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ABSTRACT

Huang, Min Ph.D., Purdue University, August 2019. Statistical Steganalysis of Im-
ages. Major Professor: Vernon J. Rego.

Steganalysis is the study of detecting secret information hidden in objects such as

images, videos, texts, time series and games via steganography. Among those objects,

the image is the most widely used object to hide secret messages. Detection of possible

secret information hidden in images has attracted a lot of attention over the past ten

years. People may conduct covert communications by exchanging images in which

secret messages may be embedded in bits. One of main advantages of steganography

over cryptography is that the former makes this communication insensible for human

beings. So statistical methods or tools are needed to help distinguish cover images

from stego images.

In this thesis, we start with a discussion of image steganography. Different kinds

of embedding schemes for hiding secret information in images are investigated. We

also propose a hiding scheme using a reference matrix to lower the distortion caused

by embedding. As a result, we obtain Peak Signal-to-Noise Ratios (PSNRs) of stego

images that are higher than those given by a Sudoku-based embedding scheme. Next,

we consider statistical steganalysis of images in two different frameworks. We first

study staganalysis in the framework of statistical hypothesis testing. That is, we

cast a cover/stego image detection problem as a hypothesis testing problem. For this

purpose, we employ different statistical models for cover images and simulate the

effects caused by secret information embedding operations on cover images. Then

the staganalysis can be characterized by a hypothesis testing problem in terms of

the embedding rate. Rao’s score statistic is used to help make a decision. The

main advantage of using Rao’s score test for this problem is that it eliminates an
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assumption used in the previous work where approximated log likelihood ratio (LR)

statistics were commonly employed for the hypothesis testing problems.

We also investigate steganalysis using the deep learning framework. Motivated

by neural network architectures applied in computer vision and other tasks, we pro-

pose a carefully designed a deep convolutional neural network architecture to clas-

sify the cover and stego images. We empirically show the proposed neural network

outperforms the state-of-the-art ensemble classifier using a rich model, and is also

comparable to other convolutional neural network architectures used for steganalysis.
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1 INTRODUCTION

Steganography is the art and science of covert communication, whose goal is to hide

secret messages within innocuous-looking cover objects. Currently, most of stegano-

graphic schemes are developed on the image domain since they are easy to be imple-

mented and able to hide secret information in plain sight, and most importantly have

a great amount of embedding capacity on the image domain. Steganalysis, on the

other hand, is the art and science of detecting whether a given object is hiding se-

cret information. The image steganalysis is based on the assumption that reasonably

small changes in images may result in detectable changes in some image statistics.

Finding those changes is the core of the image staganalysis.

1.1 Information Hiding

We begin with a brief discussion of the difference between steganography and cryp-

tography. Generally speaking, both steganography and cryptography are information

hiding in the sense of covert communication. The critical difference between them

is that the former hides the existence of secret information whereas the latter hides

the content of secret information, which leads to quite different information hiding

schemes as well as detection schemes. We will consider steganography and focus on

its detection in this thesis.

Steganography has a long history and a nice introduction can be found in [Fri09].

Modern steganography is based on the model from the famous prisoners’ problem

[Sim84]. That is, Alice and Bob are prisoners and allowed to conduct communication

which is observed by Warden. If Warden finds any steganographic schemes are used to

pass secret information, then Alice and Bob may be punished. In this case, Warden is

considered successfully detecting steganography. One assumption in this model that
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Warden has complete knowledge of information hiding schemes that Alice and Bob

might apply. This is the well-known Kerckhoffs’ principle. It is worth noting that

this principle is still commonly used in the study of staganalysis even though it is

less practical. The blind steganalysis is also widely investigated which weakens the

principle at the expense of detection performance.

In image steganography, least significant bits (LSBs) of image pixel values or

Discrete Cosine Transform (DCT) coefficients (of JEPG images) are slightly modified

by steganographic methods with the hope of undetectability of the modifications.

Essentially, those modifications are very small and values of pixels or DCT coefficients

are changed at most by one. Two things need to be addressed here. The first thing

is how the value of a given pixel or a DCT coefficient is modified, if we know, for

instance, that the value (which is an integer) is changed by one. The approach using

the LSB replacement is to simply flip the LSB of the value, and the approach using

the LSB matching iss to randomly modify the value by one. The former results in

asymmetry which can be exploited to construct effective detectors. We will discuss

this in the next chapter in more details. The second thing is how to determine a set

of pixels or coefficients that are used for information embedding. The most popular

approach was to randomly choose those pixels or coefficients using random seeds

before 2010. Such a choice is simple and the scheme is easy to be implemented,

see [Mie06]. But the embedding scheme is independent of the image content and

is thereby less secure [PBF10]. The content adaptive embedding scheme became

popular after a challenge was proposed [BFP11]. Such a content adaptive embedding

scheme is to minimize distortion functions such that smooth regions in images are less

likely to be chosen for embedding. In other words, noise areas such as edges have high

probability to be used for embedding. Many steganographic methods based on the

contend adaptive embedding scheme have been proposed, such as HUGO, WOW, S-

UNIWARD and MiPOD, see, e.g., [PFB10,HF12,LWHL14,SCF16] and the references

therein.
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1.2 Information Detection

Statistical steganalysis is the study of information detection using statistical tools.

Distortion in images caused by carefully designed steganographic methods is hardly

detected by human eyes. Statistical methods need to be employed to conduct the

detection task. As seen above, this task is a binary classification task. Namely,

we have to decide if given images are cover (clean) or stego (dirty) images. Two

frameworks are considered in image staganalysis: statistical hypothesis testing and

machine learning/deep learning. The former is based on cover image models and the

latter relies on feature extraction.

In the hypothesis testing framework, the values of pixels or DCT coefficients

are assumed to have distributions such as generalize Gaussian distributions. The

embedding conducted by steganographic methods may be modelled as changes of

model/distribution parameters, see, e.g., [CZF+11,ZCR+11,Fil12,CZR+12]. It should

be pointed out that the i.i.d. assumption or the independent assumption is used in

the distribution model. This is impractical but the model seems to work well for

certain steganographic methods, as demonstrated by experiments in the references

above as as well as in Chapter 3. However, from my perspective this framework has

difficulty dealing with content adaptive steganographic methods. It is more common

to use machine leaning/deep learning methods for complex steganographic methods

as we will show in Chapter 4.

Machine learning is naturally applied in steganalysis since the detection of secret

information is regarded as a classification task. Lyu et. al. [LF04] first used wavelet

statistics (as features) and the surport vector machine (SVM) for image steganalysis.

Following this pioneering work, steganalysis based on machine learning attracted

much attention. A great deal of work for steganalysis focused on feature extraction has

been done since then, see, e.g., [Ker05b,GFH06,PF06,LF06,PF07,PF08,RG10] and

the references therein. For steganalysis using the machine learning framework, feature

extraction is the main focus. Even though classification methods are very important
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in steganalysis, we usually employ well-developed classification methods (e.g., SVM,

ensemble methods) for the task. Also, dimension reduction techniques dealing with

high-dimensional feature space are extensively used for steganalysis, such as PCA,

random projection, see, e.g., [FQY07, QSXN09, KF11, HF13, HF15]. Before 2015,

image steganalysis was greatly involved in seeking handcrafted feature which heavily

relies on domain expertise. Much effort has been made by many researchers through

years and eventually a collection of more than 30,000 features has completed. The

model with these features is called the rich model [KFH12]. Note that the complete

model has a high-dimensional feature space which may require a lot of memory and

a great deal of computations during training.

Deep learning is a subfield of machine learning and it uses deep neural networks

to extract hierarchical features automatically through the training process. With the

success of deep neural networks in many tasks such as computer vision [KSH12], deep

learning was introduced in image steganalysis in 2015 by Qian et. al. [QDWT15].

The results obtained by them in the paper were promising though the method using

deep neural works fell short of catching the ensemble method with the rich model in

performance. The focus of image steganalysis has been shifted to the design of deep

neural work architectures since then, see, e.g., [PPIC16, CCS17, XWS16b, YNY17,

YCC18b,BCF19] and the references therein.

1.3 Contribution

We first consider a information hiding problem. We develop an embedding scheme

using a reference matrix to improve the quality of stego images by enhancing PSNRs.

We compare the proposed embedding scheme with previously used schemes based on

Sudoku and show the former achieves higher PSNRs than the latter by experiments.

Next, we investigate image steganalysis using the hypothesis testing framework. We

consider an inhomogeneous cover image model and the least significant bit (LSB)

matching scheme for embedding. The resulting stego images can be represented by
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an inhomogeneous Gaussian mixture model which contains the parameter of interest:

the embedding rate. The cover/stego image detection problem is cast by a hypoth-

esis testing problem in terms of the embedding rate. We theoretically analyze the

Rao’s score test for this problem and show the score test is not only asymptotically

most powerful (AMP) but locally asymptotically uniformly most powerful (LAUMP).

