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ABSTRACT 

Author: Wu, Chuhao. MSIE 

Institution: Purdue University 

Degree Received: August 2019 

Title: Eye tracking and EEG measures for workload and performance in robotic surgery training 

Committee Chair: Denny Yu 

 

Robotic-assisted surgery (RAS) is one of the most significant advancements in surgical techniques 

in the past three decades. It provides benefits of reduced infection risks and shortened recovery 

time over open surgery as well as improved dexterity, stereoscopic vision, and ergonomic console 

over laparoscopic surgery. The prevalence of RAS systems has increased over years and is 

expected to grow even larger. However, the major concerns of RAS are the technical difficulty 

and the system complexity, which can result in long learning time and impose extra cognitive 

workload and stress on the operating room. Human Factor and Ergonomics (HFE) perspective is 

critical to patient safety and relevant researches have long provided methods to improve surgical 

outcomes. Yet, limited studies especially using objective measurements, have been done in the 

RAS environment.  

 

With advances in wearable sensing technology and data analytics, the applications of physiological 

measures in HFE have been ever increasing. Physiological measures are objective and real-time, 

free of some main limitations in subjective measures. Eye tracker as a minimally-intrusive and 

continuous measuring device can provide both physiological and behavioral metrics. These 

metrics have been found sensitive to changes in workload in various domains. Meanwhile, 

electroencephalography (EEG) signals capture electrical activity in the cerebral cortex and can 

reflect cognitive processes that are difficult to assess with other objective measures. Both 

techniques have the potential to help address some of the challenges in RAS. 

 

In this study, eight RAS trainees participated in a 3-month long experiment. In total, they 

completed 26 robotic skills simulation sessions. In each session, participants performed up to 12 

simulated RAS exercises with varying levels of difficulty. For Research Question I, correlation 

and mixed effect analyses were conducted to explore the relationships between eye tracking 
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metrics and workload. Machine learning classifiers were used to determine the sensitivity of 

differentiating low and high workload with eye tracking metrics. For Research Question II, two 

eye tracking metrics and one EEG metric were used to explain participants’ performance changes 

between consecutive sessions. Correlation and ANOVA analyses were conducted to examine 

whether variations in performance had significant relationships with variations in objective metrics. 

Classification models were built to examine the capability of objective metrics in predicting 

improvement during RAS training.  

 

In Research Question I, pupil diameter and gaze entropy distinguished between different task 

difficulty levels, and both metrics increased as the level of difficulty increased. Yet only gaze 

entropy was correlated with subjective workload measurement. The classification model achieved 

an average accuracy of 89.3% in predicting workload levels. In Research Question II, variations 

in gaze entropy and engagement index were negatively correlated with variations in task 

performance. Both metrics tended to decrease when performance increased. The classification 

model achieved an average accuracy of 68.5% in predicting improvements. 

 

Eye tracking metrics can measure both task workload and perceived workload during simulated 

RAS training. It can potentially be used for real-time monitoring of workload in RAS procedure 

to identify task contributors to high workload and provide insights for training. When combined 

with EEG, the objective metrics can explain the performance changes during RAS training, and 

help estimate room for improvements. 
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1. INTRODUCTION 

 Robotic surgery 

Minimally invasive surgery (MIS) is one of the greatest surgical innovations of the past three 

decades (Diana & Marescaux, 2015). It allows surgeons to view through an endoscope and 

manipulate the tissues or organs with thin instruments through small incisions. Compared with 

traditional open surgery, it offers benefits of less trauma, reduced infection risks, decreased 

postoperative pain, and shortened patient recovery time (Fuchs, 2002; Verhage, Hazebroek, Boone, 

& Van, 2009). Despite benefits, early MIS (also referred as laparoscopic  surgery) has been 

observed to cause higher cognitive and physical workload than that of open surgery (Berguer, 

Smith, & Chung, 2001; Hemal, Srinivas, & Charles, 2001), due to limitations in tactile sensation, 

video displays, interface design, and the disconnect of separating the surgeons’ hands from target 

organs (Ballantyne, 2002; Lowndes & Hallbeck, 2014; Yu, Lowndes, Morrow, et al., 2016). 

Specifically, laparoscopic surgery uses a two-dimensional vision and results in loss of depth 

perception to some extent; also, the camera is held by an assistant so there is a separation of vision 

and physical operation of the instruments, increasing the difficulty of eye-hand coordination (Supe, 

Kulkarni, & Supe, 2010). Studies have shown that the drawbacks of MIS can cause problems to 

surgeon’s health and performance (Hemal et al., 2001; Marucci et al., 2000) 

 

Advances in robotic-assisted MIS (RAS) systems have the potential to address some of the 

ergonomic limitations observed in MIS (Moorthy et al., 2004; Yu et al., 2017). The use of robots 

in surgery commenced in 1994 when the first voiced controlled camera holder prototype robot was 

approved by the FDA (Sackier & Wang, 1994). In 1997, Intuitive Surgical Inc. developed and 

marketed the da Vinci system, a master-slave manipulator that was a breakthrough in RAS (Palep, 

2009). RAS provides the same benefits of MIS while eliminating many of the pitfalls in 

conventional laparoscopy. Potential advantages include increased dexterity, adjustable console 

positions, and stereoscopic visualization (Lanfranco, Castellanos, Desai, & Meyers, 2004). And 

the use of RAS is expected to increase with more functional systems being developed (Rassweiler 

et al., 2017).  
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Although studies have shown that RAS is less physically stressful than laparoscopy, there are still 

challenges in this new technology that may lead to high cognitive workload for the surgical team. 

Existing robotic systems (Fig. 1.1) are relatively large and cumbersome which can increase the 

coordination difficultly in today’s already crowded operating rooms. And the physical separation 

between surgeons and their patients or/and surgical teams may increase their stress to maintain 

awareness of the environment. For example, similar to laparoscopy, flow disruptions in robotic 

surgery have been observed to occur frequently, and disruption severity were associated with 

increased self-reported workload (Blikkendaal et al., 2017; Weber et al., 2018). Other challenges 

are due to the unique interfaces (Fig. 1.2) and technique complexity. Surgeons need to familiarize 

themselves with the interfaces and operations before staring live surgeries, which may lead to long 

learning time (Steinberg, Merguerian, Bihrle, & Seigne, 2008) and high workload (Catchpole et 

al., 2018). The lack of tactile feedback is another known disadvantage that could increase surgeon 

workload (Talamini, Chapman, Horgan, & Melvin, 2003; Wottawa et al., 2016) and lead to adverse 

surgery outcomes (Hubens, Ruppert, Balliu, & Vaneerdeweg, 2004). These new challenges 

necessitate additional studies on assessing the workload and training process of RAS. 

 

Fig. 1.1 Example of RAS system components 

Surgeon console (left), Patient cart (middle), HD Vision Cart (left)   

Figure from da Vinci S System User Manual (Intuitive Surgical, Inc., 2014) 
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Fig. 1.2 Example of RAS surgeon console interfaces 

Stereo Viewer (left), Master controller (right), Footswitch panel (bottom)   

Figures from da Vinci S System User Manual (Intuitive Surgical, Inc., 2014) 

 

 Human factors approach to surgery 

The awareness of HFE in the field of healthcare has been increasing. One of the first HFE studies 

on medical safety was conducted in the early 1960’s, which examined medication administration 

errors (Safren & Chapanis, 1960). On November 29, 1999, the Institute of Medicine released the 

report: “To Err is Human: Building a Safer Health System”, which recognized HFE and its systems 

approach as critical for patient safety across all healthcare domains (Kohn, Corrigan, & Donaldson, 

1999). Till now, a variety of guidance documents on analyzing healthcare safety events from a 

HFE perspective have been published by the US Department of Health and Human Service, US 

Food and Drug Administration (Sawyer et al., 1996), the US Agency for Healthcare Research and 

Quality (Henriksen, Dayton, Keyes, Carayon, & Hughes, 2008) and other professional 

organizations. HFE researches can benefit both the caregiver (occupational ergonomics) and care 

receiver (patient safety) (Sue Hignett, Carayon, Buckle, & Catchpole, 2013). Over the past decades, 

there have been a number of recommendations for improving working ergonomics and reducing 

the risk of occupational hazards (Dawson et al., 2007; S. Hignett, 2003). These interventions range 

from organization changes to device design and personal well-being programs. Likewise, 
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substantial efforts have been invested to reduce the risk of medical errors and improve patient 

safety (Xie & Carayon, 2015).  

 

Due to the critical nature of surgical interventions, surgeries account for a high proportion of 

medical errors, which can be translated into prolonged recovery, morbidities or mortalities 

(Gawande, Thomas, Zinner, & Brennan, 1999). There is a large amount of HFE literature on 

surgery with interests on various aspects (e.g., technical competence, non-technical skills and 

environment factors), and these studies have provided effective ways to improve patient outcomes 

and reduce surgeons’ work-related injuries. For example, the physically taxing position and 

posture restriction during surgery has been associated with musculoskeletal injuries of surgical 

technicians and assistants (Davis, Fletcher, & Guillamondegui, 2014; Sheikhzadeh, Gore, 

Zuckerman, & Nordin, 2009). Evidence-based studies have provided guidelines for device position 

and usage that can improve physical ergonomics (van Det, Meijerink, Hoff, Totté, & Pierie, 2009; 

Veelen, Jakimowicz, & Kazemier, 2004). Meanwhile, surgery outcomes and patient safety can be 

impacted by several factors. For example, poor communication or teamwork has been increasingly 

regarded as a causal factor for adverse surgical events (ElBardissi, Wiegmann, Henrickson, 

Wadhera, & Sundt, 2008; Gawande, Zinner, Studdert, & Brennan, 2003). And assessment tools 

for teamwork and communication have been developed to measure and improve surgeons’ non-

technical skills (Wahr et al., 2013). Intraoperative workload that exceeds surgeons’ capacity can 

compromise both technical and non-technical skills and increase the chances of adverse patient 

outcomes (Arora et al., 2010; Wetzel et al., 2006). Therefore, substantial efforts have been put to 

investigate methods for measuring mental workload and stress in operating rooms (Carswell, 

Clarke, & Seales, 2005; Rubio, Díaz, Martín, & Puente, 2004). These measurements of 

communications, teamwork and workload can also be used to evaluate the effectiveness of surgical 

training (Moorthy, Munz, Adams, Pandey, & Darzi, 2005; Zheng, Cassera, Martinec, Spaun, & 

Swanström, 2010). 

 

This research seeks to examine the opportunities for addressing RAS challenges through HFE 

approaches. Despite the challenges from procedure complexity, multitasking, interdisciplinary 

team work etc., surgeons were less likely to acknowledge the corresponding effects on their 

performance than other professionals (Sexton, Thomas, & Helmreich, 2001). This attitude has 
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discouraged applied researches especially those using subjective measures (Moorthy, Munz, Dosis, 

Bann, & Darzi, 2003). Hence, this research focuses primarily on objective techniques which can 

measure participants’ behaviors and cognitive states in RAS in real-time. The intent is to compare 

the information derived from physiological measures or behavioral measures with more generally 

accepted criteria (e.g., task performance). Metrics that are proven to be relevant can provide 

effective assessments for RAS training. 

 Structure of the Document 

This thesis is divided into five chapters. Chapter 2 provides the literature review of the 

developments and drawbacks in RAS training and objective measures applied in HFE studies, with 

emphasis on the surgical domain. In the beginning of Chapter 3, the framework of the study is 

explained, which consists of two Research Questions. The reaming part of Chapter 3 and whole 

Chapter 4 are devoted to describing the experimental methodology, results and discussions for the 

two Research Questions. Chapter 5 draws final conclusions and provides recommendations for 

future work. 
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2. LITERATURE REVIEW 

 Robotic Surgery Training 

With advances in video imaging, endoscope technology and instrumentation, RAS has minimized 

the invasiveness of many surgical procedures and resulted in reduced blood loss, shortened 

postoperative stay and other benefits (Diana & Marescaux, 2015; Giulianotti et al., 2011; Mack, 

2001). Despite the advantages, there are unique difficulties for surgeons to learn this new technique. 

The complexities of the system, spatial separation of bedside and console surgeons, and 

communication challenges impede mentored intraoperative teaching (Dulan et al., 2012a).  

