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ABSTRACT 

Author: Metangmo, Armelle. MS 
Institution: Purdue University 
Degree Received: August 2019 
Title: Electrochemical Determination of pH using Paper-based Devices 
Committee Chair: Frédérique Deiss 
 

For the past decade, many microfluidic paper-based analytical devices have been developed and 

used in different research fields. These devices are low-cost, portable, flexible, sterilizable, 

disposable, and easy to manufacture. The microfluidic paper-based analytical devices offer good 

alternatives to measurements and assays commonly performed in laboratories for analytical and 

clinical purposes, especially in diagnostics. In this work, we developed an electrochemical paper-

based pH sensor. The determination of pH is essential in applications in areas as diverse as in the 

food industry, agriculture, health care or water treatment. The method presented in this work is an 

electroanalytical method that involves quantification of pH using stencil-painted graphite 

electrodes. Preliminary tests showed that pH can be determined on paper-based devices, thus 

indicating the presence of electroactive elements sensitive to pH on the surface of our electrodes 

(Chapter 4). Chemical modification of the electrode by adsorption with sodium carbonate and 

modification of the surface of the electrode was accomplished via: oxygen (ambient air) plasma 

treatment and pure oxygen plasma treatment. These treatments were to attempt to improve the 

definition of redox peaks on the CVs (Chapter 5). The changes made to the design of the paper-

based device and the addition of a conditioning step improved the definition of the redox peaks on 

the CVs and increased the pH-sensing ability of our method (Chapter 6). The pH-sensing ability 

of our method was evaluated by testing solutions over a wide pH range. Adding sodium chloride 

to samples adjust the solution for accurate pH determination. The pH was successfully measured 

for solutions with values ranging from 1 to 13 and for artificial saliva samples prepared with pH 

values in the cavity-prone range (Chapter 7). This work offers a method that uses electroactive 

elements sensitive to pH on the surface of the PBD electrodes for pH-sensing. 
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CHAPTER 1. INTRODUCTION 

The research presented in this thesis describes the development of an electrochemical 

microfluidic paper-based analytical device for pH-sensing. Chapter 2 describes the importance of 

pH and provides examples of techniques used to measure pH. In Chapter 4, preliminary tests on 

the electrochemical microfluidic paper-based analytical devices demonstrate the feasibility of pH 

measurements. Chapter 5 describes three different approaches for modification of the surface of 

the electrodes painted on the paper-based devices: sodium carbonate, plasma treatment with air, 

and pure oxygen plasma treatment. Chapter 6 describes changes made to the design of the paper-

based devices and the addition of a conditioning step to improve the definition of redox peaks and 

improve the precision of the method for measuring pH. In Chapter 7, the optimized paper-based 

device and method are applied to measure the pH of various solutions pH ranging from 1 to 13.  

This project is the first milestone in the development of an electrochemical paper-based 

device for analyzing the pH in bacterial biofilms formed on teeth (or plaque). Dental caries is one 

of the most common chronic diseases world-wide. Assessing the pH of the plaque of a patient can 

indicate the likelihood of cavities and allow to guide the caregiver for providing preventive care. 

Cariogenic bacteria that lead to dental caries thrive in acidic conditions, this inspired the tests of 

artificial saliva with different pH that fall in the cavity-prone range done in Chapter 7. Some 

characteristics and requirements of the current electrochemical pH-sensing paper-based device are 

linked to these future applications. For example, the need for the device to be flexible, small, 

disposable, and low-cost. These characteristics would allow for easy and isolated collection of 

samples (plaque) which would allow for preservation of the main characteristics of the bacterial 

biofilm. More importantly, we avoid chemical modifications of the sensor with additional 

chemical reagents that would not be compatible with being in contact with patient’s teeth.  
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CHAPTER 2. LITERATURE REVIEW  

2.1 Defining pH 

The determination of pH is a concept that goes as far back as the ancient Greeks (350 BC). 

Even though the concept of pH was not fully understood, the people were able to distinguish 

between acid and base by conducting taste tests to determine if a substance was sour (acid) or bitter 

(base).1 Substances like vinegar and lemon juice were considered acidic and a mixture of ashes 

with animal fat to make soap was considered basic. Over the centuries the understanding for the 

concept of acid-base was developed and later defined by the participation of many chemists: 

Arrhenius, Brønsted, Lowry, and Lewis.2 In the early development of the theory of acids and bases 

the different observations made included: acids tasting sour and bases tasting bitter, the changes 

in color indicating acid or bases, the reactions between acid and bases to form salts (Miessler & 

Tarr, 1999, Ch. 6, p. 165).2 The first to explain the concept of acid-base in molecular terms was 

Svante Arrhenius in 1880 - 1890. The Arrhenius definition of acids/bases states that acids react in 

aqueous solutions to form hydrogen ions and bases react in aqueous solutions to form hydroxide 

ions. The reaction between hydrogen ions and hydroxide ions forms water as seen in reaction 1: 

                       𝐻𝐶𝑙	(&') + 𝑁𝑎𝑂𝐻(&') 	→ 𝑁𝑎𝐶𝑙(&') + 𝐻.𝑂(/)                            Reaction (1) 

In 1923 Brønsted and Lowry explained the concept for a more general use that includes gases 

compared to Arrhenius whose definition only referred to aqueous solutions. They defined an acid 

as a hydrogen ion donor and the base as hydrogen ion acceptor. They also introduced the concept 

of conjugate acids-bases. An example of the Brønsted and Lowry theory is shown in the reaction 

of NH4Cl and NaNH2 (Reaction 2): 

                      𝑁𝐻01 +	𝐶𝑙2 + 𝑁𝑎1 + 𝑁𝐻.2 	→ 𝑁𝑎1 +	𝐶𝑙2 + 2	𝑁𝐻4	                           Reaction (2) 

Net reaction:                                       𝑁𝐻01 + 𝑁𝐻.2 → 2	𝑁𝐻4                                         Reaction (3) 

NH4+ is the acid and NH2- is the base which yields two NH3 molecules as both the conjugate base 

and conjugate acid. Finally Lewis explained the acid-base theory as: a Lewis acid is an electron-

pair acceptor and a Lewis base is an electron-pair donor. (Miessler & Tarr, 1999, Ch. 6, p. 170)2 

Chemical reactions between acids and bases can be used to determine pH, which ranges from pH 
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0 to 14 (figure 1). The term pH is an acronym for “power of hydrogen” where “p” stands for the 

negative logarithm and the “H” stands for the concentration of the element hydrogen.3 

                                                       𝑝𝐻 = 	− log 	[𝐻1]                                                        (eq. 1) 

 

 

Figure 1. Universal pH scale.4 

2.2 pH Measurement Methods 

pH measurements are used in areas such as the food industry, medicine, water treatment 

and biopharmaceutical industries.3, 5-7 Measuring pH in the food industry is of great importance. It 

avoids causing health problems to consumers by providing products with well-defined properties 

such as controlling the pH of milk to avoid sour milk. Controlling the pH is also critical for 

successful food and beverages preparation, for example when making fruit jelly gels.8 Measuring 

pH in the medicine and biopharmaceutical industries is crucial because it is used to understand the 

nature of chemical processes and to monitor quality and safety for humans.3  
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2.2.1 Commercial pH Measurement Methods 

Many pH sensors exist for determining pH levels. Common methods to measuring pH 

include using litmus paper, pH strips, and glass probes. Paper strips perform colorimetric 

measurement of pH and use a color chart for pH determination. They are less expensive, but are 

not always precise and thus render quantification difficult compared to glass probes.3 Examples of 

glass probes used to measure pH are shown in figure 2. Glass probes rely on potentiometry to 

measure pH. Potentiometric methods involve the measurement of the potential of an 

electrochemical cell in the absence or with negligible current flow and no redox reaction occurring. 

Other instrumental electrochemical methods use potentiometry but also amperometry.5,7 

Amperometric methods involve the measurement of ions in a solution based on current or changes 

in current while redox reactions occur.  