Compared with the widely used likelihood ratio (LR) test, the score test does not rely

on an assumption on the image model, i.e., the local variances are greater than one,

which is applied in the LR test and considered unrealistic. Also, experiments are

carried out on two image datasets for the comparison of the two statistical tests. The

results demonstrate that the score test performs reasonably well and outperforms

the LR test when the embedding rate is small. We also use deep learning for im-

age steganalysis. Observing that high-pass filters play an import role in the design

of convolutional neural networks (CNNs) for steganalysis, we propose a CNN archi-

tecture whose first layer is a convolutional layer and consists of kernels of high-pass

filters. These kernels are trainable and we add some constraints (e.g., symmetry and

zero-sum of kernel elements) on them so that the first layer can perform high pass fil-

tering during the neural network training process. It is worth pointing out that many

CNN architectures for image steganalysis employ fixed kernels to conduct high-pass

filtering for input images. The fixed kernels are not trainable thereby cannot learn

from the training data. Some CNN architectures for image steganalysis use train-

able kernels and initialize them with the kernels of high-pass filters. These trainable

kernels are unlikely to continue performing high-pass filtering since the kernel pa-

rameters/weights are changing during the training process and some properties (e.g.,

zero-sum) are no longer guaranteed. The design of the first layer in our proposed CNN

architecture combines the two cases. Also, we introduce the residual modules in our

architecture which allows us to build a deep CNN architecture. For comparison, we

test the proposed architecture , the rich mode with ensemble learning (which is the

state-of-the-art using handcrafted features) and other popular CNN architectures for

steganalysis on a large image dataset. Three complex embedding schemes are consid-
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ered and the experimental results show the proposed CNN architecture gains better

performance in most cases.
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2 IMAGE STEGANOGRAPHY

Steganography is the art and science of hiding the existence of secret information

which is embedded into cover objects in a way that the resulting stego objects do

not raise suspicion. Images are widely employed as cover objects by steganographic

methods, although other types of objects which contain redundancy are applicable

as well. For images, commonly used steganographic methods are based on changes

of LSBs. More specifically, steganographic methods change the LSB of the pixel

values for spatial domain images, and change the LSB of transformation coefficients

(e.g., DCT coefficients) for frequency domain images (e.g., JPEG images). That is,

secret information represented by a string of binary digits is hidden in an image by

modifying LSBs of pixels or coefficients of the image.

2.1 LSB Replacement vs Matching

We start with a simple example which describes the LSB replacement and match-

ing. Six values of either pixels or coefficients are chosen to embed a secret message

coded as a binary string 011010. The six values are assume to be 7, 7, 8, 6, 5, 5. Alice

(the sender) would possibly modify the values such that the LSBs of the modified six

values are consistent with the secret binary string 011010. The LSBs of the original

six values are 110011. It is easily seen that the first value 7, the third value 8 and

the last value 5 need to be changed. For the LSB replacement, we simply flip the

LSB of the three values and so the three values become 6, 9 and 4. The six values

that Bob (the receiver) obtain would be 6, 7, 9, 6, 5, 4 and he can easily extract the

secret binary string 011010 from the LSBs. It should be pointed out that Bob would

know where he can get the six values by the Kerckhoffs’ principle. Notice that there

is a pattern for the LSB replacement. That is, the odd value always decreases and
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the even value always increases when the LSB replacement applies. A lot of detectors

were proposed by exploiting this pattern, such as sample pairs analysis, structure

steganalysis and the weighted-stego method, see, e.g., [DWW02,Ker05a,KB08].

The LSB matching aims at eliminating the asymmetry by randomly decreasing or

increasing the values by one. Again, consider the example above. The first value 7

could be randomly changed to either 8 or 6. The same approach applied for the other

two values. Note that the value is modified by one using the LSB matching but more

LSBs may get involved in modifications. A description of the LSB matching using

mathematical notations will be introduced in the next chapter when the hypothesis

testing is discussed.

2.2 Random vs Content Adaptive Embedding Schemes

As mentioned before, the choice of a set of pixels or coefficients used for infor-

mation embedding (e.g., the LSB replacement or matching) is an important topic in

image steganography. For the random embedding scheme, Alice and Bob may share

random seeds (by the Kerckhoffs’ principle) so that both of them know the set of

pixels or coefficients. It is easy for Bob to extract secret information coded by a

binary string. As shown in the example above, Bob simply looks up to the LSBs of

the pixels from the set in a particular order by using, for instance, random seeds. A

disadvantage of the random embedding is that it is independent of the image content.

This may result in a lot of distortion in the smooth regions of the cover image. To ad-

dress this issue, the content adaptive embedding scheme was introduced by minimize

a distortion cost function.

Consider a grayscale cover image denoted by X = {x1, x2, ...xN}. Here we ig-

nore the correlation among pixels for simplicity and use a sequence for the two-

dimensional image. We denote its stego image by Y = {y1, y2, ...yN}, where xi, yi ∈
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{0, 1, ..., 255}, i = 1, 2, ..., N . To evaluate the embedding distortion, a distortion cost

function ρi(X, yi) is introduced. We specify Y by minimizing the following distortion

D(X,Y) =
N∑
i=1

ρi|xi − yi|,

where ρi are the costs of the change of xi to yi. Different options of the cost func-

tion ρ lead to different content adaptive embedding schemes such as HUGO, WOW,

S-UNIWARD and MiPOD, see, e.g, [HFD14, LWHL14, SCF16] and the references

therein.

Figure 2.1 shows a cover image, its stego image and the difference between them.

The LSB matching with the random embedding scheme is applied here. For com-

parison, a content adaptive embedding scheme, namely S-UNIWARD, is used for the

same cover image, see Figure 2.3. It can be seen from the comparison that Figure 2.1

exhibits the randomness and Figure 2.3 shows the adaptivity in terms of embedding

location. Figure 2.2 demonstrates that the embedding scheme WOW is also content

adaptive.

2.3 Sudoku-based Steganography

In this section, a concrete example using steganogrphy is provided. I would like

to point out that this example is not content adaptive. It shows image steganography

could be conducted by other approaches.

We start with the descrpition of Sudoku-based steganographic methods for hiding

secret information in images. Sudoku solutions play an important role in constructing

a reference matrix based on which pixel values of a cover image are modified to hide

secret information. More specifically, suppose we have a Sudoku solution which can

written as a 9× 9 matrix S. Let B(i, j) denote the entry in the i-th row and the j-th

column of matrix B. and A reference matrix M associated with a Sudoku solution S

is constructed by setting

M(i, j) = S(i′, j′)− 1, i′ = i mod 9, j′ = j mod 9. (2.1)
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Figure 2.1. Embedding: LSB Matching 0.4bpp; Top Left: cover image; Top
Right: stego image; Bottom: changed pixels: white → 1, black → -1
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Figure 2.2. Embedding: WOW 0.4bpp; Top Left: cover image; Top Right:
stego image; Bottom: changed pixels: white → 1, black → -1
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Figure 2.3. Embedding: S-UNIWARD; 0.4bpp; Top Left: cover image; Top
Right: stego image; Bottom: changed pixels: white → 1, black → -1
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Here and throughout the rest of this section, row and column indices of a matrix

start from 0. In order to embed secret information into a given grayscale cover image,

we first generate a sequence of pixels by randomly permuting all of the pixels of the

cover image via a seed and then create a list L of non-overlapping pixel pairs by

simply pairing up adjacent pixels in the sequence. Since pixel values of a grayscale

image are integers between 0 and 255, the size of the reference matrix M is fixed to

be 256× 256. The following is a Sudoku solution used in [HCS08].

S =



7 8 2 4 9 1 5 3 6

1 4 6 5 7 3 9 2 8

5 3 9 6 2 8 7 4 1

3 5 8 1 6 4 2 9 7

4 9 1 7 5 2 8 6 3

6 2 7 3 8 9 4 1 5

2 7 5 9 3 6 1 8 4

8 1 3 2 4 5 6 7 9

9 6 4 8 1 7 3 5 2



. (2.2)

Notice that each row or column in any Sudoku solution contains exactly nine distinct

digits from 1 to 9. Also, there are nine non-overlapping 3×3 blocks with each of them

having distinct digits from 1 to 9. This property of Sudoku solutions are employed

in [CCK08, HCS08] for designing search algorithms. The secret key shared by both

the sender and the receiver consists of a seed, a reference matrix and a possibly used

symbol indicating the end of secret information.

2.3.1 Embedding Procedure

Assume that the secret information including an ending symbol can be repre-

sented by a sequence R of secret digits in the 9-ary notational system. Let ri and

(xi, yi) denote the i-th secret digit in the sequence R and the i-th pair in the list L,
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respectively. Note that each pixel pair in the list L corresponds to a location in the

reference matrix M . The embedding procedure is performed as follows.

(i) Initially, i← 1;

(ii) Find location (u, v) in M such that M(u, v) = ri and (u, v) is closest to

(xi, yi) in L1 (or L2) norm;

(iii) Modify the pixel pair (xi, yi) by (xi, yi)← (u, v);

(iv) i← i+ 1;

(v) Repeat (i)-(iv) until i > length(R) or i > length(L).

Taking advantage of the property of a Sudoku solution, a search in [CCK08] for

the closest location (u, v) to (xi, yi) in L1 norm (i.e., Manhattan distance) in the

embedding procedure above is carried out over three blocks containing (xi, yi): a

horizontal 1 × 9 block, a vertical 9 × 1 block and a 3 × 3 block. Specifically, in the

case of 3 < xi < 252 and 3 < yi < 252, the three blocks above are

(
M(xi, yi − 4) · · · M(xi, yi + 4)

)
,


M(xi − 4, yi)

...

M(xi + 4, yi)

 ,


M(s, t) M(s, t+ 1) M(s, t+ 2)

M(s+ 1, t) M(s+ 1, t+ 1) M(s+ 1, t+ 2)

M(s+ 2, t) M(s+ 2, t+ 1) M(s+ 2, t+ 2)

 ,

where s and t satisfy xi = 3 · s + z, 0 ≤ z < 3, and yi = 3 · t + w, 0 ≤ w < 3,

respectively. In other cases, we may need to shift the horizontal block or the vertical

block. A detailed description of the search algorithm on these three blocks can be

found in [CCK08].

