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Forest canopies are a critical component of forest ecosystems as they influence many important 

functions. Specifically, the structure of forest canopies is a driver of the magnitude and rate of 

these functions. Therefore, being able to accurately measure canopy structure is crucial to ensure 

ecological models and forest management plans are as robust and efficient as possible. However, 

canopies are complex and dynamic entities and thus their structure can be challenging to accurately 

measure. Here we study the feasibility of using lidar to measure forest canopy structure across 

large spatial extents by investigating the compatibility of aerial and terrestrial lidar systems. 

Building on known structure-function relationships measured with terrestrial lidar, we establish 

grounds for scaling these relationships to the aerial scale. This would enable accurate measures of 

canopy structural complexity to be acquired at landscape and regional scales without the time and 

labor requirements of terrestrial data collection. Our results illustrate the potential for measures of 

canopy height, vegetation area, horizontal cover, and canopy roughness to be upscaled. 

Furthermore, we highlight the benefit of utilizing multivariate measures of canopy structure, and 

the capacity of lidar to identify forest structural types. Moving forward, lidar is a tool to be utilized 

in tandem with other technologies to best understand the spatial and temporal dynamics of forests 

and the influence of physical ecosystem structure.   
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 TERRESTRIAL VS AERIAL LASER SCANNING 

1.1 Introduction 

1.1.1 Canopy Structure as a Forest Attribute 

Understanding forest ecosystem structure (i.e., the physical arrangement and distribution 

of vegetation) is of critical importance as it directly influences a wide range of ecosystem functions. 

Canopy structure, the 3-D arrangement of vegetation within the canopy volume, and in turn canopy 

structural complexity, has been shown to influence ecosystem functions such as primary 

production (Hardiman et al. 2011), radiation balance and gas exchange (Parker et al. 2004a, Atkins 

et al. 2018a), habitat provisioning (Bergen et al. 2009), and nutrient cycling (Hardiman et al. 2013). 

In fact, canopy structure can be a more effective predictor of some ecosystem functions, such as 

light interception, than more commonly measured variables such as leaf area index (LAI) (Atkins 

et al. 2018). More structurally complex canopies allow for more effective absorption of incoming 

solar radiation, as plants use diffuse light more efficiently than direct light (Li et al. 2015) and a 

more complexly arranged canopy facilitates the transmission and interception of diffuse light 

throughout the canopy. Structure-function relationships such as this relate to the intrinsically 

dynamic nature of canopy structure, the mechanics of which involve complex interactions between 

abiotic factors, disturbance regime, species composition, and stand structure (Fotis et al. 2018). 

The complex nature of forest canopies makes them challenging to accurately measure, 

however, doing so has the potential to dramatically improve characterization and modeling of 

structure-function relationships. Being able to characterize forest attributes at fine scales is 

necessary for forest management that replicates natural conditions as closely as possible (Zimble 

et al. 2003, Fahey et al. 2018). Characterizing horizontal forest structure has been established for 

decades (through techniques such as hemispherical photography and traditional forest inventories), 
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but accurately quantifying the complexity of vertical structure has proven to be more elusive. Most 

remotely sensed optical imagery is limited in the inferences that can be made when used in settings 

with multi-layered and dense forest vegetation, and commonly is reliant on electromagnetic energy 

radiated from the earth and thus limited in the data resolution that is achievable.    

 

1.1.2 Lidar as a Tool for Measuring Canopy Structure 

Lidar (light detection and ranging) has the capability to measure horizontal and vertical 

canopy structure, and has been widely demonstrated to be an effective method for characterizing 

functionally-relevant forest structures (e.g. Lefsky et al. 2002a, Lim et al. 2003, Nguyen et al. 2016, 

Disney et al. 2018, Larue et al. 2018). Terrestrial laser scanning (TLS) can measure metrics of 

internal canopy structure with important links to ecosystem functions at high resolution 

(Hopkinson et al. 2004, Hardiman et al. 2011, Atkins et al. 2018a, Almeida et al. 2019). However, 

it is logistically challenging to deploy across large spatial extents and can be both time and labor 

intensive. Conversely, aerial laser scanning (ALS) sacrifices high data resolution for the ability to 

measure structure over wide spatial extents. Therefore, integrating aerial and terrestrial lidar would 

enable accurately measuring forest structure to understand ecological patterns and processes from 

local to large spatial scales. This advancement would prove pivotal for ecosystem modeling, forest 

management decision making, and the design of conservation strategies, as well as for facilitating 

integration with other remote sensing data products and large-scale climate models.  

There have been a few studies that explicitly investigated the relationship between aerial 

and terrestrial structural measures (Hilker et al. 2010, Listopad et al. 2011, Hilker et al. 2012, 

Hopkinson et al. 2013). However, these studies have been limited to the extent of a single study 

site primarily dominated by a single species, which tend to have simpler structure compared to 

forest landscapes throughout most of the eastern United States.  Additionally, these studies have 



11 

 

not explored relationships between aerial and terrestrial structural complexity metrics. This 

suggests that these conclusions may be dependent on the structural attributes of a specific site or 

community type, limiting the generalizability of conclusions.  

 

1.1.3 Study Objective 

 The objective of our study was to investigate the relationship between aerial and terrestrial 

lidar across a range of forest ecosystem types to establish the feasibility of upscaling functionally 

relevant terrestrial metrics to the scale of aerial data collection. This would enable detailed aerial 

measurements in areas where terrestrial data is not available. We aimed to evaluate the strength of 

correlation between a suite of aerially derived structural metrics and terrestrially derived metrics. 

We further explored the agreement between aerial and terrestrial lidar using multivariate measures 

of structure. 

 

1.2 Methods 

1.2.1 Study Sites 

 This study was carried out at plots (n=88) from seven National Ecological Observatory 

Network (NEON) sites across the eastern United States. These sites (Table 1.1) were chosen for 

their structural diversity and the availability of terrestrial data collected. The aerial data were 

acquired by NEON and downloaded via NEON’s online data depot. Each plot from which data 

were acquired is 1600 m2 (40 m x 40 m). 
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Table 1.1. NEON study sites. 

Site State NEON Domain Dominant Forest Type Plots 

Harvard Forest (HARV) Massachusetts D01: Northeast Mixed Temperate 19 
Smithsonian Conservation 

Biology Institute (SCBI) 
Virginia D02: Mid-Atlantic Mixed Temperate 6 

Smithsonian Environmental 

Research Center (SERC) 
Maryland D02: Mid-Atlantic Temperate Deciduous 13 

Ordway-Swisher Biological 

Station (OSBS) 
Florida D03: Southeast Pine Savannah 20 

University of Notre Dame 

Environmental Research Center 

East (UNDE) 

Michigan D05: Great Lakes Mixed Temperate 8 

Great Smoky Mountain National 

Park (GRSM) 
Tennessee D07: Appalachians & 

Cumberland Plateau 
Temperate Rainforest 10 

Talladega National Forest 

(TALL) 
Alabama D08: Ozarks 

Complex 
Pine Savannah 12 

 

1.2.2 Lidar Systems and Data Collection 

 The aerial system (Optech ALTM Gemini; Table 1.2) exists as a whiskbroom scanning 

sensor deployed on an aerial observation platform (AOP) and flown over the study sites producing 

a three-dimensional point cloud. The terrestrial system (Riegl LD90-3100VHS-FLP; Table 1.2) 

exists as a portable canopy lidar (PCL), of which the design, operation, and validation can be found 

in Parker et al. (2004b). In short, the user walks along a pre-laid transect collecting data linearly, 

where the data product is a 2-D plane with one axis being the length of transect walked and the 

other being the height above the sensor with corresponding lidar return heights. Three parallel 

transects were laid per plot (see Atkins et al. 2018a for detailed field methods).   
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Table 1.2. Lidar system specifications. 

