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ABSTRACT

Wang, Bin. M.S.M.E., Purdue University, August 2019. Systematic Energy and Ex-
ergy Efficiency Study and Comparison Between Direct Fired and Indirect Fired Heat-
ing Systems. Major Professor: Ali Razban.

The energy efficiency of space heaters is rated by Annual Fuel Utilization Efficiency

(AFUE) governed by the Department of Energy in the United States which is a

simple ratio of usable heat and fuel usage of a single heating device. It doesn’t

consider the overall performance of the heating system including not only the heating

devices but also the characteristics of the building in different applications. The

current AFUE method calculates only the energy efficiency which is thermodynamics

first law efficiency. In this research, the systematic efficiency of a heating system

rather than simple device efficiency has been defined and investigated. The systematic

efficiency considers the overall efficiency of the whole heating system and it varies in

the different applications even though with the same heating device. So it represents

the performance of the system more precisely. Analytical models have been built to

calculate both the systematic energy efficiency and exergy efficiency, and to evaluate

the systematic energy and exergy efficiency of heating systems for direct fired and

indirect fired heaters. Efficiency performances of the systems with these two types

of heaters are compared. Sensitivities of input parameters for systematic energy

efficiency are studied to show the impact towards systematic energy efficiency. Indoor

carbon dioxide concentration level of direct fired heating system is also studied.

In a case study, results show that systematic energy efficiency of indirect fired

heating system is always constant at heater device efficiency which is 80% while sys-

tematic energy efficiency of direct fired heating system varies from 40%-92% under

different condition (heat loss coefficient, ambient temperature and air change require-
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ment), indicating that simple device efficiency is not capable to evaluate the overall

performance of heating system. New efficiency method such as systematic energy

efficiency used in this research is needed to better describe the performance of the

heating system. Results of indoor carbon dioxide level of direct fired heating system,

from 1000 to 4500 PPM under different conditions, show that indoor air quality needs

to be considered while using direct fired heating.
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1. INTRODUCTION

Two types of heaters are commonly used for space heating purpose, indirect fired

heaters and direct fired heaters. Combustion in an indirect fired heater is isolated

from the indoor air stream while combustion in direct fired heaters happens within

the supply air. For an indirect fired heating system, extra outdoor air beyond the

building air change requirement is not needed because combustion doesn’t affect the

indoor air quality. For a direct fired heating system, combustion happens in the air

stream which is supplied to the indoor space, so extra outdoor fresh air is required

for safety purpose. Normally 100% fresh air is supplied to the heating space when

using direct fired heaters.

A space heater’s efficiency is measured by annual fuel utilization efficiency (AFUE)

[1]. Specifically, AFUE is the ratio of annual heat output of the furnace or boiler com-

pared to the total annual fossil fuel energy consumed by a space heater. Direct fired

heaters are generally recognized to have a higher AFUE compared to indirect fired

heater [2]. This AFUE is often assumed to estimate projected operating costs and

may be used by public utility companies as the basis to award incentive rebates for

”energy efficiency” in warehouses and industrial buildings. There are two drawbacks

when using AFUE. Firstly, it is a simple ratio of usable heat and fuel usage of a

single heating device. It doesn’t consider the overall performance of the heating sys-

tem including not only the heating devices but also the heating space characteristics

according to different applications. For different type of space heaters, there are dif-

ferent requirements. For instance, indirect fired heaters where the combustion system

and indoor air flow are separated, normally use 100% return air. Direct fired heaters

which force the air directly through the flame to heat the space must use 100% fresh

air in a space heating system in order to prevent waste combustion gas from accu-

mulating inside a building. As a result, in a direct fired heating system, the heating
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requirement is increased due to outside air intake for heaters, which means extra

energy is used to heat up the fresh air. By using AFUE, the extra amount of heat

used to heat up the outside air cant be shown and understood. The other drawback

of AFUE is that the energy efficiency is a First Law of Thermodynamics efficiency

that is only based on conservation of energy [3], however, it doesn’t consider the

degradation of energy quality that takes place when high-quality energy resources,

such as fossil fuels, are used to satisfy low quality thermal demands such as heating

requirements. Another method needs to be applied to evaluate the overall heating

system efficiency.

Energy is used everywhere in human activities. Economic criteria based on en-

ergy use are used in optimizing design and operation of different systems. However,

ecological criterion, based on the concept of exergy, should be included as exergy

represents a long term and sustainable view in energy resource usage [4]. Research

related to the ecological cost of systems, which were based on the concept of exergy

were carried on in recent decades and it becomes a very crucial area in energy system

design and optimization [5].

Exergy is derived based on the Second Law of Thermodynamics and measures the

quality of energy. It describes the maximum amount of work that can be done from

an energy flow as it comes to the equilibrium with the reference environment, also

known as dead state [3,6–8]. Unlike energy conservation, exergy is always consumed

in an irreversible process which happens in any real process [9]. Exergy is used to

describe not only the energy performance but also the impact to the environment.

For indirect fired heaters, combustion is totally isolated from supply air flow.

100% return air is used for the heater itself. The combustion wont affect the indoor

air quality. For direct fired heaters, the combustion of natural gas happens within

the supply air stream. Carbon dioxide generated from natural gas combustion will go

into the space been heated. Carbon dioxide level is a very important air quality factor

in buildings. A carbon dioxide balance model is used in this research to evaluate the

carbon dioxide level in the space been heated by direct fired heaters.
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2. GOALS AND OBJECTIVES

The goal of this research is to propose a new efficiency definition which can be better

than single heater efficiency while evaluating the overall performance of the heating

system and evaluate system performances of direct and indirect fired heating systems

using proposed systematic energy efficiency. Also compare the exergy efficiency of

two types of system.

Objectives of this research:

1. Define systematic energy efficiency to evaluate heating system performance in-

stead of using simple heater efficiency (AFUE).

2. Define heating system performance indicators: systematic energy efficiency and

exergy efficiency, as well as carbon dioxide concentrate level for direct fired

heating system.

3. Locate parameters (ambient temperature, space air change requirement and

building envelope heat loss coefficient) which will affect performance indicators.

4. Build methodologies to analyse system performance indicators.

5. Performance indicators study for given case. Analyze and conclude with calcu-

lated results. Studies include systematic energy efficiency, exergy efficiency and

carbon dioxide concentration level.

6. Determine the sensitivity of input parameters towards systematic energy effi-

ciency.
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3. METHODOLOGY

In this chapter, the methodology used to create each model in this research is intro-

duced.

3.1 Thermodynamics Model for Energy and Exergy Etudy

The general equations of mass, energy and exergy balances are applied to the

steady state conditions to the system. It is assumed that changes in kinetic and

potential energy are negligible, thus are not considered.

3.1.1 Energy Analysis

A method rather than AFUE, the systematic energy efficiency, needs to be created

to better describe the system effectiveness. Energy model is used to create and

calculate the systematic energy efficiency.