  

Figure 2. Conventional pH meters.9-11  

Glass probes have high sensitivity and selectivity.7 However, glass probes have some limitations, 

they are fragile,3 and non-disposable.12 The electrode also has issues with instability when reading 

the pH of very basic solutions with values above ~11. The term “alkali error” refers  to interference 

of  alkali metals such as Na+ and K+, or with very acidic solutions (pH ≤ 1, “acid error”)7,8, 12, 13 

They also require regular calibration before taking measurements due to instability and drift in 

potential.5, 7 
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2.3 Current Research on pH Measurement 

Over the past decades there has been an increase in development of different types of pH 

sensors; such as optical pH sensors,3,14-17 ion-sensitive field effect transistor (ISFET),3, 18, 19 or 

graphene-based devices.5, 7, 20-24 Optical pH sensors rely on a sensing platform, pH reagent(s) and 

a detection method. The reagents in optical sensing consist of absorption or fluorescence-based 

molecular probes. The properties of these reagents are modified with the change in concentration 

of the hydrogen ions in the solution.15, 16 Advantages of optical pH sensors are that they do not 

require the use of a reference electrode and they have a high sensitivity and specificity.14, 15 For 

example, Gotor et al. reported the development of seventeen different (2,6-diethyl-1,3,5,7-

tetramethyl)-BODIPY dyes to act as pH probes and detect pH ranging from 0 to 14 in aqueous 

solution.16 They demonstrated how the fluorescence response can be read by a smartphone 

application using different illumination sources.16 Optical pH sensors have some disadvantages, 

since measuring the pH of a solution is done by detecting changes in optical factors in the solution, 

the accuracy of the results can be limited by environmental factors such as light conditions, color 

of the sample, or presence of particulates.15 Long-term stability of immobilized indicators is also 

often limited due to photobleaching or leaching of the dyes and dependence to temperature.14, 17    

In 1970 P. Bergeve was the first to report an ISFET where the current flow is controlled 

by an electric field.19, 25 The ISFET has a gate region called insulator that houses the sensing films, 

ion-selective sensing layers include SiO2, Si3N4, Ta2O5, Al2O3.18, 19, 25 The sensing layer detects a 

change in the ion concentration of a solution and generates a potential on the gate, and the drain-

source current change in the channel is measured (Figure 3).19, 25 ISFET has been reported to have 

a linear pH sensitivity of 54.8 mV per pH unit to 48.5mV per pH unit through a pH range of 1 to 

12 using a Al2O3/SiO2 gate ISFET sensor.19 ISFET are widely used as pH sensor, and in biomedical 

areas such as medical diagnostics and pharmaceuticals. In 2002 Choi et al. reported an ISFET 

glucose sensor system with fast recovery by electrolysis.26 They achieved a recovery time of two 

minutes using electrolysis compared to 10 or 20 minutes from conventional methods. 26 There are, 

however, some limitations to the use of an ISFET pH sensor such as amplified noise and poor 

reproducibility.3 
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Figure 3. Schematic diagram of ISFET. 25 

 

Other novel pH sensors based on electrochemical techniques use a pH-dependent analyte 

or a mediator. The pH-dependent mediator is used to monitor the electrochemical activity as the 

H+ concentration changes.27 There are multiple studies using this approach with the mediator 

chosen being a polymer film, like polyaniline,13, 28, 29 or organic redox species.5, 19, 24  

2.3.1 Flexible Devices for Measuring pH 

There are many methods and materials used to develop flexible pH sensors. Such sensors 

exhibit advantages such as being low-cost, portable, sterilizable, noninvasive, wearable, and 

disposable. The growing interest in the development of such devices is due to their ability to be 

applied in many fields: they can be used for diagnostics, for pH monitoring in food and water, and 

can be easily accessible to areas that lack proper infrastructure and laboratories. Most flexible 

platforms that have been proposed for measuring pH typically rely on electrochemical 

techniques.28, 30-35 The fabrication of flexible pH sensors include inkjet ink,29 screen printing,22, 27, 

28 paper-based,32, 36 and plastic-based (polyethylene terephthalate (PET)).30  

 

Wang et al. reported the use of a tattoo-based ion-selective electrodes for non-invasive 

potentiometric monitoring of epidermal pH levels.29 Despite the different scenarios (e.g., 

stationary cycling, no fluid ingested during exercise, abundant sweat) under which the non-

invasive electrode was tested  the results displayed a Nernstian response.29 Voltammetric 
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techniques are commonly characterized by their ability to give a Nernstian response, i.e., to follow 

the Nernst equation (equation 2) in the conditions of the analysis.6, 7, 27  

                        𝐸> = 𝐸?@A/CDE
° − 2.303 JK

LM
𝑙𝑜𝑔 [JPQ]

[RS]
                                                     (eq. 2) 

where 𝐸> represents the measured potential, 𝐸?° represents the formal potential, n represents the 

number of electrons, R represents the ideal gas constant, T represents the temperature, and F 

represents the Faraday constant. Wang et al. also reported a bandage-based wearable 

potentiometric sensor for monitoring wound pH.28 The device is based on the combination of a 

screen printed sensor and a bandage, which displays selectivity and a Nernstian response over a 

pH range of 5.5 to 8.28 Another group, Javey et al. reported a wearable and non-invasive 

electrochemical plastic-based PET device for the simultaneous monitoring of Ca2+ and pH.30 The 

pH of body fluids (sweat, tears, and urine) was accurately measured on the wearable system with 

integrated circuits and a wireless transceiver as the human body deviated from homeostasis.30    

For centuries paper has been used as a substrate for chemical analysis.37 Flexible devices 

made for analytical purposes with paper-based materials have been extensively studied over the 

past decade. In 2007 Whitesides et al. reported a microfluidics paper-based analytical device 

fabricated by making a pattern using photolithography on paper.37, 38 The microfluidics paper-

based devices have since been used in multiple applications which include point-of-care (POC) 

diagnostics and colorimetric detection.36, 39 Deiss et al. developed a flow-through system on 

paper patterned Teflon to create peptide arrays for cell-based assays. These Teflon arrays caused 

organic solvents to be confined in a zone on the paper and allowed for flow-through synthesis of 

100 peptides.40 Heat could be applied to enhance the synthetic rate of conversion up to 15 fold.41 

Paper-based devices were also developed for POC culture and colorimetric detection of the 

antibiotic susceptibility of several strains of bacteria (Escherichia coli and Salmonella 

typhimurium).39 Lopez-Ruiz et al. presented a paper-based microfluidics device for colorimetric 

determination of nitrite concentration and pH.36 They achieved a resolution of 0.04 units of pH, 

0.09 of accuracy, and a mean squared error of 0.167. The limit of detection for nitrite achieved 

was 0.52 mg L-1 and a resolution of 0.51% at 4.0 mg L-1.36  

In 2009 Dungchai et al. reported the first electrochemical paper-based devices.42 They 

screen-printed electrodes on the microfluidics device for quantitative measurement of biomarkers 

in serum.42 Some advantages to using electrochemical paper-based devices are portability, low 
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cost, high sensitivity, and high selectivity. Nie et al. reported electrochemical microfluidics-

paper-based analytical devices integrated with a commercial glucometer for the quantitative 

analysis of glucose, cholesterol, lactate, and alcohol in blood or urine.43 Henry et al. also 

reported the use of a paper-based device for a combined colorimetric and electrochemical 

quantification of metals (Pb, Cd, Ni, Fe, Cu, and Cr) in environmental samples.44 

Sensors fabricated using carbon-based material such as carbon nanotubes, glassy carbon 

and graphite have been studied at length for the past decades.20-24 Some of the advantages of 

carbon-based materials are a wide potential range, good conductivity, versatility, availability and 

low-cost.6, 7, 21 Dossi et al. introduced an electrochemical paper-based device with pencil-drawn 

(graphite) electrodes for the detection of the separation of ascorbic acid and sunset yellow found 

in many food. They were able to detect ascorbic acid at concentrations as low as 30 μM and 

sunset yellow as low as 90 μM.45 Dossi et al. also introduced the use the pencil-drawn 

electrochemical paper-based device with a dual working electrode for the detection of two 

solutions with dopamine/ascorbic acid and paracetamol/ascorbic acid.46 

Carbon-based materials are widely and commonly used in electrochemistry. The surface 

is known to have functional groups that are naturally present on the surface and easily react with 

other molecules. 6, 7, 21 The work presented in the four chapters after the experimental section 

introduces a paper-based platform to measure pH via the redox reaction of oxo-groups at the 

surface of painted graphite electrodes.  

2.4 Conclusion 

This chapter presented the importance of pH detection, and described different methods 

employed to measure pH. This chapter described the use of paper-based materials for 

colorimetric and electrochemical detection and finally described flexible devices and their 

advantages as pH sensors. Carbon-based material is introduced into the fabrication of the 

electrochemical paper-bases devices, the carbon-based material is used due to its rich chemistry. 

The next chapter describes all the materials and methods used in this work. The fourth chapter 

will present the development of our electrochemical paper-based devices for the measurement of 

pH.  
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CHAPTER 3. EXPERIMENTAL SECTION 

3.1 Material and Regents 

Whatman® qualitative filter paper Grade 114, Grade P4 and Grade P2 purchased from 

Fisher Scientific. Carbon conductive carbon paint supplied by EMS; conductive adhesive 502 

supplied by SPI; graphite (E3456) and silver/silver chloride/carbon ink (E2908) conductive ink 

manufactured by Ercon (Wareham, MA). Sodium Phosphate Monobasic Anhydrous (NaH2PO4), 

Potassium Chloride (KCl) were purchased from Fisher BioReagents. Sodium Phosphate Dibasic 

Anhydrous (Na2HPO4), Sodium Hydroxide (NaOH), Sodium Chloride (NaCl), Sodium 

Bicarbonate (NaHCO3), Sodium Citrate (Na3C6H5O7), Potassium Phosphate Monobasic (KH2PO4), 

Potassium Thiocyanate (KSCN) were purchased from Fisher Scientific. Sodium Carbonate 

anhydrous, ACS, 99.5% (Na2CO3), Catechol 99% (C6H6O2), 9,10-Phenanthrenequinone 95%, p-

Benzoquinone 98+% were purchased from Alfa Aesar. Citric Acid (C6H8O7), Tetrachloro-o-

benzoquinone 97% were purchased from Acros Organics. Buffers for pH Meter (pH 4.0, 7.0, 10.0) 

were purchased from Mettler Toledo. Standard buffer solutions (pH 1 to 12) were purchased from 

Sigma Aldrich. 

