
DISTRIBUTED EXECUTION OF RECURSIVE IRREGULAR APPLICATIONS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Nikhil D. Hegde

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2019

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Milind Kulkarni

School of Electrical and Computer Engineering

Dr. Samuel P. Midkiff

School of Electrical and Computer Engineering

Dr. Y. Charlie Hu

School of Electrical and Computer Engineering

Dr. Anand Raghunathan

School of Electrical and Computer Engineering

Approved by:

Dr. Dimitrios Peroulis

Head of the School Graduate Program

iii

Dedicated to my parents.

iv

ACKNOWLEDGMENTS

My sincere thanks to Prof. Milind Kulkarni for his time and effort in mentoring

me throughout my Ph.D. studies. Milind has inspired me to do research, teach, and

is a role model for a mentor. My heartfelt gratitude towards him. I am fortunate

to have great advisory committee members, who provided valuable feedback that

ensured my progress. Many thanks to Prof. Samuel Midkiff for generously providing

infrastructure to conduct my experiments, Prof. Anand Raghunathan for motivating

me to join the Ph.D. program at Purdue, and Prof. Charlie Hu for asking those tough

questions to help improve my work. I also owe thanks to anonymous reviewers for

providing valuable feedback on my research, to Joanne Lax for the helpful professional

development workshops. Special thanks to Prof. V. Kamakoti and Prof. C. Siva Ram

Murthy from IIT Madras for mentoring and eagerly supporting my efforts to join

Ph.D. studies.

I am thankful to have a supporting family including my brother, in-laws, especially

my wife Bhavya, without whose support this journey would not have been possible.

My kids Mayank and Maanya motivate and inspire me to learn everyday. I would also

like to thank my lab colleagues Jianqiao, Kirshanthan, Jad, Nour, Laith, and Chris

for many interesting discussions. Lastly but not the least, I would like to thank the

staff in my department and the wonderful people of West Lafayette/Lafayette area for

their very friendly and welcoming behavior.

The research presented in this thesis was made possible through grants NSF

CCF-1150013, DOE DE-SC0010295, and XSEDE TG-ASC170007.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

ABSTRACT . xi

1 INTRODUCTION . 1

1.1 Contributions . 6

1.2 Outline . 7

2 SPIRIT: A FRAMEWORK FOR CREATING DISTRIBUTED RECURSIVE
TREE APPLICATIONS . 8

2.1 Introduction . 8

2.2 Background and Motivation . 10

2.2.1 Terminology and Traversal Characteristics 11

2.2.2 Tree Traversal Algorithms and Locality 12

2.2.3 Graph Processing Frameworks 13

2.3 Design . 15

2.3.1 Tree Partitioning and Distribution 15

2.3.2 Tree Traversals and Pipeline Parallelism 18

2.3.3 Scheduling for Locality and Aggregation 19

2.3.4 Load Balance and Space Adaptivity 21

2.4 Implementation . 22

2.5 Evaluation . 24

2.5.1 Methodology . 25

2.5.2 Scalability . 27

2.5.3 Space-adaptive Evaluation . 30

2.5.4 Performance Breakdown . 33

vi

Page

2.5.5 SPIRIT, DGL, PBGL, and Reference Software 35

2.6 Related Work . 37

2.7 Conclusions . 39

3 TREELOGY: A BENCHMARK SUITE FOR TREE TRAVERSALS 40

3.1 Introduction . 40

3.1.1 Contributions . 41

3.1.2 Outline . 42

3.2 Background . 43

3.2.1 Trees for Accelerating Computations 43

3.2.2 Traversal Structure and Optimizations 47

3.3 Treelogy Traversal Kernels . 48

3.4 An Ontology for Tree Traversals . 51

3.4.1 Ontology . 51

3.4.2 Optimizations . 53

3.5 Evaluation . 56

3.5.1 Methodology . 56

3.5.2 Scalability . 61

3.5.3 Case Studies . 64

3.6 Related Work . 66

3.7 Conclusions . 67

4 D2P: FROMRECURSIVE FORMULATIONS TO DISTRIBUTED-MEMORY
CODES . 68

4.1 Introduction . 68

4.1.1 Overview . 70

4.2 Background and Motivation . 74

4.3 Design . 76

4.3.1 Specification . 76

4.3.2 Inspector and Executor . 78

vii

Page

4.3.3 Design Details . 90

4.4 Implementation . 94

4.5 Evaluation . 98

4.5.1 Methodology . 99

4.5.2 Scalability . 102

4.5.3 Case Studies . 107

4.6 Related work . 109

4.7 Conclusions . 111

5 CONCLUSIONS . 113

REFERENCES . 115

VITA . 124

viii

LIST OF TABLES

Table Page

2.1 Data sets; |V|= Vertex set size, |P|=Number of points. 26

2.2 Process utilization: S=Dataset Size, P=Number of processes, TT=Total
traversal time (seconds), VT=per-process computation time as a percentage
of total traversal time, D=aggregate volume of data exchanged in MBytes. 32

3.1 Classification of benchmarks . 54

3.2 Data sets and attributes; |V|= Number of vertices, |P|=Number of traversals.58

3.3 Runtime characteristics of benchmarks. 59

4.1 Auxiliary methods in D2P. 97

4.2 Number of tasks and the unroll depth used in strong-scaling experiments.
The unroll depth used for MCM is the same as that of MWT and hence, is
not shown. 100

4.3 Details of (i) baseline (1_rec) and preprocessing overhead (Pre) runtimes
in seconds and (ii) Comparison of speedups (×) obtained with 1 and W
Cilk workers per process over baseline runtimes. The single Cilk worker
per process numbers are from Figure 4.5. W represents the workers
corresponding to the best run obtained from a sweep of 1 to 16 Cilk workers.103

ix

LIST OF FIGURES

Figure Page

2.1 Tree Traversal in Nearest Neighbor. 11

2.2 Tree partitioning and distribution in SPIRIT. 15

2.3 Distributed octree building. 17

2.4 Block traversal through distributed tree. 20

2.5 SPIRIT Architecture, API, and example program 23

2.6 Strong scaling in SPIRIT. 28

2.7 Weak scaling in SPIRIT. 30

2.8 Space adaptivity in SPIRIT with varying amount of replication 31

2.9 Load distribution among 128 processes. 33

2.10 Impact of a) Subtree height. b) Aggregation. 33

2.11 SPIRIT vs. ChaNGa. 35

3.1 Treelogy use case. 42

3.2 Sample space (2D) and corresponding kd-tree. 44

3.3 Purpose of spatial acceleration structures and example traversal codes . . . 45

3.4 Scaling in Treelogy benchmarks. x-axis=Thread count (SHM)/Process
count (DM), y-axis (log scale) =Runtime (s). 62

3.5 GPU scalability . 64

3.6 Case studies: a) estimating locality benefits using reuse distance. b)
improving locality through reordered traversal schedule. c) improving
load-balance through subtree replication. 65

4.1 D2P system overview. 70

x

Figure Page

4.2 The Minimum Weight Triangulation problem: the recurrence equation
computes the least cost of triangulating a convex polygon. This equation
can be thought of as computing the cells of an upper triangular matrix.
The figure shows the standard implementation scheme of computing the
cells using an iterative code. Also shown is the order in which the code
computes those cells. 73

4.3 The specification: a) showing the outline of a recursive algorithm for the
MWT problem. (b) shows the operation of this recursive formulation. . . . 76

4.4 D2P inspector in action: (a) shows task creation by unrolling MWT’s
top-level recursive method A two levels deep. The leaves of the recursion
tree are identified as tasks. The Figure also shows the numbers of tiles
read and written by each task (numbering follows from Figure 4.2). (b)
shows inter-task dependences. (c) shows task partitioning among 4 processes.91

4.5 Strong scaling in D2P benchmarks showing speedup of single Cilk work-
er/process configuration over baselines. SW and RNA use baseline runtimes
normalized w.r.t. 2-process (2_DM) run instead of using the 1_rec base-
line runtimes. Also shown is a comparison of speedups obtained with the
default unrolling depth, and the best unrolling depth empirically measured.101

4.6 Summarizing Table 4.3 results. Exploiting intra-task parallelism is neces-
sary in compute-bound benchmarks. 104

4.7 Weak scaling in D2P benchmarks. Y-axis shows the normalized runtime
w.r.t. the 8-process run. The data-labels show the input size used for that
execution. 105

4.8 Case studies comparing D2P with other systems. 107

xi

ABSTRACT

Hegde, Nikhil D. Ph.D., Purdue University, August 2019. Distributed Execution of
Recursive Irregular Applications. Major Professor: Milind Kulkarni.

Massive computing power and applications running on this power, primarily con-

fined to expensive supercomputers a decade ago, have now become mainstream through

the availability of clusters with commodity computers and high-speed interconnects

running big-data era applications. The challenges associated with programming such

systems, for effectively utilizing the computing power, have led to the creation of

intuitive abstractions and implementations targeting average users, domain experts,

and savvy (parallel) programmers. There is often a trade-off between the ease of

programming and performance when using these abstractions. This thesis develops

tools to bridge the gap between ease of programming and performance of irregular

programs—programs that involve one or more of irregular- data structures, control

structures, and communication patterns—on distributed-memory systems.

Irregular programs are focused heavily in domains ranging from data mining to

bioinformatics to scientific computing. In contrast to regular applications such as

stencil codes and dense matrix-matrix multiplications, which have a predictable pattern

of data access and control flow, typical irregular applications operate over graphs,

trees, and sparse matrices and involve input-dependent data access pattern and control

flow. This makes it difficult to apply optimizations such as those targeting locality

and parallelism to programs implementing irregular applications. Moreover, irregular

programs are often used with large data sets that prohibit single-node execution due

to memory limitations on the node. Hence, distributed solutions are necessary in

order to process all the data.

xii

In this thesis, we introduce SPIRIT, a framework consisting of an abstraction

and a space-adaptive runtime system for simplifying the creation of distributed

implementations of recursive irregular programs based on spatial acceleration structures.

SPIRIT addresses the insufficiency of traditional data-parallel approaches and existing

systems in effectively parallelizing computations involving repeated tree traversals.

SPIRIT employs locality optimizations applied in a shared-memory context, introduces

a novel pipeline-parallel approach to execute distributed traversals, and trades-off

performance with memory usage to create a space-adaptive system that achieves

a scalable performance, and outperforms implementations done in contemporary

distributed graph processing frameworks.

We next introduce Treelogy to understand the connection between optimizations

and tree-algorithms. Treelogy provides an ontology and a benchmark suite of a broader

class of tree algorithms to help answer: (i) is there any existing optimization that is

applicable or effective for a new tree algorithm? (ii) can a new optimization developed

for a tree algorithm be applied to existing tree algorithms from other domains? We

show that a categorization (ontology) based on structural properties of tree-algorithms

is useful for both developers of new optimizations and new tree algorithm creators.

With the help of a suite of tree traversal kernels spanning the ontology, we show

that GPU, shared-, and distributed-memory implementations are scalable and the

two-point correlation algorithm with vptree performs better than the standard kdtree

implementation.

In the final part of the thesis, we explore the possibility of automatically generating

efficient distributed-memory implementations of irregular programs. As manually

creating distributed-memory implementations is challenging due to the explicit need

for managing tasks, parallelism, communication, and load-balancing, we introduce

a framework, D2P, to automatically generate efficient distributed implementations

of recursive divide-conquer algorithms. D2P automatically generates a distributed

implementation of a recursive divide-conquer algorithm from its specification, which

is a high-level outline of a recursive formulation. We evaluate D2P with recursive

xiii

Dynamic programming (DP) algorithms. The computation in DP algorithms is not

irregular per se. However, when distributed, the computation in efficient recursive

formulations of DP algorithms requires irregular communication. User-configurable

knobs in D2P allow for tuning the amount of available parallelism. Results show

that D2P programs scale well, are significantly better than those produced using a

state-of-the-art framework for parallelizing iterative DP algorithms, and outperform

even hand-written distributed-memory implementations in most cases.

1

1. INTRODUCTION

Big-data era has ushered in exciting applications requiring massive computing horse-

power to run well. Thanks to application-driven demand and technological evolution,

systems delivering such computing power are now mainstream. What was once the

realm of national labs housing supercomputers running scientific applications is now

easily accessible through clusters of commodity computers having high-speed intercon-

nects and running emerging applications. The clusters of today are complex, have

components with varied computing capabilities, and continue to evolve driven by the

applications running on them. The increased complexity has made it difficult to write

programs that exploit the computing power of such systems efficiently. As a result, over

the last decade, researchers have developed intuitive abstractions and implementations

targeting average users, domain experts, and savvy (parallel) programmers.

Among the emerging applications, the most challenging ones to implement efficiently

are irregular applications. Examples include finding items that are frequently shopped

together, simulating the evolution of cosmological bodies, finding nearest-neighbors,

quantifying the clustered nature of a set of bodies or points in astrophysics or statistics,

and the list goes on. Programs implementing irregular applications operate over data

structures such as graphs, trees, and sparse matrices and involve input-dependent

computation. In contrast, a regular application such as altering the brightness or

contrast of an image operates over a dense matrix and involves input-independent

computation, which is often predictable. The predictability of computation makes

regular programs amenable to a variety of optimizations applied either automatically

by the compiler or manually. Computation in irregular programs, on the other hand,

is unpredictable due to the input-dependent nature and hence, optimizations such as

parallelizing computation and exploiting locality are either not possible or ineffective

when automated techniques through standard compiler transformations are naïvely

2

applied. Often, irregular programs are used with large data sets that prohibit their

execution on a single compute node due to memory limitations on the node. In

such scenarios, we need to distribute the computation on multiple nodes and hence,

writing distributed-memory programs becomes necessary. This brings with it a host

of challenges: firstly, we need to create tasks to generate work for multiple nodes

while ensuring that the tasks spend the least amount of time waiting. In other words,

task creation should maximize parallelism. Secondly, we need to partition the tasks

among different nodes to maximize parallelism and minimize the communication

overhead. Thirdly, we should execute the tasks in an order respecting inter-task

data dependencies. Finally, we should consider load-balancing among different nodes

for improved performance. This explicit management of tasks, communication, and

load-balancing is beyond the scope of an average or even a domain expert.

Domain-, algorithm- and architecture-specific insights have led to the development

of efficient optimizations and implementations for irregular programs. However, such

efforts have been ad-hoc, based on a manual approach, and have largely been the

purview of expert programmers. Researchers have developed tools that simplify the

creation of distributed-memory parallel programs. Some of these efforts take an

automated approach—they generate a distributed-memory parallel program starting

from some artefact of a shared-memory program—,while others provide efficient

abstractions and programming languages.

The key insight in developing intuitive abstractions that simplify the creation of

irregular programs is identifying the existence of a latent structure to computation

in the underlying algorithms. The abstractions have not only made writing irregular

programs accessible to an average programmer but also ensured that the implemen-

tations are efficient. The success of graph-processing frameworks such as Galois [1],

GraphLab [2,3], Ligra [4], PowerGraph [5], Boost Graph Libraries (BGL) [6,7] etc. is a

great example. While graph-based applications have benefited from these frameworks,

certain tree-based applications have not. This is counter-intuitive, since trees are kind

of graphs. The latent structure of computation in tree-based applications sheds light

3

into this anomaly: often the trees in are traversed in a depth-first manner covering a

large span of the tree and there exist millions or even billions independent traversals.

Thus, the absence of a fine-grain parallelism within a single traversal and the inability

of existing frameworks to exploit a coarse-grain parallelism effectively makes existing

graph processing frameworks unsuitable for tree based irregular programs. When it

comes to handling the challenges associated with distributed-memory implementations,

in general, there is a trade-off between performance and ease of programming. E.g.

BGL is flexible in allowing users to create customized data (graph) partitions. This

may result in improved performance due to minimized communication overhead, how-

ever, at the cost of users explicitly managing communication. Distributed GraphLab

completely hides away the details of data distribution but enforces a certain order of

computation which may not deliver the best performance. This trade-off is true in case

of full-fledged, general-purpose programming languages such as Legion [8], Parsec [9],

Charisma [10], etc. as well. All these approaches still require users to write programs as

opposed to automated approaches that focus on tools generating programs. However,

automated approaches have had no success w.r.t. creating distributed implementations

of irregular programs. This is because of the unpredictability of computation and

communication in irregular programs.

Drawing from the success of graph-processing frameworks, can we build abstrac-

tions for creating tree-based applications on distributed-memory systems? can we

automatically generate distributed-memory irregular programs? can we generalize

tree-algorithm specific optimizations to algorithms from other domains? In this

thesis, we develop tools to bridge the gap between ease of programming and perfor-

mance of irregular programs on distributed-memory systems. Specifically, we develop

abstractions, optimizations, and systems for creating efficient, distributed-memory

implementations of recursive irregular programs operating on tree and dense-matrix

based data structures.

We look at recursive formulations because they seem natural for a divide-conquer

approach to programming. They are also straightforward to reason about and write,

4

and have properties that make them amenable to optimizations targeting locality

and parallelism. In this thesis, we first look at traversal codes—a subset of tree-

based recursive irregular programs involving repeated tree traversals. We present an

abstraction, which simplifies the creation of traversal codes on distributed-memory

systems. Next, to better understand tree algorithms and develop optimizations for

those algorithms, we consider a broader class of tree programs. We present an ontology

and a benchmark suite for tree traversal algorithms. In the final part of the thesis, we

continue to look at recursive formulations—now dense-matrix based—and present a

tool for automatically generating distributed-memory parallel programs for a subset

of divide-conquer algorithms.

Traversal codes appear in an important set of applications based on spatial trees

such as kdtrees [11], vptrees [12], octrees [13], and balltrees [14] etc. The trees are

traversed depth-first repeatedly, millions or even billions of times corresponding to

the input size. As there is an abundant amount of parallelism in these applications

due to independence of the tree traversals, a data-parallel approach to parallelizing

traversals by executing them simultaneously on multiple tree replicas seems natural.

However, the tree sizes grow with data set sizes and for large data sets, there is not

enough space to store the tree in memory. So, trees must be distributed across nodes.

SPIRIT [15] 1 addresses the insufficiency of traditional data-parallel approaches and

existing systems in effectively parallelizing traversals over distributed spatial trees.

SPIRIT provides a set of APIs and a runtime system to automate the creation and

traversal of distributed spatial trees. SPIRIT partially replicates a tree when space

permits. This space-adaptive feature allows for a seamless performance transition

from a data-parallel approach to purely distributed solution. SPIRIT also employs

a host of optimizations targeting locality, parallelism, communication overhead, and

load-balance to traverse the distributed trees efficiently.

Whether a new optimization or a tree algorithm, it is challenging to device an

efficient implementation strategy considering a rich history of application- and platform-
1Scalable Parallel Infrastructure for Recursive Irregular Traversals

5

specific optimizations and tree algorithms. Treelogy [16] is conceived with the idea of

understanding the connection between optimizations and tree algorithms in general.

Treelogy provides a categorization scheme (ontology) and a benchmark suite of a

broader class of tree algorithms to help answer: (i) is there any existing optimization

that is applicable or effective for a new tree algorithm? (ii) can a new optimization

developed for a specific tree algorithm be applied to existing tree algorithms from

other domains? We show that a categorization based on the structural properties

of tree-algorithms is useful for both developers of new optimizations and new tree

algorithm creators. We also present a suite of tree algorithms spanning the ontology

and implement them on GPU-, shared-, and distributed-memory systems to understand

the structural properties of the algorithms.

Given the complexities of distributed-memory programming, is it possible to

completely automate the creation of distributed-memory implementations of irregular

programs? Here, a broader goal is to let a computer generate a distributed-memory

implementation of any irregular program starting from its shared-memory artefact

(specification, pseudocode, or implementation). D2P is a first step towards this goal.

D2P takes as input a specification of a recursive divide-conquer algorithm having

certain properties: i) inclusive—a recursive method’s parameters summarize the data

access done within the method body. ii) Intersection—data-set intersection tests among

method invocations can be computed efficiently when a hierarchical decomposition

creates disjoint partitions of data, which are computed in a specific order. Recursive

formulations of Dynamic Programming (DP) algorithms are well-known examples

having these properties. The computation in DP algorithms is not irregular per se.

However, the communication patterns are irregular. Recursive formulations are also

not straightforward for these algorithms. However, they are competitive compared to

‘standard’, iterative codes and even perform better when implemented carefully. We

evaluate D2P on recursive DP algorithms and generate distributed-memory parallel

codes capable of exploiting node- and core-level parallelism.

6

1.1 Contributions

The primary contributions are:

1. SPIRIT, an efficient framework for simplifying the creation of distributed-memory

implementations of spatial tree-based applications is introduced. A set of APIs

for the creation of and traversal over distributed trees is presented. Experimental

evidence is presented showing that SPIRIT implementations i) scale well and can

smoothly trade-off space for performance, ii) significantly outperform those done

in contemporary distributed graph processing frameworks and are competitive

with, and sometimes better than, existing customized, distributed-memory

implementations of tree applications.

2. Treelogy, a benchmark suite and an ontology for tree algorithms is introduced.

Treelogy consists of a suite of nine tree traversal kernels. The ontology categorizes

tree traversal kernels according to their several structural attributes. The kernels

span the ontology: for each category, Treelogy has at least two kernels of each

type. Experimental evidence is presented showing i) the scalability properties

of Treelogy kernels on multiple platforms including GPUs, shared-memory, and

distributed-memory systems. ii) traversal algorithms with certain tree types

yield better performance compared to the “standard” tree. iii) generalization of

an optimization from one application domain to other yields substantial benefits.

3. D2P, an efficient framework for automatically generating MPI+Cilk parallel im-

plementations of recursive divide-conquer algorithms is introduced. Experimental

evidence is presented to show that executions of generated implementations scale

well, perform significantly faster than those done using similar frameworks, and

outperform even hand-written distributed implementations in most cases.

This thesis is also the first to categorize and provide a benchmark of tree algorithms.

The source code repository of all these works are made freely available to the public.

7

SPIRIT is published in ICS 2017 [15]. Treelogy is published in ISPASS 2017 [16]. At

the time of writing this thesis, D2P is under submission to a conference.

1.2 Outline

The rest of this thesis is organized as follows: Chapter 2 describes novel optimiza-

tions and the abstraction that SPIRIT provides. It also describes the evaluation of

SPIRIT implementations of five tree applications. Chapter 3 describes Treelogy. It

discusses the structural attributes used in categorizing tree algorithms, the mapping

of structural attributes to optimizations, and case studies showing the effectiveness of

ontology driven optimizations. Chapter 4 describes D2P. It discusses the specification,

code generation scheme, and the evaluation of D2P generated implementations of

dynamic-programming based algorithms. Chapter 5 concludes our contributions.

8

2. SPIRIT: A FRAMEWORK FOR CREATING
DISTRIBUTED RECURSIVE TREE APPLICATIONS

2.1 Introduction

A common algorithmic pattern that arises in many applications in social networking,

data mining, computer graphics, etc., is tree traversal. These applications often consist

of repeated traversals of a tree—for example, repeated traversals of an object tree

during ray tracing to determine the color of each eye ray. These applications tend

to possess abundant data parallelism: the tree traversals are independent, so each of

the millions or even billions of tree traversals can be performed in parallel. As input

sizes increase, the data sets can easily become too large to be processed on a single

machine.

A natural approach to continuing to parallelize tree applications is to simply

process the data across multiple machines: replicate the tree on multiple nodes, then

have each node process a portion of the data set. Sadly, this approach does not really

work, because the size of the tree being traversed typically increases commensurate

with the number of traversals. As a result, it is infeasible to have the tree replicated at

each node. Instead, the only possible approach is to distribute the tree across multiple

nodes. Consequently, it is necessary to restructure the traversal application to handle

traversals that can span multiple nodes.

Tree traversals on a distributed tree presents a host of challenges. First, because the

tree is no longer replicated across all of the nodes, we cannot rely on data parallelism

arising from processing multiple independent traversals in parallel to provide work for

all nodes. We must find parallelism from other sources. One such source of parallelism

is pipeline parallelism, where each traversal is broken into a pipeline of sub-traversals,

9

and sub-traversals in different portions of the distributed tree can proceed in parallel,

allowing all nodes to perform work even if they do not hold the entire tree.

Second, because individual traversals now span multiple nodes, we must schedule

tree traversals to maximize locality while minimizing communication. In contrast to

the kinds of applications targeted by most distributed and parallel graph frameworks [1,

2, 5, 6, 17, 18], each tree traversal spans large portions of the tree, rather than small

regions of a graph. Hence, it is not practical to consider each tree traversal as a

single (or even atomic) unit of computation for processing. Instead, traversals must

be carefully split up and interleaved to achieve good performance.

Finally, we must ensure that the pipeline does not contain any bottlenecks due

to sub-traversals overloading a particular subtree on a node. This requires the

ability to identify and replicate bottleneck subtrees on multiple nodes. Because this

replication trades off memory usage (more replication consumes more overall memory)

for performance (more replication ameliorates more hotspots), an application should

be able to tune its replication level to achieve the right balance.

Contributions

In this Chapter, we introduce SPIRIT, a space-adaptive, distributed tree traversal

framework. SPIRIT distributes a tree across multiple nodes, and then carefully

schedules multiple tree traversals across these subtrees to achieve parallelism, promote

locality, and provide load balance. The chief features of SPIRIT are:

1. SPIRIT provides pipeline parallelism for traversals. It splits traversals into

sub-traversals that end at subtree boundaries, allowing sub-traversals that are

in different subtrees to execute simultaneously on different nodes.

2. SPIRIT carefully schedules the resulting finer-granularity tasks to improve

locality: sub-traversals that are accessing the same portion of a subtree will

execute in close succession. It also reduces communication: sub-traversals on

10

a node that want to communicate with the same remote node aggregate their

messages.

3. SPIRIT provides load balance by selectively replicating portions of the tree

that are heavily loaded, allowing multiple nodes to take on the responsibility

of handling those sub-traversals. This feature also allows SPIRIT to be space-

adaptive: programmers can tune the amount of replication, providing a balance

between pure pipeline parallelism, which requires no data replication, but may

have limited parallelism in practice, and pure data parallelism, which has

abundant parallelism, but requires complete replication of the tree at each node.

4. SPIRIT provides APIs that allows programmers to easily implement their

tree traversal algorithms without considering the challenges of distribution or

scheduling.

We evaluate SPIRIT on 5 tree traversal benchmarks and show that it achieves

both strong and weak scaling across these challenging applications, even when resource

limitations prevent fully replicating the tree. We demonstrate the advantages of

SPIRIT’s space adaptivity—SPIRIT can smoothly trade off space usage for paral-

lelism, and, when sufficient resources are available, a SPIRIT application is able to

perform equivalently to a fully-replicated, data-parallel implementation. Finally, we

compare SPIRIT implementations to prior work in two ways: we show that SPIRIT

implementations far outperform implementations using existing distributed graph

frameworks, and we show that SPIRIT is competitive with, and sometimes better

than, existing custom implementations of traversal algorithms.

2.2 Background and Motivation

In this section, we begin by discussing terminology and tree traversal characteristics

common to the benchmark applications. Scheduling and locality opportunities in a tree

traversal algorithm and their applicability in a distributed setting are discussed next.

11

1 void TraverseTree (Vertex v , Point p){
2 s t a tu s = EvaluateVertex (v , p)
3 i f (s t a tu s i s t runcate) return
4 i f (s t a tu s i s t r a v e r s e_ l e f t){
5 TraverseTree (v . l e f tCh i l d , p)
6 TraverseTree (v . r i ghtChi ld , p)
7 } else {
8 TraverseTree (v . r i ghtChi ld , p)
9 TraverseTree (v . l e f tCh i l d , p)

10 }}

Fig. 2.1.: Tree Traversal in Nearest Neighbor.

Finally, available approaches to distributed graph processing, example frameworks, and

the challenges involved in using the frameworks to create distributed tree applications

are explained.

2.2.1 Terminology and Traversal Characteristics

This Chapter considers distributing and parallelizing tree traversal applications. A

tree traversal consists of a set (or multiple sets) of depth-first traversals of a tree (the

vertices of the tree can have any number of children, though in practice, most trees are

binary trees or octrees). Points are the entities that traverse the tree. Points may not

perform a complete traversal of the tree: a traversal may be truncated at any vertex,

leading the point to skip visiting the subtree rooted at that vertex. While the tree may

be altered in the overall application execution scenario, during tree traversal, neither

the tree structure nor the vertex properties are altered (in other words, in applications

where the tree does change, the changes happen between different sets of traversals

being performed on the tree). A node is a physical machine that houses a partition of

the distributed tree and is involved in some computation, which is primarily traversal

of points through the partition.

12

2.2.2 Tree Traversal Algorithms and Locality

Figure 2.1 shows the pseudocode for a nearest-neighbor (NN) algorithm [12]

implemented using a kd-tree traversal. The goal is to find closest point(s), based

on some distance function, to a query point. First, a set points representing the

feature space in N dimensions is organized into a kd-tree. The tree is built top-down,

recursively partitioning the feature space into two subspaces along one of the N

dimensions until a subspace contains a single or some predefined number of points.

Each vertex of the tree hence represents a (sub)space of the feature space. The tree is

then traversed depth-first to find the closest neighbor(s) of the query point.

The traversal begins by guessing the distance to closest neighbor and sets it to a

very large value. At every vertex on the traversal path, the query point determines

whether the vertex’s subspace could contain a point that is closer than the current guess

(line 2). If so, the query point updates the current guess and the traversal proceeds

to explore the vertex’s children. If not, the traversal is truncated and proceeds to

unexplored vertices of the tree. When the traversal reaches a leaf, point(s) in the leaf’s

subspace are inspected and the query point updates its guess for its closest neighbor.

Locality Nearest neighbor applications often have multiple query points and the

traversal paths of query points have a set of vertices in common with other query points.

This means that traversals of multiple query points can be scheduled to access the

common set of vertices in close succession to improve temporal locality. As the queries

are independent, the traversals can be interleaved, and multiple vertex computations

(by multiple points) can be scheduled simultaneously. Point blocking [19] exploited

the locality available at this finer granularity of vertex computations in the context of

shared-memory systems.

Distributed traversal A distributed tree traversal must check for the presence

of remote vertices—vertices existing on remote nodes. If the vertex is remote, a

message must be sent to the remote node for scheduling the sub-traversal on the

13

subtree rooted at the remote vertex and the sub-traversal on the current node must be

suspended until the exploration of remote subtree is complete. The current node can

then schedule another traversal when available. Traversals of multiple points touching

the same remote vertex could be aggregated on the current node before sending a

single message to the remote node to schedule their respective sub-traversals. Thus,

a pipeline of sub-traversals together with aggregation, enable parallel execution of

traversals, and reduce communication overhead in addition to improving locality of

remote subtree accesses—SPIRIT is designed to leverage this insight.

