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ABSTRACT

Chau, Sze Yiu Ph.D., Purdue University, August 2019. Systematic Evaluations of
Security Mechanism Deployments. Major Professors: Ninghui Li and Aniket Kate.

In a potentially hostile networked environment, a large diversity of security mech-

anisms with varying degree of sophistication are being deployed to protect valuable

computer systems and digital assets. While many competing implementations of

similar security mechanisms are available in the current software development land-

scape, the robustness and reliability of such implementations are often overlooked,

resulting in exploitable flaws in system deployments. In this dissertation, we sys-

tematically evaluate implementations of security mechanisms that are deployed in

the wild. First, we examine how content distribution applications on the Android

platform control access to their multimedia contents. With respect to a well-defined

hierarchy of adversarial capabilities and attack surfaces, we find that many content

distribution applications, including that of some world-renowned publications and

streaming services, are vulnerable to content extraction due to the use of unjustified

assumptions in their security mechanism designs and implementations. Second, we

investigate the validation logic of X.509 certificate chains as implemented in various

open-source TLS libraries. X.509 certificates are widely used in TLS as a means

to achieve authentication. A validation logic that is overly restrictive could lead to

the loss of legitimate services, while an overly permissive implementation could open

door to impersonation attacks. Instead of manual analysis and unguided fuzzing, we

propose a principled approach that leverages symbolic execution to achieve better

coverage and uncover logical flaws that are buried deep in the code. We find that

many TLS libraries deviate from the specification. Finally, we study the verification

of RSA signatures, as specified in the PKCS#1 v1.5 standard, which is widely used
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in many security-critical network protocols. We propose an approach to automati-

cally generate meaningful concolic test cases for this particular problem, and design

and implement a provenance tracking mechanism to assist root-cause analysis in gen-

eral. Our investigation revealed that several crypto and IPSec implementations are

susceptible to new variants of the Bleichenbacher low-exponent signature forgery.
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1. INTRODUCTION

In a world full of potential adversaries, networked computer systems rely on various

security mechanisms to protect their availability as well as to guarantee communica-

tion confidentiality and integrity. Businesses in the digital age depends on reliable

and trustworthy systems to thrive. End user security and privacy could be in seri-

ous jeopardy without adequate protections. It is hence important to not only have

well designed security mechanisms but also robust and reliable implementations that

faithfully fulfill the intended security goals when they are deployed.

In this dissertation, we systematically evaluate implementations of widely de-

ployed security mechanisms. We attempt to make contributions in two directions:

1) identifying new implementation weaknesses that are potentially exploitable and

help the development community fix those and avoid future pitfalls; 2) advancing

the state of the art in analyzing semantic correctness of security-critical protocol im-

plementations. Taking a top-down perspective, we begin with a study on content

distribution applications on Android, where various access control mechanisms are

deployed at different layers to protect multimedia contents, the main assets in their

business models. We then set our focus on TLS connections, the de facto standard

for encrypting Internet traffic. Specifically, we investigate the logic of X.509 certifi-

cate chain validation as implemented in various open-source TLS libraries, with a

principled symbolic analysis approach. Finally we investigate the verification of RSA

signatures, with a more automated approach and new improvements on root-cause

analysis.
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1.1 Content Distribution Applications on Android

Mobile devices are becoming the default platform for multimedia content con-

sumption. Such a thriving business ecosystem has drawn interests from content dis-

tributors to develop applications that can reach a large number of audiences. The

business-edge of content delivery applications crucially relies on being able to ef-

fectively arbitrate the purchase and delivery of contents, and govern the access of

contents with respect to usage control policies, on a plethora of consumer devices.

Content protection on mobile platforms, especially in the absence of Trusted Execu-

tion Environment (TEE), is a challenging endeavor where developers often have to

resort to ad-hoc deterrence-based defenses. In Chapter 3 we systematically evaluate

the effectiveness of content protection mechanisms embraced by vendors of content

delivery applications, with respect to a hierarchy of adversaries with varying degrees

of real-world capabilities. Our analysis of 141 vulnerable applications uncovered that,

in many cases, due to developers’ unjustified trust assumptions about the underlying

platforms and technologies, adversaries can obtain unauthorized and unrestricted ac-

cess to contents offered by the applications, sometimes without even needing to reverse

engineer the deterrence-based defenses. Some weaknesses in the applications can also

severely impact users’ security and privacy. All our findings have been responsibly

disclosed to the corresponding application vendors.

1.2 X.509 Certificate Chain Validation

The X.509 Public-Key Infrastructure has long been used in the TLS protocol to

achieve authentication. A recent trend of Internet-of-Things (IoT) systems employ-

ing small footprint TLS libraries for secure communication has further propelled its

prominence. The security guarantees provided by X.509 hinge on the assumption that

the underlying implementation rigorously scrutinizes X.509 certificate chains, and ac-

cepts only the valid ones. Noncompliant implementations of X.509 can potentially

lead to attacks and/or interoperability issues. In the literature, black-box fuzzing has
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been used to find flaws in X.509 validation implementations [1, 2]. While black-box

fuzzing makes a good attempt in revealing the existence of implementation problems,

especially when source code is not available, there are limitations of such approach:

1) given a particular test case that indicates an error, it is often not easy to account

for the exact root causes; 2) it lacks guarantees on coverage of the code being tested,

especially in the unguided setting; 3) each randomly generated test case could contain

multiple problems that might mask each other, making results difficult to interpret.

To thoroughly analyze X.509 implementations in small footprint TLS libraries, we

take the complementary approach of using symbolic execution. Our work attempts to

take advantage of the fact that when the underlying source code is available, one can

infer useful information out of the code, and perform testing using such information

to achieve better code coverage.

While symbolic execution is a technique proven to be effective in finding software

implementation flaws, it can also be leveraged to expose noncompliance in X.509 im-

plementations. Directly applying an off-the-shelf symbolic execution engine on TLS

libraries is, however, not practical due to the problem of path explosion. In Chap-

ter 4, we propose the use of SymCerts, which are X.509 certificate chains carefully

constructed with a mixture of symbolic and concrete values. Utilizing SymCerts and

some domain-specific optimizations, one can symbolically execute the certificate chain

validation code of each library and extract path constraints describing its accepting

and rejecting certificate universes. These path constraints help us to easily identify

missing checks in different libraries. For exposing subtle but intricate noncompliance

with the X.509 standard, we cross-validate the constraints extracted from different

libraries to find further implementation flaws. Our analysis of 9 small footprint X.509

implementations has uncovered 48 instances of noncompliance. Many findings and

suggestions provided by us have already been incorporated by the vendors in newer

versions of their libraries.
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1.3 PKCS#1 v1.5 RSA Signature Verification

While known implementation flaws in cryptographic libraries can sometimes be

abstracted into certain patterns to enable the measurement of scale and spread of

the vulnerabilities [3–6], current research efforts on finding attacks against crypto-

graphic implementations often rely on manual analysis of the code with respect to

the standard specification, and then design mathematical exploitations of the identi-

fied flaws [3, 7, 8].

In Chapter 5 we discuss the possibility of automating the identification of imple-

mentation flaws in cryptographic glue protocols. Because of the restrictive assump-

tions used in designing cryptographic constructs, in reality, additional glue protocols

are often needed to generalize such constructs into being able to handle inputs of

diverse length and formats. Sometimes glue protocols are also used to wrap around

cryptographic constructs for exploiting the duality of certain security guarantees to

achieve alternative properties. Our overarching goal is to develop a systematic ap-

proach for analyzing the semantic correctness of implementations of such glue proto-

cols that are deployed in practice, and enabling cryptographers to only concentrate

on devising mathematical exploitations.

As a case study, we systematically analyze implementations of RSA signature

verification, the robustness and reliability of which is crucial for achieving authen-

tication and integrity guarantees. Interestingly, most previous work on analyzing

certificate chain validation neglect to investigate the implementation of signature ver-

ification [1, 2, 9, 10]. Faulty signature verifiers are known to enable attackers forging

digital signatures without the possession of the private key [7, 8, 11–15].

At the time of writing, RSA remains one of the most widely-used asymmetric cryp-

tosystem. The PKCS#1 standard in particular defines several versions of encryption,

decryption and signature schemes based on the RSA algorithm. Despite the existence

of newer schemes with provable security like RSA-PSS introduced in the version 2.0

specification [RFC8017], the version 1.5 standard continues to be extensively used in
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the Web PKI and other security-critical network protocols like SSH [RFC4253] and

IKEv2 [RFC7296]. As we will explain later in Chapter 5, to our surprise, even after

a decade since the discovery of the original vulnerability [8], implementations still

fail to faithfully and robustly implement the prescribed PKCS#1 v1.5 glue protocol,

resulting in new variants of attacks.

The diverse glue components involved in PKCS#1 v1.5 makes it a good candidate

for demonstrating the effectiveness of our approach in analyzing semantic correctness.

In contrast to X.509 certificates, PKCS#1 v1.5 signatures consist of components of

variable lengths (e.g. padding and other metadata) that complement each other,

hence the technique of choosing fixed lengths as done in previous work [9] could

potentially miss out on numerous meaningful test cases. For achieving better coverage

and a higher degree of automation, we propose to use a technique dubbed “meta-level

search”, where symbolic variables are not only used as test inputs, but also indicate

how components of inputs can be changed in lengths and combined together, by

exploiting the linear relations that exist among the various components. This enables

the automatic generation of many meaningful concolic test inputs, an improvement

over manually constructing concolic inputs as done in previous work [9].

To facilitate root-cause analysis of implementation flaws identified with our ap-

proach, we design and develop a constraint provenance tracking (CPT) mechanism

that maps the different clauses of each path constraint generated by symbolic exe-

cution to their source level origin, which can be used to understand where certain

decisions were being made inside the source tree.

Most of the flaws in PKCS#1 v1.5 signature verification found in this research

have already been reported to and fixed by maintainers of the corresponding software.

1.4 Thesis Statement

This thesis focuses on demonstrating the following statement:
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Current security mechanisms that are widely deployed still contain hidden

but exploitable weaknesses, and with sufficient domain knowledge, such

weaknesses can be found in a systematic manner.

1.5 Contributions

The technical contributions of this thesis can be broadly partitioned into two

categories.

i. Identifying weaknesses and avoiding future pitfalls

Our systematic evaluations of content distribution applications, as well as imple-

mentations of X.509 certificate validation and PKCS#1 v1.5 signature verification,

have uncovered numerous weaknesses that are exploitable. By documenting and dis-

secting the root-causes of said weaknesses, we assist future development of security

mechanisms with the weakness patterns identified, so that similar design and imple-

mentation pitfalls can be avoided.

ii. Advancing the state of the art in semantic correctness analysis

We advance the state of the art in analyzing the semantic correctness of protocol

implementations. While black-box fuzzing has been the dominant approach in finding

software implementation flaws, especially low-level memory safety issues, our position

is that for the analysis of semantic correctness (i.e., whether an implementation faith-

fully adhere to the protocol specification), symbolic analysis can often provide better

code coverage and a more useful formula-based abstraction of the implemented logic.

Semantic correctness is particularly interesting to analyze because memory errors can

be easily avoided by using memory-safe programming languages, but the same is not

true for logical flaws. We also demonstrate how to leverage domain knowledge to

make symbolic execution practical for specific problems.
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1.6 Organization

The remainder of this dissertation is organized as follows. Chapter 2 provides an

overview of previous literature related to the discovery and exploitation of flaws in

security mechanism deployments. Chapter 3 presents our systematic evaluation of

content distribution applications on the Android platform. Chapter 4 discusses the

problem of X.509 certificate validation, and how symbolic execution can be applied

to analyze the implemented validation logic in open-source TLS libraries. Chapter 5

gives a discussion on how to symbolically analyze implementations of cryptographic

glue protocols and make root-cause analysis easier, using PKCS#1 v1.5 RSA signa-

tures as the main case study example. Chapter 6 concludes the dissertation.
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2. RELATED WORK

In this chapter, we briefly review related work on attacks against design and imple-

mentation flaws in deployed security mechanisms, measurements of deployment issues,

as well as software testing techniques and their application on evaluating security-

critical protocol implementations.

2.1 Measuring the spread and scale of deployment issues

A prominent line of research is measurement studies on issues facing deployments

of security mechanisms, for example, environmental threats and known vulnerabili-

ties. This helps one to understand and evaluate the current deployment practices.

Vulnerable keys and other cryptographic weaknesses. Zhang et al. [6]

studied how X.509 certificates were reissued and/or revoked after the discovery of

the OpenSSL Heartbleed vulnerability. Heninger et al. [4] studied the spread of weak

RSA and DSA keys at the Internet scale by scanning X.509 certificates used in TLS

connections and SSH host keys. They showed that the majority of vulnerable RSA

and DSA keys are due to the use of some insecure random number generators. Hast-

ings et al. [5] presented a follow-up analyze on the measures taken by vendors and

end users regarding the advisory on weak RSA keys. According to their findings, end

users seem reluctant in patching their vulnerable software, and some vendors did not

release any patches at all. Valenta et al. [3] surveyed the presence of known vulner-

abilities against elliptic curve implementations by performing internet-wide scans. A

recent study showed that a considerable number of servers on the Internet are still

vulnerable to Bleichenbacher’s padding oracle attack [16].
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Forged X.509 certificates. Huang et al. [17] designed a client-side applet to

monitor and report X.509 certificate chains that were actually presented to clients.

Their study discovered about 6 thousand forged certificates in over 3 million connec-

tions, and showed that not just malware but surveillance devices as well as anti-virus

software are also forging certificates to tamper with SSL/TLS connections.

TLS interception. The security guarantees provided by TLS can indeed be

affected by even benign software and networking equipments. Studies found that

many anti-virus and parental control software [18,19] as well as enterprise-grade net-

work appliances [19, 20] attempt to intercept TLS connections for various reasons.

It was shown that many interceptors fail to properly validate X.509 certificates and

might be willing to offer and accept weak ciphersuites, hence significantly degrade

the security of the TLS connections being intercepted [18–20].

2.2 Achieving more robust implementations and deployments

The research community has seen numerous efforts on how to better achieve se-

curity, through the means of refactoring specifications, proposing good development

practices, enforcing correct library API usages and formally verifying implementa-

tions. Here we give a brief account of such efforts.

TLS state machine and high-confidence implementations. Attempts

were made on building high-confidence TLS implementations with a focus on correct

state transitions and cryptographic primitives, using re-engineered protocol speci-

fication and modular code base [21], as well as verified code along with security

proofs [22]. Beurdouche et al. [23] designed a tool that uses a verified implementation

as a reference to test the state machine of other SSL/TLS implementations. At the

time of writing, existing work on reference SSL/TLS implementations do not include

a formally verified X.509 certificate validation logic.
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Incorrect and insecure usage of TLS library APIs. Another direction of

research regarding deployments of TLS is whether applications are developed to make

correct usage of the API of a given TLS library. Georgiev et al. [24] crafted a handful

of attack certificates to attempt MITM attacks against various SSL/TLS library-using

applications, and showed that application developers often misunderstand and misuse

APIs, resulting in vulnerabilities. Further discussions on false beliefs of developers,

exploits on TLS-using applications and correct usage of TLS can be found in [25]. He

et al. [26] showed how to use static analysis to vet and identify vulnerable API usage

in applications. Yun et al. [27] proposed a fully automated system called APISAN

that can infer correct API usage from other some sample references, and use the

inferred information to find inconsistent API usages in other applications.

We note that this line of research is orthogonal to and complements our work pre-

sented in Chapters 4 to 5, as we are focused on how the underlying libraries providing

those APIs are implementing the validation of X.509 certificates and PKCS#1 v1.5

RSA signatures. Problems in the library implementations would affect applications

even if the application developers made no mistakes in using the APIs.

Protecting flawed certificate validation implementations. Since im-

plementing a robust certificate validation logic is non-trivial and error-prone [1, 9],

patching vulnerable implementations in a timely manner is another important aspect

of actual deployments. Bates et al. [28] proposed to use dynamically linked objects

and binary instrumentation to implement a defense layer, so that vulnerabilities in

certificate validation implementations can be patched promptly, and insecure config-

urations can be overridden and proper extension handling can be enforced.

Mobile application weakness analysis. Given that mobile computing de-

vices are becoming prevalent and ubiquitous, the security of applications tailor-made

for such emergent platforms warrants specific analyses. For example, Reaves et al. [29]

have carried out an analysis of 7 branchless mobile banking applications, and uncov-

ered weak design and implementation practices including inadequate authentication
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and authorization checks, weak (or, non-standard) cryptographic primitive usage, pre-

dictable key usage, and sensitive information leakage. Other studies have shown that

many back-end servers used to support the services of mobile applications have vul-

nerable authorization mechanisms [30], as well as insufficient request message checks

that can lead to access token hijacks and password brute-force attacks [31].

Mobile application security standard. OWASP recently released version

1 of its Mobile Application Security Verification Standard [32], which attempts to

standardize security requirements and verification levels that fit different application

and threat scenario. Interestingly, for Intellectual Property protection, it recommends

verification level L1+R. While R requires resiliency against reverse engineering, L1 does

not require key/certificate pinning, which as we will discuss in Sections 3.3.3 and 3.3.4,

allows for relatively easy TLS interception and potential content protection bypass.

Implementing content protection. Some have suggested that the large file

size of high-definition multimedia contents can be considered as a natural Digital

Rights Management (DRM) mechanism [33], for which we disagree with. While large

file size slightly hinder Internet sharing, DRM has a variety of other objectives like

copy control, license expiration check and authorization that are beyond the scope of

Internet sharing, especially in the era that the subscription-based streaming business

is dominant.

2.3 Techniques for testing security-critical protocol implementations

Symbolic execution. Symbolic execution has been shown to be effective for

finding low-level errors (e.g., null dereferencing, buffer overrun, division by zero etc.)

[34–43]. It has also been used for checking the equivalence of C functions [44, 45],

for checking server–client interoperability of network protocols based on the set of

packets accepted by them [46], for checking controllers in software-defined networks

[47,48], and for cross-checking different file system implementations to find semantic
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bugs [49]. Symbolic execution has also been used to assist the verification of network

functions [50] and cryptographic implementations as demonstrated in the work of

Chaki and Datta [51], Aizatulin et al. [52, 53], and Corin et al. [54].

Fuzz testing of TLS implementations. Given their prominence and im-

portance, the research community has put implementations of the SSL/TLS protocols

under close scrutiny in recent years. Fuzzing has been a prominent approach in test-

ing SSL/TLS implementations, where test cases are typically synthesized by applying

mutation heuristics on known valid inputs (e.g. message sequences and certificates).

Beurdouche et al. [55] looked at the problem of libraries mishandling unexpected

sequences of messages when implementing support for various ciphersuites, authen-

tication modes and protocol extensions. Brubaker et al. [1] used unguided black-box

fuzzing to test client-side validation of X.509 certificates in SSL/TLS implementa-

tions. Chen et al. [2] extended this approach by using Markov Chain Monte Carlo

sampling to guide test case generation, achieving better code coverage with less num-

ber of test inputs. De Ruiter et al. [56] showed that the implemented state machine of

SSL/TLS can be inferred by applying a fuzzing-based technique, which can then be

verified manually to discover errors. A recent work by Somorovsky [57] presented a

framework that allows developers to evaluate the behavior of TLS servers in a flexible

manner, with the ability to create arbitrary protocol flows and dynamically modified

messages.

Differential analysis. In the absence of a test oracle that always generates

correct outputs given any possible inputs, one can leverage the principle of differential

analysis to analyze non-trivial semantic correctness properties of an implementation

[58]. For example, X.509 certificate chain validation logic has been investigated before

by combining differential testing with fuzzing [1, 2] and with symbolic execution [9].

Differential testing with fuzzing was also used for analyzing semantic correctness of

TLS implementations [55].
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2.4 Practical attacks

Many weaknesses in the design and implementation of security-critical protocols

lead to practical attacks. Here we provide a brief overview of different types of attacks.

i. Attacks against implementations of standardized cryptography

Side channel attacks. Depending on their implementations, cryptographic

software might leak secrets through various side channels, which can sometimes be

exploited. Several implementations of AES are known to be vulnerable to timing side

channel attacks [59, 60]. Similarly, there are exploitable side channels found against

implementations of RSA and ECDSA [61–64]. Side channels can still exist even if

one uses a trusted execution environment (TEE) like SGX [65,66].

Padding oracle attacks. Another class of attacks against cryptographic soft-

ware is aimed at exploiting padding oracles. In essence, this takes advantage of

the observable differences in how a victim software handles malformed padding (e.g.

with special error messages) and other operational failures. For example, Bleichen-

bacher found that some implementations of the PKCS#1 v1.5 algorithm exhibit an

exploitable padding oracle [67], the attack of which was later extended by Bardou et

al. [68]. Some implementations of the Cipher Block Chaining (CBC) mode of block

cipher operation were found to be vulnerable to padding oracle attacks as well [69].

Signature forgery attacks. Flaws in implementations of PKCS#1 v1.5 RSA

signature verification can lead to variants of signature forgery attacks, especially when

a small public exponent is being used [7, 8, 11–15]. In many cases, the flaws were

due to some unwarranted leniencies in the parsing of RSA output during signature

verification, which we will discuss further in Chapter 5.

TLS and other protocols. Since TLS relies on many different cryptographic

algorithms, some of the attacks against implementations of such algorithms can also
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be adapted to exploit TLS. For example, the CBC padding oracle attack is known to

work on older versions of TLS (SSL) [69] and in tandem with a downgrade attack [70].

The Lucky Thirteen attack [71] exploits a timing side channel in the MAC-then-

encrypt design of earlier versions of TLS to decrypt arbitrary ciphertext, and some

pseudo constant time patches aimed at mitigating such side channel are found to be

inadequate [72].

In some cases, multiple weaknesses can be exploited together. For example, the

KCI attack [73] is made possible due to the use of certain non-ephemeral ciphersuites,

plus the fact that installing end-entity (in contrast to CA) certificates do not trigger

any warnings on certain systems, and many implementations are not correctly han-

dling the key usage extensions. This also highlights why correctly handling X.509

extensions when validating a chain of certificates, as we will investigate in Chapter 4,

is an important matter.

There are also reported attacks against Apple iMessage [74] and 4G LTE [75],

both exploiting the lack of authentication guarantees in the counter (CTR) mode of

AES, where ciphertexts are known to be malleable.

ii. Against content distribution applications

Cryptanalysis of proprietary algorithms. Given that many early content

protection systems use non-standard cryptography, one possible line of research is to

perform cryptanalysis. Biryukov et al. [76] present an analysis of the weak cipher

(PC1) employed by Kindle for content protection. The authors have shown that

due to the lack of avalanche effect in PC1, one can extract the secret key using

known plaintext and ciphertext attacks. Crosby et al. [77] present a cryptanalysis on

the High Bandwidth Digital Content Protection (HDCP) scheme, an identity-based

cryptosystem used for communication in the Digital Visual Interface (DVI) bus. Their

analysis shows that given access to 40 public/private key pairs, one can essentially

break all the security guarantees promised by the scheme.
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Memory dumping. Another possible attack to bypass the cryptographic pro-

tection mechanisms employed by content distribution applications is to directly dump

the decrypted contents from system memory, as demonstrated by Wang et al. [78].

The authors proposed an approach for identifying data paths of cryptographic opera-

tions used by the target applications, and then dump and reconstruct the streams of

decrypted contents found in the memory. Such an attack is real-time in nature (i.e.,

to extract 2 hours worth of content, the attack needs to accommodate a 2-hour long

playback). In Chapter 3 we discuss possible attacks against other aspects of content

distribution applications, which in some cases lead to a much more efficient content

extraction.
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3. EVALUATING ROBUSTNESS OF CONTENT

DISTRIBUTION APPLICATIONS ON ANDROID

3.1 Introduction

The ubiquity of mobile devices has encouraged content owners (e.g., publishing

houses and record labels) to tap into the online business ecosystem in an attempt to

reach a larger number of audience. As a result, they often retain the service of software

developing content distributors to adapt to this emerging trend of customer engage-

ment. The role of content distributors is focused on developing mobile applications

(apps) tailor-made to fit the form of the contents and the business model of con-

tent owners, and providing continuous technical support in updating and distributing

digitized contents (e.g., magazines and music). For maintaining their business edge

it is crucial for the content distributors to ensure that the end users cannot easily

have unfettered access to the raw, high-quality reproduction of contents in their de-

vices, even in the cases where the digital contents can be consumed without Internet

connectivity (e.g., offline playback). The overarching goal of this research is to sys-

tematically identify (and, in the process, educate developers about) design weaknesses

in content delivery apps that can grant users unauthorized and unrestricted access to

the underlying content.

At a first glance, it may seem that the design of an effective content protection

mechanism boils down to effectively enforcing Digital Rights Management (DRM ).

We however argue that there is a subtle distinction between the two. DRM enforce-

ment is concerned about regulating user’s access to the content after the content

(and, the corresponding usage control policy and other bootstrapping information)

has been securely delivered to the user’s device. On the other hand, content protec-

tion mechanisms, especially in the context of online content distribution, also have
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to guarantee reliable receipt of payments and secure delivery of contents (and the

accompanying control policies) to the user device.

In this research, we demonstrate that, in many cases, an adversary (the device

owner in our context) can modify the enforcement policy1 while it is being delivered

to the device during bootstrapping, to achieve unfettered access to raw contents.

The challenges of effective content protection enforcement is further exacerbated

by the fact that content distributors, in order to increase their audience reach, often

need to support a plethora of (legacy) devices running various (legacy) versions of

operating system (OS). Even after successful bootstrap, effectively enforcing DRM,

without considering the analog loophole problem—the Achilles’ heel of any DRM

systems—is a challenging ordeal and requires content distributors to conceal secret

states in a potentially hostile execution environment. In different systems, secret

states manifest in various aspects of the underlying mechanisms, for example the

content encryption keys, authorization tokens, subscription status, or even the raw

content itself. The general consensus is that effective DRM enforcement is feasible on

a device equipped with a trusted execution environment (TEE). Technologies like the

ARM TrustZone have been available on the hardware architecture level for some years

now. Nevertheless, various system-on-chip (SoC) vendors have come up with different

TEE implementations that do not seem to conform to the same API standard [79].

Together with the fact that TEE vendors often adopt a tight admission control model,

currently it is still somewhat difficult to develop widely deployable apps that uses TEE

for DRM needs, especially on relatively low-end and legacy devices that do not have

the trusted images preloaded. Due to this lack of a generic secure solution that is

applicable to all 〈device, OS〉 pairs, developers often resort to a best-effort, deterrence-

based enforcement of DRM—specialized for each 〈device, OS〉 pairs—where the main

objective is to raise the bar for mounting successful bypass attacks instead of providing

1Readers may question the rationale of delivering the usage control policies during app bootstrap,
instead of having them hardcoded inside the apps. Delivering policies during bootstrap allows for
flexible customization of various aspects of the policies (for instance, number of free trials allowed),
to better fit the business decisions.
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absolute enforcement guarantees. Since content protection is only as strong as the

weakest links (e.g., legacy 〈device, OS〉 pairs) in the ecosystem, this presents an

interesting trade-off between audience reach and the strength of content protection.

Content Protection Enforcement Analysis: In this research, we systemat-

ically identify the different attack surfaces a content delivery app may expose, and

how those can be exploited by adversaries to bypass protection enforcement. In our

analysis, we consider two abstract classes of adversaries, namely, the network adver-

sary (who can observe and manipulate network traffic) and the local adversary (who

can access internal states and possibly tamper with the execution environment). For

each of the two classes, we further consider varying degree of adversary capabilities,

ranging from a normal tech savvy user to more sophisticated ones like rooting the de-

vice and TLS interception capabilities. With respect to our hierarchy of adversaries,

we present concrete attacks against 141 Android content delivery apps, including

some high-profile ones like the Amazon Music, Bloomberg Businessweek+, and Forbes

Magazine apps. Our evaluation reveals a bleak state of the affair. We observed that

all these apps are susceptible to our attacks due to unjustified trust assumption on

the underlying technologies, e.g., insecure bootstrapping and policy delivery, and bad

practices like client-side policy enforcement, and reuse of content encryption keys.

Whenever possible, we further dissect the weaknesses that our attacks exploited and

categorize them using the Common Weakness Enumeration (CWE)2. We believe that,

with the patterns provided by our concrete analysis, this work lays a solid founda-

tion for further research on automated vulnerability detection and the development

of more robust apps.

Findings: In our evaluation of publication apps, a somewhat uncharted territory

for academic studies, many apps are not only falling short in terms of content pro-

tection, but contain weaknesses that allow remote exploits which threaten the app

users’ security and the privacy. Notable among our findings are the purchase bypass

attacks against the Forbes Magazine and Mother Earth News apps which allows an

2https://cwe.mitre.org/

https://cwe.mitre.org/
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adversary, with sufficient filesystem permission, to manipulate the purchase status

for gaining unauthorized access to all issues for free. Another example of relying only

on client-side enforcement of usage control policies was exhibited by the Bloomberg

Businessweek+ app, for which a network adversary with TLS interception capability

can rewrite the policies on the fly during app bootstrap, and obtain virtually unlim-

ited free previews of its subscription-only articles. We observed that the service of a

content distributor often gets retained by a diverse group of publishers. Since apps

from the same distributor tend to be similar in their designs, our attacks affect a large

number of different publications.

One popular choice for DRM enforcement is to employ a cryptographic cipher

to encrypt the underlying content, in which case the robustness of the enforcement

hinges on the concealment of the secret key, as the Kerckhoffs’s principle mandates.

This approach was embraced by the Amazon Music app, which was the most robust

app analyzed in our evaluation. While the app seems to be programmed with the good

practice of minimizing exposure time of cryptographic keys in memory, we were still

able to devise a key extraction attack to extract the underlying content encryption

keys by leveraging some non-complex binary instrumentation. To our surprise, a

closer inspection of the app revealed that against best practices, the entire Amazon

Music collection of 40 million songs seems to be encrypted under one single content

encryption key, irrespective of accounts, device models, and subscription tiers. Our

successful key extraction attack hence puts their entire collection in serious jeopardy.

Given that our findings could potentially affect the business of various stakehold-

ers, we have engaged in responsible disclosure (Section 3.5.1), and careful ethical

considerations have been taken during and after our experiments (Section 3.5.2).

Contributions: In summary, this research makes the following contributions:

1. We identify attack surfaces and practical adversaries with varying degree of

sophistication that vendors of content distribution mobile apps should consider,

in order to devise effective content protection mechanisms, especially in the
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absence of a trusted execution environment (TEE) supported by the underlying

platform.

2. We systematically evaluate 141 content distribution apps developed for Android

with respect to our identified hierarchy of adversaries. Our evaluation uncov-

ered that more often than not developers of these apps make unjustified trust

assumptions about the underlying platform and design decisions that enable an

adversary to circumvent these protection mechanisms without having to reverse

engineer the apps to extract the underlying secret state.

3. We dissect and classify the weaknesses that our attacks exploited with respect to

CWEs to help future developers avoid the same pitfalls. We have responsibly

shared our analyses with the corresponding content distributors. With the

understanding of various attack strategies, we discuss possible countermeasures,

their trade-offs and implications.

3.2 Scope

We now discuss the attack surfaces, threat model, and platform that we consider

in this research.

3.2.1 Attack Surfaces

Without loss of generality, in the following discussions, we consider encryption is

used to protect the underlying contents. The normal operation of a content distribu-

tion app can be roughly broken down into the following six phases: (1) Bootstrapping;

(2) Storing authorization token; (3) Content transmission and storage on the device;

(4) Playback preparation; (5) Content decryption; (6) Content playback. Each of the

above steps presents opportunities for the attacker to bypass content protection and

thus corresponds to one of the following attack surfaces. Depending on the actual
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implementation, certain steps might be skipped or merged, and events might happen

in a slightly different order. In this research we focus on (AS1–4).

(AS1) Bootstrapping. In the bootstrapping phase, the app authenticates

itself and the user to the content distributor’s back-end server, obtains a list of avail-

able contents and their prices, as well as authorization to access them. This step

may involve monetary transactions, if this is the first time that a user subscribes to

the service or purchases contents. Successful completion of the bootstrapping process

may result in the back-end server returning an authorization token. Information in-

side the token can be as simple as URLs of contents, or it could contain rich policy

enforcement details including expiration date and maximum playback times to allow

granular control. In some cases, it may also contain the content decryption key to

allow future consumption of contents. One might attack this surface in an attempt

to get the content source URLs or to trick the app with more permissive policies by

rewriting the authorization tokens.

