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ABSTRACT

Costantini, Alessandra Ph.D., Purdue University, August 2019. Rees Algebras and
Fiber Cones of Modules. Major Professor: Bernd Ulrich.

In the first part of this thesis, we study Rees algebras of modules. We investi-

gate their Cohen-Macaulay property and their defining ideal, using generic Bourbaki

ideals. These were introduced by Simis, Ulrich and Vasconcelos in [65], in order to

characterize the Cohen-Macaulayness of Rees algebras of modules. Thanks to this

technique, the problem is reduced to the case of Rees algebras of ideals. Our main

results are the following.

In Chapters 3 and 4 we consider a finite module E over a Gorenstein local ring R.

In Theorem 3.2.4 and Theorem 4.3.2, we give sufficient conditions for E to be of linear

type, while Theorem 4.2.4 provides a sufficient condition for the Rees algebra RpEq of

E to be Cohen-Macaulay. These results rely on properties of the residual intersections

of a generic Bourbaki ideal I of E, and generalize previous work of Lin (see [46, 3.1

and 3.4]). In the case when E is an ideal, Theorem 4.2.4 had been previously proved

independently by Johnson and Ulrich (see [39, 3.1]) and Goto, Nakamura and Nishida

(see [20, 1.1 and 6.3]).

In Chapter 5, we consider a finite module E of projective dimension one over

krX1, . . . , Xns. Our main result, Theorem 5.2.6, describes the defining ideal of RpEq,

under the assumption that the presentation matrix ϕ of E is almost linear, i.e. the

entries of all but one column of ϕ are linear. This theorem extends to modules a

known result of Boswell and Mukundan on the Rees algebra of almost linearly pre-

sented perfect ideals of height 2 (see [5, 5.3 and 5.7]).
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The second part of this thesis studies the Cohen-Macaulay property of the special

fiber ring FpEq of a module E. In Theorem 6.2.14, we prove that the generic Bourbaki

ideals of Simis, Ulrich and Vasconcelos allow to reduce the problem to the case of fiber

cones of ideals, similarly as for Rees algebras. We then provide sufficient conditions

for FpEq to be Cohen-Macaulay. Our Theorems 6.2.15, 6.1.3 and 6.2.18 are module

versions of results proved for the fiber cone of an ideal by Corso, Ghezzi, Polini and

Ulrich (see [10, 3.1] and [10, 3.4]) and by Montaño (see [47, 4.8]), respectively.



1

1. INTRODUCTION

The broad goal of this thesis is to study properties of the Rees algebra and of the

special fiber ring of a module.

Let R be a Noetherian ring, and E a finitely generated R-module with a rank.

The Rees algebra RpEq of E is defined as the symmetric algebra SpEq modulo its

R-torsion submodule. It can be presented in terms of generators and relations as a

quotient of a polynomial ring RrT1, . . . , Tns modulo an ideal J , called the defining

ideal of RpEq. If pR,m, kq is local, the special fiber ring, or fiber cone, FpEq of E is

defined as the Rees algebra tensored over R with the residue field k.

We are mostly interested in the Cohen-Macaulay property of both RpEq (see

Chapter 4) and FpEq (see Chapter 6). The two are usually not related with each

other, and different techniques may be needed to study the problem in each case.

In the case of Rees algebras, the Cohen-Macaulay property is often deeply intercon-

nected with the shape of its defining ideal. This motivated us to also investigate the

defining ideal of the Rees algebra, which we do in Chapters 3 and 5.

Although the methods we use are purely algebraic, some of the motivation to

study Rees algebras and fiber cones of ideals and modules is of geometric nature. In

fact, Rees algebras arise in Algebraic Geometry as homogeneous coordinate rings of

blowups of schemes along a subscheme, and have been studied intensively in connec-

tion with resolution of singularities. The fiber cone is the homogeneous coordinate

ring of the special fiber of the blowup at the unique closed point.

Furthermore, Rees algebras and fiber cones appear in the study of rational maps.

Let φ be a rational map from a subvariety X Ď P d´1
k into a projective space Pn´1

k ,

defined by homogeneous forms f1, . . . , fn. Then, biProjpgraphpφqq is the the Rees

algebra RpIq, where I is the ideal generated by the fi in krX1, . . . , Xds. The the
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projective spectrum of the image of φ the special fiber ring RpIq. The study of these

kind of maps has recently found applications in model theory as well.

In many geometric situations, one is interested in Rees algebras and fiber cones

of modules which are not ideals. For instance, the homogeneous coordinate ring of

a sequence of successive blow-ups of a scheme along two or more subschemes is the

Rees algebra of a direct sum of two or more ideals. Moreover, given a subvariety

X Ď An
k , the conormal variety of X and the graph of the Gauss map from X are

projective spectra of Rees algebras of modules which are not ideals. In fact, if R

is the homogeneous coordinate ring of X, the conormal variety of X is ProjpRpEqq,

where E is the Jacobian module of R, while the graph of the Gauss map is ProjpRpMqq

where M is the d-th exterior power of the module of differentials ΩkpRq of R. Finally,

given a subvariety X Ď Pnk with homogeneous coordinate ring R, then the tangential

variety of X is ProjpFpΩkpRqqq, while the secant variety of X is ProjpFpDqq, where

D is the diagonal ideal.

Geometrically, the Cohen-Macaulay property of Rees algebras or of fiber cones

encodes information on the vanishing of their cohomology modules. Although there

is no topological characterization of Cohen-Macaulayness, Cohen-Macaulay schemes

are always equidimensional. Moreover, a theorem of Hartshorne proves that they

are locally connected in codimension one (see [15, Theorem 18.12]). In fact, many

interesting singular varieties are locally Cohen-Macaulay. However, in general this

property is not preserved after blowing up. Hence, it is interesting to understand

what assumptions are needed in order for Rees algebras to be Cohen-Macaulay, and

how the Cohen-Macaulay property relates with the equations defining the blowup.

The literature on the algebraic study of Rees algebras is extremely rich. When

E “ I is an R-ideal, the Rees algebra RpIq coincides with the subalgebra

RrIts “ ‘jě0 I
jtj

of the polynomial ring Rrts. These rings have been studied by several authors since

the late 1950’s, in connection with integral dependence of ideals, multiplicity theory,
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and asymptotic growth of powers of an ideal. In fact, a good amount of Rees’s

original work was motivated by the study of integral dependence. His contribution

includes the famous Rees’ Theorem (see [34, Theorem 11.3.1]), stating that integral

dependence of m-primary ideals is captured by their Hilbert-Samuel multiplicities.

This result gave, and keeps giving rise to a considerable amount of literature, in

search of possible generalizations to ideals which are not m-primary or to modules

(see, for instance, [4, 19,41,42,55,64], and more recently, [17, 69,70]).

The study of depth properties was the main focus of the research on Rees rings of

an ideal from the late 1970’s until the late 1990’s, with contributions from Valla, Her-

zog, Simis, Vasconcelos, Huneke, Sally, Rossi (see [22, 23, 30, 32, 57, 58, 60, 61, 72, 73])

and several more authors. At the same time, a systematic approach to the search

for defining equations of Rees rings via homological algebra methods was initiated,

mostly by the school of Simis and Vasconcelos [48,49,62,66,71,74], and still continues

to stimulate intense research in the subject (see, for instance [5, 43, 45]). Another

trend, initiated by work of Villarreal [75], is to study the defining ideal of the Rees al-

gebras associated with squarefree monomial ideals, exploiting the combinatorial prop-

erties of the given ideals (see also [18]). Much less is known about the Cohen-Macaulay

property and the defining ideal of Rees algebras of modules (see, for instance, [46,65])

WhenR is Cohen-Macaulay, the first step in order to study the Cohen-Macaulayness

of RpIq is to investigate the Cohen-Macaulayness of the associated graded ring

GpIq “ ‘jě0 Ij{Ij`1.

In fact, in this case, Huneke proved that GpIq is Cohen-Macaulay whenever RpIq

is [32]. Although the converse is not true in general, it holds if furthermore some

numerical conditions are satisfied [37, 40, 53, 63, 71]. Investigating these numerical

conditions is then the second, and last, step in order to understand whether RpIq is

Cohen-Macaulay (see Section 4.1 for a detailed treatment of the topic).
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Now, by analogy with the case of ideals, one defines the powers of an R-module

E as

Ej – rRpEqsj,

where rRpEqsj denotes the degree-j component of RpEq. However, since Ej`1 is

not contained in Ej, there is no module analogue for the associated graded ring.

Hence, the study of the Cohen-Macaulayness of Rees algebras of modules requires a

completely different approach than in the case of ideals, and little is known about it

(see [24, 46,62,65]).

In [65] Simis, Ulrich and Vasconcelos reduced the problem to the case of ideals,

thanks to the notion of generic Bourbaki ideals. Given a module E, an ideal I is

called a Bourbaki ideal of E if there exists an exact sequence

0 Ñ F Ñ E Ñ I Ñ 0,

where F is a free submodule of E [6]. These ideals were previously used, for instance,

to study modules over normal domains. One would hope that the induced epimor-

phism RpEq� RpIq would allow to transfer properties back and forth between the

two Rees algebras. This is too optimistic, however it becomes effective if F is gener-

ated by generic elements. An ideal constructed this way is called a generic Bourbaki

ideal of E (see Definition 2.6.3). The advantage of this adjustment to the construction

is that now I is essentially unique, and the map between the Rees algebras creates

a much deeper connection. In fact, RpEq is Cohen-Macaulay if and only if RpIq is,

and in this case RpIq is a deformation of RpEq (see Theorem 2.6.4).

In the first part of this thesis, our main goal is to provide a sufficient condition in

order for RpEq to be Cohen-Macaulay, under suitable assumptions on the depth of

finitely many powers of E. More specifically, we aim to generalize a well-known result

proved independently by Johnson and Ulrich [39, 3.1 and 3.4] and by Goto, Nakamura

and Nishida [20, 1.1 and 6.3]. Under assumptions on the residual intersections of I,

they show that RpIq is Cohen-Macaulay if the reduction number of I satisfies a
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suitable upper bound while the depths of finitely many powers of I satisfy suitable

lower bounds (see Theorem 4.1.5 for a precise statement).

Using generic Bourbaki ideals, the problem is reduced to that of crafting assump-

tions on the given module E, so that its generic Bourbaki ideal I satisfies the re-

quirements in the result by Johnson and Ulrich and by Goto, Nakamura and Nishida.

Despite the simplicity of the idea, in practice transferring assumptions from E to I

is not an easy task. Most notably, there is no clear module analogue for the main

assumption for the ideals under consideration, namely the so called Artin-Nagata

property. This is a requirement that certain residual intersections of I are Cohen-

Macaulay (see Definition 2.7.4).

Residual intersections of an ideal generalize the notion of algebraic liaison [36].

However, there is no satisfactory module analogue of residual intersections (see the

discussions on this topic in Sections 3.2 and 4.2). In fact, it is usually difficult to even

identify which properties of E guarantee that I satisfies the necessary Artin-Nagata

condition. This latter issue may impose serious restrictions on the class of modules

one can consider (see [46, 4.3]). Our main result, Theorem 4.2.4, generalizes previous

work of Lin (see [46, 3.4]).

From a technical point of view, the key ingredient in the proof of Theorem 4.2.4

is a deep investigation of the linear type property of E. A module E is said to be of

linear type if its Rees algebra RpEq coincides with the symmetric algebra SpEq, since

in this case its defining ideal J consists of linear forms. Moreover, E is of linear type

whenever a generic Bourbaki ideal I of E is.

In [46, 3.1], Lin provides a sufficient condition for a module E to be of linear

type by showing that its generic Bourbaki ideal I is not only of linear type, but also

satisfies the stronger sliding depth condition (which we will recall in Definition 2.7.3).

Our Theorem 4.3.2 gives a slightly less restrictive condition for I to satisfy slid-

ing depth. Moreover, in Theorem 3.2.4 we provide a new sufficient condition for a

module E to be of linear type, in a situation when a generic Bourbaki ideal I of E
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is of linear type without necessarily satisfying sliding depth. This improvement is

obtained thanks to a deep investigation of the properties of the residual intersections

of I, which allows to replace the Artin-Nagata condition with the less restrictive re-

quirement that I is residually S2 (see Definition 2.7.10).

In Chapter 5, we focus on the problem of determining the defining ideal J of

RpEq, for modules which are not necessarily of linear type. This is usually a difficult

task, and the problem in its full generality is wide open. However, given a presentation

Rs ϕ
ÝÑ Rn � E of E, information about J can be deduced by exploiting the

connection between the Rees algebra RpEq and the symmetric algebra SpEq.

In fact, the defining ideal L of SpEq can be easily determined from the presen-

tation ϕ, and by construction L Ď J (see Sections 2.3 and 2.4). The inclusion is

strict if E is not of linear type, however it is still possible to determine J in the case

when ϕ has a particularly rich structure. For instance, if I is a perfect ideal of height

two, or a perfect Gorenstein ideal of height three, the structure of ϕ is dictated by

the Hilbert-Burch Theorem (see [7, Theorem 1.4.16]) or by the Buchsbaum-Eisenbud

Theorem (see [7, Theorem 3.4.1]), respectively. In these cases, the defining ideal of

RpIq is often determined by means of the so called Jacobian dual of ϕ, as we recall

in Section 5.1.

In certain situations, the Cohen-Macaulayness of the Rees algebra turns out to be

helpful in order to describe its defining ideal, as it often provides bounds on the degrees

of its generators or even an explicit generating set (see [49,53,65,68]). However, less is

known on the defining ideal of Rees algebras which are not Cohen-Macaulay [5,43,45].

This is, for instance, the case of the Rees algebra of a perfect ideal I of height two

which is almost linearly presented, i.e. all the entries of a presentation matrix ϕ of

I are linear, except possibly those in one column, homogeneous of degree m ě 1. In

fact, in [5, 5.3 and 5.7] Boswell and Mukundan describe the defining ideal of RpIq

using iterated Jacobian duals of ϕ (see Definition 5.1.8), and prove that RpIq is al-

most Cohen-Macaulay (i.e. its depth is at least one less than its dimension). However,
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RpIq usually fails to be Cohen-Macaulay (see Theorem 5.1.10 for a precise statement).

Our main goal in this matter is to provide a generalization of the result by Boswell

and Mukundan to the case of Rees algebras of modules. More precisely, we aim to

describe the defining ideal of the Rees algebra of almost linearly presented modules

projective dimension one.

The case when ϕ is linear was discussed by Simis, Ulrich and Vasconcelos in [65,

4.11], using generic Bourbaki ideals. In fact, in this situation, a generic Bourbaki ideal

I of E is a linearly presented perfect ideal of height two, hence the defining ideal of

RpIq is well-understood by a result of Morey and Ulrich [49] (see Theorem 5.1.4).

Moreover, RpIq is Cohen-Macaulay, hence it is a deformation of RpEq, and this

makes it possible to ‘lift’ the shape of the defining ideal of RpIq back to RpEq.

With a similar approach, in Theorem 5.2.6, we describe the defining ideal assum-

ing that the presentation matrix of E is only almost linear. In this case, a generic

Bourbaki ideal I satisfies the assumptions in the result of Boswell and Mukundan.

In particular, its Rees algebra RpIq is only almost Cohen-Macaulay. Hence, in order

to be able to ‘lift’ the shape of the defining ideal of RpIq back to RpEq also in this

case, the argument used in the linearly presented case requires a modification. This

technical aspect is discussed in Theorem 5.2.5, which guarantees that RpIq is a de-

formation of RpEq also in this case.

In Chapter 6 we discuss the Cohen-Macaulay property of the fiber cone of modules.

In general, one should not expect that the Cohen-Macaulayness of FpEq is related

to that of RpEq, as counterexamples are known in the case when E is isomorphic to

an ideal (see for instance [14]).

However, the problem can be approached in a similar way in the two cases, in

the sense that in both situations one can reduce to the case where E is isomorphic

to an ideal. More precisely, our main result, Theorem 6.2.14 shows that, if a module

E admits a generic Bourbaki ideal I, then the special fiber ring FpEq is Cohen
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Macaulay if and only if the special fiber ring FpIq and the Rees algebra RpIq are

both Cohen-Macaulay.

The proof arises from a close examination of the proof of the analogous result

on Rees algebras, and provides a technical tool for the search of sufficient condi-

tions for the fiber cone of a module to be Cohen-Macaulay. The latter is the goal

of Section 6.2.2, where we extend to fiber cones of modules some results that were

previously known for the fiber cone of an ideal (see Theorems 6.2.15, 6.2.18 and 6.1.3).

We now describe how this thesis is organized.

In Chapter 2 we include the background material that will be used throughout

the thesis. In particular, we review the main properties of Rees algebras of modules

in Section 2.4, and the main results on generic Bourbaki ideals in Section 2.6. In

Section 2.7, we recall the basic definitions and results on residual intersections of

ideals, including a discussion on Artin-Nagata properties and residually S2 ideals.

Chapter 3 explores the linear type property of Rees algebras. After recalling some

results known for Rees algebras of ideals in Section 3.1, in Section 3.2 we provide a

sufficient condition for a module E to be of linear type, Theorem 3.2.4, and detect

specific classes of modules which satisfy this result (see Section 3.2.2). Another suffi-

cient condition for a module E to be of linear type is given later in Theorem 4.3.2. In

this case, we also show that the Rees algebra RpEq is Cohen-Macaulay. We postpone

this result to Chapter 4, where some of the tools needed for the proof are introduced.

Chapter 4 is dedicated to the Cohen-Macaulay property of Rees algebras. We

discuss the case of Rees algebras of ideals in Section 4.1. Our main result is The-

orem 4.2.4 (see Section 4.2.1), which provides a sufficient condition for RpEq to be

Cohen-Macaulay when E is a torsion-free, orientable R-module. Another sufficient

condition is given in Section 4.4, for a different class of modules, the so called ideal

modules.

In Chapter 5 we focus on the problem of determining the defining ideal of Rees

algebras. Section 5.1 gives an overview on known result for Rees algebras of ideals,
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while we treat the case of modules in Section 5.2. Our main result, Theorem 5.2.6,

describes the defining ideal of the Rees algebra of almost linearly presented modules

of projective dimension one.

Finally, we discuss the Cohen-Macaulay property of the fiber cone of modules in

Chapter 6. Our main result is Theorem 6.2.14, which reduces the problem to the case

of ideals. Sufficient conditions for the fiber cone of a module to be Cohen-Macaulay

are included in Section 6.2.2.
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2. PRELIMINARIES

This chapter includes the background notions that will be needed in this thesis. In

Section 2.1, we set up the notation and recall the definitions of some homological

invariants which we will be using throughout this work. In Sections 2.2 through 2.4,

we review Rees algebras of ideals and modules, and describe other graded algebras

which play a crucial role in the study of Rees rings. Section 2.5 is dedicated to

minimal reductions of ideals and modules. In Section 2.6 we recall the construction

of generic Bourbaki ideals, the fundamental technical tool we use throughout this

work. Finally, in Section 2.7 we review residual intersections of ideals and some of

their properties, which are needed for the proofs of several results in Chapter 3 and

Chapter 4.

2.1 Notation

Throughout this work, all rings will be assumed to be commutative with multi-

plicative unit.

Let R be a Noetherian ring, I an R-ideal, M a finite R-module. We denote with

grade I the grade of I, that is, the length of a maximal R-regular sequence in I. We

adopt the convention that grade I “ 8 if I “ R. Similarly, depthIM denotes the

length of a maximal M -regular sequence in I, and we set depthIM “ 8 if IM “M .

If R is local with maximal ideal m, depthmM is usually denoted by depthM and

called the depth of M . The grade of M is defined as the grade of the ideal annRM ,

and denoted by gradeM .

In many proofs of this thesis we will often make use of the following homological

characterizations of depth, grade and dimension of a module.

Proposition 2.1.1 Let R be a Noetherian ring, I an R-ideal, M a finite R-module.
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paq depthIM “ min ti |ExtipR{I,Mq ‰ 0 u “ min ti |H i
I pMq ‰ 0 u.

pbq gradeM “ min ti |ExtipM,Rq ‰ 0 u.

pcq dimM “ max ti |H i
I pMq ‰ 0 u.

pdq Assume R is a Gorenstein local ring of dimension d. Then,

piq d´ depthM “ max ti |ExtipM,Rq ‰ 0 u.

piiq d´ dimM “ min ti |ExtipM,Rq ‰ 0 u “ gradeM .

The statement in (d) follows from the Local Duality Theorem (see [7, 3.5.11]). We

recall that a Noetherian local ring R is Gorenstein if it is Cohen-Macaulay (i.e.

depthR “ dimR) and coincides with its canonical module ωR. We refer the reader to

the book by Bruns and Herzog [7] for properties of canonical modules, and in general

for a broad treatment of the homological algebra of commutative Noetherian rings.

2.2 Blowup algebras of an ideal

Let R be a Noetherian ring, I an R-ideal.

Definition 2.2.1 The Rees algebra of I is the subalgebra

RpIq – RrIts “
à

jě0

Ijtj –
à

jě0

Ij

of the polynomial ring Rrts. More precisely, if I “ pa1, . . . , anq, then

RpIq “ Rr a1t, . . . , ant s

“ R ‘ pRa1t` . . .`Rantq ‘ pRa21t
2
`Ra1a2t

2 . . .`Ra2nt
2
q ‘ . . .

This is a Noetherian standard graded R-algebra, with grading inherited by the

natural grading of the polynomial ring Rrts. Geometrically, ProjpRpIqq is the blowup

of SpecpRq along the subscheme V pIq. The algebraic properties of RpIq are often

studied through its connection with several other graded algebras associated with I.

We are mostly interested in the associated graded ring GpIq and the special fiber ring

FpIq of I, defined as follows.
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Definition 2.2.2 The associated graded ring of I is

GpIq “ grIpRq –
RpIq
IRpIq

–
à

jě0

Ij

Ij`1

Definition 2.2.3 Assume that pR,mq is local. The special fiber ring, or fiber cone,

of I is

FpIq –
RpIq
mRpIq

–
GpIq
mGpIq

.

The associated graded ring and the special fiber ring of I are Noetherian stan-

dard graded R-algebras, with grading inherited from the grading of RpIq. From a

geometric point of view, Proj pGpIqq is the exceptional set of the blow up of SpecpRq

along V pIq. When R is local, Proj pFpIqq is the fiber of the unique closed point of

the blowup of SpecpRq along V pIq.

The next proposition, whose proof can be found in to [34, 5.1.4 and 5.1.6], discusses

the dimension of the Rees algebra and of the associated graded ring.

