
COMPUTATION OF LARGE-DISPLACEMENT STABILITY METRICS IN DC

POWER SYSTEMS

A Thesis

Submitted to the Faculty

of

Purdue University

by

Carl J. Olthoff

In Partial Fulfillment of the

Requirements for the Degree

of

Masters of Science in Electrical and Computer Engineering

August 2019

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF THESIS APPROVAL

Dr. Oleg Wasynczuk, Chair

School of Electrical and Computer Engineering

Dr. Dionysios Aliprantis

School of Electrical and Computer Engineering

Dr. Steven Pekarek

School of Electrical and Computer Engineering

Approved by:

Dr. Dimitri Peroulis

Head of the School Graduate Program

iii

ACKNOWLEDGMENTS

I would like to first give special recognition to my advisor, Oleg Wasynczuk. From

helping me gain entry to the Purdue ECE graduate program, introducing me to PC

Krause and Associates, and supporting my research endeavors, nobody has provided

me with more opportunities to achieve success and for this I am forever grateful. I

would also like to extend my gratitude to Steven Pekarek, Dionysios Aliprantis, and

Scott Sudhoff for pushing me beyond my limits and mentoring me throughout my

time as a graduate student. Lastly, I’d like to thank all the friends that I’ve made in

the power and energy area. Nobody accomplishes anything solely by themselves and

without the support of these outstanding people I would not have been able to come

this far.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

ABBREVIATIONS . xi

ABSTRACT . xii

1 INTRODUCTION . 1

1.1 Thesis Contributions . 2

1.2 Thesis Organization . 3

2 STABILITY DEFINITIONS . 4

2.1 Lyapunov Stability . 4

2.2 Single-Step Stability . 7

2.3 Large-Displacement Stability . 9

3 SIMPLIFIED DC POWER SYSTEM . 13

3.1 Study System . 13

3.2 Effects of the Source Time Constant and Transient Overload Capacity
on Stability . 17

3.3 Computation of the Region of Asymptotic Stability 18

3.4 Locating the RSSE and RLDS for (3.13) 22

4 COMPUTATION OF THE REACHABLE STATE-SPACE 27

4.1 Reachable Sets and the RSS . 27

4.2 Use of CORA for MATLAB . 30

4.3 Discrete Space Search . 35

4.4 Advancing Fronts: An Algorithm for Approximating the Reachable
State-Space of a Nonlinear System . 41

4.5 Comparing the Performance of Advancing Fronts and the Discrete
Space Search . 53

v

Page

4.6 Designing for Large-Displacement Stability 59

5 DETAILED SYSTEM STUDY . 65

5.1 Model Description . 65

5.2 Simulation Results . 68

6 SUMMARY, CONCLUSIONS, AND POTENTIAL FUTURE WORK 74

REFERENCES . 77

vi

LIST OF TABLES

Table Page

5.1 . 69

vii

LIST OF FIGURES

Figure Page

2.1 The region of asymptotic stability for some equilibrium state, xe. x(1) and
x(2) denote the two components of x(t) ∈ <2 5

2.2 In this system, the RLDS is assumed to be RAS1 ∩ RAS2 ∩ RAS3 7

2.3 Graphical representation of an arbitrary system with an RLDS that con-
tains the RSSE. Thus, the condition for single-step stability is satisfied. . . 8

2.4 Graphical illustration of a system that is large-displacement stable with a
finite large-disturbance stability margin. 11

3.1 Simplified model of a dc power system. 14

3.2 Normalized model of the power-electronic system in Figure 3.1. Blocks
with gain 1

s represent integration with respect to time. 16

3.3 Normalized time constant versus transient overload capacity. 17

3.4 Graphical representation of the binary search algorithm. The black arrows
represent the range of values being searched, while ‘A’ and ‘B’ denote the
minimum and maximum bounds on the search interval. In this example,
initial guess xk was found not to converge, so all states lower than xk are
excluded in the next search iteration, k + 1. 21

3.5 Sample trajectories and the RAS (shaded region) for xe = (1, 1) 22

3.6 The RAS for xe = (1, 1) is shown for G = 2, 5, and 8 from right to left,
respectively. 23

3.7 The RAS for PL = 0.001, 0.5, and 1 are shown. The RLDS is equal to the
RAS associated with PL = 1. In this figure, G is assumed to be 5. 25

4.1 The reachable set at time π
2

seconds plotted using CORA. The grey region
represents the set that contains all possible trajectories originating from
the white rectangle, which is the initial condition set. The black line
is a sample trajectory following the solution (4.2) with arbitrary inputs.
System parameters are σ = −0.1 and ω = 1. 28

4.2 The reachable set at time 10 seconds plotted using CORA. System param-
eters are σ = −0.1 and ω = 1 . 29

viii

Figure Page

4.3 A zonotope with h = 3 generating vectors. The Minkowski sum is essen-
tially all possible linear combinations of the generators, thus spanning the
shaded region. 31

4.4 Flow chart depicting CORA’s Nonlinear Reachable Set calculator. 32

4.5 Reachable set at time t = 0.3 seconds for the system in (3.13). For times
t > 0.3, convergence was not achieved. The accuracy of the solution is
obtained by inspection. Since the grey sets do not tightly enclose the
simulated trajectories, the accuracy of this solution was determined to be
less than satisfactory. 33

4.6 Reachable set at time t = 2 seconds for the system in (3.13). Convergence
was achieved when the input was allowed to vary within [−0.1, 0.1] as
opposed to [−1, 1]. In contrast with Figure 4.5, the grey sets tightly enclose
the simulated trajectories, indicating that this reachable set is accurate. . . 34

4.7 A sampling of the RSS for the system in (3.13). Stars indicate points that
have been reached by trajectories while the boundary is the black line
connecting the outermost points. The boundary was constructed using
MATLAB’s boundary function . 35

4.8 State-space domains with their assigned logicals (left). When a simulated
trajectory enters a domain with logical ’0’, its logical is updated to ’1’. The
trajectory point is then added to the sample of the RSS in its corresponding
domain (right). The arrows represent trajectories taken to reach each domain.37

4.9 The boundary of the RSS as computed by the discrete space search algo-
rithm (jagged, light line) and the true boundary of the RSS (smooth, dark
line). 40

4.10 State derivatives for u = 1 (blue) and u = −1 (red) are evaluated at points
along the black border. Points near the bottom right are approximately
at the edge of the RSS, while points near the top left indicate that there
are reachable states above the enclosed region 41

4.11 A perfect circle (shaded) is crudely approximated by straight line-segments
and nodes. The edge of a two-dimensional surface will be defined as a
sampling of points (nodes) and straight line segments between them. In
practice, the resolution of the approximation will be much higher. 43

4.12 The surface normal (black), and state derivatives for 2 different allowable

inputs are evaluated at the midpoint of segment
−→
AB. θ is the angle formed

between a state derivative and the normal. The derivative corresponding
to the blue arrow points outside the region (θ < 90), while the derivative
corresponding to the red arrow points inside the space (θ ≥ 90). 44

ix

Figure Page

4.13 An example of a proposed advancement. The starred nodes represent
RSSk, while the circled nodes represent RSSk+1. The green arrows rep-
resent the surface normals at each midpoint, indicating the placement of
RSSk+1 relative to RSSk . 46

4.14 The unwrapped front (starred nodes) expanding in the positive x1 direc-
tion. Segments on the interior of the divot are subject to expand inside
the space because of the surface normal directions. Applying MATLAB’s
boundary eliminates these features, thus preserving the outward expan-
sion direction (circled nodes). Additionally, it can be seen that applying
boundary reduces the total number of nodes used to approximate the edge
of the RSS. 48

4.15 The RSS boundary after 200 advancements (labelled ‘A’), 900 global ad-
vancements (‘B’), and 1500 advancements (‘C’). Rather than expanding
outward to articulate the boundary, the low-resolution surface changes
position relative to its center. 49

4.16 The correct edge of the RSS (dashed black line) and an advancing front.
Nodes along the green arc will experience a slowed expansion while nodes
along the blue arcs will experience a more rapid expansion. 50

4.17 The RSS for (3.13) as produced by Advancing Fronts with two different
values for δ. 52

4.18 The boundaries of the RSS of (3.13) as computed by the advancing fronts
algorithm (solid line), and the discrete space search algorithm (starred
line). There two methods very closely agree on the true solution. 54

4.19 State derivative arrows for u = 1 and u = −1 overlayed on the discrete
space search boundary (right) and the advancing fronts boundary (left).
Note that the arrows do not point inside the RSS where the boundary is
at ilim, but the limit implies that there are no reachable states above it. . . 55

4.20 Derivatives in (3.13) evaluated at u = 1 (red arrow) and u = −1 (blue
arrow). The inputs corresponding to the black arrows are u = 0.9, u =
0.75, u = 0.5, and u = 0.3. 57

4.21 The simulated trajectory starts from vdc = 1, idc = 0. The trajectory
travels between the two boundaries in the region near vdc = 1, idc = −1. . . 58

4.22 The sample trajectory (blue line) travels just outside the RSS calculated
by the discrete space search (yellow line), but always remains inside the
RSS calculated by advancing fronts (black line). 59

4.23 The RSS and RLDS for (3.13). Associated parameters are −1 ≤ PL ≤ 1,
v∗dc = 1, G = 2, ilim = 1.5, and τ ′ = 0.2. 60

x

Figure Page

4.24 The RSS and RLDS for (3.13). Associated parameters are −1 ≤ PL ≤ 1,
v∗dc = 1, G = 5, ilim = 1.5, and τ ′ = 0.2. 61

4.25 The RSS and RLDS for (3.13). Associated parameters are −1 ≤ PL ≤ 1,
v∗dc = 1, G = 2, ilim = 1.5, and τ ′ = 0.1. 62

4.26 The RSS and RLDS for (3.13). Associated parameters are −0.5 ≤ PL ≤
0.5, v∗dc = 1, G = 2, ilim = 1.5, and τ ′ = 0.2. 63

5.1 Circuit/Block diagram of the detailed model. The converter is contained
in the shaded box labelled “Active Rectifier” while the PMAC is contained
in the shaded box labelled “PM Machine”. 66

5.2 Stator ac current regulator. Its inputs are the commanded and actual qd
currents and the rotor speed. Its outputs are the commanded qd stator
voltages. 67

5.3 Dc current regulator. Its inputs are the commanded dc current, the actual
dc voltage, and the rotor speed. Its outputs are the commanded qd currents.68

5.4 The RLDS boundary and the RSS for the detailed model. The RLDS is
the volume above the blue surface . 69

5.5 DC source current versus time. In the results from the detailed model, iS
peaks much higher than that of the results from the average-value model,
as expected. 70

5.6 Commanded DC source current versus time. The commanded current
is very close in both models, providing evidence that results from the
average-value model apply equally as well to the detailed model. 71

5.7 Bus voltage versus time. As in the case of Figure 5.6, the bus voltage
is very close in both models, providing evidence that results from the
average-value model apply equally as well to the detailed model. 72

5.8 System response for repeated step changes in PL. The system remains
stable through the largest possible displacement in load power. 73

xi

ABBREVIATIONS

RAS Region of Asymptotic Stability

RSSE Region of Steady-State Equilibria

RSS Reachable State-Space

RLDS Region of Large-Displacement Stability

LDSM Large-Disturbance Stability Margin

xii

ABSTRACT

Senn, Mark D. M.S., Purdue University, August 2019. Computation of Large-Displacement
Stability Metrics in DC Power Systems. Major Professor: Oleg Wasynczuk.

Due to the instabilities that may occur in dc power systems with regulated power-

electronic loads such as those used in aircraft, ships, as well as terrestrial vehicles,

many analysis techniques and design methodologies have been developed to ensure

stable operation following small disturbances starting from normal operating con-

ditions. However, these techniques do not necessarily guarantee large-displacement

stability following major disturbances such as faults, regenerative operation, pulsed

loads, and/or loss of generating capacity. In this thesis, a formal mathematical defini-

tion of large-displacement stability is described and the analytical conditions needed

to guarantee large-displacement stability are investigated for a notional dc power sys-

tem. It is shown possible to guarantee large-displacement stability for any piecewise

continuous value of load power provided it is bounded by the peak rating of the dc

source.

1

1. INTRODUCTION

The presence of regulated power-electronic loads in aircraft, ships, and terrestrial

vehicles can lead to instabilities in their power systems. For example, ac-dc and dc-

dc converters are often designed such that the output power is not affected by small

perturbations in the input voltage. In other words, the output power can be modeled

as a constant-power load. It can be shown that small disturbances in constant-power

loads can appear as negative impedances, which can lead to destabilizing effects within

the power system. As a result, much effort has been dedicated to mitigating the

instabilities associated with constant-power loads.

The conventional approach to this problem is to design for small-signal stability

by satisfying the Nyquist criterion. For a single source and load configuration, this

criterion is satisfied if the Nyquist contour of the source impedance, ZS, and load ad-

mittance, YL, does not encircle the point (−1, 0) on the complex plane. The Nyquist

criterion is satisfied if the product |ZS||YL| remains within the open unit-circle for all

frequencies, leading to the Middlebrook criterion [9]. This type of approach is ap-

pealing because the analysis is well-understood and has been practiced for some time.