(AS2) Authorization token storage. The token may need to be stored

on the device’s storage to accommodate content access, especially when the business

model allows offline playback of contents (without Internet connectivity). An adver-

sary with adequate storage access privilege might be able to retrieve and modify the

authorization tokens on the device’s storage and gain unauthorized access to contents.

(AS3) Content transmission and storage. Upon receipt of an authorized

request, the back-end distribution server sends the content over the Internet. If the

content is not adequately protected in transit, an adversary might be able to intercept

the communication and duplicate the raw content.

Once the content arrives on the user side, it may get consumed and removed almost

immediately, or it might be stored for offline consumption, which most services tend

to offer for better user experience, but opens up the possibility for adversaries with

sufficient storage access privilege to conduct content extraction attack.
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(AS4) Playback preparation. When a user initiates playback of an en-

crypted content from the device’s storage, the app might perform certain control

checks (e.g., authorization expiration) and then load the relevant secret keys into the

device’s memory, so that content can be decrypted for consumption. This presents

an opportunity for adversaries who can inspect the device’s memory to perform key

extraction attacks.

(AS5) Content decryption. During actual playback, (fragments of) the

content would need to be decrypted in memory. An adversary who has the capability

of inspecting the device’s memory can exploit this opportunity to extract the content

fragments in clear, and attempt to chain them back into the original content. An

attack against this surface given video contents of high entropy has been demonstrated

to be feasible [78]. Attacking this surface usually requires real-time effort, that is,

to extract 2 hours worth of content, the attack needs to accommodate a 2-hour long

playback.

(AS6) Analog loophole. One inevitable attack surface is the analog loop-

hole, where analog signals of protected contents are recaptured during playback. For

contents like publications and motion pictures, it can be quite costly to produce high

quality replicas. Similar to (AS5), such an attack is also real-time in nature.

3.2.2 Platform and Test Setup

In our studies, we focus on the Android platform because 1) it is the most popu-

lar operating system to date and is increasingly the platform where most multimedia

contents are being consumed; and 2) there exists a wide range of legacy devices that

lack new hardware-enforced isolation and are running old versions of Android. For

the different levels of local adversary capabilities, we leverage rooted Android phones

running Android version 4.4 (Kitkat) and 5.0 (Lollipop), whichever satisfies the min-

imum requirements of the studied apps. To emulate network adversaries, we leverage
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a Linux setup hosting a wireless AP and running MITMProxy3. Note that since this

research is not about the robustness of Android itself but the content delivery apps

that run atop of Android, we deliberately choose older versions of Android devices

that are representative of the “weakest link” in the business ecosystem, as would a

rational attacker do. This allows us to demonstrate the perils of service providers not

excluding such devices from accessing their content distribution services.

Since in all our evaluations, content distributors maintain the back-end distri-

bution servers and develop the Android apps that interact with users and enforce

content protection, in the rest of this chapter we use vendors, developers and content

distributors interchangeably. When we say attacks, we mean that an adversary is able

to obtain contents in a manner that violates the control mechanisms in place.

3.2.3 Threat Model

Meaningful discussion on robustness of access control and protection mechanisms

requires a well-defined adversary model which bounds attackers’ capabilities. Here we

discuss the two categories of capabilities that we consider in this research, focusing on

software-only attacks. An enumeration of successful attacks and the corresponding

adversary capabilities can be found in Figure 3.1.

Network Adversaries

ANet(Sniff) (Passive Eavesdropping of Network Traffic). Such an adversary

enjoys the capability of passively observing the network traffic between the device

and the back-end servers serving the app. We also assume the adversary is capable of

extracting payloads out of the network packets being observed and parsing messages

of standard plaintext protocols (e.g., HTTP). This represents the lowest capability

among all the ANet adversaries.

3https://mitmproxy.org/

https://mitmproxy.org/
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ANet(Sniff) ANet(Mod) ANet(TLSInt)

AExS(R)AInS(R)

AInS(R+W)AMem+BinIns

Raw Content

Transfer

in Clear

EVA

(Sect. 3.3.1)

yes

Direct Content

Source Transfer

in Clear

PBA

(Sect. 3.3.2)

yes

no

Bootstrap Information

Transfer in Clear +

Local Policy Enforcement

PBA

(Sect. 3.3.2)

yes

no Raw Content

Transfer over TLS

EVA

(Sect. 3.3.3)

yes

no

Bootstrap Information

Transfer over TLS +

Local Policy Enforcement

PBA

(Sect. 3.3.4)

yes

no

Direct Content

Source in Logs

on External Storage

PBA

(Sect. 3.4.1)

yes

no

Raw

Contents on

External

Storage

CEA

(Sect. 3.4.2)

yes
no

Raw Encryption

Key on External

Storage

KEA

(Sect. 3.4.3)

yes

no
Raw Content

on Internal

Storage

CEA

(Sect. 3.4.4)

yes

no

Raw Encryption

Key on Internal

Storage

KEA

(Sect. 3.4.5)

yes

no

Direct Content

Source on

Internal Storage

PBA

(Sect. 3.4.6)

yes

no
Authorization Relies Only on

States on Internal Storage

PBA

(Sect. 3.4.7)

yes

no
Raw Encryption

Key in Memory

KEA

(Sect. 3.4.8)

yes

no

§ KEA = Key Extraction Attacks; PBA = Purchase Bypass Attacks;

CEA = Content Extraction Attacks; EVA = Eavesdropping Attacks.

In this research, KEA and EVA both imply CEA.

Fig. 3.1.: Enumeration of possible weaknesses and attacks under various adversary

capabilities in attack tree form
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ANet(Mod) (Active Modification of Network Traffic). The adversary can

modify and selectively block both incoming and outgoing network traffic, in order to

change what the target apps receive. For plaintext protocols without strong integrity

and authenticity guarantees, such adversary is also able to modify the content of

protocol messages undetected. This is easily attainable by deploying a proxy server.

ANet(TLSInt) (Interception of TLS Traffic). This is an upgrade to ANet(Mod)

with the added capability of intercepting encrypted TLS traffic, as done quite fre-

quently by anti-virus and parental control software [18], as well as middle-boxes in

enterprise settings [19]. On top of a proxy setup, exactly how to attain this capabil-

ity depends on the actual implementation. For target apps that trust the system CA

store, it could be as simple as importing a new CA certificate into the trusted CA

store as an unprivileged user. For apps that trust only their own CA stores or use

key pinning, one might need the help of AInS(R+W) or even AMem+BinIns, both of which

are discussed below.

Local Adversaries

AExS(R) (External Storage Read Any). This adversary capability can be

achieved by a device user who has the minimum technical sophistication necessary

for accessing and transferring files available on external storage of an Android device,

which is “world-readable” [80] without any special modifications to the device. Storing

large downloaded files on the external storage is a common practice in order to cope

with devices that have internal storage of very limited size. On a side note, the two

storage areas of Android are named internal and external due to historical reasons,

and even on a device without actual physically removable media, the external storage

area would still exist [80].
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AInS(R) (Internal Storage Read Any). Such an adversary has the privilege to

read arbitrary files on the internal storage of the device. A mobile OS such as Android4

usually provides isolation so that an app can only read its own internal storage, and

a normal user is by default not given direct access to the system’s internal storage.

Consequently, this capability is usually attained by “rooting” the device.

AInS(R+W) (Internal Storage Read Write Any). We consider this adversary

to have the capability of reading and writing any files to any location of the internal

storage. Though rooting the device would typically grant permissions to both read

and write access to the internal storage, we make this fine-grained differentiation for

the sake of generality, as each of these capabilities can enable different attacks.

AMem+BinIns (Memory Inspection and Binary Instrumentation). The fi-

nal adversary we consider is the most powerful one in the software domain without

tampering hardware. This capability not only allows the inspection of the target

app’s internal execution state in memory but also the modification of the execution

(control flow) of the app through binary instrumentation.

3.2.4 App Selection

Our evaluations start with manual analysis of some representative apps. Then,

with the initial findings, we try to automate our attacks, and collect more apps that

follow similar designs, and automatically test whether they are also vulnerable.

We chose the Amazon Music app because it is well-known and popular in the

streaming business. At the time of writing, it has more than one hundred million

installs and was one of the top 10 “Music & Audio’ ’ apps on the Google Play store.

After successfully devising an attack, we then recreated it against the Audible app,

4Given that the user who did the installation get to choose the administrator/sudo password, con-
ventional desktop operating systems like Windows and Linux don’t have such a separation of storage
space. In general, administrator/sudo privilege allows one to perform memory inspection and binary
instrumentation.
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which is another highly popular app also owned by Amazon, and the 2 apps happened

to be using a very similar implementation.

We then focus on the publishing industry. We picked the Forbes Magazine and

Bloomberg Businessweek+ apps, as they are both well-known and popular business

publications, which were coincidentally made by the same developer using 2 different

designs. Having studied apps of US-based magazines, we then switched to look at

their counterparts from the UK. We chose Cosmopolitan and ELLE as they are well-

known magazines. We then collected many other publication apps that follow similar

designs, to show that the weaknesses we found are indeed affecting a wide range

of publishers and their publications. Finally we found a few publication apps that

exhibit different weakness patterns on the lower-end of the spectrum, completing the

study.

We give the full list of apps studied in this research in Table 3.1 at the end of this

chapter. A vendor might use several different designs for its content distribution apps.

In the rest of this chapter, apps that are using similar designs (and hence susceptible

to the same attacks) are grouped and discussed together.

3.3 App Weaknesses & Network Attacks

Here we present the weaknesses we found in the studied apps, as well as concrete

network attacks that exploit them. We note that some weaknesses in this section also

pose threats to the app users’ security and privacy.

As an effort to systematize our findings, for most known weakness patterns, we

map them to the relevant Common Weakness Enumerations (CWEs) in our analysis.

A list of all the CWEs discussed in this research can be found in Table 3.2 at the end

of this chapter.
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3.3.1 Raw Content Transfer In Clear

If a content delivery app receives its contents in clear, an attacker with ANet(Sniff)

capability who can passively observe traffic exchanged between the device and the

content distribution back-end server would be able to eavesdrop, extract and dupli-

cate contents for free. We found that the The MagPi, Business Money, Artists &

Illustrators, My MS-UK, Popshot Magazine apps (group-1 of Table 3.1) fall into this

category. These are apps of magazines from different publishers, all made by a vendor

called Apazine.

Eavesdropping Attacks. We note that in Apazine’s design, contents are

distributed based on PDFs, with each issue of the magazines and journals encapsulated

in a single PDF file. Issues of publications can be purchased individually inside the

apps, which would trigger a PDF download. However, because the apps and the

back-end servers exchange data including the unencrypted content PDFs through

HTTP (instead of HTTPS) [CWE-319], it is trivial for ANet(Sniff), the weakest remote

adversary we consider, to extract and duplicate the PDF files through the observed

traffic. This is an attack against (AS3). We have confirmed the feasibility of this

attack in the aforementioned apps.

3.3.2 Bootstrap Information Transfer in Clear

It is often necessary for publication apps to communicate with the back-end servers

to get bootstrapped with information regarding what issues and subscription tiers are

available at what price. We note that many apps we studied receive their bootstrap

information in clear through HTTP, which is another instance of [CWE-319]. This

leads to 2 different attacks on (AS1), given varying levels of adversary capabilities.

Purchase Bypass Attacks with ANet(Sniff). The 5 group-1 apps discussed in

Section 3.3.1 can again serve as examples, as they are all susceptible to this attack.
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From Apazine’s back-end server they receive bootstrap information in JSON format,

which contains details of each issue. Specifically the URLs for downloading the unen-

crypted content PDF files of each issue can be found there as Base64 encoded ASCII

strings. Since given those URLs, the back-end content distribution server does not

enforce further authentication and authorization before serving the PDF files [CWE-

425], an ANet(Sniff) adversary can observe and parse the JSON, decode the URLs, and

get unrestricted direct access to the unencrypted content PDFs. We verified the

feasibility of this attack by observing the traffic generated by the 5 aforementioned

apps.

Purchase Bypass Attacks with ANet(Mod). There exist other possibilities

for exploits even if the bootstrap information does not contain direct content sources.

For concrete examples, we turn to the 70 publication apps (group-3 of Table 3.1,

e.g., Forbes Magazine) made by a developer called Maz Systems, which is reported

to have an annual revenue of several million US dollars [81]. The design for these

apps seems to rely on the apps to construct the content source URLs, based on the

bootstrap information received in XML format and the unique IDs of each issue. The

back-end server hosted on Amazon S3 requires some level of API key authentication

before serving the contents. However, since the price of each issue is directly given

by the bootstrapping XML received through plain HTTP without much integrity and

authenticity guarantees [CWE-354], we found that an ANet(Mod) adversary can rewrite

the price of all the issues into zero, and the 70 apps we tested all trusted their

corresponding altered XML, and offered magazine issues for free. The adversary can

then use the apps to download the publications without paying. Additionally, some

publishers offer subscriptions to their publications in the apps (e.g., $29.99 per year for

Forbes Magazine), the price of which was also received from the same bootstrapping

XML. We have confirmed that an ANet(Mod) adversary can also rewrite the prices of

subscription plans into zero, then subscribe (for free) and get access to all the issues

available within the subscription period.
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These findings suggest that the price of purchase is enforced by the apps locally on

client-side [CWE-603] without involving the back-end servers after the initial boot-

strap.

3.3.3 Raw Content Transfer over TLS

Also for those 70 group-3 apps, after a purchase has been confirmed, it receives

the contents, in the form of a ZIP file, from some back-end server hosted on Amazon

S3 through TLS. Despite using encrypted connections, it does not mean one cannot

attack (AS3).

Eavesdropping Attacks. Specifically, we found that for establishing a TLS

session, those apps trust the system CA store for signing certificates and do not seem

to be using any forms of key/certificate pinning. As the result of which, it was trivial

to attain ANet(TLSInt), without the need to leverage other advanced local capabilities.

Together with the fact that the ZIP files were not passphrase-protected, an ANet(TLSInt)

adversary can extract contents out of the passively observed ZIP files with ease.

3.3.4 Bootstrap Information Transfer over TLS

Even if apps receive bootstrap information over encrypted TLS connections, with-

out additional integrity and authenticity guarantees, an ANet(TLSInt) adversary can still

abuse such information for his/her own gains. As concrete examples, we look at a)

the 34 publication apps (group-4–6 of Table 3.1) exemplified by the Bloomberg Busi-

nessweek+, Entrepreneur Magazine and Men’s Health Magazine apps, which were co-

incidentally also developed by Maz Systems, under designs different from the group-3

apps; and b) the 30 publication apps (group-7–8 of Table 3.1) exemplified by ELLE

UK and The Independent, developed by a vendor called Pugpig.
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Purchase Bypass Attacks. Similar to the apps discussed in Section 3.3.3,

these 34 group-4–6 apps all trust the system CA store, so attaining the ANet(TLSInt)

capability was straightforward. For the group-5–6 apps that offer periodicals, they

receive detailed information regarding what issues are available at what price through

some bootstrapping JSON over TLS. The description of each issue comes with a

boolean indicating whether it is locked (require payment) or not. We have found that

using the ANet(TLSInt) capability, one can rewrite all instances of "locked": true into

"locked": false in the bootstrapping JSON, and have all the issues unlocked for

free.

On the other hand, the group-4 apps employ a different, article-centric subscription-

based business model, which allows its users to read k number of articles for free every

j days as trial. Likewise, the value of both k and j are retrieved from some bootstrap-

ping JSON transferred over TLS. We have confirmed that an ANet(TLSInt) adversary can

rewrite the value of k and j in the bootstrapping JSON, as shown in Figure 3.2, to trick

the apps into granting everyday a number of free articles so large that it is virtually

like having a paid subscription.

Original JSON Snippet

... ...,

"metering": {

"freeViews": 4,

"resetAfter": 28,

"registerAfter": 2,

"registerRequired": false

}, ... ...

Snippet After Rewrite

... ...,

"metering": {

"freeViews": 400,

"resetAfter": 1,

"registerAfter": 300,

"registerRequired": false

}, ... ...

Fig. 3.2.: Rewrite bootstrapping JSON with ANet(TLSInt) to gain free articles in the

Bloomberg Businessweek+ app
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Additionally, the 30 group-7–8 apps receive from their back-end server a series

of XML files describing available issues and their pages. With ANet(TLSInt), we found

that one can parse the XML files, stitch various metadata components into the actual

content source URLs and download magazine pages directly without paying.

All these findings suggest that the access control enforcement (e.g., locked contents

and free trial previews) are done locally on the client-side without involving the back-

end servers [CWE-603].

3.3.5 Threats to User Security and Privacy

For the 75 group-1 and group-3 apps discussed in Sections 3.3.1 and 3.3.2, since

their bootstrap information are sent in clear without strong integrity guarantees

[CWE-354], any Man-In-The-Middle (MITM) can easily tamper with what is be-

ing transferred. This not only allows one to bypass purchase and extract contents,

but also poses threats to the app users. For example, one might be able to increase

the price of each issue to induce financial losses on the user. One can also remove spe-

cific issues in the bootstrap information to implement censorship. Rewriting URLs

can also trick the users to visit some potentially malicious websites. Additionally,

given known vulnerabilities about the libraries that the apps uses (e.g., MuPDF [82],

Zip [83]), one can potentially change the URLs in the bootstrap information to point

to some maliciously crafted input files to attack the user’s device.

Furthermore, for many of the 70 group-3 apps discussed in Sections 3.3.2 and 3.3.3,

we have observed that during and after the bootstrap, some tracking data are being

sent to the back-end over HTTP in clear. The exchanged data contains the device

unique identifier and model name, along with some session ID and publication ID.

A passive eavesdropper might try to extrapolate who is reading what magazines,

which could be quite revealing given that some publications are related to medical

conditions, musical instruments and specific industries, posing threats to the app

users’ privacy.
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3.4 App Weaknesses & Local Attacks

Here we present more weaknesses of the studied apps, with a focus on local attacks.

Similar to the previous section, we map our findings to the relevant CWEs whenever

possible.

3.4.1 Log File Leakage

Another possible weakness is leakage of secrets through log files, similar to what

had previously been observed in some Android mobile banking apps [29].

Purchase Bypass Attacks. As discussed previously in Section 3.3.1, those

5 group-1 apps use direct content source URLs for fetching contents. Our inspection

revealed that those same apps leave some debugging log files on the external storage

which contain both the direct URLs of publication PDF files hosted on their back-

end servers and the identifiers of each of the issues available for purchase [CWE-

532]. This allows an AExS(R) adversary to retrieve those URLs, and by replacing the

appropriate portion of the URLs with the issue identifiers, one can enumerate the

different published issues and download their corresponding unencrypted PDF files

directly [CWE-425], effectively getting unlimited unauthorized access without having

to purchase, mounting an attack against (AS2).

3.4.2 Raw Content on External Storage

If the apps leave their contents on the External Storage, it would allow for an

easy attack on (AS3) that both the apps and the publishers would lose control of

the contents.

Content Extraction Attacks. We have found that the 9 group-6 apps serve

contents in the form of PDF and put their PDF files on the device’s external storage.

Given the AExS(R) capability, one can easily get those files and make copies of them.



34

This can be applied to the various free trial issues offered in the apps, as a user

is allowed only several minutes of free preview before needing to pay to continue

reading, but one can simply workaround this restriction by copying the full PDFs from

the external storage and open them using a different reader.

3.4.3 Raw Encryption Key on External Storage

Even if an app employs encryption as the means for content protection, if the

secret key is left in a place that is accessible by an adversary, one can attack (AS2)

and strip the encryption.

Key Extraction Attacks. As examples, we again look at the 5 group-1

magazine apps discussed in Section 3.3.1. After purchasing a specific issue, those

apps would download the content file and put it in the external storage of the device.

With the AExS(R) capability, we can see that the content files retain the .pdf extension

but the contents are actually scrambled. Since not even the PDF metadata are

comprehensible, we deduce that this is most likely due to the use of a whole file

encryption. Together with the findings from Sections 3.3.1 and 3.3.2, this suggests

that the content encryption was done locally on the client device after download.

While navigating through the files created by the apps on external storage with

the AExS(R) capability, we found that there exists a serialized Java object outside the

directory that contains the encrypted PDF files, adjacent to the log files discussed in

Section 3.4.1. A quick inspection revealed that this serialized object is of the class

javax.crypto.spec.SecretKeySpec, which turns out to contain the secret key used

to encrypt the PDF files. That object also revealed that the encryption algorithm used

was AES, though the exact block cipher mode remains unclear. This is tantamount

to leaving one’s house key under the doormat outside the house, a known weakness

pattern described by [CWE-313] and [CWE-921].

After identifying the key, decrypting the content PDF files was somewhat straight-

forward. With around 200 lines of Java code and some trial-and-error to determine
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that the apps were using the Electronic Codebook (ECB) mode of AES, we confirm

that the contents can be decrypted using the suspected secret key. We have verified

this attack with a paid purchase of a recent issue in the My MS-UK app, and free

trial issues in the Business Money, Artists & Illustrators, The MagPi and Popshot

Magazine apps.

3.4.4 Raw Content on Internal Storage

Given that the official Android development training material claims files stored

on internal storage are “accessible by only your app” and “neither the user nor other

apps can access your file” [80], it is perhaps unsurprising that some apps are making

strong assumptions about the confidentiality guarantees provided by the internal

storage. Such assumptions, however, can be invalidated with AInS(R).

Content Extraction Attacks. For concrete examples, we again look at the

70 group-3 apps discussed in Sections 3.3.2 and 3.3.3. In their designs, each page

of the publication is a JPEG image of about 0.7 megapixel. After downloading the

content ZIP file of an authorized issue, the app extracts from it the content images

and have them stored on the app’s internal storage. The app then acts like an image

viewer for displaying each page for the user to read. As the images of each issue

are left inside the internal storage without further scrambling [CWE-313], an AInS(R)

adversary can easily access and make copies of the magazine issues, attacking (AS3).

Through the in-app free previews, we found that the 16 group-8 apps also has

each page of an issue saved as a JPEG image on the internal storage. In fact, we found

that even though the free previews should allow only a small number of pages, all the

other pages of the selected issue are already downloaded. Consequently, with AInS(R),

one can easily bypass the preview limit and access the saved pages directly.
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3.4.5 Raw Encryption Key on Internal Storage

Similarly, developers might put encryption keys on the internal storage assuming

confidentiality [CWE-313], however, in the face of the AInS(R) capability, such a design

manifests into an exploitable weakness on (AS2).

Key Extraction Attacks. We use the Counter Intelligence Plus app (group-

2) as an example, which is also made by Apazine. Interestingly, despite being older

than the other group-1 apps discussed before, the Counter Intelligence Plus app ap-

pears to be doing a slightly better job in terms of hiding the secret key used in content

encryption. In this case, instead of putting it on the “world-readable” external stor-

age, the key is stored on the device’s internal storage. However, with the AInS(R)

capability, we have managed a key extraction attack similar to what is described in

Section 3.4.3.

3.4.6 Direct Content Source on Internal Storage

Leaving direct links to contents that do not enforce authentication and authoriza-

tion [CWE-452] on Internal Storage is another exploitable weakness on (AS2).

Purchase Bypass Attacks. With the exception of the The Rebel Media app,

all the other 24 group-4–5 apps that offer articles (e.g., the Bloomberg Businessweek+

app) or video clips (e.g., the Outside TV Features app), leave direct URLs to their

corresponding contents on the apps’ Internal Storage, organized by the different issues,

allowing an AInS(R) adversary to easily crawl for those and access contents without

paying.
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3.4.7 Client-Side Authorization

The assumptions on internal storage indeed presents an interesting attack vector.

In addition to confidentiality, one might also assume that the internal storage provides

strong integrity guarantees. Such an assumption can be invalidated with AInS(R+W).

Purchase Bypass Attacks. Each of the 70 group-3 apps discussed in Sec-

tion 3.3.2 also keeps a local database of published and available issues on the app’s

internal storage. For each issue, the database keeps a record about the name and

date of the issue, a brief description, price, and some other metadata, including the

purchase status. With the AInS(R+W) capability, we have verified that one can modify

the database and replace the default value of the purchase status column with some

appropriate values [CWE-642] to trick the app into granting access to magazine issues

that were not paid for.

This shows that the authorization of those apps is localized and done unilaterally

on the client’s device, and does not involve the back-end content distribution server

[CWE-603]. Consequently, the robustness of such authorization mechanism hinges on

the assumption that the internal storage guarantees integrity [CWE-654], which does

not hold given an AInS(R+W) adversary.

3.4.8 Raw Encryption Key in Memory

Even if raw secret keys are not left in the clear on permanent storages, they

might be loaded into the memory, which presents another opportunity for attacking

(AS4). As a concrete example, we look at the Amazon Music app (version 6.5.3),

which offers both streaming and offline playback of music to its subscribers. There

are two tiers of subscription: Amazon Prime and Amazon Music Unlimited, with

the only difference being the size of the collection accessible (2 million versus 40

million songs). Both tiers allow subscribers to download music available from their
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corresponding collections for offline playback. The downloaded songs are stored on

the external storage of the Android device.

Storage Inspection. A quick inspection of the downloaded files shows that

regardless of the subscription tier, songs appear to be encrypted and contain a human

readable PlayReadyHeader XML object in their metadata [84], suggesting that this

entire streaming service is using the Microsoft PlayReady DRM framework. With

the contents already available on the external storage, we choose to focus on devising

a key extraction attack.

We first leverage the AInS(R) capability to inspect the internal storage and see

if one can attack (AS2). As there exists quite a few secret key candidates (e.g.,

Base64 strings that decode into binary values of various lengths), we soon run into

the problem of not knowing how to verify whether a key candidate is the right one

for content decryption.

Key Verification Oracle. Fortunately, the limited documentation publicly

available regarding the PlayReadyHeader [84] turns out to be quite useful. The

PlayReadyHeader metadata object contains the key ID, content encryption algorithm

(in this case AES CTR mode) and the key length (16-byte), so we know what we are

searching for. Better yet, it also contains a checksum used by the framework to

protect against mismatched keys. According to the documentation, this is meant

to prevent the case where decryption is done with an incorrect key, the subsequent

output of which might damage audio equipments during playback. Since the checksum

is simply the first 8 bytes of encrypting the 16-byte key ID with the key in AES ECB

mode, which is easily computable, we now have an oracle for verifying key extraction

correctness, without having to rely on decrypting the contents themselves.

A quick trial-and-error showed that none of our initial suspects were the right con-

tent encryption key. The publicly available documentation regarding the PlayReady

framework [85] suggests that the content decryption keys are contained inside licenses.

We then turned our attention into finding the license instead. We realized that there
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exists a .hds file, which according to some discussion about Silverlight [86], seems to

contain the licenses. Without documentations on how to parse and interpret this file,

the format of licenses, and whether this file is obfuscated or encrypted, key extraction

from it seems could be quite complicated.

Key Extraction Attacks. Instead, we switch our focus to attack surface

(AS4). The intuition is that, even if the local license store on internal storage

has complex protection mechanisms in place, the content encryption key would still

need to be read from the license store and might be loaded into the memory in

clear. Hence we upgrade the adversary capability to AMem+BinIns, by using the Frida5

dynamic instrumentation framework. While we were able to trace the app’s file read

operations by hooking the read() system calls with AMem+BinIns, including those that

reads from the license store, it remains unclear how to interpret the bytes being read.

Since tracing and interpreting the preparation phase seems to be quite messy, we

take a slightly different approach. With the intuition that sensitive information (e.g.,

content encryption key), if they were indeed loaded into the memory, might exhibit

some recognizable structure and would need to be released at some point (e.g., after

content playback), we try to hook deallocation functions instead. While it might

also work to hook the free() function calls, a quick inspection of the native libraries

used by the app shows that they are exporting some functions that seem to be used

for deallocating sensitive information. Intercepting the entrance to some of those

functions, tracing appropriate pointers, and then dumping a large enough portion

of memory pointed by those, we successfully extracted the content encryption key,

which verifies against the oracle discussed earlier.

Unlike in previous work where PlayReady protected video contents were reported

to be partially encrypted [78], in this case we have observed that the entire original

content is encapsulated in a so-called envelope file. Though we were unable to obtain

documentations regarding the metadata (besides the PlayReadyHeader object), based

5https://www.frida.re

https://www.frida.re
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on some header files publicly available on Github [87], we were able to guess and parse

the metadata correctly. In the end it took us about 260 lines of Java code to parse

the envelope file and decrypt with AES CTR using the extracted secret key to get

the raw audio tracks out.

One might also wonder why AMem alone is not strong enough. We note that

the key extraction problem has a two-dimensional search space, spanning memory

layout and time. While ultimately it is the memory inspection that gets us the

key, without binary instrumentation, however, it is difficult to pinpoint the exact

timing, especially if the implementation tries to minimize key exposure by actively

releasing and overwriting memory regions containing the secret key, a practice also

recommended by previous work [88]. Not knowing when to dump the memory would

make it hard forAMem to extract the key. Interestingly, in this app, we have observed a

behavior that sensitive information deallocation happens as early as the actual music

playback starts. Our speculation is that, since the CTR mode generates keystream

blocks by encrypting the next counter values, after a long enough keystream has

been generated to allow decryption of the entire content, the app removes the key

from memory as soon as possible to minimize exposure time. This is exactly why

AMem+BinIns has an advantage in reducing uncertainties along the time dimension.

We further found that the Audible app (version 2.25.0) is also susceptible to this

attack. Specifically, members are offered premium podcasts that can be downloaded

for offline playback, in which case they are encrypted in the same manner as songs

in Amazon Music. It appears that the PlayReady implementations in the 2 apps are

quite similar, as our key extraction attack also worked. Since the downloaded Audible

podcast tracks are partially encrypted isma files, instead of using our decryption code

for Amazon Music, we used the Bento4 tookit6 for successful decryption.

Key Scanning Heuristics. Curious readers might wonder how we recognized

the 16-byte key from memory dumps. As explained in previous work, besides loading

6https://www.bento4.com/

https://www.bento4.com/
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the raw secret key into memory, many cryptographic implementations speed up com-

putation by precomputing the key schedules made of the different round keys [88].

This is because typical block ciphers, including AES, go through multiple rounds of

operations to encrypt/decrypt a block, and each round involves a round key derived

from the raw secret key. Having to repeatedly expand the raw key into the same key

schedules for each block could be quite inefficient. It turns out that the key sched-

ule observation also applies to this particular PlayReady implementation. Using the

keyfind program [88], we were able to confirm the mathematical relation between

the suspected raw key and the derived round keys, strongly suggesting that those

bytes found in the memory dump indeed constitute a key schedule.

One key to rule them all. Based on the handful of songs that we sampled in

our proof-of-concept experiments, Amazon Music appears to be reusing content en-

cryption keys across songs and different accounts, despite the fact that the PlayReady

framework allows a much more granular key binding (e.g., per individual item), as

noted in a previous work [78]. We speculate that this is to lower the load and man-

agement overhead on the back-end servers, though we are not sure whether the entire

ecosystem uses only one single key, or are keys different across data centers in various

locations. Consequently, songs made available for offline playback from many differ-

ent albums across artists, regardless of which tier of subscription and user accounts

they came from, might all be decrypted with the same key. This puts the whole

collection of 40 million songs available on Amazon Music in excessive risk.

While the attack we presented is agnostic to key granularity and can be performed

over and over again to exhaust all the possible keys, however, a more fine-grained key

binding (e.g. per album or even per song) would have at least required more effort

from an attacker, and hinder automatic mass decryption of a large number of songs.

Sharing keys across many accounts does not seem to be a good practice, as it is easy to

have a single key leaked (e.g., by an insider) and cause large damage to the ecosystem.

Interestingly, unlike Amazon Music, Audible seems to be much more granular with
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its content encryption keys. It appears that for each podcast track, a new key is used

for encryption.

3.5 Discussions

3.5.1 Responsible Disclosure and Aftermath

We have notified the content distributors of our findings and provided them with

sufficient details to understand and reproduce the attacks. In all cases, we have given

the vendors more than 90 days before this research is made public.

In response to our initial report sent in Feb 2018 regarding bypass attacks with

AInS(R+W) (Section 3.4.7), developers at Maz Systems implemented the use of en-

crypted database on newer versions of some of the group-3 apps. This is a solution

that we do not endorse, as it does not change the client-only nature of the autho-

rization mechanism, so the pattern of [CWE-603] still holds. We followed up with

reports on group-4–6 apps in Jun 2018. They have expressed gratitude to our efforts,

and are working on app improvements.