2.2.3 Graph Processing Frameworks

Many graph processing frameworks allow programmers to write kernels that

ignore the distribution of the graph, performing all of the necessary distribution

and communication automatically and transparently [1, 2, 5, 6, 17, 18, 20]. However,

these frameworks adopt a vertex-centric programming model1: the kernels that they

encourage programmers to write operate on a single vertex and its edges, or, at

best, a small region in the graph. Each such kernel is considered a task, and the

graph frameworks derive parallelism from processing numerous such tasks in a bulk-

synchronous manner. The small size of each task makes it straightforward to schedule

for improved locality, reduced communication, task migration for load balancing etc.

For a subset of tree traversal algorithms, the vertex-centric approach is simply not

suitable. Traversing an oct-tree in Barnes-Hut [21], a kd-tree in ray tracing [22] or in

computing two-point correlation [23], or a vp-tree in finding nearest neighbors [12],

is based on depth-first order and hence, there is no parallelism at the vertex level in

these traversal algorithms.

Also, the trees are traversed repeatedly without any dependency across traversals.

Thus, though there exists plenty of opportunities for parallelism when a sequence of

vertex accesses spanning the entire tree is considered, the vertex-centric approach
1Parallel BGL [6] and STAPL [20] support coarse-grained computation model in addition to the
vertex-centric model.

14

misses this while focusing on an individual vertex or small region of the tree in

identifying independent computations. Moreover, a vertex-centric approach can miss

opportunities for better locality or reduced communication by exploiting similarities

across traversals.

Distributed GraphLab (DGL) [2] DGL adopts a vertex-centric approach to

distributed graph processing. Algorithms in DGL are captured in an easy-to-program

template of Gather-Apply-Scatter (GAS). A GAS operation on a vertex is essentially

a vertex computation that is scheduled for parallel execution by the programmer. In

the gather phase, results of vertex computations of adjacent vertices are aggregated.

The apply phase uses the aggregated results to perform some computation at the

current vertex. Based on the results of the apply phase, the scatter phase updates

adjacent edges, thereby scheduling new vertex computations on adjacent vertices in

the next iterative step. At the end of an iterative step, all the vertices are checked for

a change in state to determine convergence. DFS traversals are inherently unsuitable

to the GAS model of execution as they have low vertex-level parallelism.

Parallel BGL (PBGL) [6] PBGL provides a more flexible abstraction to graph

distribution and traversal: built-in skeletons are provided for creation and traversal

of distributed graphs in addition to the data structures necessary for their manual

creation. The traversal abstractions (visitors) of PBGL are primarily focused on

distributing and parallelizing a single traversal (e.g., by processing multiple vertices in

a breadth-first search simultaneously). Unfortunately, in our tree traversal algorithms,

traversals are depth-first, and hence have no opportunity for intra-traversal parallelism.

Moreover, PBGL cannot exploit opportunities for inter-traversal locality, message

aggregation, and load balance that are afforded by the execution of multiple traversals

of a single tree.

Thus, to exploit new parallelism opportunities, to schedule traversals for optimizing

communication and locality, and to address the challenges in distributed tree creation,

we developed SPIRIT, a framework that exploits inter-traversal behaviors to improve

15

Fig. 2.2.: Tree partitioning and distribution in SPIRIT.

performance and reduce communication. SPIRIT provides a traversal-centric set of

abstractions for writing distributed tree applications, as described in the following

sections.

2.3 Design

This section describes the design of SPIRIT, a framework for writing distributed,

space-adaptive tree applications.

2.3.1 Tree Partitioning and Distribution

To distribute computation across multiple nodes, SPIRIT partitions the tree into

subtrees, with each node assigned one or more subtrees. Figure 2.2 shows a tree

partitioned into three subtrees of height, SubtreeHeight. The subtrees are labeled

1, 2, and 3, and created on different nodes. (Subtrees 4 and 5 are replicas of 1 and

are explained in Section 2.3.4; for now, we ignore them). Each subtree’s root, except

that of subtree 1, is called a pseudo-root (to distinguish them from the true root of

16

the tree). Similarly, vertices whose children belong to a different subtree are called

pseudo-leaves (and note that those children are, by definition, pseudo-roots).

SPIRIT includes tree building algorithms for three types of spatial trees: kd-trees,

octrees, and vp-trees. Programmers can also implement their own tree building

algorithms. Figure 2.3 shows the pseudocode of octree building.

Initially, all the processes collectively determine the bounding box of a 3-dimensional

particle space and its center. The root vertex of the tree represents this box. Each

particle is then inserted into this box and a vertex may be split into multiple children

if the box contains more particles than a user-specified limit. The split results in

creation of one or more child vertices corresponding to octant(s) within the enclosing

box. If a child is a pseudo-leaf and needs to be split, the tree building procedure halts

if the subtree of that pseudo-leaf is remotely owned—GetSubtreeOwnerID returns

owner ID of the octants of the enclosing box. Every process now has a top subtree

of depth SubtreeHeight, connected to a set of local subtrees (in dark) as the tree

structure in figure 2.3 shows.

An all-to-all communication of center-of-masses of local pseudo-leaves is performed

so that every process has the same vertex data in all the pseudo leaves. The center-

of-mass of the vertices in the top subtree is computed bottom up starting from a

pseudo-leaf. Kd-tree building follows similar procedure except for the absence of the

all-to-all communication. The bounding box and other vertex data needed are updated

during particle insertion.

For large data sets resulting in a tree deeper than 2xSubtreeHeight levels, a fixed

SubtreeHeight can result in over-fragmentation. SPIRIT avoids this by allowing

variable height bottom subtrees. The structure of the octree in Barnes-Hut may

change every time step based on the results of traversal from the previous time step.

Currently, SPIRIT does not have optimizations in place to re-use parts of the tree

that do not require restructuring; entire tree is rebuilt at the beginning of each step.

17

1 Bui ldOctree (char∗ input , InputParser ∗ par s e r){
2 <points , numRead>=D i s t r i b u t ePa r t i c l e s (input , pa r s e r)
3 <center , dia>=GetBoundingBox (points , numRead)
4 //Create roo t v e r t e x and s e t bounding box
5 <points , numRead> = LoadPar t i c l e s (input , pa r s e r)
6 while (numRead < to t a lPo i n t s) {
7 for each p in po in t s
8 BuildSubTree (root , p , center , dia , depth)
9 <points , numRead+> = ReadData (input , BATCH)

10 }

12 for each pseudo l ea f whose subt ree i s l o c a l
13 computecofm (pseudo l ea f)
14 // inform l o c a l p s eudo l ea f i n f o to a l l p roce s s e s .
15 for each pseudo l ea f
16 a l l−to−a l l (pseudo lea f−cofm)
17 //Compute cofm of a l l v e r t i c e s in top sub t r e e .
18 ComputeCofm(rootVertex)
19 }

1 Bui ldSubtree (Vertex∗ v , Point∗ p , f loat [3] center , f loat dia , int depth){
2 i f (! v){
3 // crea t e a l e a f v e r t e x v , i n s e r t p in t o v .
4 } else {
5 //push p to a l i s t cp
6 num=GetOctant (center , p . cord)
7 c=v . ch i l d [num]
8 i f (c e x i s t s and i s l e a f){
9 i f (numPoints conta ined by c e l l c <= MAX_POINTS_PER_CELL){

10 // i n s e r t p in t o c ’ s c e l l
11 return c
12 } else { // s p l i t c h i l d v e r t e x .
13 //Remove and push a l l po in t s in c to cp
14 i f (c . l e v e l == subtreeHe ight) {
15 //make c p s eudo l ea f
16 owner=GetSubtreeOwnerID (c)
17 i f (owner != s e l f) return c
18 // o therw i s e cont inue r e cu r s i v e i n s e r t i o n o f p
19 } } }
20 for each po int q in cp {
21 num=GetOctant (center , q . cord)
22 newcen = GetCenter (center , dia ,num)
23 v . c h i l d [num]=Bui ldSubtree (c , q , newcen , d ia ∗0 . 5 , depth+1)
24 } }
25 return v
26 }

Local
pseudo-leaves

Fig. 2.3.: Distributed octree building.

18

2.3.2 Tree Traversals and Pipeline Parallelism

For repeated, independent, depth-first traversals of a tree, shifting focus from a

point’s vertex access to its entire traversal exposes the entire traversal as a target for

parallel execution. Because there are numerous traversals in an application, this view

of the computation exposes substantial data parallelism: traversals are independent,

so the tree can be replicated across nodes, with each node performing a subset of

the traversals. However, as the tree size increases with increasing input data size, it

may no longer be feasible to replicate the entire tree on each node. As a result, we

are forced to distribute the tree across nodes. Unfortunately, this seems to preclude

data parallelism! Each traversal needs to visit multiple nodes to complete its work.

Interestingly, though, distributing the tree exposes a new opportunity for parallelism:

pipeline parallelism.

Building the pipeline A point’s traversal through the partitioned tree can then be

viewed as a flow through a pipeline with several, independent stages where each stage

corresponds to a sub-traversal visiting one of the subtrees. Because each traversal

visits different subtrees (and, indeed, some traversals visit subtrees in different orders),

the pipeline stages unfold dynamically during traversal. Note that a single subtree

can be visited multiple times during a traversal—every stage corresponds to visiting

one subtree, but a subtree can be associated with multiple stages. If a point goes

from a pseudo-leaf to a pseudo-root or vice-versa, the traversal moves from a pipeline

stage associated with the first subtree to a pipeline stage associated with the second

subtree. If the subtrees involved are placed on distinct nodes, the traversal then makes

a transition from one stage to another when the point traverses from the first subtree

to the second. For example, in Figure 2.2, a traversal can start at the root of the tree,

in subtree 1, then move to subtree 2, return to subtree 1 before proceeding to subtree

3—executing four pipeline stages while touching three subtrees.

19

Exploiting pipeline parallelism In principle, each (dynamic) pipeline stage is

independent of the others, so multiple traversals that are in different pipeline stages

can be processed in parallel. In particular, two points that are visiting different

subtrees (which may be mapped to different processes) can be processed simultaneously.

However, because each process has only one thread (see Section 2.4), in practice, two

pipeline stages can only be executed simultaneously if they are in subtrees that are

mapped to different processes.

2.3.3 Scheduling for Locality and Aggregation

Stages from different points that visit the same subtree can be co-scheduled to

obtain improved temporal locality of vertex accesses. This is achieved through blocking

of input data: allowing blocks of points to traverse the tree simultaneously (in essence,

turning the pipeline stages associated with each of the points in the block into a single

pipeline stage associated with all of the points in the block). Locality is improved by

allowing multiple points to interact with each vertex in the subtree consecutively.

Further, when a pipeline stage completes and the block of points is ready to move

to another subtree, rather than initiating the next pipeline stage immediately, the

block is aggregated in a buffer at the pseudo-leaf. Hence, multiple blocks can traverse

a subtree before all of the points from those blocks are launched as a single pipeline

stage on the next subtree. This aggregation further improves locality at the next stage,

and also reduces messaging overhead.

Figure 2.2 also shows the blocking of traversal workload, buffers, and the subsets of

points from multiple blocks being aggregated in buffers. Note that the buffers contain

only subsets of the blocks that traverse the subtree, because some points truncate

their traversal and do not arrive at the pseudo-leaf.

Managing block scheduling When some of the points contained within the block

truncate their traversals at a vertex, the block continues to traverse with “holes” left

at positions of these points. These holes are tracked by keeping hole maps or contexts,

20

Fig. 2.4.: Block traversal through distributed tree.

vectors at each vertex, marking which holes are created at that vertex (i.e., which

points truncate at that vertex). Figure 2.4 shows a block executing a stage associated

with subtree 1, followed by a stage at subtree 2, and then executing a stage at subtree

1 again. The hole map on node 1 shows a hole created at position 3 at vertex a, at

positions 4 and 5 at vertex b, and so on. No points truncate during the traversal of

subtree 2, so the hole maps are empty.

The contexts must be tracked across multiple subtrees: when the block finishes

traversing subtree 2 and returns to subtree 1 at vertex c, the hole information for that

block must be recalled to ensure that points 1, 2, 4, and 5 are restored to the block

so they can all visit vertex f . Tracking contexts efficiently can be challenging; The

memory overhead in storing a context is O(b+ d), where b is the size of the block and

d is the depth of the subtree.

Because a context can be quite large, SPIRIT does not send it along with the

message when the block transitions from one subtree to another. Instead, a block’s

context is distributed through the tree: when a block traverses a subtree, the context

associated with the vertices in that subtree are kept in node-local storage. SPIRIT

ensures that when a block returns to this subtree later in its traversal, it returns to

the replica on the same node, allowing the context to be retrieved from node-local

storage.

21

2.3.4 Load Balance and Space Adaptivity

Pipelining is critical to achieving good performance. However, the pipelined design

as described in previous sections clearly has a bottleneck: all the blocks of input

data execute the entry and exit stages associated with a single subtree (top subtree)

when they begin and end their traversals at the root vertex. In addition, stages of

this subtree are executed whenever a traversal makes a transition from a subtree

below. For this reason, the node containing the top subtree remains heavily loaded.

To reduce the burden on this node, SPIRIT replicates the top subtree across a set of

nodes. This selective replication ameliorates the pipeline bottleneck without requiring

the replication of the entire tree. Figure 2.2 also shows the replicated top subtree on

nodes 4 and 5.

Top subtree replication can improve performance greatly as blocks of points can

enter the pipeline from any of the nodes where the top subtree exists, allowing multiple

nodes to share the burden of processing those blocks.

Space adaptivity In addition to replicating the top subtree, the user can tune the

amount of replicated data by also replicating other bottom-level subtrees. Choosing

to replicate a subtree effectively eliminates the subtree: the subtree is merged with

its (replicated) parent subtree, and the associated pseudo-leaves and pseudo-roots

are removed. In this way, the load on that subtree is distributed, and the messaging

overhead of communicating across that subtree boundary is eliminated.

Note that if all subtrees are replicated, the entire tree is essentially replicated

across all nodes. This immediately yields the data-parallel implementation of a

distributed tree-traversal: the nodes are entirely independent of each other, and each

node processes a subset of all the traversals on its locally-replicated tree. In this way,

SPIRIT is able to smoothly transition between a pipeline parallel implementation (no

replication) to a data parallel implementation (full replication) by choosing which

subtrees to replicate.

22

Discussion Given the dynamic nature of traversals, it is difficult to identify any

bottleneck subtrees beyond the top subtree. Interestingly, we find that if subtrees

beyond the top subtree are replicated, it is not especially important which subtrees are

replicated: targeting the most heavily loaded subtrees does not perform appreciably

better than replicating random subtrees. Section 2.5.3 explores this behavior in more

detail.

2.4 Implementation

This section describes some of the implementation decisions in SPIRIT and presents

an abstraction that can be used to create distributed tree applications.

SPIRIT system Figure 2.5 shows the architecture, interface, and an example of

NN implementation in SPIRIT. SPIRIT’s implementation uses the wrappers for MPI

communication APIs available in BGL. The traversal kernel in SPIRIT is modeled upon

BGL’s visitor pattern. However, a visitor in SPIRIT is designed to take advantage of

inter-traversal locality, and message aggregation opportunities, and hence implements

a traversal of the tree for a block of points, rather than just one. The visitor helps

us to separate the details of the distributed traversal of a block from its state; an

application programmer overrides a method EvaluateV ertex, which specifies the

vertex computation.

EvaluateV ertex returns a status indicating the order in which a traversal wants to

visit child vertices in a binary tree. For an octree, we assume that this order is always

left-child first and plan to adapt our API to arbitrary orders in future work. Two

additional methods need to be overridden: SetContext and GetContext. GetContext

gets the result of local computation and SetContext updates local state with the

result of remote computation.

The optimizations module accepts user-configurable values of block size, buffer size,

and replication percentage to tune optimizations corresponding to blocking scheduling,

aggregation, and replication respectively. Determining an optimal configuration of

23

Communication backbone

Tree abstraction

module

O
p

tim
izatio

n
s

Visitor

Application

SPIRIT
SPIRIT* GetInstance(Opts* opt,
mpi_process_group& pg)
int BuildKdtree(char* fileName, Input-
Parser* p)
int BuildVptree(char* fileName, InputParser*
p)
int BuildOctree(char* fileName, InputParser*
p)
int Traverse(Visitor* vis)
Example execution: mpirun -np 4 NN
mnist.txt SUBTREE_HEIGHT=8 ...

1 enum s t a tu s { trunc , l e f t , r i g h t } ;
2 int main (int argc , char∗ argv []) {
3 // I n i t i a l i z e MPI environment (pg i s MPI process group) .
4 Optimizat ions opt (argc , argv) ; // reads user−s p e c i f i e d params
5 InputParser ∗ p= new KdtreeInputParser () ;
6 SPIRIT∗ s = SPIRIT : : GetInstance (opt , pg) ;
7 s−>BuildKdree (inputF i l e , p) ;
8 /∗KdtVis i tor i n h e r i t s from Sp i r i t ’ s V i s i t o r c l a s s
9 & ove r r i d e s EvaluateVertex , c a l l e d from the Traverse API∗/

10 KdtVis i tor v i s () ;
11 s−>Traverse(&v i s) ;
12 s−>Reset Ins tance () ;
13 return 0 ;
14 }

16 s t a tu s KdtVis i tor : : EvaluateVertex (VertexData∗ v , Point∗ p) {
17 i f (v . i s L e a f) UpdateClosestLabel (p , v) ;
18 else i f (WithinBox (v . boundingBox , p)) {
19 int ax i s = v−>depth % DIMENSION;
20 i f (p−>coord [ax i s] < v−>sp l i tVa l) return l e f t ;
21 else return r i g h t ;
22 }
23 return trunc ;
24 }

Fig. 2.5.: SPIRIT Architecture, API, and example program

these values is hard. However, a value of block size chosen based on vertex size, subtree

height, and available cache size can give good performance [19].

Threads vs. Processes SPIRIT exploits multiple hardware execution contexts

(cores or processors) on a single node by mapping multiple independent processes to

each node. This design decision allows multiple subtrees to be mapped to a single node,

improving load balance through overdecomposition. The processes are distributed

24

round-robin, first across nodes and then to multiple cores within nodes. For e.g. on 12

processes with a 10-node cluster, we use all 10 nodes for the first 10, map 11th process

to 1st node, 12th process to 2nd node and so on. Processes can either be chosen in

round-robin (default) or random order to map them to subtrees. and adjacent subtrees

whose pseudo-roots have the same parent are mapped to the same process. Blocked

(default) or block-cyclic distribution of workloads to top-level subtrees is supported.

In order to alleviate the memory pressure arising from the need for each process

to maintain its own storage for input data, SPIRIT uses shared memory segments: all

the processes mapped to a node share the memory segment. Due to OS limitations,

on some systems we cannot allocate all the points in a single shared memory segment

to share between processes. In such situations, we process the input points in batches.

While this introduces overhead that limits scaling (as we must impose a barrier

between the batches), this is purely an artifact of OS limitations and not a limitation

of SPIRIT’s design.

An alternative to exploiting multiple cores is to parallelize the processing of a

single subtree within a process, handing out multiple blocks (or sub-blocks) to multiple

threads. This multi-threading approach would have worse load balance compared to

the multiple-process approach, and implementation-wise, would require another level

of parallelism to be uncovered. SPIRIT uses the multi-process approach both because

load balance is a substantial problem in pipeline parallelism and because it is easier

to scale-up with existing implementation infrastructure to utilize more cores within a

node.

2.5 Evaluation

This section evaluates SPIRIT on five tree applications from the domains of sci-

entific computing, data mining, and computer graphics. We begin by presenting

strong-scaling and weak-scaling numbers for each of these benchmarks (Section 2.5.2),

demonstrating the effectiveness of SPIRIT’s combination of pipelining and selective

25

replication. We then evaluate the space-adaptive capabilities of SPIRIT, showing how

SPIRIT can smoothly trade off space usage (i.e., replication amount) for performance.

Next, we present a performance breakdown consisting of the impact of subtree height,

aggregation, and process utilization. Finally, we compare SPIRIT implementations of

our benchmarks to implementations in two general graph frameworks—distributed

Graph Lab and PBGL—as well as against existing, state-of-the-art distributed imple-

mentations of specific applications.

2.5.1 Methodology

We evaluate four versions of SPIRIT:

i SpiritDP : The data-parallel version of SPIRIT.

ii Spirit: The space-adaptive version of SPIRIT replicating only the top subtree.

iii SpiritPO: Spirit with pipeline-parallelism only (no subtree replication).

iv SpiritRO: Same as Spirit, but no pipeline parallelism (i.e., a subtree traversed by

a block is “locked out” until that block completes its traversal of the entire tree;

some parallelism is still available because there are multiple replicas of the top

subtree).

Benchmarks The benchmarks are taken from the Treelogy suite [16]. Spirit is pub-

licly available under the distributed-memory implementations of Treelogy benchmarks

at: https://bitbucket.org/plcl/treelogy.

i textbfBarnes-Hut (BH) [21]: is an efficient algorithm to simulate interaction

of gravitational bodies. In our tests, we present the performance of an octree

implementation run for 10 simulation steps.

ii Nearest Neighbor (NN): is described in section 2.2.

26

Table 2.1.: Data sets; |V|= Vertex set size, |P|=Number of points.

Input Description Benchmark
Name |V | |P |

Mnist Handwritten digits data with
reduced dimension to R7

PC, NN,
VP 2x|P|-1 106

Plummer Data in plummer model, R3 BH ≈1.5x|P| 106

Christmas Wavefront .obj file PM 462,818 106

Synthetic uniformly distributed data in
R3(BH), R2(PC,NN,VP)

PC,NN,
BH,VP

=2x|P|-1
=|P|(VP)

{16,32,64,
128}x106

iii 2-Point Correlation (PC) [23]: is used to determine how clustered a data set

is. The goal is to find the number of pairs of points that are within a specified

distance, R, from each other. SPIRIT includes kd-tree implementation of PC.

iv Vantage Point (VP) [12]: is a nearest neighbor algorithm using vp-trees, where

the partitioning plane is a hyper-sphere instead of a hyper-plane as in a kd-tree.

v Photon Mapping (PM) [24]: is an algorithm to realistically simulate interaction

of light with objects in a scene. The objects in a scene are represented as triangle

mesh, whose coordinates are then organized into a kd-tree. Ray-object intersection

tests are accelerated through the depth-first traversal of the kd-tree.

Workloads and distribution Table 2.1 describes the data sets (real [25] and

synthetic) used in our experiments. PC and BH workloads are inherent to the data

set sizes. For other benchmarks, workloads are due to batching of multiple user

requests: NN and VP workload sizes are half the data set sizes and PM’s workload is

due to tracing 1 million rays through a 480x620 pixel scene. The workloads are not

pre-processed with techniques such as sorting. For the largest inputs used, the virtual

memory requirement for the trees ranged from 10GB(VP)-20GB(PC), and for the

total workload (including traversals) ranged from 32GB-48GB. In all the evaluated

versions, message aggregation is turned on since the performance is better than that

without aggregation. Block size is fixed at 4096, and the buffer size is set to the

block size. Unless otherwise noted, all performance measurements are taken on tree

27

traversal times (exclusive of tree building time, as the traversal time is the dominant

cost), and the runtimes are measured using wall-clock time. Every configuration of a

test is run until a steady state is achieved, which yields errors of ±1% of the mean

with 95% confidence. The locality optimized baselines represent single node runtimes

and employ block scheduling [19]. The block size that gave the best performance (not

necessarily the same block size in each configuration) is chosen; these implementations

hence represent the best-available single-process implementations of each benchmark.

Platform and program development environment All experiments are run on

a 10-node cluster with gigabit ethernet interconnect. Each node contains two 10-core,

Intel Xeon-E5-2660-v3 processors and runs RHE Linux release 6. A core has 32KB L1

data and instruction cache, and 256KB of L2 cache. The cores share 25MB L3 cache

and 64GB main memory. All benchmarks are implemented using C++ and Boost

Graph Libraries (BGL 1.55.0) 2. The programs are compiled using mpic++, a wrapper

compiler for gcc 4.4.7, and linked with mpich2-1.4.1p1 3 and the corresponding BGL

wrapper library functions.

2.5.2 Scalability

When SPIRIT is given enough space to replicate the tree, it essentially runs in

data-parallel mode, and achieves excellent scaling (SpiritDP plots). The purpose of

our scalability experiments is to explore the behavior when SPIRIT cannot replicate

the tree across all inputs. In such a setting, SPIRIT’s pipelining allows it to achieve

speedup in both strong-scaling and weak-scaling settings. While this speedup is far

less than when SPIRIT is able to fully replicate the trees, SPIRIT’s performance is

on par with existing hand-written, optimized, application-specific implementations

(Section 2.5.5), despite its generality.
2http://www.boost.doc/org/libs; PBGL version is same as BGL as PBGL libraries are an extension
of BGL.
3http://www.mcs.anl.gov/mpi/mpich2

28

1

10

100

16 32 64 128 256

Sp
ee

du
p

Number of processes

Baseline=105.5s, SubtreeHeight=10

0.1

1

10

100

16 32 64 128 256

Sp
ee

du
p

Number of processes

Baseline=348.6s, SubtreeHeight=10
NN_Mnist

0.1

1

10

100

16 32 64 128 256

Sp
ee

du
p

Number of processes

Baseline=205.1s, SubtreeHeight=10
VP_Mnist

0.001

0.01

0.1

1

10

100

16 32 64 128 256

Sp
ee

du
p

Number of processes

Baseline=36.7s, SubtreeHeight=18
PM_Christmas

1

10

100

16 32 64 128 256

Sp
ee

du
p

Number of processes

Baseline=96.68s, SubtreeHeight=8
BH_Plumer

SPIRIT SPIRIT_PO SPIRIT_RO SPIRIT_DP

Fig. 2.6.: Strong scaling in SPIRIT.

Strong-scaling We evaluate strong scaling in SPIRIT with both synthetic and real

inputs but present here only representative results with real inputs due to lack of

space. The input sizes used here are constrained by inputs that allow single-process

runs to complete in a reasonable amount of time.

Figures 2.6 shows the results. Overall, Spirit scales well and outperforms SpiritPO,

and SpiritRO. SpiritDP evaluations of PM at 128 and 256 did not run because of

memory constraints. Across all the benchmarks, the geomean speedup in Spirit is 16.3

and that in SpiritRO is 7.7. Recall again that while this speedup seems small, it is in

a setting—distributed trees—where, absent SPIRIT’s pipelining and load balancing,

we would not expect speedup at all.

The SpiritPO plots confirm the proposition of section 2.3.4 that pipeline-parallelism

alone is not sufficient to obtain good performance and that selective data replication is

necessary. It may seem that the top subtree replication enabling data-parallel execution

of sub-traversals is the only reason for Spirit’s superior performance. However,

comparison between SpiritRO and Spirit plots sheds further light: pipeline-parallelism

29

yields, on an average, 1.54x increase in the speedup performance of SpiritRO: the

combination of pipelining and replication provide the best performance.

As the input size is fixed, the per-process number of blocks of input decreases (for

a fixed block size) with increasing number of processes. As a result, available pipeline-

parallelism decreases. Hence, the performance difference between SpiritRO and Spirit

reduces as the number of processes increase. Note that in SpiritRO, sub-traversals

execute in parallel only on the replicated top subtrees and there can only be one block

in flight on bottom level subtrees. However, for an application like NN or VP, there

still exists some pipeline-parallelism in SpiritRO because of the existing intra-block

parallelism: a block may split into two sub-blocks at every vertex, each of which can

be independently scheduled. This makes a single block traversing through the top

subtree spread into multiple bottom subtrees, each of which execute the resulting

sub-blocks in parallel. In other words, even with pipelining ostensibly turned off in

SpiritRO, pipeline parallelism is still exploited.

There is more intra-block parallelism, hence pipeline-parallelism, in NN than VP

(traversals in VP are much shorter). As a result, SpiritRO does not yield as much

pipeline parallelism in VP, and turning on both replication and pipelining produces

a big difference in performance. Because of the lower communication overhead in

VP, the absolute speedup numbers are greater than those in NN while producing the

same result. BH offers the maximum benefits due to pipeline-parallelism because of

the presence of more pseudo-leaves for a given top subtree height. We find that the

difference between SPIRITRO and Spirit is even more with larger data sets used in

the weak scaling experiments.

Weak-scaling Because our target applications are irregular, it is challenging to

ensure that the amount of work done per node is fixed as the input and system size scale

up. Instead, we scale the input size with the number of nodes—this results in more

traversals and larger trees. Note that these benchmarks are O(n log n) applications,

30

Geomean speedup
15.1128 14.4566

0

5

10

15

20

Ru
nt

im
e

(s
)

BH_Plummer

0

5

10

15

20

Ru
nt

im
e

(s
)

PM_Christmas

0
1
2
3
4
5
6

16 32 64 128N
or

m
al

ize
d

ru
nt

im
e

(s
)

Number of processes

Weak Scaling

PC NN VP BH PM
16 process run times
PC = 86.29
NN = 18.8
VP = 7.45
PM = 222.4
BH = 31.8 / step

1

10

100

16 32 64 128 256

Sp
ee

du
p

Number of processes

Baseline=105.5s, SubtreeHeight=10

0.1

1

10

100

16 32 64 128 256

Sp
ee

du
p

Number of processes

Baseline=348.6s, SubtreeHeight=10
NN_Mnist

0.1

1

10

100

16 32 64 128 256

Sp
ee

du
p

Number of processes

Baseline=205.1s, SubtreeHeight=10
VP_Mnist

0.001

0.01

0.1

1

10

100

16 32 64 128 256

Sp
ee

du
p

Number of processes

Baseline=36.7s, SubtreeHeight=18
PM_Christmas

1

10

100

16 32 64 128 256

Sp
ee

du
p

Number of processes

Baseline=96.68s, SubtreeHeight=8
BH_PlumerPC_Mnist

0
10
20
30
40
50
60
70
80
90

100

16 32 64 128

N
or

m
al

ize
d

ru
nt

im
e

(s
)

Number rof processes

WeakScaling in BH

SPIRIT

ChaNGa

SPIRIT SPIRIT_PO SPIRIT_RO SPIRIT_DP

0

2

4

6

8

10

12

Ru
nt

im
e

(s
)

VP_Mnist

0

10

20

30

40

Ru
nt

im
e

(s
)

NN_Mnist

0

5

10

15

Ru
nt

im
e

(s
)

PC_Mnist

Replication percentage (Number of replicated vertices / total vertices)

024681012

16 Processes 32 Processes 64 processes 128 processes 256 processes

0

2

4

6

8

16 32 64 128

N
or

m
al

ize
d

ru
nt

im
e

(s
)

Number of processes

PC NN VP BH PM
16 process run times
PC = 167.6
NN = 61.3
VP = 9.2
PM = 18.9
BH = 40.6 / step

Spirit 20 40 60 80 SpiritDP

Fig. 2.7.: Weak scaling in SPIRIT.

so a linear increase in the input size results in a larger increase in the amount of work;

in this experiment, we expect the overall execution time to increase.