 

Curricula and instructions have been developed to address the education needs in various surgical 

specialties (Lee, Mucksavage, Sundaram, & McDougall, 2011), yet validations for RAS training 

are still insufficient compared to those for laparoscopic surgery and there is no standardized 

curriculum in existence for RAS (Dulan et al., 2012b; Yokoi, Chen, Desai, & Hung, 2018). Due 

to the development in technology, computer-based simulation training or virtual reality training 

has become popular because it is more cost-effective and provides a safer training environment 

(Bric, Lumbard, Frelich, & Gould, 2016). There are several virtual reality robotic simulators 

available on the market: da Vinci ® Skills Simulator (dVSS) from Intuitive Surgical, Inc., Robotic 

Surgery Simulator (Ross) from Simulated Surgical Systems, Inc., RobotiX Mentor from 3D 

Systems, Inc. and Mimic dV-Trainer from Mimic Technologies, Inc., which all have been studied 

for validations in face, content or construct (Hung et al., 2011; Kenney, Wszolek, Gould, Libertino, 

& Moinzadeh, 2009; Seixas-Mikelus et al., 2010; Whittaker et al., 2015). And a comparative 

analysis including 105 medical students or physicians suggested that overall, da Vinci skills 

simulator would be the most popular choice (Tanaka et al., 2016). These simulators each provides 

a range of exercises for different robotic skills including instrument manipulation, camera control, 

and suturing. Although these have been shown to help beginners learn basic skills effectively, there 

is little evidence for benefiting more advanced skills  (Phé et al., 2017). Another issue for 

simulation training is that there is little evidence for the transferability of skills gained using 

simulators to the real operating room (Abboudi et al., 2013; Moglia et al., 2016). 
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An important topic in RAS training is the learning curve. The learning curve is a graphic 

representation of the temporal relationship between the surgeon’s mastery of a specifically 

assigned task and the chronological number of cases performed (Bokhari, Patel, Ramos-Valadez, 

Ragupathi, & Haas, 2011). It is being used to present knowledge gaining and skill improving 

process in surgery, and a validated learning curve contributes to the establishment of training 

program and facilitates the incorporation of RAS (Kaul, Shah, & Menon, 2006). The first step in 

the evaluation of a learning curve is to select an appropriate outcome that measures the surgeon’s 

ability to perform a particular task (Tekkis, Senagore, Delaney, & Fazio, 2005). Several studies 

have identified learning curve by scoring the videos of simulated training using structured 

assessment tools (Chang, Satava, Pellegrini, & Sinanan, 2003; Hernandez et al., 2004). Studies on 

laparoscopic surgery also used patient outcomes of live clinical cases as the key measurement of 

learning curve (Shah, Joseph, & Haray, 2005), but this practice is scarce for RAS. All simulators 

provide users with an objective scoring based on criteria like timing and accuracy of task 

completion, which could be used to assess RAS learning curve (Brinkman et al., 2013; Lerner, 

Ayalew, Peine, & Sundaram, 2010).  

 

One primary goal of studying learning curve is to define the cases or time required to achieve 

technical competence. Studies have shown that proficiency of robotic surgery (when the slope of 

the operative time curve becomes less steep) can be achieved after 20~30 cases (Foote & Valea, 

2016). Yet proficiency is not the same as mastery and improvements have been observed 

throughout all cases (Lin, Frey, & Huang, 2014). Because of the existences of different simulator 

and exercises, the learning curve in simulated training is more uncertain. Yet for both live cases 

and simulated training, the learning curve has been found to vary greatly for individuals (Schreuder, 

Wolswijk, Zweemer, Schijven, & Verheijen, 2012). It has also been observed that trainees who 

took longer to become proficient on the simulator showed a faster skills decline (Zhang & Sumer, 

2013). Therefore, it is important to provide feasible metrics other than performance provided by 

simulator and help determine if the training length is sufficient for proficiency. Additional metrics 

would also be useful for assessing the transferability of training outcomes to live surgery. 
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 Objective measures in HFE 

HFE studies have developed a number of measures for improving occupational health and patient 

safety in traditional open surgery and laparoscopic surgery. Subjective measures like survey and 

questionnaire have already been applied in RAS environment to assess surgeons’ workload. For 

example, several studies have compared mental workload or stress in RAS and laparoscopic 

surgery through self-reported methods, e.g., National Aeronautics and Space Administration Task 

Load Index (NASA-TLX) (Lee et al., 2014), the surgery task load index (SURG-TLX) (Moore et 

al., 2015), Multiple Resources Questionnaire, and Dundee Stress State Questionnaire (Klein et al., 

2012). These measures have been validated in previous studies and were successful in 

distinguishing mental workload between surgical techniques (Koca et al., 2015), team roles (Yu, 

Lowndes, Thiels, et al., 2016), and experience level (Klein et al., 2008). Despite advantages, 

subjective approaches are limited by potential bias (e.g., between subject variability and ability to 

self-assess cognitive capacity), disrupt the surgical task, and are only available at the completion 

of the case when they are typically administered (Carswell et al., 2005; Miller, 2001; Young, 

Brookhuis, Wickens, & Hancock, 2015). These drawbacks may be avoided by using various 

physiological or behavioral measures which provide objective and continuous data of operator 

states. 

 

Compared with subjective measures, physiological measures are advantageous in four aspects. 

First of all, the assessment can be viewed as objective since it is independent of user’s perception 

or attitude (Kivikangas et al., 2011), which increases its reliability. Many physiological measures 

can provide multidimensional information, which means they are sensitive to more than one 

cognitive process (Damos, 1991). Although physiological measures can be physically obtrusive in 

that they need to have direct contact with the user’s body, they do not interfere with task procedure 

and are considered procedurally unobtrusive. Lastly, physiological measures are continuous 

signals which provides the possibility of real-time monitoring and interventions. With advances in 

wireless sensors and signal analytics, physiological measures are becoming more feasible in the 

operating room and provide objective approaches to continuously monitor surgeons’ states without 

interfering intraoperatively (Dias, Ngo‐Howard, Boskovski, Zenati, & Yule, 2018). Several studies 

have attempted to objectively measure physical workload during robotic surgery by using surface 
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electromyography and motion tracking (Lee et al., 2014; Yu et al., 2017; Zihni, Ohu, Cavallo, Cho, 

& Awad, 2014) and proved the ergonomic advantages of RAS over laparoscopy.  

 

There are limited studies that evaluated mental workload or cognitive workload in RAS through 

objective measures. Yet the relationship between objective measures and mental workload has 

been published in many domains. Examples of physiological metrics include 

electroencephalogram (EEG), pupillometry, and heart rate variability (HRV). EEG can relate to 

several cognition processes by recording electrophysiological activity of the cerebral cortex (Lean 

& Shan, 2012). The electrical signals are usually processed into frequency domain in alpha, beta, 

gamma, delta and theta band. For example, brain wave rhythm in alpha band is prominent when 

subjects were asked to relax (Antonenko, Paas, Grabner, & van Gog, 2010). Instead of using a 

single band, studies have developed metrics using the combination of frequency bands to measure 

mental workload, engagement, vigilance, and fatigue (Borghini, Astolfi, Vecchiato, Mattia, & 

Babiloni, 2014; Kamzanova, Kustubayeva, & Matthews, 2014). The application of these metrics 

to surgery is still nascent, but preliminary works by Guru and colleagues have showed that EEG 

metrics correlated with objective performance and with SURG-TLX subscales ( mental and 

temporal demand) during robotic procedures (Guru, Esfahani, et al., 2015; Guru, Shafiei, et al., 

2015). Despite the informative metrics derived from EEG signals, the intrusive setup procedure 

and susceptibility to motion/muscle artifacts have limited EEG’s application and reliability in the 

fast-paced and dynamic surgical environment (Ayaz et al., 2012; Cao, Chintamani, Pandya, & Ellis, 

2009; Miller, 2001). Researchers have worked towards wireless EEG systems that are more 

resilient to adverse environment, which may help exploit the full potential of EEG (Debener, 

Minow, Emkes, Gandras, & Vos, 2012). 

 

Pupil diameter and other eye-related metrics are more widely used than before. The development 

of multifunctional eye tracker has addressed many usability and reliability concerns and this 

technology can provide both physiological and behavioral measurements. There has been a 

growing number of applications of eye tracking in surgical training and education (Henneman, 

Marquard, Fisher, & Gawlinski, 2017; Tien et al., 2014). These studies showed that expert and 

novice surgeons have different gaze patterns (Khan et al., 2012; Wilson et al., 2010) and projecting 

experts’ gaze patterns to trainees could improve their performance in laparoscopic tasks and 
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accelerating their learning process (Chetwood et al., 2012; Wilson et al., 2011). Eye-related 

metrics have also shown strong associations with mental workload in many domains (Beatty, 1982; 

Greef, Lafeber, Oostendorp, & Lindenberg, 2009; Marquart, Cabrall, & de Winter, 2015). 

Preliminary works have applied several eye-related metrics to measure surgical workload. For 

example, peak pupil size was shown to increase with task difficulty while novices transported 

rubber objects over dishes with different target sizes and distances (Zheng, Jiang, & Atkins, 2015). 

Low blink frequency range was found to be associated with higher NASA-TLX ratings during 

simulated laparoscopic tasks (Zheng et al., 2012). A common limitation of these studies is the 

reliance on basic tasks or the focus on laparoscopic techniques. The accuracy of eye tracking 

measures for RAS tasks with more complex interfaces remains unknown. Research is needed to 

determine the impact of robotic interfaces (surgeons look through a surgical console during the 

surgery) and high technical complexity of RAS on eye tracking implementation and its ability to 

assess workload.  

 

Compared with EEG measurement and eye tracker, heart rate sensors are easier to implement and 

have been extensively studied in HFE. Common applications include measurements for mental 

and physical workload (Meshkati, 1988; Roscoe, 1992) and fatigue (Egelund, 1982). Metrics 

derived from heart rate or hear rate variability (HRV) have been frequently used to assess surgeons’ 

stress and cognitive workload (Dias et al., 2018; Rieger, Stoll, Kreuzfeld, Behrens, & Weippert, 

2014). Despite the wide usage, there are debates about the reliability of some metrics. For example, 

emotional stimulus and physical workload can also increase heart rate (Jorna, 1992, 1993), and 

many studies have noted that HRV is not sensitive enough for measuring mental workload 

(Gabaude, Baracat, Jallais, Bonniaud, & Fort, 2012; Nickel & Nachreiner, 2003).  

 

Other objective measures were less used due to feasibility or reliability issues. For example, facial 

thermography was proposed as a non-intrusive measurement for mental workload (Murai, Okazaki, 

Stone, & Hayashi, 2007; Or & Duffy, 2007) but this technique is difficulty to apply in RAS since 

the surgeon’s head will be in the console. Similarly, several studies have explored salivary stress 

hormones (e.g., cortisol) as indicators of workload (Metzenthin et al., 2009); however, salivary 

measurements are intrusive to measure in the operating room and can be unreliable since diurnal 

rhythm of cortisol secretion vary naturally throughout the day (Abdelrahman et al., 2016).  
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Metrics obtained from the objective measurements mentioned above can potentially identify 

behaviors and cognitive processes related to performance change. For example, mental workload 

is known to affect task performance, and several studies have found worse surgical task 

performance was associated with higher mental workload as measured by various physiological 

signals (Guru, Shafiei, et al., 2015; Zheng et al., 2015). Using workload-related physiological 

signals, studies also differentiated between experienced surgeons and novices (Law, Atkins, 

Kirkpatrick, & Lomax, 2004; Zheng et al., 2010). In addition to workload, studies have  shown 

that EEG measures reflected changes in engagement, which were correlated with performance in 

vigilance test (Berka et al., 2007).  And EEG measures for engagement have been used to develop 

adaptive automation which could improve task performance (Baldwin & Penaranda, 2012; 

Freeman, Mikulka, Scerbo, & Scott, 2004).  

 Classification analysis 

As mentioned above, objective measures were widely applied for measuring operators’ functional 

states like workload and fatigue. A useful technique of detecting functional states from continuous 

signals is classification analysis, or more specifically, supervised machine learning classification. 

The first step in applying classification is to label the functional states that need to be detected. 

Then relevant features need to be identified and extracted from the raw objective signals. These 

features will be used and train a classification model that learns to predict labels automatically, 

and the model will be further validated with testing data. Due to the dynamic nature of the 

physiological measures, conventional linear approaches are not always appropriate in modelling 

cognitive states and machine learning classification provides more powerful algorithms to extract 

information from physiological signals (Chen, Zhao, Zhang, & Zou, 2015). Another advantage of 

machine learning technique is that it can combine the information of multiple measures, since one 

measure may not be enough for reliably detecting subtle changes in cognitive states. Studies in 

different domains have used objective measures to detect stress (Khosrowabadi, Quek, Ang, Tung, 

& Heijnen, 2011; Lee, Chong, & Lee, 2017), alertness and drowsiness (Chen et al., 2015; Wang 

& Xu, 2016), and workload (Henelius, Hirvonen, Holm, Korpela, & Muller, 2009; Putze, Jarvis, 

& Schultz, 2010) . In addition to cognitive states, it is also possible to classify surgeons’ level of 

expertise through physiological measures (Richstone & Richstone, 2010).  
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Although the general way of applying machine learning classification is well-established 

(Moustafa, Luz, & Longo, 2017), there are many details where studies vary from each other. First 

of all, for supervised machine learning, it is required to label the data for cognitive states which 

need to be predicted. The most common approaches to obtain the labels is through predefined task 

characteristics (e.g. high/low workload task) (Halverson, Estepp, Christensen, & Monnin, 2012) 

or through participants’ subjective reflection of their cognitive states (Stemberger, Allison, & 

Schnell, 2010).  Based on whether the model is trained individually or collectively for all 

participants, classification models can be divided into individual model and population model. The 

advantage of training models individually is that the models can account for participants’ 

physiology differences and even select different features (Ferreira et al., 2014; Wilson & Russell, 

2003). However, the benefit of doing so is not significant and in practice a generalized model for 

all participants is more common. One of the most important goals of using machine learning is to 

achieve real-time classification. One real-time approach is to detect the state using fragments of 

the data, which is also called the sliding window. Studies have reported a trade-off between 

window size and classification accuracy: the bigger the window, the better the classification 

performance (Grimes, Tan, Hudson, Shenoy, & Rao, 2008; Solovey, Zec, Garcia Perez, Reimer, 

& Mehler, 2014). There are also multiple algorithms that are capable of classification: artificial 

neutral networks (Baldwin & Penaranda, 2012; Wilson & Russell, 2003); random forest classifier 

(Rajan, Selker, & Lane, 2016; Zhou, Jung, & Chen, 2015), support vector machine (SVM) (Walter, 

Schmidt, Rosenstiel, Gerjets, & Bogdan, 2013), Naïve Bayes (Grimes et al., 2008); logistic 

regression (S. Chen, Epps, & Chen, 2013), and quadratic discriminant analysis (Ferreira et al., 

2014). Yet it appeared that the choice of classifier did not make a large difference in model 

performance; feature generation and selection may be more important for accuracy (Solovey et al., 

2014). 
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3. RESEARCH QUESTION I: WORKLOAD MEASURES 

 Research Framework 

The main research question this thesis seeks to answer is: Can objective metrics used in HFE 

studies help address some of the RAS challenges? This main research question was further broken 

down into two research questions: 

Research Question 1 (RQ I): Can objective metrics measure workload during RAS training? 