Proposition 2.2.4 Let R be a Noetherian ring, I an R-ideal. Then:

dimRpIq “ min tdimR, dim pR{pq ` 1 | p P MinpRqr V pIqu

“ dimR ` 1 whenever htI ą 0.

Moroever,

dimGpIq “ max tdimRm | m P m´ SpecpRq X V pIqu

“ dimR if R is local and I ‰ R.

The Krull dimension of FpIq is called the analytic spread of I, and denoted by

`pIq. Although there is no general formula to compute `pIq, one can prove that

ht I ď `pIq ď min tµpIq, dimR u,

where µpIq denotes the minimal number of generators of I (see [34, 8.4.3]). The

analytic spread of I encodes information about the asymptotic growth of the powers

of I. More precisely, one has:
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1. For i " 0, µpIjq is a polynomial function of j, of degree `pIq ´ 1.

2. `pIq ď dimR ´ inf tdepth pR{Ijq | j ě 1u (Burch’s inequality, see [8])

In order to fully understand the growth of powers of an ideal, one often makes use

of the notion of minimal reduction, which we recall in Section 2.5 below. In fact, the

analytic spread of I also encodes relevant information on the minimal reductions of

I (see Proposition 2.5.2).

2.3 The symmetric algebra

Let R be any commutative ring, E a finite R-module.

Definition 2.3.1 The symmetric algebra of E is

SpEq –

Â

E

H
,

where
Â

E is the tensor algebra of E and H is the two-sided ideal generated by

elements of the form xb y ´ y b x, with x, y P E.

The symmetric algebra is characterized by a universal property, inherited by the

universal property of the tensor algebra (see [7, section 1.6]). Namely, for every

commutative R-algebra S and for every R-linear map η : E Ñ S, there exists a

unique homomorphism of graded R-algebras η : SpEq Ñ S, which coincides with η

when restricted to E.

Notice that if F – Rn is a free R-module, then SpF q – RrT1, . . . , Tns, a poly-

nomial ring in n variables. Now assume that R is Noetherian, so that every finite

R-module admits a free resolution consisting of finite free modules. SpEq can then

be equivalently described in terms of a presentation matrix of E as follows.

Remark and Definition 2.3.2 Let R be a Noetherian ring, E a finite R-module,

and let

Rs ϕ
ÝÑ Rn � E
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be a presentation of E. Then, the columns of ϕ determine the syzygies of SpEq.

More precisely, if E “ Ra1` . . .`Ran, there is a natural homogeneous epimorphism

RrT1, . . . , Tns� SpEq,

which maps the variable Ti to the generator ai P rSpEqs1 for each i. Therefore,

SpEq – RrT1, . . . , Tns{L,

where L – p`1, . . . , `sq and `1, . . . , `s are linear forms in RrT1, . . . , Tns, satisfying

rT1, . . . , Tns ¨ ϕ “ r`1, . . . , `ss.

The ideal L is called the defining ideal of the symmetric algebra SpEq.

2.4 The Rees algebra and the fiber cone of a module

Let R be a Noetherian ring, QuotpRq its total ring of quotients, AsspRq the set

of associated primes of R, and let E be finite R-module. Recall that E has a rank,

rankE “ e, if E bR QuotpRq – pQuotpRqqe. Equivalently, E has a rank if and only

if Ep – Re
p for all p P AsspRq.

Notice that a module may not necessarily have a rank. However, several interesting

classes of modules have a rank. In particular:

1. Every free module F – Rr has rank r.

2. If R is a domain, every R-module has a rank. (This follows immediately from

the definition, since in this case QuotpRq is a field).

3. If E admits a finite free resolution, then E has a rank. In fact, if

0 Ñ Rbn Ñ . . .Ñ Rb1 Ñ Rb0

is a free resolution of E, then rankpEq “
n
ÿ

i“0

p´1qi bi (see [7, 1.4.5]).



15

Definition 2.4.1 Let R be a Noetherian ring, E a finite R-module. If E has a rank,

the Rees algebra of E is

RpEq –
SpEq

τRpSpEqq
,

where τRp´q denotes the R-torsion.

In particular, thinking of the symmetric algebra of E as in Definition 2.3.2, if

E “ Ra1 ` . . .`Ran, there is a natural homogeneous epimorphism

RrT1, . . . , Tns� RpEq,

mapping each Ti to the generator ai P rRpEqs1 . The Rees algebra can then be

rewritten as

RpEq “ RrT1, . . . , Tns

J
,

for some ideal J that contains the defining ideal L of the symmetric algebra. J is

called the defining ideal of RpEq. Unlike for the defining ideal L of the symmetric

algebra, determining J is usually not an easy task. The best-case scenario is when

J “ L “ p`1, . . . , `sq, an ideal of linear forms. This special situation is formalized in

the following definition.

Definition 2.4.2 The module E is said to be of linear type if RpEq is naturally

isomorphic to SpEq.

We will discuss the problem of determining J in the case when E is not necessarily

of linear type in Chapter 5.

Remark 2.4.3 Let R be a Noetherian ring, E a finite R-module with rankpEq “

e ě 0. If E is torsion-free, then E embeds naturally in a free module of rank e. This

induces a natural homomorphism

SpEq φ
ÝÑ SpRe

q – Rrt1, . . . , tes.

In this case, RpEq coincides with the R-subalgebra of Rrt1, . . . , tes generated by

impφq.
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The description of the Rees algebras given in Remark 2.4.3 is extremely useful

in order to study integral dependence of modules (see for instance [34, 16.2.3]). In

fact, the Rees algebra of torsionless modules without a rank is often defined this way.

However, if we relax the assumption that the module E has a rank, this definition

of RpEq depends on the choice of the embedding of E into a given free module. In

order to fix the issue, a more general definition of the Rees algebra of a module was

given by Eisenbud, Huneke and Ulrich in [16]. Their definition is independent of the

embedding, and makes sense also for modules that are not torsion-free or do not have

a rank. Nevertheless, in this work we only treat modules with a rank, as in particular

modules of rank one play a crucial role in the theory.

In fact, E is a torsion-free module of rank one if and only if it is isomorphic to an

R-ideal I of positive grade. In this case, Remark 2.4.3 implies that

RpEq – SpEq
τRpSpEqq

– RrIts “ RpIq.

In other words, the theory of Rees algebras of ideals can be thought of as the rank

one case of the more general theory of Rees algebras of torsion-free modules with a

rank.

Definition 2.4.4 Let R be a Noetherian ring, E a finite R-module with rank. By

analogy with the case of ideals, the powers of E are defined as

Ej – rRpEqsj.

Unlike in the case of ideals, Ej Ğ Ej`1. As a consequence, there is no module

analogue for the associated graded ring of an ideal. Hence, as we will see in Chapter 4,

many techniques used to study Rees algebras of ideals cannot be applied in order to

study Rees algebras of modules. On the other hand, we can still define the special

fiber ring.

Definition 2.4.5 Assume that pR,m, kq is local. Let E be a finite R-module with

rank. The special fiber ring, or fiber cone, of E is

FpEq –
RpEq
mRpEq

– RpEq bR k.
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The Krull dimension of FpEq is called the analytic spread of E, and is denoted by

`pEq.

The following proposition explains the relationships between the dimension of the

Rees algebra RpEq, the analytic spread `pEq, the rank of E, and the dimension of

the ring. We refer the reader to [65, 2.2 and 2.3] for a proof.

Proposition 2.4.6 Let R be a Noetherian ring of dimension d E a finite R-module

with rankpEq “ e. Then:

paq dimRpEq “ d` e “ d` htRpEq`.

pbq If R is local and d ą 0, then e ď `pEq ď d` e´ 1.

2.5 Minimal reductions

Many properties of Rees algebras can be studied through the notion of minimal

reductions.

Definition 2.5.1 Let R be a Noetherian ring, E a finite R-module.

paq A reduction of E is a submodule U Ď E so that E r`1 “ UE r for some r ě 0.

The least such r is called the reduction number of E with respect to U and is

denoted by rUpEq.

pbq A minimal reduction of E is a reduction U of E which is minimal with respect

to set inclusion. The reduction number of E is

rpEq “ min trUpEq |U is a minimal reduction of Eu.

Reductions of ideals were first introduced by Northcott and Rees in [51] in order

to study integral dependence of ideals, and turn out to be extremely useful in order

to study the asymptotic growth of the powers of a given ideal. In fact, a subideal J

of I is a reducton of I if and only if RpIq is integral over the subalgebra generated
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by J . Moreover, I j`1 “ JI j for all j ě rJpIq. The notion of reduction was later

extended to modules by Rees [56], and several authors contributed to extend many

results known for reductions of ideals to the case of modules. We refer the interested

reader to the book by Swanson and Huneke [34] for a detailed treatment of the topic,

as well as for applications to multiplicity theory (see also [16, 64,70]).

In order to study blowup algebras, one is interested mostly in reductions that are

minimal, essentially because of the following result. A proof in the case of ideals can

be found in [34, 8.3.7]. The proof for modules is similar, mutatis mutandis.

Proposition 2.5.2 Let pR,m, kq be a Noetherian local ring, E a finite R-module.

Then:

paq For any reduction U of E, µpUq ě `pEq.

pbq If k is infinite, minimal reductions of E always exist, and all have the same

minimal number of generators, equal to `pEq.

pcq If k is infinite, any submodule U generated by `pEq general elements in E is a

minimal reduction of E, with rUpEq “ rpEq.

2.6 Generic Bourbaki ideals

In this section we recall the construction of generic Bourbaki ideals, and review

their main properties. Generic Bourbaki ideals were introduced by Simis, Ulrich

and Vasconcelos in [65], in order to study the Cohen-Macaulay property of the Rees

algebra of a module. Recall that a standard graded ring S, whose degree 0 component

S0 is a Noetherian local ring, is Cohen-Macaulay if and only if depthSM “ dimSM,

where M is the unique homogeneous maximal ideal of S. It is called almost Cohen-

Macaulay if depthSM ě dimSM ´ 1.

In the case when S is the Rees algebra of an ideal, its Cohen-Macaulay property

is usually studied by means of the associated graded ring, as we will explain in Sec-

tion 4.1.1. However, since it is not possible to define the associated graded ring of a
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module, a completely different strategy is needed in order to investigate the Cohen-

Macaulayness of Rees algebras of modules. Generic Bourbaki ideals allow to reduce

the problem to the case of ideals.

The intuitive idea behind the construction is the following. Starting from an R-

module E, one wishes to find a sufficiently general sequence of elements x1, . . . , xs

inside E, so that E{px1, . . . , xsq is a torsion-free module of rank one, hence isomor-

phic to an ideal I (of positive grade). Furthermore, one would like the Rees algebras

of E and I to share similar properties, and in particular RpEq should be Cohen-

Macaulay if and only if RpIq is. As it turns out, this idea becomes effective only if

one first passes to a so called generic extension of the ring.

We next proceed to state the formal definition and main properties of generic

Bourbaki ideals. We refer the reader to [65] for the proofs of the results mentioned

in the rest of this section.

Notation 2.6.1 ( [65, 3.3]). Let R be a Noetherian ring, E “ Ra1 ` ¨ ¨ ¨ ` Ran a

finite R-module with rankE “ e ą 0. Let Z “ tZij | 1 ď i ď n, 1 ď j ď e ´ 1u be a

set of indeterminates. Let R1 – RrZs and E 1 – E bR R
1. For 1 ď j ď e´ 1, denote

xj “
n
ÿ

i“1

Zijai P E
1 and F 1 “

e´1
ÿ

j“1

R1xj.

If R is local with maximal ideal m, let R2 “ RpZq “ RrZsmRrZs and similarly denote

E2 “ E bR R
2, F 2 “ F 1 bR1 R

2.

Theorem 2.6.2 p [65, 3.2] q. Let R be a Noetherian ring, E a finite R-module with

rankE “ e ą 0. Assume that E is torsion-free and that Ep is free for all p P SpecpRq

with depthRp ď 1. Then, for R1, E 1 and F 1 as in Notation 2.6.1, F 1 is a free R1-

module of rank e´ 1 and E 1{F 1 is isomorphic to an R1-ideal J with gradeJ ą 0.

The construction just described associates to a given R-module E an ideal J in

a polynomial ring R1 over R. However, the dimension of R1 is larger than that of

R, and if R was local R1 certainly is not. This may impose some limitations to the
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applicability of the result. For this reason, one takes a further step, and constructs

an ideal which lives in a local ring.

Theorem and Definition 2.6.3 p [65, 3.2 and 3.3] q. Let R be a Noetherian local

ring, and E a finite R-module with rankE “ e ą 0. With the assumptions of Theo-

rem 2.6.2, E2{F 2 is isomorphic to an R2-ideal I, called a generic Bourbaki ideal of

E. Moreover, if K is another ideal constructed this way using variables Y , then the

ideals generated by I and K in S “ RpZ, Y q coincide up to multiplication by a unit

in QuotpSq, and are equal whenever I and K have grade at least 2.

Notice that formation of Rees algebras of finite modules commutes with flat exten-

sions (see [16, 1.3]). In particular, RpE 1q – RpEq bR R1 and RpE2q – RpEq bR R2.

We are now ready to state the main theorem about generic Bourbaki ideals.

Theorem 2.6.4 p [65, 3.5 and 3.8] q. In the setting of Notation 2.6.1 and with the

assumptions of Theorems 2.6.2 and 2.6.3, the following statements hold.

paq RpEq is Cohen-Macaulay if and only if RpIq is Cohen-Macaulay.

pbq If gradeRpEq` ě e, then RpJq – RpE 1q{pF 1q.

pcq E is of linear type and gradeRpEq` ě e if and only if I is of linear type, if

and only if J is of linear type.

Moreover, if any of the conditions paq or pcq hold, then RpEq{pF q – RpIq and

x1, . . . , xe´1 of F form a regular sequence on RpEq.

Notice that the condition gradeRpEq` ě e in 2.6.4(b) or (c) is always satisfied if

RpEq is Cohen-Macaulay, by Proposition 2.4.6(a).

Thanks to Theorem 2.6.4, questions about the linear type property of E or the

Cohen-Macaulayness of RpEq can be reduced to the case of ideals. However, this

often becomes effective only as long as the equivalent conditions of the following

technical result are satisfied. Condition (c) means that RpEq is a deformation of

RpIq, or equivalently that RpIq is a specialization of RpEq.
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Theorem 2.6.5 p [65, 3.11]q. Let R be a Noetherian ring, E a finite R-module with

rankE “ e ą 0. Let 0 Ñ F Ñ E Ñ I Ñ 0 be an exact sequence where F is a free

R-module with basis x1, . . . , xe´1 and I is an R-ideal. The following are equivalent.

paq RpEq{pF q is R-torsion free.

pbq RpEq{pF q – RpIq.

pcq RpEq{pF q – RpIq and x1, . . . , xe´1 of F form a regular sequence on RpEq.

Moreover, if I is of linear type, then so is E and the equivalent conditions above hold.

We recall that a finite module E is called orientable if E has a rank, rankpEq “

e ą 0, and p
ŹeEq˚˚ – R, where

ŹeE is the e-th exterior power of E and p´q˚

denotes the functor HomRp´, Rqq. This condition is satisfied, for instance, by free

modules of finite rank, or modules of finite projective dimension. Moreover, if R is a

UFD, then every finite R-module is orientable.

Orientable modules play a distinguished role in the theory of generic Bourbaki

ideal. In fact, one has the following result (see [65, Proposition 3.2, Remark 3.4 and

their proofs]).

Proposition 2.6.6 Let R be a Noetherian local ring. In the situation of Theo-

rem 2.6.2, the ideal J can be chosen to have grade at least 2 if and only if J is ori-

entable, if and only if E is orientable. Moreover, if gradeJ ě 3, then E – R e´1‘L

for some R-ideal L, in which case LR1 – J .

The next proposition examines the connection between the analytic spread and

reduction number of E and those of its generic Bourbaki ideal I.

Proposition 2.6.7 p [65, 3.10] q. Let R be a Noetherian local ring with dimR “ d,

E a finite R-module with rankE “ e. If E admits a generic Bourbaki ideal I, then

`pIq “ `pEq´e`1. Moreover, rpIq ď rpEq whenever the residue field of R is infinite.
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In the rest of this work, we often consider modules satisfying certain constraints

on the minimal number of generators of their localizations. These technical conditions

were first introduced by Artin and Nagata [3], and allow to exploit information from

the residual intersections of a generic Bourbaki ideal. We will give the necessary

background on residual intersections in the next section.

Definition 2.6.8 Let R be a Noetherian ring. A module E of rank e is said to satisfy

condition Gs if µpEpq ď dimRp´e`1 for every p P SpecpRq with 1 ď dimRp ď s´1.

If the same condition holds for all s, then E is said to satisfy G8.

Equivalently, E is Gs if and only if ht FittipEq ě i´e`2 for e ď i ď e`s´2, where

FittipEq is the i-th Fitting ideal of E. This makes this condition easy to check on a

computer algebra system like Macaulay2 [21], once a presentation of E is known.

Notice that for an ideal I, the Gs condition can be restated as µpIpq ď dimRp

for every p P V pIq with dimRp ď s ´ 1. Moreover, if R has dimension d, then I is

G8 if and only if it is Gd`1.

Notice also that, if E satisfies G2, then Ep is free for all p P SpecpRq with

depthRp ď 1. In particular, by Theorem 2.6.2 it follows that every torsion-free R-

module satisfying Gs for some s ě 2 admits a generic Bourbaki ideal. Moreover, the

Gs property transfers from a module to its generic Bourbaki ideal.

Proposition 2.6.9 p [65, 3.1] q. Let R be a Noetherian local ring, and E a finite

R-module of positive rank e. Under the assumptions of Theorem 2.6.2, if E satisfies

Gs then so does J . In particular, a generic Bourbaki ideal I of E is Gs whenever E

is.

We conclude this section by recalling that most of the properties of generic Bour-

baki ideals are proved by induction on the rank. In fact, the construction described

in Notation 2.6.1 and Definition 2.6.3 can be thought of as the pe ´ 1q-st step of an

iterative construction, where at each step the ring is extended by adjoining n generic

variables. This will be relevant for the proofs of some technical results of Chapter 4
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and Chapter 5, and even more in Chapter 6. In particular, we will need the following

theorem (see [65, 3.6 and 3.8]).

Theorem 2.6.10 Let R be a Noetherian ring, E “ Ra1 ` ¨ ¨ ¨ ` Ran a finite R-

module with positive rank. Let Z1, . . . Zn be indeterminates, rR – RrZ1, . . . , Zns,

rE – E bR rR and x –
řn
i“1 Ziai P

rE. Assume that rankE “ e ě 2. Then

paq x is regular on Rp rEq.

pbq Let R – Rp rEq{pxq. The kernel of the natural epimorphism π : R � Rp rE{ rRxq

is kerpπq “ H0
R`
pRq.

pcq If gradeRpEq` ě 2, then π is an isomorphism.

2.7 Residual intersections

The most general definition of residual intersections of an ideal was formalized

by Huneke and Ulrich in [36]. The geometric idea behind this concept can be found

already in previous work by Artin and Nagata [3], and can be informally explained

as follows. Let X be closed subscheme of a given algebraic variety V . A geomet-

ric residual intersection of X is a closed subscheme Z of the same variety V , such

that codimZ ě codimX and X Y Z “ Y, for some closed subscheme Y defined by

codimZ equations and such that X Ď Y . In other words, Z is ‘how much one needs

to add to X’ so that X YZ is the (scheme theoretic) intersection of codimZ hyper-

surfaces contained in X, which explains the terminology. The algebraic definition is

the following.

Definition 2.7.1 Let R be a Cohen-Macaulay local ring, I an R-ideal with ht I “ g,

and s ě g an integer. Let K be a proper ideal.

(a) K is an s-residual intersection of I if there exists an ideal J Ď I such that

K “ J : R I, µpJq ď s and htK ě s.
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(b) An s-residual intersection K of I is called a geometric s-residual intersection if

in addition ht pI `Kq ě s` 1.

Equivalently, if J Ď I satisfies µpJq ď s, then J : R I is an s-residual intersection of

I if and only if Jp “ Ip for every prime ideal p with dimRp ď s´1. It is a geometric

residual intersection if in addition Jp “ Ip also for every p P V pIq with dimRp “ s.

That is, an s-residual intersection of I can be thought of as an approximation of I

locally up to codimension s´1, and up to codimension s if it is a geometric s-residual

intersection.

Notice that, if J : R I is an s-residual intersection of I, then µpIpq ď s for any

prime p with p with dimRp ď s ´ 1. Conversely, assume that the slightly stronger

Gs condition holds, that is, that µpIpq ď dimRp for every prime ideal p P V pIq with

dimRp ď s´ 1 (see Definition 2.6.8). Then, s-residual intersections of I always exist,

as the following result shows.

Theorem 2.7.2 p [67, 1.5 and 1.6(a)] q Let R be a Noetherian local ring, s an integer,

and let J Ď I be R-ideals with htpJ : R Iq ě s. Assume that I satisfies Gs, and that

J is generated (possibly not minimally) by s elements. Then:

paq There exists a generating set b1, . . . , bs of J such that htppb1, . . . , biq : R Iq ě i

for 0 ď i ď s and htpI ` pb1, . . . , biq : R Iq ě i` 1 for 0 ď i ď s` 1.

pbq Assume that the residue field of I is infinite. Then, J admits a generating

sequence b1, . . . , bs so that the properties in (a) are satisfied for any subsequence

bk1 , . . . , bki of b1, . . . , bs.

Theorem 2.7.2 also shows that, when I satisfies Gs, every s-residual intersection

J : R I of I can be filtered via i-residual intersections Ji : R I for all 0 ď i ď s, for

some subideals Ji Ď J . Moreover, these i-residual intersections are geometric for all

0 ď i ď s´ 1. In other words, ideals satisfying Gs admit s-residual intersection that

have a ‘nice’ generating set. Theorem 2.7.7 in the next subsection gives a condition

for which the generating set b1, . . . , bs for J of Theorem 2.7.2 allows to write K

iteratively.
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2.7.1 Artin-Nagata properties

When R is a Gorenstein local ring and I is an unmixed ideal of height g, a g-

residual intersection of I is an ideal K “ J : R I such that J is a complete intersection.

In other words, K is a so called link of I, or is said to be linked to I. In fact, the

theory of residual intersections is a generalization of linkage, that was first introduced

in geometric terms by Peskine and Szpiro in [52], and later formalized in algebraic

terms by Huneke and Ulrich in [35].

