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ABSTRACT

Ahmadian, Amirhossein. M.S.M.E., Purdue University, August 2019. Design and
Fabrication of High Capacity Lithium-Ion Batteries Using Electro- Spun Graphene
Modified Vanadium Pentoxide Cathodes.. Major Professor: Mangilal Agarwal.

Electrospinning has gained immense interests in recent years due to its potential

application in various fields, including energy storage application. The v2o5/GO as

a layered crystal structure has been demonstrated to fabricate nanofibers with di-

ameters within a range of ∼300 nm through electrospinning technique. The porous,

hollow, and interconnected nanostructures were produced by electrospinning formed

by polymers such as Polyvinylpyrrolidone (PVP) and Polyvinyl alcohol (PVA), sep-

arately, as solvent polymers with electrospinning technique.

In this study, we investigated the synthesis of a graphene-modified nanostructured

v2o5 through modified sol-gel method and electrospinning of V2O5/GO hybrid. Elec-

trochemical characterization was performed by utilizing Arbin Battery cycler, Field

Emission Scanning Electron Microscopy (FESEM), X-ray powder diffraction (XRD),

Thermogravimetric analysis (TGA), Mercury Porosimetery, and BET surface area

measurement.

As compared to the other conventional fabrication methods, our optimized sol-

gel method, followed by the electrospinning of the cathode material achieved a high

initial capacity of 342 mAhg−1 at a high current density of 0.5C (171 mAg−1) and

the capacity retention of 80% after 20 cycles. Also, the prepared sol-gel method

outperforms the pure v2o5 cathode material, by obtaining the capacity almost two

times higher.

The results of this study showed that post-synthesis treatment of cathode ma-

terial plays a prominent role in electrochemical performance of the nanostructured
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vanadium oxides. By controlling the annealing and drying steps, and time, a small

amount of pyrolysis carbon can be retained, which improves the conductivity of the

v2o5 nanorods. Also, controlled post-synthesis helped us to prevent aggregation of

electro-spun twisted nanostructured fibers which deteriorates the lithium diffusion

process during charge/discharge of batteries.
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1. INTRODUCTION

1.1 Lithium-ion Batteries

1.1.1 A Review on Lithium-ion Batteries and Current Battery Technolo-

gies

The pioneering work on Lithium batteries began in 1912 under the leadership

of G. N. Lewis. The primary non-rechargeable lithium batteries gained entry into

the market in the 1970s. Lithium was preferred because the metal is the lightest,

provides the most significant energy density, and presented a remarkable level of elec-

trochemical potential. However, it could not be used in manufacturing batteries due

to its instability, especially during charging. Researchers found that Lithium batteries

could explode during charging, presenting various safety issues [1]. Lithium batteries

could work but recharging them became a significant challenge. Thus, experts aban-

doned work on lithium batteries in favor of other solutions, including non-metallic

options. Researchers found that using lithium ions was an effective way of replacing

lithium batteries [2,3]. Lithium-ion batteries have become a popular source of energy

for consumer electronics, including mobile phones, computers (laptops), cameras, and

personal digital assistants (PDA). In 1991, Sony Corporation became the first com-

pany to commercialize lithium-ion batteries. Currently, many companies have joined

the production of lithium-ion batteries. Manufacturers of consumer electronics prefer

Li-ion batteries because of their high energy density, lower rates of self-discharge, low

maintenance, and safety [4, 5].

Lithium ions, however, possess lower energy density compared to lithium metals.

Using the ions, however, was safer and also met both charging and recharging re-

quirements. Compared to other metals like Nickel-cadmium, lithium ions had twice
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Fig. 1.1. Ragone chart of specific power vs. specific energy in different
battery types vs. different current rates [7].

higher energy density making them preferable [6]. The relationship between the spe-

cific power and specific energy of different types of batteries is shown in Figure 1.1 in

different current rates. As shown, lithium-ion batteries provide the highest specific

power and specific density in all current rates among all the other types of batter-

ies [7]. The primary purpose of this thesis is to fabricate high capacity lithium-ion

batteries using electro-spun graphene-modified vanadium pentoxide cathodes.

1.1.2 Theory

Although there are various rechargeable batteries, Li-ion batteries have received

more attention due to their applicability for both consumer and industrial purposes

due to their high-power density and energy. In fact, among all metal-based batter-

ies, Li-ion batteries are considered to have the highest gravimetric, volumetric, and

energy density [8]. This has been linked to lithiums small ionic radius of about 0.76



3

Åand low atomic weight of 6.94 g.mol1. Moreover, it has a relatively low density of

approximately 0.53 g.cm3. Lithium also has a meager redox potential, -3.041 V, and

this helps in providing electromotive force. Contrary to a disposable battery, Li-ion

can be rechargeable allowing the transfer of mass and charge within the electrodes.

The amount of stored energy and released energy is governed by the thermodynamics

and kinetics of active electrode processes. The reaction can also be assessed using a

half cell, where lithium acts as a reference electrode. It can also be investigated as

a full cell, where electrons produced at the cathode are consumed at the anode and

conserved if there were no side reactions [9, 10].

Lithium-ion battery consists of four major components, including cathode, anode,

electrolyte, and separator. Every part of the battery is essential because all the other

parts cannot function if one is missing: The anode or negative electrode acts as

the reducing or fuel electrode. During the electrochemical reaction within the cell,

it losses electrons to the external circuit and will be oxidized in the end. In the

other side of the battery, the cathode or positive electrode performs as the oxidizing

electrode. During the electrochemical process, it gains electrons from the external

circuit and will be reduced in the end. In between anode and cathode inside the

battery, the electrolyte or the ionic conductor provides the medium for transfer of

ions. It dissolves salts, acids, or alkalis to facilitate ionic conductivity. In general, the

electrolyte is in a liquid form, such as water or other solvents, However, in some other

cases, solid electrolytes or gel-type polymer electrolytes can be utilized. Cathode and

anode have to be kept from coming into contact, thereof the separator or the barrier

takes this role. A cathode is the source of lithium ions and determines the average

capacity or voltage of the battery. According to Sun, Sun, Xie, and Liu (2016), the

lithium-ion battery generates electrical energy through chemical reactions occurring

on the surface of the lithium metal [11]. Thus, the insertion of the lithium metal

into the battery is through the cathode. However, lithium is unstable in its elemental

form, and experts must combine it with other chemicals to gain stability [12]. The

cathode must be an efficient and stable oxidizing agent, while in contact with the
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electrolyte and having a useful working voltage at the same time [13]. In the case of

lithium-ion batteries, oxygen is used to stabilize the lithium metal. Oxygen combines

with lithium to form lithium oxide, also described as an active material [14]. Cathode

plays a significant role in determining the capacity of the battery [15]. A large lithium

metal, for instance, is likely to produce more energy than small lithium metal.

An anode is the part of the battery which stores and releases lithium-ions from

the cathode, allowing currents to pass through, and completes the electrical circuit.

Practically, metals are chiefly utilized as anode material. Zinc has been a primary

anode because it has these desirable properties [13, 16]. Also, the anode is manufac-

tured using graphite coated with an active material. In this case, the active material

is lithium oxide. Graphite is mainly preferred for the anode because it is more sta-

ble and does not react to the chemicals present inside the battery. Lithium, as the

lightest metal, with a high value of electrochemical likeness, has gained entry as a

promising anode material. With the development of intercalation electrodes, lithiated

carbons are considered to be promising candidates in lithium-ion battery technology.

Lithium alloys are also developed and fabricated in lithium-ion batteries acting as an

anode [17].

An electrolyte is the component of the battery, which allows the flow of lithium ions

from the anode to the cathode. The materials used in making electrolyte is expected

to have higher conductivity of electrons. In order to prevent internal short-circuiting

, the electrolyte must have a proper ionic conductivity but not be electronically con-

ductive [13]. In most cases, the electrolyte consists of salts, solvents, and additives.

Solvents are liquids that allow salts to dissolve and form a liquid, which enables the

flow of ions. However, the addition of additives to the electrolyte may be necessary

depending on the needs of the manufacturer. For instance, if a manufacturer requires

a higher capacity battery within a limited space, additives may be included in the

battery to speed up the flow of ions. Electrolytes may come in different types de-

pending on the materials used in the manufacturing process [18]. Besides, the type

of electrolytes also determines the speed of the flow of ions from the anode to the



5

cathode. Some manufacturers try to modify the electrolyte using additives or solvents

to achieve the desired purpose. Electrolyte plays a significant role in determining the

safety of the battery. For instance, it allows the ions to flow and not the electrons.

If electrons flow through an electrolyte, issues such as overheating and subsequent

explosion may occur [19].

Separator provides a barrier that prevents cathode and anode from coming into

contact. The separator also prevents the direct flow of electrons by allowing only ions

to pass through the microscopic holes. The electrons are then forced to flow through

the conducting wire in external circuit while the ions flow through the electrolyte [13].

Allowing both electrons and ions to flow through the electrolyte may cause serious

safety issues. The separator must be from the materials that do not react with

the chemicals present in the electrolyte. In most cases, synthetic resins such as

polypropylene and polyethylene make the separator. Both electrolyte and separator

play a critical role in maintaining the safety of the battery [19,20].

1.1.3 Lithium-ion Batteries Electrochemical Process

In Li-ion cell charging process, the active, positive electrode material is oxidized,

and the active negative electrode material is reduced. As illustrated in Figure 1.3,

lithium ions are deintercalated from the cathode and intercalated into anode. In the

following reactions, LiMO2 is representing cathode, a metal oxide like LiCoO2. Also,

C represents the anode, a negative carbonaceous material such as graphite. In Figure

1.3, x and y are selected based on the molar capacities of the electrode materials for

lithium. In regular occasions, x is about 0.5, and y is about 0.16. Therefore x/y is

equal to 3 [13].

The reverse occurs on discharge due to the lack of metallic lithium inside the cell.

As compared to Lithium batteries, Li-ion batteries are chemically less reactive, safer,

and offer longer cycle life. The charge-discharge electrochemical process in a Li-ion

cell is depicted graphically in Figure 1.4. In this figure, the layered active materials, as
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Fig. 1.2. Schematic of a typical Li-ion battery in action [21].

Fig. 1.3. Electrode reactions in the most common Li-ion cell [13].
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Fig. 1.4. Schematic of the electrochemical process within a Li-ion battery [13].

a promising candidate material for cathodes are shown on metallic current collectors

[13]. The electrons are transfered throughout the external circuit from the positive

current collector as the ion transfer happens within the cell.

Ficks Law of Diffusion in Li-ion Batteries

The high surface to volume ratio of fibers, can be accomplished by incorporating

the electrospinning method in energy storage applications [22, 23]. In a way that it

can provide more physical contact and gap for the lithium de/intercalation process

allowing more penetration depth for Li+ into the electrode which is determined by the

diffusion length. Diffusion length depends on many properties including the material

property and the surface morphology [24, 25]. In this regard, a theoretical study on

the Li-ion diffusion rate is carried out:

It states that the flux travels from regions of high concentration to regions of low

concentration, with a magnitude that is proportionate to the concentration gradient.
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The ions in the electrolyte diffuse due to the minor changes in the electrolyte concen-

tration. In Ficks first law, linear diffusion is only a matter of concern. The alteration

in concentration, c, as a function of time (t), and distance (x) is:

∂c

∂t
= −D

ε

∂c

∂x
(1.1)

The negative sign indicates the flux of ions flowing from high concentration to low

concentration regions. In this equation, D is the diffusion coefficient for the lithium-

ion which has the value of 7.51010m/s in the LiPF6 electrolyte. The value for ε or

he porosity of the electrolyte, is 0.724. Counting on approximation, equation (1.1)

becomes:
∂c

∂t
=
c2 − c1
l

(1.2)

where l is the length between the electrodes. Plugging Equation (1.2) into Equation

(1.1):
∂c

∂t
= −D

ε

c2 − c1
l

(1.3)

The concentration at the anode is c1 and at the LixV2O5 cathode is c2. However,

Fick’s second law postulates how diffusion results in the concentration change con-

cerning time. Mathematically, a second-order differential equation is used to describe

this concentration change in Li-ion batteries. Therefore, Equation 1.10 becomes [26]:

∂c

∂t
= −D

ε

∂2y

∂x2
(1.4)

Migration in Li-ion Batteries

Another predominant factor involved in the movement of the Li+ ions is concerned

with voltage change, which influences the movement of ions in the electrolyte. Hence,

Ficks first law takes the form of the following:

∂c1
∂t

= −zfc0D
RTε

∂φ

∂x
(1.5)

The negative sign indicates the ions transfer is happening from high voltage to low

voltage. In equation (1.5), the concentration at the anode is c0, and z is the charge of
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the ion. In this case, z equals +1 for Li+. TThe Faradays constant (F) has a value has

a value of 9.64853104 C/mol. The initial electrolyte concentration is denoted by c0.

