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ABSTRACT

Reinforcement Learning (RL) is a data-driven technique which is finding increasing applica-

tion in the development of controllers for sequential decision making problems. Their wide adop-

tion can be attributed to the fact that the development of these controllers is independent of the

knowledge of the system and thus can be used even when the environment dynamics are unknown.

Model-Based RL controllers explicitly model the system dynamics from the observed (training)

data using a function approximator, followed by using a path planning algorithm to obtain the op-

timal control sequence. While these controllers have been proven to be successful in simulations,

lack of strong safety guarantees in the presence of noise makes them ill-posed for deployment on

hardware, specially in safety critical systems. The proposed work aims at bridging this gap by pro-

viding a verification framework to evaluate the safety guarantees for a Model-Based RL controller.

Our method builds upon reachability analysis to determine if there is any action which can drive

the system into a constrained (unsafe) region. Consequently, our method can provide a binary yes

or no answer to whether all the initial set of states are (un)safe to propagate trajectories from in the

presence of some bounded noise.



1

1. INTRODUCTION

1.1 Problem Statement

Given a trained Model-Based Reinforcement Learning controller, verify that the controller

satisfies all the safety constraints in the state space in the presence of bounded noise.

In this work, safety refers to satisfying the state space constraints at all times. Let X ⊂ Rn

denote the set of states and U ⊂ Rm denote the set of feasible controls (actions) that can be

executed in any state of the system. Let fNN : X ×U ×N → X be the function that estimates the

state transition dynamics of the system when a control u ∈ U is executed in state x ∈ X under the

presence of noise N ∈ Rn at time t ∈ R+. If π : X → U is the state feedback controller (policy)

which returns the optimal action at a given state, then the action returned by following the control

law π is denoted as uπ ∈ U . Similarly, xf (t) is defined as the state reached after propagating a

trajectory for t time steps from some initial state while following the system dynamics fNN and

policy π.

Given an initial set of states X0 ⊂ X and an unsafe set ψ ⊂ Rn, we aim to establish

∣∣∣{x : ∃x0 ∈ X0,∃uπ ∈ U ,∃t ∈ [0, T ],xf (t) ∈ ψ}
∣∣∣ ?
> 0.

If this is a null set then the given controller π is deemed to be safe under bounded noise N for

initial states X0.

1.2 Motivation

Reinforcement Learning (RL) is a branch of Machine Learning (ML) that finds application in

sequential decision making tasks. It is a data driven technique which attempts to “learn” sequential
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Fig. 1.1. A schematic diagram comparing reinforcement learning to control the-
ory. While control theory aims at providing strong performance guarantees in
specific scenarios, RL methods are aimed at general settings but lack strong per-
formance guarantees. In this work, we use Model-Based RL to bridge this gap.

control decisions so as to minimize (maximize) some cost (reward) by directly interacting with

the environment and observing the outcomes. It has been increasingly used in the development of

controllers for complex tasks, where the complete dynamics of the system is unavailable [1, 2].

The primary reason for its increasing popularity is the fact that such controllers do not depend on

the knowledge of the system dynamics, instead they approximate the system dynamics from the

data over which they are trained, either explicitly or implicitly. This generality also makes them

applicable to systems which require sequential decision making but do not follow a physics based

model (e.g. online recommendation systems [3, 4], medical treatment recommendations [5], poker

games [6] etc.). Further, for cases where we have partial (full) knowledge of the dynamics, RL

methods also provide a potential framework for bridging the best of both the paradigms.

Broadly, RL controllers can be classified as either Model-Based or Model-Free. The main dif-

ference between the two types is that the Model-Based controllers try to explicitly model the sys-

tem dynamics from the training/observed data points and then substitute this model in any planning

algorithm to develop the final controller. On the other hand, Model-Free controllers try to learn

the control input directly from the training data without modelling the system dynamics. While

Model-Free controllers are unaffected by the error in modelling system dynamics, they require a

lot more training data and training time. In settings like games and online marketing, where the
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data can be obtained in abundance, model-free RL methods have shown significant promise [3, 7].

In comparison, settings where both training data and time can be costly, model-based controllers

are more efficient and therefore usually preferred to be deployed on actual systems [8].

Drawbacks

The lack of a definite or approximated model for the system dynamics makes the Model-Free

controllers free of any modelling error, but this also makes them a black box technique for which

it is hard to give any safety guarantees. Instead, Model-Based controllers are preferred to be

deployed on real systems since the approximated model for the system dynamics can be treated as

a non-linear system and some formal verification techniques prevalent in control applications can

be extended to these controllers.

One of the main issues preventing the deployment of RL controllers on hardware is the dif-

ference in the simulation model and the real world model of the system. Most RL controllers are

trained to learn a particular behavior on a simulator first which doesn’t accurately represent the

dynamics of the real world system on which the controller has to be deployed. This discrepancy

leads to unexpected behavior after deployment which is not a desirable property for safety critical

systems. This was observed in the work Benbrahim and Franklin [9] when they deployed an RL

controller on a biped robot to teach it dynamic walking. Similar observations were made in the

work of Endo et. al [10] while training a humanoid robot to walk and Morimoto et. al [11] while

training a robot to stand up. Most work pertaining to deployment of RL controllers on hardware

recognize this problem and usually train the controllers to learn the specific task again on hardware.

Even for Model-Based RL controllers, where the system dynamics is modelled by training a

function approximator over a data set of sampled points (xt,ut,xt+1), the training data may itself

be noisy because of the way it is sampled. Ideally, we want to learn only the system dynamics but

the sampled data may also contain random noise present in the environment which can be very hard

to isolate or remove while extracting the data. This implies that our final controller is not working
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Fig. 1.2. In this thesis, a Model-Based RL Controller is developed to navigate
an agent from an initial set of states to a final set of states while avoiding unsafe
(constrained) regions. However, RL controllers can not handle hard constraints
and an augmented cost function is constructed to train the controller to avoid un-
safe regions. The first two figures show randomly sampled trajectories generated
while training the RL controller. However, in the third figure, the reachable set is
computed for the trained controller and it is observed that the controller fails to
meet the safety constraints for all initial states. An example of one such trajectory
is presented in the fourth figure.

on the perfect dynamics and once deployed on hardware, the system may very well violate some

constraints in the state space. Hence, it is important to predict the controller’s performance before

it is deployed on hardware.
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In this work, we narrow down our focus on Model-Based RL controllers and use techniques

prevalent in control applications to provide safety guarantees for such controllers. Specifically,

we develop a method to provide safety guarantees for a pre-trained Model-Based RL controller in

the presence of bounded noise. This bounded noise represents the modelling error in the system

dynamics used to train the controller in simulator and that in the real system. Mathematically, it is

incorporated as an additive noise to the state vector. Currently, the proposed method can provide

a yes or no answer to whether the given set of initial states will violate any state constraints in the

presence of the bounded noise.

Related Work

Providing safety guarantees for RL controllers is a major problem that is being actively looked

into by the community. As mentioned above, most RL controllers need to be trained again on

hardware to fit the controller to the real system dynamics. Hence, most of the work related to

providing safety guarantees is implemented to satisfy state space constraints while training the

controller. This has led to the development of switching based safety controllers which switch to

a safe controller when the system approaches the boundary of a constraint [12]. Gillula and Tom-

lin exhibitted safe online learning [13] by developing a switching controller which avoids violating

constraints while training using reachablity analysis. Alshiekh et. al monitor the controllers actions

before it executes them to make sure that state constraints are not violated [14]. Safe switching

controllers have also been developed by following rigorous lyapunov domain knowledge to guar-

antee minimum performance [15]. This has lead to the concept of barrier certificates which give

invariant safe regions with high probability guarantees to prevent a learning agent from violating

state constraints [16].