We sent several reports to Apazine in Feb, Apr and Sep 2018 regarding weaknesses

in their group-1–2 apps. They have replied in Sep 2018 suggesting that the magazines

are in public domain and do not contain any sensitive or valuable information, so our

implied expectation of robustness is not relevant. We point out that if the contents

indeed have no market values then not using encryption can improve user experience,

and that some publications in print (e.g., Business Money and My MS-UK) do not

seem to be available for free.

Developers at Pugpig have been notified in Jul 2018. They have since acknowl-

edged and confirmed our findings, and replied that they are aware of the weaknesses,

and that the apps are designed that way by choice to accommodate anonymous shar-

ing of magazine pages, a feature requested by their clients (publishers).

Amazon has been notified about the key extraction attack against the Amazon

Music app in Jan 2018. They responded to our report with several new versions



43

of their music app, implementing new obfuscation strategies and offline playback

restrictions on rooted devices. However, despite our recommendation of considering

the secret key compromised and switching over to a new key, as of Jun 2018, we have

noticed that recent new releases are still encrypted using the same old key. The KEA

against Audible was reported to Amazon in Jun 2018, and new versions implementing

various obfuscation strategies have since been released.

3.5.2 Legal and Ethical Matters

First and foremost, this research is definitely not aimed at assisting piracy. We

have not and will not distribute any code and other artifacts used in conducting the

experiments.

As this research was done inside the United States, it is our understanding that

the DMCA security research exemption [89] should be applicable. We believe what we

did in this research meets the four main requirements for the said exemption: 1) the

apps and the device of which the apps were running on were all lawfully acquired; 2)

the experiments were done solely for the purpose of good-faith security research; 3) the

research was conducted in a controlled setting designed to avoid harm to individuals

or the public; 4) the research did not begin before October 28, 2016.

For ethical reasons, after an attack has been demonstrated to be working, we stop

our experiments and did not perform mass content extraction for our personal gains.

For example, in the case of Amazon Music, we tried content decryption on only four

songs, in order to gain confidence that decryption with the same key would work on

songs that are: 1) from different tiers of subscription; 2) stored on the same device but

different albums; 3) stored on different devices. Similarly, for each of the group-7–8

apps, we only downloaded 2 random pages from 2 magazine issues. The extracted

raw contents (e.g., audio tracks and magazine pages) have been subsequently deleted.

We have also engaged in responsible disclosure with the app vendors, demonstrating

good-faith.
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3.5.3 Possible Countermeasures and Challenges

Bilateral Policy Enforcement. While a stateless sever allows for a more

simplistic deployment, as [CWE-603] has noted, a client-only authorization is weak

and can potentially be bypassed, especially on an environment where execution/code

can be reverse-engineered and tampered with. Since local adversaries are not able to

directly tamper with the execution state of a remote server, considering the threats

of AInS(R+W) and AMem+BinIns, policy enforcement can be done more robustly involving

the back-end servers. For example, to avoid the attacks discussed in Sections 3.3.2,

3.3.4 and 3.4.7. the authorization logic should be shifted to the back-end server.

Then client-side modification of prices and purchase status would result in detectable

discrepancies with records on the server, and the latter can refuse to serve contents

in such cases.

Direct Content Sources. To hinder the attacks discussed in Sections 3.3.2,

3.4.1 and 3.4.6, content source URLs should not be left in a log file [CWE-532] and

also not on a storage that an adversary has unlimited access to [CWE-921]. Instead

of explicitly saving the URLs, it would perhaps be better to have them constructed

dynamically during runtime, and the servers should request extra authentication and

authorization. An AMem+BinIns adversary might still be able to figure out the URLs

and the accompanying parameters, but it would be an improvement comparing to

the current deployments.

Certificate Pinning. To hinder the ANet(TLSInt) attacks discussed in Sec-

tions 3.3.3 and 3.3.4, instead of trusting the system CA store, the apps could adopt

some forms of key/certificate pinning 7. Even though AInS(R+W) and AMem+BinIns might

still be used in tandem to defeat pinning, it would at least make ANet(TLSInt) more dif-

ficult to achieve than in the current implementations.

7 https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning

https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning
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Denying services to rooted devices. One might propose for the apps to stop

providing services on rooted devices, as on unrooted ones the adversary capabilities

are greatly limited. This approach however has its own challenges. First, while a

concrete global number of rooted devices is not available, it has been suggested that

the number could be quite high in certain communities [90,91]. Various rooting tools

have reported millions of downloads [92, 93], and the superuser access management

app has hundreds of millions of installs [94]. A content distributor denying service

on rooted devices risks losing these customers. Second, determining whether a device

is “rooted” is an on-going arms race. Depending on the heuristics used and how

the checks were implemented, binary instrumentation might be able to bypass those

as well [95]. We have observed that, as of version 7.5.4, the new Amazon Music

restriction of no offline playback on rooted devices can be bypassed with RootCloak

[96], a popular system modification module.

Google has since introduced the SafetyNet service for developers to detect if a

device has been tampered with. Android Pay, Netflix, and Pokemon Go are some

examples that would deny service if SafetyNet finds the devices is rooted. However,

the cat-and-mouse game between SafetyNet and the Magisk systemless rooting tech-

nique in 2017 has been well documented [97, 98], and there are reports suggesting

that on legacy Android versions various bypass and attacks against SafetyNet are

possible [99].

Anti-Debugging and Anti-Instrumentation. Another possibility is to

implement anti-debugging and anti-instrumentation techniques in the apps to hinder

analysis, potentially on even rooted systems. Depending on what heuristics are be-

ing used, some might still be bypassable [100]. With the advancements of artifact

detection [101], anti-instrumentation [102,103], and transparent debugging [104,105],

this line of defense appears to be an on-going cat-and-mouse-game, similar to root

detection.
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Obfuscating keys in memory. While relying solely on obscurity for security

lacks robustness [CWE-656], however, in the case where content encryption keys must

be inevitably loaded into the memory, one possibility is to make it harder for key

scanning heuristics to identify secret keys in memory dumps.

Heuristics used in identifying memory regions of interests (e.g., those that contain

content fragments and cryptographic keys) typically assume their targets to occupy

a contiguous region of memory [78, 88]. Additionally, they might also leverage the

mathematical relation between the raw secret key and its derived key schedules to

pinpoint the targets [88]. It remains to be seen whether obfuscations can be used to

defeat these assumptions and make it more difficult for an attacker to recover secret

keys from the memory.

Watermarking. An orthogonal line of protection is to use watermarking to

make the origin of piracy traceable. Over the years, there are techniques developed to

watermark multimedia like audios [106] and motion pictures [107], as well as textual

contents [108,109]. In some cases, however, attackers can remove trivially detectable

watermarks. Resilience against detection and removal remains the main objectives of

watermarking research.

Another weakness of relying on watermarking for piracy tracking is that detection

often relies on the content being leaked and shared on the Internet, and it remains

difficult to detect offline sharing and contents that are stolen but not shared at all.

Trusted Execution Environments. A potential game changer is the use

of Trusted Execution Environments (TEEs), Since the traditional execution environ-

ment could potentially be under adversarial control, TEE vendors typically leverage

separation mechanisms enforced by the hardware platform to create an isolated execu-

tion environment, the internal execution state of which not even the OS can inspect,

though depending on implementations, cryptographic code running inside an isolated

environment like Intel SGX might still be susceptible to cache timing attacks [65,66].
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Various TEE implementations have been made available in recent years, especially

on mobile platforms, where it has been reported that there are multiple vendors

offering various TEE solutions that do not seem to conform to the same API standard

[79], which might have made it hard for developers to implement a one-size-fits-all

solution that is universally deployable across brands of devices, potentially hindering

adoption.

In the TEE trust model, the vendors would typically serve as the root of trust, and

they often employ a tight admission control model which might require potentially

costly licensing and non-disclosure agreements prior to app development and deploy-

ment. This could potentially create a market where only big companies can afford

to compete in, shutting out small businesses and individual developers. For some,

this also presents a concern for consumer rights. Since the trust on TEE vendors

who enforce admission control on what can be executed in the isolated environment

is transitive (users trust the vendor, which in turn trust the TEE licensees to provide

opaque but non-malicious software), the lack of transparency makes it difficult to

detect subtle attacks (e.g., spying and tracking) and hold the vendors accountable.

While for cloud service providers, the ability to create and attest isolated execution

environments might add appeals to their customers, it remains unclear how, if given

the choice, consumers would be willing to pay for a hardware technology that they

cannot control and cannot opt-out, instead of choosing the low cost devices without

these hassles that are more customizable and configurable.

3.6 Conclusion

In this research, we shed light on the current practices and weaknesses of content

delivery apps on mobile platforms, with concrete attacks on 141 apps. Due to some

unjustified trust assumptions and weak design patterns, given the right adversary

capability, it is often possible to bypass the content protection mechanism in place

to achieve unrestricted access to raw contents. Feasibility of such attacks might have
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contributed to the conventional printed media’s struggle for revenue. Content owners

should evaluate the robustness of the app design before retaining the service of a

developer.

Our findings present an interesting dilemma for content distributors to consider:

either risk losing controls over contents by allowing untrustworthy devices to access

their services, or risk losing customer reach. We hope that our work would bring

awareness to the situation, and spark further research on identifying more app weak-

nesses. In particular, with more sophisticated frameworks like [110] and recent ad-

vancements in transparent debugging against anti-debugging and anti-instrumentation

techniques [104,105] we expect more apps can be reverse engineered and analyzed.

A Call to Arms

Another goal of this work is to summarize weakness patterns so that future devel-

opments of similar apps can benefit from the insights provided by this research, take

various attack strategies into consideration, and avoid similar pitfalls.

Penetration testing becomes especially important in the case when content dis-

tributors are unwilling to completely shut off their services to customers who own

only low-end devices without TEE capabilities, making obfuscation the only feasible

partial solution. In the absence of a generic framework for quantifying the complex-

ity of obfuscation, penetration testing becomes perhaps the only way to empirically

evaluate how difficult it would be to extract secret states. Companies who already

have an in-house red team could perhaps leverage it for this purpose.

3.7 Table of Apps and CWEs

The complete list of content delivery apps that we studied can be found in Ta-

ble 3.1. The list of CWEs discussed in this research can be found in Table 3.2.
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Table 3.1.: List of content distribution apps studied in this research

App Name Version Publisher

† Latest

In-App Issue

Cover Date

Latest

In-App Issue

Price ($)

‡ Category ‡ Installs
Attacks and Adversaries

Discussed v

Group-1 Apps (Vendor: Apazine)

The MagPi 5.0.3
The Raspberry Pi

Foundation
Apr, 2018 3.99

News &

Magazines
50000+

EVA (Sect. 3.3.1, ANet(Sniff))

PBA (Sect. 3.3.2, ANet(Sniff))

PBA (Sect. 3.4.1, AExS(R))

KEA (Sect. 3.4.3, AExS(R))

Business

Money
5.0

Business Money

Promotions
Mar, 2018 14.99

News &

Magazines
1000+

Artists &

Illustrators
5.1

The Chelsea

Magazine

Company

Jun, 2018 5.99 Lifestyle 1000+

My MS-UK 5.0.3 MS-UK
Jan/Feb

2018
3.99

News &

Magazines
100+

Popshot

Magazine
5.2

The Chelsea

Magazine

Company

Spring, 2018 7.49 Lifestyle 50+

Group-2 Apps (Vendor: Apazine)

Counter

Intelligence

Plus

4.0.0

Communications

International

Group

Jan 05, 2017 Free Medical 1,000+ KEA (Sect. 3.4.5, AInS(R))

Group-3 Apps (Vendor: Maz Systems)

Forbes

Magazine Ψ
6.1.0 Forbes Media May 31, 2018 5.99 Business 100,000+

PBA (Sect. 3.3.2, ANet(Sniff))

EVA (Sect. 3.3.3, ANet(TLSInt))

Privacy Threats (Sect. 3.3.5)

CEA (Sect. 3.4.4, AInS(R))

PBA (Sect. 3.4.7, AInS(R+W))

Harvard

Business

Review

4.6.15

4.6.56 #

Harvard Business

Publishing
May 01, 2018 18.99 Business 10,000+

Designs in

Machine

Embroidery

6.1.0

Designs in

Machine

Embroidery

May 01, 2018 4.99 Lifestyle 10,000+

Diabetes

Self-

Management

6.1.0 Madavor Media Jun 01, 2018 5.99
Health &

Fitness
10,000+

ForbesLife 6.1.0 Forbes Media Nov 23, 2015 6.99 Lifestyle 10,000+

Mother Earth

News

6.1.0,

6.1.56 #

Ogden

Publications, Inc.
Feb 01, 2018 5.99 Lifestyle 10,000+

Boys’ Life
6.1.4,

6.1.56 #

Boy Scouts of

America
Jun 01, 2018 4.99

News &

Magazines,

Education

5,000+

Craft Beer &

Brewing

Magazine

6.1.50
Unfiltered Media

Group
May 09, 2018 9.99 Lifestyle 5,000+

GRIT

Magazine
6.1.0

Ogden

Publications, Inc.
May 01, 2018 4.99 Lifestyle 5,000+

Guitar World 6.1.15 NewBay Media Jul 01, 2018 7.99
Music &

Audio
5,000+

Inside

Lacrosse
6.1.0

American City

Business Journals
May 01, 2018 4.99 Sports 5,000+

Mother Earth

Living
6.1.0

Ogden

Publications, Inc.
May 01, 2018 5.99 Lifestyle 5,000+

USA Today

Sports

Weekly

6.1.0,

6.1.59 #

Gannett

Company
May 29, 2018 2.99 Sports 5,000+

ABA Journal

Magazine
6.1.0

American Bar

Association
May 01, 2018 6.99 Business 1,000+
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American

Cheerleader

Magazine

6.1.0 Varsity Spirit Mar 21, 2018 3.99 Sports 1,000+

BirdWatching 6.1.0 Madavor Media May 01, 2018 5.99 Lifestyle 1,000+

BUST

Magazine
6.1.0

Debbie Stoller

and Laurie

Henzel

Apr 01, 2018 4.99 Entertainment 1,000+

Cake Central

Magazine
6.1.0

Cake Central

Media Corp.
Apr 01, 2017 5.99 Lifestyle 1,000+

Scouting

magazine
6.1.0

Boy Scouts of

America
May 01, 2018 3.99 Lifestyle 1,000+

Faerie

Magazine
6.1.0 Faerie Magazine Mar 15, 2018 4.99 Lifestyle 1,000+

Grassroots

Motorsports

Mag

6.1.15 Tim Suddard Jun 01, 2018 5.99 Lifestyle 1,000+

Guitar Player

Magazine++
6.1.15 NewBay Media Jun 01, 2018 6.99

Music &

Audio
1,000+

JazzTimes 6.1.0 Madavor Media Jun 01, 2018 3.99
Music &

Audio
1,000+

Joy of

Kosher

Magazine

6.1.0
Kosher Network

International
Nov 24, 2017 3.99 Lifestyle 1,000+ PBA (Sect. 3.3.2, ANet(Sniff))

EVA (Sect. 3.3.3, ANet(TLSInt))

Privacy Threats (Sect. 3.3.5)

CEA (Sect. 3.4.4, AInS(R))

PBA (Sect. 3.4.7, AInS(R+W))

Kayak Angler 6.1.15 Rapid Media Apr 01, 2018 3.99 Sports 1,000+

Leatherneck

Magazine
6.1.0

Marine Corps

Association
Jun 01, 2018 4.99

News &

Magazines
1,000+

Marine Corps

Gazette
6.1.0

Marine Corps

Association
Jun 01, 2018 4.99

News &

Magazines
1,000+

Motorcycle

Classics

Magazine

6.1.0
Ogden

Publications, Inc.
May 01, 2018 6.99 Entertainment 1,000+

National

Wildlife

magazine

6.1.0
National Wildlife

Federation
Apr 01, 2018 3.99 Education 1,000+

New York

Observer
6.1.0 Observer Media Nov 14, 2016 1.99

News &

Magazines
1,000+

Paddling

Mag
6.1.15 Rapid Media Apr 01, 2018 2.99 Sports 1,000+

Paleo

Magazine
6.1.12 Paleo Magazine Jul 05, 2018 2.99

Health &

Fitness
1,000+

The Writer 6.1.0 Madavor Media Jul 01, 2018 5.99 Education 1,000+

V Magazine 6.1.0 Visionaire May 03, 2018 3.99 Entertainment 1,000+

Volleyball

Magazine
6.1.0

Volleyball World

Wide
Apr 29, 2016 3.99 Sports 1,000+

Adventure

Kayak+

Magazine

6.1.15 Rapid Media Jun 01, 2017 3.99 Sports 500+

Art Photo

Feature
6.1.0 APF Magazine Feb 01, 2016 3.99 Photography 500+

City Journal 6.1.0

Manhattan

Institute for

Policy Research

Apr 15, 2018 3.99 Business 500+

Farm

Collector
6.1.0

Ogden

Publications, Inc.
Jun 01, 2018 4.99 Lifestyle 500+

Gluten-Free

Living
6.1.0 Madavor Media May 01, 2018 6.99

Health &

Fitness
500+

Keyboard

Magazine
6.1.0 NewBay Media Jun 01, 2018 5.99

Music &

Audio
500+
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Man of the

World

Magazine

6.1.0 Man of the World Oct 17, 2016 9.99 Lifestyle 500+

The Real

Deal

Magazine

6.1.0
Korangy

Publishing
May 01, 2018 2.99 Business 500+

Revolver

Magazine
6.1.15 NewBay Media Apr 01, 2018 6.99

Music &

Audio
500+

Art Business

News
6.1.0

Redwood Media

Group
Apr 01, 2016 0.99 Business 100+

Animania

Magazine
6.1.15 RSPCA NSW Mar 01, 2018 3.99 Lifestyle 100+

Pain-Free

Living
6.1.0 Madavor Media Jun 01, 2018 4.99

Health &

Fitness
100+

Bass Player+ 6.1.15 NewBay Media Jun 01, 2018 5.99
Music &

Audio
100+

Digital Video 6.1.15 NewBay Media Jan 01, 2018 4.99 Productivity 100+

Electronic

Musician+
6.1.0 NewBay Media Jun 01, 2018 5.99

Music &

Audio
100+

Guitar

Aficionado
6.1.15 NewBay Media Jan 01, 2018 7.99 Lifestyle 100+

Hail Varsity

Magazine
6.1.0 Hail Varsity Feb 13, 2018 2.99 Sports 100+

Inside Pitch 6.1.0

The American

Baseball Coaches

Association

May 01, 2018 1.99 Sports 100+ PBA (Sect. 3.3.2, ANet(Sniff))

EVA (Sect. 3.3.3, ANet(TLSInt))

Privacy Threats (Sect. 3.3.5)

CEA (Sect. 3.4.4, AInS(R))

PBA (Sect. 3.4.7, AInS(R+W))

Inside

Weddings
6.1.0 Inside Weddings Mar 13, 2018 5.99 Lifestyle 100+

Multichannel

News++
6.1.15 NewBay Media May 14, 2018 6.99

Music &

Audio
100+

Mix

Magazine+
6.1.0 NewBay Media May 01, 2018 6.99

Music &

Audio
100+

MUSE

Magazine
6.1.0 MUSE Magazine Feb 19, 2018 3.99 Lifestyle 100+

National

Affairs
6.1.15

National Affairs,

Inc.
Mar 21, 2018 3.99 Education 100+

TWICE+
6.1.0,

6.1.56 #
NewBay Media May 21, 2018 9.99

Music &

Audio
100+

AV

Technology
6.1.12 NewBay Media May 01, 2018 5.99 Business 50+

Broadcasting

& Cable++
6.1.8 NewBay Media May 21, 2018 6.99

Music &

Audio
50+

Deli Business 6.1.0
Phoenix Media

Network
Dec 01, 2017 14.99 Business 50+

HeirlmGardnrMag 6.1.15
Ogden

Publications, Inc.
Mar 01, 2018 9.99 Lifestyle 50+

Sound Video

Contractor
6.1.15 NewBay Media May 01, 2018 6.99 Business 50+

Digital

Signage
6.1.15 NewBay Media Apr 27, 2018 5.99 Business 10+

Resident Sys 6.1.15 NewBay Media Jun 01, 2018 4.99 Business 10+

System

Contractor

News

6.1.15 NewBay Media Jun 01, 2018 5.99 Business 10+

Tech&Learning 6.1.15 NewBay Media May 01, 2018 6.99 Education 10+

Pro Sound

News §
6.1.15 NewBay Media May 01, 2018 5.99

Business

(Amazon

App Store)

Ranked

1250 in

Business

Revista La

Fuente §
6.1.0

Revista La

Fuente
Jun 01, 2018 2.99

Lifestyle

(Amazon

App Store)

Ranked

7367 in

Lifestyle
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Group-4 Apps (Vendor: Maz Systems)

Bloomberg

Business-

week+

2.4.6 Bloomberg L.P.
Subscription-

based
59.99 yearly

News &

Magazines
10,000,000+

PBA (Sect. 3.3.4, ANet(TLSInt))

PBA (Sect. 3.4.6, AInS(R))

Salon.com 2
Salon Media

Group

Subscription-

based
49.99 yearly

News &

Magazines
1000+

Group-5 Apps (Vendor: Maz Systems)

Entrepreneur

Magazine
10020

Entrepreneur

Media
Jun, 2018 4.99 Business 100,000+

PBA (Sect. 3.3.4, ANet(TLSInt))

PBA (Sect. 3.4.6, AInS(R))

Forbes

Magazine Ψ
10020 Forbes Media Jun, 2018 5.99 Business 100,000+

Diesel World 10010 Engaged Media Aug, 2018 5.99
News &

Magazines
10000+

Knives

Illustrated
10020 Engaged Media Jul, 2018 4.99

News &

Magazines
5000+

Gun World 10020 Engaged Media Jul, 2018 3.99
News &

Magazines
5000+

American

Survival

Guide

10020 Engaged Media Jul, 2018 6.99
News &

Magazines
5000+

Ultimate

Diesel

Builders

Guide

10020 Engaged Media Jun, 2018 5.99
News &

Magazines
5000+

Outside TV

Features
10021

Outside

Television

Subscription-

based

4.99

monthly
Sports 1,000+

Inc. Must

Reads and

Magazine

10020
Mansueto

Ventures
Jun, 2018 4.99 Business 1,000+

The Nation

Magazine
10020

The Nation

Company
May 28, 2018 1.99

News &

Magazines
1,000+

Conceal &

Carry
10020 Engaged Media

Summer,

2018
7.99

News &

Magazines
1000+

Cottages &

Bungalow
10020 Engaged Media Jun, 2018 8.99

News &

Magazines
1000+

The Rebel

Media
10020

The Rebel News

Network

Subscription-

based
84.99 yearly

News &

Magazines
1,000+

Lion’s Roar

Magazine
10020

Lion’s Roar

Foundation

Subscription-

based
23.99 yearly Lifestyle 500+

Buddhadharma 10020
Lion’s Roar

Foundation

Subscription-

based
23.99 yearly

News &

Magazines
500+

Texas

Monthly
10020 Texas Monthly Jun, 2018 4.99

News &

Magazines
500+

All About

Beer
10020 All About Beer Mar, 2018 4.99

Food &

Drink
100+

Atomic

Ranch
10020 Engaged Media

Summer,

2018
5.99

News &

Magazines
100+

FNF Coaches 10020 A.E. Engine Apr, 2018 varies Sports 100+

Tread

Magazine
10020 Engaged Media May, 2018 7.99 Lifestyle 100+

Vogue

Knitting
1 Soho Publishing Spring, 2018 5.99

News &

Magazines
100+

American

Farmhouse

Style

10020 Engaged Media
Summer,

2018
7.99 Lifestyle 10+

Berko 10020
Pat Callinan

Media
May 10, 2018 5.99 Lifestyle 10+
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Group-6 Apps (Vendor: Maz Systems)

Men’s Health

Magazine
10020

Hearst

Communications
Jun, 2018 4.99

Health &

Fitness
10,000+

PBA (Sect. 3.3.4, ANet(TLSInt))

CEA (Sect. 3.4.2, AExS(R))

Runner’s

World
10020

Hearst

Communications
Jul, 2018 4.99

Health &

Fitness
1,000+

Women’s

Health Mag
10020

Hearst

Communications
Jun, 2018 4.99

Health &

Fitness
1,000+

Prevention 10020
Hearst

Communications
Jun, 2018 4.99

Health &

Fitness
500+

Quilting 1 F+W Media Jun, 2018 6.99 Education 500+

Bicycling 10020
Hearst

Communications
Jul, 2018 4.99

Health &

Fitness
100+

FNF —

Friday Night

Football

10020 A.E. Engine 2017 0.99 Sports 100+

IW Knits 1 F+W Media
Summer,

2018
7.99 Education 50+

ArtistsMag 1 F+W Media Jul, 2018 6.99 Education 50+

Group-7 Apps (Vendor: Pugpig)

The

Independent

Daily Edition

4.5.1313.370

Independent

Digital News &

Media Limited

Wednesday

27 Jun, 2018

168.74

yearly

News &

Magazines
50,000+

PBA (Sect. 3.3.4, ANet(TLSInt))

Primal 9 1.1.3804.716
Hearst Magazines

UK
2018 49.99

Health &

Fitness
10,000+

Cosmopolitan

UK
6.5.1655.377

Hearst Magazines

UK
Aug, 2018 9.99 yearly Lifestyle 5,000+

Glamour

Magazine

(UK)

1.7.2137.893

The Condé Nast

Publications

Limited

Spring/Summer,

2018
0.99

News &

Magazines
5,000+

Wired UK 33.3.187.893

The Condé Nast

Publications

Limited

May/Jun,

2018
17.99 yearly

News &

Magazines
5,000+

Condé Nast

Traveler

Magazine

1.2.1189.893

The Condé Nast

Publications

Limited

Jun, 2018 29.99 yearly Lifestyle 1,000+

GQ Style UK 1.2.3455.893

The Condé Nast

Publications

Limited

Spring/Summer,

2018
9.99 yearly Lifestyle 1,000+

Tatler 1.2.1189.893

The Condé Nast

Publications

Limited

Jul, 2018 29.99 yearly Lifestyle 1,000+

WH

Transform
1.0.2982.490

Hearst Magazines

UK
2018 54.99

Health &

Fitness
1,000+

Brides 1.2.1189.893

The Condé Nast

Publications

Limited

May/Jun,

2018
23.99 yearly Lifestyle 500+

House &

Garden
1.2.1189.893

The Condé Nast

Publications

Limited

Jul, 2018 30.99 yearly Lifestyle 500+

Reveal UK 6.5.31.50.377
Hearst Magazines

UK

Week 26,

2018
26.99 yearly Entertainment 100+

The World of

Interiors
1.1.326.893

The Condé Nast

Publications

Limited

Jul, 2018 35.99 yearly Lifestyle 100+

QP Magazine 1.0.3390.1350
Hearst Magazines

UK
Jun, 2018 12.99 yearly

News &

Magazines
10+
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Group-8 Apps (Vendor: Pugpig)

ELLE

Magazine UK
6.5.1655.377

Hearst Magazines

UK
Jun, 2018 29.99 yearly Lifestyle 5,000+

PBA (Sect. 3.3.4, ANet(TLSInt))

CEA (Sect. 3.4.4, AInS(R))

Men’s Health

UK
1.1.3804.716

Hearst Magazines

UK
Jul, 2018 29.99 yearly Lifestyle 5,000+

ELLE

Decoration

UK

6.5.1655.377
Hearst Magazines

UK
Jul, 2018 34.99 yearly Lifestyle 1,000+

Esquire UK 6.5.1665.377
Hearst Magazines

UK

Jul/Aug,

2018
19.99 yearly Lifestyle 1,000+

Good House-

keeping

UK

6.5.1655.377
Hearst Magazines

UK
Jun, 2018 29.99 yearly Lifestyle 1,000+

Harper’s

Bazaar UK
6.5.1655.377

Hearst Magazines

UK
Jul, 2018 35.99 yearly Lifestyle 1,000+

Inside Soap

UK
6.5.1655.377

Hearst Magazines

UK

Week 26,

2018
59.99 yearly Entertainment 1,000+

Runner’s

World UK
6.5.1655.377

Hearst Magazines

UK
Aug, 2018 35.99 yearly

Health &

Fitness
1,000+

Women’s

Health UK
1.5.3696.377

Hearst Magazines

UK
Jul, 2018 29.99 yearly Lifestyle 1,000+

House

Beautiful UK
6.5.1655.377

Hearst Magazines

UK
Aug, 2018 30.99 yearly Lifestyle 500+

Country

Living UK
6.5.1655.377

Hearst Magazines

UK
Jun, 2018 29.99 yearly Lifestyle 100+

Prima UK 6.5.1655.377
Hearst Magazines

UK
Jul, 2018 28.99 yearly Lifestyle 100+

Real People

UK
6.5.1655.377

Hearst Magazines

UK

Week 27,

2018
26.99 yearly Entertainment 100+

Red

Magazine UK
6.5.1655.377

Hearst Magazines

UK
Jul, 2018 23.99 yearly Lifestyle 100+

Town &

Country
6.5.1655.377

Hearst Magazines

UK

Summer,

2018
18.99 yearly Lifestyle 100+

Best UK 6.5.1655.377
Hearst Magazines

UK

Week 26,

2018
30.99 yearly Entertainment 50+

Group-9 Apps (Vendor: Amazon)

Amazon

Music
6.5.3 various 2-tier subscriptions

Music &

Audio
100,000,000+

KEA (Sect. 3.4.8, AMem+BinIns)

Audible 2.25.0 various various subscription plans exist
Books &

Reference
100,000,000+

§ These Apps were only available on Amazon App Store but not on Google Play Store.

‡ Information in these columns retrieved from Google Play Store in Jun, 2018.

# For these apps, the newer version uses an encrypted database. They are however still susceptible to PBAs through

attack surface (AS1) as discussed in Section 3.3.2.

Ψ The new version was released during the course of our study to replace the old one. The varied designs are susceptible

to different attacks, though the pricing stays the same.

† Some cover dates are in the future due to 1) some have long intervals between issues; 2) some offer digital access earlier

than in print. ($) All prices are in US dollars.

v KEA = Key Extraction Attacks; PBA = Purchase Bypass Attacks; CEA = Content Extraction Attacks;

EVA = Eavesdropping Attacks. In this research, KEA and EVA both imply CEA.
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Table 3.2.: List of CWEs discussed in this research

CWE

ID
Name Description

CWE-

313

Cleartext Storage in a

File or on Disk
The application stores sensitive information in cleartext in a file, or on disk.

CWE-

319

Cleartext Transmission of

Sensitive Information

The software transmits sensitive or security-critical data in cleartext in a

communication channel that can be sniffed by unauthorized actors.

CWE-

354

Improper Validation of

Integrity Check Value

The software does not validate or incorrectly validates the integrity check

values or ”checksums” of a message. This may prevent it from detecting if

the data has been modified or corrupted in transmission.

CWE-

425

Direct Request (’Forced

Browsing’)

The web application does not adequately enforce appropriate authorization

on all restricted URLs, scripts, or files.

CWE-

454

External Initialization of

Trusted Variables or

Data Stores

The software initializes critical internal variables or data stores using inputs

that can be modified by untrusted actors.

CWE-

532

Information Exposure

Through Log Files

Information written to log files can be of a sensitive nature and give

valuable guidance to an attacker or expose sensitive user information.

CWE-

603

Use of Client-Side

Authentication

A client/server product performs authentication within client code but not

in server code, allowing server-side authentication to be bypassed via a

modified client that omits the authentication check.

CWE-

642

External Control of

Critical State Data

The software stores security-critical state information about its users, or the

software itself, in a location that is accessible to unauthorized actors.

CWE-

654

Reliance on a Single

Factor in a Security

Decision

A protection mechanism relies exclusively, or to a large extent, on the

evaluation of a single condition or the integrity of a single object or entity in

order to make a decision about granting access to restricted resources or

functionality.

CWE-

656

Reliance on Security

Through Obscurity

The software uses a protection mechanism whose strength depends heavily

on its obscurity, such that knowledge of its algorithms or key data is

sufficient to defeat the mechanism.