Energy Balance

Energy balance equation of a control volume can be expressed by equation 3.1

according to the first law of thermodynamics [10]:

dECV
dt

= Q̇− Ẇ +
∑
i

ṁi(hi +
v2i
2

+ gz) −
∑
e

ṁe(he +
v2e
2

+ gze) (3.1)

There is no boundary work done by or to the system as building envelope remains

unchanged.
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Systematic Energy Efficiency Definition

In a commercial or industrial space which needs to be heated, the inner space is

always maintained at a higher temperature than outdoor environment. In the steady

state, heat is continuously being lost through the boundary. Building standards, such

as ASHRAE Standard 62.1 [11], require ventilation during periods when the building

is occupied by people. The outside fresh air from the ventilation results in another

kind of heat loss. Assuming there is no other heat source inside the building envelope,

the total heat loss of the control volume can be considered as heating requirement or

heating load. The systematic energy efficiency is defined by equation 3.2 and 3.3:

ηSY S =
Heating Load

NG Consumption in term of W(Btu/h)
(3.2)

Heating Load

= Heat Loss Through Boundary + Heat Loss Through Ventilation

= Q̇envelope + Q̇ventilation

(3.3)

The ventilation mentioned in this section refers to the original ventilation require-

ment of the building, its not related to heater air flow rate.

According to ASHRAE Standard 62.1, the fresh air flow required for a building is

related to several parameters including zone area and maximum zone population [11].

When the zone population is very low (no people or few people working in this space

such as warehouse), the required ventilation could be low. Sometimes the direct fired

heater will bring in more fresh air than that is needed to satisfy the requirement for

ventilation. The portion of the fresh air above the ventilation air change requirement

is considered unnecessary and will result in more energy consumption.

Systematic Energy Efficiency Calculation

Direct Fired Heating System
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The following equations can be used to calculate the systematic energy efficiency

for direct fired heating system.

For a certain building which needs heating, the heat loss through the building

envelope can be calculated as [12]:

Q̇envelope = (Uwalls × Awalls + Uroof × Aroof ) × (Tin − Tout)

= C × (Tin − Tout)
(3.4)

Where,

U walls is the overall thermal transmittance of walls,W/(m2K) (Btu/(ft2h°F)),

U roof is the overall thermal transmittance of roof,W/(m2K) (Btu/(ft2h°F)),

Awalls is the area of walls,m2 (ft2),

Aroof is the area of roof,m2 (ft2),

T in is the indoor temperature, °C (°F),

T out is the outdoor temperature, °C (°F),

C is the heat loss coefficient of the building and its constant for a certain building,

W /K (Btu/(h °F)).

The heat loss through ventilation can be calculated as [13,14]:

Q̇ventilation = cp × ṁventilation × (Tin − Tout) (3.5)

ṁventilation = ACH × V × ρ

3600
(3.6)

Where,

cp is the isobaric specific heat of air, J/(kgK) (Btu/(lbm°F)),

ṁventilation is the mass flow rate of required air change, kg/s (lbm/s),

ACH is the required air change per hour,

V is the volume of the building space, m3 (ft3),

ρ is the air density, kg/m3 (lbm/ft3).

The energy input rate from a heater can be calculated as [13]:
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Q̇input = cp × ṁheater × (Tsupply − Tout) (3.7)

Where,

ṁheater is the air mass flow rate of heater, kg/s (lbm/s),

Tsupply is the supply air temperature of the heater, °C (°F),

According to energy balance in this system, Q̇input should be equal to actual heat

loss rate if ṁheater is the same as ṁventilation.

Q̇input = Actual Heat Loss Rate

cp × ṁheater × (Tsupply − Tout) = Q̇envelope + Q̇ventilation

(3.8)

cp × ṁheater × (Tsupply − Tout) =

C × (Tin − Tout) + cp × ṁventilation × (Tin − Tout)
(3.9)

Here, ṁheater equals to ṁventilation. Then we can calculate ṁheater.

ṁheater =
C × (Tin − Tout)

cp × (Tsupply − Tin)
(3.10)

In different scenario, ṁventilation could be different. When the given ṁventilation is

lower than the value we calculated in the previous procedure, it means the heater

provides more fresh air than what is required. Please notice that we dont need to

recalculated ṁheater in this case because ṁheater is the actual fresh air mass flow rate

for the system. So use equation 3.11 to calculate the systematic energy efficiency [10]:

ηSY S =
Heating Load

Q̇input/ηheater

=
Q̇envelope + cp × ṁventilation × (Tin − Tout)

cp × ṁheater × (Tsupply − Tout)/ηheater

=
C × (Tin − Tout) + cp × ACH × V×ρ

3600
× (Tin − Tout)

cp × C×(Tin−Tout)
cp×(Tsupply−Tin)

× (Tsupply − Tout)/ηheater

=
(C + cp × ACH × V×ρ

3600
) × (Tsupply − Tin) × ηheater

C × (Tsupply − Tout)

(3.11)
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Where,

ηheater is the heater device efficiency.

When the given ṁventilation is higher than the value we calculated in the previous

procedure, it means the heater provides less fresh air than what is required. So use

equation 3.12 to recalculate the ṁheater:

cp × ṁheater × (Tsupply − Tout)

= Q̇envelope + cp × ṁventilation × (Tin − Tout)
(3.12)

Then the systematic energy efficiency will be:

ηSY S =
Heating Load

Q̇input/ηheater

=
Q̇envelope + cp × ṁventilation × (Tin − Tout)

cp × ṁheater × (Tsupply − Tout)/ηheater

= ηheater

(3.13)

It means when the required air change flow rate is beyond the air flow rate of the

direct fired heater, the systematic energy efficiency will be the same as the heater

device efficiency.

From the calculation we know that if air change requirement is lower than air

flow rate of direct fired heater, the systematic energy efficiency is a function of air

change requirement, ambient temperature and supply air temperature of the direct

fired heater for a certain building (constant envelope heat loss coefficient, volume

and indoor air temperature). If the air change requirement is higher than air flow

rate of direct fired heater, systematic energy efficiency will be equal to heater device

efficiency.

Indirect Fired Heating System

For indirect fired heating system, according to energy balance, heat input rate

should be equal to heat loss rate.

Q̇input = Q̇envelope + Q̇ventilation (3.14)
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Systematic energy efficiency of indirect fired heater can be calculated as:

ηSY S =
Heating Load

Q̇input/ηheater

=
Q̇envelope + Q̇ventilation

(Q̇envelope + Q̇ventilation)/ηheater

= ηheater

(3.15)

So under any condition, systematic energy efficiency of indirect fired heating sys-

tem is always constant at the heater device efficiency.

3.1.2 Exergy Analysis

Exergy can be divided into the physical exergy and chemical exergy. Exergy is a

property which defines the maximum useful work that could be done from a system

at specified state. The work potential of the system tends to be measured in a

given environment state (also known as dead state). For a space heating system, its

better to set the dead state at the outdoor air state because heat in this system will

eventually be transferred to the ambient. So the temperature of the dead state is the

same as outdoor air temperature (To), and the pressure of the dead state is assumed

to remain at 100 kPa (po).

Exergy Balance

The general exergy balance applied to a control volume is expressed by equation

3.16 [10]:

dExCV
dt

=
∑
j

(1 − To
Tj

)Q̇j − (ẆCV − ṗo
dVCV
dt

)

+
∑
i

ṁiexi −
∑
e

ṁeexe − ĖxD

(3.16)
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Exergy Calculation

The specific exergy of a flow can be split into chemical exergy and thermomechan-

ical exergy (also known as physical exergy).

ex = exch + extm (3.17)

The thermomechanical exergy represents the deviation in temperature and pres-

sure between the flowing matter and the local environment. It also includes the

kinetic and potential energy, although they are negligible in this study. The chemical

exergy represents the deviation in chemical composition between the flowing matter

and the local environment.