As figure 2.7 shows, we essentially see that behavior. Here, the input sizes are

too big to fully replicate the tree, so only a distributed approach such as in SPIRIT

suffices to execute these inputs. Every process performs 0.5 million traversals. The

tree size varies approximately from 16 to 128 million vertices. Tree traversal times

normalized against 16-process runtimes are measured.

VP shows the best weak scaling. This is expected because of the shortest average

traversal length causing minimal communication overhead. PC shows the worst weak

scaling. This is because of a fixed radius value: the need for finding all pairs of points

within a fixed radius causes disproportionate increase in traversal length. PM also

shows flat scaling. This is due to the tree size in PM experiments being constant. Due

to the unavailability of inputs (scenes) with large number of object triangles and the

difficulty in generating synthetic input specifying geometry and other properties of

objects in scenes, we scale-up the rays being traced from 0.5 million to 4 million while

keeping the tree size constant.

2.5.3 Space-adaptive Evaluation

Figure 2.8 shows the space-adaptive capability of SPIRIT. Given a simple strategy

of replicating random subtrees (in addition to the top subtree), SPIRIT supports space-

adaptivity by varying the number of such random subtrees. Selecting more subtrees

31

0

5

10

15

20

Ru
nt

im
e

(s
)

BH_Plummer

0

5

10

15

20

Ru
nt

im
e

(s
)

PM_Christmas

0

2

4

6

8

10

12

Ru
nt

im
e

(s
)

VP_Mnist

0

10

20

30

40

Ru
nt

im
e

(s
)

NN_Mnist

0

5

10

15

Ru
nt

im
e

(s
)

PC_Mnist
16 Processes 32 Processes 64 processes 128 processes 256 processes

Replication percentage (Number of replicated vertices / total vertices)

Spirit 20 40 60 80 SpiritDP

Spirit 20 40 60 80 SpiritDP Spirit 20 40 60 80 SpiritDP Spirit 20 40 60 80 SpiritDP

Spirit 20 40 60 80 SpiritDP

Replication percentage (Number of replicated vertices / total vertices)

Fig. 2.8.: Space adaptivity in SPIRIT with varying amount of replication

to replicate gives more replication, and hence better performance, at the cost of more

space usage. The x-axis represents the user-specified percentage of total vertices of the

tree that are replicated. The left-most data point corresponds Spirit configuration and

the right-most is SpiritDP , which involves no communication and hence, represents

the best performance. Partial replication beyond the Spirit configuration in PM was

not possible in case of 256 processes and hence, the corresponding plot is not shown.

As we see, in all cases, increasing the amount of replication improved performance.

Replication serves two purposes: mitigating load-imbalance in the pipeline and

reducing messaging overhead. The top subtree is by far the biggest bottleneck in the

pipeline, as all traversals must visit the top subtree but, due to truncation, lower-level

subtrees may not be visited by all traversals. Hence, the load balancing benefits

of replication come primarily from replicating the top subtree. Further replication

primarily serves to eliminate pseudo-leaves in the top subtree and hence messaging: if

a lower-level subtree is replicated, then there is no need to perform communication

32

Table 2.2.: Process utilization: S=Dataset Size, P=Number of processes, TT=Total
traversal time (seconds), VT=per-process computation time as a percentage of total
traversal time, D=aggregate volume of data exchanged in MBytes.

S P PC NN VP BH PM
TT VT D TT VT D TT VT D TT VT D TT VT D

16M

16 167.6 74.6 291.1 61.3 9.6 693.6 9.2 34.6 122.8 40.6 31.6 617.6 18.3 8.4 307.5
32 88.6 61.4 302.8 42.9 7.2 720.6 5.8 30.3 128.1 25.5 25.8 640.3 11.6 6.7 316.2
64 56.3 41.8 307.9 39.1 4.1 733.8 4.3 22.3 130.5 17.5 18.6 650.7 8.4 4.9 320.6
128 37.9 31.1 310.5 34.3 2.6 740.3 3.9 12.4 131.6 15.5 10.9 655.9 7.2 3.3 323.1

128M

16 3671.5 79.3 2467.6 317.2 25.3 2923.5 98.3 42.8 942.9 458.7 43.8 4940.7 87.1 18.5 1218.7
32 2277.5 76.1 2565.8 196.1 21.5 3046.4 58.2 40.5 984.2 260.8 36.3 5122.4 47.5 16.5 1289.2
64 1291.5 70.1 2609.4 148.1 15.4 3102.8 38.9 32.6 1002.2 179.1 26.2 5206.1 29.5 13.5 1420.5
128 1099.5 41.8 2630.8 97.3 12.3 3130.3 32.2 20.5 1010.9 145.2 16.3 5247.6 42.6 11.1 1749.6

when transitioning to its (former) pseudo-root, as both the subtree and its parent are

on the same node.

An interesting consequence of this dichotomy (replicating the top subtree eliminates

the bottleneck, while replicating other trees primarily targets reduced communication)

is that it does not particularly matter which subtrees (beyond the top one) are

replicated: any replicated subtree eliminates a pseudo-leaf, and while some subtrees

are visited more than others, this is a second-order effect.

We confirm this behavior by evaluating a version of SPIRIT that replicates bottle-

neck subtrees, rather than random subtrees: we perform a profiling run to determine

which subtrees are the most heavily loaded, and replicate those. We find that the

performance difference between this profile-driven strategy and the random strategy

is negligible. We also find that dynamic subtree replication strategies perform worse

compared to replication during tree construction. It turns out that SPIRIT’s simple

strategy is sufficient.

Overall, we note that we get the best performance with fully data-parallel im-

plementations. It is important to note, though, that this requires replicating the

entire tree across every node, which may consume too much memory. Overall, these

experiments demonstrate that SPIRIT is able to adapt its space usage to the resources

at hand, and use pipeline parallelism to mitigate the loss of data parallelism when full

replication is not possible.

33

0%

20%

40%

60%

1 14 27 40 53 66 79 92 10
5

11
8Ve

rt
ex

 c
om

pu
ta

tio
n

tim
e

Process ID

PC_16M PC_Mnist

0%

5%

10%

15%

1 13 25 37 49 61 73 85 97 10
9

12
1

Process ID

PM_Christmas PM_Dragon

0%

5%

10%

15%

20%

25%

1 13 25 37 49 61 73 85 97 10
9

12
1

Process ID

NN_16M NN_Mnist

0%

20%

40%

60%

80%

1 13 25 37 49 61 73 85 97 10
9

12
1

Process ID

BH_lambb BH_16M

0%

5%

10%

15%

20%

1 13 25 37 49 61 73 85 97 10
9

12
1

Process ID

VP_16M VP_Mnist

Fig. 2.9.: Load distribution among 128 processes.

0

5

10

15

7 9 11 13 15 7 9 11 13 15 7 9 11 13 15 4 6 8 10 12 14 16 18 20 22

PC_Mnist NN_Mnist VP_Mnist BH_Plummer PM_Christmas

N
or

m
al

ize
d

Ru
nt

im
e

(s
)

SubtreeHeight

(a)

0

0.5

1

1.5

2

2.5

PC NN VP BH PM

Sp
ee

du
p

no
rm

al
ize

d
to

no

n-
ag

gr
eg

at
io

n

(b)

Fig. 2.10.: Impact of a) Subtree height. b) Aggregation.

2.5.4 Performance Breakdown

Process utilization Table 2.2 shows the process utilization measured as the ratio

of computation time over total traversal time. We show the results for the smallest

and largest of the synthetic inputs. Computation time (VT) is obtained from the

average of computation times of all processes. The processes are either performing

local computation or incurring overhead: either from actively communicating with

other processes to handle remote traversals or polling for messages that indicate the

completion of remote traversals. In other words, VT represents the “real” computation

performed by SPIRIT, as opposed to overheads incurred due to distribution. We

expect to see two trends: first, as more processes are added for a fixed input size, we

expect VT to decrease as a percentage of traversal time, as more time must be spent

in handling distribution. Second, if the input is increased for the same number of

processes, we would expect relatively more time to be spent in VT, as each process

holds a larger portion of the tree, and hence performs more computation. Table 2.2

confirms both of these trends.

34

Load imbalance Figure 2.9 shows the load distribution with respect to both

synthetic and real inputs. The figure shows, for each process id in the 128-process run,

the relative amount of time spent in computation vs. messaging overhead (in other

words, a higher number means more time spent performing real computation). If there

were load imbalance, we would expect to see that some processes spend significantly

more time in computation (vs. messaging overhead) than others.

As can be seen from the figure, SPIRIT’s subtree based partitioning and distribution

scheme results in uniform load among all processes mostly. However, BH_lambb is an

exception (presence of peaks) as lambb is a clustered data set. Hence, some subtrees of

the octree are visited more frequently during the force calculation stage. The current

distribution scheme of allocating all the sibling subtrees to a single process results

in overloading this process when the sibling subtrees are frequently visited. For this

particular input, we found that distributing the tree differently resulted in better load

balance (nevertheless, all of the results shown in this section use SPIRIT’s default

distribution).

Subtree size and message aggregation Figure 2.10a shows the impact of subtree

size and aggregation on the performance of 128-process runs. As SubtreeHeight is

a rough indicator of subtree size, we measure the performance with varying subtree

heights. As SubtreeHeight is increased, the number of pseudo-leaves increases,

which increases pipeline-parallelism and also the messaging overhead. So, we expect

the performance to improve initially and then degrade as the overhead outweighs

parallelism benefits. The figure shows this trend for all the benchmarks except in case

of PM. The kd-tree distribution in PM results in decreasing number of pseudo-leaves

with increasing height due to the long and narrow tree structure. This improves

performance due to more replication and less overhead. Figure 2.10b shows the

speedup improvement due to message aggregation, over non-aggregated runs with

all inputs used. Overall, aggregation yields a 1.6x speedup improvement. NN and

35

0
2
4
6
8

10
12
14
16
18

16 32 64 128

Ru
nt

im
e

(s
) -

1st
st

ep

Number of processes

SPIRIT

ChaNGa

lambs=3M points

0
100
200
300
400
500
600

16 32 64 128

Ru
nt

im
e

(s
) -

1st
st

ep

Number of processes

lambb=80M points

Runtime Parameters: SPIRIT-SubtreeHeight=4,
ChaNGa- dTheta=0.75, dEta=0.05, bGravStep=1, -b 16, -D 1, eps=0.000025(lambs), 0.00001(lambb)

Fig. 2.11.: SPIRIT vs. ChaNGa.

VP show higher benefits compared to other benchmarks because of the improved

pipeline-parallelism resulting from increased intra-block parallelism.

2.5.5 SPIRIT, DGL, PBGL, and Reference Software

In this section, we compare Spirit with implementations using one traversal-centric

and one vertex-centric framework:PBGL and DGL. We also compare Spirit with

ChaNGa [26], which is the state-of-the-art distributed implementation of Barnes-Hut

(reference software for distributed implementations of PM and NN were not available).

Since Spirit is specialized for distributed tree processing, we expect Spirit to perform

better in comparison with generic distributed graph processing systems like PBGL

and DGL. However, since Spirit lacks the application-specific customizations that

reference software systems are able to exploit, we might expect Spirit’s performance

to lag behind that of ChaNGa.

The DGL model is not the right programming fit for any tree benchmark involving

depth-first traversals: the executions continue to run beyond 4 hours—due to excessive

synchronization (once after every vertex computation)—and hence time out. However,

the traversals in DGL are implemented easily as state transitions encapsulated in GAS

template.

PBGL traversals employ asynchronous message-passing and avoid excessive syn-

chronization. However, the traversals visit more vertices than necessary, and do not

36

optimize communication. Implementing PBGL traversals requires a little more effort

than DGL: defining a DFSV isitor class and overriding its methods discover_vertex

and finish_vertex, and passing an instance of the class and other bookkeeping argu-

ments (for tracking vertex visits) to the tsin_depth_first_visit API. The API allows

a programmer to traverse a distributed tree without worrying about the underlying

tree distribution. However, the API does not handle multiple traversals efficiently,

and has no support for enforcing the order of vertex visits—which ruled out PM

implementation. These factors cause more vertex visits and hence, more work to

be done. Also, the API does not take advantage of increased data replication when

available and this creates a pipeline bottleneck as in SpiritPO.

Spirit, due to efficient truncation handling, optimizing communication, and avoid-

ing the pipeline bottleneck, outperforms PBGL significantly (>150x geomean speedup).

Also, Spirit implementations have the least average lines of code (90) compared to

DGL (200) and PBGL (192) implementations as they encapsulate coarse-grained

computations (entire traversal) similar to PBGL and fine-grained computation (vertex

computation) similar to DGL.

SPIRIT vs. ChaNGa Figure 2.11 compares the strong scaling performance of

SPIRIT and ChaNGa. These tests are conducted on real inputs [27]. Overall these ex-

periments show that SPIRIT is competitive with application-specific implementations.

SPIRIT’s treecode computes only Newtonian gravity forces while ChaNGa is more

general. In order to ensure that both ChaNGa and SPIRIT compute the same result,

the performance impact due to softening force calculations in ChaNGa is mitigated by

setting very low eps values. ChaNGa contains many application-specific optimizations

for incremental computation that allow it to run faster over multi-step simulations

by avoiding re-computing forces that have not changed since the previous time step.

However, the first computation step represents an apples-to-apples comparison between

ChaNGa and SPIRIT: both fully compute the forces for each body. In this first step,

37

SPIRIT is actually 1.2 to 2.6 times faster than ChaNGa for all inputs at smaller

number of processes.

We attribute the faster performance of SPIRIT to its model of moving computation

to data, rather than ChaNGa’s model of moving data to computation—fetching and

caching remote subtrees on node-local storage when a traversal visits them. At larger

number of processes and larger scales, the overhead due to batch processing of input

traversals as mentioned in section 2.4 brings down SPIRIT’s performance. In addition,

SPIRIT’s default subtree distribution policy incurs some load imbalance issues that

could be addressed with a different distribution (see Section 2.5.4) We plan to address

these issues in the future.

2.6 Related Work

Data partitioning, optimizing communication, overlapping computation with com-

munication, and exploiting locality is critical to achieving high-performance in dis-

tributed irregular applications. While the performance of such applications has been

analyzed in detail [28–30], creating high-performance distributed-memory implemen-

tations remains a challenge. Distributed-memory graph programming frameworks

partially automate and hence, simplify the creation of such applications. Frameworks

based on the vertex-centric model [1, 2, 5, 17, 18] are widely used in implementing

such applications. However, they are not suitable for certain tree applications due to

the ‘bulk-synchronous’ model of computation causing excessive communication and

the absence of vertex-level parallelism in the tree applications. Frameworks with a

flexible programming model [6,20,31] allow a coarser-granularity of computation to be

captured and employ asynchronous message-passing to minimize the communication

overhead. In fact, Nguyen et. al. [29] showed that bulk-synchronous model applied to

vertex-centric formulation of some algorithms does not always give high performance

and asynchronous scheduling along with algorithm-specific optimizations are necessary.

While some of these frameworks do not aggregate messages [2, 6] some do [17, 20].

38

However, existing locality opportunities due to coarse-level computation granularity

are missed. SPIRIT exploits locality, optimizes communication, and automates traver-

sals in a subset of tree applications. In doing so, SPIRIT adopts a traversal-centric

approach, aggregates messages, and employs asynchronous scheduling in creating high

performance implementations of distributed tree applications.

High performance, distributed implementations of irregular applications [26,32–34]

exploit application-specific knowledge such as how the tree changes from iteration-to-

iteration in Barnes-Hut [26], and the range of bin size in two-point correlation [32].

SPIRIT being general, currently does not have these optimizations incorporated.

However, these application-specific optimizations could be incorporated into existing

implementations.

Distributed kd-trees are constructed bottom-up [33,35], as against top-down, to

avoid touching all points at every level. The domain-decomposition is customized

for distributed octree construction in BarnesHut [26]. SPIRIT adopts a top-down,

iterative approach for kd- and octree construction to avoid touching all the points in

input data set at once. In the Hadoop implementation of distributed kd-tree by Aly

et. al. [35], the top subtree height is limited by the number of nodes. SPIRIT exploits

pipeline paralllelism by making the height user-configurable. In replicating the top

subtree, SPIRIT generalizes a Barnes-Hut specific optimization of locally essential

trees [36] (replicating the top subtree captures only a subset of the interaction lists),

and that of subtree caching of ChaNGa.

There has also been much work on application-specific and independent [19,34,37]

scheduling approaches to exploit locality in tree traversals. While these techniques

are proposed in the context of shared-memory systems and rely on data-parallel

formulations, SPIRIT adopts an application-independent technique [19] in a distributed-

memory setting.

39

2.7 Conclusions

We presented SPIRIT, a framework for creating distributed tree traversal ap-

plications. SPIRIT provides algorithms for tree distribution, supports distributed

execution of applications when the input cannot be replicated on all nodes. It provides

pipeline parallelism to expose parallelism in the distributed application. SPIRIT uses

a block-scheduling scheme and message aggregation to maximize locality and reduce

messaging overheads. Finally, it uses selective replication to avoid bottlenecks in the

pipeline, allowing programmers to tune the amount of replication in an application

to trade off performance and space usage. Our evaluation showed that SPIRIT can

(strong- and weak-)scale across five benchmarks, and that its space adaptivity allows

for increasing performance when more space is available for replication. Finally, we

showed that SPIRIT implementations far outperform implementations in generic

graph frameworks, and that SPIRIT provides competitive performance compared to

reference software.

40

3. TREELOGY: A BENCHMARK SUITE FOR TREE
TRAVERSALS

3.1 Introduction

Applications in a number of computational domains including scientific com-

puting [38,39], computer graphics [24], data mining [12,40–42], and computational

biology [43], are built around tree traversal kernels, which perform various computa-

tions by traversing trees that capture structural properties on input data. Because

these tree traversals are time consuming, memory intensive, and complicated, there has

been substantial interest in developing optimizations and implementation strategies

that target improving the performance of tree traversal [26,36,40,44–48].

While tree traversal kernels are widespread, they are also highly varied in terms of

the types of trees that are used (e.g., octrees, kd-trees, ball trees, etc.), the traversal pat-

terns of those trees, the number and variety of separate traversals that are performed,

etc. Each new tree algorithm requires careful thought to determine which implemen-

tation strategies and optimizations are likely to be effective, and hence developers of

new tree-based algorithms may struggle to devise efficient implementations.

Conversely, developers of optimizations targeting tree traversals also face challenges

in determining how effective and applicable their optimizations are. Unfortunately,

existing graph benchmark suites feature only a handful of tree traversal kernels [49–54],

not providing enough variety to understand the generality and behavior of new

optimizations. Tree traversals are a distinct subclass of graph algorithms, with their

own unique challenges—traversals touch large portions of highly-structured tree data,

unlike most graph kernels which operate on small, localized neighborhoods of the

graph [55]—so evaluating implementation strategies and optimizations for tree kernels

requires benchmarks that cover the breadth of tree traversal behaviors.

41

Interestingly, many optimizations depend on particular structural characteristics

of tree traversal kernels to be effective: some optimizations target only top-down,

pre-order traversal kernels [48], while others work for top-down traversals but not for

bottom-up traversals [44]. Others rely on a fixed traversal order of the tree [46], while

still others allow traversals to traverse the tree in any order [47]. However, there has

not been any attempt to identify this set of characteristics in a manner that allows

multiple optimizations to be targeted to particular tree traversal kernels. Much past

work on tree traversals was aimed at efficient expression and optimization of specific

tree traversal kernels [24, 26,40,45,56]. Understanding these characteristics, and how

they affect optimization opportunities, is critical to optimizing tree traversal kernels.

3.1.1 Contributions

To better understand traversal algorithms, and develop and understand optimiza-

tions for those algorithms, it is helpful to have a set of benchmarks that span a wide

range of characteristics. To that end, this paper presents Treelogy, a benchmark suite

and an ontology for tree traversal algorithms.

1. We present a suite of nine algorithms spanning several application domains: (1)

Nearest neighbor [12]; (2) K-nearest neighbor [12]; (3) Two-point correlation [40];

(4) Barnes-Hut [38]; (5) Photon mapping for ray tracing [24]; (6) Frequent

item-set mining [41]; (7) Fast multipole method [39]; (8) K-means clustering [42];

(9) Longest common prefix [43].

2. We develop an ontology for tree traversal kernels, categorizing them according

to several structural attributes. Treelogy kernels span the ontology: for each

category, Treelogy has at least two kernels of each type.

3. We present a mapping of existing tree traversal optimizations to the types of

traversals described by our ontology, and show how the ontology can guide which

optimizations can be applied to which kernels and vice-versa.

42

Optimizations
Tree

algorithm
Ontology

Consult => Get Category based on => Get optimizations mapped to category
Structural Attributes

Generalize optimizations <= Get category from application- <= Consult
to other domains specific structural attributes

Fig. 3.1.: Treelogy use case.

4. We evaluate the benchmarks in Treelogy with multiple types of trees, on real

and synthetic inputs, and across multiple hardware platforms: GPUs, shared

memory, and distributed memory. Using our evaluation framework, we present

results showing the scalability of reference implementations of the benchmarks,

and demonstrate that traversal algorithms with certain tree types yield better

performance compared to the “standard” tree.

Treelogy thus benefits both the designers of new tree algorithms as well as the

developers of new tree traversal optimizations, as shown in Figure 3.1. If a designer

devises a new tree algorithm, he or she can use Treelogy’s ontology to quickly catego-

rize the algorithm and determine which existing optimizations and implementation

strategies are likely to yield an efficient implementation. If a developer produces a new

optimization for tree traversals, he or she can use the ontology to help determine what

structural properties are necessary for the optimization to apply, and use the bench-

marks of Treelogy to evaluate his or her optimization against reference implementations.

Treelogy is publicly available at: https://bitbucket.org/plcl/treelogy.

3.1.2 Outline

The remainder of this paper is organized as follows. Section 2.2 presents background

on tree traversal algorithms, including a discussion of spatial trees and a general

43

skeleton for tree traversal algorithms. Section 3.3 describes the kernels of Treelogy.

Section 3.4 presents our ontology for tree traversal algorithms, maps the kernels of

Treelogy to the ontology, and discusses how this ontology can be used to determine

the suitability of different optimizations. Section 3.5 evaluates the kernels of Treelogy

on multiple inputs and on multiple platforms. Finally, Section 3.6 summarizes related

work and Section 3.7 concludes.

3.2 Background

This section describes spatial indexing structures that organize the input data in

the form of the trees that underpin the tree traversal algorithms. Next it discusses

the structure of an example tree traversal kernel and optimizations that are common

to most of Treelogy’s benchmarks (i.e., those that do not depend on deeper structural

characteristics).

3.2.1 Trees for Accelerating Computations

The use of trees to optimize different types of computations is common across many

algorithms. These trees often take one of two forms: spatial acceleration structures,

that organize data in an n-dimensional metric space, and n-fix trees (our term that

covers both prefix and suffix trees) that organize sets of sequences according to

similarity.1

Spatial Acceleration Structures

As Gray and Moore argue, an effective, general way to speed up the computation

of n-body algorithms is through the use of spatial trees [40]. An n-body computation,

in its naïve implementation, requires comparing each of a set of items with every other

item in a data set. Rather than performing this O(n2) process, spatial trees organize
1We do not mean to imply that these are the only types of trees; merely that they are among the
most common.

44

A C

R
Traversing entity at
vertex R

?
radius

(3,2) (6,1)

(5,6)

(4,4)

(1,5)

(2,3)

(2,6)
F

E

D

B

C

A

G
(0,0)

B

A C D G E F

R
Y Y

X X

X

Split planes

Fig. 3.2.: Sample space (2D) and corresponding kd-tree.

the items of the set into a tree structure to speed up the comparison process. These

trees work for data that is embedded in a metric space (or a pseudo-metric space,

where a distance can be determined between any pair of points).

For example, a kd-tree [11] organizes k-dimensional spatial data (hence the name

kd-tree) by recursively splitting the set of points into subspaces by cutting the space

using a split plane along one of the dimensions to divide the points in the current

space in half. Each split subdivides the space into two, and the two subspaces are

made children of the parent space in the kd-tree. In this way, the tree is built top

down, with the root of the tree representing all of the points, and the leaves of the

tree representing a single point (or a small set of points). Figure 3.2 shows an example

of a kd-tree built in two dimensions over 7 points. This structure allows for a very

fast proximity check between any point p and the entire subspace represented by a

node in the kd-tree: if any part of the subspace is “close” to p, that means that the

subspace may contain a point within that distance of p. Because most n-body codes

are fundamentally concerned with the question of which points are close to each other

(whether to compute a 2-point correlation, or estimate forces, etc.), this query allows

the tree to be traversed, and in doing so, quickly eliminate entire subspaces without

individually visiting points (see Figure 3.3a).

45

R P
Point P executing a query
at vertex R: explore cell?

A spatial cell
represented by the
points in the subtree of R

(a) Query - is any point in the cell close enough to P? if no, don’t explore cell

1 void Traverse (Vertex v , Point p , f loat rad iu s)
2 {
3 i f (d i s t anc e (v , p) > rad iu s)
4 return ;
5 i f (v . i s L e a f ())
6 foreach (Point p1 : v)
7 i f (d i s t anc e (p1 , p) < rad iu s)
8 p . co r r++;
9 else

10 Traverse (v . l e f tCh i l d , p , rad iu s) ;
11 Traverse (v . r i ghtChi ld , p , rad iu s) ;
12 }

(b) Two-Point Correlation

1 void Traverse (Vertex v , Point p){
2 s t a tu s = ComputeVertex (v , p)
3 i f (s t a tu s i s t runcate)
4 return
5 i f (s t a tu s i s t r a v e r s e_ l e f t){
6 Traverse (l e f tCh i l d , p)
7 Traverse (r ightChi ld , p)
8 }
9 else {

10 Traverse (r ightChi ld , p)
11 Traverse (l e f tCh i l d , p)
12 }
13 }

(c) Nearest Neighbor

Fig. 3.3.: Purpose of spatial acceleration structures and example traversal codes

46

So, for example, to use a kd-tree to compute the two-point correlation of a point

p, where the purpose is to determine how many points are within a radius r of p, the

point p starts at the root of the kd-tree. As long as the current cell of the kd-tree

overlaps with any portion of the (k-dimensional) sphere around p, the point traverses

down the tree. Otherwise, that entire subtree (and hence subspace) can be truncated

from the traversal. If p reaches a leaf of the tree, it compares with the point(s) in

that leaf. In this way, p’s 2-point correlation can be computed without comparing to

every other point in the space. Figure 3.3b shows pseudocode for this traversal. Other

n-body computations can be performed in similar ways [40].

Kd-trees are one of many types of spatial-acceleration trees. Others include vp-

trees (vantage point trees) [12] where subspaces are determined not by being on one

side or another of an orthogonal split plane, but instead by being inside or outside

hyperspheres. BSP trees (binary space partitioning trees) [57] use split planes to divide

subspaces just like kd-trees, but those planes may not be orthogonal. Octrees [13]

for 3-dimensional spaces, as used in Barnes-Hut, do not evenly divide subspaces

by the distribution of points but instead by distance: when a cell is divided into

subspaces, the subspaces are eight equally-sized subspaces. Quad-trees are similar to

octrees and are for 2-dimensional spaces. Unlike kd-tree or octree, sibling subspaces

in Balltree [14] are allowed to intersect and need not partition the whole space. As we

see in Section 3.5, the type of spatial tree used affects the behavior of each traversal,

and hence performance.

N-fix Trees

Another common type of tree is used to organize data that is not embedded in a

metric space, but instead shares another form of similarity: common sequences. For

example, prefix trees (tries) are a space-efficient structure for storing a set of strings,

with nodes in the tree representing letters, and paths in the tree representing words.

Two words that share a common prefix (e.g., “cat” and “car”) share the same path

47

in the tree for their common prefix (“ca-”), and then split into two children for their

suffixes. Suffix trees are similar, but organized in the opposite direction. While these

trees are often used for efficient representations of strings (suffix trees are especially

common for representing sets of genomic sequences [58]), they also are used for other

sets, such as in frequent item-set mining [41].

3.2.2 Traversal Structure and Optimizations

Efficiently implementing point correlation (Figure 3.3b) requires considering many

issues. Note that a point’s traversal touches the vertices of the tree in depth-first

order resulting in no scope for intra-traversal parallelism if the traversal order is to be

preserved. However, more often, multiple points traverse the tree, these points are

independent of each other, and the tree is not modified during traversal. Hence, there

exists ample coarse-grained parallelism. In such a scenario, when multiple traversals

touch a set of vertices and perform computation at vertices in the set (referred to

as vertex computation from now on), more than one traversal may touch the same

vertex. Therefore, traversals can be reordered in such a way that those touching

similar vertices can be scheduled in close succession so as to enhance temporal locality.

Block scheduling [59] is a generic locality enhancement technique where a block of

points traverses the tree rather than a single point, allowing multiple points to interact

with a single vertex from the tree.

While the previous paragraph described the properties of the traversal kernel

and optimizations possible for point correlation only, we find that many tree-based

traversal kernels share these properties. In fact, we can systematically categorize tree

traversal kernels so that kernels in the same category share similar properties and

hence can be reasoned about collectively when they are the focus of optimizations.

Section 3.4 describes this ontology.

48

3.3 Treelogy Traversal Kernels

This section presents the 9 traversal kernels of Treelogy: Nearest Neighbor (NN),

k-Nearest Neighbor (KNN), Two-Point Correlation (PC), Barnes-Hut (BH), Photon

Mapping (PM), Frequent Itemset Mining (FIM), Fast Multipole Method (FMM), k-

Means Clustering (KC), and Longest Common Prefix (LCP).

1) Nearest Neighbor [12] is an optimization problem in data mining, image pro-

cessing, and statistics, where the goal is to find closest point(s), based on some distance

function, to a query point. Figure 3.3c shows pseudocode for an NN implementation.

First, a set of points representing the feature space are organized into a metric tree.

A query point then traverses the tree depth-first to find its closest neighbor(s). The

traversal begins by guessing the distance to closest neighbor and sets it to a very large

value. At every vertex on the traversal path, the query point determines whether

the vertex’s subspace could contain a point that is closer than the current guess. If

so, the query point updates the current guess and the traversal proceeds to explore

the vertex’s children. If not, the traversal is truncated and proceeds to unexplored

vertices of the tree. When the traversal reaches a leaf, point(s) in the leaf’s subspace

are inspected and the query point updates its guess for its closest neighbor. Typically,

there exist several query points and hence offer scope for parallel execution. Treelogy

includes NN implementations using kd- and Vantage Point (vp) trees.

2) K-Nearest Neighbor finds the k nearest neighbors to each query point [60].

Instead of chasing the only nearest neighbor, KNN maintains a distance buffer to

record the K closest neighbors. KNN is more robust to noisy training data than NN,

and the k-neighbor buffer gives it a significantly different traversal pattern than NN.

Treelogy includes KNN implementations using ball-trees and kd-trees.

3) Two-Point Correlation [40] The traversal algorithm in two-point correlation

was introduced in section 3.2.1. This is an important algorithm in statistics, and

data mining used to determine how clustered a data set is. As in the case with NN,

49

different types of trees are possible for input representation. Treeogy includes PC

implementations using kd- and vp-trees.