Another approach to analyze the stability of the controller is to empirically verify the lyapunov

stability by introducing small bounded noise in the system and observing the systems performance.

This method is used in [10] where the authors trained a biped humanoid to learn how to walk and
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tested the controller’s stability by varying the length of the walking step size and observing that

the controller managed to return back to its original gait length when the variation was small. A

similar method was adopted in [9] to provide bounds on the inputs for which the biped is able to

complete the task of walking.

Other approaches include providing confidence bounds on the expected reward based on sam-

ple based planning [17, 18].

The idea of computing reachable sets to provide the safety guarantees of a controller has been

used extensively in most control applications and is being extended to RL based controllers as

well. Zuo et. al [19] in their work computed the reachable sets for uncertain neural networks with

time delays using the Lyapunov-Razumikhin methodology to bound its output space.

1.3 Scope and Goals

This work focuses on developing a method to provide safety guarantees for Model-Based RL

Controllers in the presence of bounded noise using reachability analysis. We interpret noise as

the modelling error while approximating the system dynamics in the Model-Based controller The

following assumptions are made in this work:

• The system operates in the continuous state and action space,

X ⊆ Rn, U ⊆ Rm.

• A deterministic model of the system dynamics is used in the controller, i.e., given the current

state xt, input ut and noise nt, the dynamics function fNN returns the next state xt+1,

fNN : X × U ×N → X .

• The noiseN ∈ Rn is assumed to be bounded for all time instances throughout the trajectory,

Ni ∈ [−d,+d] i = 1, 2, ..n.
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• The bounded set of states representing the initial conditions X0 ⊂ X and final conditions

Xf ⊂ X are provided.

Reachable Set Analysis [20] is used to model the evolution of system states for a finite time

under noise. This gives a conservative solution determining if there is at least a single state from

which the controller can drive the system to an unsafe (constrained) region ψ,∣∣∣{x : ∃x0 ∈ X0,∃uπ ∈ U ,∃t ∈ [0, T ],xf (t) ∈ ψ}
∣∣∣ ?
> 0.

Thus, the safety guarantee is not probabilistic in nature, but rather it will give a set of initial states

from which the system will never enter an unsafe region under the given bounded noise.

Contributions

Following are the main contributions of this work:

1. The proposed method is independent of the learning/training process used while develop-

ing the model-based controller. It is a stand-alone method to evaluate whether any state

constraints will be violated when the trained controller is deployed on the hardware in the

presence of a bounded noise.

2. This work formulates the learned neural network dynamics in terms of the HJI equation to

compute the reachable set.

3. Computing the reachable set using level set method handles the irregular geometric shapes

of the reachable set at any time instant, thereby reducing the approximation error.

The choice of using the HJI formulation solved using level set method over other techniques is

justified because of its capability of handling both linear and non-linear dynamics. It also paves the

way to potentially give performance metrics for the controller in presence of noise, as mentioned

in a later section.
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Fig. 1.3. An overview of the methodology.

1.4 Overview

A high level overview of the methodology is presented in Figure 1.3. The proposed method for

safety verification is independent of how the controller is developed. It only requires the determin-

istic model used to approximate the system dynamics fNN and the final control law π. The details

for the sequence of steps are given below:

• Development of the controller

1. Approximating the system dynamics: The first step towards building a Model-Based

RL controller is to approximate the system dynamics by training a universal function

approximator (neural network) over a data set. This data set contains many tuples of

data, each of which has the state and control (action) taken at time t as input (xt,ut)

and the next state (xt+1) as output.

2. Developing the controller: The controller itself is a neural network and its parameters

(weights) are trained to maximize the pre-defined reward function (equivalent to the

negative of a cost function) over the length of a trajectory.
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• Reachability analysis

1. Formulating the HJI equation: After developing the controller the problem of forward

reachable set is formulated as a HJI equation. To do this, the problem is modelled using

game theory where Player 1 is the optimal controller π developed in the previous step

and Player 2 is the noise in the system.

2. Computing the reachable set: After the problem formulation, the reachable set is

computed using the well developed numerical schemes for level set method. In this

work, the toolbox developed by Dr. Ian Mitchell in MATLAB is used [21].

1.5 Thesis Layout

This thesis is structured in the same sequence as described above.

• Chapter 2 describes an overall method to develop a Model-Based RL controller

1. Section 2.2 gives a detailed explanation on the architecture and training process of a

neural network since it is used for approximating the system dynamics and developing

the controller.

2. Section 2.3 introduces Model-Based RL and details the math behind training the con-

troller.

3. Section 2.4 presents a general algorithm for developing the Model-Based RL controller.

4. Section 2.5 describes a sample navigation problem. A Model-Based controller is de-

veloped for this problem and its results are presented in this section as well.

• Chapter 3 describes the methodology behind reachability analysis

1. Section 3.1 gives an introduction to reachable sets. It describes the most common

algorithms used to compute them and then discusses their applications in safety critical

systems.
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2. Section 3.2 describes the HJI formulation of reachable sets which is used in this work.

Sections 3.2.1-3.2.3 cover in detail the mathematical formulation of the problem while

also proving that the design of our Model-Based controller satisfies all the assumptions

required for this method.
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2. CONTROLLER DESIGN USING MODEL-BASED REINFORCEMENT
LEARNING

2.1 Introduction

This chapter looks into designing Model-Based RL controllers for problems requiring sequen-

tial decision making. Since the complete system dynamics are not known a priori in the problem

setting, a universal function approximator - neural network [22], is used to estimate the system

dynamics from observed (training) data. The necessary background for building a neural network

architecture and estimating its parameters is covered in Section 2.2. Given a trained model of the

system dynamics, a parameterized controller is learned using Model-Based RL technique. The

relevant background on RL and the method used to develop the controller are presented in Section

2.3 and 2.4, respectively. Once a framework is established, the efficacy of the final controller is

demonstrated with an illustrative navigation example which will be used throughout this work. The

formulation of this problem and the obtained results are documented in Section 2.5.

2.2 Function Approximation using Neural Networks

A neural network is a parameterized function that is often used to extract patterns from a

given data set. The parameters of neural network are used to compose a sequence of non-linear

transformations, such that, given an input x, the transformation can be used to map it to the desired

output o. An example of one such neural network is presented in Figure 2.1. The first layer is an

input layer, where the number of nodes corresponds to the dimension of the input x. Similarly, the

final layer is the output layer and the number of nodes is equal to the dimension of output vector
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Fig. 2.1. Neural network architecture

o. Additionally, one or more hidden layers can be added between the input and output layers (for

example, Figure 2.1 contains one hidden layer with two nodes).

Using a neural network involves three prime considerations: (1) Architecture design: This cor-

responds to deciding the number of parameters to use and the corresponding functional form of

the network, for example, number of hidden nodes, number of hidden layers, etc. (2) Feedforward

pass: Once the architecture design has been decided, the procedure of using the network to trans-

form an input x to an output o is known as the feedforward pass. (3) Backpropagation: given a

functional form of the network, we want to estimate its parameter values that would let it best ap-

proximate the desired transformation. In the following paragraphs, we elaborate on each of these

three points.