It was observed in [HCS08] that the closest location obtained [CCK08] from the

search over the three blocks above may not be globally optimal over the whole ref-

erence matrix M . That is, for some given pixel pair (xi, yi) in a cover image and

some secret digit ri, there may exist a location in M , say (x′i, y
′
i), which satisfies
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M(x′i, y
′
i) = ri and is closest to (xi, yi) in L1 norm but is not contained in any of

the three blocks associated with (xi, yi) above. Based on this observation, a search

over a larger range for the closest location was proposed in [HCS08] to achieve the

globally optimal solution, which results in obtaining PSNRs for stego images higher

than those in [CCK08].

It should be noted that the only L1 norm is employed in [CCK08, HCS08] for

finding the closest location in the embedding procedure. For a pixel pair (x, y), there

may be two qualified closest location, say (x, y + 2) and (x + 1, y + 1), in L1 norm,

and which one is chosen depends on the search algorithm. It could be either of the

two location. However, only the location (x+1, y+1) is chosen if L2 norm is applied.

It should be more suitable to use L2 norm because the mean-squared error between

a pixel pair and its closest location is used in the computation of PSNRs. The lower

mean-squared error, the higher PSNR. As we can see, the mean-squared error is

associated with L2 norm instead of L1 norm.

2.3.2 Extracting Procedure

Using the secret key, the receiver can generate a list L of pixel pairs from the

received stego image. Then, the extracting procedure is performed as follows.

(i) Initially, i← 1;

(ii) Extract the i-th pixel pair (xi, yi) from L and obtain the i-th secret digit

M(xi, yi) from matrix M ;

(iii) i← i+ 1;

(iv) Repeat (i)-(iv) until i > length(L) or an ending symbol is obtained.

2.3.3 Improvements by New Reference Matrices

we next show that distortion caused by the embedding procedure may be reduced

by replacing a reference matrix constructed from a Sudoku solution with a new one
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which will be described below. Consider a pixel pair (u, v) in a grayscale cover image

with both u and v being unsaturated, i.e., 0 < u, v < 255. It is observed that

u and v may be increased or decreased by up to two by the embedding algorithm

in the section 2.1, if a reference matrix associated with a Sudoku solution is used.

For instance, suppose the pixel pair and secret digit are (3, 4) and 2, respectively.

Using an improved search algorithm employed in [HCS08] and the reference matrix

M constructed from (2.1) and (2.2), the closest qualified locations to (3, 4) are (1, 5)

and (5, 3) in L2 norm. So either v or u needs to be decreased or increased by two

in order to hide the secret digit. To further lower the distortion, we now present a

new construction of the reference matrix M used in the embedding procedure. The

steganographic method based on this newly constructed reference matrix has the

same embedding capacity as that in [HCS08] but gains higher PSNRs, which will

be demonstrated by experimental results in the next section. The new construction

of the reference matrix is described as follows. First, we create a 3 × 3 matrix T

containing exactly nine integers from 0 to 8. The reference matrix M associated with

T is constructed by setting

M(i, j) = T (i′, j′), i′ = i mod 3, j′ = j mod 3, i, j = 0, 1, ..., 255. (2.3)

It can be easily seen that there are totally 9! = 362880 different choices for matrix T .

We can arbitrarily choose one of them. As an example, we let

T =


0 1 2

3 4 5

6 7 8

 . (2.4)
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Thus, the reference matrix M constructed from (2.3) and (2.4) looks like

M =



0 1 2 0 1 2 0 · · · 0

3 4 5 3 4 5 3 · · · 3

6 7 8 6 7 8 6 · · · 6

0 1 2 0 1 2 0 · · · 0

3 4 5 3 4 5 3 · · · 3

6 7 8 6 7 8 6 · · · 6

0 1 2 0 1 2 0 · · · 0
...

...
...

...
...

...
...

. . .
...

0 1 2 0 1 2 0 · · · 0


256×256

(2.5)

Note that any 3 × 3 block in matrix M constructed from (2.3) contains exactly

nine integers from 0 to 8. This can be proved as follows. Assume that there exists

a 3 × 3 block in matrix M having the same integer at two different locations. We

denote by (p1, q1) and (p2, q2) the two different locations, respectively, in matrixM . So

M(p1, q1) = M(p2, q2). It follows from the construction (3) that M(p1, q1) = M(p2, q2)

if and only if

(p1 − p2) = 0 mod 3 and (q1 − q2) = 0 mod 3.

This contradicts that both of (p1, q1) and (p2, q2) are in a 3× 3 block. Therefore, all

3× 3 block in matrix M constructed from (2.3) have distinct integers from 0 to 8.

For an unsaturated pixel pair (u, v) in a grayscale cover image, the above property

of matrix M guarantees that either u or v is increased or decreased by at most one.

To see this, we consider a 3× 3 block in matrix M in the following
M(u− 1, v − 1) M(u− 1, v) M(u− 1, v + 1)

M(u, v − 1) M(u, v) M(u, v + 1)

M(u+ 1, v − 1) M(u+ 1, v) M(u+ 1, v + 1)

 . (2.6)

Since the block above contains all of the nine digits from 0 to 8, the closest qualified

location to (u, v) in L2 norm must be in this block. Thus, either u or v only needs to
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be changed by at most one for hiding any of the nine digits. As mentioned earlier in

an example, u or v in an unsaturated pixel pair may be increased or decreased by two

if the reference matrix is constructed from a Sudoku solution by using (2.1). So the

new construction (2.3) of the reference matrix M provides possibilities for unsaturated

pixel pairs to reduce distortion caused by the embedding procedure. Pixel values in

a saturated pixel pair may be changed by up to two in our proposed steganographic

method. But note that the number of saturated pixels is a small portion of the total

pixel number in most of nature images. Improvements on the quality of stego images

can be expected by using the reference matrix M constructed from (2.3), as will be

shown next.

The embedding and extracting procedure in our proposed steganographic method

is the same as that appearing in the previous subsection, except that the reference

matrix M constructed from (2.1) is replaced with the one constructed from (2.3).

2.3.4 Experimental results

In this section, we report performance of the Sudoku-based steganographic method

used in [CCK08, HCS08] and our proposed steganographic method. To evaluate the

quality of stego images, the PSNR (Peak Signal-to-Noise Ratio) is widely used, see,

e.g., [CCK08,HCS08,JY09,LCW08], which is defined, for a grayscale stego image N ′

with size r × c, as

PSNR = 10 · log10

2552

MSE
,

where the MSE (mean-squared error) between the stego image N ′ and the corre-

sponding cover image N is defined as

MSE =
1

rc

r−1∑
i=0

c−1∑
j=0

[
N(i, j)−N ′(i, j)

]2
.

Nine 512×512 images are chosen from USC-SIPI image database [Web18], among

which Baboon, House, Lena, Peppers and Splash were converted into grayscale im-

ages using Matlab function rgb2gray, see Figure 2.4. The nine images are employed as
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cover images and tested by the Sudoku-based steganographic method [CCK08,HCS08]

and our proposed method using new reference matrices. All of the three stegano-

graphic methods have the same embedding capacity, namely (log2 9)/2 bits per pixel.

At the maximum embedding rate, a sequence of secret digits produced by using a

pseudo-random number generator is embedded into the nine cover images by em-

ploying the three methods, respectively. The reference matrix M used in this ex-

periment is constructed from (2.1) and (2.2) for the Sudoku-based steganographic

method in [CCK08, HCS08], and is for the proposed method. A comparison of per-

formance of the methods is given in Table 2.1, in terms of the PSNR. As shown, the

Sudoku-based steganographic method in [HCS08] results in an average PSNR 0.6333

db higher than that obtained by the method in [CCK08]. In the meantime, the PSNR

caused by the proposed method is 1.5824 higher than that on average achieved by

the method in [HCS08]. It is demonstrated by the experimental results that the

proposed method reduces the distortion causing by embedding, compared with the

Sudoku-based steganographic method in [CCK08,HCS08].

(a) Aerial (b) Baboon (c) Boat

(d) Elaine (e) House (f) Lena

(g) Peppers (h) Splash (i) Truck

Figure 2.4. Nine 512× 512 grayscale images
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Table 2.1.
A comparison of performance of three steganographic methods

PSNRs

Images The method in [CCK08] The method in [HCS08] The proposed method

Aerial 47.6651 48.3037 49.8787

Baboon 47.6603 48.2918 49.8931

Boat 47.6721 48.3108 49.8886

Elaine 47.6614 48.2954 49.8998

House 47.6391 48.2858 49.8969

Lena 47.6650 48.2972 49.8855

Peppers 47.6658 48.3031 49.8934

Splash 47.6553 48.2966 49.8863

Truck 47.7878 48.3869 49.8971

Average 47.6746 48.3079 49.8903
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3 STATISTICAL HYPOTHESIS TESTING FOR STEGANALYSIS

3.1 Introduction

We investigate in this chapter image steganalysis in the framework of statistical

hypothesis testing. The main advantage of this approach is that the theoretical

analysis of the detector can be established once the problem is well modeled. But

the performance of detectors or statistical tests based on hypothesis testing would be

compromised if cover images or embedding operations are not well modeled.