CWE-

921

Storage of Sensitive Data

in a Mechanism without

Access Control

The software stores sensitive information in a file system or device that does

not have built-in access control.
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4. EXPOSING NONCOMPLIANCE IN

IMPLEMENTATIONS OF X.509 CERTIFICATE

VALIDATION WITH A PRINCIPLED APPROACH

4.1 Introduction

The X.509 Public-Key Infrastructure (PKI) standard [111,112] has long been used

in SSL/TLS as a means to distribute keys and provide authentication. The security

assurance expected from SSL/TLS handshake critically hinges on the premise that

communication peers, particularly the clients, correctly perform the prescribed valida-

tion of the server-provided X.509 certificate chain. Put differently, correctly validating

X.509 certificate chains is imperative to achieving security. Flaws in implementations

of the certificate chain validation logic (CCVL) could potentially lead to two pitfalls:

(1) Overly restrictive CCVL (i.e., incorrectly rejecting valid certificate chains) may

result in interoperability issues and potential loss of service; (2) Overly permissive

CCVL (i.e., incorrectly accepting invalid certificate chains) may allow attackers to

conduct impersonation attacks. We call an X.509 CCVL implementation non-

compliant with the X.509 specification if it suffers from over-permissiveness,

over-restrictiveness, or both. The X.509 standard [111] is defined in a generic way to

accommodate different usage scenarios (e.g. for code signing, encipherment, authen-

tication, etc.). In this work, we concentrate on X.509’s use in the context of Internet

communication (i.e., clients performing server authentication during SSL/TLS nego-

tiation) and focus on the RFC 5280 specification [112].

Although the SSL/TLS protocol implementations have undergone extensive scrutiny

[21–23, 55–57], similar rigorous investigation is absent for checking compliance of

X.509 CCVL implementations. For instance, researchers have developed a formally

verified reference implementation for the SSL/TLS protocol [22] but it does not
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include a formally verified CCVL. The portion of code in SSL/TLS libraries re-

sponsible for performing the X.509 chain validation are often plagued with severe

bugs [113–125].

Implementing a compliant X.509 CCVL is not easy, primarily due to the com-

plexity of its requirements. For example, through our analysis, we have seen how a

supposedly simple boundary check on date and time can lead to various instances of

noncompliance in different libraries due to mishandling time zones and misinterpret-

ing the specification. The following comment from an SSL/TLS library developer

that we contacted regarding a bug report concisely capture the intricacy of the task:

“In general, X.509 validation is one of the most error prone, code bloating, and com-

patibility nightmares in TLS implementation.”

There are two possible directions for addressing X.509 CCVL’s noncompliance

problem: (1) Formally proving compliance of a (possibly reference) CCVL implemen-

tation with respect to the specification and having every library use it; (2) Devising

approaches for finding noncompliance in CCVL implementations. The difficulty of

automatically proving compliance of an X.509 CCVL implementation, in addition to

the problem being undecidable in general [126], stems from the fact that standard

formal verification techniques [127–146] often do not support all the idiosyncrasies

of a system level programming language like C. The direction of finding noncompli-

ance was adopted by Brubaker et al. [1] and they uncovered a number of bugs in the

CCVL implementations using black-box fuzzing, which raised awareness on both the

existence and severity of the problem. Our approach is also geared towards finding

noncompliance in real CCVL implementations.

Although black-box fuzzing is an effective technique for finding implementation

flaws, especially when the source code is not available, it suffers from the following

well known limitation: given a vast input space, black box fuzzing fails to concentrate

on relevant portions of the source code without explicit guidance (i.e. lack of code

coverage).
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Symbolic execution [147] has been found to address the above limitation [35–

37]. Symbolic execution is also known to be effective in finding bugs buried deep in

the execution. It is, however, cursed by the problem of path explosion [148], which

severely hinders its scalability and practicality, especially when the input is recursively

structured and complex as in the case of X.509 certificates.

In this research, we take the first step in making symbolic execution practical for

finding noncompliance in real X.509 implementations. To this end, we solve symbolic

execution’s path explosion problem in the following manner: (1) Focusing our analy-

sis on open source SSL/TLS libraries that have a small footprint and code base; (2)

Applying a combination of domain-specific insights, abstractions, and compartmen-

talization techniques to the symbolic execution environment.

Small footprint SSL/TLS libraries are typically tailor-made for resource con-

strained platforms, and often prioritize efficiency over robustness. With the emer-

gence of Internet-of-Things (IoT), these libraries are actively deployed on commodity

devices to satisfy the needs for secure communication in the IoT ecosystem [149–152].

Furthermore, following the discovery of several high-profile vulnerabilities due to

implementation flaws in recent years [153–155], traditional SSL/TLS libraries like

OpenSSL has been criticized to have an unnecessarily large and messy code base that

is both slow and infested with bugs [156]. A call for diverse alternative implementa-

tions with better maintainability and a desire for performance have sparked interests

in adopting small footprint SSL/TLS libraries for building applications on even con-

ventional PC platforms [157–161]. Hence it is of interest for us to evaluate these

implementations of X.509 validation for robustness and compliance to specification.

To make symbolic execution practical and feasible, we develop the concept of

SymCerts, which are syntactically well-formed symbolic X.509 certificate chains,

such that each certificate contains a mix of concrete and symbolic values. To fur-

ther reduce path explosion, we decompose the problem of noncompliance finding

into smaller independent sub-problems based on the domain-specific observation that

some certificate fields are logically independent in their semantic meanings. Fields
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in the same sub-problem are made symbolic at the same time, while the other un-

related fields are kept concrete. The use of SymCerts, along with the observation

of semantic independence of fields, address the path explosion problem of symbolic

execution that stem from the recursive and complex nature of the input certificate

chain representation.

Approach: An X.509 CCVL partitions the certificate chain input universe into

accepting (chains deemed valid) and rejecting (chains deemed invalid) certificate uni-

verses. We use symbolic execution to automatically extract the approximation of the

certificate accepting and rejecting universes (See Figure 4.1), and symbolically repre-

sent these sets as path constraints (quantifier-free first order logic formulas), where

the symbolic variables correspond to fields and extensions of certificates.

Symbolic ExecutionX.509 CCVL Library 1 Extraction Validator A1 R1

Symbolic ExecutionX.509 CCVL Library 2 Extraction Validator A2 R2

. . .. . . . . . Ai Ri

Symbolic ExecutionX.509 CCVL Library n Extraction Validator An Rn

Accepted & Rejected
X.509 Certificate

Universes

Missing Field
Check Detector

Aj

Rj

Missing Field
Check Report

A1

R1

A2

R2

Cross Validation
Engine

Detected
Inconsistencies

Fig. 4.1.: Our noncompliance finding approach for X.509 CCVL implementations

In our approach, symbolic execution engine takes as input a CCVL implementation and extracts the

approximated accepted and rejecting certificate universe whereas extraction validator validates it

through concrete execution. Missing field check detector finds unscrutinized certificate fields from the

universes. Cross validation engine performs cross validation among two implementations universes.

In the case where an X.509 CCVL implementation is noncompliant due to the

lack of certain checks, a simple search (e.g. with grep) of the path constraints will

uncover such noncompliance, as the corresponding symbolic variables will not appear

in the extracted path constraints. For catching deeper noncompliance, we leverage

the principle of differential testing [58, 162], by carrying out a cross validation of

different implementations. Given two implementations I1, I2, and their corresponding
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accepting and rejecting certificate universesA1,R1, A2, andR2, we can automatically

determine whether discrepancies exist between I1 and I2 (i.e., one implementation

accepts a certificate chain whereas the other rejects it) by checking whether the sets

A1 ∩ R2 and A2 ∩ R1 are nonempty. Representing these sets symbolically enables

us to implement the set intersection operator by leveraging a Satisfiability Modulo

Theory (SMT) solver [163,164].

Evaluation and Findings: We analyzed 9 implementations from 4 families of

code base (axTLS, wolfSSL, mbedTLS, MatrixSSL) and uncovered 48 instances of

noncompliance.

Notably, we have detected the erroneous logic embraced by wolfSSL 3.6.6 and Ma-

trixSSL 3.7.2 for matching ExtKeyUsage object identifiers (OID); such OID matching

is used to assert the proper use of the key according to its intended purposes (e.g.,

for code signing). Although standard usage purposes are identified with pre-defined

values (e.g., 1.3.6.1.5.5.7.3.1 means server authentication), other values are allowed

for defining custom purposes. Both wolfSSL 3.6.6 and MatrixSSL 3.7.2 take a sum-

mation of the encoded bytes of an OID, and uses only the sum for matching against

known standard key usage purposes. In their scheme, OID 1.3.6.1.5.5.7.3.1 (ASN.1

DER-encoded bytes: 0x2B 0x06 0x01 0x05 0x05 0x07 0x03 0x01) will be identified as

decimal 71. Despite OIDs being unique hierarchically, the summation of their en-

coded bytes may not be. An adversary may request a certificate authority to issue

an innocuous-looking certificate with a custom key usage purpose OID value that

adds up to 71, and would then be able to use it for server authentication in these

libraries. We have reported this bug to the library developers. They acknowledged

the problem and have it fixed in new releases.

Another notable finding is the misinterpretation of the year field of UTCTime by

MatrixSSL 3.7.2. In UTCTime format, the RFC prescribes two bytes YY to denote

years such that YY∈ [0, 49] is treated as the year 20YY whereas YY∈ [50, 99] is treated

as 19YY, allowing years to be in range 1950 − 2049. However, MatrixSSL 3.7.2 mis-

interprets the YY field and hence miscalculates some certificate expiration by 100
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years (e.g., certificates expired in 1995 are considered to expire in 2095). Developers

of MatrixSSL acknowledged this bug after receiving our report and implemented

a fix in a newer version. Other findings are reported in 4.5.

Contributions: In summary, this research makes the following contributions:

1. We take the first step towards developing a more principled approach to sys-

tematically analyze real implementations of X.509 validation.

2. Though scalability issue exists, we show that symbolic execution could be made

practical by limiting the scope of analysis and using domain specific optimiza-

tion, and it is very effective in exposing implementation flaws.

3. We revisit three specific implementations that have been studied before in the

literature [1]. With new findings that are otherwise difficult to find with an

unguided fuzzing approach, we show that previous work based on fuzz testing

indeed suffers from false negatives, and some of their claims are inaccurate due

to a possible misinterpretation of those false negatives.

4. For the other and more recent implementations that had not been studied be-

fore, we found multiple instances of noncompliance and have them reported to

the developers.

4.2 Background and Problem Definition

In this section, we first present a brief introduction on X.509 certificates and

their validation logic. We then present the noncompliance finding problem and the

associated high level challenges.

4.2.1 Preliminary on X.509 Certificate Validation

The X.509 PKI standard is described in ITU-T Recommendation X.509 [111].

The certificate format itself, at the time of writing, has 3 versions. Version 2 and
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3 were introduced to add support for unique identifiers and certificate extensions,

respectively. X.509 certificates can be used in various environments for different

purposes. A variety of standard certificate extensions are defined in the standard

documents [111] and ANSI X9.55. RFC 5280 [112] profiles how version 3 certificates,

extensions and CRLs are meant to be used specifically for the Internet. Since we

focus on this particular prominent use case of X.509, in the rest of this section, we

provide a simplified overview of what makes a certificate and how validation should

happen in general, taking the viewpoint of an Internet client and using RFC 5280 as

the main reference.

Contents of an X.509 certificate

At a very high level, a X.509 certificate is made of 3 parts: the TBS (To-Be-Signed)

part, which includes most of the semantic content of the certificate; a signature algo-

rithm identifier, which denotes the algorithm the issuer used to sign the certificate;

and finally the actual signature value. The TBS part generally includes the following

fields: version (version number), serialNumber (that can uniquely identify a certifi-

cate), signature (the signature algorithm identifier), issuer (name of the entity who

signed the certificate), validity (a time period of which the certificate can be consid-

ered as valid), subject (name of the subject of the certificate), subjectPublicKeyInfo

(the public key of the subject of the certificate).

Version
Serial

Number
Signature Issuer Validity Subject

Subject Public
Key Info

Issuer
Unique ID

Subject
Unique ID

Extensions
Digital

Signature

To-Be-Signed by Certificate Authority (Issuer)

Version of the
Certificate (e.g., 3)

Unique Integer
Identifier of the

Certificate

Algorithm ID
used to sign

the Certificate

Name of
the Certificate

issuer

Not Before
and Not After
(Time Period)

Name of
the Certificate

owner
Public key

(and Algorithm ID) of
the Certificate owner

Unique ID of
the issuing CA
(Optional)

Unique ID of
the Subject
(Optional)

Extensions
(Possibly Critical)

(Optional)

Algorithm ID and
Digital Signature

Fig. 4.2.: A simplified structural view of an X.509 version 3 certificate

This drawing is inspired by a similar figure in [165].
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Towards the end of the TBS of a X.509 version 3 certificate there are three optional

constructs: the issuerUniqueID and subjectUniqueID, which are respectively unique

identifiers of the issuer and subject of the certificate, followed by extensions, which is

a sequence of X.509 version 3 extensions. See Figure 4.2 for a simplified visualization

of the structure of a typical X.509 version 3 certificate.

X.509 certificate validation

The X.509 PKI is based on the idea of “chain of trust”. The main objective

of certificate validation is to show that given a trust anchor, C0, the trust can be

extended through a chain of certificates, all the way down to the communication peer

(e.g. a specific server). Hence the basic check requires that for each certificate of

a chain, the issuer name of a certificate Ci must equal to the subject name of the

previous certificate Ci−1, and the signature on Ci can be correctly verified using the

algorithm, the public key and other parameters derived from Ci−1.

In addition, each certificate involved in forming the chain of trust must be cur-

rently valid, in the sense that the current system time should be within the range

(inclusively) prescribed by the notBefore and notAfter attributes of the Validity field.

Other checks in X.509 certificate validation are related to the handling of version

3 extensions. Extensions give CAs a means to impose additional restrictions on

certificates issued by them, to avoid abuse of certificates.

Extensions can be marked as critical or non-critical. For the standard set of ex-

tensions, RFC 5280 [112] mandates some default criticality that a conforming CAs

should follow. However, from the point of view of a certificate-using system, exten-

sions should be processed regardless of their criticality if the system is able to, and

in case it cannot process any of the critical extensions then the certificate should be

rejected.

On a valid certificate chain, each of the certificates needs to be a CA certificate,

except for the leaf one (both CA and non-CA are allowed). In X.509 version 3, this is
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achieved by checking the basicConstraints extension, which contains an isCA boolean

field indicating whether the certificate is a CA certificate or not, and an optional

integer pathLenConstraint that limits the number of non-self-issued intermediate CA

certificates that can follow on the chain, not counting the leaf one. Before version 3,

X.509 certificates do not have extensions. In such cases, clients can choose to either

consider those to be non-CA certificates, or use an out-of-band mechanism to verify

if those are CA certificates or not.

The KeyUsage and ExtKeyUsage are two useful extensions that describe the in-

tended purposes of a certificate. With issuing CAs imposing these on certificates,

and clients faithfully checking the intended purposes, some certificate abuse scenarios

can be stopped (e.g. using a certificate that is only issued for signing software in a

SSL/TLS handshake for authentication would not be allowed).

There are other standard extensions which we do not present here. For a complete

list of extensions deemed useful for the Internet, and the details on how to handle

them, we refer the readers to RFC 5280 [112].

Sources of noncompliance

The intricacies of implementing a compliant X.509 CCVL stem from the rich

set of fields in certificates, which are further complicated by their wide range of

possible values, as well as the numerous optional but possibly critical extensions.

Noncompliance can occur due to the following two reasons:

1. Certain fields and/or extensions that must be checked are not involved in the

decision making procedure of a CCVL implementation. This can be further

divided into:

(a) The fields and/or extensions are not being parsed into an internal data

structure. This is mostly due to a lack of intention to support a thorough

and robust check, possibly due to concerns on resource usage.
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(b) The fields and/or extensions are being parsed into an internal data struc-

ture but checks did not happen. This is mostly due to an intention to

perform the checks but the implementation is not complete.

2. The fields and/or extensions are involved into deciding whether to accept or

reject the chain, but due to coding and/or logical errors in the parsing code

and/or validation code, the checks are not performed correctly.

4.2.2 Goal and Challenges

In this research, our goal is to check whether a given X.509 CCVL imple-

mentation is compliant with the X.509 specification. There are two ways to

go about checking compliance of an implementation, namely, (1) proving the com-

pliance of the implementation with respect to the specification and (2) trying to

find noncompliance in the implementation. Our approach is geared towards finding

noncompliance.

Why Not Prove Compliance

To prove compliance of a given CCVL implementation, we have to formally specify

the valid sets of X.509 certificate chains that a CCVL implementation should accept.

The X.509 specification is, however, described in natural languages and coming up

with a complete formal specification is cumbersome and error-prone. Furthermore,

even if we have such a formal specification Ψ at our disposal, proving that Ψ is satisfied

by the CCVL implementation I (i.e., I |= Ψ) using standard formal verification

techniques [127–146] is infeasible as the problem is undecidable in general [126]. Also,

formal verification techniques often do not scale and support real implementations.

For this reason, we resort to noncompliance finding in the implementation.
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Challenges

We now discuss the inherent challenges of the noncompliance finding.

Natural Languages Specification The X.509 specification is written in English

and it is inherently prone to under-specification, ambiguities, inconsistencies, and

misinterpretations. To validate a noncompliant instance it is often required to consult

the specification when we do not have a formal specification at our disposal. We resort

to manual effort to address this challenge.

Scalability The complex format of X.509 certificates and also the intricacies in cer-

tificate chain validation make it difficult to develop a scalable noncompliance checker.

Also, it is difficult to develop a scalable noncompliance checker for real libraries writ-

ten in system level languages such as C.

Cryptographic Libraries A X.509 CCVL relies on cryptographic functions to

perform operations such as digital signature verification. Cryptographic functions

are well recognized to be difficult to automatically analyze for correctness.

4.3 Our Noncompliance Finding Approach

In this section, we first briefly describe symbolic execution and then present how

we leverage it for noncompliance detection. Finally, we discuss several technical

challenges of applying symbolic execution and how we overcome them.

4.3.1 Preliminary on Symbolic Execution

Symbolic execution [147] has been shown to be an effective way of inferring test

cases that yield high code coverage [34–43].

It achieves this objective by running a program with symbolic values for input

variables. During execution, when it encounters a branch instruction (e.g., if-else)
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with a branching condition on symbolic values, it consults a Satisfiability Modulo

Theory (SMT) solver [163,164] to check whether any of the two branches (i.e., the if

and else branches) are possible according to their branching conditions. If any of the

branches are feasible (i.e., the branching conditions are satisfiable for some concrete

values for the input variables), the execution explores the corresponding paths. It

keeps collecting all the feasible branching conditions on the input (symbolic) variables,

also known as path constraints, until the program terminates or reaches a point of

interest (e.g., an error location). It then consults an SMT solver to obtain concrete

values for the input that will induce the path in question.

4.3.2 Approximating Universes with Symbolic Execution

For noncompliance detection, our approach critically relies on extracting the uni-

verses of accepted and rejected certificate chains induced by a given X.509 CCVL

implementation.

Suppose we denote the universe of all possible X.509 certificate chains with C,
a given X.509 CCVL partitions C into two sets A (the set of accepting certificate

chains) and R (the set of rejecting certificate chains) such that C = A ∪ R and

A ∩ R = ∅. To detect noncompliance in a given X.509 CCVL implementation,

we automatically extract the sets A and R. Due to the large number of possible

certificate chains, explicitly enumerating elements of the sets A and R is not feasible.

We represent the sets A and R symbolically by a set of quantifier-free first order logic

(QFFOL) formulas [163] {f1, f2, . . . , fn} where each QFFOL formula fi represents a set

of concrete certificate chains. We choose QFFOL as it is sufficiently expressive and also

decidable for certain theories (e.g., bitvector, array)—one can leverage an SMT solver

to detect noncompliance—whereas the full first order logic (FOL) is undecidable. We

use the theory of bitvectors and array.

For a given X.509 implementation, we extract the sets A and R by symbolically

executing the CCVL of that given implementation with respect to a symbolic cer-
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tificate chain. Symbolically executing the CCVL can capture the validation logic

for that given implementation through path constraints and their associated return

values of the CCVL function. The path constraint in question here contains input

variables coming from the input certificate chain that has fields and extensions we

marked to have symbolic values. Given a collected path constraint f and its as-

sociated boolean value b returned by the CCVL function, if b = true (resp., false),

it signifies that any concrete certificate chain c that satisfies the constraint f (i.e.,

c |= f) is accepted (resp., rejected) by the given CCVL. Precisely, after symbolic

execution of the CCVL, we have C = {〈f1, b1〉, 〈f2, b2〉, . . . , 〈fn, bn〉} where fi is a path

constraint (i.e., QFFOL formula) we obtained during symbolic execution of the CCVL

and bi ∈ {true, false} is the return value of the CCVL function for the path constraint

fi. From C, we construct A and R in the following way: A = {fi | 〈fi, true〉 ∈ C} and

R = {fj | 〈fj, false〉 ∈ C}.
The sets A and R induced by a given X.509 CCVL implementation are the core

asset of our noncompliance detection approach. Given the sets of Atest and

Rtest induced by a CCVL implementation under test Itest and the sets Astandard and

Rstandard induced by the X.509 standard specification (e.g., RFC), Itest is noncompliant

if one of the following (or, both) hold: (1) Atest 6= Astandard and (2) Rtest 6= Rstandard.

For a given Itest, we can use its Atest and Rtest to expose noncompliance in several

ways, possibly by leveraging an SMT solver [164,166]. We discuss them presently.

4.3.3 Approaches for Exposing Noncompliance

We now discuss three approaches where we leverage symbolic execution and the

sets A and R to find noncompliance in X.509 CCVL implementations.

Noncompliance during Symbolic Execution

During symbolic execution of the X.509 CCVL function of a given implementation,

the symbolic execution engine can discover certain low level memory errors (e.g., array
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out of bounds). We have discovered an erroneous extension processing bug using this

approach. We present the details in Section 4.5.

Simple Searching of the Path Constraints

By inspecting all the path constraints in the set A∪R for a particular CCVL im-

plementation, one can easily notice missing checks of certain certificate fields. Let us

assume that we assigned the subject name field of a certificate to have the symbolic

value sym sub name. We can then perform a search with the string sym sub name

(i.e., often a simple grep will suffice) among all the path constraints in A ∪ R. If

the search turns up empty, one can conclude with high confidence that the imple-

mentation does not check the subject name field. This approach enables exposure

of noncompliance due to an implementation’s inability to take certificate fields into

consideration during the CCVL decision making process. We have discovered several

serious noncompliances using grep.

Cross Validation

To expose deeper noncompliant instances—the ones due to an implementation’s

inability to impose proper validity checks on a certificate field even after recognizing

it—ideally we want the sets Astandard and Rstandard induced by the X.509 standard

specification. We have, however, neither a formally verified CCVL implementation

we can extract the sets Astandard and Rstandard from, nor a formal specification for

X.509 CCVL at our disposal. We compensate for the lack of the sets Astandard and

Rstandard by utilizing the existence of a large number of open source SSL/TLS library

implementations. We can perform a cross validation (or, differential testing [58,162])

by pitting the different implementations against each other. If two implementations

come to different conclusions about whether a given certificate chain is valid, even

though it is not clear which implementation is noncompliant, we can conclude that one

of the libraries is noncompliant. Precisely, for any two implementations I1 and I2 and



70

their corresponding sets A1, R1, A2, and R2, any c ∈ C such that (1) c ∈ A1∧ c ∈ R2

or (2) c ∈ A2 ∧ c ∈ R1 represents an instance of noncompliance.

One can utilize the path constraints from two different implementations to find

inconsistent conclusions in the following two ways. In our analysis, we follow approach

2.

Let us assume for any two given implementations Ip and Iq, we have the following

sets:

Ap = {ap
1 , a

p
2 , . . . , a

p
n} (accepting certificate universe of Ip)

Rp = {r p
1 , r

p
2 , . . . , r

p
m} (rejecting certificate universe of Ip)

Aq = {aq
1 , a

q
2 , . . . , a

q
s} (accepting certificate universe of Iq)

Rq = {r q
1 , r

q
2 , . . . , r

q
t } (rejecting certificate universe of Iq)

Approach 1: To detect inconsistencies between Ip and Iq, one can check to see

whether either of the following formulas is satisfiable: ¬(
∨

(1≤i≤n) ap
i ↔

∨
(1≤j≤s) aq

j )

and ¬(
∨

(1≤i≤m) r p
i ↔

∨
(1≤j≤t) r q

j ) (↔ stands for logical equivalence). The first (resp.,

second) formula asserts that the accepting (resp., rejecting) paths of Ip and Iq are

not equivalent. Any model of either of the formulas will signify a noncompliant

instance. We, however, do not utilize this approach to detect noncompliance for

the following three reasons: (1) For each satisfiability query the SMT solver will

present one model (i.e., one noncompliant instance) even in the presence of multiple

noncompliant instances (We desire as many noncompliant instances instead

of just one at a time); (2) The resulting formulas are large and it may put heavy

burden on the SMT solver; (3) Due to the incompleteness caused by techniques used

to relieve path explosion, the extracted sets A and R may not be exhaustive (i.e.,

complete), yielding false positives.

Approach 2: In this approach, we first take each accepting path ap
i from Ap

and each rejecting path r q
j from Rq where 1 ≤ i ≤ n, 1 ≤ j ≤ t, and check to see

whether the formula ap
i ∧ r q

j is satisfiable by consulting an SMT solver. If the formula

is satisfiable, it signifies that there is at least one certificate chain that Ip accepts but
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Iq rejects. The model obtained for the formula from the SMT solver, can be used

to construct a concrete certificate chain signifying an evidence of inconsistency. We

can then repeat the same process by taking each accepting path from Iq and each

rejecting path from Ip. Note that, multiple pairs may induce inconsistencies due to

the same noncompliant behavior and sometimes best-effort manual analysis of the

source code is needed to detect the root cause.

4.3.4 Scalability Challenges of Applying Symbolic Execution

The application of symbolic execution in a straightforward way to extract the

sets A and R, considering all certificates in the chains and other arguments to the

CCVL function to have symbolic values, will not yield a scalable noncompliance

detection approach. Our feasibility evaluation have verified this observation. We

have also tried only one of the certificates in the chain to have symbolic values and

even then the symbolic execution did not finish due to resource exhaustion. The

scalability problem is predominantly due to symbolic value dependent loops—loops

whose terminating conditions depend on symbolic values—in the certificate parsing

implementation. One way to get around this challenge is to assume the correctness

of the parsing code and just focus on the core CCVL logic. Ignoring the parsing

logic, however, is not sufficient to capture the majority of the CCVL logic as some

of the sanity checks on the certificate fields are done during parsing. In addition,

capturing only the CCVL logic would require one to manually modify the internal

data structure where the certificate fields are stored after parsing. This approach

requires significant manual efforts (i.e., code comprehension) and is also error-prone.

4.3.5 Our Solution—SymCerts and Problem Decomposition

For addressing the scalability challenge we rely on carefully crafting symbolic

certificates and also on our domain specific observations. Rather than extracting the

complete sets A and R, we use domain-specific observations and specially crafted
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symbolic certificate chains to extract an approximation of the sets A and R, i.e.,

Aapprox and Rapprox. Our approximation has both under- and over-approximation. To

overcome path explosion, we create a chain of SymCerts where some portions of each

certificate have concrete values whereas the others have symbolic values. SymCerts

along with the following observation aid in achieving scalability during the extractions

of the sets Aapprox and Rapprox from an X.509 CCVL.

One domain specific observation we use is the logical independence between

certificate fields. For instance, the logic of checking whether a certificate is expired

according to its notAfter field is independent of the logic of checking whether a certifi-

cate’s issuer name matches with the subject name of the predecessor certificate in the

chain. In this case, we can try to capture the logic of checking certificate expiration

independently of the checking of issuer and subject names. Based on the notion of

independence, we group the certificate fields into equivalence classes where the logic

of fields in the same equivalence class should be extracted at the same time, that

is, fields in the same equivalence class should be marked to have symbolic values at

the same time. We leverage this observation by generating a SymCert chain for each

equivalence class where each element of the equivalence class has symbolic values

whereas the rest of the fields have concrete values. Note that we certainly do not

claim that the checking logic of all certificate fields are independent; there

are obviously certificate fields whose value influences one another. For instance, the

value of the isCA field of an X.509 certificate (i.e., whether the certificate is a CA

certificate) prescribes certain corresponding key usage purposes (i.e., affecting the

KeyUsage extension). In this case, the isCA field needs to be in the same equivalence

class as KeyUsage.

In our analysis, we conservatively partition the certificate fields into 2 equivalence

classes. We refer to these two equivalence classes as EqC1 and EqC2, respectively.

EqC1 has all the relevant certificate fields symbolic, except the Validity date time

period fields which are symbolic only in EqC2.



73

4.4 Implementation

In this section, we discuss additional challenges of applying symbolic execution to

CCVL code, and our approach to addressing these challenges. We also discuss other

aspects of implementing our noncompliance finding approach.

Challenge 1 (Complex Structure of X.509 Certificates)

X.509 certificates are represented in the Abstract Syntax Notation One (ASN.1)

[167, 168] notation. X.509 certificates are typically transmitted in byte streams en-

coded following the DER (Distinguished Encoding Rules), which are binary in nature.

Under the DER format, an X.509 certificate has the form 〈t, `, v〉 where t denotes a

type, ` denotes the length of the values in bytes, and finally v represents the value. t

can represent complex types such as a sequence where the value v can be recursively

made of other 〈t, `, v〉 triplets. Such nesting of 〈t, `, v〉 triplets inside a v field can be

arbitrarily deep.

The problem of marking the whole certificate byte-stream as symbolic is that,

during certificate parsing, the symbolic execution engine will try different values for `

as it is symbolic, and the parsing code will keep reading bytes without knowing when

to stop. This will cause memory exhaustion.

Approach—SymCerts (Certificates With Symbolic and Concrete Values)

To avoid the scalability problem, instead of using a fully symbolic certificate chain,

we develop a certificate chain in which each certificate byte-stream contains some of

concrete values and some symbolic values. We call each such certificate a SymCert.

We construct a SymCert in the following way: For each leaf 〈t, `, v〉 tuple (i.e.,

v contains a value instead of another 〈t, `, v〉 tuple) in a certificate byte-stream, we

ensure that the fields t and ` have concrete values whereas only the v field is symbolic.

Concrete values of t can be obtained from actual certificates and we use them as the

backbone for generating SymCerts. For the l field, we consult the RFC document
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to select appropriate concrete values. For instance, when marking the OIDs used in

the ExtKeyUsage extension symbolic, we give it a concrete length of 8, as most of the

standard key usage purposes defined in RFC 5280 [112] are 8-byte long.

Due to the complexity of DER byte-streams, it is difficult for a user to directly

manipulate and construct SymCerts from scratch. In addition, due to nesting, chang-

ing the length field (i.e., `) of a child 〈t, `, v〉 triplet may require adjustment on the

length field (i.e., `) of the parent 〈t, `, v〉 triplet. For this, we developed a Graphical

User Interface (GUI), by extending the ASN.1 JavaScript decoder [169]. Our GUI

allows a user to see and click on different certificate fields, so that they can be replaced

with a desired number of symbolic bytes, and the new length will be correctly ad-

justed. The GUI will then automatically generate code that can be used for symbolic

execution. We use OpenSSL to generate concrete certificate chains as the input to

our GUI, which constitute the basis of our SymCerts. The philosophy here is that all

major fields (e.g. optional extensions, criticality booleans) of a certificate need to be

explicitly available on the base input certificate, as it is difficult to mark nonexistent

fields symbolic.

Challenge 2 (System Time Handling)

Given that our symbolic execution of the implementations would happen at dif-

ferent times, if we simply allow the implementations to use the local system time,

then the constraints we have extracted would not be comparable, as the system time

elapses.

Approach—Constant Static Time We consider a fixed concrete time value for

the system time. We use the same concrete value for these inputs during the analysis

of all implementations. Using a symbolic variable is also possible, but using concrete

values has the advantage of reducing the complexity of the path constraints which

consequently improves scalability.
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Challenge 3 (Cryptographic Functions)

The cryptographic functions (e.g., for verifying digital signatures) called by the

CCVL contain loops dependent on symbolic data, which severely impact the scala-

bility of symbolic execution.

Approach—Cryptographic Stub Functions We abstract away the cryptographic

functions with stub functions. For instance, the function that matches the digital

signature of a certificate is abstracted away by a stub function that returns True indi-

cating the match was successful. In this work, we consider cryptographic correctness

beyond our scope. Instead, we are interested in finding out what fields are checked

and what restrictions are imposed on these fields.