1. Architecture: We consider a simple neural network model with 2 nodes in the input layer,

2 nodes in the hidden layer and 1 node in the output layer as shown in Figure 2.1. Each

node in one layer is connected to each node in the next layer through a scalar weight. For

convenience, these weights are represented in the matrix form. Let there be p, q and r number



13

of nodes in the input, hidden and output layer, respectively. Then the weight matrix between

the input and hidden layer is defined as W (1) ∈ Rq×p and that between the hidden layer

and output layer is defined as W (2) ∈ Rr×q. These weights are randomly initialized and are

updated throughout the training process to better fit the data. The terminology followed in

this thesis defines wlab as the weight between node b in layer l and node a in layer l+ 1. Thus

w2
11 denotes the weight between node 1 in layer 2 and node 1 in layer 3. Thus the weights in

Figure 2.1 can be put in terms of matrices as:

W (1) =

w(1)
11 w

(1)
12

w
(1)
21 w

(1)
22


W (2) =

[
w

(2)
11 w

(2)
12

]
Each cycle of training a neural network constitutes the feedforward pass followed by back-

propagation over the entire training data.

2. Feedforward Pass: In the feedforward pass, the neural network predicts the output for a

given input vector. First, we need to define how a node is computed in the layers following

the input layer. For an input vector x ∈ Rp, the nodes in the hidden layer h ∈ Rq and output

layer ô ∈ R are computed as:

h = f1(W (1)x), (2.1)

ô = f2(W (2)h) = f2(W (2)f1(W (1)x)), (2.2)

where f1() and f2() are called the activation functions which are used to model the non-

linear part of the training data. In general, the output of neural network with n − 1 hidden

layers can be written as:

ô = fn(W (n)fn−1(W (n−1)fn−2(...))). (2.3)

3. Backpropagation: In backpropagation, a gradient-based method is used to update the weights

of the neural network to increase its prediction accuracy over the training data. The training
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data is a tuple which contains both the input x and the corresponding target output o. In

Figure 2.1, the target output is a scalar o. Let

E =
1

n

n∑
i=1

(oi − ôi)2

be the mean square error between the target output oi and the predicted neural network output

ôi over n training samples. The update rule for the weights is given as

W
(1)
t+1 = W

(1)
t − α

∂E

∂W
(1)
t

,

W
(2)
t+1 = W

(2)
t − α

∂E

∂W
(2)
t

,

where α is the learning rate. It can also be time varying in which case it is written as αt. The

time subscript refers to the number of times the weight matrix has been updated. To make

the notation simpler, it has been dropped in the following equations.

The partial derivatives in the update rule can be computed by using the chain rule as follows:

∂E

∂W (2)
=
∂E

∂ô
· ∂ô

∂W (2)

=
2

n

n∑
i=1

(oi − ôi) · f
′

2(W (2)h)h,
(2.4)

∂E

∂h
=
∂E

∂ô
· ∂ô
∂h

=
2

n

n∑
i=1

(oi − ôi) · f
′

2(W (2)h)W (2),
(2.5)

∂E

∂W (1)
=
∂E

∂ô
· ∂ô
∂h
· ∂h

∂W (1)

=
2

n

n∑
i=1

(oi − ôi) · f
′

2(W (2)h)W (2) · f ′1(W (1)x)x

=
∂E

∂h
· f ′1(W (1)x)x.

(2.6)
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Fig. 2.2. In the reinforcement learning paradigm, the controller observes the cur-
rent state x and executes an action u. Based on this, the system transitions accord-
ingly. The controller then receives a feedback r for the decision taken and also
observes the next state.

2.3 Model-Based Reinforcement Learning

Reinforcement Learning (RL) is a branch of Machine Learning (ML) that aims at finding a

controller (policy) to make sequential decisions that minimizes the total cost (maximizes the total

reward). RL is a data driven technique that doesn’t assume any knowledge of the system dy-

namics but a way to sample trajectories in the environment. This makes RL algorithms generally

applicable to a broad range of problems, ranging from sequential medical treatment [5], online

recommender systems [3, 4], game playing [6, 7], robotics [8] etc.

A typical setup for the RL paradigm is illustrated in Figure 2.2. On observing a system state

x, the controller executes an action u. Consequently, the controller receives a feedback r and also

observes the next state. The goal of the controller is to learn a sequence of control decisions, such

that it can minimize (maximize) the total sum of cost (reward) incurred.

[NOTE: In Reinforcement Learning terminology, the feedback provided to the agent is called

the reward r. This is nothing but the negative of the cost function.]

Broadly, RL methods can be grouped as either model-free or model-based. Model-free meth-

ods learn the controller without trying to explicitly approximate the system dynamics [23, 24].
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Such methods can avoid controllers from getting biased due to the errors in modelling the system

dynamics. Their general nature implies that very little is assumed about the underlying structure

of the problem and thus very little domain knowledge can be pre-engineered in such methods. Be-

ing data-driven, such methods therefore rely upon significant amount of data and hyper-parameter

tuning to solve any particular problem.

In contrast, model-based methods aim at explicitly modelling the state transition dynamics

using the transition (training) samples. Methods built on these types of controllers make use of

universal function approximators like neural networks to learn the system dynamics accurately.

Once the system dynamics are learned, the estimated model can then be used to learn the controller

in a more sample efficient manner. Hence, from here on, we restrict our focus to Model-Based RL.

In the following sections, we first formalize the setting of Model-Based RL. Then we establish the

method for estimating the parameters of the controller using the learned dynamics model. Finally,

we combine all the above concepts and present the complete algorithm for obtaining both the

estimated model and the controller.

2.3.1 System Definition

For the Model-Based RL we consider the setup where fNN , a differentiable model of the system

dynamics, is learned using observed data and provided. A controller πθ, parameterized using the

weights θ, observes the state xt ∈ X and executes the control ut ∈ U , i.e.,

ut = πθ(xt).

The next state is then obtained using

xt+1 = fNN(xt, ut) +Nt+1,

where Nt+1 ⊂ Rm is the noise term. The feedback rt+1 ∈ R is obtained as,

rt+1 = R(xt+1).

A visual depiction of a rolled out trajectory using the above procedure is provided in Figure 2.3.
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Fig. 2.3. Simulated trajectory using the learned dynamics model. The policy πθ
selects control ut for a given state xt. The next state xt+1 is then obtained us-
ing the transition dynamics model fNN , under the influence of noise Nt. Reward
rt for each state is obtained using the function R for each state xt. The red ar-
rows indicate the backpropagation of gradients use to maximize the total sum of
rewards.



18

2.3.2 Controller’s Parameters Estimation

This section develops the procedure to estimate the parameters of the controller such that it

can be used to maximize (minimize) the reward (cost). The derivation given below is specific to

the way we are developing our controller. For a more general understanding of value and policy

gradient methods the reader can refer to [25].

Let the total reward over the trajectory be represented as J(θ), such that

J(θ) = E

[
T∑
t=0

rt

∣∣∣∣∣πθ, fNN
]
, (2.7)

where conditioning on πθ and fNN means that the action is chosen using the policy πθ and the

next state is simulated using the learned model fNN . Note that although both πθ and fNN are

deterministic, the expectation arises due to the stochastic noise Nt affecting the state transition at

every time step t in the trajectory. To maximize J(θ), we seek to iteratively update the parameters

θ by ascending the gradient of J(θ),

θ ← θ + α
∂J(θ)

∂θ
. (2.8)

However, it is not immediately evident how to compute ∂J(θ)
∂θ

. In what follows, we demonstrate

how it can be computed in terms of the differentiable functions πθ, fNN and R.

