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3.1 Experimental setup and timing diagram used for the spin-dipole
mode (SDM) experiments. (a) Linearly-polarized Raman beams with
orthogonal polarizations (indicated by the double-headed arrows along ẑ
and x̂) counter-propagating along ŷ couple mF hyperfine sublevels (bare
spin states) of 87Rb atoms. The sublevels are Zeeman split by h̄ωZ ≈
h̄∆ωR = h× (3.5 MHz) using a bias magnetic field B = Bẑ, which controls
the Raman detuning δR = h̄(∆ωR−ωZ). (b) Experimental timing diagram:
Raman coupling Ω (with an experimental uncertainty of < 10%) is slowly
ramped up in 80 ms to an initial value ΩI and held for 100 ms to prepare
the BEC around the single minimum of the ground band at ΩI as shown
in (c). Then, Ω is quickly lowered to a final coupling ΩF in time tE and
held for some time thold, during which we study the dynamics of the BEC
in the dipole trap. Subsequently, the atoms are released for absorption
imaging after a 15 ms time of flight (TOF), at the beginning of which a
Stern-Gerlach process is performed for 9 ms to separate atoms of different
bare spin states. (c) The ground band (solid lines) of synthetic SOC is
calculated for a few representative Ω at δR = 0. A higher band calculated
for Ω = 1.3 Er is shown as dashed lines. The colors indicate the spin
compositions, with red for |↓〉 and blue for |↑〉. The ground band minima in
quasimomentum marked by dots are identified with spin-dependent vector
potentials (Aσ), which shift in opposite directions as Ω is lowered into the
double minima regime during tE. This generates spin-dependent synthetic
electric fields Eσ and thus excites the SDM and an AC spin current along
the SOC direction in a trapped BEC. The upper (lower) dashed circle
represents the region around qy = 0 in the double minima band at an
exemplary ΩF = 0 (ΩF = 1.3 Er), from which the two (dressed) spin
components of the BEC roll down towards the corresponding band minima
in response to the application of Eσ. . . . . . . . . . . . . . . . . . . . 50
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3.2 SDM of a bare or a dressed BEC. Select TOF images showing the
bare spin and momentum compositions of atoms taken after applying spin-
dependent synthetic electric fields Eσ with ΩF = 0 (bare BEC) in (a) and
ΩF = 1.3 Er (SO-coupled BEC) in (b), followed by various hold times
(thold) in the dipole trap. The TOF images labeled by thold = −1 ms
are taken right before the application of Eσ. The bare spin components
(labeled by mF , with |↓〉 in red and |↑〉 in blue) are separated along the
horizontal axis. The vertical axis shows the atoms’ mechanical momentum
h̄k along the SOC direction (ŷ). The color scale reflects the measured
optical density (OD, see subsections below). The total condensate atom
number of the initial state at ΩI is Nc ∼ (1−2)×104 with trap frequencies
ωz ∼ 2π × (37 ± 5) Hz and ωx ∼ ωy ∼ 2π × (205 ± 15) Hz. The TOF
images (and associated analyzed quantities presented later) are typically
the average of a few repetitive measurements. . . . . . . . . . . . . . . 57

3.3 Momentum damping at different ΩF, for SDM and the dipole
mode of a single dressed spin component. (a)-(e) Relative momen-
tum oscillations in SDM, h̄kspin, as a function of thold at various ΩF. The
experimental data (scatters) are fitted to a damped sinusoidal function
(line) to extract the inverse quality factor 1/Q of the oscillations. (f)
Momentum damping (quantified by 1/Q) versus ΩF. The error bar of
1/Q is the standard error of the fit. The purple circle data correspond to
the SDM (illustrated by (g)) and the red square data correspond to the
dipole mode of a BEC with a single dressed spin component prepared in
|↓′〉 (illustrated by (h)). In (g)-(h), the representative band structure is
calculated at Ω = 1.0 Er. . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4 Dipole oscillations of a BEC with a single dressed spin com-
ponent in |↓′〉. Combined TOF images vs thold for a dressed BEC in
|↓′〉 (ΩF = 1.0 Er, δR = δ′(ΩF, ε), shown in Fig. 3.3h) undergoing dipole
oscillations, showing very weak damping (1/Q < 0.05) and negligible ther-
malization. Each slice in the image shown is a TOF image at a given thold,
but compressed along the horizontal direction. The vertical axis shows
the mechanical momentum h̄k of atoms. The time step between succes-
sive image slices is 0.5 ms. The figure shows bare spin components |↓〉 in
red and |↑〉 in blue plotted in the lower and upper panels, respectively. 62
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3.5 Common-mode dipole oscillations of two dressed spin compo-
nents of a SO coupled BEC. Combined TOF images vs thold for two
dressed spin components of a SO coupled BEC with equal populations
in |↑′〉 and |↓′〉 (ΩF = 1 Er, δR = δ′(ΩF , ε)) undergoing in-phase dipole
oscillations, showing very little damping (1/Q < 0.05) with negligible
thermalization. Each slice in the image shown is a TOF image at a given
thold, but compressed along the horizontal direction. The time step be-
tween successive image slices is 0.5 ms. The figure shows |↓〉 in red and
|↑〉 in blue plotted in the lower and upper panels, respectively. . . . . . 63

3.6 Thermalization and spin current. (a) The measured condensate frac-
tion fc = Nc/N as a function of thold for SDM in the bare case (no SOC,
ΩF = 0) and the dressed cases (with SOC, ΩF = 1.3 Er and ΩF = 2.1
Er). Representative error bars show the average percentage of the stan-
dard error of the mean. The solid curves are the shifted exponential fits
to the smoothed fc (see subsections below). The initial condensate frac-
tion (not shown) at ΩI (measured at thold = −1 ms) is ∼ 0.6 − 0.7 for
all the cases. (b) The saturation time constant τtherm of the decreasing
fc and the saturation condensate fraction fs versus ΩF, where the vertical
error bar is the standard error of the fit. (c) Spin current Is (normalized
by vr/λ = 7.4 × 103 /s, where vr ∼ 6 mm/s is the recoil velocity) as a
function of thold for ΩF = 0 and 1.3 Er. The solid curves are fits (see text). 65
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3.7 Observation of deformed atomic clouds and BEC shape oscilla-
tions. (a-d) Observation of deformed atomic clouds at early stages of the
SDM. (a-b) TOF images for ΩF = 0 and ΩF = 2.1 Er at thold = 0.5 ms
are shown for comparison. The corresponding integrated optical density
(ODy) versus the momentum in the SOC direction (ŷ) for the spin down
and up components is shown respectively in (c) and (d). (e-f) Observation
of BEC shape oscillations. The data showing the aspect ratio Wy/Wz′

(see subsections below) of the condensate measured at various thold are ex-
tracted from the SDM measurements in Fig. 3.3, except for the additional
measurements #2 and #3 in (e). (e) For the three independent measure-
ments in the bare case, the observed oscillations possess a complicated
behavior without having a well-defined frequency given the error bars and
the fluctuation in the data. Select TOF images for measurement #1 are
shown in Fig. 3.2a. (f) In the dressed cases, aspect ratio oscillations with a
well-defined frequency are observed in measurements at three different ΩF.
The average frequency of the three aspect ratio oscillations obtained from
the damped sinusoidal fit is around 58 Hz, consistent with the expected
frequency for the m = 0 quadrupole mode fm=0 =

√
2.5ωz/(2π) ∼ 59 Hz

for a cigar-shape BEC in the limit of ωz/ωx,y << 1 [97]. Note that ωz is not
modified by Raman lasers and thus does not depend on ΩF. Select TOF
images for ΩF = 1.3 Er are shown in Fig. 3.2b. The representative error
bars in (e-f) are standard deviation of at least three measurements. The
dashed lines indicate thold ∼ 2τdamp after which the SDM is fully damped
out. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.8 Observation of the quadrupole mode of a dressed BEC with an-
other set of trap frequencies. (a) For ΩF = 1.3 Er with trap frequencies
ωz ∼ 2π × (21 ± 3) Hz and ωx ∼ ωy ∼ 2π × (144 ± 10) Hz used in this
measurement, the observed aspect ratio oscillation frequency is around
34 Hz, consistent with the expected m = 0 quadrupole mode frequency
fm=0 =

√
2.5ωz/(2π) ∼ 33 Hz. This further verifies the excitation of the

m = 0 quadrupole mode. The oscillation frequency is obtained using a
damped sinusoidal function to fit the data following the SDM is damped
out (when thold ∼ 2τdamp as indicated by the dashed line). The represen-
tative error bars are standard deviation of at least three measurements.
(b) Select TOF images are typically the average of a few repetitive mea-
surements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
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3.9 GPE simulated SDM at various ΩF and the extracted SDM damping compared with

experiment. (a-b) GPE simulations of the 1D momentum-space density distributions of the two

bare spin components as a function of thold for the SDM at ΩF = 0 and ΩF = 1.3 Er, respectively.

The 1D momentum density ρσ(ky) is obtained by integrating the 3D momentum density along kx and

kz , i.e. ρσ(ky) =
∫
ρσ(kx, ky , kz)dkxdkz . Then, these integrated 1D atomic momentum densities for

sequential hold times (thold) are combined to show the atomic density in momentum space along the

SOC direction versus thold. (c) GPE simulations of the SDM damping versus thold at various ΩF.

The violet lines are the h̄kspin (defined as the difference between the CoM momenta of the two spin

components) as a function of thold for various ΩF. The CoM momentum (h̄k↑,↓) of each bare spin

component (at a given thold) is calculated by taking a density-weighted average of the corresponding 1D

momentum density distributions such as those shown in (a-b). The black lines are damped sinusoidal

fits for the calculated h̄kspin to extract the corresponding SDM damping (1/Q) which is shown in (d)

along with the experimental data reproduced from Fig. 3.3f. (e) Replotting of (d) with 1/Q shown

in logarithmic scale. (f-j) In situ (real space) atomic densities calculated from GPE simulations. (f)

Initial in situ 2D density at Ω = ΩI (right before applying spin-dependent electric fields Eσ). (g-j)

In situ 2D density at thold = 1.5 ms (after the application of Eσ) for ΩF = 0, 0.4 Er, 0.9 Er, and

1.3 Er, respectively. For (f-j), the density is designated by brightness and the bare spin polarization

by colors (red: ↓, blue: ↑, white: equal spin populations). The 2D densities ρσ(x, y) in (f-j) are

obtained by integrating the 3D atomic density along z, i.e., ρσ(x, y) =
∫
ρσ(x, y, z)dz. In this figure,

the simulations used the following parameters representative of our experiment: ΩI = 5.2 Er, δR = 0,

Nc = 1.6 × 104, ωz = 2π × 37 Hz, ωx = ωy = 2π × 205 Hz, tE = 1.0 ms. GPE simulations are

performed by Chunlei Qu and Chuanwei Zhang. . . . . . . . . . . . . . . . . . . . . 75
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3.10 Calculated nonorthogonality, effective interaction parameters, and immisci-

bility for two dressed spin states. In (a-f), the calculations consider |↑′〉 and |↓′〉
located respectively at h̄qy and −h̄qy. (a) When Ω = 0, the nonorthogonality is zero

because the two bare spin components are orthogonal. When Ω 6= 0, either increasing

Ω or decreasing qy would increase 〈↑′ | ↓′〉, giving rise to stronger interference and more

significant density modulations in the spatially overlapped region of the two dressed

spin components. (b-c) Effective interspecies (g↑′↓′) and intraspecies (g↑′↑′ , g↓′↓′) in-

teraction parameters versus quasimomentum at Ω = 0.1 Er and 1.26 Er, respectively.

When Ω increases or qy decreases, g↑′↓′ increases while g↑′↑′ and g↓′↓′ almost remain at

the bare values. As qy → 0 at any finite Ω, g↑′↓′ → 2g↑′↑′ or 2g↓′↓′ , which is the upper

bound of g↑′↓′ (see subsections below). The inset of (b-c) zooms out to show the max-

imum. (d) shows the immiscibility metric η = (g2↑′↓′ − g↑′↑′g↓′↓′)/g2↑↑ in Eq. (3.29) (see

subsections below) versus h̄qy corresponding to (b). η < 0 means miscible, and η > 0

means immiscible. Over the range of plotted h̄qy, (d) can be miscible or immiscible

depending on h̄qy. The inset of (d) zooms in to focus on the sign change of η. The

vertical dotted line in (b-d) indicates h̄qσmin corresponding to the Ω in each case. The

calculations are performed in the two-state picture described by Eq. (3.1) with δR = 0.

(e-f) Immiscibility metric η versus Ω for various qy. In (e), as Ω becomes larger or qy

becomes smaller, the two dressed spin components can become more immiscible until η

reaches the maximum value set by the upper bound of g↑′↓′ (see also (b-c)). (f) Zoom-in

of (e) showing the miscible to immiscible transition (indicated by the gray dashed line

at η = 0) as a function of Ω for various qy. The red dot-dashed line corresponds to two

dressed spin components located respectively at the band minima qσmin, showing the

well-known miscible to immiscible transition around 0.2 Er for a stationary SO-coupled

BEC. In the dynamical case studied here, BECs can be located away from the band

minima and approach qy = 0, becoming immiscible even when Ω < 0.2 Er for small

enough qy. The calculations here are performed by Mingyuan He and Qi Zhou. . . 78

3.11 Time (thold) evolution of different forms of energies per particle
at different ΩF as calculated by GPE. (a) The total energy is the
sum of the total Raman energy, total potential energy, total interaction
energy, and the total KE. The result in (a) confirms that the total energy
is conserved during thold. (b) Total Raman energy. (c) Total potential
energy. (d) Total interaction energy, sum of the bare interaction energies
in (i-k). (e) Total KE, sum of different types of kinetic energies in (f-h).
(f) Total CoM KE. (g) Total QP. (h) Total LC KE. (i) g↑↑ interaction
energy. (j) g↓↓ interaction energy. (k) g↑↓ interaction energy. The GPE
calculations here are performed by Chunlei Qu and Chuanwei Zhang. . 80
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3.12 Effect of modified bare interactions and interspecies immiscibil-
ity on SDM damping. In GPE simulations for the bare case SDM,
we can change the original interaction parameters gii and gij to new val-
ues g̃ii and g̃ij respectively, where i, j =↑ or ↓ and i 6= j. The relative
momentum h̄kspin versus thold are shown for five different cases with the
corresponding modified interaction parameters and immisciblity metric
η = (g̃↑↓

2 − g̃↑↑g̃↓↓)/g̃↑↑2 listed in Table 3.1 below. The GPE calculations
here are performed by Chunlei Qu and Chuanwei Zhang. . . . . . . . . 89

3.13 Effect of interference on the relative motion between two collid-
ing BECs (a) The effective width of the two BECs oscillating against
each other in the y direction versus thold in the single spin case. (b) The
relative momentum between the two orthogonal spin components versus
thold in the two spin case. For (a, b), the two BECs are initially separated
by the same potential barrier in the same double well structure. The bar-
rier is then suddenly removed at thold = 0 to initiate the dynamics. Note
that the oscillation frequency in (a) is twice the frequency in (b) due to the
definition of Weff,y. The GPE calculations here are performed by Chunlei
Qu and Chuanwei Zhang. . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.14 The bare case SDM with interactions in (a) and without interac-
tions in (b). The case (a) is the same simulation as the case of ΩF = 0 in
Fig. 3.3c but shown up to a longer time of 100 ms. The GPE calculations
here are performed by Chunlei Qu and Chuanwei Zhang. . . . . . . . . 92

3.15 The two colliding bare BECs without interactions in the single
spin case (a) and in the two spin case (b). These simulations used the
same parameters as in Fig. 3.13 except the interaction g-parameters have
been set to zero. The GPE calculations here are performed by Chunlei Qu
and Chuanwei Zhang. . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.16 The dressed case SDM at ΩF = 1.3Er with interactions in (a)
and without interactions in (b). The case (a) is the same simulation
as the case of ΩF = 1.3 Er in Fig. 3.9c but shown up to a longer time
of 100 ms. The GPE calculations here are performed by Chunlei Qu and
Chuanwei Zhang. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.17 Spatial modulation in the phase of BEC wavefunctions. The phase
of the bare spin up and down components at thold = 7.2 ms in SDM is
plotted in the x-y plane for (a) bare case, and (b) dressed case at ΩF = 1.3
Er. Here, x and y are spatial coordinates. The GPE calculations here are
performed by Chunlei Qu and Chuanwei Zhang. . . . . . . . . . . . . . 94
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4.1 Set-up for realizing a synthetic Hall cylinder. (a) We apply Raman lasers (at wavelength

λ ∼ 790 nm) with orthogonal linear polarizations (double-headed arrows) counter-propagating along

ŷ and microwaves (frequency ≈ 6.8 GHz, from a microwave horn) propagating in the x − y plane

to a BEC (typical atom number ∼ (1 − 2) × 104). Gravity “g” is towards −ŷ. (b) Hyperfine spin

states (indicated by different colors) |1〉, |2〉, |3〉, and |4〉 as discrete sites in the synthetic dimension ŵ

are cyclically-coupled by Raman coupling Ω and microwave couplings Ω1,2 to form a closed circle, as

drawn in (c). Linear Zeeman splitting h̄ωZ ≈ h̄∆ωR ≈ h× (3.5 MHz) is generated by a bias magnetic

field, where ∆ωR is the Raman lasers’ angular frequency difference. The quadratic Zeeman shift is

ε0 ≈ 2.4 Er. (c) Connecting the two edges along ŵ of a 2D planar Hall strip (left) gives rise to a

cylindrical surface (right) subject to a net radial synthetic magnetic flux (thick yellow arrows) with a

non-uniform distribution of the magnetic field (indicated by shaded regions). The half magnetic flux

quantum per unit plaquette (highlighted area in shaded regions) formed by four maxima of the density

modulation corresponds to an Aharonov-Bohm phase of π. For a BEC at qy = 0 in the ground band

of Fig. 4.2b, the emergent BEC density modulation along ŷ has a periodicity of d/2, half the period

(d) of the Hamiltonian H. The phase (with + and − representing respectively a phase 0 and π at

positions of maximum density) of each spin component’s wavefunction has a periodicity of either d or

d/2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.2 Band structure with a nonsymmorphic symmetry and observed Bloch oscillations. (a)

Laser and microwave induced couplings between a series of spin and mechanical momentum states

form two independent branches (marked by solid/dashed circles) offset from each other by h̄K = 2h̄kr,

manifesting the underlying nonsymmorphic symmetry. (b) Calculated band structure using Ω = 2.3,

Ω1 = 2.5, Ω2 = 3.4, δR = 0, and ε0 = 2.4, all in units of Er. The spin texture is revealed by

colors determined by the population-weighted colors of the four spin states (see subsections below).

The first Brillouin zone is between the dashed lines. The BEC initially prepared at h̄qy = 0 (dashed

circles) in either band 1 or band 2 undergoes gravity-induced transport (indicated by arrows) and Bloch

oscillations for various thold. (c-d) TOF images showing spin and mechanical momentum compositions

of the BEC taken at various thold and the corresponding qy , respectively for the initial preparation in

band 1 and band 2. The quasimomentum of the BEC at thold can be measured by the displacement

of the mechanical momentum components of, say |1〉 and |4〉, at thold relative to those at thold = 0

(qy = 0). Each TOF image (and the associated analyzed quantities presented later) is typically

an average of a few repetitive measurements. (e-f) Total mechanical momentum of the BEC versus

thold and quasimomentum, respectively. The qy in (f) is plotted modulo 2K (i.e., qy is equivalent to

qy ±n× 2K), only between −K and K for both band 1 and band 2 due to their 2K periodicity in qy .

This 2h̄K periodicity is also reflected by the observed 2h̄K separation between different mechanical

momentum components for each spin state in (c, d). (g-h) Fractional spin populations versus thold.

