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ABSTRACT

Spitler, Ryan F. PhD, Purdue University, August 2019. Profinite Completions and
Representations of Finitely Generated Groups. Major Professor: David Ben McReynolds.

In previous work, the author and his collaborators developed a relationship in

the SL(2,C) representation theories of two finitely generated groups with isomorphic

profinite completions assuming a certain strong representation rigidity for one of the

groups. This was then exploited as one part of producing examples of lattices in

SL(2,C) which are profinitely rigid. In this article, the relationship is extended to

representations in any connected reductive algebraic groups under a weaker repre-

sentation rigidity hypothesis. The results are applied to lattices in higher rank Lie

groups where we show that for some such groups, including SL(n,Z) for n ≥ 3, they

are either profinitely rigid, or they contain a proper Grothendieck subgroup.



1

1. INTRODUCTION

1.1 Motivation

Whether or not a finitely generated group Γ is determined by the isomorphism

classes of its finite quotients has been an important problem for several decades. Via

the correspondence between conjugacy classes of finite index subgroups of the fun-

damental groups of a manifold and the finite coverings of the manifold, this problem

for fundamental groups of manifolds is equivalent to a manifold being determined by

the isomorphism classes of the deck/Galois groups of its finite covers.

The isomorphism classes of finite quotients of Γ are conveniently encoded by the

profinite completion Γ̂ of Γ. This compact, totally disconnected group can be viewed

as a pseudo-metric completion of the group or as a limit of an inverse system of finite

groups endowed with the discrete topology. It is necessary to restrict to groups Γ

that embed into their associated profinite completions Γ̂, as the image of Γ will also

have profinite completion isomorphic to Γ̂; such groups are called groups residually

finite.

We say that a group Γ is profinitely rigid when Γ is determined up to isomorphism

by its profinite completion (see §3.4 for a precise definition). There are few examples

of finitely generated groups that are known to be profinitely rigid. Finitely generated

abelian groups are profinitely rigid. However, this fails in general for virtually abelian

groups and nilpotent groups by work of Baumslag [3], Pickel [15], and Serre [19]. In

particular Bieberbach groups (i.e. the fundamental groups of closed flat n–manifolds)

are not in general profinitely rigid. Some examples of profinitely rigid groups include

those satisfying certain (verbal) laws. Unfortunately, more conjectures exist on this

topic than theorems. Finitely generated free groups are conjectured to be profinitely

rigid as are fundamental groups of closed hyperbolic 2- and 3-manifolds (see [18]).
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The class of fundamental groups of closed, hyperbolic 2- and 3-manifolds is part

of a broader class of finitely presented groups, the class of irreducible lattices in

noncompact semisimple Lie groups which are fundamental groups of complete, finite

volume, locally symmetric orbifolds. Examples of pairs of non-profinitely rigid lat-

tices have been constructed by Aka [1], Milne–Suh [14], and Stover [21]. The first

examples of lattices which are profinitely rigid were given in [5]. These were the first

examples of finitely generated, residually finite groups that contain a non-abelian free

subgroup which are profinitely rigid. The examples in [5] were the smallest covolume

uniform and non-uniform arithmetic lattices in SL(2,C) and finitely many other as-

sociated lattices. Most notable is the fundamental group of the Weeks manifold, the

unique smallest volume closed, orientable hyperbolic 3-manifold. Additional exam-

ples of profinitely rigid lattices, 16 of the arithmetic hyperbolic triangle groups, are

established in [6].

In [7] it was shown that if ∆ < Γ is finitely generated with the inclusion inducing

an isomorphism ∆̂ ∼= Γ̂, a condition where we call ∆ a Grothendieck subgroup of Γ,

then ∆ and Γ have the same representation theory in a precise sense. It was asked

there whether it is possible for a group to have a proper Grothendieck subgroup.

Examples of groups having a proper Grothendieck subgroup have since been found

( [16], [4]), but they remain difficult to find. It is an open question whether higher-

rank arithmetic groups with the congruence subgroup property can have a proper

Grothendieck subgroup ( [17, p. 434]).

1.2 Main results

In this work, we examine how the representations of Γ and ∆ are related when

only assuming that we have an isomorphism ∆̂ ∼= Γ̂. This work generalizes parts

of [5] and [6] in both broadening the connections between the representation varieties

of profinitely equivalent groups and expanding some of the main technical results

needed for the profinite rigidity results established in [5] and [6].
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In [5] and [6], we were concerned just with relating the representations of Γ and

∆ in SL(2,C) under the hypothesis that Γ has only a single Zariski-dense represen-

tation up to conjugation and automorphisms of C. We applied this to certain groups

Γ < SL(2,C) whose defining arithmetic was such that we could ensure ∆ had a repre-

sentation into Γ. Using 3-manifold techniques we could eventually show that ∆ must

be isomorphic to Γ. In this paper, we extend to considering representations into any

fixed reductive group G(C) and only assume that Γ has finitely many Zariski dense

representations up to conjugation. We are able to produce universal representations

of Γ and ∆ which parametrize the Zariski-dense representations of each, and then us-

ing the isomorphism ∆̂ ∼= Γ̂ we show that these universal representations are locally

equivalent, that is, they give the same information for almost all p-adic representa-

tions. This result is analogous to Theorem 4.8 in [5]. We then apply this result in

the case when Γ is a higher rank arithmetic group, and in some cases show that ∆

has an injection into Γ. However, in this setting there is nothing like the powerful

3-manifold technology, and we are unable to show that ∆ and Γ are isomorphic.

When Γ is a higher rank arithmetic group, in general there can be other higher

rank arithmetic groups, say Λ, with Λ̂ ∼= Γ̂. The range of possibilities for these Λ is

well understood, in fact there are only finitely many of them [1]. For some Γ, we can

show that this is almost the only obstruction to profinite rigidity. Any ∆ with ∆̂ ∼= Γ̂

will have an injection into such a Λ where it will live as a Grothendieck subgroup, so

either ∆ = Λ or Λ contains a proper Grothendieck subgroup. As a specific example

we show that for n ≥ 3, either SL(n,Z) is profinitely rigid or it contains a proper

Grothendieck subgroup.