Also, the diffusion coefficient denoted as D continues to be 7.5 ∗ 1010. TThe ideal gas

constant (R) has the value of 8.3145 J/(mol.K). The temperature, T, is the standard

temperature of 298 K. The value for ε, the porosity of the electrolyte, and diffusion

coefficient denoted as D remain the same. The change in voltage as a function of the

position is ∂φ
∂x

. If the voltage(φ), is considered constant, then the equation can be

expressed as:
∂c

∂t
= −zfφD

RTε

∂c

∂x
(1.6)

In order to simplify the calculation, the linearized equation following the same scheme

has been presented here. Using the following equation, the concentration change due

to voltage is [26].
∂c

∂t
= −zfφD

RTε

c2 − c1
l

(1.7)

As a simple way to calculate concentration change, transference number is used as

followed by the below equation [26]:

∂c

∂t
= −D

ε

∂c

∂x
+ (1− t†) (1.8)

where t† is 0.364 for Li+ in this battery. The structural change occurs after elec-

trospinning when the morphology becomes more porous as verified by a mercury

porosimeter. We have demonstrated through our porosimeter results that the electro-

spun V2O5 nanotubes help to improve the Li diffusion as the diffusion length decreases

significantly due to the formation of nanostructured V2O5. This can be seen and veri-

fied by the above equation as the diffusion length decreases; the lithium intercalation

rate increases proportionally.

1.2 Vanadium Oxides as a Cathode Material

There has been extensive research over the past years on cathode materials; How-

ever, lack of a suitable cathode material has remained to be a hindrance towards an
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improved battery performance. On the other hand, anode materials possess stable ca-

pacities that are factors better compared to cathode counterparts. Cathode materials

are innately limited to a significantly low intercalation capacity as well as degrada-

tion during long-term cycles. In other words, cathode performance has become a

hindrance to further capacity improvement in Li-ion batteries; there has been exten-

sive research focused on such electrode [27]. However, there is an ongoing exploration

of alternative cathode materials in an effort to increase the intercalation capacity of

currently used cathode materials. The most popular battery electrode material can-

didates are layered intercalation compounds, which are mostly comprised of metal

oxides. The first category of these layered compounds is those comprised of the lay-

ered compounds with nearly close-packed lattice with electro-active transition metal

ion in within the alternating layers, while lithium occurring in the unoccupied layers.

The second class consists of layered metal oxide compounds consist of open structure;

for example, layered vanadium oxides and tunneled manganese dioxide [28].

Also, there is a growing interest in research on vanadium oxides on its applications

as a cathode material for alkali ion batteries. Recently, we have seen an increasing

interest in alkali-ion technologies. Oxides of transition metals have also been studied

extensively due to their technological and fundamental aspect. However, vanadium

oxides have received much attention due to their ability to create many compounds

with oxygen that exhibit varying chemical, optical, and structural properties [29].

There is an extensive literature in the suitability of vanadium-based cathode in bat-

tery systems [30]. Different forms of vanadium oxide structures can be obtained via

the facile distortion of the V-O octahedral as well as its ability to exist in different

oxidation states (V 2+, V 3+, V 4+, V 5+) distinguished by colors as displayed in Figure

1.5. Vanadium-oxygen is a layered material with different V-O polyhedron constitute

a layered framework. There are only five stable vanadium oxides, and they include

a V O2, V2O3, V3O5, V3O7, and V2O5. Different other phases can be formed when

cations intercalate into the framework [31].
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Fig. 1.5. The colorful oxidation states of vanadium from lowest oxi-
dation state to highest oxidation states.
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Vanadium occurs naturally in rock deposits such as titaniferous magnetite, and

uraniferous sandstone and siltstone, however, it only constitutes the diminutive amount

of the host rock [32]. For battery applications, vanadium oxide offers several benefits

ranging from ease of synthesis, cheap, high energy densities, etc. as a result, it has

attracted many interests as it also fulfills the electrode material criteria as discussed

above [33].

The principal oxides of vanadium happen as single valence in different oxidation

states ranging from V 2+ to V 5+, in the form of V O, V2O3, V O2, and V2O5. The

ability to have different oxidation state creates meaningful differences that determine

other properties such as wider variation range as well as increased specific capacity,

especially when cations intercalate these vanadium materials. In addition, it has

been proven that vanadium has the ability to change the oxidation state as a way of

achieving stability of crystal structure as well as increase multivalent cations can help

achieve local electroneutrality [31]. The d-orbital of the vanadium atom is not entirely

occupied, and this can affect the size of the structural change. In an octahedral

environment, a significant change can occur if the nonbonding orbitals are filled,

but if they are completely filled, there is a significant change in the volume [34].

Since vanadium has several unoccupied nonbonding orbitals, its compounds can be

considered to be a suitable candidate for materials in multivalent batteries.

Vanadium is an element in the first row of transition elements. Its atomic num-

ber and atomic weights are 23 and 50.9415 amu, respectively. Vanadium is a redox

element and exists in several oxidation states ranging from -1 to +5, and for this

reason, vanadium can exist in several coordination numbers and geometries. Figure

1.6 below shows the coordination polyhedral from coordination number 4 to 8; How-

ever, vanadium complex coordination geometries are slightly distorted. Unlike other

transition metals, vanadium has the ability to adopt a host coordination geometry as

while others have a single coordination geometries [35].

In addition, acid-base equilibrium is important as it tells as vanadium redox be-

havior. Figure 1.7 below shows vanadium ions redox behavior in an aqueous solution
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Fig. 1.6. Vanadium species coordination geometries [35].
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Fig. 1.7. Pourbaix diagram of vanadium species [36].

that is affected by PH. For examples, V 4+ and V 5+ species are prevalent in alkaline

solutions around 0V, whereas V 3+ exists in acidic conditions [36].

1.2.1 Vanadium Pentoxide V2O5

Researchers have made many suggestions regarding potential solutions that will

increase the energy density of the batteries. For instance, some researchers have sug-

gested the use of lithium metal as an anode and searching for a higher voltage cath-

ode [37]. One of the materials that can be used to obtain a higher capacity and higher

voltage cathode is vanadium pentoxide. Unlike lithium metal, vanadium pentoxide

does not produce lithium ions. However, it has the highest reversible capacity among

the available materials used for making cathode [38]. Moreover, vanadium pentoxide
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has the ability to change phases from V 5+ to V 2+, which makes it a promising and the

most prevalent oxide among all other vanadium oxides. In a sense that, by changing

oxidation state, theoretically, it enables lithium intercalation/deintercalation process

to be accomplished entirely by facilitating to approach the theoretical value of 443

mAhg−1 [39].

Researchers also believe that vanadium pentoxide can be used to solve other lim-

itations associated with lithium-ion batteries. For instance, the use of vanadium

pentoxide can prolong the lifespan of the lithium-ion batteries making them durable

and safe. Future research on the lithium-ion batteries may favor the use of vanadium

pentoxide over lithium-ions [40,41].

Vanadium Pentoxide V2O5 Chemical Structure

Vanadium pentoxide is considered to be the most stable and prevalent compound

among another vanadium oxide. Also, it has a high oxygen concentration. It is formed

through corner-sharing and edge-sharing V O6 octahedra, and when in a crystal form,

it forms an orthorhombic structure [42]. It is placed in pmnm space group, and its

lattice parameters are as follows a = 11.510 Å, b = 3.563 Å, c = 4.369 Å, where the

coordinate a, b, and c are interchangeable [40]. The vanadium pentoxide stoichiom-

etry is perceived to be a deformed octahedral V O6, which is crucial in building the

structure. The octahedral are irregular in vanadium pentoxide, five of the V-O dis-

tances ranges between 1.585 Åand 2.021 Å, while the 6th V-O is approximately 2.79

Å. These deformed V O6 octahedra are shared by adjacent octahedral. This structure

exhibits that the layers are connected by weak Van der walls interaction. Therefore,

vanadium pentoxide crystal structure is layered where each layer is 4.4 apart with an

easy cleavage along (001) plane. Its orthorhombic crystal structure of V2O5 can be

regarded as layers of trigonal bipyramids of V2O5 that share edges and zigzag double

chains, as seen in Figure 1.8 [43].
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Fig. 1.8. Crystal structure of V2O5.
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A single vanadium atom can form six V-O bonds using oxygen atoms, producing

a distorted trigonal by-pyramids around the vanadium atoms. These by-pyramids are

connected since they share corners in a and b-coordinate and c-coordinate. The sixth

vanadium-oxygen bond consists of weak van der Waals forces, and this enables the

insertion of ions within the layers. It is difficult for Lithium-ion insertion and elec-

tronic transport to occur through c-axis layers as compared to along the a-b plane.

There are different combinations of the vanadium-oxygen bond; the O atoms can be

classified into three categories: OA, OC(OC1, OC2, OC3) and OB. The length of the

strongest bond of the three is V OA(d1) bond is 1.58 Å. The OB atoms then forms two

bonds: (V OB(d1) = 1.77 Å) with the angle V OBV of 125◦, while the OC atoms forms

three bonds (VOC1,2 (d3) = 1.88 Å) with bond angles 104◦, VOC3 (d4) = 2.02 Å) with

bond angle 143◦. The V OA′ interlayer force band has a length of 2.78 Å. The lithium-

ion intercalation and de-intercalation process are expressed as follows [44]: V2O5 +

xLi −→LixV2O5 The phase transformation occurs when lithium ion is inserted in the

vanadium pentoxide layers. Theoretically, the intercalation process of the lithium

ion can be categorized in several steps, and different phases of the LixV2O5 can be

formed in every phase. X, in this case, denotes the amount of lithium, and thus, the

five phases are [34,35]:

Phase 1: α−V2O5 (x < 0.01)

Phase 2: ε−LixV2O5 (0.35 < x < 0.7)

Phase 3: δ−LixV2O5 (x = 1)

Phase 4: γ−LixV2O5 (x < 2)

Phase 5: ω−LixV2O5(x > 2)

Among the five phases of LixV2O5, phase 1 has a little significant impact on the V2O5

structure, and phase 2 is formed, and there was increased puckering of vanadium

oxide layers. This phase occurs when lithium is equal to 1. As a result of inter-

calation of lithium-ion, there occur slight structural modifications like increment of

the interlayer spacing and puckering of the layers; however, the basic layer structure

does not change. However, if more than one lithium ions are an intercalated phase,
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is transformed into phase 4 through irreversible reconstruction mechanism. However,

phase 5 (ω−LixV2O5) itself can be reversibly cycled in the range of 0 < x < 2) at the

same time maintain the γ-type structure. With continuous intercalation of lithium

ions, a rock salt structure of ω−LixV2O5 is formed via the irreversible process. Re-

search has shown that discharging V2O5 to the ω−LixV2O5 phase can lead to a rapid

capacity loss and increased cycling, and this is not a desirable process for a cathode

material. Rather, discharging phase 1 to phase 2 does not have a significant impact

on the vanadium-oxygen bonds, and these phases are reversible [38,45]. The interca-

lation of one lithium-ion is approximate to a specific capacity of 147 mAhg−1, while

for two lithium-ion intercalation corresponds to the specific capacity of 294 mAhg−1

for V2O5 in the voltage range of 2.0-4.0 V vs. Li/Li+. The value of two lithium-ion

intercalation is much higher than the theoretical capacity of the commercial cathode

materials such as LiMn2O4 (148 mAhg−1), LiFePO4 (170 mAhg−1), Li3V2(PO4)3

(197 mAhg−1) and LiCoO2 (274 mAhg−1) [46].