3.2 Solutions Preparation 

Mcllvaine buffers were prepared by mixing 0.2 M Na2HPO4 with 0.1 M citric acid in 

different proportions to adjust pHs. Phosphate buffers were prepared by mixing 0.1 M Na2HPO4 

with 0.1 M NaH2PO4 in different proportions to adjust pHs. Citrate buffers were prepared by 

mixing 0.1 M citric acid in 0.1 M KCl with 0.1 M sodium citrate in 0.1 M KCl in different 

proportions to adjust pHs. HCl/NaOH solutions were prepared by mixing 0.1 M HCl with 1 M 

NaOH in different proportions to adjust pHs. All the powder reagents were weighed on a Mettler 

Toledo XPE105 analytical balance with antistatic module. The solutions were diluted in 

volumetric flasks. The pH of the solutions were measured using a Mettler Toledo Sven Compact 

modular pH meter/ion sensor. The pH meter was calibrated using Mettler Toledo buffer solutions 

of pH 4.00 ± 0.02, 7.00 ± 0.02, 10.00 ± 0.02 at 25 ̊C. Artificial saliva (pH 7.85) was prepared using 

the composition listed in table 3 (AFNOR standard: S90-701).12,47 1 M HCl and 1 M NaOH were 

used to adjust artificial saliva to the desired pH (pH range 3 to 8). 
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3.3 Fabrication of Paper-based Devices 

Using Whatman® qualitative filter paper Grade P2 a pattern designed using the graphical 

software Adobe illustrator is printed with a XeroxColorQube 8570DN printer and heated in an 

oven at 150 °C for 2 min to melt the wax and allow it to wicking through the thickness of the paper 

forming hydrophobic walls (wax-patterned microfluidics devices). Using Adobe illustrator the 

pattern of the electrochemical cell is designed. The design of the electrodes is cut on a piece of 

stencil paper using a laser cutter (a Universal Laser System 2.30 CO2 laser cutter). The backing 

from the stencil is removed and pressed on the wax-patterned microfluidics devices. Using the 

conductive ink graphite for the working and counter electrodes (E3456) and silver/silver 

chloride/carbon ink (E2908) for the pseudo-reference electrode the electrodes are painted on. The 

stencil is then removed and the devices left to dry for a few hours until the solvent of the paint is 

fully evaporated. The final product is shown in figure 5d.  

3.4 Electrochemical Measurements 

The cyclic voltammetry (CV) and square wave voltammetry (SWV) were carried out using 

an Autolab PGstat204 potentiostat with Electrochemical Impedance Spectroscopy FRA2 module 

for preliminary test and a PGSTAT128 potentiostat with FRA2 module and fast scan voltammetry 

SCAN250 module for all other tests. Typical potential range for CVs was from 0.5 V to – 0.5 V 

vs Ag/AgCl/C at a scan rate of 50 mV/s and for SWV was from 0.5 V to – 0.5 V vs Ag/AgCl/C, 

the frequency of 3 Hz, and the amplitude of 200 mV unless otherwise indicated. For example, 

when using the conditioning step typical potential range starts from 1V. 

3.5 Washing Procedure for Devices 

Each electrochemical paper-based device was dipped in water for one or two minutes and 

then air-dry before the first use. After each CV, the PBD was rinsed according to the following 

procedure. Each side of the device is rinsed three times with milli-Q water from a squirt bottle to 

remove all the excess solution. The device is then placed in a small beaker containing about 5 mL 

of milli-Q water for 30 sec. This last step is repeated a second time with fresh milli-Q water. Finally, 

the device is placed on a clean piece of paper towel and allowed to air-dry before the next use. 
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3.6 Sodium Carbonate Treatment 

The electrochemical paper-based device is dipped into a solution of 1 M sodium carbonate 

overnight (18 h or more). The device is removed from the solution, rinsed using milli-Q water and 

allowed to dry for over 30 minutes.  

3.7 Plasma Treatment 

We performed plasma treatment on the paper-based devices using a Harrick PDC-001 

plasma cleaner with an Agilent IDP-3 dry scroll vacuum pump and a PDC-FMG PlasmaFlo Gas 

Mixer for accurate control of the gas flowrate and monitoring of the vacuum pressure. The PBD 

is placed in the plasma cleaner and the chamber is closed, and the vacuum pump is turned on to 

evacuate the air in the chamber and the pressure is monitored on the PlasmaFlo Gas Mixer. Once 

the pressure is around 0.145 torr, the 3-way valve is open to allow air to enter the chamber at 0 

psig with the flow rate selected form table 1a. The RF is set to HI until we observe a purple-pink 

glow in the chamber (plasma), the plasma is left on for 3 minutes. After 3 minutes the RF is turned 

off, the 3-way valve is closed, the plasma cleaner is turned off and the sample is removed. The 

plasma treatment with pure oxygen follows the same procedure as with the air with the following 

changes: after the PBD is placed in the chamber and is pumped to 0.145 torr, the 3-way valve that 

is connected to cylinder of pure compressed oxygen gas is open to allow for oxygen to enter the 

chamber at 10 psig with the flow rate selected from table 1b.  

 

Table 1. a) Flow rate of air treatment, b) Flow rate of pure oxygen treatment. 
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CHAPTER 4. ELECTROCHEMICAL PAPER-BASED PH 
SENSOR: PROOF OF CONCEPT  

The detection of pH is important to a large variety of applications, which include 

pharmaceutical, water treatment, food industry, agriculture, and diagnostics. As described in the 

second chapter glass probes are the most common method for detection of pH. Despite its high 

sensitivity and selectivity, the glass probe does have some disadvantages: they are fragile, non-

disposable and require regular calibration before taking measurements due to instability and drift 

in potential. Chapter 2 also presented different pH sensors based on electrochemical techniques 

and electroactive probes or mediators. 

In literature a common redox species used for the detection of pH is quinone moieties as 

its reduction is pH dependent.6, 27 The formation of oxo-groups on the surface of carbon material 

are natural occurring when oxygen is present. Other pH sensors involve modification of the 

electrode where quinone functional groups are attached onto the surface of the electrode.5, 27, 48 

Depending on the carbon-based material used, different functional groups can be formed.49 

Scheme 1 shows examples of various functional groups that form on the surface of carbon 

material.6, 21 The functional groups includes oxo-groups such as carboxyl, hydroxyl, ketone, 

lactone, ether and quinones or hydroquinones.  
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Scheme 1. Various functional groups present on graphene surface, adapted from ref 7. 

4.1 pH Sensing Method via Quinone Oxo-group  

In this chapter, we describe the fabrication of an electrochemical paper-based device (PBD) 

developed for the measurement of pH. The pH-sensing relies on the reduction of a functional group, 

which we believe is quinone (see Chapter 8: Future work for more detail). To explain the concept 

of pH sensing we based the development of the PBD on previous reports of surface oxo-groups on 

specific highly treated carbon-based electrodes. Compton et al.7 developed a pH sensor using an 

Edge Plane Pyrolytic Graphite (EPPG) electrode. Figure 4 depicts ordered graphite layers that are 

placed parallel to the surface and have a spacing of 3.35 Å between layers. The spacing expose the 

steps of the edges of the graphite layers which lead to defect sites.49 The defect sites on the surface 

of the EPPG electrode react with the oxygen from the air to form a variety of oxo-groups.7 The 

functional groups are represented in scheme 1. They reported the determination of pH based on 

the reduction of the surface quinones; by polishing the EPPG electrode to expose more defect sites 

which react with oxygen from the air and form more functional groups. The functional groups 
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formed on the surface of the electrode allowed them to achieved a linear correlation over the 

aqueous pH range 1.0 to 13.1 with a Nernstian response that corresponds to a two electron, two 

proton system.7 Building on this work, Compton et al. also reported similar work on glassy carbon 

electrodes (GCE): by polishing a GCE to a mirror-like surface, it displayed analogous behavior to 

the EPPG electrodes with a shift of reduction peak potentials correlated to pH values.6 

 

Figure 4. Scheme of the graphite layers on an edge plane pyrolytic electrode. 
 