System Specifications Optech ALTM Gemini (ALS) Riegl LD90-3100VHS-FLP (TLS) 

Returns per Pulse Four Five 

Wavelength  1064 nm 900 nm 

Measurement Range 150 - 4000 m AGL 60 m (ρ ≥ 0.1) - 200 m (ρ ≥ 0.8)  

Range Accuracy (typical) ± 5 - 30 cm ± 2.5 cm 

Bean Divergence Angle 0.25 mrad x 0.8 mrad 3 mrad x 5 mrad 

Measurement Rate (per second) 0 - 70 (programmable) 2,000 

Average Point Density 
1 - 4 points per m2  

< 1 point per m3 
2,000 - 10,000 points per linear meter 

Laser Product Classification Class IV (US FDA 21 CFR) IEC 60825-1:2007 (Eye-safe) 

 

 

1.2.3 Structural Metric Suites  

A suite of aerial (Table 1.3) and terrestrial (Table 1.4) metrics were generated due to the 

different data attributes and workflows associated with the aerial and terrestrial systems. These 

metrics fall into four categories that characterize different aspects of canopy structure: (1) canopy 

height, (2) leaf area and density, (3) canopy cover and openness, and (4) canopy heterogeneity 

(Atkins et al. 2018a). Metrics in the canopy height category include mean canopy height, 

maximum canopy height, and mean outer canopy height. Vegetation area index (VAI) is the metric 

contained within the leaf area and density category. Canopy cover and openness includes measures 

of canopy gap and cover fraction. The final category, canopy heterogeneity, includes a total of 16 

metrics that characterize canopy structural complexity. 
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Table 1.3. Aerial lidar structural metric suite. Included is the structural category of each 

metric along with a short description. All metrics derived using the R programming language. 

  

Metric Category Description Unit 
Mean Canopy Height Height Mean canopy height of lidar point cloud m 
Mean Outer Canopy 

Height Height Mean of maximum canopy height from lidar canopy 

height model (CHM) m 

Maximum Canopy 

Height  Height Maximum canopy height in CHM m 
Vegetation Area Index 

(VAI) Vegetation Summation of leaf area density in 1 m layers of lidar 

point cloud N/A 

Deep Gaps Cover & 

Openness Number of pixels in CHM with zero canopy returns count 

Deep Gap Fraction Cover & 

Openness 
Number of deep gaps divided by total number of 

CHM pixels 0-1 

Cover Fraction Cover & 

Openness 
Number of CHM pixels with height above ground 

height divided by total number of CHM pixels 0-1 

Gap Fraction Profile Cover & 

Openness Mean gap fraction of 1 m layers in lidar point cloud 0-1 

Rumple Heterogeneity Ratio of outer canopy surface area to ground surface 

area ratio 

Top Rugosity Heterogeneity Standard deviation of CHM heights m 
Height SD (lidR) Heterogeneity Standard deviation of lidar point cloud return heights m 
Height SD (rLiDAR) Heterogeneity Standard deviation of lidar point cloud return heights m 

SD of Vertical SD of 

Height Heterogeneity Standard deviation of rasterized standard deviation of 

lidar point cloud return heights m 

Entropy Heterogeneity 
Measure of evenness of lidar returns in 1 m layers; 

values closer to 1 represent a more even distribution 

of returns across the layers 
0-1 

Vertical Complexity 

Index Heterogeneity A fixed normalization of entropy 0-1 



15 

 

Table 1.4. Terrestrial lidar structural metric suite. Included is the structural category of each 

metric along with a short description. All metrics derived using the R programming language. 

Metric Category Description Unit 

Mean Leaf Height Height Transect mean of columnar leaf height m 

Mean Outer Canopy Height Height 
Transect mean of columnar maximum 

canopy height 
m 

Maximum Canopy Height Height 
Maximum columnar canopy height along 

transect 
m 

Mean of Squared Leaf Height 

Mode (Mode.2) 
Height 

Transect mean of squared columnar leaf 

height mode 
m 

Mode.el Height 
Transect mode height of maximum VAI 

return in each column along transect 
m 

Mean Height of Maximum 

VAI (Max.el) 
Height 

Transect mean height of maximum VAI 

return in each column along transect 
m 

Mean VAI Vegetation 
Mean of columnar summed vegetation area 

index (VAI) 
N/A 

Mean Peak VAI Vegetation 
Mean of VAI

max
 (maximum x,z value of 

VAI) 
N/A 

Deep Gaps 
Cover & 

Openness 

Number of 1 m columns with no LiDAR 

returns 
count 

Deep Gap Fraction 
Cover & 

Openness 

Total number of deep gaps divided by 

transect length 
0-1 

Sky Fraction 
Cover & 

Openness 

Transect mean of columnar ratio of sky hits 

to total vegetation returns 
0-1 

Cover Fraction 
Cover & 

Openness 

Transect mean of columnar ratio of canopy 

returns to total vegetation returns 
0-1 

Canopy Rugosity  Heterogeneity 
Transect variability of columnar leaf 

density variability 
m 

Top Rugosity Heterogeneity 
Transect variability of columnar maximum 

canopy height 
m 

Rumple Heterogeneity 
Ratio of outer canopy surface area to 

underneath ground surface area 
ratio 

Mean of Vertical SD Heterogeneity 
Transect mean of columnar mean leaf 

height variability 
m 

SD of Vertical SD Heterogeneity 
Standard deviation of columnar mean leaf 

height variability 
m 

Effective Number of Layers 

(ENL) 
Heterogeneity 

Occupation of 1 m layers by vegetation 

relative to total space occupation 
count 

Root Mean Square Height Heterogeneity 
Root mean square of columnar mean leaf 

height 
m 

Mean Height Variability Heterogeneity 
Transect variability of columnar mean leaf 

height  
m 

SD of Mean Height (Height.2) Heterogeneity 
Standard deviation of columnar mean leaf 

height 
m 
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1.2.4 Data Processing and Metric Preparation 

 Processing of the collected lidar data was performed using the R programming language 

(The R Group), specifically the forestR, lidR and rLiDAR packages (Atkins et al. 2018, Roussel et 

al. 2018, Silva et al. 2017). The processing of the terrestrial data is linked to the means of data 

collection. As the PCL produces a 2-D plane, this plane is partitioned into one-meter wide columns 

along the transect (i.e. a transect of 40 meters would be divided in to 40 one-meter wide columns). 

The plane is further divided in to one-meter tall rows, resulting in the data plane being completely 

partitioned in to 1 m2 ‘bins’ in which each bin is weighted relative to the total number of lidar 

returns that fell in its respective area. Metrics were collected from three parallel transects and 

averaged per plot to gain a single mean value. Metrics are calculated by deriving various columnar-

transect combinations and relationships. For example, mean outer canopy height derived from the 

PCL system corresponds to the mean of the maximum returned height in each one-meter column 

along a transect. All PCL metrics were derived using the forestR package (Atkins et al. 2018b). 