The main theorems of this work have further applications which will be the subject

of a forthcoming joint paper, [13]. One of these regards the question of which profinite

groups can be a profinite completion, that is which profinite groups are isomorphic

to the profinite completion of some finitely generated, residually finite group. When

n ≥ 3, the profinite completion of SL(n,Z) is
∏

p SL(n,Zp), so
∏

p SL(n,Zp) is a

profinite completion. On the other hand, one can show that
∏

p SL(2,Zp) is not
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a profinite completion. Similar to the SL(n,Z) case above, one can show that any

group ∆ with ∆̂ ∼=
∏

p SL(2,Zp) must embed into SL(2,Z). However, since SL(2,Z) is

virtually free, this leads to a contradiction. More generally we address which ‘adelic’

profinite groups, closed subgroups of
∏

p GL(n,Zp), can be profinite completions, and

obtain some results in that area.
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2. SUMMARY

We start in §3 by introducing the necessary background and conventions used in

the paper. In §4, we construct a universal representation for a finitely generated

group with a certain representation rigidity in a connected reductive group. In §5,

we construct a universal representation for p-adic representations of a profinite group

in a connected reductive group, again assuming some representation rigidity. In §6,

we show how the universal representation we constructed for a finitely generated

group is related to that of its profinite completion. This section culminates in the

main theorems 6.1 and 6.2 which relate the universal representations of groups with

isomorphic profinite completions. Finally in §7, we apply these theorems to higher

rank arithmetic groups to get the main theorem 7.1 and the interesting special case

7.2.
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3. BACKGROUND AND PRELIMINARIES

3.1 Fields, Adele Rings, and Étale Algebras

All fields will be assumed to have characteristic zero. We will frequently use

the fields C and Qp for varying p. These are all abstractly isomorphic as they are

algebraically closed, have characteristic zero, and their transcendence bases over Q

have the same cardinality. For each p we choose a specific isomorphism of C and

Qp, which we will leave implicit, and use these to identify objects defined over each

of them. Note that these isomorphisms are very far from continuous in the usual

topologies on these fields. The topology on C does not play a role in any of our

results, while the topologies of the Qp are very important. We choose therefore to use

the field C for results and statements that only rely on its abstract field structure.

For statements where the topology is significant, we will use Qp instead, usually with

p being understood to be an arbitrary prime.

We use A to denote the ring of rational adeles, Af is the ring of finite adeles, and

AS is the ring of S-adeles for S some finite subset of places of Q. For a number field

K, we similarly use AK to denote the ring of K-adeles, Af
K for the finite K-adeles.

For S some finite subset of places of K, we will call the pair (K,S) a restricted number

field and will write AK,S for the ring of S-adeles of K. An étale algebra over Q, which

we will just call an étale algebra, is a finite product of number fields E =
∏
Ki, and

its set of places is the disjoint union of the sets of places of the Ki. We will define

the ring of E-adeles as AE =
∏

AKi
and similarly the ring of finite E-adeles, Af

E.

For S a finite set of places of E, we have S = tSi where Si is a finite set of places

of Ki. We will call (E, S) a restricted étale algebra, and define the (E, S)-adeles as

AE,S =
∏

AKi,Si
. A number field is an étale algebra with a single factor, so the

previous definitions are just special cases of this one.
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3.2 Local Equivalence

We will say two number fieldsK andK ′ are locally equivalent when AK
∼= AK′ , and

the restricted number fields (K,S) and (K ′, T ) are locally equivalent when AK,S
∼=

AK′,T . Similarly, two étale algebras E and E ′ are locally equivalent when AE
∼=

AE′ , and the restricted étale algebras (E, S) and (E ′, T ) are locally equivalent when

AE,S
∼= AE′,T .

Proposition 3.1 Let E and E ′ be étale algebras, K/Q be a finite Galois extension

containing each of the subfield factors of E and E ′, and H = Gal(K/Q). Further,

let S and T be the places of E and E ′ respectively which are over the rational primes

which ramify in K.

1. E is determined up to isomorphism by the H-set XE = Hom(E,K). In particu-

lar, the number of factors of E is the number of orbits in XE and the dimension

of E over Q is the cardinality of XE.

2. (E, S) and (E ′, T ) are locally equivalent if and only if χ(XE) = χ(XE′) as

permutation characters of H-sets.

Proof The first part is well known. The second part follows from [8, p. 101 Prop 2.8]

for example.

There are many known examples of locally equivalent number fields, but we want

to demonstrate that there are locally equivalent étale algebras where the local equiv-

alence does not come from a pairwise local equivalence of the number field factors.

To that end we let K = Q(x) where x6 − 2x5 − 14x4 + 14x2 − 2x − 1 = 0, which

is Galois with Galois group isomorphic to S3, totally real, and ramifies only at the

prime 229 [9]. Let K2 be the subfield with degree 2 and K3 a subfield of degree 3

(they are all isomorphic). Finally let E1 = K2 ⊕K3 ⊕K3 and E2 = K ⊕Q⊕Q.

Lemma 3.1 E1 and E2 are locally equivalent, but their factor fields are not locally

equivalent.
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Proof Let H = Gal(K/Q) ∼= S3 and let H2 and H3 be the subgroups fixing K2 and

K3 respectively. Then we have XE1 = H/H2 tH/H3 tH/H3 and XE2 = H t 1t 1 as

H-sets where 1 represents the trivial H-set. It can be checked that χ(XE1) = χ(XE2),

so Proposition 3.1 implies E1 and E2 have the same prime splittings at all unramified

primes of K. It can also be checked [10] that the ramification behavior of E1 and E2

at 229 are the same. Thus they are locally equivalent étale algebras which apparently

do not contain factors that are pairwise locally equivalent number fields.

3.3 Linear Algebraic Groups

For more details regarding algebraic groups consult [17] and [12].

A linear algebraic group G, which we will just call an algebraic group, is an

algebraic variety whose points G(C) are a Zariski closed subgroup of GL(n,C) for

some n. G inherits from GL(n) a multiplication and inversion which are morphisms

of algebraic varieties. The coordinate ring of GL(n) is

A = C[x11, x12, ..., xnn, det(xij)
(−1)],

so the coordinate ring of G is A/a where a is the ideal of polynomials vanishing on

G(C). If k is a subfield of C and the ideal a is generated in A by ak = a ∩ Ak where

Ak = k[x11, x12, ..., xnn, det(xij)
(−1)],

then we say G is defined over k and for any intermediate field k < K < C we denote

its K-points by

G(K) = G(C) ∩GL(n,K).