Research Question 2 (RQ II): Can workload measure and other relevant measures explain 

performance improvement in RAS training? 

 

The experiment design was based on RAS training curriculum, and data collection procedure 

remained consistent throughout the two RQs. Data and results from RQ I contributed to the study 

for RQ II. RQ I focused on measurements of mental workload during training process. As 

mentioned in the introduction, RAS can be cognitively demanding, yet there is a lack of studies 

for objectively measuring workload in RAS. Among the devices which are feasible on RAS 

environment, eye tracker can provide physiological and behavioral measures that are potentially 

responsive to changes in workload. Three questions were examined for proposed metrics: 

Question 1 (Q1): Whether metrics will increase when task difficulty increase, or decrease 

when task difficulty increase? 

Question 2 (Q2): Whether metrics will increase when subjective measures of workload 

increase, or decrease when subjective measures increase? 

Question 3 (Q3): What is the performance of predicting level of subjective workload with 

eye tracking metrics? 

 Methodology 

3.2.1 Robotic system and tasks 

The Da Vinci Skill Simulator (dVSS, Intuitive Surgical, Inc. Sunnyvale, CA) was used to produce 

experimental tasks and train participants for RAS. The system consisted of a surgeon console with 

controls (e.g., foot pedals, master controls, and controls to adjust positioning) and tele-surgical 

robotic arms. The console also included a widely-used simulation software (M-Sim ®) provided by 



25 

 

the dVSS manufacturer, which enabled trainees to perform simulated exercises without physically 

activating the actual robotic arms. Both the console and the software were used in this study.  

 

Tasks and difficulties were selected from the simulation software and recommendations from the 

surgical education community (Alzahrani et al., 2013; Perrenot et al., 2012). These tasks required 

trainees to use fundamental RAS skills like camera control, endowrist manipulation, clutching, 

needle control, and needle driving to transfer or suture objects (as shown in Table 3.1). Depending 

on the specific task, 1-3 levels of difficulty were available in the simulation software, and all levels 

were used in the study. A task at a certain level is referred as an exercise in this paper. Tasks 

analysis based on human processor model (Card, Moran, & Newell, 1986; Feyen & Liu, 2001) and 

Therbligs (Gilbreth & Kent, 1911) was conducted to describe the task demands across task levels. 

See Table A.1 in Appendix for detailed task descriptions and task demands. Task order was not 

randomized due to the curriculum nature of the training, i.e. simpler tasks were prerequisites of 

more advanced tasks. Based on the task orders used in previous studies (Finnegan, Meraney, Staff, 

& Shichman, 2012; Kenney et al., 2009), tasks were performed in the following order: Camera 

Targeting, Peg Board, Ring and Rail, Sponge Suturing, Dots and Needles, and Tubes; and in each 

task, lower (easier) levels were presented before higher (more difficult) levels. 

Table 3.1  Training tasks screeshots 

Screenshots Description Screenshots Description 

Camera Targeting

 

Focus the camera 

on different blue 

spheres spread 

across a broad 

pelvic cavity. Two 

difficulty levels. 

Suture Sponge

 

Drive the needle 

through random 

targets on a 

deformable 

structure. Three 

difficulty levels 

Peg Board

 

Grasp rings on a 

stand with the left 

hand and pass 

them to the right 

hand before place 

them on a peg. 

Two difficulty 

levels. 

Dots and Needles

 

Insert a needle 

through several 

pairs of targets 

that have various 

spatial positions. 

Two difficulty 

levels. 

 

 



26 

 

Table 3.1 Continued 

Screenshots Description Screenshots Description 

Ring and Rail

 

Move a ring along 

a twisted metal rod 

without applying 

excessive force to 

either the ring or 

the rail. Two 

difficulty levels. 

Tubes

 

Drive needle 

through fixed 

targets on a 

cylindrical 

deformable 

structure. One 

difficulty level. 

 

3.2.2 Measurement Metrics 

3.2.2.1 Performance Metric 

The simulation software automatically assessed trainees’ performance based on several criteria, 

e.g., time, economy of motion, drops, instrument collisions, excessive instrument force, 

instruments out of view, and master workspace range, which was summarized as an overall score 

(0-100%) with higher scores representing better performance (Fig. 3.1). The details for calculating 

this score is proprietary and have not been publicized. This overall score was recorded and used 

as the only measurement of performance. Due to the design of the software, this overall score was 

instantly displayed upon completion of each exercise and the participant saw their performance 

score. 

 

Fig. 3.1 Screenshot of task performance 
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3.2.2.2 Subjective Metric 

The NASA-TLX survey (Hart & Staveland, 1988) was used to assess perceived workload of 

participants. The NASA-TLX contains six sub-dimensions of workload (mental demand, physical 

demand, temporal demand, performance, effort, and frustration) and each was rated on a visual 

analogue scale that ranged from 0 (very low) to 10 (very high) (see APPENDIX B). Scores from 

each dimension were added up to calculate the final NASA-TLX workload score, resulting in a 

value of 0 to 60. Although a weighted NASA-TLX has also been used by other investigators, many 

studies have demonstrated a summed score (referred to as Raw TLX) as an acceptable 

implementation of the NASA-TLX tool (Hart, 2006).  

3.2.2.3 Eye Tracking Metrics   

A wearable wireless eye tracking system, Tobii Pro Glasses 2.0, (Tobii Technology AB, Danderyd, 

Sweden) was used to binocularly sample eye movement at 50Hz. The eye tracker consisted of two 

major parts: a camera was located in the middle of the glasses frame (outer side) to record the view 

of scene while sensors were mounted in the inner side of the glasses frame to capture eye 

movements and pupil diameter. Recordings were annotated using the Tobii Pro Lab Software 

(Tobii Technology AB, Danderyd, Sweden) and extracted for further analysis. Four metrics can 

be calculated based on eye tracker data: pupil diameter, gaze entropy, fixation duration, and 

PERCLOS (Percentage of eyelid closure). Even though pupil diameter is a pupillometry metric, 

for simplicity reason, all of the four metrics can be referred to as eye tracking metrics in this study.  

 

Pupil diameter: This metric was estimated by the eye tracking system using images of the eyes. 

Previous work showed association between pupillary dilations and increased cognitive load 

(Beatty, 1982; Beatty & Kahneman, 1966). Pupil diameter of left and right eyes was averaged as 

one measurement. 

 

Gaze entropy: An index that measured visual scanning randomness and was used as a measure of 

mental workload in aviation tasks (Harris, Tole, Stephens, & Ephrath, 1981; Tole, 1983). It takes 

the distribution of all gaze points and summarizes the probability of gaze falling on each position. 

Therefore, gaze entropy tends to be lower when gaze points are in proximity to each other. It was 

calculated based on Shannon entropy theory (Leandro L. Di Stasi et al., 2016; Shannon, 2001) : 
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𝐻𝑔(𝑋) = −∑𝑝(𝑥, 𝑦) ∙ log2 𝑝(𝑥, 𝑦) 

where 𝑝(𝑥, 𝑦) was the probability of gaze falling in the (𝑥, 𝑦) position. A gaze point was estimated 

as coordinates in relation to the 2-dimensional field of view (1920×1080). Gaze entropy for an 

exercise was calculated based on all gaze points that was monitored during the exercise, across all 

possible x and y in the field of view. 

 

Fixation duration: The total amount of time spent in fixations. Studies have suggested that fixation 

duration reflected high information processing load and increased as workload increased (Greef et 

al., 2009; Morris, Rayner, & Pollatsek, 1990a; Recarte & Nunes, 2000). We scaled the time 

duration to the percentage of time in the exercise duration:  

𝐹𝐷% =
𝑆𝑢𝑚 𝑜𝑓 𝑓𝑖𝑥𝑎𝑡𝑖𝑜𝑛 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑠

𝐸𝑥𝑒𝑟𝑐𝑖𝑠𝑒 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛
× 100%. 

 

Percentage of eyelid closure (PERCLOS): PERCLOS was usually calculated as the percentage of 

time during which the pupils were covered by the eyelids by more than 80% of their area 

(Wierwille, Wreggit, Kirn, Ellsworth, & Fairbanks, 1994). Studies showed that higher PERCLOS 

reflected increased fatigue and decreased vigilance (Marquart et al., 2015; Singh, Bhatia, & Kaur, 

2011; Sommer & Golz, 2010). It has also been used as a machine learning feature to predict 

workload (Halverson et al., 2012; Tian, Zhang, Wang, Yan, & Chen, 2019). In this study, since 

the device did not support eyelid closure measurement, it was estimated by the percentage of time 

duration (per exercise) where neither left pupil or right pupil is detected. Since participants’ head 

movements were constrained, this estimation will not be confounded by participants looking away. 

It can be potentially confounded by missing data (lost pupil frames due to device malfunction), 

which was 1% for our device.  

3.2.3 Study procedure 

3.2.3.1 Participants 

This study was reviewed by the university’s Institutional Review Board. Study population was 

surgical trainees who needed robotic skills training (i.e., limited previous robotic experience). 

Eight surgical trainees from a large academic medical school were recruited voluntarily.  All of 

the participants were right-hand dominant, 4 were female, and the mean (± standard deviation) of 

age was 26 ± 1.6 years. None had prior clinical RAS experience.  
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3.2.3.2 Procedure 

The experiment procedure was based on RAS training curricula. The participants attended training 

sessions periodically, and they were asked to complete the same 6 tasks (12 exercise) in each 

session. Sessions were scheduled based on robotic system availability. Participants were informed 

of the session schedule at least one week in advance. Data collection was conducted when any 

participant confirmed attendance. 

 

For each session, after arriving at the operation room, the participants reviewed a study information 

sheet and completed the demographic questionnaire. They were then fitted with the eye tracking 

system. The system was calibrated at the beginning of each session. Baseline pupil diameter for 

the participants was collected following procedures recommended by previous works (Beatty & 

Lucero-Wagoner, 2000; Marshall, 2000; Mosaly, Mazur, & Marks, 2017). Specifically, each 

participant looked at the center of a white screen for 10 seconds (minimum diameter) and then a 

black screen (maximum diameter) for 10 seconds.  

 

Instructions for basic operations of the console (e.g., functions of buttons, and foot pedals) were 

provided to all participants in their first session. Although they were allowed to familiarize 

themselves with the controls, no practice sessions on the study tasks were provided. During each 

task, the console would display pre-programmed messages on task goals and operations, and a 

researcher was present to address any questions or concerns throughout the session. In each session, 

participants were expected to perform all 12 exercises. To maintain consistency with the trainees’ 

curriculum and system usage schedule, the time constraint of each session was 45 minutes. 