However, with any approach based on small-signal analysis, stability is not guaran-

teed if the power system is subject to major disturbances such as faults, regenerative

operation, and/or pulsed loads. Additionally, small-signal analysis is difficult to apply

to more complicated systems where there are multiple source/load configurations.

An investigation was performed in [2] that established the minimum design re-

quirements to ensure large-displacement stability for an ideal dc source and constant-

power load. The results from this study were used to design a practicable dc source

consisting of a 3-phase, permanent-magnet generator connected to an active rectifier.

It was shown that the practical dc source could remain stable when subject to individ-

ual load steps between ±1 per unit of its rated power. Very recently, the research in [1]

2

extended the results and design paradigm from [2] to guarantee large-displacement

stability when the load power varies arbitrarily within ±1 per unit. It was concluded

that the dc source in [2] is large-displacement stable for arbitrary bounded variations

in load power if the system’s reachable state-space is a subset of its so called region

of large-displacement stability.

1.1 Thesis Contributions

The criterion for large-displacement stability set forth in [1] necessitates the cal-

culation of the system’s reachable state-space. Knowledge of a system’s reachable

state-space lends itself to a more comprehensive analysis of the system’s controllabil-

ity, so it is a natural pursuit by many authors. However, obtaining this unique set

is no trivial task as it often requires reachability analysis, an approach that is both

mathematically intense and not universally applicable. Reachability analysis has been

shown in [4] to produce exact reachable sets of linear systems using zonotopes or el-

lipses. Furthermore, these techniques are readily implementable in publicly available

software packages, such as the Continuous Reachability Analyzer (CORA), developed

by Mathias Althoff. In the case of nonlinear dynamics however, it is very difficult to

produce a solution with the well-established approach because every system contains

unique and subtle nuances that may lead to numerical instabilities. Furthermore,

reachability analysis for nonlinear systems yields a very conservative approximation

of reachable sets [3]. In this thesis, a very tight approximation or exact calculation is

extremely desirable, so the need for an alternative approach is heavily motivated for

all of these reasons.

Presented in this thesis is an approach for calculating a system’s reachable state-

space that employs an iterative algorithm coded in MATLAB. The algorithm, appro-

priately named “Advancing Fronts”, proceeds by expanding the boundary of the set of

allowable initial conditions into the boundary of the system’s reachable state-space.

The result is a process that has a similar duration to that of existing reachability

3

analysis software packages and, more importantly, supplants the need for reachability

analysis entirely. Additionally, the algorithm is in close agreement to reachable state-

spaces calculated by other algorithms presented herein and exceeds their capability

in terms of accuracy. The algorithm is then used to show how the parameters of

an average-value model of a dc source and constant-power load affect the conditions

for large-displacement stability set forth in [1]. Virtually all system parameters are

candidates for variation because the degree by which the design meets the condi-

tions in [1] can be quickly reassessed with the algorithm. Ultimately, the algorithm

allows an engineer to quickly choose the best physical parameters such as switch-

ing frequency, bus capacitance, etc. for the targeted application while guaranteeing

large-displacement stability.

1.2 Thesis Organization

In Chapter 2, definitions are provided for large-displacement stability, reachable

state-space, and all other accompanying concepts that are necessary to fully articulate

the design paradigm in [1] and advancing front algorithm. In Chapter 3, a simplified

average-value model of a dc power system is introduced to give physical significance to

the notions of stability given in Chapter 2. There are many methods associated with

computing the various mathematical sets needed to characterize large-displacement

stability. The method for computing the region of large-displacement stability is

contained in Chapter 3 and three methods for computing the reachable state-space are

described in Chapter 4. Also in Chapter 4, several candidate designs are considered

to demonstrate how large-displacement stability can be achieved for the simplified dc

power system. In Chapter 5, the claims used on the simplified average-value model

are then applied to a detailed model of a practicable dc power system as a proof of

concept. Through repeated simulations under rigorous conditions, it is shown that

the chosen physical parameters confirm large-displacement stability for the dc system

studied.

4

2. STABILITY DEFINITIONS

Designing converter-based power systems to be stable under small disturbances is

well-defined by the Nyquist and Middlebrook criteria [9]. Moreover, it is desirable to

broaden the capabilities of such systems so that they remain stable following large

disturbances such as pulsed loads, faults, or component failures. Before describing

how large-displacement stability can be guaranteed, a brief introduction to the tech-

nical definitions contained in this thesis is in order. Since some of the definitions are

rather conceptual, this chapter has been dedicated not only to defining key concepts,

but providing explanation through generalized mathematical examples. This chapter

concludes by defining a design paradigm that guarantees large-displacement stability

for a practicable dc power system.

2.1 Lyapunov Stability

Average-value models of dc power systems can typically be expressed as a system

of first-order ordinary differential equations.

dx

dt
= f(x(t), u(t)); x(t0) = x0 (2.1)

In the previous equation, x(t) ∈ <n is an n-dimensional vector consisting of the sys-

tem’s states. Examples of dc power system states include inductor currents, capacitor

voltages, and control system variables. Also in (2.1), u(t) ∈ <m is an m-dimensional

vector of inputs. An example of an input is the power consumed by an individual

load. An equilibrium state of the solution to (2.1) is denoted xe, where f(xe, u) = 0.

In typical dc power systems, both u and xe are constant in the steady-state.

5

An equilibrium state for a given u is said to be stable in the sense of Lyapunov

(SISL) if for every ε > 0 there exists a δ(ε, t0) such that |x(t0) − xe| < δ(t0) implies

|x(t) − xe| < ε. Here, |x| is used to denote the Euclidean norm of x. If, in addition,

there exists a δ(t0) where |x(t0)− xe| < δ(t0) implies |x(t)− xe| → 0 as t→∞, then

the equilibrium state is said to be asymptotically stable in the sense of Lyapunov

(ASISL). If δ is independent of t0, then the equilibrium state is uniformly ASISL

(UASISL). Since (2.1) is time-invariant, an equilibrium state of (2.1) that is ASISL

is also UASISL. Lastly, an equilibrium state is globally UASISL if δ =∞ [11].

In a practicable dc power system, UASISL is an essential feature for all equilibrium

states associated with its operating regime. Global UASISL, however, is usually not

feasible due to constraints on voltage, current, and/or load power. Therefore, it is

understood that δ will be finite for most, if not all, equilibria of the power system.

The notion of a finite δ implies the existence of a set of all x(t0) where the solution

of (2.1) satisfies |x(t) − xe| → 0 as t → ∞. The “region of asymptotic stability”

(RAS) is the name given to such a set. By definition, the RAS wholly contains all

stable trajectories, and all unstable trajectories never enter the RAS. The RAS for

an equilibrium state of an arbitrary 2nd-order system is depicted in Figure 2.1.

x(1)

x(2)

x t0()

xe

RAS

Fig. 2.1. The region of asymptotic stability for some equilibrium state,
xe. x(1) and x(2) denote the two components of x(t) ∈ <2

.

6

In general, there will be multiple states that satisfy f(xe, u) = 0 in (2.1) because

the equilibrium state is dependent on the input, u, which may vary. It is assumed

that there is a unique equilibrium state, xe,i, for every input ui ∈ U . It is important

to define the region of steady-state equilibria (RSSE) as

RSSE = {xe,i ∀ui ∈ U} (2.2)

Since the concepts presented in this discussion will eventually be applied to a physical

power system, some additional assumptions are made regarding (2.1), inputs to (2.1),

and the RSSE. First, U is assumed to be a path-connected topological space that

may be, but is not necessarily convex. Second, it is assumed that a controller can be

designed such that xe,i is at least locally UASISL for every ui, so there is a continuous

mapping from ui to xe,i. The first two assumptions imply that the RSSE is also a

path-connected topological space. Lastly, (2.1) is assumed to be globally Lipschitz

continuous on x and u, thus guaranteeing a unique solution [8]. Although the existence

and uniqueness of a solution to (2.1) cannot be guaranteed in the most general case,

the existence of a single preferred solution for any allowable input is a desirable feature

of any practicable dc power system.

As an artifact of the controller design assumption, each xe,i will have a correspond-

ing RAS, denoted RASi. Now, it is possible that an intersection exists between two

or more RAS’s. If this is the case, a trajectory that originates in the region of inter-

section can converge to either of the corresponding equilibrium states. For example,

if there is an overlap between RASi and RASi+1, any x(t0) within the intersection will

converge asymptotically for an input step change from ui to ui+1, and similarly for

a step change from ui+1 to ui, regardless of the distance between equilibrium points,

|xe,i − xe,i+1|. Such a scenario would allow convergence to be achieved even under

the largest allowable input step change. Therefore, it is useful to define the region of

large-displacement stability (RLDS) as the intersection of each RASi for all i.

RLDS =
⋂

xe,i∈RSSE

RASi (2.3)

7

2.2 Single-Step Stability

The knowledge of a system’s RLDS can be very useful for the analysis of its trajec-

tories with respect to their stability. By definition of the RLDS, an x(t0) originating

in the RLDS is guaranteed to also originate in RASi for any xe,i. Therefore, if the

RLDS is a nonempty set, a trajectory within the RLDS at time t = t0 subject to

a constant input u ∈ U is guaranteed to be stable. Although these conditions set

x(t0) on a stable course, the trajectory can still destabilize if the input causes x(t)

to exit the RLDS. To understand an unstable case where x(t0) ∈ RLDS, it is useful

to consider the arbitrary system in Figure 2.2 subject to step changes among inputs

ui=1,2,3. In Figure 2.2, only the intersection of RASi=1,2,3 is shown, but it is useful to

assume that this intersection is the RLDS of the system.

x(1)

x(2)
RAS1RAS2

RA 3S

RSSE

xe,1
xe,2

xe,3

Fig. 2.2. In this system, the RLDS is assumed to be RAS1∩RAS2∩RAS3

.

If in the system in Figure 2.2 x(t) starts at equilibrium with u(t0) = u2 and x(t0) =

xe,2 ∈ RLDS, the system will remain stable if u2 is stepped to u1 because xe,2 ∈ RAS1.

As x(t) converges to xe,1, it will leave the RLDS. If u1 is stepped to u3 while x(t) =

8

xe,1 /∈ RLDS, the trajectory will be unstable because xe,1 /∈ RAS3. It is possible to

reach xe,3 from xe,1 however, so long as xe,1 is driven to xe,2 first.

A system is defined herein to be single-step stable if the input can be stepped from

any ui ∈ U directly to any uj ∈ U at time t = t0 and the resulting trajectory will

converge to xe,j. For this to be true, every xe,i would have to be inside the RAS of

every xe,j. Such is the case if and only if the RLDS for the system is both nonempty

and

RSSE ⊂ RLDS. (2.4)

Therefore, the arbitrary system shown in Figure 2.3 is single-step stable because its

RSSE is a subset of its RLDS.

x(1)

x(2)

xe,1

xe,2

RLDS

RSSE

RAS2

RAS1

Fig. 2.3. Graphical representation of an arbitrary system with an RLDS
that contains the RSSE. Thus, the condition for single-step stability is
satisfied.

In contrast, the system in Figure 2.2 does not satisfy the condition for single-step

stability. This was further evident in the previous example as well, where xe,1 could

not be stepped to xe,3 directly, which is not in agreement with the definition of single-

step stability.

9

An important point to make is that single-step stability only guarantees that a

trajectory can be set on a stable path between two arbitrary equilibrium states in the

RSSE for a single input step change at time t = t0. If there is a sequence of input step

changes, the possibility for an unstable response exists. As an example, it is helpful

to consider the system in Figure 2.3 with x(t0) = xe,1. If the system in Figure 2.3

experiences an input step u(t0) = u2, the ensuing trajectory is guaranteed to remain

within RAS2, but not necessarily within the RLDS. Therefore, the trajectory could

enter the region where x(t) ∈ RAS2 /∈ RAS1. If the input is stepped from u2 back to

u1 while x(t) is in this region, there will be an unstable response. In the general case,

a trajectory of a system that is single-step stable could leave the RLDS, which in turn

implies that it will be outside at least 1 RAS, such as RASk. If, in this instance, the

input is stepped to uk, convergence to xe,k will not be possible.

2.3 Large-Displacement Stability

Single-step stability guarantees convergence for a single input step change within

u ∈ U at time t = t0, but does not guarantee convergence for a pulsed or continuously

varying input. In order to guarantee that any xe,i can be guided stably to any xe,j

when the input varies arbitrarily, x(t) must be within the RLDS for all t. If all

trajectories are bounded by the RLDS, a new notion of stability arises that exceeds

single-step stability. A system is defined herein to be large-displacement stable (LDS)

if the set containing all trajectories originating from the RSSE is a subset of the RLDS.

It is useful to name the set that contains all trajectories originating from the

RSSE. A reachable set at time t = T is defined in literature as the set that contains all

trajectories originating from a bounded initial condition set and driven by a bounded

input set through the interval [0, T] [3]. In this thesis, a special case of the reachable

set at time t = T is considered, called the “reachable state-space” (RSS). The RSS

10

is defined in [1] as the set of all x(t) originating from the RSSE driven by the set of

allowable inputs U through an infinite time horizon.