Challenge 4 (Complex String Operations)

As part of the CCVL, implementations are sometimes required to perform complex

string operations (e.g., wild card matching, null checking) on certificate fields such

as subject name and issuer name. Faithfully capturing the string operations with

QF BVA logic (i.e., QFFOL formulas with equality, bit vector, and array theories)—

which is the underlying logic of the symbolic execution engine we use—does not scale

well.

Approach—Single Byte Strings We consider names and other string-based cer-

tificate fields to have a single byte symbolic value, which significantly improves the

scalability. However, because of this, our analysis misses out on finding noncompli-

ance due to erroneous string operations.

Challenge 5 (Hashing for Checking Multi-Field Equality)

When checking the equality of two name fields of certificates—name fields are com-

pound fields containing the following sub-fields such as street address, city, state/province,
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locality, organizational name & unit, country, common name—some implementations

take a hash of the concatenation of all the sub-fields and match the hash values, in-

stead of checking the equality of each sub-field. Trying to solve the constraints from

such a match would be similar to attacking the hash collision problem, which is not

scalable to analyze with symbolic execution due to symbolic data-dependent loops.

Approach—Hash Stub The hash function in question (i.e., SHA-1) returns a

20-byte hash value. We replace it with a SHA-1 stub which returns a 20-byte value

where the (symbolic) name sub-fields are packed together. Because of the single

byte approach we introduced to simplify string operations described in the previous

challenge, 20-byte is more than enough to pack all name sub-fields of interests.

Challenge 6 (Certificate Chain Length)

While symbolically executing the CCVL of a given implementation, one natu-

ral question that arises is: “How many certificates in the symbolic certificate chain

should we consider?” An X.509 CCVL implementation often parses the input X.509

certificate chain first and then checks the validity of different fields in the certificates

of the parsed chain. During symbolic execution, if the execution detects a loop whose

terminating condition relies on a symbolic value, it faces the dilemma of how many

times to unroll the loop. Such loops in the implementation often cause path explo-

sion in symbolic execution, resulting in incompleteness and scalability challenges. If

we consider the certificate chain length to be symbolic, then the symbolic execution,

especially during parsing, would try all possible values for the chain length, causing

memory exhaustion.

Approach—Concrete Chain Length For majority of our analysis, we consider a

certificate chain of length 3 such that one of the certificates is the root CA certificate,

the other is an intermediate CA certificate, and finally the remaining certificate is the

certificate of the server currently being authenticated. While analyzing the logic of
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checking the path length constraint of the basic constraint extension, we also consider

certificates with chain length 4 where we have two intermediate CA certificates.

Challenge 7 (Other aspects of Path Explosion)

After the simplifications described above, the symbolic execution engine still gen-

erates a large number of paths. We especially observed that making all the v values

of 〈t, `, v〉-tuples that represent certificate fields and extensions symbolic yields a lot

of paths.

Approach—Early Rejection and Grouping Fields We observed that imple-

mentations sometimes do not return early even in the case one of the certificates

cannot be parsed or one of the fields validity checks failed. This contributes to a

multiplicative factor to the number of paths. We judiciously applied early rejection

when parsing or validation check fail. Finally, we applied the logical independence

between certificate fields based on their semantics to decompose the noncompliance

finding fields. We generated two equivalence classes, one consists of time fields related

to the certificate Validity period checking, whereas the other contains all the remain-

ing fields. One could possibly employ a more aggressive grouping of fields that need

to be check together. We, however, make a conservative choice because if developer

incorrectly introduces artificial dependencies in the implementation, we would like to

capture them as well.

Challenge 8 (Time Field Comparison)

An X.509 certificate contains two time fields (i.e., notBefore and notAfter) which

are compared to the current system time. A time field can be represented in two

formats (i.e., GeneralizedTime and UTCTime). In GeneralizedTime, the time field

contains a 15-byte ASCII string where day, month, hour, minute, second contribute

2 bytes each; year contributes 4 bytes, and 1 byte is used to represent the time zone.
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For UTCTime, the only difference is that year contributes 2 bytes instead of 4. Sanity

checks are often performed to ensure the fields are well-formed (e.g., for minute, the

most significant digit cannot be larger than 6). Marking the format symbolic and let

the symbolic execution engine choose the length of the ASCII string contributes to

poor scalability.

Approach—Decomposing Time Fields In addition to checking noncompliance

in time fields handling independently from other fields, we further decompose the

analysis by analyzing the two time formats separately. We use two different SymCerts

during symbolic execution, one with UTCTime and the other with GeneralizedTime,

using the concrete length of the date time ASCII string according to the format.

Challenge 9 (Redundant Pair of Paths in Cross-Validation)

When cross-validating two implementations Ip and Iq, the upper bound of dis-

crepancies is |Ap| × |Rq| + |Aq| × |Rp|. Based on the number of paths in accepting

(e.g., Ap and Aq) and rejecting (e.g., Rp and Rq) universes, the maximum number

of noncompliance instances can be fairly large which creates a challenge for manual

inspection to identify the root cause of the noncompliance.

Approach—Iterative Pruning We observe that many pairwise discrepancies are

due to the same root cause. Suppose implementation Ip does not check a particular

field that Iq checks. In this case, the missing check in Ip’s accepting path will likely

be enumerated through many rejecting paths of Iq, resulting in a large number of

redundant noncompliance instances. To make it easier to analyze the results of cross-

validation, once we have identified such a case, we can concretize the value of that

specific field, repeat the extraction step and continue cross-validation with a pruned

search space.
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Challenge 10 (False Positives)

Due to different domain specific simplifications and the fact that we are abstracting

away cryptographic functions, our approach can yield false positives, predominantly

due to the path constraint extraction might not be capturing the real execution faith-

fully. In addition, the specification (i.e., RFC document) states some fields should

be checked by a certificate using system, without imposing whether the library or

application (the two of them constitute the system) should perform each check. Con-

sequently, SSL/TLS libraries have different API designs due to such unclear separa-

tion of responsibility. Some libraries might enforce all the checks during certificate

chain validation, while some might not and instead provide optional function calls for

application developers desiring such checks, and the other libraries might completely

delegate the task of implementing such checks to the application developers. As a

clear boundary cannot be drawn easily, false positives can arise if some optional but

provided checks are missed out during extraction.

Approach—Concrete Replay To avoid false positives, we use a real client-server

setup to help us verify our findings. We capitalize on the fact that a minimalistic

sample client code is often made available in the source tree by library developers to

demonstrate how the library should be used in application development and use such

clients to draw the baseline. To gain confidence that our extracted path constraints

adequately capture the real execution, for each accepted (resp., rejected) path con-

straint, we consult the SMT solver to obtain a concrete certificate chain and feed it

to a real client-server setup to see whether the client would actually accept (resp.,

reject) the chain. This helps us to see whether the real execution concurs with our

extraction. Similarly, during cross validation between implementations Ip and Iq, for

the discrepancies we found (in the form of a model provided by the SMT solver), we

construct a concrete certificate chain out of the model and use the client-server setup

to verify it is indeed the case that Ip would accept and Iq would reject the chain.
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4.5 Evaluation and Results

We applied our approach in testing 9 open-source implementations from 4 major

families of SSL/TLS library source trees, as shown in Table 4.1. Implementations

that have been tested in previous study by Brubaker et al. [1] are prefixed with an

asterisk. These libraries have seen active deployments in embedded systems and IoT

products to satisfy the security needs for connecting to the Internet (e.g. axTLS

in Arduino [151] and MicroPython [152] for ESP8266, mbedTLS, tropicSSL and Ma-

trixSSL on Particle hardware [149,150], etc.), and are sometimes used even in building

applications and libraries on conventional desktop platforms [157–161], due to their

performance and small footprint advantage. We test multiple versions of a library

from the same family in order to compare with previous work, and to see if the more

recent versions implement a more complete and robust validation logic.

In this section we first show statistics that justify the practicality of our approach,

and then present noncompliance findings grouped by how we uncovered them along

the 3 approaches described in Section 4.3.3, together with other discrepancies and

observations that we made while working with the libraries. Findings on recent ver-

sions of the implementations, whenever applicable, are reported to the corresponding

developers. Many of our reports had led to fixes being implemented in newer versions.

4.5.1 Implementation Efforts and Practicality

For our analysis, we used the KLEE symbolic execution engine [35] and the STP

SMT solver [164]. We added around 2000 lines of C++ code for implementing the

path constraint extraction and cross validation engines, around 500 lines of Python for

parsing path constraints and automating concrete test case generation, and around

400 lines of HTML plus less than 300 lines of JavaScript for the GUI that enables the

easy construction of SymCerts.

In order to implement the various optimizations described before, a limited amount

of new code need to be added to the libraries that we tested. As shown in Table 4.1,
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Table 4.1.: Practicality and efficacy of applying the SymCert approach in testing

various small footprint SSL/TLS Libraries

Library

(version)

Release

Date

Lines of

C code

in library

Lines

Added

Paths[
EqC1

]
Extraction

Time[
EqC1

]
Total

Paths[
EqC2

]
Extraction

Time[
EqC2

]
Noncompliance

Instances Found

axTLS

(1.4.3)

Jul

2011
16,283 72

276

(419)

∼ 1

minute
≤ 52 ≤ 1 minute 7

axTLS

(1.5.3)

Apr

2015
16,832 69

276

(419)

∼ 1

minute
≤ 52 ≤ 1 minute 6

* CyaSSL

(2.7.0)

Jun

2013
51,786 33

32

(504)

∼ 2

minutes
≤ 26 ≤ 1 minute 7

wolfSSL

(3.6.6)

Aug

2015
103,690 40

256

(31409)

∼ 1

hour
≤ 26 ≤ 1 minute 2

tropicSSL

(Github)

Mar

2013
13,610 66

16

(67)

∼ 1

minute
≤ 30 ≤ 1 minute 10

* PolarSSL

(1.2.8)

Jun

2013
29,470 66

56

(90)

∼ 1

minute
≤ 81 ≤ 1 minute 4

mbedTLS

(2.1.4)

Jan

2016
53,433 15

13

(536)

∼ 1

minute
≤ 41 ≤ 1 minute 1

* MatrixSSL

(3.4.2)

Feb

2013
18,360 9

8

(160)

∼ 1

minute
1 ≤ 1 minute 6

MatrixSSL

(3.7.2)

Apr

2015
37,879 30

3240

(8786)

∼ 1

hour
≤ 25 ≤ 1 minute 5

§ The fourth column of the table refers to the lines of code we added to the libraries to make them amenable to our

analysis. The fifth and sixth columns display the number of accepting (rejecting) paths we obtained when we made the

fields in equivalence class EqC1 symbolic, and the time it took to complete the extraction process, respectively. The

seventh and eighth columns show the upper bound of total paths (including both accepting and rejecting) we observed

when the fields in EqC2 are made symbolic, and the time it took for the path extraction process to complete, respectively.

no more than 75 lines of code were added to each of the library. Most of the new code

is used to implement a static system time (see Section 4.4-Challenge 2) and a stub

cryptographic signature check (Section 4.4-Challenge 3). Additionally, for CyaSSL

2.7.0, wolfSSL 3.6.6, and MatrixSSL 3.7.2, some code was added to implement the

hash stub (see Section 4.4-Challenge 5). PolarSSL 1.2.8 and tropicSSL needed a
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simplified version of sscanf(), and axTLS (both 1.4.3 and 1.5.3) needed a simplified

version of mktime(), to avoid symbolic-data dependent loops, both of which are used

for reading in and converting the format of date-time inputs.

Also shown in Table 4.1 are the performance statistics regarding path extraction.

We ran our experiments on a commodity laptop equipped with an Intel i5-2520M

CPU and 16GB RAM. Path extraction using EqC1 for most implementations finished

in minutes, while for some heavier ones it completed in hours. The total number of

paths ranges from hundreds to the level of ten thousands. For EqC2, we report the

upper bound of the total number of paths, referred to in the table as “Total Paths”,

because the actual number could vary within each library due to different treatments

(and possibly missing checks) for UTCTime and GeneralizedTime (see Section 4.5.3

and 4.5.4 for examples). For each library, extraction using EqC2 yielded paths at the

scale of tens, and finished within a minute.

4.5.2 Errors Discovered By Symbolic Execution

The first opportunity our approach provides is that, during symbolic execution,

certain low-level coding issues (e.g. memory access errors, division by zeros, etc.)

could be found.

Finding 1 (Incorrect extension parsing in CyaSSL 2.7.01)

As shown in Listing 4.5.2.i, due to a missing break statement after DecodeAltNames(),

the execution falls through to the next case and also invokes DecodeAuthKeyId().

Consequently, some bytes of the subject alternative name extension, which we made

symbolic, will overwrite the authority key identifier (a pre-computed hash value) at

the time of parsing. The error manifests later during certificate chain validation,

when the authority key identifier undergoes some bit shifting operations and modulo

arithmetic, effectively turning it into an array accessing index, which is then used to

1This bug has been fixed in newer versions of CyaSSL and wolfSSL.
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fetch a CA certificate from a table of trusted CA certificates. Since some bytes of the

authority key identifier were incorrectly made symbolic during parsing, the execution

engine caught potential memory access errors in fetching from the table. This was

not reported in [1], which applied fuzzing to test CyaSSL 2.7.0. Our conjecture is

that it would be difficult for concrete test cases to hit this bug, as the execution is

likely to fall through without triggering any noticeable crashes.

Listing 4.5.2.i: Extension Processing In CyaSSL 2.7.0

switch (oid) {

...

case AUTH_INFO_OID:

DecodeAuthInfo (& input[idx], length , cert);

break;

case ALT_NAMES_OID:

DecodeAltNames (& input[idx], length , cert);

case AUTH_KEY_OID:

DecodeAuthKeyId (&input[idx], length , cert);

break;

... }

4.5.3 Findings From Simple Search of Path Constraints

Fields of certificates, represented by symbolic variables in our approach, will ap-

pear on path constraints if they are involved in branching decisions either directly or

indirectly (e.g. some other decision variables were calculated based on their values).

Consequently, the second opportunity our approach offers is that immediately after

extracting path constraints using symbolic execution, missing checks of fields can be

discovered by performing “grep” on the path constraints.
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Finding 2 (pathLenConstraint ignored in CyaSSL 2.7.0, wolfSSL 3.6.62)

We noticed that both of the aforementioned libraries fail to take pathLenConstraint

into consideration, which means any such restrictions imposed by upper level issuing

CAs would be ignored by the libraries.

This was not reported in [1], where fuzzing was applied to CyaSSL 2.7.0. Interest-

ingly, [1] instead reported that CyaSSL 2.7.0 incorrectly rejects leaf CA certificates

given the intermediate CA certificate has a pathLenConstraint of 0, and is noncompli-

ant because such certificates should be accepted according to the RFC. Our findings,

however, demonstrate that CyaSSL 2.7.0 could not possibly be rejecting certificates

for such a reason because it completely ignores pathLenConstraint. Testing CyaSSL

2.7.0 with concrete certificates confirmed our finding. Thus, the conclusion in [1] that

CyaSSL 2.7.0 misinterprets RFC regarding pathLenConstraint and leaf CA certificate

is incorrect. We conjecture that this is because the frankencerts used as evidence

for such conclusion also happen to contain other errors, and were thus rejected by

CyaSSL 2.7.0. This demonstrates the difficulty of interpreting results obtained from

fuzzing.

Finding 3 (pathLenConstraint of intermediate CA certificates ignored in trop-

icSSL, PolarSSL 1.2.83)

Our path constraints show that even though both tropicSSL and PolarSSL 1.2.8

recognize the pathLenConstraint variable during parsing time, they check only the one

that is on the trusted root certificate during chain validation, and ignores those that

are on intermediate CA certificates of a given chain.

In addition to the fact that PolarSSL 1.2.8 does not check pathLenConstraint on in-

termediate CA certificates, another simple search found that PolarSSL 1.2.8 does not

check whether the leaf certificate is CA or not (which is not a noncompliant behavior).

2wolfSSL 3.9.10 has implemented support for pathLenConstraint [170].
3The enforcement of pathLenConstraint from intermediate CA certificates has been introduced since
PolarSSL 1.2.18 [171].
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It was however reported in [1] that PolarSSL 1.2.8 violates the RFC by always re-

jecting leaf CA certificates if the intermediate CA certificate has a pathLenConstraint

of 0. This is incorrect because PolarSSL 1.2.8 checks neither pathLenConstraint on

intermediate CA certificates, nor whether the leaf certificate is CA or not.

Finding 4 (Certain attribute types of distinguished names ignored in axTLS

1.4.3 and 1.5.3)

Both axTLS 1.4.3 and 1.5.3 ignore the country, state/province and locality at-

tribute types of the issuer and subject names. In other words, organizations from

different countries and states having the same name would be considered equivalent

during matching. This is a clear deviation from RFC 5280 (Section 4.1.2.4) [112].

We have this finding reported to the developer of axTLS, who acknowledged the

existence of the problem and implemented a fix in the new 2.1.1 release.

Finding 5 (Inability to process GeneralizedTime in axTLS 1.4.3, tropicSSL)

RFC 5280 (Section 4.1.2.5) [112] states “Conforming applications MUST be able

to process validity dates that are encoded in either UTCTime or GeneralizedTime.”

However, given our SymCerts with GeneralizedTime, both tropicSSL and axTLS 1.4.3

returned only 1 concrete rejecting path with an empty path constraint, hence we

conclude that the aforementioned libraries cannot handle GeneralizedTime, which is a

non-conformance to the RFC. However, the same SymCerts managed to yield mean-

ingful path constraints in axTLS 1.5.3, showing that support for GeneralizedTime has

been added in the newer version of axTLS.



86

Finding 6 (KeyUsage and ExtKeyUsage being ignored in MatrixSSL 3.4.2,

CyaSSL 2.7.0, tropicSSL)

The three aforementioned implementations do not check KeyUsage and ExtKeyUsage

extensions. This noncompliance implies that certificates issued specifically for certain

intended purposes (e.g. only for software code signing) can be used to authenticate a

server in SSL/TLS handshakes. Honoring such restrictions imposed by issuing CAs

allows the PKI to implement different levels of trust, and help avoid certificate (and

CA) misuse in general.

Finding 7 (notBefore ignored in tropicSSL, PolarSSL 1.2.8; validity not checked

in MatrixSSL 3.4.2)

Our SymCerts revealed that PolarSSL 1.2.8 does not check the notBefore field, and

MatrixSSL 3.4.2 does not have an inbuilt validity check, as there is only 1 path, which

is an accepting path with empty constraints, for each of the aforementioned libraries

in their respective cases. This is coherent with the findings in [1]. MatrixSSL 3.4.2

delegates the task of checking certificate validity to application developers. tropicSSL

has the same problem as PolarSSL 1.2.8, which is not a surprise considering the fact

that tropicSSL is a fork of PolarSSL.

Finding 8 (hhmmss of UTCTime ignored in tropicSSL, axTLS 1.4.3 and

1.5.3; hhmmss of both UTCTime and GeneralizedTime ignored in MatrixSSL

3.7.2)

Given UTCTime on certificates, even though axTLS 1.4.3 and 1.5.3 check for

both notBefore and notAfter, they do not take the hour, minute and second into

consideration, which means that there could be a shift for as long as a day in terms

of rejecting future and expired certificates. This finding is particularly interesting for

axTLS 1.5.3, as its implementation of GeneralizedTime support can actually handle
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hour, minute and second, but for some reason UTCTime is processed in a laxer manner.

Following our report, the developer of axTLS has acknowledged the problem and is

currently considering a fix. Our extracted path constraints show and tropicSSL also

suffer from the same problem.

Unlike its older counterpart, MatrixSSL 3.7.2 has implemented validity checks that

handle both UTCTime and GeneralizedTime. However, our extracted path constraints

revealed that MatrixSSL 3.7.2 does not attempt to check the time portion of the

validity fields, regardless of whether the date-time information is in UTCTime or

GeneralizedTime. The developers of MatrixSSL had explained to us the decision to

ignore the time portion was made due to its embedded origin, where a local timer

might not always be available, and in their own words “having date set correctly is

difficult enough”. They have also admitted that as the result of such decision, a

24-hour shift in rejecting future and expired certificates is inevitable.

Finding 9 (notAfter check applies only to leaf certificate in tropicSSL)

Not just that future certificates are not rejected (e.g. missing check for notBefore

as described above) in tropicSSL, our path constraints show that, given a chain of

certificates, the check on notAfter only applies to the leaf one. This could lead to

severe problems, for instance, if a retired private key of an intermediate issuing CA

corresponding to an expired certificate got leaked, attackers would be able to issue

new certificates and construct a new chain of certificate that will be accepted by

tropicSSL.

Finding 10 (Incorrect CA certificate and version number assumptions in

axTLS 1.4.3 and 1.5.3, CyaSSL 2.7.0, MatrixSSL 3.4.2)

The aforementioned implementations deviate from the RFC in how they estab-

lish whether certificates of various versions are CA certificates or not. As explained

previously in Section 4.2.1, in case the certificate has a version older than 3, some
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out-of-band mechanisms would be necessary to verify whether it is a CA certificate or

not. axTLS 1.4.3 and 1.5.3 assume certificates to be CA certificates regardless of the

version number. CyaSSL 2.7.0 also does not check the version number, though when-

ever the basicConstraints extension is present, it will be used to determine whether the

certificate is a CA certificate or not. MatrixSSL 3.4.2 does check the version number,

and would check the basicConstraints extension for version 3 certificates. However, it

would just assume certificates older than version 3 to be CA certificates. The findings

on CyaSSL 2.7.0 and MatrixSSL 3.4.2 are coherent with the relevant results reported

in [1].

Finding 11 (Unrecognized critical extensions in MatrixSSL 3.4.2, CyaSSL

2.7.0, axTLS 1.4.3 and 1.5.3)

Section 4.2 of RFC 5280 states “A certificate-using system MUST reject the cer-

tificate if it encounters a critical extension it does not recognize or a critical extension

that contains information that it cannot process.” [112]. Not rejecting unknown crit-

ical extensions could lead to interoperability issues. For example, certain entities

might define and issue certificates with additional non-standard custom extensions,

and rely on the default rejection behavior as described in RFC 5280 to make sure

that only a specific group of implementations can handle and process their certifi-

cates. However, we found that MatrixSSL v3.4.2 and CyaSSL 2.7.0 would accept

certificates with unrecognized critical extensions, which is consistent to the findings

in [1].

In addition, we found that axTLS 1.4.3 and 1.5.3 would also accept certificates

with unrecognized critical extensions. In fact, based on the path constraints we have

extracted, they do not recognize any of the standard extensions that we wanted to test

at all, which deviates from RFC 5280, as Section 4.2 says the minimum requirement

for applications conforming to the document MUST recognize extensions like key

usage, basic constraints, name constraints, and extended key usage, etc. Similarly
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for mbedTLS 2.1.4, as we have noticed for not implementing support for the name

constraints extension, is also noncompliant in that sense. The implication of this is

that restrictions imposed by issuing CAs in the form of name constraints will not be

honored by mbedTLS 2.1.4, resulting in potential erroneous acceptance of certificates.

At the time of writing, developers of mbedTLS have indicated that they currently have

no plans on implementing support for this extension, and suggested that application

developers can implement their own if desired.

4.5.4 Findings From Cross-Validating Libraries

The final opportunity would be to cross-validate libraries, specifically, for each

accepting path of library A and each rejecting path of library B, we perform a con-

junction and see if the resulting constraints would be solvable or not. If yes, it signifies

a discrepancy exists between the two libraries.

Finding 12 (ExtKeyUsage OID handling in wolfSSL 3.6.6, MatrixSSL 3.7.4)

Our path constraints also unveiled that despite being two of the few libraries

that support the extended key usage extension, both wolfSSL 3.6.6 and MatrixSSL

3.7.2 opted for a somewhat lax shortcut in handling the extension: given the object

identifier (OID) of a key usage purpose, they do a simple summation (referred collo-

quially as a non-cryptographic digest function by the developers of MatrixSSL) over

all nodes of the OID, and then try to match only that sum. For example, under such

scheme, the standard usage purpose “server authentication” (OID 1.3.6.1.5.5.7.3.1,

DER-encoded byte values are 0x2B 0x06 0x01 0x05 0x05 0x07 0x03 0x01) would be

treated as decimal 71.

Notice that the extension itself is not restricted to only hold standard usage pur-

poses that are defined in the RFC, and custom key usage purposes are common4.

4For example, Microsoft defines its own key usage purposes and the corresponding OIDs that are
deemed meaningful to the Windows ecosystem [172] (the extension is referred to as “Application
Policy” in Microsoft terminology, and is not to be confused with “Certificate Policy”).
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Since OIDs are only meant to be unique in a hierarchical manner, the sums over

nodes of OIDs are not necessarily unique. Hypothetically some enterprises under the

private enterprise arc (1.3.6.1.4.1) could define OIDs to describe their own key usage

purposes, and if added to the extension, those OIDs might be incorrectly treated as

some of the standard key usage purposes by the two libraries. This could be prob-

lematic for both interoperability and security, as custom key usage purposes would

be misinterpreted, and the standard ones could be spoofed.

This finding is a good example of how our approach can be used to discover the

exact treatments that variables undergo inside the libraries during execution. It might

also be difficult for unguided fuzzing to hit this particular problem.

We contacted the corresponding developers of the 2 libraries regarding this, and

both acknowledged the problem exists. wolfSSL has introduced a more rigorous OID

bytes checking since version 3.7.35, and MatrixSSL is planning to incorporate addi-

tional checks of the OID bytes in a new release.

Finding 13 (Incorrect interpretation of UTCTime year in MatrixSSL 3.7.2,

axTLS 1.4.3 and 1.5.3, tropicSSL)

Since UTCTime reserves only two bytes for representing the year, one needs to

be cautious when interpreting it. RFC 5280 Section 4.1.2.5.1 [112] says that when

the YY of a UTCTime is larger than or equal to 50 then it should be treated as 19YY,

otherwise it should be treated as 20YY. This essentially means that the represented

range of year is 1950 to 2049 inclusively.

During cross-validation, we noticed that in certain libraries, some legitimate years

are being incorrectly rejected (and accepted). A quick inspection of the path con-

straints, concrete-value counterexamples, and finally the source code, found the fol-

lowing instances of noncompliance.

5https://github.com/wolfSSL/wolfssl/commit/d248a7660cc441b68dc48728b10256e852928ea3

https://github.com/wolfSSL/wolfssl/commit/d248a7660cc441b68dc48728b10256e852928ea3
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As shown in Listing 4.5.4.i, MatrixSSL 3.7.2 interprets any YY less than 96 to be

in the twenty first century. This means certificates that had expired back in 1995

would be considered valid, as the expiration date is incorrectly interpreted to be in

2095. On the other hand, long-living certificates that have a validity period began in

1995 would be treated as not valid yet. The developers acknowledged our report on

this and have since implemented a fix in a new release.

Listing 4.5.4.i: UTCTime year adjustment in MatrixSSL 3.7.2

y = 2000 + 10 * (c[0] - ’0’) + (c[1] - ’0’); c += 2;

/* Years from ’96 through ’99 are in the 1900’s */

if (y >= 2096) { y -= 100; }

Listing 4.5.4.ii: UTCTime year adjustment in tropicSSL

to ->year += 100 * (to->year < 90);

to ->year += 1900;

A similar instance of noncompliance was found in tropicSSL, as shown in List-

ing 4.5.4.ii. tropicSSL interprets any YY less than 90 to be in the twenty first century.

Listing 4.5.4.iii: UTCTime year adjustment in axTLS 1.4.3 and 1.5.3

if (tm.tm_year <= 50) { /* 1951 -2050 thing */

tm.tm_year += 100; }

A similar issue exists in both axTLS 1.4.3 and 1.5.3. As shown in Listing 4.5.4.iii,

there is an off-by-one error in the condition used to decide whether to adjust the

year or not. In this case, the year 1950 would be incorrectly considered to mean 2050.

Based on the inline comment, it seems to be a case where the developer misinterpreted

the RFC. A fix has been implemented in a new version of axTLS following our report.
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Finding 14 (Incorrect timezone adjustment in MatrixSSL 3.7.2)

During cross-validation with other libraries, we noticed that the boundary of

date checking in the path constraints of MatrixSSL 3.7.2 was shifted by one day.

A quick inspection of the date time checking code found that MatrixSSL 3.7.2 uses

the localtime_r() instead of gmtime_r() to convert the current integer epoch time

into a time structure. The shift was due to the fact that in conventional libc imple-

mentations, localtime_r() would adjust for the local time zone, which might not

necessarily be Zulu, hence deviating from the RFC requirements.

Assuming the date time on certificates are in the Zulu timezone, the implication

of this subtle issue is that for systems in GMT-minus time-zones, expired certifi-

cates could be considered still valid because of the shift, and certificates that just

became valid could be considered not yet valid. Similarly, for systems in GMT-plus

time-zones, certificates that are still valid might be considered expired, and future

certificates that are not yet valid would be considered valid.

We discussed this with the developers of MatrixSSL. They conjectured the reason

for using localtime_r() instead of gmtime_r() was due to the latter being unavail-

able on certain embedded platforms. They have agreed, however, as MatrixSSL is

gaining popularity on non-embedded platforms, in a new release, they will start using

gmtime_r() on platforms that support it.

Finding 15 (Overly restrictive notBefore check in CyaSSL 2.7.06)

RFC 5280 Section 4.1.2.5 says “The validity period for a certificate is the period

of time from notBefore through notAfter, inclusive.” However, when cross-validating

CyaSSL 2.7.0 with other libraries, from the concrete counterexamples we noticed

that discrepancy exists in how the same notBefore values would be accepted by other

libraries but rejected by CyaSSL 2.7.0, while such discrepancy was not observed with

6This has been fixed in newer versions of CyaSSL and WolfSSL.
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notAfter. An inspection of the notBefore checking code yielded the following instance

of noncompliance:

Listing 4.5.4.iv: Erroneous “less than” check in CyaSSL 2.7.0

static INLINE int DateLessThan(const struct tm* a,

const struct tm* b)

{ return !DateGreaterThan(a,b); }

Notice that the negation of > is ≤, not <, which explains why if the current date

time happen to be the same as the one described in notBefore, the certificate would

be considered future (not valid yet) and rejected. Hence the notBefore checking in

CyaSSL 2.7.0 turns out to be overly restrictive than what the RFC mandates.

This is again a new result, comparing to the previous work [1] that also studied

CyaSSL 2.7.0. Our conjecture is that given a large number of possible values, it might

be difficult for unguided fuzzing to hit boundary cases, hence such a subtle logical

error eluded their analysis.

Finding 16 (KeyUsage and ExtKeyUsage being ignored in PolarSSL 1.2.8)

The fact that PolarSSL 1.2.8 does not check KeyUsage and ExtKeyUsage, evaded

our simple search approach but was caught during cross-validation, as the implemen-

tation actually parses the two extensions, hence some constraints were added as the

result of several basic sanity checks happened during parsing. However, during cross-

validation, it became clear that apart from the parsing sanity checks, PolarSSL 1.2.8

does not do any meaningful checks on KeyUsage and ExtKeyUsage.

In fact, this resulted in another instance of noncompliance, as PolarSSL 1.2.8

would not reject certificates with KeyUsage or ExtKeyUsage, even if those two exten-

sions were made critical, and it does not perform any meaningful checks apart from

merely parsing them. This is an example where a library is intended to handle an

extension but was not able to, because of incomplete implementation.
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This is consistent with similar results reported in [1], although the finding that

PolarSSL 1.2.8 does not check the KeyUsage extension on intermediate CA certificates

was not reported in that paper.

Finding 17 (pathLenConstraint of trusted root misinterpreted in tropicSSL)

During cross validation, it became clear to us that, in tropicSSL: (1) on one hand,

some accepting paths would allow the pathLenConstraint variable to be 0; (2) on the

other hand, some rejecting paths reject because the pathLenConstraint was deemed to

be smaller than an unexpectedly large boundary. In both cases, the pathLenConstraint

variable appears to have been misinterpreted by tropicSSL.

We suspect that this might be due to the value 0 in the internal parsed certificate

data structure is used to capture the case where the pathLenConstraint variable is

absent (i.e. no limit is imposed). A quick inspection of the parsing code revealed

that our suspicion is indeed correct. In fact, the parsing code is supposed to always

add 1 to the variable if it is present on the certificate, but a coding error7 of missing a

dereferencing operator (*) in front of an integer pointer means that the increment was

applied to the pointer itself but not the value, hence the observed behavior described

above.