In this case we will call G a k-group or a group over k. A homomorphism of algebraic

groups G and H, which we may assume are in the same GL(n), is a morphism f of

algebraic varieties which respects the multiplication and inversion morphisms. This

morphism f is given by a collection of n2 polynomials in A, and if G and H are

further assumed to be k-groups, we say that f is a k-morphism if these polynomials
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are all in Ak. We state here useful conditions to determine when a group and a group

morphism is defined over k.

Proposition 3.2

1. If a subset B ⊂ G(C) ∩ GL(n, k) is Zariski dense in G(C), then G is defined

over k.

2. Let G and H be two k-groups and f : G→ H be a morphism of algebraic groups.

If B ⊂ G(k) is Zariski dense and f(B) ⊂ H(k), then f is a k-morphism.

Proof See [12, pg. 12] and the references there.

Let k < C be a field and G be an algebraic group over k. Given σ : k → C

a possibly different embedding of k, we can produce σG, a group over σ(k), by

applying σ to the polynomials defining G. There is an abstract group homomorphism

σ∗ : G(k)→ σG(σ(k)) given by applying σ componentwise, and this agrees with the

trace map in that tr(σ∗(g)) = σ(tr(g)) for g ∈ G(k). When the polynomials defining

G are fixed by σ, we have G = σG, and further when σ is an automorphism of k, σ∗

is an automorphism of G(k). Similarly, when G and H are k-groups and f : G→ H

is a k-morphism, we can apply σ to the polynomials defining f to get σf : σG→ σH.

For an algebraic group G (only assumed to be defined over C) and a subfield

k < C, we define a k-form of G to be an algebraic group Gk defined over k along

with an algebraic isomorphism f : Gk → G (also only assumed to be defined over

C). We say two k-forms (Gk,f) and (G′k,f
′) are isomorphic if there is a k-defined

isomorphism of Gk and G′k which commutes with f and f ′.

Now let G be an algebraic group over Q, E = ⊕Ki be an étale algebra, and for

each i let Gi be a Ki-form of G. We will call the collection {Gi}i an E-form of G,

denoted GE, and define

GE(E) =
∏

Gi(Ki).

For each homomorphism v : E → C, we get a homomorphism v∗ : GE(E) → G(C)

by the following procedure. The homomorphism v factors through the projection to
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Ki for some i, and so corresponds to some embedding w : Ki → C. We then obtain v∗

by first projecting onto Gi(Ki), then applying w∗ to get to wGi(w(Ki)), and finally

following wfi to land in wG(C) = G(C).

Using our chosen field isomorphisms, all of the definitions and statements above

are also true when using Qp in place of C. When G is a group over C, we will also

use G to denote the corresponding group over Qp. When F is a local field, it is a

closed subfield of a unique one of C or a Qp. An F -group will then be understood as

being a subgroup of GL(n) over the appropriate algebraically closed field. When G

is a group over F , G(F ) is a closed subset of F n2
and the topology it inherits gives it

the structure of a locally compact topological group. If F is a p-adic local field, OF ,

its ring of integers, is a compact open subring of F . Similarly,

G(OF ) = G(F ) ∩GL(n,OF )

is a compact open subgroup of G(F ).

Let Fi be a possibly infinite collection of local fields where, for each p (including

p =∞) the number of p-adic fields (archimedean fields) in the collection is finite and

the sum of the degrees of those fields over Qp (over R) is universally bounded over

all p. Let R be the restricted product of the Fi with respect to the open subrings

OFi
. We will call such an R an adele-type ring. It can be made into a locally compact

topological ring, and has a continuous projection to Fi for each i. When K is a

number field and we let Fi = Kv for all places v of K, we recover the K-adeles. Now

let G be an algebraic group and R =
∏′ Fi be an adele-type ring. For each i let

Gi be an Fi-form of G. We will call the collection {Gi}i an R-form of G, denoted

GR, and define GR(R) as the restricted product of the Gi(Fi) with respect to the

compact open subgroups Gi(OFi
). Then GR(R) can be made into a locally compact

topological group with continuous projections to Gi(Fi) for each i. Each continuous

homomorphism v : R→ F where F is one of C or a Qp corresponds to an embedding

of a unique Fi into F . In the same way as the étale algebra case, we get a continuous

homomorphism v∗ : GR(R)→ G(F ). When K is a number field, G is defined over K,
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and for each Kv, we let GKv be the base change of G along the embedding K → Kv,

we recover the usual definition of an adelic group G(AK).

The algebraic group G is connected if G(C) is connected in the Zariski topology. G

is called simply connected if for any connected algebraic group H, any surjection H→

G with finite kernel is actually an isomorphism. G is called simple if it is connected,

noncommutative, and has no proper connected normal algebraic subgroups.

We call an algebraic group T a torus if it is isomorphic to the group Dn of diagonal

matrices in GL(n,C) for some n. Notice that Dn is defined over Q, so it is defined over

any subfield of C. If T is defined over K, we call it a K-split torus if it is isomorphic

over K to Dn. If G is an algebraic group defined over K, we define rankK G to be the

maximum dimension of T, a subgroup of G which is K-defined and a K-split torus.

Finally, if K is also a number field and S is a finite set of places of K containing all

the archimedean places, we define the S-rank of G to be

rankS G =
∑
v∈S

rankKv GKv .

The group GL(n,C) is a subgroup of the algebra M(n,C) of n× n matrices over

C, so the same is true of any algebraic group in a canonical way. G(C) acts on the

subalgebra C[G(C)], and a choice of a basis of C[G(C)] induces a representation of G

into GL(m) which is isomorphic onto its image where m is the dimension of C[G(C)]

over C. We say a connected algebraic group G is reductive if the subalgebra C[G(C)]

of M(n,C) is semisimple. The trace map on M(n,C) restricts to give tr(g) ∈ C for

any g ∈ G(C). For a reductive algebraic group, the trace form T(X, Y ) := tr(XY )

on C[G(C)] is a nondegenerate bilinear form.