One of the main themes in linkage theory is to investigate what properties of I

are preserved when passing to a link K of I. Peskine and Szpiro proved that, if R is

Gorenstein and R{I is Cohen-Macaulay, then R{K is Cohen-Macaulay [52]. This was

incorrectly ‘proved’ by Artin and Nagata in [3, 2.1] also for an s-residual intersection

K of I with s ą g. Later, Huneke found a counterexample [33, 3.3], and showed that

R{K is Cohen-Macaulay for every s-residual intersection K of I in the case when I

is strongly Cohen-Macaulay [33, 3.1].

Definition 2.7.3 Let R be a Cohen-Macaulay local ring, I “ px1, . . . , xnq a proper

ideal. For each j ě 0, let Hj – Hjpx1, . . . , xn;Rq denote the j-th Koszul homology

module.

(a) I is strongly Cohen-Macaulay if all the Hj are Cohen-Macaulay R-modules.

(b) I satisfies sliding depth if the Koszul homology modules Hj satisfy depthHj ě

dimR ´ n` j for all j.

Although the Koszul homologies a priori depend on the choice of the generators

for I, the strongly Cohen-Macaulay and sliding depth properties only depend on the

ideal I. Also, a strongly Cohen-Macaulay ideal I clearly satisfies sliding depth, and

is such that R{I – H0 is Cohen-Macaulay. Moreover, a result of Herzog, Vasconcelos

and Villarreal [25, 3.3] shows that if I satisfies G8 and sliding depth, then, for every

s-residual intersection K of I, R{K is Cohen-Macaulay.
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The search for a minimal sufficient condition for the Cohen-Macaulayness of resid-

ual intersections motivated the following definition.

Definition 2.7.4 ( [67, 1.1]) Let R be a Cohen-Macaulay local ring, I an R-ideal

with ht I “ g, and s ě g an integer. I is said to satisfy the Artin-Nagata property ANs

if for all g ď i ď s and every i-residual intersection K of I, R{K is Cohen-Macaulay.

If the same property holds for every geometric i-residual intersection, then I is said

to satisfy AN´
s .

The Artin-Nagata condition ANs is satisfied (at least when R is Gorenstein) by

a large class of ideals, including perfect ideals of height 2, perfect Gorenstein ideals

of height 3, complete intersections, and in general any licci ideal that satisfies GS.

We recall that I is licci if it is in the linkage class of a complete intersection ideal

K, i.e. there exist finitely many ideals K0 “ I, K1, . . . Kn “ K, such that K is a

complete intersection and Ki is linked to Ki`1 for all i. Notice that licci ideals in a

Cohen-Macaulay local ring are always strongly Cohen-Macaulay [31, 1.14].

In fact, a weaker condition in order for I to satisfy ANs is the following.

Theorem 2.7.5 p [67, 2.9] q. Let R be a local Gorenstein ring with dimpRq “ d, I

an R-ideal with ht I “ g. Assume that I satisfies Gs for some s ě g. If depth Ij ě

d´ g ´ j ` 2 for 1 ď j ď s´ g ` 1, then I satisfies ANs.

The assumption on the depths of powers of I in Theorem 2.7.5 are always satisfied

if the Koszul homologies Hj of I are Cohen-Macaulay for 0 ď j ď s´g [67, 2.10], and

in particular if I is strongly Cohen-Macaulay. The two conditions are not equivalent

[67, 2.11]. However, if I is a Cohen-Macaulay ideal that satisfies G8 and the depth

assumptions of Theorem 2.7.5 with s “ µpIq ´ 2, then I is strongly Cohen-Macaulay

(see [67, 2.13]).

The following result explains the connection between the sliding depth and Artin-

Nagata properties.

Theorem 2.7.6 Let R be a Cohen-Macaulay local ring of dimension d, I an R-ideal

with ht I “ g. Assume that I satisfies Gs for some s ě g.
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paq p [25, 3.4] and [67, 1.7] q. If I is sliding depth, then I satisfies ANs.

pbq p [67, 1.8] q. If s “ µpIq and I is AN´
s´1, then I satisfies sliding depth.

pcq p [67, 1.9] q If s “ d´ 1 and I is AN´
s´1, then I satisfies ANk for all k. In this

case, I satisfies sliding depth whenever it is G8.

We will return to the relationship between the Artin-Nagata properties and the

sliding depth condition in Section 3.1.1, where we will connect both of them with the

linear type property of an ideal.

A very interesting feature of ideals satisfying the Artin-Nagata condition is that

their residual intersections can be conveniently expressed iteratively, as successive

links by one element.

Theorem 2.7.7 p [67, 1.5 and 1.6(a)] q Let R be a Cohen-Macaulay local ring, I ‰ 0

a proper R-ideal. Assume that I satisfies Gs and ANs´1 for some integer s ě htpIq ą

0. Let K “ J : R I be an s-residual intersection of I, and let b1, . . . , bs be a generating

set of J as in Theorem 2.7.2. For 1 ď i ď s, let Ki – pb1, . . . , biq : R I. Then:

paq For all i ď s, Ki is unmixed of height i.

pbq For 1 ď i ď s´ 1, Ki “ pb1, . . . , biq : R pbi`1q and I XKi “ pb1, . . . , biq.

pcq pReduction to linkage q For 1 ď i ď s ´ 1, let 1 denote images in the ring

R1–R{Ki. Then, K 1
i`1 “ pb

1
i`1q : I

1 and b1i`1 is regular on R1.

This iteration property allows to prove statements about residual intersections

by induction. This turns out to be particularly useful in order to study the Cohen-

Macaulay property of Rees algebras of ideals (see Section 4.1.1), when combined with

the following result (see [67, 1.6], [39, 2.7], or [54, 3.1]).

Proposition 2.7.8 Let R be a Cohen-Macaulay local ring with infinite residue field.

Let I an ideal of positive height with `pIq “ `, and let J be an ideal generated by
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general elements b1, . . . , b` in I. Assume that I is G`. Then, K “ J : R I is an `-

residual intersection of I. Moreover, for 1 ď i ď `, pb1, . . . , biq : R I is an i-residual

intersection of I, which is geometric for 1 ď i ď `´ 1.

We conclude this subsection by recalling the behavior of Artin-Nagata properties

under localization.

Proposition 2.7.9 psee [67, 1.10] q. Let R be a Cohen-Macaulay local ring, I an

R-ideal and p P V pIq.

paq If I satisfies Gs`1 and AN´
s , then Ip satisfies Gs`1 and AN´

s .

pbq I satisfies Gs and ANs, then Ip satisfies Gs and ANs.

2.7.2 Residually S2 ideals

Although many classes of ideals satisfy the Artin-Nagata property ANs, the depth

conditions of Theorem 2.7.5 are difficult to check. For several applications, it is then

convenient to have a weaker notion, which still guarantees good properties of residual

intersections.

We recall that a finite R-module M satisfies Serre’s condition S2 if

depthMp ě min t 2, dimMp u.

Definition 2.7.10 Let R be a Noetherian ring, I an R-ideal with htpIq “ g, and

s ě g an integer.

(a) I is said to be s-residually S2 if for all g ď i ď s and every i-residual intersection

K of I, R{K satisfies S2.

(b) I is said to be weakly s-residually S2 if the same condition holds for every

geometric i-residual intersection of I.

The notion of residually S2 ideals was introduced by Chardin, Eisenbud and Ulrich

in [9], and used in order to study the Hilbert function of certain homogeneous ideals.
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In fact, many results known for ideals satisfying the Artin-Nagata condition can be

generalized to residually S2 ideals.

Theorem 2.7.11 psee [9, 3.4], [12, 2.4] q Let R be a Cohen-Macaulay local ring of

dimension d, I an R-ideal with ht I “ g ą 0, and let s be an integer with s ě g.

Assume that I is Gs and weakly ps´1q-residually S2. Let K “ J : R I be an s-residual

intersection of I, and let b1, . . . , bs be a generating set of J as in Theorem 2.7.2. Then

paq For all i ď s, Ki is unmixed of height i.

pbq For 1 ď i ď s´ 1, Ki “ pb1, . . . , biq : R pbi`1q.

pcq For 1 ď i ď s ´ 1, let 1 denote images in the ring R1–R{Ki. Then, K 1
i`1 “

pb1i`1q : I
1 and b1i`1 is regular on R1.

The main idea underlying the proof of Theorem 2.7.5 is that the Cohen-Macaulay

property of a residual intersection K of I is encoded in the canonical module of R{K

(see [67, 2.1 and 2.3] for details). A deeper investigation on the canonical module of

residual intersections of I led to the following sufficient condition for an ideal to be

s-residually S2.

Theorem 2.7.12 p [9, 4.1] q Let R be a local Gorenstein ring with dimpRq “ d,

I an R-ideal with htpIq “ g. Assume that I satisfies Gs for some s ě g. If

Ext g`j´1pIj, Rq “ 0 for 1 ď j ď s´ g ` 1, then I is s-residually S2.

Notice that, since R is Gorenstein, the depth assumptions in the statement of Theo-

rem 2.7.5 imply that Ext ipIj, Rq “ 0 for all 1 ď j ď s´g`1 and all i ď g´j`1. In

particular, Theorem 2.7.12 is satisfied in the most restrictive setting of Theorem 2.7.5.
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3. MODULES OF LINEAR TYPE

In this chapter, we aim to provide sufficient conditions for a module to be of linear

type. Using generic Bourbaki ideals, we reduce the problem to that of finding con-

ditions for an ideal to be of linear type. Our main result is Theorem 3.2.4 and will

be crucial for most of the results of Chapter 4. Another sufficient condition will be

given later in Theorem 4.3.2.

The techniques we use at the level of ideals are based on the theory of residual

intersections, as recalled in Section 2.7. We refer the reader to Chapter 2 for the

necessary background on Rees algebras of ideals and modules and generic Bourbaki

ideals.

3.1 Background

The problem of determining the defining ideal of Rees algebras has been studied for

decades by several authors. In general, this is a difficult problem, which only becomes

treatable if enough information can be extracted from the presentation matrix of

the given ideal or module. We will discuss some general techniques in Chapter 5.

Here instead, we focus on ideals and modules of linear type, that is, such that their

Rees algebra coincides with their symmetric algebra. We start with the following

observation.

Remark 3.1.1 Let pR,m, kq be a Noetherian local ring, E a finite R-module with

rankE “ e. If E is of linear type, then µpEq “ `pEq.

Indeed, if E is of linear type, then

FpEq “ RpEq bR k – SpEq bR k – SpE bR kq.
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But E bR k – kn, where n “ µpEq, so FpEq – SpE bR kq – krY1, . . . , Yns. Hence,

by computing dimensions, it follows that n “ µpEq “ `pEq, as claimed.

In particular, this means that linear type modules have no proper reductions.

Moreover, since by construction the linear type property localizes, the argument above

implies that µpEpq “ `pEpq ď dimRp ` e ´ 1 for all p P SpecpRq, where the latter

inequality holds by Proposition 2.4.6. In other words, recalling the G8 condition of

Definition 2.6.8, we have just proved the following statement.

Remark 3.1.2 Let R be a Noetherian ring, E a finite R-module with rankE “ e. If

E is of linear type, then E satisfies G8.

The converse is not true. In fact, if R “ krx, y, z, ws and I “ pxy, xw, yz, zwq,

then I is G8 but not of linear type. Indeed, the defining ideal J Ď RrT1, . . . , T4s of

RpIq includes a non-linear generator T1T4´T2T3 , so it properly contains the defining

ideal L of SpIq.

Nevertheless, one has the following important result, due to Herzog, Simis and

Vasconcelos (see [23, 6.1]). We refer the reader to Definition 2.7.3 for the sliding

depth property of an ideal.

Theorem 3.1.3 (Herzog-Simis-Vasconcelos) Let R be a Cohen-Macaulay local

ring, I an R-ideal with htpIq ą 0. If I satisfies G8 and sliding depth, then I is of

linear type. Moreover, RpIq is Cohen-Macaulay.

The result was obtained by means of the so called approximation complexes, which

approximate a free resolution of the symmetric algebra. A detailed discussion of the

topic would be out of the scope of this thesis. We refer the interested reader to

the original papers [22, 23]. What will be relevant to us is that the assumptions of

Theorem 3.1.3 can be weakened if one is only interested to the linear type property

of I. This is possible thanks to the notion of d-sequence.
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Definition 3.1.4 A sequence of elements a1, . . . , as in I is called a d-sequence rela-

tive to I if rpa1, . . . , aiq : pai`1qs X I “ pa1, . . . , ai`1q for 0 ď i ď s´ 1. The sequence

is called a d-sequence if furthermore the ai generate I.

In fact, if R is a Cohen-Macaulay local ring with infinite residue field and I satisfies

G8 and sliding depth, then I is generated by a d-sequence (see [22, 2.5] and [23, 4.1]).

This condition guarantees that I is of linear type.

Theorem 3.1.5 (Huneke) p [29, 3.1] q. Let R be a Noetherian ring, and let I be an

R-ideal generated by a d-sequence. Then, I is of linear type.

We next discuss the linear type property of an ideal by examining its residual

intersections.

3.1.1 Residual intersections and ideals of linear type

We saw in Section 2.7.1 that the Artin-Nagata properties of an ideal I are con-

nected with its sliding depth property. Theorem 3.1.3 then suggests that, if we also

assume that I is G8, the Artin-Nagata properties could provide a sufficient condition

for I to be of linear type, while guaranteeing at the same time that the Rees algebra

RpIq is Cohen-Macaulay. In fact, we show that the G8 condition, although necessary

in order for I to be of linear type, is not required in order to prove that I is linear

type.

Our first result in this direction is a slight improvement of Theorem 2.7.6(b). The

proof really follows from the paper of Ulrich [67], but we write it here for lack of a

specific reference.

Theorem 3.1.6 Let R be a Gorenstein local ring of dimension d. Let I be an R-ideal

with `pIq “ `. If I is G``1 and AN´
`´1, then I satisfies sliding depth.

Proof. Without loss of generality, we may assume that the residue field of R is

infinite. Let J be a minimal reduction of I generated by ` general elements. Since I
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satisfies G``1, then htpJ : R Iq ě `` 1. This is clear if J “ I. If J Ĺ I, then J : R I is

a geometric `-residual intersection of I by Theorem 2.7.2. Hence, since I and J have

the same radical, htpJ : R Iq ě `` 1, as claimed.

Now, if J : R I is a proper ideal, it is an `-residual intersection of I. But then, since

by assumption I is G``1 and AN´
` , by Theorem 2.7.7 it follows that htpJ : R Iq “ `,

a contradiction. So, it must be that I “ J . Hence, ` “ µpIq, so that I satisfies sliding

depth by Theorem 2.7.6(b). �

From the proof it follows that, if I satisfies the assumptions of Theorem 3.1.6,

then I has no proper reductions. Hence, for all p P SpecpRq one has µpIpq “ `pIpq ď

dimRp. That is, I satisfies G8. As a consequence, we have the following result.

Theorem 3.1.7 Let R be a Gorenstein local ring of dimension d. Let I be an R-

ideal with ht I “ g ě 1 and `pIq “ `. Assume that I is G``1 and that depth Ij ě

d´g´j`2 for 1 ď j ď `´g. Then, I is of linear type and RpIq is Cohen-Macaulay.

Proof. By Theorem 2.7.5, the assumption on the depths of powers of I imply that

I satisfies AN`´1. Hence, by Theorem 3.1.6 and its proof, we deduce that I is sliding

depth and G8. Hence, by Theorem 3.1.3 it follows that I is of linear type and RpIq

is Cohen-Macaulay. �

If one is only interested to the linear type property of I, by Theorem 3.1.5 it is

enough to provide conditions so that I is generated by a d-sequence. The residually

S2 property turns out to be helpful to this scope. This follows from work of Chardin,

Eisenbud and Ulrich [9], but we include the proof here for the reader’s convenience,

due to lack of a specific reference. We start by recalling a sufficient condition for I to

be generated by a d-sequence.

Theorem 3.1.8 p [9, 3.6] q Let R be a Cohen-Macaulay local ring of dimension d, I

an R-ideal with ht I “ g ą 0. Assume that I is Gs for some integer s with s ě g. Let

J Ď I be an R-ideal such that K “ J : R I and htK ě s ě µpJq, and let b1, . . . , bs
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be generators for J as in Theorem 2.7.2. If I is weakly ps ´ 2q-residually S2, then

b1, . . . , bs is a d-sequence relative to I.

As a consequence, we can then identify a class of ideals of linear type which do

not necessarily satisfy sliding depth, nor any Artin-Nagata condition.

Theorem 3.1.9 Let R be a local Gorenstein ring, d “ dimR, I an R-ideal with

ht I “ g ě 1 and `pIq “ `. Assume that I is G``1 and p`´ 1q-residually S2. Then, I

is generated by a d-sequence.

Proof. Without loss of generality, we may assume that the residue field of R is

infinite. Let J be a minimal reduction of I generated by ` general elements. As in the

proof of Theorem 3.1.6, the assumption that I is G``1 implies that htpJ : R Iq ě ``1,

and that hence I “ J . Also, by assumption I is G``1 and p`´1q-residually S2. Hence,

by Theorem 3.1.8, I is generated by a d-sequence. �

In particular, we have the following result.

Theorem 3.1.10 Let R be a local Gorenstein ring, d “ dimR, I an R-ideal with

ht I “ g ě 1 and `pIq “ `. Assume that I is G``1 and that Ext g`j´1R pIj, Rq “ 0 for

1 ď j ď min t`´ g, d´ g ´ 1u. Then, I is of linear type.

Proof. The given vanishing conditions on the Ext modules in the statement imply

that I is p` ´ 1q-residually S2, thanks to Theorem 2.7.12. Hence, by Theorem 3.1.9

and its proof, I is generated by a d-sequence. Therefore, I is of linear type by Theo-

rem 3.1.5. �

Notice that, since R is Gorenstein, the assumptions of Theorem 3.1.10 are satis-

fied if the depth conditions of Theorem 3.1.7 hold. However, unlike Theorem 3.1.7,

Theorem 3.1.10 does not give any information about the Cohen-Macaulay property

of the Rees algebra RpIq.
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3.2 Residual intersections and modules of linear type

Our main goal in the rest of this chapter is to provide sufficient conditions for

a module to be of linear type. In particular, we wish to recover the results of the

previous section for ideals.

The task is challenging from a technical point of view, since some of the notions in-

volved in the theorems above do not seem to have a well-understood module analogue.

For instance, if one replaced ideals with modules in the definition of d-sequence, then

for elements a1, . . . , an in E the intersections rpRa1` . . .`Raiq : RRai`1sXE would

not make sense anymore, since E X R is not well-defined. Moreover, should one rea-

sonably define an s-residual intersection of E as a colon ideal pRa1` . . .`Rasq : RE

for some a1, . . . , as P E, it is not clear whether good residual intersection properties

would transfer from E to a generic Bourbaki ideal I of E, since a priori factoring out

generic elements may not preserve these properties.

Nevertheless, one could hope to be able to generalize the statements of Theo-

rem 3.1.7 and Theorem 3.1.10, as these only involve powers of the module E, which

are well-defined as graded components of its Rees algebra RpEq. In fact, under the

stronger assumption that E satisfies G8, a module version of Theorem 3.1.7 was given

by Lin, using generic Bourbaki ideals.

Theorem 3.2.1 p [46, 3.1] q. Let R be a Gorenstein local ring of dimension d. Let

E be a finite, orientable R-module with rankE “ e and `pEq “ `. Assume that E is

G8 and that depthEj ě d´ j for 1 ď j ď `´ g ` 1. Then, E is of linear type and

RpEq is Cohen-Macaulay.

Still using generic Bourbaki ideals as our main tool, in Theorem 4.3.2 we will able

to obtain the same conclusion while weakening the G8 condition to the less restrictive

G`´e`2. The proof is postponed to the next chapter, as it uses some technical results

from Chapter 4. In Theorem 3.2.4 below we will instead extend Theorem 3.1.10 to

modules.
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3.2.1 Main result

Throughout the rest of this chapter, we consider the following situation.

Setting 3.2.2 Let R be a Noetherian local ring of dimension d. Let E be a finite

R-module with rankpEq “ e ą 0 and analytic spread `pEq “ `. For a fixed gener-

ating set a1, . . . , an of E, let E 1, E2, x1, . . . , xe´1, F
1 and F 2 be constructed as in

Notation 2.6.1. Assume that E 1{F 1 is isomorphic to an R1-ideal J as an R1-module,

let I “ JR2 be a generic Bourbaki ideal of E, and let g “ ht I.

In the situation of Setting 3.2.2, our goal in this section is to generalize Theo-

rem 3.1.10 to modules. That is, we wish to be able to deduce the linear type property

of E from the vanishing of finitely many modules of the form ExtiRpE
j, Rq, for finitely

many given values of i and j.

Thanks to Theorem 2.6.4(c), it suffices to prove that a generic Bourbaki ideal I of

such a module E satisfies the assumptions of Theorem 3.1.10. In particular, we aim

to show that if ExtiRpE
j, Rq “ 0 for given values of i and j, then ExtiRpI

j, Rq “ 0

for the same values of i and j.

From the definition of generic Bourbaki ideal, one has the exact sequences

0 Ñ F 1 Ñ E 1 Ñ J Ñ 0

and

0 Ñ F 2 Ñ E2 Ñ I Ñ 0.

These induce R-epimorphisms pE 1qj � J j and pE2qj � Ij, obtained as degree j

components of the homogeneous epimorphisms RpE 1q � RpJq and RpE2q � RpIq.

Hence, for each j the augmented Koszul complexes K.px1, . . . , xe´1;RpE 1qq and

K.px1, . . . , xe´1;RpE2qq induce complexes

C1j : rK.px1, . . . , xe´1;RpE 1qqsj
B10
ÝÑ J j Ñ 0



37

and

C2j : rK.px1, . . . , xe´1;RpE2qqsj
B20
ÝÑ Ij Ñ 0.

The exactness of these complexes plays a crucial role in transferring assumptions

from Ej to J j or Ij respectively, as shown by the following lemma (see Lemma 4.2.2

for another instance where a similar phenomenon occurs).

Lemma 3.2.3 Under the assumptions of Setting 3.2.2, let k and s be positive integers

with k ď s´ 2. Assume that

piq Ext j`1R pEj, Rq “ 0 for 1 ď j ď k.

piiq The complexes pC1jqq are exact for all q P SpecpR1q with depthR1q ď s´ 1 and

all 1 ď j ď k.

Then, Ext j`1R1 pJ
j, R1q “ 0 for 1 ď j ď k.

Proof. Fix j with 1 ď j ď k. For i ď j, let C 1i, Zi, Bi and Hi be the ith module,

cycle, boundary and homology of the complex

C1j : rK.px1, . . . , xe´1;RpE 1qqsj
B10
ÝÑ J j Ñ 0

respectively. By assumption (i) we know that Extj`1´iR1 pC 1i, R
1q “ 0 for 0 ď i ď j.