4) Barnes-Hut [38] is an efficient algorithm to predict the movement of a system

of bodies that interact with each other. BH accelerates the computation of forces

acting on a body due to its interaction with other bodies. It does this by building an

octree (3-dimension) based on the spatial coordinates of those bodies. Every body then

traverses the tree top-down to compute the force acting upon it. The force due to far

away bodies can be approximated based on the center of mass of those bodies, allowing

direct body-to-body interactions to be skipped. The algorithm runs for multiple time

steps. At the end of each time step, the bodies’ positions are updated based on the

computed forces, and the tree is rebuilt using the updated positions. Treelogy includes

BH implementations using octree and kd-trees. Our kd-tree implementation is based

on the recursive orthogonal bisection method [28].

5) Photon Mapping [24] is an algorithm to realistically simulate interaction of

light with objects in a scene. A kd-tree is used to accelerate the ray-object intersection

tests. The objects in a scene are represented by triangle meshes. The triangle

coordinates are then organized into a kd-tree structure. Each of a set of input rays

traverses the kd-tree depth-first to determine the triangles (objects) that it intersects

with. The algorithm proceeds in multiple phases, with each phase generating a set of

reflected and refracted rays, which in turn traverse the tree in subsequent phases. The

algorithm terminates when there are no reflected or refracted rays. Our implementation

is adapted from HeatRay2.

6) Frequent Item set Mining [41] is a data mining kernel typically employed in

mining associations and correlations (e.g. finding correlation in the shopping behavior

of customers in a supermarket setting). The input is a set of transactions, T , each

containing a subset of items from the set B, which contains all the items that are

available for purchase. Another input, suppmin, quantifies the term “frequent”. The
2https://github.com/galdar496/heatray/

50

goal is to return all sets of items, I, that are “frequent” i.e. ∀bi ∈ I, |C(bi)| ≥ suppmin.

Where, the cover of bi, C(bi) = Ti|(Ti ∈ T, bi ∈ Ti)

A naïve algorithm of generating all possible item sets (candidates) and then

scanning the transaction set, T , is infeasible since it requires generation of 2|B| item

sets, which is impractical for large |B| values, and T is often too large to fit in memory.

Hence, modified prefix trees [41] are used to compactly represent T in memory. The

tree is then systematically traversed in a bottom-up manner to generate the sets of

all frequent items occurring in some combination in any transaction. This process

involves generating additional conditional prefix-trees that are iteratively traversed.

The FIM implementation in Treelogy is adapted from FPGrowth3.

7) Fast Multipole Method [39] is an efficient algorithm to speed up the compu-

tation of particle interaction forces in an n-body problem e.g. computing potential of

every particle in a system of charged particles. The spatial coordinates of particles

are organized into an octree or quad-tree. The tree is then traversed in three steps

(top-down, breadth-first in first step, bottom-up, depth-first in second and third steps)

to compute the potential of all particles. We characterize the performance of top-down

(TD) and bottom-up (BU) traversals separately in section 3.5. Our quad-tree FMM

implementation is based on “low-rank approximation of well-separated regions” [61].

8) K-means Clustering [42] is a popular cluster analysis method in data mining.

It partitions a large number of data points into K different clusters. The algorithm

works in an iterative way. First, every point computes the distance to these K clusters,

and is assigned to the closest one. Then every cluster is updated to be the average

position of the points that belong to it. This process repeats until all the points belong

to the same clusters in two successive iterations.

While most implementations of K-Means are non-tree based, Treelogy implements

a kd-tree based version of the algorithm [42]. For each iteration, a spatial tree is build

to organize the set of clusters. Then the point traverses the tree to look for its nearest

cluster. Because of the tree structure, a point can quickly filter out far away clusters
3https://github.com/integeruser/FP-growth/

51

to avoid unnecessary distance computations. The tree-based K-Means usually presents

a better performance [42]. Our implementation is adapted from KdKmeans4.

9) Longest Common Prefix [43] or longest common substring (LCS) problem

is common kernel in bioinformatics and document retrieval. LCP finds the the longest

string that is a common substring of two (or more) strings. Given two strings with

length N and M , while the dynamic programming method typically takes O(N*M)

time, a suffix tree-based traversal can solve the LCP problem in O(N+M) time.

The longest common prefix of both strings can be found by building a generalized

suffix-tree, and finding the deepest internal nodes that contain substrings from both

input strings. Our implementation is adapted from Longest Common Substring5.

3.4 An Ontology for Tree Traversals

This section introduces an ontology for kernels in tree applications, identifying

five key features that help categorize tree traversal kernels. We then explain how

the categorization of a kernel according to these features can help direct which

optimizations apply to a given kernel.

3.4.1 Ontology

1. Top-down and Bottom-up: Top-down traversals perform a traversal of the

tree beginning from the root. Bottom-up traversals traverse the tree from leaves

to the root. Top-down traversals can be preorder, inorder or postorder. There is

a correspondence between postorder and bottom-up traversals in an algorith-

mic implementation: bottom-up traversals can be implemented as postorder.

However, some optimizations only apply to top-down traversals [47,62], while

bottom-up traversals can avoid some of the recursion overhead of postorder
4https://github.com/vaivaswatha/kdkmeans-cuda
5http://www.geeksforgeeks.org/generalized-suffix-tree-1/

52

traversals, making the choice of one or the other significant depending on the

situation. In our experience, most tree traversal kernels are top-down.

2. Unguided and Guided: A top-down recursive traversal of a tree, whether

preorder or postorder, effectively linearizes the tree. In many applications,

every traversal of the tree creates “compatible” linearizations: while a single

traversal may not visit the whole tree (due to truncation), there exists a single

linearization of the tree where every traversal’s linearization is a subset of

that canonical linearization. For example, in a top-down traversal where every

traversal visits a node’s left child before visiting its right, all traversals have

compatible linearizations. In other applications, though, one traversal might

visit the left child before the right while another might visit the right child

before the left. In this case, the two linearizations don’t match: they are not

subsequences of the same canonical linearization. Borrowing terminology from

Goldfarb et al. [48], we call the former type of traversal unguided and the latter

guided.

Crucially, in an unguided traversal, the traversal order of the tree is not traversal

dependent. In a guided traversal, however, not only is the traversal order of

the tree dependent on properties of a given traversal, that order could change

based on computations performed during the traversal. Figure 3.3b shows an

unguided traversal: any point in 2-point correlation will traverse the tree in the

same order. Figure 3.3c shows a guided traversal: which order a point traverses

the tree depends on the results of ComputeVertex.

3. Type of tree: While the traversal kernels of Treelogy can be implemented with

a variety of spatial and n-fix trees, this paper presents efficient implementations

using oct-, k-dimensional (kd), quad-, ball-(bt), vantage-point(vp), suffix-, and

prefix-trees. Various considerations, including memory usage, structural balance

and input characteristics can influence the selection of tree types for an algorithm,

and can lead to differing performance. Sometimes the tree type is constrained

53

by the dimensionality of input space: 2-dimensional input in FMM requires a

quad-tree while 3-dimensional input is represented with an octree.

4. Iterative with tree mutation: In iterative applications, the tree is traversed

repeatedly until a terminating condition is satisfied. Traversal kernels in such

applications modify the tree structure between successive iterations. However,

within an iteration, the tree structure is not modified, thus allowing multi-

ple traversals to execute simultaneously. Tree structure modification affects

distributed-memory implementations, where tree building and distribution can

consume a significant amount of time.

5. Iterative with working set mutation: In traversal kernels of iterative ap-

plications, the number of independent traversals executing simultaneously may

vary across iterations. This set of independent traversals is referred to as the

working set. This varying size of the working set can translate to opportu-

nities in load-balancing, and often in minimizing parallel overheads due to

synchronization.

Ontology Applied to Treelogy

The benchmark programs in Treelogy span the ontology: for each attribute type,

Treelogy includes at least two benchmarks covering each possible value for that

attribute (with the exception of tree type, as tree type is often independent of

algorithm). Table 3.1 shows the benchmarks classified according to our ontology. Note

that most of Treelogy’s algorithms are top-down traversals of various kinds. This is

consistent with our experience that most tree-traversal kernels are top-down.

3.4.2 Optimizations

Over the years, researchers have proposed numerous optimizations for tree traversal

kernels. This section presents specific optimizations, and elucidates how the ontological

54

Table 3.1.: Classification of benchmarks

Benchmark Traversal order Traversal guidance Tree type Tree mutation Work set mutation
NN_kd preorder guided kd × ×
NN_vp preorder guided vp × ×
KNN_kd preorder guided kd × ×
KNN_bl preorder guided bl × ×
PC_kd preorder unguided kd × ×
PC_vp preorder guided vp × ×
BH_oct preorder unguided oct X ×
BH_kd preorder unguided kd X ×
PM_kd preorder unguided kd × X
FIM_pre bottom-up unguided prefix X X
KC_kd inorder guided kd X ×
LCP_suf postorder unguided suffix X ×
FMM_qd preorder and bottom-up unguided quad X ×

characterization of a tree traversal can be used to determine whether an optimization

is generalizable.

Locality Traversals through the top part of the tree represent a negligible amount

of work compared to traversals through the bottom part. In many top-down traversal

kernels, the behavior of traversals in the top part of the tree can provide insight

into behavior in the bottom part. Hence, by profiling traversals in the top part,

better temporal locality can be achieved through optimized scheduling of traversals

through the bottom part [47, 62]. Such profiling is ineffective in case of post-order or

bottom-up traversals due to large volume of profiling data. For bottom-up traversals,

a tiling optimization such as that in cache-conscious prefix trees [56] can be effective

in enhancing spatial locality.

Vectorization An optimization for Barnes-Hut [63] that is used in vectorized imple-

mentations involves a pre-processing step which linearizes traversals before doing any

vertex computation. Similarly, many GPU implementations of tree traversals rely on

pre-computing interaction lists: the tree is traversed to determine which nodes of the

tree are touched by each traversal, and only afterwards are the actual computations

performed [46]. These types of optimizations can only be applied for unguided traver-

sals: they require either a single linearization of the tree, or that the linearization can

55

be computed without performing the full traversal. These optimizations cannot be

applied for guided traversals such as NN, since the next vertex to be visited depends

on the result of current vertex computation. In such a scenario, in order to achieve

vectorization, the tree structure needs to be modified with other techniques such as

autoroping and lockstepping [48].

Input representation Bottom-up traversal of suffix trees was shown to be efficient

in performing multiple genome alignment [64]. Depth-first traversals through prefix

trees in FIM beat breadth-first traversals through subset trees [65]. In NN, vp-trees

were shown to be the best option compared to alternate input representation options

in case of handling queries for finding similar patches in images [45].

In case of spatial trees, traversal properties through one type of tree can be very

different when compared to traversals through other types: while vp-trees can facilitate

faster truncation of a traversal—hence shorter traversals and faster performance—

insertion and deletion is difficult, and hence may not be a good choice for a kernel

involving frequent updates to the tree structure. A kd-tree typically offers a height-

balanced structure, but at the cost of more vertices, while an octree represents the

data more compactly but is not usually balanced. As we see in section 3.5, NN, PC,

and BH implementations with certain types of trees yield faster traversal performance

for certain inputs.

Other optimizations Locally essential trees (LET) [36] is a BH-specific optimiza-

tion. When the input domain of cosmological bodies is decomposed and represented

as a tree structure, nearby bodies in a spatial subdomain see (and traverse) a similar

subtree structure because the fine- and coarse-grained interactions of these bodies

with bodies in other subdomains are similar. In order to compute the total force

acting on each body in that subdomain, the union of all such subtrees is needed. This

union is referred to as an LET. Essentially, by replicating portions of the tree, the

tree structure necessary to compute forces is made available locally to a processor’s

domain (in a distributed-computing scenario).

56

Distributed-memory implementations of kernels involving repeated, top-down

traversals benefit from the generalization of this optimization: the top subtree (neces-

sary for a subset of point-cell interactions) can be replicated on node-local memory to

achieve scalability and minimize inter-node communication.

Estimating returns of optimizations We provide a simple reuse distance analyzer

tool [66] to estimate the efficacy of locality optimizations in tree traversals. Reuse

distance is known to be a good predictor of cache performance, despite its many

simplifying assumptions. Our tool analyzes locality at the granularity of vertices of a

tree, so does not provide complete reuse distance analysis but an analysis tailored to

our suite. Reuse distance analysis can help provide architecture-independent measures

of locality: small reuse distances mean good locality, large reuse distances mean poor

locality but, importantly, an opportunity to potentially improve locality. Hence, the

analyzer helps us understand the potential for optimization in a benchmark and/or

input. Section 3.5 provides a case study of using the tool to verify the effectiveness of

locality optimization.

An ontological characterization of tree traversals provides better guidance to design

code transformations and optimizations focusing on performance. We have presented

a rigorous classification, well known classes of optimizations and a methodology to

estimate the returns of a particular class of optimization for tree traversals. Next

to support our design, we provide an evaluation of our benchmark suite in different

aspects.

3.5 Evaluation

We now present the evaluation of our benchmark kernels.

3.5.1 Methodology

We evaluate the following variants of tree traversal kernel implementations:

57

1. SHM: shared-memory implementation that is run on a single compute node.

2. DM: distributed-memory implementation that is run on a cluster of nodes, using

the approach of Hegde et al. [67].

3. GPU: GPU implementation, using the approach of Liu et al. [62].

Since the goal of this study is to characterize traversal kernels, we do not profile

the entire application. Hence, the performance measurements show the traversal

times only. Especially, for GPU implementations, we only measure the computation

kernel runtime spent on GPU. All our baselines are single-threaded SHM versions

that optimize scheduling of multiple independent traversals by executing blocks of

traversals simultaneously [59]. All DM runs execute a data-parallel configuration

of the kernel, where the tree is replicated on each node and the set of independent

traversals are partitioned among the nodes of the cluster. Every configuration of a

test is run until a steady state is achieved, which yields errors of 1.2% of the mean

with 95% confidence.

In addition to the optimized variants we evaluate here, the Treelogy distribution

includes unoptimized, single-threaded implementations for use as optimization targets.

Data sets We evaluate each benchmark on both real-world6 and synthetic inputs.

We use a publicly available tool for generating FIM data7, and also provide synthetic

data generators for each benchmark that allow users to create inputs of the desired

size and dimensionality, allowing them to evaluate the behavior of implementations at

different input sizes. Table 3.2 shows the details of the inputs used.

Platform and Program Development Environment

A single compute node consists of 20 Xeon-E5-2660 cores with hyperthreading

and runs RHE Linux release 6. Each core has 32KB of L1 data and instruction
6Source: https://www.ncbi.nlm.nih.gov/genome/viruses/, UCI Machine Learning Repository
7FIM: https://sourceforge.net/projects/ibmquestdatagen/

58

Table 3.2.: Data sets and attributes; |V|= Number of vertices, |P|=Number of
traversals.

Input Description Benchmark
Name |V | |P |

Synthetic1 Uniformly distributed
data in 7-dimensional

space (R7)

PC_kd,
NN_kd

2x107-1 107

PC_vp,
NN_vp

107 107

Mnist Handwritten digits
data with reduced
dimension to R7

PC_kd,
NN_kd,
KNN_bt

2x106-1 106

PC_vp,
NN_vp

106 106

Plummer Plummer model with initial posi-
tion, velocity, and mass

BH_kd
BH_oct

2x106-1
≈1.5x106

106

Synthetic2 Uniformly distributed data, R3 BH_kd
BH_oct

2x107-1
≈15x106

107

Christmas Wavefront .obj file PM_kd 462,818 2.3*106

Dragon Wavefront .obj file PM_kd 22,532 1.4*106

Gazelle2 KDD Cup-2000 data set FIM_pre 202,234 202,234
Synthetic3 IBM Quest Data Generator FIM_Pre 23,301 23,301
Synthetic4 Uniformly distributed data, R2 KC_kd 128 204,800
Wiki Word vectors from first 108 words

of wikipedia, R100
KC_kd 128 71,291

Synthetic5 Uniformly distributed data with
constant mass and potential, R2

FMM_qd ≈106 ≈106

Synthetic6 Strings each of size 105 construted
randomly using an alphabet of 7
characters

LCP_suf 296,007 NA

Genome Origin of two viral genome se-
quences from NCBI

LCP_suf 10,132 NA

59

Table 3.3.: Runtime characteristics of benchmarks.

Benchmark Input Baseline time (s) Average traversal length Cv
L3 miss rate (%) CPI

SHM DM GPU

PC_kd Syn1 926.4 1066.1 29.5 13790 0.13 65.15 1.82
Mni 79.5 80.2 2.6 2606 0.38 14.74 0.75

PC_vp Syn1 553.8 422.6 199.0 296 0.14 70.68 3.84
Mni 2.7 3.2 0.8 40 0.001 40.21 1.67

NN_kd Syn1 1250.4 1580.9 60.2 3143 0.14 48.2 1.39
Mni 124.3 180.4 19.4 6310 0.31 16.8 0.63

NN_vp Syn1 2815.5 4512.8 280.0 3234 0.21 58.9 2.66
Mni 87.1 107.5 8.6 2657 0.26 13.6 1.01

KNN_bl Syn1 2424.1 3284.3 106.8 3808 0.74 39.81 1.3
Mni 145.6 237.2 4.3 3955 1.74 15.3 0.82

BH_oct Syn2 841.08 2200.7 1.4 1403/step 0.11 63.6 4.32
Plu 57.86 149.9 2.9 2709/step 5.86 35.55 1.59

BH_kd Syn2 278.4 953.7 0.3 818/step 0.1 47.52 1.88
Plu 62.1 169.68 1.3 7704/step 1.92 21.1 0.64

PM_kd Chr 30.4 49.3 NA 93/step 0.78 42.92 2.07
Dra 5.1 9.54 NA 86/step 0.68 4.3 1.19

FIM_pre Gaz 3.9 4.0 NA 2 7.3 2.37 1.17
Syn3 23.9 24.1 NA 2 1.5 19.4 1.48

KC_kd Syn4 25.3 16.9 3.7 11/step 0.09 6.42 0.67
Wiki 98.03 91.9 41.5 128/step 0.02 21.6 0.58

LCP_suf Gen 0.05 0.02 NA 10,132 NA 17.17 0.84
Syn6 1.27 0.63 NA 296,007 NA 58.24 1.01

FMM_qd
Syn5

64/step 0.19TD 5.7 5.3 0.03 0.7 0.46
BU 0.6 0.2 NA

cache, and 256KB of L2 cache. The cores share 25MB of L3 cache, and 64GB of

RAM. The DM experiments are run on a cluster of 10 such compute nodes. DM

implementations are compiled using mpic++—a wrapper compiler over gcc 4.4.7—and

linked with Boost Graph Library (BGL 1.55.0) and MPI libraries (MPICH2 1.4.1p1).

SHM implementations are compiled using gcc 4.4.7, and linked with pthread libraries.

GPU implementations are compiled with NVCC 7.0.27, and evaluated on a server

with 32 GB physical memory, two AMD 6164 HE processors and a nVidia Tesla K20C

GPU card (5GB memory on board). The K20C deploys 13 Streaming Multiprocessor

(SMX) and each SMX contains 192 single-precision CUDA cores.

Metrics

We first characterize the Treelogy benchmarks according to various architecture

dependent and independent metrics. Table 3.3 shows the results.

60

Average traversal length For each benchmark/input pair, we compute the average

traversal length of the traversals in the kernel. The length of a traversal is measured as

the number of vertices that the traversal touches in the tree (note that we count each

vertex just once, even if a traversal performs work at a vertex during both pre-order

and post-order portion of the algorithm). Longer traversal lengths means that more

of the tree is being touched, and that traversals have larger working sets. This has

implications for locality (larger working sets means more likelihood of cache misses)

and for scheduling (longer traversals, especially in relation to the size of the tree,

means that there is more likelihood that traversals overlap and hence can be scheduled

together for better locality or smaller divergence).

The L3-cache miss rate results measured on the baseline SHM performance in

Table 3.3 reflect this: we see higher miss rates with longer traversal lengths and larger

inputs. However, PC_vp in comparison with PC_kd is a contradiction; despite the

traversals through vptree being much shorter (for the same input), we see an increase

in miss rate. This is because of the guided traversal kernel of PC_vp offering more

intra-block parallelism compared to the unguided, PC_kd kernel, which means that

for the same block of input points, a larger portion of the tree is touched in case of

PC_vp. All other cases of lower miss rates are due to very shorter traversal lengths

(PM, FIM, FMM, KC) and smaller tree sizes (KC, PM_Dra).

The following observations from Table 3.3 emphasize how input-dependent the

kernels are: a) while kd-tree offers the best traversal performance for Syn1, vptree

offers the best performance for Mni for NN benchmark. From another perspective,

traversals through the kd-tree are the shortest for Syn1 but longest in case of Mni

when compared to vptree and ball-tree traversals. b) we also see that while every

traversal in KC_kd touched the entire tree for Wiki, only 11 vertices, on average, were

touched in Syn4. In summary, the behavior of these benchmarks is highly dependent

on the tree type and even input distribution.

61

Load-distribution To determine how the work of a traversal algorithm is dis-

tributed across the tree (useful for distributed memory load balancing), we measure

load-distribution. We partition the tree into subtrees such that the resultant tree is

two subtrees deep (i.e. the tree is logically sliced at half the maximum depth). The

amount of work done by a subtree is the load, which is roughly equivalent to the sum

of the size of all blocks executed at all vertices of the subtree. Since the lone top

subtree has the maximum load because of all traversals beginning and ending at the

root vertex, we skip this subtree from our analysis to get a clearer picture of load

on other subtrees. For measuring load-imbalance, we calculate Cv = σ/µ, where µ

is the average load on a subtree and σ is the standard deviation. Cv, the coefficient

of variation, indicates the presence of subtrees that are heavily loaded. Cv value for

LCP is not measured as this is a single postorder traversal kernel. While a very small

value of Cv indicates uniform load, a large value indicates the presence of bottleneck

subtrees. Load distribution matters for implementations of traversal benchmarks that

distribute the trees [26, 67], since different sub-trees may have different computational

loads, necessitating load balance strategies such as replication of bottleneck subtrees.

We expect that the overall tree structure and the input distribution influence the

load on a subtree. The Cv values in Table 3.3 reflect this. The higher values of Cv for

BH with plu input is because of the clustered nature of the data set. In case of KNN,

PM and FIM, the higher value is mainly because of the resulting fragmented tree

struture. The fragmentation is especially severe in FIM because the tree is typically

extremely wide (e.g. >25k vertices at level 4 for Gaz).

3.5.2 Scalability

Figure 3.4 shows the strong scaling results of traversal kernels. As expected, DM

scales better compared to SHM for all the benchmarks except KC and LCP. This is

because in DM runs, as more compute nodes are added, more hardware execution

contexts become available and hence, the nodes are able to utilize all of the available

62

0.05

0.5

5

50

500

5000

1 2 4 8 16 32 64 128

PC
kd_SHM_syn1

vp_SHM_syn1

kd_DM_syn1

vp_DM_syn1

kd_SHM_mni

kd_DM_mni

vp_SHM_mni

vp_DM_mni

R=0.03, #points/leaf = 1

1

10

100

1000

10000

1 2 4 8 16 32 64 128

BH
oct_DM_syn2

oct_SHM_syn2

kd_DM_syn2

kd_SHM_syn2

kd_SHM_plu

oct_SHM_plu

kd_DM_plu

oct_DM_plu1

10

100

1000

10000

1 2 4 8 16 32 64 128

NN
vp_DM_syn1

vp_SHM_syn1

kd_DM_syn1

kd_SHM_syn1

kd_SHM_mni

kd_DM_mni

vp_SHM_mni

vp_DM_mni

#points/leaf = 1

0.2

2

20

200

1 2 4 8 16 32 64 128

PM_kd

DM_chr

SHM_chr

SHM_dra

DM_dra

triangles:Chr=106, Dra=105.

#triangles/leaf=32, pixel scene=480x640

0.005

0.05

0.5

5

1 2 4 8 16 32 64 128

FMM_qd

SHM_BU

SHM_TD

DM_TD

DM_BU

#points/leaf=8

0.5

5

50

500

5000

1 2 4 8 16 32 64 128

KNN_bl

SHM_syn1

DM_syn1

SHM_mni

DM_mni

K=8, #points/leaf = 1

0.005

0.05

0.5

5

1 2 4 8 16 32 64 128

LCP_suf

DM_syn6

SHM_syn6

DM_gen

SHM_gen

depth=5
syn6, gen: maxdepth=10

0.5

5

50

1 2 4 8 16 32 64 128

FIM_pre

SHM_syn3

DM_syn3

SHM_gaz

DM_gaz

Supp_min=40
Gaz:|B|=3340 |T|=77512
Syn3:|B|=41911 |T|=50351

1

10

100

1 2 4 8 16 32 64 128

KC_kd

DM_syn4

DM_wiki

SHM_wiki

SHM_syn4

K=128

65.2 58.9 63.6 42.9

2.7

42.2

0.47

41.4

0

1

2

3

4

5

PC_kd_syn1 NN_vp_syn1 BH_oct_syn2 PM_kd_chr

Sp
ee

du
p

Benchmark

Block Block+sorted

0.4
0.5
0.6
0.7
0.8
0.9

1

1 10 100 1000 10000

Cu
m

ul
at

iv
e

fr
eq

ue
nc

y

Reuse distance

Original Transformed

*Data labels = L3 Miss Rate (%)

35.35

189.5

0

100

200

300

400

500

PC_kd NN_vp BH_oct

Ru
nt

im
e

(s
)

Benchmark

Replication No Replication

65.2 58.9 63.6 42.9

2.7

42.2

0.47

41.4

0

1

2

3

4

5

PC_kd_syn1 NN_vp_syn1 BH_oct_syn2 PM_kd_chrSp
ee

du
p

(n
or

m
al

ize
d)

Benchmark

Block Block+sorted

*Data labels = L3 Miss Rate (%)

0.4
0.5
0.6
0.7
0.8
0.9

1

1 10 100 1000 10000

Cu
m

ul
at

iv
e

fr
eq

ue
nc

y

Reuse distance

Original Transformed

0

4

8

12

16

PC_kd NN_vp BH_octSp
ee

du
p

(n
or

m
al

ize
d)

Benchmark

No Replication Replication

Fig. 3.4.: Scaling in Treelogy benchmarks. x-axis=Thread count (SHM)/Process count
(DM), y-axis (log scale) =Runtime (s).

parallelism with minimal inter-node synchronization, thus yielding better scalability.

However, scaling in SHM stops from 64 threads due to sharing of processing elements

(cores) beyond 40 threads.

In case of KC, all the threads/processes synchronize at the end of every iteration

to reconstruct the tree. Therefore, we see degraded performance of SHM versions

beyond 32 processes (this behavior is observed in case of multiple-step runs of other

iterative kernels such as BH, PM as well). Also, due to the increased overhead of

inter-process synchronization, DM runs perform worse than SHM versions. Scaling

is poor in case of LCP (both SHM and DM) because of low available parallelism

and the extremely small traversal kernel: there is just a single post-order traversal

to begin with and the child nodes of a vertex can be processed in any order before

processing a parent vertex. When the traversal reaches a certain depth, specified as a

tunable parameter, the child vertices are processed in parallel. We observe that even

with the synthetic data of sufficiently long input strings, there are not enough child

63

vertices to be processed in parallel. Hence, the parallel overhead due to large number

of threads/processes brings down the performance.

We also see a super-linear speedup for the top-down traversals of FMM. This is

because of a great reduction in the lower-level cache accesses (e.g. on moving from

1 thread to 4 threads in SHM version, total L2 cache accesses reduced by 97.8%

and L3 accesses reduced by 62.3% resulting in a speedup of 12.4x). As seen from

Table 3.3, the top-down traversal step in FMM was nearly 9.5 times slower than the

two bottom-up steps combined.

DM configurations mapped multiple processes to a single node of the cluster when

a free node was not available. This, along with the data-parallel execution (entire tree

replication on every process) is the cause for reduced performance at large numbers

of processes and large input sizes. The DM run for PM with chr input (DM_chr)

failed to execute with 128 processes due to memory limitations. Hence, we ran this

configuration with the tree partitioned across all the nodes of the cluster and replicating

only the top subtree (this is the pipelining strategy outlined by Hegde et al. [67]). As

a result, due to the added communication overhead, we see the performance going

down w.r.t. 64 process data-parallel run.

The GPU platform has the similar hardware structure as the SHM : all threads

share the same limited hardware. Thus the scalability test result is also close to SHM

(using real-world inputs). We assign each thread block 192 threads (6 warps) to take

full use of a SMX and evaluate the scalability on the granularity of thread block. In

Figure 3.5, before the number of thread blocks reaches 648, all benchmarks scale well

and show a linear speedup as the blocks increase. For most benchmarks, scaling stops

after 64 thread blocks, as the GPU resources are exhausted.

In summary, we find that these traversal kernels scale well, when taking advantage

of ontology-driven optimizations. While the performance of BH with octree is better

with clustered input, BH with kd-tree performs better with uniformly distributed

data. However, BH with octree is known to perform better at larger scales [26]. We
864 blocks contain 64*192 = 12,288 threads

64

0

20

40

60

80

100

120

1 2 4 8 16 32 64 128 256 512 1024

Sp
ee
d
u
p

Number of thread blocks

PC_kd_Mni PC_vp_Mni NN_kd_Mni NN_vp_Mni kNN_bl_mni BH_kd_Plu BH_oc_Plu KC_kd_wiki

Fig. 3.5.: GPU scalability

also find that PC with vptrees attractive compared to PC with kd-trees because of

vptrees facilitating efficient truncation, resulting in shorter average traversal lengths

and hence better performance.

3.5.3 Case Studies

Figure 3.6a shows an example of using dual-trees and recursion twisting optimiza-

tions [68] to improve locality in PC with the help of our reuse distance analyzer tool.

In this experiment, we evaluate PC_kd with a subset of mnist data set, since the

average traversal length with mnist is the longest (see Table 3.3). The cumulative

frequency of bigger valued reuse distances is higher for the transformed code than

the original code. Hence, we can infer that the transformation has resulted in better

temporal locality.

Figure 3.6b shows the effect of application-specific sorting optimization on temporal

locality and the resulting improvement in performance in top-down kernels with

independent traversals. These results have been published earlier by Jo et.al. [59] but

are presented here for completeness. The Block configuration represents the SHM

65

0.05

0.5

5

50

500

5000

1 2 4 8 16 32 64 128

PC
SHM_kd_syn1

SHM_vp_syn1

DM_kd_syn1

DM_vp_syn1

SHM_kd_mni

DM_kd_mni

SHM_vp_mni

DM_vp_mni

R=0.03, #points/leaf = 1

1

10

100

1000

10000

1 2 4 8 16 32 64 128

BH
DM_oct_syn2

SHM_oct_syn2

DM_kd_syn2

SHM_kd_syn2

SHM_kd_plu

SHM_oct_plu

DM_kd_plu

DM_oct_plu1

10

100

1000

10000

1 2 4 8 16 32 64 128

NN
DM_vp_syn1

SHM_vp_syn1

DM_kd_syn1

SHM_kd_syn1

SHM_kd_mni

DM_kd_mni

SHM_vp_mni

DM_vp_mni

#points/leaf = 1

0.2

2

20

200

1 2 4 8 16 32 64 128

PM_kd

DM_chr

SHM_chr

SHM_dra

DM_dra

triangles:Chr=106, Dra=105.