The thermomechanical exergy can be expressed as:

extm = h− ho − To(s− so) (3.18)

Where h is the specific enthalpy of the flowing matter, s is the specific entropy of

the flowing matter, while ho = h(To, po) and so = s(To, po).

The molar chemical exergy can be expressed as:

exch =
∑
i

yiex
ch,o
i +RTo

∑
i

yiln(yi) (3.19)

Where exch,oi is the standard chemical exergy [15, 16]; yi is the molar fraction of

each species. The standard chemical exergy can be found in source [17].

The specific chemical exergy can be calculated by equation 3.20,

exch =
exch

M
(3.20)

Where M is the molar mass of flow.

To calculate chemical exergy of NG flow and air flow, molar fraction of each

component is required. NG and air components are listed in Table 3.1 [18].
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Table 3.1.
Components of NG and air.

NG Components mol % Air Components mol %

Methane (CH4) 94.9 Nitrogen (N2) 78.08

Ethane (C2H6) 2.5 Oxygen (O2) 20.95

Propane (C3H8) 0.2 Argon (Ar) 0.934

Butane (C4H10) 0.06 Carbon Dioxide (CO2) 0.035

Pentane (C5H12) 0.02

Hexanes plus 0.01

Nitrogen (N2) 1.6

Carbon Dioxide (CO2) 0.7

Oxygen (O2) 0.02
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Exergy Efficiency

In exergy balance equation, the system is assumed to be at steady status. There is

no boundary work done by/to the system. It is also assumed that there is no electrical

work done by/to the system. So the equation 3.16 can be simplified to equation 3.21:

∑
i

ṁiexi = −
∑
j

(1 − To
Tj

)Q̇j +
∑
e

ṁeexe + ĖxD (3.21)

Exergy efficiency is defined as equation 3.22 [19]:

ε =
Exout
Exin

=

∑
e ṁeexe∑
i ṁiexi

(3.22)

3.2 Carbon Dioxide Level Study

For direct fired heaters, the combustion of natural gas happens within the supply

air stream. Carbon dioxide generated from natural gas combustion will go into the

space been heated. Carbon dioxide level is a very important air quality factor in

buildings. A carbon dioxide balance method is introduced in section 2.2.1 to evaluate

the carbon dioxide level in the space using direct fired heater.

The concentration of carbon dioxide in a space will finally reach a balance point at

which it keeps steady. In this research, only final steady carbon dioxide concentration

level is considered. This level of concentration is what needs to be evaluated. In order

to study the impact of a direct fired heater on indoor air quality, the carbon dioxide

generated by human and other process inside the building is not considered.

3.2.1 Carbon Dioxide Balance

Parts per Million (PPM) is normally used to indicate the carbon dioxide concen-

tration. PPM is defined here as the volumetric percentage [20]. At 1atm pressure, we

can assume the air is ideal gas. For an ideal gas, the molecular percentage is equal to

the volume percentage. The carbon dioxide molecular percentage in the atmosphere



13

Table 3.2.
Components of NG and net heat value.

NG Components mol % NHV (kJ/kg) NHV (Btu/lb)

Methane (CH4) 95 49,853 21,433

Ethane (C2H6) 3 47,206 20,295

Nitrogen (N2) 2 0 0

is very low (0.04%), as a result, the change of carbon dioxide PPM has very limited

impact on the density of the air. So, we will assume that carbon dioxide PPM change

of air wont affect air density.

We assume the natural gas consists of 95% of CH4, 3% of C2H6 and 2% of N2

by mole, ignoring other compounds since other components in natural gas are very

small [18]. Table 3.2 shows the component molecular percentage and net heat value

(NHV), also known as lower heating value [21] of each component. We will assume

N2 wont participate in combustion, so there is no heat value of N2 given.

The molar mass of natural gas can be calculated by equation 3.23,

MNG = 95%MCH4 + 3%MC2H6 + 2%MN2 = 0.01666 kg/mol (3.23)

Where, MNG is molar mass of natural gas,

MCH4 is molar mass of CH4, 0.016 kg/mol,

MC2H6 is molar mass of C2H6, 0.030 kg/mol,

MN2 is molar mass of N2, 0.028 kg/mol,

The net heat value of natural gas can be calculated by equation 3.24,

NHVNG =
95%MCH4NHVCH4 + 3%MC2H6NHVC2H6

MNG

= 48, 034 kJ/kg (3.24)

It is assumed that natural gas combustion is complete, so the carbon dioxide molar

flow rate increased by natural gas combustion can be calculated by equation 3.25,
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Ṁcom =
Natural Gas Input

NHVNGMNG

(95% × 1 + 3% × 2) (3.25)

Where,

Ṁcom is the carbon dioxide molar flow rate increased by natural gas combustion.

The unit of natural gas input here is kJ/s.

The carbon dioxide concentration balance in a steady system can be presented by

equation 3.26,

ṁsPPMatm

Mair

+
ṁACPPMatm

Mair

+ Ṁcom =
ṁexfPPM

Mair

(3.26)

Where,

ṁs is mass flow rate of supply fresh air by heater,

ṁs is mass flow rate of addition air change beside fresh air supply by heater,

ṁexf is mass flow rate of air exfiltration in the space,

Ṁcom is the carbon dioxide molar flow rate increased by natural gas combustion,

PPMatm is the carbon dioxide PPM of the atmosphere,

PPM is carbon dioxide PPM of the space.

According to mass balance in a steady flow:

ṁs + ṁAC +
Natural Gas Input

NHVNG
= ṁexf (3.27)

Here, natural gas input is term of Btu/h and can be transferred to kW, divided

by NHV of natural gas in term of kJ/ kg, we can get the mass flow rate of natural

gas supplied to the system in term of kg/s.

Based on equation 3.26 and 3.27, we calculate the carbon dioxide concentration

in the space in PPM.
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3.3 Sensitivity Analysis

Several input parameters will impact the systematic energy efficiency. Sensitivity

study is necessary to evaluate how the different input parameters will affect the output

(systematic energy efficiency).

Sensitivity analysis is used to determine how the independent variable values will

impact a particular dependent variable under a given set of assumptions. It is also

known as the what-if analysis. Sensitivity analysis helps in analyzing how sensitive

the output is by changing one input while keeping the other inputs constant [22].

3.3.1 Measurement of Sensitivity Analysis

Following steps are used to conduct sensitivity analysis [22]:

1. First, the base needs to be defined. A set of inputs are determined, and the

output based on the inputs needs to be calculated.

2. Then recalculate the value of the output with a new value of each input while

keeping other inputs constant.

3. Find the percentage change in the output and the percentage change in the

input.

4. The sensitivity is calculated by dividing the percentage change in output by the

percentage change in input, shown in equation 3.28.

Sensitivity =
(Output1 −Output0)/Output0

(Input1 − Input0)/Input0
(3.28)

Where,

Input0 is the input parameter of baseline,

Input1 is the new input parameter,

Output0 is the output of baseline (calculated based on Input0,
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Output1 is the output calculated based on Input1.