Also, assumption (ii) implies that gradeHi ě s ě k ` 2. Hence, ExtnR1pHi, R
1q “ 0

for all n ď k ` 1 and all 0 ď i ď j. Now, by decreasing induction on i ď j, we prove

that Extj`1´iR1 pBi´1, R
1q “ 0 for 0 ď i ď j. The assertion will then follow by the case

i “ 0.

Assume that i “ j. Since ExtnR1pHj, R
1q “ 0 for n “ 0 and n “ 1, and

Bj “ impB1j`1q “ 0, it follows that HomR1pZj, R
1q – HomR1pBj, R

1q “ 0. Therefore,

the long exact sequence of Ext‚R1p´, R
1q induced by 0 Ñ Zj Ñ C 1j Ñ Bj´1 Ñ 0 shows

that Ext1R1pBj´1, R
1q “ 0 as well. Now, assume that j ě i ` 1 and Extj´iR1 pBi, R

1q “

0. Since ExtnR1pHi, R
1q “ 0 for n “ j ´ i and n “ j ´ i ` 1, it follows that

Extj´iR1 pZi, R
1q – Extj´iR1 pBi, R

1q “ 0. So, the long exact sequence of Ext‚R1p´, R
1q

induced by 0 Ñ Zi Ñ C 1i Ñ Bi´1 Ñ 0 shows that Extj`1´iR1 pBi´1, R
1q “ 0, and the
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proof is complete. �

We can now state and prove our module version of Theorem 3.1.10.

Theorem 3.2.4 Let R be a local Gorenstein ring of dimension d. Let E be a finite,

torsion-free and orientable R-module with rankE “ e ą 0 and `pEq “ `. Assume

that E is G`´e`2 and that Ext j`1R pEj, Rq “ 0 for 1 ď j ď min t` ´ e ´ 1, d ´ 3u.

Then, E is of linear type and E 1{F 1 is isomorphic to an R1-ideal of linear type.

Proof. Without loss of generality, we may assume that E is not free. Let

E “ Ra1 ` . . . ` Ran. Since E is torsion-free, orientable and satisfies G `´e`2, by

Theorem 2.6.2, E 1{F 1 – J and E2{F 2 – I, where I and J are ideals of height at

least 2, satisfying G `´e`2, i.e. G`pIq`1 (see Proposition 2.6.9). Moreover, we may

assume that g ď d´1. In fact, if g “ d, then `pIq “ d, and the G8 condition implies

that I is a complete intersection. Therefore I satisfies G8 and sliding depth, whence

it is of linear type by Theorem 3.1.3. Then, by Theorem 2.6.4(c) E and J are of

linear type, and gradepRpEq`q ě e.

If e “ 1, then R2 “ R and E – I, an R-ideal of height 2 ď g ď d ´ 1. In fact, it

must be that g “ 2. Otherwise, since R is Gorenstein, by assumption we would have

Ext g´1R pI g´2, Rq “ 0, contradicting the fact that grade I g´2 “ grade I “ g. Hence

g “ 2, and so I is of linear type by Theorem 3.1.10.

If e ě 2, we proceed by induction on d “ dimR1 ě g ě 2. If d “ 2, then g “ d

and we have already proved that E and J are of linear type in this case. So, we may

assume that d ą 2.

We claim that E 1q and Jq are of linear type for all q P SpecpR1q with dimR1q ď d´1.

Indeed, for any such q let p “ qXR. Then, Ep is a finite, torsion-free and orientable

Rp-module with `pEpq ď `, satisfying G`pEpq´e`2 and such that Ext j`1Rp
pEj

p , Rpq “ 0

for 1 ď j ď min t`pEpq´e´1, dimRp´3u. Hence, by the induction hypothesis, Ep and

Jp – E 1p{F
1
p are of linear type, where E 1p and F 1p are constructed as in Notation 2.6.1 by

choosing the images of a1, . . . , an in Ep as generators for Ep. Hence, their respective

localizations E 1q and Jq are of linear type, as claimed.
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In particular, by Theorem 2.6.5, the complexes pC1jqq are exact for all j and for

all q P SpecpR1q with depthR1q ď d ´ 1. Therefore, by Lemma 3.2.3, it follows

that Ext j`1R1 pJ
j, R1q “ 0 for 1 ď j ď min t` ´ e ´ 1, d ´ 3u. Hence, for j in the

same range, also Ext j`1R2 pI
j, R2q “ 0. Now, if 3 ď g ď d ´ 1, we could choose

j “ g ´ 2 to obtain Ext g´1R2 pI
g´2, R2q “ 0. But this would contradict the fact that

grade Ig´2 “ grade I “ g. So, it must be that g “ 2, whence I is of linear type by

Theorem 3.1.10. �

Corollary 3.2.5 Let R be a local Gorenstein ring with dimR “ d. Let E be a finite,

torsion-free and orientable R-module with rankE “ e ą 0 and `pEq “ `. Assume

that E is G`´e`2 and that depthEj ě d ´ j for 1 ď j ď ` ´ e ´ 1. Then, E is of

linear type and E 1{F 1 is isomorphic to an R1-ideal of linear type.

Proof. Since R is Gorenstein, the assumption on the depths of powers of E

implies that Ext j`1R pEj, Rq “ 0 for 1 ď j ď ` ´ e ´ 1, hence also for 1 ď j ď

min t`´ e´ 1, d´ 3u. Hence, the conclusion follows from Theorem 3.2.4. �

Notice that Corollary 3.2.5 recovers part of the statement of Theorem 3.1.7 for

ideals, though it gives no information on the Cohen-Macaulay property of RpEq.

In order to provide a full generalization of Theorem 3.1.7 to modules, we need to

develop some more technical machinery. We postpone the discussion to Section 4.3.

In the next subsection, we describe instead specific situations where the assumptions

of Theorem 3.2.4 are satisfied.

3.2.2 Applications

The first class of modules we are interested in are modules of projective dimension

one. We start by recalling a well-known result on their Rees algebras (see [2, Propo-

sition 3], [30, 1.1], [66, 3.4]).
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Theorem 3.2.6 Let R be a Cohen-Macaulay local ring and E a finite R-module with

projdimpEq ď 1. Assume that µpEpq ď max tdimRp`e´1, eu for every p P SpecpRq.

Then, SpEq is torsion-free, and is a complete intersection.

As a consequence, we show that modules of projective dimension one with G`´e`2

satisfy the assumptions of Theorem 3.2.4.

Proposition 3.2.7 Let R be a local Cohen-Macaulay ring, E a finite, torsion-free

R-module with rankE “ e ą 0 and `pEq “ `. Assume that projdimE “ 1 and that

E satisfies G`´e`2. Then, Ext j`1R pEj, Rq “ 0 for all j ě 1. In particular, E is of

linear type.

Proof. Without loss of generality, we may assume that the residue field of R is

infinite. Let p P SpecpRq be such that dimRp ď ` ´ e ` 1. Then, Ep satisfies G8

and has projective dimension one. Hence, by Theorem 3.2.6, RpEpq – SpEpq is a

complete intersection. In particular, for all p P SpecpRq with dimRp ď `´ e` 1, Ep

is of linear type, and the Koszul complex on the generators of the defining ideal of

SpEpq gives a free resolution of SpEpq – RpEpq. Hence, projdimEj
p ě j for all j ě 1.

Therefore, it must be that Extj`1Rp
pEp, Rpq “ 0 for all j ě 1 and all p P SpecpRq with

dimRp ď `´ e` 1.

Now, let U be a minimal reduction of E, generated by ` general elements. Since

Ep is of linear type for all p P SpecpRq with dimRp ď `´e`1, then for any such p one

has Ep “ Up , so that pE{Uqp “ 0. Hence, htpF0pE{Uqq ě `´e`2, where F0pE{Uq is

the 0th Fitting ideal of E{U . On the other hand, since E{U is generated by µpEq´`

elements, by Eagon-Northcott’s Theorem [13, Theorem 3], if F0pE{Uq ‰ R we must

have htpF0pE{Uqq ď ` ´ e ` 1. This is a contradiction, hence it must be E “ U , in

which case µpEq “ ` ď dimR`e´1. In particular, E satisfies G8, and the argument

above shows that then Ext j`1R pEj, Rq “ 0 for all j ě 1.

Finally, notice that E is orientable, since projdimE “ 1. Hence, E is of linear

type by Theorem 3.2.4. �
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Next, we prove that strongly Cohen-Macaulay ideals of height two can be used in

order to produce modules that satisfy the assumptions of Theorem 3.2.4.

Proposition 3.2.8 Let R be a local Gorenstein ring of dimension d. Let I be a

strongly Cohen-Macaulay ideal of height two with `pIq “ `, satisfying G``1. Let F

be a free R-module of rank e ´ 1 ą 0, and let E “ I ‘ F . Then, `pEq “ ` ` e ´ 1

and E satisfies G `pEq`e´2. Moreover, E is of linear type and Extj`1R pEj, Rq “ 0 for

1 ď j ď `pEq ´ e` 1.

Proof. Notice that E “ I ‘ F is a torsion-free R-module with rankE “ e and

satisfies G``1 since I does. Moreover, since SpF q is a polynomial ring in e´1 variables

over R, if k denotes the residue field of R, one has

FpEq “ RpEq bR k – pRpIq bR SpF qq bR k – FpIq bR SpF q.

Hence, computing dimensions, we obtain `pEq “ ` ` e ´ 1. In particular, E satisfies

G`pEq´e`2.

Now, since I is strongly Cohen-Macaulay of height 2 and satisfies G``1, by [67,

2.10] we have depth I i ě d´ i for 1 ď i ď `. Hence, since R is Gorenstein, it follows

that Extj`1R pI i, Rq “ 0 whenever 1 ď i ď j ď `. Therefore, I is of linear type by

Theorem 3.1.10. In particular,

SpEq – SpIq bR SpF q – RpIq bR SpF q

is a polynomial ring over RpIq, hence a torsion free R-module. Thus, RpEq – SpEq,

whence for all j Ej – rSpEqsj – rRpIq bR SpF qsj “
À

0ďiďj pI
i bR F

j´iq. The dis-

cussion above then implies that Extj`1R pEj, Rq “ 0 for 1 ď j ď ` “ `pEq ´ e` 1. �

We now give a general technique to construct modules of linear type, as submod-

ules of modules that satisfy Theorem 3.2.4.

Theorem 3.2.9 Let R be a local Gorenstein ring. Let M be a finite, torsion-free

R-module with rankM “ e ą 0 and `pMq “ `. Assume that Ext j`1R pM j, Rq “ 0 for
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1 ď j ď min t` ´ e ´ 1, d ´ 3u and that M satisfies G`´e`2. Let E be an orientable

submodule of M such that dim pM{Eq ď max t d ´ ` ` e ´ 2, 0 u. If ` “ d ` e ´ 1,

assume also that E is generated by ` elements. Then, E is of linear type.

Proof. We may assume that d ą 0. We show that E satisfies the assumptions

of Theorem 3.2.4. First, notice that since dimpM{Eq ď max t d ´ ` ` e ´ 2, 0 u, it

follows that Ep “ Mp for every prime ideal p with dimRp ă min t ` ´ e ` 2, d u. In

particular, E has a rank, and rankE “ e.

Moreover, E is G`´e`2. This is clear from the discussion above if ` ď d ` e ´ 2.

Otherwise, by Proposition 2.4.6 one must have that ` “ d ` e ´ 1, in which case

E satisfies Gd. Since by assumption µpEq ď `, it follows that E is G `´e`2. Since

`pEq ď µpEq ď `, this then implies that E satisfies G`pEq´e`2.

Therefore, it only remains to show that our assumptions imply the vanishing of the

Ext modules in the statement of Theorem 3.2.4. Since Ep “Mp for every prime ideal

p with dimRp ă min t `´e`2, d u, it follows that gradepM j{Ejq ě min t `´e`2, d u

for all j ě 1. In particular, Extj`2R pM j{Ej, Rq “ 0 for 1 ď j ď min t`´ e´1, d´3u.

The long exact sequence of Ext‚Rp´, Rq induced by the exact sequence

0 Ñ Ej
ÑM j

ÑM j
{Ej

Ñ 0

then shows that Ext j`1R pEj, Rq “ 0 for 1 ď j ď min t` ´ e ´ 1, d ´ 3u. Hence, E is

of linear type by Theorem 3.2.4. �

The next lemma will allows us to provide explicit examples of modules E as in

Theorem 3.2.9.

Lemma 3.2.10 Let pR,mq be a local Cohen-Macaulay ring with infinite residue field,

let M be a finitely generated, torsion-free R-module with rankM “ e ą 0, satisfying

Gs for some s ě 2. Let E be a submodule generated by s` e´ 1 general elements in

mM . Then, dimpM{Eq ď d´ s.
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Proof. Since E is generated by s`e´1 general elements x1, . . . , xs`e´1 in mM , it

makes sense to define the module M – M{pRx1 ` . . .`Rxe´1q. Since M is torsion-

free and satisfies Gs with s ě 2, by [11, 2.2] it follows that M is a torsion-free module

of rank 1 and satisfies Gs. That is, M – I, an R-ideal satisfying Gs.

Let J be the ideal generated by the images of xe, . . . , xs`e´1 in I. Since the

xe, . . . , xs`e´1 are general elements, by Proposition 2.7.8 it follows that J : R I is an

s-residual intersection of I, whence htpJ : R Iq ě s. Hence,

dimpM{Eq “ dim pI{Jq “ dimR ´ htpJ : R Iq ď dimR ´ s,

as we wanted to prove. �

Recalling that every module over a UFD is orientable, we have the following

corollary.

Corollary 3.2.11 Let R be a local Gorenstein UFD, of dimension d and infinite

residue field. Let M be a finite, torsion-free R-module with rankM “ e ą 0 and

`pMq “ `. Assume that Ext j`1R pM j, Rq “ 0 for 1 ď j ď min t` ´ e ´ 1, d ´ 3u and

that M satisfies G`´e`2.

If ` ď d` e´ 2, let E be a submodule generated by `` 1 general elements inside

mM , while if ` “ d ` e ´ 1, let E be a submodule generated by ` general elements

inside mM . Then, E is of linear type.

Proof. Since M satisfies G`´e`2, by Lemma 3.2.10 it follows that

dimpM{Eq ď
! d´ `´ e` 2 if ` ď d` e´ 2

0 if ` “ d` e´ 1

Moreover, E is orientable since R is assumed to be a UFD. Therefore, the conclusion

follows from Theorem 3.2.9. �

In particular, for a module M satisfying the assumptions of Theorem 3.2.4, if M

has large enough analytic spread, we can always find a submodule E Ď mM with

dimpM{Eq small enough, that satisfies the same assumptions.
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Combining this result with Theorem 3.2.7 and Theorem 3.2.8 respectively, we then

have the following corollaries.

Corollary 3.2.12 Let R be a local Gorenstein UFD, of dimension d and infinite

residue field. Let M be a finite R-module with rankM “ e ą 0, `pMq “ ` and

projdimM “ 1, satisfying G`´e`2.

If ` ď d` e´ 2, let E be a submodule generated by `` 1 general elements inside

mM , while if ` “ d ` e ´ 1, let E be a submodule generated by ` general elements

inside mM . Then, E is of linear type.

Corollary 3.2.13 Let R be a local Gorenstein UFD, of dimension d and infinite

residue field. Let I be a strongly Cohen-Macaulay ideal of height two with `pIq “ `

satisfying G``1, F a free R-module of rank e´ 1 ą 0, and let M “ I ‘ F .

If ` ď d` e´ 2, let E be a submodule generated by `` 1 general elements inside

mM , while if ` “ d ` e ´ 1, let E be a submodule generated by ` general elements

inside mM . Then, E is of linear type.
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4. MODULES WITH COHEN-MACAULAY REES

ALGEBRA

The goal of this chapter is to provide a sufficient condition for the Rees algebra of a

module E to be Cohen-Macaulay. In particular, we wish to recover a well-known result

proved independently by Johnson and Ulrich, and by Goto, Nakamura and Nishida

for Rees algebras of ideals (see Theorem 4.1.5 below). This theorem requires that

the ideals under consideration satisfy the Artin-Nagata conditions of Definition 2.7.4,

which do not seem to have a well-understood counterpart for modules. This makes the

problem challenging from a technical point of view. Our main result, Theorem 4.2.4,

is obtained using generic Bourbaki ideals, and requires a deep investigation of the

residual intersection properties of a generic Bourbaki ideal of the given module E.

As a consequence of our Lemma 4.2.2, we are able to provide a condition for

which a module is of linear type and also has Cohen-Macaulay Rees algebra (see

Theorem 4.3.2). This extends Theorem 3.1.7 to modules, and generalizes previous

work of Lin which we recalled in Theorem 3.2.1.

We refer the reader to Chapter 2 for the necessary background on generic Bourbaki

ideals and residual intersections. Due to the crucial role of Rees algebras of ideals in

our approach, for our and the reader’s convenience, we start by recalling some of the

literature on their Cohen-Macaulay property.

4.1 Cohen-Macaulay property of the Rees algebra of an ideal

The Cohen-Macaulay property of Rees algebra of an ideal is deeply interconnected

with that of its associated graded ring. One of the first results to highlight this

connection is the following, due to Huneke (see [32, Proposition 1.1]).
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Theorem 4.1.1 (Huneke) Let R be a Cohen-Macaulay local ring, I an ideal with

positive height. If RpIq is Cohen-Macaulay, then GpIq is Cohen-Macaulay.

The converse is not true, however the Cohen-Macaulayness of the associated

graded ring implies that of the Rees ring when some extra numerical conditions are

satisfied. Recall that for a d-dimensional graded ring S with a unique homogeneous

maximal ideal m, the a-invariant of S is

apSq – supti | rHd
mpSqsi ‰ 0u “ ´infti | rωSqsi ‰ 0u,

where ωS is the graded canonical module of S, and the last equality holds by the

graded version of the Local Duality Theorem.

Theorem 4.1.2 (Ikeda-Trung) p [37, 1.1] q Let R be a Cohen-Macaulay local ring,

I an ideal with positive height. Then, RpIq is Cohen-Macaulay if and only if GpIq

is Cohen-Macaulay and apGpIqq ă 0.

Alternatively, one could deduce information on the Cohen-Macaulayness of RpIq

by inspecting the local reduction numbers of I.

Theorem 4.1.3 (Johnston-Katz) p [40, 2.3] q Let R be a Cohen-Macaulay local

ring, I an ideal with positive height. Then, RpIq is Cohen-Macaulay if and only if

GpIq is Cohen-Macaulay and rJppIpq ď `pIpq ´ 1 for all p P V pIq and all minimal

reductions Jp of Ip.

In particular, if RpIq is Cohen-Macaulay, it follows that rpIq ď `pIq´1. We refer

the reader to [1] and [63] for similar results.

With these results in mind, studying the Cohen-Macaulay property of RpIq then

becomes a two-step process. First, one determines a sufficient condition for the asso-

ciated graded ring GpIq to be Cohen-Macaulay. Next, one investigates the canonical

module of GpIq in order to estimate the a-invariant of GpIq, or computes the local

reduction numbers of I.
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Most of the literature on the Cohen-Macaulayness of the associated graded ring

relies heavily on the following fundamental result of Valabrega and Valla (see [72, 2.6

and 2.7]).

Theorem 4.1.4 (Valabrega-Valla) Let R be a Noetherian local ring with dimR “

d and infinite residue field. Let I be an R-ideal with ht I ą 0 and `pIq “ `. For a

minimal reduction J “ pb1, . . . , b`q of I, denote b˚i “ bi ` I2 P I{I2 “ rgrIpRqs1, for

1 ď i ď `. The following statements are true.

piq If the bi form an R-regular sequence and Ij X pb1, . . . , biq “ Ij´1pb1, . . . , biq for

all j ě 1 and all 1 ď i ď `, then the b˚i form a regular sequence on GpIq.

piiq The b˚i form a regular sequence on GpIq if and only if the bi form an R-regular

sequence and Ij X J “ Ij´1J for all j ě 1.

In the case when I is m-primary, the Hilbert-Samuel function and the Hilbert-

Samuel multiplicity turn out to provide effective tools in order to check whether the

intersection condition in Theorem 4.1.4(ii) is satisfied, exploiting also the fact that

the generators of J can be chosen to be a superficial sequence for I. In fact, thanks to

a result of Sally known as Sally’s machine (see [59, Lemma 1.4]), superficial sequences

allow to reduce the problem to the the case of ideals in a one-dimensional ring. We

refer the interested reader to the monograph by Rossi and Valla [59] for a discussion

on the depth of associated graded rings of m-primary ideals.

If I is not m-primary, Theorem 4.1.4(ii) is not useful in order to determine whether

GpIq is Cohen-Macaulay, since it provides a too short regular sequence on GpIq, unless

the `pIq “ dimR (recall that dimGpIq “ dimR). However, one can still hope to be

able to exploit Theorem 4.1.4(i). This happens to be the case if one consider ideals

with good residual intersection properties.
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4.1.1 Residual intersections and Cohen-Macaulay Rees algebras

Let R be a Noetherian local ring with infinite residue field, and let I be an ideal

with analytic spread `pIq “ ` . Recall from Proposition 2.5.2 that ` general elements

in I form a minimal reduction J of I with rJpIq “ rpIq. Moreover, by Proposi-

tion 2.7.8 it follows that, if I satisfies G`, then J : R I is an `-residual intersection

of I. Finally, by Theorem 2.7.7, these residual intersections can be written in an

iterative way, as long as I satisfy good enough Artin-Nagata properties.

These observations together suggest that one could try to exploit this iterative

property of the residual intersections of I and Theorem 4.1.4(i), in order to study the

Cohen-Macaulayness of the associated graded ring of an ideal.

In fact, it turns out that the intersection conditions in Theorem 4.1.4(i) hold if I

satisfies Theorem 2.7.7(b) and (c). This is the core observation behind Johnson and

Ulrich’s proof of the following fundamental result (see [39, Theorem 3.1 and proof of

Lemma 2.8], as well as [27, 28] for some preliminary work in the case of ideals with

small analytic deviation). We give here a refined statement, which incorporates a re-

sult proved independently by Goto, Nakamura and Nishida using different techniques

(see [20, 1.1 and 6.3]).

Theorem 4.1.5 (Johnson-Ulrich, Goto-Nakamura-Nishida) Let R be a local

Cohen-Macaulay ring of dimension d with infinite residue field. Let I be an R-ideal

with analytic spread `, height g and reduction number r, and let k be an integer.