 NEON level-1 aerial point clouds are not standardized to ground height and thus the return 

heights must be standardized using a digital terrain model (DTM) in order to correct for topography. 

To account for edge effect, a buffer zone around each plot was used in deriving the DTM. Plot-

level point clouds were clipped from the site-level point clouds using plot centroid coordinates 

acquired via the NEON data depot. Some aerial metrics are derived directly from the ground-

standardized plot point cloud while others are derived from a canopy height model (CHM) 

generated at a resolution of 1 m2, with each 1 m2 pixel being assigned a value corresponding to the 

highest lidar return in that equivalent area from the point cloud. Taking mean outer canopy height 

as an example again, this was derived by calculating the mean value of all CHM pixels within the 

full 1600 m2 plot extent. All aerial metrics were derived with the lidR and rLiDAR packages 

(Roussel et al. 2018, Silva et al. 2017). 
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1.2.5 Evaluating Aerial and Terrestrial Structural Metrics 

Due to the 2-D nature of the terrestrial data and 3-D nature of the aerial data, we evaluated 

the impacts of sampling area on aerial metrics to better understand the correlation between 

terrestrial and aerial measurements.  A collection of ‘slice widths’ ranging from 0.5 m (i.e. a 0.5 

m x 40 m slice) up to 40 m (full plot extent) was used to evaluate the sensitivity of aerial metrics 

to sampling area.  As the PCL system captures a ‘slice’ through the canopy, we aimed to establish 

if a ‘slice’ of area from the aerial data produced similar results to metrics derived using a full plot. 

A total of 14 slice widths were evaluated with 10 randomized iterations of each width. The 10 

randomizations were performed by using the plot edge coordinates as the range from which the 

coordinates of each slice were randomized using a random number generator in R. In this sense, 

the slices can be thought of as a slider bar bouncing back and forth between the plot edges, with 

random coordinates being chosen as the area from which metrics were calculated.  

To investigate correlation strengths between aerial and terrestrial metrics, we calculated 

the Pearson’s correlation coefficient (r) of each pairwise combination of aerial and terrestrial 

metrics within each category. To facilitate interpretation, we used common cut-off values by 

defining | r | ≥ 0.7 as a strong correlation and | r | ≥ 0.5 as a moderate correlation. 

In addition to the pairwise correlation analysis, which provides relatively simple two-

dimensional similarity between metrics, we performed two multivariate ordination analyses. First, 

we performed a non-metric multidimensional scaling (NMDS) operation to evaluate clustering 

agreement between the aerial and terrestrial metric suites. Similar partitioning of the study plots 

by site would be reflective of agreement between the two systems. Data was standardized to correct 

for differences in magnitude and the ordinations were performed using Euclidean distances and 

twenty maximum iterations. A principal component analysis (PCA) was also performed to identify 

the most influential structural metrics across the various sites. Like the NMDS, similar axis 
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loadings between the aerial and terrestrial PCA would indicate the two systems are in agreement 

and would provide evidence for the feasibility of upscaling terrestrial structural measures to the 

scale of aerial lidar. As a secondary outcome, agreement in the two ordination analyses would 

highlight the capacity of lidar derived structural metrics to define specific forest structural types 

that could in turn be related to important functional indices. Both analyses were performed using 

the vegan package in R (Oksanen et al. 2019). Data was standardized to account for differences in 

magnitude and Euclidean distances were used.  

 

1.3 Results 

1.3.1 The Influence of Variable Transect Width 

Metric values consistently begin to stabilize at a transect width of 10 - 20 meters depending 

on the site and metric, with many stabilizing at much narrower slice widths (Figure 1.1). The 

consistency of these results across metrics and sites provides the basis for confidently proceeding 

with the univariate correlation analysis. The increased metric variation at narrow slice widths is 

apparent but expected based on the different physical vegetation that would be measured at 

different random slices in the canopy volume.   
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Figure 1.1. The influence of variable derivation area on lidar metric value. Results presented 

for VAI and mean outer canopy height. Each point represents mean plus standard error for a given 

transect width. A transect width of 40 m represents the full plot extent. One random plot from each 

of the seven study sites is represented by each color. 

 

1.3.2 Metric Correlations 

The structural metrics exhibited a wide range of correlation coefficients, ranging from            

-0.81 to 0.94 (Figure 1.2). Generally, the highest number of correlations had values of r = 0.5 - 

0.7, corresponding to the highest peak in Figure 1.2.  
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Figure 1.2. Kernel density plot showing the overall distribution of pairwise Pearson’s 

correlation coefficients (r) between the aerial and terrestrial metric suites across all metric 

categories.  

 

However, there is discrepancy between correlation strengths across the four metric 

categories (Figure 1.3). We see strong correlations in the height category with maximum canopy 

height (r = 0.94) and mean outer canopy height (r = 0.84) (Fig. 1.3A). Mean canopy height showed 

a moderate correlation (r = 0.68; Fig. 1.3A). The first peak in the bimodal distribution seen for the 

height category results from the weak correlation strengths of Max.el (r = 0.15 - 0.27; Fig. 1.3A), 

defined as the mean height of the maximum VAI return in each column along the PCL transect. 

All other correlations were above r = 0.56. Height metrics possessed moderate to strong 

correlations but were consistently biased slightly towards ALS (Figure 1.4). In the leaf area and 

density category, mean VAI had strong positive correlations with terrestrial mean VAI (r = 0.88) 

and terrestrial mean peak VAI (r = 0.85) (Fig. 1.3B). In the cover and openness category, r values 

ranged from ± 0.69 – 0.81 (Fig. 1.3C) as a result of these metrics being functional inverses of each 

other, such as gap fraction and cover fraction. Aerial cover and gap fraction had strong correlations 

with terrestrial sky fraction (r = -0.72 and r = 0.81, respectively; Fig. 1.3C). Deep gap fraction, a 
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measure of canopy gaps larger than 1 m2, possessed a strong correlation (r = 0.70; Figure 1.3C).  

Canopy heterogeneity metrics exhibited a wide range of correlation values, ranging from r = -0.03 

- 0.75 (Figure 1.3D). Aerial SD of vertical SD was the most consistently correlated metric within 

its category (r = 0.61 – 0.73; Fig. 1.3D). Other metrics show more variable correlations, such as 

vertical SD of height (r = 0.26 – 0.74; Fig. 1.3D). Some metrics show consistently weak 

correlations, including aerial rumple (r = 0.02 – 0.46; Fig. 1.3D). Aerial and terrestrial rumple 

were weakly correlated (r = 0.12; Fig. 1.3D). Terrestrial rumple was in fact more correlated with 

other heterogeneity metrics than its aerial counterpart, and exhibited several strong correlations. 

Aerial and terrestrial top rugosity were also weakly correlated (r = 0.41; Fig. 1.3D).   
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Figure 1.3. Histogram of correlation coefficients for each of the four metric categories. Data 

presented is across all sites. 

 

  

A) Height B) Leaf Area & Volume 

C) Cover & Openness D) Heterogeneity 
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Figure 1.4. Correlation between aerially and terrestrially derived maximum canopy height, 

showing measurement bias. 1:1 line included. TLS systems tend to underestimate height 

measures as a result of reduced laser penetration into the upper canopy. 

 

1.3.3 Ordination Agreement of ALS and TLS 

 Multivariate clustering of the 88 study plots via NMDS illustrates two primary results, the 

first of which is the comparable ordinations of the aerial and terrestrial metric suites (Figure 1.5). 