The possible pathways involved in the reduction of ortho-benzoquinone are given in 

scheme 2. In a study to determine the distribution between ortho and para-quinone, Schreurs et al. 

found that ortho-quinone were the groups that were predominantly formed.50 The formation of 

ortho-quinone which happens on the same armchair surface of graphite was found to be 

energetically favorable.21 Ortho-benzoquinone has pΚa values of 9.25 and 13.0 in solution at room 

temperature. 51 The number of two proton/ two electron system associated with the redox process 

for ortho-quinone could give rise to calibration plot with pH range from 1.0 to 13.0.  
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Scheme 2. Scheme showing 3 pathways that an ortho-quinone molecule can be reduced following 
a 2 H+/2 e- process.7 

4.2 Fabrication of pH Sensor  

We selected paper as a substrate for our devices as paper-based devices (PBD) have 

advantages such as: being low-cost, flexible, portable, sterilizable and disposable. These paper-

based devices are made using carbon material with advantages previously listed, namely: low cost, 

good conductivity and versatile chemistry, which we exploit in this project. The fabrication of the 

device comprises two parts, the first part is to generate the microfluidic pattern in the paper-based 

device. The second part is to add the “electrochemical” components to our devices, aka the painted 

electrodes. 

 The microfluidic paper-based device is fabricated through the following steps.  A pattern 

forming the hydrophobic and hydrophilic zone shown in figure 5a is printed on a sheet of P2 grade 

filter paper using a solid-ink wax printer. The paper is then placed in an oven at 150 °C for two 
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minutes. This step melts the wax and allow for it to wick through the thickness of the paper to 

form the hydrophobic walls. 

 To render our paper-based devices “electrochemical”, we add electrodes to the microfluidic 

paper-based device through the following steps: (i) The electrodes were designed using the 

graphical software Adobe illustrator, (ii) then a plastic stencil was cut out following the design 

using a CO2 laser cutter (Figure 5b). (iii) The stencil is placed over the wax-patterned microfluidics 

devices for the electrodes to be painted with conductive inks (Figure 5c). Graphite ink is used for 

the working (WE) and counter (CE) electrodes and silver/silver chloride/carbon ink for the pseudo-

reference (RE) electrode. (iv) Once the stencil removed, the paper-based devices are allowed to 

dry for a few hours until the solvent of the paint is fully evaporated. (v) The devices are then cut 

into individual devices, the final product (figure 5d), and stored until use. 
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Figure 5. Fabrication of electrochemical paper-based device. a) A pattern is printed on filter 
paper to form the hydrophobic and hydrophilic zone. b) A plastic stencil is cut out following the 
design using a CO2 laser cutter, the stencil is then placed over the wax-patterned devices. c) The 

electrodes are painted with conductive inks. d) The stencil is removed and the devices are 
allowed to dry, the sheet is then cut into individual devices. 
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4.3 Proof of Concept 

4.3.1 Unpolished vs. Polished Paper-based Devices 

As a preliminary experiment, we adapted Compton’s work on GCE and EPPG electrodes 

and tried to polish the electrodes of our PBD as the polished surface was critical for GCE and 

EPPG electrodes. Polishing the graphite-painted electrode would allow the formation of oxo-

groups such as quinone on the surface and thus, the study of the effect of pH. To the best of our 

knowledge, this is the first report of polishing electrodes painted on PBD. The device was polished 

using a polishing pad typically used for semi-micro electrodes (figure 6a). In figure 6b a 

photograph of the paper-based device before and after it was polished is shown.  

 

Figure 6. a) Photograph of a polishing pad. b) Paper-based device before and after polishing. c) 
Overlay of CVs for the unpolished device (blue) and the polished device (orange) tested in a 0.1 

M HCl/0.1 M KCl solution at pH 3.0 
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To assess the effect polishing had on the electrodes, we compared CVs acquired with the 

unpolished device, and CVs acquired after polishing. Figure 6c is an overlay of these CVs in a 

solution of 0.1 M HCl/0.1 M KCl at pH 3.0. From the CV for the polished device (orange) in figure 

6c, the ability to act as an electrode and generate redox peaks is unaffected, which meant the action 

of polishing did not damage or break the device. Unexpectedly, however, the redox peaks supposed 

to be from an oxo-group, on the unpolished device was already well defined. Since polishing 

displayed similar electrochemical results as not polishing, we decided to study the effect of pH on 

unpolished devices, thus eliminating a fabrication step. To determine if the redox reactions 

observed on an unpolished device was indeed pH dependent and could permit pH sensing, three 

solutions of pH 3.0, 6.0, 10.0 were tested on the device. The CVs of the three different solutions 

(figure 7) show a shift of the redox potentials of the peaks as pH increases which indicates presence 

of electroactive elements sensitive to pH.  

 

Figure 7. Cyclic voltammograms showing the shift of redox potential as pH increases. The scan 
rate was 50mV/s and the solutions prepared with HCl and NaOH. 
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4.3.2 Unpolished PBD: Testing Different Buffers  

As the first preliminary test was successful, we expanded the range of the pH tested. Two 

buffers were selected, Mcllvaine buffer and phosphate buffer. We chose Mcllvaine buffer because 

it is often reported for the development of pH sensors.28, 30 It has a pH ranging from 3 to 8 which 

allows for probing around neutral pH. We also tested phosphate buffers, as they are commonly 

used in biological samples. They have a pH range from 5 to 9. Figure 8a is the overlay of the CVs 

obtained when testing various Mcllvaine buffer solutions at different pH. The CVs displays a shift 

in redox peaks potential as pH increases, as confirmed by the calibration curve in figure 8b 

(average over two CV cycles for each pH). A linear correlation is obtained when fitting the data 

with an R2 value of 0.9696, which confirms the presence of usable electroactive pH sensing 

elements on the electrode. Figure 9a is an overlay of CVs taken after testing solutions made with 

0.1 M phosphate buffer at different pH. A shift in potential of the redox peaks as pH increases is 

also observed. The calibration curve in figure 9b has a linear response with an R2 of 0.9941. The 

results acquired from the two buffers confirm that there are groups on the surface of the electrodes 

on the PBD device that are pH dependent and indicate the opportunity to develop a paper-based 

electrochemical pH sensor. 

 

Figure 8. a) CV overlay of Mcllvaine buffers (pH 3 to 8) and NaOH/HCl solutions (pH 9 and 
10). b) Calibration curve for the potentials of cathodic peaks done over the average of two cycles 

for each sample. 
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Figure 9. a) CV overlay of phosphate buffer pH 5 to 9. b) Calibration curve for the potentials of 
cathodic peaks done over the average of two cycles for each pH. 

 

4.3.3 Data Analysis: Software vs. Manual Peak Picking 

A critical step in interpreting electrochemical data such as CVs involves determining the 

potential of the peak and its associated maximum current. Most instruments allow for estimation 

of these values on their dedicated software while acquiring the data. For accurate determination of 

the values, the data are typically processed separately after acquisition. The preliminary data 

analysis was done by using excel to approximate the correct values for each peak potential. We 

then used an open source software called eL-Chem Viewer developed by Hrbac et al.52 We 

established an illustrated step-by-step procedure to use eL-Chem Viewer. The reduction potential 

of the peaks were collected manually and then again with the software, and calibration curves were 

generated (Figure 10). The calibration curve for manual data (Figure 10a) has an R2 value of 0.9301 

and the curve for data collected using software (Figure 10b) has an R2 value of 0.9696. For both 

curves the potential decrease as pH increases, however the fitting using values determined with 

the software shows a better linear correlation than peaks manually picked up. 
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Figure 10. a) Calibration plot of peak values collected manually from excel b) calibration plot of 
values collected using the software eL-Chem viewer. 

 

4.3.4 Assessment and Problems Encountered 

Due to the lack of control on the formation of the pH-dependent group on the electrode, 

the potential variability in manual fabrication of the PBD, and small currents involved, the 

repeatability of the method using paper-based device to measure pH needed to be assessed. A 

series of tests were conducted on three paper-based devices, a total of five trials were run on the 

three devices. Each trial counted two cycles or CVs. The potential of reduction peaks of CVs for 

each pH were collected using the software and the data was plotted; the overlay of these plots is 

displayed in figure 11. A good correlation is observed between all trials (Figure 11a). We noticed 

with preliminary tests that results for solution with a pH lower than 5 were inaccurate as they did 

not follow the same trend. After removing the data for pH below 5 (Figure 11b) the R2 values of 

all calibration curves improved greatly: out of 10 trials 6 now displayed a R2 of 0.985 or above. 