As J(θ) is the sum of all the rewards rt,

∂J(θ)

∂θ
=

T∑
t=0

∂rt
∂θ

.

Using the fact that rt = R(xt),

∂J(θ)

∂θ
=

T∑
t=0

∂R(xt)

∂xt
· ∂xt
∂θ

.

Since observing xt is a consequence of all the controls ui, executed using πθ, in the previous time

steps i ∈ [0, t],

∂J(θ)

∂θ
=

T∑
t=0

∂R(xt)

∂xt

t∑
i=0

∂xt
∂ui
· ∂ui
∂θ

.
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Using the fact that ut = πθ(xt),

∂J(θ)

∂θ
=

T∑
t=0

∂R(xt)

∂xt

t∑
i=0

∂xt
∂ui
· ∂πθ(xi)

∂θ
.

Using the chain rule, the derivative of observing state xt with respect to ui can be rewritten using

the intermediate variable xi+1,

∂J(θ)

∂θ
=

T∑
t=0

∂R(xt)

∂xt

t∑
i=0

∂xt
∂xi+1

· ∂xi+1

∂ui
· ∂πθ(xi)

∂θ
.

As xt+1 = fNN(xt, ut),

∂J(θ)

∂θ
=

T∑
t=0

∂R(xt)

∂xt

t∑
i=0

∂xt
∂xi+1

· ∂fNN(xi, ui)

∂ui
· ∂πθ(xi)

∂θ
.

Again, using the chain rule, the derivative of xt with respect to xi+1 can be written using the

intermediate states xi+1 to xt,

∂J(θ)

∂θ
=

T∑
t=0

∂R(xt)

∂xt

t∑
i=0

(
t−1∏
k=i+1

∂xk+1

∂xk

)
· ∂fNN(xi, ui)

∂ui
· ∂πθ(xi)

∂θ
.

As the next state is the function of two variables - the current state and the action, we get two

corresponding terms for the derivative of xk+1 with respect to xk,

∂J(θ)

∂θ
=

T∑
t=0

∂R(xt)

∂xt

t∑
i=0

(
t−1∏
k=i

(
∂fNN(xk, uk)

∂xk
+
∂fNN(xk, uk)

∂uk
· ∂uk
∂xk

))
· ∂fNN(xi, ui)

∂ui
· ∂πθ(xi)

∂θ
.

Finally, observe that uk = πθ(xk), therefore

∂J(θ)

∂θ
=

T∑
t=0

∂R(xt)

∂xt

t∑
i=0

(
t−1∏
k=i

(
∂fNN(xk, uk)

∂xk
+
∂fNN(xk, uk)

∂uk
· ∂πθ(xk)

∂xk

))
· ∂fNN(xi, ui)

∂ui
· ∂πθ(xi)

∂θ
.

2.4 Algorithm

The core algorithm can be expressed in four major steps:

• Collect transition samples (x, u, x′) using a random policy.
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• Estimate the system dynamics using fNN(x, u) by minimizing
∑

i‖fNN(xi, ui)− x′i‖2.

• Estimate parameters θ for the controller πθ by maximizing J(θ).

• Execute the control u = πθ(x) for any x.

2.5 MATLAB Simulation

2.5.1 Example Problem

The following test problem is used throughout this work to demonstrate the algorithm.

We select a problem where the system dynamics are known so that it is easier to check the

accuracy achieved by the trained neural network. However, in the implementation of the controller,

no knowledge of the actual dynamics is assumed and only the dynamics modelled by the neural

network is used.

The selected problem has two constraints in the state space (2.11) and a set of feasible initial

conditions (2.12) and final conditions (2.13). Figure 2.4 illustrates the setting of this test problem.

The controller is trying to maximize the reward over controls V and θ at each time step. This

reward function is presented in (2.9). The dist() function determines whether a given state falls

under a circular region or not. The first term in the reward corresponds to the final target set and the

second and third terms correspond to the constraints. These constraints cannot be handled directly

by the neural network policy and have to be incorporated in the reward function itself.

MaximizeV,θ

tf∑
t=1

{−1.2 ∗ dist([xt+1, yt+1], [1.6, 1.8], 0.04)

+0.2 ∗ dist([xt+1, yt+1], [0.6, 0.4], 0.26)

+0.2 ∗ dist([xt+1, yt+1], [0.8, 1.5], 0.26)

−0.1}

(2.9)
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Fig. 2.4. This figure shows the setting of the test problem. There are 2 constrained
regions which the controller must avoid while navigating from a randomly se-
lected state from the initial set to the safe target set.

subject to
dx

dt
= V cos(θ),

dy

dt
= V sin(θ)

(2.10)

and constraints
(x− 0.6)2 + (y − 0.4)2 >= 0.26,

(x− 0.8)2 + (y − 1.5)2 >= 0.26
(2.11)

with boundary conditions

x2
0 + y2

0 ≤ 0.04, (2.12)

(xf − 1.6)2 + (yf − 1.8)2 ≤ 0.04. (2.13)
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Fig. 2.5. Simulink model used to generate training data

2.5.2 Data Collection

To generate the data tuples required to train the neural network, we developed a simulink model

of the system, as shown in Figure 2.5, and propagated trajectories for 10 seconds with random

actions sampled at the rate of 0.1 seconds. Note that these random actions may take the vehicle

in the constrained regions of our test problem but this can be ignored because we ultimately want

to learn the dynamics of the agent irrespective of the structure of the environment. Generating

data while ignoring the constraints doesn’t compromise the integrity of the proposed algorithm

and makes the generation of training data easier. Practically speaking, the training data is usually

provided to the designer of the controller.

In the simulink model, there are two random source blocks for the control variables V and

θ. The properties of these source blocks are listed in Table 2.1. The bounds on the velocity V

are selected arbitrarily. These inputs are combined into a single signal line using the Mux block

and are then fed into the function blocks xdot and ydot which define the system dynamics. The

definitions of the two function blocks corresponding to the x and y positions are presented in Table

2.2. Each of these function blocks are followed by an integrator block where the initial values of x
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Table 2.1.
Input variables as described in the simulink model

Name Source Type Min Value Max Value Sample Time

theta Uniform 0 2*pi 0.1

V Uniform 0 10 0.1

Table 2.2.
Function blocks which describe the system dynamics

Name Script

xdot

f u n c t i o n x = f c n ( d a t a )

x = d a t a ( 1 ) * cos ( d a t a ( 2 ) ) ;

end

ydot

f u n c t i o n y = f c n ( u )

y = u ( 1 ) * s i n ( u ( 2 ) ) ;

end

Table 2.3.
Details about the number of sampling points used to generate training data. Each
trajectory is propagated from a random initial point [x0 y0] ∈ [−0.2 0.2]

Sample Points per Trajectory Number of Trajectories Total Number of Data Points

100 10 1000
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and y are defined. The output from these integrator blocks gives the next state of the system. This

output is logged in a log file.

A total of 10 trajectories are propagated with the initial values for x and y selected randomly

from [−0.2 0.2]. Thus, there are 1000 tuples of data generated.