1.2.2 Hydrated Vanadium Pentoxide Synthesis (V2O5.nH2O)

Vanadium pentoxide V2O5 is a red crystalline powder, which may sometimes ap-

pear yellowish. It is slightly soluble in water but has a higher density than water [47].

Vanadium pentoxide is potentially irritant to the eyes, skin, and mucous membranes.

Recently, there has been a revitalized interest in the use of vanadium pentoxide in

the production of lithium-ion batteries [48]. One of the reasons behind this renewed

interest is the desire to increase the energy density of the lithium-ion batteries.

V2O5.nH2O means hydrated vanadium pentoxide. Vanadium pentoxide in this

form has been linked with a higher intercalation capacity. Hydrated vanadium pen-

toxide can reversibly host cations due to its short diffusion length and the large

interlayer space [39, 49]. Recently, in their study, Moretti and Passerini provided a

comprehensive review on bi-layered nanostructured hydrated vanadium pentoxide for

metal batteries, which demonstrated that there are renewed interests on hydrated
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vanadium pentoxide for energy storage. V2O5.nH2O can be obtained from aerogel

or xerogel depending on the method of drying used. Hydrated vanadium pentox-

ide xerogel has the capability of intercalation about to 3 equivalent of lithium ions,

however without irreversible lattice formation, only up to 1 equivalent of lithium-ion

can be intercalated. The structure of the vanadium pentoxide xerogel is ribbon-

like and exhibits a lamellar arrangement. The water molecules function as pillars

between vanadium pentoxide layers, and this result in lithium-ion intercalation of

approximately 1.4 times higher than that of orthorhombic V2O5. The interlayered

water molecules in the distorted square-pyramidal ligand facilitate the electron and

lithium-ion transfer [50]. Intercalation materials in xerogel offer benefit such small

diffusion distance leading to rapid injection and removal of the guest species. The

electrochemical interaction rate of lithium-ion is, however, hindered by the host solid

diffusion. Also, the high surface area supports overall reaction rates [51–53].

Wang et al. synthesize several hydrated vanadium pentoxide molecules (n = 0.3,

0.6, and 1.6) xerogel by reacting vanadium pentoxide with hydrogen peroxide followed

by thermal annealing. The hydrated vanadium pentoxide (n = 0.3) obtained at 250◦C

had the best electrochemical performance, the initial capacity was 275 mAhg1 and

stabilized at the capacity of 185 mAhg−1 at a current density of 100 µAcm2 [54].

In order to attain hydrated vanadium pentoxide molecules, sol-gel processing tech-

nique is implemented to synthesis vanadium pentoxide xerogel. Sol-gel processing is

used to prepare inorganic materials, and it involves two reactions: hydrolysis and

condensation that begin with organo-metallic compounds and inorganic salts. Vana-

dium pentoxide can be synthesized by the sol-gel method, and thus making it an

attractive process for large-scale industrial utilization [31, 55]. One of the methods

of synthesizing is ion exchange of alkaline vanadate. Alkaline vanadate (NaV O3)

is passed through the cation exchange column to acidify the solution and remove

unwanted sodium ions. The acidified solution then undergoes gelation and polymer-

ization [56–58]. As shown in the following figure sol-gel method, almost stands out

among other cathode materials prepared through other methods in terms of specific
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capacity. According to Qi Liu et al. graphene modified vanadium pentoxide fabri-

cated through sol-gel method retains a specific capicity of 354mAhg−1 at 0.5C. Also,

optimized sol-gel method for electrospinning purposes provides high initial capacity

of 342 mAhg−1 for a high current density of 171 mAhg−1 (0.5C) and the capacity

retention of 80% after 20 cycles. As compared to pure V2O5 capacity is almost two

times higher. However, there are some limitations for the fabrication of this type

of battery such as time-consuming sol-gel synthesis, difficult electrospinning process,

and complicated annealing procedure. In the following, specific capacity and capac-

ity retention of vanadium oxide-based cathode materials as a function of cycle count

and current density are listed (modified from [59]). Synthesized xerogel through ion-

exchange presents a layered structure that is necessary for the intercalation process

without the transformation of its basic structure during the reaction. Furthermore,

its conductivity enables its use as a rechargeable cathodic material, electrochemical

sensors, as well as electrochromic devices [76]. The conduction occurs via thermally

activated electrons that are continuously hopping from one metallic component to an-

other in diverse oxidation state: these electrons are unpaired. These gels are a form of

hydrated oxides, and thus their overall conduction is facilitated by their ionic contri-

bution of protons that moving between the layered structure of vanadium pentoxide

xerogel. The intercalated water content can also be used to determine conductivity

with xerogel. Regarding its application, vanadium pentoxide xerogel are considered

appropriate because they allow the lithium ions intercalation to ensure that the elec-

troneutrality is maintained since there is the production of an electron during the

process. However, lithium insertion into the vanadium oxide structure is hindered by

steric hindrance that causes a decrease in charge-discharge capacity, solvent exchange,

and changes in mechanical stress and volume [77].
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Fig. 1.9. Comparison of specific capacity and capacity retention of
vanadium-oxide based. cathode materials as a function of cycle count
and current density with our proposed method [39,59–75].
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Fig. 1.10. Molecular structures of graphene, GO, and rGO [78].

1.2.3 Graphene Modified Vanadium Pentoxide Prepared Through Sol-gel

Synthesis

Graphene is a single-atomic-layer of sp2-bonded carbon atoms arranged in a hon-

eycomb crystal structure as shown in, which provides excellent electrical conductivity

of 6.29 ∗ 107S.cm−1, the mechanical fracture strength of ∼130 GPa), and thermal

properties of ∼ 3,000 W/m.K in the plane. However, exfoliated graphene sheets are

extremely hydrophobic, and they tend to aggregate. Simply put, they own a low water

dispersibility. In order to attain dispersion of graphene in water, graphene oxide due

to its excellent water dispersibility and vibrant surface chemistry is used. In general,

graphene can be prepared using either the chemical reduction or thermal reduction

of graphene oxide (GO); It owns as a layered stack of oxidized graphene sheets with

different functional groups and represents the hydrophilic derivative of graphene. It

is worth to mention that GO can be easily handled and dispersed in the water as

the form of single sheet layers at low concentrations [39, 78]. Graphene oxide (GO)

and reduced graphene oxide (rGO), two popular members of the graphene family are

represented in Figure 3.1.

Despite the many plus points of GO, this nanomaterial is structurally defective,

in a sense that it is considered to be electrically insulating and mechanically weaker

than graphene [79]. In order to improve its electrical and mechanical properties, the

thermal or chemical reduction of GO (in order to remove oxygen functional groups
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and regenerate the sp2network) has been widely studied, resulting in the formation

of reduced graphene oxide or rGO. In terms of electrical properties, rGO is an in-

termediate structure between the ideal graphene honeycomb sheet and the highly-

oxidized GO, consequently maintaining some properties and losing some others over

to graphene [80]. In fact, Graphene, in general, is given due consideration as one of

the most ideal conducting materials to improve the electrical conductivity of V2O5 and

its structure [39,56,58,81–85]. In simple physical mixing under regular circumstances,

high graphene loadings is required which brings about a significant improvement on

the rate performance and cycle life. However it is shown that it can deteriorate the

specific capacity. In this regard, the amount of graphene has to be optimized in the

sol-gel processing method which is believed to be within the range of 2-3% [39].

In the sol-gel processing method, once NaV O3 is passed through the ion exchange

column, HV O3 aqueous solution is formed. After the formation of HV O3 and mixing

with graphene oxide, the graphene-modified vanadium pentoxide (V2O5/GO) nucle-

ation process happens immediately (0 min).Then, a few minutes later, small V2O5

ribbons start to form into ∼ 100 nm long ribbons, as verified and shown in the 60-

min picture (Figure 1.9). This continuation of V2O5 ribbons growth, leads to the fast

growth in one direction as observed after 90 min. Finally, after two-three weeks, the

V2O5 hydrogel 3D network is shaped with a similar length as before, but with a much

larger width than the V2O5 ribbons [39]. Single-layered GOs, create gaps between

V2O5 ribbons i.e they are sandwiched between the graphene sheets as shown in the

following pictures. However, the proper timing for the growth of V2O5 hydrogel net-

work for the electrospinning purposes is estimated to be between 7-12 hours. In the

following TEM images, the vanadium oxide ribbon growth in different aging times,

for both pure HV O3, and HV O3/GO is shown.
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Fig. 1.11. TEM images of the frozen HV O3 and HV O3/GO solutions
in different aging timings. 1) HV O3: (a) 0 min, (b) after 1 h, (c)
after 1 h 30 min and (d) after 2 weeks. 2) HV O3/GO: (e) after 30
min, (f) after 2 h, (g) after 6 h and (h) after 3 weeks [39].
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1.3 Electrospinning

1.3.1 Overview of Nano-fiber Bundles Fabrication Methods and Electro-

spinning

Nanofibers refer to fibers that have a diameter of less than 1000nm; they can be de-

veloped using various processing techniques [86,87]. So far the nano-fiber making tech-

niques include direct drawing [88–90], magneto-spinning [91], extrusion [92,93], melt-

blowing [94], hard templating [95], soft-templating [96], self-assembly [96,97], lithog-

raphy [98, 99], centrifuge spinning [100, 101], hydrothermal/solvothermal [102], ball

milling [103], chemical vapor deposition [104, 105], and electrospinning [12, 106–108].

Among thereof fabrication methods, electrospinning outperforms due to its many

advantages such as controllable fiber diameter (from tens of nanometer to a few

microns), covering fabrication of wide range of materials (natural and synthetic poly-

mers, metals, ceramics, composites, sol-gels), versatile fiber morphologies (porous,

dense, core-sheath, hollow, spiral, side-by-side, nanoparticles, nanorods, nanowires,

nanosheets, and nanobelts), and capable of large scale production [86,87,109–111].

Nano-fibers formation stems from the electrostatic force along with the spinning

force resulting in the continuous splitting of polymer droplets. Nanofibers deposit

on the metal collector plate, layer upon layer, thus resulting in the formation of a

nanofibrous mat [112–114]. The extrinsic parameters of the electrospinning process

significantly impact the nanofiber structural morphology. Extrinsic parameter com-

prises of the working distance, viscosity, conductivity, polymer solution, humidity,

temperature, as well as the applied voltage. To attain a uniform nanofiber mat, it is

crucial to optimize the extrinsic parameters. When the nano-fibrous mat is uniform,

it results in the formation of the bead-containing fibrous structure and continuous

fibrous structure (nanofiber yarns). Nanofiber yarns are defined as entangled contin-

uous fiber bundles possessing two intrinsic features: continuous length and interlocked

twisted structure [115].
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Fig. 1.12. Nanofiber bundles.

The correlation between extrinsic electrospinning parameters and relative abun-

dance of different fiber morphologies leads to the formation of different nanofiber

bundles forms. In general, nanofiber bundles can be categorized as the following [116]:

1.3.2 Review on Electrospinning and Electrostatic Phenomenon

In the early 1930s, Formhals employed electrospinning fabrication method as a

fiber spinning technique. In 1934, the invention was patented, titled as process and

apparatus for preparing artificial threads which developed spinning techniques. How-

ever, some practical issues such as fiber drying and collection had remained until

he initiated his first patent overcoming spinning difficulties at the time. A movable

thread was applied to collect the threads in a stretched condition. In his patent, he re-

ported the spinning of cellulose acetate fibers utilizing acetone as the solvent [117,118].

Electrostatic phenomena arise from the ability of electrons to move with relative

ease in various materials. Electrostatics comprises of two general classes including

conduction and induction. Induction refers to a temporary state where electrons in

a substance are either attracted to the repelled by the nearby charged object [119].

Conduction, on the other hand, occurs when a charged object comes into actual

contact with a neutral object. The excess electrons move from a charged object

to a neutral object; thus, when the objects are separated, the objects acquire the
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same charge [120]. Electrostatic charges exert forces calculated using Coulombs law

F= k Q1.Q2/d2 between opposite charges causing water droplet deformation [121].