It can be observed that both ordinations produce three clusters containing the same sites, showing 

that composite measures of structure are in agreement much like many of the univariate structural 

measures. Not only do the clusters exist in both cases, but they are oriented similarly, further 

emphasizing system compatibility. Additionally, while perhaps not readily apparent due to the 3-

D view presented, each of the seven sites form an individual cluster that is completely separable 

from the other sites. This relates to the second primary outcome in that composite measures of 

canopy structure may be able to identify distinct forest structural types (Fahey et al. in review) 

across a heterogeneous landscape.  
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Figure 1.5. Site-level NMDS ordination of A) terrestrial metric suite and B) aerial metric 

suite. Each point (n=88) represents an individual plot. Each axis represents a composite of multiple 

metrics to visualize the data in three-dimensional space. 

 

The NMDS ordinations show how the sites compare in multidimensional structural space 

but do not reveal what, if any, metrics are the driving variables. To this end, the results of the PCA 

analysis show the contribution of individual structural metrics to the observed clustering (Figure 

1.6).  For the terrestrial metric suite, the first two principal axes account for over 80% of the 

observed variability (Figure 1.6A), with many metrics contributing to both. That is, there is not 

necessarily one singular metric that dominates the others. In fact, metrics from all four categories 

are important based on Figure 1.6A, with different categories weighing most heavily towards 

specific sites. Particularly noticeable is the weighting of horizontal cover towards the Ordway-

Swisher Biological Station site, a pine savannah ecosystem. We see similar ordination results with 

the aerial PCA with a number of metrics and categories driving the observed differences (Figure 

1.6B). The variance accounted for by the first two axes is similar to the terrestrial suite at just over 

80%. Again, we see horizontal cover and openness metrics dominating the ordination of the 

Ordway-Swisher site.  

 

A) B) 
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Figure 1.6. PCA ordination of study sites by A) terrestrial metrics and B) aerial metrics. Each 

point represents an individual plot. Arrows represent the relative contributions of each structural 

metric to the ordination of the study plots.  

 

 

A) TLS 

B) ALS 



26 

 

1.4 Discussion 

1.4.1 Aerial and Terrestrial Lidar Compatibility 

There were metrics in all four categories that exhibited strong correlations, but overall, the 

canopy height, vegetation area and density, and cover and openness categories possessed moderate 

to strong relationships for all pairwise correlations (except for the Max.el height metric). Our 

findings show that several important individual measures of forest structure can be feasibly 

upscaled and applied across heterogeneous landscapes: maximum canopy height, mean outer 

canopy height, VAI, cover fraction, gap fraction, and deep gap fraction. All of these metrics had 

strong correlations (r ≥ 0.7) between their aerial and terrestrial counterpart and all other metrics 

within their respective category. This assemblage of metrics is a powerful composite combining 

horizontal structural, vertical structure, and a proxy measure for biomass and productivity. 

Additionally, mean canopy height and total deep gaps, the raw count of 1 m2 or larger canopy gaps, 

were just short of the defined cut-off for a strong correlation (r = 0.68 and r = 0.69, respectively). 

Together, univariate structural measures can be related to many important functional measures, 

especially those related to forest productivity and succession, which are major considerations in 

the modern world with the ever-present impacts of climate change, land cover change, and invasive 

species. 

We also saw aerial and terrestrial lidar compatibility reinforced by multivariate structural 

measures. The NMDS ordination illustrated similar clustering of the 88 study plots across multiple 

scales. First, the ordination produced separate 3-D clusters for each of the seven study sites with 

both metric suites, showing that the lidar metrics are able to identify and delineate the composite 

structural attributes that characterize each site. Second, the two ordinations produced three 

separable clusters, each comprised of the exact same sites, further highlighting the compatibility 

of the two systems and pointing to similar structural attributes between the sites. Not only are the 
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observed levels of clustering equivalent between the two ordinations, but the overall distribution 

of the 88 study plots and 7 sites in structural space is similar. These results show the compatibility 

of the ALS and TLS systems at the plot, site, and ecosystem levels. Indeed, the clustering makes 

ecological sense, as well, considering the forest types. The only unexpected result is that Talladega 

National Forest is not clustered with Ordway-Swisher Biological Station, as these are both pine 

savannah ecosystems. These sites have similar horizontal structure, and so perhaps other structural 

attributes are driving the observed differences.  

Indeed, this is highlighted in the results of the PCA ordinations, where it is observed that 

while Ordway-Swisher is heavily weighted by measures of horizontal canopy structure (i.e. cover 

and gap fraction), Talladega National Forest is oriented more based on measures of canopy 

complexity, particularly outer canopy roughness (rumple and top rugosity). This suggests that 

while these sites may be comparable in general horizontal canopy cover, other site characteristics 

are leading to differences in vertical structure. One possible reason for this is past land use— while 

Ordway-Swisher has been historically maintained via controlled burning, the Talladega National 

Forest site was extensively logged and eroded prior to its acquisition in the early 20th century. We 

also see certain other sites being dominated by individual metrics or a specific metric category, 

such as Smithsonian Environmental Research Center and Great Smoky Mountain National Park 

and canopy height metrics. The results of the NMDS and PCA ordinations give evidence to the 

idea of distinct canopy structural types (Fahey et al. in review) in forest ecosystems. Being able to 

extract structural measurements from lidar that can delineate structural types is a powerful tool for 

relating those structural measures to known functional characteristics associated with specific 

forest types. It also further illustrates the potential for measuring canopy structural complexity 

across broad, heterogeneous landscapes. 
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The wide range of correlation strengths for heterogeneity metrics, along with the increased 

number of weak correlations (partly a proxy from the increased number of heterogeneity metrics), 

indicates that upscaling these metrics to regional and landscape extents remains a challenge. Aerial 

standard deviation of vertical standard deviation is the only metric that exhibited moderate to 

strong correlations with all other heterogeneity metrics, although it was not strongly correlated 

with its terrestrial counterpart. Several factors could be playing into the occurrence of weak to 

negligible correlations.  

One, it could be related to the functional and operational differences of the two lidar 

systems. While the aerial system collects a point cloud of a full plot extent, the terrestrial data is 

collected by averaging three walked transects across each plot. This could produce terrestrial data 

that does not incorporate major structural elements of an individual plot such as a large canopy 

gap or standing snags, skewing the resulting correlation. Also, aerial data could be influenced by 

whether or not an individual plot was located near the flight line as opposed to the edge of a scan 

area, potentially introducing noise into the data. The PCL system collects data in a continuous 

vertical direction, and so this is not expected to be a factor for the terrestrial data.  

Second, it could be attributed to the analytical approach. Separate R packages were used 

for the aerial and terrestrial metric derivations (lidR & rLiDAR and forestR, respectively) which 

could lead to differences that may be exacerbated through the workflow. Moving forward, the 

abundance of different lidar systems and required workflows is something to be streamlined to 

facilitate compatible data processing across systems and scales. The results of the heterogeneity 

correlations, in combination with the other univariate correlations and multivariate ordinations, 

suggest that as opposed to attempting to characterize canopy complexity by individual metrics, 

composite measures that holistically characterize a canopy may be more effective.   
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1.4.2 Measuring Canopy Structure at Large Spatial Extents 

 Currently, having detailed measures of canopy structure and structural complexity at large 

spatial scales is a missing piece in ecological studies. This is an advancement that would allow 

detailed, accurate structural measures to then be applied across areas and in locales where 

terrestrial data is not readily available or feasible to collect. This is a development that would 

circumnavigate the time, labor, and financial requirements of terrestrial data collection and lead to 

more robust ecological models. Structure-function relationships are known to exist and are 

important to incorporate to ensure models are as comprehensive as possible, and that forest 

management and conservation strategies are as informed, and in turn effective, as possible. 

