q1 + q2)

I

2
sβs

2
φd5zy

−(q1 + q2)
I

2
cβsβcφsφd5xz − q1mLhc2βsφd5xz

+(q1 + q2)
I

2
sβc

2
φd5yz + q1mLhcβcφd5yz

−(q1 + q2)
I

2
s2βcφsφd5zz − q1mLhsβcβsφd5zz. (3.14)

We also need the gravitational and centrifugal force vectors. We have two ways

of proceeding. First, we could form the Lagrangian using the gravitational potential

energy and the effective potential energy for the centripetal force. Then we expand

the Lagrangian to second order in ~r, and finally apply Eq. (3.9) to find the torque.

Alternatively, we can use the results from Eq. (3.14) to quickly deduce the remaining

terms, as Eq. (3.14) was written generically. We simply let q1 = q2 = 1, fi =

−∂iVgrav + Fcent,i/m, and dij = −∂i∂jVgrav where Vgrav is the gravitational potential.

Then, the Newtonian contribution to the torque is

Tgrav = Ic2βcφsφ∂
2
xVgrav −mLhsβcβsφ∂2xVgrav − Icβ(c2φ − s2φ)∂x∂yVgrav

+mLhsβcφ∂x∂yVgrav + 2Icβsβcφsφ∂x∂zVgrav +mLh(c2β

−s2β)sφ∂x∂zVgrav − Icφsφ∂2yVgrav − Isβ(c2φ − s2φ)∂y∂zVgrav

−mLcβcφ∂y∂zVgrav + Is2βcφsφ∂
2
zVgrav +mLhsβcβsφ∂

2
zVgrav. (3.15)

Letting sβ be small and approximating cβ ≈ 1, the gravitational terms simplify to
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Tgrav ≈
[
−I(∂2yVgrav − ∂2xVgrav)

s2φ
2
− I∂x∂yVgravc2φ

+mLh∂x∂zVgravsφ −mLh∂y∂zVgravcφ
]

−I∂y∂zVgravsβc2φ +mLh∂x∂yVgravsβcφ

−mLh∂2xVgravsβsφ + I∂x∂zVgravsβs2φ

+ +mLh∂2zVgravsβsφ (3.16)

The first five terms (in square brackets) match Eötvös (up to a sign) while the re-

maining five terms do not appear in Eötvös, as they contain sβ multiplied by gravity

gradients which are neglected.

The total torque can then be written as

Ttotal =

[
− I(∂2yVgrav − ∂2xVgrav)

s2φ
2
− I∂x∂yVgravc2φ

+mLh∂x∂zVgravsφ −mLh∂y∂zVgravcφ
]

+

[
q+
I

4
(d5yy − d5xx) s2φ + q+

I

4
(d5yx + d5xy) c2φ

−q1mLhd5xzsφ + q1mLhd5yzcφ − q−mLf5zsβsφ
+q+

I

4
(d5yz + d5zy) sβc2φ − q1mLhd5yxsβcφ

+q1mLhd5xxsβsφ − q+
I

4
(d5xz + d5zx) sβs2φ

−q1mLhsβsφd5zz
]

+

[
− q−mLf5xsφ + q−mLf5ycφ

+q+
I

4
(d5yx − d5xy) + q+

I

4
(d5yz − d5zy) sβ

]
. (3.17)

To easily compare our results to those of Eötvös, we adopt a convention where we

list the “Eötvös” terms in the first set of square brackets, followed by our new “non-

Eötvös” terms. We will include the f5z term with the ”Eötvös” terms since the force

of interest WEP-violating gravitational term in the D̂-direction. It follows that the

first two lines of Eq. (3.17) match the terms in Eq. (8) of Ref. [2].
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We now introduce the measure scale value n, the constant n0, the length L, and

the torsion constant τ of the wire and write the torque as

Ttotal = τ
n0 − n

2δ
(3.18)

Then, the measured quantity is

n0 − n =

[
− δ
τ
I(∂2yVgrav − ∂2xVgrav)s2φ −

2δ

τ
I∂x∂yVgravc2φ

+
2δ

τ
mLh∂x∂zVgravsφ −

2δ

τ
mLh∂y∂zVgravcφ

]
+

[
q+
δ

τ

I

2
(d5yy − d5xx) s2φ + q+

δ

τ

I

2
(d5yx + d5xy) c2φ

−q1
2δ

τ
mLhd5xzsφ + q1

2δ

τ
mLhd5yzcφ − q−

2δ

τ
mLf5zsβsφ

+q+
δ

τ

I

2
(d5yz + d5zy) sβc2φ − q1

2δ

τ
mLhd5yxsβcφ

+q1
2δ

τ
mLhd5xxsβsφ − q+

δ

τ

I

2
(d5xz + d5zx) sβs2φ

−q1
2δ

τ
mLhd5zzsβsφ

]
+

[
−q−

2δ

τ
mLf5xsφ + q−

2δ

τ
mLf5ycφ

+q+
δ

τ

I

2
(d5yx − d5xy) + q+

δ

τ

I

2
(d5yz − d5zy) sβ

]
. (3.19)

Eötvös measured the scale value in four orientations: North (N), East (E), South

(S), and West (W). When the apparatus is pointed toward the north, the deflection

of the balance from North is simply due to the intrinsic twist in the wire. Thus,

φN = ∆α (3.20)

sφN = ∆α (3.21)

s2φN = 2∆α (3.22)

cφN = 1 (3.23)

c2φN = 1 (3.24)
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Then,

n0 − nN =

[
−2δ

τ
I(∂2yVgrav − ∂2xVgrav)∆α−

2δ

τ
I∂x∂yVgrav

+
2δ

τ
mLh∂x∂zVgrav∆α−

2δ

τ
mLh∂y∂zVgrav

]
+

[
q+
δ

τ
I (d5yy − d5xx) ∆α + q+

δ

τ
Id5yx

−q1
2δ

τ
mLhd5xz∆α + q1

2δ

τ
mLhd5yz

+q+
δ

τ
Id5yzsβ − q1

2δ

τ
mLhd5yxsβ

]
+

[
−q−

2δ

τ
mLf5x∆α + q−

2δ

τ
mLf5y

]
. (3.25)

When the apparatus is pointed in the Eastern direction, the deflection of the beam

balance from North is due to a combination of the intrinsic twist, the difference in the

measurements nN and nE, and a factor of π
2

due to physically moving the balance.

Thus

φE = ∆α +
nN − nE

2δ
+
π

2
(3.26)

sφE = 1 (3.27)

s2φE = −2

(
∆α +

nN − nE
2δ

)
(3.28)

cφE = −
(

∆α +
nN − nE

2δ

)
(3.29)

c2φE = −1 (3.30)
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n0 − nE =

[
2δ

τ
I(∂2yVgrav − ∂2xVgrav)

(
∆α +

nN − nE
2δ

)
+

2δ

τ
I∂x∂yVgrav

+
2δ

τ
mLh∂x∂zVgrav +

2δ

τ
mLh∂y∂zVgrav

(
∆α +

nN − nE
2δ

)]
+

[
−q+

δ

τ
I (d5yy − d5xx)

(
∆α +

nN − nE
2δ

)
− q+

δ

τ
Id5xy

−q1
2δ

τ
mLhd5xz − q1

2δ

τ
mLhd5yz

(
∆α +

nN − nE
2δ

)
−q−

2δ

τ
mLf5zsβ − q+

δ

τ
Id5zysβ

+q1
2δ

τ
mLhd5xxsβ − q1

2δ

τ
mLhd5zzsβ

]
+

[
−q−

2δ

τ
mLf5x − q−

2δ

τ
mLf5y

(
∆α +

nN − nE
2δ

)]
(3.31)

Rotating the apparatus to point in the Southern direction yields

φS = ∆α +
nN − nS

2δ
+ π (3.32)

sφS = −
(

∆α +
nN − nS

2δ

)
(3.33)

s2φS = 2

(
∆α +

nN − nS
2δ

)
(3.34)

cφS = −1 (3.35)

c2φS = 1, (3.36)

and,

n0 − nS =

[
−2δ

τ
I(∂2yVgrav − ∂2xVgrav)

(
∆α +

nN − nS
2δ

)
− 2δ

τ
I∂x∂yVgrav

−2δ

τ
mLh∂x∂zVgrav

(
∆α +

nN − nS
2δ

)
+

2δ

τ
mLh∂y∂zVgrav

]
[
+q+

δ

τ
I (d5yy − d5xx)

(
∆α +

nN − nS
2δ

)
+ q+

δ

τ
Id5yx

+q1
2δ

τ
mLhd5xz

(
∆α +

nN − nS
2δ

)
− q1

2δ

τ
mLhd5yz

+q+
δ

τ
Id5yzsβ + q1

2δ

τ
mLhd5yxsβ

]
+

[
q−

2δ

τ
mLf5x

(
∆α +

nN − nS
2δ

)
− q−

2δ

τ
mLf5y

]
. (3.37)
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Finally, rotating the apparatus to point in the Western direction yields

φW = ∆α +
nN − nW

2δ
+

3π

2
(3.38)

sφW = −1 (3.39)

s2φW = −2

(
∆α +

nN − nW
2δ

)
(3.40)

cφW =

(
∆α +

nN − nW
2δ

)
(3.41)

c2φW = −1 (3.42)

and,

n0 − nW =

[
2δ

τ
I(∂2yVgrav − ∂2xVgrav)

(
∆α +

nN − nW
2δ

)
+

2δ

τ
I∂x∂yVgrav

−2δ

τ
mLh∂x∂zVgrav −

2δ

τ
mLh∂y∂zVgrav

(
∆α +

nN − nW
2δ

)]
+

[
−q+

δ

τ
I (d5yy − d5xx)

(
∆α +

nN − nW
2δ

)
− q+

δ

τ
Id5xy

+q1
2δ

τ
mLhd5xz + q1

2δ

τ
mLhd5yz

(
∆α +

nN − nW
2δ

)
+q−

2δ

τ
mLf5zsβ − q+

δ

τ
Id5zysβ

−q1
2δ

τ
mLhd5xxsβ + q1

2δ

τ
mLhd5zzsβ

]
+

[
q−

2δ

τ
mLf5x + q−

2δ

τ
mLf5y

(
∆α +

nN − nW
2δ

)]
. (3.43)
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To eliminate the contribution from gravity gradients, we combine measurements.

We start by introducing σ = nN − nS, where

σ =

[
−2δ

τ
I(∂2yVgrav − ∂2xVgrav)

(
nN − nS

2δ

)
−2δ

τ
mLh∂x∂zVgrav

(
2∆α +

nN − nS
2δ

)
+

4δ

τ
mLh∂y∂zVgrav

]
+

[
q+
δ

τ
I (d5yy − d5xx)

(
nN − nS

2δ

)
+ q1

4δ

τ
mLhd5yxsβ

+q1
2δ

τ
mLhd5xz

(
2∆α +

nN − nS
2δ

)
− q1

4δ

τ
mLhd5yz

]
+

[
q−

2δ

τ
mLf5x

(
2∆α +

nN − nS
2δ

)
− q−

4δ

τ
mLf5y

]
=

4δ

τ
mLh

(
∂y∂zVgrav − q1d5yz − q−

f5y
h

)
−2δ

τ
I
[
(∂2yVgrav − ∂2xVgrav)−

q+
2

(d5yy − d5xx)
] nN − nS

2δ

−2δ

τ
mLh

(
∂x∂zVgrav − q1d5xz − q−

f5x
h

)(
2∆α +

nN − nS
2δ

)
+q1

4δ

τ
mLhsβd5yx. (3.44)
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Then, we now introduce ν = nE − nW , where

ν =

[
2δ

τ
I(∂2yVgrav − ∂2xVgrav)

(
nE − nW

2δ

)
−4δ

τ
mLh∂x∂zVgrav −

2δ

τ
mLh∂y∂zVgrav

(
2∆α +

2nN − nE − nW
2δ

)]
+

[
−q+

δ

τ
I (d5yy − d5xx)

(
nE − nW

2δ

)
+ q−

4δ

τ
mLf5zsβ

+q1
4δ

τ
mLhd5xz + q1

2δ

τ
mLhd5yz

(
2∆α +

2nN − nE − nW
2δ

)
−q1

4δ

τ
mLhd5xxsβ + q1

4δ

τ
mLhd5zzsβ

]
+

[
q−

4δ

τ
mLf5x + q−

2δ

τ
mLf5y

(
2∆α +

2nN − nE − nW
2δ

)]
= −4δ

τ
mLh

(
∂x∂zVgrav − q1d5xz − q−

f5x
h

)
+

2δ

τ
I
[
(∂2yVgrav − ∂2xVgrav)−

q+
2

(d5yy − d5xx)
] nE − nW

2δ

−2δ

τ
mLh

(
∂y∂zVgrav − q1d5yz − q−

f5y
h

)(
2∆α +

2nN − nE − nW
2δ

)
+q−

4δ

τ
mLsβf5z + q1

4δ

τ
mLhsβd5zz − q1

4δ

τ
mLhsβd5xx. (3.45)

Equations (3.44) and (3.45) match Eqs. (14) and (15) in the original EPF work [2].

In the final step of both equations, however, we have deviated from our convention

of grouping the Eötvös contributions at the beginning of the equation, to instead

group the terms in a way as to make the next step of the analysis a bit easier,

the computation of ν/σ. In the original analysis of Eötvös, ν contained the WEP-

violating term of interest along with gravity-gradient terms, while σ contained only

gravity-gradients. Therefore, they used σ to attempt to remove the gravity gradients.

To this end, Eötvös divided ν by σ. When we computed Eqs. (3.44) and (3.45), we
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intentionally grouped like terms. Here, we take this a step further and introduce some

additional parameters. Let

τ
σ

2δ
= C1 − C2

nN − nS
2δ

− C3

(
2∆α +

nN − nS
2δ

)
+ C4sβ, (3.46)

τ
ν

2δ
= −D1 +D2

nE − nW
2δ

−D3

(
2∆α +

2nN − nE − nW
2δ

)
+D4sβ,

(3.47)

with

C1 = 2mLh

(
∂y∂zVgrav − q1d5yz − q−

f5y
h

)
, (3.48)

C2 = I
[
(∂2yVgrav − ∂2xVgrav)−

q+
2

(d5yy − d5xx)
]

, (3.49)

C3 = mLh

(
∂x∂zVgrav − q1d5xz − q−

f5x
h

)
, (3.50)

C4 = 2q1mLhd5yx, (3.51)

D1 = 2mLh

(
∂x∂zVgrav − q1d5xz − q−

f5x
h

)
= 2C3, (3.52)

D2 = I
[
(∂2yVgrav − ∂2xVgrav)−

q+
2

(d5yy − d5xx)
]

= C2, (3.53)

D3 = mLh

(
∂y∂zVgrav − q1d5yz − q−

f5y
h

)
=

1

2
C1, (3.54)

D4 = 2q−mLf5z + 2q1mLhd5zz − 2q1mLhd5xx. (3.55)

We chose the definitions of the C’s and D’s so that they would all have the same

approximate magnitude. We assume, for the moment, that the d5’s are roughly the

same order of magnitude as the gravity gradients. We also assume that ~f5/h is of

this same magnitude. We know that h and L are of the same order, thus I and mLh

are as well. We now consider Eqs. (3.46) and (3.47). We know that ∆α and sβ are
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small, and we know that δ is larger than nN , nE, nS, and nW , so we can define the

lowest order approximations of σ and ν as

τ
σ

2δ
≈ C1 = 2mLh

(
∂y∂zVgrav − q1d5yz − q−

f5y
h

)
, (3.56)

τ
ν

2δ
≈ −D1 = −2mLh

(
∂x∂zVgrav − q1d5xz − q−

f5x
h

)
. (3.57)

Based on the preceding discussion, we can compute our equivalent to Eötvös’ ν/σ

term

ν

σ
=
−D1 + C2

nE−nW
2δ
− C1

(
∆α + 2nN−nE−nW

4δ

)
+D4sβ

C1 − C2
nN−nS

2δ
−D1

(
∆α + nN−nS

4δ

)
+ C4sβ

=
−D1 + C2

nE−nW
2δ
− C1

(
∆α + 2nN−nE−nW

1δ

)
+D4sβ

C1

(
1− C2

C1

nN−nS
2δ
− D1

C1

(
∆α + nN−nS

4δ

)
+ C4

C1
sβ

)
≈

(
−D1

C1

+
C2

C1

nE − nW
2δ

−
(

∆α +
2nN − nE − nW

4δ

)
+
D4

C1

sβ

)

×
(

1 +
C2

C1

nN − nS
2δ

+
D1

C1

(
∆α +

nN − nS
4δ

)
− C4

C1

sβ

)

≈ −D1

C1

+
C2

C1

nE − nW
2δ

−
(

∆α +
2nN − nE − nW

4δ

)
+
D4

C1

sβ

−D1

C1

C2

C1

nN − nS
2δ

−
(
D1

C1

)2(
∆α +

nN − nS
4δ

)
+
D1

C1

C4

C1

sβ. (3.58)

We can use our approximations (3.56) and (3.57) to simplify Eq. (3.58). In every

term except the first term, we can replace D1/C1 with −ν/σ and we can replace C1

with τσ/2δ (we are essentially trying to eliminate C1 and solve for D1/C1 in terms

or σ and ν). We also use the definitions σ = nN − nS and ν = nE − nW to write

ν

σ
= −D1

C1

+
2C2

τ

ν

σ
−
(
ν2

σ2
+ 1

)
∆α− 2nN − nE − nW

4δ

−ν
2

σ2

σ

4δ
+

2δ

στ
D4sβ −

ν

σ

2δ

στ
C4sβ. (3.59)
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We need to further simplify this term. Since f5i/h and d5ij are much smaller than the

gravity gradient terms, we can approximate σ and ν as simply the gravity gradient

terms at lowest order.