Therefore, considering participants’ skill and capability, some advanced difficulty levels were not 

completed in early phase of training. After completing each exercise, the participant completed a 

NASA-TLX survey. Eye tracking data was continuously recorded throughout the session. Fig. 3.2 

shows the examples of participants wearing eye tracker and performing tasks on the simulator. 
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Fig. 3.2 Participants wearing the eye tracker (left) and performing tasks (right) 

 

3.2.4 Data Analysis 

3.2.4.1 Data scaling 

Pupil diameter and gaze entropy were normalized using the feature scaling (Jayalakshmi & 

Santhakumaran, 2011) to scale the data to the range of [0,1], accounting for potential variation 

from individual difference in baseline pupil size and facilitating the comparison between different 

variables. It also prevents the distortion in analysis caused by variable magnitude difference (Al 

Shalabi, Shaaban, & Kasasbeh, 2006). For each participant, the maximum value and minimum 

value from all sessions were used to scale his/her metrics, as shown in the formula below: 

𝑥′ =
𝑥 − min(𝑥)

max(𝑥) − min(𝑥)
 

3.2.4.2 Workload labeling 

In order to examine Q3: What is the performance of predicting level of subjective workload with 

eye tracking metrics? Workload levels were determined by categorizing the total NASA-TLX 

scores into either high or low workload. Although there is still much debate on what NASA-TLX 

threshold is considered “high workload,” some studies observed that scores over 50-55 (out of 100) 

may lead to increased errors (Colle & Reid, 2005; Mazur et al., 2014; Mazur, Mosaly, Hoyle, Jones, 

& Marks, 2013; Yu, Lowndes, Thiels, et al., 2016). Therefore, in this study, scores above 30 (out 

of 60) were categorized as high workload. For low workload, we assumed that the workload scores 
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were normally distributed, and the number of low workload observations should be the same as 

those in the high end. Scores in the middle were not used for classification considering that they 

were ambiguous and may not necessarily represent either high or low workload. 

3.2.4.3 Statistical Analysis 

Three different analysis techniques were used to examine the 3 questions. Significance level for 

all analyses was set at α = 0.05. When appropriate, p-values were corrected using Benjamini-

Hochberg procedure (Benjamini & Hochberg, 1995). 

 

Q1: Mixed effects models were used to determine eye tracking metrics’ sensitivity to changes in 

task levels (difficulty). This approach accounted for random effects of subject and repeated 

measures by allowing varying intercept for each subject (Cnaan, Laird, & Slasor, 1997; 

Dingemanse & Dochtermann, 2013). Each task was fitted by separate models, resulting in 5 

models (Task Tube had only one level of difficulty and was not tested). 

 

Q2: Repeated measure correlation: 𝑟rm  (Bakdash & Marusich, 2017), were used to examine 

relationships between eye tracking metrics and NASA-TLX ratings.  Instead of the more common 

Pearson correlation, 𝑟rm coefficient was estimated using analysis of covariance, where participant 

was treated as a factor level. This technique gives a more accurate estimation of the association 

between two variables when underlying individual factors can affect the relationship. The formula 

of 𝑟rm is expressed in the form of sum of squares: 

𝑟𝑟𝑚 = √
𝑆𝑆𝑀𝑒𝑎𝑠𝑢𝑟𝑒

𝑆𝑆𝑀𝑒𝑎𝑠𝑢𝑟𝑒 + 𝑆𝑆𝐸𝑟𝑟𝑜𝑟
 

where 𝑆𝑆𝐸𝑟𝑟𝑜𝑟  is the residual sum of squares of the linear model: 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 1 = 𝛽0 +

𝛽1 × 𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡𝑠 + 𝛽2 × 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 2 + 𝜖; 𝑆𝑆𝑀𝑒𝑎𝑠𝑢𝑟𝑒 + 𝑆𝑆𝐸𝑟𝑟𝑜𝑟 is the residual sum of squares 

of the linear model: 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 1 = 𝛽0 + 𝛽1 × 𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡𝑠 + 𝜖. 

 

Q3: Machine learning algorithms were used to explore the joint capability of various eye tracking 

features for detecting high workload. Three different algorithms were used: logistic regression, 

Naïve Bayes algorithm and Support Vector Machine (SVM), all of which have been used for 

workload classification in previous studies (So, Wong, Mak, & Chan, 2017; Solovey et al., 2014). 
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For SVM, three kernel specifications were used: Linear, Gaussian and Polynomial. Details for the 

three algorithms can be found in an introductory book for statistical learning (James et al., 2013).  

For example, Naïve Bayes was based on Bayesian theorem: 𝑃(𝐶𝑗|𝑋) ∝ 𝑃(𝐶𝑗) ∏ 𝑃(𝑥𝑖|𝐶𝑗): the 

probability of a certain class, given all evidence, was the product of prior probability of the class 

and all conditional probability of evidences. And its main advantages were the effectiveness for 

small datasets (Jyothi & Bhargavi, 2009) and applicability to different types of data (Domingos & 

Pazzani, 1997). A k-fold cross validation procedure was used for model training and testing (Hastie, 

Friedman, & Tibshirani, 2001). Based on sample size, three folds were performed. A confusion 

matrix (Fawcett, 2006) was used to determine the accuracy and sensitivity of eye metrics in 

predicting workload.  

 Results 

3.3.1 Descriptive data 

RQ I spanned about 1.5 months. A total of 15 sessions across all participants were collected over 

the study period. Two participants attended 3 sessions, 3 participants attended 2 sessions, and 3 

participants attended 1 session. A total of 168 exercises were collected, including performance 

scores, NASA-TLX ratings, and eye tracking features. Minimum exercises completed in a 

session was n = 8, and all participants completed each exercise at least once. Some participants 

did not complete all 12 exercises as explained in the methods. Average and standard deviation of 

exercise completion time was 194s ± 157s. The standard deviation was large because difficult 

exercises took significantly more time than easy exercises. Mean value of all measurements were 

reported in Table 3.2. The trend of task performance and NASA-TLX score in different difficulty 

level is shown in  

Fig. 3.3. Histograms of NASA-TLX and subscales can be found in APPENDIX C. 
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Table 3.2  Mean value of all metrics across tasks and levels 

Task CT  PB  RR  SS  DN  T 

Level 1 2  1 2  1 2  1 2 3  1 2  1 

Performance metric                  

Performance 77.6 69.9  77.2 89.7  88.9 65.0  68.8 68.8 64.2  77.6 68.4  56.7 

Subjective metric                  

NASA-TLX 13.6 19.7  15.6 17.0  17.3 30.4  24.4 26.1 26.6  25.9 26.8  30.8 

Eye tracking metrics                  

Pupil diameter 0.54 0.62  0.67 0.71  0.47 0.59  0.45 0.54 0.53  0.48 0.54  0.63 

Gaze entropy 0.50 0.60  0.58 0.63  0.38 0.76  0.51 0.68 0.70  0.60 0.60  0.72 

Fixation duration 0.84 0.80  0.81 0.79  0.83 0.83  0.81 0.84 0.84  0.87 0.84  0.81 

PERCLOS 0.07 0.09  0.10 0.11  0.10 0.08  0.13 0.08 0.08  0.08 0.10  0.12 

* CT: Camera Targeting, PB: Peg Board, RR: Ring and Rail, SS: Suture Sponge, DN: Dots and Needles, T: Tubes 

 

Fig. 3.3 Mean value of task performance and NASA-TLX across tasks and levels 

 

3.3.2 Eye Tracking Metrics and Task Difficulty 

Mixed effect models were used to test eye tracking metrics’ sensitivity to changes in task difficulty. 

With task goal and skill remaining consistent, the simulator increased difficulty levels by 

incorporating additional task requirements, which increased the task load.  Since changes in 

difficulty levels varied by task, each task was fitted with a model separately. Results for mixed 
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effect models are shown in Table 3.3, excluding results for fixation duration and PERCLOS, which 

did not reach statistical significance.  

Table 3.3 Mixed models summary for effects of task level on eye tracking metrics 

 Task  CT  PB  RR  SS  DN 

 Level  2  2  2  2 3  2 

Subjective metric             

NASA-TLX 

Coefficient  6.13  1.40  13.13  3.19 3.65  2.26 

p  .002  .348  < .001  .139 .091  .398 

Cohen’s d  1.58  .42  2.76  .53 .61  .41 

Eye tracking metric             

Pupil diameter 

Coefficient  .08  .03  .12  .08 .07  .05 

p  < .001  .026  < .001  < .001 < .001  .024 

Cohen’s d  2.38  1.04  3.02  1.49 1.40  1.20 

   
 

 
 

 
 

 
  

 
 

Gaze entropy 

Coefficient  .11  .05  .38  .17 .18  .03 

p  .004  .082  < .001  < .001 < .001  .427 

Cohen’s d  1.40  .79  3.91  1.86 2.01  .41 

* CT: Camera Targeting, PB: Peg Board, RR: Ring and Rail, SS: Suture Sponge, DN: Dots and Needles, T: Tubes 

* Level 1 was the reference level 

* Effect size of Cohen’s d: Small - .20, Medium - .50, Large - .80, Very large - 1.20 (Sawilowsky, 2009) 

 

The average NASA-TLX in higher level of difficulty was always higher (Table 3.2). Yet this 

relationship was statistically significant for only 2 of the tasks. Therefore, increase in task load did 

not necessarily increase subjective workload. Increasing difficulty was observed to significantly 

increase pupil diameter for all tasks (all p-values < .05). The positive coefficients suggested that 

pupil diameters in level 2 for all tasks were larger than that in level 1. Level effects (Cohen’s d) in 

tasks were very large except for task Peg Board. However, when there were 3 levels of difficulty 

(Suture Sponge), post hoc analysis of Tukey test suggested that there was no difference between 

level 2 and 3 (p-value = .964).  

 

For gaze entropy, significant effect of difficulty level was observed in the following tasks: Camera 

Targeting, Ring and Rail and Suture Sponge. Based on Cohen’s d, effects were large in all of the 

3 tasks. The positive coefficients suggested that gaze entropy in level 2 was greater than that of 

level 1. Gaze entropy between level 2 and level 3 in task Suture Sponge was not significantly 

different. Mean values of all eye metrics in each task level are presented in Fig. 3.4. 
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Fig. 3.4 Mean value of eye tracking metrics across tasks and levels 

 

3.3.3 Eye tracking Metrics and NASA-TLX 

NASA-TLX survey captured the perceived workload (subjective workload) from participants. And 

the repeated measures correlations examined whether the information aligned with that from the 

eye metrics. Of the four eye tracking metrics, only gaze entropy had significant correlation with 

NASA-TLX ratings (rrm  = .51, p < .001), indicating increase in gaze entropy with increased 

perceived workload. Fig. 3.5 illustrates the distribution of eye tracking measures and workload, 

colored by participant. The correlations also varied among tasks and all correlation values 

including other eye tracking metrics are reported in Table 3.4. Correlations between eye metrics 

and subscales of NASA-TLX can be found in APPENDIX D. 

  

 

 

Eye tracking metrics 
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Fig. 3.5 Distribution of eye tracking metrics over workload 

 (colored and shaped by participants) 

Table 3.4  Repeated correlation between subjective metric and eye tracking metrics 

  By Task   

Eye tracking metrics  CT 

n = 30 

PB 

n = 30 

RR 

n = 30 

SS 

n = 40 

DN 

n = 26 

T 

n = 12 

 All Task  

n = 168 

Pupil diameter 
rrm .52 .19 .58 .43 .55 .63  –.12 

p .032 .538 .014 .032 .039 .250  .221 

  
 

    
 

 
 

Gaze entropy 
rrm .62 .34 .76 .49 .45 –.42  .51 

p .009 .224 < .001 .014 .119 .522  < .001 

  
 

    
 

 
 

Fixation duration 
rrm –.20 –.53 –.11 –.03 .07 .36  .10 

p .522 .032 .736 .851 .815 .561  .261 

  
 

    
 

 
 

PERCLOS 
rrm .20 .70 .13 –.04 –.08 –.61  .04 

p .522 .002 .702 .851 .815 .263  .572 

* CT: Camera Targeting, PB: Peg Board, RR: Ring and Rail, SS: Suture Sponge, DN: Dots and Needles, T: Tubes 

 

Eye tracking metrics 
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3.3.4 Classification of workload 

There were 43 high workload observations with NASA-TLX scores above 30 (which is the 25% 

quantile). The same number of observations (43) in the lowest end were regarded as low workload, 

which had values below or equal to 14.5 (which is the 75% quantile). The 86 observations were 

partitioned into 3 sets with the size of 28, 28 and 30 for the 3-fold cross-validation. Using the 

machine learning classification, nine features were included to classify low/high workload: two 

demographic features (participant gender and trainee level (medical student/surgical resident)) and 

7 eye tracking features (left/right pupil diameter mean, left/right pupil diameter standard deviation, 

gaze entropy, fixation duration and PERCLOS). Mean values of four main eye metrics in low 

workload and high workload conditions are illustrated in Fig. 3.6. Three algorithms: Logistic 

regression, SVM (with three different kernels) and Naïve Bayes were applied to build and validate 

the classification model. The average accuracy of eye tracking measures in predicting workload 

was 89.3% and average F1 score was 0.89. The confusion matrix of the 3-fold cross validations 

for each algorithm are presented in Table 3.5 (1)-(5). SVM using polynomial kernel showed the 

best performance, with an average accuracy of 94.3% and average F1 score of 0.94. 