RSS = {x(t, x0, u(.))|x0 ∈ RSSE, u(t) ∈ U∀t} (2.5)

The RSS can intuitively be thought of as the set of all states that are reachable from

the RSSE, driven by all possible inputs within U . The infinite time horizon associated

with the RSS implies that the RSS is equal to the reachable set at time t = T when

T is sufficiently large (i.e. large enough for the system to reach steady-state). The

RSS then, is both time-invariant and a unique set in this regard.

Defining a unique reachable set for the purposes of [1] and this thesis allows the

condition for large-displacement stability to be reformulated in a more elegant way. A

system is LDS if its reachable state-space is a subset of its region of large-displacement

stability.

RSS ⊂ RLDS (2.6)

To further understand why the RSS must be a subset of the RLDS for large-displacement

stability, it is helpful to consider u(t) as a piecewise constant function of time with

a countable number of step changes within U . As the number of step changes ap-

proaches infinity, the piecewise constant u(t) can be made to closely approximate a

continuous or piecewise continuous function of time. Modeling u(t) in this way is

reasonable because in practice, loads can be switched on, off, or varied continuously.

If this is the case, the corresponding equilibrium state xe(t) will be a piecewise con-

tinuous function of time constrained to the RSSE. If the RSS is a subest of the RLDS,

then the resultant trajectory will always remain within the RLDS while following the

moving xe(t). As a result of remaining in the RLDS for all t, x(t) remains stable

for all time subject to any input variation within the allowable set. Thus, if (2.5) is

satisfied, a system is said to be large-displacement stable.

11

Finally, it is important to define the large-disturbance stability margin (LDSM),

which is the minimum distance from the boundary of the RSS to the boundary of the

RLDS.

LDSM = min |x1 − x2| : x1 ∈ RSS, x2 /∈ RLDS (2.7)

The LDSM is motivated by concerns with modeling error and system noise. Tech-

nically, the RSS could share a boundary with the RLDS and no notion of large-

displacement stability would be violated. Unfortunately, there are inevitable uncer-

tainties associated with the computation of each of these spaces, which means that

any difference whatsoever between the model and a real system could mean that

states in the RSS that are not within the RLDS exist, thus sabotaging efforts to

guarantee large-displacement stability. As a way of knowing how much room for er-

ror is possible, the worst-case difference between the two spaces was calculated, thus

giving rise to the formal definition of the LDSM. In Figure 2.4, an example system is

shown where condition (2.6) is satisfied and the LDSM is illustrated.

x(1)

x(2)

RSS

RSSE

RLDS

LDSM

Fig. 2.4. Graphical illustration of a system that is large-displacement
stable with a finite large-disturbance stability margin.

12

Designing systems that are large-displacement stable is simply a matter of choos-

ing parameter values such that the RSS for the system is a subset of the RLDS.

Though simple conceptually, there is one more condition that must be adhered to.

It is desirable to design systems with a wide LDSM so that modeling uncertainties

in the calculated boundaries cannot possibly result in reachable states existing out-

side of the RLDS. In addition, real systems have noise and unpredictable excitations,

which can also cause the boundary of the RSS to extend outside of the RLDS. To

be absolutely certain that condition (2.6) is not compromised, the LDSM must be

sufficiently wide.

13

3. SIMPLIFIED DC POWER SYSTEM

To give context to the mathematical sets and definitions provided in Chapter 2 in

terms of dc power systems, an average-value model of a simplified dc power system is

presented in this chapter. The model, originally set forth in [2] as a simplified “study

system”, is extremely tractable and allows all of the concepts in this thesis to be

presented in an abstract sense while still retaining physical significance. Also in this

chapter, the impact of the study system’s parameters on the stability of its trajectories

is analyzed. A method for calculating the system’s RSSE and RLDS is also contained

in this chapter. These spaces are then used to make further implications about the

stability of its trajectories.

3.1 Study System

A simplified model of a power electronic system is illustrated in Figure 3.1. The

model consists of a controllable current source, an output capacitor, and a constant-

power load. The current source controller exhibits first-order filter characteristics,

meaning the commanded current and source current are related by

idc =
i∗dc

τs+ 1
(3.1)

In (3.1) and subsequent equations, starred variables represent commanded values,

while un-starred variables represent actual values. The controller sets hard limits on

the source current, which are generalized as ilim and −ilim, so (3.1) is only valid within

these limits.

14

Cdci

dci*

limi

limi-

* *()dc Li i G v v= + −

1
1s +

+

v

Source

Control

Constant-Power
Load

PL

iL =
PL

dc vdc

dc dc

Fig. 3.1. Simplified model of a dc power system.

The load is represented as an idealized constant-power load, where the load current

is given by

iL =
PL
vdc

(3.2)

In (3.2), the power PL is considered to be an input to the system. PL is allowed to be

a constant parameter or a bounded piecewise continuous function of time, much like

how u(t) is used in the context of (2.1). The voltage on the capacitor is governed by

dvdc
dt

=
idc − iL
C

(3.3)

The equation governing source current can be obtained by converting (3.1) to the

time-domain.

didc
dt

=
i∗dc − idc

τ
(3.4)

15

For the remainder of this thesis, all values associated with (3.3) and (3.4) will be

normalized relative to their base ratings so that the results from the study system

can be applied to arbitrary voltage, current, and power levels. The subscript b will

be used to denote base rated values, while the subscript pu will be used to denote

per-unit values. For example, the rated dc voltage is expressed as Vb,dc, while the

rated impedance is expressed as Zb. Per-unit values are typically expressed as the

ratio of their value to their rated value.

vdc,pu = vdc/Vb,dc (3.5)

idc,pu = idc/Ib,dc (3.6)

Cpu = CZb = C
Vb,dc
Ib,dc

(3.7)

The subscript pu will be omitted in subsequent equations unless specifically needed

for clarity. Note that the per-unit voltage and current are unitless, while the per-

unit capacitance has units of seconds. Using the definition of Cpu, it is possible to

eliminate capacitance from (3.1) by defining scaled time and the scaled time constant

as

t′ = t/Cpu (3.8)

τ ′ = τ/Cpu (3.9)

Substituting (3.8) and (3.9) into (3.3) and (3.4) yields the scaled time equations

which are convenient because the sytem behavior now applies to arbitrary values of

capacitance.

dvdc
dt′

= idc − iL (3.10)

didc
dt′

=
i∗dc − idc
τ ′

(3.11)

16

A feedforward/feedback control scheme is used to regulate the output voltage.

Specifically, the commanded source current is a combination of the load current and

the voltage error.

i∗dc = iL +G(v∗dc − vdc) (3.12)

where v∗dc is the commanded output voltage and G is the gain. The system com-

prised by (3.10) and (3.11) and its feedforward/feedback structure is illustrated as a

normalized model in Figure 3.2.

Fig. 3.2. Normalized model of the power-electronic system in Figure 3.1.
Blocks with gain 1

s represent integration with respect to time.

Substituting (3.2) into (3.10) and (3.12) into (3.11) yields the following system of

equations.

dvdc
dt′ = idc − PL

vdc

didc
dt′ = 1

τ ′

(
PL

vdc
+G(v∗dc − vdc)− idc

) (3.13)

The parameters associated with (3.13) are G, τ ′, and ilim, while the inputs are v∗dc

and PL. In the following studies, it is shown how the choice of the parameters affects

the stability of trajectories governed by (3.13).

17

3.2 Effects of the Source Time Constant and Transient Overload Capacity

on Stability

It is desirable to see how each parameter of (3.13) determines the stability of its

trajectories on an individual basis. To do this, numerical simulations were conducted

in [2] with (3.13) operating at its rated voltage (v∗dc = 1) and between ±1 of its rated

load power (−1 ≤ PL ≤ 1). Starting with an investigation of τ ′ and ilim, the gain was

chosen arbitrarily and PL was stepped from 0 to 1 per unit. It is worthwhile to note

that a practical response time of the source, τ ′, is a nonzero value. This implies that

the source current cannot change instantaneously, so it is expected that the source

will need to supply more than its rated amperage when the system is stepped to its

rated load power. Therefore, it is important to choose ilim to be greater than 1 per

unit to maintain stability during such transients. The difference between ilim and 1

is henceforth referred to as the system’s transient overload capacity.

It was concluded in [2] that a trade-off exists between the responsiveness of the

source and its transient overload capacity. In Figure 3.3, the maximum allowable

time constant for stability was determined for multiple values of ilim.

Fig. 3.3. Normalized time constant versus transient overload capacity.

18

The gain associated with Figure 3.3 was G = 2, and the initial condition was vdc = 1,

idc = 0. One important result of Figure 3.3 is that the time constant approaches a

maximum limit, equal to 0.581. Based on this information, any transient overload ca-

pacity beyond 50 percent results in marginal improvement to the maximum allowable

time constant, so ilim was chosen to be 1.5 per unit. Hence, any source time constant

less than or equal to 0.4 seconds in scaled time should result in a stable trajectory

for a load step from 0 to 1 per unit. In any case, decreasing the time constant always

increases a trajectories tendency towards stability.

As for the influence of gain on stability, increasing the gain should increase the

number of stable trajectories. Intuitively, a larger response from the controller might

compensate for a slower response time. Ultimately, it is anticipated that increasing

the gain should increase the area of the RAS for a given equilibrium point. A similar

effect is anticipated with respect to the RLDS if the upper limit of the load power is

decreased. A less demanding load decreases the chance that a load step will exhaust

the available energy stored in the output capacitor. To test these hypotheses, the

RAS for all equilibrium points associated with (3.13) must be calculated.

3.3 Computation of the Region of Asymptotic Stability

Since the RAS is critical to the stability claims made in this thesis, having an

accurate calculation of its boundary is imperative. As a solution, an algorithm was

developed that yields a high-resolution boundary of a given RAS for an n-dimensional

system, provided a time-domain simulation of the system exists. The objective of the

RAS calculator is to locate the boundary of the set of all initial conditions that allow

their resultant trajectories to converge to the specified equilibrium point. As opposed

to studies performed in [7] wherein genetic algorithms were used to calculate the RAS,

the algorithm proposed in this thesis searches for points that satisfy the definition of

the RAS through repeated trial simulations. Methods of this nature are not typically

preferable, but are nonetheless a practical choice for low-dimensional systems.

19

For an n-dimensional system, the RAS is located by fixing n − 1 states in a

predefined search space and performing a binary search on the n’th state. Once the

minimum value for convergence is found, the process repeats, fixing n−1 new points.

After iterating through the entire search space, the result is a fine boundary that

separates the set of initial conditions that converge from all other initial conditions.

Generally speaking, finding the minimum state for convergence is not sufficient to

articulate the RAS boundary. In the most general case, a minimum and maximum

bound on the n’th state will need to be located. For example, if the system has 3

dimensions, then the RAS will be some volume in <3. Fixing 2 dimensions will result

in a binary search along a straight line in <. Depending on the convexity of the RAS,

there are 1 or more intervals in the search space where the initial conditions will

converge. Only by locating every interval can the RAS boundary be fully resolved.

Properties of (3.13) have been exploited to expedite the binary search process.

In particular, no upper bound on the voltage state exists within the search space,

so only the minimum voltage for convergence needs to be located. This is because

there is no maximum energy state of the bus capacitor such that the power demand

cannot be met. In other words, there exists only a minimum voltage level where a

trajectory is guaranteed to be guided to equilibrium. In the general case, an upper

bound and lower bound need to be located, so several binary searches would need

to be conducted. Another property of the system that can be exploited is that the

voltage state converges to 1 per unit no matter the choice of input, u. This implies

that the test for convergence can be greatly simplified. Simply check if the voltage

state is near 1 per unit instead of checking for convergence to every unique state in

the RSSE. The non-existence of an upper bound on the RAS with respect to voltage

and the knowledge that voltage always converges to 1 per unit both increase the speed

of the RAS calculator.

The procedure of the RAS calculator can be summarized by the following psuedo-

code:

20

CalculateRAS

x1 ⇐ linspace(x1lower
, x1upper , N)

x2 ⇐ linspace(x2lower
, x2upper , N)

..........

xn−1 ⇐ linspace(xn−1lower
, xn−1upper , N)

for i = 1 : N

x1 ⇐ x(i)

for j = 1 : N

x2 ⇐ x(j)

..........

xnlower
⇐ A

xnupper ⇐ B

for k = 1 : M

xn ⇐ (xnlower
+ xnupper)/2

simulate ′model.slx′

if Xn. data(end) > 0.99

xnupper ⇐ xn

else

xnlower
⇐ xn

end if

end for

xnminimum
⇐ xn

end for

end for

21

As seen in the preceding psuedo-code, there are n − 1 nested for-loops for an n-

dimensional system. The outermost loop fixes state x1(t0), while the second outermost

loop fixes x2(t0), and so on until the innermost loop performs the binary search. To

locate the minimum xn(t0) for convergence, the binary search uses a predetermined

range [xn(t0), xn(t0)] and takes the initial guess to be the average of the upper and

lower bounds of this range. The binary search simulates the ensuing trajectory using

a SimulinkTM model. Inputs to the model are the power demand and the initial

condition, and the outputs are the system states. If the trajectory does not converge,

the lower bound of the search range is updated to be the initial guess. If the trajectory

converges, the upper bound of the search range is updated to be the initial guess.