The conclusion would be that the higher the sensitivity of a certain input is, the

more sensitive the output is to that input and vice versa.
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4. SYSTEM MODELS

Models created and used in this research include systematic energy and exergy models,

carbon dioxide concentration model and sensitivity model. The methodology used in

there models are introduced in chapter 3.

4.1 Systematic Energy and Exergy Modelling

Simulink is used to simulate the indirect and direct fired heating system based

on thermodynamics models. The schematic diagrams of an indirect fired and direct

fired heating system are shown in Figure 4.1 and Figure 4.2, respectively. The con-

trol volume boundary of the systems is set outside the building envelope to make the

surface temperature of boundary the same as the ambient temperature, so that the

exergy transfer through boundary can be counted as exergy loss (or exergy destruc-

tion) according to exergy balance equation 3.9. In an indirect fired heating system,

the space is considered to be at atmospheric pressure. Infiltration should be consid-

ered for this type of system due to the wind flow [23]. In direct fired heating system,

the space is at positive pressure (slightly higher than atmosphere pressure) because

direct fired heater brings in fresh air as heating supply. Exfiltration takes place due to

the pressure difference and can also take place based on ventilation system operation.

4.2 Carbon Dioxide Concentration Level Modelling

The carbon dioxide concentration level model is created based on the methodol-

ogy in section 3.2. Only steady status is considered, so a simple calculation model is

needed. It can be calculated based on Excel. The average carbon dioxide concentra-

tion in the atmosphere is 413 PPM [24].
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Fig. 4.1. Schematic diagram of indirect fired space heating system.

Fig. 4.2. Schematic diagram of direct fired space heating system.

4.3 Example System Setup

A 10,000 ft2 in area, 20 ft high typical metal warehouse building is used to do

the simulation and comparison between indirect and direct fired heaters based on the
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calculation models. Indoor temperature is controlled at 20°C. Outdoor temperature

is an important parameter in a space heating system. In the study, it is set from

-25°C to 10°C which is typical in winter. If the warehouse is only rarely occupied,

the ventilation requirement has a range from 0 ACH to 1.5 ACH [25]. The device

efficiency (AFUE) of indirect and direct fired heater is 80% and 92% respectively [26].

The direct fired heater fresh air volume flow rate is 3,500 CFM according to a proper

heater selection for the system [27].

4.4 Assumptions

The following assumptions were made during the calculation in order to better

control the simulation and the results will not be significantly affected.

4.4.1 General

The temperature and pressure of supply NG is set close to ambient temperature

and pressure. The thermomechanical exergy of NG is also negligible because the

temperature and pressure of NG at the point right before supplying to heaters are

close to the ambient air temperature and pressure.

4.4.2 Indirect Fired Heating System

1. In indirect fired heating system, the excess air of the heater is 0%, which means

the air flow is just adequate to make the combustion complete.

2. The exhaust temperature of indirect fired heater combustion gas is maintained

at 182°C (360°F) [28].

3. The building is considered semi-tight building. The infiltration in indirect fired

heating system is estimated as 0.2 ACH according to Air Conditioning Contrac-

tors of America (ACCA) commercial load calculation [29].
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4.4.3 Direct Fired Heating System

1. Fresh air intake for direct fired heater can be considered as effective air change.

2. Constant air flow rate and constant supply air temperature.

4.4.4 Carbon Dioxide Concentration Level

1. The heating system is a steady system.

2. Air is ideal gas.

3. Carbon dioxide PPM change of air wont affect air density.
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5. RESULTS AND DISCUSSION

Results based on simulation of models under certain conditions are introduced and

discussed in this chapter, including results of systematic energy efficiency (under con-

stant air flow rate and constant supply air temperature for direct fired heater), exergy

efficiency, carbon dioxide concentration level and sensitivity of input parameters to-

wards the systematic energy efficiency.

Air change requirement (ACH) showed in this chapter refers to the original system

ventilation requirement and is not related to the air flow rate of direct fired heater.

Its the amount of fresh air needed for this system without heating systems applied.

5.1 Systematic Energy Efficiency (Constant Air Flow Rate for Direct

Fired Heater)

5.1.1 Systematic Energy Efficiency

The systematic energy efficiency calculation results for ambient temperature range

from -20°C to 10°C and a ventilation air change rate per hour from 0 to 1.5 are shown

in Figure 5.1. The results show that the systematic energy efficiency almost remains

constant for both indirect and direct fired heating system at a certain air change

requirement. To explain why the systematic energy efficiency doesn’t change while

ambient temperature varies, we need to refer to the definition of systematic energy

efficiency in equation 3.2, which is a ratio of heating load and NG input. The heat

load is a function of ∆T which is the difference between indoor and outdoor ambient

temperature. According to energy balance , NG input in term of the rate of energy

in kW (Btu/h) should be equal to the total heat rate delivered out of the building
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boundary divided by the heater device efficiency, its also a function of ∆T . So the

impact of ∆T is cancelled when calculating the fraction of systematic energy efficiency.

The systematic energy efficiency of indirect fired heating system is maintained at

around 80% despite of the air change requirement. However, the systematic energy

efficiency of direct fired heating system rises as air change rate increases. It reaches

around 92% and will not exceed this point.

(a) 0 ACH (b) 0.5 ACH

(c) 1 ACH (d) 1.5 ACH

Fig. 5.1. Systematic energy efficiency vs. outdoor temperature under
different air change requirement.

Figure 5.2 shows the comparison of systematic energy efficiency of indirect and

direct fired heating system as the air change rate per hour increases between 0-1.5.

An inflection point of air change rate exists that the indirect fired heating system is
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more efficient below this point, and the direct fired heating system is more efficient

above this point. In this case study, the inflection point is at air change rate equals

to 0.7 ACH. The reason is that direct fired heater applies 100% of outside air. When

this amount of fresh air is not required, it results in more energy consumption used

to heat up the fresh air. So the overall systematic energy efficiency is low.

Fig. 5.2. Systematic energy efficiency vs. air change requirement.

5.1.2 Natural Gas Demand

Figure 5.3 shows the natural gas demand comparison between indirect and direct

fired heating system (constant air flow rate condition for direct fired heating system).

The natural gas demands of indirect and direct fired heating system are related to both

outdoor ambient temperature and required air change rate. Lower outdoor ambient

temperature will result in higher natural gas demand for both heating systems. Lower

air change rate will result in lower natural gas demand for indirect fired heating

system. But for the direct fired heating system, the natural gas demand remains

constant at a certain outdoor ambient temperature below the inflection point which
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is mentioned in section 5.1.1. Above this inflection point, the natural gas demand

will increase as air change requirement increases from 0 to 1.5 ACH.

(a) 0 ACH (b) 0.5 ACH

(c) 1 ACH (d) 1.5 ACH

Fig. 5.3. Natural gas demand vs. outdoor temperature under different
air change requirement.

5.1.3 Discussion

1. For indirect fired heating system, the systematic energy efficiency remains con-

stant and not related to ambient temperature and air change requirement. The

systematic efficiency is equal to the heater device efficiency.
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2. For direct fired heating system under constant air flow rate condition, the sys-

tematic energy efficiency remains constant at different outdoor air temperature.