Furthermore, it is an advancement that would open up the door for relating canopy complexity to 

climate change, in both how climate change impacts canopy structure and how canopy structure 

influences the effects of climate change.  

 

1.4.3 Conclusion 

The objective of this study was to evaluate the compatibility of aerially and terrestrially 

derived lidar structural measures to establish the basis for upscaling functionally relevant terrestrial 

structural metrics to the scale of aerial lidar collection. We found that several univariate measures 

of canopy structure can feasibly be upscaled, including maximum canopy height, mean outer 

canopy height, vegetation area index, cover fraction, gap fraction, and deep gap fraction. We also 

showed that the two lidar systems used are in agreement when considering multivariate measures 

of structure. Moving forward, focus should be put on advancing our capacity to measure the 

physical 3-D complexity of canopy structure, as results showed shortcomings in the agreement of 

individual complexity metrics. Perhaps moving towards composite, holistic measures of structure 

and structural complexity is the way forward. Work such as this will continue to expand the 
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capabilities of lidar for ecological applications and further refine our understanding of its 

limitations. Future sustainability requires a comprehensive understanding of our environment and 

the shifting dynamics of the natural world in the modern age, and lidar is a tool to improve our 

capacity to do so. 
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 TERRESTRIAL VS UAV LASER SCANNING 

2.1 Introduction 

2.1.1 Canopy Structure as a Component of Forest Ecosystems 

The physical structure of forest ecosystems is an important consideration as it influences 

many ecological patterns and processes. In particular, the physical structure of forest canopies 

affects a range of forest functions, including primary production (Hardiman et al. 2011), nutrient 

cycling and energy transfer (Parker et al. 2004a, Hardiman et al. 2013, Atkins et al. 2018), and 

habitat provisioning (Bergen et al. 2009). Canopy structure is subject to a wide range of factors 

including community composition, topography, climate, and edaphic characteristics, meaning 

canopy structure is often both physically and biotically complex while varying dynamically across 

both space and time. Structurally complex canopies facilitate more effective absorption of 

incoming solar radiation through increased transmission and interception of diffuse light 

throughout the canopy, which plants use more efficiently than direct light (Li et al. 2015). Physical 

structure therefore plays a critical role in regulating forest carbon cycling, however, these 

complexities are often omitted or greatly simplified in ecosystem models, potentially limiting the 

accuracy of estimates of important ecosystem functions (Fisher et al. 2017).  Easy and accurate 

measurements of structural complexity could substantially improve our ability to model important 

structure-function relationships as well as bolster forest management and conservation strategies. 

However, many conventional sensors and technologies, such as images collected from passive 

remote sensing systems, have exhibited shortcomings in measuring canopy structure with 

increasing aboveground biomass and leaf area index (Lefsky et al. 2002a).  
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2.1.2 Quantifying Forest Canopy Structure 

Lidar (light detection and ranging) can measure three-dimensional canopy structure and 

has been demonstrated as a means to characterize structure-function relationships (Lefsky et al. 

2002b, Lim et al. 2003, Hopkinson et al. 2004, Mascaro et al. 2011, Asner et al. 2012, Yang et al. 

2013, Nguyen et al. 2016, Disney et al. 2018, Hardiman et al. 2018, Larue et al. 2018). Terrestrial 

laser scanning (TLS) can measure internal canopy structure metrics at extremely high resolutions 

(Hopkinson et al. 2004, Hardiman et al. 2011, Atkins et al. 2018, Almeida et al. 2019), but is 

limited in its implementation across large spatial extents. Conversely, aerial laser scanning (ALS) 

can be deployed over wide spatial extents but sacrifices the high data resolution achievable with 

TLS.  

Integrating ALS and TLS would allow accurate measurement of structural dynamics from 

local to continental scales and provide the capability to scale functionally-relevant local structure 

to regional and continental scales. Increasingly, lidar data collected via unmanned aerial vehicles 

(UAVs) have been utilized in ecological studies in an attempt to bridge the tradeoff between TLS 

resolution and ALS spatial extent (Getzin et al. 2014, Wallace et al. 2016, Guo et al. 2017). UAV 

systems allow for higher point densities than traditional plane-flown aerial lidar while still 

retaining the maneuverability and extended spatial capacity. UAV flown systems could prove 

immensely advantageous for collecting expansive, detailed scans at local to mesoscales as opposed 

to the numerous individual scans required by TLS. As canopy structure is dynamic both temporally 

and spatially, UAV systems offer the potential to monitor changes in structure and in turn improve 

our capacity to model structural dynamics. Conservation strategies increasingly rely on spatial data 

of land cover and vegetation patterns derived from remotely sensed data products (Bergen et al. 

2009) and UAV lidar could aid in developing effective and efficient strategies for specific locales. 

Furthermore, the applicability of UAV systems could prove valuable for forest managers— while 
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structural complexity is inherently important in natural forest ecosystems, maximizing 

productivity is a primary goal for forest plantations and regeneration efforts, and functionally-

relevant lidar structural measures could be capitalized on to inform decision making. 

 

2.1.3 Study Objective 

Our primary objective was to investigate the relationship between measures of canopy 

structure derived from UAV and hemispherical scanning terrestrial lidar. Specifically, we aimed 

to quantify the correlations between a suite of aerially and terrestrially derived structural metrics. 

Establishing agreement between equivalent structural metrics is a crucial step towards integrating 

ALS and TLS. If functionally relevant terrestrial measures can be confidently upscaled, we can 

then apply these measurements across regions and landscapes where terrestrial data is absent or 

not feasible to collect. Beyond evaluating univariate correlation strengths, we performed structural 

ordinations using the generated metrics to investigate the efficacy of utilizing multivariate 

measures to evaluate canopy structure.  

 

2.2 Methods 

2.2.1 Study Site 

Data was collected from 12-year-old experimental research plots planted at Martell Forest, 

a research property owned by Purdue University in Tippecanoe County, Indiana. The plots (n=55) 

are part of a silvicultural trial planted in 2007 to test the effects of interspecific competition and 

planting density on growth and survival of American Chestnut (Gauthier et al. 2013). Species 

include American Chestnut (Castanea dentatea Marsh.), Black Cherry (Prunus serotina Ehrh.), 

and Northern Red Oak (Quercus rubra L.) planted in monoculture treatments (3), two-species 

mixtures (3), and a three-species mixture (1) for a total of seven unique species composition 
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treatments. These seven variants are planted in plots with a spacing of 1 m, 2 m, and 3 m between 

trees, respectively, for a total of 21 unique species-density treatments per block (Figure 2.1A). The 

site contains a total of 3 blocks (63 plots total), but 8 plots were omitted due to extensive tree 

mortality.  

 

 

 

 

 

 

 

 

 

Figure 2.1. Layout of Martell study site. A) Individual block, B) individual plot, C) satellite 

image of a block. Figure modified from AgSEED research proposal. For blocks and plots, B= 

Black Cherry, C = American Chestnut, N = Northern Red Oak. 56 trees total per plot. 