Every reductive algebraic group G is isomorphic (over C) to a group H defined

over Q. We will sometimes implicitly replace G with such an H in order to allow us

to define an action of Gal(C/Q) on G(C). Notice that if σ ∈ Gal(C/Q) is nontrivial,

the automorphism of G(C) induced by σ is not algebraic because it fixes the set G(Q)

which is Zariski dense [17, p. 58 Thm 2.2].
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For any element g ∈ G(C), the conjugation action induces an inner algebraic

automorphism of G. Any algebraic automorphism which is not inner is called outer.

The inner automorphisms form a normal subgroup of Aut(G), so it makes sense to

talk about the class of an outer automorphism σ, the set of automorphisms which

differ from σ by an inner automorphism.

3.4 Profinite Groups

A profinite group is an inverse limit of a directed system of finite groups. They are

topological groups which are compact, totally disconnected, and Hausdorff. In fact,

these properties characterize profinite groups among topological groups. If G is an

algebraic group over Qp, G(Qp) is a locally compact, totally disconnected, Hausdorff

topological group, so any compact subgroup is profinite. Qp is the direct limit of

the local fields F/Qp, so any finitely generated subgroup of G(Qp) is contained in

G(F ) for some finite extension F/Qp. It is also the case that any compact subgroup

of G(Qp) is contained in G(F ) for some such F (a proof appears in [20, p.244] for

example). Thus any compact subgroup of G(Qp) is profinite.

When Γ is a finitely generated group, we can form the profinite group Γ̂ = lim←−Γ/N

where N ranges over all finite index normal subgroups of Γ and the connecting homo-

morphisms are the natural ones. This is called the profinite completion of Γ. There

is a map i : Γ → Γ̂ with dense image, which is injective when Γ is residually finite,

that is when ⋂
N<G

[G:N ]<∞

N = {1}.

Γ̂ has a universal property where any f : Γ→ G for a profinite group G extends to a

unique f̂ : Γ̂→ G with f = f̂ ◦ i and f̂(Γ̂) = f(Γ).

We will say a finitely generated, residually finite group, Γ, is profinitely rigid, if,

for any other finitely generated, residually finite group ∆, ∆̂ ∼= Γ̂ implies ∆ ∼= Γ. If Γ
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is finitely generated and residually finite, and ∆ < Γ is a finitely generated subgroup,

we will say ∆ is a Grothendieck subgroup when ∆ < Γ induces an isomorphism ∆̂ ∼= Γ̂.

3.5 Spaces of Representations

For a finitely generated group Γ and an integer n, one can construct an algebra

R0 over Q and a representation f0 : Γ → GL(n,R0) which represents the space of

representations of Γ in GL(n). What we mean by this is that, for any field K, there is

a bijection between HomGroup(Γ,GL(n,K)) and HomQ−alg(R0, K) which is given by

sending φ : R0 → K to φ∗ ◦ f0 where φ∗ : GL(n,R0)→ GL(n,K) is the map applying

φ entrywise. The construction can be found in [11] for instance, but we will sketch it

here for convenience.

Let 〈g1, ..., gm|r1, ...〉 be a presentation for Γ (possibly with infinitely many rela-

tions) with a symmetric generating set. Let X l for l from 1 to m be the n by n

matrix whose (i, j)th entry is the variable xlij. We associate X l to gl so that each rk

gives a product of the Xl, and setting this product equal to In gives a collection of n2

equations. Let I be the ideal in Q[xlij, det(X l)−1] generated by all of these equations

as rk ranges among all of the relations. Let

R0 = Q[xlij, det(X l)−1]/I,

and f0 : Γ→ GL(n,R0) be the representation sending gl to X l. It is then clear that

any representation of Γ in GL(n,K) for a field K comes by evaluating the entries of

the X l with the appropriate values in K and vice versa.

For any given algebraic group, a similar algebra and universal representation can

be constructed to parametrize the representations of Γ. Our goal in this work is to

construct algebras and universal representations which represent conjugacy classes

of Zariski dense representations in connected reductive algebraic groups in the case

where there are only finitely many such classes. We will do this for both finitely

generated and profinite groups, and then show how the universal representation of a

finitely generated group is related to that of its profinite completion.
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4. REPRESENTATIONS OF FINITELY GENERATED

GROUPS

We first prove our main technical tool in finding the universal representations we seek,

then we apply it to finitely generated groups having a certain representation rigidity

property. So let G < GL(n) be a reductive algebraic group. Given a Zariski dense

subgroup H of G(C), we want to find a smaller field of definition of the subgroup H,

say k, and produce a k-form of Gk with H < Gk(k). We further want this k-form to

only depend on the conjugacy class of H as a subgroup of GL(n,C). We will choose

k to be the trace field, the significance of which is that a representation of H in G(C)

gotten by base change along a different embedding of k in C cannot be conjugate to

H in G(C) because they have distinct characters. The construction is based on the

proof of [12, p. 283 Prop 3.20].

To this end we let k = Q(Tr(h) : h ∈ H) be the subfield of C generated over Q.

Now because H is Zariski dense in G(C), H generates A := C[G(C)] over C, so let

x1, ..., xm ∈ H be a basis. The bilinear form T gives a dual basis x∗1, ..., x
∗
m of A. Any

h ∈ H ⊂ A can be written as

h = a1x
∗
1 + ...+ amx

∗
m

for ai ∈ C. Then T (h, xi) = tr(hxi) = ai and because hxi ∈ H, ai ∈ k for each i.

Thus

k[x1, ..., xm] ⊂ k[H] ⊂ k[x∗1, ..., x
∗
m]

and we see the algebra k[H] is a vector space of dimension m over k, so k[x1, ..., xm] =

k[H] and the action of an element h ∈ H on an xi takes it to a k-linear combination

of the x1, ..., xm. Thus the representation of G into GL(m) given by using the basis

x1, ..., xm takes H into GL(m, k). We now let Gk be the image of this representation,

and since H is Zariski dense, Proposition 3.2 shows Gk is defined over k. Finally, if
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g ∈ GL(n,C) and we apply this procedure to g−1Hg we get the same k since traces

are preserved by conjugation. Moreover, if G′k is the k-form produced from g−1Hg,

conjugation by g gives an isomorphism, α, of G′k and Gk, but because α takes H to

g−1Hg < G′k(k), Proposition 3.2 shows that α is a k-morphism. We have now proved

the following:

Proposition 4.1 Let H < G(C) be a Zariski dense subgroup and k = Q(Tr(h) : h ∈

H). Then

Gk(k) := G(C) ∩ k[H] < M(n,C)

gives a k-form of G so that H < Gk(k), which, up to isomorphism, depends only on

the conjugacy class of H in GL(n,C).