 

Fig. 3.6 Mean value of eye tracking metrics in high/low workload  
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Table 3.5  Workload classification confusion matrix for testing dataset 

(86 bservations stratified into 3 folds) 

(1) Logistic regression 

Logistic Actual class   

  High workload Low workload   

Predicted 

class 

High 

workload 

43.0%±0.3% 

True positive 

5.6%±6.9% 

False positive 

86.3%±1.5% 

Precision 
 

Low 

workload 

7.0%±0.3% 

False negative 

44.4%±6.9% 

True negative 

89.6%±12.0% 

NPV 
 

  
86.0%±0.5% 

Sensitivity 

86.0%±0.5% 

Specificity 

87.4%±6.6% 

Accuracy 

0.87±0.08 

F1 score 

 

 (2) Naïve Bayes 

Naïve Bayes Actual class   

  High workload Low workload   

Predicted 

class 

High 

workload 

44.1%±2.2% 

True positive 

9.4%±5.6% 

False positive 

82.8%±9.5%  

Precision 
 

Low 

workload 

5.9%±2.2% 

False negati.ve 

40.6%±5.5% 

True negative 

87.1%±5.4%  

NPV 

 

 

  
88.3%±4.4% 

Sensitivity 

81.1%±11.2% 

Specificity 

84.7%±7.7% 

Accuracy 

0.85±0.07 

F1 score 

 

(3) SVM (Linear Kernel) 

SVM-Linear Actual class   

  High workload Low workload   

Predicted 

class 

High 

workload 

44.1%±2.2% 

True positive 

3.3%±5.8% 

False positive 

89.1%±2.8% 

Precision 
 

Low 

workload 

5.9%±2.2% 

False negative 

46.7%±5.8% 

True negative 

94.1%±10.2% 

NPV 
 

  
88.3%±4.4%  

Sensitivity 

88.3%±4.4% 

Specificity 

90.8%±3.6% 

Accuracy 

0.91±0.04 

F1 score 

 

(4) SVM (Gaussian Kernel) 

SVM-Gaussian Actual class   

  High workload Low workload   

Predicted 

class 

High 

workload 

42.9%±3.7% 

True positive 

3.3%±5.8% 

False positive 

87.4%±5.0% 

Precision 
 

Low 

workload 

7.1%±3.7%  

False negative 

46.7%±5.8% 

True negative 

94.1%±10.2% 

NPV 
 

  
85.9%±7.4% 

Sensitivity 

85.9%±7.4% 

Specificity 

89.6%±3.1% 

Accuracy 

0.90±0.04 

F1 score 
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Table 3.5 Continued 

(5) SVM (Polynomial kernel) 

SVM-Poly Actual class   

  High workload Low workload   

Predicted 

class 

High 

workload 

47.6%±4.1% 

True positive 

3.3%±5.8% 

False positive 

95.8%±7.2% 

Precision 
 

Low 

workload 

2.4%±4.1% 

 False negative 

46.7%±5.8% 

True negative 

94.4%±9.6% 

NPV 
 

  
95.2%±8.2% 

Sensitivity 

95.2%±8.2% 

Specificity 

94.3%±5.2% 

Accuracy 

0.94±0.06 

F1 score 

 

Note:  

The confusion matrix contains 10 indexes: 

True Positive (TP): Proportion of observations that were classified correctly as high workload 

False Positive (FP): Proportion of observations that were classified incorrectly as high workload 

True negative (TN):  Proportion of observations that were classified correctly as low workload 

False negative (FN): Proportion of observations that were classified incorrectly as low workload 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
× 100% 

Negative predictive value (NPV) =
𝑇𝑁

𝑇𝑁+𝐹𝑁
× 100% 

Sensitivity =
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100% 

Specificity =
𝑇𝑁

𝑇𝑁+𝐹𝑃
× 100% 

Accuracy =
𝑇𝑃+𝑇𝑁

𝑃+𝑁
× 100% 

F1 score =
2𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
 

Results were reported as the mean ± standard deviation of 3 validations. 

 Discussion 

This study in RQ I investigated the relationship between eye tracking measures and workload in 

RAS. The first question was whether eye tracking metrics can distinguish between varying work 

demands due to task difficulty level. The findings generally supported the sensitivity of eye 

tracking metrics for distinguishing the differences. Mixed effect models found significant task 

difficulty effects on pupil diameter and gaze entropy. The second question was whether eye 

tracking metrics are correlated with subjective workload and only gaze entropy was proven to be 
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correlated. The third question examined the feasibility of predicting subjective workload level with 

eye tracking metrics, and classification models have achieved high accuracy. 

 

For Q1 and Q2, both fixation and PERCLOS showed no significant associations with workload. 

Previous studies have explained that fixation duration reflects information processing load (Morris, 

Rayner, & Pollatsek, 1990b; Recarte & Nunes, 2000), which can be a driving factor for workload. 

And fixation duration has been found responsive to difficulty in task that requires information 

acquisition from text or image (Di Stasi, Antolí, & Cañas, 2013; He, Wang, Gao, & Chen, 2012). 

However, for the RAS training tasks, the information processing load was fairly constant, 

especially after the trainees understood the goal of a task. Changes in task difficulty were attributed 

more to the requirements of eye-hand coordination and action planning.  PERCLOS was more 

commonly linked to fatigue, yet also suggested as a measure for estimating workload (Halverson 

et al., 2012; Tian et al., 2019).  When under prolonged states of low workload, it is possible that 

the state of drowsiness can co-occur with a state of low attentional arousal. In this robotic training 

setting where participants were actively engaged, low arousal levels were unlikely, which explains 

the low PERCLOS values observed. The low PERCLOS values also suggested that RQ II would 

not need to include measurements for fatigue. 

 

Results for gaze entropy from both Q1 and Q2 supported the hypothesis that visual exploration 

becomes less fixed (i.e., the gaze pattern becomes more random) during more complex tasks. No 

previous studies have studied how workload impacts gaze entropy in robotic surgery, yet Di Stasi 

et al., (2016, 2017) showed that gaze entropy increased with increase in laparoscopic surgical task 

complexity. They have explained that without knowing the optimal visual exploration strategy, 

surgeons might follow a suboptimal approach, which caused gaze to move constantly, especially 

during complex tasks. For example, when trainees are unfamiliar with the environment and 

insensitive to the visual input, they cannot adopt the optimal scanning strategy. As the task 

difficulty increases, they need more glances to compensate the sub-optimal strategy. Similarly, 

when trainees are novice in console operations, they tend to make mistakes and need more 

movements to complete tasks. However, the relationship between gaze entropy and workload may 

be dependent on task structure. For RAS exercises used in this study, higher level of difficulty will 

inevitably require more gaze points. Although this change in task structure co-occurred with 
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increase in task load, it may not always be the case, especially when visual search load is low in 

the task. 

 

Pupil diameter was observed to be larger in higher level of difficulty, which agrees with previous 

studies in surgical laparoscopy (Zheng et al., 2012) and other domains (Beatty & Kahneman, 1966; 

Palinko, Kun, Shyrokov, & Heeman, 2010; Schwalm, Keinath, & Zimmer, 2008).  However, 

studies have also noted that the pupillary response to task difficulty converged with NASA-TLX 

rating (Marandi, Samani, & Madeleine, 2018; Recarte, Pérez, Conchillo, & Nunes, 2008). Yet our 

results for Q3 showed otherwise. We have also analyzed the correlations between pupil diameter 

and the six subscales of NASA-TLX, yet again no significant correlation has been found. It has 

been well established that pupil dilates during mental activities (Beatty, 1982), but workload is not 

the only cause to mental activities. Other factors known to revoke pupillary changes include fatigue 

(Morad, Lemberg, Yofe, & Dagan, 2000), emotion arousal (Partala & Surakka, 2003), and visual 

stimulus (Barbur, Harlow, & Sahraie, 1992). The RAS task environment abounds with visual 

stimulus like color changes, light changes and moving objects which could have confounded the 

workload’s effect on pupil dilation. For example, participants who experienced high workload 

tended to make mistakes and see more of objects flashing or moving, which can lead to pupillary 

constriction. The fact that fatigue can increase pupillary variability and that both negative and 

positive emotions can lead to increased pupil size could further affect the consistency of pupillary 

measures for workload.  

 

The relationship between NASA-TLX ratings and objective measures has been long studied, yet 

it remains debatable which one is a better measurement of workload. For perceived workload, 

NASA-TLX has been more widely used and recommended as a practical and accurate way for 

measurement (Carswell et al., 2005; Dias et al., 2018). Recent work by Matthews, Reinerman-

Jones, Barber, and Abich (2015) found that many physiological measures as well as NASA-TLX 

ratings were sensitive to changes in workload, but their estimates were uncorrelated. They 

suggested that this was caused by individual differences or the failure on assuming workload as a 

unitary latent construct. Other studies explained that physiological methods gave more information 

on how individuals responded to workload instead of what was imposed on them (Cain, 2007; 

Najmedin Meshkati, Hancock, Rahimi, & Dawes, 1995). Our results of gaze entropy support the 



42 

 

assumption that a latent workload construct can be estimated by both subjective and objective 

measures. However, there was still variability between gaze entropy and NASA-TLX, which 

supports the argument that workload is multi-factorial and each method measured unique 

information. Therefore, the machine learning classification approach was used to combine four 

eye metrics and investigate if they can estimate the same level of workload as the NASA-TLX 

does but in a less disruptive way. 

 

In the classification models, the 9 features classified between low and high workload labels with 

an average accuracy of 89.3%. Similar classification study using eye-related measures reported an 

accuracy range of 16-98% in different models (Halverson et al., 2012). In Halverson’s study, there 

were two tasks: high workload and low workload, where participants needed to monitor more 

vehicles in the high workload task. In contrast, we did not classify the different tasks, but the 

different levels of perceived workload of participants using their NASA-TLX ratings. This method 

reflects more of the trainees’ capacity in dealing with task demand. Classification of workload is 

clinically helpful to surgical education as the technique is able to provide real-time feedback on 

trainees’ workload status, and the instances of high workload, which indicate when trainees are 

experiencing difficulty. 

  

Quantitative eye metrics provide feedback regarding when the trainees’ visual behaviors are 

inefficient and when they experience high workload. Instructors can personalize training tasks to 

help trainees learn how to process visual cues and practice specific skills before proceeding to 

more complex tasks. This study is done in a global level for tasks, i.e. we did not quantify the 

workload variations within an exercise. Instantaneous self-assessment may be considered for 

verifying workload changes within an exercise (Tattersall & Foord, 1996). Future work may also 

consider techniques like Hidden Markov Model for identifying high-level tasks (Lalys, Riffaud, 

Bouget, & Jannin, 2012) and decompose tasks and skills (Reiley & Hager, 2009), which can 

contribute to the understanding the relationship between workload and task structure. 
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4. RESEARCH QUESTION II: PERFORMANCE MEASURES 

 Research Framework 

The research question in RQ II is: Can workload measure and other relevant measures explain 

performance improvement in RAS training? The main interest was individuals’ performance 

changes between sessions, instead of inter-participant differences. Task performance is a 

multifaceted result driven by various factors including workload. Results from RQ I suggest that 

pupil diameter and gaze entropy could measure workload. Therefore, RQ II used pupil diameter 

as a measure of workload and gaze entropy as a measure of gaze pattern (what the metric is truly 

measuring). In addition, studies have shown that task engagement was related to performance and 

could be measured through EEG signals (Freeman, Mikulka, Scerbo, Prinzel, & Clouatre, 2000). 

Therefore, RQ II investigated how workload, gaze pattern and engagement changed with training. 

Three specific questions were examined for these objective metrics: 

Q1: For circumstances where performance improves, versus those in which performance 

does not improve, whether changes in the objective metrics are different? 

Q2: Whether the changes in performance between sessions are correlated with changes in 

objective metrics? 

Q3: What is the performance of predicting improvement with changes in objective metrics? 

 

RQ II is a continuing extension of RQ I. The training tasks and training procedure were exactly 

the same and will not be repeatedly described in the methodology. 

 Methodology 

4.2.1 Measurement Metrics 

Based on results from RQ I, pupil diameter was used as a metric for mental workload and gaze 

entropy was used as a metric for scanning pattern. Calculation for these two metrics can be found 

in the methodology of RQ I. 

 

The third objective metric was obtained from EEG measures. EEG signals were collected through 

the mobile EEG device EMOTIV EPOC and EMOTIV Pro software. Signals were sampled at 256 
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Hz on 14 channels: AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8 and AF4. EEG signals 

were filtered using a lower-pass filter of 50 Hz and a high-pass filter of 1 Hz. Then Fast Fourier 

Transform was applied to transform the signals into power spectral density. Three frequency bands 

were extracted: theta (4-8 Hz), alpha (8-12 Hz), beta (12-25 Hz). Average EEG power of the 14 

channels in different bands were combined to measure engagement during task. 

 

Engagement refers to the ability to maintain focused attention and to remain alert to stimuli for 

certain periods of time (See, Howe, Warm, & Dember, 1995). It has been found predictive of 

learning outcomes in previous works (Chaouachi & Frasson, 2010; Cirett Galán & Beal, 2012). In 

this study, engagement was measured using an EEG metric: Engagement Index (EI). EI was 

calculated by taking the ratio of three power spectral density frequency bands (Freeman et al., 

2004): 

𝐸𝐼 =
𝐵𝑒𝑡𝑎

𝐴𝑙𝑝ℎ𝑎 + 𝑇ℎ𝑒𝑡𝑎
 

The rationale of EI is that increases in arousal and attention are reflected in the beta bandwidth 

while decreases are reflected in the alpha and theta bandwidths (Freeman, Mikulka, Prinzel, & 

Scerbo, 1999). It has been validated as an reliable measurement for engagement in adaptive system  

(Freeman et al., 2004; Mikulka, Scerbo, & Freeman, 2002). When first proposed, EI was calculated 

only using four sites: Cz,  Pz,  P3, and  P4 (Pope, Bogart, & Bartolome, 1995), yet no solid 

rationality was given for excluding other channels. Later studies have used more or all channels 

available and obtained similar results (Chaouachi & Frasson, 2010; Freeman et al., 2000). 