2.5.3 Approximated System Dynamics

Out of 1000 tuples of data, 80% are randomly chosen to train the neural network and the

remaining 20% are used as testing data. It is important to monitor the error for both training

and testing to check if the neural network is over-fitting the training data. Ideally, the testing and

training error should be close. But if the training error is much lower than the testing error, it can

be concluded that the neural network is over-fitting the training data and will perform poorly when

new data points are given as inputs.

According to the problem formulation in section 2.5.1, there are 4 nodes in the input layer

xi = [xt, yt, Vt, θt]
T and 2 nodes in the output layer oi = [xt+1, yt+1]T . The activation function

used for computing both the hidden layer nodes and output layer nodes is tanh. The output is then

scaled to fit the dimensions of the arena in the test problem.

There are 14 nodes in the hidden layer. This number was fixed after training the neural network

with different number of nodes in the hidden layer and observing the error in approximation. The

plots for the error profiles are shown in Figures 2.6 and 2.7. Neural networks with hidden nodes 12,

14 and 16 have the lowest training error and that with 14 nodes has the lowest testing error. Table

2.4 gives the time taken to train these neural networks. For the test problem there is a difference

of only a few seconds between training the different architectures. However, for more complex

problems the training time can also be an important factor in determining the final architecture of

the neural network.
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Table 2.4.
Time taken (in seconds) to train neural networks with different number of nodes
in the hidden layer.

Number of nodes 2 4 6 8 10 12 14 16

Training time (sec) 152.65 155.25 160.52 162.41 136.98 166.03 185.93 189.65
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Fig. 2.6. Training error over
900 episodes for neural net-
works with different number of
nodes in the hidden layer.

Fig. 2.7. Testing error for neural
networks with different number
of nodes in the hidden layer.

2.5.4 Results

The final Model-Based controller is a state feedback controller. It is also modelled as a neural

network which has 4 nodes in the input layer corresponding to the current state [xt, yt] and inputs

at previous time step [Vt−1, θt−1], 14 nodes in the hidden layer and 2 nodes in the output layer

corresponding to optimal controls [Vt, θt] that should be executed in the given state. More details

regarding the controller architecture is given in table 2.5. The results were obtained after training

the controller for 5,000 episodes in the presence of a random Gaussian noise with mean 0 and

variance 1e − 2. The hyper parameters for the controller were set after multiple trials (table 2.6)

and the results are reproducible. The performance of the controller with random initial points can

be seen in Figure 2.5.4 below.
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Table 2.5.
Neural network architecture for the model-based controller.

Nodes in Activation function Nodes in Activation function Nodes in Bounds on

input layer between input layer hidden layer between input layer output layer the controls

and hidden layer and hidden layer

4 tanh() 14 V : sigmoid() 2 [0 0.1]

θ : tanh() [−π π]

Table 2.6.
Hyper-parameter values for the model-based controller.

No. of training episodes Learning rate Noise Seed

5,000 2e− 3 N(0, 1e− 2) 12345
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Fig. 2.8. Sample trajectories generated by the trained model-based RL controller
from random initial conditions
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3. METHODOLOGY

This chapter describes the methodology used to validate the safety guarantees for a Model-Based

RL controller. We use reachability analysis on a trained Model-Based controller in the presence

of bounded noise to monitor the evolution of system states for a finite time. If at any time, this

reachable set intersects with an unsafe (constrained) region, then the controller is not safe to operate

in the presence of the bounded noise for the given set of initial states.

Section 3.1 introduces the concept of reachable sets. Section 3.2 justifies and describes the

choice of reachable set algorithm used in this work - the Hamilton-Jacobi-Isaac Formulation using

the Level Set Method.

3.1 Reachable Sets

The reachable set is a formal verification method which has been used extensively in discrete,

continuous and hybrid systems to provide safety guarantees. The idea behind reachable set has

been derived from the technique of exhaustive testing/validation. It attempts to propagate a set

of trajectories at each time step to encompass the evolution of all the system states with time.

The control input is selected with respect to the cost function which it is trying to minimize or

maximize.

However, it is impossible to compute the trajectories for all possible states in an uncountable

continuous domain. Even in a discrete domain, the curse of dimensionality prevents the compu-

tation of an exhaustive set of trajectories. To reduce this computational cost, most methods try

to approximate the reachable set instead and give a conservative solution. Before delving into

different approximation schemes, we give a mathematical definition of reachable sets.
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3.1.1 Definition

For a continuous system with n states and m actions, which is defined to operate in a state

space X ∈ Rn, we define X0 ⊂ X as its initial set of states and an input set U ∈ Rm which is

defined over the entire state space. The state vector at any time t ∈ R+ is denoted as x ∈ X and

the input vector as u ∈ U . This system follows the system dynamics

ẋ = f(x, u). (3.1)

If the input follows the control law stated by the controller π : X → U , it is denoted as uπ ∈ U .

Similarly, xf (t) is defined as the state reached after propagating a trajectory for t time steps while

following the system dynamics f and controller π.

Given an unsafe set ψ ⊂ Rn, the reachable set determines

∣∣∣{x : ∃x0 ∈ X0,∃uπ ∈ U ,∃t ∈ [0, T ],xf (t) ∈ ψ}
∣∣∣ ?
> 0.

3.1.2 General Approach

The idea behind computing reachable sets can be expressed abstractly. As stated in [26], the

semigroup property of dynamical systems enables us to compute the reachable sets iteratively.

Reach[0,t2](X0) = Reach[0,t2−t1](Reach[0,t1](X0)) (3.2)

for t2 > t1 > 0

In (3.2), we define a function Reach[0,t](X) which computes the reachable set by propagating

the states in X for a time interval t following the system dynamics in (3.1). Using this function

the abstract algorithm below details a general method for computing reachable sets which can be

tailored to fit a particular problem [27, 28]. If we want to compute N intermediate reachable sets

over a time interval [0 T ], we integrate the system dynamics every r time steps where r = T
N+1

.
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Algorithm 1: Algorithm for computing reachable set
Input: X0 ⊂ X

Output: Q = Reach[0,T ](X0)

1 P := Q := X0

2 r = T/(N + 1)

3 for i = 0,....N do

4 P := Reach[0,r](P )

5 if P ⊆ Q then

6 break

7 else

8 Q := Q ∪ P

9 end

10 end

In the above algorithm, we start propagating the system states from the initial conditionsX0 for

a finite time T . If at any time t ∈ [0T ] the reachable set intersects with an unsafe region in the state

space, we conclude that for the given initial conditions there exists at least one control input which

can drive the system to an unsafe/constrained region. Since we start from the initial conditions, we

can only comment on whether or not the system will violate the constraints at any time throughout

its trajectory. However, a more useful result will be to explicitly compute the set of initial states

which can lead the system to the unsafe region. For this, we start propagating the trajectories

backwards from the unsafe target region for time [−T 0] and the intersection of this reachable set

with the initial set will give the unsafe initial states which should be avoided. The former method

is said to compute the forward reachable set, while the latter computes the backward reachable set.

It is evident from the above algorithm that during implementation, the representation of a reach-

able set should be conducive to set operations. This is not a trivial task. For discrete systems, the

problem lies in the large storage space required to keep track of these sets [27]. For continuous

systems, appropriate geometric interpretations of the sets have to be formulated which can define
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the boundaries of the reachable set and over which it is easy to perform union and intersection

set operations. This is challenging because reachable sets often don’t follow regular well-defined

geometric shapes.