τ
σ

2δ
≈ 2mLh∂y∂zVgrav, (3.60)

τ
ν

2δ
≈ −2mLh∂x∂zVgrav. (3.61)

Next, we can approximate the first term in Eq. (3.59) as

D1

C1

=

(
∂x∂zVgrav − q1d5xz − q− f5xh

)(
∂y∂zVgrav − q1d5yz − q− f5yh

)
=

(
∂x∂zVgrav − q1d5xz − q− f5xh

)
∂y∂zVgrav

(
1− q1d5yz + q−

f5y
h

∂y∂zVgrav

)−1

≈ ∂x∂zVgrav
∂y∂zVgrav

− q1d5xz + q−
f5x
h

∂y∂zVgrav
+
∂x∂zVgrav
∂y∂zVgrav

q1d5yz + q−
f5y
h

∂y∂zVgrav

≈ ∂x∂zVgrav
∂y∂zVgrav

− q1
1

∂y∂zVgrav

(
d5xz −

∂x∂zVgrav
∂y∂zVgrav

d5yz

)
+
q−
h

1

∂y∂zVgrav

(
f5x −

∂x∂zVgrav
∂y∂zVgrav

f5y

)
. (3.62)

We can use Eq. (3.60) to replace (∂y∂zVgrav)
−1 in terms of σ and (∂x∂zVgrav/∂y∂zVgrav)

with (−ν/σ) in the second and third terms. Again, we cannot make this substitution

in the first term as our ultimate goal is to eliminate the gravity gradients, so we are

trying to solve for (∂x∂zVgrav/∂y∂zVgrav) in terms of D1/C1 which is approximately

ν/σ from before. Then,

D1

C1

≈ ∂x∂zVgrav
∂y∂zVgrav

− q1
4δ

στ
mLh

(
d5xz +

ν

σ
d5yz

)
+q−

4δ

στ
mL

(
f5x +

ν

σ
f5y

)
, (3.63)
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and we can substitute Eq. (3.63) into Eq. (3.59) to yield

ν

σ
=

[
−∂x∂zVgrav
∂y∂zVgrav

+
2I

τ

ν

σ

(
∂2yVgrav − ∂2xVgrav

)
−
(
ν2

σ2
+ 1

)
∆α

−ν
2

σ2

σ

4δ
− 2nN − nE − nW

4δ

]
+

[
q−

4δ

στ
mLsβf5z + q1

4δ

στ
mLh

(
d5xz +

ν

σ
d5yz

)
−q+

I

τ

ν

σ
(d5yy − d5xx)− q1

4δ

στ
mLhsβ

(
d5xx +

ν

σ
d5yx − d5zz

)]
+

[
q−

4δ

στ
mL

(
f5x +

ν

σ
f5y

)]
. (3.64)

We have now returned to our convention of grouping the Eötvös terms first. We notice

that we still have unwanted and unknown gravity gradient terms in our equations.

However, the rest of the terms are known. (Several terms are multiplied by σ and

ν, but at this point, those are experimentally known.) To eliminate the gradients,

the sample q1 is replaced with the sample q′1 and the measurements are repeated and

a new term ν′

σ′
is computed. We then subtract the two calculated values (assuming

ν and σ do not change much between the measurements) and we cancel the gravity

gradients to lowest working order.

ν

σ
− ν ′

σ′
=

[
−
(
ν2

σ2
+ 1

)
(∆α−∆α′)

]
+

[
∆q

4δ

στ
mLsβf5z

]
+

[
∆q

4δ

στ
mL

(
f5x +

ν

σ
f5y

)
−∆q

I

τ

ν

σ
(d5yy − d5xx)

+∆q
4δ

στ
mLh

(
d5xz +

ν

σ
d5yz

)
−∆q

4δ

στ
mLhsβ

(
d5xx +

ν

σ
d5yx − d5zz

)]
. (3.65)

In Eq. (3.65), ∆q = q1 − q′1 and the first bracket corresponds to Eq. (18) of

EPF [2]. The ultimate goal of the Eötvös experiment was to measure the differences
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in the WEP violating parameters for the different substances, referred to as κa − κ′a,
and from Eq. (19) of [2],

κa − κ′a =
στ

4σmLgsβ

(
ν

σ
− ν ′

σ′

)
+

στ

4σmLgsβ

(
ν2

σ2
+ 1

)
(∆α−∆α′) . (3.66)

This parameter, which is represented by η in modern works and referred to as the

“Eötvös Parameter,” can be written in terms of our fifth force by combining Eq. (19)

of [2] with Eq. (3.65) above:

ηEPF = ∆κsβ =
στ

4σmLg

(
ν

σ
− ν ′

σ′

)
+

στ

4σmLg

(
ν2

σ2
+ 1

)
(∆α−∆α′)

= ∆q
f5z
g
sβ + ∆q

1

g

(
f5x +

ν

σ
f5y

)
−∆q

L

g

ν

2δ
(d5yy − d5xx)

+∆q
h

g

(
d5xz +

ν

σ
d5yz

)
−∆q

h

g
sβ

(
d5xx +

ν

σ
d5yx − d5zz

)
. (3.67)

3.2 The Eöt-Wash Experiment

The Eöt-Wash experiment of Stubbs et al. [8] consists of four masses, two of

each sample. They form two perpendicular fifth-force dipoles and an overall mass

quadrupole.

The fifth-force charge times the mass density can be written as

q (~r) ρ (~r) = q1m [δ (x− L) δ (y) δ (z) + δ (x) δ (y − L) δ (z)]

+q2m [δ (x+ L) δ (y) δ (z) + δ (x) δ (y + L) δ (z)] . (3.68)

For the E-W experiment, we start with Eq. (3.17) for the torque, then let φ →
φ+π/2, and add it to the original expression, and if we set h = 0, then the fifth force

torque, T5 is given by,
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q1 q1

q2q2

Fig. 3.5. Side view of the Eöt-Wash Experiment.

T5 = −(q1 − q2)mL(sφ + cφ)f5x − (q1 − q2)mL(sφ − cφ)f5y − (q1 − q2)mLsβ(sφ + cφ)f5z

−(q1 + q2)
I

2
(d5yx − d5xy) + (q1 + q2)

I

2
sβ(d5yz − d5zy)

= −(q1 − q2)mL
√

2 (f5x + sβf5z) cos
(
φ− π

4

)
− (q1 − q2)mL

√
2f5y sin

(
φ− π

4

)
−(q1 + q2)

I

2
(d5yx − d5xy) + (q1 + q2)

I

2
sβ(d5yz − d5zy). (3.69)

To eliminate any inherent twist in the fiber we define T (φ) = T5(φ)− T5(φ+ π),

T = −(q1 − q2)mL2
√

2 (f5x + sβf5z) cos
(
φ− π

4

)
− (q1 − q2)mL2

√
2f5y sin

(
φ− π

4

)
= −(q1 − q2)mL2

√
2
√

(f5x + sβf5z)
2 + f 2

5y cos (φ+ δ) , (3.70)

δ = tan−1
(

f5y
f5x + sβf5z

)
− π

4
. (3.71)
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We can identify the acceleration difference ∆a = (q1 − q2)
√

2
√

(f5x + sβf5z)
2 + f 2

5y,

and then, the Eötvös parameter becomes

ηEW =
∆a

g
= ∆q

√
2

g

√
(f5x + sβf5z)

2 + f 2
5y, (3.72)

ηEPF = ∆q
f5z
g
sβ + ∆q

1

g

(
f5x +

ν

σ
f5y

)
−∆q

L

g

ν

2δ
(d5yy − d5xx)

+∆q
h

g

(
d5xz +

ν

σ
d5yz

)
−∆q

h

g
sβ

(
d5xx +

ν

σ
d5yx − d5zz

)
. (3.73)

3.3 Scalar-Vector Force Model

Based on the results above, we can specify a set of requirements for a fifth force

model aimed at accounting for the EPF data:

1. The interaction is proportional to baryon number, B,

2. The interaction is short range, on the order of 1 m . λ . 1 km,

3. The torque due to the force, f5i, is zero in the E-W experiment,

4. The torque due to the gradients, d5ij, is nonzero in the EPF experiment.

The first requirement is trivial to implement. The second requirement can be

fulfilled by a Yukawa potential, meaning a massive force-carrier. The third and fourth

requirements need additional attention. Requiring the the force to be small at some

point (item 3), but not another (item 4) is the same as requiring that the potential

has a minimum at that point. As an example, we can consider the quadratic potential

V = 1
2
mω2 (x− x0)2. This potential has a minimum at x = x0. At this point, the

force, Fx = mω2 (x− x0), vanishes, while the derivative of the force, dxx = mω2 is

nonzero, fulfilling requirements three and four. The question now becomes how do

we obtain a quadratic potential from elementary particle physics. We recall that
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an arbitrary function Taylor expanded about an equilibrium point behaves like a

quadratic function. Although the Yukawa potential does not have an equilibrium

point, if we introduce a second Yukawa with opposite sign, we have a function that

indeed does contain a minimum. Microscopically this function would arise if the

interaction were due to the exchange of scalar and vector bosons coupling to baryon

number, whose potential energies naturally enter with opposite signs,

VS(~r) = −Gmimjqiqj
ξS
r
e−r/λS , (3.74)

VV (~r) = Gmimjqiqj
ξV
r
e−r/λV . (3.75)

where qk = Bk/µk is our Baryon-number dependent charge and, we have used the

notation introduced in Chapter 2 and Fischbach et al. [7].

We can now integrate over the mass distributions. The Earth serves as the sole

source for the Eötvös experiment, and one of two sources for the Eöt-Wash exper-

iment. We model the Earth as a uniform sphere with the experimental apparatus

located a distance z above the surface. We let mj → dmj = ρ⊕d3r′ and then we

integrate over the volume of the Earth (k = {V, S})

Vk = ±Gmiqiξk

∫
d3r′ρ (~r′) q⊕ (~r′)

e−|~r−~r
′|/λk

|~r − ~r′| . (3.76)

The uniform sphere assumption means we can take ρ⊕ and q⊕ to be constant. Then,

using spherical coordinates,

Vk = ±Gρ⊕miqiq⊕ξk

∫ 2π

0

dφ′
∫ R⊕

0

dr′r′
2

×
∫ π

0

dθ′ sin θ′
e−
√
r′2+r2−2rr′ cos θ′/λk

√
r′2 + r2 − 2rr′ cos θ′

. (3.77)

Let u =
√
r′2 + r2 − 2rr′ cos θ′, then du = rr′ sin θ′dθ′/

√
r′2 + r2 − 2rr′ cos θ′, and

integrating over φ′, we have

Vk = ±2π
Gρ⊕mi

r
qiq⊕ξk

∫ R⊕

0

dr′r′
∫ r+r′

|r−r′|
du e−u/λk

= ±2π
Gρ⊕miλk

r
qiq⊕ξk

∫ R

0

dr′r′
(
e−|r−r

′|/λk − e−(r+r′)/λk
)

. (3.78)
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Since r = R⊕ + z, r − r′ is always positive, we can drop the absolute value. Then,

Vk = ±2π
Gρ⊕miλk
R⊕ + z

qiq⊕ξke
−(R⊕+z)λk

∫ R⊕

0

dr′r′
(
er
′/λk − e−r′/λk

)
= ±2π

Gρ⊕miλ
3
k

R⊕ + z
qiq⊕ξke

−(R⊕+z)λk

×
[(

r′

λk
− 1

)
er
′/λk +

(
r′

λk
+ 1

)
e−r

′/λk

]∣∣∣∣r′=R⊕
r′=0

= ±2π
Gρ⊕miλ

3
k

R⊕ + z
qiq⊕ξke

−(R⊕+z)λk

×
[(

R⊕
λk
− 1

)
eR⊕/λk +

(
R⊕
λk

+ 1

)
e−R⊕/λk

]
= ±3

2

GM⊕mi

R⊕ + z
qiq⊕ξk

(
λk
R⊕

)2

e−z/λk

×
[(

1− λk
R⊕

)
+

(
1 +

λk
R⊕

)
e−2R⊕/λk

]
. (3.79)

Since the apparatus is close to the surface (z � R⊕), and the force is short range

(λk � R⊕), we can simplify Eq. (3.79) to read,

Vk = ±3

2

GM⊕mi

R⊕
qiq⊕ξk

(
λk
R⊕

)2

e−z/λk . (3.80)

The total potential and force are then given by,

Vtot =
3

2

GM⊕mi

R⊕
qiq⊕

[
ξV

(
λV
R⊕

)2

e−z/λV − ξS
(
λS
R⊕

)2

e−z/λS

]
, (3.81)

~Ftot =
3

2

GM⊕mi

R2
⊕

qiq⊕

[
ξV

(
λV
R⊕

)
e−z/λV − ξS

(
λS
R⊕

)
e−z/λS

]
ẑ

=
3

2
gNmiqiq⊕

(
ξV e

−z/λV − ξSe−z/λS
)
ẑ, (3.82)

where we have introduced the gravitational acceleration due to Earth, and we have

defined ξV = ξV (λV /R⊕). We must stop and consider the unit vector ẑ in Eq. (3.82).

When we integrated over Earth, we used a standard spherical reference frame and

our apparatus was located radially away from the center of the Earth at a distance

of R + z. In our N-E-D frame (Figure 3.1) this direction corresponds to −D̂. Thus

we must replace ẑ with −D̂ in Eq. (3.82).

The second source for the E-W experiment was a hill located north of the appara-

tus. We model this hill as an infinite half plane with the apparatus located a distance
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z above the plane. We assume that the hill has the same q and ρ as the Earth and

we write the mass element at dmj = ρ⊕r
′dr′dφ′dz′ in cylindrical coordinates. Then,

Vk = ±Gρ⊕miqiq⊕ξk

∫ 2π

0

dφ′
∫ 0

−∞
dz′

×
∫ ∞
0

dr′ r′
e−
√
r′2+(z−z′)2/λk√

r′2 + (z − z′)2
. (3.83)

Let u =
√
r′2 + (z − z′)2, then du = r′dr′/

√
r′2 + (z − z′)2, and (integrating over φ′)

Vk = ±2πGρ⊕miqiq⊕ξk

∫ 0

−∞
dz′
∫ ∞
|z−z′|

du e−u/λk

= ±2πGρ⊕miqiq⊕ξkλk

∫ 0

−∞
dz′ e−|z−z

′|/λk .

Since z is positive and z′ is always negative, we can drop the absolute value and write

Vk = ±2πGρ⊕miqiq⊕ξkλke
−z/λk

∫ 0

−∞
dz′ ez

′/λk

= ±2πGρ⊕miqiq⊕ξkλ
2
ke
−z/λk

= ±3

2
gNmiqiq⊕ξkλke

−z/λk , (3.84)

where we introduced some of the simplifications from before. We see that the potential

for the hill and the Earth have the same form. This makes sense since the short range

of the force means the apparatus only “sees” the Earth in its immediate vicinity, and

at that distance the Earth appears flat like an infinite plane. The force from the hill

will then be equal to Eq. (3.82), but we must be careful about symbols and vectors

again. In our model, the apparatus was located a distance z above the semi-infinite

plane. In reality, the apparatus was a distance x to the south, so we must replace z

in Eq. (3.82) with x and ẑ with −N̂ .

The forces from the Earth and the hill are then

~F⊕ = −3

2
gNmiqiq⊕

(
ξV e

−z/λV − ξSe−z/λS
)
D̂, (3.85)

~Fhill = −3

2
gNmiqiq⊕

(
ξV e

−x/λV − ξSe−x/λS
)
N̂ . (3.86)

We can find the equilibrium position of these functions by setting the force equal

to zero,
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0 =
3

2
gNmiqiq⊕

(
ξV e

−zequil/λV − ξSe−zequil/λS
)
ẑ

=
(
ξV e

−zequil/λV − ξSe−zequil/λS
)

→ zequil =
λSλV
λS − λV

ln

(
ξV
ξS

)
=

(
1

λV
− 1

λS

)−1
ln

(
ξV
ξS

)
. (3.87)

Since zequil or xequil must be positive, we have two possibilities

1

λV
− 1

λS
> 0,

ξV
ξS

> 1 (3.88)

1

λV
− 1

λS
< 0,

ξV
ξS

< 1 (3.89)

3.3.1 Case 1: ξV > ξS, λS > λV

We can rewrite the positivity conditions as

ξS
ξV

< 1, (3.90)

λV
λS

< 1. (3.91)

We introduce parameters α1 = ξS/ξV and ζ1 =

lambdaV /λS which are bounded between zero and one. We can then write the relevant

phenomenological coefficients from Eq. (3.1) as

f5x = −3

2
gNq⊕ξV

(
e−x/λV − α1e

−xζ1/λV
)

, (3.92)

f5z = −3

2
gNq⊕ξV

(
e−z/λV − α1e

−zζ1/λV
)

, (3.93)

d5zz =
3

2
gNq⊕

ξV
λV

(
e−z/λV − α1ζ1e

−zζ1/λV
)

. (3.94)
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The Eötvös parameters in the EPF and E-W experiments are then

ηEPF
3
2
∆qq⊕ξV

= ηEPF = −sβ
[
e−zEPF /λV − α1e

−zEPF ζ1/λV
]

+sβ
h

λV

[
e−zEPF /λV − α1ζ1e

−zEPF ζ1/λV
]

, (3.95)

ηEW
3
2
∆qq⊕ξV

= ηEW =
√

2

∣∣∣∣− (e−xEW /λV − α1e
−xEW ζ1/λV

)
−sβ

(
e−zEW /λV − α1e

−zEW ζ1/λV
)∣∣∣∣. (3.96)

We note that ξV simply scales the effect and so we move it to the left side of the

equation. Now we only have three parameters in which to search: λV , α1, and ζ1.

We can plot Eq. (3.95) and (3.96) for various values of α1, ζ1, and λV . In our

calculations, we used sβ = 1.73×10−3, h = 21.2 cm [2], xEW = 10 m, zEPF = zEW = 1

m. The plots are shown in Figure 3.95 for EPF and Figure 3.7 for E-W. We note

that in Figure 3.95, the results are negative for small α1 values and eventually become

positive as α1 increases. As α1 measures the relative strengths of the two Yukawas, we

would expect α1 to have a large effect on the sign of the response. Figure 3.96 starts

positive and would eventually go negative if not for the absolute value in Eq. (3.96);

instead it grows positive. The zeros of ηEW occur at higher λV for increasing α1 and

fixed ζ1 and occur at lower λV for increasing ζ1 at fixed α1.

We notice in Figure 3.96 that for every α1 and ζ1, there exists a λV value where

the signal is zero, which was one of the requirements for this force (see discussion

at the beginning of Section 3.3). In fact, we can find these values analytically. By

setting ηEW = 0 in Eq. (3.96), we solve for α1 as a function of λV and ζ1

α1 =
e−xEW /λV + sβe

−zEW /λV

e−xEW ζ1/λV + sβe−zEW ζ1/λV
(3.97)

The top plot of Figure 3.8 shows the values of α1 which give ηEW = 0 for various

values of ζ1 and λV . Interestingly, α1 remains less than or equal to one, as required

but our initial definition. The bottom plot shows the value of ηEPF for each triplet

(λV , ζ1, α1). As before the answer in negative, and its magnitude peaks around λV ≈
(2− 3) m for the whole range of ζ1, with the actual value decreasing as ζ1 increases.
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Fig. 3.6. Reduced Eötvös parameter for the Eötvös experiment for
various values of α1, ζ1, and λV .
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Fig. 3.7. Reduced Eötvös parameter for the Eöt-Wash experiment for
various values of α1, ζ1, and λV .
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eroes of EWZ 

Fig. 3.8. The top plot shows zeros of ηEW . The bottom plot shows
the values of ηEPF at the zeros of ηEW .