This subtle bug has a severe implication: it completely defeats the purpose of

imposing such restriction on a certificate, as a pathLenConstraint of 0 would be incor-

rectly treated to mean that the chain length could be unlimited.

Finding 18 (Not critical means not a CA in tropicSSL)

During cross validation, we also noticed that when the intermediate CA certifi-

cate’s basicConstraints extension is set to non-critical, and the isCA boolean is set to

True, tropicSSL would consider the intermediate CA certificate not a CA certificate.

Additionally, in the path constraints, the symbolic variable representing the critical-

7This has been fixed in later versions of PolarSSL and mbedTLS.
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ity of basicConstraints and the one that represents the isCA boolean are always in

conjunction through a logical AND.

A quick inspection found the following problem in the parsing code that handles

the basicConstraints extension:

Listing 4.5.4.v: Incorrect adjustment to the isCA boolean in tropicSSL

*ca_istrue = is_critical & is_cacert;

This interpretation of the basicConstraints extension deviates from the specifica-

tion, as RFC 5280 says that clients should process extensions that they can recognize,

regardless of whether the extension is critical or not. The criticality of basicConstraints

should not affect the semantic meaning of attributes in the extension itself. This is

an example of a CCVL being overly restrictive.

4.5.5 Other findings

Here we present other interesting findings that are not explicitly noncompliant

behaviors deviating from RFC 5280.

Extra 1 (Ineffective date string sanity check in MatrixSSL 3.7.2)

During cross-validation, we noticed that date time byte values in MatrixSSL 3.7.2

are not bounded for exceedingly large or unexpectedly small values. However, in the

constraints, we see combinations of whether each byte is too small or not (though

not affecting the acceptance decision), which looked suspiciously like a failed lower

boundary check. A quick inspection of the certificate parsing code unveiled the snip-

pet shown in Listing 4.5.5.i that is meant to vet a given date string from a certificate,

and reject it with a parser error if the values are outside of an expected range. Unfor-

tunately, due to incorrectly using the && operator instead of ||, the if conditions are

never satisfiable. This is also proven by the fact that if we symbolically execute the

code snippet in Listing 4.5.5.i, all possible execution paths returns 1. Consequently
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that code snippet would actually never reject any given strings, hence completely

defeating the purpose of having a sanity check.

Listing 4.5.5.i: Date-time string sanity check in MatrixSSL 3.7.2

if (utctime != 1) { /* 4 character year */

if (*c < ’1’ && *c > ’2’) return 0; c++; /* Year */

if (*c < ’0’ && *c > ’9’) return 0; c++;

}

if (*c < ’0’ && *c > ’9’) return 0; c++;

if (*c < ’0’ && *c > ’9’) return 0; c++;

if (*c < ’0’ && *c > ’1’) return 0; c++; /* Month */

if (*c < ’0’ && *c > ’9’) return 0; c++;

if (*c < ’0’ && *c > ’3’) return 0; c++; /* Day */

if (*c < ’0’ && *c > ’9’) return 0;

return 1;

Following our report, the developers of MatrixSSL have acknowledged this is indeed a

faulty implementation. Along with other fixes being implemented to make date-time

processing more robust, they have decided that this sanity check will no longer be

used in newer versions of MatrixSSL.

Extra 2 (notBefore and notAfter bytes taken “as is” in CyaSSL 2.7.0, WolfSSL

3.6.6, axTLS 1.4.3 and 1.5.3)

For the four aforementioned implementations, we noticed during cross-validation

that they do not perform any explicit boundary checks on the value of the date time

value bytes of notBefore and notAfter, and just assumed that those bytes are going to

be valid ASCII digits (i.e. 0–9). It is hence possible to put other ASCII characters

in the date time bytes and obtain an exceptionally large (small) values for notAfter

(notBefore), though this does not seem to be an imminent threat, nor does it violate

the RFC, as the RFC did not stipulate what implementations should do.
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Extra 3 (Timezone Handling)

Another discrepancy that we have observed during cross-validating path con-

straints of different libraries was how they impose/assume the time zone of notBefore

and notAfter on certificates. Specifically, we notice that mbedTLS 2.1.4 and wolfSSL

v2.3.3 would reject certificates that do not have the timezone ending with a ‘Z’.

This is possibly due to the fact that RFC 5280 [112] mandates conforming CAs

to express validity in Zulu time (a.k.a GMT or Zero Meridian Time) when issuing

certificates, regardless of the type being UTCTime or GeneralizedTime. Other imple-

mentations like MatrixSSL 3.7.2, axTLS 1.5.3 and PolarSSL 1.2.8 ignore the timezone

character and simply assume the Zulu timezone is always being used.

This is arguably an example of under-specification, as it is not clear whether

implementations should try to handle (with proper time zone adjustment) or reject

certificates with a non-Zulu timezone, since RFC 5280 [112] did not explicitly mandate

an expected behavior.

4.6 Discussions

4.6.1 Takeaway for Application Developers

As a takeaway for application developers that need to use SSL/TLS libraries

for processing X.509 certificates, a general rule of thumb is to upgrade to newer

versions of the libraries if possible. As demonstrated by our findings, newer versions

of implementations, even when originated from the same source tree as their legacy

counterparts, are better equipped in terms of features and extension handling, as well

as in general having more rigorous checks. Holding on to legacy code could potentially

hurt both security and interoperability. Unfortunately, regular software patching,

particularly for IoT devices, does not seem to happen widespread enough [173].

We understand that due to the needs to optimize for different application scenarios

(e.g. small footprint for resource constrained platforms), certain features might not
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be implemented in their entirety as described in the standard specifications. In order

to help application developers to better understand the trade-offs and make a more

well-informed decision in choosing which SSL/TLS library to use, we believe that one

possibility would be to have a certification program that tests for implementation

conformance and interoperability, similar to that of the IPv6 Ready Logo Program

[174], and the High Definition Logos [175]. For example, an “X.509 Gold” for libraries

that implement most required features correctly, and an “X.509 Ready” for libraries

that can only handle the bare minimum but are missing out on certain features.

4.6.2 Limitations

Since our noncompliance detection approach critically relies on symbolic execution

which is known to suffer from path explosion, especially in the presence of symbolic

data-dependent loops, it is deliberately made to trade away completeness for

practicality (i.e., our approach is not guaranteed to reveal all possible noncompli-

ances in an implementation and can have false negatives).

Our current scope of analysis does not include the logic for checking certification

revocation status and hostname matching. As noted in [1], for both revocation status

checking and hostname matching, while some libraries provide relevant facilities, some

delegate the task to application developers. In addition, a typical implementation of a

hostname matching logic uses complex string operations and analyzing these require

a dedicated SMT solver with support for the theory of strings [176]. We leave that

for future work.

Moreover, as we use concrete values in SymCerts, symbolic execution sway away

from rigorously exercising the parsing logic. Though we have uncovered parsing bugs

as reported in Section 4.5, our scrutiny on the parsing code is not meant to be com-

prehensive. Noticeably, low-level memory errors due to incorrect buffer management

in the parsing code, as reported in a recent Vulnerability Note [177], can elude our

analysis.
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4.6.3 Threat to Validity

In some cases during certificate validation, it is not clear who is required to perform

the validity check on a field, i.e., the underlying library or the application using the

library. The RFC states that some specific validity check must be performed without

clearly identifying the responsible party. This unclear separation of responsibilities

have resulted in libraries opting for significantly different API designs. We rely on

example usage—often come with the source code in the form of a sample client—to

draw a boundary for extracting the approximated certificate accepting (and rejecting)

universes. Optional function calls to extra checking logics, if not demonstrated in the

sample client programs, will be missed by our analysis. Additionally, if some of the

checks performed on certificates are being pushed down to a different phase during

SSL/TLS handshake instead of the server certificate validation phase, these checks

might be missing from our extraction. We rely on the concrete client-server replay

setup to catch them and iteratively include them in the extraction.

Our optimization often rely on the expectation that the value of some fields are

handled in the implementation in an uniform way. For checking validity of fields

that can have variable lengths, we assume the implementation treats each regular

length (not corner cases) uniformly. In addition, we also assume that the semantic

independence of certain certificate fields are maintained in the implementation. For

instance, we assume that the certificate validity fields are not dependent on any other

fields. Although we have observed that this seems to be the case and the RFC supports

it, hypothetically a developer can mistakenly create an artificial dependency.

4.6.4 Future Directions

At the time of writing, existing work on reference SSL/TLS implementations

[21,22,178] do not include a formally verified X.509 certificate validation logic. Possi-

ble future efforts made along this direction on building a high-confidence implemen-

tation of X.509 validation can be used as references to help put verdicts on whether
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behavioral discrepancies found in other implementations are indeed incorrect and

noncompliant.

4.7 Conclusion

In this research, we present a novel approach that leverages symbolic execution

to find noncompliance in X.509 implementations. In alignment with the general con-

sensus, we observe that due to the recursive nature of certificate representation, an

off-the-shelf symbolic execution engine suffers from path explosion problem. We over-

come this inherent challenge in two ways: (1) Focusing on real implementations with

a small resource footprint; (2) Leveraging domain-specific insights, abstractions, and

compartmentalization. We use SymCerts—certificate chains in which each certificate

has a mix of symbolic and concrete values—such that symbolic execution can be made

scalable on many X.509 implementations while meaningful analysis can be conducted.

We applied our noncompliance approach to analyze 9 real implementations se-

lected from 4 major families of SSL/TLS source base. Our analysis exposed 48 in-

stances of noncompliance, some of which has severe security implications. We have

responsibly shared our new findings with the respective library developers. Most of

our reports have generated positive acknowledgments from the developers, and led to

the implementation of fixes to the said problems in new releases.
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5. SYSTEMATICALLY TESTING SEMANTIC

CORRECTNESS OF PKCS#1 v1.5 SIGNATURE

VERIFICATION

5.1 Introduction

Developing a deployable cryptographic protocol is by no means an easy feat. The

journey from theory to practice is often long and arduous, and a small misstep can

have the security guarantees that are backed by years of thorough analysis completely

undone. Given well-defined cryptographic constructs originated from mathematical

problems that are believed to be hard to solve, proving their functional correctness

with respect to the relevant assumptions and security models is hardly the end of

the journey. Because of the restrictive assumptions used in designing cryptographic

constructs, in reality, additional glue protocols are often needed to generalize such

constructs into being able to handle inputs of diverse length and formats. Sometimes

glue protocols are also used to wrap around cryptographic constructs for exploiting the

duality of certain security guarantees to achieve alternative properties. After careful

designs have been devised and standardized, it is also necessary for implementations to

faithfully adhere to the specification, in order to ensure the retention of the original

designed security and functionality goals in actual deployments. Implementations

that deviate from the standard and do not achieve the prescribed level of robustness

can lead to a plethora of attacks [7, 8, 55, 179].

The PKCS#1 v1.5 signature scheme, surrounding the RSA algorithm, is one such

glue protocol that is widely deployed in practice. Used in popular secure communi-

cation protocols like SSL/TLS and SSH, it has also been adapted for other scenarios

like signing software. Prior work has demonstrated that lenient implementations of

PKCS#1 v1.5 signature verification can be exploited in specific settings (e.g., when
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small public exponents are being used) to allow the forgery of digital signatures with-

out possession of the private exponent nor factorizing the modulus [7, 8, 11–15]. The

identification of such implementation flaws, however, has been mostly based on man-

ual code inspection [7, 8]. The focus of this research1 is thus to develop a systematic

and highly automated approach for analyzing semantic correctness of implementa-

tions of protocols like PKCS#1 v1.5 signature verification, that is, whether the code

adheres to and enforces what the specification prescribes.

Our approach. For identifying semantic weaknesses of protocol implementa-

tions, we propose to perform symbolic analysis of the software [147]. Directly applying

off-the-shelf symbolic execution tools [35,148] to test PKCS#1 v1.5 implementations,

however, suffers from scalability challenges. This is due to the fact that the inputs

to such protocols are often structured with variable length fields (e.g., padding), and

can sometimes contain sophisticated ASN.1 objects (e.g., metadata).

One might question the applicability of symbolic analysis on implementations of

a cryptographic protocol. The key intuition that we leverage in our approach, is that

while the underlying mathematics of cryptographic constructs are typically non-linear

in nature, which are often difficult to analyze with constraint solvers, the various

variable-sized components used in glue protocols like PKCS#1 v1.5 often exhibit

linear relations among themselves and with the input buffer (e.g., sum of component

lengths should equal to a certain expected value). Using linear constraints stemming

from such relations, we can guide symbolic execution into automatically generating

many meaningful concolic test cases, a technique we refer to as meta-level search.

To further address scalability challenges faced by symbolic execution, we draw

insights from the so-called human-in-the-loop idea [180]. With domain knowledge on

the protocol design and input formats, human expertise can partition the input space

in a coarse-grained fashion by grouping together parts of the input buffer that should

be analyzed simultaneously, making them symbolic while leaving the rest concrete.

1A shorter version of this chapter was published at The Network and Distributed System Security
Symposium (NDSS) 2019 as a conference paper.
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A good partition strategy should constrain and guide symbolic execution to focus

on subproblems that are much easier to efficiently and exhaustively search than the

original unconstrained input space, and hence achieve good coverage while avoiding

intractable path explosions due to loops and recursions.

To facilitate root-cause analysis of an identified deviation, we design and develop

a constraint provenance tracking (CPT) mechanism that maps the different clauses

of each path constraint generated by symbolic execution to their source level origin,

which can be used to understand where certain decisions were being made inside

the source tree. Our carefully designed CPT mechanism has been demonstrated to

incur only modest overhead while maintaining sufficient information for identifying

the root-cause of deviations in the source code.

Case Study. The PKCS#1 v1.5 signature scheme is a good candidate for

demonstrating the effectiveness of our approach in analyzing semantic correctness,

as the protocol itself involves diverse glue components. As we will explain later, to

our surprise, even after a decade since the discovery of the original vulnerability [8],

several implementations still fail to faithfully and robustly implement the prescribed

verification logic, resulting in new variants of the reported attack.

Findings. To show the efficacy of our approach, we first use it to analyze

2 legacy implementations of PKCS#1 v1.5 signature verification that are known to

be vulnerable. Our analysis identified not only the known exploitable flaws, but

also revealed some additional weaknesses. We then analyze 15 recent open-source

implementations with our approach. Our analysis revealed that 6 of these imple-

mentations (i.e., strongSwan 5.6.3, Openswan 2.6.50, axTLS 2.1.3, mbedTLS 2.4.2,

MatrixSSL 3.9.1, and libtomcrypt 1.16) exhibit various semantic correctness issues in

their signature verification logic. Our analysis in an existing theoretical framework

shows that 4 of these weak implementations are in fact susceptible to novel variants

of Bleichenbacher’s low-exponent RSA signature forgery attack [7, 8], due to some

new forms of weaknesses unreported before. Exploiting these newly found weak-
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nesses, forging a digital signature does not require the adversary to carry out many

brute-force trials as described in previous work [7]. Contrary to common wisdom,

in some cases, choosing a larger security parameter (i.e., modulus) actually makes

various attacks easier to succeed, and there are still key generation programs that

mandate small public exponents [181]. One particular denial of service attack against

axTLS 2.1.3 exploiting its signature verification weakness can be launched even if no

Certificate Authorities use small public exponents. Among the numerous weaknesses

discovered, 6 new CVEs have been assigned to the exploitable ones.

Contributions. This research makes the following contributions:

1. We propose and develop a principled and practical approach based on symbolic

execution that enables the identification of exploitable flaws in implementations

of PKCS#1 v1.5 signature verification. Specifically, we discuss how to enhance

symbolic execution with meta-level search in Section 5.2.

2. To aid root-cause analysis when analyzing semantic correctness with symbolic

execution, we design and implement a constraint provenance tracker; which is of

independent interest. We explain in Section 5.3 how this can help identify root

causes of observed implementation deviations with only a modest overhead.

3. We demonstrate our approach with a case study on implementations of PKCS#1

v1.5 signature verification. Our analysis of 2 known buggy (Section 5.4.4) and

15 recent implementations (Section 5.5) of PKCS#1 v1.5 not only led to the

discovery of known vulnerabilities but also various new forms of weaknesses.

We also provide theoretical analysis and proof-of-concept attacks based on our

new findings in Section 5.6.

5.2 Symbolic Execution with Meta-level Search

While symbolic execution is a time-tested means for analyzing programs, the

practicality challenges that it faces are also well understood. When dealing with
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complex structured inputs, one strategy to workaround scalability issues is to draw

on domain knowledge to strategically mix concrete values with symbolic variables in

the (concolic) test input. When done correctly, this should allow symbolic execution

to reach beyond the input parsing code (which makes frequent use of loops and

recursions) and explore the post-parsing decision making logic.

As explained in previous work [9], inputs like X.509 certificates that are DER-

encoded ASN.1 objects, can be viewed as a tree of {Tag, Length, Value} triplets,

where the length of Value bytes is explicitly given. Hence, if all the Tag and Length

are fixed to concrete values, the positions of where Value begins and ends in a test

input buffer would also be fixed. One can thus generate a few concrete inputs, and

manually mark Value bytes of interests as symbolic to obtain meaningful concolic

test cases. In fact, just a handful of such manually produced test cases managed to

uncover a variety of verification problems [9].

However, cryptographic glue protocols like PKCS#1 v1.5 signatures sometimes in-

volve not only an encoded ASN.1 object, but also input components used for padding

purposes, where the length is often implicitly given by an explicit termination indi-

cator. In PKCS#1 v1.5, since padding comes before its ASN.1 structure, the extra

room gained due to (incorrectly) short padding can be hidden in any later parts of

the input buffer, including many leaf nodes of the encoded ASN.1 object. This means

there could be many combinations of lengths of components that constitute the input

buffer, all meaningful for testing. Consequently, the concretization strategy used in

previous work [9] in this case requires a huge amount of manual effort to enumerate

and prepare concolic inputs, and would easily miss out on meaningful corner cases.

To achieve a high degree of automation while preserving a good test coverage, we

propose to use symbolic variables not only as test inputs, but also to capture some

high-level abstractions of how different portions of the test inputs could be mutated,

and let the SMT solver decide whether such mutations are possible during symbolic

execution. The key insight is that, the lengths of input components used by protocols

like PKCS#1 v1.5 exhibit linear relations with each other. For example, the size of
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padding and all the other components together should be exactly the size of the mod-

ulus, and in benign cases, the length of a parent node in an encoded ASN.1 object

is given by the sum of the size of all its child nodes. By programatically describing

such constraints, symbolic execution can automatically explore combinations of pos-

sible component lengths, and generate concolic test cases on the fly by mutating and

packing components according to satisfiable constraints.

Given that the input formats of many other protocols also exhibit similar patterns,

the meta-level search technique should be applicable to them as well. We will explain

how to fit this technique specifically for PKCS#1 v1.5 signatures and discuss other

engineering details in Section 5.4.

5.3 Constraint Provenance Tracking for Easier Root Cause Analysis

In this section, we present the design, implementation, and empirical evaluation of

the constraint provenance tracking (CPT) mechanism. CPT aids one to identify the

underlying root-cause of an implementation deviation, identified through the analysis

of the relevant path constraints generated by symbolic execution. CPT is of indepen-

dent interest in the context of semantic correctness checking, as it can be used for

many other protocols beyond PKCS#1 v1.5.

5.3.1 Motivation

While the logical formulas extracted by symbolic execution capture the imple-

mented decision-making logic of the test target with respect to its inputs, which

enable analysis of semantic correctness and provide a common-ground for differential

testing as demonstrated by previous work [9], we argue that after discrepancies have

been identified, a root-cause analysis from formula level back to code level is non-

trivial to perform, as multiple different code locations of an implementation could

have contributed to the various constraints being imposed on a specific symbolic vari-

able. This is further exacerbated by the fact that, modern symbolic execution engines,
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like KLEE for example, would actively simplify and rewrite path constraints in order

to reduce the time spent on constraint solving [35].

Take the following code snippet as a running example. Assuming that each char

is 1-byte long and A is a symbolic variable, a symbolic execution engine like KLEE

would discover 3 possible execution paths, with the return value being 0, 1, and 2,

respectively.

1 int foo( char A ){

2 char b = 10, c = 11;

3 if (! memcmp (&A, &c, 1))

4 return 0;

5 if (memcmp (&A, &b, 1))

6 return 1;

7 return 2;

8 }

(Eq 10 (Read w8 0 A))

Example 1: A code snippet with 3 execution

paths. The path constraint shown above cor-

responds to the path that gives a return value

of 2.

Although the path that returns 2 falsifies the two branching conditions due to

the if statements (i.e., A=11 and A6=10), in the end, the simplified constraint only

contains the falsification of the second branching condition (i.e., A 6=10), as shown

in the path constraint. This is because the falsification of the second if condition

imposes a more specific constraint on the symbolic variable than the first one, and

a simplification of the path constraints would discard the inexact clauses in favor of

keeping only the more specific and restrictive ones (i.e., A 6= 11 ∧ A = 10↔ A = 10).

As illustrated by the example above, although the extracted path constraints

faithfully capture the implemented logic, using them to trace where decisions were

made inside the code is not necessarily straightforward even on a toy example.

In order to make root-cause analysis easier when it comes to finding bugs with

symbolic execution, on top of merely harvesting the final optimized path constraints

like previous work did [9], we propose a new feature to be added to the execution

engine, dubbed Constraint Provenance Tracking (CPT). The main idea is that, during

symbolic execution, when a new clause is to be introduced, the engine can associate

some source level origin (e.g., file name and line number) with the newly added
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clause, and export them upon completion of the execution. We envision that when

it comes to finding root-causes of implementation flaws, this is better than stepping

through an execution using a common debugger with a concrete input generated by

the symbolic execution. This is because path constraints offer an abstraction at the

level of symbolic variables, not program variables. While one might have to mentally

keep track of potentially many different program variables and their algebraic relations

when stepping with a debugger (especially when entering some generic functions, e.g.,

a parser), in symbolic execution those are all resolved into constraints imposed on

symbolic variables, and CPT offers insights on where did such impositions happen.

5.3.2 Design of CPT

Performance Considerations

While clause origin can be obtained directly from the debugging information pro-

duced by compilers, the constraint optimization needs to be handled delicately. On

one hand, such optimizations significantly improve the runtime of symbolic execu-

tion [35], on the other, they are often irreversible, hindering root-cause analysis.

Striving to balance both performance and usability, in our implementation of CPT,

we introduce a separate container for path constraints and their source level origins.

The intuition behind introducing the separate container is to let the engine continue

performing optimization on the path constraints that drive the symbolic execution,

so that runtime performance would not suffer significantly, but then the unoptimized

clauses and their origins could be used to assist root-clause analysis. This is essen-

tially trading space for time, and as we show later, the memory overhead is modest.

We refer to this as CPT v1.0.



109

Function Filtering

Another interesting consideration in implementing CPT is what constitutes the

origin of a clause. Blindly copying source level information corresponding to the

current program counter during symbolic execution is possible, but many times this

does not result in a meaningful outcome, because most real software systems are

designed and implemented in a modular manner using various libraries.

Consider again the path that returns 2 from the running example (i.e., A 6= 11∧A =

10), CPT v1.0 would give the following provenance information, where the origins of

the clauses are shown to be from the instrumented C standard library which imple-

ments the memcmp() function:

(Eq false

(Eq 11 (Read w8 0 A))) @libc/string/memcmp.c:35

(Eq 10 (Read w8 0 A)) @libc/string/memcmp.c:35

While this is technically accurate, from the perspective of analyzing the semantic

correctness of a protocol implementation, this is not particularly meaningful. In such a

setting, one would most likely not be very interested in analyzing the implementation

of the underlying low-level library (e.g. the C standard library) and would prefer to

have instead the caller of memcmp() to be considered as the origin of the clauses.

To this end, we propose to trace stack frames and filter out functions that one

would like to ignore in tracking origins of clauses. One can, for example, configure

the CPT to not dive into functions from the C standard library through blacklisting

exported functions known from the API, and track instead the caller of those functions

as the clause origins, which would produce the following CPT output for the same

path that returns 2, clearly more useful in understanding the semantics of a protocol

implementation:

(Eq false

(Eq 11 (Read w8 0 A))) @Example1.c:3

(Eq 10 (Read w8 0 A)) @Example1.c:5
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In addition to the C standard library, we have observed that several cryptography

implementations have their own shim layers mimicking the standard library functions

(e.g. OPENSSL_memcmp() in OpenSSL). This is often done for the sake of platform

portability (e.g. use the C standard library and some platform-specific extensions if

they are available, and use a custom imitation if they are not), and is sometimes used

to provide custom constant-time alternatives to avoid timing side-channel leakages.

All these additional functions can be filtered similarly in CPT as well.

We note that when filtering function calls, there are two possible heuristics. (1)

One is to consider the most recent caller of the blacklisted library functions as the

clause origin. (2) Another alternative is to consider function calls to have a boundary,

where once a blacklisted function has been called, the execution stays in a blacklisted

territory until that function returns. While the first heuristic is better at handling

callback functions, we have chosen heuristic 2, because fully blacklisting all the library

functions that CPT should not dive into (or, equivalently, whitelisting all the possible

origin functions from a protocol implementation) could be complicated. For example,

specific implementations of C standard libraries may use their own undocumented

internal functions to implement functions that are exported in the API. Acquiring

this knowledge ahead of time could be laborious and hinders generalization.

We use CPT v2.0 to refer to the CPT with function filtering heuristic 2. In the

end, we implemented CPT v2.0 by adding less than 750 lines of code to the KLEE

toolchain. We chose KLEE as our symbolic execution engine because it is widely

used, robust, and is actively maintained.

5.3.3 Performance Evaluation

We now evaluate the performance of KLEE [35] equipped with CPT, and com-

pare it with vanilla KLEE. The goal of this evaluation is to demonstrate that both

the memory and runtime overheads induced by the CPT feature are tolerable, as a
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significant increase in either of the two would severely hinder the practicality of using

KLEE in software testing.

The overheads are reported by measuring time and memory needed by KLEE

(with and without CPT) to symbolically execute a suite of target programs. Following

what had been previously investigated in the original KLEE paper [35], we use the

GNU coreutils package2 for our evaluation, which consists of various basic tools like

cat and ls used on many Unix-like operating systems. Over the years, coreutils itself

has been tested extensively, so we do not intend to find new bugs or achieve a higher

code coverage in our experiments.

We follow the experiment setup [182] used in the KLEE paper [35] to run 2

different versions of KLEE on coreutils version 6.11 [183], that is, the original version

of KLEE, and the one with CPT v2.0. For each version, we repeat the execution on

each coreutil program 3 times and report the average values of runtime and memory

measurements. The experiments were conducted on a machine powered by an Intel

Core i7-6700 3.40GHz CPU and with 32GB RAM. Table 5.1 shows our measurements

on the first 30 programs in coreutils.

To obtain measurement numbers in each experiment, we use the klee-stat tool

provided by KLEE toolchain. For memory usage, we report both the peak (maxMem)

and average consumption (avgMem), averaged over the 3 executions. Since some of

the target programs need an enormous amount of time to finish, following previous

work [35,182], we halt an execution after 1 hour, which explains why some programs

in Table 5.1 have a total runtime of about 3600 seconds (e.g., base64, cat, and

chcon). In such cases, the mere total execution time is insufficient in showing the

time overhead. Hence we also report the average number of completed paths during

the 3 executions, which can be used to compare the runtime efficiency of the different

versions of KLEE.

To make the number of completed paths comparable, and since we are not focused

on code coverage, we also changed the search heuristic used by KLEE into a depth-

2https://www.gnu.org/software/coreutils/coreutils.html

https://www.gnu.org/software/coreutils/coreutils.html
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Table 5.1.: Performance evaluation of KLEE with CPT (Average over 3 trials)

Program
KLEE

version

Paths

Completed

Time

(s)

maxMem

(MB)

avgMem

(MB)

[
Original 1789 63.06 29.75 27.01

CPT v2.0 1789 62.76 29.79 27.07

base64
Original 2097957 3,600.01 41.42 34.57

CPT v2.0 2091665 3,600.01 41.44 34.65

basename
Original 14070 9.2 22.81 22.59

CPT v2.0 14070 9.15 22.88 22.64

cat
Original 2261170.67 3,600.01 23.68 23.24

CPT v2.0 2248991.67 3,600.01 23.76 23.32

chcon
Original 480351 3,600.02 59.75 57.82

CPT v2.0 477896 3,600.01 59.95 57.94

chgrp
Original 705117.33 3,600.04 479.42 286.97

CPT v2.0 703403.33 3,600.05 478.46 288.03

chmod
Original 430347 3,600.05 393.3 221.09

CPT v2.0 427392.33 3,600.12 378.08 211.71

chown
Original 550473.67 3,600.06 353.46 201.4

CPT v2.0 543620.67 3,600.04 349.93 200.03

chroot
Original 1496 7.25 23.83 23.16

CPT v2.0 1496 7.58 23.98 23.23

cksum
Original 2552 7.91 24.81 23.64

CPT v2.0 2552 7.74 24.85 23.75

comm
Original 3895174.33 3,600.01 92.59 68.91

CPT v2.0 3857897.33 3,600.01 91.86 68.51

cp
Original 497 3,625.05 28.76 28.37

CPT v2.0 496.33 3,615.35 28.81 28.44

cut
Original 3824504.33 3,600.01 26.21 25.76

CPT v2.0 3826345 3,600.01 26.31 25.84

date
Original 3564.67 3,602.71 60.79 39.59

CPT v2.0 3560 3,602.82 61.21 39.6

dd
Original 1069290.67 3,600.02 26.48 26.07

CPT v2.0 1075813.33 3,600.02 26.67 26.19

Program
KLEE

version

Paths

Completed

Time

(s)

maxMem

(MB)

avgMem

(MB)

df
Original 5016.33 3,600.13 71.27 48.18

CPT v2.0 4127.33 3,600.10 68.98 47.64

dircolors
Original 1019074.33 3,600.02 25 24.64

CPT v2.0 1007623.67 3,600.03 25.21 24.77

dirname
Original 4167 8.42 23.43 22.93

CPT v2.0 4167 8.52 23.53 22.98

du
Original 179.67 3,600.55 55.21 43.97

CPT v2.0 179.33 3600.52 55.32 43.65

echo
Original 5134030 3,600.01 22.6 22.42

CPT v2.0 5081012 3,600.01 22.91 22.54

env
Original 508649 942.72 24.04 23.07

CPT v2.0 508649 925.12 24.13 23.15

expand
Original 3466952 3,600.01 63.96 54.49

CPT v2.0 3377675.67 3,600.01 64.05 54.36

expr
Original 4653 3,600.09 363.95 212.91

CPT v2.0 4645 3,600.14 363.82 212.58

factor
Original 618634.33 3,600.06 381.06 208.15

CPT v2.0 619403.33 3,600.06 381.57 208.66

false
Original 23 0.08 20.85 20.68

CPT v2.0 23 0.08 20.9 20.72

fmt
Original 1330 3,610.77 25.88 25.36

CPT v2.0 1308 3,610.72 25.96 25.42

fold
Original 4498176 3,600.01 23.46 23.2

CPT v2.0 4426844 3,600.01 23.56 23.28

head
Original 1445240 3,600.02 2,073.72 1,496.51

CPT v2.0 1445458 3,600.03 2,073.82 1,497.35

hostid
Original 1022352 3,600.01 25.79 25.46

CPT v2.0 1021386.67 3,600.04 25.99 25.59

hostname
Original 991770.67 3,600.01 25.23 24.89

CPT v2.0 994186.67 3,600.01 25.4 25.01

first search (DFS), instead of a random search as prescribed by the recipe [182], to

avoid non-determinism. We also increased the maximum memory usage for each

execution to 16GB from the prescribed 1GB [182]. However, as can be seen in Table

5.1, none of the tested programs approached close to this limit.

All in all, the two versions of KLEE yielded comparable total runtime (or, paths

completed) and memory usages. CPT v2.0 in general consumes a little more memory

and is slightly slower than the original KLEE, though the overheads are insignificant.

In the rest of this chapter, unless explicitly mentioned, we are using KLEE with CPT

v2.0 by default.
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5.4 A Case Study on PKCS#1 v1.5 RSA Signature Verification

We center our analysis around the problem of PKCS#1 v1.5 signature verification.

This is particularly suitable for showcasing the merit of enhancing symbolic execution

with meta-level searching, as it features diverse glue components including explicitly

terminated padding with implicit length, as well as a sophisticated ASN.1 structure.