In general, electrospinning refers to the production of fibers by means of electric

current to draw charged threads of polymer solutions. The fibers produced using

this process usually has a thickness of hundreds of nanometers. The electrospinning

process shares the characteristics of conventional dry spinning as well as electro-

spraying of fiber [122]. The process is highly suitable for the production of complex

and large molecules as the process does not involve the use of chemistry coagulation

or the application of the high temperatures [86,87,109–111,123].

1.3.3 Electrospinning Categories

Nanofibers production by means of electrospinning technique may occur in two

ways needle-less and needle-based. Needle-based electrospinning constitutes start-

ing with a polymer solution in a tightly closed reservoir as these limits as well as

prevents solvent evaporation. The needle-based system is essential as it allows for

the processing of a wide range of materials, including highly volatile solvents [124].

Needle-based electrospinning has the following advantages process flexibility where it

has the capacity to process various structures such as multi-axial and core-shell fibers.

The distinction between the two fibers enables the incorporation of Active Pharma-

ceutical Ingredients (API) to be incorporated in the fiber. Another advantage is that

the needle-based method has tightly controlled flow rate, minimizes solution waste,

and has a limited number of jets [125]. The Numerous advantages have made the

needle-based method immensely popular.

On the other hand, needle-less electrospinning allows for the large-scale production

of materials. A Starting polymer solution inside an open vessel is utilized to generate

nanofibers using a rotating or stationary platform [126]. However, the needle-less

electrospinning method cannot carry out versatile fiber production. Also various

process parameter cannot be controlled, including the flow rate [127].
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Fig. 1.13. General electrospinning setup.

1.3.4 Electrospinning Process and Principles

Electrospinning refers to a process used to develop a nonwoven fabric that is im-

permeable using submicron fiber when a liquid jet that is a millimeter in diameter

is pushed through a nozzle that has an electric field. In general, the fiber formation

process in electrospinning can be observed and classified into three different stages:

Deformation of the prolate droplet (Talyor cone) and jet initiation, whipping or bend-

ing instability, and fiber deposition. The general setup for electrospinning is depicted

in Figure 1.12. The electrostatic charging at the tip of the nozzle is crucial to the

formation of a Taylor cone where a single jet of fluid ejects [113]. The acceleration

and thinning of the jet in the electric field and radial charge repulsion causes the

primary jet to split into multiple filaments; this is referred to as Splaying. The size

of the resultant fibers depends on the number of the subsidiary jets formed. Under

normal conditions, the fluid jet whipping in electrospinning is immensely fast as this

condition is essential for the production of nanofibers [128]. In general, the fiber
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formation process in electrospinning can be observed and classified into three different

stages: Deformation of the prolate droplet (Taylor cone) and jet initiation, whipping

or bending instability, and fiber deposition.

Taylor Cone

In 1964, Geoffrey Taylor in initially described the cone. Taylors primary inter-

est was in determining how water droplets behave within strong electric fields, for

instance, thunderstorms. Exposing a small volume of a liquid that is electrically con-

ductive to electric field results in shape distortion due to surface tension. Increase in

voltage increases the impact of the electric field, as the electric field exerts a mag-

nitude force on the droplet similar to the surface tension results in the formation of

a cone shape. On reaching a given threshold voltage, the rounded tip invert then

releases a jet of liquid. The cone-jet commences the start of the electro-spraying pro-

cess achieved at a voltage higher than the threshold. The Taylor cone refers to the

theoretical limit of a cone-jet when the electro-spraying process commences. For a

perfect cone to be achieved there needs to be a semi-vertical angle of 49.3 degrees, the

cone surface needs to be equipotential, and the cone ought to exist in a steady-state

equilibrium [129]. Taylor cone formation is an essential part of the electrospinning

process. Symmetrical vortices arising within the Taylor cone is likely to increase the

velocity of the solution. Beads that occur in cone-jet results in the formation of

beaded nanofiber [130].

In Figure 1.13, the formation of a Taylor cone captured in different timings can

be observed.

Whipping and Jet Instability

A strong electric field is likely to deform a liquid of finite electric conductivity

form a conical shape arising from the balance between the surface tension and electric

stresses. Conversely, close to the apex of the cone the structure is unstable and the
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Fig. 1.14. Deformations of the prolate droplet and Taylor cone by in-
creasing the electric field captured in different timings and ultimately,
the formation of the jet [114].
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thin jet structure replaces the associated singularity. The electrospray arises from

the imposed flow rate of the liquid of the cone-jet structure that has stability within

certain applied voltage values the arising from the cone-jet structure breaking into

spherical droplets due to axisymmetric instabilities. However, a lateral instability

causes the jet to bend of its axis arising from electrostatic repulsion between the

straight and the bent parts of the jet. In the instance that the whipping instability

growth rate is larger than the one associated with a jet breakup; thus, the jet off-axis

movement becomes a significant aspect of its evolution [131].

Replacing a liquid with a polymer solution where the solvent evaporates prior to a

drop breakup taking place results in polymer fiber formation. The existence of lateral

instability within the electrospinning application results in the formation of thinner

fibers as the bending continues to stretch and along with thinning the jet. However,

in most experiments carried out, the whipping is noticeably chaotic, thus making it

difficult to have an in-depth understanding of its properties and structure [86,87,131].

1.3.5 Fiber Deposition

Nano-fibers formation emanates from the electrostatic force accompanied by the

spinning mechanical force resulting in the continuous splitting of polymer droplets.

Nanofibers deposit on the metal collector plate, layer upon layer, thus resulting in

the formation of a nanofibrous mat [112–114].

1.4 Solution-based Electrospinning and Related Effective Parameters

Solution-based electrospinning needs a solvent to solubilize a given polymer. Con-

sequently, identifying the correct solvent plays a vital role in attaining a homogeneous

polymer solution. The solution parameter is lucrative in determining a suitable sol-

vent for a given polymer. Solubility parameter takes into consideration the various

molecular interactions in a given mole of material including such as polar interaction,
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dispersion forces, as well as specific interaction, including hydrogen bonding [132].

Cohesive energy is given as

E = ∆H −RT (1.9)

Where: ∆H is Latent heat of vaporization, T is Absolute temperature, and R is Uni-

versal gas constant.

Later, Charles M. Hansen extended the Hildebrand solubility theory to Hansen Sol-

ubility Parameters (HSP) 21, which estimates the relative miscibility of polar and

hydrogen bonding systems as [133]:

δi
2 = δd

2 + δp
2 + δh

2 (1.10)

where: δi is Hansen solubility parameter, δd is Dispersive component, δp is the polarity,

and δh is the hydrogen bonding. A suitable solvent for a particular polymer ought to

have a solubility parameter close to that of the polymer. Therefore, calculating the

Hansen solubility parameter where the polymer-solvent ought to have a small value

of Ra [134].

Ra2 = 4(δd1 − δd2)2 + (δp1 − δp2)2 + (δh1 − δh2)2 (1.11)

Additionally, a suitable solvent ought to have a relative energy difference (RED)

of less than one. And RED = Ra/Ro Where Ro refers to the radius of a sphere [134].

where:

RED < 1 the molecules are similar and dissolve, RED = 1 the molecules partially

dissolve, and RED > 1 the molecules do not dissolve.

Nanofibers fabrication could be affected by many factors which lead to differ-

ent morphologies such as uniform or ordered pattern structure with a round cross-

section, beads-on-string structures, or individual beads. These crucial factors such as

polymer type, polymer molecular weight, polymer distribution, polymer concentra-

tion [135, 136], solution conductivity, solution surface tension, solution viscosity, and

solvent properties. Solvent properties contain boiling point, volatility, and dielectric
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properties [137]. Operating factors are another key parameter in final fiber morphol-

ogy, which including applied voltage, collecting distance, the flow rate of the polymer

solution [138]. Last but not least, external conditions or ambient conditions for in-

tense humidity, ambient temperature, and addition flow are also effective parameters

on electrospinning [86,87,107,139].

1.4.1 Concentration

The electrospinning process depends on polymer concentration as the most crucial

factor. Such that changing in polymer concentration leads to a change in solution vis-

cosity. As the polymer concentration increases, the viscosity increases first at a steady

rate and thereafter at a much higher rate [140]. The solution viscosity is extremely

governed by intermolecular interactions between polymer-polymer, polymer-solvent,

and solvent-solvent within the polymer solution. Electrospinning a dilute polymer

solution is analogous to an electro-spraying process.On the other hand, the polymer

intermolecular distance within the solution is so considerable that the interaction is

considered to be very weak. Therefore, the viscoelastic force in the polymer jet is

minute to form a uniform fibrous structure. In this process, the jet splits into sepa-

rate charged sections as the voltage is applied. Gradually theses charged sections turn

into droplets or individual beads as a result of high surface tension caused by solvent

evaporation while spinning. Similarly, an increase in the polymer concentration leads

to higher viscoelastic force and more difficult for the jet to be split. In lieu of break-

ing the like-charged sections, electrostatic repulsion within the solution elongates the

links between charged sections, consequently forming thinner filaments. Relatively

thicker sections stretch thinner although to the links between charged sections. As

the solvent evaporates while spinning, due to the surface tension, filaments tend to

take the shape of beads-on-string morphology. Accordingly, a further increase in the

polymer concentration, brings about uniform elongation of and formation of the jet,

resulting in homogeneous fiber morphology [86,87,140,141].
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critical concentration (c*) is defined to distinguish whether predominant inter-

molecular interaction will happen or not leading to a chain entanglement [142]. In

this regard, the following formula has been utilized to describe solution entanglement.

The following formula calculates the ratio of polymer molecular weight to the solution

entanglement molecular weight [143,144]:

(ne)solution =
MW

(Me)solution
=
φMW

Me

(1.12)

where: Me is entanglement molecular weight, MW is polymer weight average

molecular weight, and φ is polymer volume fraction.

if (ne)solution < 2: polymer chains do not entangle and individual beads structure is

formed.

if 2 < (ne)solution < 3.5: insufficient polymer chain entanglement and beads-on-string

structure is resulted.

if (ne)solution > 3.5: sufficient polymer chain entanglement and beads-on-string struc-

ture is shaped.

In general, throughout electrospinning, the solution viscosity can be increased

by using a concentrate polymer solution or increasing the weight of the molecular

polymer. For instance, polylactide solution doped with polyethylene oxide that has

a high molecular weight increases viscosity of the polymer solutions [145]. Increased

viscosity improves the jet stability allowing for the construction of multi-filament

yarn, individual fiber, and aligned unidirectionally across a large area or enabling

the individual filaments the develop an ordered pattern. Introducing a fiber-forming

agent resulted in the formation of an elongated stable jet suitable for the collecting

arrays of aligned fibers [146]. Research has shown that using the polymers with a

higher molecular weight and increasing viscosity by increasing the concentration of

the electrospinning solution results in a stable jet [139].
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Fig. 1.15. (a) solid beads vs.(b) porous beads produced by electrospinning [147].

1.4.2 Solvent

Selecting a proper solvent plays a prominent role in the electrospinning process.

Since solutions conductivity, viscosity and surface tension are affected by a handful of

solvents characteristics including solvents conductivity, boiling point, vapor pressure,

polarity, dipole moment, dielectric constant, etc.

Solvent volatility ought to match up with the jets traveling time, i.e., solvents

with low volatility result in wet web structure in the end. In the same manner, rapid

evaporation of highly volatile solvents is accompanied with cooled down and frozen

filament surface leading to a porous surface on the web structure [147].

Electro-spinnability of a solution can be enhanced by doping a solution using salt,

using a solvent that has a high dielectric constant and higher conductivity as this

increases the spinning jet charge density. However, these same factors result in a

shortened length jet that ought to be avoided if one has an objective of attaining

acquitting a stable jet with a greater length. Doping polyethylene oxide with salt

illustrates higher conductivity minimizing the length of the stable jet. However, the

chloroform system the critical conductivity between the bending instability and the

long stable jet is estimated to be as low as 0.6 µS/cm [148].
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1.4.3 Voltage and Electric Field

Conventionally, in the electrospinning process, an increase in the voltage leads

to an increase in the length of a stable jet. The elevation in length stems from a

larger tangential electric field from starting from the needle tip as well as lower static

charge density to stabilize the electrospinning jet. However, the conventional effect

does not cater to all solutions. The inconsistency may be due to a variety of factors

such as dielectric property and conductivity of the solution. These factors have more

influence on jet stability [149].