Therefore, we have used all channels to calculate EI. 

 

Performance metric was the same as described in RQ I. Raw TLX was used as a subjective metric 

for workload. In addition, two subscales of NASA-TLX: mental demand and effort were analyzed 

individually. Analyzing subscales was another common variation for NASA-TLX applications 

(Hart, 2006; Hoonakker et al., 2011). The consideration here is that pupil diameter and EI 

measurements might be associated with the two sub-dimensions respectively. 
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4.2.2 Data Analysis 

4.2.2.1 Session variations 

RQ II was interested in individual’s performance changes between sessions. Therefore, all metrics 

were processed into session variations. The definitions of session variations are shown in Table 

4.1. The first column gives the metric (and what it measures), the second column gives the symbol 

of the metric session variation and the third column gives the definition/calculation for the 

variation. For example, the variation for performance was defined as: 

∆𝑃𝑖,𝑗,𝑘 = 𝑃𝑖,𝑗,𝑘 − 𝑃𝑖,𝑗,𝑘−1 

Where, 𝑖 = 1,2, ⋯ ,7 represents the subject ID, 𝑗 = 1,2, ⋯ ,12 represents the exercise ID and 𝑘 =

2,3,4,5 represents the session ID. Therefore, ∆𝑃𝑖,𝑗,𝑘 is how much participant 𝑖’s performance of 

exercise 𝑗 changed from session 𝑘 − 1 to session 𝑘.   

Table 4.1  List of session variations 

Metrics Symbol Calculation 

Performance metric   

Performance  ∆𝑃 ∆𝑃𝑖,𝑗,𝑘 = 𝑃𝑖,𝑗,𝑘 − 𝑃𝑖,𝑗,𝑘−1 

EEG metric   

EI (engagement) ∆𝐸 ∆𝐸𝑖,𝑗,𝑘 = 𝐸𝑖,𝑗,𝑘 − 𝐸𝑖,𝑗,𝑘−1 

Eye tracking metric   

Pupil diameter (mental workload) ∆𝑀 ∆𝑀𝑖,𝑗,𝑘 = 𝑀𝑖,𝑗,𝑘 − 𝑀𝑖,𝑗,𝑘−1 

Gaze entropy (scan strategy) ∆𝑆 ∆𝑆𝑖,𝑗,𝑘 = 𝑆𝑖,𝑗,𝑘 − 𝑆𝑖,𝑗,𝑘−1 

Subjective metrics   

Raw TLX ∆𝑁𝐴𝑆𝐴 ∆𝑁𝐴𝑆𝐴𝑖,𝑗,𝑘 = 𝑁𝐴𝑆𝐴𝑖,𝑗,𝑘 − 𝑁𝐴𝑆𝐴𝑖,𝑗,𝑘−1 

NASA-TLX mental demand ∆𝑁𝐴𝑆𝐴𝑀 ∆𝑁𝐴𝑆𝐴𝑖,𝑗,𝑘
𝑀 = 𝑁𝐴𝑆𝐴𝑖,𝑗,𝑘

𝑀 − 𝑁𝐴𝑆𝐴𝑖,𝑗,𝑘−1
𝑀  

NASA-TLX effort ∆𝑁𝐴𝑆𝐴𝐸  ∆𝑁𝐴𝑆𝐴𝑖,𝑗,𝑘
𝐸 = 𝑁𝐴𝑆𝐴𝑖,𝑗,𝑘

𝐸 − 𝑁𝐴𝑆𝐴𝑖,𝑗,𝑘−1
𝐸  

 

4.2.2.2 Improvement Labeling 

In order to examine Q1 and Q3, the completion of exercise was categorized into improvement or 

non-improvement based on the value of ∆𝑃. Instances where ∆𝑃 were below 0 were labeled as 

Decrease (non-improvement). For improvement, we assumed that ∆𝑃 was normally distributed 

and the number of Increase (improvement) should be the same as the number of Decrease in the 

other tail. Observations in the middle were small increases in performance and considered 

ambiguous, which were not be used for Q1 and Q3 but still valid in Q2. 
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4.2.2.3 Statistical Analysis 

Three different analysis techniques were used to examine the 3 questions. Significance level for 

all analyses was set at α = 0.05. When appropriate, p-values were corrected using Benjamini-

Hochberg procedure. 

 

Q1: The Analysis of Variance (ANOVA) was used to examine the difference of group means for 

two groups: Decrease and Increase. ANOVA is a widely used statistical technique for comparing 

group means (Montgomery, 2017). We seek to examine if the session variations of objective 

metrics were different for the two groups. Therefore, ∆𝑀 , ∆𝐸  and ∆𝑆  were used a response 

variables for ANOVA models respectively. Three subjective metrics: ∆𝑁𝐴𝑆𝐴 , ∆𝑁𝐴𝑆𝐴𝑀  and 

∆𝑁𝐴𝑆𝐴𝐸  were also analyzed using ANOVA. 

 

Q2: The relationship between changes in performance and changes in objective metrics was 

examined using repeated measures correlation as described in RQ I. Correlations were calculated 

between ∆𝑃 and objective metrics/subjective metrics. 

 

Q3: The same classification procedure as described in RQ I was used to explore the joint capability 

of objective metrics for predicting improvement. Specifically, the models used sessions variations 

of objective metrics to predict the label of improvement. 

 Results 

4.3.1 Descriptive data 

RQ II spanned about 3 months (including data collection in RQ I). There is one participant who 

only attended 1 session and was excluded from the analysis. Over the study period, a total of 26 

sessions (294 exercises) were collected from 7 participants. 4 participants attended 3 sessions, 2 

participants attended 5 sessions, and 1 participant attended 4 session. And all participants 

completed each exercise at least twice.  Average values of all metrics from the first training attempt 

to the fifth are presented in Table 4.2. For most tasks, average performance became higher in later 

training attempts. Session variations were calculated for 212 exercises (𝑘 ≥ 2). And among these 

212 exercises, 61 observations have ∆𝑃 below 0 (which is the 30% quantile) and were labeled as 
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Decrease. Correspondingly, 61 observations with the highest ∆𝑃 (≥ 13, which is the 70% quantile) 

were labeled as Increase (See Fig. 4.1). 

 

Table 4.2  Mean value of all metrics across tasks and attempts 

Task  CT  PB  RR 

Attempt  1 2 3 4 5  1 2 3 4 5  1 2 3 4 5 

Performance metric                   

Performance  64.5 78.9 82.4 90.5 94.0  75.9 87.9 87.5 93.7 94.5  67.6 80.6 81.2 91.5 90.0 

Subjective metric                   

NASA-TLX  21.2 16.0 12.8 10.5 11.0  22.0 13.6 11.1 10.0 12.4  30.2 21.8 18.9 16.9 17.1 

EEG metric                   

EI  0.22 0.19 0.19 0.22 0.2  0.21 0.17 0.18 0.18 0.21  0.21 0.18 0.19 0.19 0.19 

Eye metrics                   

Pupil diameter  0.59 0.58 0.54 0.57 0.52  0.68 0.66 0.68 0.67 0.69  0.54 0.51 0.47 0.58 0.6 

Gaze entropy  0.59 0.52 0.57 0.6 0.41  0.69 0.59 0.53 0.65 0.45  0.69 0.51 0.51 0.55 0.48 

                   

Task  SS  DN  T 

Attempt  1 2 3 4 5  1 2 3 4 5  1 2 3 4 5 

Performance metric                   

Performance  57.0 72.5 79.5 82.7 82.7  63.0 73.6 82.5 76.5 92.5  49.8 53.6 71.7 71.7 82.5 

Subjective metric                   

NASA-TLX  28.8 24.2 20.4 20.2 20.5  28.6 25.2 22.5 29.9 22.0  32.8 29.9 22.9 32.8 21.0 

EEG metric                   

EI  0.19 0.16 0.16 0.19 0.19  0.19 0.18 0.17 0.19 0.19  0.21 0.17 0.16 0.19 0.19 

Eye metrics                   

Pupil diameter  0.55 0.48 0.46 0.63 0.5  0.53 0.49 0.48 0.62 0.47  0.66 0.6 0.57 0.71 0.63 

Gaze entropy  0.72 0.61 0.64 0.79 0.72  0.64 0.58 0.65 0.84 0.7  0.92 0.85 0.8 0.97 0.71 

* CT: Camera Targeting, PB: Peg Board, RR: Ring and Rail, SS: Suture Sponge, DN: Dots and Needles, T: Tubes 

 

 

Fig. 4.1  Histogram of performance change 
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4.3.2 Objective Metrics and Improvement 

The variations of objective metrics: ∆𝑀 (pupil diameter), ∆𝐸 (EI) and ∆𝑆 (gaze entropy) were 

hypothesized to be different under two conditions. ANOVA models were used to compare the 

mean between two groups: Decrease and Increase. F tests suggested there was significant 

difference between conditions for two sessions variations: ∆𝐸 (F1,120 = 11.47, p <. 001) and ∆𝑆 

( F1,120 = 21.75, p < .001 ). The mean and standard deviation of session variations under two 

conditions are shown in Table 4.3. In the Decrease group, the mean for  ∆𝐸 and ∆𝑆 were both 

above zero while in the Increase group the mean were negative. Mean values of objective metrics 

variations by task are depicted in Fig. 4.2. 

Table 4.3 Objective metrics variation and practice outcome 

  ∆𝑃: Decrease   ∆𝑃: Increase 

 Objective metrics Mean SD  Mean SD 
EEG metric 

∆𝐸 EI .01 .05  -0.02 0.06 
Eye metrics 

∆𝑀 Pupil diameter -.01 .11  -0.01 0.06 

∆𝑆 Gaze entropy .05 .17  -0.1 0.18 

 

Fig. 4.2  Mean values of objective variations in two conditions by task 
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4.3.3 Objective Metrics and Performance Change 

The repeated measures correlation test was used to explore whether objective metrics variations 

were correlated with the performance variation. And the results suggested that both 

∆𝐸 (rrm = -.27, p <.001) and ∆S (rrm = -.38, p <.001) were significantly correlated with ∆P. The 

effect size was small for ∆𝐸 and medium for ∆S. The significant correlations indicated that larger 

changes in performance were likely to be accompanied by larger changes in EI and gaze entropy. 

Although the overall correlations were significant, there was variability among participants (Fig. 

4.3).  

 

   

Fig. 4.3  Correlation between performance variation and objective metrics variation 

(colored and shaped by participants) 

 

4.3.4 Classification of improvement 

Logistic regression, Naïve Beys and SVM algorithms were used to train the models and predict 

the label of improvement. The models took 4 features as input: three metric session variations: ∆𝑀, 

∆𝐸 and ∆𝑆; and time interval between sessions. The 122 observations were partitioned into 3 sets 

with the size of 40, 40 and 42 for the 3-fold cross-validation. The average accuracy of validation 

was 68.5% and the average F1 score 0.67. The confusion matrix of the 3-fold cross validations for 

each algorithm are presented in  

Table 4.4 (1)-(5). And the Naïve Bayes model has achieved the best performance with an average 

accuracy of 72.3% and average F1 score of 0.70. 