Systematic energy efficiency increases as air change requirement goes higher and

will finally reach the heater efficiency and maintain.

3. There is an inflection point related to air change requirement. Below this point,

indirect fired heating system is more efficient. Above this point, direct fired

heating system is more efficient.

4. The inflection point will be different according to different building type (heat

loss coefficient, air change requirement).

5. At low air change requirement, indirect fired heating system has lower natural

gas demand. As required air change rate rises, natural gas demand of direct

fired heating system will decrease. When the air change requirement is higher

than the inflection point, the natural gas demand of direct fired heating system

will be lower than indirect fired heating system.

5.2 Systematic Energy Efficiency (Constant Supply Air Temperature for

Direct Fired Heater)

5.2.1 Systematic Energy Efficiency

In this simulation, constant supply air temperature for direct fired heating system

was applied. Under certain ambient temperature, the air flow rate of the heater

might change in order to provide different amount of heat to the space. Results of

different supply air temperatures under different ambient temperatures and air change

requirement are compared.

The systematic energy efficiencies of direct fired heating system at certain supply

air temperature are shown in Table 5.1-5.3 and Figure 5.4.

For direct fired heating system at constant supply air temperature, the systematic

energy efficiency is related to ambient temperature, air change requirement and supply
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air temperature. Under a certain supply air temperature condition, rise of ambient

temperature or air change requirement will increase the systematic energy efficiency.

Once the systematic energy efficiency reaches the device efficiency (in this case, the

device efficiency of direct fired heater is 92%), it will maintain.

Figure 5.5 shows the comparison of systematic energy efficiency at different supply

air temperatures for direct fired heater. Lower supply air temperature will result in

lower systematic energy efficiency. As what is discussed in the previous subsection,

systematic energy efficiency will increase as ambient temperature and air change

requirement increase. So at high air change requirement and ambient temperature,

even under different supply air temperature, the systematic energy efficiency will tend

to reach the device efficiency and maintain.

Figure 5.6 shows the air flow rate comparison between different supply air tem-

peratures under various ambient temperatures. At higher supply air temperature

condition, the required air flow rate will be lower. Under low ambient temperature

condition, more air flow rate will be needed to provide enough heating capacity.

5.2.2 Natural Gas Demand

The natural gas demand of indirect fired heating system is shown in Table 5.4,

while natural gas demand of direct fired heating system at certain supply air temper-

ature are shown in Table 5.5-5.7, respectively. Figure 5.7 and 5.8 show the natural

gas demand of indirect and direct fired heating systems charts at different conditions.

For both indirect and direct fired heating system, natural gas demands are related

to ambient temperature and required air change rate. Lower ambient temperature

will result in higher natural gas demand for both heating system. Lower air change

rate will result in lower natural gas demand for indirect fired heating system. But

for direct fired heating system, the natural gas demand remains constant at a certain

ambient temperature when the supply air flow rate is higher than the air change

requirement. When the supply air flow rate is lower than the air change requirement,
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the natural gas demand will increase. Supply air flow rate is related to supply air

temperature, ambient temperature and air change requirement.

Figure 5.9 shows comparison in natural gas demand between indirect and direct

fired heating systems under different conditions. At low ambient temperature and

low air change requirement, indirect fired heating system tends to have lower natural

gas demand. As ambient temperature rises, the demand of direct fired heating system

will drop more rapidly than indirect fired heating system and final drop below indi-

rect fired heating system. And also, as the air change requirement rises, the demand

of indirect fired heating system will increase more rapidly than direct fired heating

system and finally rise above demand of direct fired heating system. When the air

change requirement is higher than the air flow rate of direct fired heater, the system-

atic energy efficiency of direct fired heating will reach the highest point, 92%, which

is the heater device efficiency according to the results in section 5.2.1. For indirect

fired heating, the systematic energy efficiency is always constant at 80% according to

the results in section 5.1.1. So with same heating load (boundary loss and air change

loss are the same for both heating systems), the direct fired heating system has lower

NG demand.

5.2.3 Discussion

1. For direct fired heating system at constant supply air temperature:

• Under low air change requirement, the systematic energy efficiency will

decrease as the outdoor temperature drops.

• As the air change requirement increases, the systematic energy efficiency

will increase and maintain at heater efficiency.

2. The higher the supply air temperature is, the higher the systematic energy

efficiency of direct fired heating system will be.
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3. At low air change requirement, the systematic energy efficiency of direct fired

heating system will be much lower than the rated heater efficiency at low am-

bient temperature.

4. If maintain constant supply air temperature, at lower ambient temperature, the

air flow rate will be higher. The air flow rate will be higher at lower supply air

temperature setting.

5. For indirect fired heating system, the natural gas demand will increase as the

ambient temperature drops and air change requirement rises.

6. For direct fired heating system, at low ambient temperature and low air change

requirement, the gas demand remains constant under different air change re-

quirement. But when the ambient temperature is higher than a point, high air

change requirement will result in higher demand.

7. At low ambient temperature and low air change requirement, the low supply air

temperature direct fired heating system has higher gas demand. As the ambient

temperate or air change requirement increases, the gas demand of direct fired

heating system under different supply air temperature will finally be the same.

8. At low ambient temperature and low air change requirement, indirect fired

heating system has lower gas demand compared to direct fired heating system.

As the ambient temperate or air change requirement increases, the gas demand

of direct fired heating system will drop more rapidly than indirect fired heating

system that the gas demand of direct fired heating system will become lower.

5.3 Exergy Efficiency

5.3.1 Systematic Exergy Efficiency

The systematic exergy efficiency calculation results under different ambient tem-

perature and required air change per hour are shown in Figure 5.10. It can be noticed
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that the exergy efficiencies for both systems are very low, because in a heating system,

high quality energy source (fossil fuel or electricity) is used to provide heat which is

low quality energy. Also, exergy is destroyed when the heat is transferred through

boundary. The temperature finally reaches ambient temperature which is the dead

state, which means no thermomechanical exergy is available. Chemical exergy is very

low for air. Thus, the exergy efficiency is very low.

The systematic exergy efficiency of indirect fired heating system is also higher

than direct fired heating system. Its mainly caused by the relatively high temperature

exhaust air from heaters. As air change rate increases, the exergy efficiency will rise.

These features tell us that in indirect fired heating system, there is better chance to

make use of waste heat, exhaust combustion air. In high air change rate application,

there is also better chance to save energy and exergy by reclaiming heat from exhaust

air due to air change.

5.3.2 Single Heater Exergy Efficiency

The exergy efficiencies of both single indirect fired and direct fired heater in close

size were calculated based on 18.3°C (65°F) indoor space temperature. For direct

fired heater, variable ambient temperature and supply air temperature were applied

to the calculation. Figure 5.11 shows the results of single heater exergy efficiency for

both heaters.