#triangles/leaf=32, pixel scene=480x640

0.005

0.05

0.5

5

1 2 4 8 16 32 64 128

FMM_qd

SHM_BU

SHM_TD

DM_TD

DM_BU

#points/leaf=8

0.5

5

50

500

5000

1 2 4 8 16 32 64 128

KNN_bl

SHM_syn1

DM_syn1

SHM_mni

DM_mni

K=8, #points/leaf = 1

0.005

0.05

0.5

5

1 2 4 8 16 32 64 128

LCP_suf

DM_syn6

SHM_syn6

DM_gen

SHM_gen

depth=5
syn6, gen: maxdepth=10

0.5

5

50

1 2 4 8 16 32 64 128

FIM_pre

SHM_syn3

DM_syn3

SHM_gaz

DM_gaz

Supp_min=40
Gaz:|B|=3340 |T|=77512
Syn3:|B|=41911 |T|=50351

1

10

100

1 2 4 8 16 32 64 128

KC_kd

DM_syn4

DM_wiki

SHM_wiki

SHM_syn4

K=128

65.2 58.9 63.6 42.9

2.7

42.2

0.47

41.4

0

1

2

3

4

5

PC_kd_syn1 NN_vp_syn1 BH_oct_syn2 PM_kd_chr

Sp
ee

du
p

Benchmark

Block Block+sorted

0.4
0.5
0.6
0.7
0.8
0.9

1

1 10 100 1000 10000

Cu
m

ul
at

iv
e

fr
eq

ue
nc

y

Reuse distance

Original Transformed

*Data labels = L3 Miss Rate (%)

35.35

189.5

0

100

200

300

400

500

PC_kd NN_vp BH_oct

Ru
nt

im
e

(s
)

Benchmark

Replication No Replication

65.2 58.9 63.6 42.9

2.7

42.2

0.47

41.4

0

1

2

3

4

5

PC_kd_syn1 NN_vp_syn1 BH_oct_syn2 PM_kd_chrSp
ee

du
p

(n
or

m
al

ize
d)

Benchmark

Block Block+sorted

*Data labels = L3 Miss Rate (%)

0.4
0.5
0.6
0.7
0.8
0.9

1

1 10 100 1000 10000
Cu

m
ul

at
iv

e
fr

eq
ue

nc
y

Reuse distance

Original Transformed

0

4

8

12

16

PC_kd NN_vp BH_octSp
ee

du
p

(n
or

m
al

ize
d)

Benchmark

No Replication Replication

(a)

0.05

0.5

5

50

500

5000

1 2 4 8 16 32 64 128

PC
SHM_kd_syn1

SHM_vp_syn1

DM_kd_syn1

DM_vp_syn1

SHM_kd_mni

DM_kd_mni

SHM_vp_mni

DM_vp_mni

R=0.03, #points/leaf = 1

1

10

100

1000

10000

1 2 4 8 16 32 64 128

BH
DM_oct_syn2

SHM_oct_syn2

DM_kd_syn2

SHM_kd_syn2

SHM_kd_plu

SHM_oct_plu

DM_kd_plu

DM_oct_plu1

10

100

1000

10000

1 2 4 8 16 32 64 128

NN
DM_vp_syn1

SHM_vp_syn1

DM_kd_syn1

SHM_kd_syn1

SHM_kd_mni

DM_kd_mni

SHM_vp_mni

DM_vp_mni

#points/leaf = 1

0.2

2

20

200

1 2 4 8 16 32 64 128

PM_kd

DM_chr

SHM_chr

SHM_dra

DM_dra

triangles:Chr=106, Dra=105.

#triangles/leaf=32, pixel scene=480x640

0.005

0.05

0.5

5

1 2 4 8 16 32 64 128

FMM_qd

SHM_BU

SHM_TD

DM_TD

DM_BU

#points/leaf=8

0.5

5

50

500

5000

1 2 4 8 16 32 64 128

KNN_bl

SHM_syn1

DM_syn1

SHM_mni

DM_mni

K=8, #points/leaf = 1

0.005

0.05

0.5

5

1 2 4 8 16 32 64 128

LCP_suf

DM_syn6

SHM_syn6

DM_gen

SHM_gen

depth=5
syn6, gen: maxdepth=10

0.5

5

50

1 2 4 8 16 32 64 128

FIM_pre

SHM_syn3

DM_syn3

SHM_gaz

DM_gaz

Supp_min=40
Gaz:|B|=3340 |T|=77512
Syn3:|B|=41911 |T|=50351

1

10

100

1 2 4 8 16 32 64 128

KC_kd

DM_syn4

DM_wiki

SHM_wiki

SHM_syn4

K=128

65.2 58.9 63.6 42.9

2.7

42.2

0.47

41.4

0

1

2

3

4

5

PC_kd_syn1 NN_vp_syn1 BH_oct_syn2 PM_kd_chr
Sp

ee
du

p

Benchmark

Block Block+sorted

0.4
0.5
0.6
0.7
0.8
0.9

1

1 10 100 1000 10000

Cu
m

ul
at

iv
e

fr
eq

ue
nc

y

Reuse distance

Original Transformed

*Data labels = L3 Miss Rate (%)

35.35

189.5

0

100

200

300

400

500

PC_kd NN_vp BH_oct

Ru
nt

im
e

(s
)

Benchmark

Replication No Replication

65.2 58.9 63.6 42.9

2.7

42.2

0.47

41.4

0

1

2

3

4

5

PC_kd_syn1 NN_vp_syn1 BH_oct_syn2 PM_kd_chrSp
ee

du
p

(n
or

m
al

ize
d)

Benchmark

Block Block+sorted

*Data labels = L3 Miss Rate (%)

0.4
0.5
0.6
0.7
0.8
0.9

1

1 10 100 1000 10000

Cu
m

ul
at

iv
e

fr
eq

ue
nc

y

Reuse distance

Original Transformed

0

4

8

12

16

PC_kd NN_vp BH_octSp
ee

du
p

(n
or

m
al

ize
d)

Benchmark

No Replication Replication

(b)

0.05

0.5

5

50

500

5000

1 2 4 8 16 32 64 128

PC
SHM_kd_syn1

SHM_vp_syn1

DM_kd_syn1

DM_vp_syn1

SHM_kd_mni

DM_kd_mni

SHM_vp_mni

DM_vp_mni

R=0.03, #points/leaf = 1

1

10

100

1000

10000

1 2 4 8 16 32 64 128

BH
DM_oct_syn2

SHM_oct_syn2

DM_kd_syn2

SHM_kd_syn2

SHM_kd_plu

SHM_oct_plu

DM_kd_plu

DM_oct_plu1

10

100

1000

10000

1 2 4 8 16 32 64 128

NN
DM_vp_syn1

SHM_vp_syn1

DM_kd_syn1

SHM_kd_syn1

SHM_kd_mni

DM_kd_mni

SHM_vp_mni

DM_vp_mni

#points/leaf = 1

0.2

2

20

200

1 2 4 8 16 32 64 128

PM_kd

DM_chr

SHM_chr

SHM_dra

DM_dra

triangles:Chr=106, Dra=105.

#triangles/leaf=32, pixel scene=480x640

0.005

0.05

0.5

5

1 2 4 8 16 32 64 128

FMM_qd

SHM_BU

SHM_TD

DM_TD

DM_BU

#points/leaf=8

0.5

5

50

500

5000

1 2 4 8 16 32 64 128

KNN_bl

SHM_syn1

DM_syn1

SHM_mni

DM_mni

K=8, #points/leaf = 1

0.005

0.05

0.5

5

1 2 4 8 16 32 64 128

LCP_suf

DM_syn6

SHM_syn6

DM_gen

SHM_gen

depth=5
syn6, gen: maxdepth=10

0.5

5

50

1 2 4 8 16 32 64 128

FIM_pre

SHM_syn3

DM_syn3

SHM_gaz

DM_gaz

Supp_min=40
Gaz:|B|=3340 |T|=77512
Syn3:|B|=41911 |T|=50351

1

10

100

1 2 4 8 16 32 64 128

KC_kd

DM_syn4

DM_wiki

SHM_wiki

SHM_syn4

K=128

65.2 58.9 63.6 42.9

2.7

42.2

0.47

41.4

0

1

2

3

4

5

PC_kd_syn1 NN_vp_syn1 BH_oct_syn2 PM_kd_chr

Sp
ee

du
p

Benchmark

Block Block+sorted

0.4
0.5
0.6
0.7
0.8
0.9

1

1 10 100 1000 10000

Cu
m

ul
at

iv
e

fr
eq

ue
nc

y

Reuse distance

Original Transformed

*Data labels = L3 Miss Rate (%)

35.35

189.5

0

100

200

300

400

500

PC_kd NN_vp BH_oct

Ru
nt

im
e

(s
)

Benchmark

Replication No Replication

65.2 58.9 63.6 42.9

2.7

42.2

0.47

41.4

0

1

2

3

4

5

PC_kd_syn1 NN_vp_syn1 BH_oct_syn2 PM_kd_chrSp
ee

du
p

(n
or

m
al

ize
d)

Benchmark

Block Block+sorted

*Data labels = L3 Miss Rate (%)

0.4
0.5
0.6
0.7
0.8
0.9

1

1 10 100 1000 10000

Cu
m

ul
at

iv
e

fr
eq

ue
nc

y

Reuse distance

Original Transformed

0

4

8

12

16

PC_kd NN_vp BH_octSp
ee

du
p

(n
or

m
al

ize
d)

Benchmark

No Replication Replication

(c)

Fig. 3.6.: Case studies: a) estimating locality benefits using reuse distance. b)
improving locality through reordered traversal schedule. c) improving load-balance
through subtree replication.

66

runtime values of Table 3.3. The Block + sorted configuration represents a reordered

schedule of traversals in Block to obtain improved locality. These experiments are

run with a block size of 4096. As expected, the performance improvement due to

sorting is reflected in a commensurate decrease in cache miss rate. Note that Block

and sorted are independent optimizations and can be applied to bottom-up kernels

with independent traversals as well. In fact, Block + sorted is equivalent to the tiling

optimization in FIM by Ghoting et.al. [56].

Figure 3.6c shows the effect of top subtree replication as a way of generalizing

the LET optimization. These experiments are run with 128 processes and the tree is

partitioned into subtrees of fixed height because the entire tree could be replicated.

For these inputs, |V | ranged from 80x106 to 256x106, and |P | was 64x106. As expected,

the top subtree presents a bottleneck when a large number of independent top-down

traversals exist, and the node housing this subtree remains heavily loaded. Besides

balancing the load, top subtree replication reduces communication overhead and hence,

results in far better performance as seen from the figure.

3.6 Related Work

There are a wide variety of benchmark suites that focus on graph applications [49–

51, 69], and several of these suites contain a handful of Treelogy benchmarks, such

as Barnes-Hut, Frequent Itemset Mining, K-Means, and Fast Multipole. However,

because these suites focus on a broader class of graph algorithms, they do not feature

enough tree traversal algorithms to cover the wide variety of traversal structures that

arise in such kernels. Graph-based, irregular application kernels have also been studied

extensively in other works [52–54,70]. However, analysis of tree based applications is

not as extensive. Treelogy provides a way of characterizing the structural properties of

tree algorithms, and ensures that its benchmarks span this space. Moreover, Treelogy

provides reference implementations of these algorithms on multiple platforms, instead

of focusing on single platforms as many prior suites do.

67

Irregular, tree-based applications have been mapped to massively parallel and

distributed hardware platforms [24, 26, 48, 71, 72]. However, customized problem

representations and transformations for applications have been proposed, analyzed,

and optimized in a stand-alone context. While the parallelism profile of Barnes-Hut

is presented in Lonestar [51], traversal properties are not studied. Performance of

Nearest Neighbor search with multiple trees has been studied from a purely query

response time perspective [45]. Treelogy differs from these works as it considers a

broader class of tree traversal kernels, and multiple hardware platforms and tree

type combinations. Treelogy can be used to inform generalizations of the many

application-specific optimization strategies that prior implementations use.

3.7 Conclusions

In this work, we introduced an ontology for tree traversal kernels and presented a

suite of tree traversals, Treelogy, with at least one kernel in each category. We evaluated

multiple implementations of these traversal kernels using different types of trees and on

multiple hardware platforms. We presented scalability analysis on different platforms,

and an analysis of locality and load-balance with the help of metrics. We also presented

case studies showing the effectiveness of certain optimizations. While the interest in

tree based kernels comprising of traversals from various domains is increasing, we hope

to expand the suite with more kernels and analyze their performance. Treelogy, by

providing a wide variety of tree traversals, presents a useful target for developing and

evaluating optimizations, and its ontology helps understand where and when those

optimizations can be applied.

68

4. D2P: FROM RECURSIVE FORMULATIONS TO
DISTRIBUTED-MEMORY CODES

4.1 Introduction

Programmers like recursive formulations of programs because they are straight-

forward to reason about and write, often have good locality properties, and readily

expose parallelism [73,74]. We want to create distributed parallel implementations

automatically from simple shared-memory recursive specifications. We observe that

the automation process is simplified when recursive formulations have certain proper-

ties: i) the data-dependencies of a recursive method are inclusive (i.e. the collective

data-dependencies of all the recursive sub-invocations within the body of the method

are a subset of the dependencies captured by method’s arguments). ii) The data set

intersection tests necessary for determining inter-task dependences are simplified.

Creating distributed-memory implementations involves several challenges that

do not arise in shared-memory systems. First, we need to partition the data and

computation into tasks of appropriate granularity split among different compute nodes

so that different nodes can process portions of the data in parallel. Second, we

need to insert communication between nodes to satisfy data dependences between

tasks. Finally, we need to schedule tasks efficiently, to balance parallelism with the

communication overhead. Automating the creation of distributed-memory programs

requires that these challenges are automatically handled.

In recursive formulations with the inclusive property, each recursive “task” (think:

invocation) touches a subset of the data of its parent task (think: caller method).

Hence, coarse-grained tasks, suitable for a task-parallel model of computation, can be

easily identified. When the tasks follow a specific order in computing the data sets,

which either fully overlap or are disjoint, the data set intersection tests are greatly

69

simplified. Identifying that these properties in recursive divide-conquer formulations

can simplify distributed-memory code generation is the main novelty of our work.

A specific set of programs that are important and satisfy these properties are

recursive Dynamic Programming (DP) [75] programs. DP algorithms are very efficient

in solving problems arising in domains such as bio-informatics, mobile communication,

and finance. As some of these problems involve large data sizes that can exceed the

memory capacity of a single compute node, distributed-memory solutions become

necessary to process the entire data. Because formulating an efficient algorithm is a

different challenge than performing data partitioning and task creation, communication

insertion, and task scheduling, we would like a system where the concerns of creating

an algorithm can be separated from the concerns of distributing it. In particular, we

would like a system that automates as much of the distribution process as possible,

allowing programmers to focus on simply designing algorithms.

While much of prior work has addressed the challenges of automating the distribu-

tion in different contexts for iterative codes of general programs, recursive programs

are not explored as extensively. A majority of existing systems [76–80] work on

iterative codes. In case of recursive programs, they adopt a profiling-based approach

and assume a regular communication pattern [76]. Programmer created annotations in

recent research exploits the inclusive property to optimize for locality and parallelism

of recursive divide-conquer programs on shared-memory [73] and heterogeneous sys-

tems [8]. In case of DP programs, a majority use iterative codes. While most parallel

implementations are for shared-memory systems, there exist only a few hand-tuned

distributed-memory implementations [81–87]. Recent work has shown that efficient

recursive formulations of DP algorithms outperform iterative codes on shared-memory

systems primarily because of better cache utilization [88,89]. Regarding distributing

the compuation, recursive DP algorithms involve irregular communication patterns and

offer a specialized (or simplified) domain. Hence, previous techniques for automation

are not effective. Importantly, the inclusive and intersection properties are implicit in

70

Specification of a recursive algorithm with
inclusive and intersection properties

Compile time Run time

D2P
Codegen

Contains rules to figure
out owned tiles and the
computation to execute.

Contains rules to execute
a particular task +
communication
directives with holes.

Input size,
Mapping strategy,
Number of processes

Runs computation graph using generated
task code.

Parametrized Executor

* Unrolls recursion, determines dependences.
* Determines computations based on the
mapping strategy.
* Fills holes in communication directives
using the dependence information and
mapping strategy.
* Generates a computation schedule of
tasks executing in proper order.

Parametrized Inspector

Parametrized Inspector Parametrized Executor

Fig. 4.1.: D2P system overview.

these recursive DP formulations and this is the key insight we exploit in automatically

creating distributed-memory implementations of recursive DP algorithms.

4.1.1 Overview

In this paper, we present D2P, a framework that takes a shared-memory specifica-

tion of a recursive algorithm with the inclusive and intersection properties (without

any parallelism or partitioning specifications), and produces an MPI based, distributed-

memory parallel code with recursive methods.

Figure 4.1 shows the overview. The input to D2P code generator is a specification,

which is a high-level outline of a recursive algorithm. The specification need not

mention the recursion base cases, which are application-specific. This attribute of

the specification points to an important way in which D2P differs from other fully-

automated code generation schemes [8, 76–78, 90]: user-assistance is necessary in

filling the D2P-produced implementation with application-specific details to make it

complete. Despite this semi-automatic nature, D2P completely automates (and hides)

the challenging aspects of distributed-memory programming and delegates only the

algorithm design aspects to an application designer.

71

At compile time, the D2P Codegen generates codes for the inspector and executor

modules from the specification. Every process in a multi-process execution of the

program executes these modules. The inspector and executor codes are parametrized

on a data-partitioning (mapping) scheme, input size, and the number of processes,

to enable the creation of an application code providing portable-performance. These

parameters are provided at runtime. The inspector contains code for figuring out

process-specific computations (method invocation with specific argument values) and

the executor code contains rules (method bodies with communication directives) for

performing those computations.

At runtime, the inspector module of every process determines tasks to compute,

identifies task dependencies, establishes communication channels for each task, and

prepares a schedule based on the identified task dependencies. The executor module

of a process then executes the schedule.

First, the inspector unrolls a top-level recursive method multiple levels to create

tasks. The unrolling hierarchically decomposes (breaks) the data into smaller parts and

implicitly creates a tree. A vertex of the tree represents recursive method invocation

computing a part resulting from the repeated decomposition up to the vertex’s level.

The children of this vertex are again method invocations called from within the

body of the vertex’s method. The internal vertices of the tree are not involved in

computing the data: they only decompose the data into finer parts and in some cases

do minimal work, such as initializing, before any of the children modify the data (due

to the intersection property). Therefore, all the computation is done by leaf method

invocations and hence, the leaves of the tree represent the tasks in D2P.

Based on a mapping scheme, the tasks are partitioned among processes in a

deterministic manner known to all processes (facilitating determination of commu-

nication later). Task ownership follows data ownership as the processes follow an

owner-computes rule (single owner for a data region) during computation. As method

arguments are the only (entire) data read and written within the invocation (due to

the inclusive property mentioned above), it is sufficient if the leaf method arguments

72

are inspected to determine inter-task dependencies. Unique IDs associated with data

regions simplify this dependency computation. Finally, the inspector uses dependence

information to insert communication—filling holes in communication directives, and

identifying and establishing communication channels between processes to send/receive

data as demanded by the task allocation.

At the end of inspector’s execution, every process has a list of tasks. The executor

begins executing a task from the list for which all the dependences are satisfied. As

soon as a task completes execution, the executor sends the results of the computation to

processes that own dependent tasks. Dependent task owners go through their respective

task list to update task dependences and execute a task if the task dependences are

fully satisfied. The result is a “single program multiple data” (SPMD) implementation

employing asynchronous communication capable of running on a distributed-memory

system.

The contributions of this paper are:

• We provide a framework D2P, which can take a specification of any recursive

divide-conquer algorithm with the inclusive and intersection properties and

convert the specification to a distributed-memory implementation capable of

exploiting node- and core-level parallelism.

• We evaluate our framework on a set of recursive formulations having these

properties: recursive DP algorithms. As an added feature, we augment D2P’s

code generator to parse specifications produced by an existing tool [74] that can

automatically generate specifications for a subset of the recursive DP algorithms.

Thereby, translating specifications of a wide class of DP problems to their

respective MPI+Cilk-based implementations.

• We evaluate the scalability of D2P-generated implementations, preprocessing

overheads, and compare against existing distributed-memory implementations.

Our evaluation shows that D2P implementations scale well and can admit ex-

tremely large problem sizes much beyond the memory capacity of a single node.

73

1 Cost(n){
2 table[n][n]; //n is number of vertices
3 for g ← 1 to n-1 do
4 for i ← 0 to n-g do
5 j ← i + g;
6 table[i][j]← INFINITY;
7 for k ← i+1 to j–1 do
8 res ← table[i][k] + table[k][j] + W(i,j,k)
9 if res < table[i][j] then
10 table[i][j]← res;

}

𝐶𝐶 𝑖𝑖, 𝑗𝑗 =

𝑚𝑚𝑚𝑚 𝑛𝑛(𝐶𝐶 𝑖𝑖, 𝑗𝑗 , min
𝑖𝑖<𝑘𝑘<𝑗𝑗

�𝐶𝐶 𝑖𝑖, 𝑘𝑘 + 𝐶𝐶 𝑘𝑘, 𝑗𝑗 + 𝑊𝑊 𝑖𝑖, 𝑗𝑗, 𝑘𝑘

0 𝑗𝑗 ≤ 𝑖𝑖 + 1

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑊𝑊 𝑖𝑖, 𝑖𝑖 + 1, 𝑖𝑖 + 2 , 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑊𝑊 𝑖𝑖, 𝑗𝑗,𝑘𝑘 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑖𝑖 , 𝑗𝑗 , 𝑗𝑗,𝑘𝑘 , 𝑎𝑎𝑎𝑎𝑎𝑎 (𝑘𝑘, 𝑖𝑖)

(a)

1 5
2

3

4

6

7

8

9

10

The recurrence equation specifies that only the
cells of the upper-triangular matrix are computed.
The numbered cells of an example 4x4 matrix are
computed in the following order:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Fig. 4.2.: The Minimum Weight Triangulation problem: the recurrence equation
computes the least cost of triangulating a convex polygon. This equation can be
thought of as computing the cells of an upper triangular matrix. The figure shows the
standard implementation scheme of computing the cells using an iterative code. Also
shown is the order in which the code computes those cells.

We also observe that the overheads of task partitioning (task creation, assignment,

and dependency determination) are negligible compared to the actual computation.

Finally, we find that a D2P-generated program scales better than other distributed-

memory implementations: the D2P-generated implementation of Smith-Waterman

runs 59× to 412× faster than an implementation generated by an existing framework

for parallelizing iterative DP formulations on distributed-memory systems. Also,

the D2P-generated implementation outperforms a hand-written, application-specific

implementation of Smith-Waterman in most cases, and is only 27% slower in the worst

case.

74

4.2 Background and Motivation

Recursive algorithms with the inclusive and intersection properties, in particu-

lar, have advantages when it comes to distributed-memory implementations: every

recursive method invocation accesses a data set, which is the super-set of the union

of the data sets accessed within all recursive invocations done in the method body.

In other words, the method arguments specify a bound on the entire data regions

read/written, thus avoiding the need for programmer specified annotations. This also

makes it easier to reason about data-dependencies necessary for automating parallelism

extraction and data-partitioning. In comparison, dependency analysis is complicated

in iterative codes with multiple layers of for loops with regular and irregular accesses.

A recursive method invocation represents a coarse-grained computation and hence,

a suitable target for the creation of a task. The recursive nature also exposes intra-

task parallelism, which is naturally adapted by a task-parallel model of computation

such as the Cilk [91] system. In recursive algorithms with the intersection property,

a hierarchical decomposition (due to recursive calls) creates disjoint (unique) data

partitions. Furthermore, the partitions are input-independent, computed as per a

preorder execution of the recursion tree vertices, and can be represented by unique

identifiers. As a result, inter-task dependences are computed easily.

Efficient recursive formulations—hereafter referred to as recursive formulations—of

DP algorithms have additional advantages: i) control partitioning is not a concern

due to the absence of branches in the formulation, ii) a static task partitioning scheme

(due to a predictable amount of computation per task) can simplify communication

insertion, and iii) simple, and unique identifiers (Z-order [92] numbers) can be assigned

to data partitions resulting from hierarchical decomposition of the DP table. We next

describe an example DP algorithm and its recursive DP formulation.

Minimum weight triangulation (MWT) [93] is commonly used in applications in

finite element method and computational geometry, among others, to triangulate a

convex polygon. The goal in MWT is to partition the polygon into triangles such

75

that the edges do not intersect and the sum of the edge lengths of the component

triangles is minimized. A dynamic programming (DP) based approach to solving

the MWT problem divides the problem into subproblems, computes solutions to

the subproblems, and combines the optimal solutions of smaller subproblems to find

an optimal solution for the whole problem. The recurrence equation in Figure 4.2

systematically computes the solution for the MWT problem. The intuition behind

this equation is to partition the polygon into a simple triangle (W (i, j, k)) and sub-

polygon(s) to the left and/or right (C(i, k), C(k, j)) of the simple triangle, compute

the solutions for the sub-polygon(s) separately, then combine the solutions (overlapping

subproblems). If the sub-polygons have an optimal solution, then the combined solution

is guaranteed to be optimal (optimal substructure). The optimal substructure and

overlapping subproblems properties are fundamental to problems that admit DP

solutions [94].

The standard approach to implementing the recurrence equation is to use an

“iterative” formulation. This consists of a set of nested for loops that iteratively

compute the cells of a two-dimensional matrix (DP table) storing the solutions of

all the subproblems computed. Figure 4.2(a) also shows the iterative code and its

operation.

Every iteration of the for loop on line 4 can be run in parallel in this code.

This parallelizing scheme reflects wavefront-parallelism, which is a popular approach

for parallelizing iterative codes. The iterative code shown performs a bottom-up

computation of finding optimal solutions to all subproblems of smaller sizes first before

moving on to a bigger subproblem (computing all cells on the main diagonal before

computing cells on the smaller adjacent diagonal). This computation order results in

unpredictable runtimes, especially in the presence of cache sharing [74], and exhibits

poor temporal locality compared to a recursive formulation of the MWT problem.

76

Decomposition of a DP Table X: call to method A implicitly
breaks X into quadrants X00, X01, and X11. Recursive calls
within the body of method A break the quadrants into
smaller tiles shown with their identifier names used in (b).

The specification shown in (b) computes the cells of an
example 4x4 matrix in the following order:
1, 2, 5, 3, 4, 7, 6, 8, 9, 10

X01(Z)
X00(U)

X11(V)

U00 U01

U11

Z00 Z01

Z10 Z11

V01

V11

V00

A<X>
A(<X00>)
A(<X11>)
B(<X01 X00 X11>)

B<X,U,V>
B(<X10 U11 V00>)
C(<X00 U01 X10>)
C(<X11 X10 V01>)
B(<X00 U00 V00>)
B(<X11 U11 V11>)
C(<X01 U01 X11>)
C(<X01 X00 V01>)
B(<X01 U00 V11>)

C<X,U,V>
C(<X00 U00 V00>)
C(<X01 U00 V01>)
C(<X10 U10 V00>)
C(<X11 U10 V01>)
C(<X00 U01 V10>)
C(<X01 U01 V11>)
C(<X10 U11 V10>)
C(<X11 U11 V11>)

Fig. 4.3.: The specification: a) showing the outline of a recursive algorithm for the
MWT problem. (b) shows the operation of this recursive formulation.

4.3 Design

D2P uses a specification of a recursive computation to generate a distributed

implementation. We first describe what this specification looks like (Section 4.3.1).

We then describe how D2P uses an inspector/executor approach to build a distributed

implementation (Section 4.3.2). The inspector and executor are executed on each

process in a SPMD manner. Finally, we describe some design details for how the

inspector and executor work (Section 4.3.3).

4.3.1 Specification

The input to D2P is a specification, which is a high-level outline of a recursive

algorithm. Figure 4.3 shows a specification, which is a recursive formulation for the

MWT problem. The recursive formulation hierarchically breaks the DP table into

smaller quadrants and computes their solutions. A D2P specification consists of a set of

77

recursive methods, among which there is only one top-level recursive method that calls

other methods. We assume that the top-level recursive method is always specified first,

followed by other methods. A method’s definition starts with the method signature

followed by the method body. Empty lines separate method definitions. Further, we

assume that the first parameter of a method represents the data computed (written)

and the remaining parameters represent the data read in order to compute the data.

We also assume that the argument names in a recursive method call identify the data

regions accessed (e.g. X00 in A(<X00>) in the second line of Figure 4.3 identifies

the top-left quadrant of a two-dimensional matrix X). The recursion base cases of the

methods are omitted from the specification for the sake of simplicity.

The execution begins with a call to the top-level recursive method A, with the

argument X representing the entire DP table. The call to method A implicitly breaks

the problem into smaller subproblems (2x2 tiles of an example 4x4 matrix), represented

as quadrants (X00 - X11). The recursive calls to methods A, B, and A in the body

of method A compute the first, second, and fourth quadrants (X00, X01, and X11)

respectively. Note that the recurrence equation in Figure 4.2 specifies that only

the upper triangular matrix is computed. Hence, only these three quadrants are

computed. We expect the binary number used in the identifier names (Xyy, where yy

is a two-digit binary number) to identify the quadrant and the DP table dimension

(2D in MWT) as well.

Each of these recursive calls further breaks the quadrants into smaller parts (1x1

tiles identified by Uyy,Vyy, and Zyy). For example, the call to B(X01,X00,X11)

in method A’s body (line 4) computes the second quadrant X01 by reading quadrants

X00 and X10. To compute X01, method B first breaks X01 (and X00, X10 as well)

into smaller quadrants. The first call within method B’s body, B(Z10,U11,V00),

illustrates this: it computes the third quadrant Z10 of Z, which is the same as X01,

by reading the fourth quadrant U11 of U, and the first quadrant V00 of V (U and

V are the same as X00 and X11 resp.). The recursion stops here because it is not

possible to decompose the 1x1 tiles (cell) further.