Despite the PKCS#1 family has newer algorithms like RSA-PSS [RFC8017], the v1.5

signature scheme continues to be widely-used in Web PKI and other security-critical

network protocols like SSH [RFC4253] and IKEv2 [RFC7296] for authentication pur-

poses.

5.4.1 Technical Background

In this section, we provide a brief overview of RSA signature verification while

using PKCS#1 v1.5 as the padding scheme. For the ease of exposition, we provide a

list of the notations we use and their meaning in Table 5.2.

Following the usual RSA notations, we use d, e, and n to denote the RSA private

exponent, public exponent, and modulus, respectively. 〈n, e〉 constitutes an RSA pub-

lic key. We use |n| to denote the size of the modulus in bits. Suppose m is the message

for which an RSA signature is to be generated. In the context of X.509 certificates

(and CRLs), m would be the ASN.1 DER-encoded byte sequence of tbsCertificate

(and tbsCertList) [RFC5280].

Benign signature generation. For generating an RSA signature of message

m in accordance to PKCS#1 v1.5, the signer first computes the hash of m, denoted

H(m), based on the hash algorithm of choice (e.g., SHA-1). Then, H(m) and the

corresponding meta-data identifying the used hash algorithm and other relevant pa-

rameters (if any) are packed into an ASN.1 DER-encoded structure. The necessary

amount of padding and other meta-data are prepended to the ASN.1 structure to

create a structured input I of size |n|, which is then used as an input to the signer’s
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Table 5.2.: Notation used in our discussion on PKCS#1 v1.5

Symbol Description Symbol Description

n RSA modulus e RSA Public Exponent

d RSA Private Exponent |n| length of modulus in bits

m message to be signed mv message received by verifier

I formatted input to the signer’s RSA operation

S Signature, S ≡ Id mod n in benign cases

O verifier’s RSA output, O ≡ Se mod n

H(ms) signer’s version of H(m), contained inside O

H(mv) verifier’s computed hash of mv

Iv verifier’s construction of I given H(mv)

Symbol Description Symbol Description

BT Block Type PB Padding Bytes

AS ASN.1 Structure, containing H(ms)

w ASN.1 Length of AS.DigestInfo

u ASN.1 Length of algorithm OID

x ASN.1 Length of AlgorithmIdentifier

y ASN.1 Length of parameters

z ASN.1 Length of Digest

RSA operation. The exact format of I is discussed below. Then, the signature will

be S = Id mod n.

Signature verification. Upon receiving a signed object (say an X.509 certifi-

cate), the verifier parses S from it and computes O := Se mod n, where O represents

the output of the verifier’s RSA operation, formatted just like I in correct cases.

Given mv (say tbsCertificate of a received certificate), the verifier then computes

H(mv) and compare it against the H(ms) contained in O. Like previous work has

discussed [7], this comparison could be done in the following two manners.

Construction-based verification. Using this approach, the verifier takes H(mv)

and prepares Iv, similar to how the signer is expected to prepare I prior to signing.

If Iv ≡ O then the signature is accepted.
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Parsing-based verification. Many implementations seem to prefer a parsing-based

approach, and this is where things can potentially go wrong. In essence, the goal of

this approach is to parse H(ms) out of O. Many parsers are, however, too lenient even

when O is malformed, which gives room for the so-called Bleichenbacher low-exponent

brute-force attack.

Structured input (I) and output (O) format. In the benign case, I and

O should be formatted as follows:

0x00 || BT || PB || 0x00 || AS

BT is often referred to as the block type [RFC2313], and PB represents the padding

bytes. For the purpose of signature generation and verification, BT ≡ 0x01 and

PB ≡ 0xFF 0xFF . . . 0xFF. Additionally, PB has to be at least 8-byte long, and also

long enough such that there would be no extra bytes following AS. The 0x00 after PB

signifies the end of padding. AS is an ASN.1 DER-encoded byte stream that looks

like this (assuming H() being SHA-1):

/** all numbers below are hexadecimals **/

/* [AS.DigestInfo] */

30 w // ASN.1 SEQUENCE , length = w

/* [AlgorithmIdentifier] */

30 x // ASN.1 SEQUENCE , length = x

06 u 2B 0E 03 02 1A // ASN.1 OID , length = u

05 y // ASN.1 NULL parameter , length = y

/* [Digest] */

04 z // ASN.1 OCTET STRING , length = z

/* H(m), H()=SHA -1(), m = "hello world" */

2A AE 6C 35 C9 4F CF B4 15 DB

E9 5F 40 8B 9C E9 1E E8 46 ED

Since DER encoded ASN.1 structures are essentially a tree of {Tag, Length ,Value}
triplets, the length of a parent triplet is defined by the summation of the length of

its child triplets. Assuming SHA-1, we can derive the following semantic relations
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among the different length variables for benign cases: u = 5; z = 20; x = 2+u+2+y;

w = 2 + x+ 2 + z.

For most common hash algorithms like MD5, SHA-1, and the SHA-2 family, the

algorithm parameter has to be NULL and y ≡ 0 [RFC2437, RFC4055]. Historically

there were confusions on whether the NULL algorithm parameter can be omitted,

but now both explicit NULL and absent parameters are considered to be legal and

equivalent [RFC4055]. This could be a reason why some prefer parsing-based over

construction-based, as in the latter approach the verifier would have to try at least

two different constructions {Iv1 , Iv2} to avoid falsely rejecting valid signatures. We

focus on the explicit NULL parameter case in this research, as it had been shown

that the lenient processing of the parameter bytes can lead to signature forgery [7],

and rejecting absent parameter is a compatibility issue easily identifiable with one

concrete test case.

When PKCS#1 v1.5 signatures are used in other protocols like SSH and IKEv2 not

involving X.509 certificates, the aforementioned steps work similarly with a different

input message m (e.g., m could be the transcript containing parameters that were

exchanged during a key exchange algorithm).

5.4.2 Testing Deployed Implementations with Our Approach

We now discuss the different challenges and engineering details of how to make the

implementations amenable to symbolic analysis. As discussed before, we use KLEE

with CPT as our choice of symbolic analysis tool. Building an implementation for

KLEE generally takes a few hours of trial-and-error to tune its build system into

properly using LLVM.

Scalability Challenges

Since the length ofO is given by |n|, for the best coverage and completeness, ideally

one would test the verification code with a |n|
8

-byte long symbolic buffer mimicking
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O. For implementations that use the parsing-based verification approach, however,

since there are possibly many parsing loops and decisions depend on values of the

input buffer, using one big symbolic buffer is not scalable.

To workaround scalability challenges, we use a two-stage solution. We first draw

on domain knowledge to decompose the original problem into several smaller subprob-

lems, each of which symbolic analysis can then efficiently and exhaustively search.

Then for each subproblem we apply the meta-level search technique to automatically

generate concolic test cases.

Stage 1. Coarse-grained decomposition of input space. In the first

stage, we partition the input space influencing the exploration of the PKCS#1 v1.5

implementations in a coarse-grained fashion. Our coarse-grained partitioning resulted

in three partitions, each corresponds to a dedicated test harness. For each implemen-

tation, the 3 test harnesses focus on testing various aspects of signature verification

while avoiding scalability challenges. Across different implementations, each of the

3 test harnesses—denoted {TH1, TH2, TH3}—is focused on the same high-level as-

pect of testing. The test harnesses would invoke the implementations’ PKCS#1 v1.5

signature verification functions, just like a normal application does. Depending on

the API design of a specific implementation, the test harnesses also provide the ap-

propriate verification parameters like an RSA public key, H(mv) (or in some cases,

mv directly) and a placeholder signature value.

Among the different harnesses, TH1 is designed to investigate the checking of

BT, PB, z the length of H(ms), and the algorithm parameters, while TH2 is geared

towards the matching of OID in AlgorithmIdentifier. Both TH1 and TH2 use

a varying length of PB but the ASN.1 length variables u,w, x, y, z are kept concrete.

In contrast, TH3 has everything else concrete, reminiscent of a correct well-formed

O, but u,w, x, y, z are made symbolic, to see how different length variables are being

handled and whether an implementation would be tricked by absurd length values. In

general, loops depending on unbounded symbolic variables poses threats to termina-

tion, however, as we would discuss below, in the context of PKCS#1 v1.5 signatures,
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one can assume all the length variables are bounded by some linear functions of |n|
and still achieve meaningful testing.

Stage 2. Meta-level search using relations between glue compo-

nents. Following the meta-level search idea discussed in Section 5.2, in both TH1 and

TH2, we provide linear constraints that describe the relations between w, x, y, z, |n|
8

and |PB|. As such, during symbolic execution, many different possible concolic test

input buffers would be packed with respect to the given constraints in TH1 and TH2,

which effectively expand the two test harnesses automatically into many meaningful

test cases, without the need to manually craft a large number of test harnesses, one

for each test case. This is essentially a form of model counting. Including effort of

studying the PKCS#1 v1.5 specification, developing the meta-level search code for

{TH1, TH2} took a few days. This is however a one-time effort, as the code is generic

and was reused across all implementations that we tested. Finally, TH3 covers the

extra cases where w, x, y, z are not constrained in terms of each other and |n|
8

.

Memory Operations with Symbolic Sizes

We note, however, performing memory allocation and copy (e.g., malloc() and

memcpy()) with symbolic lengths would result in a concretization error where KLEE

would try to concretize the length and continue the execution with one feasible con-

crete length value, hence missing out on some possible execution paths.

Explicit loop introduction. To avoid such concretization errors, when im-

plementing the meta-level search in TH1 and TH2, we use some simple counting

for-loops, as shown below, to guide KLEE into trying different possible values of the

symbolic lengths. What happens is that for each feasible value (with respect to known

constraints that are imposed on those symbolic variables), KLEE would assign it to

k and fork the execution before the memory allocation and copy, hence being able to

try different lengths and not cutting through the search space due to concretization.

size_t k; for (k = 0; k < sym_var; k++){}
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/** execution forks with possible values of k **/

dest = malloc(k); // k already concretized

memcpy(src , dest , k); // k already concretized

Bounding parameter length. Since explicit loop introduction is essentially

trading time and space for coverage, it will not work practically if the range of possible

values is very large. Fortunately, in PKCS#1 v1.5, the size of O is bounded by |n|.
We leverage this observation to make our symbolic analysis practical, by focusing on

a small |n|. Specifically, in our test harnesses, we assume the SHA-1 hash algorithm,

as it is widely available in implementations, unlike some other older/newer hash

functions, and that |n| is 48-byte long (except for MatrixSSL, explained later), so

that even after the minimum of 8-byte of PB there would still be at least 2 bytes that

can be moved around during testing. Though in practice a 384-bit modulus is rarely

used, and SHA-1 is now considered weak and under deprecation, since |n| and the hash

algorithm of choice are just parameters to the PKCS#1 v1.5 signature verification

discussed in Section 5.4.1, assuming uniform implementations, our findings should be

extensible to signatures made of a larger |n| and other hash algorithms.

Accessing relevant functions for analysis

Finally, in order to make the implementation amenable to symbolic execution, one

would need a customary, minuscule amount of modifications to the source tree. In this

case, the modifications are made mainly to (1) change the visibility of certain internal

functions; (2) inject the test buffer into the implementation’s verification code. Test

buffer injection is typically added to the underlying functions that implement the

RSA public key operation which compute O := Se mod n, easily identifiable with an

initial test harness executed in an instrumented manner. Writing the test harnesses

and adding the modifications generally take a few hours. In the case of unit tests (and

stub functions) for signature verification are readily available (e.g. in Openswan), we

can simply adapt and reuse their code.



120

5.4.3 Identifying semantic deviations

Path constraints extracted by symbolic execution can be analyzed in the following

two ways to identify implementation flaws. When testing recent implementations, we

would use both. Recall that PKCS#1 v1.5 is a deterministic padding scheme and

we focus on the explicit NULL parameter case. For each test harness, if more than

one accepting paths can be found by symbolic execution, then the implementation is

highly likely to be deviant. (1) With CPT, one can inspect the path constraints and

the origins of their clauses, as well as the generated test cases, to identify the faulty

code. (2) To help highlight subtle weaknesses, we adopt the principle of differential

testing [58] by cross-validating path constraints of different implementations, similar

to previous work [9].

5.4.4 Feasibility Study

To validate the efficacy of our approach, we first apply it to test historic versions of

OpenSSL and GnuTLS that are known to exhibit weaknesses in their signature verifi-

cation, without using differential cross-validation for fairness reasons. The summary

of results can be found in Table 5.3.

As expected, both OpenSSL 0.9.7h and GnuTLS 1.4.2 use the parsing-based ap-

proach for verification. In fact, because both of them also perform some memory

allocations based on parsed length variables that are made symbolic in TH3, so they

both needed explicit loop introduction as discussed before.

For OpenSSL 0.9.7h, the numerous accepting paths in TH1, TH2 can be at-

tributed to the fact that it accepts signatures containing trailing bytes after AS,

which is exactly the original vulnerability that enables a signature forgery when

e = 3 [8, 184]. On top of that, with TH3, we found that in addition to the one

correct accepting path, there exists other erroneous ones. Specifically, we found that

for the ASN.1 length variables y and z, besides the benign values of y = 0 and z = 20,

it would also accept y = 128 and z = 128, which explains why there are four accept-
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Table 5.3.: Result Summary of Testing Known Vulnerable PKCS#1 v1.5 Implemen-

tations with Symbolic Execution

Implementation

(version)

Test

Harness

Lines

Changed

Execution

Time ‡
Total Paths

(Accepting)

GnuTLS

(1.4.2)

TH1
6

00:01:32 2073 (3)

TH2 01:03:12 127608 (21)

TH3 8 00:07:35 1582 (1)

OpenSSL

(0.9.7h)

TH1
4

00:07:23 4008 (3)

TH2 00:00:46 1432 (3)

TH3 6 00:33:24 3005 (4)

‡ Execution Time measured on a commodity laptop with an Intel i7-3740QM CPU and 32GB DDR3

RAM running Ubuntu 16.04.

ing paths. This is due to the leniency of the ASN.1 parser in OpenSSL 0.9.7h, which

when given certain absurd length values, it would in some cases just use the actual

number of remaining bytes as the length, yielding overly permissive acceptances dur-

ing verification. Though not directly exploitable, this is nonetheless an interesting

finding highlighting the power of symbolic analysis, and we are not aware of prior

reports regarding this weakness.

For GnuTLS 1.4.2, the multiple accepting paths induced by TH1 are due to the

possibility of gaining extra free bytes with an incorrectly short padding and hiding

them inside the algorithm parameter part of AS, which will then be ignored and not

checked. This is the known flaw that enabled a low-exponent signature forgery [7,14].

Additionally, with TH3, we found that there exist an opportunity to induce the parser

into reading from illegal addresses, by giving u a special value. Specifically, assuming

SHA-1, after the parser has reached but not consumed u, there are still 30 bytes

remaining in AS. Despite the several sanity checks in place to make sure that the

parsed length cannot be larger than what is remaining, by making u exactly 30, it

does not violate the sanity checks, but at a later point when the parser attempts to
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read the actual OID value bytes, it would still be tricked into reading beyond AS,

which resulted in a memory error caught by KLEE.

The 21 accepting paths (1 correct and 20 erroneous) induced by TH2 in GnuTLS 1.4.2

can be attributed to how the parser leniently handles and accepts malformed algo-

rithm OIDs. According to the X.690 standard [185], to encode an OID, from the

third node onward, each node would take one byte if it is not greater than 127 (short

form). If a node is larger than 127 (long form), then for all its encoded bytes except

the last byte, the most significant bit would be 1, and the actual value would be the

concatenation of the least significant 7 bits of all the encoded bytes (including the

last byte where the high bit is off). In such an encoding scheme, one can turn a short

form (e.g., 0x0E) into a long form by prepending meaningless bytes of 128 in front

(e.g. 0x80 0x80 0x0E), as the decoding results would be exactly the same, though

the standard specification is explicitly against it [185]. Since for the OID of SHA-1

(1.3.14.3.2.26), all nodes from the third one onward are less than 128, they would all

be encoded using the short form. However, our testing has discovered automatically

that due to the leniency of the ASN.1 parser used by GnuTLS 1.4.2, it is willing to

accept the meaningless long form. As the result of which, one can use an incorrectly

short padding and spend the extra bytes gained in prepending 0x80 in front of en-

coded bytes (except the first one). Since our TH2 allows for at most 2 bytes due to

short padding to be moved around, and there are 5 locations in the encoded OID of

SHA-1 where the meaningless 0x80 can be inserted (from before 0x0E to after 0x1A),

the total number of accepting paths is
(

5
0

)
+
(

5
1

)
+
(

6
2

)
= 21, with 1 correct and 20

erroneous. This over-permissiveness in signature verification does not seem to have

been reported before.

By both recreating known vulnerabilities and finding new weaknesses in the old

versions of GnuTLS and OpenSSL, we have demonstrated the efficacy of our proposed

approach.
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Table 5.4.: Result Summary of Testing various New PKCS#1 v1.5 Implementations

with Symbolic Execution

Implemen-

tation

(version)

Test

Har-

ness

Lines

Chan-

ged

Execution

Time †

Total Paths

(Accept-

ing)‡

axTLS

(2.1.3)

TH1
7

01:42:14 1476 (6)

TH2 00:00:05 21 (21)

TH3 9 00:00:10 21 (1)

BearSSL

(0.4)

TH1

3

00:01:55 3563 (1)

TH2 00:00:06 42 (1)

TH3 00:00:00 6 (1)

BoringSSL

(3112)

TH1

3

00:06:09 3957 (1)

TH2 00:00:08 26 (1)

TH3 00:00:00 6 (1)

Dropbear SSH

(2017.75)

TH1

4

00:46:10 1260 (1)

TH2 00:00:11 23 (1)

TH3 00:00:15 7 (1)

GnuTLS

(3.5.12)

TH1

4

00:01:35 570 (1)

TH2 00:00:06 22 (1)

TH3 00:00:01 4 (1)

LibreSSL

(2.5.4)

TH1
4

00:10:27 4008 (1)

TH2 00:01:40 1151 (1)

TH3 6 00:25:45 1802 (1)

libtomcrypt

(1.16)

TH1 5 00:01:13 2262 (3)

TH2 16 00:00:11 805 (3)

TH3 5 00:04:49 7284 (1)

MatrixSSL

(3.9.1)

Certificate

TH1

8

00:01:54 4554 (1)

TH2 00:00:04 202 (1)

TH3 00:00:22 939 (2)

Implemen-

tation

(version)

Test

Har-

ness

Lines

Chan-

ged

Execution

Time †

Total Paths

(Accept-

ing)‡

MatrixSSL

(3.9.1)

CRL

TH1

4

00:01:55 4574 (21)

TH2 00:00:04 202 (61)

TH3 00:00:07 350 (7)

mbedTLS

(2.4.2)

TH1

7

00:14:56 51276 (1)

TH2 00:00:03 26 (1)

TH3 00:00:00 38 (1)

OpenSSH

(7.7)

TH1

6

00:07:00 3768 (1)

TH2 00:00:08 22 (1)

TH3 00:00:00 2 (1)

OpenSSL

(1.0.2l)

TH1
4

00:06:31 4008 (1)

TH2 00:00:56 1148 (1)

TH3 6 00:16:16 1673 (1)

Openswan

(2.6.50) *

TH1

4

00:01:07 378 (1)

TH2 00:00:04 26 (1)

TH3 00:00:00 6 (1)

PuTTY

(0.7)

TH1

12

00:03:22 3889 (1)

TH2 00:00:07 42 (1)

TH3 00:00:00 6 (1)

strongSwan

(5.6.3) *

TH1

6

00:01:32 2262 (3)

TH2 00:16:36 15747 (3)

TH3 00:00:24 216 (6)

wolfSSL

(3.11.0)

TH1

10

00:04:05 14316 (1)

TH2 00:00:06 26 (1)

TH3 00:00:00 6 (1)

† Execution Time measured on a commodity laptop with an Intel i7-3740QM CPU and 32GB DDR3 RAM running Ubuntu 16.04.

‡ Shaded cells indicate no discrepancies were found during cross-validation.

* Configured to use their own internal implementations of PKCS#1 v1.5.

5.5 Findings on Recent Implementations

Here we present our findings of testing 15 recent open-source implementations of

PKCS#1 v1.5 signature verification. We take the construction-based approach as

the golden standard. For each of the test harnesses, while the occurrence of multiple

accepting paths signifies problems, it is worth noting that just because an implemen-

tation gave only one accepting path does not mean that the implemented verification

is robust and correct. In fact, as we show later, some lone accepting paths can still

be overly permissive. The summary of results can be found in Table 5.4.
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Cross-validation. For performing cross-validation, we use GnuTLS 3.5.12 as

our anchor, as it seems to be using a robust construction-based signature verification,

and it gave the smallest number of paths with TH1. We ran the cross-validation on

a commodity laptop with at most 8 query instances in parallel at any time. For each

implementation, cross-validating it against the anchor for a particular test harness

typically finishes in the scale of minutes. In general, the exact time needed to solve

such queries depends on the size and complexity of the constraints, but in this par-

ticular context, we have observed that the overall performance is around 1200 queries

per every 10 seconds on our commodity laptop.

In the rest of this section, when we show code snippets, block comments with

a single star are from the original source code, and those with double stars are our

annotations.

Openswan 2.6.50

Openswan is a popular open source IPSec implementation, currently maintained

by Xelerance Corporation. Depending on the target platform, Openswan can be

configured to use NSS, or its own implementation based on GMP, for managing and

processing public-key cryptography. We are particularly interested in testing the

latter one.

The verification of PKCS#1 v1.5 RSA signatures in Openswan employs a hybrid

approach. Given an O, everything before AS is processed by a parser, and then AS

is checked against some known DER-encoded bytes and the expected H(mv), which

explains why TH2 and TH3 both found only a small number of paths, similar to

the other hybrid implementations like wolfSSL and BoringSSL. Those paths also

successfully cross-validated against the anchor.

Interestingly, despite TH1 yielding only 1 accepting path, Openswan turns out to

have an exploitable vulnerability in its signature verification logic.
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Ignoring padding bytes (CVE-2018-15836). As shown in Snippet 5.5.i,

during verification, the parser calculates and enforces an expected length of padding.

However, while the initial 0x00, BT, and the end of padding 0x00 are verified, the

actual padding is simply skipped over by the parser. Since the value of each padding

byte is not being checked at all, for a signature verification to succeed, they can take

arbitrarily any values. As we will explain later in Section 5.6, this simple but severe

oversight can be exploited for a Bleichenbacher-style signature forgery.

Snippet 5.5.i: Padding Bytes skipped in Openswan 2.6.50

/* check signature contents */

/* verify padding (not including any DER digest info! */

padlen = sig_len - 3 - hash_len;

... ...

/* skip padding */

if(s[0] != 0x00 || s[1] != 0x01 || s[padlen +2] != 0x00)

{ return "3""SIG padding does not check out"; }

s += padlen + 3;

strongSwan 5.6.3

strongSwan is another popular open source IPSec implementation. Similar to

Openswan, when it comes to public-key cryptography, strongSwan offers the choice

of relying on other cryptographic libraries (e.g., OpenSSL and libgcrypt), or using its

own internal implementation, which happens to be also based on GMP. We are focused

on testing the latter one. To our surprise, the strongSwan internal implementation

of PKCS#1 v1.5 signature verification contains several weaknesses, many of which

could be exploited for signature forgery.

Not checking algorithm parameter (CVE-2018-16152). TH1 revealed

that the strongSwan implementation does not reject O with extra garbage bytes

hidden in the algorithm parameter, a classical flaw previously also found in other
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libraries [11,14]. As such, a practical low-exponent signature forgery exploiting those

unchecked bytes is possible [7].

Accepting trailing bytes after OID (CVE-2018-16151). TH2 revealed

another exploitable leniency exerted by the parser used by strongSwan during its sig-

nature verification. The asn1 known oid() function is used to match a series of

parsed OID encoded bytes against known OIDs, but the matching logic is imple-

mented in a way that as soon as a known OID is found to match the prefix of the

parsed bytes, it considers the match a success and does not care whether there are

remaining bytes in the parsed OID left unconsumed. One can hence hide extra bytes

after a correctly encoded OID, and as we will explain in Section 5.6, this can be

exploited for a low-exponent signature forgery.

Accepting less than 8 bytes of padding. In fact, strongSwan has another

classical flaw. The PKCS#1 v1.5 standard requires the number of padding bytes to

be at least 8 [RFC2313, RFC2437]. Unfortunately, during our initial testing with

TH1, we quickly realized that strongSwan does not check whether PS has a minimum

length of 8, a flaw previously also found in other implementations [15]. Since PS

is terminated with 0x00, during symbolic execution, our initial TH1 automatically

generated test cases where some early byte of PS is given the value of 0x00, and hence

the subsequent symbolic bytes would be considered to be part of AS. And because

strongSwan attempts to parse AS using an ASN.1 parser, this resulted in many paths

enumerating different possible ASN.1 types with symbolic lengths. After finding this

flaw, we have added additional constraints to TH1 to guide the symbolic execution

into not putting 0x00 in PS, which in the end resulted in a reasonable number of

paths.

Lax ASN.1 length checks. Additionally, the weaknesses regarding algo-

rithm parameter and algorithm OID also led to lenient handling of their corresponding

length variables, u and y. This is the reason why TH3 found several accepting paths,

as the parser used during verification enumerated various combinations of values for

u and y that it considers acceptable.
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axTLS 2.1.3

axTLS is a very small footprint TLS library designed for resource-constrained

platforms, which has been deployed in various system on chip (SoC) software stacks,

e.g., in Arduino for ESP82663, the Light Weight IP stack (LWIP)4 and MicroPython5

for various microcontrollers.

Unfortunately, the signature verification in axTLS is some of the laxest among

all the recent implementations that we have tested. Its code is aimed primarily at

traversing a pointer to the location of the hash value, without enforcing rigid sanity

checks on the way. The various weaknesses in its implementation can lead to multiple

possible exploits.

Accepting trailing bytes (CVE-2018-16150). We first found that the

axTLS implementation accepts O that contains trailing bytes after the hash value,

in order words, it does not enforce the requirement on the length of padding bytes,

a classical flaw previously found in other implementations [7, 8, 12]. This is also why

for both TH1 and TH2 there are multiple accepting paths.

Ignoring prefix bytes. On top of that, we found that this implementation

also ignores the prefix bytes, including both BT and PB, which also contributes

to the various incorrect accepting paths yielded by TH1 and TH2. As shown in

Snippet 5.5.ii, this effectively means that the first 10 bytes of O can take arbitrarily

any values. Such a logic deviates from what the standard prescribes [RFC2437], and

as we will explain later in Section 5.6, an over-permissiveness like this can be exploited

to forge signatures when e is small.

Snippet 5.5.ii: Block Type and Padding skipped in axTLS 2.1.3

i = 10;/* start at the first possible non -padded byte */

while (block[i++] && i < sig_len);

size = sig_len - i;

3https://github.com/esp8266/Arduino/tree/master/tools/sdk/lib
4https://github.com/attachix/lwirax
5https://github.com/micropython/micropython/tree/master/lib

https://github.com/esp8266/Arduino/tree/master/tools/sdk/lib
https://github.com/attachix/lwirax
https://github.com/micropython/micropython/tree/master/lib
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/* get only the bit we want */

if (size > 0) {... ...}

Ignoring ASN.1 metadata (CVE-2018-16253). Moreover, we found

that axTLS does not check the algorithm OID and parameter. In fact, through root-

cause analysis, we found that this could be attributed to the parsing code shown

in Snippet 5.5.iii below, which skips the entire AlgorithmIdentifier part of AS

(achieved by asn1_skip_obj()), until it reaches the hash value (type OCTET STRING),

making this even laxer than the flaws of not checking algorithm parameter previously

found in other libraries [7, 11].

Snippet 5.5.iii: Majority of ASN.1 metadata skipped in axTLS 2.1.3

if (asn1_next_obj(asn1_sig , &offset , ASN1_SEQUENCE) < 0

|| asn1_skip_obj(asn1_sig , &offset , ASN1_SEQUENCE))

goto end_get_sig;

if (asn1_sig[offset ++] != ASN1_OCTET_STRING)

goto end_get_sig;

*len = get_asn1_length(asn1_sig , &offset);

ptr = &asn1_sig[offset ]; /* all ok */

end_get_sig:

return ptr;

Trusting declared lengths (CVE-2018-16149). Furthermore, using our

approach, we have automatically found several test cases that could trigger memory

errors at various locations of the axTLS source code. This is because given the various

length variables in the ASN.1 structure that are potentially under adversarial control,

the parser of axTLS, partly shown in Snippet 5.5.iii, is too trusting in the sense that

it uses the declared values directly without sanity checks, so one can put some absurd

values in those lengths to try to trick the implementation into reading from illegal

memory addresses and potentially crash the program. This is an example of CWE-130

(Improper Handling of Length Parameter).
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This is also part of the reason why for TH1, it took more than 1 hour to finish

the execution, as KLEE discovered many test cases that can trick the parsing code

into reading z, the ASN.1 length of H(ms), from some symbolic trailing bytes, which

led to several invocations of malloc() with huge sizes and hence the long execution

time.

MatrixSSL 3.9.1

MatrixSSL requires |n| to be a multiple of 512, so in our test harnesses, we have

adjusted the size of the test buffer and padding accordingly. Interestingly, we have

observed that MatrixSSL contains 2 somewhat different implementations of PKCS#1

v1.5 signature verification, one for verifying signatures on CRLs, and the other for

certificates. Both are using a parsing-based verification approach. Why the two cases

do not share the same signature verification function is not clear to us. Nevertheless,

we have tested both of them, and to our surprise, one verification is laxer than the

other, but both exhibit some forms of weaknesses.

Lax ASN.1 length checks. We first note that for both signature verification

functions, their treatments of some of the length variables in AS are overly permissive.

Quite the opposite of axTLS, we found that MatrixSSL does not fully trust the various

ASN.1 lengths, and imposes sanity checks on the length variables. Those, however,

are still not strict enough.

For the certificate signature verification, the first 2 ASN.1 lengths variables, w,

and x (lengths of the two ASN.1 SEQUENCE in AS), are allowed ranges of values in

the verification. For w, the only checks performed on it are whether it is in the long

form, and whether it is longer than the remaining buffer containing the rest of O.

Similarly, there exist some sanity checks on x but they are nowhere near an exact

match warranted by a construction-based approach. The 2 accepting paths yielded by

TH3 are due to a decision being made on whether x matches exactly the length of the

remaining SEQUENCE (OID and parameters) that had been consumed, which indicates
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whether there are extra bytes for algorithm parameters or not. However, this check

is done with a macro psAssert(), which terminates only if HALT_ON_PS_ERROR is

defined in the configuration, a flag that is considered to be a debugging option [186],

not enabled by default and not recommended for production builds, meaning that

many possible values of x, even if they failed the assertion, would still be accepted.

When the length of the encoded OID is correct (i.e., 5 for SHA-1), the length of

algorithm parameters, y, is not checked at all.

For the CRL signature verification function, the treatments of length variables w,

x, and y are also overly permissive, similar to what is done in certificate signature

verification. On top of that, the checks on z the declared size of H(ms) in AS is also

overly permissive, similar to those on w.

Comparing to a construction-based approach, these implementations are overly

permissive and the weaknesses discussed allow some bits in O to take arbitrary any

values, which means the verification is not as robust as it ideally should be.

Mishandling Algorithm OID. We found that for the CRL signature veri-

fication, there exists another subtle implementation weakness in how it handles the

OID of hash algorithms.

As shown in the following snippet, upon finishing parsing the algorithm OID, the

verification code would see whether the length of hash output given by the parsed

algorithm matches what the caller of the verification function expects. However,

since this is again done by the psAssert() macro, which as discussed before, does

not end the execution with an error code even if the assertion condition fails, and the

execution would just fall through. This explains the numerous accepting paths found

by TH2 and TH3.

Snippet 5.5.iv: Checking Signature Hash Algorithm in MatrixSSL (CRL)

/** outlen := length of H(m) provided by caller ,

oi is the result of OID parsing **/

if (oi == OID_SHA256_ALG)

{ psAssert(outlen == SHA256_HASH_SIZE); }
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else if (oi == OID_SHA1_ALG)

{ psAssert(outlen == SHA1_HASH_SIZE); }

... ...

else { psAssert(outlen == SHA512_HASH_SIZE); }

The implications of this flaw is that for the algorithm OID bytes (the length of which

is subject to the checks discussed before), they can be arbitrarily any values, since in

the end, it is the expected length of H(m) provided by the caller of the verification

function that dictates how the rest of the parsing would be performed. Hence the

verification is overly permissive and one can get at most 9 arbitrary bytes in the OID

part of O this way (e.g., with H() being SHA-256).