Figure 11c shows the average and standard deviation of all data. These data highlights that in those 

conditions the devices have a standard deviation larger than desired.  
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Preliminary testing done on the paper-based devices yielded promising results. Some issues 

were however encountered as we conducted more experiments. These results showed that 

repeating the method with different PBDs, we can obtain similar trends. The future goal of this 

project is to apply the developed pH sensor to oral preventative care where pH 3 to 6 will be critical, 

we needed to address the difficulties of measuring pH below pH 5. Along with the difficulties 

measuring low pH, we had problems with CVs on the PBDs: many paper-based devices would 

have CVs with well-defined redox peaks and relatively large current (as seen in figure 8), however, 

Figure 11. Assessment of method to measure pH on PBDs, CVs on D1, D2, D3 using 
phosphate buffers with pH values ranging from 5 to 9. a) Overlay of calibration curves of 

three devices over five trials with two cycles each. b) Overlay of calibration curves without 
data points from solutions with pH below 5 included in the linear fit. c) Potentials of 

reduction peaks of all CVs plotted with the average and standard deviation. 
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some would barely have peaks, while others had no peaks. Examples of peaks not well defined are 

shown in figure 12. Figure 12a is the CV of a solution of Mcllvaine buffer at pH 3, it only shows 

some noisy (multiple peaks) oxidation peaks which are not the peaks that correspond to the redox 

reaction of quinone at pH 3. Figure 12b is the CV of a solution of phosphate buffer at pH 5, the 

redox reaction is not visible on the CV. Optimization of the method was thus necessary to achieve 

observable redox peaks on most devices at all pH values. 

 

Figure 12. a) CV of Mcllvaine buffer at pH 3, noisy peaks b) CV of phosphate buffer at pH 5, 
peaks not visible. 

4.4 Conclusion 

A low-cost, flexible and portable electrochemical paper-based device to be used as a pH 

sensor was successfully developed. Preliminary tests showed that pH can be determined on 

polished and unpolished paper-based device, and thus for the rest of the project unpolished 

devices were used. A shift of the potentials of the redox peaks as pH increases was observed with 

the different buffers (Mcllvaine and phosphate) tested, thus indicating the presence of 

electroactive elements sensitive to pH on the surface of our electrodes. Data analysis was 

improved and facilitated by using the software eL-Chem Viewer and developing a step-by-step 

procedure. Multiple devices were used to assess the method developed.  The different trials and 

cycles repeatedly produced a linear response despite a low precision. The next chapter will focus 
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on optimization methods to improve the definition of the peaks observed on the paper-based 

devices. 
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CHAPTER 5. MODIFICATION OF PAPER-BASED DEVICES 
TO IMPROVE REDOX PEAKS 

This chapter focuses on different treatments of the electrodes to increase the presence of 

pH-dependent electroactive oxo-groups on the surface of the electrodes. These treatments were 

intended to overcome issues with the paper-based device (absence of defined peaks, no results at 

low pH).  Several approaches have been used to increase functional groups or improve the redox 

reaction at the surface of carbon materials. Some of these approaches include the adsorption of pH 

sensitive polymer films on the surface of the electrode,13, 28 chemical modification, and attachment 

of quinone derivatives on the surface of the electrode.48, 53-56 

5.1 Sodium Carbonate Treated Paper-based Devices 

The modification of carbon material involving the immobilization or induced formation of 

functional groups that contain oxygenated species has been well studied.27 The immobilization of 

oxygenated species on graphite was reported by Craig E. Banks and coworkers.27 In this study they 

chemically pretreated a graphite screen-printed electrode by immersing the electrode into a 

percarbonate solution overnight to form oxygenated species on the electrode surface to accurately 

measure pH.  

We adapted this method by performing a modification on our paper-based devices to 

determine if such treatment could improve the redox reaction observed. We dipped the paper-

based electrodes into 1 M sodium carbonate overnight before using them in pH experiments. 

Figure 13a shows the CV overlay of the chemically pretreated paper-based device using the 

procedure described in detail in the Chapter 3: Experimental section. The CVs were run using 

solutions of 0.1 M phosphate buffer at various pH values ranging from pH 5 to 9. In figure 13a we 

observe redox peaks that are very noisy which could be due to the immobilization of excess sodium 

carbonate on the surface of the electrode. No distinct differences between treated and untreated 

paper-based devices were observed, as neither the definition of the redox peaks nor the current 

improved. The calibration curve in figure 13b of the anodic peaks shows a linear response with an 

R2 of 0.9647, whereas the calibration curve for the cathodic peaks (Figure 13c) showed an even 
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poorer linear response. Both results are comparable to the data obtained without treatment of the 

paper-based devices.  

 

Figure 13. a) Overlay of CVs collected using sodium-carbonate-modified PBD, solutions of 0.1 
M phosphate buffer with pH values ranging from 5 to 9. b) Calibration curve of the oxidation 

potential peaks. c) Calibration curve of the reduction potential peaks. 

5.2 Square Wave Voltammetry (SWV) 

The peaks observed on the CVs after sodium carbonate were particularly noisy with small 

current. We hypothesized that a different electrochemical technique could help: Square Wave 

Voltammetry (SWV). In SWV, the cell current is measured as a function of time and as a function 

of the potential between the indicator/working and reference electrodes, a square-wave potential 

wave form is applied over the linear scan of potentials. The purpose for using this technique was 
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to take advantage of a typical effect in SWV of suppressing background noise to obtain better 

defined redox peaks. Figure 14a shows the SWV of a carbonate pretreated paper-based device 

tested with various pH solutions of 0.1 M phosphate buffer ranging from pH 5 to 9. The reduction 

peaks in this figure shift from 122 mV to – 58 mV as the pH increases. The calibration curve for 

the SWV (Figure 14b) has a linear response with an R2 of 0.9934. The R2 values for the redox 

reaction for the CVs was 0.9647 for the oxidation and 0.7223 for the reduction peaks compared to 

the R2 value of 0.9934 for the SWV. Comparing data from the CVs and the SWV for the carbonate 

pretreated device there is a clear improvement with the linear response. After repeating the 

experiments for a few trials, however, such an improvement appeared to be random. Some 

carbonate pretreated devices gave good results when using the SWV, but there were a few devices 

that presented no peaks shifting with pH neither with CVs nor SWV.  

 

Figure 14. a) Square Wave Voltammograms of sodium carbonate pretreated device. b) 
Calibration curve of SWV peaks. 

We decided to try a different method to improve the presence of the oxygenated species on 

the electrode surface of our paper-based because the results from sodium carbonate pretreatment 

were irreproducible. We continued to run both CV and SWV, but as SWV did not present clear 

improvements and CV give more information on the decorrelated oxidation and reduction waves, 

we focused more on CVs for the rest of this thesis. 
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5.3 Plasma Treatment  

5.3.1 Oxygen Plasma Treatment using Air 

Another approach for the improvement of the definition of the redox peaks was to activate 

or enhance the formation of the oxygenated species at the surface of the electrodes by oxygen 

plasma. We used a plasma cleaner to treat our devices with an oxygen (air) plasma. Many reports 

mention using oxygen plasma treatment for sensing devices mainly for the fabrication of 

polydimethylsiloxane (PDMS) 57, 58 microfluidics devices where the surface properties are changed 

from being hydrophobic to hydrophilic to facilitate modification and bonding of surfaces. Evans 

and Kuwana59 studied the use of oxygen plasma treatment on pyrolytic graphite electrode surface 

for the formation of the surface oxygen-containing functionalities which mostly include carboxyl 

and hydroquinone/quinone groups.  

The oxygen plasma treatment is done by introducing oxygen (from the ambient air) into 

the chamber of a plasma cleaner under high intensity radiofrequency (RF). The formation of 

plasma is observed via a purple-pink color in the chamber. The device is exposed to the plasma 

for 3 minutes. Figure 15a shows the CVs of an oxygen plasma treated device using different 

solutions of 0.1 M phosphate buffer with pH values ranging from 5 to 9. Calibration plots of anodic 

and cathodic peaks potential (Figure 15b and 15c, respectively) show an improvement in the linear 

responses. 
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Figure 15. a) CVs of an oxygen plasma treated paper-based device in 0.1 M phosphate buffer 
with pH values ranging from 5 to 9. b) Calibration curve of the oxidation peaks. c) Calibration 

curve of the reduction peaks. 
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Figure 16. a) CVs of an oxygen plasma treated paper-based device in Mcllvaine buffer with pH 
values ranging from 3 to 8. b) Calibration curve of the oxidation peaks. c) Calibration curve of 

the reduction peaks. 
 

Following the same method new paper-based devices were plasma-treated and tested using various 

solutions of Mcllvaine buffer with pH values ranging from 3 to 8 (Figure 16a). Figure 16b and 

figure 16c are calibration curve for the potential of the anodic peaks and all the potential of the 

cathodic peaks respectively. The plasma-treatment results show no noise and well-defined peaks, 

thus leading also to a better correlation between peak potentials and pH for the plasma-treated 

paper-based devices compared to untreated devices.  
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We tested the repeatability of the new method by performing the plasma treatment on 

multiple devices. The results from these tests were not always repeatable (Figure 17). The tests 

were done using samples of phosphate and Mcllvaine buffer at different pH.  

 

Figure 17.a-b) Overlay of CVs of phosphate and Mcllvaine buffers using the same plasma-
treated device. c) Overlay of CVs of phosphate buffer on another plasma-treated device. 