This procedure is illustrated in Figure 3.4.

Fig. 3.4. Graphical representation of the binary search algorithm. The
black arrows represent the range of values being searched, while ‘A’ and
‘B’ denote the minimum and maximum bounds on the search interval. In
this example, initial guess xk was found not to converge, so all states lower
than xk are excluded in the next search iteration, k + 1.

The binary search mechanics are a reflection of the following assumptions: If an xn(t0)

causes the initial condition to converge, all xn(t0) greater will also converge. If an

xn(t0) causes the initial condition to diverge, all xn(t0) lower will also diverge. Since

only the minimum voltage state is a requirement to articulate the RAS boundary, a

single binary search is sufficient.

The resolution of the boundary is dependent on the choice of the search space.

For example, if x1,2,...,n−1(t0) are defined as N equally spaced points within the search

22

space, increasing N will greatly increase the resolution of the solution, albeit at great

expense to the computational time. The most significant thing that can be done to

increase the speed of the RAS algorithm is to condense the search space. This can

be done by decreasing the resolution of the calculated boundary, or by reducing the

number of fixed states through reduced-order modeling techniques. It can be noted

that for n states, there are equally as many for-loops. Reducing the order of the

system reduces the number of nested for-loops, thus increasing algorithm speed.

3.4 Locating the RSSE and RLDS for (3.13)

The RAS for xe = (1, 1) was obtained using the algorithm described in the previous

section with parameters G = 2, τ ′ = 0.2, ilim = 1.5, v∗dc = 1, and PL = 1. This RAS

is illustrated as the shaded region in Figure 3.5. The trajectories shown in Figure 3.5

were obtained by simulating the system in (3.13) with SimulinkTM R2018b.

0

idc

unstable RAS

vdc vdc
*

−1.5

1.5

0.5

Fig. 3.5. Sample trajectories and the RAS (shaded region) for xe = (1, 1)

23

The initial conditions for the trajectories were chosen to be vdc = 1.5, while idc varies

between its upper and lower limits. In this figure only, the voltage error, vdc − v∗dc,

was plotted on the horizontal axis. From the figure, it is evident that the steady-state

voltage error for the proposed control strategy is zero. It may be recalled that only a

single boundary of the RAS is articulated by the algorithm. As mentioned in Section

3.3, the hard limits on current force the upper and lower boundaries, and all states

to the right of the calculated boundary are within the RAS.

The speculations in Section 3.2 regarding the influence of gain and load power

on stability can be resolved by using the RAS calculator. It was determined that

increasing the gain does in fact increase the area of the RAS for xe = (1, 1). To

illustrate this point, the RAS in Figure 3.5 was computed again with G = 5 and a

third time with G = 8. The resultant spaces are overlayed in in Figure 3.6.

Fig. 3.6. The RAS for xe = (1, 1) is shown for G = 2, 5, and 8 from right
to left, respectively.

24

By repeating these calculations for multiple equilibrium points, it was verified that

increasing the gain results in a larger RAS area for any arbitrary equilibrium point of

(3.13). While each increase in gain resulted in a marginal increase in the total RAS

area, it nonetheless suggests that increasing the system gain increases the number

of possible stable trajectories. Before any conclusions can be made regarding the

influence of the maximum load power on stability, the RSSE and RLDS for (3.13)

must first be calculated.

Calculating the RSSE is a simply a matter of expressing xe as a function of the

inputs, PL and v∗dc. Since the intention is to operate the system at its rated voltage,

v∗dc is fixed at 1 pu. PL is taken to be any value within [−1, 1] pu, accounting for

rated conditions and regenerative operation. It is easily shown that for all equilibrium

states of (3.13), the steady-state voltage error is zero and the source current takes

whatever value that PL is chosen to be. Therefore, the RSSE for −1 ≤ PL ≤ 1 is

RSSE = {(vdc, idc) : vdc = 1 and− 1 ≤ idc ≤ 1} (3.14)

The RSSE of (3.13) is illustrated in Figure 3.7.

Locating the boundary of the RLDS is a matter of calculating the RASi for all

xe,i ∈ RSSE and overlapping them on a single plot. Their intersection, then, can

be obtained by inspection, thus yielding the RLDS. Note that since the RSSE is a

continuous space, this would imply that an infinite number of RASi need to be calcu-

lated. This is not necessary however, as a pattern becomes evident when several RASi

are plotted. As PL varies from +1 to −1, the RAS boundaries shift in the direction

of negative vdc. Again, since all points to the right of the calculated boundaries are

within each RAS, the intersection of all RASi is equal to RASPL=1. Thus, the RLDS

for (3.13) is equal to its RAS for xe = (1, 1). As a way of illustrating this procedure,

the RASi for several values of PL are shown in Figure 3.7. It can be seen that the

RLDS is the most heavily shaded region in the figure.

25

10
-1.5

0

1.5

RASPL =1

RASPL =0.5

RASPL =0.001

idc

v

1.0

-1.0

xe with PL = 0.5

xe with PL = 1

xe with PL = 0.5

RSSE

RLDS

xe with PL = 1

dc

Fig. 3.7. The RAS for PL = 0.001, 0.5, and 1 are shown. The RLDS is
equal to the RAS associated with PL = 1. In this figure, G is assumed to
be 5.

From Figure 3.7, it is evident that the upper bound on PL determines the boundary

of the RLDS, and therefore plays a major role in the stability of system trajectories.

Decreasing the upper limit on PL increases the area of the RLDS significantly, thus

giving way to notions such as single-step stability and large-displacement stability.

For (3.13) to be single-step stable, the RSSE must be a subset of the RLDS. From

Figure 3.7, single-step stability can be confirmed by inspection. Therefore, (3.13) can

safely handle any single load step within ±1 pu.

Single-step stability, however, does not ensure stability for large input changes

that occur rapidly in succession. In other words, large-displacement stability is not

yet guaranteed. To ensure that stability is maintained under the description of u(t)

given in Section 2.3, the RSS for (3.13) must be a subset of the RLDS. By calculat-

ing the RSS and overlaying the RLDS, large-displacement stability can be confirmed

by inspection. Much like the RAS calculation, special attention was given to pro-

ducing an accurate, high resolution RSS boundary. In the following chapter, several

26

methods for computing the RSS are set forth, compared, and analyzed. Once the

RSS boundary is located, the design paradigm for large-displacement stability can be

validated.

27

4. COMPUTATION OF THE REACHABLE

STATE-SPACE

Three methods to calculate the RSS of a nonlinear system are described in this

chapter. To preface the methods of computation, the first section of this chapter

is dedicated to describing an example RSS computation using techniques that other

authors have established for similar problems. The second, third, and fourth sections

in this chapter are dedicated to describing the reachability analysis techniques used by

CORA for MATLAB, the discrete-space search algorithm, and the advancing fronts

algorithm, respectively. The performance of the latter two algorithms is analyzed and

compared in the fifth section. Lastly, the calculated RSS is used to choose parameters

for a dc power system in accordance with the design paradigm for large-displacement

stability.

4.1 Reachable Sets and the RSS

One possible way to calculate the RSS for (3.13) is to use reachable sets. This

is a natural first inclination because other authors have explored the computation of

reachable sets in great detail in [3] and [4]. As an example of how reachable sets could

be used to compute the RSS, it is useful to consider the following system, consisting of

two coupled oscillators taken from [4]. The state dynamics of the system are governed

by

d

dt
x(t) =

σ −ω

ω σ

x(t) +

1

0

u(t) (4.1)

where the initial condition set it x(0) = α[1
10
, 0]T for α ∈ [−1, 1] ⊂ < and the input

set is u ∈ [−1, 1] ⊂ <. The uncertainties in the initial conditions are reflected by

28

the choice to represent them as the line segment from (− 1
10
, 0) to (1

10
, 0). Similarly,

the uncertainty in the input u(t) is modeled as a strictly arbitrary value within [-1,1].

The solution to the coupled oscillators in (4.1) is readily obtained.

x(t) = α

eαtcos(ωt)
eαtsin(ωt)

x(0) +

∫ t

0

eα(t−τ)cos(ω(t− τ))

eα(t−τ)sin(ω(t− τ))

u(τ)dτ (4.2)

Reachability analysis techniques presented in [3] and [4] allow for the exact calcu-

lation of the reachable set at an arbitrary time t = T for the linear system in (4.1).

In Figure 4.1, the reachable set at time t = π
2

was computed using CORA, a software

compatible with MATLAB that uses the techniques in [3].

Fig. 4.1. The reachable set at time π
2

seconds plotted using CORA. The
grey region represents the set that contains all possible trajectories orig-
inating from the white rectangle, which is the initial condition set. The
black line is a sample trajectory following the solution (4.2) with arbitrary
inputs. System parameters are σ = −0.1 and ω = 1.

Although the RSS is uniquely defined in the context of the RSSE of (3.13), it can be

assumed that the equivalent RSS for the system in (4.1) is the reachable set at t = T

29

when T is sufficiently large. Using CORA, the RSS for (4.1) was calculated and is

shown in Figure 4.2. Therein, 10 seconds is being used as a practical realization of the

“infinite” time horizon associated with the RSS. In the case of the dynamics in (4.2),

10 seconds is sufficient time for these trajectories to traverse every reachable state, so

the reachable set at time t = 10 is equal to the system’s RSS. It is interesting to note

that a sufficiently large T implies that the system has reached steady state, but the

boundary of the RSS typically contains states that occur in the transient response.

Fig. 4.2. The reachable set at time 10 seconds plotted using CORA.
System parameters are σ = −0.1 and ω = 1

.

The use of reachable sets appears promising, but other methods of calculating the

RSS will also be explored. An important distinction between the reachable set at

time t = T and the RSS is the boundary of each set. At the boundary of the RSS,

all state derivatives will point inside the space because, by definition, no point on

the edge can be driven to a state that is outside the RSS. At time t = T , however,

there may be reachable states not yet traversed, and therefore the state derivatives

30

at the boundary of the reachable set at time t = T may point inside or outside the

set. Only when all derivatives along the boundary point inside the space has the RSS

been resolved. Theoretically, an algorithm could be designed that locates boundaries

where all derivatives of the system in (3.13) point inside the space enclosed by the

boundary.

4.2 Use of CORA for MATLAB

The Continuous Reachability Analyzer (CORA) for MATLAB was employed in

finding the RSS for (3.13). The toolbox, which was developed by Mathias Althoff

and Niklas Kochdumper, has the capability to quickly produce reachable sets of many

different systems with linear, nonlinear, and hybrid dynamics. CORA’s algorithm for

computing reachable sets of nonlinear systems is summarized in this section.

CORA defines the reachable set at time t = τ to be the set that contains all

trajectories that originate from x0 ∈ X0 and are driven by uncertain inputs u(t) ∈

U(t) [6].

R(τ) = {X(τ ;x0, u(.))|x0 ∈ X0,∀t : u(t) ∈ U(t)} (4.3)

The objective of CORA’s algorithm is to obtain the reachable set at time t = kτ for

every time step k so that the reachable set from time t = t0 to t = T can be expressed,

which is defined as the union of all reachable sets within the time horizon.

R([t0, T]) =
⋃

[t0,T]

R(t) (4.4)

Althoff and many other contributors to Reachability Analysis have elected to use

zonotopes to represent sets. This is in part because zonotopes are closed under linear

transformations, which means reachable sets of linear systems can be calculated ex-

actly. Additionally, zonotopes afford computational efficiency compared to polytopes,

31

ellipses, or other set representations [3]. A zonotope Z ⊂ <nz is defined as the finite

Minkowski sum of line segements [5].

Z = z0 +
h∑
i=1

αiz
i : αi ∈ [−1, 1],∀i (4.5)

where z0 ⊂ <nz is its center, zi ⊂ <nz are its generators, and h is the number of

generators. For example, if the initial condition set were a square centered on [1, 2]T

with side length equal to 2, the corresponding zonotope would be

X(t0) =


1

2

 ,
 1

0

 ,
0

1

 (4.6)

The input, if modeled as the line-segment between [-1,1], would be expressed as

U = {0, (1)} (4.7)

A graphical description of a zonotope is displayed in Figure 4.3.

Fig. 4.3. A zonotope with h = 3 generating vectors. The Minkowski
sum is essentially all possible linear combinations of the generators, thus
spanning the shaded region.

CORA’s algorithm for nonlinear reachable sets takes an abstraction of the sys-

tem’s dynamics at every timestep. Since this abstraction is based on conservative

linearization, zonotopes are used in nonlinear systems as well [3]. The flow of the

nonlinear algorithm is described in Figure 4.4. Once the system is linearized, the

32

reachable set at time t = kτ is calculated without the set of error due to linearization

considered. The reachable set due to linearization errors is managed separately in

order to ensure that the reachable set at t = (k + 1)τ is an over-approximation.