To counter these problems, most algorithms approximate the reachable sets instead of comput-

ing them exactly. This gives a conservative solution to the problem. Care should be taken as to

when we should over-approximate or under-approximate the reachable set. For example, when a

backward reachable set is computed for an unsafe target region it should be over-approximated to

provide a conservative solution (Figure 3.1). Similarly, if a backward reachable set is computed for

a safe target set then it should be under-approximated to provide a conservative solution (Figure

3.2).

Fig. 3.1. Over-approximation of
the backward reachable set to find
the initial set of states leading to
an unsafe target set.

Fig. 3.2. Under-approximation
of the backward reachable set to
find the initial set of states lead-
ing to a safe target set.

Geometric structures like polyhedrons [29, 30, 31], ellipsoids [32, 33, 34] and hyperplanes

[35, 36] have been used to approximate the reachable set. To overcome the problem of compu-

tational cost, several works have explored the idea to decompose the original system into a lower
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dimensional space [37, 38] or subsystems [39] and then compute the approximate reachable set.

While these methods make the computation more efficient, if the approximation error is large, it

compounds over time and the resulting solution may be unusable.

3.1.3 Applications

Reachable sets are primarily used to provide safety guarantees for discrete, continuous and

hybrid controllers. Apart from this, they have been successfully used for developing path planning

algorithms [40, 41] and collision avoidance algorithms [42, 43, 44]. Their application extends over

multi-vehicle systems as well and they have been successfully used to provide safety guarantees

for multiple aerial vehicle systems [45, 46] and incorporate collision avoidance in such systems

[47].

Reachable set is not a new concept for machine learning controllers either. Recently, safe

online learning controllers [13, 48] have been developed using reachability analysis.

In this thesis we use the Hamilton-Jacobi-Isaac (HJI) - formulation based level set method to

compute the reachable sets to estimate the performance of a model-based RL controller in presence

of noise.

3.2 Reachable Set - Hamilton-Jacobi-Isaac Formulation

This work uses the Hamilton-Jacobi-Isaac (HJI) Formulation of the Level Set Method to com-

pute the reachable set [20]. The choice of this particular method is justified below:

1. This method is applicable to both linear and non-linear systems.

2. It can work on any geometric form adopted by the reachable set, i.e., it doesn’t approximate

an irregularly shaped reachable set into a well defined one. This reduces the approximation

error.
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3. The method uses the already well-defined numerical tools for the level set methods, making

the implementation easier, sound and efficient.

To reiterate the problem, we want to use reachable sets to provide safety guarantees for a trained

Model-Based RL controller in the presence of bounded noise N (t) ∈ Rn. In this work, noise

represents the modelling error while training a neural network to represent the system dynamics.

It is additive noise to the system.

Ni ∈ [−d + d], i = 1, 2...n.

This problem is practically important because the modelling error implies that the controller is not

operating on the correct real-world system dynamics and a preliminary analysis of the controller’s

behavior when operating in the presence of this noise will prevent any unexpected behavior when

it is deployed on hardware.

3.2.1 Game Theory Problem Formulation

This work uses the HJI formulation for computing the reachable set as presented in [20]. Thus,

for detailed proofs of the theorems used in the following sections the reader can refer to [20]. It

should be noted here that the original paper computed the backward reachable set and hence, all the

theorems were proved using the backward reachable set formulation. However, since then, many

works have noted that these theorems are valid for forward reachable sets as well [49, 50, 51]. We

need to be careful while defining the set of states for backward and forward reachable set.

Thus, following the notation in [49], a backward reachable set computed for a finite time t is

denoted as

V(t, tf ), (3.3)

where, t < tf .

A forward reachable set computed for a finite time t is denoted as

W(t0, t), (3.4)
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Table 3.1.
Objectives of Player 1 and Player 2 for safe and unsafe target sets

Unsafe Target Set Safe Target Set

Player 1 (Optimal Controller) Maximize cost Minimize cost

Player 2 (Noise/Adversary) Minimize cost Maximize cost

where, t > t0.

In this work, we compute the forward reachable set and following the HJI formulation in [20],

we formulate the problem in terms of game theory. We begin by modelling the problem of comput-

ing the forward reachable set as a differential game between 2 players. Player 1 is the model-based

RL controller which wants to drive the agent/plant towards its final state (safe target set). Player 2

is the adversary and represents the noise which wants to drive the agent/plant away from its final

state. If a cost function is defined as the distance between the current state of the system and the

final state, J(x, t), then for a safe target set Player 1 will try to minimize the cost while Player 2

will try to maximize the cost and vice versa (Table 3.1).

Thus we modify the system dynamics in (3.1) as

ẋ = f(x, a,b), (3.5)

where, x ∈ X is the system state. a(·) ∈ A is the control (action) of Player 1, where A ∈ Rm.

b(·) ∈ B is the control (action) of Player 2. Since Player 2 is additive noise, the dimension of its

control (action) vector is the same as the dimension of the state vector, i.e., B ∈ Rn. So the system

dynamics described in (3.5) has the form f : X ×A× B → X .

Thus the function f has two parts - the system dynamics approximated by a neural network

with a single input, which is denoted as fNN(x, a) in the remaining sections, and the additive

bounded noise.

ẋ = f(x, a,b) = fNN(x + b(t), a). (3.6)
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Before going into the details of the algorithm and its implementation, we show that all the

assumptions in [20] are satisfied for our problem formulation.

Assumption 1:

The control signals a(·) and b(·) for both the players are drawn from compact setsA ∈ Rm and

B ∈ Rn respectively, such that:

a(·) ∈ A(t) =∆ {µ : [0, t]→ A | µ(·) is measurable},

b(·) ∈ B(t) =∆ {µ : [0, t]→ B | µ(·) is measurable},

where t ∈ [0, T ] for some T > 0. Two control signals are considered identical if they agree

almost everywhere.

Assumption 2:

The flow field or system dynamics fNN : X ×A× B → X is uniformly continuous, bounded

and Lipschitz continuous in x for fixed values of a and b.

We need to prove these properties for the neural network that is used to model the system

dynamics.

The definition of tanh() is given in Table 3.2. Since its derivative exists over the entire domain,

it is continuous and Lipschitz continuous in x when the inputs a and b are constant vectors. The

output ô of the neural network

ô = c · tanh(W (2)tanh(W (1)x)),

is nothing but a nested function of tanh() and is also Lipschitz continuous over the entire

domain.

The choice of activation function also determines whether or not the output is bounded. The

specific architecture of the neural network used in this work has tanh() activation function for both

its hidden layer nodes and output layer nodes. From the properties listed in Table 3.2, it is clear
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Table 3.2.
Properties of tanh()

Function Function Definition Derivative Domain Range

tanh f(x) = tanh(x) = (ex−e−x)
(ex+e−x)

f
′
(x) = 1− f(x)2 (−∞,+∞) (−1, 1)

that for an infinite domain x ∈ R, the range is tanh(x) ∈ (−1, 1) (Figure 3.3). Thus for a trained

neural network, with constant weights W (1) and W (2), the nodes in the hidden layer are computed

as

h = tanh(W (1)x)

=⇒ |hi| < 1 for i = 1, 2, ...14.

Similarly for the output layer

ô = c · tanh(W (2)h).

=⇒ |ôi| < c for i = 1, 2.

Hence, the dynamics approximated by the neural network satisfies all the assumptions. Since

the noise is also assumed to be bounded, the final function f(x, a,b) is bounded. In general, the

choice of the activation function determines if the neural network is bounded or not.