In (e-h), solid lines are single-particle calculations using the same parameters as used in (b) and the

average of the measured d(h̄qy)/d(thold) (see subsections below). . . . . . . . . . . . . . 112
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4.3 Density and phase versus y for each spin state, corresponding to
the Hamiltonian H. Calculations are performed for a BEC at qy = 0 in
Fig. 4.2b, (a) for the ground band, and (b) for the first excited band. The
red line, green dashed line, blue circles, and black squares correspond to
the spin states |1〉, |2〉, |3〉, and |4〉, respectively. The plotted density of the

spin component i, ρi, is normalized by the condition
∑

i

∫ 1

0
ρid(y/d) = 1

(also used for Fig. 4.4). The calculation is performed by Yangqian Yan. 115

4.4 Density and phase versus y for each spin state, corresponding to
the Hamiltonian H ′. Calculations are performed for a BEC at qy = 0
in Fig. 4.5c, (a) for the ground band, and (b) for the first excited band.
The red line, green dashed line, blue circles, and black squares correspond
to the spin states |1〉, |2〉, |3〉, and |4〉, respectively. The calculation is
performed by Yangqian Yan. . . . . . . . . . . . . . . . . . . . . . . . 117

4.5 Breaking the nonsymmorphic symmetry and effects on observed Bloch os-

cillations. (a) RF coupling (wiggling lines) merges the two independent branches

in Fig. 4.2b, breaking the nonsymmorphic symmetry. (b) A cylinder with a broken

nonsymmorphic symmetry, described by the Hamiltonian H ′. For a BEC prepared at

qy = 0 in the ground band in (c), both the wavefunction’s phase (indicated by + and

−) and the density modulation have a periodicity of d, identical to the period of the

Hamiltonian H ′. (c) Calculated band structure using the same parameters as used in

Fig. 4.2b with the addition of an RF coupling ΩRF = 1.6 Er, leading to gaps opened at

the band crossings in Fig. 4.2b. (d) TOF images at various thold for Bloch oscillations

of a BEC starting from qy = 0 (dashed circle in (c)). (e-f) Total mechanical momen-

tum of the BEC versus thold and quasimomentum, respectively. The measured Bloch

oscillations exhibit a periodicity of h̄K rather than the 2h̄K observed in Fig. 4.2. qy

becomes equivalent to qy ± nK. This h̄K periodicity is also reflected by the observed

h̄K separation between different mechanical momentum components for each spin state

in (d). Data in (f) correspond to the data in the first 1.5 ms in (e) before the Bloch

oscillations exhibit notable damping. Solid lines in (e, f) are single-particle calculations

using the same parameters as used in (c). . . . . . . . . . . . . . . . . . . . . 119

4.6 Unzipping the cylinder by breaking the cyclic coupling. (a) In
the synthetic space, the unzipped Hall cylinder becomes a 2D planar Hall
strip. (b) Dispersion relation calculated for Ω2 = 0, while keeping the
other parameters the same as used in Fig. 4.2b. The BEC is initially
prepared at qy ≈ K, marked by the dashed circle. (c) TOF images at
various thold and the corresponding quasimomentum for a BEC traveling
towards negative qy in the lowest band. (d) Total mechanical momentum
of the BEC versus thold. (e) Fractional spin populations versus thold. Solid
lines in (d, e) are single-particle calculations using the same parameters
as used in (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
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4.7 Representative measurement of quasimomentum versus thold. (a)
and (b) are obtained respectively from the atomic clouds of |1〉 and |4〉 in
the experiment corresponding to Fig. 4.2c. Dots are experimental data
and lines are linear fits. . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.1 The frequency shift of the scissors mode of an atomic gas at finite temper-
atures. The open circles refer to the thermal component whose frequency
does not depend on the temperature and is in agreement with the colli-
sionless prediction. The solid circles refer to the condensate component,
and are in agreement with the hydrodynamic prediction at the low tem-
perature limit. Reproduced from ref. [153]. . . . . . . . . . . . . . . . . 131

5.2 The moment of inertia normalized to the rigid-body value at various tem-
peratures. The open circles refer to the thermal component. The solid
circles refer to the condensate component. The solid squares and line refer
to the whole atomic gas. The dashed line refers to the hydrodynamic pre-
diction in the low-temperature limit. The dotted line refers to the finite
atom number correction. The moment of inertia is obtained by the mea-
sured frequency of the scissors mode (see details in ref. [144]: here, the
scissors mode is in the x − y plane, i.e. the atomic cloud rotates around
the z axis and thus the associated moment of inertia presented here is
with respect to the z axis). The reduced moment of inertia indicates the
transition from a normal fluid to a superfluid. Reproduced from ref. [144]. 132

5.3 Calculated moment of inertia versus atom number. In the small atom
number limit it approaches the prediction based on the non-interacting
gas at zero temperature (dotted line). In the large atom number limit it
approaches the Thomas-Fermi prediction (dashed line). Reproduced from
ref. [144]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.4 Scissors mode of an atomic gas. (a) For a thermal gas, its scissors mode
oscillates as a beat wave with two frequencies determined by the trap
frequencies (see texts). (b) For a BEC exhibiting superfluidity, its scissors
mode oscillates at a single frequency (see texts). Reproduced from [156]. 134
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5.5 Experimental set-up and timing diagram. (a) Counter-propagating
Raman lasers with an angular frequency difference of ∆ωR = 2π(3.5MHz)
couple the Zeeman sublevels |↓〉 and |↑〉 separated by h̄ωZ ∼ h̄∆ωR in
the F = 1 hyperfine state of 87Rb to create synthetic SOC along ŷ. The
Raman detuning δ is controlled by the bias magnetic field B. (b) A BEC
is prepared in the gray region of the Gaussian distribution of the Raman
coupling, experiencing a spatially-varying Raman coupling and a synthetic
magnetic field B∗ (see texts). The Raman coupling at the BEC’s center
(located around 65-75% of the peak) is Ω. (c) Experimental timing di-
agram. After preparing the BEC at Ω = Ωi and δ = δi, Ωi and δi are
quickly changed to Ωf and δf in tE = 1 ms. Ωf and δf are then held for thold

before a 15-ms TOF and the following absorption imaging. (d) A shear
force (Fshear(z) along ŷ, indicated by gray arrows) induced by the quench
process is applied to the BEC, pushing (along ŷ) and tilting the BEC to
induce dipole and scissors (oscillations of the tilt angle θ) modes. Here,
the tilt angle is defined as the angle between the y axis and the major axis
of the BEC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
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ABSTRACT

Li, Chuan-Hsun Ph.D., Purdue University, August 2019. Bose-Einstein Condensates
in Synthetic Gauge Fields and Spaces: Quantum Transport, Dynamics, and Topolog-
ical States. Major Professor: Yong P. Chen.

Bose-Einstein condensates (BECs) in light-induced synthetic gauge fields and

spaces can provide a highly-tunable platform for quantum simulations.

Chapter 1 presents a short introduction to the concepts of BECs and our BEC

machine. Chapter 2 introduces some basic ideas of how to use light-matter inter-

actions to create synthetic gauge fields and spaces for neutral atoms. Three main

research topics of the thesis are summarized below.

Chapter 3: Recently, using bosonic quasiparticles (including their condensates)

as spin carriers in spintronics has become promising for coherent spin transport over

macroscopic distances. However, understanding the effects of spin-orbit (SO) coupling

and many-body interactions on such a spin transport is barely explored. We study

the effects of synthetic SO coupling (which can be turned on and off, not allowed in

usual materials) and atomic interactions on the spin transport in an atomic BEC.

Chapter 4: Interplay between matter and fields in physical spaces with nontrivial

geometries can lead to phenomena unattainable in planar spaces. However, realizing

such spaces is often impeded by experimental challenges. We synthesize real and

curved synthetic dimensions into a Hall cylinder for a BEC, which develops symmetry-

protected topological states absent in the planar counterpart. Our work opens the

door to engineering synthetic gauge fields in spaces with a wide range of geometries

and observing novel phenomena inherent to such spaces.

Chapter 5: Rotational properties of a BEC are important to study its superfluidity.

Recent studies have found that SO coupling can change a BEC’s rotational and
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superfluid properties, but this topic is barely explored experimentally. We study

rotational dynamics of a SO-coupled BEC in an effective rotating frame induced by a

synthetic magnetic field. Our work may allow for studying how SO coupling modify

a BEC’s rotational and superfluid properties.

Chapter 6 presents some possible future directions.
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1. INTRODUCTION

In this chapter, we will give a short introduction to Bose-Einstein condensates (BECs)

and our BEC machine.

1.1 Introduction to Bose-Einstein condensates

The behavior of a weakly-interacting bosonic gas at different temperatures is illus-

trated in Fig. 1.1. At high temperatures, each particle can be regarded as a billiard

ball and behaves classically.

Fig. 1.1. Behavior of a weakly-interacting bosonic gas at different temper-
atures. When the temperature of the gas is below the critical temperature
Tc, a BEC is formed. Reproduced from ref. [1].
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When the temperature of the gas is lowered, the De Broglie wavelength λdB =

(2πh̄2/(mkBT ))1/2 of each particle becomes larger, where h̄ is the reduced Plank

constant, kB is the Boltzmann constant, m is the mass of an atom, and T is the

temperature of the gas. These atoms can be regarded as quantum mechanical wave

packets with a characteristic width of λdB. If the gas is further cooled down such that

the associated λdB becomes comparable to the average inter-particle distance, the ma-

jority of the atoms occupies the quantum-mechanical ground state and a macroscopic

matter wave forms (a BEC along with thermal atoms). At this point, the correspond-

ing temperature is the critical temperature for the BEC phase transition and can be

estimated by the relation n0λdB ≈ 2.612 [1], where n0 is the peak atomic density and

λdB = (2πh̄2/(mkBT ))1/2 is as given above. In the limit of zero temperature, a giant

matter wave forms and an almost pure BEC is achieved.

For a dilute gas of atoms at zero temperature, the inter-particle interactions are

short-ranged and dominated by the s-wave scattering, thus can be described by a

contact pseudo potential. If we further assume that most atoms form a BEC and

that the condensate depletion can be neglected, then the many-body wavefunction of

the BEC can be described by a single wavefunction, which is simply the product of

single-particle wavefunctions ψ(r) (a complex order parameter), where ψ(r) satisfies

the time-dependent Gross-Pitaevskii (GP) equation [1, 2]:

ih̄
dψ

dt
= − h̄2

2m
∇2ψ + V (r)ψ + U |ψ|2 ψ, (1.1)

where V (r) is the external potential, U = 4πh̄2a/m is the parameter characterizing

the contact interaction due to two-body collisions, a is the s-wave scattering length,

and |ψ|2 is the density. Note that the above GP equation is valid when the system

is dilute enough such that the average inter-particle distance is much larger than the

scattering length a, i.e. n|a|3 << 1, where n is the density of atoms. In many cases

including the projects presented in this thesis, the dynamics of a BEC can be properly

described by Eq. (1.1).

At the room temperature, the average velocity of atoms is hundreds of meters per

second. For ultracold atoms at 100 nK, the average velocity of atoms is millimeters
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per second. Therefore, compared to atoms at the room temerature, it is much easier to

control (e.g. by light) and measure (e.g. through time-of-flight process and absorption

imaging) ultracold atoms. In addition, ultracold atoms can be used to realize novel

quantum systems (such as atoms in lattice potentials), where almost every param-

eter (including particle-particle interactions!) in the system can be well-controlled.

Thus, cold atom systems are promising for quantum simulations. In particular, the

capability of tuning particle-particle interactions is one of the most attractive features

of cold atom systems. One may achieve strong and/or long-range interactions using

optical lattices, Feshbach resonances [3], Rydberg atoms [4–7] , or atomic/molecular

species that have e.g. dipolar interactions, and so on. We will introduce more details

about quantum simulations in Chapter 2.

Ultracold atoms also allow for precision measurement (such as atomic clocks),

quantum chemistry (such as formation of molecules), and quantum information and

computation (e.g. through light-atom interactions), just to name a few. Recently,

hybrid quantum systems composed of cold atoms (or cold molecules, ions, and so

on), light, and mechanical and solid-state systems have attracted great interest be-

cause of their potential for future quantum science and technology such as quantum

simulations, information, and computation.

1.2 Overview of the 87Rb BEC machine at Purdue

Details about our BEC machine can be found in Abraham J. Olson’s thesis [8] and

ref. [9]. Only an overview is given here. Our BEC machine includes optics (lasers,

optical elements, and acousto-optical modulators, and so on), electronics, vacuum

systems, and computers (Labview is used for experimental control). This machine

occupies one optical table. There is another optical table for a Ti-sapphire laser

that can be used for several purposes such as optical lattices. One side of the table

for the BEC machine is occupied by laser systems and optics for the generation of

different colors of light, such as cooling, push, detection, repump, and Raman lasers.
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The other side of the table contains ion pumps and vacuum chambers, in which we

create magneto-optical traps (MOT, for laser cooling and trapping) and dipole traps

(for evaporation cooling). We have MOT-A and MOT-B, which are connected by a

differential pump that maintains a higher vacuum in MOT-B and a lower vacuum in

MOT-A. Dipole traps are produced by a high power 1550-nm fiber laser. BECs are

created in MOT-B.

1.2.1 The laser systems for laser cooling and trapping

B
A

C
D

E

F

G H

Fig. 1.2. The laser side of the optical table for the BEC machine.

Fig. 1.2 shows the laser side of the optical table for the BEC machine. A is the

MOT-B cooling laser. B is the push laser, which pushes atoms trapped in MOT-A

to MOT-B. C is the detection laser. D is the MOT-A laser. A, B, C, and D are

fiber-coupled to the side of the vacuum chamber. E is the master laser (DL-pro),

which seeds a home-built tapered amplifier (not shown) to produce B, C, and D. E
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also seeds a commercial Boos-TA labeled by F to generate A. G is the home-built

Raman laser for creating synthetic gauge fields for BECs. H is the home-built repump

laser.

1.2.2 The Raman laser system for creating synthetic gauge fields and

synthetic spaces

A

B
C

Fig. 1.3. The Raman laser system for creating synthetic gauge fields and
synthetic spaces for atoms.

As will be introduced in Chapter 2, we will use the “Raman coupling scheme” to

realize synthetic gauge fields and synthetic spaces for a BEC. The Raman coupling

scheme requires two counter-propagating lasers with a frequency difference around 3.5

MHz to couple atoms’ internal spin states separated by around 3.5 MHz. Please see

Chapter 2 for details about the physics. Here, we simply introduce the set-up of our

Raman laser system and show measurements of the lifetime of atoms in the presence

of Raman lasers. Our Raman laser system is shown in Fig. 1.3. A critical optical
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element is a grating (labeled by A) with high diffraction efficiency and reflectivity at

the wavelength of the Raman laser. This grating can do a spectral cleaning, which

greatly enhances the lifetime of atoms in the presence of Raman lasers by reducing

the heating effect from e.g. the residual 780 nm component resonant with the D1

transition of 87Rb. Measurements of the lifetime of atoms in the presence of Raman

lasers are shown in Figs. 1.5, 1.6, 1.7. The lifetime of atoms in the presence of Raman

lasers depends on the Raman coupling Ω and is typically hundreds of ms with the

grating. The lifetime is only tens of ms without the grating. B and C label the two

acousto-optic modulators (AOMs) used for generating two Raman laser beams which

have a frequency difference of 3.5 MHz.

A

Fig. 1.4. Counter-propagating Raman lasers, detection laser, CCD cam-
era, and MOT-B.

In Fig. 1.4, the red arrows indicate the optical paths of the counter-propagating

Raman lasers on the vacuum side of the optical table. The green arrow indicates the

beam path of the detection laser to the CCD camera, labeled by A. The glass cell is

MOT-B, the place we create BECs.
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Fig. 1.5. Measurement of the total atom number of a BEC versus hold
time at various Raman couplings.

Fig. 1.5 shows the measurement of the total atom number of a BEC versus hold

time at various Raman couplings. Zoom-in of Fig. 1.5 is shown in Fig. 1.6, which

provides useful heating information for the projects in the following chapters.
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Fig. 1.6. Measurement of the total atom number of a BEC versus hold
time at various Raman couplings. This figure is the zoom-in of Fig. 1.5.

In addition to the measurement of atom number of a BEC in the presence of

Raman lasers, we also measure the condensate fraction of a BEC versus hold time at

various Raman couplings, as shown in Fig. 1.7.
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Fig. 1.7. Measurement of the condensate fraction of a BEC versus hold
time at various Raman couplings. Note that it can be challenging to ex-
tract the condensate fraction when the atom number is small (see Fig. 1.5),
for example, when the hold time > 700 ms in the case of 7.5 Er. Error
bar is the standard error of the mean.

1.2.3 Microwave and radio frequency (RF) systems

In addition to the Raman lasers, microwaves (∼ GHz) and RF waves (∼ MHz)

are also important tools to manipulate light-matter interactions. For example, we

will apply microwaves and RF waves along with the Raman lasers to realize a cyclic

coupling of internal states of atoms to create a synthetic Hall cylinder (Chapter 4).

Here we only introduce the set-up of our microwave and RF systems. Fig. 1.8 shows

the circuit diagram of our microwave and RF systems.
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Microwave 
source

RF source

Mixer 
ZX05-U742MH+ 

VCA
G2I

1st amplifier 
EPA-250T

Gain ~ 40 dB
Psat ~ 17 dBm
Max input < 10 dBm

2nd amplifier 
PE15A5009

Gain ~ 23.5 dB
Psat ~ 38 dBm
Max input < ? dBm

Microwave horn
PE9859-SF-15 

Circulator
PE8402 

Terminator

Signal for Switch

RF switch
ZYSWA-2-50DR+

RF amplifier
LZY-22+

RF loop antenna

Gain ~ 43 dB
Psat ~ 44 dBm
Max input < 20 dBm

IF (IN) 
< 17 dBm

LO (10-16 dBm) 

RF source

Novatech 2918A

ZHL-32A

SRS DS345

20 dB 
attenuator

Amplifier

HP 8673C

Fig. 1.8. Circuit diagram of our microwave and RF systems.

As shown in Fig. 1.9, we place a microwave horn and an RF loop antenna near

the vacuum chamber where we create BECs.
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Fig. 1.9. A microwave horn and an RF loop antenna are planced near the
vacuum chamber where we create BECs.
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1.2.4 The vacuum side of the optical table

A

Fig. 1.10. The vacuum side of the optical table for the BEC machine.

Fig. 1.10 is the vacuum side of the optical table. The glass cell indicated by the red

arrow is MOT-B, where we create BECs. The red box indicates the region occupied

by the optics of the lasers for dipole traps. The regions above and below the red box

are occupied by several optical paths for MOT-B cooling lasers. A is the laser head

of the 40-W 1550-nm fiber laser.
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2. ENGINEERING LIGHT-MATTER INTERACTIONS

TO CREATE SYNTHETIC GAUGE FIELDS AND

SPACES FOR NEUTRAL ATOMS

In 1982, Richard Feynman proposed the concept of “quantum simulations” [10]: us-

ing a highly-tunable and well-controlled quantum system as a “quantum simulator”

to simulate phenomena in another quantum system which is hard to explore. Atomic

systems are highly-tunable and allow for very precise measurements, thus are promis-

ing candidates for quantum simulations. For example, many fascinating phenomena

in solids can be described by the Hubbard model, such as the conducting to Mott-

insulating phase transition. Such a model can be exactly realized by applying optical

lattice potentials to cold atoms. The quantum phase transition from a superfluid to a

Mott insulator has been observed in ultracold bosonic [11] and fermionic [12] gases. In

addition, even disordered or quasiperiodic potentials can be engineered for cold atoms.

For example, the disordered Bose-Hubbard model can be implemented in cold atom

experiment, allowing for dynamically probing the Bose glass-superfluid transition us-

ing quantum quenches of disorder [13]. Recently, engineering light-matter interactions

to create synthetic gauge fields for neutral atoms (could be bosons or fermions) has

attracted great interest, because it further allows for simulating and studying diverse

phenomena in other systems. For example, realizing synthetic spin-orbit (SO) cou-

pling for neutral atoms has paved the way to exploring novel topological states of

matter, especially those states that may be difficult to access in solids. Moreover,

creating synthetic gauge fields may even enable us to explore phenomena that has

been predicted in theory but has never been observed in experiment, for example,

quantum simulation of a Yang monopole [14].

This chapter only introduces some basic and important ideas about how to engi-

neer light-matter interactions to create synthetic gauge fields and spaces for atoms.
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For more information about quantum simulations, synthetic gauge fields, and optical

lattices and so on, one can refer to many useful review articles such as refs. [15–28].

2.1 Creating synthetic gauge fields using the Raman coupling scheme

Among many proposals for creating synthetic gauge fields for atoms, one of the

most popular scheme implemented in experiment is using counter-propagating Raman

lasers to couple the internal (pseudo) spin states of atoms [15]. This is the approach

we use to generate synthetic SO coupling and synthetic electric and magnetic fields

in our lab. The main purpose of using this Raman coupling scheme is to modify

the kinetic energy term in the Gross-Pitaevskii equation (GPE) (Eq. (1.1)) to create

a new energy-momentum dispersion relation of atoms. To see how this works, see

Fig. 2.1 for the experimental setup and the energy level diagram of a (bosonic) 87Rb

atom. This is just an example to demonstrate the ideas. Such a Raman coupling

scheme can be applied to other species of atoms and to fermions as well. Applying a

bias magnetic field would Zeeman split the sublevels (i.e. Zeeman spin states lableled

by |mF = −1〉, |mF = 0〉, and |mF = +1〉, which are degenerate without the bias

magnetic field) of the F = 1 hyperfine state, such that the linear Zeeman splitting is

h̄ωZ ≈ h̄∆ωR and the quadratic Zeeman shift is h̄ε, as shown in Fig. 2.1b. Here, ∆ωR

is the angular frequency difference between the two Raman beams: one Raman laser

beam has an angular frequency ωR, and the other Raman laser beam has an angular

frequency ωR + ∆ωR.