Currently, the most commonly used test statistic for steganalysis in the framework

of hypothesis testing is an approximated log LR statistic, and the cover image model

considered is the inhomogeneous Gaussian image model, see, e.g., [CR13, CZF+11,

CZR+12, Fil12]. In the case that the embedding rate is unknown, the approximated

log LR statistic is obtained by employing Taylor expansions carried out on the log LR

statistic in term of reciprocals of the local variances in the inhomogeneous Gaussian

image model. This approximated log LR statistic is independent of the embedding

rate which is the parameter of interest. For more details, the interested reader is

referred to [CR13]. This approximation is, however, based on an assumption that

local variances in the inhomogeneous Gaussian image model are greater than one,

an assumption which might be considered unrealistic. For instance, local variances

in smooth regions of a nature image are more likely to be smaller than one. This

is also supported by our experiments on large image databases when local variances

are obtained by commonly used estimators, see [CR13,CZR+12,JW88]. To drop this

assumption without sacrificing the performance of the detector, we will instead use

the Rao’s score statistic in this paper as the detector for the LSB matching. The score

statistic used in the hypothesis problem stated in the next section is essentially the

linear approximation of the log LR statistic in terms of the embedding rate around
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the point where the embedding rate is zero. Also, as will be shown in Section 3, the

score test is not only an AMP test for any given embedding rate but also a LAUMP

test.

3.2 Inhomogeneous Image Models

In this section, we introduce a cover image model, the LSB matching embedding

operation, and then derive an inhomogeneous Gaussian mixture image model which

can represent either a cover model or a stego model, depending on the value of the

embedding rate. This inhomogenous Gaussian mixture image model helps us state

the hypothesis testing problem in terms of the embedding rate in the next section.

The cover image model we consider here for steganalysis is the inhomogeneous

Gaussian model which captures the nonstationarity of the first-order and second-

order statistics of the image. The nonstationary mean basically exhibits the gross

structure of the image and the nonstationary variance describes edge and elementary

texture information of the image [KSSC85]. Most importantly, this model allows

extraction of local feature information of the image. The model has been widely

used in image estimation and restoration [JW88, KSSC85], and steganalysis [CR13,

CZF+11, CZR+12, Fil12, ZCR+11] . We also assume in this chapter that pixels in

the image are independent in order to not complicate the model and to simplify the

computation. Based on the assumptions above, a cover image can be represented by

a realization of a collection of N independent but not necessarily identical Gaussian

random variables XXX = (X1, X2, ..., XN) with XXX ∼ N (µµµ,ΣΣΣ), where

µµµ = (µ1, µ2, ..., µN), ΣΣΣ =


σ2

1

σ2
2

. . .

σ2
N

 .

To derive the inhomogenous Gaussian mixture image model, we start with a

description of the LSB matching which is one of most commonly used embedding
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schemes in the spatial domain. Suppose that the secret information is encrypted

and can be represented by a sequence of binary bits with 0 and 1 being randomly

distributed. Let θ ∈ [0, 1] be the embedding rate and assume that the embedding

operation is carried out uniformly throughout the cover image. This implies that the

probability of the event that one bit is hidden in any given pixel is θ. Given a pixel

with the integer value w and one bit b being inserted at this pixel, the LSB matching

embedding operation can be described as follows. If the LSB of w is the same as

b, then w does not change. Otherwise, w is either increased or decreased by one,

each with equal probability 1/2. Note that special care should be taken when w is

at boundary values. But, we may reasonably assume that the effect is negligible and

simply do not take it into consideration. In this view, the stego image can be regarded

as a realization of a collection of N independent but not necessarily identical random

variables YYY = (Y1, Y2, ..., YN), satisfying

P{Yi = xi+1|Xi = xi} = P{Yi = xi−1|Xi = xi} =
θ

4
, P{Yi = xi|Xi = xi} = 1− θ

2
.

(3.1)

Each random variable Yi, i = 1, 2, ..., N , has a Gaussian-Mixture distribution. More

specifically, let

fµi,σi(x) =
1√

2πσi
exp

{
(x− µi)2

2σ2
i

}
(3.2)

be probability density function of the i-th Gaussian random variable Xi, for i =

1, 2, ..., N . It is easily seen from (1) that the corresponding random variable Yi has

the probability density function

gµi,σi(x; θ) =
θ

4

[
fµi,σi(x+ 1) + fµi,σi(x− 1)

]
+
(
1− θ

2

)
fµi,σi(x), i = 1, 2, ..., N. (3.3)

Note that gµi,σi(x; 0) is consistent with fµi,σi(x). So an image, either a cover or a

stego image, can be modeled by a collection of N independent random variables

YYY = (Y1, Y2, ..., YN) with the density function for each Yi being given by (3.3). For

notational convenience we simply denote by g(xxx; θ) the joint density function of YYY

with xxx = (x1, x2, ..., xN) being a N-dimensional variable.
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3.3 Score Tests

Having obtained the inhomogenous Gaussian mixture model, the steganalysis of

LSB matching can be characterized by a hypothesis testing problem in terms of the

embedding rate θ:

H0 : θ = 0 against H1 : 0 < θ ≤ 1, (3.4)

where H0 is called the null hypothesis and H1 is called the alternative hypothesis.

Here, it is implicitly assumed that the embedding rate θ is unknown, which is a more

realistic scenario for steganalysis.

We assume in the present section that the parameters µµµ and ΣΣΣ are known. The

only unknown is the embedding rate θ, the parameter of interest. Note that, for

testing a simple null hypothesis against a simple alternative, one can always use the

LR test which is the most powerful (MP) test by the Neyman-Pearson Lemma. But

this is not the case for the hypothesis testing problem (3.4) which is the focus of

this paper, because the alternative H1 is a composite hypothesis. The most powerful

test is in general hard to be obtained for finite sample sizes, and the uniform most

powerful (UMP) test may not even exist [LR06].

For this reason, we now turn our attention to seeking asymptotically optimal

tests. We shall show that under mild assumptions, the score test exhibits asymptotic

optimality properties. To describe the score test, we first define the log-likelihood

function

LN(θ) =
N∑
i=1

log gµi,σi(Yi; θ). (3.5)

Let Pθ be the probability with the density function g(x; θ) and Eθ(·) be the expecta-

tion with respect to g(x; θ). We make the assumptions used in [RM97]. In particular,

it is assumed that the second moment of

ZN(θ) =
1√
N

∂

∂θ
LN(θ) (3.6)

possesses an asymptotic expansion of the form

Eθ
[
ZN(θ)2

]
= I(θ) +OPθ

(
1

N

)
, (3.7)
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where I(θ) is independent of N . For the hypothesis testing problem (3.4), the power

against any fixed θ > 0 tends to 1 as N → ∞ ,as mentioned in [LR06]. Therefore,

we shall consider sequences of alternatives of the form

θN,ε =
ε√
N
, ε > 0, (3.8)

for which the limiting power is nondegenerate, i.e., strictly between the level of sig-

nificance α and 1. The asymptotic optimality of tests is most naturally investigated

in terms of these alternatives.

Let Φ(·) be the cumulative distribution function of the standard normal distribu-

tion. Note that a random test can be completely characterized by a critical function

φ, with 0 ≤ φ(·) ≤ 1. The Rao’s score test φ̂N for testing θ = 0 against θN,ε at the

level of significance α is therefore given by

φ̂N =
{ 1, if SN ≥ τ1−α

0, otherwise,
(3.9)

where SN is the studentized score statistic defined by

SN =
ZN(0)√
I(0)

(3.10)

and τ1−α = Φ−1(1 − α) is the 1 − α quantile of the standard normal distribution

N (0, 1). It follows from (3.3), (3.5), (3.6) and (3.10) that

SN =
1√
NI(0)

N∑
i=1

{
fµi,σi(Yi + 1) + fµi,σi(Yi − 1)

4fµi,σi(Yi)
− 1

2

}
(3.11)

Next, we derive the asymptotic properties of the score test φ̂N . A direct calculation

yields

E0

[
∂

∂θ
g(x; θ)

∣∣
θ=0

]
= 0. (3.12)

It follows from (3.7) and (3.12) that, under P0,

SN
d→ N (0, 1), (3.13)

where
d→ denotes convergence in distribution. We define the log-likelihood ratio

LRN,ε = LN(θN,ε)− LN(0). (3.14)
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Recalling the Taylor’s expansion of LRN,ε, we obtain

LRN,ε = ε
√
I(0)SN −

1

2
ε2I(0) + oP0(1). (3.15)

Thus, under P0,

LRN,ε
d→ N

(
−1

2
ε2I(0), ε2I(0)

)
, (3.16)

which means PθN,ε is contiguous to P0 in the sense that if P0(FN)→ 0 then PθN,ε(FN)→

0 for every measurable set FN , see Corollary 12.3.1 in [LR06]. We now derive the

distributions of SN and LRN,ε under PθN,ε by applying Le Cam’s Third Lemma, see

Corollary 12.3.2 in [LR06]. Note that the joint behavior of SN with the log-likelihood

ratio LRN,ε satisfies

(SN , LRN,ε) = (SN , ε
√
I(0)SN) +

(
0,−1

2
ε2I(0)

)
+ oP0(1).

It then follows from the bivariate Central Limit Theorem that the joint expression

above converges under P0 to a bivariate normal distribution denoted by (S, LRε).

That is, under P0,

(SN , LRN,ε)
d→ (S, LRε)

with covariance

Cov0(S, LRε) = Cov0(S, ε
√
I(0)S) = ε

√
I(0)E0[S2] = ε

√
I(0).

Hence, under PθN,ε ,

SN
d→ N (ε

√
I(0), 1). (3.17)

It is easily seen from (3.16) that, under P0,

Cov0(LRε, LRε) = ε2I(0).

By a similar argument, we have, under PθN,ε ,

LRN,ε
d→ N

(
1

2
ε2I(0), ε2I(0)

)
. (3.18)

There is another way to verify (3.18). Since PθN,ε is contiguous to P0, we obtain from

(3.15) that

LRN,ε = ε
√
I(0)SN −

1

2
ε2I(0) + oPθN,ε (1),
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which combines (3.17) to confirm (3.18) by employing the Slutsky’s Theorem.