Fig. 4.4. Flow chart depicting CORA’s Nonlinear Reachable Set calcula-
tor.

One important feature of the nonlinear reachable set algorithm is if the allowable set

due to errors does not enclose the calculated set due to errors, then the allowable set

due to errors must be enlarged to preserve an over-approximation. If the enlargement

is unsuccessful, the previous reachable set must be split into partial reachable sets

before proceeding. The act of splitting the previous reachable set is done in effort to

reduce the size of the calculated set due to linearization errors. Finally, the reachable

set at time t = kτ is taken to be

R(kτ) = Rlin(kτ) +Rerr(kτ) (4.8)

33

As an artifact of splitting sets into partial sets, the computational burden is com-

pounded, and the algorithm may never converge to a solution. This shortcoming of

CORA becomes increasingly evident when the toolbox is applied to (3.13). Evidently,

the algorithm is unable to converge to a solution when the input to (3.13) is uncer-

tain and within [−1, 1]. There might be several subtleties in the system that prevent

convergence. For example, instabilities in the numerical solution to (3.13) cause the

wrapping effect, which is documented in [4] and investigated extensively in [3]. The

wrapping effect is the name given to uncontrolled set-expansion due to the propoga-

tion of recurring over-approximations. In the context of the algorithm described in

the previous section, reachable sets split indefinitely because the set of linearization

errors becomes increasingly large as the algorithm proceeds through many timesteps.

This expansion effect can be observed in Figure 4.5. A solution that has converged

properly can be seen in Figure 4.6.

Fig. 4.5. Reachable set at time t = 0.3 seconds for the system in (3.13). For
times t > 0.3, convergence was not achieved. The accuracy of the solution
is obtained by inspection. Since the grey sets do not tightly enclose the
simulated trajectories, the accuracy of this solution was determined to be
less than satisfactory.

34

Fig. 4.6. Reachable set at time t = 2 seconds for the system in (3.13).
Convergence was achieved when the input was allowed to vary within
[−0.1, 0.1] as opposed to [−1, 1]. In contrast with Figure 4.5, the grey sets
tightly enclose the simulated trajectories, indicating that this reachable
set is accurate.

If the system in (3.13) is being described very rigorously, it is in fact a hybrid

system as opposed to nonlinear. This is due to the presence of hard limits on x2,

which causes the dynamics to change when x2 > 1.5 or x2 < −1.5. Essentially,

the nonlinear reachable set approach will always be invalid because it could never

accommodate the hard limits. Furthermore, this classification greatly increases the

modeling difficulty in CORA because the hybrid systems toolbox requires a certain

degree of expertise and experience to use correctly. The high entry-level curve is

not exclusive to the hybrid systems toolbox. Using CORA in any capacity generally

requires a profound understanding of reachability analysis, set theory, and numerical

analysis. Since so much of the results obtained through CORA are dependent on

setting up the algorithm parameters correctly, it is unlikely that a novice user will be

able to easily obtain good results.

35

4.3 Discrete Space Search

The objective of the discrete space search algorithm is to locate the boundary

of the RSS by using trial simulations to traverse the entirety of the space. If every

reachable state can be located with trajectories, then the boundary is readily con-

structed by inspection. The difficulty lies in freely modulating the input u(t) such

that all states within the RSS are visited. Although there always exists an arbitrary

function u(t) that drives a trajectory to the boundary of the RSS [4], these exact

input functions are not known a priori. However, by discretizing a search space and

simulating trajectories recursively, it is possible to extract the RSS boundary without

knowledge of the exact inputs. It is shown in Figure 4.7 how the boundary is deduced

from the sample of points in the RSS.

Fig. 4.7. A sampling of the RSS for the system in (3.13). Stars indi-
cate points that have been reached by trajectories while the boundary
is the black line connecting the outermost points. The boundary was
constructed using MATLAB’s boundary function

.

36

The typical simulation strategy might consist of repeated trials, each with a dif-

ferent input sequence. The discrete space search algorithm is different in that it is

recursive. It simulates a single trajectory that starts within the RSSE with u = 1.

While the trajectory is updated with the forward Euler method, the algorithm checks

if each updated state has been visited by a previously simulated trajectory. If it has

not, the trajectory is simulated recursively, this time with both u = 1 and u = −1.

The act of calling the simulation recursively splits the trajectory into two paths, one

corresponding to each input u. When these new trajectories reach untraversed states,

they will split off into four more paths, and so on until no new paths can be found.

This procedure allows u(t) to be modulated in such a way that the simulated tra-

jectory will always be provided the necessary input to travel along a path that has

not been traversed. Eventually, no simulated trajectory will find a new state and the

algorithm is henceforth allowed to terminate.

One subtlety in this input modulation strategy is that u(t) is not continuous on

[−1, 1], but is switched between the two extremities. This raises the concern that there

are trajectory paths corresponding to u ∈ (−1, 1) not explored by the algorithm. As

a counterargument, it is useful to recall that any derivative function f(x, u) with

u ∈ (−1, 1) can be represented as a linear combination of f(x, 1) and f(x,−1). In

other words, there always exists a and b such that

af(x, 1) + bf(x,−1) = f(x, u), u ∈ (−1, 1) (4.9)

Graphically, (4.9) implies that any derivative function corresponding to u ∈ (−1, 1)

will “point” between the derivatives corresponding to u = 1 and u = −1. This, in

turn, implies that any trajectory with u ∈ (−1, 1) will be enclosed by trajectories with

u = 1 and u = −1. Thus, all allowable inputs are accounted for in this modulation

scheme.

Since it is unlikely that a single point of interest will be ever be traversed more

than once, the algorithm lumps nearby points into a rectangular domain and checks

if the domain has been traversed. In other words, when the simulation is updated,

37

the new point exists in a predetermined domain. If any point in this domain has

been previously traversed, the trajectory is allowed to proceed, and the function is

not called recursively. In practice, each domain has a corresponding binary variable.

If the domain has not yet been traversed, its value is ’0’. Otherwise, the value of the

binary variable is ’1’. It is illustrated in Figure 4.8 how the logical assignment of the

domains maps to a sample point of the RSS.

Fig. 4.8. State-space domains with their assigned logicals (left). When a
simulated trajectory enters a domain with logical ’0’, its logical is updated
to ’1’. The trajectory point is then added to the sample of the RSS in its
corresponding domain (right). The arrows represent trajectories taken to
reach each domain.

This method of checking requires that the search space be discretized, hence the

name “discrete space search”. Properties of the system of interest may be exploited

to choose the search space. For example, the hard limits on x2 in (3.13) made it a

natural choice to define the search space with bounds [−1.5, 1.5] with respect to x2.

Furthermore, it is often desirable that the discrete domains fit evenly into the space.

In this application, the search space was chosen to be rectangular with rectangular

domains for simplicity. It would possible, for example, to define an arbitrarily shaped

search space where the domains are the Delaunay Triangulation of the space, but such

38

spaces are not considered in this application. The choice of search space is generally

trivial, but it must completely enclose the RSS.

The entire procedure of the discrete space search algorithm can be summarized

by the following pseudo-code:

Main

rss⇐ zeros(N)

x⇐ x0 where 0 = f(x0, 0)

call Recursive(x, 1)

call Recursive(x,−1)

Recursive(x, u)

calculate xe where 0 = f(xe, u)

xn ⇐ x

while ‖xn − xe‖ < ε

xn ⇐ xn + hf(xn, u)

i, j ⇐ quantize(xn)

if rss(i, j) = 0

rss(i, j)⇐ 1

vdc(count)⇐ xn(1)

idc(count)⇐ xn(2)

count⇐ count+ 1

call Recursive(xn, 1)

call Recursive(xn,−1)

end if

end while

39

As seen in Main, the algorithm is initialized with an arbitrary equilibrium state and

an NxN array of logical zeros. Recursive is immediately called twice with one input

extreme per call. Within Recursive, the new equilibrium point corresponding to the

chosen input is calculated, and the trajectory is simulated from x until convergence

with xe is reached. While the trajectory is simulated, quantize locates the discrete

domain associated with xn. If the logical associated with domain i,j is 0, the domain

has not been visited. When this is the case, the logical is updated to 1, and each

component of the state is stored. Finally, and the function is called recursively,

splitting into two trajectories. When the algorithm terminates, the stored states are

used to construct the RSS boundary.

There are several limitations that are inherent to the architecture of the discrete

space search algorithm. As a consequence of using discrete domains, it is extremely

difficult to produce a smooth, high resolution boundary. It is useful to consider the

example in Figure 4.9. If the true boundary of the RSS is considered to be the black

line, the true boundary cannot be accurately represented by one state per domain.

Were the domain area made very small, the resolution of the boundary would increase

but at great expense to the speed of the algorithm and memory of the computer. At

best, the discrete space search will always yield a very crude approximation of the

RSS boundary.

Another consequence of using discrete domains is that the algorithm will always

yield an under-approximation of the true boundary. This is because the algorithm

does not search for states within the furthest reachable domain. It is useful to con-

sider a trajectory that has reached the furthest reachable domain. While it may be

true that no reachable domains exist beyond its current domain, reachable states

could exist within its current domain beyond its current state. Since these reachable

states are never searched for, the discrete space search will always result in a slight

under-approximation of the RSS boundary.

40

Fig. 4.9. The boundary of the RSS as computed by the discrete space
search algorithm (jagged, light line) and the true boundary of the RSS
(smooth, dark line).

.

Since the algorithm is both recursive and simulation based, more limitations and

concerns arise. All of the numerical stability and global error considerations associated

with the forward Euler method also apply to the algorithm. Due to the algorithms

recursive nature, memory consumption is also of great concern. This is especially

true in the case of higher-dimensional systems. If rectangular domains are used, the

number of domains grows according to Nd, where N is the number of domains per

dimension, and d is the dimension of the system. Increasing the number of domains

drastically increases the number of recursive function calls, which has the potential

to exhaust memory resources. Furthermore, in tools such as MATLAB, the number

of recursions that is allowed to take place is limited, thus limiting either the size or

resolution of the search space.

41

4.4 Advancing Fronts: An Algorithm for Approximating the Reachable

State-Space of a Nonlinear System

The objective of the advancing front algorithm is to locate the set of points which,

when treated as the boundary of a closed region in state-space, cannot be driven

outside of the enclosed region for all allowable inputs to the system. By definition, this

set of points constitutes the boundary of the system’s RSS. The numerically calculated

RSS then, will consist of its boundary and all points enclosed by its boundary.

As a visualization, it is useful to consider a small arc length on the edge of an

arbitrary and convex region such as that of Figure 4.10. At each point along the arc

there is an associated vector of state derivatives determined by the system dynamics.

Fig. 4.10. State derivatives for u = 1 (blue) and u = −1 (red) are eval-
uated at points along the black border. Points near the bottom right
are approximately at the edge of the RSS, while points near the top left
indicate that there are reachable states above the enclosed region

42

If this example region is an arbitrary set of reachable states, then points outside the

region are not reachable states if and only if all derivatives along the arc point inside,

or are tangent to, the region. Hence, the algorithm is satisfied if and only if, at every

point along the boundary, there is no allowable input u who’s corresponding derivative

points outside the region. If a state derivative vector points outside the region, this

would imply that the region needs to be expanded to include more reachable states.

In practice, the set of interest is not arbitrary, but is the set of initial conditions.

Indeed, the intention is to expand the set of initial conditions into the RSS.

When there is evidence that there are reachable states outside of the arc length, or

‘front’, of interest, an expansion should be made to include the remaining reachable

states. The front, therefore, is not fixed but rather elastic in nature. Each point

along the front is allowed to move outward from the enclosed region subject to the

underlying vector field of state derivatives. The procedure of properly expanding

these fronts into the true RSS boundary is as follows:

• Between every node, determine if an expansion is possible.

• If an expansion is possible, perform an expansion

• Wrap the new set of nodes in a boundary

• Increase the resolution of the boundary

In order to properly articulate the inner-workings of each step in the advancing

fronts algorithm, it must first be defined what it means for the state derivative vectors

to point inside or outside of the space. Additionally, it is important to define what is

considered to be the numerically calculated boundary, or edge, of a two-dimensional

region. In this context, the edge of a space is considered to be a sampling of significant

points called nodes and all points along the straight-line segments that connect the

nodes. Together, the nodes and segments form a closed path that binds a space. A

graphical explanation of approximating the edge of a space as nodes and segments is

given in Figure 4.11. The surface normal then, is easily defined as a vector that is

43

perpendicular to the surface at any point along one of its straight-line segments, not

at the nodes. Based on this description, all points along a node-connecting segment

have the same normal vector. It is difficult to define the normal at the nodes, but

the algorithm can succeed without this definition.

Fig. 4.11. A perfect circle (shaded) is crudely approximated by straight
line-segments and nodes. The edge of a two-dimensional surface will be
defined as a sampling of points (nodes) and straight line segments be-
tween them. In practice, the resolution of the approximation will be much
higher.

Based on these definitions of edge and surface normal, inside and outside can

be defined. Let the angle formed between a state derivative vector and the surface

normal be called θ. If θ is less than 90 degrees, the state derivative points outside the

space. If θ is greater than 90 degrees, the state derivative points inside the space. The

concepts of the inside and outside regions of the boundary are illustrated in detail in

Figure 4.12. Challenges with these definitions occur when the space is non-convex.