78

The base case defines how a cell or a tile (group of cells) is computed from other cells

(lines [8-10] in Cost method of Figure 4.2(a)). Method signatures of B and C in the

specification tell that these methods compute a cell (tile) by reading two cells (tiles), U

and V. Hence, the base case is same for both these methods. Method A computes a cell

from initial conditions (W(i,i+1,i+2)) and hence, has no dependencies. Therefore,

A’s base case is different from methods B and C. By default, the base case computes a

single cell in D2P. Note that in addition to the base case, the specification omits: i)

input size necessary to identify the exact data region within the 2D matrix (e.g. a 2x2

square tile containing cells from (0, 2) to (1, 3)—X01 and ii) the data-type of the cell

(CELLTYPE—float/double for the MWT problem). The end-user is expected to

insert code corresponding to these in the D2P generated code (see Section 4.4, auxiliary

methods, for details.). As the specification does not contain any DP-specific properties,

D2P could generate code for any recursive divide-conquer algorithm with the inclusive

and intersection properties. Next, we explain how D2P converts a specification to a

distributed-memory parallel code.

4.3.2 Inspector and Executor

A task in D2P computes a method call with specific argument values. Therefore,

a task constitutes: i) a pointer to the method, ii) argument values (iii) input, and (iv)

output dependences. The input dependences are a set of task IDs and the output

dependences are a set of process IDs. The job of determining what the tasks should

be and what the dependences are is delegated to an inspector that D2P generates.

Executing the tasks while respecting these dependences is delegated to an executor

that D2P generates. We next describe at a high level how these inspectors and

executors are generated for each process. Details about how the inspector determines

which tasks a process owns, and what the task’s dependences are, are described in

Section 4.3.3.

79

Listing 4.1: Operation of the D2P inspector generator

insert code to :
I . Generate a map M of data r eg i on IDs to task IDs : data r eg i on ID

i s the ID o f the wr i t e parameter , and the task ID i s that o f

the l a s t task that wrote the r eg i on .

I I . for each method m A(X, Y, Z) de f ined in spec :

1 . Generate i n sp e c t o r method s i gna tu r e

a . Produce f u l l types for each parameter .

b . Each parameter a l s o has metadata parameters o f bounding−

box and ID o f the data r eg i on that a parameter r ep r e s en t s .

c .Add stack depth parameter to t rack un r o l l depth .

2 . Generate i n sp e c t o r base case

a . Base case t r i g g e r s when stack depth = un r o l l depth .

b . Generate unique task ID .

c . I n s e r t r eg i on ID (X’s ID) and task ID in to map M.

d . Based on X’s ID , dec ide which proce s s owns a task wr i t i ng to X

i) I f s e l f (i . e . p roce s s Pself)

−Create a task T.

−Figure out input and output dependences for task T.

input deps :

−Use map M to f i nd TlastID , ID o f the l a s t task that wrote X.

−Add TlastID to T’s input deps .

−Use the l i s t o f t a sk s to get Tlast , the task with ID TlastID .

−Add T’s owner proce s s ID(i . e . Pself) to Tlast’ s output deps .

/∗ t a s k s are crea t ed in execu t i on order . So , t h i s c r e a t e s

co r r e c t input dependences . For the same reason , T’s output

dependences are not known ye t . They w i l l be f i g u r e d as

exp l a ined in the next s t ep ∗/

−Add T to Pself ’s l i s t o f t a sk s

e . for each read parameter R: {Y, Z}

i) I f R i s not the same as wr i t e parameter X:

−Use map M to f i nd TlastRID , ID o f the l a s t task that wrote R.

−Process Pself adds TlastRID to T’s input deps

−Based on R’s ID , dec ide which proce s s owns TlastR ,

80

the l a s t task that wrote R. Let PownsR be the owner .

−Process PownsR adds Pself to TlastR’s output deps .

3 . Generate r e c u r s i v e case

a . Create sub r eg i on s (e . g . X00 , Y01 , Z11) , t h e i r bounding−boxes ,

and compute t h e i r r eg i on IDs .

b . Ca l l i n sp e c t o r methods as per the spec (use arguments c r ea ted

in step a) .

I I I . Generate wrapper that c a l l s the top−l e v e l i n sp e c t o r method :

1 . Create arguments to c a l l the top−l e v e l i n sp e c t o r method .

−Bounding−box for the data r eg i on (whole matrix) : t h i s depends

on input s i z e (s i z e) . For a 2−dimens iona l gr id , c e l l s (0 , 0) to

(s i z e −1, s i z e −1) are computed .

−data r eg i on : nu l l p t r

−data r eg i on ID : 0

−c a l l s tack depth : 0

/∗ Since the computation i s d i s t r i b u t e d among tasks , memory i s

not a l l o c a t e d to the whole matrix (data reg ion i s n u l l p t r) .

As t a s k s compute sub−data reg ions , memory f o r a sub−data reg ion

i s a l l o c a t e d when the the f i r s t t a s k t ha t w r i t e s to t ha t

sub−data reg ion i s c rea t ed ∗/

2 . Ca l l top−l e v e l i n sp e c t o r method with arguments c r ea ted .

Listing 4.2: Inspector generator input (definition of method B from the spec), and

output code produced.

/∗ Input ∗/

B<X,Y,Z>

B(<X10 Y11 Z00>)

C(<X00 Y01 X10>)

C(<X11 X10 Z01>)

B(<X00 Y00 Z00>)

B(<X11 Y11 Z11>)

C(<X01 Y01 X11>)

C(<X01 X00 Z01>)

B(<X01 Y00 Z11>)

81

/∗Output code generated by the i n s p e c t o r genera tor .

The f o l l ow i n g g l o b a l s are generated only once . rank and unro l lDepth

are the o ther g l o b a l s used . rank i s the proces s rank s e t by MPI

environment . unro l lDepth i s s e t based on number o f p roce s s e s used

in execu t i on . ∗/

map<int , int> M;

map<int , Task> L ;

int taskID=0;

/∗A method d e f i n i t i o n corresponding to the method de f from the spec :

X Y and Z are data reg i ons . IDx , IDy , IDz are reg ion i d e n t i f i e r s

o f X, Y, and Z resp . They are z−order numbers . bX , bY , and bZ are

bounding boxes o f the data reg ions X, Y, and Z resp . They s t o r e the

top− l e f t and bottom−r i g h t coord ina t e s . The type Box i s de f ined in

common . h . I t i s de f ined based on the dimension e x t r a c t e d from the

input (in t h i s example DIMENSION 2) . ∗/

void B_unroll (CELLTYPE∗ X, Box∗ bX, int IDx , CELLTYPE∗ Y, Box∗ bY,

int IDy , CELLTYPE∗ Z , Box∗ bZ , int IDz , int ca l lStackDepth) {

i f (ca l lStackDepth = unrol lDepth) {

i f (GetOwner (IDx) == rank) {

/∗Create t a s k . FuncPtrB i s the func t i on po in t e r type o f the

execu tor method named B—de f ined in the next s e c t i on .

The func t i on po in t e r ’B ’ and the exac t argument va l u e s o f X,

bX , Y, bY , Z , bZ , and ca l l S t ackDep th are s t o r ed as C++ tup l e ∗/

Task<FuncPtrB , CELLTYPE∗ , Box∗ , CELLTYPE∗ , Box∗ , CELLTYPE∗ ,

Box∗ , int> T(B, X, bX, Y, bY, Z , bZ , ca l lStackDepth) ;

/∗compute input dependences f o r T: i f the t a s k l i s t M

conta ins a t a s k wi th ID IDx (t h i s i s t rue when some ta s k has

a l r eady computed t i l e X be f o r e . In t h i s case , the curren t t a s k

must read and update t i l e X ra the r than ove rwr i t i n g .) then

add t ha t t a s k ’ s ID to T ’ s input deps . Also , update T_last ’ s

output deps to send data to T. ∗/

82

i f (M. e x i s t s (IDx)) {

T. inDeps . add (M[IDx]) ;

L [M[IDx]] . outDeps . add (rank) ;

}

//add T to l i s t o f t a s k s

L [taskID]=T;

} //end i f (GetOwner . .

// update the map with the ID of the l a t e s t t a s k wr i t i n g X.

M[IDx] = taskID++;

// Inspec t read parameters and compute input and output deps

int tmpIDs [2]={ IDy , IDz } ;

for (int i =0; i <2; i++) {

i f (tmpIDs [i] != IDx) {

i f (GetOwner (IDx) == rank)

T. inDeps . add (M[tmpIDs [i]]) ;

i f (GetOwner (tmpIDs [i] == rank))

L [M[tmpIDs [i]] . outDeps . add (GetOwner (IDx)) ;

}

return ;

}

/∗Recurs ive case : f i r s t d e f i n e i d e n t i f i e r s used . Bounding boxes o f

quadrants can always be computed from bounding box o f the parent . ∗/

Box X00(X−>coords [0] ,X−>coords [1] ,X−>coords [2]−(X−>coords [2]−

X−>coords [0]+1)/2 ,X−>coords [3]−(X−>coords [3]−X−>coords [1]+1) /2) ;

Box X01(X−>coords [0]+(X−>coords [2]−X−>coords [0]+1)/2 ,X−>coords [1] ,

X−>coords [2] ,X−>coords [3]−(X−>coords [3]−X−>coords [1]+1) /2) ;

Box X10(X−>coords [0] ,X−>coords [1]+(X−>coords [3]−X−>coords [1]+1)/2 ,

X−>coords [2]−(X−>coords [2]−X−>coords [0]+1)/2 ,X−>coords [3]) ;

Box X11(X−>coords [0]+(X−>coords [2]−X−>coords [0]+1)/2 ,X−>coords [1]+

(X−>coords [3]−X−>coords [1]+1)/2 ,X−>coords [2] ,X−>coords [3]) ;

. . . // s im i l a r l y Y and Z quadrants are de f ined .

B_unroll (X, &X10 , IDx∗4+2, Y, &Y11 ,

83

IDy∗4+3, Z , &Z00 , IDz∗4+0, ca l lStackDepth +1);

C_unroll (X, &X00 , IDx∗4+0, Y, &Y01 ,

IDy∗4+1, X, &X10 , IDx∗4+2, ca l lStackDepth +1);

C_unroll (X, &X11 , IDx∗4+3, X, &X10 ,

IDx∗4+2, Z , &Z01 , IDz∗4+1, ca l lStackDepth +1);

B_unroll (X, &X00 , IDx∗4+0, Y, &Y00 ,

IDy∗4+0, Z , &Z00 , IDz∗4+0, ca l lStackDepth +1);

B_unroll (X, &X11 , IDx∗4+3, Y, &Y11 ,

IDy∗4+3, Z , &Z11 , IDz∗4+3, ca l lStackDepth +1);

C_unroll (X, &X01 , IDx∗4+1, Y, &Y01 ,

IDy∗4+1, X, &X01 , IDx∗4+3, ca l lStackDepth +1);

C_unroll (X, &X01 , IDx∗4+1, X, &X00 ,

IDx∗4+0, Z , &Z01 , IDz∗4+1, ca l lStackDepth +1);

B_unroll (X, &X01 , IDx∗4+1, Y, &Y00 ,

IDy∗4+0, Z , &Z11 , IDz∗4+3, ca l lStackDepth +1);

return ;

}

/∗Wrapper to c a l l top− l e v e l i n s p e c t o r method∗/

void Unro l l () {

/∗ i n pu tS i z e [i] denotes the number o f c e l l s in dimension i

This i s i n i t i a l i z e d by the Aux i l i a r y func t i on ReadInput .

The top− l e v e l i n s p e c t o r method w i l l be c a l l e d A_Unroll (

i f the top− l e v e l execu tor method i s c a l l e d A. In t h i s example ,

A accep t s j u s t 1 parameter (X) as read from the spec . ∗/

Box b (0 ,0 , i nputS i z e [0]−1 , i nputS i z e [1] −1) ;

A_Unroll (nu l lp t r , &b , 0 , 0) ;

}

The goal of the inspector, when executed, is to produce a list of tasks, where each

task computes a data region based on reading other regions, as shown in Listing 4.1.

The inspector does so by constructing a set of mutually-recursive functions, corre-

sponding to the functions in the specification. These functions execute at runtime

to generate the list of tasks. When the recursion reaches a leaf, this corresponds

84

to a task that must be executed. If this task is owned by the current process, the

inspector computes the dependences for this task and places it in the process’s task

list (Section 4.3.3 describes how task ownership is determined and how dependences

are computed). When the inspector module of each process completes execution, all

the task dependencies are computed and each process gets a per-process list of tasks.

Note that because the inspector generates tasks only from leaves of this recursive

structure, it is essentially unrolling the recursion of the specification to identify leaf

tasks. Input and output of inspector generator is shown in Listing 4.2.

Listing 4.3: Operation of the D2P executor generator

insert code to :
I . for each method m A(X, Y, Z) de f ined in spec :

1 . Same as I I . 1 in L i s t i n g 4.1 except each parameter has one

metadata parameter o f bounding−box .

2 . Same as I I . 2 in L i s t i n g 4.1 except base case t r i g g e r s when

bounding−box s i z e =1. Also the base case i s empty and needs to be

f i l l e d −in by the end−user .

3 . Same as I I . 3 in L i s t i n g 4.1 except generate two ve r s i on s o f the

code (I I . 3 . b) cor re spond ing to s e r i a l and p a r a l l e l execut ion .

a . p a r a l l e l v e r s i on t r i g g e r s when c a l l s tack depth < SPAWNCUTOFF.

−I n s e r t cilk_spawn and c i lk_sync approp r i a t e l y for c a l l s that

can be executed in p a r a l l e l .

/∗ p a r a l l e l i sm i s s p e c i f i e d through annota t ions now∗/

b . S e r i a l v e r s i on t r i g g e r s when c a l l s tack depth >= SPAWNCUTOFF.

I I . Generate wrapper that l i s t e n s for incoming messages :

1 . Scan the task l i s t for a task with a l l dependences s a t i s f i e d .

2 . i f the re e x i s t s such a task T

a . Execute task T.

b .When done , wr i t e T’s ID in the metadata o f the data

r eg i on that T computed . Send data r eg i on + metadata to

p r o c e s s e s mentioned in T’s output deps .

c . Remove T from task l i s t

3 . I f the task l i s t i s empty stop l i s t e n i n g .

85

3 . Otherwise , b lock on (l i s t e n to) incoming messages

−Tr igge r s when there i s an incoming message

a . Ret r i eve producer task ID Tprd from metadata in the message

b . For each task T in l i s t :

− I f Tprd i s in T’s input deps :

−Remove Tprd from input deps .

−Set T’s argument value to message r e c e i v ed .

goto s tep I I . 1

Listing 4.4: Executor generator input and output code produced

/∗An example input (method d e f i n i t i o n wi th p a r a l l e l i sm s p e c i f i c a t i o n) .

Here we assume tha t p a r a l l e l i sm s p e c i f i c a t i o n i s prov ided in the

input spec . I f the p a r a l l e l annota t ions are absent , then D2P execu tor

genera tor does not e x t r a c t p a r a l l e l i sm cu r r en t l y . As a r e s u l t , a l l t he

c a l l s to r e cu r s i v e methods w i th in a method body would be executed s e r i a l l y .

Annotations to the i n s p e c t o r genera tor input makes no d i f f e r e n c e . ∗/

B<X,Y,Z>

B(<X10 Y11 Z00>)

parallel: C(<X00 Y01 X10>) C(<X11 X10 Z01>)

parallel: B(<X00 Y00 Z00>) B(<X11 Y11 Z11>)

C(<X01 Y01 X11>)

C(<X01 X00 Z01>)

B(<X01 Y00 Z11>)

/∗ Output code produced in RecursiveMethods . cpp ∗/

void B(CELLTYPE∗ X, Box∗ bX, CELLTYPE∗ Y, Box∗ bY,

CELLTYPE∗ Z , Box∗ bZ , int ca l lStackDepth) {

i f ((X−>coords [0]==X−>coords [2]) && (X−>coords [1]==X−>coords [3])) {

/∗ User f i l l s in app l i c a t i on−s p e c i f i c code here . For MWT, t h i s

would be : ∗/

int i=X−>coords [1] ; int j=X−>coords [0] ; int k=Y−>coords [0] ;

i f (i == j) return ;

CELLTYPE w_ikj=Weight (i , j , k) ; //Weight (i , j , k) g i ven as input .

/∗GetDPTableCell (i , j ,X) f e t c h e s the memory l o c a t i o n wi th in

86

a data reg ion X poin ted to by coord ina t e s i , j . Because (i , j)

are a b s o l u t e coord ina t e s (e . g . <3,15>), to compute the

o f f s e t s c o r r e c t l y w i th in a t i l e , metadata in format ion o f

top− l e f t and bottom−r i g h t coord ina t e s i s s t o r ed a long wi th

the t i l e ∗/

CELLTYPE∗ co s t_ i j = GetDPTableCell (i , j ,X) ;

CELLTYPE∗ cost_ik = GetDPTableCell (i , k ,Y) ;

CELLTYPE∗ cost_kj = GetDPTableCell (k , j , Z) ;

CELLTYPE newCost = ∗ cost_ik + ∗ cost_kj + w_ikj ;

i f (newCost < ∗ co s t_ i j)

∗ co s t_ i j = newCost ;

return ;

}

/∗ bounding boxes o f quadrants can always be computed from

the parent bounding box . Same code as in the i n s p e c t o r ’ s

method output shown p r e v i o u s l y ∗/

/∗ SPAWNCUTOFF by d e f a u l t i s s e t to unro l lDepth+2

i f (ca l l S t ackDep th < SPAWNCUTOFF) {

B(X, &X10 , Y, &Y11 , Z , &Z00 , ca l l S t ackDep th +1);

C(X, &X00 , Y, &Y01 , X, &X10 , ca l l S t ackDep th +1);

ci lk_spawn

C(X, &X11 , X, &X10 , Z , &Z01 , ca l l S t ackDep th +1);

c i l k_sync ;

B(X, &X00 , Y, &Y00 , Z , &Z00 , ca l l S t ackDep th +1);

ci lk_spawn

B(X, &X11 , Y, &Y11 , Z , &Z11 , ca l l S t ackDep th +1);

c i l k_sync ;

C(X, &X01 , Y, &Y01 , X, &X01 , ca l l S t ackDep th +1);

C(X, &X01 , X, &X00 , Z , &Z01 , ca l l S t ackDep th +1);

B(X, &X01 , Y, &Y00 , Z , &Z11 , ca l l S t ackDep th +1);

}

e l s e {

B(X, &X10 , Y, &Y11 , Z , &Z00 , ca l l S t ackDep th +1);

C(X, &X00 , Y, &Y01 , X, &X10 , ca l l S t ackDep th +1);

C(X, &X11 , X, &X10 , Z , &Z01 , ca l l S t ackDep th +1);

87

B(X, &X00 , Y, &Y00 , Z , &Z00 , ca l l S t ackDep th +1);

B(X, &X11 , Y, &Y11 , Z , &Z11 , ca l l S t ackDep th +1);

C(X, &X01 , Y, &Y01 , X, &X01 , ca l l S t ackDep th +1);

C(X, &X01 , X, &X00 , Z , &Z01 , ca l l S t ackDep th +1);

B(X, &X01 , Y, &Y00 , Z , &Z11 , ca l l S t ackDep th +1);

}

re turn ;

}

/∗Wrapper to execu te Tasks in L produced by the i n s p e c t o r ∗/

void ExecuteTasks () {

while (t rue) {

for (int i =0; i<L . s i z e () ; i++) {

/∗ execu te a ta s k i f the input dependences are s a t i s f i e d ∗/

i f (L [i] . inDeps . s i z e () == 0) {

/∗ check the func t i on po in t e r type saved in a ta s k ∗/

switch (type (L [i] . funcPtr)) {

. . .

/∗ i f the po in t e r po in t s to method B∗/

case B:

{

/∗ Here param [i] are the argument va l u e s o f X, bX ,

Y, bY , Z , bZ , and ca l l S t ackDep th saved in the

i n s p e c t o r ’ s method B_Unroll ∗/

((B∗) (L [i] . funcPtr)) (L [i] . param [1] , L [i] . param [2] ,

L [i] . param [3] , L [i] . param [4] , L [i] . param [5] ,

L [i] . param [6] , L [i] . param [7]) ;

}

break ;

. . .

}

/∗param [1] i s wr i t e parameter (param [0] i s f unc t i on p t r)

the f i r s t en try in a t i l e i s the t a s k ID . ∗/

L [i] . param [1] [0] = L [i] . ID ;

88

for (int j =0; j<L [i] . outDeps . s i z e () ; i++)

SendResults (L [i] . param [1] , L [i] . outDeps [j]) ;

L . d e l e t e (L [i] . ID) ;

}

// i f t h e r e are no t a s k s to execu te e x i t the loop .

i f (L . s i z e () == 0)

break ;

// wai t f o r incoming messages (b l o c k on a wi ldcard message)

CELLTYPE∗ msg = WaitForIncomingMsg () ;

int inTaskID = msg [0] ;

for (int i =0; i<L . s i z e () ; i++) {

i f (L [i] . inDeps . e x i s t s (inTaskID)) {

/∗ the incoming message i s the argument va lue . Plug i t a t

the r i g h t p l a ce . I f msg r e c e i v ed i s t i l e X11 in a ta s k

wa i t ing to execu te c a l l A(X01 , X00 , X11) , then msg must

be p lugged as param [5] account ing f o r o ther metadata

params (param [1] i s X01 , param [2] i s bX01 (boxX01) ,

param [3] i s X00 , param [4] i s bX00 , param [5] i s X11 , param [6]

i s bX11 , param [7] i s c a l l−s tackDepth ∗/

L [i] . params [inDeps [inTaskID]] = msg ;

// update input dependencies

L [i] . inDeps . remove (inTasskID) ;

}

}

}

}

/∗ common . h ∗/

#define DIMENSION 2

#define METADATASPACE (2∗DIMENSION+1)

typedef int CELLTYPE;

i n l i n e CELLTYPE∗ GetDPTableCell (int i , int j , CELLTYPE∗ data) {

CELLTYPE∗ c e l l = data+METADATASPACE;

int s i d e = data [DIMENSION] ;

89

int i O f f s e t=i − data [1] ;

c e l l += (iO f f s e t ∗1∗ s i d e) ;

int jO f f s e t=j − data [0] ;

c e l l += jO f f s e t ;

return c e l l ;

}

typedef struct Box

{

int coords [2∗DIMENSION] ;

Box (){}

Box(int a , int b , int c , int d) {

coords [0]= a ; coords [1]=b ; coords [2]= c ; coords [3]=d ;

}

Box(const Box&b) {

coords [0]=b . coords [0] ; coords [1]=b . coords [1] ;

coords [2]=b . coords [2] ; coords [3]=b . coords [3] ;

}

bool operator==(const Box& rhs) {

bool f l a g = true ;

i f ((th i s−>coords [0] != rhs . coords [0]) | |

(th i s−>coords [1] != rhs . coords [1]) | |

(th i s−>coords [2] != rhs . coords [2]) | |

(th i s−>coords [3] != rhs . coords [3]))

f l a g=f a l s e ;

return f l a g ;

}

long int GetBoxSize () {

long int l en = 1 ;

for (int i =0; i<DIMENSION; i++) {

l en ∗= (coords [i+DIMENSION]− coords [i]+1) ;

}

return l en ;

}

}Box ;

90

The goal of the executor is to execute the list of tasks that the inspector produced.

Figure 4.3 shows how the skeleton for that executor is constructed. The executor

module of each process spins in a loop scanning the task list produced by the inspector.

A task is executed when either all its input dependences are satisfied or the set of

input dependences is empty. When a task completes execution, it is removed form the

list and the executor immediately sends the results of the computation (a data region

/ tile in a matrix) to all the processes specified in the output dependences. Before

sending the results, the executor attaches additional metadata that indicates the task

ID that computed the results and the bounding box information of the tile computed.

The executor waits (blocks on a wildcard message) when there are no tasks to execute.

Upon receiving a message, the executor updates the input dependencies for all

tasks waiting on the task mentioned in the metadata received. The executor then

executes any task for which all the dependences are satisfied. The executor exits the

loop when the list of tasks is empty. Listing 4.4 shows the input and output of the

executor generator.

4.3.3 Design Details

We next explain inspector’s operation at runtime. Figure 4.4 illustrates task

creation, dependency inference, and task partitioning.

Unrolling depth Recall that the inspector unrolls the computation to a certain

depth until it arrives at base cases that it turns into tasks for the executor. With a

level of unrolling, the DP table is broken into smaller parts, so more unrolling leads to

smaller, but more numerous tasks. Deciding the optimal granularity of these tasks—i.e.,

number of levels of recursion to unroll—is hard. Typically, when executing a recursive

parallel program on a single compute node, the tradeoff is between the overhead of

creating new tasks and the amount of parallelism exposed. For a distributed-memory

implementation, the number of levels of recursion to unroll, D, reflects a tradeoff

between communication overhead and the available parallelism: a larger D introduces

91

(c)

A

B

C

A

BA A

A

BA A CB C CB B B

Task :

W : X00
R : X00

W : X11
R : X11

W : X01
R : X00,X11

Writes (W): X
Reads (R): X

(a)

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14

Writes: 1 2 5 3 4 7 6 8 9 8 9 10 10 10
Reads: 1 2 1, 2 3 4 3, 4 2, 3 5, 6 6, 7 1, 3 2, 4 5, 9 8, 7 1, 4

Process

Task owned

P1 P2 P3 P4

t1,t3,t9,t11 t2,t7,t12,t13,t14 t4,t6 t5,t8,t10
Tiles owned 1, 5, 9 3,7 4,82, 6, 10

Tasks are partitioned among 4 processes based on a mapping scheme of
assigning the tiles along the diagonals to processes in round-robin order.

P1 P1
P2

P3
P4

P2

P3

P4

P1

P2
Process-to-tile mapping

(b)

t7

t8 t9

t4 t5

t6

t1 t2

t3

t10 t11

t12

t13

t14

Fig. 4.4.: D2P inspector in action: (a) shows task creation by unrolling MWT’s
top-level recursive method A two levels deep. The leaves of the recursion tree are
identified as tasks. The Figure also shows the numbers of tiles read and written by
each task (numbering follows from Figure 4.2). (b) shows inter-task dependences. (c)
shows task partitioning among 4 processes.

92

more tasks, which may increase the available parallelism but also introduces more

data dependences, and hence communication. Figure 4.4(a) shows the tasks created

when D=2.

Identifying data dependences via effect intersection Figure 4.4(b) shows the

data dependences among tasks resulting from unrolling. Correct dependences can be

derived after computing a linearization of the tree in preorder traversal (to ensure that

dependences are resolved in program order). The dependency structure, as the arrows

indicate, can be computed using simple set intersection (of the tile numbers) given

the tile numbering information. The source of the arrow is a task writing to a DP

table tile (producer) and the destination is a task that reads these tiles (consumer).

Enforcing these data dependences is all that is necessary to ensure correct execution,

due to the inclusion property of the dependences as described earlier.

Note, interestingly, that because D2P performs unrolling of the original recursive

algorithm, it is able to expose more parallelism than the original formulation. This is

because the original formulation uses control dependences (in the form of sequential

ordering) to conservatively enforce data dependences that arise between coarse-grained

tasks. Two coarse-grained tasks x and y may have to execute sequentially because some

subtask in y is dependent on some subtask in x, even though other subtasks in y can

execute in parallel with x. As a concrete example, note that in the original recursive

formulation of MWT in Figure 4.2(c), the first B task executes sequentially after the

parallel execution of the first two A tasks. However, in the unrolled dependence graph

of Figure 4.4(b), we see that this is conservative: t7 (arising from a B task) can execute

in parallel with t3 and t6 (arising from A tasks) despite the control dependence in

the original formulation. D2P enforces exactly these data dependences, and hence is

able to expose more parallelism than the original parallel recursive implementation,

depending on how much unrolling is done. Of course, performing additional unrolling

can incur additional runtime overhead and communication, so this tradeoff must be

carefully managed.

93

Task assignment D2P uses an owner-computes strategy: the inspector assigns DP

table tiles to processes as per the mapping strategy provided at runtime, and then

all tasks that compute the tiles mapped to a process are assigned to that process.

This ensures that the task-to-process assignment results in a single owner for a tile.

Note that this simplifies communication, as we do not need to consider different

processes writing to the same tile. D2P provides knobs to programmers to control

the mapping strategy (see Section 4.4). Figure 4.4(c) shows an example mapping

strategy of assigning tiles along the diagonals to four processes in round-robin order.

The Figure also shows the resulting tile and task distributions.

Communication insertion and data movement In a distributed-memory set-

ting, if the consumed data does not reside on local memory, then the producer and

consumer of the data must establish communication channels and perform communi-

cation. For a task in D2P, producers are the tasks mentioned in its input dependences.

However, the consumers are the processes mentioned in its output dependences. These

dependences are computed during inspector’s execution (Listing 4.1, II.2.d and III.2.e).

This computation is dependent on the ability of processes to figure out the owner of a

tile (data region) given a tile number and a mapping scheme. E.g. in Figure 4.4(a)

task t12 writes to tile 10 and reads from tiles 5 and 9. when t12 is being created, last

tasks to have computed tile 5 and tile 9 are t3 and t11 respectively. The last task

information is available to process P2 (owner of tile 10, and hence, task t12)—and all

the processes—due to the SPMD code updating mapM (Listing 4.1, II.2.c). Therefore,

process P2’s inspector updates task t12’s input dependences to expect data from tasks

t3 and t11. The inspector of process P1 (owner of tiles 5 and 9) updates the output

dependences of tasks t3 and t11 to send their results to P2.

Once the inspector establishes communication channels between producers and

consumers, the actual data movement follows during executor’s execution of the tasks.

Since in D2P, the producers of the data push the data to consumers, consumer process

IDs are essential for the tasks to correctly perform communication. A consumer

94

process delivers the data received for consumption to its task(s) based on the input

dependences of the task(s). The data is delivered to the correct task if its input

dependences contain a task ID that matches the task ID mentioned in the metadata

received along with the data (Figure 4.3, II.3 and II.2.b).

Leaf-task implementation One advantage of D2P is that end users can rely on

D2P for orchestrating inter-task parallelism as shown in Figure 4.4 while continuing to

use their highly-optimized, single-process code within a task. Because a task computes

a recursive method with inclusive dependences, users can replace the method body

with codes offloading computation to multiple threads, vectorizing processors, GPUs

etc. This decoupling of a task’s implementation is safe because of the following: if

sub-parts (data computed by an optimized iterative code or spawned sub-tasks) of

two coarse-grain tasks overlap, then the inputs to the coarse-grain tasks must overlap

because of the inclusion property. As a result, there would be a dependency between

the coarse-grain tasks. And since the coarse-grain tasks execute atomically, we are

guaranteed to wait for all dependences to be satisfied. Thus, no two tasks that could

interfere can possibly execute in parallel.

4.4 Implementation

Intra-task parallelism While D2P primarily concerns itself with identifying and

exploiting inter-task parallelism, as shown in Figure 4.4(b), each task itself repre-

sents a fairly coarse-grained computation. D2P leverages the resulting intra-task

parallelism—easily exposed due to the recursive nature of the implementation—by

using Cilk spawn [95] to implement parallel sections within a leaf-method body

(though, as mentioned in Section 4.3, the user can instead replace a leaf-method

recursive implementation with their own optimized single-process code).