Assume that g ě 1, 1 ď k ď ` ´ 1, r ď k and I satisfies G` and AN`´k´1. If

depth Ij ě d´ `` k ´ j ` 1 for 1 ď j ď k, then RpIq is Cohen-Macaulay.

Notice that this assumption on the depth of powers of I implies that k ď `´g`1.

In the rest of this chapter, our goal will be to extend this result to modules. A

generalization corresponding to the case when k “ `´ g` 1 appears in [46, 3.4] (see

Corollary 4.2.10 below). Our main result, Theorem 4.2.4, provides a module version

of Theorem 4.1.5 for every admissible value of k.
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4.2 Cohen-Macaulay property of Rees algebras of modules

As discussed in Chapter 2, the fact that for a module E the powers Ej – rRpEqsj
do not form a filtration implies that there is no module analogue for the associated

graded ring. As a consequence, in order to study the Cohen-Macaulay property of

Rees algebras of modules, the approach described in the previous section for Rees

algebras of ideals must be discarded. Nevertheless, the notion of generic Bourbaki

ideals indicates a clear strategy to approach the problem in the case of modules.

In fact, as recalled in Theorem 2.6.4, the Rees algebra RpEq of a module E is

Cohen-Macaulay if and only if the Rees algebra RpIq of a generic Bourbaki ideal I

of E is Cohen-Macaulay. Hence, the problem of determining a sufficient condition for

RpEq to be Cohen-Macaulay is ultimately reduced to that of crafting assumptions

on E so that I has a Cohen-Macaulay Rees algebra.

This simple idea is often not easy to put in practice, for a couple of reasons. First

of all, some of the notions that make sense for ideals may not have a well-understood

module counterpart. For instance, this is the case of the Artin-Nagata properties,

in relation with the intersection condition of Valabrega-Valla’s Theorem 4.1.4(i). In

fact, although one could reasonably define an s-residual intersection of E as a colon

ideal pRa1 ` . . . ` Rasq : RE for some elements a1, . . . , as in E, the intersections

pRa1 ` . . . ` Raiq X Ej would not make sense for j ‰ 1. At the same time, it is

not even clear how a possible module analogue of the Artin-Nagata condition would

behave under the passage to a generic Bourbaki ideal, since factoring out generic

elements may not preserve the structure of these colon ideals.

The second source of difficulty is the fact that very often transferring properties

from E to I and backwards is only possible if RpEq is a deformation of RpIq.

In the remaining part of this chapter, we aim to provide a sufficient condition for

RpEq to be Cohen-Macaulay, that recovers Theorem 4.1.5 in the case when E is an
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ideal. More precisely, we wish to deduce the Cohen-Macaulayness of RpEq under the

assumption that the depths of finitely many powers of E are large enough.

Partial results were given by Lin for orientable modules in [46, 3.4], and for ideal

modules in [46, 4.3] (we refer the reader to Section 4.4 for the definition of ideal

modules). In both cases, a generic Bourbaki ideal is shown to satisfy Theorem 4.1.5

under more restrictive assumptions. More precisely, in [46, 3.4] the depth conditions

on the powers of I turn out to be much stronger than in Theorem 4.1.5, and at the

same time the reduction number of I is forced to be the largest possible. In [46, 4.3],

I turns out to satisfy stronger Artin-Nagata properties.

Our main result, Theorem 4.2.4, gives a more accurate generalization of Theo-

rem 4.1.5 to orientable modules over a Gorenstein local ring. In fact, we recover [46,

3.4] in Corollary 4.2.10. Although the result in [46, 4.3] does not follow from Theo-

rem 4.2.4, nevertheless our techniques allow us to give a simplified proof (see Theo-

rem 4.4.4).

4.2.1 Main result

Throughout the rest of this chapter, we adopt the following assumptions and

notation.

Setting 4.2.1 Let R be a Noetherian local ring of dimension d. Let E be a finite

R-module with rankpEq “ e ą 0 and analytic spread `pEq “ `. For a fixed gener-

ating set a1, . . . , an of E, let E 1, E2, x1, . . . , xe´1, F
1 and F 2 be constructed as in

Notation 2.6.1. Assume that E 1{F 1 is isomorphic to an R1-ideal J as an R1-module,

let I “ JR2 be a generic Bourbaki ideal of E, and let g “ ht I.

With Theorem 4.1.5 in mind, our goal is to deduce that the Rees algebra RpEq

of a module E is Cohen-Macaulay by imposing that the depths of the powers Ej are

sufficiently large, for j in a suitable finite range. Using generic Bourbaki ideals, our

first goal is to transfer these depth conditions from each Ej to the corresponding Ij.
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Consider the complexes

C1j : rK.px1, . . . , xe´1;RpE 1qqsj
B10
ÝÑ J j Ñ 0

and

C2j : rK.px1, . . . , xe´1;RpE2qqsj
B20
ÝÑ Ij Ñ 0

described in Section 3.2. The following lemma shows that the exactness of the com-

plexes C2j allows to transfer assumptions on the depths of powers of E to the depths

of the corresponding powers of I.

Lemma 4.2.2 Under the assumptions of Setting 4.2.1, let k and s be integers such

that depthEj ě s ´ j for 0 ď j ď k. If the complexes C2j are exact for 0 ď j ď k,

then depth Ij ě s´ j for 0 ď j ď k.

Proof. Fix j with 0 ď j ď k. For 0 ď i ď j, let C2i and Bi be the ith module

and boundary of the complex

C2j : rK.px1, . . . , xe´1;RpE2qqsj
B20
ÝÑ Ij Ñ 0,

respectively. By assumption, depth pE2qj ě s´j for 0 ď j ď k. Hence, for 0 ď i ď j,

one has that depthC2i ě s ´ j ` i. This implies that depthBi´1 ě s ´ j ` i for

all 0 ď i ď j, which can be proved by decreasing induction on i, using the Depth

Lemma. �

Notice that it suffices to prove that the complexes C1j are exact for 0 ď j ď k,

since C2j is just a localization of C1j. In fact, our next lemma shows that it suffices

to check the exactness of the C1j only locally in small codimension.

Lemma 4.2.3 Under the assumptions of Setting 4.2.1, let k and s be integers such

that 0 ď k ď s. Assume that depthEj ě d ´ s ` k ´ j for 0 ď j ď k. Then,

for all 0 ď j ď k and every minimal prime q in Supp
´

Àj
i“0HipC1jq

¯

, one has that

dimR1q ď s.
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Proof. Fix j with 0 ď j ď k and suppose that dimR1q ě s ` 1 for some prime

ideal q as in the statement. We will prove that pC1jqq is exact, and this will contradict

the fact that HipC1jqq ‰ 0 for some i with 0 ď i ď j.

First, notice that HipC1jqq is zero or has depth 0 for all 0 ď i ď j, since q is

minimal in Supp
´

Àj
i“0HipC1jq

¯

. Now, let p “ q X R. Since Rp Ñ R1q is a flat local

map, one has that

dimR1q ´ depthpE 1qq
j
“ dimRp ´ depth pEpq

j
ď d´ depthEj

(see [50, Theorem 15.1, Theorem 23.3 and Exercise 17.5]) for all 0 ď i ď j. Hence,

from our assumption on depthEj it follows that depthpE 1qq
j´i ě dimR1q´s`k´j`i ě

i` 1. Hence, pC1jqq is acyclic by the Acyclicity Lemma (see [15, Lemma 20.11]), and

therefore it is exact, since H´1pC1jq “ 0 by construction. �

We are now ready to state and prove the desired generalization of Theorem 4.1.5.

Theorem 4.2.4 Let R be a local Gorenstein ring of dimension d with infinite residue

field. Let E be a finite, torsion-free, orientable R-module, with rankE “ e ą 0 and

`pEq “ `. Let g be the height of a generic Bourbaki ideal of E, and assume that the

following conditions hold.

paq E satisfies G `´e`1.

pbq rpEq ď k for some integer 1 ď k ď `´ e.

pcq depthEj
ě

! d´ g ´ j ` 2 for 1 ď j ď `´ e´ k ´ g ` 1

d´ `` e` k ´ j for `´ e´ k ´ g ` 2 ď j ď k

pdq If g “ 2, Ext j`1Rp
pEj

p , Rpq “ 0 for ` ´ e ´ k ď j ď ` ´ e ´ 3 and for all

p P SpecpRq with dimRp “ `´ e such that Ep is not free.

Then, RpEq is Cohen-Macaulay.

Proof. Let E “ Ra1` . . .`Ran. By Theorem 2.6.2, E admits a generic Bourbaki

ideal I with ht I “ g ě 2 and rpIq ď rpEq ď k, which satisfies G `´e`1, i.e. G `pIq
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(see Proposition 2.6.9). We will prove that RpIq is Cohen-Macaulay, so that RpEq is

Cohen-Macaulay by Theorem 2.6.4.

If e “ 1, then R2 “ R and E – I, an R-ideal with `pIq “ ` and such that

depthEj
ě

! d´ g ´ j ` 2 for 1 ď j ď `´ k ´ g

d´ `` k ´ j ` 1 for `´ k ´ g ` 1 ď j ď k

Since R is Gorenstein, by Theorem 2.7.5 it follows that I satisfies AN`´k´1. Moreover,

all assumptions of Theorem 4.1.5 are satisfied, hence RpIq is Cohen-Macaulay.

Now, assume e ě 2. It suffices to prove that

depth Ij ě
! d´ g ´ j ` 2 for 1 ď j ď `´ e´ k ´ g ` 1

d´ `` e` k ´ j for `´ e´ k ´ g ` 2 ď j ď k

In fact, this would imply that depth Ij ě d ´ `pIq ` k ´ j ` 1 for 1 ď j ď k, and

by Theorem 2.7.5, I would satisfy AN`´k´e, i.e. AN`pIq´k´1. Hence, RpIq would be

Cohen-Macaulay by Theorem 4.1.5.

Notice that depth pE2qj ě depthEj, since R2 is flat over R. Also, if g ě 3, then

by Theorem 2.6.6 I is a free direct summand of E2, so for every j, Ij satisfies the

same depth condition as pE2qj, hence as Ej. Hence, we may assume that g “ 2, so

that assumption (c) becomes

depthEj
ě

! d´ j for 1 ď j ď `´ e´ k ´ 1

d´ `` e` k ´ j for `´ e´ k ď j ď k

In particular, depthEj ě d ´ ` ` e ` k ´ j for 1 ď j ď k, and also for j “ 0 since

R is Cohen-Macaulay. Therefore, by Lemma 4.2.2 (with s “ d ´ ` ` e ` k) and

Lemma 4.2.3 (with s “ `´ e), it suffices to show that the complexes pC1jqq are exact

for all q P SpecpR1q with dimR1q ď `´ e and all 0 ď j ď k.

For each such q, let p “ q X R. If Ep is free, then also its localization E 1q

is free. Hence, E 1q is of linear type and RpE 1qq is Cohen-Macaulay. In particular,

gradeRpE 1qq` ě e, so by Theorems 2.6.4(b) and 2.6.5, the complexes pC1jqq are exact

for all j. If Ep is not free, then by assumption Ext j`1Rp
pE j

p , Rpq “ 0 for all p P SpecpRq
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with dimRp ď ` ´ e and all j with ` ´ e ´ k ď j ď ` ´ e ´ 3. In particular, this

is true for ` ´ e ´ k ď j ď min t`pEpq ´ e ´ 1, dimRp ´ 3u, since dimRp “ ` ´ e .

Moreover, since Rp is Gorenstein, by assumption (c) the same vanishing holds if

1 ď j ď l ´ e´ k ´ 1 (see Proposition 2.1.1). Hence,

Ext j`1Rp
pE j

p , Rpq “ 0 for all 1 ď j ď min t`pEpq ´ e´ 1, dimRp ´ 3u.

Therefore, by Theorem 3.2.4, E 1p{F
1
p is isomorphic to an R1p-ideal of linear type, where

E 1p and F 1p are constructed as in Notation 2.6.1 by choosing the images of a1, . . . , an in

Ep as generators for Ep. Hence, its localization pE 1{F 1qq is isomorphic to an R1q-ideal

of linear type. Thus, all the pC1jqq are exact by Theorem 2.6.5. �

Depending on the values of the various parameters involved in the statement of

Theorem 4.2.4, some of the assumptions may be redundant. We will examine several

possible cases in the next subsection, where we also recover Lin’s result [46, 3.4].

We notice here that our assumptions are usually not satisfied for an important class

of modules, namely the so called ideal modules (see Definition 4.4.1 in Section 4.4).

Nevertheless, thanks to Lemma 4.2.2, in Theorem 4.4.4 we are able to provide a

sufficient condition for the Rees algebra of an ideal module to be Cohen-Macaulay.

This recovers Lin’s [46, 4.3], with a simplified proof.

4.2.2 Applications

Comparing the statements of Theorem 4.1.5 and of Theorem 4.2.4, it is clear that

assumption (d) in Theorem 4.2.4 is redundant in case E is of rank one. Moreover, in

this case assumption (c) simplifies to

pc1q depthEj
ě d´ `` e` k ´ j for 1 ď j ď k.

Hence, it is natural to ask what other situations produce similar simplified statements

for Theorem 4.2.4.
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Notice that assumption (d) in Theorem 4.2.4 is vacuously satisfied when k ď 2,

or when `´ e ď 3. Also, if `´ e ď 2, assumption (c) can be replaced by assumption

(c’) above. In particular, we have the following two corollaries, which correspond to

the cases when a generic Bourbaki ideal of E has analytic deviation at most 1 or at

most 2, respectively.

Corollary 4.2.5 Let R be a local Gorenstein ring of dimension d with infinite residue

field. Let E be a finite, torsion-free, orientable R-module, with rankE “ e ą 0 and

`pEq “ `. Let g be the height of a generic Bourbaki ideal of E, and assume that the

following conditions hold.

paq E satisfies G `´e`1.

pbq rpEq ď k for some integer 1 ď k ď `´ e and `´ e ď 2.

pcq depthEj ě d´ `` e` k ´ j for 1 ď j ď k.

Then, RpEq is Cohen-Macaulay.

Corollary 4.2.6 Let R be a local Gorenstein ring of dimension d with infinite residue

field. Let E be a finite, torsion-free, orientable R-module, with rankE “ e ą 0 and

`pEq “ `. Let g be the height of a generic Bourbaki ideal of E, and assume that the

following conditions hold.

paq E satisfies G `´e`1.

pbq rpEq ď k for some integer 1 ď k ď `´ e and `´ e ď 3.

pcq depthE ě d´ g ` 1 and depthEj ě d´ `` e` k ´ j for 2 ď j ď k.

Then, RpEq is Cohen-Macaulay.

Observe also that assumption (b) of Theorem 4.2.4 implies that rpEq ď `pEq´ e.

This condition is necessary in order for RpEq to be Cohen-Macaulay [65, 4.2], and

extends the result of Theorem 4.1.3 to modules. Since `pEq ´ e ď d ´ 1, it then
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makes sense to investigate the Cohen-Macaulay property of RpEq for rings of small

dimensions. In particular, in [65, 4.4 and 4.6], sufficient conditions were given in the

case when d ď 5, under the assumption that rpEq ď 2 and E satisfies Gd. As a

consequence of Theorem 4.2.4, we can give new results, assuming that E satisfies the

weaker condition G`´e`1, for a wider range of possible reduction numbers.

Corollary 4.2.7 Let R be a Gorenstein local ring of dimension 4 with infinite residue

field. Let E be a finite, torsion-free, orientable R-module with rankE “ e and `pEq “

`. Assume that E satisfies G`´e`1 and rpEq ď `´e. Then, RpEq is Cohen-Macaulay

if one of the following conditions holds.

paq rpEq “ 1 ă `´ e and depthE ě 2, or rpEq “ 1 “ `´ e and depthE ě 3.

pbq rpEq “ 2 ă `´ e and depthE ě 2, or rpEq “ 2 “ `´ e and depthEj ě 4´ j

for 1 ď j ď 2.

pcq rpEq “ 3 and depthEj ě 4´ j for 1 ď j ď 3.

Proof. Since ` ´ e ď d ´ 1 “ 3, if ` ´ e “ 3 it follows that E satisfies Gd.

Hence, if rpEq ď 2, by [65, 4.6(b)] it suffices to assume that depthE ě 2. In all the

remaining cases, our assumptions imply the assumptions of Theorem 4.2.4 with d “ 4

and k “ rpEq. In fact, since rpEq ď ` ´ e ď 3, assumption (d) in Theorem 4.2.4 is

vacuously satisfied, and if rpEq “ 3 then it must be `´ e “ 3. �

Corollary 4.2.8 Let R be a Gorenstein local ring of dimension 5 with infinite residue

field. Let E be a finite, torsion-free, orientable R-module with rankE “ e and `pEq “

`. Assume that E satisfies G`´e`1. Let g be the height of a generic Bourbaki ideal of

E. Then, RpEq is Cohen-Macaulay if one of the following conditions holds.

paq `´ e “ 4, rpEq ď 2 and depthE ě 4.

pbq ` ´ e “ 4, rpEq ě ` ´ e ´ 1 “ 3, and depthEj ě 5 ´ ` ` e ` k ´ j for

1 ď j ď rpEq. If g “ 2, assume also that Ext2Rp
pEp, Rpq “ 0 for all p P SpecpRq

with dimRp “ 4 such that Ep is not free.
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pcq rpEq “ `´ e ď 3, and depthEj ě 5´ j for 1 ď j ď rpEq.

pdq rpEq “ `´ e´ 1 ď 2, and depthEj ě 4´ j for 1 ď j ď rpEq.

peq `´ e “ 3, rpEq “ 1, and depthE ě
! 4 if g “ 2

3 if g ě 3

Proof. In the situation of (a), E must satisfy Gd, and the result was proved

in [65, 4.6(c)]. The remaining claims follow from Theorem 4.2.4 with d “ 5 and

k “ rpEq, by noticing that assumption (d) is non-vacuous only when `´ e “ 4 . �

As another application of Theorem 4.2.4, we now examine the case of modules

with large reduction number. In fact, from the proof of Theorem 4.2.4 it follows that

assumption (c) implies that k ď `´e´g`2 (see also the discussion in [39, page 14])

and that assumption (d) is automatically satisfied when k “ `´ e´ g` 2. Moreover,

if k ě `´e´g`1, we only need R to be Gorenstein locally in codimension `´e, since

the Artin-Nagata property AN`´e´k is automatically satisfied when ` ´ e ´ k ă g.

In this case, the depth condition in (c) can be simplified to assumption (c’). These

observations prove the following corollaries.

Corollary 4.2.9 psee also [20, 6.5] q Let R be a local Cohen-Macaulay ring with

infinite residue field, and assume that R is Gorenstein locally in codimension ` ´ e.

Let E be a finite, torsion-free, orientable R-module, rankE “ e ą 0, `pEq “ `,

` ´ e ` 1 ě 2. Let g be the height of a generic Bourbaki ideal of E. Then, RpEq is

Cohen-Macaulay if the following conditions hold:

paq E satisfies G `´e`1.

pbq rpEq ď `´ e´ g ` 1.

pcq depthEj ě d´ g ´ j ` 1 for 1 ď j ď `´ e´ g ` 1.

pdq If g “ 2, Ext j`1Rp
pEj

p , Rpq “ 0 for 1 ď j ď ` ´ e ´ 3, for all p P SpecpRq with

dimRp “ `´ e such that Ep is not free.
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Corollary 4.2.10 psee also [46, 3.4] and [20, 6.4] q. Let R be a local Cohen-Macaulay

ring with infinite residue field, and assume that R is Gorenstein locally in codimension

`´ e. Let E be a finite, torsion-free, orientable R-module, rankE “ e ą 0, `pEq “ `,

` ´ e ` 1 ě 2. Let g be the height of a generic Bourbaki ideal of E. Then, RpEq is

Cohen-Macaulay if the following conditions hold:

paq E satisfies G `´e`1.

pbq rpEq ď `´ e´ g ` 2.

pcq depthEj ě d´ g ´ j ` 2 for 1 ď j ď `´ e´ g ` 2.

In Lin’s proof of [46, 3.4], a generic Bourbaki ideal I of E is shown to satisfy the

sliding depth property locally in codimension `´e. This is obtained by applying Lin’s

Theorem 3.2.1 locally in codimension at most `´e. With our proof, I is only required

to be of linear type. The next section discusses an improvement of Theorem 3.2.1.

4.3 Modules of linear type with Cohen-Macaulay Rees algebra

In this section we complete the study of the linear type property of the Rees

algebra of a module we initiated in Chapter 3. In particular, we aim to provide a full

generalization of Theorem 3.1.7 to modules. That is, we want to be able to deduce

both the linear type property of E and the Cohen-Macaulay property of RpEq from

the assumption that finitely many powers Ej of E have sufficiently large depth.

Using generic Bourbaki ideals, the problem reduces to being able to show that

the assumptions on depthEj imply similar assumptions on depth Ij. The discussion

in Section 4.2.1 suggests that Lemma 4.2.2 could be useful. We will also need the

following preliminary result.

Lemma 4.3.1 Let R be a Cohen-Macaulay local ring of dimension d, and E “

Ra1 ` . . .`Ran a finite R-module. As in Theorem 2.6.10, let rR – RrZ1, . . . , Zns be

a polynomial ring, rE – E bR rR and x –

n
ÿ

i“1

Ziai P rE. Let s be a positive integer,
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and assume that depthEj ě d ´ j for 1 ď j ď s. Then, the following statements

hold.

paq For all q P Spec rR and for all 1 ď j ď s , depth
´

rE j
q

x rE j´1
q

¯

ě dim rRq ´ j.

pbq Assume furthermore that s ď d ´ 1 and that p rE{ rRxqq is of linear type for all

q P Spec rR such that dimRqXR ď d´ 1. Then, for all 1 ď j ď s

rE j

x rE j´1
–

´

rE

rRx

¯j

.

Proof. For q P Specp rRq, let p “ qX R. Since Rp Ñ rRq is a flat local map, for all

1 ď j ď s we have that

dim rRq ´ depth rEj
q “ dimRp ´ depthE j

p ď d´ depthEj
ď j

(see [50, Theorem 15.1, Theorem 23.3 and Exercise 17.5]). Moreover, by Theo-

rem 2.6.10 x is a regular element on Rp rEq, hence on Rp rEqq. Therefore, for all

j ě 1 we have x rEj´1
q – rEj´1

q . Hence, the conclusion in (a) follows from the Depth

Lemma applied to the short exact sequence

0 Ñ x rEj´1
q ÝÑ rEj

q ÝÑ
rE j
q

x rE j´1
q

Ñ 0.