3.3.2 Case 2: ξS > ξV , λV > λS

We now write the positivity conditions as

ξV
ξS
≤ 1, (3.98)

λS
λV

≤ 1text. (3.99)

We introduce parameters α2 = ξV /ξS and ζs = λSλV which are bounded between

zero and unity.
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We can then write the relevant phenomenological coefficients from Eq. (3.1) as

f5x = −3

2
gNq⊕ξS

(
α2e

−xζ2/λs − e−x/λS
)

, (3.100)

f5z = −3

2
gNq⊕ξS

(
α2e

−zζ2/λS − e−z/λS
)

, (3.101)

d5zz =
3

2
gNq⊕

ξS
λS

(
α2ζ2e

−zζ2/λS − e−z/λS
)

. (3.102)

The Eötvös parameters in the EPF and E-W experiments are then given by

ηEPF
3
2
∆qq⊕ξS

= ηEPF = −sβ
[
α2e

−zEPF ζ2/λS − e−zEPF /λS
]

+sβ
h

λS

[
α2ζ2e

−zEPF ζ2/λS − e−zEPF /λS
]

, (3.103)

ηEW
3
2
∆qq⊕ξS

= ηEW =
√

2

∣∣∣∣− (α2e
−xEW ζ2/λs − e−xEW /λS

)
−sβ

(
α2e

−zEW ζ2/λS − e−zEWλS
)∣∣∣∣. (3.104)

We notice that ηEW will be unchanged due to the absolute value, while ηEPF will

change sign. These conclusions are supported by Figures 3.9 and 3.10.

We once again search for the zeros of ηEW , given by Eq. (3.105). The results

are shown in Figure 3.11 and we obtain the same result, but with ηEPF having the

opposite sign

α2 =
e−xEW /λS + sβe

−zEW /λS

e−xEW ζ2/λS + sβe−zEW ζ2/λS
. (3.105)

3.4 Discussion

We conclude this chapter with an estimate of ξS. We choose Case 2 since that will

give us the positive ηEW . From Figure 3.11, we select, ζ2 = 0.5, λS = 2.5m, which

gives α2 = 0.2 and ηEPF = 10−3. We also note that ηEPF = ∆κsβ ≈ 10−9 [7]. Then

we can write ξS as
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Fig. 3.9. Reduced Eötvös parameter for the Eötvös experiment for
various values of α2, ζ2, and λS.



57

0.125  0.250 

0.375  0.500 

0.625  0.750 

0.875  1.000 

EW

EW

EW

EW

(m)S (m)S

(m)S (m)S

Fig. 3.10. Reduced Eötvös parameter for the Eöt-Wash experiment
for various values of α2, ζ2, and λS.
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Fig. 3.11. The top plot shows zeros of ηEW for Case 2. The bottom
plot shows value of ηEPF at the zeros of ηEW .

ξS =
R⊕
λS

ξS =
ηEPF

3
2
∆qq⊕ηEPF

R⊕
λS

(3.106)

ξV =
R⊕
λV

ξV =
R⊕
λV

α2ξS =
λS
λV

α2ξS = α2ζ2ξS

= α2ζ2
ηEPF

3
2
∆qq⊕ηEPF

R⊕
λS

(3.107)

From [7], ∆q ≈ 10−3 and q⊕ ≈ 1. We also note R⊕ = 6× 106m. Then we find
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ξS = 1600

ξV = 160

Solving for the coupling constant f 2
S,V = ξS,VGm

2
H

f 2
S = 2.98× 10−55 Jm = 9.42× 10−30~c

f 2
V = 2.98× 10−56 Jm = 9.42× 10−31~c
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4. FIFTH FORCES IN THE MICROSCOPE

EXPERIMENT

4.1 The MICROSCOPE Satellite

The Microscope spacecraft is a special type of spacecraft known as a ”drag-free”

spacecraft. Normally, spacecraft are subject to a variety of nongravitational pertur-

bations, include residual atmospheric drag, solar radiation pressure, and pressure due

to solar wind. Certain applications require a satellite to follow a purely gravitational

path, so the perturbations must be canceled out.

A second special feature of the Microscope satellite it’s special orbit known as

a sun synchronous orbit. A sun synchronous orbit is one that passes over a specific

part of the planet at the same time every day. Normally, a spacecraft orbit about the

Earth remains fixed in space, so as the Earth orbits the Sun, the spacecraft’s ground

track moves. A sun-synchronous orbit is a near polar orbit that takes advantage of the

Earth’s oblateness to perturb the orbital plane. By tuning the altitude and inclination

of the orbit, the perturbation can be set to 360o/yr. Thus, if the satellite orbital

plane is initially perpendicular to the Earth-Sun vector, it will precess approximately

one degree per day and remain perpendicular to the Earth-Sun vector. The sun

synchronous orbit keeps the solar perturbation in a constant location and it ensures

that the spacecraft is continuously illuminated by the Sun, eliminating heating effects

from the experiment.

4.2 Dynamics of Drag-Free Satellites

A drag-free satellite contains a second mass called a test mass located inside the

main spacecraft. This mass is ideally freely floating, but usually the test mass is
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lightly coupled to eliminate electrostatic effects. The perturbations described above

are all surface effects, so the test mass is shielded from theses forces by the body

of the main spacecraft. Thus the test mass will follow a purely gravitational path.

Hence, it is simply a matter of keeping the spacecraft centered on top of test mass,

and the satellite will follow a gravitational path as well. Centering the spacecraft is

accomplished by measuring the position of the test mass relative to the spacecraft and

using this measurement as feedback to control the spacecraft thrusters. A schematic

of the drag-free satellite is shown in Fig. 4.1

The Microscope satellite differs from a typical drag-free satellite is that Mi-

croscope has two test masses, not one. Only one mass is necessary to compensate

for drag; with two masses of different materials, we can not only compensate for drag,

but also search for composition dependent effects.

The dynamics of the satellite (subscript sat) and the test masses (subscript i) are

given by

mI,sat~asat = mG,sat~gN [~rsat]−
∑
i

~Fc,i + ~Fdrag + ~Fcon

+ξmI,satqsatq0 ~F5(~rsat), (4.1)

mI,i~ai = mI,i(~ai,sat + ~asat) = mG,i~gN [~ri] + ~Fc,i + ξmI,iqiq0 ~F5(~ri), (4.2)

where ~rk (~ak), k = sat, 1, 2 is the position (acceleration) vector of the satellite or

test mass, ~ai,sat is the acceleration of mass i relative to the satellite, ~Fc,i are couplings

between the satellite and the ith test mass, ~Fdrag is the drag force on the satellite, ~Fcon

is the control (thruster) force, ξmI,kqkq0 ~F5 is the fifth force acceleration acting on the

kth object due to source q0, and ~g[~r] is the gravitational force acting at location ~r. We

can make ~g[~r] as precise as we desire by going beyond the point particle approximation

by including higher harmonics of the Earth’s field. At a minimum we need to include

the J2 term to reproduce the sun synchronous orbit of the Microscope spacecraft.

The minimally precise gravitational field is then

~g(~r) = −GM
r3

~r + ~gJ2(~r), (4.3)
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Fig. 4.1. A one-dimensional schematic of a drag free satellite. If the
test mass moves forward relative to the spacecraft, the aft thrusters
fire, accelerating the spacecraft. If the test mass moves after relative
to the spacecraft, the froward thrusters fire, decelerating the space-
craft. This process generalizes to three dimensions

where, in inertial coordinates with ~r = xÎ + yĴ + zK̂,

gJ2,x = J2
x

r7

[
6z2 − 3

2

(
x2 + y2

)]
,

gJ2,y = J2
y

r7

[
6z2 − 3

2

(
x2 + y2

)]
,

gJ2,z = J2
z

r7

[
3z2 − 9

2

(
x2 + y2

)]
.

(4.4)
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Fig. 4.2. The two test masses for the Microscope satellite with fixed
orientation.The two masses drift due to a composition dependent force
or a WEP violation.

The test masses on the Microscope satellite consist of two concentric cylinders

of different radii. Each cylinder has a set of electrodes with corresponding electrodes

on the accelerometer housing. As the spacecraft orbits the Earth, any composition

dependent force (or gravity gradients) will cause the two cylinders to move relative

to each other, as shown in Fig. 4.2. As the cylinders move, the electrodes measure a

change in capacitance. This change is fed back into the electrodes to pull the mass

back into place. The feedback signals for the two cylinders are then averaged and

fed into the thruster controller for drag compensation, and the difference of the two

signals may show composition dependent forces.
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The force that is needed to reset the masses can be found by rearranging Eq. (4.2).

Using body-fixed coordinates, the test mass acceleration can be written as

~ai,sat = ~̈ri,sat + ~̇ωi × ~ri,sat + 2~ωi × ~̇ri,sat + ~ωi × ~ωi × ~ri,sat, (4.5)

where ~ωi is the angular velocity vector of the test mass relative to the inertial frame.

The coupling term, ~Fc,i is the coupling term and represents the electrodes that

are used to measure the position of the test masses and drive them back to their zero

positions. The amount of force exerted by the electrodes then represents the amount

of force acting on the test mass at a given moment. Solving for the coupling term

and dropping terms involving derivatives of ~ri,sat, we find

~ac,i =
~Fc,i
mI,i

= ~̇ωi × ~ri,sat + ~ωi × ~ωi × ~ri,sat + ~asat

−mG,i

mI,i

~gN(~ri)− ξqiq0 ~F5(~ri). (4.6)

Finally, we can take the difference of ~acoup,i in Eq. (4.6) for two different materials,

leading to final signal

~Γsignal =
∆~ac,i

2
=
κ2 − κ1

2
~g(~rsat) +

1

2
(T (∆~rtm,sat)− I(∆~rtm,sat))

+
q2 − q1

2
~adist(~rsat), (4.7)

T (∆~rtm,sat) = ~g(~rsat + ~rtm1,sat)− ~g(~rsat + ~rtm2,sat), (4.8)

where I(∆~rtm,sat) is the inertial tensor made from the cross products of the angular

velocities and accelerations of the test masses.

We can see that our signal contains three contributions: the first is the explicit

equivalence principle violating term, the second is due to gravitational and inertial

forces and a mismatch of the test mass positions, and the third is due to our assumed

composition-dependent force acting on the test masses. If we drop the third term,

our signal matches the signal obtained in Eq. (7) of Ref. [18].
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4.3 Data Analysis

Now that we have characterized the signal that would be seen by the Microscope

satellite due to an explicit WEP violation and a generic fifth force, we need to consider

the data analysis. The satellite’s orbit and spin produces a periodic signal, so it is

natural to focus on the power spectrum density (PSD) of the signal. Then, the

different frequencies present in the signal will appear as peaks in the PSD. Hence,

we must first determine which frequencies are predicted in our models of the forces,

and whether they are present in the Microscope data. As the WEP term is a

gravitational monopole, it will appear at a frequency of (forbit − frot), while the

gravity gradient term is a dipole term and will appear at 2(forbit − frot).
Since the PSD is a linear process, any scalar multiplying our function will simply

pass through the PSD,

PSD(∆~a) = ξ∆q q0PSD( ~F5). (4.9)

Here, PSD(∆~a) are the data from the Microscope analysis (in units of m/s?2/Hz1/2),

PSD( ~F5) (in units of m/s2/Hz1/2) can be determined from prior analysis, ∆q is a

known property of the test masses, and q0 can be estimated for the source. The

unknown parameter, ξ can then be determined via a linear fit. We first consider

the time dependence of F5. Then, we take the PSD of F5 and note the frequency

and the height of the peaks of the PSD. We then examine the same frequencies in

the published Microscope data, noting the peak heights there as well. We now

have a set of data points (PSD(∆~a)1,PSD(F5)1), (PSD(∆~a)2,PSD(F5)2), ... and can

perform a linear fit y = mx + b where yi = PSD(∆~a)i, xi = PSD(F5)i, the slope, a,

is ξ∆q q0 and the intersection, b is nominally zero. As an example consider Fig. 4.3

from Ref. [37].



66

Fig. 4.3. Simulated result of the differential acceleration of the STEP
Experiment [17]. The top plot shows the signal with the WEP vio-
lation due to ∆κ and the bottom plot lacks a WEP violation. The
difference is the slight peak at ω/ω0 = 3. The remaining peaks are
due to the orbit, gravity gradients, and effective spring constants. [17].
To test for WEP violation, we would look for the peak at 3ω0.

This method assumes a single scalar parameter multiplying F5(~r), but we can

generalize to parameter dependent forces F5(~r, βi), such as Yukawa forces or power

law forces,

~F(~r; β) =
r̂

r2
exp(−βr) (1 + βr) , (4.10)

~F(~r; β) = rβ, (4.11)

respectively. Here, we simply tabulate ξ∆qq0 versus β.

4.4 Drag Due to Background Particles

We consider here a force arising from the passage of the Microscope spacecraft

through background field. The test masses interact with the background field through

a short range force with scattering cross section σBB. The force acting on the test
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mass can be computed knowing the number of scattering events per unit time, Γ,

multiplied the change in momentum per event, ∆p,

F5 = ΓBB∆p. (4.12)

The number of events is given by the flux times the cross section (ΓBB = ΦBBσ)

and the flux is given by the number density times velocity (ΦBB = nBBv). We

assume maximum momentum transfer, so that ∆p = 2mBBv. The force is then given

by (introducing the mass density ρBB = nBBmBB),

F5 = 2σBBρBBV
2. (4.13)

This is the force on a single nucleon, and if we assume the coupling with the back-

ground field is identical for protons and neutrons, then the force on an atom introduces

a factor of baryon number, B. This force also opposes the direction of motion, so the

full, vector form of the force is

~F5,i = −2BiσBBρBBvi~vi

= −2mI,iqiσBB
ρBB
mH

vi~vi

= −2mI,iqiσBB
ρBB
mH

`∗
vi~vi
`∗

= −mI,iqiC5
~F(~r,~v, t). (4.14)

In the last line, we have introduced a constant C5,

C5 = 2σBB`
∗ρBB/mH , (4.15)

and the characteristic length, `∗, to make C5 dimensionless and give ~F the units of

acceleration. As expected, the force has the form of drag. The velocity, ~vi, is the

velocity of the test mass relative to a background particle field. We consider a two

possibilities: the background is stationary and non-rotating relative to the galaxy,

and the background co-rotates with the galaxy. The velocity of the ith test mass

relative to the sun or the galaxy can be broken up int multiple pieces

~Vi,Sun = ~Vi,sat + ~Vsat,Earth + ~VEarth,Sun, (4.16)

~Vi,gal = ~Vi,Sun + ~VSun,gal. (4.17)
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The first term, ~vi,sat is the velocity of the ith test mass relative to the satellite. This

number is extremely small and will be neglected. The second term, ~vsat,Earth, is the

velocity of the satellite relative to the Earth, i.e., the orbital velocity of the satellite.

The third term, ~vEarth,Sun is the orbital velocity of the Earth about the Sun. The

final term, ~vSun,gal, is the velocity of the Sun relative to the center of the galaxy.

This term is needed if we are considering motion through a background that does not

rotate relative to the galaxy, which we assume. (If the background does rotate with

the galaxy, this term is unnecessary). The components of the velocity are derived in

detail in Appendix B, and the total velocity is given in terms of orbital elements and

angular velocities as shown in equation (B.14).

4.5 Comparison with MICROSCOPE

4.5.1 Orbital Elements

In Appendix B, we exhibit the functional form of the velocities, but we also need

to find the actual values of the parameters. The velocity of the Sun through the

galaxy can be taken as a constant in the Earth-Centered Inertial (ECI) frame. For

the Earth, we have a set of orbital elements and their derivatives at the J2000 epoch.

We can then update the orbital elements using the time since J2000, and we can then

find the true anomaly using Kepler’s Equation.

We need the orbital elements for the spacecraft. We know that the desired orbit is

circular with a frequency of 0.16818×10−3 Hz [37]. Using this frequency, we compute

the semimajor axis of the spacecraft to be 700 km. Since the eccentricity of the orbit is

zero, the argument of periapsis is ill-defined, so we can simply set it to zero. Since we

will be propagating the system over several orbits, the initial phase of the spacecraft

is not important either, so we can set the initial true anomaly to zero. We are now

left with determining the initial longitude of the ascending node and inclination,

which we can estimate by using the fact that the spacecraft is in a Sun-synchronous

orbit. To maintain consistent solar heating, we assume that we want the orbit to
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be roughly perpendicular to the Earth-Sun line; this ensures that the spacecraft will

never pass into the Earth’s shadow. Therefore, we find the unit vector pointing from

the Sun to the Earth. Rotating into the ECI frame, this vector becomes the angular

momentum unit vector for the satellite orbit, allowing us to determine the longitude

of the ascending node. To find the initial inclination, we note that including the J2

term in the gravitational force causes a precession of the orbital plane (change in the

longitude of the ascending node) equal which (for a circular orbit) is given by

Ω̇ = − 3J2 cos i

2a7/2(GM)1/2
. (4.18)

Hence, if we know both the semimajor axis (a ≈ 7000 km), and also the desired rate

of change of the ascending node (360deg/year), we can find the required inclination

(i ≈ 98 deg). With this, we have a full set of orbital elements; to update the position

and velocity of the spacecraft, we update the true anomaly using Kepler’s Equation

and increase the longitude of the ascending node linearly.

4.5.2 Results and Discussion

The expected PSDs for our background particle field are shown in Figures 4.4 and

4.5. The spacecraft has an orbital frequency of 0.16818× 10−3 Hz and the spacecraft

rotational frequency was 2.0432× 10−3 Hz and 0.5885× 10−3 Hz, respectively, for the

two tests.

In Figure 4.4, the background field is fixed to the center of the galaxy and non-

rotation, so the velocity used in the PSD was given by Eq. (4.17). The left hand plot

has rotation frequency 2.0432×10−3 Hz and the right has 0.5885×10−3 Hz. We have

denoted the expected WEP violation as the red vertical line and the gravity gradient

line (at twice the WEP violation). In the right-hand plot, we see a number of peaks

about the central peak. The primary component of the velocity is the Sun relative

to the galaxy, which is constant in the inertial frame I-J-K. Hence, the solar velocity

enters at the satellite rotation rate, which we see. As our signal is proportional to

v2, we obtain significant mixing among the frequencies of the various orbits. These
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Fig. 4.4. The expected results for background particles fixed relative
to the galaxy. The left plot has satellite spin rate of 2.0432 × 10−3

Hz and the plot on the right has a spin rate of 0.5885 × 10−3 Hz, as
in Figure 4.6. The red and green lines show the locations of a WEP
violation and gravity gradient, respectively.

frequencies (along with higher harmonics) are represented by peaks to either side of

the central peak.

At first glance, it may seem that the left hand plot only contains one peak, but if

we look more closely, we can make out the other peaks on either side of the central

peak. The high rotation rate during this test drowns out most of the other frequencies

involved. As we stated before, to find our constant C5 we compare the amplitude of

the peaks in our plot to the amplitude ate the same frequency in Figure 4.6. However,

we do not see any peak around at ∼ 2× 10−3 for the left and (2− 6)× 10−4 for the

right plot in Figure 4.6. We conclude that if our signal is present its amplitude must

be less than the amplitude of the noise ∼ 10−10m/s2/H1/2 Comparing to the peak

height in Figure 4.4 gives

C5 < 10−10. (4.19)
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Fig. 4.5. The expected results for background particles that rotate
with the galaxy. The left plot has satellite spin rate of 2.0432× 10−3

Hz and the plot on the right has a spin rate of 0.5885 × 10−3 Hz, as
in Figure 4.6. The red and green lines show the locations of a WEP
violation and gravity gradient, respectively.