Now let Γ be a finitely generated group. We will say that Γ is G-representation

rigid when Γ has only finitely many Zariski-dense representations to G(C) up to con-

jugation. In this setting, we will construct an étale algebra E whose homomorphisms

to C parametrize the conjugacy classes of representations of Γ in G(C). We do this

by producing an E-form of G, GE, and a representation of f : Γ → GE(E) so that

any Zariski dense representation of Γ into G(C) is conjugate to v∗ ◦ f for a unique

homomorphism v : E → C.

Corollary 4.1 Let G be a reductive algebraic group and Γ be a finitely generated

group which is G-representation rigid. Then there is an étale algebra E, an E-form of

G, GE, and a representation f : Γ→ GE(E) so that any Zariski dense representation

of Γ in G is conjugate to fv : Γ→ GE(C) for a unique homomorphism v : E → C.

Proof We can first show that there are number fields Ki, GKi
Ki forms of G, and

representations fi : Γ→ GKi
(Ki) so that any Zariski dense representation of Γ in G

is conjugate to fi,v : Γ→ GKi
(C) for a unique embedding v : Ki → C. Then we can

take E = ⊕Ki, GE =
∏

GKi
, and f to be the product of the fi.

The group Gal(C/Q) acts on the finite set X(Γ,G(C)) of conjugacy classes of

Zariski dense representations of Γ in G(C). Choose a representative from each orbit,
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fi, and apply Proposition 4.1 to the subgroups fi(Γ) to get number fields Ki and Ki-

forms GKi
with the fi taking Γ to GKi

(Ki). Then any representation φ : Γ→ G(C)

is in the same orbit as a unique fi. The other representations in the orbit of fi are

those coming from different embeddings of Ki in C. Since distinct embeddings of

Ki induce representations of Γ which are not conjugate, there is a unique embedding

v : Ki → C with φ = v∗ ◦ fi.

We will call the triple (E,GE, f) constructed in this particular way the universal

representation of Γ in G. It is not always an invariant of the isomorphism class of

G, but depends on the specific way that G is embedded into GL(n,C). The only

ambiguity in the construction of (E,GE, f) is the order of the factors of E and the

specific representations chosen for the fi. The representations could differ by an

embedding of Ki in C and by conjugation in G(C).

Suppose now that every algebraic automorphism, α, of G is induced by conjuga-

tion by some element of GL(n,C). Then for every Zariski-dense representation, φ,

of Γ and every algebraic automorphism, α, of G, the trace fields and K-forms of G

produced by Proposition 4.1 from φ(Γ) and α◦φ(Γ) are the same. Then we have that

the outer automorphism group of G acts on the universal representation (E,GE, f)

of Γ by permuting these isomorphic factors of E and GE. Further, the representation

f in these permuted factors clearly differs only by an automorphism of G. We can

then quotient the universal representation by this action to obtain the Aut-universal

representation (E,GE, f). Notice that representations coming from distinct homo-

morphisms E → C cannot be related by an algebraic automorphism because they

have distinct characters.

Corollary 4.2 Assume the hypotheses of Corollary 4.1 and that that every algebraic

automorphism, α, of G is induced by conjugation by some element of GL(n,C). Then

there is an étale algebra E, an E-form of G, GE, and a representation f : Γ →

GE(E) so that any Zariski dense representation of Γ in G agrees, up to an algebraic

automorphism of G, with fv : Γ→ GE(C) for a unique homomorphism v : E → C.
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5. REPRESENTATIONS OF PROFINITE GROUPS

Now let G be a profinite group and continue to let G < GL(n) be a reductive

algebraic group. We first state a version of Proposition 4.1 specific to a continuous

representation of G in G(Qp)

Proposition 5.1 Let f : G → G(Qp) be a continuous representation with Zariski

dense image and let K = Qp(Tr(g) : g ∈ G) be the closed subfield of Qp. Then K is

a finite extension of Qp and

GK(K) := G(Qp) ∩K[f(G)] < M(n,Qp)

gives a K-form of G with G < GK(K), which, up to isomorphism, depends only on the

conjugacy class of f as a representation into GL(n,Qp). Further, distinct continuous

embeddings K → Qp induce representations of G in G that are not conjugate.

Proof We know that f(G) is a compact subgroup of G(Qp), so it is contained in

GL(n, F ) for some F a finite extension of Qp. Thus K is also a finite extension of Qp.

We now use Proposition 4.1 with this K to produce our desired GK . Lastly, since K

is the closure of the trace field of f(G), distinct continuous embeddings of K induce

representations of G with distinct characters and so they cannot be conjugate.

We will say that G is G-representation rigid if there is a constant c such that for

all p, the number of conjugacy classes of continuous representations of G in G(Qp) is

less than c.

Corollary 5.1 Suppose that G is G-representation rigid. Then there is an adele-

type ring A, an A-form of G, GA, and a representation f : G → GA(A) so that

any continuous Zariski dense representation of G in G(Qp) is conjugate to fv : G→

GA(Qp) for a unique continuous homomorphism v : A→ Qp.
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Proof We can first show that for each p, there are finite extensions Kp,i of Qp, GKp,i

Kp,i forms of G, and representations fp,i : G→ GKp,i
(Kp,i) so that any Zariski dense

continuous representation of G in G(Qp) is conjugate to fi,v : Γ → GKi
(Qp) for a

unique continuous embedding v : Kp,i → Qp. Then we will take A to be the restricted

product of all of the Kp,i over all p and GA to be the restricted product of all of the

GKp,i
over all p. The fact that G is G-representation rigid ensures that A will be an

adele-type ring.

For each p, the group Gal(Qp/Qp) acts on the finite set Xcont(G,G(Qp)) of con-

jugacy classes of continuous Zariski dense representations of G in G(Qp). Choose a

representative from each orbit, fp,i and apply Proposition 5.1 to the subgroups fp,i(G)

to get finite extensions Kp,i and Kp,i-forms GKp,i
with the fp,i taking G to GKp,i

(Kp,i).