The bending and stretching stability of the jet are affected by applied voltage in

the sense that uniform patterned web could result at higher voltages in some cases.

However, the applied voltage is not the only principal element, and other elements

such as flow rate and jet traveling speed, and density have to be compromised at the

same time [150].

Typically, the electrospinning process uses direct-current (DC) voltage; however,

alternating-current (AC) has been reported in a few papers which are not considered

as safe as DC voltage, particularly in high voltage circumstances [151–153]. The

reason for taking advantage of AC could be witnesses when highly aligned fibers are

sought. In this sense, highly aligned web structure is collected on a rotating mandrel

when the AC power source is applied [154].

1.4.4 Flow Rate

The solution flow rate has to be reached at a minimum certain point at which the

spinning jet can compensate for the solution evaporation rate in order to maintain

the continuous flow of the fibers [155]. If the flow rate is higher than needed, the

solution will accrue at the tip of the needle resulting in a formation of large droplets

hindering the formation of normal Taylor cone, and ultimately solution dripping off

the tip. Sometimes also blockage of the needle or nozzle happens, which is due to

the rapid evaporation of the solvent, causing solidification of the droplet inside the

needle or nozzle [156,157].
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1.4.5 Collecting Distance

The collecting distance is proportional to the electric field intensity in the sense

that solution traveling time can be affected directly. In some circumstances, less

collecting distances can be helpful meaning that stronger electrostatic force is applied

to the jet consequently shorter time for the jet to travel. A stronger electrostatic force

can be either efficacious due to the effective stretching of the jet hence the formation

of finer fibers on the collector. However, shorter distance may cause reverse effects,

i.e., incomplete solvent evaporation, thereafter formation of wet fiber webs. Similarly,

increasing the distance can lead to a weaker electric field and dripping of the jet in

the half-way towards the collector [87, 138,155,156].

1.4.6 Polarity

The electrospinning process with high voltage electrode applied to the nozzle

causes more strong and concentrated electric field on the nozzle such that when the

jet travels the distance from the high charged needle to the collector, it experiences

a reducing electrostatic force. This facilitates the chaotic whipping instability, which

brings about a large fiber deposition area. Contrary, a higher voltage applied to the

collector leads to a more intense electric field near to the collector, i.e., it strengthens

the jet movement toward the collector. This suppresses the whipping movement [86].

1.4.7 Humidity

Electro-spun fiber morphology is influenced by ambient humidity, i.e., interaction

between jet solution and moisture. Humidity can affect fiber diameter by means of

modifying the solvent evaporation rate. The average diameter of nanofibers decreases

with humidity increase. At relatively high humidity environments, beaded fibers start

to form. Conversely, at relatively lower humidity level, the evaporation rate of the

solvent could be high due to a difference in pressure between vapor and ambient air
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inside the electrospinning chamber. As a result, fibers happen to solidify thereafter

producing coarse fibers as compared to fibers generated in relatively higher humidity

levels [158].

Humidity also affects the surface structure in such a way that, in fast evapora-

tion circumstances caused by low humidity, porous fibers start to form. This could

be explained by the fact that evaporation takes heat energy out of the jet surface,

resulting in a reduction on surface temperature to a level that can initiate tiny ice

formation on the filament surface. These tiny ices are preserved until the deposited

fibers on the surface of collector exchanges heat with the ambient air and reaches the

ambient condition [159].

1.4.8 Temperature

Temperature is considered to be in a close relationship with polymer properties

affecting crystallinity and molecular chain orientations [86]. According to Yang et

al., the surface tension and the viscosity of the electrospinning solution decreases

with increasing the ambient temperature. However, an extra increase in temperature

causes rapid evaporation of the solvent, which can disrupt the electrospinning process.

Therefore, a balanced temperature point shall be found in order to gain the most

desired fiber quality [158,160].

1.5 Common Polymers in Electrospinning

Polymers used in electrospinning can be natural, synthetic, or copolymer depend-

ing on the needs of the manufacturers as well as the availability of the materials.

Examples of natural polymers include collagen, chitosan, and fibrinogen [87]. Nat-

ural polymers have some advantages over synthetic polymers due to their immuno-

genicity and biocompatibility. Natural polymers such as collagen and gelatin can

provide solutions used in the electrospinning process. In circumstances where syn-

thetic fibers are readily available, natural fibers may not suffice. Some of the synthetic
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polymers include polyvinyl alcohol (PVA), Polyvinylpyrrolidone (PVP), polylactide

(PLA), polyglycolide (PGA), poly-D-lactide (PLDA), and polylactide-co-glycolide

(PLGA) [140]. Combining either natural or synthetic fibers or combining several

synthetic fibers can produce copolymers [142].

The aim is to develop polymers that can withstand various limitations, including

heat and degradation. Copolymers are usually developed to overcome the limitations

of a given natural or synthetic polymer [143]. For example, adding poly (glycolide)

can minimize the stiffness or rigidity of poly (ethylene-co-vinyl alcohol) (PEVA) [144].

Most copolymers provide a variety of features needed by manufacturers to develop

suitable nanofibers.

1.6 Applications of Electrospinning and its Role in Energy Storage Sys-

tems

Electro-spun fiber size may exist within the nanoscale while the fibers may have the

nanoscale surface texture that results in various modes of interaction in comparison

with the macroscale materials. The ultra-fine fibers arising from electrospinning have

two significant properties, such as a large surface to volume ratio and a structure that

is relatively free from defects at a molecular level. A high surface to volume ratio

makes electro-spun materials suitable for undertaking activities that require a higher

physical contact, including providing a site for a chemical reaction as well as the

filtration of small-sized physical materials. Also, minimal defects at a molecular level

allow electro-spun fibers to attain maximum strength, thus can attain high mechanical

performance for composite materials [56].

There are various applications of electro-spun fiber can act as filters; for instance,

the Lycopodium moss spores have a diameter of 60 micrometers, thus can only be

captured by an electro-spun polyvinyl alcohol fiber. Nanofibers webs may act as an

efficient filtering medium as the nanofibers have small London-Van Der Waals forces

that are crucial for adhesion among the fiber that captures materials. Nanofibers
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in textile manufacturing provide an opportunity of developing seamless non-woven

garments that may have a variety of functions including environmental, flame, and

chemical protection. Electrospinning can combine various coatings and fibers in order

to develop three-dimensional shapes, for instance, clothing that consists of different

layers of polymers [76].

Medical application of nanofibers involves tissue engineering where electro-spun

scaffold may be penetrated with cells that treat or replace biological targets. Also,

wound dressing using nanofibers have an excellent capability to separate the wound

from microbial infections [77]. Electrospinning is essential in the development of

medical textile materials or diverse fibrous treatment delivery system comprising of

transdermal patches and implants. Electrospinning can ensure the establishment of

a continuous manufacturing system within the pharmaceutical industry. Synthesized

liquids can be turned into a tablet using electrospinning [78].

Electrospinning is a feasible process that can be suitable for the manufacture of

elongated composite materials within a stipulated timeframe. The process has the po-

tential to produce fibers in sufficient quantities within a reasonable period. Research

has illustrated that electrospinning is the most cost-effective way to manufacture the

various medical fibers such as medical implants, scaffolds, wound dress for artificial

human tissues. Scaffolds function similarly like an extracellular matrix found in nat-

ural tissues [79]. Biodegradable fibers are used as an extracellular matrix and may

be coated with collages in order to promote cell attachment. The last application of

electro-spun fibers is that they act as catalysts, where they act as a surface where

enzymes are immobilized. The enzyme can be vital in breaking down toxic chemicals

from the environment [80]. The role of electrospinning is to produce fibers used in

energy conversion and storage. The electrospinning process produces fibers with di-

ameters ranging from nanometers to micrometers [161]. The fibers provide sufficient

storage space and also plays a critical role in converting the stored energy into elec-

trical currents. A general spinning setup consists of a high voltage power supply, a

grounded collector, and a syringe with a metallic needle [162].
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In most cases, the supply of the voltage is either a melt or a solution. As the

heating continues, a pendant droplet forms beneath the syringe. The pendant droplet

is subjected to electrostatic repulsion to turn it into a cone-shaped material known as

Taylor cone. As the electrostatic propulsion continues, the conical droplet discharges

polymer solution at the tip of the needle [163]. The interaction between the electric

field and surface tension eventually forces the solvent to evaporate, leaving behind

a long, thin filament which solidifies into a uniform fiber. Electrospinning began in

the 1930s, and experts have used it in the development of fibers used in storing and

conversion of energy inside the lithium-ion batteries [164]. Many adjustments have

been made to the process to make it less energy consuming and more productive.

Some of the advantages of electrospinning include flexible temperatures, short pro-

duction cycle, and little pressure. Besides, nanofibers synthesized from the hydrother-

mal method have a lower aspect ratio, which is critical in the transfer of energy [165].

In other words, fibers made from electrospinning are likely to provide more efficient

energy transfer compared to other methods such as electro-spun NWs [166]. How-

ever, electrospinning also has various limitations, including difficulties in preparing

inorganic nanofibers and limited quantity or variety of polymers used in the process.

Limited variety of polymers restricts manufacturers to the use of available materials

which may not reach the desired energy capacities [167]. Besides, the performance

of nanofibers made from the inorganic materials is likely to decline after calcination.

Manufacturers are also silent about the aging process which renders many batteries

inefficient. The aging process drains the energy capacity of various cells and reduces

the performance of lithium-ion batteries. According to Zhang, Tan, Kong, Xiao, and

Fu (2015), much research is ongoing to determine the cause of aging and develop

appropriate measures [81].
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1.6.1 Electro-spun Vanadium Pentoxide

Although other fabrication methods have resulted in significant enhancement of

the electrochemical performance, the processes are time-consuming and complex.

Among these methods of preparing one-dimensional nanomaterials, electrospinning is

considered to be the most versatile and promising synthesizing process for producing

nanofibers in large scale [168]. Compared to these synthesizing methods, electrospin-

ning facilitates the generation of thin fibers can have a relatively wide range of used as

a result of its feasibility in generating nanofibers in large quantities with well-defined

surface morphology at relatively low cost and less time [169].

Cheah et al. (2011) synthesized one-dimensional vanadium pentoxide nanofibers

by electrospinning of vanadium precursor consisting of polyvinylpyrrolidone and vanadyl

acetylacetonate [170, 171]. Vanadium pentoxide nanotube has also been synthesized

by electro-spinning using vanadium precursor containing vanadium (iv) acetylacetone

to obtain excellent electrochemical performance [54,172].

However, currently at present preparations of vanadium pentoxide nanomate-

rials utilizes organic vanadium precursors which are toxic, expensive, and easily

hydrolyzed. Therefore, obtaining a low-cost and straightforward synthesis of one-

dimensional vanadium pentoxide materials with excellent performance has remained

a challenge. The renewed interest in vanadium Pentoxide arises from the need to

have rechargeable batteries as well as higher-density batteries on Lithium-ion batter-

ies. Lithium metal is used as the anode while vanadium pentoxide as the cathode.

Vanadium pentoxide has the largest reversibility compared to other cathode materi-

als. Nanostructures on lithium batteries provide improved capacities for performance

by availing a large effective contact area to ensure diffusion of Lithium-ion and min-

imal resistance in regards to charge transfer. The layered phases availed contributes

to its capacity of greater than 3 volts region with an enhanced specific energy of 726

Watt-hour per kilogram [169].



43

2. EXPERIMENTAL

2.1 Optimized Sol-gel Synthesis of Vanadium pentoxide (V2O5) Suitable

for Electrospinning

The V2O5 xerogel was prepared by a straightforward, modified ion-exchange method.