Via a Raman transition, an atom in a spin state |mF 〉 can jump to an adjacent

available spin state with ∆mF = ±1. The key point is that since Raman lasers are

counter-propagating, when an atom change the spin state via a Raman transition by

absorbing one photon from one laser and emitting one photon into another laser, the

atom would acquire a net momentum change. In other words, when an atom changes

the spin via a Raman transition, its mechanical momentum must also change by 2h̄kr,

where h̄kr is the one photon recoil momentum, kr = 2π/λ, and λ is the wavelength of
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the Raman laser (note that ∆ωR << ωR, so the two Raman beams essentially have

almost the same wavelength).

BEC

ωR

ωR+ΔωR

x

y

z

ba

ħωZ

ħωZ

ħδR

ħδR

δR

δR

ħωZ
ϵ

y

x z // B

ħωZ

Fig. 2.1. Raman coupling scheme for generation of synthetic
gauge fields. (a) Counter-propagating Raman lasers with orthogonal
linear polarizations couple the internal spin states of atoms. One polar-
ization is parallel to and the other is perpendicular to the bias magnetic
field B to satisfy the selection rules for such a Raman transition. The
angular frequency difference between the Raman lasers is ∆ωR such that
h̄∆ωR ∼ h̄ωZ. (b) Energy level diagram of a 87Rb atom shows the Zeeman
sublevels of the F = 1 hyperfine state.

This is the underlying mechanism for creating SO coupling (i.e. momentum and

spin are coupled). Therefore, if an atom at |mF = 0〉 state has a mechanical mo-

mentum h̄qy, then its mechanical momentum would change to h̄(qy + 2kr) when

such an atom jumps to |mF = −1〉 via a Raman transition, and its mechanical

momentum would change to h̄(qy − 2kr) when such an atom jumps to |mF = +1〉

via a Raman transition, where qy is an arbitrary real number and h̄qy is called the

quasi-momentum or canonical momentum. Note that for the |mF = 0〉 state, its

quasimomentum and mechanical momentum are identical. It is this quasimomen-

tum (canonical momentum) whose commutator with the associated position operator
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is equal to −ih̄. In summary, a family of spin and mechanical momentum states,

{|mF = −1, h̄(qy + 2kr)〉 , |mF = −1, h̄qy〉 , |mF = +1, h̄(qy − 2kr)〉}, are Raman cou-

pled.

Since the Raman lasers are propagating along the y-direction in this case, thus

the dispersion relation of an atom is only modified along ŷ. After using the rotating

wave approximation and transforming to a rotating frame at ∆ωR, the Hamilto-

nian associated with such a Raman coupling scheme can be written in the basis of

{|mF = −1, h̄(qy + 2kr)〉 , |mF = −1, h̄qy〉 , |mF = +1, h̄(qy − 2kr)〉} as [29]:

H3 =


h̄2

2m
(qy + 2kr)

2 − δR
Ω
2

0

Ω
2

h̄2

2m
(qy)

2 − ε Ω
2

0 Ω
2

h̄2

2m
(qy − 2kr)

2 + δR

 (2.1)

Here, δR = ∆ωR− ωZ is the Raman detuning and can be controlled by the bias mag-

netic field, which adjusts the Zeeman splitting between the spin states (the frequency

of the lasers is fixed). Ω is the Raman coupling strength and can be calibrated by

doing Raman-Rabi oscillations [29] (see the subsection below for details).

In our lab, the Raman laser is set to the magic wavelength (λ ∼ 790 nm) detuned

from both the D1 (∼ 780 nm) and D2 (∼ 795 nm) transitions such that the resulting

scalar light shift is negligible (see Fig. 2.2 and the section below). The wavelength

(λ ∼ 790 nm) sets some units convenient to use in this system, such as the photon

recoil momentum h̄kr = 2πh̄/λ ŷ, recoil velocity vr ∼ 6 mm/s, and recoil energy

Er = h̄2k2
r /2m ∼ h × 3.7 kHz, where m is the mass of an 87Rb atom and h̄ is the

reduced Planck constant.
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2.1.1 Calculation of the scalar and vector light shifts

When an atom interacting with a monochromatic light, the atom-light interac-

tion Hamiltonian considering dipole-allowed transitions can be written in the form of

Hshift =
∑

nHshift,n, where

Hshift,n = −E
2
0

4
α0,nCs,n(ε̂∗ · ε̂)︸ ︷︷ ︸

scalar light shift

−E
2
0

4
α0,nCv,n(iε̂∗ × ε̂) · F̂︸ ︷︷ ︸

vector light shift

. (2.2)

Here, Hshift is the total “light shift”, and Hshift,n is the light shift associated with

a two-level transition labeled by n in the atomic energy levels and comprises two

parts (the scalar light shift and the vector light shift). Note that there is a tensor

light shift term not shown in Eq. (2.2) because it is negligible in our parameter

regime. More details about this section can be found in refs. [15, 30–33]. E0 is the

amplitude of the electric field of the light, ε̂ is the unit vector of the polarization

and ε̂∗ · ε̂ = 1, and h̄F̂ is the total angular momentum operator. Cs,n and Cv,n are

coefficients respectively corresponding to the scalar and vector light shifts associated

with the two-level transition n. α0 is the characteristic polarizability:

α0,n = − 3

32π3
(
c

fn
)3 Γn
fL − fn

, (2.3)

where c is the speed of light, fn is the frequency of the two-level transition labeled

by n, fL is the laser frequency (thus fL − fn is the laser detuning from the two-level

resonance), and Γn is the associated spontaneous emission rate.

If counter-propagating lasers which have parallel linear polarizations and the same

frequency are applied to atoms, the vector light shift vanishes because ε̂∗× ε̂ = 0, but

the scalar light shift can be finite and can lead to a conventional optical lattice. On

the other hand, for the Raman coupling considered in this chapter (see Fig. 2.1), one

Raman laser has a linear polarization parallel to the quantization axis ẑ set by the

bias magnetic field while the other Raman laser has a linear polarization in the x− y

plane. Consequently, the polarization of the total electric field can lead to a nonzero

ε̂∗ × ε̂ and thus give rise to a vector light shift which is responsible for the Raman

coupling between different spin states in the same F hyperfine manifold.
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In our case, if we consider the D1 (∼ 780 nm) and D2 (∼ 795 nm) transitions and

a laser detuning much larger than the hyperfine splittings, then in the CGS units

Cs,D1 =
1

3
, Cs,D2 =

2

3
, Cv,D1 =

gF
3
, Cv,D2 = −gF

3
, (2.4)

where gF is the Landé g-factor, gF = −1/2 for the F = 1 ground state, and gF = 1/2

for the F = 2 ground state. Note that the coefficients in Eq. (2.4) above are in

CGS units erg
(cm)(statVolt)2

, where the conversion to SI units is erg
(cm)(statVolt)2

≈ 1.113 ×

10−10 Joule
(m)(Volt)2

.

In the following, we consider Raman lasers having a wavelength λL = c/fL and

a total power P , with a Gaussian intensity profile that has a radius of w0 = 50

um. By calculating the peak intensity I0 = 2P/(π(w0)2) as would be experienced by

the atoms, we obtain E2
0 = 2I0/(cε0), where ε0 is the vacuum permittivity. Using

Eqs. (2.2-2.4), the scalar and vector light shifts for atoms in the F = 1 ground

state as a function of the laser wavelength λL are calculated in Fig. 2.2, which shows

that the scalar light shift vanishes around λL ≈ 790 nm (the magic wavelength). In

addition, the vector light shift for atoms in the F = 1 or F = 2 ground states is

calculated in Fig. 2.3. In general, the vector light shift (responsible for the Raman

coupling) for atoms in the F = 1 or F = 2 ground states may be different at a

given laser wavelength λL, because the corresponding laser detunings from the same

excited state are different by ≈ 6.8 GHz (the hyperfine splitting between the F = 1

and F = 2 ground states). However, when the laser detuning is much larger than the

hyperfine splittings, the difference in the resulting vector light shift between F = 1

and F = 2 is negligible.

When calculating Figs. 2.2-2.3, the following parameters are used: ΓD1 = 5.746×

106 Hz (spontaneous decay rate in frequency, not angular frequency, associated with

the D1 transition), ΓD2 = 6.065 × 106 Hz (spontaneous decay rate associated with

the D2 transition), fF=1,D1 = (377.1074635× 1012 − 2.56300597908911× 109) Hz (D1

transition frequency, not angular frequency, from the F = 1 ground state), fF=2,D1 =

(377.1074635 × 1012 + 4.27167663181519 × 109) Hz (D1 transition frequency from

the F = 2 ground state), fF=1,D2 = (384.2304844685 × 1012 − 2.56300597908911 ×
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109) Hz (D2 transition frequency from the F = 1 ground state), and fF=2,D2 =

(384.2304844685× 1012 + 4.27167663181519× 109) Hz (D2 transition frequency from

the F = 2 ground state).

Fig. 2.2. Calculated magnitude of the scalar and vector light shifts for
atoms in the F = 1 ground state as a function of the laser wavelength
λL. The calculation is performed using Eqs. (2.2-2.4). The scalar light
shift vanishes around 790 nm, which is the magic wavelength. Note that
for different wavelength λL, Er = h̄2k2

r /(2m) has different values because
kr = 2π/λL.
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Fig. 2.3. Calculated magnitude of the vector light shift for atoms in the
F = 1 or F = 2 ground states. The calculation is performed using
Eqs. (2.2-2.4). In general, the vector light shift (responsible for the Raman
coupling between different spin states in the same F hyperfine manifold)
for atoms in the F = 1 or F = 2 ground states may be different at a given
laser wavelength λL, because the corresponding laser detunings from the
same excited state are different by ≈ 6.8 GHz (the hyperfine splitting
between the F = 1 or F = 2 ground states). However, when the laser
detuning is much larger than the hyperfine splittings, the difference in the
resulting vector light shift between F = 1 and F = 2 is negligible.

2.1.2 Calibrating the Raman coupling strength with resonant Raman-

Rabi oscillations

Resonant Raman-Rabi oscillations between spin and mechanical momentum states

|mF = 0, 0h̄kr〉 and |mF = +1,−2h̄kr〉 can be achieved when the elements (2,2) and

(3,3) of the matrix H3 in Eq. (2.1) become equal. That is, when the Raman detun-
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ing δR is equal to δres,0→+1 = −ε− 4Er. Similarly, resonant Raman-Rabi oscillations

between spin and momentum states |mF = 0, 0h̄kr〉 and |mF = −1,+2h̄kr〉 can be

achieved when the elements (2,2) and (1,1) of the matrix H3 in Eq. (2.1) become equal.

That is, when the Raman detuning δR is equal to δres,0→−1 = ε + 4Er. The 4Er in

δres,0→−1 or δres,0→+1 comes from the kinetic energy difference between the two Raman-

coupled states, reflecting the nature of spin-momentum locking. Experimentally, we

adjust the bias magnetic field (controlled by a voltage “SE” applied to the circuit for

the magnetic coil) to change the Zeeman splitting such that δR = δres,0→+1 or δR =

δres,0→−1 can be achieved. Fig. 2.4 shows the relative population of |mF = +1,−2h̄kr〉

(red scatters), |mF = 0, 0h̄kr〉 (blue scatters), and |mF = −1,+2h̄kr〉 (green scat-

ters) versus the applied voltage SE. The peak population transfer from |mF = 0〉

to |mF = +1〉 reveals the SE corresponding to δres,0→+1, and the peak population

transfer from |mF = 0〉 to |mF = −1〉 reveals the SE corresponding to δres,0→−1.
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Fig. 2.4. Measurement of the Raman detunings δres,0→−1 and δres,0→+1

for resonant Raman-Rabi oscillations. The peak population transfer
from |mF = 0, 0h̄kr〉 to |mF = +1,−2h̄kr〉 reveals the SE corresponding
to δres,0→+1, and the peak population transfer from |mF = 0, 0h̄kr〉 to
|mF = −1,+2h̄kr〉 reveals the SE corresponding to δres,0→−1. SE is the
voltage applied to the circuit for the magnetic coil to control the Zeeman
splitting and thus the Raman detuning. See texts for details.

Once we obtain the Raman detuning for resonant Raman-Rabi oscillations, we

can suddenly apply Raman lasers with different pulse widths to a BEC to drive

resonant Raman-Rabi oscillations between the BEC’s different spin and mechani-

cal momentum states. For example, Fig. 2.5 shows a typical resonant Raman-Rabi

oscillations between |mF = 0, 0h̄kr〉 and |mF = +1,−2h̄kr〉 states. Fig. 2.5a shows

select time-of-flight (TOF, introduced later) images (where the labeled time is the

pulse width) revealing the bare spin and mechanical momentum compositions of the

BEC. Fig. 2.5b shows the analyzed relative population of |mF = +1,−2h̄kr〉 (red scat-

ters), |mF = 0, 0h̄kr〉 (blue scatters), and |mF = −1,+2h̄kr〉 (green scatters) versus
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the applied pulse width. Solid lines are fits from solving the following time-dependent

Schrödinger equation to extract the Raman coupling strength Ω (∼ 5Er in this case):

ih̄
dψ

dt
= H3ψ, (2.5)

where H3 is given by Eq. (2.1) with Ω the only free parameter and the initial condition

is ψ = (0; 1; 0) (a 3× 1 column vector; all the atoms are in |mF = 0, 0h̄kr〉).
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Fig. 2.5. An example for resonant Raman-Rabi oscillations. (a) Se-
lect TOF images (where the labeled time is the pulse width) revealing
the bare spin and mechanical momentum compositions of the BEC. (b)
shows the analyzed relative population of |mF = +1,−2h̄kr〉 (red scat-
ters), |mF = 0, 0h̄kr〉 (blue scatters), and |mF = +1,+2h̄kr〉 (green scat-
ters) versus the applied pulse width. Solid lines are fits to extract the
Raman coupling strength. See texts for details.
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2.2 Synthetic vector potentials and synthetic electric and magnetic fields

Ω = 4.85 Er, δR = 0 

Ω = 4.85 Er, δR = -2 Er 

qy / kr

E
r

Fig. 2.6. An example of synthetic vector potentials. See texts for details.
Reproduced from ref. [29].

When the Raman coupling Ω is zero in Eq. (2.1), the diagonal elements are the

eigenvalues of the matrix and correspond to a quadratic dispersion relation of a free

particle. When Ω 6= 0, one then need to diagonalize the matrix to find the new eigen-

values (called the eigenenergies or the “dressed” energies) and eigenstates (called the

“dressed” states) of Eq. (2.1). A dressed state at the quasimomentum h̄qy is a su-

perposition of the bare spin and momentum states |mF = −1, qy + 2kr〉, |mF = 0, qy〉,

and |mF = +1, qy − 2kr〉.
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As an example shown in Fig. 2.6, when Ω 6= 0, there are three dressed energy bands

(red curves, dressed energy versus the quasimomentum) which are different from the

original “bare” bands (black curves). When the Raman detuning δR is changed from 0

to −2 Er, the energy minimum (indicated by the black arrows) of the ground dressed

band is shifted. That is, the quasimomentum (labeled by “h̄qmin”) associated with

the energy minimum is changed. If a BEC is prepared at the minimum of the ground

dressed band in Fig. 2.6a or Fig. 2.6b, the corresponding dressed states of the BEC

are different. As shown in Fig. 2.6, performing a time-of-flight (TOF) measurement

(including a Stern-Gerlach process for separating different spin states) is equivalent

to projecting the dressed state of the BEC onto the basis of bare spin and momentum

states, directly revealing the corresponding bare spin and momentum compositions

of the dressed BEC in Fig. 2.6a or Fig. 2.6b.

The quasimomentum associated with the energy minimum, h̄qmin, is of great im-

portance. The energy spectrum around h̄qmin can be expanded as E = h̄2

2m∗
(qy−qmin)2,

which is analogous to the Hamiltonian describing a charged particle with a charge

Q in a magnetic vector potential A, Ĥ = (p̂y −QA)2/(2mQ) [29, 34], where m∗ is

the effective mass of a dressed atom and mQ is the mass of the charged particle.

Therefore, we can identify the quasimomentum (h̄qy) with the canonical momentum

(p̂y = −ih̄ ∂
∂y

), and h̄qmin with the light-induced vector potentials (A, by setting Q = 1

for our case). Thus, the velocity operator corresponding to the mechanical momen-

tum, v̂y = −[Ĥ, y]/(ih̄) = (p̂y −QA) /mQ, corresponds to h̄(qy−qmin)/m∗. Therefore,

when a BEC is prepared around the energy mimimum of a dressed band, the atoms

feel a synthetic vector potential (A, i.e. h̄qmin) like a charged particle feels a magnetic

vector potential.

It is important to note that the synthetic vector potential A (or equivalently

h̄qmin) can be tuned by changing the Raman coupling Ω or Raman detuning δR,

because h̄qmin changes as a function of Ω and δR (e.g. see Fig. 2.6). Thus, if Ω or δR
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is quickly changed in time, then A is quickly changed in time and the atoms would

feel a synthetic electric field E [35] according to

E = −∂A

∂t
. (2.6)

On the other hand, if Ω or δR is made spatially varying (say along ẑ), then A = A(z)ŷ

becomes spatially varying in z and the atoms would feel a synthetic magnetic field

B∗ [36] according to

B∗ = ∇×A(z) = −∂A(z)

∂z
x̂. (2.7)

More precisely, the Raman coupling scheme here leads to the Hamiltonian in Eq. (2.1)

for the light-atom interactions, such that an atom would behave (as described by

this equation) like a charged particle in a magnetic vector potential. Further, once

the associated synthetic A for atoms is made time-varying or spatially-varying, an

atom would behave like a charged particle in an electric field or a magnetic field,

respectively.

2.3 Synthetic spin-orbit coupling: spin-dependent vector potentials

One can utilize the quadratic Zeeman shift h̄ε (Fig. 2.1b) such that the fre-

quency difference between the Raman lasers is resonant with the energy difference

between |mF = −1〉 and |mF = 0〉 but nonresonant with the energy difference between

|mF = 0〉 and |mF = +1〉. In such a case, the |mF = +1〉 state could be excluded in

the first-order approximation such that Eq. (2.1) can be rewritten into a 2×2 matrix

in the basis of |mF = −1, q + kr〉 and |mF = 0, q − kr〉 [37]:

HSOC =

 h̄2

2m
(q + kr)

2 − δR
2

Ω
2

Ω
2

h̄2

2m
(q − kr)

2 + δR
2
.

 (2.8)

This is the Hamiltonian for the synthetic SO coupling of a spin-1/2 system. When

δR = 0 in Eq. (2.8), the dispersion relations at various Ω are plotted in Fig. 2.7.
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 / 
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r

Fig. 2.7. SO-coupled dispersion relations at various Raman coupling Ω
at δR = 0 in Eq. (2.8). The black arrow indicates increasing Ω, showing
the evolution of double-minima structures to single-minimum structures.
Reproduced from ref. [37].

As shown in Fig. 2.7, SO-coupled dispersion relations can have double-minima

or single-minimum structures, depending on Ω. A transition from a double-minima

structure to a single-minimum structure occurs at a critical Raman coupling Ωc. For

a double-minima structure, we may associate atoms occupying the left well with

the dressed spin up (|↑′〉) and atoms occupying the right well with the dressed spin

down (|↓′〉). Different dressed spin states would experience different vector potentials,

that is, the vector potential becomes spin-dependent. These spin-dependent vector

potentials Aσ, represented by h̄qσmin, depend on Ω, where σ =↑′, ↓′. For example,

as shown in Fig. 2.7 in the quasimomentum space, we can decrease Ω to separate

the two h̄qσmin (double-minima structure) or increase Ω such that they merge into

a single minimum. In other words, the spin-dependent vector potentials Aσ can be

controlled by the Raman coupling Ω.
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2.3.1 Phase transition diagrams at zero or finite temperatures

Ω / Er 

δ R
 / 
E

r 
δ R

 / 
E

r 

Ω / Er 

Ω = 0.1Er Ω = 0.3Er Ω = 0.6Er 

Fig. 2.8. Phase transition diagram of a stationary SO-coupled BEC at
zero temperature. (a) The dispersion exhibits a double-minima structure
within the region of dashed lines and otherwise a single-minimum struc-
ture. The gray area labeled as “b” is shown in (b) for details. (b) shows
the metastable window within which both the energy minima of the dis-
persion may be simultaneously occupied by atoms. A miscible (phase
mixed) to immiscible (phase separated) phase transition occurs around
0.2 Er. (c) shows the phase mixed to phase separated transition with
representative images revealing miscible or immiscible atomic clouds of
different spin states. Reproduced from ref. [37].
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As described in the previous section, the spin-dependent vector potentials Aσ

can be controlled by the Raman coupling Ω such that the dispersion relation can

be a balanced double-minima structure or a balanced single-mimnimum structure.