For example, a state derivative might satisfy this definition of outside at an arc length

44

Fig. 4.12. The surface normal (black), and state derivatives for 2 different

allowable inputs are evaluated at the midpoint of segment
−→
AB. θ is the

angle formed between a state derivative and the normal. The derivative
corresponding to the blue arrow points outside the region (θ < 90), while
the derivative corresponding to the red arrow points inside the space (θ ≥
90).

of interest, but if a ray were to extended pointing in the same direction, the ray might

intersect the space again at some point, thus suggesting that the derivative actually

points inside. The same situation occurs if there are small divots in the front. The

solution to this challenge is implemented in the “wrapping” step of the algorithm.

Therein, accommodations are made to preserve the definitions of inside and outside.

The first step for advancing fronts is to determine the expandability of the edge

between any two nodes. As previously discussed, reachable states exist outside the

space if there are state derivatives at the edge that point outside the space. Thus,

the state derivatives and normals are evaluated at the midpoints between nodes. The

expansion cannot take place at the nodes because the normal need be defined, and the

derivatives are roughly equal across all points along each segment, so the midpoints

45

were a suitable location choice to evaluate these quantities. Obtaining the normal

between nodes ‘A’ and ‘B’ is as simple as taking B − A and rotating that vector

by 90 degrees. Note that this definition implies that the length of the normal is

dependent on the length of
−→
AB. If θ corresponding to any allowable input is less

than 90 degrees, this implies an expansion can be made, so the node is marked as

advanceable. Otherwise, the node remains fixed at its position. Referring back to

Figure 4.12, this particular front can be advanced from the midpoint between nodes

‘A’ and ‘B’ since the derivative for u = 1 points outside the space.

Each midpoint deemed advanceable by the algorithm is assigned a proposed ex-

pansion which is independent from all other proposed expansions. The nature of a

proposed expansion can be described in terms of magnitude and direction. The direc-

tion is indicated by the normal vector, as this is the vector that points outward from

the enclosed region at every point. Its magnitude is determined by the projection of

the state derivative onto the surface normal, n.

projn f(x,u) =
nT f(x,u)

|n|2
n (4.10)

Which is equivalent to

projn f(x,u) =
|n||f(x,u)| cos θ

|n|2
n (4.11)

Applying the definition of the unit normal to (4.11), it can be shown that there is no

dependence on the length of the normal.

projn̂ f(x,u) = |f(x,u)| cos θn̂ (4.12)

This is desirable because the length of each normal is dependent on the length of each

segment. Since each segment will have a different length, each expansion would be

dependent on each segment length. Thus, (4.12) will be used to define the projection.

46

Since there are multiple allowable inputs, there are multiple state derivatives that can

be chosen to project. The one selected for projection is the derivative who’s θ is less

than 90 degrees, and who’s projection is the largest compared to all other inputs.

The equation that governs the expansion proposal is given in (4.13).

RSSi,k+1 = RSSi,k + projn̂ f(x,u) ∗ δ (4.13)

Here, RSSi,k is the i’th midpoint after the k’th expansion, n̂ is the unit normal vector,

f(x,u) is the state derivative, and δ is analogous to ∆t in the context of a forward-

euler iterator. The presense of δ in (4.13) allows the rate of expansion to be controlled,

ultimately giving the user the freedom to increase or decrease the speed and precision

of the algorithm. An example of a proposed advancement is shown in Figure 4.13.

Fig. 4.13. An example of a proposed advancement. The starred nodes
represent RSSk, while the circled nodes represent RSSk+1. The green
arrows represent the surface normals at each midpoint, indicating the
placement of RSSk+1 relative to RSSk

It is important to define RSSi,k+1 as the i’th node after the present iteration. Accord-

ing to this definition, (4.13) takes the midpoints of the current iteration, advances

47

them outward, and takes the expanded midpoints to be the nodes of the next itera-

tion. Once an expansion proposal has been made for every node, the proposals are

either approved or rejected by an expansion limiter. Once the k’th expansion has

been implemented, the new set of nodes is wrapped in a boundary.

The primary motivation for “wrapping” each new set of nodes in a boundary is to

preserve the integrity of the outward expansion direction. Throughout the advance-

ment procedure, neighboring nodes will not expand at the same rate, giving rise to

imperfections and divots along the edge of the space. These cause performance issues

with the algorithm because the edge will not proceed in the correct direction. One

solution to this problem is to “wrap” each iteration with a boundary of predetermined

tightness using the MATLAB function, boundary.

Boundary accepts an array of points and returns a single conforming border that

is guaranteed to contain every point that in the array. This is noticeably similar to the

concept of taking the convex hull of a set of points. The difference is that MATLAB’s

boundary also accepts an argument between 0 and 1 which corresponds to the desired

tightness of the boundary. A very tight boundary is allowed to shrink towards the

interior of the hull, whereas the convex hull is a strictly convex set. This gives rise

to another motivation to wrap the nodes, which is to maintain convexity throughout

the expansion process. If it is known in advance that the RSS of a system is convex,

the user can always loosely wrap the nodes using boundary, or by using MATLAB’s

convhull. It is illustrated in Figure 4.14 how the presence of a divot along the edge

leads to improper expansion and how wrapping can influence the edge formation. The

advantage of processing the edge of the RSS at each iteration is that it eliminates the

possibility that three neighboring nodes form a very large interior angle. Therefore,

the wrapped set can be guaranteed to expand outward upon the next iteration.

As the edge of the RSS expands, the line-segments between nodes will increase in

length. The result is an increasingly crude approximation of the edge of the space.

This effect is further exacerbated by calling MATLAB’s boundary function because

the resultant boundary eliminates nodes, as seen in Figure 4.14. In other words, the

48

Fig. 4.14. The unwrapped front (starred nodes) expanding in the positive
x1 direction. Segments on the interior of the divot are subject to ex-
pand inside the space because of the surface normal directions. Applying
MATLAB’s boundary eliminates these features, thus preserving the out-
ward expansion direction (circled nodes). Additionally, it can be seen that
applying boundary reduces the total number of nodes used to approximate
the edge of the RSS.

resolution of the boundary decreases throughout the duration of the algorithm. The

average resolution can be loosely defined as

resolution =
lboundary

lsegment

(4.14)

where lboundary is the length of the boundary and lsegment is the average segment length.

Not only is a crude boundary undesirable, but if the resolution becomes too low, the

low-resolution boundary becomes subject to a kind of “traveling” effect. When this

happens, the collection of nodes migrates with respect to its center, leading to an

extremely inaccurate result. This effect can be seen explicitly in Figure 4.15.

49

Fig. 4.15. The RSS boundary after 200 advancements (labelled ‘A’), 900
global advancements (‘B’), and 1500 advancements (‘C’). Rather than
expanding outward to articulate the boundary, the low-resolution surface
changes position relative to its center.

Accordingly, the resolution of the boundary needs to be increased at every iteration

to mitigate these two problems. There are many ways to increase the resolution of

the boundary, but perhaps the simplest method was determined to yield satisfactory

performance. The strategy is as follows: If the length between any two adjacent

nodes is too large, insert a new node at the midpoint between them. What length

is considered to be too large is ultimately up to the user. In this application, the

threshold segment length was chosen to be much smaller than the average segment

length of the initial condition set. This is because the final resolution is expected to

be much larger than that of the initial condition set.

Now, it is not expected that the strategy will always preserve a desired resolution.

For example, if a segment length at the end of an advancement is 5 times the threshold

segment length, the strategy will result in 2 segment lengths that are each 2.5 times

50

the threshold segment length. However, in choosing a small enough δ, the total

number of iterations required for convergence increases, thus increasing the number

of times that the resolution is increased. As long as δ is sufficiently small, this strategy

yields a smooth, high-resolution boundary.

When the front is allowed to advance freely outward, the potential for the front to

converge to an inaccurate boundary still exists. While most of the front will converge

accurately, subtle numerical features in (4.13) permit the front to expand outside the

true RSS boundary. If this occurs, the correct edge can never be resolved because

the algorithm inhibits reverse expansion. As an example, it is useful to consider the

generalized case which has been illustrated in Figure 4.16. Therein, an advancing

front is incident upon the true RSS boundary.

Fig. 4.16. The correct edge of the RSS (dashed black line) and an advanc-
ing front. Nodes along the green arc will experience a slowed expansion
while nodes along the blue arcs will experience a more rapid expansion.

Advancing fronts searches for boundaries where the state derivatives are tangent

to the boundary everywhere. In the example in Figure 4.16, all derivatives along

51

the dashed black line point strictly in the x2 direction, so the dashed black line is a

“barrier” to a moving front. As the front converges to the true solution, the derivatives

approach tangency to the front, so the projections of the derivatives onto the surface

normal are decreasing with each iteration. Since the expansion is governed by the

projections, every midpoint along the front will expand at a different rate because

every segment lies at a different angle to the underlying derivatives. The front will

experience a slowed, convergent expansion for an arc length that is nearly parallel to

the barrier. In contrast, the front will experience a rapid expansion for an arc length

that lies at an angle to the barrier. For nodes located at the junction of the green

and blue arcs, it is possible for a single node to “jump” the barrier in one iteration of

(4.13). The result is a cascading effect that allows the entire front to expand outside

the true boundary. The significant disparity in expansion rates between neighboring

nodes is the root of the inaccurate convergence or non-convergence problem.

As a way to address this issue, an expansion limiter is employed. The expansion

limiter accepts proposals from (4.13) and checks for uneven expansion rates. That

is to say, the proposed expansion distance at any node is significantly larger than

that of its neighboring nodes. When an uneven expansion is detected, the node is

frozen in place, along with the next 2 nodes in sequence and the previous 2 nodes in

sequence. In this application, it was determined that if a proposed expansion is 100

times greater than that of a neighboring node, the expansion limiter should replace

that expansion with a zero.

With the expansion limiter in place, the advancing front never passes the true

edge of the RSS. Upon convergence to the correct RSS boundary, the expansion

limiter will actually inhibit the final iterations required to satisfy the stop-condition.

During the final iterations, the absolute expansion distance proposed for each node

will be a sparse column. Many nodes have reached a satisfactory place, while few

others may need to advance an extremely small distance. As an artifact of expansion

limiter’s functionality, the final expansions will be removed from the column, freezing

the advancing front in place everywhere. To remedy this, a comparison is made from

52

the average proposed distance to the average actual distance. Upon convergence, the

average proposed distance will be significantly higher than the average actual distance

because the distance limiter replaces many expansion proposals with zeros. It was

determined that when the mean of the proposed distances is greater than 50 times

the mean of the actual distances, the expansion limiter is shut off so that the front

can proceed to its final destination.

When the underlying vector field of system dynamics is considered, it is possible

to draw several boundaries that all satisfy the algorithm’s stop-condition. That is, all

derivative vectors along the edge of the space point inside, or tangent to, the space.

This leads to some ambiguity in where the true boundary lies. It is shown in Figure

4.17 how it is possible for the algorithm to converge to two different boundaries.

Fig. 4.17. The RSS for (3.13) as produced by Advancing Fronts with two
different values for δ.

As a way of searching for the most accurate RSS, it is necessary to repeat the al-

gorithm with different values of δ and different initial condition sets. Theoretically,

53

all arbitrary initial condition sets that are wholly contained by the RSS should con-

verge to the exact same RSS. Additionally, adjusting delta for many different trials

will provide insight as to where there are subtle numerical instabilities in the space.

As δ is made very small, the precision of the algorithm increases greatly, similar to

how decreasing ∆t decreases the error in the forward-euler method. In this applica-

tion, the most accurate RSS boundary was taken to be the result that satisfies the

stop-condition with the least total enclosed area. This was found by comparing the

results with δ = 0.001 and with δ = 0.0001. Upon further decreasing δ, the algorithm

converges to a unique solution.

4.5 Comparing the Performance of Advancing Fronts and the Discrete

Space Search

Both the advancing fronts and the discrete space search yielded similar results, as

seen in Figure 4.18. Parameters for the results in Figure 4.18 were G = 2, τ ′ = 0.2,

ilim = 1.5, v∗dc = 1, and −1 ≤ PL ≤ 1. However subtle the differences may be, ar-

ticulating them will ultimately result in improved performance, and therefore a more

accurate LDSM. The boundary calculated by advancing fronts completely encloses

the boundary calculated by the discrete space search. Some arc lengths are very

tightly enclosed, while other lengths of the boundary differ by more than a full do-

main width. If the discrete space search is assumed to be working perfectly according

to its design, then it will always locate the correct domains where the boundary lies.

If advancing fronts is also assumed to be working perfectly, then for every domain

that contains the boundary, it will locate the correct set of states within that domain.

Based on these assumptions, it is anticipated that the two boundaries will differ by

half a domain width on average. In theory, the largest possible separation between

the two boundaries in a single rectangular domain would be equal to the length of

the diagonal of the rectangle.