A 0.1 M solution of NaV O3 (Sigma, 99.5%) was eluted through a column loaded

with a proton-exchange resin (Dowex-50-WX2, 100200 mesh). It is worth to men-

tion those different solution concentrations of 0.1M, 0.15 M and 0.2 M were tested

and the best outcome was resulted from 0.1 M. In a practical sense, seeking reason

is that higher concentration solution can lead to more non-homogenous and more

coagulated solution which deteriorates electro-spinnability of the solution. Also, dif-

ferent proton-exchange resin with mesh sizes of 50-100, 100-200, and 200-400 were

tested, and the optimum obtained solution suitable for electrospinning was found to

be Dowex-50-WX2, 100200 mesh. Other exchange resins were not suitable to obtain

mature homogenous hydrogels. In the following, 0.1 M NaV O3 synthesis procedure

is as follows:

2.2 Fabrication and Formation of Nanostructured V2O5/GO Hybrid

After completion of HV O3 synthesis for almost lasting for almost 2-4 hours, 2-3

% GO was added to the obtained yellowish hybrid of HV O3 solution right away and

bath sonicated for 30 min in order to achieve more uniform and well-dispersed GO

in HV O3 solution (Figure 2.3). Then, the V2O5/GO hybrid was aged from a few

hours to a few weeks, and the V2O5 growth on GO sheets was carefully observed as

the V2O5/GO hydrogel starts to form. The solution gradually changes color from

yellow to dark brown during first few days,and ultimately after 12 weeks to dark red,
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Fig. 2.1. Ion-exchange column for vanadium pentoxide synthesis.

Fig. 2.2. Yellowish HV O3 solution, which brings about V2O5 formation.
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Fig. 2.3. Dark brown bath sonicated GO (2%) dispersed in HV O3 solution.

signifying the completion of the nucleation process, leading to a three-dimensional

network of V2O5 hydrogel Figure 2.4. Concerning synthesis V2O5/GO suitable for

the electrospinning, V2O5 ribbons dispersed in GO (2%) are let to grow for at least

7 hours to form the minimum required ribbons for the sake of fabrication of high

capacity cells.

2.3 Centrifuging

The resulting suspension (V2O5/GO), before electrospinning, was centrifuged to

remove the unreacted acids and salts. The obtained hybrid, was centrifuged at the

speed of 2500rpm with a centrifuging duration of almost 5 min. Higher speeds causes

precipitation of GO and V2O5 ribbons and forms two-phase solution, which is not

desirable for electrospinning, V2O5 ribbons and graphene oxide flakes.
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Fig. 2.4. Dark red 2 weeks old V2O5/GO : signifying the completion
of the formation of a 3D network of V2O5 hydrogel.
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Fig. 2.5. Dark brown V2O5/GO + PV A hybrid.

2.4 Synthesis of V2O5/GO Mixed with Polymer

V2O5/GO hybrid was mixed with a proper amount of PVA or PVP in order to

make the solution electro-spinnable [83,173–177]. The nucleation immediately (0 min)

occurs once the HV O3 solution is formed right after NaV O3 passes through the ion

exchange column. Finally, after two weeks, the 3D network of V2O5/GO hydrogel is

completely shaped. However, the proper timing for the growth of V2O5/GO hydrogel

network for the electrospinning purposes is estimated to be between 7-12 hours. After

mixing with polymer, the obtained dark yellow colloid solution was kept in a glass on

a magnetic stirring plate to attain a homogeneous hydrogel for 24 hours (Figure 2.5).

2.5 Electrospinning

Vanadium pentoxide-based fibers with smooth surfaces were prepared by electro-

spinning from a clear dark red solution containing 0.45:4 V2O5 sol-gel precursors and

PVP. In the following pictures, solutions mixed with PVP during the electrospinning

process and the final electro-pun sample (Figure 2.9) can be observed. Also, the gen-

eral electrospinning setup and a replete syringe used for spinning are shown in the

following pictures (Figure 2.7, Figure 2.8).
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Fig. 2.6. Electrospinning setup.

Fig. 2.7. Solution inside the BD 10 ml syringe with a needle gauge size of 25G.
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Fig. 2.8. Electro-spun [V2O5/GO + PVP] (0.45:4).
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Fig. 2.9. Final electro-spun [V2O5/GO + PV A (3:20 in water)] (10:4).

Also, Vanadium pentoxide-based fibers with smooth surfaces were prepared by

mixing PVA in clear dark red solution containing 4 (PVA in water): 10 (V2O5 sol-gel

precursors) (Figure 2.10). PVA requires to be dispersed in hot water, i.e., 90 ◦C as

the PVP and water mixture maintained at around waters boiling temperature for

almost 3 hours. This will result in a homogeneous PVA mixture which later can be

well mixed with V2O5 xerogel.

Once the electrospinning is finished, the achieved fibers could be scrapped off from

the aluminum collector.

2.6 Thermal annealing

Polymer removal from the electro-spun samples is a critical part. If the whole

amount of the polymer (here PVP and PVA, electro-spun separately) remains in the

electro-spun samples, it can act as an insulator during Lithium intercalation and dein-

tercalation procedures. We have observed that post-synthesis treatment conditions
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Fig. 2.10. Annealed electro-spun V2O5/GO + PV A (0.25g) at 400 ◦C .

play a prominent role in electrochemical performance of the fabricated cells. It is

critical, to find an optimal drying and annealing temperatures of electrodes to be rest

assured that an efficient water is removed from the crystal structure of synthesized

material. Specially, in this case, when the fibers are fabricated with thermoplastic

polymers such as PVA and PVA. By controlling the annealing and drying time and

steps, a small amount of pyrolysis carbon can be retained, which could improve the

conductivity of the V2O5 nanorods. Also, controlled post-synthesis helped us to pre-

vent aggregation of electro-spun twisted nanostructured fibers which deteriorates the

lithium diffusion process during charge/discharge of batteries. In this regard, the

formed V2O5/GO hydrogel was heated and annealed under N2 at differnt rates and

timings. After several endeavours, a rate of 5C.min−1 and a holding temperature of

400 ◦C for 6 hours, was found to own the best outcome. During which the GO is

reduced to graphene, and the graphene-modified V2O5 hybrid is formed.

2.7 Electrode Fabrication

The electrodes were cast with a slurry of 70% V2O5/rGO, 10% polyvinylidene

difluoride (PVDF), and 20% carbon black onto a 10-mm-thick sheet of aluminum
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(Al) foil. Active materials are coated on a conductive surface (here Al.) which acts

as a current collector. Active material crystals are required to be attached to the

aluminum surface. In this regard, a binder comes to use and is mixed with the

active material and deposited over the current collector. Binder is mostly an ionic

conductive polymer like PVDF, which is dissolvable in a solvent such as acetone,

ethanol, or n-methyl-2 pyrrolidone (NMP). In this case, NMP has been used as a

binder. This binder can produce enough adhesion between the particles and the

conductive surface, whereas it can transfer ions from interior layers of the active

material layer to the outer surface.

NMP is widely used in electrode fabrication owning a low boiling point, being non-

reactive in contact with the conductive microfiber paper, and acting as a better solvent

for the binder. To have a complete active material slurry, some highly conductive

particles such as carbon black, SuperP Carbon, SuperP Lithium (from Timcal) or

KS6 must be added to the solution active material. These highly conductive materials

increase the conductivity of the active material layer and transfer the electron from

the middle layers to the current collector. These can also produce different conductive

layers between the active materials. SuperP Carbon or Lithium is highly conductive

carbon compound whit the particle size of about 40 nm while KS6 is a graphite

compound with around 1 to 3 µm size. SuperP is used to provide particle to particle

connection, electrolyte abortion, and dispersed in the binder. KS6 also can provide

more significant conductive paths with a porous structure.

Lithium salts are the primary materials of each electrode. Other highly conductive

materials which are not reacting with lithium and their particle size are in nano, or

some micrometer could be used as well such as carbon black, or graphite. The as-

prepared slurry of binder and active materials are deposited over the current collector

using different methods such as blade coating or spray method and form electrodes.

The prepared electrodes were placed in a vacuum oven and allowed to dry at 80◦C for

24 h. All the materials of the electrode paste are mixed and ground, before adding the

NMP solvent. This solvent dissolves the PVDF and improves the adherence of the
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electrode materials. This mixture needs to stir for overnight to become completely

uniform. Overnight stirring is needed due to the low dissolution rate of PVDF in the

solvent. The final paste is coated over the current collector films with spray coating

and blade coating methods. Although blade coating is a standard method of making

electrodes, spray coating can produce better results. Spray coating is using a lower

amount of binder in the paste mixture.

Furthermore, this method can also provide thinner and more efficient electrodes.

The thickness of the active material layer is related to the number of sprays over

the substrate and the concentration of the solution. The maximum thickness of the

active material layer reaches to 50 µm. The electrodes then dry inside a vacuum

oven for 12 hours with the temperature from 80 to 90◦C . After the drying process,

the electrodes must be rest inside the vacuum oven for cool down process. Polymer

binder can absorb moisture when it is warm and reduce the quality of the electrode.

This drying process is necessary to remove the solvent and water particles from the

electrode.

2.8 Battery Assembly

The half-cell was prepared by using a working electrode to assemble a half-cell

configuration inside a dry glove box with Li metal as an anode, LiPF6 1 M in an

EC/DEC (1:1 by volume, purchased from Novolyte) as an electrolyte, and a Celgard

PP membrane as a separator. Using Arbin BT-200 Battery Tester, the cell was

electrochemically cycled at room temperature. A field emission scanning electron

microscope was used to determine the morphology of the electrodes before cycling.

The cell fabrication process must be held inside an argon-filled glove box to avoid

any possible damages to the cell, the V2O5/rGO cathodes have to be cut into circular

shapes with a diameter of 0.58 cm, and Li metal anodes are cut into circular shapes

which are not allowed to exceed the diameter of the coin cells. Then, the cathodes

are kept inside a vacuum oven with a set temperature of ◦C for 24 hours in order
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Fig. 2.11. Blade coated cathode material on Aluminum foil with a
thickness of 30-35 µm under IR light for 2-3 hours.
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to remove the excess water from them. The Li anodes have to be kept inside the

glovebox all the time. Lithium powder can be highly reacted due to its large surface

area. Sometimes chunks of lithium metal are soaked in oil or kept with some other

hydrocarbon to avoid any possible incidents since lithium possess highly flammable

nature. While using a glove box and handling lithium, in case safety equipment

should be kept close to hand, to extinguish any possible lithium fire.

The CR2016 coin cell configuration with a stainless steel spacer and spring or a

nickel foam are used to encapsulate electrodes and separator within the cell. The

V2O5/rGO cathode electrode is already deposited on Aluminum (Al) surface which

the Al foil is in touch with the lower bottom of the coin cell to perform as a current

collector for the battery. Next, a Celgard PP separator film separates the cathode

from Li anode on top. Then, stainless still spacer with a spring or nickel foam is

placed on top of Lithium, which keeps a distance from the outer shell of the coin cell.

The battery assembly is soaked in LiPF6 1M in an EC/DEC electrolyte solution (1:1

by volume, purchased from Novolyte), pressed, and encapsulated in a coin cell. The

CR2016 coin cell indicates a cell diameter of 20 mm with 1.6 mm in height. After

all, the fabricated coin cell is kept undisturbed for 24 hours, allowing it to reach a

stable state by thoroughly soaking the electrode materials and the separator with the

electrolyte solution.