We repeat the analysis for Figure 4.5 where the background particle field co-rotates

with the galaxy. We see similar results between Figure 4.5 and Figure 4.5 just with

the peaks shifted because we no longer have the large, constant solar velocity in the

PSD. Once again, we conclude that since our peaks do not exceed the level of the

noise, it follows that

C5 < 10−9. (4.20)
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Fig. 4.6. The results from two different runs of the Microscope
Experiment [37]. The left plot has satellite spin rate of 2.0432× 10−3

Hz, the plot on the right has a spin rate of 0.5885×10−3 Hz, and both
plots have an orbital frequency of 0.16818× 10−3 Hz. The frequency
of an expected WEP violation is fEP . The gravity gradient signal is
located at 2fEP . Note the lack of peak at fEP , indicating no WEP
violation (to the level of the noise).
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5. TIME-VARYING NUCLEAR DECAY RATES:

REVIEW OF PAST EXPERIMENTS

We begin by introducing some notation. We are interested in considering the possi-

bility that some decay rates may oscillate with the distance from the Sun. To study

this possibility parameterize the decay rate in the form

Γ(t) = Γ0

{
1 + ξ

[
R0

R(t)

]2}
, (5.1)

where R(t) is the distance from the Sun, R0 is the reference distance (usually taken

to be 1 AU), ξ characterizes the time-dependence of the perturbation, and Γ0 is the

contribution to a β-decay rate from the weak interaction, and from time-independent

perturbations. The standard value of the decay rates, defined when R(t) = R0, is

given by,

Γave = ln 2/t1/2 = Γ0(1 + ξ), (5.2)

where t1/2 is the half-life. We can then write Γ(t) (for small ξ) as

Γ(t) = Γave

{
1 + ξ

[(
R0

R(t)

]2
− 1

)}
. (5.3)

In the following sections, we will review the experimental evidence suggesting cor-

relations between nuclear decay rates and the Earth-Sun distance, by compiling a list

of ξ values. It is convenient to consider normalized decay rates, which refer to data

where the exponential decay term has been removed. If the decay is purely exponen-

tial, the normalized decay rates should be randomly distributed about a normalized

decay rate of unity. As we shall see in the discussion following discussion, normalized

decay rates occasionally show clear oscillations.
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5.1 Falkenberg 3H

Perhaps the first of these experiments was that of Falkenberg [38]. Between Fall

1980 and Spring 1982, Falkenberg examined the decay of tritium by placing a phos-

phorescent vessel containing tritium inside a box along with light-sensing diodes. He

measured a half-life consistent with the accepted value of 12.33 years, but he also

noticed a surprising annual variation of 0.37% in the amplitude of the decay. Con-

vinced that this was not a systematic effect, Falkenburg was the first to suggest that

the decays may be influenced (or caused) by neutrinos from the Sun. The Falkenburg

data are shown in Figure 5.1.

Fig. 5.1. Plot of the data from the Falkenberg experiment along with
bounded curve, taken from [38]. The horizontal axis represents days
since January 1, 1981. The vertical axis represents the detrended data
(exponential removed).
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5.2 PTB 226Ra/152Eu

The second experiment was a long term study of the stability of detectors using

the decay of 152Eu and 154Eu by Siegert et al. [31] of the Physikalisch-Technische

Bundesanstalt (PTB). They measured the decay of the Eu isotopes in a 4π ioniza-

tion chamber using 226Ra as the comparison sample. The 152Eu data are plotted in

Figure 5.2. As the PTB experiment was meant to study the long-term stability of

detectors, Siegert et al. attributed the oscillations to a periodic changes in detector

efficiency. Jenkins et al. [32] were able to obtain the raw data from the PTB experi-

ment and were able to compare the decay of 226Ra to the Earth-Sun distance to find

an amplitude of 3 × 10−3, and a Pearson correlation coefficient 0.66. The data of

Jenkins et al. are shown if Figure 5.3.

Fig. 5.2. Normalized decay rates of 152Eu from [31]. The vertical
dotted lines indicate January 1st every five years. The vertical axis
measures the normalized decay rates, but it is presented as a change
in the efficiency of the detector. The oscillations have a period of ∼1
yr and an amplitude of ∼10−3.
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Fig. 5.3. Normalized decay rates of 226Ra and 1/R2 plotted versus
time. The decay rates are measured relative to the left axis and 1/R2

is measured relative to right axis.

5.3 BNL 32Si

The Brookhaven National Laboratory (BNL) experiment was performed by Al-

burger et al. [30] between 1982 and 1986. The experiment consisted of a 32Si sample

and a 36Cl calibration. The samples were measured alternately for 30 minutes apiece

using a precision sample changer. Given the long half-life of 36Cl (t1/2 = 301, 000 yr),

compared to the expected half-life of 32Si (172 yr), the 36Cl sample was used as a

long lived comparison to eliminate systematic effects. Jenkins et al. [32] were able to

obtain the raw data from BNL, and performed a fit of the ξ parameter. They found

an amplitude of approximately ξ = 3 × 10−3 and a Pearson correlation coefficient

between the BNL data and 1/R2 of 0.52. The plot of the 32Si/36Cl and 1/R2 data is

shown in Figure 5.4.
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Fig. 5.4. The raw 32Si/36Cl data from BNL plotted with the 1/R2

data (from [32]). The scale for 32Si/36Cl is given on the left axis while
the scale for 1/R2 is given on the right axis. We see good qualitative
agreement between the two curves.

5.4 Parkhomov 60Co/90Sr/239Pu

Between 1999 and 2010, Parkhomov [39] measured the decay rates of 60Co, 90Sr,

and 239Pu using Geiger-Mueller detectors. The normalized data for the three isotopes

iare presented in Figure 5.5. Parkhomov found yearly oscillations in 60Co of 2× 10−3

and in 90Sr of 1.3× 10−3. No discernible oscillations were found in the 239Pu, using a

silicon detector.

5.5 Purdue 54Mn

Following the analysis of the 32Si/36Cl data, Purdue began an experiment studying

the decay of 54Mn measured by a NaI detector [40]. Data taken between 2008 and
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Fig. 5.5. From top to bottom, normalized decay rates of 60Co, 90Sr,
and 239Pu from Parkhomov [39].

2012 are shown in Figure 5.6 (unpublished, from [40]). The vertical lines in the

plot indicate when the Earth passed through perihelion and aphelion respectively,

during the experiment duration. We immediately notice an upward trend in the

data which seems to correlate to the average number of sunspots, also shown in the

Figure. In addition to the upward trend, we can also see oscillations in the data.

These oscillations seem to correlate with the perihelion/aphelion lines, indicating a

period of approximately 1 year. The amplitude of these oscillations appears to be

approximately 10−3.

5.6 Mercury MESSENGER

The position of a particle in an elliptical orbit is given by

r(t) =
a(1− e2)

1 + e cos(θ(t))
, (5.4)
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Fig. 5.6. Data from the Purdue 54Mn experiment between 2008 and
2012 (unpublished, from [40]). The vertical lines represent locations of
perihelion and aphelion. We see that the data have a general upward
trend, which appears to correlate to the upward trend in the number
of sunspots during the observation period. In addition to the upward
trend, the data appear to oscillate with an estimated period of ∼1 yr
with an amplitude of ∼10−3.

where a is the semi-major axis, e is the eccentricity, and θ(t) is the true anomaly of

the orbit. For small e, a ≈ R0 and θ(t) ≈ 2πt/T where T is the orbit period. If we

substitute Eq. (5.4) into Eq. (5.3) the decay rate becomes

Γ(t) ≈ Γave

[
1 + 2ξe cos

(
2π

T
t

)]
. (5.5)

The magnitudes of the oscillations of the decay rate are proportional to the eccen-

tricity of the orbit. Hence, if we wish to improve the signal-to-noise ratio, we need

to increase the eccentricity of the orbit as much as possible. This suggests radioac-

tive decay experiments in space. While the Messenger spacecraft was en route

from Earth to Mercury, tests of the gamma ray spectrometer revealed a previously
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unknown quantity of 137Cs on-board [41]. A total of five measurements of the 137Cs

decay rate were taken during the six years of cruise from Earth to Mercury. Fischbach

et al. [41] analyzed the data, accounting for the time variation of Γ(t). They found

a ξ value of −3.1 × 10−3. Problems with the gamma ray spectrometer precluded

additional measurements taken after the MESSENGER spacecraft entered Mercury

orbit.

5.7 Summary

A summary of the different experiments, the isotopes involved, and corresponding

properties are shown in Table 5.1. In addition to the experiments shown above, we

also consider the experiment of Ellis [42] [39].

We can see from the table that all isotopes show an oscillation amplitude, ξ, of

similar magnitude. This is quite a remarkable result: the isotopes have a wide range

of isotopic masses, decay rates, and decay Q-value, but still have similar amplitudes.

226Ra is an α emitter, while 54Mn is pure electron capture, but they have approx-

imately the same ξ-values as isotopes that decay primarily via electron emission.

There is no reason a priori to expect these isotopes to receive similar fractional decay

contributions. The experiments were performed at different times, different locations,

and with different types of detectors, so the possibility of an unknown systematic or

environmental effect seems low. We therefore consider the possibility that this is a

universal phenomenon potentially affecting all isotopes. It is this scenario that we

will consider in the remaining sections.

The data in Table 5.1, along with the power spectrum analyses, suggest a solar

influence, and the solar flare data seems to indicate that the solar influence is mediated

by neutrinos. As we have not seen these oscillations in other parameters, we are led

to conclude that the true origin of the phenomenon is a novel neutrino-neutrino

interaction. This interaction is applicable to β− decay and electron capture as they

both contain final state neutrinos or antineutrinos that could interact with solar
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Table 5.1.
Experiments showing changes to radioactive decay rates with distance
from the Sun, along with properties of the isotopes, and the computed
oscillation amplitude, ξ

Experiment Source Mode Duration t1/2 (d) Q (keV) 103ξ

Ellis [42] [39] 56Mn β− 1978-87 1.1×10−1 3695.5 3

Parkhomov [39] 60Co β− 1999-03 1.9×102 2823.9 2

Purdue [40] 54Mn EC 2008-13 3.1×102 1377.1 ∼1

Norman [43] [44] 22Na/44Ti β+,EC 1994-96 – – 0.34

22Na β+ 9.5×102 2842.2 –

44Ti EC 2.2×103 267.5 –

Schrader [45] 154Eu β− 1990-96 3.1×103 1968.4 1

Schrader [45] 85Kr β− 1990-96 3.6×103 687.1 1

Falkenberg [38] 3H β− 1980-82 4.5×103 18.59 3.7

Schrader [45] 152Eu β, EC 1981-96 4.9×103 1874.3 1

MESSENGER [41] 137Cs β− 2004-10 1.1×104 1175.6 -3.1

Parkhomov [39] 90Sr β− 2000-10 1.1×104 546.0 1.3

BNL [30] 32Si β− 1982-86 5.5×104 224.5 1.5

Schrader [45] 108mAg β+ 1990-96 1.5×105 1918 1

PTB [31] 226Ra various 1981-96 5.8×105 4870.6 1.5

Matthews [46] 14C β− 2016 2.2×106 156.4 2-4

BNL [30] 36Cl β− 1982-86 1.1×108 708.6 1.5

Ohio State [47] 36Cl β− 2005-2011 1.1×108 708.6 5.8
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neutrinos. However, this mechanism would not affect α decay in an obvious way,

since α decay is modeled as a quantum tunneling phenomenon and no neutrinos are

involved. We can apply the mechanism to the daughter products of 226Ra. The

PTB group only measured the current produced by their detector, and not individual

frequencies. Therefore, their results would be affected by the daughters of 226Ra,

which decay primarily via beta decay, and could be affected by a novel neutrino

interaction.
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6. PERTURBATIONS OF NUCLEAR DECAY RATES

6.1 Theory

We have seen that the fractional change in decay rate is, siprisingly, constant

for a variety of isotopes with a large range of Q-values and nominal half lives. A

few attempts have been made to describe this phenomenon theoretically [48] [49],

but all have thus far been unsuccessful. We will consider a different method to

describe this phenomenon inspired by the work of Fassio-Canuto [28] and Matese and

O’Connell [27] on radioactive decays in extreme environments and the preliminary

work by Fischbach et. al [29].

We begin by giving an introduction to beta decay and electron capture that will

serve as a foundation for the work in this chapter and Chapter 7. It should be noted

that when we refer to beta decay we mean electron emission. We should also consider

positron emission, but the equations will be similar to those of electron emission with

the electron replaced by an neutrino and the antineutrino replaced by a positron. The

transition rate of a quantum system is given by Fermi’s Golden Rule [50]

Γ =
2π

~
|〈f |Hint| i〉|2 δ (Ef − Ei) dn, (6.1)

where Hint is the interaction Hamiltonian, |i〉 is the initial nuclear state vector, 〈f |
is the final nuclear state vector, dn are the final states over which we sum, and

δ (Ef − Ei) is the energy-conserving delta function. Beta decay and electron cap-

ture are weak interaction processes which are described vy an effective interaction

Hamiltonian given by

Hint =
GF√

2
τ+γµ

(
1− λγ5

)
J `µ, (6.2)

where τ+ is the isospin operator, GF is the Fermi constant, λ is the ratio of the

axial-vector and vector coupling constants, γµ, γ5 are the 4 × 4 Dirac matrices [50]
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(see also Appendix D), and J `α is the lepton current. The lepton current will take on

different forms based on the reaction.

6.1.1 β Decay

In a beta decay reaction, a neutron inside a nucleus is converted into a proton, an

, and an electron anti-neutrino

IP → ID + e− + νe, (6.3)

where IP and ID are the parent and daughter nuclei, e− is the emitted electron and

νe is the electron antineutrino. The lepton current for this process is

J `µ = ψeγµ
(
1− γ5

)
ψν , (6.4)

where ψe and ψν are the Dirac wave functions for the electron and antineutrino. We

use a plane wave approximation,

ψe(~r) =
1√
V
e−i~pe·~r/~, (6.5)

ψν(~r) =
1√
V
ei~pν ·~r/~, (6.6)

where pi is the momentum of the ith particle, the subscripts e and ν represent the

electron and antineutrino, respectively, and we have normalized the wavefunctions in

a periodic box of volume V . We can then write the unpolarized matrix element as

(see Appendix C for the derivation for a neutron)

〈f |Hint| i〉 =
4GF |Mif |2

V

(
1 + a

~pec

Ee
· ~pνc
Eν

)
, (6.7)

where |Mif |2 and a are defined in Appendix C. Equation (6.7) was computed for the

neutron. For general nuclei, |Mif |2 and a will have different values, and there will

be additional terms proportional to ~pe · ~pν (see [51]) which will drop out due to solid

angle integrals.

The final piece needed to solve for the decay rate is the phase space factor. This is

a sum of all phase space volumes that the final particles can occupy. The momentum



85

of the daughter nucleus is determined by conservation of linear momentum, and is

typically small. If we assume in addition that the recoil velocity is low, ED ≈ mDc
2,

where ED and mD are the energy and mass, respectively, of the daughter nucleus.

The phase space factor is then

dn = dnednν =

(
V d3~pe

(2π~)3

)(
V d3~pν

(2π~)3

)
. (6.8)

We can now substitute Eqs. (6.7) and (6.8) into Eq. (6.1) to obtain the full decay

rate [50] [51]

dΓ =
4G2

F |Mif |2
(2π)5~7

F (ZD, Ee)d
3ped

3pνδ(Mpc
2 −MDc

2 − Ee − Eν)

×
(

1 + a
~pec

Ee
· ~pνc
Eν

)
, (6.9)

where we have included the factor, F (ZD, Ee) which corrects for the fact that the

outgoing electron wavefunction should be distorted by the charge of the daughter

nucleus. Setting ZD = 0 implies that F (0, Ee) = 1, a simplification we will use

frequently. We can now integrate over the neutrino and electron solid angles (which

eliminates ~pe · pν)

dΓ =
2G2

F |Mif |2
π3~7

F (ZD, Ee)p
2
ep

2
νdpedpνδ(Mpc

2 −MDc
2 − Ee − Eν). (6.10)

Defining E0 ≡ MP c
2 −MDc

2 (the energy released in the decay), and using the fact

that p dp = E dE/c2 along with the assumption that the neutrino is massless, allows

us to integrate over the neutrino energy utilizing the delta function. Hence,

dΓ

dE
=

2G2
F |Mif |2
π3~7c6

F (ZD, Ee)Ee
√
E2
e −m2

ec
4 (E0 − Ee)2 . (6.11)

This is the standard form of the differential beta decay rate [50]. We can finally

integrate over the electron energy to find the decay rate Γ,

Γ =
2G2

F |Mif |2
π3~7c6

(
mec

2
)5
f(ZD, E0), (6.12)

f(ZD, E0) =
1

(mec2)
5

∫ E0

mec2
F (ZD, Ee)

√
E2
e −m2

ec
4Ee (E0 − Ee)2 dEe. (6.13)
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We introduced the dimensionless function f(Z,E0) for simplicity. Positron emission

will have the same form as Eq. (6.12) with ZD → −ZD. If we set ZD = 0 and neglect

the daughter nucleus’ charge, we can solve f(0, Ee) analytically (see Appendix E).

f(0, Ee) =
1

4

[
1

15

(
2a4 − 9a2 − 8

)√
a2 − 1 + a ln

(
a+
√
a2 − 1

)]
, (6.14)

with a = E0/mec
2.

6.1.2 Electron Capture

In electron capture, an orbital electron is captured by the parent nucleus, IP ,

converting a proton into a neutron to produce the daughter nucleus, ID. and releasing

an electron neutrino

IP + e− → ID + νe. (6.15)

Here, the lepton current is given by

J `µ =
g

2
√

2
ψνγµ

(
1− γ5

)
ψe. (6.16)

We can use the plane wave approximation for the neutrino, but the electron is initially

in a bound state, so we cannot ignore the Coulomb effects as we do for beta decay.

Hence, we use the first coulomb bound state as our electron wavefunction

ψe(~r) = φ100(r) =
1√
π

(
ZP
a0

)3/2

e−ZP r/a0 =
1√
π

(
mecαZP

~

)3/2

e−ZP r/a0 . (6.17)

where ZP is the charge of the parent nucleus, a0 is the Bohr radius of the electron,

and α is the fine structure constant. We evaluate the electron wavefunction at the

location of the nucleus (r = 0) and the squared matrix element is

|〈f |HI | i〉|2 =
2G2

F

V

(mecαZP )3

π~3
|Mif |2 . (6.18)

The number of final states is computed the same way as Eq. (6.8), now excluding

the electron contribution. In the nuclear rest frame, the initial energy, Ei, is given by

the sum of the rest masses of the parent nucleus and electron along with the atomic
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binding energy, EB, so that Ei = MP c
2 + Mec

2 + EB. The final energy, EF is the

sum of the energies of the daughter nucleus and the neutrino, so that Ef = mD +Eν ,

where we have again neglected the recoil. We must also multiply the total decay rate

by two since there are two ground state electrons in the K-shell of the parent nucleus.