Now assume that s ď d´ 1. In order to prove (b), by Theorem 2.6.5 it suffices to

show that rEj
q{x

rEj´1
q is a torsion-free rR-module for all 1 ď j ď s. Equivalently, we

need to show that depth
´

rE j
q

x rE j´1
q

¯

ě 1 for all q P Specp rRq with dim rRq ě 1.

Let p “ qXR. If dimRp ď d´ 1, then by assumption p rE{ rRxqq is of linear type.

Hence, by Theorem 2.6.5 it follows that rEj
q{x

rEj´1
q is torsion-free for all 1 ď j ď s.

If dimRp “ d, by part (a) we have that

depth
´

rE j
q

x rE j´1
q

¯

ě dim rRq ´ j ě d´ j,

and the latter is at least 1 since d ď s` 1. This completes the proof. �

We are now ready to state and prove our module version of Theorem 3.1.7.
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Theorem 4.3.2 Let R be a Gorenstein local ring of dimension d. Let E be a finite,

torsion-free, orientable R-module with rankE “ e ą 0 and `pEq “ `. Assume that

E satisfies G`´e`2 and that depthEj ě d ´ j for 1 ď j ď ` ´ e ´ 1. Then, E is of

linear type and RpEq is Cohen-Macaulay.

Proof. Without loss of generality, we may assume that E is not free. Let

E “ Ra1 ` . . . ` Ran. Since E is torsion-free, orientable and satisfies G `´e`2, by

Theorem 2.6.2, E 1{F 1 – J and E2{F 2 – I, where I and J are ideals of height at

least 2, satisfying G `´e`2, i.e. G`pIq`1 (see Proposition 2.6.9). Moreover, since E is

orientable, we may assume that g ě 2.

By Theorem 2.6.4, it suffices to show that I is of linear type and RpIq is Cohen-

Macaulay. If e “ 1, then R “ R2 and E – I, so by assumption depth Ij ě d ´ j ě

d ´ j ´ g ` 2 for 1 ď j ď ` ´ e ´ 1 “ `pIq ´ 2, hence for 1 ď j ď `pIq ´ g. Then,

Theorem 3.1.7 implies that I is of linear type and RpIq is Cohen-Macaulay.

So, assume that e ě 2. We induct on d ě 2. If d “ 2, then `pIq “ d “ 2 “ g,

and I is G8. This implies that I is a complete intersection, whence I satisfies sliding

depth. Therefore, Theorem 3.1.3 implies that I is of linear type and RpIq is Cohen-

Macaulay. So, we may assume that d ą 2.

Notice that, by Theorem 3.1.7, it suffices to show that

depth Ij ě d´ j ě d´ j ´ g ` 2 for 1 ď j ď `´ e´ 1 “ `pIq ´ 2.

By Lemma 4.2.2 and Lemma 4.2.3, this follows once we show that the complexes

pC1jqq are exact for all q P SpecpR1q with dimR1q ď `´ e and all 0 ď j ď `´ e´ 1.

In turn, by Theorem 2.6.5 we only need to show that pE 1{F 1qq – Jq is of linear type

for any such prime q.

For any such q, let p “ q X R. Then, notice that Ep is a finite, torsion-free,

orientable Rp-module of rank e and analytic spread `pEpq ď `. Moreover, since

Rp Ñ rRq is a flat local map, we have that

depthEj
p ě dimRp ´ j for 1 ď j ď `´ e´ 1,
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hence for 1 ď j ď `pEpq ´ e´ 1. Since dimRp ď dimR1q ď `´ e´ 1 ď d´ 1, by the

induction hypothesis Ep is of linear type and RpEpq is Cohen-Macaulay.

Now, we apply Lemma 4.3.1 to Ep. Let ĂRp – RprZ1, . . . , Zns, ĂEp – Ep bRp
ĂRp

and x –

n
ÿ

i“1

Zi
ai
1
P ĂEp be as in Lemma 4.3.1. Since Ep is of linear type and RpEpq

is Cohen-Macaulay, by Theorem 2.6.4(c) it follows that pĂEp{ĂRpxq is of linear type.

Hence, by Lemma 4.3.1 we have that

ĂEp

j

xĂEp

j´1 –

´

ĂEp

ĂRpx

¯j

and depthpĂEp{ĂRpx q ě dim ĂRp ´ j, for all 1 ď j ď ` ´ e ´ 1. Therefore, the same

conclusions hold after tensoring with the ring S – ĂRp mĂRp
, where m is the maximal

ideal of R.

In particular, the S-module pSEp{Sxq satisfies the same assumptions as the Rp-

module Ep. Hence, we can iterate Lemma 4.3.1 e´ 1 times, to obtain that a generic

Bourbaki ideal of Ep, constructed as in Definition 2.6.3 with respect to the gen-

erators
a1
1
, . . . ,

an
1
, satisfies depthpE2p{F

2
p q

j
ě d´ j for 1 ď j ď `´ e´ 1. The

same ideal also satisfies G `´e`2, hence G `pEpq´e`2, since Ep does. Thus, by Theo-

rem 3.1.7 it is of linear type, with Cohen-Macaulay Rees algebra.

This implies that Ep is of linear type, whence finally Jq is of linear type by Theo-

rem 2.6.4(c). �

4.4 The case of ideal modules

In this section we discuss the Cohen-Macaulay property of Rees algebras of ideal

modules.

Definition 4.4.1 Let R be a Noetherian ring. An R-module E ‰ 0 is called an ideal

module if E is finitely generated and torsion-free, and moreover E˚˚ is free, where ´˚

denotes the functor HomRp´, Rq.
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Examples of ideal modules include R-ideals of grade at least 2, and finite direct

sums of such ideals. Moreover, the Jacobian module of a normal complete intersection

ring R “ krY1, . . . , Yms{J over a perfect field k is an ideal module.

Ideal modules behave similarly to ideals of positive grade. In fact, we have the

following result, due to Simis, Ulrich and Vasconcelos (see [65, 5.1 and 5.2]).

Proposition 4.4.2 Let R be a Noetherian ring, E ‰ 0 an R-module.

paq E is an ideal module if and only if E embeds into a finite free module G with

gradepG{Eq ě 2. In particular, if E is an ideal module, than E has a rank, and

rankE “ rankG.

pbq Assume that E is an ideal module with rankE “ e. Then, Ep is not free if and

only if p P V pFittepEqq “ SupppG{Eq.

pcq Assume that R is local and E is an ideal module of rank e that is not free. Then,

the analytic spread of E satisfies `pEq ě c´ e` 1, where c – htpFittepEqq.

In the case when e “ 1, an ideal module E is isomorphic to an R-ideal I with

gradepIq ě 2. So in (a) one can chose G “ R, while (b) and (c) simply mean that

`pIq ě htpIq “ c.

Generic Bourbaki ideals of ideal modules have good residual intersection proper-

ties, as shown by the following result.

Theorem 4.4.3 p [65, 5.3] q. Let R be a Cohen-Macaulay local ring. Every ideal

module E admits a generic Bourbaki ideal I of height at least two. Moreover, if E is

free locally in codimension s´ 1, then I satisfies Gs and ANs´1.

Due to the relevance of the Artin-Nagata condition in our discussion on the Cohen-

Macaulay property of Rees algebras of modules, it is natural to ask whether Theo-

rem 4.4.3 can be exploited in order to extend Theorem 4.1.5 to ideal modules. The

next result is a minor variation of a result of Lin [46, 4.3], with a different - and

technically simpler - proof.
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Theorem 4.4.4 Let R be a local Cohen-Macaulay ring, and let E be an ideal module

with rankE “ e and `pEq “ `. Assume that the following conditions hold.

paq rpEq ď k, where k is an integer such that 1 ď k ď `´ e.

pbq E is free locally in codimension `´ e´mint2, ku, and satisfies G `´e`1.

pcq depthEj ě d´ `` e` k ´ j for 1 ď j ď k.

Then, RpEq is Cohen-Macaulay.

Proof. Since E is an ideal module, then E admits a generic Bourbaki ideal I

with ht I “ g ě 2 and rpIq ď rpEq ď k, which satisfies G `´e`1, that is, G `pIq (see

Proposition 2.6.9). Moreover, since E is free locally in codimension `´e´mint2, ku,

by Theorem 4.4.3 I satisfies AN `´e´mint2,ku. We next prove that

depth Ij ě d´ `pIq ` k ´ j ` 1 “ d´ `` k ´ j ` e for 1 ď j ď k.

Hence, by Theorem 4.1.5 it would follow that RpIq is Cohen-Macaulay, whence the

proof would be complete thanks to Theorem 2.6.4.

The depth condition above is clearly satisfied if e “ 1, so assume that e ě 2. By

Lemma 4.2.2 (with s “ d ´ ` ` e ` k) and Lemma 4.2.3 (with s “ ` ´ e), it suffices

to show that the complexes pC1jqq are exact for all q P SpecpR1q with dimR1q ď `´ e

and all 0 ď j ď k.

For each such q, let p “ q X R. Then, Ep is an ideal module, which is free

locally in codimension ` ´ e ´ mint2, ku, and satisfies G `´e`1, i.e. G8. Hence,

E 1p{F
1
p is isomorphic to an R1p ideal which satisfies G8 and AN `´e´mint2,ku. Then, by

Proposition 2.7.9, its localization pE 1{F 1qq satisfies G8 and AN `´e´mint2,ku, whence

also ANdimR1q´2 , since dimR1q ď ` ´ e. By Theorem 2.7.6(c) it then follows that

pE 1{F 1qq satisfies sliding depth. Hence, it is of linear type by Theorem 3.1.3, so that

the complexes pC1jqq are exact for all 0 ď j ď k, thanks to Theorem 2.6.5. �
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5. REES ALGEBRAS OF MODULES OF PROJECTIVE

DIMENSION ONE

In this chapter we are interested in determining the defining ideal of Rees algebras

of modules. The problem in its full generality is wide open, however we are able

to describe the defining ideal of RpEq in the case when E has projective dimension

one and is almost linearly presented, i.e. the entries of a presentation matrix of E

are linear, except possibly for those of one column, homogeneous of degree m ě 1.

Our main result, Theorem 5.2.6, extends to modules a previously-known result of

Boswell and Mukundan for almost linearly presented perfect ideals of height two (see

Theorem 5.1.10 below).

5.1 Background

Let Rs ϕ
ÝÑ Rn � E be a presentation of E. With abuse of notation, we also

let ϕ denote the n ˆ s matrix associated with ϕ. Recall from Chapter 2 that the

symmetric algebra of E is

SpEq “ RrT1, . . . , Tns{p`1, . . . , `sq,

where `1, . . . , `s are linear forms in RrT1, . . . , Tns so that rT1, . . . , Tns¨ϕ “ r`1, . . . , `ss.

This description is independent of the choice of ϕ.

Let L “ p`1, . . . , `sq. Then, whenever E has a rank, one can write

RpEq “ RrT1, . . . , Tns{J ,

for some ideal J containing L. J is called the defining ideal of RpEq, and its

generators are called the defining equations of RpEq.
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The inclusion L Ď J is strict whenever E is not of linear type, and the problem of

determining the remaining generators of J is then usually approached by exploiting

the structure of the presentation matrix ϕ.

In particular, a good amount of the literature on the subject focuses on perfect

ideals of grade two and perfect Gorenstein ideals of grade three (see for instance

[5,38,45,48,49,53,71]), thanks to the fact that the presentation matrices of ideals of

these kinds must obey to prescribed structures. In fact, perfect ideals of grade two

can be characterized in terms of properties of the ideal of maximal minors of their

presentation matrix (see [7, Theorem 1.4.16] for a proof).

Theorem 5.1.1 (Hilbert-Burch) Let R be a Noetherian ring, I an ideal with a

presentation of the form

0 Ñ Rn´1 ϕ
ÝÑ Rn

Ñ I Ñ 0

Then, I “ a In´1pϕq for some nonzerodivisor a of R, and htpIn´1pϕqq “ 2 whenever

In´1pϕq ‰ R. Conversely, let ϕ be any n ˆ pn ´ 1q matrix with coefficients in R,

and let a be a nonzerodivisor of R. If htpIn´1pϕqq ě 2, then I “ aIn´1pϕq has a

presentation of the form 0 Ñ Rn´1 ϕ
ÝÑ Rn

Ñ I Ñ 0.

A structure theorem for perfect Gorenstein ideals of grade three was given by

Buchsbaum and Eisenbud, in terms of Pfaffians of their presentation matrix. We

omit the statement here, as it will not be relevant for the rest of this thesis. However,

we refer the interested readers to [7, Theorem 3.4.1].

In many cases of interest, when L Ĺ J , at least part of the information on the

structure of J is encoded in some auxiliary matrix associated with ϕ, namely the so

called Jacobian dual of ϕ, introduced by Vasconcelos in [74]. Although the notion

makes sense over any Noetherian ring, for simplicity we recall the construction in the

case when R is a polynomial ring over a field, as this will be the case for the rest of

this chapter.

Setting 5.1.2 Let R “ krY1, . . . , Yds be a standard graded polynomial ring over

a field k and let T1, . . . , Tn be indeterminates. On S “ RrT1, . . . , Tns define a
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bigrading by setting degpYiq “ p1, 0q and degpTiq “ p0, 1q, and set Y “ Y1, . . . , Yd,

T “ T1, . . . , Tn. Let

Rs ϕ
ÝÑ Rn

be an nˆ s matrix whose entries are homogeneous of constant Y -degrees δ1, . . . , δs

along each column and assume that I1pϕq Ď pY q.

Definition 5.1.3 ( [74]). With R, S and ϕ as in Setting 5.1.2, let `1, . . . , `s be linear

forms in the Ti variables, satisfying the equation

r`1, . . . , `ss “ rT s ¨ ϕ, (5.1)

that is, `1, . . . , `s generate the defining ideal of the symmetric algebra Spcokerpϕqq.

Since the entries of ϕ are contained in pY q, the equation above can be rewritten as

r`1, . . . , `ss “ rT s ¨ ϕ “ rY s ¨Bpϕq (5.2)

where Bpϕq is a dˆ s matrix whose entries are linear in the Ti variables, and homo-

geneous of constant Y -degrees δ1´ 1, . . . , δs´ 1 along each column. Bpϕq is called a

Jacobian dual of ϕ.

Notice that Bpϕq is not necessarily unique, unless the entries of ϕ are all linear,

in which case Bpϕq has entries in the polynomial ring T “ krT1, . . . , Tns. Moreover,

by Cramer’s rule one always has L ` IdpBpϕqq Ď J . This inclusion is often strict,

however equality holds if cokerpϕq is a perfect ideal of grade 2 and the entries of ϕ

are all linear, as described by the following result (see [49, 1.3]).

Theorem 5.1.4 (Morey-Ulrich) Let R “ krY1, . . . , Yds be a standard graded poly-

nomial ring over an infinite field k. Let I be a perfect ideal of grade 2 satisfying Gd,

with n “ µpIq ą d. Assume that I admits a linear presentation

Rn´1 ϕ
ÝÑ Rn � I.

Then, `pIq “ d, rpIq “ `pIq ´ 1, RpIq is Cohen-Macaulay and its defining ideal is

J “ L` IdpBpϕqq.
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The key point in the proof of this theorem is that, under these assumptions, the

ideal L` IdpBpϕqq “ prY s ¨Bpϕqq ` IdpBpϕqq is a geometric d-residual intersection

of pY q (see [49, proof of Theorem 1.2]). The assumption that I is Gd is crucial in

the proof, since, together with the fact that I satisfies sliding depth, it implies that

I is of linear type on the punctured spectrum of R, thanks to Theorem 3.1.3. In this

case, one can use local cohomology to study the defining ideal of RpIq, thanks to the

following observation.

Remark 5.1.5 Let pR,mq be a Noetherian local ring, and I an R-ideal of positive

grade. Assume that I is of linear type on the punctured spectrum of R, and let A

be the kernel of the natural map SpIq� RpIq. Then,

A “ H0
mpSpIqq “

ď

ně0

p0: SpIqm
n
q.

In fact, an investigation of the local cohomology modules H i
mpSpIqq via approx-

imate resolutions of the symmetric algebra made it possible to describe the defining

ideal of RpIq in the case when I is linearly presented perfect Gorenstein ideal of

grade three (see [44,45]).

Theorem 5.1.6 (Kustin-Polini-Ulrich) p [45, 9.1] q. Let R “ krY1, . . . , Yds be a

standard graded polynomial ring over a field k, let I be a perfect Gorenstein ideal of

grade three with µpIq “ n, and assume that I has a minimal linear presentation ϕ.

Let S “ RrT1, . . . , Tns, and T “ krT1, . . . , Tns. Then, the defining ideal of RpIq is

J “ L` IdpBpϕqqS ` CpϕqS,

where Cpϕq is the content ideal of a submaximal Pfaffian of the matrix
»

–

ϕ ´Bpϕqt

Bpϕq 0

fi

fl .

Notice that in this case L ` IdpBpϕqq Ĺ J . In fact, as we will discuss in the

following subsection, the equality occurs very rarely even in the case of perfect ideals

of grade two.
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5.1.1 Perfect ideals of grade two

For perfect ideals of grade two which are not necessarily linearly presented, the

defining ideal of the Rees algebra can be described in terms of the degrees of the

columns of the presentation matrix.

Theorem 5.1.7 (Kustin-Polini-Ulrich) p [45, 6.1] q. Let R “ krY1, . . . , Yds be a

standard graded polynomial ring over a field k, and let I be a perfect ideal of grade

two with µpIq “ n. For 1 ď i ď n ´ 1, let ε1 ě ε2 ě . . . ě εn´1 be the degrees of the

columns of a minimal presentation ϕ of I. Then, the defining ideal of RpIq is

J “ L : pY1, . . . , Ydq
N ,

where N “ 1`
d
ÿ

i“1

pεi ´ 1q.

This formula recovers the result of Morey and Ulrich when ϕ is linear, since in

this case J “ L : pY1, . . . , Ydq “ L` IdpBpϕqq (see proof of [49, 1.2]). However, if at

least one of the εi is at least 2, then J is strictly larger than L` IdpBpϕqq.

Now, suppose that ϕ is almost linear, i.e. the entries in all columns of ϕ are linear,

except possibly for those of one column, homogeneous of degree m ě 1. In this

case, the defining ideal of the Rees algebra can be described by means of the iterated

Jacobian duals of ϕ, introduced by Boswell and Mukundan in [5, 4.1].

Theorem and Definition 5.1.8 Let R “ krY1, . . . , Yds and S “ RrT1, . . . , Tns be

polynomial rings with gradings as in Setting 5.1.2, and let ϕ : Rs
Ñ Rn . For a Ja-

cobian dual Bpϕq of ϕ, set B1pϕq – Bpϕq. Assume that matrices Bjpϕq with d rows

have been inductively constructed for 1 ď j ď i, such that each Bjpϕq has homoge-

neous entries of constant Y -degrees and T -degrees along each column.

Then, there exists a matrix Ci, with entries in S which are homogeneous of con-

stant Y -degrees and T -degrees in each column, such that Bi`1pϕq – rBipϕq |Cis

satisfies

pY ¨Bipϕqq ` pIdpBipϕqq X pY qq “ pY ¨Bipϕqq ` pY ¨ Ciq. (5.3)
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where, for a matrix A, pY ¨ Aq denotes the ideal generated by the entries of the row

vector rY s ¨ A.

A matrix Bipϕq as above is called an i-th iterated Jacobian dual of ϕ.

Iterated Jacobian duals satisfy the following properties (see [5, 4.2 and 4.5]).

Theorem 5.1.9 With R, S and ϕ as in Definition 5.1.8, for all i ě 1 let Bipϕq be

iterated Jacobian duals of ϕ. Then, the following are satisfied.

paq The ideal pY ¨Bpϕqq ` IdpBipϕqq only depends on ϕ.

pbq pY ¨Bipϕqq ` IdpBipϕqq “ pY ¨Bpϕqq ` IdpBipϕqq Ď pY ¨Bpϕqq ` IdpBi`1pϕqq.

In particular, the algorithm that constructs iterated Jacobian duals terminates

after finitely many iterations.

pcq pY ¨Bpϕqq ` IdpBipϕqq Ď ppY ¨Bpϕqq : pY qiq.

In the case when ϕ is the minimal presentation of a perfect ideal of grade two and

it is almost linear, the iterated Jacobian duals of ϕ help describe the defining ideal of

the Rees algebra.

Theorem 5.1.10 p [5, 5.3 and 5.6] q. Let R “ krY1, . . . , Yds be a standard graded

polynomial ring over a field k. Let I be a perfect ideal of height 2 admitting an almost

linear presentation. Assume that I is Gd and µpIq “ d` 1. Then, the defining ideal

of the Rees algebra RpIq is

J “ L` IdpBmpϕqq “ L : pY1, . . . , Ydq
m.

Moreover, RpIq is almost Cohen-Macaulay, i.e. depthRpIq ě d ´ 1, and is not

Cohen-Macaulay if m ą 1.

Notice that this result recovers Theorem 5.1.4 if m “ 1. The main goal of this

chapter is to extend Theorem 5.1.10 to modules, which we do in Theorem 5.2.6.



70

5.2 Modules of projective dimension one

Notice that perfect ideals of grade two are R-modules of projective dimension one

and rank one. Our goal in this section will be to extend this result to modules of

projective dimension one with arbitrary rank.

Inspired by [65, 4.11], we approach the problem using generic Bourbaki ideals. In

fact, it is always possible to relate a presentation matrix of E with a presentation

matrix of a generic Bourbaki ideal I of E, as observed in the following remark.

Remark 5.2.1 Let R “ krY1, . . . , YdspY1,...,Ydq, where k is a field. A minimal presen-

tation

Rs ϕ
ÝÑ Rn

Ñ E Ñ 0

of E induces a minimal presentation of a generic Bourbaki ideal I of E as follows.

With Z and xj as in Notation 2.6.1, by possibly multiplying ϕ from the left by

an invertible matrix with coefficients in kpZq, we may assume that ϕ presents E2

with respect to a minimal generating set of the form x1, . . . , xe´1, ae, . . . , an. Then,

ϕ “

»

–

A

ψ

fi

fl, where A and ψ are submatrices of size pe ´ 1q ˆ s and pn ´ e ` 1q ˆ s,

respectively. By construction, ψ is a presentation of I, and is minimal since µpIq “

µpEq ´ e ` 1 “ n ´ e ` 1. Also, if the entries of ϕ are homogeneous polynomials of

constant degrees δ1, . . . , δs along each column, then the entries of ψ are homogeneous

polynomials of constant Y -degrees δ1, . . . , δs along each column.