54

Fig. 4.18. The boundaries of the RSS of (3.13) as computed by the advanc-
ing fronts algorithm (solid line), and the discrete space search algorithm
(starred line). There two methods very closely agree on the true solution.

The largest separation between the results of each algorithm is shown in Figure

4.19, which is a magnified vew of the top left corner of the boundaries shown in

Figure 4.18. In the discrete space search, the dimensions of the rectangular domains

are 0.0045 by 0.016 per unit, with respect to the vdc and idc axes. The maximum

separation was determined to be 0.007 per unit, purely in the direction of the vdc

axis. Since 0.007 per unit is more than the maximum theoretical separation in the vdc

direction, this indicates that the advancing fronts method is not working perfectly.

The result from the advancing fronts method is indeed a slight over-approximation of

the true RSS boundary, while the discrete space search is a slight under-approximation

of the true RSS boundary.

As a way to confirm these speculations, derivative vectors can be placed on top

of the boundaries given by each algorithm. As seen in Figure 4.19, states along

the discrete space search boundary can be driven further outward because there are

55

Fig. 4.19. State derivative arrows for u = 1 and u = −1 overlayed on the
discrete space search boundary (right) and the advancing fronts bound-
ary (left). Note that the arrows do not point inside the RSS where the
boundary is at ilim, but the limit implies that there are no reachable states
above it.

derivatives that point outside the space. In contrast, when derivative vectors are

placed on top of the boundary located by advancing fronts, not a single vector for

either input extreme, u = 1 or u = −1, points outside the boundary. This is the single

most significant piece of evidence that the solution obtained by the advancing fronts

algorithm is more accurate than the discrete space search. In the corner pictured in

Figure 4.19, arrows are not perfectly tangent to the boundary. The θ formed by these

arrows is at most 91 degrees, which gives additional evidence that this boundary is a

slight over-approximation in this local region.

56

There is an important subtlety in the argument for an accurate RSS boundary.

As seen in Figure 4.19, only the state derivatives corresponding to the minimum

and maximum inputs are evaluated for the stop-condition of the algorithm. If the

derivatives corresponding to the input extremes both point inside the RSS, then no

input exists within the allowable set that could drive a state outside the RSS. However,

since the allowable input set is continuous between its extremes, it is necessary to

prove that all inputs between u = 1 and u = −1 also point inside the RSS.

To prove this, it is essential to show that the set of derivatives at every point in

state-space is a convex set. The allowable set of inputs is U = [−1, 1] ∈ <, which is

a convex set by inspection. Since the derivatives in (3.13) vary linearly with respect

to PL, they are an affine mapping of U . An affine mapping of a convex set is itself a

convex set. Thus, the set derivatives is a convex set. By definition of a convex set,

elements of the set of derivatives are closed under convex combinations. Therefore,

any derivative for u ∈ (−1, 1) can be represented as the convex combination of f(x, 1)

and f(x,−1).

λf(x, 1) + (1− λ)f(x,−1) = f(x, u), u ∈ (−1, 1), λ ∈ [0, 1] (4.15)

Note that the definition of a convex combination restricts values of λ to be strictly

positive. In other words, only positive linear combinations of the derivatives corre-

sponding to u = 1 and u = −1 can be taken. As a result, the derivatives for inputs

u ∈ (−1, 1) point between the derivatives for inputs u = 1 and u = −1. Figure 4.20

illustrates the derivatives evaluated at u = 1 and u = −1, as well as for several inputs

between u = 1 and u = −1. The only way to form a vector from f(x, 1) and f(x,−1)

that does not point between them would be to take a combination such that λ were

negative, which is forbidden by (4.15). Thus, if the derivatives at the input extremes

satisfy the stop-condition, then all derivatives in the allowable set of inputs do as

well.

57

Fig. 4.20. Derivatives in (3.13) evaluated at u = 1 (red arrow) and u = −1
(blue arrow). The inputs corresponding to the black arrows are u = 0.9,
u = 0.75, u = 0.5, and u = 0.3.

Numerical simulations of (3.13) provide additional evidence that the advancing

fronts algorithm yields the most accurate RSS. It was determined to be possible to

simulate a trajectory that traverses states outside the RSS boundary given by the

discrete space search, but not outside the boundary given by advancing fronts. This

was achieved by stepping the input from PL = 1 to PL = −1 and back to PL = 1. The

time intervals between steps were selected in such a way that the ensuing trajectory

travels as close as possible to the boundary of the RSS. In Figure 4.21, the simulated

trajectory is traced in blue and overlayed on top of Figure 4.18.

58

Fig. 4.21. The simulated trajectory starts from vdc = 1, idc = 0. The
trajectory travels between the two boundaries in the region near vdc = 1,
idc = −1.

Since it is not immediately evident where the trajectory travels between the two

boundaries, this location has been outlinde by the dashed box. The region contained

by the dashed box has been magnified in Figure 4.22. Therein, it can be seen that

the simulated trajectory travels between the two boundaries upon convergence to

vdc = 1, idc = −1, and does not return until after PL is stepped from −1 to +1 after

a significant amount of time has passed.

59

Fig. 4.22. The sample trajectory (blue line) travels just outside the RSS
calculated by the discrete space search (yellow line), but always remains
inside the RSS calculated by advancing fronts (black line).

4.6 Designing for Large-Displacement Stability

Using the results from the advancing front algorithm, the RSS for (3.13) was

superimposed onto the RLDS, as done in Figure 4.23. It is evident that the chosen

parameters have ensured large-displacement stability when the parameters for (3.13)

are −1 ≤ PL ≤ 1, v∗dc = 1, G = 2, ilim = 1.5, and τ ′ = 0.2. Furthermore, the LDSM

can be articulated more accurately than what was possible with the discrete-space

search. With the chosen parameters, the boundary of the RSS lies extremely close to

the edge of the RLDS, resulting in a very narrow LDSM of 0.0041 per unit.

An LDSM of 0.0041 means that even a 0.5 percent difference between the cal-

culated RSS and the actual RSS is not tolerable. However, this level of error is a

reasonable expectation, especially from a nonlinear model. Even though the RSS

boundary is a conservative estimate, a real system with harmonics, EMI, and other

60

Fig. 4.23. The RSS and RLDS for (3.13). Associated parameters are
−1 ≤ PL ≤ 1, v∗dc = 1, G = 2, ilim = 1.5, and τ ′ = 0.2.

disturbances could easily reach a state outside the calculated RSS. Since the LDSM is

small, this might also mean that it could reach states outside the RLDS. In addition,

all of the design claims in this thesis thus far have been applied to an average-value

model. This is convenient and desirable, so long as the average-value model accu-

rately reflects the behavior of a more detailed model. A more detailed model, wherein

each switching event is simulated, will have a higher peak amperage. Therefore, its

RSS will extend further than that of the average-value model and potentially outside

of the RLDS. When this is the case, even though the average-value model is large-

displacement stable, a small LDSM implies that the results might not translate to

the physical system.

To mitigate these concerns, design parameters must be reconsidered so that the

LDSM is much wider. From investigations done in Chapter 3, it was determined that

increasing the gain, decreasing the time constant, and decreasing the upper bound on

61

PL contribute positively in the way of stability. Making similar adjustments to these

parameters can also widen the LDSM. First, the RSS and RLDS were recalculated

for a gain of 5 with all other parameters fixed. Adjusting the gain of (3.13) from 2

to 5 resulted in an LDSM of 0.0416 per unit, approximately 10 times wider than the

LDSM for the parameters chosen in Figure 4.23. The RLDS and RSS for G = 5 are

shown in Figure 4.24.

Fig. 4.24. The RSS and RLDS for (3.13). Associated parameters are
−1 ≤ PL ≤ 1, v∗dc = 1, G = 5, ilim = 1.5, and τ ′ = 0.2.

Another calculation was performed where the time constant of the controller was

made to be 0.1, all other parameters fixed, which is realizable with faster semicon-

ducting devices such as GaN or SiC. Adjusting the time constant resulted in an LDSM

of 0.1524 per unit, approximately 47 times wider than the LDSM for the parameters

chosen in Figure 4.23. The RLDS and RSS for τ ′ = 0.1 are shown in Figure 4.25.

A third way to increase the LDSM is to operate the system at less than its rated

power. As shown in Section 3.4, the upper limit on PL ultimately defines the RLDS

boundary. Referring back to Figure 3.7, if the system were operating at half its rated

62

Fig. 4.25. The RSS and RLDS for (3.13). Associated parameters are
−1 ≤ PL ≤ 1, v∗dc = 1, G = 2, ilim = 1.5, and τ ′ = 0.1.

PL, a significant amount of area is added to the RLDS. Operating at half its rated

power would simultaneously condense the area of the RSS, thus drastically increasing

the LDSM. In Figure 4.26, the RSS and RLDS are shown for the system operating at

half its rated power, resulting in an LDSM of 0.4564, approximately 100 times wider

than the LDSM for the parameters chosen in Figure 4.23. The RLDS and RSS for

0.5 ≤ PL ≤ 0.5 are shown in Figure 4.26.

In summary, the chosen parameters −1 ≤ PL ≤ 1, v∗dc = 1, G = 2, ilim = 1.5,

and τ ′ = 0.2 produced a system that was indeed large-displacement stable, but with

an extremely narrow LDSM. Such a small LDSM means that these parameters are

not ideal, but nevertheless provide an excellent starting place given that they are

minimally viable for large-displacement stability. Increasing the gain or decreasing

the time constant are both proven techniques to widen the LDSM. Increasing the

gain from 2 to 5 afforded an LDSM approximately 10 times larger, while decreasing

63

Fig. 4.26. The RSS and RLDS for (3.13). Associated parameters are
−0.5 ≤ PL ≤ 0.5, v∗dc = 1, G = 2, ilim = 1.5, and τ ′ = 0.2.

the time constant from 0.2 to 0.1, akin to increasing the switching frequency, afforded

an LDSM approximately 40 times larger. Lastly, if the system were to operate at

less than its rated power, the LDSM is sure to increase. In other words, designing

the system with a higher rating than its intended operating condition is a safe choice

when large-displacement stability is a concern.

These results can be immediately applied to arbitrary voltage and currents. For

example, a 270-V, 50-kW source is considered. The 1.5 per unit transient overload

capacity used previously implies that the source must be able to supply at most 278 A

for brief moments following a load step. If the actual capacitance is 1 mF, then from

(3.7) the per unit capacitance is calculated to be 1.46 ms. Using (3.9), the source time

constant is calculated to be 0.292 ms. The source bandwidth is given by 1
2πτ

= 545 Hz.

All together, a dc power system with 1 mF capacitance, 50 percent transient overload

capacity, and 545 Hz bandwidth should guarantee large-displacement stability so long

as the load power remains within −50kW ≤ PL ≤ 50kW. A smaller bus capacitance

64

is possible, but the switching frequency would have to increase to achieve the desired

bandwidth.

65

5. DETAILED SYSTEM STUDY

To verify the proposed conditions that guarantee large-displacement stability, the

design paradigm set forth in Section 2.3 and the studies performed in Section 4.6

were used to establish the specifications for a detailed, practicable model of a dc

source. The model extends the circuit in Figure 3.1 by realizing the current source as

a 3-phase generator and active rectifier, and the controller as a space-vector modulator

and several regulators. This chapter has been reserved for introducing the detailed

model, running test-simulations, and validating the average-value model described in

Chapter 3. Using the results of the test-simulations, it is shown that the stability of

the detailed model is in agreement with that of the average-value model.

5.1 Model Description

All elements of the average-value model are preserved in the detailed model. The

current source is now comprised of a permanent-magnet ac (PMAC) machine con-

nected to a dc bus through an active six-step converter which has been shown in

Figure 5.1. The PMAC dynamics are modeled using Park’s equations [10].

vrqs = rsi
r
qs + ωrLdi

r
ds + ωrλm + Lq

dirqs
dt

(5.1)

vrds = rsi
r
ds − ωrLqirqs + Ld

dirds
dt

(5.2)

Te =
P

2

[
λmi

r
qs + (Ld − Lq)irqsirds

]
(5.3)

In (5.1) through (5.3), subscripts q and d are used to denote q-axis and d-axis variables,

while superscripts are used to denote the chosen reference frame. It is typical to

choose the rotor reference frame for synchronous machines, hence the superscript r.

The same r is used in ωr to denote the rotor’s angular velocity. Additionally, λm is

66

the peak stator flux linkage due to the permanent magnets, and Lq and Ld are the

q-axis and d-axis inductances, respectively. Lastly, the subscript e in (5.3) is used to

denote that this is the torque produced by electromagnetic interactions, and P is the

number of poles that the PMAC has.

v

iL

iLidc

ia ib ic

v

S1 S2 S3

S4 S5 S6

C

v

S
1

S
6

Active Rectifier

idc
*

dc voltage regulator

idc
* = iL +G v v*()ac current

regulator
dc current
regulator

space-vector
modulator

r , r

r

Park’s
transformation

iqds
r*iqds

r

vqds
r*

r

r

dc

dc

dc

dc dc

+

−

Constant
Power
Load

vdc
*

r

PL(t)

Fig. 5.1. Circuit/Block diagram of the detailed model. The converter is
contained in the shaded box labelled “Active Rectifier” while the PMAC
is contained in the shaded box labelled “PM Machine”.