While executing a recursive implementation of a leaf-method, spawning sub-tasks

down till the terminating case can greatly increase the parallel overhead. The D2P

Codegen generates two versions of the method body (with and without Cilk keywords)

95

and the executor executes the sequential version (without Cilk keywords) to control

this overhead. The executor stops executing the parallel version beyond C levels of

recursion. We set the spawn-cutoff C to two by default, since, this created sufficient

number of sub-tasks for all the benchmarks and the input sizes considered.

Cilk workers (pthreads analogue) execute the spawned sub-tasks. The number

of Cilk workers per process reflect a tradeoff between shared-memory parallelism vs.

communication-computation overlap: we have two options to subscribe to a fixed

number of parallel hardware contexts (cores)—(1) use single Cilk worker per process

and more processes or (2) multiple Cilk workers per process and lesser number of

processes. With option 1, there is more fine-grained parallelism since the inspector

unrolls more with more processes. The increased fine-grained parallelism provides more

opportunities to overlap increased communication with parallel computation. With

option 2, lesser processes enforce shallower unrolling, which makes a task compute a

larger tile. Larger tiles provide more opportunities to map computation to multiple

Cilk workers more effectively. However, as the example on effect intersection discussed

in Section 4.3 showed, increased task granularity imposes artificial constraints on

independent sub-tasks that belong to distinct tasks (Cilk workers in D2P do not

communicate with workers from other tasks). Hence, there are lesser opportunities for

overlapping communication with computation. This may be acceptable for compute-

heavy applications, where communication is not a significant factor. However, for

memory-bound applications, we prefer having more fine-grained parallelism. We set

the number of Cilk workers to 1 by default and provide a knob to set the Cilk workers.

Cilk workers in D2P are not involved in data exchange since the granularity of data

communicated is a tile and Cilk workers compute sub-tiles. The process owning a

leaf-task sends a tile of data to dependents only when all the Cilk workers executing

sub-tasks of the leaf-task finish executing.

Parameters - inspector We provide blocked, block-cyclic, and hybrid strategies

for mapping of data regions to processes. In case of many DP problems, we observe

96

that the data dependences exist along the rows and columns of the DP table, and

parallelism is along the diagonal (MWT) or anti-diagonal. Hence, we decompose the

problem until the number of tiles in a column (or row) are equal to the number of

processes. This avoids column (or row)-wise communication, while still assigning

tasks computing tiles along diagonals and anti-diagonals to different processes. As a

result, this strategy reduces communication while maintaining parallelism for many DP

problems. This strategy also defines the base case trigger in the inspector (Listing 4.1,

II.2.a): the unroll depthD, which hierarchically decomposes a problem (hence, creating

the tiles), is dependent on the number of processes. The tiles can only be created when

input sizes are known (Listing 4.1, III.1-size). Hence, the mapping scheme, number of

processes, and the input size are the required parameters for the inspector.

Data region IDs Data ownership is determined based on region IDs in Listing 4.1

and 4.3. As region IDs are parameters to an inspector method, the inspector needs to

compute them to pass as argument values to a method call (this is done Listing 4.1,

II.3.a). The computation is based on the dimensionality of the matrix computed

(DIM) and the quadrant number (quadrant). We extract DIM and quadrant from

an argument name to a call. E.g. DIM=2 (must be the same for all argument

names) and quadrant=1 for X01 in A(X01, X00, X11). Region IDs in the method

body are computed as: (inRegionID ∗ 2DIM + quadrant), where inRegionID is

the argument value passed to the method call. E.g. the wrapper call to the top-

level inspector method A(box, nullptr, 0, 0) always assigns an ID of 0 to the whole

data region (Listing 4.1, III.1). The recursive call to A(< X11 >) within method

A in the spec is translated to a call to A(box11, nullptr, 3, 1), where 3 is the new

ID computed based on the incoming ID=0 (box11 is computed based on box, and

callStackDepth=1 is incremented for every recursive call). The next recursive call to

A(< X11 >) translates to A(box11, nullptr, 15, 2). As a result, the tiles are assigned

IDs in Z-order [92]. Given a Z-order number, the corresponding grid coordinates can

97

Table 4.1.: Auxiliary methods in D2P.

Method Description
BaseCase Recursion terminating case. Specifies the exact function ap-

plied in computing a DP table cell. E.g. MWT computes
tablei,j=min(tablei,j ,tablei,k+tablek,j+weighti,k,j).

InitTable Captures algorithm-specific initialization of the DP table. E.g. MWT initializes all
the elements on the main diagonal to zero.

GetScore Fetches the optimal score. Aggregate functions MAX, MIN are provided to fetch
the maximum/minimum value among the distributed DP table cells. Specific cell
content can be obtained using GetCell(i,j). In MWT, GetCell(0,N-1) fetches the
optimal score, since the top-right corner cell always stores the optimal score.

ReadInput Reads input-data. E.g. MWT reads 2D coordinates of points from a file

be efficiently computed. Based on the grid coordinates and the mapping scheme (e.g.

alternating columns of tiles to different processes), tile owners can be computed.

Auxiliary methods The base case was explained earlier in section 4.2. Table 4.1

describes other auxiliary methods, which capture application-specific properties such

as initializing the DP table, fetching the optimal score computed, and reading inputs.

As these methods are free from the concerns of distribution, we require end-users to

implement them and augment the generated code. We also provide their reference

implementations for five benchmarks.

Autogen Writing a specification such as the one for the MWT problem shown in

Figure 4.3 is not straightforward. Autogen is a tool that automatically discovers

recursive DP algorithms for a subset of DP problems belonging to the Fractal-DP

class [74]. Autogen takes as input an iterative code snippet consisting of only the for

loop structure (similar to lines [3-4,7-8] in Figure 4.2), and produces a pseudocode

similar to that of Figure 4.3, but with additional parallel annotations describing

method calls that can be executed in parallel. The Autogen paper has more details

on how Autogen infers recursive methods and extracts parallelism.

We design the D2P Codegen to parse Autogen’s output. Thereby, we create an

end-to-end system for generating distributed-memory codes for a wide variety of DP

problems. As a result, an end-user can generate distributed-memory code for a real-

world application by translating only the embedded loop structure representing the DP

98

table recurrence equation. Currently we rely on Autogen’s parallel annotations in

its output to exploit intra-task parallelism. We could extend our inter-task parallelism

extraction scheme to identify parallelism within a method body in future. Note that

we use Autogen primarily as a tool to generate specifications for D2P. In the next

Section, we evaluate D2P with a specification that Autogen cannot generate.

4.5 Evaluation

We present the evaluation results of D2P with five DP based algorithms. These

algorithms are drawn from the domains of bio-informatics, computational geometry,

and computer science. The algorithms differ in their data dependency pattern and are

spread over the different categories of DP problems mentioned in Galil et al. [96]. We

present the scalability results and show case studies comparing D2P implementation

of a benchmark with i) DPX10 [79], a generic framework for implementing distributed-

memory DP algorithms and ii)a hand-written distributed-memory program [85].

Benchmarks

i Minimum Weight Triangulation (MWT) [93] is a triangulation algorithm,

detailed in Section 4.2.

ii Matrix Chain Multiplication (MCM) [94] finds the optimal way to associate

a sequence of matrix multiplications. Computing a single DP table cell requires

reading from O(N) cells in both MWT and MCM, and they compute only the

upper triangular matrix of the DP table.

iii Smith-Waterman Local Alignment (SW) [97] determines the similarity of

two DNA (or amino acid) sequences. All pairs of possible subsequences from both

the sequences are compared and scored rather than considering whole sequences.

The algorithm finds local regions within the sequences having an optimal similarity

score. In global sequence alignment algorithms such as Needleman-Wunsch (NW),

the whole sequence is considered. The recursive formulations for both SW and

99

NW are the same and the implementation differs only in the terminating case.

Hence, we evaluate only SW for scalability.

iv Floyd-Warshall All Pairs Shortest Path (APSP) [98] finds the shortest path

between every pair of vertices in a graph. APSP computes the entire DP table

matrix. SW and APSP are instances of the gap problem [96] where, SW reads

O(1) and APSP reads O(N) cells to compute a cell.

v RNA Problem (RNA) [99] predicts the structure produced as an RNA strand

folds onto itself. Our RNA implementation stores similarity values of all possible

pair of subsequences to account for multi-loops, leading to a 4-dimensional DP

table. Computing a DP table cell requires reading O(1) cells.

We use both synthetic and real world data sets [100, 101]. Among synthetic

data sets, MWT uses a convex hull of randomly generated points in 2D space, and

MCM uses randomly generated integer weights in the range 0 to 1000. SW uses

ecoli sequences NC_000913.2E and BA000007.2, and RNA uses mRNA sequence of

fruit-fly [101]. APSP uses Autonomous Systems (AS) relationships graph from the

ISP data set [100].

4.5.1 Methodology

The distributed-memory (DM) implementations of DP algorithms are based on

the Autogen produced shared-memory pseudocodes for all the benchmarks except

MCM. In case of MCM, Autogen fails to discover a recursive algorithm since the MCM

recurrence does not belong to the Fractal-DP class. So we wrote the specification for

MCM with hints from the MWT specification, as both MWT and MCM belong to a

similar category of DP problems. Our baselines are shared-memory implementations

of recursive DP algorithms. Being recursive implementations, they are optimized

for locality and represent the best single process sequential implementations of each

benchmark among the approaches we tested. A comparison with sequential iterative

100

Table 4.2.: Number of tasks and the unroll depth used in strong-scaling experiments.
The unroll depth used for MCM is the same as that of MWT and hence, is not shown.

2D Grid 4DGrid
MWT SW APSP RNA

Processes Unroll
Depth

Tasks Unroll
Depth

Tasks Unroll
Depth

Tasks Unroll
Depth

Tasks

1 1 1 0 1 0 1 0 1
2 1 3 1 9 1 8 1 11
4 2 14 2 49 2 64 2 191
8 3 92 3 225 3 512 3 3,431
16 4 696 4 961 4 4,096 3 3,431
32 5 5,488 5 3,969 5 32,768 4 59,231
64 6 43,744 6 16,129 6 262,144 4 59,231
128 7 349,632 7 65,025 6 262,144 4 59,231
256 7 349,632 8 261,121 6 262,144 4 59,231
512 7 349,632 9 1,046,530 7 2,097,152 4 59,231

implementations for a subset of the benchmarks confirmed this: our recursive baselines

(1_rec) of MCM and MWT were 1.08× and 1.36× faster than their respective iterative

sequential implementations. We assume that the results hold for remaining benchmarks

based on the findings in the Autogen paper.

The overall computation in a DP application can be divided into three steps:

1) table initialization, 2) table computation, and 3) backtracking. Backtracking is

an important step constructing the optimal solution based on the optimal scores

computed in step 2. As step 2 is computationally dominant in a majority of the DP

problems, step 2 alone is timed in all performance measurements unless otherwise

noted. The runtimes are measured using wall-clock time and every configuration of a

test is run until a steady state is achieved.

Development and execution environment The DM implementations of all

benchmarks use C++11, Intel MPI [102], and Intel CilkPlus [95]. We compile the

programs with mpiicpc, a wrapper compiler for ICC 16.0.3. The experiments are run

on Bridges, an XSEDE [103] cluster of over 752 nodes having Intel-OPA interconnect.

We accessed up to 32 nodes of this cluster. Each node of the cluster runs CentOS

Linux 7.4.1708, contains two 14-core Intel-E5-2695v3 processors with 128GB main

memory.

101

0
20
40
60
80

100
120
140
160
180

1 2 4 8 16 32 64 128 256 512

Sp
ee

du
p

Number of processes / cores

MWT

Baseline = 1560.8s
Input size = 8192 vertices
(DP Table size = 0.5GB)

0
20
40
60
80

100
120
140
160
180

1 2 4 8 16 32 64 128 256 512
Number of processes / cores

MCM

Baseline = 1025.4s
Input size = 8193 matrices
(DP Table size = 0.5GB)

0

10

20

30

40

50

60

70

1 2 4 8 16 32 64 128 256 512
Number of processes / cores

APSP

Baseline = 4660.3s
Input size = 8192 vertices
(DP Table size = 0.25GB)

0

10

20

30

40

50

60

70

1 2 4 8 16 32 64 128 256 512

sp
ee

du
p

no
rm

al
ize

d

Number of processes / cores

SW

Baseline = 317.7s
Input size = 131071 bases
(DP Table size = 64GB)

0
2
4
6
8

10
12
14
16

1 2 4 8 16 32 64 128 256 512

Sp
ee

du
p

no
rm

al
ize

d

Number of processes / cores

RNA

Baseline = 353.9s
Input size = 512 bases
(DP Table size = 256GB)

Fig. 4.5.: Strong scaling in D2P benchmarks showing speedup of single Cilk worker/pro-
cess configuration over baselines. SW and RNA use baseline runtimes normalized w.r.t.
2-process (2_DM) run instead of using the 1_rec baseline runtimes. Also shown is
a comparison of speedups obtained with the default unrolling depth, and the best
unrolling depth empirically measured.

102

4.5.2 Scalability

Strong scaling In these experiments, we measure the performance of the bench-

marks with increasing number of computing resources (processes, Cilk workers) for a

fixed input size. The input sizes are chosen such that slowest DM executions complete

in a reasonable amount of time.

Figure 4.5 shows strong-scaling with the default unrolling strategy (D based on

number of processes) and 1 Cilk worker per process. The Figure also shows strong-

scaling with the best value of D determined empirically for each process configuration.

As single-process runs do not unroll recursion, best D is not applicable and hence, is

not shown. The plots show speedup of a DM execution over the sequential recursive

baseline (1_rec). In scenarios when input sizes prohibit allocating the DP table in a

contiguous heap-space, we use a two-process DM run (2_DM) as the baseline.

As the results show, D2P implementations scale well given the inherently strong

data dependencies in DP problems. We also observe that D2P’s default unrolling

strategy is sufficient. The speedup curve with default D closely follows the best D

in most cases. As unrolling is commensurate with the number of processes, at larger

number of processes, there is more unrolling. Deeper unrolling (in search of better

D) at large number of processes causes an increase in preprocessing overhead, which

outweighs the benefits obtained from increased available parallelism. As a result, best

D eventually matches the default D. Since RNA uses a 4D table, with every level

unrolled, there is a 16× increase in the DP table tiles. So, the best and the default

D are same from level 2 onwards. Hence, we do not see an observable difference in

performance. Table 4.2 shows the unroll depth and number of tasks created for a

given process configuration in strong-scaling experiments.

We study the effect of intra-task parallelism with multiple Cilk workers per process.

Table 4.3 shows the speedups obtained with multiple Cilk workers and compares them

with the best speedup numbers shown in Figure 4.5. The maximum number of cores

used is the same across both single and multiple Cilk worker configurations. We

103

T
ab

le
4.
3.
:
D
et
ai
ls

of
(i
)
ba

se
lin

e
(1
_
re
c)

an
d
pr
ep
ro
ce
ss
in
g
ov
er
he
ad

(P
re
)
ru
nt
im

es
in

se
co
nd

s
an

d
(i
i)

C
om

pa
ri
so
n
of

sp
ee
du

ps
(×

)
ob

ta
in
ed

w
it
h
1
an

d
W

C
ilk

w
or
ke
rs

pe
r
pr
oc
es
s
ov
er

ba
se
lin

e
ru
nt
im

es
.
T
he

si
ng

le
C
ilk

w
or
ke
r
pe

r
pr
oc
es
s

nu
m
be

rs
ar
e
fr
om

Fi
gu

re
4.
5.
W

re
pr
es
en
ts

th
e
w
or
ke
rs

co
rr
es
po

nd
in
g
to

th
e
be

st
ru
n
ob

ta
in
ed

fr
om

a
sw

ee
p
of

1
to

16
C
ilk

w
or
ke
rs
. P

ro
ce
ss
es

M
C
M

M
W

T
SW

A
P
SP

R
N
A

1_
re
c

10
25
.4
s

15
60
.8
s

N
A

45
70
.6
s

N
A

P
re

C
ilk

-w
or
ke
rs

P
re

C
ilk

-w
or
ke
rs

P
re

C
ilk

-w
or
ke
rs

P
re

C
ilk

-w
or
ke
rs

P
re

C
ilk

-w
or
ke
rs

1
W

1
W

1
W

1
W

1
W

1_
D
M

0.
11
s

0.
9×

7.
2×

0.
1s

0.
9×

4.
4×

N
A

N
A

N
A

12
.4
s

0.
9×

7.
8×

N
A

N
A

N
A

2_
D
M

0.
05
s

1.
2×

10
.4
×

0.
04
s

1.
2×

7.
3×

8.
2s

1×
3.
2×

6.
1s

1.
6×

17
.1
×

10
.5
s

1×
6.
6×

4_
D
M

0.
02
s

1.
8×

17
.4
×

0.
02
s

1.
7×

14
.8
×

4.
4s

1.
5×

2.
9×

3.
4s

2.
9×

28
.9
×

3.
2s

1.
9×

7.
8×

8_
D
M

0.
01
s

3.
6×

38
.8
×

0.
01
s

3.
5×

33
.8
×

2.
3s

2.
8×

3.
9×

1.
8s

5.
4×

46
.8
×

3.
2s

2.
7×

9.
5×

16
_
D
M

0.
01
s

8.
5×

75
.9
×

0.
01
s

7.
5×

75
.4
×

1.
2s

5.
3×

7.
1×

0.
98
s

9.
2×

55
.3
×

4.
7s

3.
1×

7.
1×

32
_
D
M

0.
01
s

16
.9
×

96
.7
×

0.
02
s

15
.8
×

63
.2
×

0.
9s

9.
4×

7.
2×

0.
55
s

14
.8
×

58
.8
×

3.
3s

4.
5×

12
.2
×

64
_
D
M

0.
02
s

23
.3
×

16
0.
2×

0.
2s

25
.2
×

10
8.
4×

0.
6s

19
.1
×

10
.2
×

0.
68
s

16
.6
×

49
.4
×

2.
5s

6.
8×

12
.5
×

12
8_

D
M

0.
08
s

36
.1
×

21
8.
2×

0.
28
s

44
.2
×

28
9.
1×

0.
5s

28
.9
×

12
.6
×

0.
42
s

17
.8
×

40
.4
×

2s
7.
8×

13
.6
×

25
6_

D
M

0.
58
s

84
.8
×

18
3.
1×

0.
04
s

86
.2
×

12
4.
8×

0.
4s

38
.6
×

16
.2
×

0.
27
s

22
.7
×

30
.2
×

1.
7s

9.
9×

11
.9
×

51
2_

D
M

0.
75
s

15
3.
1×

63
.6
×

0.
13
s

16
0.
9×

84
.4
×

0.
9s

61
.1
×

8.
2×

1.
8s

60
.3
×

23
.1
×

1.
5s

14
.2
×

3.
8×

104

128P/8W

128P/8W

64P/16W
256P/2W

128P/4W
0

50
100
150
200
250
300

MWT MCM APSP SW RNA

Sp
ee

du
p 1 Worker

Multiple Workers

xP/yW: x processes, y workers per process

(512P/1W)

Fig. 4.6.: Summarizing Table 4.3 results. Exploiting intra-task parallelism is necessary
in compute-bound benchmarks.

performed a sweep of 1 to 16 Cilk workers per process at each scale, however, we show

here only the best numbers (W), which were 16 Cilk workers for up to 64 processes

and 8, 4, and 2 Cilk workers for 128, 256, and 512 processes respectively. Figure 4.6

summarizes the results and shows the configurations that yield these runtimes.

Our experiments showed that allocating parallelism to additional processes rather

than additional Cilk workers consistently gave better performance in some benchmarks,

even though using more processes requires more communication. This is a consequence

of the tradeoff between shared-memory parallelism vs. communication-computation

overlap mentioned earlier (Section 4.4, intra-task parallelism). MWT, MCM, and APSP

are compute-bound and hence, due to better utilization of available shared-memory

parallelism, multiple Cilk workers yield almost double the speedups (280.1×, 218.2×,

and 90.3× resp.) compared to single Cilk worker runs. Additional processes rather than

additional Cilk workers yield better performance in memory-bound benchmarks (SW

and RNA). We also measure memory contention and find that the intra-node overheads

associated with communication do not play a role in memory-bound benchmarks not

seeing improved speedups with multiple Cilk workers. We observed that the contention

decreased across all benchmarks—memory- and compute-bound—, since adding more

Cilk workers meant reducing the number of processes and hence, the number of

communicating entities per node.

105

4096

5160
6502 8192

10322

13004 16384

0
0.2
0.4
0.6
0.8

1
1.2

8 16 32 64 128 256 512N
or

m
al

ize
d

ru
nt

im
e

Number of processes

MWT
8 process run = 138.1s, D=716383

23169

32767
46331 65535

92679
131071

0

0.2

0.4

0.6

0.8

1

8 16 32 64 128 256 512N
or

m
al

ize
d

ru
nt

im
e

Number of processes

SW
8 process run = 72.6s, D=8

2048 2580
3250 4096

5161 6502

8192

0
0.5

1
1.5

2
2.5

3

8 16 32 64 128 256 512N
or

m
al

ize
d

ru
nt

im
e

Number of processes

APSP
8 process run = 59.6s, D=7

152 184 224
256

304

430
512

0

0.5

1

1.5

2

8 16 32 64 128 256 512N
or

m
al

ize
d

ru
nt

im
e

Number of processes

RNA
8 process run = 37.6, D=4

Fig. 4.7.: Weak scaling in D2P benchmarks. Y-axis shows the normalized runtime
w.r.t. the 8-process run. The data-labels show the input size used for that execution.

Overall, we see a 89.6× geomean speedup in the default configuration, which

further increases to 125.4× when we exploit intra-task parallelism. The addition of

more Cilk workers to exploit intra-process parallelism may be necessary in order to

get the absolute best performance. The results reflect D2P’s use of coarse-grained,

task-level parallelism at the level of leaves of the tree and Cilk workers to exploit an

intra-process, sub-task parallelism available within a task.

Weak Scaling In these experiments, we increase the input size with increasing

number of processes while keeping the per-process computation fixed. We also override

the default D2P configuration and keep the unroll depth D (problem decomposition)

constant. As a result, the runtime sometimes decreases with more processes due

to more effective utilization of available parallelism. In weak-scaling experiments in

106

general, we expect the communication overhead to increase proportional to the number

of processes. In D2P benchmarks, we have an additional source of communication

overhead: as some benchmarks read O(N) (APSP, MWT, MCM) data to compute

a cell, the amount of communication per cell can increase with scale. Additionally,

when the input size is not a perfect power-of-two the recursive decomposition does

not evenly divide the table, so partitioning tasks/sub-tasks computing these tiles can

result in load-imbalance. As a result, we expect the overall runtime to increase with

scaling up inputs and processes.

Figure 4.7 confirms this behavior. We see that the runtimes show different degrees

of increase for different benchmarks. The 8 process run in SW uses an input sequence

length of 16,384, which is perfect-power-of-two. Because SW is O(N2) algorithm, the

next perfect-power-of-two input size is used when the processes are scaled to 32. We

consider scaling from 8-32-128-512 as an indicator of true weak-scaling since these

correspond to perfect load-balance. For MWT and APSP, O(N3) algorithms, 8-64-512

process runs represent the load-balanced configurations. In RNA, which is O(N4), 32

and 512 process runs are each perfectly balanced.

In a perfectly load-balanced scenario, SW, MWT, APSP, and RNA weak-scale

differently. SW weak-scales the best and shows a flat scaling due to a O(1) amount of

communication per cell. Even though MWT and APSP have both O(N) dependencies

in computing a cell, MWT shows 1.7× increase while APSP shows a 2.8× increase in

runtime. This is because the communication overhead is reduced in MWT, since, it

computes only the upper triangular matrix. RNA, despite computing O(N4) cells,

shows a modest 1.3× increase in runtime. This is because, like SW, each cell in RNA

depends on O(1) other cells.

Preprocessing overheads and Backtracking the preprocessing time due to un-

rolling, dependency analysis, and partitioning remained within 1.7% of the DP table

computation time in most cases. Note that all our performance numbers include this

preprocessing time. We also implement backtracking manually in the D2P generated

107

0.1

1

10

100

1 2 4 8 16 32 64 128 256 512

Ru
nt

im
e

(s
)

Number of processes

UPC D2P

Input size = 32768 bases

Strong Scaling: D2P vs. Hand Written

1
10
100
1000
10000
100000

0.01

0.1

1

10

100

2 8 32 128 512

In
pu

t s
ize

Ru
nt

im
e

(s
)

Number of Processes

Input size UPC D2P

D2P: D=7

Weak Scaling: D2P vs. Hand Written

(a)

0.01

0.1

1

10

100

1000

1 2 4 8 16 32 64 128 256 512

Ru
nt

im
e

(s
)

Number of processes

D2P vs. DPX10
DPX10 D2P

Input size = 8192 bases

(b)

Fig. 4.8.: Case studies comparing D2P with other systems.

code and observe that for representative benchmarks (MWT, SW, and APSP), back-

tracking time at any scale remains within 2.1% of the DP table computation time,

thus highlighting that table computation still dominates other steps.

4.5.3 Case Studies

D2P vs. Hand_Written We compare SW implementation of D2P with UPC, a

highly optimized, hand-written, distributed-memory implementation of iterative SW

algorithm [85]. UPC takes a static approach to task partitioning and communication.

The master-slave based implementation in UPC divides the DP table (row-wise) evenly

108

among slaves and assigns any undivided (remaining) rows to the master. As a result,

a process depends on only a single row of data from one other process owning the

adjacent DP table row above. In contrast, note that a producer in D2P sends an entire

tile of data to the consumer. The slaves communicate their results back to the master,

who computes any assigned rows based on the results received. A pipeline-parallel

scheme divides the rows further into blocks and helps exploit intra-process parallelism.

Figure 4.8a shows strong- and weak-scaling results. These measurements were

obtained with 95% confidence interval with 0.08% margin of error. We chose the

maximum input size permissible in UPC. Since UPC adopts a data-parallel approach,

each process in UPC can only allocate a DPTable of a maximum size of 4GB in heap

and this corresponds to an input size of 32768 bases. We observe that D2P scales

better than UPC. Because of the default terminating case computing a single cell

and the memory-bound nature of SW requiring deeper unrolling (Section 4.5.2), D2P

generated code is slower at smaller number of processes. At larger number of processes,

D2P outperforms UPC due to aggressive unrolling.

D2P vs. DPX10 [79] DPX10 is the best available framework for parallelizing

iterative DP programs on distributed-memory systems. Like D2P, DPX10 exposes a

set of APIs to the end-user, who specifies existing parallelism pattern and implements

the iterative algorithm. Similar to D2P, DPX10 captures node-level and thread-level

parallelism, however, through X10 Places and pthreads respectively.

We compare the performance of SW benchmark only, since, DPX10 currently

supports only DP programs with 2-dimensional DP table and O(1) dependency in

computing a cell (2D/0D) [79]. DPX10 takes a dynamic approach to task management

through a master-slave implementation: first, a master process creates a DAG of tasks

based on the parallelism pattern. The tasks are then distributed among slaves, who

report back to the master with results. The master and every slave coordinate task

execution with the help of an additional per-slave (and master) scheduler processes.

109

Figure 4.8b shows the strong scaling results. We show the best performing

DPX10 run among different choices of X10 threads per place. DPX10 runs timed-out

at larger scales and hence, are not shown. Here, D2P is significantly better (up

to 412× speedup when best runs are compared) than DPX10 in raw performance

numbers as well as scalability. We believe that the design and implementation choices

(dynamic partitioning and execution of tasks, dedicated schedulers) in DPX10 affect its

performance. Overall, the design choices (owner-computes, finalizing the partitioning

of tasks before their execution) help D2P outperform DPX10.

4.6 Related work

Distributed-memory parallel programs and simplifying their creation has been

extensively studied for many decades with a focus on iterative formulations [9, 10,

76–78,80,90,104]. Recent research has shown that recursive formulations have good

locality properties, readily expose parallelism and hence, can be as effective as iterative

codes if implemented carefully [73,74,89]. In D2P we identify additional properties

that, when true for recursive formulations, simplify the creation of distributed-memory

parallel programs. Lifflander et al. [73] and Bauer et al. [8] (Legion) use programmer

specified ‘effect’ annotations to identify dependences and extract parallelism. The effect

annotations are explicit way of specifying inclusive properties for a recursive method.

D2P’s unrolling and analysis generates the required annotations automatically. In [73],

different recursive method calls are spliced (interleaved) effectively to improve the cache

performance of recursive implementations of stencil computations on shared-memory

(SHM) systems. In Legion, the annotated code is translated and the computation is

mapped to a heterogenous system. To our knowledge, no other auto-parallelization

tool except Legion handles recursive codes for mapping computation to distributed-

memory (DM) systems. However, as Legion targets advanced programmers, it requires

significant tuning. Because of the inclusive nature of data accesses in recursive

formulations, effect annotations are redundant in divide-conquer algorithms with the

110

inclusive property. However, we could use annotations to extend our code generation

scheme to a broader set of recursive programs without the necessary properties.

D2P differs from existing general-purpose code generation frameworks in a few ways:

D2P extracts parallelism (via unrolling), does explicit partitioning, and targets recur-

sive divide-conquer formulations with inclusive and intersection properties. While D2P

does static allocation of work (completed when inspector finishes executing at runtime),

others do a runtime task management [8–10,79]. Some frameworks [78, 90] rely on ex-

plicit specification of parallelism (e.g. #pragma omp parallel for) and implicit

partitioning (implicit assignment of iterations to threads). While others [76,77,105] do

not assume this information and work well on regular/irregular/mixed iterative codes.

Sarkar et al. [76] automate program partitioning in a functional programming setting,

and explore compile- and runtime scheduling techniques on multi-processors with

different system architectures. Unlike these fully automated systems that translate a

general SHM program to a DM program, D2P is a semi-automatic framework that

translates a specification of a recursive divide-conquer algorithm to a distributed-

memory program. Semi-automatic because the specification can be incomplete, thus

requiring end-users to augment D2P produced code. However, D2P is not bound by

any assumptions (e.g. about the maximum input size to produce a data-parallel code

in [85,90,104]).

Dynamic programming [75] algorithms, with their application in a wide variety of

domains, are the target of locality, parallelizing, and communication optimizations [74,

79,81–84,86,88,96,106] on both SHM and DM systems. FastFlow [82], EasyHPS [106]

and its successor DPX10 [79] specialize on iterative DP programs for DM systems.

Program synthesis approaches [107, 108] to dynamic programs take a spec (e.g. a

partial SHM program) with some omissions (holes) and fill it to produce a complete

program. D2P, like these systems, works on a spec. However, the spec is high-level

outline of a recursive algorithm and omits application-specific details. The omission is

expected to be filled in the D2P produced code by the end-user. The inspector-executor

111

approach of Saltz et al. is used in D2P. We could augment the partitioning scheme in

D2P with sophisticated inspector-executor based techniques [76,77,105,109].