2.9 Cell Testing

After battery assembly, fabricated coin cells are stored in a proper container in

order to allow them to rest for 24 hours to reach the optimum and most stable statues

of the battery. This helps the cell the electrode and separator to be completely soaked

in the electrolyte solution. V2O5/rGO half cells are tested using Arbin BT200 battery

testing system. Two types of experiments were conducted for these cells. The first

type of experiment is the galvanostatic charge/discharge test, and the second type

is the self-discharge tests. From galvanostatic charge and discharge experiments, the
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Fig. 2.12. Arbin BT2000 battery cycle general setup.

working voltage and current of the testing cell should be set. The voltage is related to

the lithium salts were used inside each cell, and the current is related to the internal

resistance and time of the experiments. Due to testing the cycle life of the cell,

each battery is set to be tested between 15 to 50 cycles to observe the factors such

as degradation, short circuit current, and safety issues such as high temperature or

explosive reactions. During all of the experiments, the voltage range, the number

of cycles, the safety margins, and the testing current is set separately regarding the

active materials of each test [178].
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3. RESULTS AND DISCUSSION

3.1 Fabrication of a Polymerized Nanostructured V2O5/GO Hybrid for

Electrospinning

An optimized sol-gel method has been developed to synthesis V2O5/GO. Different

solution concentrations of 0.1 M, 0.15 M and 0.2 M were tested and the best out-

come was resulted from 0.1 M concentration. Higher concentration solutions can lead

to more non-homogenous and more coagulated solution which deteriorates electro-

spinnability of the solution. The optimum obtained solution suitable for electrospin-

ning was found to be Dowex-50-WX2, 100200 mesh. After completion of HV O3

synthesis for almost lasting for almost 2-4 hours, 2-3% GO was added to the obtained

yellowish hybrid of HV O3 solution right away and bath sonicated for 30 min in order

to achieve more uniform and well-dispersed GO in HV O3 solution (Figure 3.2). Also,

for better understating, the PH level of HV O3 solution before and after mixing with

GO is shown (Figure 3.1), which represents that PH scale remains pretty much the

same at nine.

Then, the V2O5/GO hybrid was aged from few hours to few weeks, and the V2O5

growth on GO sheets was carefully observed as the V2O5/GO hydrogel starts to form.

The hybrid gradually changes color from yellow to dark brown during first few days,

and eventually after 12 weeks to dark red, signifying the completion of the formation

of a 3D network of V2O5 hydrogel Figure 3.3.

Concerning synthesis of the electro-spinnable V2O5/GO, V2O5 ribbons dispersed

in GO (2%) are let to grow for at least 7-12 hours to form the minimum required

ribbons for the sake of fabrication of high capacity cells. However, it is worth to

mention that aging V2O5 ribbons more than a day will result in the formation of

non-homogenous gels on most occasions, which is not desirable and applicable for the
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Fig. 3.1. Left Picture: V2O5 hydrogel PH level before mixing with
GO Right Picture: V2O5 hydrogel PH level after mixing with GO.

Fig. 3.2. Dark brown bath sonicated GO (2%) dispersed in HV O3 solution.
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Fig. 3.3. Dark red V2O5/GO after 2 weeks of aging bringing about
the formation of completed network of V2O5 hydrogel.
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Fig. 3.4. 50X magnification microscope pictures of centrifuged
v2O5/GO at speeds of a) not centrifuged; b) 2500 rpm; c) 6000 rpm;
d) 10000 rpm; e)12000 rpm; f)14000 rpm.

electrospinning process. In order to be rest assured that the formed hybrid is perfectly

suitable for electrospinning, the hybrid was centrifuged. A case study on the speed

and duration of the centrifuging process of the prepared solution was conducted. After

several times of trying, the speed of 2500rpm with a centrifuging duration of almost

5 min was found to be the sweat-spot in this process. It can be perceived from the

microscope pictures that centrifuging at higher speeds causes precipitation of GO and

V2O5 ribbons and forms two-phase solution, which is not desirable for electrospinning.

V2O5 ribbon and graphene oxide flakes observed under the microscope are depicted

in Figure 3.4.

However in a few occasions, under the careful synthesis of homogenous 0.1 M

NaVO3 and subsequently careful synthesis of V2O5 sol-gel through the cleaned column

with a proper resin mesh size, homogenous V2O5 gel will result after two weeks which

is the optimum timing for the formation of fully grown V2O5 network on GO sheets.
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PVP was mixed with such a gel after two weeks but it could not form a well-dispersed

and homogenous solution. In this regard, PVA was introduced and mixed with a two

weeks old V2O5/GO gel, and the quality of the final colloid solution was satisfying

and homogenous, thus spinnable. After mixing with polymer, the obtained dark

yellow colloid solution was kept in a glass on a magnetic stirring plate to attain a

homogeneous hydrogel for 24 hours.

However, PVA requires to be dispersed in hot water, i.e., 90◦C as the PVP and

water mixture are maintained at waters boiling temperature for almost 3 hours. This

will result in a homogeneous PVA mixture which later can be well mixed with V2O5

xerogel. It should be bared in mind that the V2O5 sol-gel cannot be heated up

due to its sensitivity to temperature, resulting in a non-homogenous and gel-like

shape. Although with PVA, not with PVP, 2-3 weeks old homogeneous vanadium

oxide hydrogel could be spun, a large amount of water is required. For the V2O5

xerogel, abundant water may react with the lithium to form Li2O, which deteriorates

intercalation performance, consequently, lowers the capacity to around 100 mAhg−1.

Therefore, better results was attained with PVP mixed with the hybrid after 7-12

hours, since it could be mixed directly in V2O5 hybrid.

3.2 Morphology of Electro-spun Fibers

The electrospinning process is dependent on polymer concentration as the most

crucial factor. This dependency emanates from the fact that change in polymer con-

centration leads to a change in solution viscosity. Having said that, as the polymer

concentration increases, the viscosity increases, too, but at a steady rate at first and

after that at a much higher rate [140]. The solution viscosity is extremely governed by

intermolecular interactions between polymer-polymer, polymer-solvent, and solvent-

solvent within the polymer solution. Electrospinning a dilute polymer solution is

analogous to an electro-spraying process, and the polymer intermolecular distance

within the solution is so considerable that the interaction is considered to be very
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Fig. 3.5. An example of individual beads of electro-spun V2O5 (poly-
merized after 7hr; 1:4) + GO + PVP.

weak. Therefore, the viscoelastic force in the polymer jet is minute to form a uniform

fibrous structure. In this process, the jet splits into separate charged sections as the

voltage is applied. Gradually theses charged sections turn into droplets or individual

beads as a result of high surface tension caused by solvent evaporation while spin-

ning Figure 3.5. Similarly, an increase in the polymer concentration leads to higher

viscoelastic force and more difficult for the jet to be split. In lieu of breaking the

like-charged sections, electrostatic repulsion within the solution elongates the links

between charged sections, consequently forming thinner filaments. Relatively thicker

sections stretch thinner although to the links between charged sections. As the sol-

vent evaporates while spinning, due to the surface tension, filaments tend to take the

shape of beads-on-string morphology Figure 3.6. Accordingly, a further increase in

the polymer concentration, brings about uniform elongation of and formation of the

jet, resulting in homogeneous fiber morphology Figure 3.7 [86, 87,140,141].

In this regard, both PVP and PVA in different concentration and aging timing

were mixed with V 2O5/GO hydrogel. After several attempts, the optimized amount

for both polymers were found. It is believed that, 0.45 (PVP): 4 (V 2O5/GO) and 4
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Fig. 3.6. An example of beads on strings of electro-spun V2O5 (poly-
merized after 7hr; 1:4) + GO + PVP.
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Fig. 3.7. An example of uniform electro-spun V2O5/GO (polymerized
after 7 hours with PVP).
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Fig. 3.8. V2O5r/GO +PVP (polymerized after 7hrs)): after annealing
in N2 (@ 400◦C ).

(PVA in water): 10 (V2O5/GO) are the suitable ratios for electrospinning purposes.

Also, annealed electro-spun fibers are provided (Figure 3.8, Figure 3.10), and the

preserved regions of fibers have been shown. Due to the thermoplastic behavior of

PVA and PVA, and carbonized polymer at ∼ 400◦C, some electrospun fibers has

been aggregated, leading to an amorphous structure in some regions. However, some

preserved region of fibers are shown in the following pictures.

Selecting a proper solvent plays a prominent role in the electrospinning process.

Since solutions conductivity, viscosity and surface tension are affected by a handful of

solvents characteristics including solvents conductivity, boiling point, vapor pressure,

polarity, dipole moment, dielectric constant. In most cases, water is selected to be

as a solvent for PVA and PVP. However, in many incidents, it was observed that

the resulted polymerized V2O5 xerogel forms a two-phase non-homogenous colloid

solution. To tackle this problem, hydrogen peroxide (H2O2) was used to breakdown

the non-homogenous hydrogel. In most case, the resulted solution viscosity was not

enough for electrospinning purposes as it changes the sol-gel to a runny liquid solution.

In a few cases, after several attempts, V2O5/GO+PV P diluted in water and (H2O2)
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Fig. 3.9. An example of uniform electro-spun V2O5/GO (polymerized
after 2 weeks with PVA).
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Fig. 3.10. V2O5/rGO + PVA (polymerized after 2 weeks)): after
annealing in N2 (@ 400◦C ).
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Fig. 3.11. Electro-spun V2O5/GO + PVP in H2O2 and water.

could be electrospun as shown by the following figure (Fig 3.11). As shown in the

picture, there is no sign of formation of a nanofibrous structure which is believed to

be the remnants of (H2O2) as it could not be evaporated during the electrospinning

process.

As a result of this, dimethylformamide (DMF) was tried out to overcome the

aforementioned problem as a solvent. In this regard, DMF was mixed with the hy-

drogel in different ratios. The outcoming fibers were not desirable as it obviously can

be percieved that nofibers are not shaped (Fig 3.12).

In the end, in cases of V2O5/GO + PV P and V2O5/GO + PV A, it was testified

by several experiments, by synthesizing V2O5/GO xerogel in differnet ratios of water,

DMF, and (H2O2), that the achieved electrospun morphology could not lead into

a interconnected nonofibrous structure. As we keep the hydrogel more intact and

less complicated, the electrospinning process is more facilitated. In a sense that, the

solution inside a syringe possess more viscous properties and the excess solvent could

be evaporated more easily while spinning.
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Fig. 3.12. Electro-spun V2O5/GO + PVP in DMF and water.
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3.3 Vanadium Oxide-based Cathode and Lithium Cells

Most of the current cathode materials in lithium-ion batteries exhibit a specific

capacity meaningfully lower than 200 mAhg−1 (e.g., 140 mAhg−1 for LiCoO2). One

exception is vanadium-based materials (e.g., V O, LixV O2, V2O5, LixV2O5, V3O8,

LixV3O8, LixV3O7, V4O9, LixV4O9, V6O13, LixV6O13, their derivatives, their doped

versions, and combinations thereof, wherein 0.1 < x < 5) that exhibit extraordinary

specific capacity due to their ability to incorporate more than one lithium ion per

Vanadium atom. A theoretical specific discharge capacity of 443 mAhg−1 can be

achieved when three lithium ions intercalate into V2O5 [69]. D.A. Semenenko et al.

reported an ultra-high capacity of 490 mAhg−1 attributed to LixV2O5 nano-belts with

the δ-type crystal structure. The enhanced electrochemical properties of this battery

is attributed to the sophisticated post synthesis treatment of the single-crystalline

LixV2O5 nanobelts [70]. However, vanadium-oxide based batteries are not vastly

commercialized due to the following reasons:

1) Electrochemical properties, including specific capacity, capacity retention, rate

capability, and long-term cyclability, are profoundly affected by fabrication condi-

tions, including pre-synthesis and post-synthesis circumstances.

2) In most cases of high initial capacity, i.e., higher than 300 mAhg−1, the spe-

cific capacity usually drops by a large amount over repeated charge and discharges.

However, in cases of lower capacity, i.e., less than 250 mAhg−1, capacity retention

is found to be rational. However, this amount is by long shot lesser than theoretical

discharge capacity (443 mAhg−1) and the highest reported capacity (490 mAhg−1).

Seldom, one can find a vanadium oxide-based lithium battery with both high specific

capacity, and reasonable capacity retention needs to be met. To overcome this prob-

lem, in this research, graphene-modified vanadium-based cathodes prepared through

optimized sol-gel method has been investigated to meet thereof needs. The synthe-

sized V2O5/rGO also exhibits improved cycling stability. This half cell achieved 87%

initial after 10 cycles and 79% initial after 10 cycles at 0.5 C.
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3) Higher current rates have a considerable effect on specific capacity while charg-

ing/discharge. Even though in some literature, nano-structure morphology, i.e.,

nanoparticles, nanorods, nanowires, nanosheets, and nanobelts have been synthe-

sized, vanadium-based cathodes still fall short in terms of providing a good capacity

at a high rate (i.e., they exhibit poor rate capability). Concerning this issue, the

initial capacity of 342 mAhg−1 has been reported at 0.5 C, which is considered to

be a high current density for battery testing. It is worth to mention that due to

their nanostructured morphology, electro-spun LixV2O5 nanorods demonstrate signif-

icantly high specific capacities at high current densities. The high capacity values

of LixV2O5 nanofibers can be accomplished as a result of the large surface area and

short diffusion length typical of nanostructured materials.