The converter is bi-directional, so it can operate as an inverter or a rectifier as

needed. Each phase-leg of the converter has a high side and low side transistor accom-

panied by a flyback diode. The semiconducting devices in the converter are modeled

as ideal switches, so no voltage drops due to forward-biasing, leakage currents, or any

other physical behaviors are considered. The bus capacitor and constant-power load

remain exactly as they are in Chapter 3, which models these elements as ideal. As

67

far as the architecture of the circuit is concerned, the model in this chapter is exactly

the same as the the average-value model, save for the current source.

The control system consists of a space-vector modulator, an ac current regulator,

a dc current regulator, and a dc bus voltage regulator arranged in hierarchic fashion.

Outputs of the space-vector modulator are the signals that are used to trigger the

switches. Its inputs are the commanded q-axis and d-axis stator voltages, and the

measured rotor angle, θr. The modulator receives the qd voltages from the ac current

regulator which employs a feedforward component of each. Specifically,

vr∗qs,ff = rsi
r
qs + ωrLdi

r
ds + ωrλm (5.4)

vr∗ds,ff = rsi
r
ds − ωrLqirqs (5.5)

where the subscript, ff, denotes feedforward. Feedback components are also needed

in this control structure, so the block in Figure 5.2 was included in the ac current

regulator. Its gains Kp and Ki should be set such that the transfer function relating idc

to i∗dc satisfies the bandwidth requirements set forth in Section 4.6. In this application,

Ki was set to zero as an effort to reduce the dimension of this model.

1
s

Feedforward Control

PI Feedback Control
iqds
r*

iqds
r

−

vqds
r*

vqds,ff
r

Kp

Ki

r

*

Fig. 5.2. Stator ac current regulator. Its inputs are the commanded and
actual qd currents and the rotor speed. Its outputs are the commanded
qd stator voltages.

68

The commanded stator currents that are the inputs to the ac current regulator

are produced by the dc current regulator. Therein, the required electric power P ∗e is

calculated and is ultimately used to demand more or less current from the PMAC. To

do this, the rotor speed is divided from P ∗e , thus yielding the desired torque, T ∗e . If the

PMAC is non-salient, (Ld = Lq), then from (5.3) it is evident that the d-axis current

does not contribute to torque. Hence, i∗ds is set to 0, while i∗qs is set to whatever is

needed to achieve T ∗e . The dc regulator block is summarized in Figure 5.3.

idc
*

v

r

b

Te
* iqds

r*
Optimal
Currents

Pe
*

dc

Fig. 5.3. Dc current regulator. Its inputs are the commanded dc current,
the actual dc voltage, and the rotor speed. Its outputs are the commanded
qd currents.

5.2 Simulation Results

Based on the established design paradigm, feasible parameters for the detailed

system are displayed in Table 5.1. Before committing to these parameters for a

design, it is necessary to show that the conditions for large-displacement stability is

still present in the detailed model. That is, the RSS must be a subset of the RLDS

with a sufficiently wide LDSM. The detailed system has 3 dimensions, so the discrete

space search algorithm was modified accordingly to calculate the RSS. The RLDS

was computed by the same algorithm described in Section 3.3 with no modifications

needed. The results of these calculations are displayed in Figure 5.4, where the RSS

is the yellow-green “wedge” shaped space above the RLDS, which is the space above

the blue surface.

69

Parameter Value Description
Pb 50 kW rated power
ωb 2π400 rad/s base (rated) frequency
Vb,dc 270 V base (rated) dc voltage
Ib,dc 185 A base (rated) dc current
Vb,ac 108 V rated peak ac phase-to-neutral voltage
Ib,ac 309 A rated peak ac phase current
ωbLq 0.1155 Ω PMAC q-axis reactance
ωbLd 0.1155 Ω PMAC d-axis reactance
rs 0.01 Ω PMAC stator resistance
ωbλm 108 V PMAC back emf at rated speed
C 1.5 mF dc bus capacitance
Kp 5 pu stator current regulator proportional gain
G 2 pu dc voltage regulator feedback gain

Table 5.1.

Fig. 5.4. The RLDS boundary and the RSS for the detailed model. The
RLDS is the volume above the blue surface

70

As seen in Figure 5.4, the RLDS encloses all of the RSS, indicating that the first condi-

tion for large-displacement stability is present in the detailed system. In this example,

the chosen parameters resulted in a significant separation between the boundaries of

each space. For the chosen parameters in Figure 5.4, the LDSM is 0.1576 pu, which

was established by taking the norm of the difference of each point on each boundary.

This indicates a relatively high tolerance for modelling error, system noise, or any

other unpredictable physical effects.

As additional validation for the chosen parameters, both models were simulated

under a rigorous load-stepping regime in SimulinkTM R2018b. In Figures 5.5-5.8, the

system response for step changes in PL from 0 to 1 at 10 ms, 1 to −1 at 15 ms, and

from −1 to 1 at 22 ms are displayed. Results for each model have been superimposed.

In each plot, the dashed line corresponds to the average-value model dynamics, while

the solid line corresponds to the detailed model.

Fig. 5.5. DC source current versus time. In the results from the detailed
model, iS peaks much higher than that of the results from the average-
value model, as expected.

71

Note how idc varies greatly between the two models. Since the detailed model sim-

ulates every switching event, the peak value of idc will always be larger than that of

the average-value model. It is desirable to have a wide LDSM to accommodate for

this reality. If the LDSM obtained from the average-value model is very narrow, the

practical system might be able to reach states beyond the boundary of the RLDS

on account of the differences between the two models with respect to the dc current.

For example, if the load was stepped while idc is at its peak, there exists a small

probability that this will destabilize the trajectory. Designing the system with an

LDSM of sufficient length eliminates this possibility.

Fig. 5.6. Commanded DC source current versus time. The commanded
current is very close in both models, providing evidence that results from
the average-value model apply equally as well to the detailed model.

Lastly, a study was conducted on the detailed model where the input varies ag-

gressively between its upper and lower bounds in an attempt to destabilize the model.

The inputs in this simulation are square waves with a frequency of 1 kHz. Square

waves could represent a pulsed load, which is known to exercise a system drastically.

72

Fig. 5.7. Bus voltage versus time. As in the case of Figure 5.6, the bus
voltage is very close in both models, providing evidence that results from
the average-value model apply equally as well to the detailed model.

The results of the study are shown in Figure 5.8. The study contains five individual

plots. The first plot consists of the dc voltage with respect to time. Even under the

intense variation of load power in this experiment, the dc voltage manages to stay

above 50 percent of its rated value. The second and third plots are the commanded

dc current and the actual dc current, respectively. The dc current swings wildly in

this experiment, reaching levels of more than 2 per unit, though large-displacement

stability is always retained. The fourth plot is the current of a single phase of the

the PMAC. The machine current also exceeds 2 per unit, so the system will never

be able to truly handle the excitation provided in this experiment. In light of this,

the system remained stable throughout the entire simulation. Despite the attempts

to destabilize the model by applying the pulsed load in the fifth plot, the system

remains on a stable course as seen in Figure 5.8. This provides evidence that the

large-displacement stability criteria is very effective for use in system design.

73

Fig. 5.8. System response for repeated step changes in PL. The system
remains stable through the largest possible displacement in load power.

74

6. SUMMARY, CONCLUSIONS, AND POTENTIAL

FUTURE WORK

In this thesis, an algorithm for calculating the RSS of a nonlinear system was de-

veloped, effectively eliminating the need for reachability analysis. The algorithm,

entitled “Advancing Fronts” yields a smooth, high resolution, conservative boundary

by advancing the set of initial conditions into the RSS. Advancing Fronts was also

shown to out-perform other algorithms for calculating the RSS, such as the discrete

space search. The algorithm was then used to help choose parameters for an idealized

dc power system such that the system is guaranteed to be large-displacement stable

under bounded piecewise continuous variations in load power.

The design criteria for achieving large-displacement stability established in [1] was

revisited. For a system to be large-displacement stable, its reachable state-space must

be a subset of the region of large-displacement stability. As an additional precaution,

the minimum difference between the boundaries of the RSS and RLDS must be suf-

ficiently wide to account for modeling uncertainties and system noise. Designing the

system is a matter of choosing parameters that ensure that these conditions are met

under normal, rated conditions. In Chapter 4, the minimum viable parameters were

discovered that ensure large-displacement stability, but with a narrow LDSM. Several

solutions were proposed to widen the LDSM, including increasing the gain, decreas-

ing the controller’s time constant, or designing the system to be over-rated for its

application in terms of load power. Such solutions saw an increase in the LDSM by

a factor of 10, 40, and 100, respectively. Finally, these results were validated with

a detailed model consisting of a 3-phase, permanent-magnet generator connected to

an active rectifier. The detailed model remained large-displacement stable under a

strenuous variation in load power, within ±1 per unit of its power rating.

75

Although Advancing Fronts yielded a smooth, high-resolution boundary for the

RSS, there are still many improvements that could be made in terms of capability and

overall design. First, the algorithm has only been implemented for a two-dimensional

system, so extending the algorithms capacity to handle a three or higher-dimensional

system would be a natural next pursuit. Should the algorithm be extended to higher

dimensions, it would be a practical solution for vastly more systems, including the

detailed model studied in Chapter 5.

Second, the accommodations made for uneven expansion (i.e. wrapping the nodes,

limiting the expansions) are less than elegant. A potential way to mitigate all of the

problems associated with expansion would be to solve for the optimal expansion at

every node during each iteration. Rather than the current structure, which is to pro-

pose an expansion and then review it, an optimization problem could be constructed

that satisfies several constraints. These constraints could be that no expansion is

too large, all expansions are relatively equal, convexity is maintained, or anything

else that is deemed necessary for the optimal expansion. Instead of wrapping the

nodes or taking other precautions, simply solve the optimization problem, advance

the front, and repeat. Constructing the optimization might be laborious, but it has

the potential to dramatically increase the speed and performance of the advancing

fronts algorithm. The basic concept of the algorithm remains the same, but all of the

precautionary measures would be eliminated.

The designs in Section 4.6 were shown to be large-displacement stable; however,

they are not necessarily in compliance with established military standards [12]. An-

other area for potential future work would be to validate that these 2 designs are in

compliance with MIL-STD 704. For example, MIL-STD 704 sets limits on the output

voltage transients for a single disturbance. The advancing fronts algorithm could be

used to show that the minimum and maximum reachable states for the output voltage

during a transient response never exceeds the limits imposed in MIL-STD 704 at any

time. Alternatively, CORA could potentially be used to calculate time-dependent

76

RSS boundaries over the time horizon specified in MIL-SD 704, thus demonstrating

compliance.

REFERENCES

77

REFERENCES

[1] O. Wasynczuk, and T. Craddock, “Ensuring Large-Displacement Stability in
Aircraft and Shipboard DC Power Systems,” presented at the Proc. of 2019
IEEE Electric Ship Technologies Symposium (ESTS), Westin Crystal City Hotel,
Arlington, VA, 2019.

[2] O. Wasynczuk, M, Gries, B. Selby, P, Lamm, “Designing for Large-Displacement
Stability in Aircraft Power Systems,” SAE Transactions Journal of Aerospace,
April 2009, pp. 894-902.

[3] Althoff, M., Stursberg, and Buss. “Reachability Analysis of Nonlinear Systems
with Uncertain Parameters Using Conservative Linearization.” 2008 47th IEEE
Conference on Decision and Control (2008): 4042-048. Web.

[4] Villegas Pico, and Aliprantis, “Reachability Analysis of Linear Dynamic Sys-
tems with Constant, Arbitrary, and Lipschitz Continuous Inputs.” Automatica
95 (2018): 293-205. Web.

[5] Yang, and Scott. “A Comparison of Zonotope Order Reduction Techniques.”
Automatica 95 (2018): 378-384. Web.

[6] CORA 2018 Manual, Mathias Althoff and Niklas Kochdumper,
Technische Universität München, 85748 Garching, BRD. 2018,
pp. 54-55. Accessed on: July, 5, 2019. [Online]. Available:
https://tumcps.github.io/CORA/data/Cora2018Manual.pdf

[7] B. P. Loop, S. D. Sudhoff, S. H. Zak, and E. L. Zivi, “An Optimization Approach
to Estimating Stability Regions using Genetic Algorithms,” American Control
Conference, June 8-10, 2005. Portland, OR.

[8] M. Vidyasagar, Nonlinear Systems Analysis, Englewood Cliffs, NJ: Prentice-
Hall, 1992.

[9] R. D. Middlebrook, “Input Filter Considerations in Design and Application of
Switching Regulators,” IEEE Proceedings of IASAM, 1976.

[10] P. C. Krause, O. Wasynczuk, and S. D. Pekarek, Electromechanical Motion
Devices, John Wiley & Sons, 2012.

[11] S. H. Zak, Systems and Control, Oxford University Press, 2003.

[12] Military Standard, ”Aircraft Electric Power Systems”, Department of Defense -
United States of America, MIL-STD-704E, May 1, 1991.