Furthermore, the dispersion relation becomes tilted when the Raman detuning δR

(controlled by the bias magnetic field) in Eq. (2.8) is nonzero.

Fig. 2.8a shows the phase transition diagram of a SO-coupled BEC at zero tem-

perature. When the Raman detuning (vertical axis) δR is zero, the double-minima to

single-minimum transition occurs at Ω = 4.0 Er. When δR is nonzero, whether the

dispersion has single minimum or double minima depends on both Ω and δR. The

dispersion exhibits a double-minima structure within the region of dashed lines and

otherwise a single-minimum structure. Fig. 2.8b shows the details of the metastable

window represented by the gray region (labeled by “b”) in Fig. 2.8a. Within the

metastable window, atoms may stay in a metastable state in which both the left and

right wells of the dispersion are occupied by the atoms at the same time. Fig. 2.8b fur-

ther shows a miscible (phase mixed) to immiscible (phase separated) phase transtion

occuring at Ω ∼ 0.2 Er. Such a phase transition is due to the SOC-modified in-

teraction between different dressed spin states (|↑′〉 and |↓′〉). More details about

the SOC-modified interaction and whether the two dressed spin states are miscible

or immiscible will be discussed and studied in Chapter 3. As shown in Fig. 2.8c,

when Ω < 0.2 Er, the two spin components are spatially overlapped (phase mixed)

in real space. In this miscible phase, since the wavefunctions of the two dressed spin

states overlap with each other in space and are not orthogonal, the interference of the

wavefunctions leads to density modulations. Thus, this miscible phase is also called

the stripe phase. When Ω > 0.2 Er, the SOC-modified interaction between different

dressed spin states becomes more repulsive as Ω is larger, thus the two dressed spin

states tend to phase separate in space (the immiscible phase) to save the increased ef-

fective interaction energy. The phase transitions illustrated in Fig. 2.8 are also shown

in Fig. 2.9a with the corresponding dressed spin wavefunctions.
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Fig. 2.9. Phase transition diagram of a SO-coupled BEC at finite temper-
atures. There may be three possible scenarios for the finite-temperature
phase transition diagram of a SO-coupled BEC. Experiment can determine
(b1) to be the correct diagram based on the measurements of magnetic
properties in ST and MG phases. ST: stripe, MG: magnetized, NM: non-
magnetic. At zero temperature, Ω1 ≈ 0.2 Er and Ω2 ≈ 4 Er are respec-
tively the Raman coupling for the ST-MG and MG-NM phase transitions.
Reproduced from ref. [38].

As shown in Fig. 2.9a, at zero temperature and when 0.2Er < Ω < 4.0Er, the

ground state of a SO-coupled BEC is the occupation of either the left or the right

well of a double-minima dispersion. Such a phase is called the magnetized phase.

Note that occupation of both the minima at the same time is a metastable state

described above, not the ground state. As demonstrated in ref. [37], the ground state

preparation may only be achieved when the state preparation time is long enough.

When the state preparation time is not long enough, metastable states would be

achieved. Usually, the state preparation includes a slow ramping process for both Ω

and δR followed by a holding time to dissipate the excitations generated during the

preparation and to let the system equilibrate. More details about different procedures

for state preparation can be found in, for example, ref. [39]. At zero temperature and
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when Ω < 0.2 Er, the ground state of a SO-coupled BEC is a superposition of the

two dressed spin states (the stripe phase). Thus, the ground states of the stripe and

magnetized phases have different magnetic properties.

For a SO-coupled BEC at finite temperatures, there are three possible scenarios

for the phase transition diagrams, as shown in Fig. 2.9b1-b3. As demonstrated in

ref. [38], the correct phase transition diagram can be experimentally determined to

be Fig. 2.9b1 by measuring the distinct magnetic properties of the stripe and magnetic

phases.
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2.3.2 Effects of the excluded |mF = +1〉 state
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Fig. 2.10. TOF images revealing bare spin and momentum compositions
of a dressed BEC at varioud Raman coupling Ω with the corresponding
dispersion relations. The double-minima to single-minimum transition
observed in our lab occurs around ∼ 4.7 Er when the quadratic Zeeman
shift is h̄ε ∼ 0.45 Er (the applied bias magnetic field is ∼ 5 gauss).

In our lab, the bias magnetic field is ∼ 5 gauss and the corresponding quadratic

Zeeman shift is h̄ε ∼ 0.45 Er, which is not large enough to completely ignore the

effects from the excluded |mF = +1〉 state. Using the full 3-state matrix in Eq. (2.1),

we can understand the effects from the excluded state on, e.g. the double-minima to

single-minimum transition, which would occur around 4.7 Er in our case as shown in

Fig. 2.10.
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Fig. 2.11. The calculated quasimomentum of the energy mini-
mum/minima (i.e. h̄qσmin) of the SO-coupled dispersion relations at vari-
ous Raman couplings. The calculated double-minima to single-minimum
transition occurs around 4.7 Er when the quadratic Zeeman shift h̄ε ∼ 0.45
Er.

The calculated quasimomentum of the energy minimum/minima (i.e. h̄qσmin) of

the SO-coupled dispersion relations at various Raman couplings using Eq. (2.1) is

shown in Fig. 2.11. The calculated double-minima to single-minimum transition in

our case would occur around 4.7 Er, consistent with our experimental observation in

Fig. 2.10.

For a balanced double-minima dispersion, the effects of the excluded state can

cause the spin composition of the dressed state in the left well slightly different from

that of the dressed state in the right well. The calculated fractional population of the

dominant bare spin component of the dressed state in the left or right minimum is

shown in Fig. 2.12.
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Fig. 2.12. The calculated fractional population of the dominant bare spin
component of the dressed state in the left or right minimum.

For the 3-state matrix in Eq. (2.8), the calculated Raman detuning δR that can

achieve the balanced double-minima dispersion at the Raman coupling Ω is shown in

Fig. 2.13.
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Fig. 2.13. The calculated Raman detuning δR that can achieve the bal-
anced double-minima dispersion at Raman coupling Ω when using the
3-state matrix in Eq. (2.8).

2.4 Spin-dependent synthetic electric and magnetic fields

Once we can create spin-dependent vector potentials Aσ, we are capable of gen-

erating spin-dependent synthetic electric and magnetic fields according to Eqs. (2.6)

and (2.7). The spin Hall effect (spin-dependent synthetic magnetic fields) of a quan-

tum gas has been experimentally demonstrated [40]. This is achieved by preparing a

BEC at the side of the Gaussian intensity distribution of the Raman lasers such that

the Raman coupling Ω is spatially varying. Such a technique of generating synthetic

magnetic fields is also used in a project that will be introduced in Chapter 5. On the

other hand, generation of spin-dependent electric fields is used in a project that will

be described in Chapter 3.
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In the following, we show our experiment on the generation of spin-dependent

synthetic magnetic fields (spin Hall effect) for a BEC, similar to the work in ref. [40].

Fig. 2.14 shows the spin Hall effect of a BEC, which is prepared at the side (gray

areas indicated by A and C in the figure) of the Gaussian intensity distribution of

the Raman lasers.
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Fig. 2.14. Spin Hall effect of a BEC. At the same side of Gaussian
intensity distribution, the atomic cloud components of different dressed
spin states have opposite tilt angles, reflecting the spin-dependent mag-
netic fields B∗σ. At different sides of the Gaussian intensity distribution,
atomic cloud components of the same dressed spin state have opposite tilt
angles. The Raman coupling shown in each case refers to the coupling
strength at the BEC’s center.
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In this case, the BEC experiences a z-dependent Raman coupling Ω(z). The

Raman lasers are propagating along ŷ, so the synthetic vector potentials are also

along ŷ. Consequently, the synthetic spin-dependent vector potential is a function

of Ω(z) and δR, Aσ(Ω(z), δR) = Aσ(z, δR)ŷ. The synthetic spin-dependent synthetic

magnetic field is then B∗σ = ∇ ×Aσ(z) = −(∂Aσ(z)
∂z

)x̂. In our experiment, a BEC is

prepared in a metastable state such that both minima of the dispersions are occupied.

As shown in Fig. 2.14, at the same side of the Gaussian intensity distribution, the

atomic cloud components of different dressed spin states have opposite tilt angles,

reflecting the opposite sign of the spatial dependence of the spin-dependent vector

potentials (∂Aσ(z)
∂z

) and thus the spin-dependent magnetic fields B∗σ. On another

hand, at different sides of the Gaussian distribution, the atomic cloud components

of the same dressed spin states have opposite tilt angles, reflecting that ∂Aσ(z)
∂z

has

an opposite sign for the same dressed spin state σ prepared at opposite sides of the

Gaussian intensity distribution.

We can also prepare a dressed spin polarized BEC, that is, either the left minimum

or the right minimum of the dispersion is occupied. Fig. 2.15 shows the spin Hall

effect of such a dressed spin polarized BEC, similar to Fig. 2.14 except that only one

minimum of a double well dispersion is occupied in this case.



38

AC

C             A

2

-2

-1

1

0

2

-2

-1

1

0

2

-2

-1

1

0

mF = -1 mF = 0mF = -1 mF = 0 Quasimomentum ħqy (ħkr)

Quasimomentum ħqy (ħkr)

Position z (μm)

-2

E
ne

rg
y 

(k
H

z)
E

ne
rg

y 
(k

H
z)

F
ra

ct
io

na
l R

am
an

 c
ou

pl
in

g

2

-1

1

0

M
ec

ha
ni

ca
l m

om
en

tu
m

 (
ħk

r)

Fig. 2.15. Spin Hall effect of a BEC. Similar to Fig. 2.14 except that
a dressed spin polarized BEC is used in this case.

In the case of dressed spin polarized BECs, we measure the tilt angle of the BEC

whose center position is prepared at various z. We characterize the spin Hall effect

by defining the spin Hall shear coefficient as:

Syz = (r − 1/r) sin(2θ), (2.9)

where r = b/a is the aspect ratio of the atomic cloud (a and b are the lengths along

the principal axes) and θ is the tilt angle. Both r and θ can be obtained by fitting the

TOF images to a rotated ellipse of the form: Ay2 + Syz
yz
ab

+Bz2 = 1. The measured

spin Hall shear coefficient is shown in Fig. 2.16 and is consistent with the observed

phenomena shown in Figs. 2.14 and 2.15. In summary, Figs. 2.14, 2.15, 2.16 have

demonstrated the spin Hall effect of a BEC.
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Fig. 2.16. (a) Spin Hall effect of a BEC. At the same side of the Gaussian
intensity distribution of the Raman lasers, atomic cloud components from
different dressed spin states have opposite tilt angles. (b) Measurement
of the spin Hall shear coefficient (see texts) demonstrates the generation
of spin-dependent synthetic magnetic fields and the spin Hall effect.

2.5 Synthetic spaces and synthetic gauge fields

Previous sections focus on creating synthetic gauge fields in the real space. On the

other hand, synthetic gauge fields can also be generated in synthetic spaces, which

are capable of lifting many experimental constraints/difficulties (such as manipulating

boundary conditions) and thus are flexible and powerful for quantum simulations. The

concept of synthetic dimensions and spaces (details can be found in e.g. refs. [41–46]

and in recent reviews such as ref. [28]) may be quite general. For instance, multi-

dimensional parameter spaces may be regarded as synthetic spaces. A quantum

simulated Yang monopole in a high-dimensional parameter space is one example [14].

As another example shown in Fig. 2.17, we use internal spin states (say |1〉 and |2〉) of

atoms as discrete sites to construct a “synthetic dimension” (say ŵ) [41], which along

with one real spatial dimension (say ŷ) comprise a synthetic two-dimensional (2D)
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plane (w − y plane) of a strip geometry. Here, there are no edges in the y direction,

and there are only two sites in the w direction with a hard-wall potential at the

edges (an open boundary condition). Utilizing counter-propagating Raman lasers to

Raman couple |1〉 and |2〉, an atom at position y jumping from |2〉 to |1〉 via a Raman

transition would acquire a phase factor eiKy imprinted by the Raman lasers, where

h̄K = 2h̄kr is the two-photon momentum kick from the Raman transition. Similarly,

an atom at position y + ∆y jumping from |1〉 to |2〉 via a Raman transition would

acquire a phase factor e−iK(y+∆y). Therefore, if an atom travels a closed trajectory

in the w − y plane as shown in Fig. 2.17, it acquires a net phase factor e−iK(∆y),

analogous to the Aharonov-Bohm (AB) phase that would be obtained by a charged

particle in the presence of a magnetic field. Consequently, there is a corresponding

synthetic magnetic flux Φ penetrating an area of ∆y times one unit length along

ŵ. Φ is determined by the accumulated phase after the atom completes the closed

trajectory, that is, Φ = h̄
q
Σ(phase), where q is the synthetic charge.
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Fig. 2.17. A synthetic 2D plane of a strip geometry subjected to a syn-
thetic magnetic flux. Utilizing counter-propagating Raman lasers to Ra-
man couple internal states (|1〉 and |2〉) of atoms allows for creating syn-
thetic magnetic flux in a synthetic two-dimensional plane composed of a
synthetic dimension ŵ and a real spatial dimension ŷ. There are no edges
in the y direction, and there are only two sites in the w direction with a
hard-wall potential at the edges (an open boundary condition). See texts
for details.

Fig. 2.17 has illustrated the generation of synthetic magnetic fields in a 2D syn-

thetic plane, composed of a synthetic dimension ŵ and a real spatial dimension ŷ. If

an optical lattice is added in the real spatial dimension ŷ, then a Hall strip of lattice

(a lattice with a strip geometry penetrated by a synthetic magnetic flux) can be re-

alized as shown in Fig. 2.18. Such a Hall strip of lattice with a hard-wall potential at

the edges is an important model to understand the quantum Hall effect and has been

implemented experimentally in refs. [47, 48], which report the observation of chiral

edge states.
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Fig. 2.18. A Hall strip of lattice. A lattice with a strip geometry pene-
trated by a synthetic magnetic flux is realized using internal spin states
(m = −1, 0,+1) of atoms as a synthetic dimension and an optical lattice
along a real spatial dimension. “j” labels different lattice sites in the real
spatial dimension. ts and tx are hopping amplitudes determined by the
light couplings. Counter-propagating Raman lasers coupling m = −1 and
m = 0, and m = 0 and m = +1, allow for generating an Aharonov-Bohm
(AB) phase φAB corresponding to a synthetic magnetic flux for atoms.
Reproduced from ref. [47].

We can further use synthetic dimensions to realize a “curved” geometry, such as

a synthetic circle as shown in Fig. 2.19, by fulfilling a periodic boundary condition in

the synthetic dimension. Here, the synthetic circle can be constructed by an atom’s

internal spin states (say |1〉, |2〉, |3〉, |4〉, and |5〉), which can be regarded as discrete

sites in a curved synthetic dimension ŵ. Hopping of atoms between different sites

is induced by light (e.g. Raman, microwave, or RF couplings). Thus, engineering

synthetic spaces offers a flexible approach to explore spaces beyond planar geome-

tries, such as the synthetic circle here and a synthetic cylindrical surface that will

be introduced in Chapter 4. We will discuss more details about synthetic spaces

and the project of realizing a synthetic Hall cylinder (a synthetic cylindrical surface

penetrated by a net synthetic magnetic flux) for a BEC in Chapter 4.
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Fig. 2.19. Using internal spin states (labeled as |1〉, |2〉, |3〉, |4〉, and
|5〉) of atoms as discrete sites allows for creating a synthetic circle in a
curved synthetic dimension ŵ. Hopping of atoms between different sites
is induced by light (e.g. Raman, microwave, or RF couplings).

Alternatively, one can use discrete momentum states of an atom as discrete sites

to construct a synthetic dimension [43–46] as shown in Fig. 2.20. Here, different

mechanical momentum states (p) of atoms are coupled by unique pairs of Bragg

lasers (far-detuned from excited states |e〉, Fig. 2.20ab) to realize a 1D synthetic

lattice (Fig. 2.20c). Since the coupling strength of each pair of Bragg lasers can be

individually controlled, hopping amplitudes (t−2,−1,0,1,2 in Fig. 2.20c) between different

sites can be individually controlled. In addition, since the phase acquired by an

atom from each pair of Bragg lasers can be individually controlled, the acquired

phase (ϕ−2,−1,0,1,2 in Fig. 2.20c) associated with each hopping can also be individually

controlled.
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Fig. 2.20. A 1D synthetic lattice is constructed using an atom’s different
mechanical momentum states coupled by unique pairs of Bragg lasers.
(a) Counter-propagating Bragg lasers are used to couple unique pairs of
mechanical momentum states (p) of atoms as shown in (b) to realize a
1D synthetic lattice shown in (c). Each hopping amplitude (t−2,−1,0,1) and
the associated phase (ϕ−2,−1,0,1) can be individually controlled. See texts
for details. Reproduced from ref. [45].

Besides, periodically modulating parameters in a system’s Hamiltonian also allows

for generating synthetic dimensions and has been used to build a 4D quantum Hall

system [49]. Many other approaches are proposed or used for constructing synthetic

spaces but are beyond the scope of this section.
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3. SPIN CURRENT GENERATION AND RELAXATION

IN A QUENCHED SPIN-ORBIT-COUPLED

BOSE-EINSTEIN CONDENSATE

The work presented in this chapter has been published in Nature Communications

10, 375 (2019) [50].

In the following sections, the main results of each section will be presented first to

help the reader grasp the main messages. Then, the relevant details will be introduced

in subsections of each section.

3.1 Introduction and motivation

Understanding the effects of spin-orbit coupling (SOC) and many-body interac-

tions on spin transport is important in condensed matter physics and spintronics. This

topic has been intensively studied for spin carriers such as electrons but barely ex-

plored for charge-neutral bosonic quasiparticles (including their condensates), which

hold promises for coherent spin transport over macroscopic distances. Here, we ex-

plore the effects of synthetic SOC (induced by optical Raman coupling) and atomic

interactions on the spin transport in an atomic Bose-Einstein condensate (BEC),

where the spin-dipole mode (SDM, actuated by quenching the Raman coupling) of

two interacting spin components constitutes an alternating spin current. We experi-

mentally observe that SOC significantly enhances the SDM damping while reducing

the thermalization (the reduction of the condensate fraction). We also observe gen-

eration of BEC collective excitations such as shape oscillations. Our theory reveals

that the SOC-modified interference, immiscibility, and interaction between the spin

components can play crucial roles in spin transport.
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Spin, an internal quantum degree of freedom of particles, is central to many con-

densed matter phenomena such as topological insulators and superconductors [51,52]

and technological applications such as spintronics [53] and spin-based quantum com-

putation [54].

In spintronics, electrons are usually the carriers for spin currents. Recently, using

charge-neutral bosonic quasiparticles (such as exciton-polaritons and magnons) or

their condensates [55–57] as spin carriers for spin transport in solids have attracted

great interest because of several promising features. For example, spin (current)

relaxation (which causes loss of spin information) can be reduced because charge

neutrality avoids the Coulomb interaction and bosons can in principle possess a small

momentum distribution. Amplifying a bosonic spin current is even possible thanks

to the bosonic nature. Using neutral bosonic quasiparticles or their condensates

(quantum fluids) thus opens a door to propagate and manipulate spin information

over macroscopic distances with the potential of utilizing quantum coherent effects.

Such bosonic spin currents have been generated experimentally, for example, using

exciton-polarions [58] and excitons [59] in semiconductors and magnons [60, 61] in a

magnetic insulator.

Precise control of spin currents is crucial to information transfer and storage in

spin-based devices, in which spin-orbit coupling (SOC) and many-body interactions

are key factors for spin current manipulations. SOC, the interaction between a par-

ticle’s spin and its momentum, can play a particularly crucial role. On one hand,

SOC may provide a mechanism (such as spin Hall effect) to control the spin. On

the other hand, SOC can also cause spin current relaxation, leading to loss of spin

information. Understanding the effects of SOC and many-body interactions on spin

relaxation is thus of great interest and importance but also challenging due to the

complications from the disorder/impurity and the lack of experimental tunability in

solid state systems. This topic has been intensively studied for electrons, but barely

explored in bosonic quasiparticles or their quantum fluids.
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Cold atomic gases provide a clean and highly-controllable [16] platform for simulat-

ing and exploring many condensed matter phenomena [15,16,26,62,63]. For example,

the generation of synthetic electric [35] and magnetic [36] fields allows neutral atoms

to behave like charged particles. The synthetic magnetic and spin-dependent mag-

netic fields have been realized to demonstrate respectively the superfluid Hall [64] and

spin Hall effects [40] in BECs. The creation of synthetic SOC in bosonic [37, 65–70]

and fermionic [71–74] atoms further paves the way to explore diverse phenomena such

as topological states [27] and exotic condensates and superfluids [63,75–79]. Here, we

study the effects of one-dimensional (1D) synthetic SOC on the spin relaxation in a

disorder-free atomic BEC using a condensate collider, in which the spin-dipole mode

(SDM) [80] of two BECs of different (pseudo) spin states constitute an alternating

(AC) spin current. The SDM is initiated by applying a spin-dependent synthetic

electric field to the BEC via quenching the Raman coupling that generates the spin-

orbit-coupled (SO-coupled) band structure. Similar quantum gas collider systems

(without SOC [81–85]) have been used to study physics that are difficult to access in

other systems.