Assumption 3:

For the forward reachable set, the initial set X0 ⊂ Rn is closed and can be represented as the

zero sublevel set of a bounded and Lipschitz continuous function g : Rn → R

X0 = {x ∈ Rn|g(x) ≤ 0} (3.7)

For the test problem, the initial set is a circular region and is modelled using the following

function definition

g(x) = x2 + y2 − r2
0. (3.8)
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Fig. 3.3. Evolution of tanh(x) where x ∈ R.



39

The above assumptions are necessary to prove the properties of the reachable set.

Trajectory

We now formally define a trajectory. If we fix the values for both the control inputs a(·) ∈ A(t),

b(·) ∈ B(t), then for a given initial point x0, there exists a unique trajectory solving (3.6).

ξf (s;x0, 0, a(·),b(·)) : [0, t]→ Rn, (3.9)

where s ∈ [0, t].

The definition in (3.9) must satisfy the initial condition ξf (0;x0, 0, a(·), (b(·))) = x0 and the

following differential equation almost everywhere

d

ds
ξf (s;x, 0, a(·),b(·)) = f(ξf (s;x, 0, a(·),b(·)), a(s),b(s)).

Information strategies for Player 1 and Player 2

For a differential game, it is necessary to define the information strategies for both players. The

information strategy states what information is available to each player about the other player’s

strategy before taking an action at any time instant. Reachable sets aim at giving a conservative so-

lution, so it is natural that the strategies for both the players should be designed to over-approximate

the forward reachable set for a safe target set in the presence of noise.

Thus, the information strategy is defined in such a way that the adversary, Player 2, gets an

advantage by following a non-anticipative strategy which is defined as a map γ : A(t) → B(t).

The control taken by Player 2 is a function of that taken by Player 1 and the mapping is defined as

γ ∈ Γ(t) =∆{ρ : A(t)→ B(t)|a(r) = â(r)

for almost every r ∈ [t, s]

=⇒ ρ[a](r) = ρ[â](r)

for almost every r ∈ [t, s]}

(3.10)
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The above equation means that if Player 2 cannot distinguish between control signals a(·)

and â(·) of Player 1 until after time s, then Player 2 will use the same control signal until it can

distinguish between the two.

Essentially, this implies that Player 2 is given the advantage to select a control input after

considering the best case scenario (maximize the cost function J(x, t)), for all possible values of

Player 1’s input. After Player 1 has taken an action, Player 2 observes his action and selects a

control to maximize the cost function. Mathematically, this gives a minmax optimization problem.

min
a∈A

max
b∈B

J(x, t). (3.11)

In the following sections, we will see how the above formulation is adapted into an HJI equa-

tion.

From the above information, we can now define the reachable set mathematically. For comple-

tion, we provide the definition of both forward and backward reachable sets

Forward Reachable Set: The forward reachable set for a finite time t = T and initial set X0 is

defined as

W(τ) =∆ {w ∈ Rn|∃γ ∈ Γ(t),∀a(·) ∈ A(t),∃s ∈ [0, t],

ξf (s;x, 0, a(·), γ[a](·)) = w, x ∈ X0},
(3.12)

where, τ ∈ [0, t].

Backward Reachable Set: The backward reachable set for a finite time trajectory t = −T and

target set X0 is defined as

V(τ) =∆ {v ∈ Rn|∃γ ∈ Γ(t),∀a(·) ∈ A(t),∃s ∈ [t, 0],

ξf (s;x, t, a(·), γ[a](·)) ∈ X0},
(3.13)

where, τ ∈ [t, 0].

The above definitions must satisfy the closed set property of reachable set. Indeed, in [20], Dr.

Ian Mitchell stated and proved the following

Theorem: If X0 is closed, then V(τ) is closed. Conversely, if X0 is open, then V(τ) is open.



41

The above theorem was proved by using the fact that if X0 is closed, then XC
0 = Rn\X0 is

open. Thus, it suffices to show that V(τ)C is open for τ ∈ [−T, 0], and consequently, V(τ) is

closed. The fact the learned system dynamics is lipschitz continuous is used to bound the growth

rate of trajectories in the open space XC
0 . Interested readers can refer to the detailed proof in [20].

3.2.2 Level Set Method

In the previous section, we formulated the control strategy for Player 1 and Player 2 to compute

the reachable set in (3.11) and showed that this reachable set is always closed as it grows with time.

Now, we need an efficient way to represent this reachable set such that we can keep track of its

continuous boundary and perform set operations (like union and intersection) easily.

This section aims at describing the basic idea behind the level set method for surface propaga-

tion [52]. We will not be delving into the details of level set method but give enough context to

understand how it is being utilized to compute reachable sets.

The level set method is a numerical technique which is used to track the propagation of surfaces.

Usually the starting surface has a well defined geometric shape but the level set method is capable

of tracking any irregularly shaped surfaces over time. An illustrative example of a circular surface

propagating with constant speed is given in Figures 3.4 and 3.5. This is achieved by modelling the

evolution of the boundary/interface of the surface when it is moving with a speed F in the normal

direction. This is a very useful property which can be leveraged while computing reachable sets.

Let the initial position of the interface/boundary of the surface be denoted as Υ, where Υ is

a closed curve in Rn. If this interface is moving with a speed F normal to it, then we define a

function φ(x, t = 0) from Rn → R such that Υ is its zero level set and the distance of any point

x from the interface is φ(x, t = 0) = +d if it lies outside the interface and φ(x, t = 0) = −d if it

lies within the interface.

Now, an evolution equation can be derived for the above interface by differentiating it with

respect to time t. Using the chain rule, this equation comes out as
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Fig. 3.4. Cross-sectional view
of a circular surface φ(x, t =
0) propagating with constant
speed.

Fig. 3.5. 3D view of the initial
propagating surface φ(x, t = 0)
at different time instances.

∂φ

∂t
+
∂φ

∂x
· ∂x
∂t

= 0, (3.14)

or for the ease of notation

Dtφ(x, t) + F |Dxφ(x, t)| = 0,

φ(x, t = 0) = given
(3.15)

Equation (3.15) is an initial valued partial differential equation which should be solved for φ at

any time t to get the position of the interface at that instant. Numerical schemes approximating the

gradient of function φ are used to compute the solution at any given time.
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3.2.3 Computation of Reachable Set using Level Set Method

In (3.15), if the speed F is replaced by the system dynamics and the gradient of function φ is

written as a vector p ∈ Rn, then the equation can be rewritten as

Dtφ(x, t) + pTfNN(x, a,b) = 0,

φ(x, t = 0) = g(x).

The term pTfNN(x, a,b) governs the speed of propagation of the reachable set, i.e., by what

amount the boundary of the set moves forward from time t to t + ∆t. To compute the forward

reachable set, the speed should not be allowed to be negative.

Dtφ(x, t) +max[0,pTfNN(x, a,b)] = 0, (3.16)

The strategy to determine the values of control inputs a and b have already been define in (3.11).

Now, the cost function is the term pTfNN(x, a,b) and we define the Hamiltonian as

H(x,p) = min
a∈A

max
b∈B

pTfNN(x, a,b). (3.17)

The above equation represents a general form of the Hamiltonian function. However, to analyze

the behavior of a particular controller, the control input for Player 1 should be defined by the control

law of the controller.