 

2.2.2 Data Collection 

UAV lidar data was collected during full-leaf out in mid-August, 2018, with a Velodyne 

VLP-16 system (Table 2.1). TLS data was collected in early September, 2018, with a Leica BLK 

360 system (Table 2.1). The TLS system is a tripod-mounted hemispherical scanner. For the 

purpose of this study, a single scan was collected from the centroid of each plot. A circle of radius 

2.5 m was used to calculate structural metrics across all plots. This corresponds to the area of the 

one-meter spaced plots (additional analysis results using variable radii are included in the 

Appendix; App. 1.1). A circular area was used to account for misalignment between plot scans, 

A B

C
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therefore not incorporating canopy elements from adjacent plots. This was also done to evaluate 

the ability of a single scan to collect sufficient data because incorporating the full plot extent for 

the two and three-meter spaced plots (n=34) would require multiple scans per plot, which would 

substantially increase the labor, time, and computational requirements. 

The UAV system was flown over the entire site at an altitude of 50 m with 4.3 m lateral 

distance between scan lines. To ensure collection height does not substantially impact derived 

metric values, a scan with the same operational parameters but flown at an altitude of 20 m was 

also collected. The results of this comparison are included in the Appendix (App. 1.2). There were 

not significant differences in metric value between the two heights. Therefore, further analysis was 

performed using the 50 m altitude data, as it is a smaller file size and thus more efficient to work 

with. Individual plots were clipped from the UAV point cloud using GPS coordinates collected at 

each plot’s centroid with a Trimble R2 GPS unit. In all cases, GPS horizontal accuracy was within 

10 cm. Just as with the TLS data, a circle of radius 2.5 m was used for analysis of all 55 plots.   

Table 2.1. Lidar system specifications. 

System Specifications Velodyne VLP-16 (UAV) Leica BLK360 (TLS) 

Returns per Pulse Single/Dual Single 

Wavelength  903 nm 830 nm 

Measurement Range 100 m 60 m  

Range Accuracy (typical) ± 3 cm ± 4 mm - 7 mm  

Measurement Rate (per second) 300,00/600,000 360,000 

Average Point Density  
~1,000 per m2 /  

100 - 120 per m3 

~300,000 per m2 /  

30,000 - 60,000 per m3 

Laser Product Classification IEC 60825-1:2007 & 2014 (Eye-safe) IEC 60825-1:2014 (Eye-safe) 

  

2.2.3 Lidar Structural Metrics 

In order to evaluate the correlation strengths between the two systems, a single structural metric 

suite was generated (Table 2.2). The suite is divided into four metric categories, each 
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characterizing a different aspect of canopy structure: (1) canopy height, (2) vegetation area and 

density, (3) canopy cover and openness, and (4) canopy heterogeneity (Atkins et al. 2018).  

Analyses were performed using the R programming language (The R Group) and the lidR and 

rLiDAR R packages (Roussel et al. 2018, Silva et al. 2017). Processing the UAV data requires plot 

coordinates to clip individual plots from the full site point cloud using the lidR package. Some 

metrics can be derived directly from the 3-D point cloud while others are derived from a canopy 

height model (CHM) that is created for each study plot. The CHM is generated by rasterizing the 

point cloud in 1 m2 pixels and assigning each pixel the value corresponding to the highest lidar 

return within the corresponding 1 m2 column of the point cloud. The terrestrial workflow is 

equivalent to that of the aerial except that each plot is represented by an individual scan and thus 

the clipping procedure is omitted. 

To compare the correlation strength between aerial and terrestrial metrics across the various 

treatments and metric categories, Pearson correlation coefficients (r) for each within-category (i.e. 

height vs height metrics) pairwise correlation were evaluated. The multivariate structural 

ordinations were performed using the vegan R package (Oksanen et al. 2019). First, a non-metric 

multidimensional scaling (NMDS) procedure was performed, using Euclidean distances and 20 

maximum iterations. Separate NMDS ordinations were performed for the terrestrial and aerial 

metrics. The NMDS is designed to reduce the dimensionality of the input data and ordinate the 

study plots based on their structural attributes. A principle component analysis (PCA) was also 

performed for the purpose of establishing what structural metrics are driving plot clustering. Input 

data was standardized to account for differences in magnitude and Euclidean distances were used.  
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Table 2.2. Lidar structural metric suite. Included is a brief description of each metric— all are 

equivalent to metrics measured in Chapter 1. 

Metric Category Description Unit 

Mean Canopy Height Height Mean canopy height of point cloud m 

Mean Outer Canopy Height Height Mean pixel value of canopy height model (CHM) m 

Maximum Canopy Height  Height Maximum canopy height in CHM m 

Vegetation Area Index (VAI) Vegetation 
Summation of leaf area density in 1 m layers of 

point cloud 
N/A 

Cover Fraction 
Cover & 

Openness 

Number of CHM pixels above ground height 

divided by total number of CHM pixels 
0-1 

Gap Fraction 
Cover & 

Openness 

Number of CHM pixels at ground height divided 

by total number of CHM pixels  
0-1 

Gap Fraction Profile 
Cover & 

Openness 
Mean gap fraction of 1 m layers in point cloud 0-1 

Rumple Heterogeneity 
Ratio of outer canopy surface area to ground 

surface area 
ratio 

Top Rugosity Heterogeneity Standard deviation of CHM heights m 

Height SD (lidR) Heterogeneity Standard deviation of point cloud return heights m 

Height SD (rLiDAR) Heterogeneity Standard deviation of point cloud return heights m 

SD of Vertical SD of Height Heterogeneity 
Standard deviation of rasterized standard deviation 

of point cloud return heights 
m 
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2.3 Results 

2.3.1 Terrestrial and UAV Lidar Metric Compatibility  

The structural metrics exhibit a wide range of correlation coefficients between equivalent 

aerial and terrestrial measures (Table 2.3). The three height metrics show moderate (| r | ≥ 0.50) to 

strong (| r | ≥ 0.70) correlations across all treatment considerations, and all height correlations are 

strong besides for two instances of maximum canopy height (r = 0.55, r = 0.56; Table 2.3). Mean 

outer canopy height exhibits particularly strong correlations, ranging from r = 0.81 – 0.96 (Table 

2.3). VAI shows a wide range of correlation coefficients, but the majority of instances are moderate 

or higher, with one strong correlation (r = 0.73; Table 2.3). The two weak correlations correspond 

to the collection of non-monoculture treatments. The cover and openness metrics (gap fraction, 

cover fraction, and gap fraction profile) show consistently weak (| r | < 0.50) correlations. Gap and 

cover fraction are moderately correlated when considering the treatment plots with three species 

(r = -0.65; Table 2.3). The occurrence of negative correlations between equivalent metrics is an 

unexpected result. Gap fraction profile shows a similar pattern, showing both a positive moderate 

correlation (r = 0.62; Table 2.3) and negative moderate correlation (r = -0.53; Table 2.3) across 

two species richness treatments. The occurrence of unexpected negative correlations carries over 

into the heterogeneity metrics, as well. All metrics beside top rugosity exhibit both positive and 

negative correlations between aerial and terrestrial counterparts. Besides for one instance, top 

rugosity exhibits consistent moderate to strong correlations (r = 0.62 – 0.82; Table 2.3). Vertical 

standard deviation of height, too, shows some strong correlations, but these are unexpected in their 

directionality.  
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Table 2.3. Pearson’s correlation coefficients (r) across treatments for each of the 12 lidar 

structural metrics. Data presented are correlation coefficients between aerial and terrestrial 

counterparts of equivalent metrics. 
 