We now show the optimality property for the score test. For this purpose, we first

recall the definition of the AMP test in [LR06].

Definition 3.3.1 For testing θ = 0 against θ = θN , {φN} is AMP at (asymptotic)

level α if lim supN E0[φN ] ≤ α and if for any other sequence of test {ψN} satisfying

lim supN E0[ψN ] ≤ α,

lim sup
N
{EθN [ψN ]− EθN [φN ]} ≤ 0. (3.19)

It can be easily verified that the score test φ̂N defined by (3.9) is AMP for testing

θ = 0 against θN,ε at level α. To see this, we define the log-likelihood test by

ψ̂N,ε =
{ 1, if LRN,ε ≥ −ε2I(0) + ε

√
I(0)τ1−α

0, otherwise.
(3.20)

It follows from (3.13) and (3.17) that the power of the score test φ̂N satisfies

EθN,ε

[
φ̂N

]
→ 1− Φ

(
τ1−α − ε

√
I(0)

)
. (3.21)

Similarly, we obtain from (3.16) and (3.18) that the power of the log-likelihood test

ψ̂N,ε satisfies

EθN,ε

[
ψ̂N,ε

]
→ 1− Φ

(
τ1−α − ε

√
I(0)

)
. (3.22)

By the Neyman-Pearson Lemma, the test ψ̂N,ε is MP for testing θ = 0 against θ = θN,ε

at level α. We conclude from (3.21) and (3.22) that the score test φ̂N is AMP. To

investigate the (locally) uniform optimality of the score test, we recall the definition

of LAUMP provided in [LR06].

Definition 3.3.2 For testing θ = 0 against θ > 0, a sequence of tests {φN} is called

LAUMP at (asymptotic) level α if lim supN E0[φN ] ≤ α and if for any other sequence

of test {ψN} satisfying lim supN E0[ψN ] ≤ α,

lim sup
N

sup
{
Eθ[ψN ]− Eθ[φN ], ; 0 <

√
Nθ ≤ c

}
≤ 0 (3.23)

for any c > 0.
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To show the score test φ̂N is LAUMP, we only need to prove, for any c > 0,

sup
0≤ε≤c

∣∣∣EθN,ε [φ̂N]− [1− Φ
(
τ1−α − ε

√
I(0)

)]∣∣∣→ 0, (3.24)

which can be done by following a similar argument in [LR06]. That is, if (3.24) does

not hold, there exists a sequence εi → ε̂ ∈ [0, c] such that

EθN,εj

[
φ̂N

]
−
[
1− Φ

(
τ1−α − ε̂

√
I(0)

)]
→ γ 6= 0,

which contradicts (3.21). We summarize the results as follows.

Theorem 3.3.1 Consider testing θ = 0 against θ > 0 at level α. Let φ̂N be the test

defined by (3.9). The power of φ̂N satisfies

Eθ

[
φ̂N

]
→ 1− Φ

(
τ1−α − θ

√
N · I(0)

)
. (3.25)

Also, φ̂N is not only AMP, but LAUMP.

It is easily seen from (3.25) that the condition for which the optimal limiting power

against the alternative is nondegenerate is θ
√
N = O(1), as N →∞.

3.4 Practical Considerations

In the previous section, the local means µi and variances σi in the inhomogeneous

image model are assumed to be known. In practice, we have to estimate them from

images in order to design statistical tests. Also, the quantity I(0) used in the score

statistic defined by (3.10) might be hard to obtain analytically. And once it is, its

estimation has to be addressed.

One way to estimate both local means and local variances is by using a weighted

sample average over a rectangular window of size (2U+1)×(2V+1). To better describe

the estimation, we rewrite the local means and variances in the two-dimensional form,

namely, µi,j and σ2
i,j, where (i, j) corresponds to the pixel position. Similarly, we use

Yi,j for the random variable corresponding to the position (i, j) in the inhomogeneous
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image model described in the previous section. A formula for estimating the local

means is

µ̂i,j =
U∑

k=−U

V∑
l=−V

wk,lxi+k,j+l, (3.26)

where xi,j is the pixel value at the position (i, j) and the sum of all weight coefficients

wk,l is one. Similarly, a formula for estimating the local variance is given by

σ̂2
i,j =

U∑
k=−U

V∑
l=−V

sk,l(xi+k,j+l − µ̂i,j)2. (3.27)

To avoid the numerical instability, we place a lower bound σ2
thres on the estimates of

the local variances. Thus, we use in practice

σ̃2
i,j := max{σ2

thres, σ̂
2
i,j}.

The estimation schemes (4.1) and (4.2) were employed in image estimation and

restoration, see [JW88,KSSC85], where uniform weights were considered. The estima-

tion schemes were also commonly used in steganalysis, see, e.g., [CR13,CZF+11,KB08]

and references cited therein. Note that the implicit assumption on the schemes for

estimating local means and variances is that an image is locally ergodic.

As pointed out earlier, the quantity I(0) in the score statistic needs to be estimated

if it cannot be analytically calculated. In this case, we replace I(0) with IN in practice

which is defined by

IN =
1

N

N1∑
i=1

N2∑
j=1

γ2
µ̂i,j ,σ̃i,j

, (3.28)

where N1 ×N2 = N and

γµ̂i,j ,σ̃i,j =
∂

∂θ
log gµ̂i,j ,σ̃i,j(Yi,j; θ)

∣∣
θ=0

=
fµ̂i,j ,σ̃i,j(Yi,j + 1) + fµ̂i,j ,σ̃i,j(Yi,j − 1)

4fµ̂i,j ,σ̃i,j(Yi,j)
− 1

2
.

Inserting IN , the estimates of local means and variances, into (3.11), we obtain the

studentized score statistic used in practice

ŜN =

∑N1

i=1

∑N2

j=1 γµ̂i,j ,σ̃i,j√∑N1

i=1

∑N2

j=1 γ
2
µ̂i,j ,σ̃i,j

(3.29)

The corresponding score test is the same as (3.10) except that SN is replaced with

ŜN .



30

3.5 Experiments

In this section, we report performance of the Rao’s score test and the LR test

proposed in [CR13]. The estimation of local means and variances described in the

previous section is applied in the experiments. All experiments in this section are car-

ried out on the image databases UCID [SS03] and the BOSSbase image database with

the version 0.92 [BFP11]. The original UCID database contains 1, 338 uncompressed

color images with the size of 384×512 or 512×384 pixels. These uncompressed color

images are converted to grayscale images in our experiments by using Matlab func-

tion rgb2gray. The BOSSbase database contains 9, 074 processed grayscale images

with the size of 512× 512 pixels. All stego images in the experiments are generated

from the two image databases by using the LSB matching embedding scheme. Three

different embedding rates are considered in the experiments which are 0.25, 0.5 and

1.

We estimate the local means and variances over a window of size 3 × 3, i.e.,

U = V = 1 in (4.1) and (4.2). The estimation of the local means is obtained by

applying a low-pass filter

1

4


−1 2 −1

2 0 2

−1 2 −1

 ,

which corresponds to using the estimation scheme (4.1) with weights

w0,0 = 0, w−1,1 = w−1,−1 = w1,−1 = w1,1 = −1

4
, w−1,0 = w0,−1 = w0,1 = w1,0 =

1

2
.

This formula has been widely used in local mean estimation (see, e.g., [CR13,CZR+12,

KB08]). It was also observed in our experiments that both the score test and the LR

test using this local mean estimation basically provide better performance on both

the UCID and the BOSSbase image databases than those using other low-pass filters

such as box filters, Gaussian filters, etc., when the same local variance estimation and
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the same variance threshold σ2
thres are applied. So we only report the experimental

results based on this local mean estimation.

The estimation of the local variances in all of our experiments is based on the

formula (4.2) with a lower bound threshold σ2
thres = 0.3. For the proposed score test

and the LR test, we use uniform weights for the local variance estimation, namely,

si,j =
1

9
, i, j = −1, 0, 1. (3.30)

In addition, we report the performance of the LR test using the local variance esti-

mation with weights (see, [CR13])

s−1,0 = s0,−1 = s0,1 = s1,0 =
1

3
. (3.31)

The performance of the proposed score test and the LR test described in [CR13]

is measured by receiver operating characteristic (ROC) curves. In the following,

the statistical tests using local variance estimation with uniform weights (3.32) are

referred to as 9-point tests, and the tests using local variance estimation with weights

(3.33) are referred to as 4-point tests.

Figure 3.1 exhibits a comparison of performance of the score test and the LR test

on both the UCID and the BOSSbase image databases with the embedding rate is

0.25. It is clear that the score test outperforms the LR test which uses either (3.32)

or (3.33) for the local variance estimation.

It is presented in Figure 3.2 that the score test performs better than the score test

on the UCID image database, especially when the false alarm rate is less than 0.5.

The LR test using the local variance estimation (3.32) performs equally well as the

score test when the false alarm rate is greater than 0.5. The case is different when

they perform on the BOSSbass image database. As shown in Figure 5.2, the score test

clearly outperforms the LR test which employs the local variance estimation (3.32).

It performs much better than the LR test using the local variance estimation (3.33)

when the false alarm rate is less than 0.3, but the latter performs slightly better than

the former when the false alarm rate is greater than 0.3.
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Figure 3.1. Comparison of ROCs with embedding rate θ = 0.25; Top: perfor-
mance on the UCID database; Bottom: performance on the BOSSbase database
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Figure 3.2. Comparison of ROCs with embedding rate θ = 0.5; Top: perfor-
mance on the UCID database; Bottom: performance on the BOSSbase database
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Figure 3.3. Comparison of ROCs with embedding rate θ = 1.0; Top: perfor-
mance on the UCID database; Bottom: performance on the BOSSbase database
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Finally, the score test and LR test perform quite different on both the UCID and

the BOSS image databases when the embedding rate is one, as shown in Figure 3.3.