Hence,

dΓ = 2× 4π
G2
F

V

(mecαZP )3

π~4
|Mif |2

×δ
(
Eν +MDc

2 −MP c
2 −mEc

2 − EB
) V

(2π~)3
d3pν

= 4G2
F

(mecαZP )3

π2~7
|Mif |2

×δ
(
Eν +MDc

2 −MP c
2 −mEc

2 − EB
)
p2νdpν . (6.19)

In the last line of Eq. (6.19), we integrated over the neutrino solid angle. We can

use the neutrino dispersion relations (E = pc) to convert the momenta to energies,

and then perform the integral with the help of the delta function. Introducing the

dimensionless neutrino energy,

q = (MP + EB +me −MD)/me, (6.20)

we find

Γ(q) =
4G2

F

π2

(mec)
5α3Z3

P

~7c6
|Mif |2 q2. (6.21)

6.2 Modified Decay Energy

6.2.1 β decay

We see from Eq. (6.14) that the decay rate is given as a function of a = (mp −
md)/me, which is the total electron and antineutrino kinetic energy (the total phase

space energy). Since the perturbing potential only affects the phase space factor, we

can approximate its effect by perturbing a in Eq. (6.14). The simplest case would be

a constant perturbation a → a′ = a + V , |V | << a. We can then expand the decay

rate in terms of V and we find that

δΓ

Γ
= V

1

Γ

dΓ

da
. (6.22)
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This expression is not satisfactory, as 1/Γ has a pole at a = 1. To improve the analyt-

ical behavior of δΓ/Γ, we take the next simplest form of V , that is, V proportional to

a− 1 to try to eliminate that pole. We find that this form of V results in a fractional

change that is relatively constant over the desired range. To determine if this is the

best choice for V , we first let V be proportional to an for several values of n, as shown

in Figure 6.1. The curves for n = 0 and n = 1 flatten out as a gets larger, but all

four curves diverge as a approaches one, which is the behavior we want to avoid.
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Fig. 6.1. The fractional change for the perturbation of the form V ∼
an. We see that lower values of n are well behaved as a gets large,
but the curves diverge as a→ 1, which is undesired.

Figure 6.2 shows the fractional change for a potential of the form V ∼ (a − 1)n

for several values of n. We see that n = 2 and n = 3 grow too much as a gets large,

and n = 0 diverges as a approaches unity. hence, n = 1 appears to be the best choice
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Fig. 6.2. The fractional change for the perturbation of the form V ∼
(a − 1)n. We see that n = 0 and n = 1 are well behaved as a gets
large, but n = 0 diverges as a→ 1.

for the perturbation. We next consider what (a − 1) means physically. a was the

maximum total energy of the electron (in units of the electron mass), so a− 1 would

be the maximum kinetic energy of the electron, since the sum of the kinetic energy

of the electron and antineutrino is a a constant, which we define as q ≡ a− 1.

The decay rate as a function of q is then given by

Γ (q) =
G2
F

2π3
m5
e

[
1

15

(
2q4 + 8q3 + 3q2 − 10q − 15

)√
q2 + 2q

+ (q + 1) ln
(
q + 1 +

√
q2 + 2q

)]
. (6.23)
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We now introduce a perturbation proportional to q, q → q′ = q (1 + ε), |ε| � 1.

We expand Γ in ε, Γ (q′) = Γ(0) (q) + εΓ(1) (q) + ε2Γ(2) (q), where

Γ(0) (q) =
G2
F

2π3
m5
e

[
(q + 1) ln

(
q + 1 +

√
q2 + 2q

)
+

1

15

(
2q4 + 8q3 + 3q2 − 10q − 15

)√
q2 + 2q

]
, (6.24)

Γ(1) (q) = q
dΓ (q)

dq
=
G2
F

2π3
m5
e

[
q ln

(
q + 1 +

√
q2 + 2q

)
+

q2

3
√
q2 + 2q

(
2q4 + 10q3 + 13q2 − 6q − 6

)]
, (6.25)

Γ(2) (q) =
q2

2

d2Γ (q)

dq2
=
G2
F

2π3
m5
e

4

3
q2
[
q2 + 2q

]3/2
. (6.26)

We next examine the first- and second- order corrections (excluding ε) in Fig-

ure 6.3. We see that Γ(1)/Γ(0) is fairly flat over the range of values considered, and

significantly flatter than Γ(2)/Γ(0). Since Γ(2)/Γ(0) does not diverge, and is of a similar

order of magnitude as Γ(1)/Γ(0), it is safe to say that only the lowest order term is

important, since the second order term is suppressed by an extra factor of ε. We

can interpret these results to mean that if the neutrino-neutrino interaction shifts the

phase space energy of a decay by V = εq, then the resulting fractional change in the

decay rate will be relatively constant (same order of magnitude) for all isotopes (all

q values). The factor of ε will contain the oscillatory component and the strength of

the interaction.

6.2.2 Electron capture

To determine the perturbation of electron capture rates, we begin with Eq. (6.21).

We see that the decay rate is simply proportional to q2. If we let q → q′ = q(1 + ε)

and expand for small ε, we find that

δΓ

Γ
≈ 2ε, (6.27)

which is a constant for all isotopes.
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Fig. 6.3. The first- and second- order corrections from a perturbation
of the form V = εq. We see that Γ(1)/Γ(0) is fairly flat over the range
of q values considered.

6.3 Modified Dispersion Relations

In the previous section, we showed how perturbing the total amount of phase

space energy by an amount proportional to the phase space energy itself could lead

to a fairly constant fractional change for all isotopes. In what follows, we assume that

a neutrino-neutrino interaction modifies the phase space, but we do not speculate on

a form of the interaction.

A somewhat surprising aspect of this picture is that the intermediary particle

would sappear to know about the entire available phase space energy, and hence
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i would seem that this particle would “know” too much. With this in mind and

inspired by our previous result, we assume that a potential exists which is proportional

to the total energy of only the neutrino (or anti-neutrino). We presume this is due

to a neutrino-neutrino interaction with solar neutrinos, but the exact details are

not necessary at this stage. This new potential will modify the neutrino dispersion

relation and we will investigate the effect on the decay rate.

We consider a neutrino moving through a potential field given by V . We treat

this neutrino as being nearly free and we can assume that the wavefunction is given

by a plane wave. The energy of the neutrino is then

Eν = 〈H〉 = 〈H0〉+ 〈H〉 = pνc+ 〈V 〉 , (6.28)

where H0 is the free particle Hamiltonian whose expectation value is pνc for a massless

neutrino. Now, we use the results from the previous section and we assume that the

expectation value of the potential is proportional to the momentum (or free particle

energy), 〈V 〉 ≈ −εpνc. Then

Eν = pνc− εpνc = (1− ε) pνc. (6.29)

6.3.1 β decay

To compute the new decay rate for beta emission, we combine Eqs. (6.12) and

(6.14). As before, we integrate over the two solid angles. We now convert the electron

and neutrino momenta to energy; the electron dispersion relation is unchanged, while

we use Eq. (6.29) for the neutrino. The decay rate is then

Γ =
2G2

F

π3
(1− ε)−3

∫ mP−mD

me

|Mif |2Ee
√
E2
e −m2

e (mP −mD − Ee)2 dEe. (6.30)

We define the unperturbed decay rate as

Γ0 = 2G2
Fπ
−3
∫ mP−mD

me

|Mif |2Ee
√
E2
e −m2

e (mP −mD − Ee)2 dEe, (6.31)

(whose solution is given by Eq. (6.12)) and Taylor expand in ε we find

Γ ≈ Γ0 (1 + 3ε) , (6.32)
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and have
δΓ

Γ0

= 3ε, (6.33)

which is constant (to lowest order) for all isotopes.

6.3.2 Electron capture

For electron capture, we return to Eq. (6.19) and use our modified dispersion

relations to convert the momenta to energies. Then,

Γ =
4G2

F

π2
(meαZP )3 (1− ε)−3

∫
|Mif |2 δ (Eν − qmE)E2

ν dEν

=
4G2

F

π2
m5
eα

3Z3
P (1− ε)−3 |Mif |2 q2

≈ Γ0 (1 + 3ε) , (6.34)

where

Γ0 = 4G2
Fπ
−2m5

eα
3Z3

P |Mif |2 q2. (6.35)

We see that, as in β decay,

δΓ

Γ0

= 3ε, (6.36)

which is, again, constant for all isotopes.

We see that β decay and electron capture have the same perturbation in this

model, which emerges from the fact that the perturbation arises when evaluating the

neutrino contribution to the number of final states. This would appear to be general:

each neutrino or antineutrino phase space integral contributes a perturbation of ±3ε,

with the sign depending on the type of fundamental interaction (scalar, vector, etc.).

6.4 Time Dependence of the Perturbations

The periodic time dependence of the fractional decay rate can be written as

∆Γ(t)

Γ
≈ ξ cos

(
2π

T
+ φ

)
, (6.37)
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where T is the period of one year, φ is the and ξ is the amplitude of oscillation which

appears to be independent of isotope. Since the oscillation has a period of one year,

it is natural to assume that the time-dependence is related to either the Earth-Sun

distance or to the velocity of the Earth about the Sun, both of which have a period

of one year.

6.4.1 Earth-Sun Distance

We begin with the Earth-Sun distance. We choose an inverse square law for the

spatial variation, since any effect emanating from the Sun (such as solar neutrino field

density) falls off as the inverse square. The assumed perturbation then has the form

ε(r) = ζ

(
r⊕
r(t)

)2

, (6.38)

where ζ is the new dimensionless constant, and r⊕ is the average Earth-Sun distance

(1 a.u.). The radius for a conic section is given by

r⊕ =
p

1 + e cos ν
≈ r⊕

[
1− e cos

(
2πt

T⊕
+ φ⊕

)]
. (6.39)

We have used the fact that the eccentricity is small to replace the semilatus rectum,

p, with the average orbital distance, r⊕, and the true anomaly ν, with the time and

phase angle. The perturbation then becomes,

ε(t) = ζ

(
r⊕
r⊕

)2 [
1− e cos

(
2πt

T⊕
+ φ⊕

)]−2
≈ ζ

[
1 + 2e cos

(
2πt

T⊕
+ φ⊕

)]
. (6.40)

We substitute Eq. (6.40) into Eq. (6.32) to find the time dependence of the decay

rate

Γ(t) ≈ Γvac

[
1 + 3ζ + 6ζe cos

(
2πt

T⊕
+ φ⊕

)]
,

≈ Γ⊕

[
1 + 6ζe cos

(
2πt

T⊕
+ φ⊕

)]
, (6.41)
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where we have identified the decay rate on the Earth as Γ⊕ = (1 + 3ζ)Γvac. The

fractional decay rate is then

∆Γ

Γ⊕
= 6ζe cos

(
2πt

T⊕
+ φ⊕

)
. (6.42)

We can then use the observed value of ξ to write

ξ = 6eζ →= ζ =
ξ

6e
∼ ξ

6(0.0167)
∼ 10−2. (6.43)

6.4.2 Earth Orbital Velocity

We now consider the Earth orbital velocity. We assume a perturbation linear in

the velocity

ε(v) = κ

(
vt
v⊕

)
, (6.44)

where κ is our new dimensionless parameter and v⊕ is our reference (average) velocity

of the Earth.

The orbital velocity is given by Eq. (B.11)

~vPQW =

√
GM

p


− sin ν

e+ cos ν

0

 . (6.45)

The magnitude of the velocity is then,

v2 =
GM

p

(
sin2 ν + e2 + 2e cosnu+ cos2 ν

)
≈ GM

a

[
1 + 2e cos

(
2πt

T⊕

)]
, (6.46)

v ≈
√
GM

a

[
1 + e cos

(
2πt

T⊕

)]
. (6.47)

The perturbation is then,

ε(t) = κ

(
GM
a

v⊕

)[
1 + e cos

(
2πt

T⊕
+ φ⊕

)]
= κ

[
1 + e cos

(
2πt

T⊕
+ φ⊕

)]
, (6.48)
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where we have identified v⊕ with GM/a. We see the velocity perturbation has the

same phase as the inverse square perturbation. The position and velocity of an object

in orbit are out of phase by pi (periapsis has closest distance and highest velocity),

hence taking the inverse squared distance would shift the phase by π. Comparing

Eq. (6.48) to Eq. (6.40) we can compare κ to ζ

κ = 2ζ ∼ 2× 10−2. (6.49)

We note in passing that for a general vn force we have κ = 2ζ/n.

6.5 Neutrino Index of Refraction

The form of Eq. (6.29) is familiar from electromagnetism; it is the energy momen-

tum relationship for a photon in a medium with an index of refraction. Since the

index of refraction is the speed of light divided by the velocity of the particle in a

medium, vν ,

nν =
c

vν
, (6.50)

nν is by definition greater than one. We can rederive Eq. (6.29) by starting from the

wave equation for massless particles (which also applies to fermions),

1

vν

∂2ψ

∂t2
=
n2

c2
∂2ψ

∂t2
= ∇2ψ. (6.51)

If we substitute in the plane wave solution ei(~pν ·~r−Eνt), then

n2

c2
E2

~2
=
p2

~2
→ E =

pc

n
, (6.52)

where we have taken the positive energy solution. Since n must be greater than unity,

we let n = (1 + ε) where ε once again a small parameter. Substituting into Eq. (6.52)

we have

E =
pc

n
=

pc

(1 + ε)
≈ (1− ε)pc. (6.53)

We can also use the index of refraction to relate the frequency to the wavenumber

using E = ~ω and p = ~k

E =
pc

n
→ ω =

kc

n
. (6.54)
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Since the frequency in the medium is not affected by the index of refraction, we can

relate it (and the wave number in the medium) to the wave number in vacuum, k0,

ω =
kc

n
= k0c→ k = k0n. (6.55)

We can use this result to consider the decay rate from a different point of view.

Decay rates have the functional form (matrix element)×(phase space factor). As we

saw in Eq. (6.8), the phase space contains an integral over all neutrino momenta,

d3p, which is proportional to the integral over all wavenumbers d3k. Therefore, in

a medium, the decay rate will be proportional to d3k = n3
νd

3k0, instead of being

proportional to the vacuum value d3k0. If we assume that the matrix element is

independent of nν (which is contrary to electromagnetism, where the electric and

magnetic fields are also proportional to index of refraction), the decay rate in a

medium is

Γ = n3
νΓ0 = (1 + ε)3Γ0 ≈ (1 + 3ε)Γ0, (6.56)

which matches our result from Eqs. (6.32) and (6.34). Thus our modified dispersion

relation, Eq. (6.29) is equivalent to a medium description.

6.5.1 Dispersionless Models

Using the definition of the index of refraction, and the fact that ε = ζ ∼ 10−2, we

find
v

c
≈ 1− ε ≈ 0.99, (6.57)

or the deviation from the speed of light is given by

1− v

c
∼ 102. (6.58)

The deviation of v from c has been measured or estimated from a number of

experiments (see Table 6.1). These differ significantly from our value of 10−2. The

most precise limits from Earth-based experiments give 1− v/c . 10−6 obtained from

neutrino pulse timing experiments using 3 GeV neutrinos. It seems that an energy-

independent perturbation amplitude will not work.
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Table 6.1.
Measurements of neutrino (and anti-neutrino) speeds from various experiments.

System/Experiment Neutrino Type Neutrino Energy |v/c− 1|
Fermilab NuMi Beam (MINOS) [52] 3 GeV (5.1± 2.1)× 10−5

Fermilab [53] ν and ν 30-200 GeV < 4× 10−5

CERN CNGS Beam (LVD) [54] νµ 17 GeV . 3.8× 10−6

CERN CNGS Beam (OPERA) [55] νµ 17 GeV [2.7± 3.1(stat)+3.4
−3.3(sys.)]× 10−8

CERN CNGS Beam (Borexino) [56] νµ 17 GeV . 2.1× 10−6

Fermilab (MINOS) [57] νµ 3 GeV (1.0± 1.1)× 10−6

SN1987A [58] νe 10-40 Mev . 10−8

SN1987A [59] νe 10-40 Mev . 2× 10−9

Cosmic Neutrinos (ICECUBE) [60] PeV < 1.0× 10−20(v/c > 1)

6.5.2 Dispersive Models

A purely constant (or dispersionless) index of refraction predicts a neutrino speed

that is inconsistent with results obtained from a number of experiments. We once

again look to optics for inspiration [61]. In optics we know that real indexes of

refraction are complex and energy-dependent. In fact, the optical theorem, which

is relatively simple to derive using only conservation of energy (optics), or conser-

vation of probability (quantum mechanics), states that a particle interacting with

background particles of density N , has an index of refraction (let ~ = c = 1),

n = 1 +
2πN f(0, p)

p2
' 1 +

2πN f(0, E)

E2
, (6.59)

where f(0, E) is the forward scattering amplitude. The optical theorem assumes that

|n− 1| � 1, and we assume that the neutrino mass is small, m� E.

We seem to be in similar situation here, as we were with the fifth force, where

we have different experiments yielding different results: Specifically, we need ε to be

larger and roughtly constant ( ζ ∼ 10−2) for beta decay, while we need it to be smaller

(. 10−6) to satisfy the neutrino speed experiments at large energies.
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A type of function that could fit this requirement is a resonance, well known from

optics and mechanics. For the scattering length, we use the relativistic Breit-Wigner

distribution, which is similar to optical resonances

f(0, E) =
f∞E

2

M2
0 − E2 − iγE

= f∞

[
E2(M2

0 − E2)2

(M2
0 − E2)2 + γ2E2

+ i
γE3

(M2
0 − E2)2 + γ2E2

]
, (6.60)

where f∞ = |f(0,∞)| is the magnitude of the forward scattering length, M0 is the

mass scale of the resonance, and γ is the width of the resonance.

We can write our now complex index of refraction in the form

ñ = 1 +
ε0M

2
0

M2
0 − E2 − iγE (6.61)

= 1 + ε0

[
M2

0 (M2
0 − E2)2

(M2
0 − E2)2 + γ2E2

+ i
γM2

0E

(M2
0 − E2)2 + γ2E2

]
,

ε0 = 2πN f∞
M2

0

. (6.62)

The real and imaginary parts are then,

n(E) ≡ Re[ñ(E)] = 1 +
ε0M

2
0 (M2

0 − E2)2

(M2
0 − E2)2 + γ2E2

, (6.63)

κ(E) ≡ Im[ñ(E)] =
ε0γM

2
0E

(M2
0 − E2)2 + γ2E2

. (6.64)

We can take the limit of n(E) and κ(E) as E is much larger than (or much smaller

than) M0, giving

n(E) →

 1 + ε0 E �M0,

1− ε0M2
0/E

2 E �M0,
(6.65)

κ(E) →

 0 E �M0,

0 E �M0.
(6.66)

The real and imaginary parts of the index of refraction are plotted in Figure 6.4.
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Fig. 6.4. The real and imaginary parts of the index of refraction, n(E)
and κ(E) assuming ε = 0.01 and γ/M0 = 0.01.