The single heater exergy efficiency of indirect fired heater is about 3.3% and

not related to ambient temperature. The heater takes 100% return air inside the

building. The input and output air temperatures are nearly constant, so the exergy

efficiency is constant. For direct fired heater, single heater exergy efficiency is related

to ambient temperature and supply air temperature. The exergy efficiency increases

as the ambient temperature and supply air temperature rise. Under high ambient

temperature condition, less natural gas input will be needed to maintain a certain

supply air temperature that the exergy input for direct fired heater decreases and it
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contributes to the exergy efficiency the most. So the exergy efficiency will increase

as the ambient temperature rises. The output exergy of the direct fired heater is

mostly contributed by the thermomechanical exergy of air stream. Temperature of

the supply air affects the thermomechanical exergy and the impact is larger than the

increased natural gas input so that increased supply air temperature results in high

exergy efficiency under a certain ambient temperature.

5.3.3 Discussion

1. The systematic exergy efficiencies for both systems are very low, because in a

heating system, high quality energy source (fossil fuel) is used to provide heat

which is low quality energy and exergy is destroyed when the heat is transferred

through boundary.

2. The systematic exergy efficiency of indirect fired heating system is higher than

direct fired heating system. Its mainly caused by the relatively high temperature

exhaust air from heaters.

3. As air change rate increases, the systematic exergy efficiency will rise. It tells

us that in indirect fired heating system, there is better chance to make use of

waste heat, exhaust combustion air. In high air change rate application, there

is also better chance to save energy and exergy by reclaiming heat from exhaust

air due to air change.

4. The single heater exergy efficiency of indirect fired heater is about 3.3% and

not related to ambient temperature. The heater takes 100% return air inside

the building. The input and output air temperatures are nearly constant, so

the exergy efficiency is constant.

5. For direct fired heater, single heater exergy efficiency is related to ambient

temperature and supply air temperature. Single heater exergy efficiency will
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rise as ambient temperature increases. Single heater exergy efficiency will rise

as supply air temperature rises.

5.4 Carbon Dioxide Concentration Level

Carbon dioxide concentration level in the space will be affected by combustion of

direct fired heaters. In this section, indoor carbon dioxide concentration level using

direct fired heating system will be studied and discussed. For indirect fired heating

system, indoor carbon dioxide concentration level wont be affected by heating devices

since combustion of indirect fired heaters is isolated from indoor return air.

5.4.1 Constant Air Flow Rate for Direct Fired Heater

Based on the constant air flow rate of direct fired heater scenario, carbon dioxide

concentration in the space can be calculated. Table 5.8 and Figure 5.12 show the

carbon dioxide concentration level in PPM under different air change requirement

and ambient temperature condition. Under low ambient temperature and air change

requirement, the carbon dioxide PPM is high according to higher natural gas input

and less fresh air into the space.

When the required air change rate is less than the air flow rate of direct fired

heater, the carbon dioxide PPM in the space keeps constant under different air change

requirement. But as ambient temperature rises, the indoor carbon dioxide PPM will

drop. When the required air change rate is higher than the air flow rate of direct fired

heater, the higher the air change rate is, the lower the indoor carbon dioxide PPM is.

5.4.2 Constant Supply Air Temperature for Direct Fired Heater

Based on the constant supply air temperature of direct fired heating system sce-

nario, the carbon dioxide concentration level in the space can be calculated. Table

5.9-5.11 and Figure 5.13-5.15 show the carbon dioxide concentration level in PPM



39

Table 5.8.
Indoor carbon dioxide PPM under different air change requirement
and ambient temperature.

CO2

(PPM)
Ambient T °C (°F)

-20

(-4)

-15

(5)

-10

(14)

-5

(23)

0

(32)

5

(41)

10

(50)

0 Air Change 4392.5 3874.4 3303.6 2794.2 2284.5 1774.5 1264.2

0.5 Air Change 4324.8 3815.6 3306.0 2764.0 2286.0 1775.6 1253.4

1 Air Change 4236.9 3855.5 3340.0 2824.2 2287.0 1776.3 1265.3

1.5 Air Change 3599.8 3184.8 2795.4 2354.2 1938.6 1522.8 1106.8
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Table 5.9.
Indoor carbon dioxide PPM under different air change requirement
and ambient temperature (120°F supply air temperature).

Direct Fired Heating

at 120°F Supply T
Ambient T°C (°F)

-23.3

(-10)

-17.8

(0)

-9.4

(15)

-1.1

(30)

7.2

(45)

0 Air Change 3749.5 3464.4 3007.1 2539.9 2090.7

0.25 Air Change 3749.4 3464.3 3007.0 2539.9 2090.6

0.5 Air Change 3749.3 3464.2 3007.0 2539.8 2090.6

0.75 Air Change 3749.3 3464.2 3007.0 2539.8 1826.2

1 Air Change 3749.2 3464.1 3006.9 2480.0 1581.3

1.25 Air Change 3749.2 3464.1 3006.9 2202.4 1436.2

1.5 Air Change 3749.2 3464.1 2721.9 2029.7 1339.5

under different air change requirement and outdoor ambient temperature condition,

120°F, 140°F, 160°F supply air temperature respectively.

When the required air change rate is less than the air flow rate of direct fired

heater, the carbon dioxide PPM in the space keeps constant under different air change

requirement. As ambient temperature rises, the indoor carbon dioxide PPM will drop.

Because less natural gas will be needed under higher ambient temperature condition.

When the required air change rate is higher than the air flow rate of direct fired

heater, the higher the air change rate is, the lower the indoor carbon dioxide PPM

is. More air change rate results in higher indoor air quality.
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Table 5.10.
Indoor carbon dioxide PPM under different air change requirement
and ambient temperature (140°F supply air temperature).

Direct Fired Heating

at 140°F Supply T
Ambient T °C (°F)

-23.3

(-10)

-17.8

(0)

-9.4

(15)

-1.1

(30)

7.2

(45)

0 Air Change 3773.4 3556.4 3211.5 2879.0 2549.6

0.25 Air Change 3773.4 3556.4 3211.4 2878.9 2549.6

0.5 Air Change 3773.3 3556.3 3211.4 2878.9 2306.5

0.75 Air Change 3773.2 3556.3 3211.3 2878.9 1823.1

1 Air Change 3773.2 3556.2 3211.3 2451.6 1581.3

1.25 Air Change 3773.2 3556.2 2960.1 2198.5 1436.2

1.5 Air Change 3773.1 3416.9 2719.4 2029.7 1339.5
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Table 5.11.
Indoor carbon dioxide PPM under different air change requirement
and ambient temperature (160°F supply air temperature).

Direct Fired Heating

at 160°F Supply T
Ambient T °C (°F)

-23.3

(-10)

-17.8

(0)

-9.4

(15)

-1.1

(30)

7.2

(45)

0 Air Change 4224.5 4008.4 3661.4 3329.0 3001.4

0.25 Air Change 4224.4 4008.3 3661.3 3328.9 3001.3

0.5 Air Change 4224.3 4008.2 3661.2 3328.9 2306.5

0.75 Air Change 4224.3 4008.2 3661.2 2873.2 1823.1

1 Air Change 4224.2 4008.1 3321.0 2451.6 1581.3

1.25 Air Change 4224.2 3730.2 2960.1 2198.5 1436.2

1.5 Air Change 3873.3 3416.9 2719.4 2029.7 1339.5
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5.4.3 Carbon Dioxide Concentration Requirement

According to ASHRAE standard 62.1-2013, carbon dioxide concentration is indi-

cated as poor over 1,500 PPM [11]. For the direct fired heating system, even we dont

consider carbon dioxide generated by human and production, the PPM of carbon

dioxide indoor will easily get higher than 1,500 based on the results of the example

case. When using indirect fired heater, the indoor air quality wont be affected by the

combustion, so more fresh air (air change rate) will be required while using direct

fired heater to maintain the indoor air quality. Extra fresh air above normal fresh air

requirement will lower the systematic energy efficiency of the heating system.