 

-25

0

25

50

-0.2 -0.1 0.0 0.1 0.2

E  (Engagement)

P
 (

P
e

rf
o

rm
a

n
c
e

)

-25

0

25

50

-0.50 -0.25 0.00 0.25

S  (Gaze entropy)

P
 (

P
e

rf
o

rm
a

n
c
e

)

EEG metric Eye metric 



50 

 

 

Table 4.4 Improvement classification confusion matrix for testing dataset 

(122 observations stratified into 3 folds) 

(1) Logistic regression 

Logistic Actual class   

  Decrease Increase   

Predicted 

class 

Decrease 
33.0%±13.3% 

True positive 

14.8%±2.8% 

False positive 

67.8%±7.1% 

Precision 
 

Increase 
17.0%±13.3% 

False negative 

35.2%±2.8% 

True negative 

70.8%±19.7% 

NPV 
 

  
70.4%±5.6% 

Sensitivity 

70.4%±5.6% 

Specificity 

68.2%±12.5% 

Accuracy 

0.66±0.17 F1 

score 

 

(2) Naïve Bayes 

Naïve Bayes Actual class   

  Decrease Increase   

Predicted 

class 

Decrease 
32.9%±9.4% 

True positive 

10.6%±2.7% 

False positive 

74.6%±9.4%  

Precision 
 

Increase 
17.1%±9.4% 

False negative 

39.4%±2.7% 

True negative 

70.8%±13.1%  

NPV 

 

 

  
65.9%±18.7% 

Sensitivity 

78.7%±5.5% 

Specificity 

72.3%±11.7% 

Accuracy 

0.70±0.15 

F1 score 

  

(3) SVM (Linear Kernel) 

SVM-Linear Actual class   

  Decrease Increase   

Predicted 

class 

Decrease 
35.5%±12.4% 

True positive 

19.8%±5.4% 

False positive 

63.6%±4.9% 

Precision 
 

Increase 
14.5%±12.4% 

False negative 

30.2%±5.4% 

True negative 

70.9%±15.1% 

NPV 
 

  
60.5%±10.7% 

Sensitivity 

60.5%±10.7% 

Specificity 

65.7%±8.9% 

Accuracy 

0.66±0.14 F1 

score 

  

(4) SVM (Gaussian Kernel) 

SVM-Gaussian Actual class   

  Decrease Increase   

Predicted 

class 

Decrease 
35.5%±12.4% 

True positive 

17.3%±4.6% 

False positive 

66.3%±7.8% 

Precision 
 

Increase 
14.5%±12.4% 

False negative 

32.7%±4.6% 

True negative 

72.1%±16.0% 

NPV 
 

  
65.5%±9.1% 

Sensitivity 

65.5%±9.1% 

Specificity 

68.2%±11.4% 

Accuracy 

0.68±0.16 F1 

score 
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Table 4.4 Continued 

 (5) SVM (Polynomial kernel) 

SVM-Poly Actual class   

  Decrease Increase   

Predicted 

class 

Decrease 
33.0%±10.1% 

True positive 

14.8%±6.8% 

False positive 

69.4%±5.5% 

Precision 
 

Increase 
17.0%±10.1% 

False negative 

35.2%±6.8% 

True negative 

69.0%±9.0% 

NPV 
 

  
70.3%±13.6% 

Sensitivity 

70.3%±13.6% 

Specificity 

68.1%±6.6% 

Accuracy 

0.66±0.12 F1 

score 

 

4.3.5 Subjective Metrics 

Subjective metrics were also examined for Q1 and Q2. Similar to objective metrics, ANOVA and 

repeated measures correlations were used to test the relationships between ∆𝑃  and  ∆𝑁𝐴𝑆𝐴 , 

∆𝑁𝐴𝑆𝐴𝑀, and ∆𝑁𝐴𝑆𝐴𝐸 . ANOVA tests indicated that sessions variations were different for the 

two groups for all subjective metrics: ∆𝑁𝐴𝑆𝐴  (𝐹1,120 =  55.18, 𝑝 < .001), ∆𝑁𝐴𝑆𝐴𝑀  (𝐹1,120 = 

11.60, 𝑝 < .001) and ∆𝑁𝐴𝑆𝐴𝐸  (𝐹1,120 = 36.51, 𝑝 < .001). And 𝑟𝑟𝑚 were also significant for all 

metrics, with larger, medium and small effect size respectively. Table 4.5 shows the 𝑟𝑟𝑚, p-value 

and mean for the subjective metric variations. Mean values of subjective metric variations by task 

are presented in Fig. 4.4. 

 

Table 4.5 Subjective metrics and improvement 

  
𝑟𝑟𝑚 p-value 

Mean 
Subjective metrics ∆𝑃: Decrease  ∆𝑃: Increase 

∆𝑁𝐴𝑆𝐴 Raw TLX −.51 < .001 0.39  -8.11 

∆𝑁𝐴𝑆𝐴𝑀 Mental Demand −.27 < .001 -0.36  -1.34 

∆𝑁𝐴𝑆𝐴𝐸  Effort −.43 < .001 0.05  -1.53 
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Fig. 4.4  Mean values of subjective variations in two conditions by task 

 

 Discussion 

RQ II seeks to explain how performance changed during RAS training with objective metrics. 

Three metrics: pupil diameter, EI and gaze entropy were investigated considering changes in 

mental workload, engagement and gaze patterns. The first question examined was the difference 

in session variations between two conditions: improvement (Increase) and non-improvement 

(Decrease). The findings showed that sessions variations of EI and gaze entropy had different 

means in the two groups. The second question was whether changes in metrics are correlated with 

changes in task performance. Again, the results showed that sessions variations of EI and gaze 

entropy were correlated of variations of performance. The third question examined the feasibility 

of predicting improvement with session variations of objective metrics, and classification models 

have achieved a medium accuracy. 

 

Gaze entropy showed a strong relationship with performance in that the mean variations (∆𝑆) was 

above 0 in the Increase group but below 0 in the Decrease group, and ∆𝑆 was also negatively 

Subjective metrics 
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correlated with  ∆𝑃. In RQ I, gaze entropy has been proven to be a valid measurement of cognitive 

workload. Yet it essentially measured the gaze pattern (scan strategy) in RAS tasks, and gaze 

pattern could be impacted by high workload and task difficulty (See Discussion in RQ I). RQ II 

provided additional evidence that gaze pattern was related to performance in RAS tasks. Visual 

search is an indispensable step in surgery and studies on laparoscopic surgery have both 

qualitatively and quantitively found that experts used a more effective gaze pattern than novice 

(Chetwood et al., 2012; Khan et al., 2012; Wilson et al., 2010). The task demands in this study are 

consistent with live robotic surgeries, where surgeons must rely on visual cues to complete the 

operation. These visual cues are delivered from the camera inside the patient that capture both 

current tissue states and robotic arms location. This information (e.g., current locations in respect 

to their desired target) is critical for planning actions necessary for completing the task goals. 

When searching for the target, trainees need to visually locate the target and also physically move 

controls to reach the target. Thus, eye tracking measures can directly provide data for 

understanding trainees’ task performance and learning process. 

 

The results for EI are similar to those for gaze entropy: ∆𝐸 was also negatively correlated with  

∆𝑃. The meaning of engagement varies as a function of study domain. In researches of vigilance 

task, task engagement was thought to be critical in sustaining attention and cognitive resources 

over time (Neigel, Dever, Claypoole, & Szalma, 2019) and a multivariate model factorized task 

engagement into energetic arousal, task motivation, and concentration (Matthews, Warm, & Smith, 

2017). The engagement measured through EEG signals was more broadly described as reflection 

of information-gathering and allocation of attention  (Stikic et al., 2014). And the EI metric adopted 

in this study reflected the state of alertness or attentiveness to task relevant stimuli (Freeman et al., 

1999). Studies in vigilance task have stated that task engagement was positively correlated with 

task performance (Matthews et al., 2017).  Our study focused on the how individual’s engagement 

on the same task changed with practices. The results generally suggested that if the task 

performance was better than that in the last session, the engagement on the current session was 

likely to be lower. Based on the skill acquisition theory, there exists a series of sequenced stages 

from initial representation of knowledge to highly skilled behavior. Restructuring of procedural 

knowledge (knowing how to perform a process) will result in automatized knowledge (process 

performed correctly and rapidly) (DeKeyser, 2007). And the general agreement is that more 
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automatized knowledge is, the less attention the process requires and the less error-prone it is 

(Dekeyser & Criado, 2012). Therefore, the decreasing engagement can be interpreted as a 

reflection of knowledge atomization of tasks after training.  

 

Pupil diameter did not show significant results for both Q1 and Q2. As discussed in RQ, pupil 

diameter was not correlated with workload measured by NASA-TLX. And there were two possible 

explanations. The first one is that various stimulus in RAS tasks have interfered with pupil dilation 

and the second one is that pupil diameter and NASA-TLX measured different aspects of workload. 

Apart from these explanations, another possibility is that there was a dissociation between 

performance and workload, with specific cognitive processes responsible for workload differing 

from those responsible for performance (Vidulich & Wickens, 1986; Yeh & Wickens, 1988).  

 

However, by analyzing the subjective metrics we found that workload measured by NASA-TLX 

could be a significant explaining factor for performance, as examined by Q1 and Q2. The Raw 

TLX was a most common usage of NASA-TLX (Hart, 2006) and its session variations ∆𝑁𝐴𝑆𝐴 

had the strongest correlation with ∆𝑃. Nonetheless, trainees saw their performance scores before 

filling out NASA-TLX survey, which might be responsible for the correlation. We therefore seek 

to analyze some subscales, which is another feasible practice (Hart & Staveland, 1988; Hoonakker 

et al., 2011). Session variation in the Effort dimension had medium correlation with ∆𝑃, resonating 

with results from EI. The correlation in Mental Demand dimension also had small correlation. It 

seemed that workload was responsible for changes in RAS performance, yet an alternative 

objective measurement is needed. Since mental workload for the same task could decrease after 

training, it will be beneficial to let surgeons practice procedures that may lead to high workload. 

Reducing workload in real-time is more complicated though. Recent study has proposed the 

possibility to provide dynamic gaze clues based on experts’ data and provide guidance in surgery 

(Fichtel et al., 2019), but more studies are needed for a concrete and feasible intervention. 

 

Finally, supervised machine learning techniques have achieved an average accuracy of 68.5% in 

predicting improvement and non-improvement. Compared with classification accuracy in RQ I, 

these results are not ideal.  There is still a significant source for changes in performance that were 
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not explained by the current metrics, suggesting for unknown factors or factors difficult to assess 

through physiological and behavioral measures. 

 

Task performance in RAS training is an important indicator of surgeon’s mastery of techniques. 

Studies in various domains have suggested that objective measures are correlated with task 

performance by reflecting workload, vigilance and other latent factors. RQ II compared how much 

objective metrics have changed over training sessions and how much performance have changed. 

Findings provided evidence that objective metrics can explain changes in performance during RAS 

training. In the analysis, we did not consider where the participants were on their learning curve 

(i.e. how many sessions they have already attended). Since we are analyzing changes between 

sessions, pervious experience was not supposed to impact the result. For example, when 

participants are very skilled and unlikely to achieve even higher performance, their objective 

metrics should also remain stable. All participants in this study were either medical students or 

residents, and the results might be different for experienced surgeons. For one things, experienced 

surgeons may already possess most basic skills and will achieve high performance in the beginning 

or very shortly (Dulan et al., 2012b). Yet, for surgeons experienced in laparoscopy, it is possible 

that they will perceive high workload when adapting to a new technique (Lee et al., 2014). In this 

study, we have observed that about 30% of the time participants would perform worse than last 

session. This result may indicate that RAS skills learned through simulated training can decline 

fast (Zhang & Sumer, 2013) and the current RAS training curriculum can be improved for more 

effective training. Objective metrics can be used to explain behaviors and cognitive states 

associated with improvement and help estimate room for improvement, and they may also provide 

measurements for live RAS procedure, where performance scores might not be available. 
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5. CONCLUSION AND FUTURE RESEARCH 

RAS is a growing and promising part of surgery and it is envisaged that most surgery can and will 

be performed by robotic surgery in the future (Hashizume & Tsugawa, 2004). In 2016, installations 

of the most widespread robotic surgical system: da Vinci, have risen by 21% to >2500 units 

worldwide, and robotic procedures leaped by 25% to >450 000, in urology, gynecology and 

visceral surgery (Rassweiler et al., 2017). With increases in the usage, the technical advantages 

and clinical benefits are more widely acknowledged. However, the skills in RAS are unique and 

not derivative from either open or laparoscopic surgery, and the most practical and efficient of way 

of acquiring the basic skills is  through simulation instead of the operating room (Bric, Lumbard, 

Frelich, & Gould, 2016). Therefore, enhancing the assessments of RAS training through an HFE 

perspective can facilitate surgeon’s mastery of RAS skills and improve patient safety.  

 

Overall, the findings from this research emphasized the use of objective metrics to understand 

workload and performance in RAS. In RQ I, the use of eye tracking metrics would provide a fairly 

accurate estimation of both task workload and perceived workload, with gaze entropy showing 

strongest relationship with workload. And the classification model further confirmed the feasibility 

of using eye tracking signals for real-time workload level classification. The assessment of 

workload can augment RAS procedures from two perspectives. Firstly, the continuous workload 

assessment provides information about each step in a RAS procedure, so that the training 

procedure can be adjusted according to individual’s needs. This assessment can be further applied 

in operating rooms to provide feedback for surgeons and advise them to avoid working while 

overloaded.  

 

Findings from RQ II provided evidence that objective metrics can explain changes in performance 

during RAS training. The findings provide insights for physiological/behavioral changes 

accompanied by improvement. The engagement and scan strategy are the major factors that are 

related to changes in performance. Scan strategy plays an important role in surgical performance, 

and if the trainee’s scan strategy improves over training, it indicates that the he or she is efficiently 

gaining RAS skills. Increasing engagement during training curriculum in contrast indicates that 

the trainee probably has not gained familiarity and dexterity. Still, the low classification accuracy 
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suggested that task performance is a complex result driven by multiple factors and some factors 

remain uncaptured. Objective metrics can be used to assess trainees’ room for improvement, it 

may also provide measurements for live RAS procedure, where performance scores might not be 

available. 