Charge or mass currents are typically unaffected by interactions between particles

because the currents are associated with the total momentum that is unaffected by

interactions. n contrast, spin currents can be intrinsically damped due to the friction

resulting from the interactions between different spin components. In electronic sys-

tems, such a friction has been referred to as the spin Coulomb drag [86,87]. In atomic

systems, previous studies have shown that a similar spin drag [88,89] also exists. Even

in the absence of SOC, the relaxation of spin currents can be nontrivial due to, for

example, interactions [80, 83, 90–93] and quantum statistical effects [89, 94]. In one

previous experiment [40], bosonic spin currents have been generated in a SO-coupled

BEC using the spin Hall effect. However, how the spin currents may relax in the

presence of SOC and interactions has not been explored. Here, we observe that SOC

can significantly enhance the relaxation of a coherent spin current in a BEC while

reducing the thermalization during our experiment. Moreover, our theory, consistent



48

with the observations, discloses that the interference, immiscibility, and interaction

between the two colliding spin components can be notably modified by SOC and

play an important role in spin transport. Our study may contribute to the funda-

mental understanding of spin transport as well as quenched many-body dynamics in

SO-coupled bosonic quantum fluids.

3.2 Experimental setup and timing diagram

In our experiments, we create 3D 87Rb BECs in the F = 1 hyperfine state in

an optical dipole trap with condensate fraction fc > 0.6 containing condensate atom

number Nc ∼ 1− 2× 104. As shown in Fig. 3.1a, counter-propagating Raman lasers

with an angular frequency difference ∆ωR couple bare spin and momentum states

|↓, h̄(qy + kr)〉 and |↑, h̄(qy − kr)〉 to create synthetic 1D SOC (so called equal Rashba-

Dresselhaus SOC) along ŷ [67], where the bare spin states |↓〉 = |mF = −1〉 and

|↑〉 = |mF = 0〉 are Zeeman split by h̄ωZ ≈ h̄∆ωR using a bias magnetic field B = Bẑ.

Here, h̄k↓ = h̄(qy + kr) (h̄k↑ = h̄(qy − kr)) is the mechanical momentum in the y

direction of the bare spin component |↓〉 (|↑〉), where h̄qy is the quasimomentum.

The photon recoil momentum h̄kr = 2πh̄/λ and recoil energy Er = h̄2k2
r /(2m) are

set by the Raman laser at the magic wavelength λ ∼ 790 nm [95], where h̄ is the

reduced Planck constant and m is the atomic mass of 87Rb. The |mF = +1〉 state

can be neglected in a first-order approximation due to the quadratic Zeeman shift (see

subsections below). The single-particle SOC Hamiltonian, HSOC, can be written in

the basis of bare spin and momentum states {|↓, h̄(qy + kr)〉 , |↑, h̄(qy − kr)〉} as [37]:

HSOC =

 h̄2

2m
(qy + kr)

2 − δR
Ω
2

Ω
2

h̄2

2m
(qy − kr)

2

 (3.1)

where Ω is the Raman coupling (tunable by the Raman laser intensity), δR = h̄(∆ωR−

ωZ) is the Raman detuning (tunable by B) and is zero in our main measurements (see

subsections below). A dressed state is an eigenstate of Eq. (3.1), labeled by qy, and is

a superposition of bare spin and momentum states. The qy-dependent eigenvalues of
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(3.1) define the ground and excited energy bands. When Ω is below a critical Ωc, the

ground band exhibits double wells, which we associate with the dressed spin up |↑′〉

and down |↓′〉 states. The double minima at quasimomentum h̄qσmin can be identified

with the light-induced spin-dependent vector potentials Aσ = Aσŷ (controllable by

Ω), where σ labels |↑′〉 or |↓′〉 [40] (see subsections below). The double minima

merge into a single minimum as Ω increases beyond Ωc, as shown in the dashed line

trajectories in Fig. 3.1c.
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Fig. 3.1. Experimental setup and timing diagram used for the
spin-dipole mode (SDM) experiments. (a) Linearly-polarized Ra-
man beams with orthogonal polarizations (indicated by the double-headed
arrows along ẑ and x̂) counter-propagating along ŷ couple mF hyperfine
sublevels (bare spin states) of 87Rb atoms. The sublevels are Zeeman split
by h̄ωZ ≈ h̄∆ωR = h× (3.5 MHz) using a bias magnetic field B = Bẑ,
which controls the Raman detuning δR = h̄(∆ωR−ωZ). (b) Experimental
timing diagram: Raman coupling Ω (with an experimental uncertainty of
< 10%) is slowly ramped up in 80 ms to an initial value ΩI and held for
100 ms to prepare the BEC around the single minimum of the ground
band at ΩI as shown in (c). Then, Ω is quickly lowered to a final coupling
ΩF in time tE and held for some time thold, during which we study the
dynamics of the BEC in the dipole trap. Subsequently, the atoms are
released for absorption imaging after a 15 ms time of flight (TOF), at
the beginning of which a Stern-Gerlach process is performed for 9 ms to
separate atoms of different bare spin states. (c) The ground band (solid
lines) of synthetic SOC is calculated for a few representative Ω at δR = 0.
A higher band calculated for Ω = 1.3 Er is shown as dashed lines. The
colors indicate the spin compositions, with red for |↓〉 and blue for |↑〉.
The ground band minima in quasimomentum marked by dots are identi-
fied with spin-dependent vector potentials (Aσ), which shift in opposite
directions as Ω is lowered into the double minima regime during tE. This
generates spin-dependent synthetic electric fields Eσ and thus excites the
SDM and an AC spin current along the SOC direction in a trapped BEC.
The upper (lower) dashed circle represents the region around qy = 0 in
the double minima band at an exemplary ΩF = 0 (ΩF = 1.3 Er), from
which the two (dressed) spin components of the BEC roll down towards
the corresponding band minima in response to the application of Eσ.

We prepare a BEC around the single minimum of the ground dressed band at ΩI

(= 5.2 Er for this work) and δR = 0 by ramping on Ω slowly in 80 ms and holding it for
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100 ms (Fig. 3.1b, c, see subsections below for details). Then, we quickly lower Ω from

ΩI to a final value ΩF into the double minima regime in time tE. The tE = 1 ms used in

this work is slow enough to avoid higher band excitations but is fast compared to the

trap frequencies. The dotted lines in Fig. 3.1c trace the opposite trajectories of A↑′

and A↓′ during tE. This quench process drives the system across the single minimum

to double minima phase transition and generates spin-dependent synthetic electric

fields Eσ = Eσŷ = −(∂Aσ/∂t)ŷ ≈ −(∆Aσ/tE)ŷ. Consequently, atoms in different

dressed spin components move off in opposite directions from the trap center (or

from the region around qy = 0 in the quasimomentum space as shown in Fig. 3.1c as

dashed circles for two representative ΩF = 0, 1.3 Er) and then undergo out-of-phase

oscillations, thus exciting the SDM and an AC spin current. Approximately equal

populations in the two dressed (or bare) spin components are maintained by keeping

δR = 0 as Ω is changed from ΩI to ΩF (see subsections below). After the application

of Eσ, the Raman coupling is maintained at ΩF during the hold time (thold). We

then abruptly turn off both the Raman lasers and the dipole trap for time of flight

(TOF) absorption imaging, measuring the bare spin and momentum composition of

the atoms (Fig. 3.1b). Experiments are performed at various thold to map out the

time evolution in the trap.

3.2.1 Theoretical and experimental backgrounds

Before the experimental results are presented, relevant theoretical and experimen-

tal backgrounds are introduced in detail as follows.

Spin vector potentials

In Eq. (3.1), the eigenenergies at δR = 0 are given by:

E± (qy) =
h̄2q2

y

2m
+ Er ±

√(
Ω

2

)2

+

(
h̄2krqy
m

)2

(3.2)
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For Ω < Ωc, the ground band of the energy-quasimomentum dispersion has two

minima at:

qσmin (Ω) = ±kr

√
1− (Ω/Ωc)

2 (3.3)

The state of the atoms associated with each minimum at qσmin can be regarded as a

dressed spin state. For a double minima band structure, we thus have two dressed

spin components σ = |↓′〉 and |↑′〉 that constitute a pseudo spin-1/2 system (when

Ω = 0, |↑′〉 and |↓′〉 become the bare spin |↑〉 and |↓〉, respectively). The energy

spectrum expanded around each qσmin as E(qy) = h̄2(qy − qσmin)2/(2m∗) is analo-

gous to the Hamiltonian describing a charged particle with charge Q in a magnetic

vector potential A, Ĥ = (p̂y −QA)2/(2mQ), where m∗ is the effective mass of a

dressed atom and mQ is the mass of the charged particle. Therefore, we can identify

the quasimomentum (h̄qy) with the canonical momentum (p̂y = −ih̄ ∂
∂y

), and h̄qσmin

with the light-induced spin-dependent vector potentials (Aσ, by setting Q = 1 for

our case [40]). The velocity operator corresponding to the mechanical momentum,

v̂y = −[Ĥ, y]/(ih̄) = (p̂y −QA) /mQ, thus corresponds to h̄(qy − qσmin)/m∗. These

spin-dependent vector potentials Aσ (represented by h̄qσmin) are tunable by Ω. For

example, as seen in Fig. 3.1c, we can decrease Ω to separate the two h̄qσmin or increase

Ω to combine them in the quasimomentum space.

Effects of the neglected |mF = +1〉 state

We apply an external bias magnetic field B = Bẑ (∼ 5 gauss) to Zeeman split

the energies E−1, E0, and E+1 of the |mF = −1〉, |mF = 0〉, and |mF = +1〉 sublevels

respectively (in the F = 1 hyperfine state of 87Rb atoms), where E−1 − E0 = h̄ωZ,

E0 −E+1 = h̄ωZ − 2ε, h̄ is the reduced Planck constant and ε = (E−1 +E+1)/2−E0

is the quadratic Zeeman shift. The frequency difference between the two Raman

lasers is ∆ωR/(2π) = 3.5 MHz. The Raman detuning δR = h̄(∆ωR − ωZ) is con-

trolled by B that controls h̄ωZ. In a first-order approximation, the third state

|mF = +1, h̄k = h̄(qy − 3kr)〉 can be excluded in Eq. (3.1) due to the quadratic Zee-
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man shift (2ε ∼ 0.9 Er) from B but can be included in the following three-state

Hamiltonian:

H3 =


h̄2

2m
(qy + kr)

2 − δR
Ω
2

0

Ω
2

h̄2

2m
(qy − kr)

2 Ω
2

0 Ω
2

h̄2

2m
(qy − 3kr)

2 + δR + 2ε

 (3.4)

In our SDM experiments, we always maintain approximately equal spin popula-

tions in the |↓〉 = |mF = −1〉 and |↑〉 = |mF = 0〉 states both in the initial dressed

state prepared at ΩI and in the final dressed state at ΩF (with approximately equal

populations also achieved in |↓′〉 and |↑′〉 at ΩF). In Eq. (3.1) based on the two-state

picture, δR = 0 can give rise to such balanced (dressed/bare) spin populations at

any given Ω. However, in Eq. (3.4) with δR = 0, a finite Ω can lead to unbalanced

(dressed/bare) spin populations. Therefore, in our experiment δR at a given Ω has

to be changed to δ′(Ω, ε) to achieve the balanced spin populations (note that in the

double minima regime of Eq. (3.4), this requirement is in a good approximation equiv-

alent to the so-called balanced band condition where the two minima in the ground

dressed band have equal energy). Such an effect is addressed in details in ref. [37]. In

our case, also note that including the third state in Eq. (3.4) would cause the actual

transition from the double minima to single minimum to occur at Ωc ∼ 4.7 Er rather

than at Ωc = 4.0 Er as would be predicted by Eq. (3.1). Additionally, Eq. (3.4) is

used for plotting Fig. 3.1c and Fig. 3.3g, h, which more precisely means δR = δ′(Ω, ε)

to achieve the balanced spin populations for the corresponding Ω. In the following,

we use Eq. (3.4) to describe the initial state preparation process.

Initial state preparation, spin population balance, and imaging process

We create spin-polarized 87Rb BECs in |mF = 0〉 in an optical dipole trap consist-

ing of three cross laser beams (with a third beam added to the double beam dipole

trap described in ref. [9]). To prepare the initial state of the BEC at the single
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minimum of the ground dressed band at ΩI = 5.2 Er (at δR = δ′(ΩI, ε), shown in

Fig. 3.1c), first the Raman coupling Ω is ramped on slowly from 0 to ΩI in 80 ms

(slow enough compared to the trap period and any inter-band excitation process) with

δR ∼ −ε in Eq. (3.4), such that the dominant bare spin component of the dressed

BEC at any finite Ω during the ramping process remains in |mF = 0〉. Subsequently,

while holding Ω at ΩI, we adjust B to change the Raman detuning from δR ∼ −ε to

δR = δ′(ΩI, ε) in 80 ms, and then we hold both Ω and δR for another 20 ms to let the

system equilibrate. Note that adjusting δR to δ′(ΩI, ε) has to be empirically achieved

by realizing the balanced spin populations, with the reasons addressed in the next

paragraph. When the BEC is successfully prepared in the initial state at ΩI, equal

populations in the |mF = −1,+h̄kr〉 and |mF = 0,−h̄kr〉 states can be achieved and

seen in TOF images measured at thold = −1 ms.

In addition to the change in the band structure when going from the two-state

picture to the three-state picture as discussed in the previous section, there are several

other experimental factors that can lead to unbalanced spin populations. First, the

slow drift in Ω can tilt (therefore unbalance) the band at a fixed δR. Second, a

slow drift in B would give rise to a drift in δR. Third, sometimes there may still be

excitations (for example, small-amplitude collective dipole oscillations of a dressed

BEC) at the end of the initial state preparation [39], making the quasimomentum of

the dressed BEC deviate slightly from the quasimomentum of the band minimum.

As a result, the dressed BEC can have a nonzero group velocity and unbalanced spin

populations at ΩI (before applying the spin-dependent electric fields Eσ). Hence, this

can lead to unbalanced spin populations after the application of Eσ, and the spin

polarization P of atoms is not maintained around zero during thold. Here, we define

P = (N↑−N↓)/(N↑+N↓), where N↑(↓) is the total atom number of the atomic cloud

(measured in the TOF images) for the bare spin component ↑ (↓). Fourth, the quench

process from the single minimum to double minima bands during tE (Fig. 3.1c) may

also give rise to unbalanced spin populations, presumably because of the access to the

magnetic phase in the double minima regime where the ground state is the occupation
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of a single dressed spin state (the two occupied dressed spin states are metastable

states).

The above effects are avoided in our experiments by making sure that the balanced

spin populations are empirically achieved throughout our experiment (with occasional

adjustment of δR, and discarding runs with notably unbalanced spin populations).

More specifically, we first make sure that balanced spin populations can be achieved

at ΩI, assuring δR = δ′(ΩI, ε) after the initial preparation described above. Then, we

linearly ramp δR from δ′(ΩI, ε) to δ′(ΩF, ε) as we change Ω from ΩI to ΩF in tE, and

subsequently hold δR at δ′(ΩF, ε) for various thold. Here, δR = δ′(ΩF, ε) is empirically

achieved by realizing balanced spin populations at Ω = ΩF for various thold. Therefore,

when we state δR = 0 at a given Ω, it more precisely means that we realize balanced

spin populations (as would be achieved at δR = 0 in the 2-state picture described by

Eq. (3.1)).

The above-mentioned procedure of realizing δR = δ′(ΩF, ε) is further experimen-

tally verified by observing balanced spin populations using the same bias magnetic

fields but with tE = 15 ms and thold = 30 ms (slow enough to not to excite notable

SDM). This suggests that such a choice of δR = δ′(ΩF, ε) approximates a balanced

double minima band (with two equal-energy minima) at ΩF.

For the SDM measurements (e.g., Fig. 3.3), we make sure that the typical spin

polarization is close to zero, with |P | = 0.05±0.04, where 0.05 is the mean and 0.04 is

the standard deviation of the data. Note that we used the total atom numbers N↑(↓)

instead of condensate atom numbers N
↑(↓)
c to obtain P due to the less fluctuation in

the fitted N↑(↓). Typically images with such small P , indicating good spin popula-

tion balance for the whole atomic cloud, also do not exhibit notable spin population

imbalance in their condensate parts.

After holding the atoms in the trap at ΩF for various thold, we turn off all lasers

abruptly and do a 15-ms TOF, which includes a 9-ms Stern-Gerlach process in the

beginning to separate the atoms of different bare spin states. Then, the absorption

imaging is performed at the end of TOF to obtain the bare spin and momentum
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compositions of atoms. We then extract the physical quantities such as the mechanical

momentum, condensate and thermal atom numbers of the atomic cloud in each spin

state from such TOF images.

3.3 Measurements of the spin-dipole mode (SDM) and its damping

Fig. 3.2 presents SDM measurements for a bare BEC (at ΩF = 0) and a dressed (or

SO-coupled) BEC (at ΩF = 1.3 Er), with select TOF images taken after representative

thold in the trap. Two TOF images labeled by thold = −1 ms are taken right before the

application of Eσ. In the bare case (Fig. 3.2a), the images taken at increasing thold

show several cycles of relative oscillations (SDM) between the two spin components

in the momentum space, accompanied by a notable reduction in the BEC fraction.
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Fig. 3.2. SDM of a bare or a dressed BEC. Select TOF images
showing the bare spin and momentum compositions of atoms taken after
applying spin-dependent synthetic electric fields Eσ with ΩF = 0 (bare
BEC) in (a) and ΩF = 1.3 Er (SO-coupled BEC) in (b), followed by
various hold times (thold) in the dipole trap. The TOF images labeled
by thold = −1 ms are taken right before the application of Eσ. The bare
spin components (labeled by mF , with |↓〉 in red and |↑〉 in blue) are
separated along the horizontal axis. The vertical axis shows the atoms’
mechanical momentum h̄k along the SOC direction (ŷ). The color scale
reflects the measured optical density (OD, see subsections below). The
total condensate atom number of the initial state at ΩI is Nc ∼ (1−2)×104

with trap frequencies ωz ∼ 2π×(37±5) Hz and ωx ∼ ωy ∼ 2π×(205±15)
Hz. The TOF images (and associated analyzed quantities presented later)
are typically the average of a few repetitive measurements.

We refer to the reduction of condensate fraction in this paper as thermalization.

In the dressed case at ΩF = 1.3 Er (Fig. 3.2b), despite the fact that Aσ are nearly

the same as that for the bare case, the SDM is now strongly damped without com-

pleting one period. Besides, we observe higher BEC fraction remaining at the end

of the measurement compared with the bare case. This can be seen in the narrower

momentum distribution of thermal atoms with a more prominent condensate peak in

Fig. 3.2b.

From the TOF images, we fit the atomic cloud of each bare spin component (or

dominant bare spin component of a dressed spin component) to a 2D bimodal distri-
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bution to extract the center-of-mass (CoM) momentum h̄k↑(↓) or other (dressed) spin-

dependent quantities (see subsections below). The relative mechanical momentum be-

tween the two spin components in the SDM is then determined by h̄kspin = h̄(k↑−k↓).

Fig. 3.3a-e presents measurements of h̄kspin versus thold at various ΩF. We see that

the initial amplitude (2h̄kr) of h̄kspin is larger than the width of the atomic momentum

distribution (< h̄kr), and h̄kspin damps to around zero at later times. The observed

h̄kspin as a function of thold is fitted to a damped sinusoid A0e
−thold/τdamp cos(ωthold +

θ0) +B0 (see subsections below) to extract the decay time constant τdamp. The SDM

damping is then quantified by the inverse quality factor 1/Q = ttrap/(πτdamp), where

1/ttrap is the trap frequency along ŷ taking into account of the effective mass for

the dressed case (see subsections below). We observe that the damping (1/Q) is

higher for larger ΩF, summarized by the purple data in Fig. 3.3f. Additionally, we

have performed two control experiments, which suggest that SOC alone cannot cause

momentum damping and thermalization if there are no collisions between the two

dressed spin components. Only when there is SDM would notable thermalization be

observed within the time of measurement. First, we measure the dipole oscillations

[35, 65] of a SO-coupled BEC with a single dressed spin component prepared in |↓′〉

at various ΩF. This gives a spin current as well as a net mass current. We observe

(e.g. Fig. 3.4 in subsection 3.3.2) that these single-component cases exhibit very

small damping (1/Q < 0.05, summarized by the red square data in Fig. 3.3f) and

negligible thermalization. In another control experiment, we generate only an AC

mass current without a spin current by exciting in-phase dipole oscillations of two

dressed spin components of a SO-coupled BEC without relative collisions (SDM).