Basically, the LR test with the local variance estimation (3.32) slightly outperforms

the score test when the false alarm rate is greater than 0.1 on both of the image

databases, but the latter outperforms the former when the false alarm rate is less

than 0.1. The score test performs better than the LR test with the local variance

estimation (3.33) on the UCID image database. The score test is outperformed by

the the LR test on the BOSS image database when the false alarm rate is greater

than 0.2, but the former performs much better than the latter when the false alarm

rate is less than 0.2.

3.6 JEPG DOMAIN

In the previous sections, we described hypothesis testing for image steganalysis

on spatial domain. The values involved in statistical models and tests are pixel

values of spatial images. For completeness, I will briefly discuss steganalysis of JEPG

images using hypothesis testing in the final section of this chapter. JEPG images are

widely employed for information hiding since they are everywhere on Internet. Note

that quantized DCT coefficients are used to embed secret binary string and therefore

statistical models for quantize DCT coefficients are needed if the hypothesis testing

framework is applied. The derivation of the models involve a few steps and it is not as

straightforward as those used for pixel values of spatial images from my perspective.

3.6.1 Statistical Models

The JEPG compression involves the DCT followed by the quantization. Let us

start with a description of the DCT used in JEPG which is perform within each of

8× 8 blocks [PM92]

Im,n =
1

4
TmTn

7∑
i=0

7∑
j=0

xi,j cos

(
(2i+ 1)mπ

16

)
cos

(
(2j + 1)nπ

16

)
, (3.32)
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where xi,j, i, j = 0, 1, ..., 7, denote pixels within an 8×8 block for i, j = 0, 1, ..., 7, and

Im,n, m, n = 0, 1, ..., 7, denote the corresponding DCT coefficients and Tm is defined

by

Tm =
{ 1/
√

2, m = 0

1, m > 0.
(3.33)

Tn has the same expression as Tm by replacing n with m. The coefficient I0,0 is

called the Direct Current (DC) coefficient and represents the mean value of pixels in

the 8 × 8 block. The other 63 coefficients are called the Alternating Current (AC)

coefficients. We assume that xi,j, i, j = 0, 1, ..., 7, are identically distributed but not

necessarily Gaussian Applying the central limit theorem (CLT), we have that the

weighted summation Im,n is approximately distributed as a (zero-mean) Gaussian for

given m and n. Note that the CLT is valid even when xi,j are spatially correlated

as long as the correlation is not strong. Typically, the variance of the blocks varies,

meaning σ2
m,n itself can be regarded as a random variable which is simply denoted

by σ2. We can thereby use the doubly stochastic model to compute the probability

density function (pdf) of AC coefficients [LG00,TCR14]

fI(x) =

∫ ∞
0

fI|σ2(x|s)gσ2(s)ds. (3.34)

As mentioned above, fI|σ2(x|s) is approximated by a zero-mean Gaussian for given

σ2 and can be written as

fI|σ2(x|s) =
1√
2πs

exp

(
−x

2

2s

)
, (3.35)

and gσ2(s) is the distribution of the random variable σ2. There are many options for

gσ2(s), see, e.g., [LG00,TCR14], resulting in different pdfs of AC coefficients. One of

the options is the Gamma distribution, i.e.,

gσ2(s) =
sη−1

νηΓ(η)
exp

(
− s
ν

)
, (3.36)
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where η > 0 is a shape parameter, ν > 0 is a scale parameter, and Γ(·) is the gamma

function. By this choice, it turns out that the pdf fI(x) in (3.34) can be written as

the following expression [GS01,SLG02,TCR14]

fI(x) =

√
2

π

(
|x|
√

ν
2

)η− 1
2

νηΓ(η)
Kη− 1

2

(
|x|
√

2

ν

)
, (3.37)

where Kη(·) is the modified Bessel. Another common choice of gσ2(s) is the generalize

Gaussian distribution

gσ2(s) =
η

2νΓ(1/η)
exp

(
−
(
|s|
ν

)η)
, (3.38)

where ν > 0 and η > 0 are the scale and shape parameters respectively.

Next, we introduce the quantization on the AC coefficients and then obtain the

quantized AC coefficients. Let PV (k) be the probability mass function (pmf) of the

quantized AC coefficient V using the quantization step ∆. Note that V is a discrete

random variable. The pmf PV (k) is defined by

PV (k) =

∫ ∆(k+1/2)

∆(k−1/2)

fI(x)dx, (3.39)

where fI(x) is calculated from (3.34). Therefore, a statistical model for quantized AC

coefficients is obtained once we choose gσ2(·) and the quantization step ∆.

3.6.2 Steganalysis for Jsteg Algorithm

The Jsteg algorithm is the LSB replacement embedding scheme on the DCT do-

main, see, e.g., [ZP03,YWT04,KF10,TCR14]. Steganalysis using hypothesis testing

for the Jsteg algorithm is similar to that for the LSB matching described in previous

sections except that statistical models are different.

A cover JPEG image can be represented by 64 vectors of quantized DCT coef-

ficients Ci, i = 1, 2, ..., 64. We denote by Pλi,∆i
the pmf with the parameter vector

λi and the quantization step ∆i. Notice that λi = (νi, ηi) for the previous models

mentioned above. Note that the Jsteg algorithm does not choose the DC coefficient
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for embedding for the security reason. Also, it does not choose the quantized AC

coefficients with the value 0 or 1. Those are constraints on the Jsteg algorithm. Let

θ be the embedding rate and Qθ,λi,∆i
be the pmf of the resulting stego JPEG image

which can be written as [ZCR+11,TCR14]

Qθ,λi,∆i
(k) =

(
1− θ

2

)
Pλi,∆i

(k) +
θ

2
Pλi,∆i

(k̄), k 6= 0, 1, (3.40)

where k̄ denotes the integer k with the LSB flipping operation k̄ = k + (−1)k

[DSM+04]. In addition,

Qθ,λi,∆i
(0) = Pλi,∆i

(0), (3.41)

and

Qθ,λi,∆i
(1) = Pλi,∆i

(1) (3.42)

Note that Q0,λi,∆i
(·) = Pλi,∆i

. The hypothesis testing for steganalysis of the Jsteg

algorithm is established in the same way as (3.4). The Rao’s score test is obtained

by following the steps similar to those from (3.5) to (3.10). In addition, nuisance

parameters λi’s are unknown and need to be estimated in practice. The most com-

monly used methods include the method of moments (MM) estimates and maximum

likelihood (ML) estimates, see, e.g., [Mül93, CSKM05, TCR14]. It is worth noting

that there are up to 63 different distributions (instead of a single distribution) for

quantized AC coefficients and so the log-likelihood function in (3.5) should be similar

to that in [BG62] where observations did not come from a single population but from

distinct but related populations.

Figure 3.4 exhibits performance of the Rao’s score test on the BOSSbase JPEG75

which is generated from the original BOSSbase dataset via JPEG compression with

a factor of 75. Here we used the Gammar distribution and the generalized Gaussian

distribution, respectively, for gσ2 . It can be observed that the Rao’s score test with

both of the distributions work well for the small embedding rate. As mentioned above,

the Jsteg embedding scheme is the LSB replacement scheme on DCT domain which

shows some patterns that can be exploited by steganalysis. We also extend the score

test to the symmetric Jsteg [KF10] embedding scheme and the result is shown in 3.5.
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Figure 3.4. Comparison of ROCs for two models with embedding rate θ = 0.1
on BOSSbase JPEG75; Embedding method: JSteg
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4 NEURAL NETWORKS FOR STEGANALYSIS

4.1 Introduction

The image steganalysis using the hypothesis testing framework has been discussed

in the previous chapter. This hypothesis testing framework for steganalysis heavily

relies on cover image models (e.g., inhomogeneous Gaussian distribution) and the

embedding scheme (e.g., LSB matching with the random embedding). The pixel

correlation or dependence is basically ignored in order to simplify the models. Also,

the content adaptive embedding scheme is much harder to be integrated with the

cover models than the random embedding scheme. To develop effective detectors

for complex steganographic methods, such as HUGO, WOW and S-UIWARD, people

resort to machine learning techniques. The machine learning methods for steganalysis

have shown very good performance, see, e.g., [SCC06, PF07, CS08, PBF10, PFB10,

KFH12] and the references therein. Since the rich model, which includes more than

30,000 features, was proposed [FK12], the approach which combines the rich model

with the ensemble learning has became the state-of-the-art detector for steganalysis.

Still, performance of the machine learning based detector is greatly impacted by

the quality of handcrafted features. Finding the useful handcrafted features is a

challenge task and needs domain expertise and a great deal of experiments using all

kinds of machine learning methods. After completeness of the rich model, it seems

new approaches are needed which go beyond the extraction of handcrafted features.

With the successful applications of deep neural networks in compute vision, nat-

ural language processing and other tasks, people paid much attention and considered

applying neural networks to their own tasks. One of main advantages of using deep

neural networks is to self-learn/extract features from data during the training pro-

cess. This is a totally different approach for featrue extraction. Also, deep neural
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networks have very large capacity because they can easily have of thousands of mil-

lions) of parameters. Even a shallow neural network may have hundreds of thousands

of parameters. Such a huge capacity allows neural networks to self-learn complex

structures/features from data and achieve outstanding performance on many tasks.