Then any representation fp : G → G(Qp) is in the same orbit as a unique fp,i. The

other representations in the orbit of fp,i are those coming from different continuous

embeddings of Kp,i in Qp. Since distinct embeddings of Kp,i induce representations

of G which are not conjugate, there is a unique embedding v : Kp,i → Qp with

fp = v∗ ◦ fp,i.

We will call the triple (A,GA, f) constructed in this particular way the universal

representation of G in G. Again, it is not always an invariant of the isomorphism

class of G and the only ambiguity in its construction is the order of the factors of A

and the specific representations chosen for the fi.

The same argument as for Corollary 4.2 gives the following since algebraic auto-

morphisms of G(Qp) are continuous.

Corollary 5.2 Assume the hypotheses of Corollary 5.1 and that every algebraic au-

tomorphism, α, of G is induced by conjugation within GL(n). Then there is an

adele-type ring A, an A-form of G, GA, and a representation f : G→ GA(A) so that

any continuous Zariski dense representation of G in G(Qp) agrees, up to an algebraic

automorphism of G, with fv : G→ GA(Qp) for a unique continuous homomorphism

v : A→ Qp.
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We will call the triple (A,GA, f
′) constructed in this particular way the Aut-

universal representation of G in G.
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6. REPRESENTATIONS OF PROFINITE COMPLETIONS

Let G be an algebraic group over C and Γ be a finitely generated group. We will call

a representation f : Γ → G(Qp) bounded if the closure f(Γ) is compact, and hence

profinite. The following proposition shows that the bounded representations of Γ can

be related to the continuous representations of Γ̂.

Proposition 6.1 For each prime p, there is a bijection between representations of

Γ in G(Qp) with bounded image and continuous representations of Γ̂ in G(Qp). A

representation of Γ has Zariski-dense image if and only if the corresponding represen-

tation of Γ̂ does. Finally, this bijection is equivariant under the action of G(Qp) by

conjugation, and under the action of the algebraic automorphisms of G.

Proof Fix a prime p and suppose f : Γ→ G(Qp) is a representation with bounded

image. This means f(Γ) is compact and thus profinite. So f extends to a continuous

representation f̂ : Γ̂ → G(Qp) with f̂(Γ̂) = f(Γ). Conversely, given a continuous

representation f̂ : Γ̂→ G(Qp), f̂(Γ̂) = f(Γ) is compact so f is bounded.

Clearly, if a representation of Γ has Zariski-dense image, then the corresponding

representation of Γ̂ will as well. Conversely, f(Γ) is dense in f̂(Γ̂) in the analytic

topology of G(Qp) which is finer than the Zariski topology, so if f̂(Γ̂) is Zariski-dense

then f(Γ) is as well.

Algebraic automorphisms of G give continuous automorphisms of G(Qp), so if

two representations of Γ with bounded image, f and g, are related by an algebraic

automorphism, their extensions, f̂ and ĝ are related by the same automorphism. In

particular, f and g are conjugate if and only if f̂ and ĝ are.

Whether or not Γ is representation rigid can also be detected by Γ̂.

Lemma 6.1 Γ is G-representation rigid if and only if Γ̂ is.
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Proof If Γ is G-representation rigid, it has only finitely many, say c, Zariski-dense

representations in G(C). So for each p, Γ has no more than c bounded Zariski-dense

representations in G(Qp). By Proposition 6.1, Γ̂ has no more than c continuous

Zariski-dense representations in G(Qp) for each p. So Γ̂ is G-representation rigid.

Conversely, if Γ̂ is G-representation rigid, there is a c so that for each p, Γ has

no more than c bounded Zariski-dense representations in G(Qp). Now if Γ has a

collection of d distinct Zariski-dense representations, the subring of C generated by

the coefficients of all of the representations is finitely generated, so by Noether nor-

malization its localization at (b) is a finite extension of Z(b)[x1, ..., xm] for some m and

some b. For any p that does not divide b, this ring can be embedded into a finite

extension of Zp, a bounded subring of Qp. Thus for each p which does not divide b,

Γ has d distinct Zariski-dense bounded representations in G(Qp). Now by 6.1, d ≤ c,

and Γ is G-representation rigid.

Suppose G is a reductive algebraic group and Γ is G-representation rigid. Let

(E,GE, f) be the universal representation of Γ in G. Recall that through our implicit

identifications of C and Qp, the homomorphisms of E into Qp also parametrize the

representations of Γ into G(Qp).

Lemma 6.2 Let S be the collection of places of E which are archimedean, or where

the corresponding representation of Γ in Qp is unbounded. Then S is finite.

Proof First notice that for a homomorphism v : E → Qp, the property of fv being

a bounded representation is actually a property of the place of v (that is the orbit

of v under postcomposition by Gal(Qp/Qp)) so this statement makes sense. This is

because elements of Gal(Qp/Qp) are continuous automorphisms of Qp, so they induce

continuous automorphisms of G(Qp). Then homomorphisms of E which belong to the

same place give representations which are either both bounded or both unbounded.

Now Γ is finitely generated so the matrix entries of a set of generators of f(Γ) <

GE(E) will be a finite collection of elements of E, which will be integral at all but

finitely many places of E. Any place where all of these elements are integral will give



22

a bounded representation, so S will be contained in the finite set of places where the

generators are not all integral.

For the specific S from Lemma 6.2, we will call the quadruple (E, S,GE, f) the

bounded universal representation of Γ in G.

Let A = A(E,S), and GA be the group over A coming from GE. Then the inclusion

GE(E) → GA(A) gives the representation f : Γ → GA(A). Because each place of

(E, S) corresponds to a bounded representation of Γ, the closure of f(Γ) in GA(A) is

compact, so profinite. Then let f̂ : Γ̂→ GA(A) be the extension of f .

Proposition 6.2 The universal representation of Γ̂ is (A,GA, f̂).

Proof First, by Lemma 6.1 Γ̂ is also G-representation rigid, so it does have a uni-

versal representation. The claim then follows just by comparing the construction of

(A,GA, f̂) to the construction of the universal representation of Γ̂. By Proposition

6.1, the places of (E, S) correspond to Gal(Qp/Qp) orbits of continuous representa-

tions of Γ̂. Further, a factor Ev of A is the closure of v(E) in Qp. Since v(E) is the

trace field of fv(Γ), Γ is dense in Γ̂, and the trace map is continuous, Ev is also the

closure of the trace field of f̂v(Γ̂). So we see A is in the correct form to be part of the

universal representation of Γ̂.