We have observed that post-synthesis treatment conditions play a prominent role in

electrochemical performance of the fabricated cells. It is critical, to find an optimal

drying and annealing temperatures of electrodes to be rest assured that an efficient

water is removed from the crystal structure of synthesized material. Specially, in this

case, when the fibers are fabricated with thermoplastic polymers such as PVP and

PVA.

3.4 Electrochemical Characterization

3.4.1 Galvanostatic Charging/Discharging Curves

Two different sets of half-cell were fabricated; one with PVA and the other one

with PVP as polymer solvents. As discussed before, fabricated V2O5/GO+PV A half-

cells reported the maximum specific capacity of 102 mAhg−1. However, the reported

Specific capacity for the V2O5/GO + PV P is 342 mAhg−1. For the V2O5 hydrogel,

the large amount of water reacts with the lithium to form Li2O, which deteriorates

intercalation performance and is associated with the low capacity of V2O5/GO+PV A.

It is worth to mention that water is the only known and popular solvent for PVA [116].

The initial capacity of 342 mAhg−1 V2O5/GO+PV P is reported here. The following
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Fig. 3.13. Galvanostatic charge/discharge curve of V2O5/GO + PV P
for the 1st cycle.

curves are the galvanostatic charge/discharge curve of V2O5/GO + PV P for the 1st,

2nd, and 10th cycles (Figure 3.11, Figure 3.12, Figure 3.13). The capacity plummets

during the 1st cycle; however, for the following cycles, the capacity reduction decreases

as the coulombic efficiency increases. The cells are charged between 1.7 V and 3.8 V

at C/2 current rate.

3.4.2 Coulombic Efficiency

Coulombic efficiency (CE) measures the charge efficiency by providing the ratio

of extracted charge to inserted charge within the battery over a full cycle. Li-ion

has one of the highest CE ratings in rechargeable batteries [13]. This, however,

depends on many factors such as the rate at which battery is charged, the ambient
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Fig. 3.14. Galvanostatic charge/discharge curve of V2O5/GO + PV P
for the 2nd cycle.
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Fig. 3.15. Galvanostatic charge/discharge curve of V2O5/GO + PV P
for the 10th cycle.
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Fig. 3.16. Coulombic efficiency for V2O5/GO + PV P vs. charge capacity.

temperature etc. Fast charging of the batteries results in lowers CEs. It is due to

losses in charge acceptance and heat. The V2O5/GO + PV P cycling performance is

reported here. First cycle charge capacity vs. coulombic efficiency is plotted (Figure

3.14). The coulombic efficiency rises from 62.90% to 90.030% in the 10th cycle. As

explained before, coulombic efficiency above 90% is acceptable for such batteries. The

coulombic efficiency of Li-ion improves with cycling as can be verified by the following

results [179].

3.4.3 TGA Analysis

Thermogravimetric analysis (TGA) is a method of thermal analysis in which the

weight loss of a sample is observed against temperature change. The TGA measure-

ment was carried out for both pure PVA and PVP using a TA 2000 thermo-analyzer.
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Fig. 3.17. TGA analysis of PVP (Sigma Aldrich, Mw = 1.3M).

The annealed vs. regular TGA analysis was conducted for each polymer separately.

It should be kept in mind that the maximum temperature limit for GO reduction is

almost near 400 ◦C and at this temperature, almost 70% weight of the PVP is left,

and almost 50% weight of the PVA remains (marked by cross sign in Figure 3.15

Figure 3.16). In this regard, for PVP annealing process, in some endeavours, the

maximum temperature was increased up to between 450-500 ◦C in order to at least

remove 50% weight of the PVP polymer.

3.4.4 Mercury Porosimetry

The mercury porosimetry analysis technique is a method of porosity analysis in

which mercury intrusion happens in a porous structure under severely controlled

pressures. Mercury porosimetry is able to calculate handful of sample properties

such as total pore volume, total pore surface area, median pore diameter, pore size

distributions, and sample densities (bulk and skeletal) [180]. By selecting high surface

area materials with carefully designed pore networks, as proved by electrospinning,
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Fig. 3.18. TGA analysis of PVA (MowiolR 8-88, Mw = 67k).
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Fig. 3.19. Powdered V2O5/GO mercury porosimetry results (prepared
through sol-gel method).

Fig. 3.20. Electro-spun V2O5/GO mercury porosimetry results (pre-
pared through sol-gel method).

manufacturers of batteries and super-capacitors can minimize the use of costly raw

materials while providing more exposed surface area for storage of charge. In this

regard, total pore area and median pore of regular powdered V2O5/GO and electro-

spun V2O5/GO have been compared.

As seen in the following figures (Figure 3.17, Figure 3.18), the total pore area

after electrospinning is almost four times as the regular one. Also, the following

results indicate that median pore diameter has decreased more than eight times as

of the regular V2O5/GO. The as-prepared porous, hollow and interconnected V2O5

is believed to provide more physical contact and space for lithium de/intercalation

process.
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3.4.5 BET Specific Surface Area

The BET (Brunauer, Emmett and Teller) surface area analysis is used to measure

and evaluate the gas adsorption data which generates a specific surface area expressed

in units of area per mass of sample (s/g). In this regard, a specific area of electro-spun

V2O5/GO was measured, and the results were compared to the regular V2O5 powder

to observe the differences in the surface are changed. According to the results, the

generated specific area for electro-spun V2O5/GO is 9.515 s/g.

3.4.6 XRD Analysis

To further understand the structure of V2O5/GO, phase analysis through XRD

measurement was carried out measured for electro-spun V2O5/GO. Simply put, XRD

results for both electro-spun V2O5/GO + PV P , V2O5/GO + PV A, are displayed

here (Figure 3.22, Figure 3.23). In order to quantify the intensity and compare

different phases of vanadium oxides, XRD analysis was carried out. The formation of

crystalline V2O5 was confirmed by wide-angle 90◦ XRD analysis, as displayed in the

following figures. Two distinct diffraction lines were identified in the XRD 95 profile,

indicating two sharp peaks at 38.1◦ and 44.6◦ for electro-spun V2O5/GO + PV P

(Figure 3.22) and at 44.6◦ for V2O5/GO + PV A (Figure 3.23).

The planes attributed to V2O5 are marked. As seen in the figures, a sharp peak

is observed attributed to the (0 0 1) plane of the formed V2O5 in XRD patterns of

V2O5/GO + PV P . Also, a sharp peak representing plane (4 0 1), is associated with

the XRD patterns of V2O5/GO + PV A.
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Fig. 3.21. XRD patterns of the V2O5/GO + PV P

Fig. 3.22. XRD patterns of the V2O5/GO + PV A
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4. CONCLUSION

The ultra-fine fibers arising from electrospinning have two significant properties, such

as a large surface to volume ratio and a structure that is relatively free from defects at

a molecular level. A high surface to volume ratio makes electro-spun materials suitable

for undertaking activities that require a higher physical contact, including providing

a site for a chemical reaction as well as the filtration of small-sized physical materials.

Also, minimal defects at a molecular level allow electro-spun fibers to attain maximum

strength, thus can attain high mechanical performance for composite materials.

The electrospinning process produces fibers with diameters ranging from nanome-

ters to micrometers [161]. The fibers provide sufficient storage space and also plays

a critical role in converting the stored energy into electrical currents. Some of the

advantages of electrospinning include flexible temperatures, short production cycle,

and little pressure. Besides, nanofibers synthesized from the hydrothermal method

have a lower aspect ratio, which is critical in the transfer of energy [165]. In other

words, fibers made from electrospinning are likely to provide more efficient energy

transfer compared to other methods such as electro-spun NWs [166]. However, elec-

trospinning also has various limitations, including difficulties in preparing inorganic

nanofibers and limited quantity or variety of polymers used in the process. Limited

variety of polymers restricts manufacturers to the use of available materials which may

not reach the desired energy capacities [167]. Besides, the performance of nanofibers

made from the inorganic materials is likely to decline after calcination. Manufac-

turers are also silent about the aging process which renders many batteries ineffi-

cient. The aging process drains the energy capacity of various cells and reduces the

performance of lithium-ion batteries. In this work, V2O5/GO as a layered crystal

structure has been demonstrated to fabricate nanofibers formed by polymers such

as Polyvinylpyrrolidone (PVP) and Polyvinyl alcohol (PVA), separately, as solvent

polymers with electrospinning technique.
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In this study, the synthesis of a graphene-modified nanostructured V2O5 through

optimized sol-gel method and electrospinning of V2O5/rGO hybrid is investigated.

The as-prepared V2O5/GO has hollow, porous, and interconnected nanostructures.

By controlling the electrospinning parameters, uniform nanorods with a diameter of

within ∼300 nm were fabricated. Also, the graphene sheets sandwiched in between

the V2O5 layers create gaps between the V2O5 layers. They improve the electron

conduction also by creating proper gaps between the two layers of V2O5, they can

facilitate the Li+ diffusion.

The results of this study showed that post-synthesis treatment of cathode ma-

terial plays a an important role in electrochemical performance of the as prepared

cells. By controlling the annealing and drying time and steps, a small amount of

pyrolysis carbon can be retained, which could improve the conductivity of the V2O5

nanorods. Also, controlled post-synthesis helped us to prevent aggregation of electro-

spun twisted nanostructured fibers which deteriorates the lithium diffusion process

during charge/discharge of batteries. However, there are some limitations for the

fabrication of this type of battery such as time-consuming sol-gel synthesis, difficult

electrospinning process, and complicated annealing procedure.

As demonstrated, electrospinning has gained lots of interest in recent years due

to its potential application in energy storage application. As the results have proved,

the optimized sol-gel method, followed by the electrospinning of the cathode material

achieved a high initial capacity of 342 mAhg−1 at a high current density of 171 mAg−1

(0.5C) and the capacity retention of 80% after 20 cycles. It was also shown that the

prepared sol-gel method outperforms the pure V2O5 cathode material, by reaching

the capacity of two times higher.
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5. FUTURE RECOMMENDATION

Polymer removal from the electro-spun samples is a critical part of this thesis. If the

whole amount of the polymer (here PVP and PVA, electro-spun separately) remains

in the electro-spun samples, it can act as an insulator during Lithium intercalation

and deintercalation procedures. In this regard, as a future recommendation, PVP

should be dried under vacuum to remove the remaining solvents including water,

DMF, Ethanol, etc. and then it shall be transferred to a autoclave with deionized

water maintained at 80◦C. After drying the water-treated nanofibers under vacuum,

the porous electro-spun nanofibers could be obtained. As a Next step, the as-prepared

sample should be heat-treated inside furnace tube under N2 or air, starting from room

temperature up to 380-400 ◦C at a rate of 1 C.min−1. Then it should be held there

for 1-2 hours. By following this multi-step annealing process, crystallized water inside

the V2O5 xerogel will not result in collapse of the whole nanostructure.

In case of PVA, the same above heat-treatment method can be applied but with

a slight difference. Firstly, PVA requires to be dispersed in hot water, i.e., 90 ◦C

as the PVP and water mixture maintained at around waters boiling temperature for

almost 3 hours. This will result in a homogeneous PVA mixture which later can be

well mixed with V2O5 xerogel. Although with PVA, not with PVP, 2-3 weeks old

homogeneous vanadium oxide hydrogel could be spun, a large amount of water is

required. For the V2O5 xerogel, the large amount of water reacts with the lithium

to form Li2O, which deteriorates intercalation performance consequently lowers the

capacity to around 102 mAhg−1. Therefore, electro-spun V2O5/GO+PV A has to be

also freeze-dried to remove all the excess water from its structure.

In the end, nanofibers can be carbonized at a rate of 5 C.min−1 up to 400 ◦C

in a tubular furnace, which is the optimum temperature point for Graphene Oxide

(GO) reduction. The maximum temperature for GO reduction is found to be 400

◦C [39,181].
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