 

Figure 17a is the CV overlay for pH solutions of phosphate buffer, and only shows small anodic 

peaks on the CVs of solution at pH 8 and 9. On the figure 17b which is the CV overlay for solutions 

of Mcllvaine buffer using the same PBD as figure 17a, we observe small anodic peaks on the CVs 

of the solutions at pH 8 and 9. Figure 17c is the CV overlay for pH solutions of phosphate buffer 

on a different plasma-treated device, there are small anodic peaks visible for all solutions. None 



43 
 

of the CVs in the figure 17 display reduction peaks, thus indicating that the method needed more 

optimization.  

5.3.2 Oxygen Plasma Treatment using Pure Oxygen 

As seen above with the plasma treatment using ambient air containing oxygen, there were 

more devices with no redox peaks than devices with redox peaks. We hypothesized that using pure 

oxygen instead of “air” plasma might yield better and repeatable results. The oxygen pressure was 

set at 10 psi and introduced into the chamber with an optimized flow rate of 22.5 ml/min. The 

devices were exposed to the plasma (high RF) for 3 minutes. The device with the sharpest redox 

peaks for a sample of 0.1 M phosphate buffer at pH 7 was selected for further experiments (Figure 

18a) with different solutions of phosphate buffer with pH values ranging from 5 to 9. Figure 18b 

is a CV overlay of the oxygen plasma-treated device at the different pH. The well-defined peaks 

display a clear shift to more negative potentials as the pH increases. The calibration curve for the 

anodic peaks (figure 18c) shows a linear response with an R2 value of 0.9716, and the calibration 

curve for the cathodic peaks (figure 18d) shows a linear response with an R2 value of 0.9719, the 

R2 values did thus not improve. Using the same PBD a SWV experiment was performed with the 

following parameters: frequency 3 Hz, amplitude 200 mV with different solutions of phosphate 

buffer with pH values ranging from 5 to 9.  
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Figure 18. a) Overlay of CVs of different devices used to screen for the device with well-defined 
redox peaks. b) CV overlay of pure oxygen plasma treated device. c) Calibration curve of 

oxidation peaks. d) Calibration curve of reduction peaks 
 

The SWV overlay (Figure 19a) shows the redox peaks shifting as pH increases, the 

calibration curve (Figure 19b) shows a good linear correlation with an R2 of 0.9875. Results from 

the SWV are complementary to the results from the CVs with a small improvement. When 

comparing the CVs collected before the oxygen plasma treatment was done to those collected after 

the plasma treatment, we observe a great increase in the capacitive current. The oxygen plasma 

treatment on the paper-based devices caused a modification on the device that leads to an increase 

of the capacitive current of approximately 10 folds (Figure 20). The electrochemical oxidation of 

carbon material enhanced the effect of the electrode capacitance, 60 thus increasing the intensity of 

the capacitive current. 
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Figure 19. a) Overlay of SWV collected in different phosphate buffers with pH values ranging 
from 5 to 9. b) Calibration curve of potential peaks. 

 

Figure 20. CVs collected before and after plasma treatment to demonstrate the increase in 
capacitive current 

 

5.3.3 Effect of Plasma on Reference Electrode  

When analyzing CVs before and after the oxygen plasma treatment, we noticed that there 

was a shift or translation in the potential of all the redox reactions. Additionally after plasma 

treatment, the color of the reference electrode changed from silver to black (Figure 21a-c). To 
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determine the cause of the shift in potential of redox reaction on the CVs, we conducted an 

experiment where the reference electrode was removed from the plasma treated device and 

replaced with a reference electrode from an untreated device. All trials were tested using a sample 

of 0.1 M phosphate buffer at pH 7.0. The first CV was run on an untreated device (figure 21a), the 

device was dried for over 30 minutes and placed in the plasma cleaner for oxygen plasma treatment 

with the parameters listed above, and the second CV was run using the same solution. The 

blackened reference electrode was cut out (figure 21b) and replaced with a new reference electrode 

from an unused device (figure 21c). Finally a CV was run using the same solution and the three 

CVs were overlaid (figure 21d) to compare the location of the different redox peaks potential. The 

potential of reduction peaks was - 75 mV for before plasma, - 193 mV after plasma and – 81 mV 

after the RE is cut and replaced. The change in the color of the reference electrode suggests that 

the Ag/AgCl/C paint has oxidized during the plasma treatment. The redox shift caused by the 

oxidized reference electrode explains the effect of the linear response being translated to more 

negative when comparing results of untreated electrodes with results of oxygen-plasma treated 

devices. 
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Figure 21. a) Paper-based devices before plasma, b) after plasma, and c) after the reference 
electrode is cut and replaced. d) CVs of Oxygen plasma treated device 

 

5.4 Conclusion 

Various approaches for the enhancement of the definition of redox peaks on the CVs were 

described in this chapter. The results of the chemical modification of the electrode with oxygenated 

species using sodium carbonate showed a lack of repeatable improvement compared to unmodified 

devices. The treatment of the surface of the electrode to expose more defect site to react with 

oxygen forming the functional groups was done in two ways: oxygen (ambient air) plasma 

treatment and pure oxygen plasma treatment. The offset in redox peaks after treatment was due to 

the oxidation of the reference electrode during the oxygen plasma-treatment. None of the methods 

yielded repeatable and noticeable improvements, thus additional optimization was necessary to 

improve the presence and definition of pH-dependent redox peaks.      

Before Plasma After Plasma After Plasma cut RE

a)

d)

b) c)
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CHAPTER 6. CHANGES TO THE DESIGN OF DEVICE AND 
CONDITIONING STEP   

6.1 Change in Design: Filter Paper 

We evaluated different types of filter paper to fabricate the paper-based devices. The 

fabrication of the devices for all prior trials was done using Whatman® qualitative filter paper, 

Grade 114 with a pore size of 25 µm and a flow rate of 100 mL/38 sec (manufacturer 

specifications). We assessed two additional filter papers.  Grade P4 is a medium pore size of 5 to 

8 µm filter paper and a flow rate of 20 mL/60 sec (manufacturer specifications). Grade P2, with a 

pore size of 1 to 5 µm, and a flow rate of 5 mL/60 sec (manufacturer specifications). We performed 

CV on the different paper-based devices with a sample of 0.1 M phosphate buffer at pH 7.0. An 

overlay of the CVs of the three devices was made (figure 22).  

 

Figure 22. Comparison between different pore-size filter papers: filter paper P114, P4, and P2 
have a pore size of 25µm, 5 to 8 µm, and 1 to 5 µm, respectively. 

 

The CV for the P114 device has the smallest redox peaks, the CV for P4 device has broad and not 

well-defined redox peaks, and finally the CV for P2 device has the sharpest redox peaks. 



49 
 

Evaluation of more devices made with the three different filter papers in the same solution 

demonstrate that filter paper P2 continuously displayed the sharpest peaks.  

  The use of smaller-pore filter paper P4 and P2 showed that the peaks on the surface of the 

electrodes were better defined for both oxidation and reduction reaction. Statistics from the 

evaluation of 15 different paper-based devices for each of the three filter papers revealed that 66% 

of P114 devices, 80% of P4 devices and 86% of the P2 devices displayed well-defined redox 

reaction peaks. To confirm that using smaller-pore filter paper would consistently yield sharper 

peaks, we tested different solutions of 0.1 M phosphate buffer with pH range from 5 to 9 on P4 

and P2 devices. The potentials of reduction peaks were collected from all the CVs for both filter 

paper and were plotted (Figure 23). The potentials of the peaks shift as the pH increases, following 

a linear response of the fitted data with an R2 of 0.9916 for P4 device and 0.9952 for P2 device. 

The results from figure 23 asserts that devices yield well-defined redox potential peaks that shift 

towards the negative potential as pH increases. The sharp peaks and 86% of the Grade 2 (P2) 

devices lead to the decision to continue all further experiments using P2 filter paper to fabricate 

the paper-based devices. 
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Figure 23. Calibration plot for smaller pore-size filter paper.  

6.2 Change in Design: Area of Working Electrodes 

In the three-electrode system for electrochemistry consisting of the working electrode 

(WE), the counter or auxiliary electrode (CE) and the reference electrode (RE); the working 

electrode is the electrode at which the reaction occurs. Changes made to the area of the working 

electrode directly affects the current as per the Randles–Sevcik equation (eq 3) assuming a 

diffusive system.  

                             𝒊𝒑 = 0.446𝑛𝐹𝑨𝐶[ \LM]^_
JK

`
a/.

                                        (eq. 3) 

 𝑖>  is the peak current (A), 𝑛  is number of electrons transferred in the redox event, A is the 

electrode surface area (cm2), F is the Faraday Constant (C×mol−1), 𝐷[ is the diffusion coefficient 

(cm2×s-1), 𝐶[ is the bulk concentration in (mol×cm-3) 𝜈 is the scan rate (V×s-1), R is the Gas constant 

(J×K−1 mol−1) and T is temperature (K). We modified the size of the WE area from 9 mm2 to one 

size smaller 7 mm2 and two sizes larger 13 mm2 and 20 mm2. The photographs of the devices are 

shown in figure 24a-d. The devices were tested using a sample of 0.1 M phosphate buffer at pH 

7.0. On the CV overlay (Figure 24e), we observe an increase in the size of the redox peaks as the 
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area of the WE increases. The plot (Figure 24f-g) has a linear response with an R2 value of 0.9967 

for the current intensity of the oxidation peak and 0.9902 for the current intensity of the reduction 

peak. The results confirmed the hypothesis that increasing the WE area would increase the 

measured current and following the established (eq 3). The optimized area selected based on the 

results was the largest area, 20 mm2. 