This experiment also reveals very small damping and negligible thermalization (see

Fig. 3.5 in subsection 3.3.2).
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Fig. 3.3. Momentum damping at different ΩF, for SDM and the
dipole mode of a single dressed spin component. (a)-(e) Relative
momentum oscillations in SDM, h̄kspin, as a function of thold at various
ΩF. The experimental data (scatters) are fitted to a damped sinusoidal
function (line) to extract the inverse quality factor 1/Q of the oscillations.
(f) Momentum damping (quantified by 1/Q) versus ΩF. The error bar of
1/Q is the standard error of the fit. The purple circle data correspond to
the SDM (illustrated by (g)) and the red square data correspond to the
dipole mode of a BEC with a single dressed spin component prepared in
|↓′〉 (illustrated by (h)). In (g)-(h), the representative band structure is
calculated at Ω = 1.0 Er.

3.3.1 Analysis of momentum damping

Since the propagation direction (x̂′) of our imaging laser is ∼ 27◦ with respect

to the x-axis in the x − z plane (see Fig. 3.1a), the TOF images are in the y − z′

plane (where ẑ′ is perpendicular to x̂′ in the x − z plane). The atomic cloud of
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each (dominant) bare spin component in the TOF images is fitted to a 2D bimodal

distribution:

Amax

(
1−

(
y − yc

Ry

)2

−
(
z′ − zc

Rz′

)2

, 0

)3/2

+B exp

(
−1

2

((
y − ycT
σy

)2

+

(
z′ − zc

σz′

)2
)) (3.5)

where the first term corresponds to the condensate part according to the Thomas-

Fermi approximation and the second term corresponds to the thermal part. Note that

we only fit the majority bare spin cloud component when there is a distinguishable

minority bare spin cloud component (which belongs to the same dressed spin state,

but has a population < 9% of the majority component in our experiments). This

convention also applies to the analysis of the spin polarization defined above, conden-

sate fraction, and the coherent spin current (see below). In the spin current or SOC

directions (ŷ), we obtain the relative mechanical momentum between the two bare

spin components h̄kspin = h̄(k↑ − k↓) from the difference between the center-of-mass

positions of their condensate parts (y↑c−y↓c ) and the calibration of 2h̄kr in TOF images

(for example, 2h̄kr can be calibrated from the distance between different bare spin

components ↑ and ↓ that are in the same dressed spin state ↑′). To obtain the damping

(1/Q) of the relative momentum oscillations in SDM (Fig. 3.3), h̄kspin as a function

of thold is fitted to a damped sinusoidal function A0e
−thold/τdamp cos(ωthold + θ0) + B0,

where τdamp is the momentum decay time constant. The data have a small offset

B0 because we only use the majority bare spin component in each dressed spin com-

ponent when extracting h̄k↑,↓. We extract τdamp to obtain the inverse quality factor

1/Q = ttrap/(πτdamp), where ttrap = (2π/ωy)
√
meff/m is the trap period along the y

direction taking into account of the effective mass meff for the dressed band around

qσmin, m is the bare atomic mass, and ωy/(2π) is the trap frequency along the y

direction in the absence of Raman lasers. Note that the effective masses around the

two minima in the dressed ground band are nearly the same so we take their average
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as the meff. The standard error of the fit (95% confidence intervals) is obtained for

determining the uncertainty of 1/Q shown in Fig. 3.3.

For the dipole oscillations of a BEC with a single dressed spin component pre-

pared in the |↓′〉 state (see subsection 3.3.2), we fit h̄k↓ (mechanical momentum of

the dominant bare spin component |↓〉) as a function of thold to a damped sinusoidal

function to extract τdamp and thus to obtain 1/Q. The minority bare spin |↑〉 compo-

nent oscillates in phase with the dominant |↓〉 component with similar damping, and

thus is not taken into account for determining 1/Q.

3.3.2 Control experiment 1: dipole oscillations of a SO-coupled BEC with

a single dressed spin component in the |↓′〉 state

By quickly changing the Raman coupling/detuning as in [65], we can apply a

synthetic electric field to a BEC with a single dressed spin component to excite its

dipole oscillations in the optical trap. The experimental timing diagram is similar

to Fig. 3.1b. First, an 80 ms ramp is used to achieve an initial Raman coupling

ΩI = 3.7 Er, where the initial detuning in this case is chosen such that the band is

tilted and only |↓′〉 is present. Subsequently, both ΩI and the initial detuning are

held for another 100 ms. Then, ΩI is changed to ΩF while the initial detuning is

changed to δR = δ′(ΩF, ε) (which realizes a balanced band at ΩF) in 1 ms. This

gives a spin current with a net mass current generated from a single dressed spin

component. For example, Fig. 3.4 shows the dipole oscillations of a dressed BEC

in the |↓′〉 state at ΩF = 1.0 Er and δR = δ′(ΩF, ε) (such that the double minima

in the ground dressed band are balanced, although only the one corresponding to

|↓′〉 is occupied). Such single-component dipole oscillations are observed to possess

very little damping (1/Q < 0.05) and without noticeable thermalization within the

time scale of the experiment (30 ms), similar to the work in [65]. Similar results are

obtained for the measurements performed at different ΩF, as shown in the red square

data in Fig. 3.3f. Note that in the TOF images, the dominant bare spin component is
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|↓〉 (red). There is a minority component in |↑〉 oscillating in phase with but is 2h̄kr

away from |↓〉, and thus is not shown in Fig. 3.4. The control experiment shows that

without a collision partner (i.e. the other dressed spin component in the |↑′〉 state),

the dipole oscillations of a single dressed spin component is very weakly damped

without noticeable thermalization within the time scale of the experiment.
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Fig. 3.4. Dipole oscillations of a BEC with a single dressed spin
component in |↓′〉. Combined TOF images vs thold for a dressed BEC
in |↓′〉 (ΩF = 1.0 Er, δR = δ′(ΩF, ε), shown in Fig. 3.3h) undergoing dipole
oscillations, showing very weak damping (1/Q < 0.05) and negligible ther-
malization. Each slice in the image shown is a TOF image at a given thold,
but compressed along the horizontal direction. The vertical axis shows the
mechanical momentum h̄k of atoms. The time step between successive im-
age slices is 0.5 ms. The figure shows bare spin components |↓〉 in red and
|↑〉 in blue plotted in the lower and upper panels, respectively.

3.3.3 Control experiment 2: common-mode dipole oscillations of two

dressed spin components of a SO-coupled BEC

We also excite common-mode dipole oscillations of two dressed spin components

of a SO coupled BEC with equal populations in |↑′〉 and |↓′〉 (Fig. 3.5) by ramping
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the optical trap power up and back down in 1 ms. This applies the same force

to both dressed spin components and actuates their in-phase dipole oscillations in

the trap, creating a mass current without a spin current, therefore also no collisions

between the two dressed spin components. To analyze the momentum damping of

the individual atomic cloud, h̄k↑ or h̄k↓ is fitted to a damped sinusoidal function to

obtain the corresponding 1/Q. We find that such common-mode dipole oscillations

in the trap are very weakly damped (1/Q < 0.05) without noticeable thermalization

within the time scale of the experiment (30 ms). This shows that SOC alone would

not cause momentum damping of the individual atomic cloud if there is no relative

collision between the two spin components.
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Fig. 3.5. Common-mode dipole oscillations of two dressed spin
components of a SO coupled BEC. Combined TOF images vs thold

for two dressed spin components of a SO coupled BEC with equal popu-
lations in |↑′〉 and |↓′〉 (ΩF = 1 Er, δR = δ′(ΩF , ε)) undergoing in-phase
dipole oscillations, showing very little damping (1/Q < 0.05) with negli-
gible thermalization. Each slice in the image shown is a TOF image at a
given thold, but compressed along the horizontal direction. The time step
between successive image slices is 0.5 ms. The figure shows |↓〉 in red and
|↑〉 in blue plotted in the lower and upper panels, respectively.
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3.4 Thermalization and spin current

We now turn our attention to the thermalization, i.e. the reduction of condensate

fraction due to collisions between the two spin components. To quantitatively describe

the observed thermalization, the integrated optical density of the atomic cloud in each

spin component is fitted to a 1D bimodal distribution to extract the total condensate

fraction fc = Nc/N (see subsections below) with N being the total atom number and

Nc the total condensate atom number (including both spin states). The time (thold)

evolution of the measured fc is plotted for the bare (ΩF = 0) and dressed (ΩF = 1.3 Er

and 2.1 Er) cases in Fig. 3.6a. In all the cases, we observe that fc first decreases with

time before it no longer changes substantially (within the experimental uncertainty)

after some characteristic thermalization time (τtherm). To capture the overall behavior

of the thermalization, we fit the smoothed thold-dependent data of fc to a shifted

exponential decay fc(thold) = fs + (fi − fs) exp(−thold/τtherm), where τtherm represents

the time constant for the saturation of the decreasing condensate fraction and fs the

saturation condensate fraction (see subsections below). We obtain τtherm = 3.8(4)

ms, 2.4(3) ms, and 0.4(1) ms for ΩF = 0, 1.3 Er, and 2.1 Er, respectively. Besides,

a notably larger condensate fraction (fs) is left for a larger ΩF, where fs ∼ 0.2, 0.3,

and 0.4 for ΩF = 0, 1.3 Er, and 2.1 Er, respectively. Since thermalization during our

measurement time is induced by the SDM, the observation that a larger ΩF gives rise

to a smaller τtherm and a larger fs (Fig. 3.6b) thus less thermalization is understood as

due to the stronger SDM damping (smaller τdamp) at larger ΩF, stopping the relative

collision between the two spin components thus the collision-induced thermalization

earlier.
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Fig. 3.6. Thermalization and spin current. (a) The measured con-
densate fraction fc = Nc/N as a function of thold for SDM in the bare case
(no SOC, ΩF = 0) and the dressed cases (with SOC, ΩF = 1.3 Er and
ΩF = 2.1 Er). Representative error bars show the average percentage of
the standard error of the mean. The solid curves are the shifted exponen-
tial fits to the smoothed fc (see subsections below). The initial condensate
fraction (not shown) at ΩI (measured at thold = −1 ms) is ∼ 0.6− 0.7 for
all the cases. (b) The saturation time constant τtherm of the decreasing fc

and the saturation condensate fraction fs versus ΩF, where the vertical
error bar is the standard error of the fit. (c) Spin current Is (normalized
by vr/λ = 7.4 × 103 /s, where vr ∼ 6 mm/s is the recoil velocity) as a
function of thold for ΩF = 0 and 1.3 Er. The solid curves are fits (see text).

The coherent spin current is phenomenologically defined as Is = I↑ − I↓ (see

subsections below), where Iσ=↑,↓ is given by:

Iσ =
Nσ

c

Lσ
vσ = fσc v

σN
σ

Lσ
(3.6)

Here, σ labels the physical quantities associated with the spin component σ, Lσ is

the in situ BEC size along the current direction, and vσ = h̄kσ/m. We exclude the

contribution from the thermal atoms as only the condensate atoms participate in

the coherent spin transport. In our experiments, N↑/L↑ ≈ N↓/L↓ is not observed

to decrease significantly with thold, and f ↑c ≈ f ↓c ≈ fc, thus the relaxation of Is is

mainly controlled by that of f ↑c v
↑− f ↓c v↓ ≈ fc(v

↑− v↓). Therefore, the SDM damping

(reduction of v↑ − v↓) and thermalization (reduction of fc) provide the two main

mechanisms for the relaxation of coherent spin current.



66

Fig. 3.6c shows the normalized Is as a function of thold extracted (see subsections

below) for ΩF = 0 and 1.3 Er. In the bare case, the spin current oscillates around

and decays to zero. In the dressed case, the spin current relaxes much faster to zero

without completing one oscillation. Fitting Is versus thold to a damped sinusoidal

function for ΩF = 0 or to an exponential decay for ΩF = 1.3 Er (with no observable

Is oscillations) allows us to extract the spin current decay time constant τspin, which

is 5.1(8) ms and 0.5(0) ms, respectively. In the dressed case Is decays much faster

compared to the bare case because both τdamp and τtherm are much smaller due to

stronger SDM damping. In the bare case, the thermalization plays a more important

role in the relaxation of Is due to the larger reduction of condensate fraction (fi − fs)

compared to the dressed case.

3.4.1 Analysis of condensate fraction

During the SDM, the atomic cloud can be significantly deformed along ŷ due to the

interference between the two dressed spin components (see e.g. Fig. 3.7). Therefore,

in order to extract the total condensate fraction (fc = Nc/N) of atoms to study the

thermalization behavior as shown in Fig. 3.6a, b, the measured optical density (OD)

of each bare spin component σ in the y − z′ plane is integrated along the y direction

(the direction of SOC and the spin current as well as the direction along which the

cloud can be significantly distorted) to obtain an integrated optical density versus z′

(denoted by ODz′). We fit ODz′ of each bare spin component σ to a 1D bimodal

distribution Amax

(
1−

(
z′−zc
Rz′

)2

, 0

)2

+ B exp

(
−1

2

(
z′−zc
σz′

)2
)

, where the first term

corresponds to the condensate part according to the Thomas-Fermi approximation

and the second term corresponds to the thermal part, to get the corresponding conden-

sate and thermal atom numbers, Nσ
c and Nσ

therm, respectively. The total condensate

fraction is calculated as fc = Nc/N =
(
N↑c +N↓c

)
/
(
N↑c +N↑therm +N↓c +N↓therm

)
,

shown as the scatters (unsmoothed raw data) in Fig. 3.6a.
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To quantitatively describe the thermalization, we fit the smoothed total conden-

sate fraction versus thold to a shifted exponential decay fc(t) = fs+(fi − fs) exp(−t/τtherm),

where τtherm represents the time constant for the thermalization to stop and for the

decreasing condensate fraction to saturate, with fs being the saturation condensate

fraction. Because the large fluctuations in the unsmoothed data can give erroneous

fitting results, each fitted curve shown as a solid line in Fig. 3.6a is the average

of the three fits performed on the smoothed data, obtained using different levels

(M = 1, 2, 3) of smoothing, where the smoothing is done by taking the average of the

raw data within the nearest M time intervals.

Notice that the heating effect due to our Raman lasers (such as from spontaneous

emission) is negligible within the time scale of the experiments (30 ms), because the

lifetime of our BEC in the presence of the Raman lasers (with the Raman coupling

considered in this work) is measured to be hundreds of ms. For example, the control

experiment in Fig. 3.4 shows no observable thermalization within 30 ms for dipole

oscillations of a BEC with a single dressed spin component in the presence of the

Raman lasers.

3.4.2 Coherent spin current

The Iσ in Eq. (3.6) reflects the number of BEC atoms of a specific spin state

passing through a cross section per unit time, and can be related to JA, where

J = ncv is the current density along the SOC direction (ŷ) with the effective num-

ber density nc = Nc/ (LA), v is the corresponding velocity, and A is an effec-

tive cross sectional area (the spin index σ is dropped in this discussion for sim-

plicity in notations). The in situ length in the y direction, L, of each bare spin

component can be estimated from the measured length of the BEC after TOF by

Ly (tTOF) =
√

1 + (ωytTOF)2Ly (tTOF = 0) for a cigar-shape interacting BEC with

ωx,y >> ωz and in the Thomas-Fermi approximation [96], where Ly (tTOF) is defined

as 2Ry in Eq. (3.5) and Ly (tTOF = 0) = L. For example, for a typical Ly(tTOF = 15
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ms) = 88 µm measured for one bare spin component of a dressed BEC prepared at

ΩI, we get L = 4.5 µm for ωy = 2π × 205 Hz. The two spin components have similar

L when the spin populations are balanced. The in situ length L is thold-dependent

during the dynamics and calculated from the thold-dependent TOF size, and is then

used to obtain the thold-dependent spin current in Fig. 3.6b.

In the Thomas-Fermi approximation, we can also calculate L for the initial state

at ΩI from the condensate atom number and trap frequencies. For example, we

obtain L = 4.7 µm using Nc = 1.6 × 104 and ωy = 2π × 205 Hz by µ = 1
2
mω2

yL
2,

where µ = 15
2
5

2
(Nca/ā)

2
5 h̄ω̄, ω̄ = (ωxωyωz)

1/3, a is the s-wave scattering length, and

ā =
√
h̄/(mω̄). In addition, the GPE-simulated L is 4.7 µm. These results of L are

consistent with the value calculated from the TOF width.

3.5 Observation of deformed atomic clouds and BEC shape oscillations

In addition to the SDM damping and thermalization, the atomic clouds can exhibit

other rich dynamics after the application of Eσ. We observe deformation of atomic

clouds at early stages of the SDM, as shown in Fig. 3.7a-d. Fig. 3.7b, d shows the

observation of an elongated atomic cloud at thold = 0.5 ms in the dressed case at

ΩF = 2.1 Er, in comparison with the atomic cloud at thold = 0.5 ms in the bare case

shown in Fig. 3.7a, c. Fig. 3.7c, d shows the integrated optical density (denoted by

ODy) of the atomic cloud versus the y direction, obtained by integrating the measured

optical density over the horizontal direction in TOF images.
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Fig. 3.7. Observation of deformed atomic clouds and BEC shape
oscillations. (a-d) Observation of deformed atomic clouds at early stages
of the SDM. (a-b) TOF images for ΩF = 0 and ΩF = 2.1 Er at thold = 0.5
ms are shown for comparison. The corresponding integrated optical den-
sity (ODy) versus the momentum in the SOC direction (ŷ) for the spin
down and up components is shown respectively in (c) and (d). (e-f) Ob-
servation of BEC shape oscillations. The data showing the aspect ratio
Wy/Wz′ (see subsections below) of the condensate measured at various
thold are extracted from the SDM measurements in Fig. 3.3, except for the
additional measurements #2 and #3 in (e). (e) For the three indepen-
dent measurements in the bare case, the observed oscillations possess a
complicated behavior without having a well-defined frequency given the
error bars and the fluctuation in the data. Select TOF images for mea-
surement #1 are shown in Fig. 3.2a. (f) In the dressed cases, aspect
ratio oscillations with a well-defined frequency are observed in measure-
ments at three different ΩF. The average frequency of the three aspect
ratio oscillations obtained from the damped sinusoidal fit is around 58 Hz,
consistent with the expected frequency for the m = 0 quadrupole mode
fm=0 =

√
2.5ωz/(2π) ∼ 59 Hz for a cigar-shape BEC in the limit of

ωz/ωx,y << 1 [97]. Note that ωz is not modified by Raman lasers and thus
does not depend on ΩF. Select TOF images for ΩF = 1.3 Er are shown
in Fig. 3.2b. The representative error bars in (e-f) are standard deviation
of at least three measurements. The dashed lines indicate thold ∼ 2τdamp

after which the SDM is fully damped out.

The momentum distribution of the atoms at ΩF = 2.1 Er has lower ODy and

is more elongated without a sharp peak along the SOC direction, in comparison

with the bare case that has higher ODy and a more prominent peak momentum.

Furthermore, we observe that the relaxation of the spin current is accompanied by
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BEC shape oscillations [97–99] (Fig. 3.7e, f), which remain even after the spin current

is fully damped. These additional experimental observations are closely related to the

spin current relaxation, as discussed below.

3.5.1 Analysis of BEC shape oscillations

We characterize a condensate’s shape oscillations (in the y − z′ plane) of the

bare spin component σ by its aspect ratio W σ
y /W

σ
z′ , where the condensate widths

W σ
y = 2Rσ

y and W σ
z′ = 2Rσ

z′ (respectively along the y and z′ directions) are obtained

from Eq. (3.5). We take the average of the aspect ratios of the two spin components

(Wy/Wz′ = (W ↑
y /W

↑
z′+W

↓
y /W

↓
z′)/2), and plot Wy/Wz′ as a function of thold in Fig. 3.7.