Notice that, if E is a module of projective dimension one and satisfies G2, then E

is torsion-free, whence by Theorem 2.6.2 it admits a generic Bourbaki ideal I, which

is perfect of grade 2. Hence, it is natural to ask whether in this case the defining

ideal of RpEq has the same shape as the defining ideal of RpIq. This was shown to

be the case when the presentation matrix of E is linear in [65, 4.11].
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Theorem 5.2.2 (Simis-Ulrich-Vasconcelos) Let R “ krY1, . . . , Yds be a polyno-

mial ring over a field k, where d ě 2. Let E be a finite R-module with projective

dimension one satisfying Gd. Assume that E admits a minimal free resolution

0 Ñ Rn´e ϕ
ÝÑ Rn

Ñ E Ñ 0

where the entries of ϕ are linear. Then, RpEq is Cohen-Macaulay, with defining

ideal

J “ pY ¨Bpϕqq : pY q “ pY ¨Bpϕqq ` IdpBpϕqq.

In the next subsection we discuss the case when ϕ is almost linear. Our main

result, Theorem 5.2.6, extends Theorem 5.1.10 to modules.

5.2.1 Almost linearly presented modules of projective dimension one

For the remaining part of this section, we will assume the following.

Setting 5.2.3 Let R “ krY1, . . . , Yds be a polynomial ring over a field k, where

d ě 2. Let E be a finite R-module with projective dimension one, satisfying Gd. Let

n “ µpEq and let

0 Ñ Rn´e ϕ
ÝÑ Rn

Ñ E Ñ 0

be a minimal free resolution of E. Assume that ϕ is almost linear, i.e. has linear

entries, except possibly for those in the last column, which are homogeneous of degree

m ě 1.

Remark 5.2.4 In the situation of Setting 5.2.3, one has the following.

(i) Since E is Gd and d ě 2, then E is torsion-free. Hence, after localizing at

the unique homogeneous maximal ideal, by Theorem 2.6.2 E admits a generic

Bourbaki ideal I, which is perfect of grade 2. Now, let ψ be a minimal pre-

sentation of I obtained from ϕ as in Remark 5.2.1. Since by construction ψ is

almost linear, it follows that I satisfies Theorem 5.1.10.
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(ii) Since E satisfies Gd, by Theorem 3.2.6 it follows that Ep is of linear type for all

p P SpecpRqzV pR`q. As a consequence, if L is the defining ideal of SpEq, then

the defining ideal J of RpEq satisfies J Ě L : pY1, . . . , Ydq
i for all i.

In the linearly presented case, the key ingredient in the proof of Theorem 5.2.2

is that, in this situation, RpIq is Cohen-Macaulay (thanks to Theorem 5.1.4). This

implies that RpIq is a deformation of RpEq (see Theorem 2.6.4), and the latter is

crucial in order to ‘lift’ the shape of the defining ideal of RpIq back to RpEq.

However, in the case when the presentation matrix is almost linear, by Theo-

rem 5.1.10, RpIq is only almost Cohen-Macaulay, and in general not Cohen-Macaulay.

In this case, it is not obvious that RpIq is a deformation of RpEq. However, this

will follow from the following technical result, which will also allow to transfer the

almost Cohen-Macaulay property from RpIq to RpEq. The proof will make use

of [65, 3.6] (stated later as Theorem 6.2.6), which is a slightly more general version

of Theorem 2.6.10.

Theorem 5.2.5 Let R be a Noetherian local ring, E a finite R-module with rankE “

e ě 2. Let U “ Ra1` . . .`Ran be a reduction of E, Z1, . . . , Zn indeterminates. Let

R2 – RpZ1, . . . , Znq, E
2 – E bR R

2, x –
řn
i“1 Ziai, E

2 – E2{pxq.

Assume that depthRpE2q q ě 2 for all q P SpecpR2q such that E2q is not of linear

type. Then, the natural epimorphism π : RpE2q{pxq � RpE2q is an isomorphism,

and x is regular on RpE2q.

Proof. We modify the proof of [65, 3.7] (stated later as Theorem 6.2.7). Since x

is regular on RpE2q by [65, 3.6], we only need to show that K “ kerpπq is zero. In

fact, we only need to prove this locally at primes q P SpecpR2q such that E2q is not

of linear type. Indeed, if E2q is of linear type, then RpE2q q – SpE2q q is isomorphic to

SpE2q q{pxq by construction, whence Kq “ 0.

Let R2 denote RpE2q{pxq and let M “ pm,RpE2q`q be the unique homogeneous

maximal ideal of RpE2q. Notice that K Ď H0
MpR2q. In fact, after localizing R2 if

needed, we may assume that K vanishes locally on the punctured spectrum of R2.
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Hence, K is annihilated by a power of m. Also, by [65, 3.6] it follows that K is

annihilated by a power of UR2, and hence by a power of ER2 “ pR2q`, since E is

integral over U .

Thus, it suffices to show that H0
Mq
pR2

qq “ 0 for all q P SpecpR2q such that E2q is

not of linear type. Consider the long exact sequence of local cohomology induced by

the exact sequence

0 Ñ Kq Ñ R2
q Ñ RpE2q q Ñ 0 .

Since by assumption depthRpE2q q ě 2, then H i
Mq
pR2

qq – H i
Mq
pKqq for i “ 0, 1.

In particular, since Kq Ď H0
Mq
pR2

qq, it follows that 0 “ H1
Mq
pKqq – H1

Mq
pR2

qq.

Therefore, the exact sequence

0 Ñ RpE2q qp´1q
x
ÝÑ RpE2q q ÝÑ R2

q Ñ 0

induces the exact sequence

0 Ñ H0
Mq
pR2

qq ÝÑ H1
Mq
pRpE2q qqp´1q

x
ÝÑ H1

Mq
pRpE2q qq Ñ 0 .

Now, similarly as in [65, 3.7], one can show that H1
Mq
pRpE2q qq is finitely generated,

as a consequence of the graded version of the Local Duality Theorem. Thus, by the

graded version of Nakayama’s Lemma, it follows that H1
Mq
pRpE2q qq “ 0, whence also

H0
Mq
pR2

qq “ 0. �

We are finally ready to state and prove the main result of this chapter.

Theorem 5.2.6 Under the assumptions of Setting 5.2.3, set Y “ Y1, . . . , Yd and

assume that n “ d` e. Then, the defining ideal of RpEq is

J “ ppY ¨Bmpϕqq : pY qmq “ pY ¨Bmpϕqq ` IdpBmpϕqq,

where Bmpϕq denotes an m-th iterated Jacobian dual of ϕ as in Definition 5.1.8.

Moreover, RpEq is almost Cohen-Macaulay, and it is Cohen-Macaulay if and only if

m “ 1.
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Proof. We modify the proof of [65, 4.11]. Let a1, . . . , an be a minimal generating

set for E corresponding to the presentation ϕ, and let RrT1, . . . , Tns� RpEq be the

natural epimorphism, mapping Ti to ai for all i. Localizing at the unique homogeneous

maximal ideal, we may assume that R is local and that E admits a generic Bourbaki

ideal I, which is perfect of grade 2 and such that µpIq “ n´ e` 1 “ d` 1. If e “ 1,

then E – I and the statement follows from Theorem 5.1.10.

So, assume that e ě 2. With xj as in Notation 2.6.1, for 1 ď j ď e ´ 1

set Xj “
řn
i“1 ZijTi, and note that Xj is mapped to xj under the epimorphism

R2rT1, . . . , Tns � RpE2q. Set T “ rT1, . . . , Tns. As in Remark 5.2.1, we can con-

struct a minimal, almost linear presentation ψ of I, such that

rY s ¨Bpϕq ” rT s ¨

»

–

0

ψ

fi

fl modulo pX1, . . . , Xe´1q.

Let Bpψq be a Jacobian dual of ψ defined by rT s ¨

»

–

0

ψ

fi

fl “ rY s ¨ Bpψq. Then, by

Theorem 5.1.10, the defining ideal of RpIq is

pY ¨Bpψqq ` IdpBmpψqq “ ppY ¨Bpψqq : pY qmq,

where m is the degree of the non-linear column of ϕ. Moreover, RpIq is almost

Cohen-Macaulay, and Cohen-Macaulay if and only if ψ is linear.

In particular, depthRpIq ě dimRpIq ´ 1 “ d ě 2. Also, since E satisfies Gd,

by Theorem 3.2.6 it follows that E2q is of linear type for all q in the punctured

spectrum of R2. Hence, inducting on e and using Theorem 5.2.5, we obtain that

RpIq – RpE2q{pF 2q and x1, . . . , xe´1 form a regular sequence on RpE2q. Thus, if J

is the defining ideal of RpEq, it follows that X1, . . . , Xe´1 form a regular sequence

modulo JR2 and that RpE2q is almost Cohen-Macaulay. Hence, RpEq is almost

Cohen-Macaulay, and, by Theorem 2.6.4, it is Cohen-Macaulay if and only if RpIq is.

The discussion above shows that this happens if and only if ϕ is linear.
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Now, notice that the defining ideal of RpIq is JR2 ` pX1, . . . , Xe´1q, and equals

pY ¨Bpψqq ` IdpBmpψqq by the discussion above. Hence, by Lemma 5.2.7 below,

JR2 ` pX1, . . . , Xe´1q “ pY ¨Bpϕqq ` IdpBmpϕqq ` pX1, . . . , Xe´1q.

Also, Remark 5.2.4(ii) and Theorem 5.1.8(c) imply that

J Ě ppY ¨Bpϕqq : pY qmq Ě pY ¨Bpϕqq ` IdpBmpϕqq

Therefore, since X1, . . . , Xe´1 form a regular sequence modulo JR2, we have that

JR2 “ ppY ¨Bpϕqq ` IdpBmpϕqq ` pX1, . . . , Xe´1qq X JR2

“ ppY ¨Bpϕqq ` IdpBmpϕqqq ` pX1, . . . , Xe´1q X JR2

“ ppY ¨Bpϕqq ` IdpBmpϕqqq ` pX1, . . . , Xe´1qJR2.

By the graded version of Nakayama’s Lemma, this means that

JR2 “ pY ¨Bpϕqq ` IdpBmpϕqq “ pY ¨Bpϕqq : pY qm,

hence

J “ pY ¨Bpϕqq ` IdpBmpϕqq “ pY ¨Bpϕqq : pY qm,

which completes the proof. �

Lemma 5.2.7 Let R “ krY1, . . . , YdspY1,...,Ydq, and denote Y “ Y1, . . . , Yd. Let ϕ, ψ,

Bpψq, and X1, . . . , Xe´1 be as in the proof of Theorem 5.2.6. Then, for all i and for

any Jacobian dual Bpϕq of ϕ, in R2rT1, . . . , Tns we have that

pY ¨Bpϕqq ` IdpBipϕqq ` pX1, . . . , Xe´1q “ pY ¨Bpψqq ` IdpBipψqq.

Proof. Choose Bpψq such that rY s ¨ Bpψq “ rT s ¨

»

–

0

ψ

fi

fl , as in the proof of

Theorem 5.2.6. Then, in R2rT1, . . . , Tns we have

rY s ¨Bpϕq ” rY s ¨Bpψqmodulo pX1, . . . , Xe´1q.
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So, the statement is proved for i “ 1. Now, let i ` 1 ě 2 and assume that the

statement holds for Bipϕq. Let Ci be a matrix as in Definition 5.1.8. Since

pY ¨Bipϕqq ` IdpBipϕqq X pY q “ pY ¨Bipϕqq ` pY ¨ Ciq

and the Bipϕq are bigraded, going modulo pX1, . . . , Xe´1q, in R2rT1, . . . , Tns we have

pY ¨Bipψqq ` IdpBipψqq X pY q “ pY ¨Bipψqq ` pY ¨ Ciq,

where Ci denotes the image of Ci modulo pX1, . . . , Xe´1q.

Hence, defining Bi`1pψq “ rBipψqq |Cis, it follows thatBi`1pϕq reduces to Bi`1pψq

modulo pX1, . . . , Xe´1q. Hence, in R2rT1, . . . , Tns we have that

pY ¨Bpϕqq ` IdpBi`1pϕqq ` pX1, . . . , Xe´1q “ pY ¨Bpψqq ` IdpBi`1pψqq,

as claimed. �
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6. COHEN-MACAULAY PROPERTY OF THE FIBER

CONE OF A MODULE

In this chapter we investigate the Cohen-Macaulay property of the special fiber ring

FpEq of a finite module E. We thank Jonathan Montaño for suggesting this problem,

and for fruitful conversations on this topic.

In Section 6.2.1 we show that the construction of generic Bourbaki ideals allows

to reduce the problem to the case of ideals, similarly as for the Cohen-Macaulayness

of Rees algebras. In fact, the proof of our main result, Theorem 6.2.14, is obtained

by modifying the proof of Theorem 2.6.4 for Rees algebras (see [65, proof of 3.5]).

As an application, we then provide sufficient conditions for the fiber cone of a

module to be Cohen-Macaulay in Section 6.2.2. We recall the necessary background

on fiber cones of ideals in the next section.

6.1 Ideals with Cohen-Macaulay fiber cone

Let R be a Cohen-Macaulay local ring and I an ideal of positive height. Unlike

for the Cohen-Macaulay property of the Rees algebra RpIq, there is no clear relation

among the Cohen-Macaulayness of the special fiber ring FpIq and that of the associ-

ated graded ring GpIq. In fact, D’Anna, Guerrieri and Heinzer provided an example

of an ideal where RpIq and GpIq are Cohen-Macaulay but FpIq is not [14]. At the

same time, one can construct examples of perfect ideals I of height 2 so that FpIq

is Cohen-Macaulay while RpIq and GpIq are not (see the introduction of [10]).

Nevertheless, in some circumstances the Cohen-Macaulay property of GpIq im-

plies that of FpIq, as proved, for instance, in the following theorems.
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Theorem 6.1.1 (Corso-Ghezzi-Polini-Ulrich) p [10, 3.1] ). Let R be a Noethe-

rian local ring with infinite residue field, and let I be an ideal with htpIq “ g, `pIq “ `

and rpIq “ r. Assume that I satisfies G`, and that one of the following holds.

piq If µpIq ě ` ` 2, then FpIq has at most two homogeneous generating relations

in degrees ď maxt r, `´ g u.

piiq If µpIq “ ` ` 1, then FpIq has at most two homogeneous generating relations

in degrees ď `´ g.

If GpIq is Cohen-Macaulay, then FpIq is Cohen-Macaulay.

Theorem 6.1.2 (Montaño) p [47, 4.8] ). Let pR,mq be a Cohen-Macaulay local

ring of dimension d with infinite residue field. Let I be an ideal with htpIq “ g ě 2,

`pIq “ ` and rpIq “ r. Assume that I satisfies G` and AN`´2, and that Im “ Jm

for a minimal reduction J of I. Consider the following statements.

piq RpIq is Cohen-Macaulay.

piiq GpIq is Cohen-Macaulay.

piiiq FpIq is Cohen-Macaulay and apFpIqq ď ´g ` 1.

pivq r ď `´ g ` 1.

Then, piq ô piiq ñ piiiq ñ pivq. Moreover, all the statements are equivalent if in

addition depth Ij ě d´ g ´ j ` 2 for 1 ď j ď `´ g ` 1.

Theorem 6.1.3 (Corso-Ghezzi-Polini-Ulrich) p [10, 3.4] ). Let R be a Cohen-

Macaulay local ring with infinite residue field, and let I be a perfect ideal of height 2

with `pIq “ ` . Assume that I satisfies G`. If RpIq is Cohen-Macaulay, then FpIq is

Cohen-Macaulay.
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One of the goals of this chapter is to extend these theorems to modules, which

will be possible thanks to Theorem 6.2.14.

6.2 Generic Bourbaki ideals and fiber cones of modules

In this section we reexamine the construction of generic Bourbaki ideals, with

the ultimate purpose of proving that it allows to reduce the problem of the Cohen-

Macaulayness of the special fiber ring of a module to the case of ideals (see Theo-

rem 6.2.14). In order to do so, and in view of the applications of Theorem 6.2.14

discussed in Section 6.2.2, it is convenient to work in a slightly more general setting

than that of Notation 2.6.1. Hence, in the remaining part of this thesis we will adopt

the following notation.

Notation 6.2.1 ( [65, 3.3]). Let R be a Noetherian ring, E a finite R-module with

rankE “ e ą 0. Let U “ Ra1 ` ¨ ¨ ¨ `Ran be a submodule of E, and let

Z “ tZij | 1 ď i ď n, 1 ď j ď e´ 1u

be a set of indeterminates. Let R1 – RrZs and E 1 – E bR R
1. For 1 ď j ď e ´ 1,

denote xj “
řn
i“1 Zijai P E

1 and F 1 “
ře´1
j“1R

1xj. If R is local with maximal ideal

m, let R2 “ RpZq “ RrZsmRrZs and similarly denote E2 “ EbRR
2, F 2 “ F 1bR1R

2.

This includes the situation of Notation 2.6.1 as the particular case when U “ E.

In the setting of Notation 6.2.1, the existence of generic Bourbaki ideals is guaranteed

by the following result.

Theorem and Definition 6.2.2 p [65, 3.2 and 3.3] q. Let R be a Noetherian local

ring, and E a finite R-module with rankE “ e ą 0. Assume that the following

conditions hold.

piq E is torsion-free.

piiq Ep is free for all p P SpecpRq with depthRp ď 1.
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piiiq gradepE{Uq ě 2.

Then, for R1, E 1 and F 1 as in Notation 6.2.1, F 1 is a free R1-module of rank e ´ 1

and E 1{F 1 is isomorphic to an R1-ideal J with gradeJ ą 0. Moreover, E2{F 2 is

isomorphic to an R2-ideal I, called a generic Bourbaki ideal of E with respect to

U . Moreover, if K is another ideal constructed this way using variables Y , then the

ideals generated by I and K in T “ RpZ, Y q coincide up to multiplication by a unit

in QuotpT q, and are equal whenever I and K have grade at least 2.

In particular, this definition coincides with Definition 2.6.3 in the case when E “

U . Also, notice that assumption (ii) holds whenever E satisfies G2, and assumption

(iii) is automatically satisfied if U is a reduction of E. In fact, often U will be assumed

to be a minimal reduction of E. This is particularly useful in combination with the

following observation.

Remark 6.2.3 Let R be a Noetherian local ring with infinite residue field. Let E be

a finite, torsion-free R-module and U a minimal reduction of E. Let I – E2{F 2 be a

generic Bourbaki ideal with respect to U . Then, the ideal K – U2{F 2 is a minimal

reduction of I.

Indeed, U2{F 2 is a reduction of I, since U is a reduction of E and the natural

map RpEq � RpIq is homogeneous. Moreover, it is minimal since by construction

µpU2{F 2q “ µpUq ´ e` 1 “ `pEq ´ e` 1 “ `pIq.

In fact, sometimes it is also possible to keep track of the behavior of the reduction

number after passing to a generic Bourbaki ideal, as explained in item (d) of the

following theorem.

Theorem 6.2.4 p [65, 3.5] q. In the setting of Notation 6.2.1, let U be a reduction

of E. Let I be a generic Bourbaki ideal of E with respect to U , and let K – U2{F 2.

Then, the following statements hold.

paq RpEq is Cohen-Macaulay if and only if RpIq is Cohen-Macaulay.
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pbq E is of linear type and gradeRpEq` ě e if and only if I is of linear type, if

and only if J is of linear type.

pcq If any of condition (a) or (b) hold, then RpEq{pF q – RpIq and x1, . . . , xe´1 of

F form a regular sequence on RpEq.

pdq If RpEq{pF q – RpIq, then K is a reduction of I, with rKpIq “ rUpEq. In

this case, if in addition the residue field of R is infinite and U “ E, then

rpEq “ rpIq.

For some technical results, it will often be convenient to think of the rings R1

and R2 as the result of an iterative process, where at each step only n variables are

adjoined. This is formalized in the following notation.

Notation 6.2.5 Let R be a Noetherian ring, E a finite R-module with positive

rank, U “ Ra1 ` ¨ ¨ ¨ ` Ran a submodule of E. Let Z1, . . . Zn be indeterminates,

rR – RrZ1, . . . , Zns, rE – E bR rR, rU – U bR rR, and x –
řn
i“1 Ziai P

rU . If R is

local with maximal ideal m, let S – RpZ1, . . . , Znq “ rRm rR.

In fact, R1 and R2 as in Notation 6.2.1 are obtained from R by iterating the construc-

tion of the rings rR and S as in Notation 6.2.5 e´ 1 times.

The following result is a more general version of Theorem 2.6.10.

Theorem 6.2.6 p [65, 3.6 and 3.8] q In the setting of Notation 6.2.5, assume that

rankE “ e ě 2 and that E{U is a torsion R-module. Let E – rE{ rRx and R –

Rp rE q{pxq. Then,

paq x is regular on Rp rE q.

pbq The kernel of the natural epimorphism π : R � RpEq is K “ H0
URpRq.

pcq If U is a reduction of E and gradeRpEq` ě 2, then π is an isomorphism.

We will also need to make use of the next theorem (see [65, 3.7]).
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Theorem 6.2.7 In the setting of Notation 6.2.5, assume that R is local, that rankE “

e ě 2 and that U is a reduction of E. Let E denote pE bR Sq{xS and R –

RpE bR Sq{pxq. If RpEq satisfies S2, then the natural epimorphism π : R � RpEq

is an isomorphism, and x is regular on RpE bR Sq.

Notice that formation of Rees algebras of finite modules commutes with flat exten-

sions (see [16, 1.3]). Hence, one has that Rp rEq – RpEqbR rR, as well as RpEbRSq –

RpEq bR S. Therefore, Rp rEq bR k – FpEq bR rR, and FpE bR Sq – FpEq bR S.

6.2.1 Main result

Let E be a finite R-module admitting a generic Bourbaki ideal I. Our main goal

is to show that the Cohen-Macaulay property can be transferred from FpEq to FpIq

and backwards, at least in situations when the Rees algebras RpEq and RpIq have

good depth properties.

Our proof is inspired by the proof of Theorem 2.6.4 (see [65, 3.5]). The first

step is to prove that an analogous statement as that of Theorem 6.2.6 holds for fiber

cones. This is done in the next two propositions, which together will make it possible

to transfer the Cohen-Macaulay property from FpEq to FpIq (without needing to

assume any condition on the Rees rings, see Theorem 6.2.14(a)).

Proposition 6.2.8 Let pR,m, kq be a Noetherian local ring, E a finite R-module with

rankE “ e ě 2, and let U be a submodule of E such that E{U is torsion. In the

setting of Notation 6.2.5, let L be the kernel of the natural epimorphism

π : pFpEq bR rRq{pxq� Rp rE{ rRxq bR k.