A factor of GA is the group GE(Ev) for some factor Ev of A. By construction,

this is given by G(Qp)∩Ev[fv(Γ)] in M(n,Qp). Again since Γ is dense in Γ̂ and Ev is

also the closure of the trace field of f̂v(Γ̂), we have Ev[fv(Γ)] = Ev[f̂v(Γ̂)] in M(n,Qp).

So we have

G(Qp) ∩ Ev[fv(Γ)] = G(Qp) ∩ Ev[f̂v(Γ̂)],

and GE(Ev) is constructed the correct way to form the universal representation of Γ̂.

Suppose G is a reductive algebraic group, Γ is a finitely generated group which

is G-representation rigid, and ∆ is another finitely generated group with a fixed

isomorphism ∆̂ ∼= Γ̂. It follows from Lemma 6.1 that ∆ is G-representation rigid as
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well. So let (E, S,GE, f) and (E ′, T,GE′ , g) be the bounded universal representations

of Γ and ∆ respectively. Also let A = A(E,S) and B = A(E′,T ).

Theorem 6.1 The isomorphism ∆̂ ∼= Γ̂ gives a bijection of the places of (E, S) with

those of (E ′, T ). This bijection induces an isomorphism A ∼= B and an isomorphism

GA(A) ∼= GB(B) so that the following diagram commutes.

Γ̂ ∆̂

GA(A) GB(B).

∼

f̂ ĝ

∼

Proof This follows from applying Proposition 6.2 to both Γ and ∆. We see that

(A,GA, f̂) and (B,GB, ĝ) are both the universal representation of ∆̂ ∼= Γ̂. Since the

universal representation is unique up to reordering the factors, the result follows.

Suppose the hypotheses of Theorem 6.1, but also suppose that every algebraic

automorphism, α, of G is induced by conjugation within GL(n). Then we are able

to get the same relationship between the Aut-universal representations of Γ and ∆,

(E,GE, f) and (E
′
,GE

′ , g) respectively. Let S and T be the places of E and E
′

respectively which either are archimedean or correspond to representations of Γ with

unbounded image. Let A = A(E,S) and B = A(E
′
,T ).

Theorem 6.2 The isomorphism ∆̂ ∼= Γ̂ gives a bijection of the places of (E, S) with

those of (E ′, T ). This bijection induces an isomorphism A ∼= B and an isomorphism

GA(A) ∼= GB(B) so that the following diagram commutes.

Γ̂ ∆̂

GA(A) GB(B).

∼

f̂ ĝ

∼

Proof This follows from the bijection and isomorphisms from Theorem 6.1, and

the construction of the Aut-universal representation as a quotient of the universal

representation by the action of the group of outer automorphisms. The bijection of

places in Theorem 6.1 is equivariant under the action of outer automorphisms by

Proposition 6.1, so it descends to the quotient.
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Example 6.3 We now provide an example which demonstrates that the result in 6.2

is optimal in a certain sense. That although we can show there is a local equivalence

between (E, S) and (E
′
, T ), it need not come from a collection of local equivalences

of the factor number fields. To that end, recall the fields K, K1, and K2 and the étale

algebras E1 and E2 from 3.2, which were shown to be locally equivalent in Lemma

3.1. For n ≥ 3, let

Γ = SL(n,OK2)× SL(n,OK3)× SL(n,OK3)

and

∆ = SL(n,OK)× SL(n,Z)× SL(n,Z).

These groups each have CSP (see §7 below) because each of their factors do by [2].

So because AE1
∼= AE2 we see Γ̂ ∼= ∆̂. However the arguments from the proof of

Lemma 7.1 below can show that the Aut-universal representations of Γ and ∆ into

SL(n,C) are (E1, SL(n,E1), i1) and (E2, SL(n,E2), i2) respectively where i1 and i2

are the inclusions. Again from Lemma 3.1, we have seen that these étale algebras

are locally equivalent, but the equivalence does not come from equivalences of their

factor fields.

One special case of the results in [7] is that if ∆ is a Grothendieck subgroup of

Γ, then for any field k and any algebraic group G over k, the map Hom(Γ,G(k))→

Hom(∆,G(k)) induced by the inclusion is actually a bijection. It is interesting to

compare this with the results obtained above. Here, we have only assumed that ∆

and Γ have some isomorphism ∆̂ ∼= Γ̂, which is not assumed to be induced by any

map between ∆ and Γ themselves. However, we have assumed that the target group

G is a reductive group over C and the set X(Γ,G(C)) of conjugacy classes of Zariski-

dense representations of Γ in G(C) is finite. We are able to show that X(∆,G(C)) is

also finite and has the same cardinality as X(Γ,G(C)), however there is no preferred

bijection of these sets. Instead, for each p we do have specific bijections of the

sets XBdd(Γ,G(Qp)) and XBdd(∆,G(Qp)) of classes of representations with bounded

images by Lemma 6.1. These bijections varying over all p are what allow us to see
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the relationships between the local behavior of the global representations of Γ and ∆

in G(C) in Theorem 6.1.
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7. PROFINITE COMPLETIONS OF HIGHER RANK

ARITHMETIC GROUPS

Let G be a connected, simply connected, simple algebraic group. Further let K be a

number field, GK be a K-form of G, and S be a finite set of places of K, containing

all the archimedean places, but containing no places v where GK(Kv) is compact. Let

Γ be a subgroup of GK(C) which is commensurable with GK(OK,S) (commensurable

means that the intersection of Γ with G(OK,S) has finite index in both). Such a

group Γ is called an S-arithmetic group. Let A = AK,S, so the closure of Γ in GA(A)

is compact, so it is profinite and called the congruence completion. The kernel of the

induced map î : Γ̂ → GA(A) is called the congruence kernel. When the congruence

kernel is trivial, we will say that Γ has the congruence subgroup property which we

will abbreviate CSP.

Suppose now that the S-rank of GK is greater than or equal to 2, that Γ has CSP,

and that Γ has no nontrivial homomorphisms to the the center of G(C). Suppose

also that every algebraic automorphism, α, of G is induced by conjugation by some

element of GL(n,C).