Galil et al. [96] categorize DP algorithms based on the dependency patterns and

design SHM parallel iterative algorithms. Chowdhury et al. [74,88,89] design SHM

parallel recursive DP algorithms and automate their design too. In addition, they

show that SHM parallel recursive DP implementations adapt better in the presence of

cache sharing, are an order of magnitude faster, and have more predictable runtimes

than their tiled iterative counterparts [74]. The parallel DP formulations (both

iterative and recursive) previously described perform an exact computation of the

DP table. In contrast, Maleki et al. take an approximate-computing based approach

to parallelize DP table computation on both SHM and DM systems. They use the

insight that for a narrower set of DP algorithms having the linear-tropical-dynamic-

programming (LTDP) property [84], where cells depend only on a previous wavefront, a

cell computation need not wait for all dependences prescribed in the exact computation

to be satisfied. D2P does exact computation of the DP table. As a result, it can

parallelize parenthesis, APSP, and RNA problems, which have dependencies on all the

previous wavefronts. Majority DM parallelizing schemes based on exact computation

of SW [110,111] exploit an application-level, coarse-grained parallelism available. They

comparing a sequence against a database of sequences. The SW implementation of

D2P, in contrast, compares (and parallelizes) two sequences as required by the SW

algorithm.

4.7 Conclusions

In this paper, we presented D2P, a system for auto-generating distributed-memory

implementations of recursive divide-conquer algorithms with inclusive and intersection

properties. We showed how D2P can be used to generate those implementations

from specifications. We also showed how D2P generates tasks, partitions them, and

inserts communication. Finally, we evaluated D2P with recursive formulations of

112

DP algorithms showing that the generated implementations scale well, overheads

are negligible, run significantly faster than those created manually using a similar

framework, and even outperform optimized hand-written codes in most cases.

113

5. CONCLUSIONS

In this thesis, we presented abstractions and optimizations for implementing recursive

irregular programs on distributed-memory platforms.

First, we presented SPIRIT, a framework for creating distributed implementations

of spatial tree based applications. SPIRIT consists of algorithms for tree distribution

and their traversal for five different types of spatial trees. The APIs in SPIRIT can

be used by an average programmer to quickly create distributed implementations.

Evaluation of SPIRIT implementations shows that they are efficient, thanks to a host

of optimizations employed: block-scheduling improves locality, message aggregation

reduces communication overheads, and pipeline-parallelism and space adaptivity expose

additional parallelism, and selective replication promotes load-balance by avoiding

bottlenecks in the pipeline. These optimizations result in scalable implementations

that can provide enhanced performance when more space is available to replicate the

data. Also, results show that SPIRIT implementations far outperform those done

using generic graph processing frameworks and are competitive against customized

application-specific reference software.

We then introduced Treelogy, the first categorization scheme (ontology) and a

benchmark suite for tree algorithms. Treelogy includes a wide variety of tree traversal

kernels and presents a useful target for developing and evaluating optimizations.

The ontology helps understand where and when those optimizations can be applied.

Treelogy contains nine tree algorithms spanning the ontology. Implementations of the

kernels using different types of trees and on hardware platforms consisting of GPUs,

shared- and distributed-memory systems are considered. Results show that most of

the implementations scale well taking advantage of ontology driven optimizations,

performance of two-point correlation with vptrees is better than the standard, kdtree

114

implementation, and a case study shows that generalizing an optimization yields

substantial benefits.

Finally, we presented D2P, a state-of-the-art framework for parallelizing recursive

divide-conquer algorithms on distributed-memory systems: D2P automatically gen-

erates distributed-memory implementations starting from specifications of recursive

divide-conquer algorithms with inclusive and intersection properties. We evaluated

D2P on recursive Dynamic Programming (DP) algorithms. D2P leverages the struc-

tural properties of recursive DP algorithms to overcome the challenges associated with

distributed-memory code generation. Results show that D2P generated implemen-

tations run significantly faster than those done using similar frameworks and even

outperform hand-written codes in most cases.

The research presented in this thesis has explored topics in high-performance

computing, programming languages, and distributed systems. It has touched upon a

number of application domains such as data mining, numerical computing, statistics,

computer graphics, and bioinformatics. While the interest in graph- and tree-based

traversals from various domains is increasing, we hope that i) SPIRIT and Treelogy

provide insights into creating efficient tree algorithm implementations at scale and

ii) D2P’s implementations help in efficiently solving some of the most compute- and

memory-intensive problems in emerging application domains.

REFERENCES

115

REFERENCES

[1] M. V. Kulkarni, “The galois system: optimistic parallelization of irregular
programs,” Ph.D. dissertation, Cornell University, 2008.

[2] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M. Hellerstein,
“Distributed graphlab: A framework for machine learning and data mining in
the cloud,” Proc. VLDB Endow., vol. 5, no. 8, pp. 716–727, Apr. 2012.

[3] Y. Low, J. E. Gonzalez, A. Kyrola, D. Bickson, C. E. Guestrin, and J. Hellerstein,
“Graphlab: A new framework for parallel machine learning,” arXiv preprint
arXiv:1408.2041, 2014.

[4] J. Shun and G. E. Blelloch, “Ligra: a lightweight graph processing framework
for shared memory,” in ACM Sigplan Notices, vol. 48, no. 8. ACM, 2013, pp.
135–146.

[5] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, “Powergraph:
Distributed graph-parallel computation on natural graphs,” in Proceedings of
the 10th USENIX Conference on Operating Systems Design and Implementation,
ser. OSDI’12. Berkeley, CA, USA: USENIX Association, 2012, pp. 17–30.

[6] D. Gregor and A. Lumsdaine, “The parallel bgl: A generic library for distributed
graph computations,” Parallel Object-Oriented Scientific Computing (POOSC),
vol. 2, pp. 1–18, 2005.

[7] “http://www.boost.doc/org/libs.”

[8] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, “Legion: Expressing locality
and independence with logical regions,” in High Performance Computing, Net-
working, Storage and Analysis (SC), 2012 International Conference for. IEEE,
2012, pp. 1–11.

[9] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Hérault, and J. J. Dongarra,
“Parsec: Exploiting heterogeneity to enhance scalability,” Computing in Science
& Engineering, vol. 15, no. 6, pp. 36–45, 2013.

[10] C. Huang and L. Kale, “Charisma: Orchestrating migratable parallel objects,” in
Proceedings of the 16th international symposium on High performance distributed
computing. ACM, 2007, pp. 75–84.

[11] J. L. Bentley, “Multidimensional binary search trees used for associative
searching,” Commun. ACM, vol. 18, pp. 509–517, September 1975. [Online].
Available: http://doi.acm.org/10.1145/361002.361007

[12] P. N. Yianilos, “Data structures and algorithms for nearest neighbor search in
general metric spaces,” in SODA, vol. 93, no. 194, 1993, pp. 311–321.

116

[13] D. J. Meagher, Octree encoding: A new technique for the representation, manip-
ulation and display of arbitrary 3-d objects by computer. Electrical and Systems
Engineering Department Rensseiaer Polytechnic Institute Image Processing
Laboratory, 1980.

[14] O. STEPHEN, M., “Five balltree construction algorithms,” International Com-
puter Science Institute, Tech. Rep. 89-063, November 1989.

[15] N. Hegde, J. Liu, and M. Kulkarni, “SPIRIT: A Framework for Creating
Distributed Recursive Tree Applications,” in Proceedings of the International
Conference on Supercomputing, ser. ICS ’17. New York, NY, USA: ACM, 2017,
pp. 3:1–3:11. [Online]. Available: http://doi.acm.org/10.1145/3079079.3079095

[16] N. Hegde, J. Liu, K. Sundararajah, and M. Kulkarni, “Treelogy: A benchmark
suite for tree traversals,” in 2017 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), April 2017, pp. 227–238.

[17] J. Nelson, B. Holt, B. Myers, P. Briggs, L. Ceze, S. Kahan, and M. Oskin,
“Grappa: A latency-tolerant runtime for large-scale irregular applications,” in
International Workshop on Rack-Scale Computing (WRSC w/EuroSys), 2014.

[18] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and
G. Czajkowski, “Pregel: A system for large-scale graph processing,” in Proceedings
of the 2010 ACM SIGMOD International Conference on Management of Data,
ser. SIGMOD ’10. New York, NY, USA: ACM, 2010, pp. 135–146.

[19] Y. Jo and M. Kulkarni, “Enhancing locality for recursive traversals of recursive
structures,” in Proceedings of the 2011 ACM International Conference on Object
Oriented Programming Systems Languages and Applications, ser. OOPSLA ’11.
New York, NY, USA: ACM, 2011, pp. 463–482.

[20] A. Fidel, N. M. Amato, L. Rauchwerger et al., “The stapl parallel graph library,”
in International Workshop on Languages and Compilers for Parallel Computing.
Springer, 2012, pp. 46–60.

[21] J. Barnes and P. Hut, “A hierarchical o (n log n) force-calculation algorithm,”
Nature, 1986.

[22] B. Walter, K. Bala, M. Kulkarni, and K. Pingali, “Fast agglomerative clustering
for rendering,” in IEEE Symposium on Interactive Ray Tracing (RT), August
2008, pp. 81–86.

[23] A. G. Gray and A. Moore, “N-body problems in statistical learning,” in Advances
in Neural Information Processing Systems (NIPS) 13, December 2001, pp. 521–
527.

[24] T. Foley and J. Sugerman, “Kd-tree acceleration structures for a gpu raytracer,”
in Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on
Graphics hardware, ser. HWWS ’05, 2005, pp. 15–22. [Online]. Available:
http://doi.acm.org/10.1145/1071866.1071869

[25] M. Lichman, “UCI machine learning repository,” 2013.

[26] P. Jetley, F. Gioachin, C. Mendes, L. V. Kale, and T. Quinn, “Massively parallel
cosmological simulations with changa,” in Parallel and Distributed Processing,
2008. IPDPS 2008. IEEE International Symposium on. IEEE, 2008, pp. 1–12.

117

[27] T. Quinn, Personal correspondence, 2016.

[28] M. D. Dikaiakos and J. Stadel, “A performance study of cosmological simulations
on message-passing and shared-memory multiprocessors,” in Proceedings of the
10th international conference on Supercomputing. ACM, 1996, pp. 94–101.

[29] D. Nguyen, A. Lenharth, and K. Pingali, “A lightweight infrastructure for graph
analytics,” in Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles. ACM, 2013, pp. 456–471.

[30] S. Gupta and V. K. Nandivada, “IMSuite: A benchmark suite for simulating
distributed algorithms,” Journal of Parallel and Distributed Computing, vol. 75,
no. 0, pp. 1 – 19, Jan. 2015.

[31] J. J. Willcock, T. Hoefler, N. G. Edmonds, and A. Lumsdaine, “Am++: A
generalized active message framework,” in Proceedings of the 19th international
conference on Parallel architectures and compilation techniques. ACM, 2010,
pp. 401–410.

[32] J. Chhugani, C. Kim, H. Shukla, J. Park, P. Dubey, J. Shalf, and H. D. Simon,
“Billion-particle simd-friendly two-point correlation on large-scale hpc cluster
systems,” in Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis. IEEE Computer Society Press,
2012, p. 1.

[33] J. Pantaleoni, L. Fascione, M. Hill, and T. Aila, “Pantaray: fast ray-traced
occlusion caching of massive scenes,” ACM Transactions on Graphics (TOG),
vol. 29, no. 4, p. 37, 2010.

[34] M. Amor, F. Argüello, J. López, O. Plata, and E. L. Zapata, “A data parallel
formulation of the barnes-hut method for n-body simulations,” in Applied Parallel
Computing. New Paradigms for HPC in Industry and Academia. Springer,
2001, pp. 342–349.

[35] M. Aly, M. Munich, and P. Perona, “Distributed kd-trees for retrieval from very
large image collections,” in Proceedings of the British Machine Vision Conference
(BMVC), 2011.

[36] M. S. Warren and J. K. Salmon, “Astrophysical n-body simulations using hierar-
chical tree data structures,” in Proceedings of the 1992 ACM/IEEE Conference
on Supercomputing. IEEE Computer Society Press, 1992, pp. 570–576.

[37] J. P. Singh, C. Holt, T. Totsuka, A. Gupta, and J. Hennessy, “Load balancing
and data locality in adaptive hierarchical n-body methods: Barnes-hut, fast
multipole, and radiosity,” Journal of Parallel and Distributed Computing, vol. 27,
no. 2, pp. 118–141, 1995.

[38] J. Barnes and P. Hut, “A hierarchical o(n log n) force-calculation algorithm,”
nature, vol. 324, p. 4, 1986.

[39] V. Rokhlin, “Rapid solution of integral equations of classical potential theory,”
Journal of Computational Physics, vol. 60, no. 2, pp. 187–207, 1985.

[40] A. G. Gray and A. Moore, “N-body problems in statistical learning,” in Advances
in Neural Information Processing Systems (NIPS) 13, December 2001, pp. 521–
527.

118

[41] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without candidate genera-
tion,” in ACM Sigmod Record, vol. 29, no. 2. ACM, 2000, pp. 1–12.

[42] K. Alsabti, S. Ranka, and V. Singh, “An efficient k-means clustering algorithm,”
1997.

[43] K. Toru, L. Gunho, A. Hiroki, A. Setsuo, and P. Kunsoo, “Linear-time longest-
common-prefix computation in suffix arrays and its applications,” in Proceedings
of the 12th Annual Symposium on Combinatorial Pattern Matching, A. Amir,
Ed. Springer-Verlag London, UK, 07 2001, pp. 181–192.

[44] X. Zhang and A. A. Chien, “Dynamic pointer alignment: Tiling and communica-
tion optimizations for parallel pointer-based computations,” in ACM SIGPLAN
Notices, vol. 32, no. 7. ACM, 1997, pp. 37–47.

[45] N. Kumar, L. Zhang, and S. Nayar, “What is a good nearest neighbors algo-
rithm for finding similar patches in images?” in Computer Vision–ECCV 2008.
Springer, 2008, pp. 364–378.

[46] T. Hamada, K. Nitadori, K. Benkrid, Y. Ohno, G. Morimoto, T. Masada,
Y. Shibata, K. Oguri, and M. Taiji, “A novel multiple-walk parallel
algorithm for the barnes–hut treecode on gpus – towards cost effective,
high performance n-body simulation,” Computer Science - Research and
Development, vol. 24, no. 1, pp. 21–31, 2009. [Online]. Available:
http://dx.doi.org/10.1007/s00450-009-0089-1

[47] Y. Jo and M. Kulkarni, “Automatically enhancing locality for tree traversals
with traversal splicing,” in Proceedings of the ACM international conference on
Object oriented programming systems languages and applications, ser. OOPSLA
’12. New York, NY, USA: ACM, 2012, pp. 355–374. [Online]. Available:
http://doi.acm.org/10.1145/2384616.2384643

[48] M. Goldfarb, Y. Jo, and M. Kulkarni, “General transformations for gpu
execution of tree traversals,” in Proceedings of SC13: International Conference
for High Performance Computing, Networking, Storage and Analysis, ser. SC
’13. New York, NY, USA: ACM, 2013, pp. 10:1–10:12. [Online]. Available:
http://doi.acm.org/10.1145/2503210.2503223

[49] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The splash-
2 programs: Characterization and methodological considerations,” in ACM
SIGARCH computer architecture news, vol. 23, no. 2. ACM, 1995, pp. 24–36.

[50] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and K. Skadron,
“Rodinia: A benchmark suite for heterogeneous computing,” in Workload Char-
acterization, 2009. IISWC 2009. IEEE International Symposium on. IEEE,
2009, pp. 44–54.

[51] M. Kulkarni, M. Burtscher, C. Casçaval, and K. Pingali, “Lonestar: A suite of
parallel irregular programs,” in Performance Analysis of Systems and Software,
2009. ISPASS 2009. IEEE International Symposium on. IEEE, 2009, pp. 65–76.

[52] R. C. Murphy, K. B. Wheeler, B. W. Barrett, and J. A. Ang, “Introducing the
graph 500,” Cray User?s Group (CUG), 2010.

119

[53] M. Burtscher, R. Nasre, and K. Pingali, “A quantitative study of irregular
programs on gpus,” in Workload Characterization (IISWC), 2012 IEEE Interna-
tional Symposium on. IEEE, 2012, pp. 141–151.

[54] M. Ahmad, F. Hijaz, Q. Shi, and O. Khan, “Crono: A benchmark suite for
multithreaded graph algorithms executing on futuristic multicores,” in Workload
Characterization (IISWC), 2015 IEEE International Symposium on. IEEE,
2015, pp. 44–55.

[55] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M. A. Hassaan, R. Kaleem,
T.-H. Lee, A. Lenharth, R. Manevich, M. Méndez-Lojo et al., “The tao of
parallelism in algorithms,” in ACM Sigplan Notices, vol. 46, no. 6. ACM, 2011,
pp. 12–25.

[56] A. Ghoting, G. Buehrer, S. Parthasarathy, D. Kim, A. Nguyen, Y.-K. Chen, and
P. Dubey, “Cache-conscious frequent pattern mining on modern and emerging
processors,” The VLDB Journal, vol. 16, no. 1, pp. 77–96, 2007.

[57] H. Fuchs, Z. M. Kedem, and B. F. Naylor, “On visible surface generation by
a priori tree structures,” in ACM Siggraph Computer Graphics, vol. 14, no. 3.
ACM, 1980, pp. 124–133.

[58] P. Bieganski, J. Riedl, J. V. Cartis, and E. F. Retzel, “Generalized suffix trees for
biological sequence data: applications and implementation,” in System Sciences,
1994. Proceedings of the Twenty-Seventh Hawaii International Conference on,
vol. 5, Jan 1994, pp. 35–44.

[59] Y. Jo and M. Kulkarni, “Enhancing locality for recursive traversals of recursive
structures,” in Proceedings of the 2011 ACM international conference on
Object oriented programming systems languages and applications, ser. OOPSLA
’11. New York, NY, USA: ACM, 2011, pp. 463–482. [Online]. Available:
http://doi.acm.org/10.1145/2048066.2048104

[60] N. Bhatia and Vandana, “Survey of nearest neighbor techniques,” in International
Journal of Computer Science and Information Security, ser. IJCSIS, vol. 8, 2010,
pp. 302–305.

[61] L. Ying, “A pedestrian introduction to fast multipole methods,” Science China
Mathematics, vol. 55, no. 5, pp. 1043–1051, 2012.

[62] J. Liu, N. Hegde, and M. Kulkarni, “Hybrid cpu-gpu scheduling and execution
of tree traversals,” in Proceedings of the 2016 International Conference on
Supercomputing, ser. ICS ’16. New York, NY, USA: ACM, 2016. [Online].
Available: http://dl.acm.org/citation.cfm?doid=2925426.2926261

[63] J. Makino, “Vectorization of a treecode,” Journal of Computational Physics,
vol. 87, no. 1, pp. 148–160, 1990.

[64] M. Höhl, S. Kurtz, and E. Ohlebusch, “Efficient multiple genome alignment,”
Bioinformatics, vol. 18, no. suppl 1, pp. S312–S320, 2002.

[65] C. Borgelt, “Frequent item set mining,” Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery, vol. 2, no. 6, pp. 437–456, 2012.

120

[66] C. Ding and Y. Zhong, “Predicting whole-program locality through reuse dis-
tance analysis,” in Proceedings of the ACM SIGPLAN 2003 Conference on
Programming Language Design and Implementation, ser. PLDI ’03. ACM, 2003,
pp. 245–257.

[67] N. Hegde, J. Liu, and M. Kulkarni, “Spirit: A runtime system for distributed
irregular tree applications,” in Proceedings of the 21st ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, ser. PPoPP
’16. New York, NY, USA: ACM, 2016, pp. 51:1–51:2. [Online]. Available:
http://doi.acm.org/10.1145/2851141.2851177

[68] K. Sundararajah, L. Sakka, and M. Kulkarni, “Locality transformations
for nested recursive iteration spaces,” in Proceedings of the Twenty Second
International Conference on Architectural Support for Programming Languages
and Operating Systems, ser. ASPLOS ’17. New York, NY, USA: ACM, 2017.
[Online]. Available: http://dx.doi.org/10.1145/3037697.3037720

[69] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark suite:
characterization and architectural implications,” in Proceedings of the 17th
international conference on Parallel architectures and compilation techniques.
ACM, 2008, pp. 72–81.

[70] S.-H. Lim, S. Lee, G. Ganesh, T. C. Brown, and S. R. Sukumar, “Graph pro-
cessing platforms at scale: Practices and experiences,” in Performance Analysis
of Systems and Software (ISPASS), 2015 IEEE International Symposium on.
IEEE, 2015, pp. 42–51.

[71] J. Gunther, S. Popov, H.-P. Seidel, and P. Slusallek, “Realtime ray tracing
on gpu with bvh-based packet traversal,” in Proceedings of the 2007 IEEE
Symposium on Interactive Ray Tracing, ser. RT ’07, 2007, pp. 113–118. [Online].
Available: http://dx.doi.org/10.1109/RT.2007.4342598

[72] M. Burtscher and K. Pingali, “An efficient CUDA implementation of the tree-
based barnes hut n-body algorithm,” in GPU Computing Gems Emerald Edition.
Elsevier Inc., 2011, pp. 75–92.

[73] J. Lifflander and S. Krishnamoorthy, “Cache locality optimization for recursive
programs,” in Proceedings of the 38th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation. ACM, 2017, pp. 1–16.

[74] R. Chowdhury, P. Ganapathi, J. J. Tithi, C. Bachmeier, B. C. Kuszmaul, C. E.
Leiserson, A. Solar-Lezama, and Y. Tang, “Autogen: Automatic discovery of
cache-oblivious parallel recursive algorithms for solving dynamic programs,” in
Proceedings of the 21st ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming. ACM, 2016, p. 10.

[75] R. Bellman, Dynamic Programming, 1st ed. Princeton, NJ, USA: Princeton
University Press, 1957.

[76] V. Sarkar, Partitioning and Scheduling Parallel Programs for Multiprocessors.
Cambridge, MA, USA: MIT Press, 1989.

[77] M. Ravishankar, R. Dathathri, V. Elango, L.-N. Pouchet, J. Ramanujam,
A. Rountev, and P. Sadayappan, “Distributed memory code generation for
mixed irregular/regular computations,” in ACM SIGPLAN Notices, vol. 50,
no. 8. ACM, 2015, pp. 65–75.

121

[78] A. Basumallik and R. Eigenmann, “Optimizing irregular shared-memory appli-
cations for distributed-memory systems,” in Proceedings of the eleventh ACM
SIGPLAN symposium on Principles and practice of parallel programming. ACM,
2006, pp. 119–128.

[79] C. Wang, C. Yu, S. Tang, J. Xiao, J. Sun, and X. Meng, “A general and fast
distributed system for large-scale dynamic programming applications,” Parallel
Computing, vol. 60, pp. 1–21, 2016.

[80] U. Bondhugula, “Automatic Distributed Memory Code Generation using the
Polyhedral Framework,” Indian Institute of Science, Bangalore, Tech. Rep.
IISc-CSA-TR-2011-3, 2011.

[81] W. Zhou and D. K. Lowenthal, “A parallel, out-of-core algorithm for RNA
secondary structure prediction,” in Parallel Processing, 2006. ICPP 2006. Inter-
national Conference on. IEEE, 2006, pp. 74–81.

[82] M. Aldinucci, M. Meneghin, and M. Torquati, “Efficient Smith-Waterman on
multi-core with FastFlow,” in Parallel, Distributed and Network-Based Processing
(PDP), 2010 18th Euromicro International Conference on. IEEE, 2010, pp.
195–199.

[83] M. Baker, A. Welch, and M. G. Venkata, “Parallelizing the smith-waterman
algorithm using openshmem and mpi-3 one-sided interfaces,” in Workshop on
OpenSHMEM and Related Technologies. Springer, 2014, pp. 178–191.

[84] S. Maleki, M. Musuvathi, and T. Mytkowicz, “Parallelizing dynamic program-
ming through rank convergence,” ACM SIGPLAN Notices, vol. 49, no. 8, pp.
219–232, 2014.

[85] “SmithWaterman with OpenMPI and OpenMP,” https://www.alexjf.net/
projects/distributed-systems/smith-waterman-openmp-and-openmpi/.

[86] K. Hamidouche, F. M. Mendonca, J. Falcou, A. C. M. A. de Melo,
and D. Etiemble, “Parallel Smith-Waterman Comparison on Multicore and
Manycore Computing Platforms with BSP++,” International Journal of
Parallel Programming, vol. 41, no. 1, pp. 111–136, Feb 2013. [Online]. Available:
https://doi.org/10.1007/s10766-012-0209-6

[87] M. Ziv-Ukelson, I. Gat-Viks, Y. Wexler, and R. Shamir, “A faster algorithm
for rna co-folding,” in International Workshop on Algorithms in Bioinformatics.
Springer, 2008, pp. 174–185.

[88] R. A. Chowdhury and V. Ramachandran, “Cache-efficient dynamic programming
algorithms for multicores,” in Proceedings of the twentieth annual symposium on
Parallelism in algorithms and architectures. ACM, 2008, pp. 207–216.

[89] R. A. Chowdhury, H.-S. Le, and V. Ramachandran, “Cache-oblivious dynamic
programming for bioinformatics,” IEEE/ACM Transactions on Computational
Biology and Bioinformatics (TCBB), vol. 7, no. 3, pp. 495–510, 2010.

[90] O. Kwon, F. Jubair, R. Eigenmann, and S. Midkiff, “A hybrid approach of
OpenMP for clusters,” in ACM SIGPLAN Notices, vol. 47, no. 8. ACM, 2012,
pp. 75–84.

122

[91] M. Frigo, C. E. Leiserson, and K. H. Randall, “The implementation of the Cilk-5
multithreaded language,” in ACM Sigplan Notices, vol. 33, no. 5. ACM, 1998,
pp. 212–223.

[92] G. M. Morton, “A computer oriented geodetic data base and a new technique in
file sequencing,” 1966.

[93] G. Klincsek, “Minimal triangulations of polygonal domains,” Annals of Discrete
Mathematics, vol. 9, pp. 121–123, 1980.

[94] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms, Third Edition, 3rd ed. The MIT Press, 2009.

[95] “Intel Cilk Plus,” https://www.cilkplus.org.

[96] Z. Galil and K. Park, “Parallel algorithms for dynamic programming recur-
rences with more than O (1) dependency,” Journal of Parallel and Distributed
Computing, vol. 21, no. 2, pp. 213–222, 1994.

[97] T. Smith and M. Waterman, “Identification of common molecular subsequences,”
Journal of Molecular Biology, vol. 147, no. 1, pp. 195 – 197, 1981. [Online].
Available: http://www.sciencedirect.com/science/article/pii/0022283681900875

[98] R. W. Floyd, “Algorithm 97: shortest path,” Communications of the ACM,
vol. 5, no. 6, p. 345, 1962.

[99] R. Nussinov, G. Pieczenik, J. R. Griggs, and D. J. Kleitman, “Algorithms for
loop matchings,” SIAM Journal on Applied mathematics, vol. 35, no. 1, pp.
68–82, 1978.

[100] “The CAIDA AS Relationships Dataset, Nov’5, 2007,” http://www.caida.org/
data/as-relationships/.

[101] S. T. Sherry, M.-H. Ward, M. Kholodov, J. Baker, L. Phan, E. M. Smigielski,
and K. Sirotkin, “dbSNP: the NCBI database of genetic variation,” Nucleic acids
research, vol. 29, no. 1, pp. 308–311, 2001.

[102] “Intel MPI Libraries:,” https://software.intel.com/en-us/intel-mpi-library.

[103] J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw,
V. Hazlewood, S. Lathrop, D. Lifka, G. D. Peterson, R. Roskies, J. R. Scott,
and N. Wilkins-Diehr, “XSEDE: Accelerating Scientific Discovery,” Computing
in Science & Engineering, vol. 16, no. 5, pp. 62–74, Sept.-Oct. 2014. [Online].
Available: doi.ieeecomputersociety.org/10.1109/MCSE.2014.80

[104] S. Chatterjee, S. Tasirlar, Z. Budimlic, V. Cave, M. Chabbi, M. Grossman,
V. Sarkar, and Y. Yan, “Integrating asynchronous task parallelism with mpi,” in
2013 IEEE 27th International Symposium on Parallel and Distributed Processing.
IEEE, 2013, pp. 712–725.

[105] M. M. Strout, A. LaMielle, L. Carter, J. Ferrante, B. Kreaseck, and
C. Olschanowsky, “An approach for code generation in the sparse polyhedral
framework,” Parallel Computing, vol. 53, no. C, pp. 32–57, April 2016.

123

[106] J. Du, C. Yu, J. Sun, C. Sun, S. Tang, and Y. Yin, “EasyHPS: A multilevel
hybrid parallel system for dynamic programming,” in Parallel and Distributed
Processing Symposium Workshops & PhD Forum (IPDPSW), 2013 IEEE 27th
International. IEEE, 2013, pp. 630–639.

[107] S. Itzhaky, R. Singh, A. Solar-Lezama, K. Yessenov, Y. Lu, C. Leiserson, and
R. Chowdhury, “Deriving divide-and-conquer dynamic programming algorithms
using solver-aided transformations,” in Proceedings of the 2016 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems, Languages,
and Applications. ACM, 2016, pp. 145–164.

[108] S. Srivastava, S. Gulwani, and J. S. Foster, “From program verification to
program synthesis,” in ACM Sigplan Notices, vol. 45, no. 1. ACM, 2010, pp.
313–326.

[109] K. S. Gatlin and L. Carter, “Architecture-cognizant divide and conquer algo-
rithms,” in Proceedings of the 1999 ACM/IEEE conference on Supercomputing.
ACM, 1999, p. 25.

[110] M. Noorian, H. Pooshfam, Z. Noorian, and R. Abdullah, “Performance enhance-
ment of smith-waterman algorithm using hybrid model: Comparing the mpi
and hybrid programming paradigm on smp clusters,” in Systems, Man and
Cybernetics, 2009. SMC 2009. IEEE International Conference on. IEEE, 2009,
pp. 492–497.

[111] A. E. Darling, L. Carey, and W. C. Feng, “The design, implementation, and
evaluation of mpiblast,” Los Alamos National Laboratory, Tech. Rep., 2003.

VITA

124

VITA

Nikhil D. Hegde

Nikhil Hegde is a Ph.D. candidate in the School of Electrical and Computer Engineering

at Purdue University, West Lafayette, USA and is advised by Prof. Milind Kulkarni.

He obtained his master’s degree from IIT Madras in 2005, and bachelor’s degree from

B.M.S. College of Engineering, Bangalore in 2002, both in Computer Science and

Engineering. He also has over eight years of professional experience working in the

industry developing hardware, middleware, and software for mobile platforms. He

worked for Intel, Nokia, ST Microelectronics, and AdsFLO, a start-up that delivered

mobile advertising solutions. He is interested in the broad areas of systems research

including parallel and distributed computing, compilers, and programming languages.