 

Figure 24. a-d) Photographs of devices with area of WE varying from 7 mm2 to 20 mm2. e) CVs 
collected on the different devices showing an increase in current with the increasing area of the 

WE. f) Calibration curve of oxidation peaks. g) Calibration curve of reduction peaks.  
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6.3 Optimization of the Method: Conditioning Step 

The combination of Grade 2 (P2) filter paper and WE area of 20 mm2, resulted in an increase 

in the peak definition and current intensity. Now we needed to increase the accuracy of peaks 

observed on the paper-based devices with our method. In a study reported by Motin et al. the 

electrochemical oxidation of catechol (a derivative of quinone) in the presence of sulfanilic acid 

was studied at different pH.61 In this study, they used a GCE to run their CVs, the potential range 

at which they did their test was from 2 V to - 0.5 V.61 In all previous tests we ran the CVs with 

potential range between 0.6 V to - 0.6 V. Using a sample of 0.1 M phosphate buffer at pH 7.0, we 

ran CVs that start at various potentials between 0.6 V and 1 V. The overlay of the CVs is shown 

in figure 25a, an increase in the current is observed as the starting potential increases. There is no 

change in peak current when we start at a potential of 0.7 V instead of 0.6 V, however starting at 

a potential of 0.8 V generated an increase in the peak current. The increase continues as the starting 

potential is changed to 0.9 V and 1V. To determine the initial potential at which the redox couple 

would reach the highest current, we started the CVs with an increment in potential of 0.05 V. The 

overlay of these CVs (Figure 25b), shows that changing the start potential from 0.60V to 0.85 V 

has a great effect on the current. The peak current remains, however the same when changing the 

start in potential from 0.85V to 1 V.  

 
Figure 25. a) CVs starting between 0.6 V and 1 V with 100-mV increments. b) CVs starting 

between 0.6 V and 1 V with 50-mV increments. 
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The change in current confirmed that the addition of a conditioning oxidative potential enhances 

the redox activity of the pH-sensitive electroactive species on the electrode. We hypothesize that 

starting at a higher potential allowed for oxidation of the quinone at the surface of the electrode 

which would then be reduced and oxidized to display redox peaks with a greater current. Due to 

variation between devices (data not shown), 1V was selected as the optimal starting potential, as 

this ensures that every device will oxidize the maximum species which will then show sharp and 

well-defined redox peaks.  

6.4 Conclusion 

The design of the paper-based device was optimized and a conditioning step to increase 

the pH-sensing ability of the method was added. Different filter papers were used to fabricate the 

devices and Grade 2 (P2) yielded an increase in peak definition and a higher percentage of devices 

showing peaks compared to other filter papers. Working electrodes with greater area (9 mm2 to 20 

mm2) increased the intensity of current. Starting the CV at a higher potential (1 V) helped form 

pH-sensitive species on the surface of the electrode. The next chapter will focus on applying the 

optimized design and method to measure different samples over the full pH scale.  
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CHAPTER 7. DETERMINATION OF PH WITH OPTIMIZED 
DEVICE AND METHOD 

7.1 Measuring pH in Various Buffers and Solutions 

In the previous chapter, we successfully optimized the design of the PBD and the method 

for measuring pH. To evaluate the performance of the optimized method we tested various buffers. 

The list of buffer solutions tested are shown in table 2. As mentioned in previous chapters, 

measuring partially acidic pH is of importance for the future application of the PBD in oral care. 

To test acidic pH we used citrate buffer, which has a pH ranging from 2 to 5. We were able to 

obtain good results with low pH solutions using the conditioning step. The overlay of the CVs of 

citrate buffer at different pH (Figure 26a) shows well-defined redox peaks, with a clear shift in the 

redox peaks as the pH increases. A calibration curve of the reduction potential peaks (Figure 26b) 

shows a great linear response with an R2 value of 0.9987.  

Table 2. List of buffer solutions and pH range. 
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Figure 26. a) Overlay of 0.1 M Citrate buffer with pH varying from 2 to 5. b) Calibration curve 
of reduction peaks potential over the average of two cycles. 

 

To examine the robustness of the improved method, we used the same devices to test 

additional buffer solutions. Paper-based devices A and B were used to test the following solutions: 

HCl/NaOH solutions, citrate buffer solutions, Mcllvaine buffer solutions, and phosphate buffer 

solutions. The potential of the reduction peaks of each CV were collected and plotted (Figure 27). 

Both devices A and B have good linear responses, most of the solutions had an R2 value of 0.98 

or greater on the same device. We could not achieve such repeatable results on our devices prior 

to optimization. The HCl/NaOH solutions on device A had a poor linear response (Figure 27a 

purple), we believe that the poor results were due device A being used for more than 30 CVs before 

being used to run the HCl/NaOH solutions. Despite the poor linear response, we observe a shift in 

redox peaks as the pH increased. While overlaying the data of all the different buffers, we observed 

that the potential values were not the same for different solutions at same pH. Phosphate buffer 

and Mcllvaine buffer showed similar results for pH 5 to 8. We hypothesized this could be due to 

the sodium phosphate dibasic (Na2HPO4) common in both solutions. Citrate Buffer and 

HCl/NaOH displayed the similar results for pH 2 to 5. We hypothesized this could be due to Na+ 

and Cl- ions present in both solutions. These results made it necessary to study the effect of certain 

ions in solutions. 



56 
 

 

Figure 27. a) Calibration curves of HCl/NaOH solutions with pH ranging from 1 to 5, citrate 
buffers with pH ranging from 2 to 5, Mcllvaine buffers with pH ranging from 3 to 8, and 

phosphate buffers with pH ranging from 5 to 9 tested on device A. b) Calibration curves of the 
same solutions tested on device B. 
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7.2 Effect of Adding Sodium Chloride to pH Solutions 

To study the effect that adding sodium chloride to solutions had on pH-sensing PBD, we 

spiked Mcllvaine and phosphate buffer with NaCl. We then ran CVs of the solutions made with 

sodium chloride on a new paper-based device (device C). We also measured the citrate buffer 

again on device C as a control. The potentials of all the reduction peaks were collected over two 

cycles and the averages were plotted. Figure 28 is the overlay comparing all the solutions from 

device B to citrate buffer and Mcllvaine and phosphate buffer containing sodium chloride on 

device C. After adding 0.1 M NaCl to the buffer solutions we observe an alignment of the 

Mcllvaine and the phosphate buffer containing NaCl with the HCl/NaOH and citrate buffer curve. 

The solutions with the same pH now have the same results (potential values) due to the addition 

of sodium chloride.  

 

 

Figure 28. Overlay of plots with and without NaCl 
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7.3 Measuring pH from 0 to 13  

7.3.1 HCl/NaOH 

To reach the full pH range, solutions using HCl and NaOH with pH ranging from 1 to 13 

were made and tested. The potentials of the reduction peaks for all CVs were plotted and a linear 

response with an R2 value of 0.9979 was observed (Figure 29). The observed results confirm that 

there is presence of electroactive elements that are pH-dependent on the surface of the PBD pH 

sensor and that method can successfully quantify pH over the full range.  

 

Figure 29. Calibration curve of potentials of the reduction peaks versus pH on the PBD in 
solutions of HCl and NaOH prepared with pH ranging from 1 to 13. 

7.3.2 Standard pH Solutions 

To determine if the results obtained from the measurement of the full range of pH on HCl 

and NaOH pH solutions could be repeated, we tested commercial pH standards with pH ranging 

from 1 to 12. The test was first done in the standard solutions as they were. The potentials of the 

reduction peaks were plotted (Figure 30a) all data points are not aligned, as the results for pH 5, 6, 

and 7 formed a separate “trend-line”. Standard solutions are made with different compositions to 

ensure a stable pH for traceable results. To confirm our previous hypothesis that a certain amount 

of NaCl was needed, we added 0.1 M NaCl to all the standard solutions and tested them again. 
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The potentials of reduction peaks of CVs were plotted (Figure 30b). The results for the solutions 

at pH 5, 6 and 7 are now aligned with other standards and we could observe a great linear 

correlation with an R2 value of 0.9977. Additionally, the standard solution at pH 8 could not be 

detected before NaCl addition due to some interferences with other electroactive species in the 

solution, but with NaCl, we were able to observe redox peaks at the expected potential for a pH 8 

solution. These results thus confirm that using the method developed for our paper-based devices, 

pH can be successfully measured.  

 

Figure 30. Plots of potentials of the reduction peaks versus pH on the PBD in standard pH 
solutions with pH ranging from 1 to 12, a) without NaCl added and b) with 0.1M NaCl added. 