General Problem Formulation

The reachable set of a Model-Based RL controller with deterministic dynamics fNN : X ×

A× B → X and following the control law π : X → A, is determined by computing the viscosity

solution φ of the following time-dependent HJI equation

Dtφ(x, t) +max[0, Hconst(x, Dxφ(x, t))] = 0,

φ(x, t = 0) = g(x)
(3.18)
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where,

Hconst(x,p) = min
a∈A

max
b∈B

pTfNN(x, a,b) (3.19)

subject to

a = π(a|x).

For the neural network approximated system dynamics with weights W (1)
f and W (2)

f used in

the test problem, the function fNN(x, a,b) is computed as

fNN(x, a,b) = c · tanh(W
(2)
f tanh(W

(1)
f · (x + b))), (3.20)

and the controller parameterized by weights W (1)
c and W (2)

c can be substituted as

a = tanh(W (2)
c · tanh(W (1)

c · x)) (3.21)

Viscosity Solution Viscosity solution is a unique, weak solution to a PDE when its classical

solution may not exist [51, 53, 54]. This viscosity solution also represents the value of the dif-

ferential game in (3.19). This statement is proved in [20] for the backward reachable set from an

unsafe target set. It is shown that for a game with terminal cost

C(x, t, a(·), b(·)) = g(ξf (0;x, t, a(·), b(·))),

and no running cost, Player 1 will be trying to maximize the terminal cost, while Player 2 will try

to minimize this cost. Thus, the value function of the resulting differential game is given as

v(x, t) = inf
γ∈Γ(t)

sup
a(·)∈A(t)

C(x, t, a(·), b(·))

= inf
γ∈Γ(t)

sup
a(·)∈A(t)

g(ξf (0;x, t, a(·), γ[a](·))).

Theorem 4.1 in [51] shows that this value function is the viscosity solution to the HJI PDE

above. In addition, [20] details the proof to show that this value function is same as the reachable

set. The viscosity solution is computed using the well-developed numerical tools in the level set

method literature.
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Thus, the following conclusion can be made.

Corollary : If for a given Model-Based RL controller, with deterministic system dynamics fNN

and control law π, the forward reachable setW(T ), starting from an initial set X0, is computed by

finding the viscosity solution for (3.18), then for any state x ∈ W(T ) and unsafe region ψ ∈ Rn:

∣∣∣{x : x ∈ W(T ) and x ∈ ψ}
∣∣∣ > 0,

then the controller fails to meet the safety constraints.

3.2.4 Implementation

The reachable set at time t+ ∆t, φ can be computed as

φt+∆t = φt −∆t ·max[0, Hconst(x, Dxφ(x, t))]. (3.22)

The above algorithm was implemented to compute the reachable set for the test problem. The

toolbox developed by Dr. Ian Mitchell [21] is used to obtain the solution of the reachable set. This

toolbox comes with inbuilt numerical schemes to compute the approximation for the Hamiltonian

Hconst and spacial derivative.

In the current implementation, a Lax-Friedrichs approximation to compute the Hamiltonian

is used [55]. Numerical schemes such as fifth order accurate weighted essentially nonoscillatory

approximation [56] and the Runge-Kutta scheme [57] is used to compute the spatial derivative and

time integration.

3.3 Results

The above formulation of the reachability problem was solved for the test problem. Unfortu-

nately, the implementation of the forward reachable set is not as fine which is why the algorithm

is over-approximating the reachable set by a significant margin. It should be noted that this over-
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approximation is not due to theoretical results but a draw back of the current implementation.

Results are presented for cases with and without the addition of noise.

Case 1: Safety verification in the absence of noise

We first present the reachable set in the absence of noise. The results from the reachabal-

ity analysis show that even in the absence of noise, the controller fails to satisfy the constraints

throughout a finite time trajectory as seen in Figure 3.3. This observation is further verified by

sampling trajectories from the boundary of the initial set and is displayed in Figure 3.7. This

highlights a major drawback of reinforcement learning controllers. If there is no mechanism to

handle hard constraints in the planning algorithm then it is very difficult to comment on the safety

guarantees of a controller without a verification tool.

Thus, the proposed framework was successfully able to identify if the controller is safe under

the given initial conditions or not.

Case 2: Safety verification in the presence of bounded noise

The reachable set was also computed in the presence of bounded noise. Figure 3.3 shows the

plots for the forward reachable set computed in the presence of noiseNt ∈ [−0.05, +0.05]. Figure

3.3 shows the same plots for noiseNt ∈ [−0.1, +0.1]. Since the controller failed to perform safely

in the absence of noise, it is clear that it will also violate the constraints in the presence of noise.

This is evident from the growth of the reachable set seen in figures below. From all the set of

results, it is clear that the current numerical implementation is over-approximating the reachable

set by a significant margin. The fact that the area covered by the reachable set in presence of noise

is more than that in the absence of noise implies that the over-approximation error is consistent

and relatively, the performance of the controller degrades further in the presence of noise.
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Fig. 3.6. Forward reachable set computed in the absence of noise for the test
problem. The results imply that even in the absence of noise the Model-Based RL
controller doesn’t always satisfy the constraints in the state space.
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Fig. 3.7. Trajectories sampled from initial points (−0.2, 0.0) and (0.2, 0.0) violate
the state constraints in the absence of noise.

Fig. 3.8. Forward reachable set computed in the presence of bounded noise Nt ∈
[−0.05, +0.05] for the test problem.
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Fig. 3.9. Forward reachable set computed in the presence of bounded noise Nt ∈
[−0.1, +0.1] for the test problem.
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4. SUMMARY

The work presented in this thesis covers the theoretical formulation of the problem of reachable set

computation for Model-Based RL controllers in the presence of bounded noise. Specifically, we

have presented the mathematical formulation for computing the reachable set for a system whose

dynamics is learned by a neural network. By computing the forward reachable set for such a

controller and analyzing its interaction with the system constraints a binary yes or no answer can

be given to state whether the trained controller will continue to satisfy the constraints or not in the

presence of noise for the given set of initial conditions.

The HJI-formulation for computing the reachable set was suitable for the problem statement

in this thesis. However, this method has been known to have issues with scaling dimension of the

state vector. Also, the accuracy of the final reachable set depends on the implementation of the

algorithm. The discretization error compounds over time giving a significantly over-approximated

reachable set in implementation.

The current work successfully provides a general framework for the development of a ver-

ification tool to evaluate the safety of a Model-Based RL controller with deterministic system

dynamics.
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5. FUTURE WORK

The method proposed in this work is proved to be theoretically sound for the problem at hand.

However, there is still room for improvement.

1. Extending for stochastic system dynamics: One scope for improvement is to extend this

algorithm for stochastic system dynamics. The same argument can be made for a stochastic

controller which returns a possible set of control inputs instead of a single deterministic

control input.

2. Giving expected performance in terms of the reward function: The current work gives a yes

or no answer to whether the given initial states are safe to start propagating trajectories in the

presence of bounded noise. While this is an important guarantee for safety critical systems,

a more general statement will be to provide some kind of performance metric in terms of the

expected reward computed over the entire space of the reachable set (Figure 5.1).

3. Computing backward reachable set: To compute the backward reachable set, the system

dynamics must be reversible. However, this property has not been proven to hold for neural

Fig. 5.1. Compute the expected reward over a surface at every time step to give a
performance metric for the controller in the presence of noise.
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networks. Computing the backward reachable set from an unsafe target set can give the set of

initial states to avoid while propagating trajectories. This is practically a more useful result.
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