 

Despite the promising findings, a replication of this study should consider several issues.  Due to 

the curriculum nature, task order in this study was not randomized, which might produce a 

confounded order effect. To randomize the task order, future research may consider recruiting 

participants who have already gained basic skills and use more advanced simulation tasks. In 

addition, the number of sessions and exercises for each participant was not specifically controlled 

in the study. Although neither RQ I and RQ II involved inter-participants comparison, having a 

consistent number of sessions and exercises for each individual can improve analysis accuracy. 

For RQ II, despite the extended data collection, the actual training duration for each task was still 

limited and even inadequate for observing asymptotic performance in the learning curve. Therefore, 

extra data collection can contribute to a more robust study. The da Vince simulator used in this 

study is commercially available and used all over the world, which supports the validity of tasks 

and relevance to real training process. However, as a commercial product, it also restricted our 

freedom to modify task elements and explore the impact of task structure. And the eye tracking 

system could not synchronize eye gaze with the da Vinci screen like with a typical computer screen. 

Therefore, a dry lab study with more controls could consolidate the current findings. 

 

Findings from this study opens some further question on physiological (and behavioral) metrics 

for future research. Gaze entropy, for example, was shown to be a sensitive measurement of 

workload in RQ I, but what this metric truly measures is the randomness of the scan pattern.  

Therefore, it is worth investigating whether the relationship between gaze entropy and workload 

depends on the specific visual demand of a task. Further study may want to explore interactions of 

visual skills, cognitive skills, and manual-manipulation skills required by different tasks on the 

objective metrics. Meanwhile, this study was performed in simulated training environment, and 

the transferability of the results to live surgery should be explored in the future. 
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APPENDIX A. RAS TASK ANALYSIS 

Table A.1 Simulated robotic surgical tasks analysis 

This is a high-level analysis which does not fully capture the magnitude of demands due to factors like movement/search distances and directions. a more 

rigorous method like Queueing Network-Model Human Processor (QN-MHP) will be needed for computational purpose.  

Camera Targeting (CT) 

Level 1 2 

Objective 
Focus the camera on different blue spheres spread across a broad pelvic 

cavity. 

Maintain objective 1; pick up small cylinder under one sphere 

and transfer it to another sphere 

Procedure 

1. Search for sphere 

2. Step on pedal to activate camera moving 

3. Move both robotic arms to change camera view [1]  

4. Grip both robotic claws to activate zooming 

5. Move robotic arm to zoom into sphere 

Repeat 1-5 6 times 

1. Search for sphere 

2. Step on pedal to activate camera moving 

3. Move both robotic arms to change camera view 

4. Grip both robotic claws to activate zooming 

5. Move robotic arm to zoom into sphere 

6. Release pedal and claws 

7. Move arm to reach for cylinder 

8. Grip one claw to pick up cylinder 

9. Hold the claw 

10. Search for next sphere 

11. Step on pedal to activate camera moving 

12. Move both robotic arms to change camera view 

13. Grip both robotic claws to activate zooming 

15. Move robotic arm to zoom into sphere 

16. Release one claw to drop cylinder 

Repeat 1-16 4 times 

Demand 

Manual Minimum 24 manual movements Minimum 52 manual movements 

Visual 
Minimum 6 exploratory visual search 

Minimum 12 fixations 

Minimum 12 exploratory visual search 

Minimum 20 fixations 

Cognitive 
Recognize signal/object 

Plan movement path 

Recognize signal/object 

Plan movement path 

Peg Board (PB)  
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Level 1 2 

Objective 
Grasp rings on a vertical stand with the left hand and then pass them to 

the right hand before placing them on a peg 
Same as objective 1 

Procedure 

 

1. Find the ring that is flashing 

 

Optional (0-n times): [2] 

2. Step on pedal to activate camera moving 

3. Move both robotic arms to change camera view 

4. Grip both robotic claws to activate zooming 

5. Move robotic arm to zoom 

6. Release pedal and claws 

 

7. Move arm to reach for ring 

8. Grip one claw to pick up ring 

9. Move one arm close to the other 

10. Release one claw 

11. Grip the other claw to transfer the ring 

12. Hold the claw 

13. Find the flashing peg 

14. Move arm to reach for the peg 

15. Release the claw to drop the ring 

Repeat 1-15 6 times 

1. Searching the ring that is flashing 

 

Optional (1-n times): 

2. Step on pedal to activate camera moving 

3. Move both robotic arms to change camera view 

4. Grip both robotic claws to activate zooming 

5. Move robotic arm to zoom 

6. Release pedal and claws 

 

7. Move arm to reach for ring 

8. Grip one claw to pick up ring 

9. Move one arm close to the other 

10. Release one claw 

11. Grip the other claw to transfer the ring 

12. Hold the claw 

13. Search the flashing peg 

 

Optional (1-n times): 

14. Step on pedal to activate camera moving 

15. Move both robotic arms to change camera view 

16. Grip both robotic claws to activate zooming 

17. Move robotic arm to zoom 

18. Release pedal and claws 

 

19. Move arm to reach for the peg 

20. Release the claw to drop the ring 

Repeat 1-20 6 times 

Demand 

Manual Minimum 54 manual movements Minimum 114 manual movements 

Visual 
Minimum 12 exploratory visual search 

Minimum 18 fixations 

Minimum 12 exploratory visual search 

Minimum 30 fixations 

Cognitive 
Recognize signal/object 

Plan movement path 

Recognize signal/object 

Plan movement path 
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Ring and Rail (RR) 

Level 1 2 

Objective Move a ring along a twisted metal rod 
Move 3 colored rings along 3 twisted and color-matched metal 

rod 

Procedure 

1. Move arm to reach for the ring 

2. Grip one claw to pick up the ring 

3. Hold the claw 

4. Move arm to reach for the rod 

 

Optional (2-n times): 

5. Move arm to let ring go through the rod 

 

6. Release the claw to drop the ring at the end 

1. Move arm to reach for ring 

2. Grip one claw to pick up ring 

3. Hold the claw 

4. Move arm to reach for the rod 

5. Move arm to let ring go through the rod 

 

Optional (2-n times): 

6. Step on pedal to activate camera moving 

7. Move both robotic arms to change camera view 

8. Grip both robotic claws to activate zooming 

9. Move robotic arm to zoom 

10. Release pedal and claws 

 

Optional (5-n times): 

11. Move arm to let ring go through the rod 

 

12. Release the claw to drop the ring at the end 

Repeat 1-12 3 times 

 

Demand 

Manual Minimum 7 manual movements Minimum 63 manual movements 

Visual Minimum 4 fixations Minimum 12 fixations 

Cognitive 
Recognize signal/object 

Plan movement path 

Recognize signal/object 

Plan movement path 

Plan the order of moving 3 rings 

Estimate the force and angle needed to move the ring without 

being impeded by rod 

Suture Sponge (SS) 

Level 1 2 3 

Objective 
Drive needle through random targets on a 

deformable sponge 
Same as objective 1 Same as objective 1 

Procedure 1. Move arm to reach for the needle 1. Move arm to reach for the needle 1. Move arm to reach for the needle 



 

6
1
 

 

2. Grip one claw to pick up the needle 

3. Hold the claw 

4. Find the flashing begin-target 

5. Move arm to reach for the target 

6. Move arm to drive the needle into the target 

7. Find the end-target 

8. Move arm to drive the needle puncture 

through the sponge and come out of the end-

target 

9. Release the claw 

10. Move arm to reach the end of needle 

11. Grip the claw to grip the needle 

12. Move arm to pull the needle out of the 

sponge 

Repeat 1-12 10 times 

2. Grip one claw to pick up the needle 

3. Hold the claw 

4. Find the flashing begin-target 

5. Move arm to reach for the target 

6. Move arm to drive the needle into the 

target 

7. Find the end-target 

8. Move arm to drive the needle puncture 

through the sponge and come out of the 

end-target 

9. Release the claw 

10. Move arm to reach the end of needle 

11. Grip the claw to grip the needle 

12. Move arm to pull the needle out of the 

sponge 

 

Optional (0-n times):  

13. Step on pedal to activate camera 

moving 

14. Move both robotic arms to change 

camera view 

 

Repeat 1-14 8 times 

2. Grip one claw to pick up the needle 

3. Hold the claw 

4. Find the flashing begin-target 

5. Move arm to reach for the target 

6. Move arm to drive the needle into the 

target 

7. Find the end-target 

8. Move arm to drive the needle puncture 

through the sponge and come out of the 

end-target 

9. Release the claw 

10. Move arm to reach the end of needle 

11. Grip the claw to grip the needle 

12. Move arm to pull the needle out of the 

sponge 

 

Optional (0-n times):  

13. Step on pedal to activate camera 

moving 

14. Move both robotic arms to change 

camera view 

 

Repeat 1-14 10 times 

Demand 

Manual Minimum 120 manual movements Minimum 96 manual movements Minimum 120 manual movements 

Visual Minimum 12 fixations Minimum 12 fixations Minimum 12 fixations 

Cognitive 

Recognize signal/object 

Plan movement path 

Estimate the force and angle needed to drive the 

needle and hit the vertical end target 

Recognize signal/object 

Plan movement path 

Estimate the force and angle needed to 

drive the needle and hit the vertical and 

diagonal end target 

Recognize signal/object 

Plan movement path 

Estimate the force and angle needed to 

drive the needle and hit the vertical and 

diagonal end target 

Dots and Needles (DN) 

Level 1 2 

Objective 
Insert a needle through several pairs of targets that have various spatial 

positions 
Same as objective 1 

Procedure 1. Move arm to reach for the needle 1. Move arm to reach for the needle 



 

6
2
 

 

2. Grip one claw to pick up the needle 

3. Hold the claw 

4. Find the flashing begin-target 

5. Move arm to reach for the target 

6. Move arm to drive the needle into the target 

7. Find the end-target 

8. Move arm to drive the needle puncture through the pad and come out 

of the end-target 

9. Release the claw 

10. Move arm to reach the end of needle 

11. Grip the claw to grip the needle 

12. Move arm to pull the needle out of the sponge 

Repeat 1-12 7 times 

2. Grip one claw to pick up the needle 

3. Hold the claw 

4. Find the flashing begin-target 

5. Move arm to reach for the target 

6. Move arm to drive the needle into the target 

7. Find the end-target 

8. Move arm to drive the needle puncture through the end and 

come out of the end-target 

9. Release the claw 

10. Move arm to reach the end of needle 

11. Grip the claw to grip the needle 

12. Move arm to pull the needle out of the sponge 

 

Optional (0-n times):  

13. Step on pedal to activate camera moving 

14. Move both robotic arms to change camera view 

 

Repeat 1-14 6 times 

Demand 

Manual Minimum 84 manual movements Minimum 72 manual movements 

Visual Minimum 21 fixations Minimum 18 fixations 

Cognitive 

Recognize signal/object 

Plan movement path 

Estimate the force and angle needed to drive the needle and hit the 

horizontal end target 

Recognize signal/object 

Plan movement path 

Estimate the force and angle needed to drive the needle and hit 

the horizontal and diagonal end target 

Tubes (T) 

Objective Drive needle through fixed targets on a cylindrical deformable structure 

Procedure 

1. Search for the target 

2. Move arm to reach for the cylinder 

3. Grip claw to grip the edge of the cylinder 

4. Hold the claw 

5. Move arm to flip the cylinder 

6. Find the flashing target 

7. Move the other arm to reach for the needle 

9. Grip the claw to pick up the needle 

10. Hold the claw 
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11. Move arm to drive the needle through the target 

12. Release the claw 

13. Move arm to reach the end of needle 

14. Grip the claw to grip the needle 

15. Move arm to pull the needle out of the target 

Repeat 1-15 8 times 

Demand 

Manual Minimum 120 manual movements 

Visual 
Minimum 8 exploratory visual search 

Minimum 24 fixations 

Cognitive 

Recognize signal/object 

Plan movement path 

Plan the angle of holding the cylinder 

Estimate the force and angle needed to drive the needle and hit the target 

Estimate the force and angle needed to pull out the needle without hitting the cylinder 

[1] Information about distance and movement direction is not included, which differs between tasks and levels  

[2] The minimum number of optional movements is based on optimal situation, which is rarely achieved in reality 
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APPENDIX B. NASA-TLX SURVEY 
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APPENDIX C. NASA-TLX HISTOGRAMS 
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APPENDIX D. TABLE OF CORRELATIONS 

Table A.2 Repeated correlation between eye metrics and NASA-TLX subscales 

  Eye metrics 

NASA-TLX subscale  Pupil diameter Gaze entropy Fixation Duration PERCLOS 

Mental Demand 
rrm -.07 .46 .07 .04 
p .360 <.001 .348 .537 

  
 

   

Physical Demand 
rrm -.13 .40 .09 .03 

p .091 <.001 0.266 .683 

  
 

   

Temporal Demand 
rrm –.19 –.49 –.01 .08 

p .013 <.001 .923 .302 

  
 

   

Overall Performance 
rrm -.04 .38 .16 .02 

p .573 <.001 .044 .771 

      

Effort 
rrm -.11 .44 .11 –.01 

p .156 <.001 .158 .887 

      

Frustration Level 
rrm -.07 .46 .07 .04 

p .352 <.001 .388 .607 
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