Spacing Treatment Species Richness Treatment 
Metric 1 m 2 m 3 m 1 2 3 

Mean Outer Canopy Height 0.95 0.9 0.81 0.96 0.89 0.95 

Maximum Canopy Height 0.56 0.95 0.55 0.79 0.74 0.9 

Mean Canopy Height 0.82 0.80 0.76 0.91 0.84 0.86 

Vegetation Area Index (VAI) 0.57 0.51 0.66 0.73 0.10 0.15 

Gap Fraction 0.27 0.05 -0.37 -0.05 -0.12 -0.65 

Cover Fraction 0.27 0.06 -0.37 -0.05 -0.12 -0.65 

Gap Fraction Profile 0.35 -0.39 0.34 0.62 -0.53 0.11 

Rumple 0.55 -0.36 0.42 0.47 0.15 -0.24 

Top Rugosity 0.82 0.29 0.68 0.77 0.62 0.76 

Vertical SD of Height -0.75 -0.83 0.08 -0.68 -0.57 -0.32 

SD of Vertical SD of Height 0.31 -0.34 0.81 0.48 -0.23 -0.11 

Height SD -0.49 -0.19 0.66 -0.10 -0.53 -0.42 
 

Results of the NMDS analysis show no noticeable clustering across biodiversity and 

species richness treatments (Figure 2.2A). However, there are distinct groupings that form when 

the plots are presented by stem density (Figure 2.2B). For both ordinations it can be observed that 

there is complete clustering out of each of the unique stem density treatments. The treatments are 

also oriented similarly between the two ordinations. This is more readily apparent if outlier plots 

are ignored. It can also be seen that each stem density treatment occupies a large space within the 

NMDS ordination, suggesting structural variation within each treatment (Figure 2.2B). 
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Figure 2.2. NMDS ordination of study plots by A) biodiversity and B) stem density 

treatments, with aerial metrics on the left and terrestrial metrics on the right. Each point 

represents an individual plot and each color represents a treatment. The axes carry no explicit 

ecological meaning beyond their utility to ordinate the plots in space. 

 

Beyond the NMDS ordination, we performed a PCA analysis to identify what, if any, 

structural metrics are most influential across the various treatments (Figure 2.3). Presented by the 

three spacing treatments, we see a general separation between the three-meter spaced plots and the 

one and two-meter spaced plots, although it is not perfect due to the 2-D presentation. This is the 

B) 

A) 
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case for both the UAV and TLS ordinations. It can be seen that the one and two-meter spaced plots 

are dominated in both cases by measures of canopy height. This is especially true for the aerial 

ordination, where we also see VAI having substantial loading. The three-meter spaced plots are 

influenced more by measures of canopy structural heterogeneity for the UAV ordination. In the 

terrestrial ordination we see the majority of structural metrics weighted towards the one and two-

meter spaced plots, with the three-meter plots not being substantially influenced by any specific 

metric. Combined, the first two PCA axes account for over 70% of the observed variation among 

the plots in both ordinations. We see the first axis accounting for more variability in the aerial 

ordination than the terrestrial (56.34% vs 46.97%).  
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Figure 2.3. PCA ordination of the 55 study plots, presented by spacing treatment. Each point 

represents an individual plot. The arrows correspond to individual structural metrics, with their 

relative length corresponding to their relative loading. 

UAV) 

TLS) 
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2.4 Discussion 

2.4.1 Upscaling Lidar Structural Metrics 

 First considering the univariate correlation analysis, the results suggest the feasibility of 

upscaling measures of mean outer canopy height, maximum canopy height, mean canopy height, 

VAI, and top rugosity to the spatial extent of UAV lidar collection. Mean canopy height and mean 

outer canopy height have strong correlations across all instances that were examined, instilling 

particular confidence in these metrics. Maximum canopy height also exhibits strong correlations 

except for in the one and three-meter spaced plots. The moderate correlation (r = 0.56) observed 

for the one-meter spaced plots could be a result of the very dense nature of these plots, leading to 

reduced laser penetration into the upper canopy. As maximum canopy height is a measure of the 

single tallest canopy element, increased optical occlusion could lead to a failure of TLS to measure 

that specific element at a given plot. Conversely, the outer canopy is the first surface that the UAV 

system measures, and so maximum canopy height measures would be expected to be very accurate.  

VAI shows moderate to strong correlations across four of the treatment levels considered, 

suggesting the feasibility of upscaling measures of vegetation area. Two weak correlations (r = 

0.10, r = 0.15) were observed for the plots with multiple species present. This is potentially again 

related to the functional differences between terrestrial and aerially flown lidar systems. The 

presence of multiple species in a plot might be expected to lead to more complex structure than a 

monoculture treatment, thus exacerbating the influence of optical occlusion resulting from the 

alternative viewpoints.  

 Based on the results showing a consistent lack of moderate or strong correlations among 

the cover and openness metrics, there is a lack of compatibility between the hemispherical 

scanning terrestrial system and the UAV operated system for measuring canopy cover and 
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openness. The occurrence of negative correlations between equivalent metrics particularly 

emphasizes this. It is likely that the functional differences of the two systems again influence this, 

but can more likely be attributed to differences in view directionality than the simple fact that one 

is a terrestrial system and the other is aerial. While the UAV system collects data in a 

predominately vertical fashion, the TLS system collects data from a centralized location from 

which pulses are emitted in all 360°. As the cover and openness metrics characterize horizontal 

structure across a landscape, these metrics favor the collection method of the UAV system. The 

cover and gap fractions measured by the terrestrial system will be inherently influenced by optical 

occlusion and also its ability to capture extremely high-resolution structure, which could lead to 

actual gaps not being identified as such.  

We see similar results regarding negative and weak to negligible correlations in the 

heterogeneity category, as well. Again, these relationships are likely resulting from the functional 

and operational differences of the two lidar systems. Another plausible factor is the difference in 

collected point density. Terrestrial lidar systems such as the one utilized in this study are able to 

achieve remarkably high point densities, a fact that could introduce noise into an analysis when 

attempting to make comparisons to a system that produces data with point densities that are 

multiple magnitudes lower. Despite this, top rugosity, a measure of outer canopy surface roughness, 

displayed moderate to strong correlations in five out of the six treatment levels considered. This 

suggests the feasibility for upscaling this measure to the scale of UAV systems. Top rugosity is a 

direct measure of outer canopy complexity that can be related to many attributes and functions of 

forests, including species composition, successional stage, productivity, and habitat suitability. A 

measure such as top rugosity, in combination with the other univariate measures highlighted as 

feasible for upscaling (height metrics and VAI), is a powerful composite for investigating 
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structure-function relationships, and especially for forest managers who desire to quantify 

productivity and other important characteristics.  

 There are several other considerations that could be influencing the specific correlation 

coefficients that were observed. One, non-treatment woody species have established throughout 

the Martell Forest site and are either growing among the planted trees or have supplanted treatment 

species. This leads to increased instances of optical occlusion for the terrestrial data, which has 

implications for point density and overall data collection and quality. The results of this study also 

suggest that a single centralized scan may not be sufficient for adequately measuring canopy 

structure in increasingly large forest stands. Although not feasible for this particular study, 

combining multiple scans for each individual plot may have illustrated more consistent 

correlations. Lastly related to the univariate structural measures, the same computational packages 

were used to evaluate both an aerial and terrestrial lidar metric suite. This could perhaps lead to 

inherent differences that are difficult to tease apart without knowing the internal workings of a 

computational package, in the sense that the aerial and terrestrial scans are ‘seen differently’.  