5.4.4 Discussion

1. For direct fired heating system, indoor carbon dioxide PPM will be increased

due to combustion of natural gas.

2. Under constant air flow rate condition, indoor carbon dioxide PPM will increase

as the ambient temperature drops. When the air change requirement is less

than heater air flow rate, the indoor carbon dioxide PPM remains the same

under different air change rate at certain ambient air temperature. When the

air change requirement is higher than heater air flow rate, the indoor carbon

dioxide PPM will decrease as the air change rate rises.

3. Under constant supply air temperature condition, when the required air change

rate is less than the air flow rate of direct fired heater, the carbon dioxide PPM

in the space keeps constant under different air change requirement. As ambient

temperature rises, the indoor carbon dioxide PPM will drop.

4. Indoor carbon dioxide PPM when using direct fired heating system will easily

rise above 1,500 PPM that the air quality is considered poor. So extra fresh

air needs to be applied. The systematic energy efficiency of the system will go

even lower.
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Table 5.12.
Parameters affecting carbon dioxide concentration.

Constant Air Flow

Rate Condition

Constant Supply Air

Temperature Condition

Heat Loss Coefficient Heat Loss Coefficient

Ambient Temperature Ambient Temperature

Air Change Rate Air Change Rate

5.5 Sensitivity Analysis of Input Parameters Towards Systematic Energy

Efficiency of Direct Fired Heating System

There are several input parameters which will affect the systematic energy effi-

ciency of the direct fired heating system such as ambient air temperature, air change

requirement, heat loss coefficient through envelope, etc.

Sensitivity analysis is conducted to evaluate the sensitivity of each input param-

eters to the systematic energy efficiency.

Input parameters which are related to systematic energy efficiency under constant

air flow rate condition and constant supply air condition are listed in Table 5.12.

5.5.1 Constant Air Flow Rate

Under constant air flow rate of direct fired heater condition. Calculation results

in section 4.1 are used as the benchmark in this sensitivity analysis.

Heat Loss Coefficient

Table 5.13 shows the sensitivity of heat loss coefficient under different air change

requirement and ambient temperature. The sensitivity of heat loss coefficient is not

related to ambient temperature. Its only related to air change requirement. At low
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air change requirement, systematic energy efficiency is more sensitive to the heat

loss coefficient. The sensitivity is 0.452 at 0 air change. As air change requirement

increases, the sensitivity will decrease from 0.452 to 0. When the air change require-

ment is higher than air flow rate of direct fired heater, the sensitivity will drop to 0

which means the heat loss coefficient change will no long affect the systematic energy

efficiency.

Ambient Temperature

From the results in section 4.1.1, we know that under constant air flow rate con-

dition, systematic energy efficiency is not related to ambient temperature, so the

sensitivity of ambient temperature is 0.

Air Change Requirement

Table 5.14 shows the sensitivity of air change requirement under different air

change requirement and ambient temperature. The sensitivity of air change require-

ment is not related to ambient temperature. Its only related to basic air change

requirement. At low air change requirement, systematic energy efficiency is less sen-

sitive to air change requirement. As air change requirement increases, the sensitivity

will increase from 0.006 to 0.379. When the air change requirement is higher than air

flow rate of direct fired heater, the sensitivity will drop to 0 which means the change

of air change requirement will no long affect the systematic energy efficiency.

Sensitivity Comparison

Figure 5.16 shows the sensitivity comparison between the air change requirement

and the heat loss coefficient in this scenario. Both are not related to ambient temper-

ature but only to the air change requirement. At low air change requirement baseline,

the heat loss coefficient has dominant sensitivity towards the systematic energy effi-
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ciency. As air change requirement baseline increases, the sensitivity of the heat loss

coefficient drops while sensitivity of the air change requirement rises.

5.5.2 Constant Supply Air Temperature

Under constant supply air temperature of direct fired heater condition. Calcula-

tion results in section 5.2 are used as the benchmark in this sensitivity analysis.

Heat Loss Coefficient

Table 5.15-5.17 and Figure 5.17-5.19 show the sensitivity of heat loss coefficient

under different air change requirement and ambient temperature, at 120, 140 and

160 supply air temperature respectively. Negative number means that while heat loss

coefficient increase, the systematic energy efficiency will drop and vice versa.

At 0 air change, the sensitivity is 0. As air change increases at a certain ambient

temperature, the sensitivity will firstly increase and then decrease to 0 again. At a

certain air change rate, from low to high ambient temperature, the sensitivity will

firstly remain and then drop to 0 gradually.

When the ambient temperature is low enough, the supply air temperature wont

affect the sensitivity. But the higher the supply air temperature is, at lower ambient

temperature will the sensitivity drop at a certain air change rate.

Ambient Temperature

Table 5.18-5.20 and Figure 5.20-5.22 show the sensitivity of ambient air temper-

ature under different air change requirement and ambient temperature baseline, at

120°F, 140°F and 160°F supply air temperature respectively.

At a certain air change rate, sensitivity will increase gradually as the ambient tem-

perature baseline increases. But after the air change rate goes higher than supply air

flow rate, the sensitivity will drop to 0 eventually. At a certain ambient temperature
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baseline, sensitivity maintains as air change rate increases. But after the air change

rate goes higher than the supply air flow rate, the sensitivity will drop to 0.

Air Change Requirement

Table 5.21-5.23 and Figure 5.23-5.25 show the sensitivity of air change requirement

under different air change requirement and ambient temperature, at 120°F, 140°F and

160°F supply air temperature respectively.

At 0 air change, the sensitivity is almost 0. As air change increases at a certain

ambient temperature, the sensitivity will firstly increase and then decrease to 0 again

once the air change rate exceeds the supply air flow rate of heater. At a certain air

change rate, from low to high ambient temperature, the sensitivity will firstly remain

and then drop to 0 gradually.

When the ambient temperature is low enough, the supply air temperature wont

affect the sensitivity. But the higher the supply air temperature is, at lower ambient

temperature will the sensitivity drop at a certain air change rate.

Sensitivity Comparison

Heat loss coefficient and air change requirement have very similar sensitivity upon

systematic energy efficiency. The difference between them is that heat loss coefficient

has negative sensitivity (increase of heat loss coefficient will decrease systematic en-

ergy efficiency), and air change requirement has positive sensitivity (increase of air

change requirement will increase systematic energy efficiency). Ambient tempera-

ture has relatively higher sensitivity compared to heat loss coefficient and air change

requirement.
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5.5.3 Discussion

1. Under constant air flow rate condition, sensitivity of ambient temperature is

0. At low air change requirement baseline, heat loss coefficient has dominant

sensitivity towards the systematic energy efficiency. As air change requirement

baseline increases, sensitivity of heat loss coefficient drops while sensitivity of

air change requirement rises.