We can also compute the total scattering cross section, σtot, [62]

σtot =
4π

E
Im[f(0, E)]

=
4πf∞γE

2

(M2
0 − E2)2 + γ2E2

=
2E

N
κ(E). (6.67)

Our choice of the relativistic Breit-Wigner distribution leads to the desired behav-

ior in the limiting cases. For M0 ∼ 1 MeV, beta decay probes the region Eν � M0,

where the index of refraction is roughly constant, whereas neutrino speed experi-

ments probe Eν � M0, where the index of refraction approaches unity. However,

near Eν ∼ M0, there is a resonance in the distribution. Since the intensity of the

beam falls off as e−κx in the medium, this would remove neutrinos from the beam.

Interestingly, the RENO [63], Double Chooz [64], and Daya Bay [65] experiments

have observed a “bump” at M0 ∼ 5 MeV in their measured reactor antineutrino

flux. If we let our factor γ become negative, the real part of the index of refraction
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is unchanged, while the imaginary part becomes negative, and the neutrino beam

would gain particles rather than lose. Physically, this could be due to sterile antineu-

trinos not measurable in the RENO experiment being converted to standard model

antineutrinos.

If we take the M0 ∼ 5 MeV from the reactor experiments, ε0 ∼ 0.01 from our

preceding analysis, and assume γ = 0.01M0 = 0.05 MeV, we find the numerical

values given in Table 6.2.

Table 6.2.
Computed values for the real and imaginary parts of the index of
refraction for M0 = 5 MeV and γ = 0.05 MeV.

E (MeV) n− 1 κ

0 0.0100 0.00000

1 0.0104 0.00002

2 0.0119 0.00006

3 0.0156 0.00015

4 0.0278 0.00062

5 0.0000 1.00000

6 -0.0227 0.00062

7 -0.0104 0.00015

8 -0.0064 0.00007

9 -0.0045 0.00004

10 -0.0033 0.00002
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6.5.3 Anomalous Dispersion

We note from Figure 6.4 that if E > M0 for small γ we can have a negative

refractive index, leading to a negative phase velocity. However, the actual speed is

determined by the group velocity

vgr =
dω

dk
=

(
dp

dE

)−1
=

{
d

dE
[En(E)]

}−1
=

{
n(E) + E

d

dE
n(E)

}−1
. (6.68)

At the high energy limit E �M0, we have

n(E) + E
d

dE
n(E) ' 1− ε0M

2
0

E2
+ E

(
−ε0M

2
0

E3

)
= 1. (6.69)

Hence, for high energies, the group velocity approaches c as expected from the velocity

experiments. However, near the resonance, E = M0 we find anomalous dispersion

(vgr > c or vgr < 0, Figure 6.5). This is not as bad as it sounds, since the anomalous

dispersion when occurs when n(E) ∼ κ(E) (Figure 6.5a), so our initial assumption

that the neutrino is a plane wave with definite momentum breaks down. We can

compare this to the case in optics where a photon is absorbed by an atom before

being re-emitted. It is possible that something similar happens to neutrinos when

they scatter with E 'M0.

6.6 Future Experiments

We can gain more information on the perturbation and the index of refraction by

consider the effects on some other experiments.

6.6.1 Multiple Neutrino Emission

Our results show the final state neutrino (or antineutrino) contributes 3ε to the

fractional decay rate. This generalizes to decays with multiple final state neutrinos

such as muon decay to electrons, two neutrino double beta decay, and two neutrino

double electron capture. In muon decay, the final state includes a muon neutrino and

an electron antineutrino, giving a fractional decay rate of 3(εµ + εe). Two neutrino
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Fig. 6.5. The neutrino group velocity (blue) for ε0 = γ/M0 = 0.01.
(a), and zooming in on the region of anomalous dispersion (b). The
red line in (a) is the the imaginary part of the refractive index which
shows absorption is largest in the region of anomalous dispersion.

double beta decay emits two electron antineutrinos which would yield a fractional de-

cay rate of 6εe. Two neutrino double electron capture produces two electron neutrinos

and a fractional change of 6εe

6.6.2 Neutrinoless Double Beta Decay

At first glance it would appear that neutrinoless double beta decay would be

immune to the medium influence since there are no emitted neutrinos. However,

there are internal neutrino lines in the Feynman diagram, contributing a propagator

to the scattering amplitude. If the neutrino wave function is evaluated in the presence

of the index of refraction, the propagator will be modified such that

1

/p−m
→ 1

γ0p0 − (1− ε)γipi −m
' 1

/p−m
(−εγipi)

1

/p−m
, (6.70)

Hence, an index of refraction is equivalent to adding an interaction vertex −εγipi. If

neutrinoless double beta decay exists and is observed, the index of refraction would

result in an oscillation in the decay rate. Since neutrinoless double beta decay is
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already extremely rare and difficult to observe, observing oscillations in the decay

rate would be unlikely for some time.

6.6.3 Torsion Balance Experiments

Like neutrinoless double beta decay, it would seem that the index of refraction

would affect torsion balance experiments. However it must be noted that since the

decay rates are being changed by the background, some transfer of energy is occuring

and this transfer of energy should also be observable as a force. On a more microscopic

level, a portion of the self energy of a nucleus is due to neutrino-antineutrino exchanges

between nucleons. We can have three types of interactions: proton-proton, which will

have a statistical weight of Z(Z − 1)/2, neutron-neutron, with a statistical weight of

N(N −1)/2, and proton-neutron with a weight of ZN . If we assume that these three

interactions have the same strength, we can sum the three effects, giving

1

2
N2 − 1

2
N +

1

2
Z2 − 1

2
Z +NZ → 1

2
(N2 + 2NZ + Z2) +

1

2
(N + Z)

→ (N + Z)[(N + Z) + 1]

2
=
B(B + 1)

2
.(6.71)

So the total interaction would appear as a baryon-baryon interaction. Since the neu-

trino exchange forces are expected to be around 10−15g, observing a time dependence

will be unlikely in the near future.

6.6.4 Mass Problem

Finally, we note that the index of refraction model could also shed some light on

attempts to determine the mass of the neutrino, such as Katrin, an experiment using

3H, which Falkenberg [38] found to exhibit the annual periodicity. The most recent

experiments have found the neutrino mass squared to have negative values [66].
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Consider the kinematics of the beta decay spectrum in the presence of a medium

(written in terms of the neutrino energy, Eν)

dΓ ∼ (E0 − Eν)
√

(E0 − Eν)2 −m2
ec

4E2
νn

3

∼ (E0 − Eν)
√

(E0 − Eν)2 −m2
ec

4E2
ν

[
1 +

2πN~2c2f(0, Eν)

E2
ν

]3
∼ (E0 − Eν)

√
(E0 − Eν)2 −m2

ec
4E2

ν

[
E2
ν + 6π~2c2N f(0, Eν)

]
. (6.72)

The analogous expression for the case with a massive neutrino is given by

dΓ ∼ (E0 − Eν)
√

(E0 − Eν)2 −m2
ec

4Eν
√
E2
ν −m2

νc
4

∼ (E0 − Eν)
√

(E0 − Eν)2 −m2
ec

4E2
ν

√
1− m2

νc
4

E2
ν

∼ (E0 − Eν)
√

(E0 − Eν)2 −m2
ec

4

(
E2
ν −

1

2
m2
νc

4

)
. (6.73)

Comparing Eqs. (6.72) and (6.73), we can find that a medium can simulate a decay

where the neutrino mass squared is negative: m2
νc

4 = −12π~2c2N f(0, E). Interest-

ingly, a number of recent determinations of (mνc
2)2 give negative values [67].

We can also consider modified dispersion relations which give

E2
ν ' (1− ε)2c2p2ν +mνc

4 ≡ p2νc
2 +M2

ν,effc
4

→M2
ν,effc

4 ' m2
νc

4 − 2εp2νc
2 ' m2

νc
4 − 4π~2c2N f(0, p), (6.74)

The effective mass, m2
ν,eff can be positive, negative, or zero, and it is negative when

the true mass m2
ν < 2εp2ν/c

2. Calculations of neutron star stability imply a lower

bound on neutrino mass mν & 0.4eV/c2 [68], so Mν,eff is negative when pνc & 10

eV. We also note that in our Breit-Wigner model, f(0, P ) → E2 as E → 0. If the

distribution was modified in such a way to approach a constant in this region, then

the model could account for the neutrino mass problem as well. However, this leads

to the question of the validity of the optical theorem at such low momentum.
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7. DECAY RATE SUPPRESSION BY THE PAULI

EXCLUSION PRINCIPLE

In Chapter 5, we described a number of methods that can affect nuclear decay rates.

In Chapter 6, we found a novel method to generate the constant relative pertur-

bation of beta decay and electron capture. Here we consider one of the methods

supported by the current quantum mechanical/electroweak theory, namely the sup-

pression of the decays due to the Pauli Exclusion Principle (PEP, not to be confused

with the pep process in the Sun where two protons and an electron fuse together to

produce deuterium and a neutrino). Any final state neutrino will be emitted into a

background neutrino field consisting of cosmic background neutrinos and solar neu-

trinos. The cosmic background neutrinos are thermal in nature with a temperature

of kBT = 1.68 × 10−4eV and a density of ρν = 56/cm3 per flavor [69]. Note, we

only consider electron neutrinos here. The solar neutrinos are created by a variety of

process and we will consider the pp process later. Depending on the location of the

experiment, the decaying sample may also be subject to a non-thermal background of

reactor antineutrinos, but they can be treated the same as the solar neutrinos. We are

interested on the effects of Pauli blocking on a full spectrum, so we neglect electron

capture (which emits at a single energy) in favor of positron/electron emission. Tech-

nically, the cosmic neutrino background contains both neutrinos and antinuetrinos,

so the effects discussed below apply to both electron and positron emission, while the

solar flux contains neutrinos, meaning it should only affect positron emission. So we

shall consider positron emission below, but we note that the solar flux results may

also apply to electron emission decay if the neutrino and antineutrino are the same

particle (i.e., Majorana fermions).

The background neutrinos occupy positions in phase space, meaning there are

fewer positions for the emitted neutrino to occupy, thus there is a suppression. We can
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model this by multiplying the differential decay rate given Eq. (6.9) by a suppression

factor 1−K(~pν)

dΓ =
4G2

F |Mif |2
(2π)5~7

F (Z,Ee)d
3ped

3pνδ(Mpc
2 −MDc

2 − Ee − Eν)

× (1−K(~pν))

{
1 + a

~pνc

Eν
· ~pec
Ee

+ Î ·
[
A
~pec

Ee
+B

~pνc

Eν

]}
(7.1)

where, again, |Mif |2, a A, and Bare defined in Appendix C. As started in the

last chapter, this equation is valid for neutrons. For general nuclei, |Mif |2, a, A, and

B will depend on the nuclear matrix elements and a couple extra terms proportional

to ~pe · ~pν appear. Since K depends on the neutrino momentum and not the electron

momentum, we can integrate over the electron solid angle and get rid of the a and A

terms.

dΓ =
16πG2

F |Mif |2
(2π)5~7

F (Z,Ee)p
2
edped

3pνδ(Mpc
2 −MDc

2 − Ee − Eν)

× (1−K(~pν))

{
1 + Î · ~pνc

Eν

}
(7.2)

7.1 Thermal Neutrinos

We treat the background cosmic neutrinos as a Fermi gas, whose energy distribu-

tion and blocking factor (for electron neutrinos) is [69]

K(~pν) =
1

exp [(uαpαc− µe)/kBT ] + 1
(7.3)

where kBT is the temperature of the background field (in units of energy, pα is the four

momentum of the neutrino in the lab frame, and uα is the 4-velocity of the observer,

namely, the velocity of the cosmic rest frame relative to the lab frame. Due to the

comparatively slow speed of the Sun and the Earth relative to the speed of light, we

can assume the lab frame and cosmic rest frame coincide, giving uα = (1, 0, 0, 0) with

metric signature (+,-,-,-). The uαp
αc simplifies to the neutrino energy Eν . The final

unknown in Eq. (7.3) is the chemical potential µe of the background. In a Fermi gas at
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zero temperature, the chemical potential separates occupied from unoccupied state.

This is also given by the Fermi energy and is a function of the density of particles

µe = EF = ~c
(
3π2ρv

) 1
3 (7.4)

We can now simplify Eq. (7.1). We can integrate over the electron solid angle. As

K(~pν) = K(Eν) is isotropic we can also integrate over the neutrino solid angle. This

eliminates every term but but the 1 in the curly brackets; the direction of the nuclear

spin is irrelevant. The change in the decay rate is then given by

δΓ =
g2 |Mif |2

2π3~7

∫
F (Z,Ee)K(Eν)δ(Mpc

2 −MDc
2 − Ee − Eν)p2νp2edpedpν (7.5)

(7.6)

Finally, we can use the definitions of the electron and neutrino energy to integrate

the delta function over the electron energy (E0 = (MP −MD)c2)

δΓ =
g2ξ

2π3~7c6

∫ E0−mec2

0

F (Z,E0 − Eν)K(Eν)

× (E0 − Eν)
√

(E0 − Eν)2 −m2
ec

4E2
νdEν (7.7)

We further simplify by dropping the coulomb correction, F (Z,E), and divide by

the nominal decay rate to find the relative change in the decay rate

δΓ

Γ
=

1

f(Z, amec2)

∫ a−1

0

[exp (zx− µe) + 1]−1 x2 (a− x)

√
(a− x)2 − 1 dx

where x = Eν/mec
2, a = E0/mec

2, z = mec
2/kBT and µe = µe/kBT .

As example, we will consider a polarized neutron decaying in a bath of cosmic

background neutrinos. As we noted before, the cosmic background neutrinos have a

temperature kBT = 1.68× 10−10MeV and a density of ρν = 56× 1061/m3. Neutron

decay has a q value q = (a−1) = 0.782MeV/0.511MeV= 1.53 [50], Then the fractional

change in the decay rate is
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δΓ

Γ
= −2.32× 10−28 (7.8)

7.2 Non-Thermal Neutrinos

7.2.1 PEP Suppression Factor

In addition to thermal neutrinos, non-thermal neutrinos can also suppress radioac-

tive decays. Unfortunately, we do not have a simple distribution like Eq. (7.3),so we

must derive it ourselves.

Consider an ensemble of nuclei undergoing decay. At the same time N solar

neutrinos are passing near the nuclei. These particles occupy points in phase space,

so these points must be removed from the sum over final states. We can rewrite decay

rate from Eq. (6.9) as

Γ =
4G2

F |Mif |2
π~4V

∞∑
kν=1

Kk

∫
p2edpeδ(E0 − Ee − Eνk) (7.9)

×
{

1 + Î ·B~pν,kc
Eν

}
(7.10)

Kk = 1−
N∑
i=1

δmi`k (7.11)

We have written the neutrino phase space as a discrete sum and introduced the PEP

factor Kk. The emitted neutrinos are in the kth possible final state with the set of

quantum numbers `k, while the background particles are in the kth quantum state

with quantum numbers mj. If `k represents mi, that particular state is already filled

and the decay cannot proceed. This is represented by the delta function. We can

rewrite the suppression factor as an infinite sum by introducing parameters ai
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Kk = 1−
∞∑
i=1

aiδmi`k (7.12)

∞∑
i=1

ai = N (7.13)

We estimate the ai’s from the measured background neutrino flux. Let Φ(Eb) be

the flux of neutrino per unit energy, which has a known spectrum from the standard

solar model [70]. We can break the spectrum up into pieces of width ∆Eb with each

piece having an energy Ebi corresponding to the quantum numbers mi. The flux of

particles with energies between Ebi and Ebi + ∆Eb is then Φ(Ebi)∆Eb If we divide by

the speed of the neutrino, we get the particle density. Finally, we multiply by the

local volume V to get the total number of particles between Ebi and Ebi + ∆Eb; if we

sum over i, we get the total number of particles. The coefficients are then

ai =
Φ(Ebi)V

c
∆Eb (7.14)

Now we pass from discrete to continuous quantum. We note that the solar neutri-

nos are emitted radially away from the sun, so we orient the z-axis of the laboratory

frame along this axis. Therefore, we can let

mi →
[
0, 0,

EbL

2π~c

]
`k →

pνkL

2π~

δmi,`k → δ

(
pνxL

2π~

)
δ

(
pνyL

2π~

)
δ

(
pνzL

2π~
− EbL

2π~c

)
=

(2π~)3

V
δ (pνx) δ (pνy) δ

(
pνz −

Eb
c

)
∑
k

→
∫ (

V d3~pν

(2π~)3

)
∑
j

∆Eb →
∫ Eb,max

0

dEb
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Then the decay rate and PEP suppression factor become

Γ =
4G2

F |Mif |2
(2π)5~7

∫
K(~pν)δ(E0 − Ee − Eν)

×
(

1 +BÎ
~pνc

Eν

)
d3pνd

3pe (7.15)

K(~pν) = 1− (2π~)3

c

∫ Eb,max

0

dEbΦ(Eb)δ (pνx) δ (pνy) δ

(
pνz −

Eb
c

)
(7.16)

The fractional decay rate is then (using the beta decay solution from Eqs. (6.12)

and (6.14))

δΓ

Γ
= − c6

16π2f(0, E0)

(2π~)3

c

1

(mec2)
5

∫ Eb,max

0

dEbΦ(Eb)

∫ (
1 +BÎ

~pνc

Eν

)
×δ(E0 − Ee − Eν)δ (pνx) δ (pνy) δ

(
pνz −

Eb
c

)
d3pνd

3pe (7.17)

The integral over the neutrino momenta removes three of the delta functions.

Since pνx and pνy are set to zero, we have Ev = pνzc = Eb. Then we have

δΓ

Γ
= − π~3c5

2f(0, E0)

1

(mec2)
5

(
1 +BÎz

)∫ Eb,max

0

dEbΦ(Eb)

×
∫
δ(E0 − Eb − Ee)d3pe (7.18)

We then perform the integral over the solid angle and switch to integrating over

electron energy

δΓ

Γ
= − 2π2~3c2

f(0, E0)

1

(mec2)
5

(
1 +BÎz

)∫ Eb,max

0

dEbΦ(Eb)

×
∫
δ(E0 − Eb − Ee)Ee

√
E2
e −m2

ec
4dEe

= − 2π2~3c2

f(0, E0)

1

(mec2)
5

(
1− Îz

)
×
∫ Eb,max

0

Φ(Eb)(E0 − Eb)
√

(E0 − Eb)2 −m2
ec

4dEb (7.19)
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7.2.2 Simple Example

We consider a simple example where we are interested in the fractional decay rate

a in the range ∆Eb about energy Eb. In Eq. (7.19), we set dEb equal to ∆Eb and

f(0, Eb) becomes

f(0, E0)|Eb →
1

(mec2)
5 (E0 − Eb)

√
(E0 − Eb)2 −m2

ec
4E2

b∆Eb (7.20)

where we first shifted from integrating over electron energy to integrating over neu-

trino energy and then restricted it to ∆Eb about Eb. Then the fractional decay rate

becomes

δΓ

Γ
(Eb) = −2π2~3c2

(
1 +BÎz

) Φ(Eb)

E2
b

(7.21)

Again we will consider neutron decay in the presence of solar pp neutrinos. The

pp neutrino spectrum peaks at a value of ∼ 1015 1/m2sMeV as an energy Eb of 3

MeV [70]. The value of λ is 1.44 [50] and B is given by

B = −
1
2

(λ+ λ2)
1
4

(1 + 3λ2)
− 0.97

To find the maximize the fractional change, we take Îz = 1, then

δΓ

Γ
= −5.49× 10−29 (7.22)

7.2.3 A (Slightly) More Complicated Example

We now consider the influence of the background field over the entire spectrum.