Lemma 7.1 The Aut-universal representation of Γ in G is (K,GK , i) where i : Γ→

GK(K) is the inclusion. The Aut-universal representation of Γ̂ in G is (A,GA, î)

and î is injective.

Proof By superrigidity [12, p. 259 Thm. C], each representation of Γ in G(C) with

Zariski dense image comes from a unique embedding K → C followed possibly by an

automorphism of G. Because K is a number field and G has only finitely many classes

of outer automorphisms [17, p. 64 Thm. 2.8], Γ is G-representation rigid. The trace

field of Γ contains K, but cannot be larger than K; if the trace field were larger, its

extra embeddings would give extra representations of Γ, which we know cannot exist.
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Finally, the K form for G produced by Proposition 4.1 from Γ must be isomorphic to

GK by Proposition 3.2. Then because every algebraic automorphism of G is induced

by conjugation in GL(n), the construction from Corollary 4.2 shows (K,GK , i) is the

Aut-universal representation.

The only thing more we must show to get the statement about the universal

representation for Γ̂ is that the representations of Γ in GK(Kv) for p-adic places v are

bounded exactly when v is not in S. For each v ∈ S, the group GK(O(K,S)) is dense

in GK(Kv), which we have assumed is not compact, so GK(O(K,S)) is not bounded.

Conversely, when v /∈ S, GK(O(K,S)) has compact closure in GK(Kv). Since Γ is

commensurable with GK(O(K,S)), the same conclusions hold for Γ. That î is injective

is the definition of CSP.

Let ∆ be a finitely generated, residually finite group with a fixed isomorphism

Γ̂ ∼= ∆̂.

Theorem 7.1 There is a number field L, an L-form GL, a finite set of places of L

including all the archimedean places T , and Λ a T -arithmetic subgroup of GL with

an injection g : ∆ → Λ such that A ∼= B and GA(A) ∼= GB(B) where B = AL,T . If

GL(Lv) is not compact for any p-adic place v in T and Λ also has CSP, then Γ̂ ∼= Λ̂

and either g(∆) = Λ or g(∆) is a proper Grothendieck subgroup of Λ.

Proof Apply Theorem 6.2 and Lemma 7.1 to ∆̂ ∼= Γ̂ to get an étale algebra L,

L-form GL, places T , and representation g : ∆→ GL(L) with A ∼= B and GA(A) ∼=

GB(B). We can see that L is a number field because A ∼= B implies (K,S) and (L, T )

are locally equivalent étale algebras, and so have the same number of factors. Since î

is an injection ĝ must be as well, so g is injective. We take Λ to be ĝ(∆̂) ∩GL(L) in

GB(B). It is a T -arithmetic group because its closure in GB(B) ∼= GA(A) is equal

to that of Γ, and so for each factor Lv of B, the closure of Λ is commensurable with

GL(OLv) and they are equal for all but finitely many factors.

If GL(Lv) is not compact for any p-adic place v in T and Λ also has CSP, then

Λ̂ → GB(B) is an isomorphism onto its image which is also isomorphic to Γ̂. Since
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g(∆) is dense in the image of Λ̂ in GB(B), g : ∆→ Λ induces a surjection ĝ : ∆̂→ Λ̂.

But since ∆̂ ∼= Λ̂ and finitely generated profinite groups are Hopfian, ĝ must then be

an isomorphism. So g(∆) is a Grothendieck subgroup of Λ.

Corollary 7.2 For n ≥ 3, either SL(n,Z) is profinitely rigid, or it contains a proper

Grothendieck subgroup.

Proof We will apply Theorem 7.1 to Γ = SL(n,Z) and ∆ any finitely generated,

residually finite group with an isomorphism ∆̂ ∼= Γ̂. Let G = SL(n,C), which is

connected, simply connected, and simple. Let GQ be the Q-form with GQ(Q) =

SL(n,Q) and S be the set containing only the real place of Q. Then Γ is an S-

arithmetic lattice in the group GQ, which has S rank n − 1 ≥ 2. Γ has CSP and

Γ is perfect, so it has no nontrivial homomorphisms to the center of G. The only

class of nontrivial outer automorphisms of G is represented by X 7→ (X−1)T . We

now construct an embedding of G in GL(2n,C) by placing it in diagonally in two

blocks, one by the identity and the other by the inverse-transpose map. Replace G

by its image under this embedding. Then the outer automorphism of G is induced

by conjugation in GL(2n,C).

Now Theorem 7.1 provides a number field L and a finite set of places T of L

including all the archimedean places such that Af ∼= A(L,T ), which clearly shows L = Q

and T the infinite place. We also get an L-form GL so that and SL(n,Af ) ∼= GAf (Af ).

Now the Q-forms of SL(n,C) are of the form either SL(m,D) for D a central skew field

over Q, or a unitary group SU(m,D, f) where f is a Hermitian form on Dm [17, pp. 87-

88]. However, a unitary group will have infinitely places where the local form will be of

the type SU(m,D, f) over Qp, which SL(n,Af ) does not. So GL must be of the form

SL(m,D), but again because the local forms of GL are all SL(n,Qp), the classification

of central simple algebras implies D = Q and GL is isomorphic to SL(n,Q).

Next we see that because it has the same congruence completion as SL(n,Z), the

Λ constructed in Theorem 7.1 is actually isomorphic to SL(n,Z) as well. So Λ has
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CSP as well, and GL has no extra compact factors. So we produce an injection g :

∆→ SL(n,Z) with either ∆ ∼= SL(n,Z) or ∆ is isomorphic to a proper Grothendieck

subgroup of SL(n,Z).

Another interesting example which demonstrates the difficulty in determining a

lattice from just its local information is given by Γ = SL(4,OK) where K is any

totally real cubic number field. These groups are higher rank and also have CSP

by [2]. If we have a finitely generated, residually finite ∆ with ∆̂ ∼= Γ̂, we obtain an

injection of ∆ into an arithmetic group Λ, but now Λ may be distinct from Γ. There

are K-forms of SL(4) whose local information is the same as SL(4, K) at all p-adic

places, and which only differ at the archimedean places. In this case we cannot rule

out the possibility of Λ being an arithmetic subgroup in one of these groups instead.
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