In Fig. 3.7e, caution has to be paid because the prominent thermalization in the bare

case can make it challenging to fit the 2D cloud and extract the aspect ratio. The

notable distortion of the cloud at the early stages of SDM can also make it difficult

to perform the 2D Thomas-Fermi fit. Therefore, in Fig. 3.7f, we choose the thold-

dependent Wy/Wz′ data after the corresponding dashed line (indicating thold ∼ 2τdamp

after which the SDM is fully damped) to fit to a damped sinusoidal function to extract

the frequency of the aspect ratio oscillations.

In our experiments, there is no external modulation of the trapping potentials

or shapes of the BECs to intentionally excite the shape oscillations. However, it is

worth noting that shape oscillations can be induced via a non-adiabatic change in the

internal energy of atomic clouds [100, 101], which can take place when Ω is quickly

changed or when the two spin components collide within the trap. On the other hand,

we notice that in the dressed case the formation of density modulations can signifi-

cantly deform the shape of a BEC (Fig. 3.7b, d; Movies 2, 4, 5 in section 3.7) and may

thus also induce energetically-allowed BEC shape oscillations, because the modified

shape of the atomic cloud is no longer in equilibrium with the trap. Note that such a

shape deformation can also change the internal energy. The m = 0 quadrupole mode

excitation observed in our experiments has the lowest mode frequency among all pos-
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sible quadrupole modes given our trap geometry and thus is the most energetically

favorable (its mode frequency is also lower than the SDM frequency ∼ ωy/(2π) for

our trap parameters). Such nonresonant mode excitation is quite different from most

previous studies, in which a collective mode of an atomic cloud is efficiently excited

when it matches with the external modulation or perturbation of the trap [98, 102]

spatially and also spectrally (resonant with the modulation frequency). Compared to

the dressed case, the bare case has less damped SDM and more significant thermaliza-

tion, thus may complicate the shape oscillations due to more repeated SDM collisions

and more atom loss [100, 101]. We expect that the energy of the shape oscillations

may eventually be converted to the energy of thermal atoms, leading to decay of the

collective modes.

To further verify the excitation of the m = 0 quadrupole mode in the dressed

case, we used another set of trap frequencies (see Fig. 3.8 in subsection 3.5.2), and

measured the condensate’s aspect ratio as a function of thold. The extracted frequency

for the aspect ratio oscillations is again consistent with the predicted frequency for

the m = 0 quadrupole mode.

3.5.2 Observation of the m = 0 quadrupole mode of a dressed BEC with

another set of trap frequencies

To further verify the excitation of the m = 0 quadrupole mode in the dressed

case, we intentionally changed the trap frequencies to ωz ∼ 2π × (21 ± 3) Hz and

ωx ∼ ωy ∼ 2π × (144 ± 10) Hz, and measured the aspect ratio of the condensate

as a function of thold at ΩF = 1.3 Er (Fig. 3.8a, with select TOF images shown in

Fig. 3.8b) with all the other experimental parameters similar to Fig. 3.9f. The data

after the dashed line (thold ∼ 2τdamp) is fitted to a damped sinusoidal function. The

extracted aspect ratio oscillation frequency is around 34 Hz, again consistent with

the prediction fm =
√

2.5ωz/(2π) ∼ 33 Hz for the m = 0 quadrupole mode. This
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confirms the excitation of the m = 0 quadrupole mode after the SDM is damped out

in the dressed case.
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Fig. 3.8. Observation of the quadrupole mode of a dressed BEC
with another set of trap frequencies. (a) For ΩF = 1.3 Er with
trap frequencies ωz ∼ 2π × (21 ± 3) Hz and ωx ∼ ωy ∼ 2π × (144 ±
10) Hz used in this measurement, the observed aspect ratio oscillation
frequency is around 34 Hz, consistent with the expected m = 0 quadrupole
mode frequency fm=0 =

√
2.5ωz/(2π) ∼ 33 Hz. This further verifies the

excitation of the m = 0 quadrupole mode. The oscillation frequency is
obtained using a damped sinusoidal function to fit the data following the
SDM is damped out (when thold ∼ 2τdamp as indicated by the dashed
line). The representative error bars are standard deviation of at least
three measurements. (b) Select TOF images are typically the average of
a few repetitive measurements.

3.6 GPE simulations and interpretations

We have performed numerical simulations for the SDM based on the 3D time-

dependent Gross-Pitaevskii equation (GPE), using similar parameters as in the exper-

iments. The ΩF-dependent 1/Q extracted from the GPE-simulated SDM (Fig. 3.9a-

c) shows qualitative agreement with the experimental measurements (Fig. 3.9d, e).

Quantitatively, we notice that the GPE simulation generally underestimates the mo-

mentum damping compared to the experimental observation (Fig. 3.9e), especially

at low ΩF (including the bare case). This is possibly related to the fact that our

GPE simulation cannot treat thermalization (which is more prominent at low ΩF)

and effects of thermal atoms. Nonetheless, the in situ (real space) spin-dependent
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density profiles (Fig. 3.9f-j) of the BECs calculated from the GPE simulations have

provided important insights to understand why SOC can significantly enhance the

SDM damping.
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Fig. 3.9. GPE simulated SDM at various ΩF and the extracted SDM damping com-
pared with experiment. (a-b) GPE simulations of the 1D momentum-space density distributions
of the two bare spin components as a function of thold for the SDM at ΩF = 0 and ΩF = 1.3 Er,
respectively. The 1D momentum density ρσ(ky) is obtained by integrating the 3D momentum density
along kx and kz , i.e. ρσ(ky) =

∫
ρσ(kx, ky , kz)dkxdkz . Then, these integrated 1D atomic momentum

densities for sequential hold times (thold) are combined to show the atomic density in momentum
space along the SOC direction versus thold. (c) GPE simulations of the SDM damping versus thold
at various ΩF. The violet lines are the h̄kspin (defined as the difference between the CoM momenta
of the two spin components) as a function of thold for various ΩF. The CoM momentum (h̄k↑,↓) of
each bare spin component (at a given thold) is calculated by taking a density-weighted average of the
corresponding 1D momentum density distributions such as those shown in (a-b). The black lines are
damped sinusoidal fits for the calculated h̄kspin to extract the corresponding SDM damping (1/Q)
which is shown in (d) along with the experimental data reproduced from Fig. 3.3f. (e) Replotting of
(d) with 1/Q shown in logarithmic scale. (f-j) In situ (real space) atomic densities calculated from
GPE simulations. (f) Initial in situ 2D density at Ω = ΩI (right before applying spin-dependent
electric fields Eσ). (g-j) In situ 2D density at thold = 1.5 ms (after the application of Eσ) for ΩF = 0,
0.4 Er, 0.9 Er, and 1.3 Er, respectively. For (f-j), the density is designated by brightness and the bare
spin polarization by colors (red: ↓, blue: ↑, white: equal spin populations). The 2D densities ρσ(x, y)
in (f-j) are obtained by integrating the 3D atomic density along z, i.e., ρσ(x, y) =

∫
ρσ(x, y, z)dz. In

this figure, the simulations used the following parameters representative of our experiment: ΩI = 5.2
Er, δR = 0, Nc = 1.6× 104, ωz = 2π× 37 Hz, ωx = ωy = 2π× 205 Hz, tE = 1.0 ms. GPE simulations
are performed by Chunlei Qu and Chuanwei Zhang.
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Fig. 3.9f shows that the initial BEC (just before applying Eσ) in the trap is in an

equal superposition of bare spin up and down states. Fig. 3.9g-j shows the density

profiles of the BECs at thold = 1.5 ms (after applying Eσ) in the trap with four different

ΩF (see Movies 2, 4, 5 in section 3.7). For the bare case, the two spin components

fully separate in the real space within the trap. As ΩF becomes larger, we observe

that only a smaller portion of atoms in each spin component is well separated, as

marked by the white arrows. Concomitantly, a larger portion of atoms appears to

get stuck around the trap center and form a prominent standing wave pattern, which

we interpret as density modulations arising from the interference between the BEC

wavefunctions of the two dressed spin components when |↑′〉 and |↓′〉 are no longer

orthogonal in the presence of SOC (see Fig. 3.10a) [37,103–106].

Compared to the bare case, the formation of density modulations in the dressed

case can lead to more deformed clouds in both the real and momentum spaces at

early stages in the SDM, as revealed by the GPE simulations (Fig. 3.9a, b, f-j; Movies

2, 4, 5 in section 3.7). This is consistent with our experimental observation of a highly

elongated momentum distribution of the atomic cloud along the SOC direction (ŷ)

at early instants in the SDM of a SO-coupled BEC (Fig. 3.7b, d). In addition to

density modulations, our GPE simulation also reveals complex spatial modulation

in the phase of the BEC wavefunctions (see Fig. 3.17 and Movies 3, 6 in section

3.7). Such distortions of BEC wavefunctions in the amplitude (which determines the

density) and the phase contribute to quantum pressure [2] and local current kinetic

energy (see subsections below) respectively, two forms of the kinetic energy that do

not contribute to the global translational motion (or CoM kinetic energy) of each

spin component. The sum of the CoM kinetic energy, quantum pressure, and local

current kinetic energy is the total kinetic energy (see subsections below). We have

used GPE to calculate the time evolution of these different parts of kinetic energy for

the dressed case, showing that the damping of the CoM kinetic energy (which decays

to zero at later times) is accompanied by (thus likely related to) prominent increase
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of the quantum pressure and the local current kinetic energy (both remain at some

notable finite values at later times) (see Fig. 3.11e-h).
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Fig. 3.10. Calculated nonorthogonality, effective interaction parameters,
and immiscibility for two dressed spin states. In (a-f), the calculations consider
|↑′〉 and |↓′〉 located respectively at h̄qy and −h̄qy. (a) When Ω = 0, the nonorthog-
onality is zero because the two bare spin components are orthogonal. When Ω 6= 0,
either increasing Ω or decreasing qy would increase 〈↑′ | ↓′〉, giving rise to stronger in-
terference and more significant density modulations in the spatially overlapped region
of the two dressed spin components. (b-c) Effective interspecies (g↑′↓′) and intraspecies
(g↑′↑′ , g↓′↓′) interaction parameters versus quasimomentum at Ω = 0.1 Er and 1.26 Er,
respectively. When Ω increases or qy decreases, g↑′↓′ increases while g↑′↑′ and g↓′↓′

almost remain at the bare values. As qy → 0 at any finite Ω, g↑′↓′ → 2g↑′↑′ or 2g↓′↓′ ,
which is the upper bound of g↑′↓′ (see subsections below). The inset of (b-c) zooms out
to show the maximum. (d) shows the immiscibility metric η = (g2↑′↓′ − g↑′↑′g↓′↓′)/g2↑↑
in Eq. (3.29) (see subsections below) versus h̄qy corresponding to (b). η < 0 means
miscible, and η > 0 means immiscible. Over the range of plotted h̄qy, (d) can be
miscible or immiscible depending on h̄qy. The inset of (d) zooms in to focus on the
sign change of η. The vertical dotted line in (b-d) indicates h̄qσmin corresponding to
the Ω in each case. The calculations are performed in the two-state picture described
by Eq. (3.1) with δR = 0. (e-f) Immiscibility metric η versus Ω for various qy. In
(e), as Ω becomes larger or qy becomes smaller, the two dressed spin components can
become more immiscible until η reaches the maximum value set by the upper bound of
g↑′↓′ (see also (b-c)). (f) Zoom-in of (e) showing the miscible to immiscible transition
(indicated by the gray dashed line at η = 0) as a function of Ω for various qy. The red
dot-dashed line corresponds to two dressed spin components located respectively at the
band minima qσmin, showing the well-known miscible to immiscible transition around
0.2 Er for a stationary SO-coupled BEC. In the dynamical case studied here, BECs
can be located away from the band minima and approach qy = 0, becoming immiscible
even when Ω < 0.2 Er for small enough qy. The calculations here are performed by
Mingyuan He and Qi Zhou.
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The increasing quantum pressure and local current kinetic energy may reflect the

emergence of excitations that do not have the CoM kinetic energy. This is consistent

with the experimentally observed generation of BEC shape oscillations (Fig. 3.7e, f),

whose kinetic energy can be accounted for by the quantum pressure and the local

current kinetic energy. Note that the excitation of BEC shape oscillations may also

be understood by the observation of deformed clouds at early stages of the SDM

(Fig. 3.7a-d), because the deformed shape of the BEC is no longer in equilibrium

with the trap and thus initiates the shape oscillations. The observed BEC shape

oscillations remain even after the SDM is completely damped in both bare and dressed

cases. This indicates that the BECs are still excited even after the CoM relaxes to

the single-particle band minima within the time of measurement.
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Fig. 3.11. Time (thold) evolution of different forms of energies
per particle at different ΩF as calculated by GPE. (a) The total
energy is the sum of the total Raman energy, total potential energy, total
interaction energy, and the total KE. The result in (a) confirms that the
total energy is conserved during thold. (b) Total Raman energy. (c) Total
potential energy. (d) Total interaction energy, sum of the bare interaction
energies in (i-k). (e) Total KE, sum of different types of kinetic energies
in (f-h). (f) Total CoM KE. (g) Total QP. (h) Total LC KE. (i) g↑↑
interaction energy. (j) g↓↓ interaction energy. (k) g↑↓ interaction energy.
The GPE calculations here are performed by Chunlei Qu and Chuanwei
Zhang.

3.6.1 Details in GPE simulations

The dynamical evolution of a BEC is simulated by the 3D time-dependent GPE

[107]. To compare with the experimental data, we conduct simulations with similar
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parameters as those used in our experiment. The GPE of a SO-coupled BEC can be

written in the following form:

ih̄
∂

∂t
Ψ (r, t) = HtotΨ (r, t) =

(
p̂2
x

2m
+

p̂2
z

2m
+HSOC + Vtrap + Vint

)
Ψ (r, t) (3.7)

where p̂x = −ih̄ ∂
∂x

(p̂z = −ih̄ ∂
∂z

) is the momentum operator along x̂(ẑ), and HSOC is

the (two-state) single-particle Hamiltonian Eq. (3.1), with qy replaced by q̂y = p̂y/h̄ =

−i ∂
∂y

. Vtrap is the external trapping potential:

Vtrap =
1

2
mω2

xx
2 +

1

2
mω2

yy
2 +

1

2
mω2

zz
2 (3.8)

where ωx(y,z) is the angular trap frequency along the spatial coordinate x(y, z). The

wavefunction (order parameter) of a spinor BEC can be written in the form

Ψ =

ψ↓
ψ↑

 =

√n↓(r, t)e
iφ↓(r,t)√

n↑(r, t)e
iφ↑(r,t)

 (3.9)

where ψ↓ and ψ↑ are the respective condensate wavefunctions of the two components,

n↓(n↑) is the condensate density, φ↓(φ↑) is the phase of the wavefunction, r is the

position, and t is time. The spatial integration of (n↓ + n↑) gives the total atom

number N . The two-body interactions between atoms are described by the nonlinear

interaction term Vint, which can be written in the basis of {ψ↓, ψ↑}:

Vint =

g↓↓|ψ↓|2 + g↓↑|ψ↑|2 0

0 g↑↑|ψ↑|2 + g↑↓|ψ↓|2

 (3.10)

The interaction parameters are given by

g↓↓ = g↓↑ = g↑↓ =
4πh̄2 (c0 + c2)

m
(3.11)

and

g↑↑ =
4πh̄2c0

m
(3.12)

The spin-dependent s-wave scattering lengths for 87Rb atoms are c0 and c0 +c2, where

c2 = −0.46a0 and c0 = 100.86a0 (a0 is the Bohr radius). The initial state of the SO-

coupled BEC is obtained by using the imaginary time propagation method. Next we
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change ΩI to a final value ΩF in tE = 1.0 ms to simulate the spin-dependent synthetic

electric fields. Eq. (3.7) is used to simulate the dynamics of the BECs. The momentum

space wavefunctions are calculated from the Fourier transformation of the real space

wave functions. The squared amplitude of the momentum space wavefunctions is

used to obtain the time-dependent momentum space density distributions shown in

e.g. Fig. 3.9a, b.

For the GPE simulations in Fig. 3.9, we have checked that moderate variations in

these parameters (as in our experimental data) do not affect our conclusions (while

they can slightly change the 1/Q values, for example, larger 1/Q found for higher

Nc). The simulations also reveal additional interesting features, such as the appear-

ance of the opposite momentum (back-scattering) peak for each spin component in

Fig. 3.9a, b, which are not well resolved in our experimental data.

3.6.2 Different forms of energies in GPE simulations

Using Eq. (3.9), the total energy density ε (the spatial integration of which gives

the total energy of the system) can be expressed as the sum of several terms [2, 79]:

ε = ε1 + ε2 + ε3 + ε4 + ε5 (3.13)

ε1 =
h̄2

8mn↓
(∇n↓)

2 +
h̄2

8mn↑
(∇n↑)

2 (3.14)

ε2 =
h̄2n↓
2m

(∇φ↓)
2 +

h̄2n↑
2m

(∇φ↑)
2 +

h̄2kr

m
(n↓∇yφ↓ − n↑∇yφ↑) +

h̄2k2
r

2m
(n↓ + n↑) (3.15)

ε3 = Ω
√
n↓n↑ cos(φ↓ − φ↑) (3.16)

ε4 =
g↓↓
2

(n↓)
2 +

g↑↑
2

(n↑)
2 + g↓↑n↓n↑ (3.17)

ε5 = Vtrap(n↓ + n↑) (3.18)

In the above equations, ∇ = ∂
∂x
x̂+ ∂

∂y
ŷ + ∂

∂z
ẑ and ∇y = ∂

∂y
. We will introduce ε1 to

ε5 one by one in the following. The expression of ε1 in Eq. (3.14) is the density of

the total (including two spin components) quantum pressure (QP), which is a type of

kinetic energy (KE) associated with the spatial variation of the condensate density.
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An imaginary term − ih̄2kr
m
∇y(n↓ − n↑) appearing in the derivation of ε1 is not shown

in Eq. (3.14) as its spatial integration (for a confined system) is zero and thus has no

contribution to the energy. The expression of ε2 in Eq. (3.15) is the density of the

sum of two types of KE, the total CoM KE (sum of the CoM KE of both bare spin

components) and the total local current kinetic energy (LC KE). Both the CoM KE

and LC KE are associated with the spatial variation of the phase of wavefunctions.

The sum of the three types of kinetic energy (total QP, total CoM KE, and total LC

KE) gives the total KE. That is, the sum of ε1 and ε2 is the density of the total KE.

In the following, we derive explicit expressions for the CoM KE and LC KE. For CoM

KE, it is nonzero only in the y direction because the SDM is along the y direction.

Thus, the expression of CoM KE is:

CoM KE =
1

2m
(〈ψ↓|h̄k̂↓|ψ↓〉2 + 〈ψ↑|h̄k̂↑|ψ↑〉2) (3.19)

=
h̄2

2m
(〈ψ↓|∇yφ↓|ψ↓〉2 + 〈ψ↑|∇yφ↑|ψ↑〉2) (3.20)

+
h̄2kr

m
(〈ψ↓|∇yφ↓|ψ↓〉 − 〈ψ↑|∇yφ↑|ψ↑〉)

+ 〈Ψ| h̄
2k2

r

2m
|Ψ〉,

where h̄k̂↓ = h̄(q̂y + kr) = h̄(−i ∂
∂y

+ kr) (h̄k̂↑ = h̄(q̂y − kr) = h̄(−i ∂
∂y
− kr)) is the

momentum operator along ŷ for the spin down (up) component, and the last term in

Eq. (3.20) is simply N h̄2k2r
2m

. Recall that ε2 in Eq. (3.15) is the density of the sum of

CoM KE and LC KE. Thus, the expression of LC KE can be obtained by subtracting

the expression of CoM KE in Eq. (3.20) from the spatial integration of ε2 (Eq. (3.15)):

LC KE =
h̄2

2m
(〈ψ↓|(∇φ↓)

2|ψ↓〉+ 〈ψ↑|(∇φ↑)
2|ψ↑〉) (3.21)

− h̄2

2m
(〈ψ↓|∇yφ↓|ψ↓〉2 + 〈ψ↑|∇yφ↑|ψ↑〉2)

=
h̄2

2m
(∆(∇xφ↓) + ∆(∇xφ↑) + ∆(∇zφ↓) (3.22)

+ ∆(∇zφ↑) + ∆(∇yφ↓) + ∆(∇yφ↑)),
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where ∆(∇x,y,zφ↓,↑) is the standard deviation of ∇x,y,zφ↓,↑, and note 〈∇x,zφ↓,↑〉 = 0.

Thus, if the wavefunction is a plane wave with a phase φ = qyy, its LC KE is zero.

For collective modes that do not have the CoM KE (for example, the quadrupole

modes), the associated motional (kinetic) energy can be accounted for by LC KE and

QP. The expression of ε3 in Eq. (3.16) is the density of the Raman energy, associated

with the Raman couping Ω. The expression of ε4 in Eq. (3.17) is the density of the

sum of the bare intraspecies and interspecies interaction energies. The expression of

ε5 in Eq. (3.18) is the density of the total potential energy.