The results of the NMDS ordination also offer evidence to support the compatibility of the 

UAV and TLS systems, giving credence to the pursuit of upscaling terrestrial metrics. While there 

was no apparent clustering across the biodiversity treatments, there was distinct clustering for the 

three stem density treatments across both the UAV and TLS metric suites. Not only do they 

independently cluster, but the similar clustering between the two suites suggests the systems are 

seeing the plots similarly when considering multivariate structure, giving evidence to the 

feasibility of upscaling multivariate structural measures.  These results also highlight the potential 

for lidar to be used in classifying forest structural types across heterogeneous landscapes (Fahey 

et al. in review), and reinforces our findings from the first chapter of this thesis, where we saw 
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similar results in natural forest ecosystems across the eastern United States. Being able to 

categorize forest communities based on structural attributes is a powerful tool, as 3-D forest 

structure is intimately linked to forest functioning.  

 The PCA analysis highlights what specific structural metrics are driving the observed 

clustering in the NMDS ordination, giving further evidence to the ability of lidar derived structural 

metrics to identify and delineate distinct structural types. The fact that these observations were 

made for both the terrestrial and UAV PCA ordinations again lends evidence to the compatibility 

of the two systems, providing grounds for confidently upscaling terrestrial measures to the spatial 

extent achievable with UAV.  

 

2.4.2 Conclusions 

The purpose of this study was to investigate the relationship between a suite of lidar metrics 

derived from UAV and terrestrial hemispherical scanning systems to establish the feasibility for 

upscaling functionally-relevant terrestrial structural measures. Our results showed agreement 

between terrestrial and aerial measures of mean outer canopy height, maximum canopy height, 

mean canopy height, VAI, and top rugosity, specifically, as well as agreement between 

multivariate structural measures. The ability to measure canopy structure in detail at large spatial 

extents is currently a missing component of ecological studies and would substantially improve 

ecological modeling.  

Specifically, the increased data resolution of UAV lidar relative to traditional ALS systems, 

along with its maneuverability, suggest that these systems could prove monumental in being able 

to monitor and measure local to mesoscale canopy dynamics, both spatially and temporally, such 

as throughout individual growing seasons. These benefits make it an attractive tool for forest 
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managers and land owners to make use of for quantifying and monitoring structure and its 

influence on forest productivity. We recommend UAV lidar for applications such as these as it 

eliminates the need for many terrestrial scans to be collected and joined, which is labor, time, and 

resource intensive. UAV lidar is also much more readily available compared to the logistics and 

preparations that must be made for plane-flown lidar missions. Integrating lidar-derived 3-D 

structural metrics in ecological modeling, forest management, and conservation strategizing is an 

important step to ensure that our understanding of forest dynamics and resulting implementations 

are as robust and effective as possible so as to best ensure the sustenance of our planet’s forest 

ecosystems.  
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 CONCLUSION 

This thesis was undergone with the purpose of establishing the grounds for the feasibility 

of upscaling functionally-relevant local scale structural measures to the spatial extents that are 

achievable with aerial lidar systems. Forest structure, and specifically canopy structure, is known 

to be an important factor that influences many ecosystem functions, particularly productivity. 

However, three-dimensional canopy structure can be challenging to characterize by passive remote 

sensing technologies and traditional forest inventory techniques due to its complex and dynamic 

nature. As a result, it is often oversimplified or not incorporated in ecological models. We therefore 

commonly make use of estimations and quantifications that are not comprehensive and in turn may 

be skewed or outright incorrect. Incorporating descriptive, accurate, 3-D measures of canopy 

structure across heterogeneous landscapes would serve a number of fronts, including more robust 

ecological modeling, informed forest management, and effective conservation strategies.  

Terrestrial lidar systems have been shown to be effective in quantifying functionally-

relevant, local scale measures of 3-D structure. However, it is not realistic to collect terrestrial data 

across large, heterogeneous landscapes. To this end, it is important to instill confidence in being 

able to accurately measure structural complexity using aerial lidar systems. This would in turn 

allow structural measures to be applied across large spatial extents where terrestrial data is not 

available or feasible to collect.  

Our work has illustrated compatibility between equivalent terrestrial and aerial univariate 

structural measures, including mean canopy height, maximum canopy height, mean outer canopy 

height, vegetation area index, cover fraction, gap and deep gap fraction, and top rugosity. Together, 

this collection represents a powerful composite that includes measures of vertical and horizontal 

structure, biomass, and structural complexity. These are metrics with known relationships to 
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important forest attributes and functions, such as productivity, succession, habitat provisioning, 

and nutrient cycling. Upscaling these measures to be applied across heterogeneous landscapes 

would provide previously untapped insight into the relationship between structure and function. 

We also highlight agreement between terrestrial and aerial lidar when considering multivariate 

measures of structure. In fact, the multivariate agreement illustrated in both chapters suggests that, 

moving forward, multivariate structural measures (or composites of univariate measures) may be 

more effective to apply from local to continental scales. Furthermore, results suggest the legitimate 

use of lidar derived structural measures for identifying forest structural types across heterogeneous 

landscapes.  

Moving forward, building upon these findings and refining and developing these 

capabilities will be an important pursuit to advance the utilization of lidar systems in ecological 

applications. It is a dynamic tool that can be applied across a range of spatial scales and provides 

key benefits compared to more traditional techniques for quantifying forest structure. In the 

modern world, with anthropogenic factors influencing every facet of ecosystem functioning in 

previously unknown ways, it is imperative that we are able to most fully capitalize on the tools we 

have at our disposal to understand and monitor the natural world, and lidar is one such tool that 

has exhibited a wealth of promise.    

 

 

 



 

 

 

5
0
 

APPENDIX 

Appendix 1.1. Comparison of metric means across stem density treatments using variable derivation areas. For the primary 

correlation analysis for Chapter 2, a 2.5 m radius circle was used for metric derivations for all 55 study plots, equivalent to the extent 

of a one-meter spaced plot and chosen to account for edge effect with adjacent plots. Here, radii of 5 m and 7.5 m are used, in 

addition, corresponding to the extents of the two-meter and three-meter spaced plots, respectively. Data is presented as stem density 

rather than tree spacing. Species codes are B = Black Cherry, C = American Chestnut, N = Northern Red Oak. 
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Appendix 1.2. Boxplot comparing UAV collected structural metric values from alternative collection altitudes. White 

denotes metrics derived from a 20 m flying altitude and black denotes metrics derived from a 50 m flying altitude as indicated 

on the x-axis. Metric values have been normalized from 0-1 on the y-axis to improve presentation. Acronyms are as follows: 

MOCH = mean outer canopy height, MAX = maximum canopy height, VAI = vegetation area index, GF = gap fraction, CF 

= cover fraction, GFP = gap fraction profile, Rumple = rumple, Top.Rugosity = top rugosity, Vertical.SD = Height SD, SD.SD 

= SD of Vertical SD of Height. Boxes represent the interquartile range, inflection points represent the median, notches 

represent the 95% confidence interval of the median, whiskers represent the upper and lower quartiles, respectively, and points 

represent outliers. 
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