Besides, even if psAssert() would actually terminate with errors, the above im-

plementation is still not ideal, as the assertion conditions are done based on the length

of H(m), not the expected algorithm. We note that the hash size and length of OID

are not unique across hash algorithms. Since there are pairs of hash algorithms (e.g.,

MD5 and MD2; SHA-256 and SHA3-256) such that (1) the length of their OIDs are

equal, and (2) the length of their hash outputs are equal, the parser would consider

algorithms in each pair to be equivalent, which can still lead to an overly permissive

verification. Ideally, this should be done instead by matching the parsed OID against

a caller provided expected OID.

GnuTLS 3.5.12

Based on our testing and root-cause analysis, GnuTLS is now using a construction-

based approach in its PKCS#1 v1.5 signature verification code, which is a consider-

able improvement to some of its own vulnerable versions from earlier [7, 14]. This is

also reflected in the small number of paths yielded by our test harnesses, even less

than those that adopt a hybrid approach. Consequently, we choose this as the anchor

for cross-validation.



132

Dropbear SSH 2017.75

Dropbear implements the SSH protocol, and uses libtomcrypt for most of the

underlying cryptographic algorithms like the various SHA functions and AES. Inter-

estingly, instead of relying on libtomcrypt ’s RSA code, for reasons unbeknownst to

us, Dropbear SSH has its own RSA implementation, written using the libtommath

multiple-precision integer library. Based on our root-cause analysis, it appears that

the PKCS#1 v1.5 signature verification implemented in the RSA implementation of

Dropbear SSH follows the construction-based approach, hence it successfully cross-

validated with the anchor and no particular weaknesses were found. In contrast to

the bundled libtomcrypt which has some signature verification weaknesses (explained

below), having its own RSA implemented actually helped Dropbear SSH to avoid

some exploitable vulnerabilities.

Comparing to other implementations of construction-based verification (e.g., Bor-

ingSSL), the TH1 of Dropbear SSH took a significantly longer time to run, mainly

due to the final comparison after constructing the expected Iv is done in the multiple-

precision integer level, not with a typical memory comparison function like memcmp().

Nevertheless, it still managed to finish within a reasonable amount of time. As a side

benefit, symbolic execution also covered part of the multiple-precision integer libtom-

math code.

libtomcrypt 1.16

Based on our test results, we found that libtomcrypt is also using a parsing-based

approach, and its signature verification contains various weaknesses6.

Accepting trailing bytes. Similar to axTLS, libtomcrypt also has the clas-

sical flaw of accepting signatures with trailing bytes after H(ms), hence a practical

6Some of the weaknesses had been independently found by other researchers, leading to certain fixes
being introduced in version 1.18.
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signature forgery attack is possible when the public exponent is small enough. This

is the reason why for TH1 and TH2, there are 3 accepting paths.

Accepting less than 8 bytes of padding. Interestingly, libtomcrypt also

has the classical flaw of not checking whether PS has a minimum length of 8, similar

to strongSwan. Through root-cause analysis, we quickly identified the lax padding

check as shown below. Give this verification flaw, to avoid scalability challenges due

to symbolic padding bytes, we apply the same workaround to TH1 as we did for

strongSwan.

Snippet 5.5.v: Padding Check in libtomcrypt 1.16

for (i = 2; i < modulus_len - 1; i++)

{ if (msg[i] != 0xFF) { break; } }

/* separator check */

if (msg[i] != 0) {

/* There was no octet with hexadecimal value

0x00 to separate ps from m. */

result = CRYPT_INVALID_PACKET;

goto bail;

}

/** ... start ASN.1 parsing at msg[i+1] ... **/

Lax AlgorithmIdentifier length check. Furthermore, despite the fact that

TH3 yielded only one accepting path, it turns out there is another subtle weakness

in libtomcrypt. We found that in AS, the length x of AlgorithmIdentifier (the

inner ASN.1 SEQUENCE) is checked only loosely, despite the constraints imposed on

x by the verification code. This is because the constraints are mostly simple sanity

and boundary checks such that x cannot be too small or too large, but the x is not

required to match exactly to a concrete value (i.e., 9 with explicit NULL parameter

and H() being SHA-1). This is partly because the ASN.1 parser used by libtomcrypt,

re-encodes the bytes of an ASN.1 simple type that were just parsed, to calculate the

actual length that was consumed. Hence, when given a child of ASN.1 OID, the

length of the parent SEQUENCE, as in the case of AlgorithmIdentifier, was not
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checked strictly. This is also why for TH2 it needed to change a handful of lines

more, to workaround the re-encoding of OID which has decisions to be made for each

byte, depending on whether it is less than 128 (short form) or not (long form).

Because the verification code would accept a range of values for x, this gives some

bits in the middle of AS that one can choose arbitrary and is hence overly permissive.

mbedTLS 2.4.2

Based on the results of our testing, mbedTLS appears to be also using the parsing-

based verification approach. The relatively larger number of paths from TH1 and TH3

can be attributed to the underlying ASN.1 parser, as there are various decisions (e.g.,

whether the lengths are in the long form or not) to be made during parsing. We note

that despite each of {TH1, TH2, TH3} gave exactly one accepting path, only the

paths extracted by TH1 and TH2 were successfully cross-validated with the other

implementations. Upon close inspection of the one and only accepting path yielded

by TH3, we realized it contains a subtle verification weakness, which was also caught

by cross-validation.

Lax algorithm parameter length check.

Interestingly, in mbedTLS 2.4.2, the checks imposed on y, the length of algorithm

parameter, are in fact too lenient. Through root-cause analysis with CPT, we found

that the only constraints imposed came from the parser, as shown in Snippet 5.5.vi.

There are 2 constraints, one is whether the most significant bit is on, which the parser

uses to decide how it should obtain the actual length. The other one is whether the

declared length is longer than what is remaining in the buffer.

Snippet 5.5.vi: Only parsing and sanity checks imposed on y in mbedTLS 2.4.2

if( ( **p & 0x80 ) == 0 ) *len = *(*p)++;

else { ... ... }

if( *len > (size_t) ( end - *p ) )
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return( MBEDTLS_ERR_ASN1_OUT_OF_DATA );

Since after the parser consumed y, there would be 22 bytes left in the buffer (assuming

no parameter bytes, 2+20 for a SHA-1 hash), it turns out the verification code would

accept any values of y not larger than 22, which allows some bits of AS to be arbitrarily

chosen and is hence overly permissive.

BoringSSL 3112, BearSSL 0.4 and wolfSSL 3.11.0

BoringSSL is a fork of OpenSSL, refactored and maintained by Google. We found

its PKCS#1 v1.5 signature verification uses a hybrid approach. Everything before AS

in O is handled and checked by a parser that scans through the buffer, and then AS

is copied out. The verification code then constructs its own expected version of ASv

using H(mv) and some hard-coded ASN.1 prefixes, and then compares ASv against

AS. This observed behavior is consistent with what was reported earlier [11]. Conse-

quently, the total number of paths are reasonably small, with each of {TH1, TH2,

TH3} yielding exactly one accepting path. BearSSL and wolfSSL both behaved quite

similar to BoringSSL, and all 3 implementations successfully cross-validate against

the anchor with no discrepancies observed. wolfSSL yielded more paths in TH1 due

to a slightly different handling of PB, and BearSSL yielded more paths in TH2 due

to extra handling of the case of absent parameter.

OpenSSL 1.0.2l and LibreSSL 2.5.4

We found that OpenSSL adopts a parsing-based verification approach, which

partly explains why some higher number of paths were yielded by TH2 and TH3.

The slightly longer execution time of TH3 can partly be attributed to the concretiza-

tion workaround. Despite these, no verification weaknesses were found in this recent

version of OpenSSL, which is perhaps unsurprising given that it had gone through

years of scrutiny by security researchers [7]. LibreSSL is a fork of OpenSSL maintained

by the OpenBSD community since 2014 after the infamous Heartbleed vulnerability.



136

The two are actually quite similar when it comes to PKCS#1 v1.5 signature verifica-

tion, both using a similar parsing-based approach and the test harnesses all yielded

comparable numbers of execution paths.

PuTTY 0.7

We found that the PuTTY implementation of PKCS#1 v1.5 signature verification

is highly reminiscent of a construction-based approach. The left-most 2 bytes of O

containing 0x00 and BT are checked first, followed by a check on PB with an expected

length (which depends on |n|), and then AS before H(ms) is checked against some

hard-coded ASN.1 encoded bytes, and finally, H(ms) is checked. Cross-validation

found no discrepancies and no signature verification weaknesses were detected.

Interestingly, even after sufficient rejection criteria has been hit (e.g., BT is not

0x01), the verification continues with other checks, until all has been finished and

then an error would finally be returned. Since the later checks before the verification

function returns do not alter a rejection return code back into an acceptance, this is

not a verification weakness. We suspect this insistence on traversing the whole buffer

containing O might be an attempt to avoid timing side channels.

However, as explained below with Example 2, such an implementation presents

a small hurdle for symbolic execution, as the number of paths due to if statements

(the series of checks) exhibits a multiplicative build-up, leading to a scalability chal-

lenge observed in our first round experiment with TH1. Consequently, we modified

the source to adopt an ‘early return’ logic, like a typical implementation of memcmp()

would do. That is, once a sufficient rejection condition has been reached, the verifi-

cation function returns with an error without continuing with further checks, so that

the number of paths would build up additively. This explains why the number of

lines changed in PuTTY is slightly higher than the others.
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if (symBuf [0] != 0) ret = 0;

if (symBuf [1] != 1) ret = 0;

if (symBuf [2] != 2) ret = 0;

return ret;

if (symBuf [0] != 0) return 0;

if (symBuf [1] != 1) return 0;

if (symBuf [2] != 2) return 0;

Example 2: For number of execution paths, the snippet on right builds up additively, but the one

on left does so multiplicatively.

OpenSSH 7.7

OpenSSH is another open source SSH software suite. For handling PKCS#1 v1.5

signatures, it relies on OpenSSL (calling RSA_public_decrypt()) to perform the

RSA computation and process the paddings of O. Afterwards, it compares the AS

returned by OpenSSL against its constructed version, hence it is somewhat of a hybrid

approach. Cross-validation found no discrepancies and no weaknesses were detected

in the verification.

Interestingly, instead of simply using memcmp(), the comparison against the con-

structed AS is done using a custom constant time comparison, as shown below:

/** p1 ,2 point to buffers of equal size(=n) **/

for (; n > 0; n--) ret |= *p1++ ^ *p2++;

return (ret != 0);

This explains why TH3 found in total only 2 paths of relatively larger constraints, as

such a timing safe comparison would aggregate (with OR) the comparison (with XOR)

of each byte in the two buffers. Semantically, the 2 execution paths mean either all

length variables u,w, x, y, z in TH3 match their expected values exactly, or at least

one of them does not.

5.6 Exploiting Our New Findings

Here we discuss how to exploit the several weaknesses presented in the previous

section. For ease of discussion, we focus on SHA-1 hashes, but the attacks can be
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adapted to handle other hash algorithms by adjusting the lengths of appropriate

components. Though low-exponent RSA public keys are rarely seen in the Web PKI

nowadays [187], there are specific settings where low-exponent keys are desired (e.g.,

with extremely resource-constrained devices). Historically, a small public exponent

of e = 3 has been recommended for better performance [RFC3110], and there are key

generation programs that still mandate small public exponents [181].

Signature forgery against Openswan

The flaw of ignoring padding bytes effectively means Openswan would accept a

malformed O′ in the form of

0x00 || 0x01 || GARBAGE || 0x00 || AS ,

which can be abused in a manner similar to the signature forgery attack exploiting the

weakness of not checking algorithm parameters found in some other implementations

as discussed in previous work [7].

This has serious security implications. We note that in the context of IPSec, the

key generation program ipsec rsasigkey forces e = 3 without options for choosing

larger public exponents [181]. Since the vulnerable signature verification routine

is used by Openswan to handle the AUTH payload, the ability to forge signatures

might enable man-in-the-middle adversaries to spoof an identity and threaten the

authentication guarantees delivered by the IKE AUTH exchange when RSA signature

is used for authentication.

Given the implementation flaw allows for certain bytes in the middle of O′ to take

arbitrarily any values, the goal of the attack is to forge a signature S ′ = (k1+k2), such

that when the verifier computes O′ = S ′3 = (k1 + k2)3 = k1
3 + 3k1

2k2 + 3k2
2k1 + k2

3,

the following properties would hold:

1. the most significant bits of k1
3 would be those that need to be matched exactly

before the unchecked padding bytes, which is simply (0x00 || 0x01);
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2. the least significant bits of k2
3 would become those that need to be matched

exactly after the unchecked padding bytes, which is simply (0x00 || AS);

3. the most significant bits of k2
3 and the least significant bits of k1

3, along with

3k1
2k2 + 3k2

2k1, would stay in the unchecked padding bytes.

One influential factor to the success of such attack is whether there are enough

unchecked bytes for an attacker to use. An insufficient amount would have the terms

of expanding (k1 + k2)3 overlapping with each other, make it difficult for the three

properties to hold. However, since the flaw we are exploiting is on the handling of

padding bytes, the number of which grows linearly with |n|, assuming the same public

exponent, a longer modulus would actually contribute to the attacker’s advantage and

make it easier to forge a signature. Specifically, assuming SHA-1 hashes and e = 3,

given |n| ≥ 1024 bits, it should be easy to find k1 and k2 that satisfy the three

properties without worrying about overlaps.

Finding k1. The main intuition used is that a feasible k1 can be found by taking

a cubic root over the desired portion of O′. For instance, in the case of |n| = 1024

bits, 0x00 || 0x01 || 0x00 ... 0x00 is simply 21008 (with 15 zero bits in front),

hence a simple cubic root would yield a k1 = 2336.

In the more general cases where |n| − 15 − 1 is not a multiple of 3, the trailing

garbage could be used to hide an over-approximation. One can first compute t1 =

d 3
√

2|n|−15−1e and then sequentially search for the largest possible r such that

((t1/2
r + 1) · 2r)3 gives 0x00 || 0x01 || GARBAGE. Then k1 would be (t1/2

r + 1) · 2r.

This is to make as many ending bits of k1 to be zero as possible, to avoid overlapping

terms in the expansion of (k1 + k2)3. For example, when |n| = 2048 bits, we found

r = 676 bits and k1 = 3 · 2676.

Finding k2. The intuition is that to get (0x00 || AS) with k2
3, the modular

exponentiation can be seen as computed over a much smaller n′′ instead of the full
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modulus n. While finding φ(n) reduces to factorizing n, which is believed to be

impractical when n is large, finding φ(n′′) can be quite easy.

One can consider S ′′ =(0x00 || AS) and n′′ = 2|S
′′|, where |S ′′| is the size of AS

in number of bits plus 8 bits for the end of padding 0x00.

Now k2 has to satisfy k2
e ≡ S ′′ (mod n′′). Since n′′ is a power of 2, we can

guarantee k2 and n′ are coprime by choosing an odd numbered S ′′ with a fitting hash

value. Also, φ(n′′) = φ(2|S
′′|) = 2|S

′′|−1.

One can then use the Extended Euclidean Algorithm to find f such that ef ≡ 1

(mod 2|S
′′|−1). With f found, k2 would simply be S ′′f (mod n′′).

We have implemented attack scripts assuming e = 3 and SHA-1 hashes, and were

able to forge signatures that would be successfully verified by Openswan 2.6.50 given

any |n| = 1024 and |n| = 2048 moduli.

Signature forgery (1) against strongSwan

The flaw of not checking algorithm parameter can be directly exploited for signa-

ture forgery following the algorithm given in [7] (which is very similar to the attack we

described previously against Openswan). Assuming e = 3, |n| = 1024 bits and SHA-1

hashes, the expected iterations required to brute-force a fake signature is reported to

be 221 [7].

Signature forgery (2) against strongSwan

Likewise, the flaw of accepting trailing bytes after OID can be exploited following

the steps used in the forgery attack against Openswan as described before, by adjust-

ing what k1
3 and k2

3 represent. Under the same parameter settings, it should require

a comparable number of iterations as signature forgery (1) does discussed above.
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Signature forgery (3) against strongSwan

Interestingly, the flaw of accepting less than 8 bytes of padding can be exploited

together with the algorithm parameter flaw to make it easier to forge signatures.

In fact, the two flaws together means such an O′ with no paddings at all would be

accepted:

/** all numbers below are hexadecimals **/

00 01 00 30 7B 30 63 06 05 2B 0E 03 02 1A 05 5A

GARBAGE 04 16 SHA -1(m’)

The length of algorithm parameter 0x5A is calculated based on |n| (in this case

1024 bits) and the size of hash. Then by simply adjusting what k1
3 and k2

3 represent

in the attack against Openswan, given e = 3 and |n| ≥ 1024 bits, the forgery will

easily succeed. We implemented this new variant of attack and confirmed that the

fake signatures generated actually work.

Signature forgery (4) against strongSwan

Similarly, the forgery attack exploiting trailing bytes after OID could also benefit

from the absence of padding, as an O′ like the followings would be accepted by

strongSwan:

/** all numbers below are hexadecimals **/

00 01 00 30 7B 30 63 06 5F 2B 0E 03 02 1A

GARBAGE 05 00 04 16 SHA -1(m’)

The length of algorithm OID 0x5F is calculated based on |n| (in this case 1024

bits) and the size of hash. The attack against Openswan would work here as well,

simply by adjusting what k1
3 and k2

3 represent. Signature forgery would again easily

succeed given e = 3 and |n| ≥ 1024 bits. We have also implemented this new attack

variant and confirmed that the fake signatures generated indeed work.
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Signature forgery (1) against axTLS

Given that there exist performance incentives in using small exponents with the

kinds of resource-constrained platforms that axTLS targets, a practical signature

forgery attack as described in [7] could be made possible by the flaw of accepting

trailing bytes. Specifically, when |n| = 1024, assuming e = 3 and SHA-1 hashes, the

expected number of trials before a successful forgery is reported to be around 217

iterations, which takes only several minutes on a commodity laptop [7]. As a larger

|n| would allow for more trailing bytes, hash algorithms that yield longer hashes

could be attacked similarly, e.g., assuming e = 3 and SHA-256 hashes, a modulus

with |n| = 2048 bit should easily yield a successful forgery. Similarly, such an attack

would also work against a larger public exponent with an accordingly longer modulus.

Signature forgery (2) against axTLS

Separately, the weakness of ignoring ASN.1 metadata as shown in Snippet 5.5.iii,

can also be exploited for a low-exponent signature forgery. Due to the majority of AS

being skipped over, axTLS would accept an O′ like this:

/** all numbers below are hexadecimals **/

00 01 FF FF FF FF FF FF FF FF 00 30 5D 30 5B

GARBAGE 04 16 SHA -1(m’)

where the lengths 0x5D and 0x5B are calculated based on |n| and size of hash to

make sure the skipping would happen correctly. Then the forgery attack against

Openswan described before can be easily adapted to work here by adjusting what k1
3

and k2
3 represent. Given |n| ≥ 1024, forgery should easily succeed. We have tested

the adapted attack script and the forged signatures it generates indeed worked on

axTLS.
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Signature forgery (3) against axTLS

Knowing that axTLS also ignores prefix bytes as shown in Snippet 5.5.ii, the

signature forgery (1) described above which exploits unchecked trailing bytes can be

made even easier to succeed, by making the first 11 bytes all 0 (including the end

of padding indicator). Adapting the analysis from previous work [7], the signature

value O is essentially a number less than 2935 (assuming |n| = 1024, the first 88 bits

are all zeros, with 2 additional zero bits from the first 0x30 byte of AS). The distance

between two consecutive perfect cubes in this range is

k3 − (k − 1)3 = 3k2 − 3k + 1 < 3 · 2624 − 3 · 2312 + 1

< 2626 (∵ k3 < 2935) (5.1)

which is less than the 656 bits that an attacker can choose arbitrarily (46 bytes are

fixed, due to the 35-byte AS containing a desired SHA-1 hash and the 11 bytes in

front), so a signature forgery should easily succeed, by preparing an attack input O′

containing hash of an attacker-chosen m′, and the attack signature S ′ can be found by

simply taking the cubic root of O′. Once the verifier running axTLS 2.1.3 received S ′,

it would compute O′ := S ′3 mod n, and despite O′ being malformed, the verification

would go through.

Signature forgery (4) against axTLS

Furthermore, the weakness of ignoring ASN.1 metadata, can be exploited together

with the previous attack, to make the signature forgery even easier. The intuition

is that, knowing the parsing code would skip over the ASN.1 prefix (the two 0x30

ASN.1 SEQUENCE) according to the length declared, an attacker can spend the minimal

number of bytes on AS to keep the parser entertained, with an O′ like this:

/** all numbers below are hexadecimals **/

00 00 00 00 00 00 00 00 00 00 00 30 00 30 00 04

H().size H(m’) TRAILING



144

and spend the gained extra free bytes at the end as trailing ones. While for SHA-

256 and |n| = 1024, a signature forgery attack exploiting only trailing bytes has

the expected iterations of about 2145 [7], however, if we use this joint attack strategy

instead, this bound can be pushed down much lower and the attack becomes practical.

Specifically, assuming SHA-256, the joint attack strategy would have 11+6+32 = 49

bytes fixed, and 79 trailing bytes (632 bits) at the end that the attacker can choose

arbitrarily, more than the bound of 626 bits on the distance between two perfect

cubes from eq. (5.1), so a forgery should easily succeed by taking the cubic root as

described before. We have implemented attack scripts and successfully performed

this new variant of signature forgery on axTLS 2.1.3 with e = 3, |n| = 1024 and for

both SHA-1 and SHA-256.

Denial of Service against axTLS

We further note that because of the trusting nature of the parser in axTLS, an

illegal memory access attack against axTLS with absurd length values is also possible,

which might crash the verifier and result in a loss of service. Specifically, following

the previous forgery attack, we prepared an attack script that generates signatures

which would yield a z (the length of hash) of 0x84, and the illegal memory access

induced by this absurd value had successfully crashed the verifier in our experiments.

We further note that such a denial of service attack can be even easier to mount

than a signature forgery in the context of certificate chain verification. This is due

to the fact that axTLS verifies certificate chains in a bottom-up manner, which con-

tributes to an attacker’s advantage: even if low-exponent public keys are rarely used

by real CAs in the wild, to crash a verifier running axTLS, one can purposefully in-

troduce a counterfeit intermediate CA certificate that uses a low-exponent as the j-th

one in the chain, and forge a signature containing absurd length values as described

above and put it on the (j + 1)-th certificate. Due to the bottom-up verification,

before the code traverses up the chain and attempts to verify the j-th counterfeit
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certificate against the (j − 1)-th one, it would have already processed the malicious

signature on the (j + 1)-th certificate and performed some illegal memory access.

While a bottom-up certificate chain verification is not inherently wrong, but because

of the weaknesses in the signature verification, the bottom-up design has an unex-

pected exploitable side effect. This highlights why a signature verification code

needs to be robust regardless of the choice of e.

Signature forgery (1) against libtomcrypt

Just like the flaw of accepting trailing bytes in axTLS, the same flaw in libtom-

crypt 1.16 can also be exploited in a signature forgery attack if the e is small enough

and |n| is large enough, following the same attack algorithm described in [7].

Signature forgery (2) against libtomcrypt

We note that the flaw of accepting less than 8 bytes of padding found in libtom-

crypt 1.16 also has serious security implications. Combining this with the attack

exploiting trailing bytes, the low-exponent signature forgery can be made even easier.

Specifically, an attacker can craft an O′ like this:

/** all numbers below are hexadecimals **/

00 01 00 || AS || TRAILING || EXTRA TRAILING

The intuition behind is that one can shorten the padding as much as possible, and

spend the extra bytes at the end. Assuming |n| = 1024, e = 3 and H() is SHA-1, this

attack has 38 bytes fixed, and hence 1024 − 38 · 8 = 720 bits that the attacker can

choose arbitrarily. Since in this case, O′ is essentially a number < 21010, the distance

between two consecutive perfect cubes in this range is

k3 − (k − 1)3 = 3k2 − 3k + 1 < 3 · 2674 − 3 · 2337 + 1

< 2676 (∵ k3 < 21010),
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which is less than the 720 bits that can be chosen arbitrarily, so a signature forgery

would succeed easily. We have implemented an attack script and verified the success

of such a signature forgery attack against libtomcrypt 1.16.

Other weaknesses

We note that not all the weaknesses found can immediately lead to a practi-

cal Bleichenbacher-style low-exponent signature forgery attack. For example, even

though the other weaknesses in mbedTLS 2.4.2, MatrixSSL 3.9.1 and libtomcrypt 1.16

regarding lax length variable checks allow for some bits to take arbitrary any values,

given that the number of free bits gained due to those weaknesses appear to be some-

what limited, it is not immediately clear how to exploit them for signature forgery.

Nevertheless, those implementations are accepting signatures that should otherwise

be rejected, which is less than ideal and might potentially be taken advantage of when

combined with some other unexpected vulnerabilities in a specific context.

5.7 Disclosure and Fixes

In an effort of responsible disclosure, we have notified vendors of the weak imple-

mentations so that they can have their signature verifications hardened. CVEs are

requested and assigned selectively on the basis that a weakness can lead to immediate

practical attacks as outlined above. Developers of MatrixSSL have acknowledged and

confirmed our findings, and have released fixes. strongSwan has fixed the problems

since version 5.7.0 and released further patches for older versions. Openswan has

fixed the exploitable weakness since their 2.6.50.1 release and incorporated one of our

forged signatures into their unit tests. libtomcrypt developers have created a ticket

regarding the parser weakness and are currently investigating it. We developed a

patch for axTLS and tested it with our approach before releasing it, and our patch

has been incorporated by the axTLS ESP8266 port as well as the upstream axTLS
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maintainer. At the time of writing, we are awaiting responses from the vendor of

mbedTLS.

5.8 Conclusion

In this chapter, we propose to enhance symbolic execution with meta-level search

and constraint provenance tracking, for automatically generating concolic test cases

and easier root-cause analysis. As a demonstration, we analyzed 15 open-source

implementations of PKCS#1 v1.5 signature verification and found semantic flaws in

6 of them. We also discuss in details how to exploit some of the flaws for signature

forgery. We have publicly released the relevant source code and artifacts like extracted

path constraints, so other researchers and practitioners can reproduce our work and

leverage it to test other implementations.

In the long run, perhaps it is worth reconsidering the design of incorporating a

flexible but complex structure inside security-critical objects like digital signatures.

While an ASN.1 DER structure like AS is highly extensible and can easily accom-

modate new hash algorithms, the reality is, new standardized algorithms seldom get

introduced, and complicating a common but critical routine that gets invoked multi-

ple times daily for a flexibility that is enjoyed only once in a while might not seem to

be worthwhile.
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6. SUMMARY

Security mechanisms are critical for protecting communications and other digital as-

sets in a potentially hostile networked environment. Network connection makes it

much easier and more convenient to share information and resources, but also opens

up the possibilities of various remote attacks, which is exactly why it is critical to

correctly deploy proper security mechanisms. In this thesis, taking a top-down ap-

proach, we study the problem of improper security mechanism deployment, and help

improve the understanding of how to design, implement and analyze such mechanisms

through a series of systematic evaluations.

First, we begin at the application layer, and study the problem of deploying con-

tent distribution apps on mobile platforms. As smartphones and other portable de-

vices are becoming ubiquitous, digital multimedia contents are increasingly being

consumed on such platforms. We define a hierarchy of possible adversaries and at-

tack surfaces, and demonstrate how due to unjustified trust assumptions, weak design

patterns, as well as flawed enforcement of control policies and best practices, many

content distribution apps fail to adequately protect the digital contents that they

deliver, leading to potential loss of revenue for the corresponding businesses. To ed-

ucate and help the community avoid similar deployment pitfalls, we dissect the flaws

found in the vulnerable apps and map the relevant patterns to CWEs. We have also

responsibly discussed our findings with the companies that are affected.

Then we look at the problem of validating X.509 certificates, a critical step in

common deployments of TLS, the de facto standard for encrypting Internet traffic.

X.509 certificates are widely used in TLS as a means for achieving authentication.

The security guarantees of TLS deployments often hinge on the assumption that

implementations are correctly validating X.509 certificates, and flawed certificate val-

idation can lead to loss of service and impersonation attacks. Previous state of the
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art relies on unguided black-box fuzzing to test implementations of X.509 certifi-

cate validation. Focusing on small-footprint TLS libraries targeting embedded and

IoT systems, we propose a principled approach that leverages symbolic execution to

achieve better coverage and uncover hidden logical flaws buried deep in the code.

We found that when it comes to certificate validation, many TLS libraries deviate

from what the specification prescribes, and our approach is able to find more subtle

problems comparing to previous work. We have communicated our findings with the

library maintainers and most of the issues are already fixed. 3 new CVEs of medium

severity have been assigned to the new flaws that we found.

Finally we study the problem of PKCS#1 v1.5 signature verification, a critical

algorithm that is often used in X.509 certificate validation, as well as in some other

network protocols like SSH, IPSec and DNSSEC. Previous research based on manual

analysis has found that flawed implementations of PKCS#1 v1.5 can be susceptible to

signature forgery attacks. Using the PKCS#1 v1.5 signature verification as another

case study, we revamp the subject of analyzing semantic correctness with symbolic

execution, which is a theme also shared by our previous work on X.509 certificates.

Semantic correctness is interesting as a research topic, particularly for security-critical

mechanisms, because many existing work on software testing focus on finding memory

errors, which can be easily prevented with memory-safe programming languages, but

not so much for logical flaws. We discuss how concolic test cases can be automatically

generated by exploiting the structural features of the PKCS#1 v1.5 signature scheme,

and we introduce a novel constraint provenance tracking mechanism that helps to

identify the line of code that imposes incorrect path constraints. To our surprise,

we found hidden flaws that enable new variants of the Bleichenbacher ’06 signature

forgery attacks in several crypto libraries and IPSec software, which could be used

to break authentication under certain configurations. 6 new CVEs (3 medium and 3

high severity) have been assigned to these implementation flaws. We have helped the

library developers fix their signature verification code and released the artifacts we

used in this research.
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Future work. It would be interesting to see how the analysis of semantic

correctness can be extended to investigate implementations of other stateful network

protocols. For example, recently it has been found that there exist a state machine

transition bug in libssh1, which allows a trivial authentication bypass.

Beyond the work presented in this thesis, another aspect of security mechanism

deployments that is also worth inspecting is configuration issues. Most of this thesis is

devoted to the study of design and implementation of mechanisms, but bad configura-

tions (e.g., allowing the use of broken ciphers) can also negatively impact security in

actual deployments. It remains to be seen how to automatically infer configurations

from deployments of security mechanisms in a non-intrusive manner.

1 https://arstechnica.com/information-technology/2018/10/bug-in-libssh-makes-it-

amazingly-easy-for-hackers-to-gain-root-access/

https://arstechnica.com/information-technology/2018/10/bug-in-libssh-makes-it-amazingly-easy-for-hackers-to-gain-root-access/
https://arstechnica.com/information-technology/2018/10/bug-in-libssh-makes-it-amazingly-easy-for-hackers-to-gain-root-access/
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[70] B. Möller, T. Duong, and K. Kotowicz, “This poodle bites: Exploiting the ssl
3.0 fallback,” 2014.

[71] N. J. Al Fardan and K. G. Paterson, “Lucky thirteen: Breaking the tls and dtls
record protocols,” in 2013 IEEE Symposium on Security and Privacy (SP).
IEEE, 2013, pp. 526–540.

[72] E. Ronen, K. G. Paterson, and A. Shamir, “Pseudo constant time implementa-
tions of tls are only pseudo secure.”

[73] C. Hlauschek, M. Gruber, F. Fankhauser, and C. Schanes, “Prying open Pan-
dora’s box: KCI attacks against TLS,” in 9th USENIX Workshop on Offensive
Technologies (WOOT 15), 2015.

[74] C. Garman, M. Green, G. Kaptchuk, I. Miers, and M. Rushanan, “Dancing on
the lip of the volcano: Chosen ciphertext attacks on apple imessage,” in 25th
USENIX Security Symposium 2016. USENIX Association, pp. 655–672.

[75] D. Rupprecht, K. Kohls, T. Holz, and C. Pöpper, “Breaking LTE on layer two,”
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