Typically, neural networks combine feature extraction and classification and provide

a end-to-end solution for steganalysis. Most of layers in neural network architectures

are typically used for feature extraction and the last layer is employed for classifi-

cation. Challenges of using deep neural networks include data collection, design of

neural network architectures, computations, etc. Progresses have been greatly made

by researchers across different disciplines to address those challenges.

For image steganalysis, the deep learning framework provides a new approach

going beyond handcrafted features. More importantly, we may be motivated by the

progress of deep learning for other tasks, especially for computer vision. In 2014 Tan

et al. [TL14] made an attempt to apply stacked auto-encoders for steganalysis though

the results did not look good. In 2015, Qian et al. [QDWT15] proposed a convolutional

neural network (CNN) architecture which showed promising results. This is regarded

as an early influential effort using deep learning for image staganalysis. Their design

of the CNN architecture was inspired by those applied in computer vision. The only

exception is that a fixed high-pass filter was employed by Qian et al. [QDWT15] in

the beginning of the CNN architecture. The 5×5 high-pass filter is defined as follows.

F (0) =
1

12



−1 2 −2 2 −1

2 −6 8 −6 2

−2 8 −12 8 −2

2 −6 8 −6 2

−1 2 −2 2 −1


. (4.1)

This is a high-pass KV filter used in [KFH11] and is also used in [FK12] called

the square S5a filter. Basically, this high-pass filter is regarded as simulating the

feature extraction process. It was reported in [QDWT15] that this high-pass fil-

ter help improve the performance of the neural network. It is worth noting that
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this filter is symmetric and the sum of all elements is zero. This module is used to

extract stego information hidden in images. Notice that the secret information is

embedded in LSBs of values of pixels or DCT coefficients to avoiding much distor-

tion. Also, as mentioned before, content adaptive embedding schemes are very likely

to hide secret information in regions of images that are not smooth, such as lines.

For these reasons, the stego signals are widely believed to hide in noise level of im-

ages. Therefore, applying high-pass filters is likely to enhance the stego information,

which is very helpful for image stanalysis. This high-pass filtering design has a great

influence. Xu et al. [XWS16b] employed this high-pass filter, along with absolute

value layer, batch normalization, average pooling and 1× 1 convolutions to improve

performance. Ye et al. [YNY17] used 30 high-pass filters in the first convolutional

layer as initialization which was followed by an new activation function called the

Thresholded Linear Unit (TLU). Yedroudj et al. [YCC18b, YCC18a] presented an-

other architecture which takes advantage of the novel design in Xu-Net and Ye-Net,

such as high-pass filtering, absolution value layer, TLU, etc. Recently, a CNN archi-

tecture without high-pass filtering design was proposed [BCF19]. It applied residual

module [HZRS16a,HZRS16b], along with average pooling and 1 convolutions, in the

architecture to boost performance. Other CNN architectures for image steganalysis

can be found in [CCGS16,PPIC16,YSWK17,ZTLH18] and the references therein.

In order to better understand the CNN architecture, we need to introduce some

terminologies. This introduction of concepts is brief and selective. A comprehensive

review of deep neural networks can be found in a recent book [GBC16].

4.1.1 Layer

Figure 4.1 show a basic neural network architecture which consists of an input

layer, two hidden layers and an output layer. Each layer has a bunch of neurons

except the output layer (in this architecture). The neurons in adjacent layers are

fully connected shown in 4.1. They are actually fully connected layers. In our case,
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the input which is a 16-dimensional vector moves forward to pass the first hidden layer.

A product of a matrix and a vector is computed and the output is a 12-dimensional

vector. When the second hidden layer is passed, the computational process repeats

and the output is a 10-dimensional vector. The concept can be generalized to the

CNN architecture. In terms of CNN, each neuron in hidden layers is considered a

filter with certain sizes (e.g., 3 × 3, 5 × 5). The hidden layers are actually called

convolutional layers in this case. Each input unit is regarded as a channel of an

image. For instance, a RGB image has three channels and a grayscale image has only

one channel. When an input image pass through the first convolutional layer, the

convolution is involved and the output is called a feature map which is a collection of

12 images in our case. This process repeats when the input moves forward layer by

layer.

4.1.2 Convolution

We next use mathematical notations to describe the convolution. The notations

are adopted from [QDWT15]. Let I(0) be the filtered image which is the output of

passing through the fixed high pass filter (4.1). Let F
(l)
k denote the kth filter from layer

l = {1, ..., L}, with L being the number of convolutional layers, and k ∈ {1, ..., K(l)},

with K(l) being the number of filters of the lth layer. A convolution from the first

layer with the kth filter results in a filtered image denoted by Ī
(1)
k , such that

Ī
(1)
k = I(0) ∗ F (l)

k (4.2)

From the second layer to the last convolutional layer, the convolution is less conven-

tional since there are K(l−1) feature maps (i.e., K(l−1) images) as input, denoted by

I
(l−1)
k with k = 1, ..., K(l−1). Note that the convolution which will lead to the kth

filter images Ī
(l)
k resulting from the convolutional layer l, is actually the sum of K(l−1)

convolution operations. That is,

Ī
(l)
k =

K(l−1)∑
i=1

I
(l−1)
i ∗ F (l)

k,i , (4.3)
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Figure 4.1. A simple neural network
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where F
(l)
k,i are K(l−1) filters for given k.

4.1.3 Activation

An activation function is a nonlinear function which introduce nonlinearity to

networks. The sigmoid function was a popular activation function. In terms of CNN,

the most commonly used activation function after the convolution operations is a

rectified linear unit (ReLU), which is define as

ReLU(x) = max(0, x).

Another activation function TLU proposed by Ye et al. [YNY17] is defined by

TLU(x) =


−T, x < −T

x, −T ≤ x ≤ T

T, x > T,

where T is a parameter. In addition, an absolute activation function used in [XWS16b]

will is simply defined as

f(x) = |x|

Note that this absolute activation function has been used in Xu-Net and Yedroudj-

Net, see [XWS16b,YCC18b].

4.1.4 Batch Normalization (BN)

The batch normalization [IS15] is a type of layer which aims at normalizing data

adaptively. It normalizes the distribution of each feature to zero-mean and unit-

variance and then scales and translates the distribution during training. The main

advantage of using the batch normalization is to help maintain gradient propagation.

It could speed up the learning process by using a larger learning rate, see [IS15] for

more details. Note that two parameters: the shift parameter and the scale parameter

are learned from training data.
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4.1.5 Pooling

The pooling operation falls into two categories: the average pooling and the max-

imum pooling. For image recognition, the maximum pooling is preferable and has

a local invariance in translation when the features are recalculated. However, the

average pooling is most commonly used in steganalysis because the embedding infor-

mation is considered hiding in image noise. The use of maximum pooling may result

in the useful information which help classify cover and stego images. Often, pooling is

used to reduce the size of the output feature maps by choosing an appropriate stride.

For instance, a 2× 2 average or maximum pooling stride 2 on an image would down

sample the image by half.

Again, a more detailed description of convolutional networks can be found in

[GBC16], Chapter 9.

4.2 Proposed Neural Networks

4.2.1 Related Work

The initial efforts using deep learning framework for image steganalysis were

made by Tan et al. [TL14] and Qian et al. [QDWT15]. An important contribu-

tion in [QDWT15] is to introduce a fixed high pass-filter as a preprocessing module.

Other researchers have used this preprocessing module when other CNN architectures

were developed, see, e.g., [PPIC16, XWS16b, XWS16a, PPIC16, YCC18b]. Those re-

sults obtained from CNN architectures were encouraging. Ye-Net was proposed by

using 30 high pass filters as initialization of 30 trainable filters in the first convolu-

tional layer [YNY17]. Yedroudj et al. [YCC18b] also used these 30 high-pass filters

in the first layer of their proposed CNN architecture but they fixed these high pass

filters as the preprocessing module during the training. Note that Yedroudj et al.

employed 30 fixed high pass filters whereas Qian et al. only used one. Recently, a

deep residual network, called SRNet, was proposed [BCF19] which did not use any
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high pass filters as a preprocessing module in the beginning of the CNN architecture.

Instead, they use multiple convolutional layers to extract stego signals during the

training process. It was reported that SRNet has achieved good performance the

BOSSbase and BOWS2 datasets [BFP11, BF]. There are many other CNN archi-

tectures used for image steganalysis that are inspired by well-known architectures or

modules used in computer vision, such as VGG [SZ14], ResNet [HZRS16a,HZRS16b],

DensNet [HLVDMW17], etc. Among those CNN architectures for image steganaly-

sis, Xu-Net [XWS16b, XWS16a] and Ye-Net [YNY17] as well as recently proposed

Yedroudj-Net [YCC18b] are widely used for comparison.

4.2.2 Proposed CNN Architectures

Motivated by previous works mentioned above, I propose a CNN architecture

which uses 30 trainable high-pass filters in the first convolutional layer in the begin-

ning of the architecture. The idea behind this high-filtering design is that we want to

place a self-learning high-filtering convolutinal layer in the beginning. The term self-

learning means the kernels of this CNN layer are trainable, namely, kernel weights are

adjusting during the training process. As mentioned before, Qian et al. [QDWT15]

used one fixed high-pass filter (4.1) which is not trainable. Ye-Net [YNY17] employed

a trainable CNN layer with the kernels of 30 high-pass filters as initial assignments.

But the kernel weights are changing during training and unlikely to continue doing

high-pass filtering.