7.4 Repeatability of Method on PBDs 

The repeatability of the optimized method using paper-based device to measure pH was 

assessed. Two different students conducted a series of tests on four paper-based devices, I and an 

undergraduate student assessed the repeatability and robustness of our method. The undergraduate 

student prepared solutions of Mcllvaine buffer with pH ranging from 3 to 8 and ran CVs on three 

PBDs devices E4, E5 and E6. Using the same solutions prepared by the undergraduate student, I 

ran CVs on PBD device E170. Figure 31 is the overlay of calibration curves for all four devices, 

and both users. The observed linear responses have R2 values around 0.98 – 0.99 for both the 

oxidation and the reduction peaks. The coefficients are slightly lower than previous results in this 

chapter due to the solution at pH 4 which was slightly off for all devices. All four trials on 

independent devices present the same trends even when fabricated and used by two different users, 
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and with one month separating the two sets of tests. These results confirm that the method 

developed on our electrochemical paper-based devices is robust and can produce repeatable results. 

 

 

Figure 31. Repeatability tests on four different PBDs performed by two users. a) Overlay of 
calibration curves using the potentials of oxidation peaks. b)  Overlay of calibration curves 

using the potentials of reduction peaks 

7.5 pH Measurement of Artificial saliva 

The future goal of this project is to use the developed pH-sensor PBD to measure the pH 

of plaque on the surface of the teeth of patients, to mimic the environment of the mouth by 

measuring the pH of artificial saliva. We prepared some artificial saliva according to the 

composition listed in table 3.12,47 We performed CVs in the artificial saliva with pH ranging from 

3 to 8 on two PBDs, as the pH of plaque in dental cavities is below the critical pH value of 5.5.12 

The results from plotting the potentials of the reduction peaks (average over two CV cycles) shows 

a good linear correlation (Figure 32). Some data points on both devices have a standard deviation 

larger than desired, we hypothesize that the electroactive species from the different chemicals in 

the composition of the saliva could have caused subsequent cycles to differ more from one another 

than when using buffers. These results suggest that using our method on the PBDs could allow for 

pH measurements in real saliva. 
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Table 3. Composition list for artificial saliva (AFNOR standard S90-701; Association Française 
de Normalisation—French Standardization Association )12,47 

 
 

 

 

Figure 32. Calibration curve the potential of reduction peaks of two devices (black = device 1, 
red = device 2) in artificial saliva with the pH ranging from 3 to 8. 

7.6 Conclusion 

In this chapter, the optimized design and method was successfully used to measure pH in 

various solutions. The PBD pH-sensing helped determine pH of various buffers listed in table 2 

with pH ranging from 1 to 9. The results obtained from various buffers lead to the need to study 
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the effect of certain ions in solutions. Adding sodium chloride to solutions acted as an ion adjuster 

and allowed the redox peaks for having similar potentials for solutions of same pH. The pH range 

from 1 to 13 was successfully assessed using HCl/NaOH solutions. To test other samples over a 

wide pH range commercial standards with pH ranging from 1 to 12 was measured. Artificial saliva 

with pH ranging from 3 to 8 was successfully measured, suggesting that the developed paper-based 

pH-sensor could be applied to measure the pH of real saliva and then guide oral preventative care. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



63 
 

CHAPTER 8. FUTURE WORK  

8.1 Preliminary Work on Identifying the pH-sensing Species 

While developing the electrochemical pH-sensing PBD, we hypothesized that the pH-

sensitive species present at the surface of the electrode was ortho-quinone, however this would 

need to be further confirmed. To start exploring which oxo-group(s) is responsible for detecting 

pH on the surface of the electrodes painted on the PBDs, we tested various commercially available 

derivatives of quinone. The redox reaction of the quinone derivatives tested is shown in table 4.  

Table 4. List of quinone derivatives and their associated reduction reactions. 

 
We tested the quinone derivatives that were close to ortho-quinone because it is not 

commercially available. The derivatives were tested at two different pH (2 and 7) on the paper-

based devices, the CVs for 9,10-phenanthrenequinine (PAQ), tetrachloro-o-benzoquinone (TCBQ) 

and 1,4-benzoquinone (p-Ben) are shown in figure 33. The un-spiked solution at pH 2 is a solution 

of citrate buffer which is overlaid using the secondary y-axis, the redox couple for pH 2 is showing 

around the potential of 0.40 V (Figure 33a). When comparing the un-spiked to the solutions spiked 

with quinone derivatives we observe different couples of redox peaks that have potentials more 



64 
 

negative than the un-spiked. The un-spiked at pH 7 is in a solution of phosphate buffer and has a 

redox couple that is seen around potential 0.06 V (Figure 33b). The CV of the un-spiked overlaid 

with the solutions spiked with quinone derivatives also shows a different redox couple with 

potential that is more negative than the un-spiked. The results at both pH show that when the 

solution is spiked with PAQ, TCBQ and p-benzoquinone the redox couples are different from the 

un-spiked thus confirming that neither of them is the species present on the surface of the 

electrodes painted on the PBDs. Since the spiked solutions are all tested on PBDs we should indeed 

always observe the “unknown” pH-sensing peaks along with the “spiked” peaks. The test was also 

run using catechol, the reduced form of o-benzoquinone. The derivative was run in solutions at pH 

2 and pH 7, the CVs are overlaid in figure 34. The CV of the un-spiked and the catechol at pH 2 

have a redox couple that match, but the catechol has a second reduction peak (Figure 34a). At pH 

7 the un-spiked and the catechol have the same redox couple (Figure 34b). Based on these results 

there could be two derivatives of quinone present on the surface of the electrodes painted on the 

PBDs. We hypothesize that the oxidation reaction used in PBD pH-sensing could correspond to 

the oxidation of catechol and the reduction used in PBD pH-sensing could correspond to the 

reduction of p-Benzoquinone. More experiment with other analytical characterizing techniques 

such as mass spectrometry and NMR will be needed to positively identify the pH-sensing elements.   

 

Figure 33. CVs of 9,10-Phenanthrenequinine (PAQ), Tetrachloro-o-Benzoquinone (TCBQ) and 
1,4-Benzoquinone (p-Ben) in a) citrate buffer at pH 2 and b) phosphate buffer at pH 7 



65 
 

 

Figure 34. CVs of catechol in a) citrate buffer at pH 2 and b) phosphate buffer at pH 7 

8.2 Real Samples of Food and Beverages  

Measuring the pH of food and beverages is important for quality control as well as, in 

processes used in the food industry such as for water absorption, emulsification, and gelation of 

different protein sources.8 the pH of food and beverages can also influence the pH of saliva which 

inspired the need to test such samples and also allows for the assessment of the pH-sensor PBD in 

variable complex matrices. We will test samples such as soda, orange juices, milk for pH-sensing 

in “real” unbuffered samples with the optimized PBD. As a first trial, we tested a sample of 

distilled white vinegar, for which a pH of 2.4 was measured using the pH meter. The CVs were 

run on one PBD, and the CVs are overlaid in figure 35. The difference between cycle 1 and 2 from 

the same run, showed different results and the peaks believed to correspond to the pH-sensing 

peaks at 370 mv and 320 mv for oxidation and reduction respectively, do not correlate with a pH 

of 2.4 when using previous calibration curve from figure 29. Future work will be needed on other 

food and beverages to determine if the method developed for our PBDs can measure the pH on 

these types of samples and what optimizations or adjustments might be necessary.  
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Figure 35. CV overlay of distilled white vinegar with a pH of 2.4 

8.3 Apply PBD pH Sensor to Real Saliva and Bacteria 

Being able to measure pH of real saliva and of bacteria will be needed to work towards the 

future goals of this project: to apply the pH-sensor PBD to analyze the pH in bacterial biofilms 

formed on teeth (or plaque) as it can be indicative of conditions leading to the formation of cavities. 

The work that will be done would involve collaborations with the dental school to collect samples 

of saliva from their patient, we will then analyze the pH of the samples using the PBDs. We will 

also assess pH in bacterial biofilm that we will culture in the lab first with E.coli K12 non pathogen 

and the typical mouth bacterial strains such as mutants streptococci and Lactobacilli.62 
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CONCLUSION  

This thesis described the successful development of a low-cost, flexible and portable 

electrochemical microfluidic paper-based analytical device for pH-sensing. Different optimization 

methods were performed to enhance the definition of redox peaks on the CVs. They included 

chemical modification of the electrode by adsorption of sodium carbonate and modification of the 

surface of the electrode to form more functional groups by different plasma treatments. The 

optimization of the design of the paper-based device and the addition of a conditioning step 

improved the definition of the redox peaks and increased the precision of the method. Various 

solutions over a wide range of pH (1 to 13) were successfully tested. The addition of sodium 

chloride to solutions improved the accuracy of pH measurements. The pH of artificial saliva at 

various pH values in the cavity-prone range was measured and showed the applicability of this 

paper-based electrochemical pH sensor for future pH measurements in real saliva and bacterial 

biofilms. 
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