To accomplish this, we need to know the functional from of Φ(Eb). The neutrinos

from the Sun come from a variety of sources. For simplicity, we will consider only the

pp neutrinos. In the pp reaction, two protons collide to form a deuteron, a positron,

and an electron neutrino.
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p+ p→ d+ e+ + νe (7.23)

The exact matrix element for this interaction quite complicated, but we do not

actually need it. We note the decay involves three final state particles, just like beta

decay, If we assume the matrix element is independent of energy, the only energy

dependence will the from the phase space term, which is identical to beta decay.

Using a max energy of E1 and writing in terms of the neutrino energy, Eb, the energy

dependence of Φ(Eb) is

Φ(Eb) ∼
1

(mec2)
5 (E1 − Eb)

√
(E1 − Eb)2 −m2

ec
4E2

b (7.24)

Introducing the total flux of pp neutrinos at Earth Ipp =
∫ E1−mec2
0

φ(Eb)dEb, we

can write Φ(Eb) as

Φ(Eb) =
Ipp

f(0, E1) (mec2)
5 (E1 − Eb)

√
(E01 − Eb)2 −m2

ec
4E2

b (7.25)

δΓ

Γ
= − 2π2~3c2

(mec2)
10

Ipp
f(0, E0)f(0, E1)

(
1 +BÎz

)∫ Emax

0

√
(E0 − Eb)2 −m2

ec
4

×(E0 − Eb)(E1 − Eb)
√

(E1 − Eb)2 −m2
ec

4E2
bdEb (7.26)

where Emax = min(E0, E1) − mec
2. We introduce a0 = E0/mec

2, a1 = E1/mec
2,

x = Eb/mec
2, qmax = min(E0, E1)/mec

2 − 1

δΓ

Γ
= −2π2~3c2

(mec2)
3

Ipp
f(0, E0)f(0, E1)

(
1 +BÎz

)
J(a0, a1) (7.27)

J(a0, a1) =

∫ qmax

0

√
(a0 − x)2 − 1

×(a0 − x)(a1 − x)
√

(a1 − x)2 − 1x2dx (7.28)

Consider a polarized neutron once again decaying in the presence of solar neutrinos

The pp neutrinos have a total flux at Earth is about Ipp ∼ 10151/m2s and a q-value
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q1 = (a1−1) = 0.42MeV/0.511MeV= 0.822 [70]. Neutron decay has a q0 = (a0−1) =

0.782MeV/0.511MeV= 1.53 [50]. Since q1 < q0, the integral (7.28) is cut off at q1.

Again, we take Îz = −1. Then the total perturbation is

δΓ

Γ
= −8.01× 10−27 (7.29)

7.3 Discussion

We have seen that the fractional change in the decay rate of a neutron is negligible

for both a thermal cosmic background and a non-thermal, solar background. Inter-

estingly, the effect was of similar magnitude for both even though the non-thermal

PEP factor was suppressed by three powers of Planck’s constant, while the thermal

PEP factor was suppressed by the low temperature. The only neutrinos that were

blocked in the thermal case were the lowest energy ones, which had a low probability

of occurring even before the PEP effects.

We should also note the time dependence of these affects. The non thermal flux

falls off with distance from the sun with an inverse square power, so the PEP factor

will vary with the Earth’s orbit. At first glance it does not appear that nonthermal

PEP effect has a time dependence, but we assume our nucleus could be modeled as

stationary in the cosmic rest frame. In reality, we could include velocity affects, in

which case we would have perturbation that depends on the Earth’s velocity [69],

which will also vary around the orbit;
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8. CONCLUSIONS AND FUTURE WORK

8.1 Overview of Major Results

In this thesis, we considered two very different problems, the search for fifth

forces/non-Newtonian gravity, especially in the Eötvös Experiment, and time-variation

of nuclear decay rates. (Although as we pointed out, the parts are connected by a

tiny thread, as a neutrino interaction that affects beta decay could also produce non-

Newtonian gravity, albeit slight.)

8.1.1 Fifth Force/Non-Newtonian Gravity

Our goal in this section of the thesis was an attempt to explain how the Eötvös

Experiment, seemingly primitive in comparison to modern experiments, could detect

a baryon-number dependent effect while the more recent experiments performed by

groups such as the Eötwash group continue to detect nothing.

We introduced a Taylor series expansion of an arbitrary force to determine how

the different coefficients affect the Eötvös parameters for both the EPF and EW

experiments. We found that the EPF parameter depends on both the monopole and

dipole terms while the EW parameter only depends on the monopoles.

Ideally, we would like a force that is a dipole (i.e. couples to the moment of in-

ertia) without the monopole term, as that would contribute to EPF but not EW.

Unfortunate, there does not seem to be an obvious way to generate such a force

from quantum mechanical interactions. Instead, we consider the possibility that the

monopole term has a minimum around where the EW experiment was performed and

a nonzero dipole term where the EPF experiment was performed. We took the sim-

plest case of the combination of the Yukawa potentials due to exchange of vector and
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scalar fields. We found that for different values of the Yukawa length scales, we could

find suitable strengths to make the ηEW parameter equal zero. Unfortunately, this

does appears to be more coincidence than general result. Implicit in our computations

were assumptions on the distance from the experimental apparatus and the sources

of the potentials. This would imply that the EW experiment happened to pick the

worst location to perform the test and would have gotten non-zero results if they had

simply moved the apparatus slightly closer or further away from the mountain. As

this situation seems unlikely, we conclude that our results do not apply generally.

We also investigated whether the Microscope experiment could detect forces

due to a wind of background particles. We computed the time dependence of force

due to dark matter stationary with respect to the center of the galaxy and dark matter

co-rotating with the galaxy. We then computed the power spectrum density of the

signal and compared that to the measured power spectrum of the MICROSCOPE

spacecraft. Unfortunately, we could not see that pattern of our forces in the noise of

the measured results.

8.1.2 Time-variation in Nuclear Decay Rates

The goal of this chapter was to find the function form of a beta decay rate pertur-

bation that would give a constant fractional decay rate regardless of isotope. Our first

attempt perturbed the final energy of the spectrum, a, by an amount proportional to

a itself. While this perturbation yielded a roughly constant fractional decay rate for

beta decay, it was exact, and the perturbation ”knew” about the energy of both the

electron and the neutrino. We have been working under the basic assumption that

the perturbation was due to the neutrino sector due to insights from the solar flare

events and the assumption that a modification to the electron sector would have been

discovered already.
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Our second attempt assumed a perturbation proportional to the energy or mo-

mentum of the neutrino. While this perturbation could explain the decay rates, it

was inconsistent with neutrino speed experiments.

Modeling our perturbation as an index of refraction let us introduce a scattering

amplitude based on the relativistic Breit-Wigner distribution, and we were able to

reconcile the low energy beta neutrinos with high energy speed experiments.

There are still questions to be answered, though. Our index of refraction necessar-

ily had an imaginary component, which leads to neutrino attenuation. It is possible

that by changing a sign we could gain neutrinos instead, which might explain the

bump seen in reactor experiments, but as γ is related to a lifetime in the relativistic

Breit-Wigner distribution, it seems hard to justify a negative value.

We applied the optical theorem to write the index of refraction in terms of the

Breit-Wigner distribution. While the optical theorem can be derived very generally,

we do not really know if it is applicable to the neutrinos. We have also used ideas

from optics and atomic physics to guide our analysis, but we cannot take the com-

parison too seriously. The optical index of refraction arises from photons scattering

off of electrons due to long range electromagnetic forces. We assume that the decay

neutrinos are interacting with some sort of background, but the interaction is likely

due to a short range, not a long range, force. Perhaps a better comparison is the

bouncing of cold neutrons off a surface. The forces on the neutrons are short range

and the index of refraction arises from the spreading of the neutron wavefunction to

interact with many background particles simultaneously, it is hard to imagine the the

decay neutrinos would spread like that. Perhaps it is the background particles that

have spread out and overlapped enough for the neutrino to interact with multiple

particles at the same time. This makes the background sound like a Bose Einstein

Condensate, but this consideration is beyond the scope of this work.

Finally, we derived the suppression of beta decays due to thermal and nonthermal

background fields and we found that their contribution to the annual variation in

decay rates is negligible.
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8.2 Future Work

8.2.1 Fifth Force/Non-Newtonian Gravity

Since our simple force model did not work out, we could consider more compli-

cated forces. We could build these forces by combining additional Yukawa potentials;

however, the likelihood that there are several vector and scalar fields all coupling to

Baryon number seems unlikely.

As mentioned before, it is the second-order, or dipole, terms that appear in EPF

but not EW, and it would be ideal if we could create a force that has no monopole and

only the dipole. This would imply a force that couples to the shape of the apparatus

at lowest order. Return to the example of the cold neutrons from before, perhaps the

fifth force is due to a cold background where the wavefunctions have spread enough

to couple to the entire apparatus simultaneously.

One avenue of particular interest takes its inspiration from measurements of weak

transition moments in quantum optics. Here, there is a weak-electromagnetic cross

term in the Hamiltonian, so the presence of the weak interaction allows certain optical

transitions to occur that would not have with out the weak interaction. This allows

scientists to probe the weak interaction using certain optical techniques. We can

imagine a similar situation arising in the Eötvös experiment. A cross term between

the new fifth force and the gravity gradients allow the fifth force to survive Eötvös’

software program, while being excluded from the Eötwash experiment due to the

symmetry toward the gravitational field.

Most likely, the best information regarding the validity of the results of the Eötvös

Experiment will come from a repeat of the original experiment using one of the original

torsion balances. While the experiment has been updated in some ways (automatic

reading of the beam deflection), this is the first time anyone is actually replicated the

experiment. We look forward to their results.

Since we were unable to see our desired signals over the noise of the MICROSOFT

experiment, we must wait for additional data collection that can improve the accuracy
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of the data. It may be possible to reorient the spacecraft such that the sensitive axis

of it’s dual accelerometer points in the same direction as our drag force, increasing the

accuracy of the measurements. In the absence of further data from MICROSCOFT,

we must wait for the next-generation experiments to look for those forces.

8.2.2 Time-variation in Nuclear Decay Rates

We currently have a model that seems to describe the constant fractional decay

rates while still being consistent with neutrino speed measurements. There are still

some lingering questions about the behavior around the resonance at M0, but those

do not seem to model-breaking.

The best suggestion for future work is simply more experiments. We need more

data, from a variety of isotopes. We can then compare the reactions of neutrinos

and antineutrinos. Experiments with pions muons would also allow us to compare

electron and muon antineutrinos.

Space-based experiments would be exceptionally useful as we can achieve large

variations in the Sun-sample distance depending the the particular trajectory. Recent

advances in measuring decay rates using betavoltaics [71] seem promising as several

samples as well as the measuring circuitry could be placed on a single standardized

PCB that could easily be incorporated in cubesats or full-sized spacecraft.
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A. ALTERNATE PARAMETERIZATION OF

ARBITRARY FORCES IN TORSION BALANCE

EXPERIMENTS

Here we introduce an alternative parameterization for arbitrary forces in the Eötvös

experiment. We begin by writing the fifth force with arbitrary position and velocity

dependence

~F5 = mq5 ~F5

(
~X,~v

)
, (A.1)

where ~X = [X, Y, Z]T , ~v = [vX , vY , vZ ]T , and ~F5 are the position, velocity, and fifth

force as measured in the N-E-D frame. The position and velocity can be decomposed

into

~X = ~X0 + ~X ′ (~r, φ) , (A.2)

~v = ~v0 + ~v′ (~r, φ) , (A.3)

where ~X0 and ~v0 are the position and velocity of the pivot point, ~X ′ and ~v′ are the

position and velocity of the test masses relative to the pivot point, ~r is the position

of the test masses in the balance frame, and φ is the twist angle of the balance.

We use the fact that
∣∣∣ ~X ′∣∣∣ << ∣∣∣ ~X0

∣∣∣ and |~v′| <<
∣∣∣~V0∣∣∣ to Taylor expand the force

~F = ~F0 + ~X ′ · ∇ ~X
~F + ~V ′ · ∇~v ~F . (A.4)

We neglect the motion of the torsion balance itself, so the velocity is only due to the

rotation of the Earth. Writing the position of the the test mass as

~X = X ′N̂ + Y ′Ê + (Z ′ −R) D̂, (A.5)
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where R is the radius of the Earth. The velocity of the test mass can be written as

~v = ΩY ′sζN̂ − Ω [X ′sζ + (Z ′ −R) cζ ] Ê + ΩY ′cζD̂

= ΩRcζÊ +
[
ΩY ′sζN̂ − Ω (X ′sζ + Z ′cζ) Ê + ΩY ′cζD̂

]
= ~v0 + ~v′. (A.6)

Since ~v′ is linear in ~X ′, we can then write v′ as

~v′ = ~X ′ · ∇ ~X′~v
′, (A.7)

where

∇ ~X′
~V ′ =


0 Ωsζ 0

−Ωsζ 0 −Ωcζ

0 Ωcζ 0

 . (A.8)

We can then write the specific force as

~F = ~F0 + ~X ′ ·
(
∇ ~X

~F +∇ ~X′
~V ′ · ∇~V

~F
)

. (A.9)

We can compare this to the equation used in Chapter 3. We can now apply Eötvös’

“software method” to compute the force on the torsion balance. The difference in

fifth force charges for the Eötvös experiment

(κ− κ′)G sin β

= (q1 − q′1)
{
FX0 +

ν

m
FY0 + sin βFZ0

− K

M`

m

4L
(∂Y0FY0 − ∂X0FX0)

ν

m
+ h

(
∂Z0FX0 +

ν

m
∂Z0FY0

)
−h sin β

(
∂X0FX0 +

ν

m
∂X0FY0 − ∂Z0FZ0

)
−h sin βΩ cos ζ

(
∂VY0FZ0 −

ν

m
∂VY0FY0 − tan ζ∂VY0FX0

)
−hΩ cos ζ

(
∂VY0FX0 +

ν

m
∂VY0FY0

)
− K

M`

m

4L

ν

m
Ω sin ζ

(
∂VY0FX0 +

1

2
∂VX0

FX0 +
1

2
∂VX0

FY0

+ cot ζ∂VZ0
FY0

)}
. (A.10)
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The fifth force signal for the Adelberger experiment is

T = − (q1 − q2)M` sinφ (FX0 + FY0 + sin βFZ0)

− (q1 − q2)M` cosφ (FX0 − FY0 + sin βFZ0)

+ (q1 + q2)
K

2
(∂X0FY0 − ∂Y0FX0)

− (q1 + q2)
K

2
sin β (∂Y0FZ0 − ∂Z0FY0)

− (q1 + q2)
K

2
Ω sin ζ

(
∂VX0

FX0 + ∂VY0FY0 + sin β∂VX0
FZ0

)
− (q1 + q2)

K

2
Ω cos ζ

(
∂VZ0

FX0 + ∂VY0FY0 + sin β∂VZ0
FZ0

)
. (A.11)
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B. REFERENCE FRAMES AND FRAME ROTATIONS

B.1 Reference Frames and Conversions

B.1.1 Space-Based Reference Frames

We will use a number of reference frames in our analysis, which we define here.

We will borrow heavily the notation of Vallado [72]. The Heliocentric (or ecliptic)

Frame, {X̂, Ŷ , Ẑ}, is an inertial frame fixed to the Sun with the ecliptic frame as

the fundamental plane. The axes are defined such that X̂ points toward the vernal

equinox, Ẑ is perpendicular to the ecliptic plane, and Ŷ completes the triplet

Ŷ = Ẑ × X̂. (B.1)

For an orbiting object, we can define a perifocal frame, {P̂ , Q̂, Ŵ}. The P̂ vector

points toward periapsis of the orbit, Ŵ points along the angular momentum vector

and Q̂ completes the set. The relationship between the inertial perifocal frames are

shown in Figure B.1. The angles relating the the perifocal frame to the inertial frame

are the longitude of the ascending node, Ω, the inclination, i, and the argument of

periapsis, θ∗.

B.1.2 Earth-Based Reference Frame

The Earth Centered Inertial (ECI) frame, {Î , Ĵ , K̂} is fixed at the center of

the Earth with Î pointing toward the vernal equinox, K̂ pointing along the Earth’s

rotation axis, and the Ĵ completing the triplet

Ĵ = K̂ × Î. (B.2)

The ECI and heliocentric frames are related by a rotation about the common X̂ − Î
axis through the angle, ε, known as the obliquity of the ecliptic.
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Ω

i

θ∗
ν

Î

Ĵ

K̂

~r
P̂Q̂Ŵ

Fig. B.1. The relationship between the inertial frame and the perifocal
frame. Ω is the longitude of the ascending node, i is the inclination
and θ∗ is the argument of periapsis. The perifical frame is related to
the local orbital frame by the true anomaly, ν.
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B.1.3 Body Reference Frames

The final frame needed is the body frame denoted by {b̂1, b̂2, b̂3}. We will assume

that b̂1 is along the sensitive axis of the test mass and b̂3 is along the rotation axis

of the Microscope spacecraft. The body frame is related to an inertial frame by a

sequence of three simple rotations, which will be discussed later.

B.1.4 Frame Conversions

We now need relationships between reference frames. Again, we will borrow heav-

ily from Vallado. A general rotation from one reference frame to another requires an

axis of rotation and an angle of rotation. We can define fundamental rotations as

those about the x, y, and z-axes. These rotations are given by,

Rot1 (θ) =


1 0 0

0 cθ sθ

0 −sθ cθ

 , (B.3)

Rot2 (θ) =


cθ 0 −sθ
0 1 0

sθ 0 cθ

 , (B.4)

Rot3 (θ) =


cθ sθ 0

−sθ cθ 0

0 0 1

 . (B.5)

Any generic 3-dimensional rotation can be represented in terms of a sequence of

fundamental rotations, such as 3-1-3 or 3-2-1.