Then,

paq L Ď H0
UppFpEq bR rRq{pxqq.

pbq If in addition U is a reduction of E and depthFpEq ą 0, then x is regular on

FpEq bR rR.
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Proof. For simplicity of notation, let R denote Rp rEq{pxq. By Theorem 6.2.6(b),

there is an exact sequence

0 Ñ K
ι
ÝÑ R π

ÝÑ Rp rE{ rRxq Ñ 0

where K “ H0
URpRq. Tensoring with the residue field k, it then follows that

L “ pιb kqpH0
URpRq bR kq Ď H0

UppFpEq bR rRq{pxqq

This proves (a).

Part (b) follows from [26], after noticing that depthFpEq “ gradeUFpEq. �

Proposition 6.2.9 Let R be a Noetherian local ring, E a finite R-module with

rankE “ e ě 2, and let U be a reduction of E. With the notation of Proposi-

tion 6.2.8, assume that depthFpEq ě 2. Then,

π : pFpEq bR rRq{pxq� Rp rE{ rRxq bR k.

is an isomorphism, and x is regular on FpEq bR rR.

Proof. Let R denote RpE bR rRq{pxq. By Proposition 6.2.8 it follows that L “

kerpπq Ď H0
UpFpEqbR rRq{pxqq and that x is regular FpEqbR rR “ pιbkqpH0

URpRqbR
kq Ď H0

UppFpEq bR rRq{pxqq. In particular, there is an exact sequence

0 Ñ pFpEq bR rRqp´1q
x
ÝÑ FpEq bR rR ÝÑ pFpEq bR rRq{pxq Ñ 0.

Now, since U is a reduction of E, it follows that

gradeUFpEq bR rR “ gradeEFpEq bR rR ě depthFpEq ě 2.

Therefore, H1
UpFpEq bR rRq “ 0 and hence the long exact sequence of local cohomol-

ogy implies that H0
UpFpEq bR rRq “ 0. Thus, L “ 0 and so π is an isomorphism. �

We now proceed to set up the technical framework in order for the Cohen-

Macaulay property to be transferred from FpIq back to FpEq. The key result is

Theorem 6.2.12 below.
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Lemma 6.2.10 Let R be a Noetherian local ring, E a finite R-module with rankE “

e ě 2, and let U be a reduction of E. Then, in the setting of Notation 6.2.5,

SuppFpEqbR
rR p0: FpEqbR

rRxq Ď V pEpFpEq bR rRqq.

Proof. It suffices to show that, if q P SpecpFpEq bR rRqzV pEpFpEq bR rRqq then

p0: FpEqbR
rRxqq “ 0.

Since U “ Ra1` . . .`Ran is a reduction of E, it follows that UpFpEqbR rRq has

the same radical as EpFpEqbR rRq. Hence, for any such q, one has q Ğ UpFpEqbR rRq.

Hence, if we let p denote qXFpEq, we have that p Ğ UFpEq. In particular, at least

one of the ai is a unit in FpEqp.

Since by definition x “
řn
i“1 Ziai and the Zi are variables, this implies that

x is a nonzerodivisor in FpEqprZ1, . . . , Zns, hence also in its further localization

pFpEqrZ1, . . . , Znsqq “ pFpEq bR rRqq. Thus, p0: FpEqbR
rRxqq “ 0, as wanted. �

The conclusion in Lemma 6.2.10 means that x is a filter-regular element on

FpEq bR rR with respect to the ideal EpFpEq bR rRq. We refer the reader to [59, p.

13] for the notion of filter-regular sequences, and their connection with superficial

sequences.

Lemma 6.2.11 Let R be a positively graded Noetherian ring with R0 local, and let

x be a homogeneous non-unit element of R. Let M be a finite graded R-module, and

assume that dim p0:M xq ă depth pM{xMq. Then, x is a nonzerodivisor on M .

Proof. Notice that x is a nonzerodivisor on M if and only if 0 :M x “ 0, or

equivalently, if and only if H0
pxqpMq “ 0. To prove that H0

pxqpMq “ 0, consider the

short exact sequences

0 Ñ 0:M xÑM ÑM{p0:M xq Ñ 0 (6.1)

and

0 ÑM{p0:M xq
x
ÝÑM ÑM{xM Ñ 0. (6.2)
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Since 0 :M x “ H0
pxqp0:M xq, it follows that H1

pxqp0:M xq “ 0. Hence, the long exact

sequence of local cohomology induced by 6.1 implies that H0
pxqpMq surjects onto

H0
pxqpM{p0:M xqq. Hence, the long exact sequence of local cohomology induced by 6.2

0 Ñ H0
pxqpM{p0:M xqq

x
ÝÑ H0

pxqpMq Ñ H0
pxqpM{xMq

in turn induces an exact sequence

H0
pxqpMq

x
ÝÑ H0

pxqpMq Ñ H0
pxqpM{xMq ĎM{xM.

In particular, H0
pxqpMq{xH

0
pxqpMq embeds into M{xM . We claim that

AsspH0
pxqpMq{xH

0
pxqpMqq “ H.

From the claim it follows that H0
pxqpMq{xH

0
pxqpMq “ 0, whence H0

pxqpMq “ 0 by

Nakayama’s Lemma.

To prove our claim, suppose that there exists some p P AsspH0
pxqpMq{xH

0
pxqpMqq.

Then, p P SupppH0
pxqpMq{xH

0
pxqpMqq “ Suppp0:M xq, whence

dimpR{pq ď dimp0:M xq.

On the other hand, since AsspH0
pxqpMq{xH

0
pxqpMqq Ď AsspM{xMq, we also have that

dimpR{pq ě depthpM{xMq. But then, dimpH0
pxqpMq{xH

0
pxqpMqq ě depthpM{xMq,

which contradicts the assumption. So, it must be that AsspH0
pxqpMq{xH

0
pxqpMqq “ H,

as claimed. �

Theorem 6.2.12 In the setting of Notation 6.2.5, assume that R is local and that

rankE “ e ě 2. Let U be a reduction of E, and denote E – pE bR Sq{Sx and

F – FpEbRSq{pxq. Assume that depthFpEq ą 0, and that one of the two following

conditions hold:

piq RpEq satisfies S2, or

piiq depthRpEqq ě 2 for all q P SpecpSq such that Eq is not of linear type.
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Then, the natural epimorphism π : F � FpEq is an isomorphism, and x is regular

on FpE bR Sq.

Proof. For simplicity of notation, write R for RpE bR Sq. Assumption (i) and

Theorem 6.2.7 together imply that the natural epimorphism

π : R � RpEq

is an isomorphism. The same conclusion holds if assumption (ii) is satisfied, thanks

to Theorem 5.2.5. Hence, π : F � FpEq is an isomorphism as well. In particular, by

assumption it then follows that depthF ą 0. Moreover, by Lemma 6.2.10 we know

that p0: FpEbRSq xq is an Artinian FpE bR Sq-module. Hence, x is regular thanks to

Lemma 6.2.11. �

Notice that from the proof of Theorem 6.2.12 it follows that the assumption that

depthFpEq ą 0 is not needed in order to prove that π is an isomorphism. In fact,

one has the following useful corollary.

Corollary 6.2.13 Let R be a Noetherian local ring, and let E be a finite R-module

with rankE “ e. Let I be a generic Bourbaki ideal of E with respect to a reduction

U of E.

paq Assume that either RpIq is S2, or depthRpIqq ě 2 for all q P SpecpR2q so that

Iq is not of linear type. Then, the natural epimorphism π : FpE2q{pF 2q� FpIq

is an isomorphism.

pbq If in addition FpIq is Cohen-Macaulay, then F 2FpE2q is generated by a regular

sequence of linear forms.

Proof. Notice that the assumptions in (a) imply that the assumptions (i) or

(ii) in Theorem 6.2.12 are satisfied at each iteration, thanks to Theorem 6.2.7 or

Theorem 5.2.5 respectively. Hence, RpE2q{pF 2q – RpIq, and F 2RpE2q is generated

by a regular sequence on RpE2q. Hence, by iteration of Theorem 6.2.12, it follows
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that FpE2q{pF 2q – FpIq. In fact, from the proof of Theorem 6.2.12 it follows that

the assumption that depthFpEq ą 0 is not needed in order to prove that π is an

isomorphism.

Now, if furthermore FpIq is Cohen-Macaulay, then the proof of Theorem 6.2.12

implies that also F 2FpE2q is generated by a regular sequence on FpE2q. That the

generators of F 2FpE2q are linear forms in FpE2q is clear by construction. �

We are now ready to state and prove our main result.

Theorem 6.2.14 Let R be a Noetherian local ring, E a finite R-module with rankE “

e, U a reduction of E. Let I be a generic Bourbaki ideal of E with respect to U .

paq If FpEq is Cohen-Macaulay, then FpIq is Cohen-Macaulay.

pbq Assume that either RpIq is S2, or depthRpIqq ě 2 for all q P SpecpR2q so

that Iq is not of linear type. If FpIq is Cohen-Macaulay, then FpEq is Cohen-

Macaulay.

Proof. We may assume that e ě 2. If FpEq is Cohen-Macaulay, then depthFpEq “

`pEq. Also, `pEq ě e by Proposition 2.6.7(a). Hence, by iteration of Proposi-

tion 6.2.9, we get that depthFpIq “ `pEq´e`1. The latter equals `pIq, hence FpIq

is Cohen-Macaulay.

Conversely, if the assumptions in (b) hold, then, by Theorem 6.2.7 and Theo-

rem 5.2.5 respectively, assumptions (i) and (ii) of Theorem 6.2.12 are preserved after

iterating the construction of the ring S. Hence, by iteration of Theorem 6.2.12,

we conclude that depthFpEq “ `pIq ` e ´ 1 “ `pEq. Therefore, FpEq is Cohen-

Macaulay. �

From Theorem 6.2.14 it follows that, in particular, FpEq is Cohen-Macaulay

whenever both FpIq and RpIq are Cohen-Macaulay. Using this fact, in the following

subsection we list some sufficient conditions so that FpEq is Cohen-Macaulay.
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6.2.2 Modules with Cohen-Macaulay fiber cone

Our first results relates the Cohen-Macaulay property of the Rees algebra and

the fiber cone of a module E, once information is provided about the degrees of the

generating relations of FpEq. This extends Theorem 6.1.1 to modules.

Theorem 6.2.15 Let R be a Cohen-Macaulay local ring with infinite residue field.

Let E be a finite, torsion-free R-module with rankE “ e ą 0, `pEq “ ` and rpEq “

r. Assume that E satisfies G`´e`1 and ` ´ e ` 1 ě 2. Let I be a generic Bourbaki

ideal of E, and g “ htpIq. Suppose that one of the following conditions holds.

piq If µpEq ě `` 2, then FpEq has at most two homogeneous generating relations

in degrees ď maxt r, `´ e´ g ` 1 u.

piiq If µpEq “ `` 1, then FpEq has at most two homogeneous generating relations

in degrees ď `´ e´ g ` 1.

If RpEq is Cohen-Macaulay, then FpEq is Cohen-Macaulay.

Proof. By Theorem 2.6.2, E admits a generic Bourbaki ideal I with ht I “ g ě 1,

µpIq “ µpEq ´ e ` 1 and rpIq ď r, which satisfies G `´e`1, i.e. G `pIq (see Proposi-

tion 2.6.9). If e “ 1, then the conclusion follows from Theorem 6.1.1, since GpIq

is Cohen-Macaulay whenever RpIq is, by Theorem 4.1.1. So we may assume that

e ě 2. We show that FpIq is Cohen-Macaulay, whence FpEq is Cohen-Macaulay by

Theorem 6.2.14.

Since by assumption RpEq is Cohen-Macaulay, then, by Theorem 2.6.4, also

RpIq is Cohen-Macaulay, hence the associated graded ring GpIq is Cohen-Macaulay

by Theorem 4.1.1. Therefore, by Theorem 6.1.1, in order to prove that FpIq is Cohen-

Macaulay, it only remains to show that the degrees of the homogeneous generating

relations of FpIq satisfy the assumptions of Theorem 6.1.1.

Now, since RpIq is Cohen-Macaulay, by Corollary 6.2.13, we have a homoge-

neous isomorphism FpE2q{pF 2q – FpIq. Therefore, if condition (i) holds, whenever
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µpIq ě `` 2´ e` 1 “ `pIq ` 2, then FpIq has at most two homogeneous generating

relations in degrees ď maxt r, `´ e´g`1 u, hence in degrees ď maxt rpIq, `pIq´g u.

Similarly, in the situation of assumption (ii), whenever µpIq “ `pIq`1, then FpIq has

at most two homogeneous generating relations in degrees ď `´ e´ g ` 1 “ `pIq ´ g.

Hence,FpIq is Cohen-Macaulay by Theorem 6.1.1. �

In particular, combining the previous theorem with the results of Chapter 4, we

deduce the following sufficient conditions for FpEq to be Cohen-Macaulay. These

both recover [10, 2.9] in the case when E is an ideal of grade at least two.

Corollary 6.2.16 Let R be a local Gorenstein ring of dimension d with infinite

residue field. Let E be a finite, torsion-free, orientable R-module, with rankE “ e ą 0

and `pEq “ `. Let g be the height of a generic Bourbaki ideal of E, and assume that

the following conditions hold.

paq E satisfies G `´e`1.

pbq rpEq ď k for some integer 1 ď k ď `´ e.

pcq depthEj
ě

! d´ g ´ j ` 2 for 1 ď j ď `´ e´ k ´ g ` 1

d´ `` e` k ´ j for `´ e´ k ´ g ` 2 ď j ď k

pdq If g “ 2, Ext j`1Rp
pEj

p , Rpq “ 0 for ` ´ e ´ k ď j ď ` ´ e ´ 3 and for all

p P SpecpRq with dimRp “ `´ e such that Ep is not free.

Assume furthermore that one of the following two conditions holds.

piq If µpEq ě `` 2, then FpEq has at most two homogeneous generating relations

in degrees ď maxt r, `´ e´ g ` 1 u.

piiq If µpEq “ `` 1, then FpEq has at most two homogeneous generating relations

in degrees ď maxt r, `´ e´ g ` 1 u.

Then, FpEq is Cohen-Macaulay.
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Proof. Assumptions (a)-(d) together imply that RpEq is Cohen-Macaulay, thanks

to Theorem 4.2.4. Hence, if either condition (i) or (ii) hold, then FpEq is Cohen-

Macaulay by Theorem 6.2.15. �

Corollary 6.2.17 Let R be a local Cohen-Macaulay ring, and let E be an ideal mod-

ule with rankE “ e and `pEq “ `. Assume that the following conditions hold.

paq rpEq ď k, where k is an integer such that 1 ď k ď `´ e.

pbq E is free locally in codimension `´ e´mint2, ku, and satisfies G `´e`1.

pcq depthpEjq ě d´ `` e` k ´ j for 1 ď j ď k.

Assume furthermore that one of the following two conditions holds.

piq If µpEq ě `` 2, then FpEq has at most two homogeneous generating relations

in degrees ď maxt r, `´ e´ g ` 1 u.

piiq If µpEq “ `` 1, then FpEq has at most two homogeneous generating relations

in degrees ď maxt r, `´ e´ g ` 1 u.

Then, FpEq is Cohen-Macaulay.

Proof. From assumptions (a)-(c) it follows that RpEq is Cohen-Macaulay, thanks

to Theorem 4.4.4. Hence, if either condition (i) or (ii) hold, then FpEq is Cohen-

Macaulay by Theorem 6.2.15. �

We next describe module versions of Theorem 6.1.2. We start by the case when

E is an ideal module.

Theorem 6.2.18 Let R be a local Cohen-Macaulay ring with infinite residue field,

and let E be an ideal module with rankE “ e and `pEq “ `. Assume that the following

conditions hold.
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paq E is free locally in codimension `´ e´ 1, and satisfies G `´e`1.

pbq Um “ Em for a minimal reduction U of E.

Let g be the height of a generic Bourbaki ideal I of E, and and assume that RpEq

is Cohen-Macaulay. Then, FpEq is Cohen-Macaulay, apFpEqq ď ´e ´ g ` 2, and

rpEq ď `´ e´ g ` 2.

Proof. Since E is an ideal module, then E admits a generic Bourbaki ideal I

with respect to U , with ht I “ g ě 2, satisfying G `´e`1, that is, G `pIq (see Proposi-

tion 2.6.9). Moreover, since E is free locally in codimension `´e´1, by Theorem 4.4.3

it follows that I satisfies AN `´e´1, i.e. AN `pIq´2. Also, by Remark 6.2.3, the R2-ideal

K – U2{F 2 is a minimal reduction of I such that Km “ Im. Now, if e “ 1, the

conclusion follows from Theorem 6.1.2. So, assume that e ě 2.

If RpEq is Cohen-Macaulay, by Theorem 6.2.4 it follows that RpIq is Cohen-

Macaulay, and that rpIq “ rpEq. Hence, Theorem 6.1.2 implies that FpIq is Cohen-

Macaulay, apFpIqq ď ´g ` 1, and rpEq “ rpIq ď `pIq ´ g ` 1 “ ` ´ e ´ g ` 2.

Furthermore, by Theorem 6.2.14 it follows that FpEq is Cohen-Macaulay, while

Corollary 6.2.13 implies that FpIq is isomorphic to a quotient of FpE2q modulo a

regular sequence of e ´ 1 linear forms. Hence, since apFpIqq ď ´g ` 1, it must be

that apFpE2qq ď ´e´ g ` 2, hence apFpEqq ď ´e´ g ` 2. �

Corollary 6.2.19 Let R be a local Cohen-Macaulay ring with infinite residue field,

and let E be an ideal module with rankE “ e and `pEq “ `. Assume that the following

conditions hold.

paq rpEq ď k, where k is an integer such that 1 ď k ď `´ e.

pbq E is free locally in codimension `´ e´ 1, and satisfies G `´e`1.

pcq depthpEjq ě d´ `` e` k ´ j for 1 ď j ď k.

pdq Um “ Em for a minimal reduction U of E.
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Then, FpEq is Cohen-Macaulay and apFpEqq ď ´e´ g ` 2.

Proof. As in the proof of Theorem 4.4.4, E admits a generic Bourbaki ideal I

with respect to U with ht I “ g ě 2, rpIq ď rpEq ď k and satisfying G `´e`1, that is,

G `pIq. Moreover, since E is free locally in codimension ` ´ e ´ 1, by Theorem 4.4.3

it follows that I satisfies AN `´e´1. In particular, I satisfies AN `´e´mint2,ku, so, as in

the proof of Theorem 4.4.4, one concludes that RpEq is Cohen-Macaulay. Now the

conclusion follows from Theorem 6.2.18. �

For a torsion-free, orientable R-module E which is not necessarily an ideal module,

we can still give conditions so that FpEq is Cohen-Macaulay, thanks to Theorem 4.2.4.

Theorem 6.2.20 Let pR,mq be a Cohen-Macaulay local ring of dimension d, with in-

finite residue field. Let E be a finite, torsion-free, orientable R-module, with rankpEq “

e ą 0 and `pEq “ `. Assume that the following conditions hold:

paq E satisfies G`´e`1

pbq rpEq ď k for some integer 1 ď k ď `´ e.

pcq depthEj
ě

! d´ g ´ j ` 2 for 1 ď j ď `´ e´ 1

d´ `` e` k ´ j for `´ e ď j ď k

pdq If g “ 2, Ext j`1Rp
pEj

p , Rpq “ 0 for ` ´ e ´ k ď j ď ` ´ e ´ 3 and for all

p P SpecpRq with dimRp “ `´ e such that Ep is not free.

peq Um “ Em for a minimal reduction U of E.

Then, FpEq is Cohen-Macaulay and apFpEqq ď ´e´ g ` 2.

Proof. Since E is torsion-free, orientable and satisfiesG`´e`1 with `´e`1 ě 2, then

E admits a generic Bourbaki ideal with respect to U , which satisfies G`´e`1, i.e. G`pIq

and has height at least 2. Moreover, K is a minimal reduction of I with Km “ Im.

Now, similarly as in the proof of Theorem 4.2.4, assumptions (a)-(d) imply that RpIq
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is Cohen-Macaulay, and that I satisfies AN`´e´1, that is, AN`pIq´2. Therefore, by The-

orem 6.1.2, it follows that FpIq is Cohen-Macaulay, with apFpIqq ď ´g ` 1. Now,

by Theorem 6.2.14 it follows that FpEq is Cohen-Macaulay, and Corollary 6.2.13

implies that FpIq is a specialization of FpE2q. Hence, since apFpIqq ď ´g ` 1, it

must be that apFpE2qq ď ´e´ g ` 2, whence apFpEqq ď ´e´ g ` 2. �

We conclude this section by examining the case of modules of projective dimension

one. The following result extends Theorem 6.1.3 to modules.

Theorem 6.2.21 Let R be a local Cohen-Macaulay ring, and let E a finite, torsion-

free R-module with projdimpEq “ 1, with `pEq “ `. Assume that E satisfies G`´e`1.

If RpEq is Cohen-Macaulay, then FpEq is Cohen-Macaulay.

Proof. Since E is a torsion-free module of projective dimension one which satisfies

G`´e`1, then E admits a generic Bourbaki ideal I, which is perfect of height 2. If

e “ 1, then the conclusion follows from Theorem 6.1.3. Otherwise, notice that RpIq

is Cohen-Macaulay by Theorem 2.6.4, whence FpIq is Cohen-Macaulay by Theo-

rem 6.1.3. Hence, FpEq is Cohen-Macaulay by Theorem 6.2.14. �

Recall that for a module E of projective dimension one the Cohen-Macaulay

property of the Rees algebra RpEq is controlled by the presentation matrix of E or

by the reduction number of E (see [65, 4.7]). Hence, we have the following corollary.

Corollary 6.2.22 Let R be a local Cohen-Macaulay ring, and let E a finite, torsion-

free R-module with projdimpEq “ 1, with `pEq “ `. Let n “ µpEq and let

0 Ñ Rn´e ϕ
ÝÑ Rn

Ñ E Ñ 0

be a minimal free resolution of E. Assume that E satisfies G`´e`1 and that one of

the following equivalent conditions hold.

piq rpEq ď `´ e.
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piiq rpEpq ď `´ e for every prime p with dimRp “ `pEpq ´ e` 1 “ `´ e` 1.

piiiq After elementary row operations, In´`pϕq is generated by the maximal minors

of the last n´ ` rows of ϕ.

Then, FpEq is Cohen-Macaulay.

Proof. By [65, 4.7], each of the conditions (i)-(iii) is equivalent to RpEq being

Cohen-Macaulay. Hence, the conclusion follows from Theorem 6.2.21. �
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