2. Under constant supply air temperature condition, heat loss coefficient and air

change requirement have very similar sensitivity upon systematic energy effi-

ciency. The difference between them is that heat loss coefficient has negative

sensitivity (increase of heat loss coefficient will decrease systematic energy ef-

ficiency), and air change requirement has positive sensitivity (increase of air

change requirement will increase systematic energy efficiency).

3. Under constant supply air temperature condition, ambient temperature has

relatively higher sensitivity compared to heat loss coefficient and air change

requirement.
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(a) 160°F Supply Air Temp

(b) 140°F Supply Air Temp

(c) 120°F Supply Air Temp

Fig. 5.4. Systematic energy efficiency for direct fired heating system
vs. outdoor air temperature under different air change requirement
at different supply air temp.
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(a) 0 ACH (b) 0.5 ACH

(c) 1 ACH (d) 1.5 ACH

Fig. 5.5. Systematic energy efficiency for direct fired heating system
vs. outdoor air temperature under different supply air temperature.
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Fig. 5.6. Direct fired heater air flow rate vs. outdoor air temperature.

Fig. 5.7. Natural gas demand for indirect fired heating system vs.
outdoor air temperature under different air change requirement.
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(a) 160°F Supply Air Temp

(b) 140°F Supply Air Temp

(c) 120°F Supply Air Temp

Fig. 5.8. Natural gas demand for direct fired heating system vs. out-
door air temperature under different air change requirement.
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(a) 0 ACH (b) 0.5 ACH

(c) 1 ACH (d) 1.5 ACH

Fig. 5.9. Natural gas demand comparison between direct fired heating system.
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(a) 0 ACH (b) 0.5 ACH

(c) 1 ACH (d) 1.5 ACH

Fig. 5.10. Systematic exergy efficiency.
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Fig. 5.11. Single heater exergy efficiency.

Fig. 5.12. Indoor carbon dioxide PPM level under different air change
requirement and ambient temperature.
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Fig. 5.13. Indoor carbon dioxide PPM level under different air change
requirement and ambient temperature at 120°F supply air tempera-
ture.

Fig. 5.14. Indoor carbon dioxide PPM level under different air change
requirement and ambient temperature at 140°F supply air tempera-
ture.
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Fig. 5.15. Indoor carbon dioxide PPM level under different air change
requirement and ambient temperature at 160°F supply air tempera-
ture.

Fig. 5.16. Sensitivity comparison (constant air flow rate).



69

Fig. 5.17. Sensitivity of heat loss coefficient at 120°F supply air temperature.

Fig. 5.18. Sensitivity of heat loss coefficient at 140°F supply air temperature.
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Fig. 5.19. Sensitivity of heat loss coefficient at 160°F supply air temperature.

Fig. 5.20. Sensitivity of ambient temp at 120°F supply air temperature.
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Fig. 5.21. Sensitivity of ambient temp at 140°F supply air temperature.

Fig. 5.22. Sensitivity of ambient temp at 160°F supply air temperature.
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Fig. 5.23. Sensitivity of air change requirement at 120°F supply air temperature.

Fig. 5.24. Sensitivity of air change requirement at 140°F supply air temperature.
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Fig. 5.25. Sensitivity of air change requirement at 160°F supply air temperature.
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6. CONCLUSION

Research and studies are conducted based on the objectives.

1. Systematic energy efficiency has been defined and used to evaluate the overall

performance of the space heating system.

2. Heating system performance indicators and input parameters which will affect

the indicators are studied and determined. Indicators include systematic en-

ergy efficiency, exergy efficiency and carbon dioxide concentration level. Input

parameters include heat loss coefficient of the building, ambient temperature

and air change requirement of the space.

3. Methodology of each calculation model is studied and created.

4. System performance indicators studies and results:

• Systematic energy efficiency: In the case introduced in this research, indi-

rect fired heating system always has a constant systematic energy efficiency

which is 80%, the same as the heaters device efficiency. For direct fired

heating system, systematic energy efficiency is not always constant. Input

parameters such as control method (constant air flow rate or constant sup-

ply air temperature), outdoor ambient temperature, air change rate and

heat loss coefficient of the building envelope will impact the systematic

energy efficiency. The systematic energy efficiency varies from 40% to 92%

under different condition. The highest systematic energy efficiency is 92%

which is the device efficiency of the heater. The results show that this

systematic energy efficiency is necessary while evaluating the overall per-

formance of the heating system considering device impact to the system,
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because the device efficiency of the heater is always constant that it can

not be used to represent the system efficiency under all kinds of conditions.

• Systematic exergy efficiency: The systematic exergy efficiencies for both

systems are very low (below 10%) because of the function of heating sys-

tem. In a heating system, high quality energy source (fossil fuel) is used

to provide heat which is low quality energy and exergy is destroyed when

the heat is transferred through boundary. Systematic exergy efficiency of

indirect fired heating system (4%-10%) is relatively higher than direct fired

heating system (1%-4%) because of the high temperature exhaust air from

heater. Exergy efficiency doesn’t describe how much and how well energy

is used in a heating system because output of this heating system might

not be a useful output. It only shows the opportunity that waste heat can

be reclaimed. The higher the systematic exergy efficiency is, the higher

possibility that waste heat can be used. Systematic exergy efficiency can

be used as a backup in this heating system for optimizing purpose.

• Carbon dioxide concentration level: The carbon dioxide concentration level

of direct fired heating system varies from 1000 to 4500 PPM under different

conditions. Indoor carbon dioxide PPM will increase due to combustion

of natural gas. While using direct fired heating system, indoor air quality

should be concerned. More fresh air might be needed to keep the indoor

carbon dioxide PPM under critical level.

5. Sensitivity analysis of input parameters shows that for direct fired heating sys-

tem, sensitivity of input parameters (heat loss coefficient, ambient temperature

and air change requirement) will vary under different conditions.

Based on the results and conclusion of this research, it is known that direct fired

heaters dont always have higher systematic energy efficiency even though typically

they have higher device efficiency compared to indirect fired heaters. Extra fresh air

brought into the building space by direct fired heaters is the reason of this. Systematic
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energy efficiency introduced in this research provides a way to evaluate the heating

system performance considering not only the heating device but also the whole system.

Carbon dioxide concentration level (indoor air quality) is also a concern when using

direct fired heaters. Extra amount of fresh air might be needed to keep the carbon

dioxide level under comfort level because the combustion of direct fired heaters will

generate more carbon dioxide in the space.
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7. FUTURE WORK

1. For the systematic energy efficiency study, case study by collecting and ana-

lyzing data needs to be done to validate the conclusion that systematic energy

efficiency of direct fired heating system will vary under different ambient tem-

perature and air change requirement.

2. Study the inflection point mentioned in section 5.1.1 as different ratios of build-

ing loss to ventilation loss.

3. While analyzing the systematic energy efficiency of direct fired heating system

in this research, it’s separated from carbon dioxide concentration level study.

Considering control the carbon dioxide concentration below a certain level, the

systematic energy efficiency of direct fired heating system could be different

(lower than current results would be expected). Further studies can be done

to evaluate the systematic energy efficiency of direct fired heating system while

controlling the carbon dioxide level at the same time.

4. In this research, we only consider carbon dioxide for indoor air quality. Other

pollutants such as carbon monoxide needs to be concerned when using direct

fired heaters.
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