Vectors in the heliocentric and ECI frames are related by the obliquity of the

ecliptic

~rIJK , ~vIJK = Rot1 (−ε)~rXY Z , ~vXY Z , (B.6)

where ε = 23.44 deg is the obliquity of the ecliptic, more commonly known as the

axial tilt pf the Earth.
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The transformation from a perifocal frame to the helicentric frame is given by a

3-1-3 rotation sequence,

~rinertial, ~vinertial = Rot3 (−Ω) Rot1 (−i) Rot3 (−θ∗)~rPQW , ~vPQW ,

~rPQW , ~vPQW = Rot3 (θ∗) Rot1 (i) Rot3 (Ω)~rinertial, ~vinertial.
(B.7)

The final coordinate transformation we need is to relate the body frame to ECI

frame. As we stated before, the general transformation from one frame to another can

be written in terms of the three Euler angles, three rotations about body-fixed x, y,

and z axes. The order or rotations matters; a different order will yield a different set

of Euler angles. Normally one order proves to be advantageous for a given problem,

which is the case here. Since we want the spin (b̂3) axis perpendicular to the orbit

(since the Microscope spacecraft is in a sun-synchronous orbit), we use a 3-1-3

order as we do for the perifocal frame. The first two angles are simply the satellite

longitude of the ascending node, Ωs, and the satellite inclination, is. The third angle

is then the satellite spin rate times time, ωspint, and the transformation is given by,

~rbod, ~vbod = Rot3 (ωsatt) Rot1 (is) Rot3 (Ωs)~rIJK , ~vIJK . (B.8)

B.2 Velocity of the MICROSCOPE Test Mass

B.2.1 Velocity of the Sun through the galaxy

The velocity of the sun relative to the galaxy is measured from Earth and can be

written directly in the ECI frame

~vsun,gal = 227.7km/s


0.464

−0.489

0.739

 . (B.9)
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B.2.2 Orbital Velocity

The position vector of an orbiting body can be written in terms of the orbital

elements in the perifocal coordinate frame as

~rPQW =


p cos ν

1+e cos ν

p sin ν
1+e cos ν

0

 , (B.10)

where p = a(1− e2) is the semilatus rectum, a is the semimajor axis, e is the eccen-

tricity, and ν is the true anomaly of the orbit. Here ν is the only component that

depends on time. We can take the derivative to find the velocity

~vPQW =

√
GM

p


− sin ν

e+ cos ν

0

 , (B.11)

where we have used definitions of the specific angular momentum, h = r2ν̇ =
√
GMp.

We can now simply use our rotations to convert the orbital velocities to central

body inertial frames. The satellite velocity is naturally in the ECI frame, and the

Earth velocity is naturally in the helicentric frame, so we will need an additonal

rotation of ε to write the velocity of the Earth in the ECI frame,

~vsat,IJK = Rot3 (−Ωs) Rot1 (−is) Rot3 (−θ∗s)
√
GMEarth

ps


− sin νs

es + cos νs

0

 , (B.12)

~vEarth,IJK = Rot1 (−ε) Rot3 (−Ωe) Rot1 (−ie) Rot3 (−θ∗e)
√
GMSun

pe


− sin νe

ee + cos νe

0

 ,

(B.13)

where the s and e subscripts on the orbital elements denote Earth and spacecraft.
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B.2.3 Total Velocity

We now have the components of the velocity in the ECI, so we must convert to

the body frame to analyze in the Microscope experiment. The total velocity in the

body frame is then given by,

~vtot,bod = ~vsun,gal + ~vearth,sun + ~vsc,Earth

= Rot3 (ωsatt) Rot1 (is) Rot3 (Ωs)

×
{

227.7km/s


0.464

−0.489

0.739



+Rot3 (−Ωs) Rot1 (−is) Rot3 (−θ∗s)
√
GMEarth

ps


− sin νs

es + cos νs

0



+Rot1 (−ε) Rot3 (−Ωe) Rot1 (−ie) Rot3 (−θ∗e)
√
GMSun

pe


− sin νe

ee + cos νe

0


}

.

(B.14)
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C. DERIVATION OF THE MATRIX ELEMENT FOR

BETA DECAY OF A POLARIZED NEUTRON

We wish to evaluate the matrix element for nuclear beta decay

M = 〈f |Hint| i〉 , (C.1)

where Hi is the interaction Hamiltonian and J `µ is the lepton current for this decay

Hint =
GF√

2
τ+γµ

(
1− λγ5

)
J `µ, (C.2)

J `µ = ψeγµ
(
1− γ5

)
ψν , (C.3)

where GF is the Fermi constant, λ is the relative strenght of the vector and axial-

vector couplings, τ+ is the isospin raising operator, γµ and γ5 are the 4 × 4 Dirac

matrices [50], and φi, i = {e, nu} are the electron and antineutrino wavefunctions. In

position representation, the full matrix element becomes

M =
GF√

2

∫
ψpγ

µ
(
1− λγ5

)
ψnψeγ

µ
(
1− γ5

)
ψνd

3r. (C.4)

The proton, electron, and antineutrino are represented by standard wave functions

ψn(~r) =

√
c

2E1V
us1(p1)e

i~p1·~r/~, (C.5)

ψν(~r) =

√
c

2E2V
us2(p2)e

−i~p2·~r/~, (C.6)

ψp(~r) =

√
c

2E3V
us3(p3)e

i~p3·~r/~, (C.7)

ψe(~r) =

√
c

2E4V
vu4(p4)e

i~p4·~r/~, (C.8)

where V is the normalization volume, pi(Ei) is the momentum(energy) of the ith

particle. We have followed the momentum prescription of Griffiths [50]. The spinors

u and v are normalized as

u†
r
us = −v†rvs = 2

E

c
δrs. (C.9)
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Substituting the wavefunctions into Eq. (C.4), we obtain

M =
GF c

2

4V 2
√

2E1E2E3E4

u(p3)γ
µ
(
1− λγ5

)
u(p1)

×u(p4)γµ
(
1− γ5

)
v(p4)

∫
ei(~p1−~p2−~p3−~p4)·~r/~d3r, (C.10)

where we have suppressed the spin indices. We now take the modulus squared of M
and sum over the proton, electron, and antineutrino spins〈∣∣M2

∣∣〉 =
∑

s2,s3,s4

|M|2 =
G2
F c

4

32V 3E1E2E3E4

NµνLµν

×(2π~)3δ3(~p1 − ~p2 − ~p3 − ~p4), (C.11)

where [∫
ei(~p1−~p2−~p3−~p4)·~r/~d3r

]2
= V (2π~)3δ3(~p1 − ~p2 − ~p3 − ~p4). (C.12)

The lepton tensor, Lµν , is a trace over gamma matrices

Lµν = Tr
[
γµ
(
1− γ5

)
/p2γν

(
1− γ5

) (
/p4 +m4c

)]
. (C.13)

The traces are straightforward to evaluate (see Appendix D or any text on particle

physics, e.g. [50])

Lµν = 8 [p2µp4ν + p2νp4µ − etaµν(p2 · p4)− iεµνκτpκ2pτ4] , (C.14)

where ηµν is the Minkowski metric with signature (+,−,−,−) and εµνκτ is the totally

antisymmetric operator with ε0123 = −1.

The nuclear tensor, Nµν is

Nµν = u†(p1)γ
0γν
(
1− γ5

) (
/p3 +m3c

)
γµ
(
1− γ5

)
u(p1). (C.15)

We assume that the neutron is at rest. As we are considering a polarized neutron,

we take the spin up state, given by

u(p1) =
√

2m1c


1

0

0

0

 . (C.16)
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To simplify calculations, we will neglect the recoil of the proton. We introduce the

integral over the proton phase space (V d3p3) / (2π~)3 which eliminates the delta func-

tion over momentum in Eq. (C.11). Then we neglect the proton’s recoil momentum

relative to it’s mass, so we let E3 → m3c
2. Then we have the following simplification

/p3 +m3c = 2m3c


1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

 . (C.17)

We now compute the matrix elements for four cases.

µ = 0, ν = 0

N00 = 4m1m3c
2, (C.18)

N00L00 = 32m1m3c
2

(
E2E4

c2
+ ~p2 ·~~p4

)
. (C.19)

µ = 0, ν = i

N0i = −4m1m3c
2δi3, (C.20)

N0iL0i = −32m1m3c
2λ

(
E2

c
p4z +

E4

c
p2z − iε03κτP 2κP 4τ

)
. (C.21)

µ = i, ν = 0

N i0 = −4m1m3c
2δi3, (C.22)

N i0Li0 = −32m1m3c
2λ

(
E4

c
p2z +

E2

c
p4z + iε03κτP

2κP 4τ

)
. (C.23)
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µ = i, ν = j

N ij = 4m1m3c
2λ2 (δij − iεij3) , (C.24)

N ijLij = 32m1m3c
2λ2
(

3E2E4

c2
+ ~p2 · ~p4

)
−64m1m3c

2λ2
(
E4

c
p2z −

E2

c
p4z

)
. (C.25)

Full Results

NµνLµν = 32m1m3E2E4

(
1 + 3λ2

)
+ 32m1m3

(
1− λ2

)
~p2c · ~p4c

−64m1m3E4

(
λ+ λ2

)
p2zc− 64m1m3E2

(
λ− λ2

)
p4zc. (C.26)

The p2z and p4z appear because we assumed that the neutron is polarized in the

z-direction. To allow for arbitrary polarization, we let pz →= Î · ~p where Î is the

neutron spin direction. We can then write

NµνLµν = 128m1m3E2E4 |Mif |2

×
(

1 + a
~p2c · ~p4c
E2E4

+ AÎ · ~p4c
E4

+BÎ · ~p2c
E2

)
, (C.27)

|Mif |2 =
1

4

(
1 + 3λ2

)
, (C.28)

|Mif |2 a =
1

4

(
1− λ2

)
, (C.29)

|Mif |2A = −1

2

(
λ− λ2

)
, (C.30)

|Mif |2B = −1

2

(
λ+ λ2

)
. (C.31)

We have introduced fairly standard symbols for the anisotropies (see, for example,

[73], [74], and [51]). For decays other than the neutron, ξ, A and B will differ based on

the Fermi and Gammow-Teller matrix elements and spin of the parent and daughter

nuclei. (Note: in a notable departure, we have used |Mif |2, instead of ξ, which is
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common in the literature. We have done this to make it even more apparent that this

term will depend on the nucleus decaying.)

The matrix element is then (recalling we got rid of the delta function and one

factor of volume with the proton phase state factor).

〈∣∣M2
∣∣〉 =

4G2
F |Mif |2
V 2

(
1 + a

~p2c

E2

· ~p4c
E4

+ AÎ · ~p4c
E4

+BÎ · ~p2c
E2

)
. (C.32)
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D. SOLUTION TO THE LEPTON TENSOR TRACES

We wish to solve for the traces in the lepton tensor, Lµν ,

Lµν = Tr
[
γµ
(
1− γ5

)
/p2γ

ν
(
1− γ5

) (
/p4 +m4c

)]
. (D.1)

There are eight total traces, but we can eliminate some right away. Any trace

containing m4c will have three γσ and zero, one, or two γ5’s. The trace of an odd

number of gammaσ’s or an odd number of γσ’s and a γ5 is zero and the case with

the two γ5’s will eventually simplify to three γσ’s and will also be zero. Thus our Lµν

simplifies and we only have four traces to solve.

Lµν = Tr
[
γµ
(
1− γ5

)
/p2γ

ν
(
1− γ5

)
/p4

]
= p2κp4τTr

[
γµ
(
1− γ5

)
γκγν

(
1− γ5

)
γτ
]

. (D.2)

D.1 Tr (γµγκγνγτ )

By definition (see any textbook on particle physics or quantum field theory [50])

Tr [γµγκγνγτ ] = 4 (ηµκηντ − ηµνηκτ + ηµτηνκ) . (D.3)

D.2 −Tr (γµγκγνγ5γτ )

Using the fact that γ5 commutes with the γµ ({γ5, γµ} = γ5γµ + γµγ5 = 0) and

the cyclicity of the trace,

−Tr
(
γµγκγνγ5γτ

)
= Tr

(
γµγκγνγτγ5

)
= Tr

(
γ5γµγκγνγτ

)
= 4iεµκντ = −4iεµνκτ . (D.4)
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D.3 −Tr (γµγ5γκγνγτ )

−Tr
(
γµγ5γκγνγτ

)
= Tr

(
γ5γµγκγνγτ

)
= 4iεµκντ = −4iεµνκτ . (D.5)

D.4 Tr (γµγ5γκγνγ5γτ )

Since (γ5)2 = 1,

Tr
(
γµγ5γκγνγ5γτ

)
= −Tr

(
γµγκγ5γνγ5γτ

)
= Tr

(
γµγκγνγ5γ5γτ

)
= Tr (γµγκγνγτ )

= 4 (ηµκηντ − ηµνηκτ + ηµτηνκ) . (D.6)

D.5 Full Solution

Combining the four solutions, we find

Lµν = 8 [pµ2p
ν
4 + pν2p

µ
4 − ηµν(p2 · p4)− iεµνκτp2κp4τ ] . (D.7)
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E. COMPUTATION OF THE BETA DECAY INTEGRAL

In this appendix, we wish to evaluate the beta decay integral Eq, (6.13)

f(Z,E0) =
1

(mec2)
5

∫ E0

mec2
F (Z,Ee)

√
E2
e −m2

ec
4Ee (E0 − Ee)2 dEe. (E.1)

Unfortunately, it is not possible to solve this equation analytically for arbitrary Z.

We set Z = 0, then F (0, E) = 1 and the integral becomes

f(0, E0) =
1

(mec2)
5

∫ E0

mec2

√
E2
e −m2

ec
4Ee (E0 − Ee)2 dEe. (E.2)

This integral is solvable; we begin by nondimensionalizing. Let x = Ee/(mec
2) and

a = E0/(mec
2). Then the integral is

f(0, a) =

∫ a

1

√
x2 − 1x (a− x)2 dx

=

∫ a

1

√
x2 − 1

(
a2x− 2ax2 + x3

)
dx. (E.3)

We see that there are three integrals to evaluate.

E.1 I1 =
∫
x
√
x2 − 1dx

This integral can be solved with a simple substitution u = x2 − 1, dy = 2xdx.

Then,

I1 =
1

2

∫ √
udu

=
1

3
u3/2

=
1

3

(
x2 − 1

)3/2
. (E.4)
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E.2 I2 =
∫
x2
√
x2 − 1dx

For I2, we perform the substitution x = coshu, dx = sinhudu. Then
√

cosh2 c− 1

= sinhu and (using sinh 2u = 2 sinhu coshu and 2 sinh2 u = cosh 2u− 1, 2 cosh2 u =

cosh 2u+ 1) the integral is given by,

I2 =

∫
cosh2 u sinh2 udu

=
1

4

∫
sinh2 2udu

=
1

8

∫
cosh 4u− udu

=
1

32
(sinh 4u− 4u)

=
1

16
(sinh 2u cosh 2u− 2u)

=
1

8

[
sinhu coshu

(
2 cosh2 u− 1

)
− u
]

=
1

8

[√
cosh2 u− 1 coshu

(
2 cosh2 u− 1

)
− u
]

=
1

8

[√
x2 − 1

(
2x3 − x

)
− cosh−1(x)

]
. (E.5)

We could leave I2 in terms of the inverse hyperbolic cosine, but the standard answer

(see [50]) writes this terms using natural logarithms. We can use the definition of the

hyperbolic cosine, coshu = (eu + e−u) /2 to write

coshu = x

eu + e−u

2
= x.

(E.6)

Let z = eu, then

z + z−1 = 2x

z2 − 2xz + 1 = 0

→ z = x±
√
x2 − 1

→ u = cosh−1 x = ln(x+
√
x2 − 1). (E.7)
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where we have taken the positive solution. The solution to I2 is then

I2 =
1

8

[√
x2 − 1

(
2x3 − x

)
− ln(x+

√
x2 − 1)

]
. (E.8)

E.3 I3 =
∫
x3
√
x2 − 1dx

We begin by integrating by parts: We let u = x2 and dv = x
√
x2 − 1dx. Then,

du = 2xdx, and we use the solution to I1 (Eq. E.4) to set v = 1
3

(x2 − 1)
3/2

. Then

the integral becomes

I3 =
1

3
x2
(
x2 − 1

)3/2 − ∫ 2

3
x
(
x2 − 1

)3/2
dx. (E.9)

We can solve this new integral with another the same substitution as I1

I3b =
2

3

∫
x
(
x2 − 1

)3/2
dx

=
1

3

∫
(u)3/2 du

=
2

15
(u)5/2

=
2

15

(
x2 − 1

)5/2
. (E.10)

Then I3 becomes

I3 =
1

3
x2
(
x2 − 1

)3/2 − 2

15

(
x2 − 1

)5/2
=

1

15

√
x2 − 1

[(
5x4 − 5x2

)
− 2

(
x4 − 2x2 + 1

)]
=

1

15

√
x2 − 1

(
3x4 − x2 − 2

)
. (E.11)

E.4 Full Results

Combining Eqs. (E.4), (E.8), and (E.11), the total integral is given by

I =
a2

3

√
x2 − 1

(
x2 − 1

)
− a

4

√
x2 − 1

(
2x3 − x

)
+

1

15

√
x2 − 1

(
3x4 − x2 − 2

)
+
a

4
ln(x+

√
x2 − 1) (E.12)
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Evaluating at the endpoints, a and 1 gives F (0, a)

f(0, a) =
a2

3

√
a2 − 1

(
a2 − 1

)
− a

4

√
a2 − 1

(
2a3 − x

)
+

1

15

√
a2 − 1

(
3a4 − a2 − 2

)
+
a

4
ln(a+

√
a2 − 1)

=
1

60

√
a2 − 1

(
20a4 − 20a2 − 30a4 + 15a2 + 12a4 − 4a2 − 8

)
+
a

4
ln(a+

√
a2 − 1)

f(0, a) =
1

4

[
1

15

(
2a4 − 9a2 − 8

)√
a2 − 1 + a ln

(
a+
√
a2 − 1

)]
. (E.13)



VITA



145

VITA

Michael James Mueterthies was born in April of 1988 in Lawler, Iowa, a small

town in Northeast Iowa. His parents are Mark and Margaret (Peg) Mueterthies and

he has an older sister Megan, a younger brother Matthew, a brother-in-law Kelly,

and, recently, a niece Mollie. He spent his childhood on his family’s dairy farm and

was a 10 year member of his local 4-H club, the Lawler Lassies and Lads. Michael

graduated from Turkey Valley High School in 2006.

Michael entered Purdue’s School of Aeronautics and Astronautics Engineering

where he graduated with highest honors with a Bachelor’s Degree in May 2010 and a

Master’s Degree in May 2012. During his engineering career, Michael specialized in

control systems. While an undergraduate student, Michael was an intern at Rockwell

Collins, Continental Airlines, and the Space Dynamics Laboratory.

In 2011, Michael was a member of the inaugural class of the NASA Space Technol-

ogy Research Fellowship program. Under the fellowship, Michael worked for two years

with Professor James Longuski on spacecraft propulsion via electrodynamic tethers

and one year on carbon nanotube electrodes with Professor John Cushman. While a

fellow, Michael spent a summer at NASA Marshall Space Flight Center, performing

space environmental experiments and was part of a NASA team investigating the

practicality of propelling spacecraft using the Lorentz force.

Apparently not content being a rocket scientist, Michael entered the Purdue De-

partment of Physics and Astronomy in Fall 2012 to pursue a PhD, earning a Master’s

Degree in 2017, after putting it off for several years. He joined the research group of

Professor Ephraim Fischbach, investigating the Eötvös experiment and time-varying
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