In order to make the 30 filters function as high pass filters during the training

process, we add some constraints on these filters. We make them have the symmetry

and keep the sum of the kernel weights (for each kernel) to be zero which is a property

of high pass filters. We hope the trainable kernels can self-learn from data during

the training process. Again, the bottom line is to put some constraints on trainable

kernels. Yedroudj-Net [YCC18b] fixed 30 high-pass filters in the beginning to conduct

high-pass filtering.
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It is worth pointing out that there are successful modules/layers in Xu-Net, Ye-

Net, etc, such as the truncation layer, average pooling layer. Those layers I believe

being helpful are introduced in our proposed CNN architectures. In addition, residual

connections/modules [HZRS16a, HZRS16b] have been commonly employed in deep

neural networks to help model training. They are also considered in the proposed

architecture.

Figures 4.3 and 4.4 present the proposed CNN architecture which consists of two

blocks shown in Figure 4.2. The architecture diagram of Xu-Net [YNY17] is presented

in Figure 4.5, the architecture diagram of Ye-Net [YNY17] is exhibited in Figure 4.6

and the architecture diagram of Yedroudj-Net [YCC18b] is shown in Figure 4.7.

4.3 Experiments

4.3.1 Setup

We consider three content adaptive embedding schemes: WOW, MiPOD and S-

UIWARD. We compare the performance of the rich model with the ensemble learning,

Xu-Net, Ye-Net, Yedroudj-Net and our proposed neural network on an image dataset

consisting 40,000 images with size 256 × 256. This image dataset [PPIC19] was

actually created by Pibre et al. from the popular BOSSbase dataset [BFP11]. The

BOSSbase dataset contains 10,000 grayscale images with size 512×512. Each image in

the BOSS dataset is divided into four images with size 256. Therefore, they obtained

40,000 images from the BOSSbass dataset and put them on their website.

For each embedding scheme, we produce 40,000 stego images and therefore we have

40,000 cover/stego image pairs (i.e., 40,000 cover images + 40,000 stego images).

We generate the training, validation and test datasets as follows. We randomly

choose 4,000 cover/stego image pairs to form the test dataset, and 8,000 cover/stego

image pairs to form the validation dataset. The training dataset consists of the

remainder 28,000 cover/stego image pairs. All of the CNN architectures are run on

a single GPU (TITAN XP or GeForce GTX) with 12 GB of memory. During the
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Figure 4.2. Two types of blocks: Convolutional Block-I and Convolutional Block-II
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Figure 4.3. Proposed CNN architecture diagram-I
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Figure 4.4. Proposed CNN architecture diagram-II
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CNN training, we fix the maximum of 450 epochs. Also, I use the popular deep

learning APIs Keras [C+15] with Tensorflow being backend to implement all three

CNN architectures used in the experiment.

4.3.2 Experimental Results

In the following, we will show some training logs for Ye-Net, Yedroudj-Net and

the proposed neural network. Figure 4.8 shows the training and validation accuracy

as well as loss for Ye-Net. The embedding scheme is WOW with the payload 0.4.

Figures 4.9 and 4.10 exhibit the training and validation accuracy as well as loss for

Yedroudj-Net. The embedding scheme is S-UNIWARD with the payloads being 0.4

and 0.2 respectively. Figure 4.11 presents the training and validation accuracy as well

as loss for the proposed neural network. The embedding scheme is WOW with the

payload being 0.4.

Table 4.1 shows the detection error rates for three different embedding schemes

using SRM (the rich model with the ensemble learning), Xu-Net, Ye-Net, Yedroudj-

Net and the proposed CNN architecture. As can be seen, the proposed neural network

outperforms the others for the embedding schemes WOW and S-UNIWARD with the

payloads 0.2, 0.3 and 0.4, and for the embedding scheme MiPOD with the payload

0.2. Yedroudj-Net performs best for the embedding scheme MiPOD with the payloads

0.3 and 0.4.
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Figure 4.5. Xu-Net architecture diagram
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Figure 4.6. Ye-Net architecture diagram
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Figure 4.7. Yedroudj-Net architecture diagram
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Figure 4.8. Ye-Net for WOW with payload 0.4pp
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Figure 4.9. Yedroudj-Net for S-UIWARD with payload 0.4pp
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Figure 4.10. Yedroudj-Net for S-UIWARD with payload 0.2pp
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Figure 4.11. The proposed Net for WOW with payload 0.4pp
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Table 4.1.
Detection error rates for WOW, MiPOD and S-UNIWARD.

Steganography Payload (bpp) SRM Xu-Net Ye-Net Yedroudj-Net Proposed Net

0.2 0.391 0.409 0.397 0.392 0.388

WOW 0.3 0.345 0.348 0.343 0.340 0.337

0.4 0.286 0.302 0.288 0.281 0.274

0.2 0.396 0.386 0.380 0.379 0.377

MiPOD 0.3 0.322 0.318 0.317 0.306 0.311

0.4 0.284 0.262 0.255 0.246 0.249

0.2 0.398 0.391 0.387 0.385 0.379

S-UNIWARD 0.3 0.353 0.349 0.341 0.315 0.302

0.4 0.299 0.287 0.276 0.271 0.267
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5 SUMMARY AND FUTURE WORK

In this thesis we investigate statistical steganalysis of images. We start with a de-

scription of image steganography. We introduce different kinds of embedding schemes

and then study an information hiding problem using Sudoku. We propose an hiding

scheme using a reference matrix to improve the quality of resulting stego images in

terms of PSNRs. Experiments demonstrate the effectiveness of the proposed scheme,

see Chapter 2.

Next, we consider image steganalysis using the hypothesis testing framework. This

framework allows us to conduct a theoretical analysis of performance of steganalysis.

We show the score test for the resulting hypothesis problem is not only AMP but

also LAUMP. In comparison to the commonly used LR test, the proposed score

test drop an unrealistic assumption used by the LR test which requires the local

variances in an inhomogenous image mode are greater than one. Experiments on

the BOSSbase image dataset show the score test is comparable to the LR test, and

outperforms it when the embedding rate is small, see Chapter 3. The challenge for

the hypothesis testing approach is that it relies on cover image models and certain

embedding schemes. It is challenging to establish a hypothesis testing problem when

complex embedding schemes are used, such as content adaptive embedding schemes.

Those challenges lead us to adopting the machine learning/deep learning approach

for image steganalysis.

Deep neural networks can self-learn complex structures or features from data

through the training process in contrast to the machine learning approach using

handcrafted features. Inspired by the wide use of high-pass filtering module, we

propose a CNN architecture which includes a trainable CNN layer in the beginning

with some constraints on its kernels. Such constraints can force this CNN layer

to conduct high-pass filtering and at the same time update their weights from the
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training data. This design combines two ideas used in previous work: (1) the use of

fixed high-pass filters with non-trainable kernels; (2) the use of the high-pass filters

only for initialization of a convolutional layer. In addition, the residual module is

employed so that the architecture may go deeper (e.g., more convolutional layers may

be used in the architecture). Experiments on a large image dataset show that the

proposed CNN architecture outperforms commonly used the state-of-the-art detector

using handcrafted features, Xu-Net, Ye-Net and Yedroudj-Net in most cases.

In the future, we plan to use the proposed CNN for steganalysis on JPEG domain

with possible adjustment. Note that training a deep neural network is expensive and

so the use of transfer learning [SRASC14] would be a start of addressing this issue

and be worth making efforts. Also, developing lightweight depthwise convolutions,

see [SHZ+18], for image steganalysis. This may save a lot of computations without

compromising the performance.
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[CZR+12] Rémi Cogranne, Cathel Zitzmann, Florent Retraint, Igor Nikiforov,
Lionel Fillatre, and Philippe Cornu. Statistical detection of lsb match-
ing using hypothesis testing theory. In International Workshop on
Information Hiding, pages 46–62. Springer, 2012.

[DSM+04] Onkar Dabeer, Kenneth Sullivan, Upamanyu Madhow, Shivkumar
Chandrasekaran, and BS Manjunath. Detection of hiding in the least
significant bit. IEEE Transactions on Signal Processing, 52(10):3046–
3058, 2004.

[DWW02] Sorina Dumitrescu, Xiaolin Wu, and Zhe Wang. Detection of lsb
steganography via sample pair analysis. In International Workshop
on Information Hiding, pages 355–372. Springer, 2002.

[Fil12] Lionel Fillatre. Adaptive steganalysis of least significant bit replace-
ment in grayscale natural images. IEEE Transactions on Signal Pro-
cessing, 60(2):556–569, 2012.

[FK12] Jessica Fridrich and Jan Kodovsky. Rich models for steganalysis of
digital images. IEEE Transactions on Information Forensics and Se-
curity, 7(3):868–882, 2012.

[FQY07] Jian-Wen Fu, Yin-Cheng Qi, and Jin-Sha Yuan. Wavelet domain
audio steganalysis based on statistical moments and pca. In 2007 In-
ternational Conference on Wavelet Analysis and Pattern Recognition,
volume 4, pages 1619–1623. IEEE, 2007.

[Fri09] Jessica Fridrich. Steganography in digital media: principles, algo-
rithms, and applications. Cambridge University Press, 2009.

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
MIT Press, 2016. http://www.deeplearningbook.org.

[GFH06] Miroslav Goljan, Jessica Fridrich, and Taras Holotyak. New blind ste-
ganalysis and its implications. In Security, Steganography, and Wa-
termarking of Multimedia Contents VIII, volume 6072, page 607201.
International Society for Optics and Photonics, 2006.

[GS01] Ulf Grenander and Anuj Srivastava. Probability models for clutter in
natural images. IEEE Transactions on Pattern Analysis & Machine
Intelligence, (4):424–429, 2001.

[HCS08] Wien Hong, Tung-Shou Chen, and Chih-Wei Shiu. Steganography
using sudoku revisited. In 2008 Second International Symposium on
Intelligent Information Technology Application, volume 2, pages 935–
939. IEEE, 2008.
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