To calculate the time (thold) evolution of the various forms of energies, we can

in principle integrate the corresponding time-dependent energy densities over the

real space. In practice, for the kinetic energy part we only perform spatial inte-

gration of ε2 (given by Eq. (3.15)). For convenience of computation, the total KE,

total CoM KE, total LC KE, and total QP are calculated using a different approach

taking advantages of the (quasi)momentum space representation of the quantum me-

chanical wavefunctions and operators. Specifically, the total KE is calculated by

〈ψ↓(q, t)| (h̄k̂↓)
2+p̂2x+p̂2z
2m

|ψ↓(q, t)〉+ 〈ψ↑(q, t)| (h̄k̂↑)
2+p̂2x+p̂2z
2m

|ψ↑(q, t)〉 in the quasimomentum

space, where h̄k̂↓ = h̄(q̂y+kr) (h̄k̂↑ = h̄(q̂y−kr)) is the momentum operator along ŷ for

the spin down (up) component, and ψ↓,↑(q, t) is the momentum-space representation

of the wavefunctions (in the two directions not affected by SOC, x and z, we simply

have h̄qx = px and h̄qz = pz). Similarly, the total CoM KE is calculated in the quasi-

momentum space using Eq. (3.19). The total LC KE is calculated by subtracting the

calculated total CoM KE from the spatial integration of ε2 (Eq. (3.15)). The total

QP is calculated indirectly by subtracting the spatial integration of ε2 from the total

KE.

The total Raman energy is calculated by the spatial integration of ε3 (Eq. (3.16)).

The total bare intraspecies (g↑↑ and g↓↓) and interspecies (g↑↓) interaction energies

are calculated by the spatial integration of the corresponding terms in ε4 (Eq. (3.17)).

The total interaction energy is calculated as the sum of the bare intraspecies and in-

terspecies interaction energies. The total potential energy is calculated by the spatial
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integration of ε5 (Eq. (3.18)). Lastly, the total energy of the system is calculated as

the sum of the total Raman energy, total potential energy, total interaction energy,

and total KE.

We note that even though our GPE simulations do not treat thermalization and

thermal energies, the calculated different forms of condensate energies and their time

evolution still provide valuable insights to understand the dynamical processes in-

volved in the SDM. The GPE calculated different forms of energies shown in Fig. 3.11

and discussed in the associated texts below refer to the energies per particle (i.e. the

calculated energies divided by the total atom number N).

In Fig. 3.11a, the total energy is a constant during thold, confirming the conserva-

tion of the total energy. In Fig. 3.11b, the total Raman energy has relatively small

variations during thold. In Fig. 3.11c, the total potential energy in dressed cases has

smaller variations during thold compared with that in the bare case. In Fig. 3.11d, the

time evolution of the total interaction energy at different ΩF possesses a complicated

behavior, mainly due to the complicated dynamics of the densities of the two spin

components as well as their spatial overlap (see Movies 2, 4, 5 in section 3.7).

Fig. 3.11e-h shows the time evolution of the calculated total KE, total CoM KE,

total QP, and total LC KE at different ΩF, respectively. When ΩF is larger, the

total CoM KE (Fig. 3.11f) exhibits a faster damping while QP as well as LC KE

exhibit a faster increase (Fig. 3.11g, h, focusing on the relatively early stage of SDM)

presumably due to the enhancement of the interference, immiscibility, and effective

interaction between the two dressed spin components.

Fig. 3.11i-k shows the time evolution of the calculated intraspecies and interspecies

interaction energies at different ΩF. Note that the interaction energies are relatively

small compared to other forms of energies, but are essential for the damping mecha-

nisms as discussed in Sections 3.6 and 3.8.
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3.6.3 Calculation of nonorthogonality, effective interaction parameters,

and immiscibility

The interactions between atoms in bare spinor BECs are characterized by the

interspecies (g↑↓, g↓↑) and intraspecies (g↑↑, g↓↓) interaction parameters, where g↓↓ =

g↓↑ = g↑↓ = 4πh̄2(c0+c2)
m

, g↑↑ = 4πh̄2c0
m

, c2 = −0.46a0, and c0 = 100.86a0 (a0 is the

Bohr radius) for 87Rb atoms in our case. For a dressed BEC, in which |↑′〉 is at some

quasimomentum h̄qy (> 0) and |↓′〉 is at −h̄qy in the ground dressed band at Ω (in

the two-state picture described by Eq. (3.1) with δR = 0), the effective interspecies

(g↑′↓′ = g↓′↑′) and intraspecies (g↑′↑′ , g↓′↓′) interaction parameters can be expressed in

terms of the bare interaction g-parameters:

g↑′↑′ =
g↑↑
4

(1 + cos θqy)
2 +

g↓↓
4

(1− cos θqy)
2 +

g↑↓
2

(1− cos2 θqy) (3.23)

g↓′↓′ =
g↑↑
4

(1− cos θqy)
2 +

g↓↓
4

(1 + cos θqy)
2 +

g↑↓
2

(1− cos2 θqy) (3.24)

g↑′↓′ =
g↑↑ + g↓↓

2
(1− cos2 θqy) + g↑↓ (3.25)

where cos θqy = (h̄2qykr/m)/
√
h̄4q2

yk
2
r /m

2 + (Ω/2)2. The dressed spin states |↓′〉 at

−h̄qy and |↑′〉 at h̄qy in the ground dressed band can be expressed as

|↓′〉 =

 cos(
θqy
2

)

− sin(
θqy
2

)

 (3.26)

|↑′〉 =

 sin(
θqy
2

)

− cos(
θqy
2

)

 (3.27)

in the bare spin basis of {|↓〉 , |↑〉}. Using Eqs. (3.26, 3.27), we can further obtain

〈↑′ | ↓′〉 = sin θqy = (Ω/2)/
√
h̄4q2

yk
2
r /m

2 + (Ω/2)2 (3.28)

which characterizes the nonorthogonality (and thus the interference) between the

two dressed spin states (where |↑′〉 is located at h̄qy and |↓′〉 is located at −h̄qy
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in the ground dressed band at Ω). Fig. 3.10a plots such nonorthogonality versus

quasimomentum for various Ω.

Note that θqy (which is between 0 and π/2 in our case) characterizes the degree

of bare spin mixing of a single dressed spin state (Eqs. (3.26, 3.27)) as well as the

nonorthogonality (due to the bare spin mixing, see Eq. (3.28)) between the two dressed

spin states. As we can see, either decreasing Ω or increasing qy would decrease θqy

(or increase cos θqy). When θqy → 0 (or cos θqy → 1), all the dressed spin states would

approach the corresponding bare spin states, i.e., |↑′〉 → |↑〉 and |↓′〉 → |↓〉, thus the

nonorthogonality 〈↑′ | ↓′〉 → 0. In addition, all the effective interaction parameters

would approach the corresponding bare values, i.e., g↑′↑′ → g↑↑, g↓′↓′ → g↓↓, and

g↑′↓′ → g↑↓.

On the other hand, either increasing Ω or decreasing qy would increase θqy towards

π/2 (or decrease cos θqy), thus enhancing the bare spin mixing, nonorthogonality and

g↑′↓′ . When θqy → π/2 (or cos θqy → 0), g↑′↑′ → g↑↑
4

+
g↓↓
4

+
g↑↓
2

, g↓′↓′ → g↑↑
4

+
g↓↓
4

+
g↑↓
2

,

and g↑′↓′ → g↑↑
2

+
g↓↓
2

+g↑↓. Therefore, g↑′↓′ → 2g↑′↑′ or 2g↓′↓′ , which is the upper bound

of the effective interspecies interaction parameter. Fig. 3.10b, c shows the effective

interaction parameters normalized by g↑↑ versus quasimomentum h̄qy at Ω = 0.1 Er

and Ω = 1.26 Er, respectively. When Ω increases or qy decreases, g↑′↓′ increases while

g↑′↑′ and g↓′↓′ almost remain at the bare values. As qy → 0 at any finite Ω, g↑′↓′

approaches the upper limit 2g↑′↑′ or 2g↓′↓′ .

In the case of SDM, assume that in the ground dressed band at Ω, |↑′〉 is located

at h̄qy and |↓′〉 is located at −h̄qy at thold, we may use the immiscibility metric [108]

η = (g2
↑′↓′ − g↑′↑′g↓′↓′)/g2

↑↑ (3.29)

to understand how Ω may modify the miscibility (η < 0) or immiscibility (η > 0)

between |↑′〉 and |↓′〉.
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3.7 Control simulations, phase of BEC wavefunctions in SDM, and movies

3.7.1 Effect of immiscibility on SDM

We have used GPE simulations for the bare case with intentionally modified inter-

actions to study the effect of immisciblity on the SDM. Fig. 3.12 shows the damping

of the relative momentum h̄kspin of the SDM for 5 cases without and with modified

interactions. Case 1 is the original bare case without modification of interactions,

with the intraspecies and interspecies interaction parameters gii and gij (i, j =↑, ↓

and i 6= j) given by Eqs. (3.11, 3.12), respectively. Case 2 corresponds to the same

intraspecies interaction parameter g̃ii = gii and a modified interspecies interaction

parameter g̃ij = 1.5gij. Case 3 corresponds to g̃ii = 1.5gii and g̃ij = 1.5gij. Case

4 corresponds to g̃ii = 1.5gii and g̃ij = gij. Case 5 corresponds to g̃ii = 1.8gii and

g̃ij = gij. Such modification of interactions is done by immediately increasing the

interaction g-parameters to the desired values as soon as Ω is changed from ΩI to ΩF.

Among all the cases, only case 2 is immiscible and we observe that case 2 possesses

the strongest damping, thus suggesting that immiscibility is particularly effective to

enhance the damping of the SDM. This is further supported by the observation that

case 4 and case 5 have similar damping which is less than the original bare case (case

1), presumably because these two cases are more miscible than case 1. We have also

calculated and listed the immiscibility metric η (defined in Eq. (3.29)) in Fig. 3.12

for the various cases. Note that simply increasing all the interaction g-parameters

without notably changing η can also enhance the SDM damping, as suggested by the

observation that the damping in case 3 (η = −0.0045, miscible) is stronger than that

in case 1 (η = −0.0045, miscible) but is not as prominent as in case 2 (η = 1.2341,

immiscible).
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Fig. 3.12. Effect of modified bare interactions and interspecies
immiscibility on SDM damping. In GPE simulations for the bare case
SDM, we can change the original interaction parameters gii and gij to new
values g̃ii and g̃ij respectively, where i, j =↑ or ↓ and i 6= j. The relative
momentum h̄kspin versus thold are shown for five different cases with the
corresponding modified interaction parameters and immisciblity metric
η = (g̃↑↓

2 − g̃↑↑g̃↓↓)/g̃↑↑2 listed in Table 3.1 below. The GPE calculations
here are performed by Chunlei Qu and Chuanwei Zhang.

Table 3.1
Cases with different modified interaction parameters and the
immiscibility metric. For each case, the corresponding immisciblity
metric η = (g̃↑↓

2− g̃↑↑g̃↓↓)/g̃↑↑2 is calculated. The corresponding simulated
SDM for each case is shown in Fig. 3.12 above.

Case number g̃ii/gii g̃ij/gij η

Case 1 1.0 1.0 -0.0045 (miscible)

Case 2 1.0 1.5 1.2341 (immiscible)

Case 3 1.5 1.5 -0.0045 (miscible)

Case 4 1.5 1.0 -0.5550 (miscible)

Case 5 1.8 1.0 -0.6896 (miscible)
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3.7.2 Effect of interference on the relative motion between two colliding

BECs

To investigate the effect of interference on the relative motion between two collid-

ing BECs, we have performed another set of control GPE simulations, in which two

(bare) BECs are initially in a double well trap such that they are separated in real

space by a potential barrier. Then, we change the double well trap to a single har-

monic potential by suddenly removing the potential barrier at thold = 0, allowing the

two BECs to collide and oscillate against each other in the y direction. We conduct

the following simulations: case 1, the two BECs initially in the double well are in

the same spin state (called the single spin case), with only one interaction parameter

g = 4πh̄2

m
100a0. Case 2, two BECs initially in the double well have orthogonal spin

states (↓ and ↑) with g↑↑ = g↓↓ = g↑↓ = g (called the two spin case; here all the

interaction g-parameters are set to be the same to focus on the effect of interference.

The cases where the interaction g-parameters are varied differently and the effect of

immiscibility are also studied separately).
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Fig. 3.13. Effect of interference on the relative motion between
two colliding BECs (a) The effective width of the two BECs oscillating
against each other in the y direction versus thold in the single spin case.
(b) The relative momentum between the two orthogonal spin components
versus thold in the two spin case. For (a, b), the two BECs are initially
separated by the same potential barrier in the same double well structure.
The barrier is then suddenly removed at thold = 0 to initiate the dynamics.
Note that the oscillation frequency in (a) is twice the frequency in (b) due
to the definition of Weff,y. The GPE calculations here are performed by
Chunlei Qu and Chuanwei Zhang.

The damping of the relative motion in case 1 is characterized by the thold-dependent

effective width (Weff,y, shown in Fig. 3.13a) of the two BECs oscillating against each

other in the y direction, where Weff,y =
√
〈y2〉 (〈y2〉 is the expectation value of y2

and is calculated using the whole wavefunction of the two BECs). In this case, we

find that the relative motion almost damps out after thold = 30 ms (when we can

no longer observe any relative motion between two BECs, which have merged into

one BEC; the relatively undamped remnant oscillations in the data after ∼ 30 ms

reflect the breathing of width of this merged BEC. See Movie 1). On the other hand,

in case 2 we observe prominent damping only after thold = 60 ms (Fig. 3.13b). By

comparing case 1 with case 2, we avoid the effect of immiscibility and investigate the

effect purely due to the interference on damping. This suggests that the interference

between the two colliding BECs can enhance the damping of the relative motion. In

https://www.dropbox.com/s/crpu9r9voftgeue/single_on.gif?dl=0
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addition, in the two spin case we have modified the interaction parameters similar

to the cases in Fig. 3.12. These results also suggest that immiscibility is particularly

effective to enhance the damping of SDM.

3.7.3 Effect of turning off interactions on the relative motion between

two colliding BECs

To further investigate the role of interactions on the relative motion between

two colliding BECs, we have performed three control GPE simulations where all the

interaction parameters are set to zero (i.e. g = g↑↑ = g↓↓ = g↑↓ = 0): (1) the bare

case SDM. (2) the single spin case and the two spin case with two BECs initially

in a double well as described in the previous section. (3) the dressed case SDM at

ΩF = 1.3 Er. The results of these cases are shown respectively in Figs. 3.14, 3.15, and

3.16. In all these non-interacting cases, we find that the relative motion between the

two colliding BECs has no noticeable damping within the time of simulation. This

suggests that interactions are essential for the damping mechanisms studied in this

work.
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Fig. 3.14. The bare case SDM with interactions in (a) and without
interactions in (b). The case (a) is the same simulation as the case of
ΩF = 0 in Fig. 3.3c but shown up to a longer time of 100 ms. The GPE
calculations here are performed by Chunlei Qu and Chuanwei Zhang.
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Fig. 3.15. The two colliding bare BECs without interactions in
the single spin case (a) and in the two spin case (b). These sim-
ulations used the same parameters as in Fig. 3.13 except the interaction
g-parameters have been set to zero. The GPE calculations here are per-
formed by Chunlei Qu and Chuanwei Zhang.
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Fig. 3.16. The dressed case SDM at ΩF = 1.3Er with interactions
in (a) and without interactions in (b). The case (a) is the same
simulation as the case of ΩF = 1.3 Er in Fig. 3.9c but shown up to a
longer time of 100 ms. The GPE calculations here are performed by
Chunlei Qu and Chuanwei Zhang.
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3.7.4 Spatial modulation in the phase of BEC wavefunctions in SDM.

Fig. 3.17 is an example showing the spatial modulation in the phase of BEC

wavefunctions (Eq. (3.9)) at thold = 7.2 ms during SDM for the bare case and the

dressed case at ΩF = 1.3 Er (snapshots taken from Movie 3 and Movie 6 below). We

notice much less spatial variation in the gradient of the phase in the bare case than in

the dressed case at ΩF = 1.3 Er, suggesting that LC KE in the bare case is generally

smaller than that in the dressed case at this time (consistent with Fig. 3.11h).
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Fig. 3.17. Spatial modulation in the phase of BEC wavefunctions.
The phase of the bare spin up and down components at thold = 7.2 ms in
SDM is plotted in the x-y plane for (a) bare case, and (b) dressed case at
ΩF = 1.3 Er. Here, x and y are spatial coordinates. The GPE calculations
here are performed by Chunlei Qu and Chuanwei Zhang.

3.7.5 Movies of GPE simulations for the SDM

The movies here are created by Chunlei Qu. When linked to the webpage for the

following files, choose the web browser to watch it online or download the files. These

movies are also downloadable from ref. [50].
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Movie 2

Movie 3

Movie 4

Movie 5

Movie 6

Here, the momentum-space (in the kx-ky plane) 2D density distributions (obtained

by the integration over kz, where h̄kx(y,z) is the mechanical momentum in the x(y, z)

direction) of different bare spin components (separated vertically from each other for

better visualization) are the Fourier transform of the real-space 2D densities (as those

shown in Fig. 3.9). The momentum-space and real-space 1D atomic densities in the

y direction (SOC direction) are obtained by integrating the momentum-space and

real-space 2D densities over kx and x, respectively. In addition, the snapshot shown

in Fig. 3.17 for comparing the phase in the cases of ΩF = 0 and ΩF = 1.3 Er is taken

from Movie 3 and Movie 6.

3.8 Discussion and conclusion

Previous studies in stationary SO-coupled BECs (located at ground dressed band

minima) have found that increasing Ω drives a miscible to immiscible phase transition

at Ω ∼ 0.2 Er due to the increased effective interspecies interaction (characterized by

the interaction parameter g↑′↓′) [37,38,103–105]. In the miscible phase, the two dressed

spin components have substantial spatial overlap, where density modulations form.

It is important to note that the effective interactions, immiscibility and interference

between the two dressed spin components depend on the quasimomentum (h̄qy) and

ΩF (Fig. 3.10, see subsections below for details). Therefore, in the dynamical case

studied here, these properties vary with time and can be notably different from those

in the stationary case. During the SDM, the two dressed spin components are forced

to collide due to Eσ.

https://www.dropbox.com/s/qvno1thm5vgv6i0/Oi50_Of00.gif?dl=0
https://www.dropbox.com/s/lznufh6ijodregd/Oi50_Of00_phase.gif?dl=0
https://www.dropbox.com/s/enmgwg20pyb6ml7/Oi50_Of04.gif?dl=0
https://www.dropbox.com/s/u0tur863wrannkq/Oi50_Of13.gif?dl=0
https://www.dropbox.com/s/9t2b3h7goh8d2e5/Oi50_Of13_phase.gif?dl=0
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This can give rise to interference-induced density modulations in their spatially

overlapped region even when they are immiscible. In addition, the BECs during the

SDM can be located away from the band minima and approach qy = 0. For the two

dressed spin components with quasimomenta ±h̄qy, either increasing ΩF or decreasing

|qy| (towards 0) would increase 〈↑′ | ↓′〉 (Fig. 3.10a), giving rise to stronger interfer-

ence and more significant density modulations. Such increased non-orthogonality

between the two dressed spin states also notably increases the effective interspecies

interaction (g↑′↓′) to become even larger than the effective intraspecies interactions

(g↑′↑′ ≈ g↓′↓′) (Fig. 3.10b, c), enhancing further the immiscibility (Fig. 3.10d-f). For

example, Fig. 3.10d shows the calculated immiscibility metric (see subsections be-

low), η =
(
g2
↑′↓′ − g↑′↑′g↓′↓′

)
/g2
↑↑, versus h̄qy corresponding to Fig. 3.10b. Notice that

when Ω is large enough, |↑′〉 and |↓′〉 can become immiscible in the whole range of

quasimomentum that a BEC can access during the SDM. Fig. 3.10e shows η versus

Ω at various h̄qy. We see that as Ω becomes larger or qy becomes smaller, the two

dressed spin components can become more immiscible (i.e. η becomes more positive)

until η reaches the maximum value set by the upper bound of g↑′↓′ . Fig. 3.10f zooms

in the region of small Ω in Fig. 3.10e to focus on the sign change of η from negative

to positive, which indicates the miscible to immiscible transition. Note that the red

dot-dashed line (for qy = qσmin) corresponds to two dressed spin components located

respectively at the band minima qσmin, showing the well-known miscible to immisci-

ble transition around 0.2 Er for a stationary SO-coupled BEC. In the dynamical case

studied here, BECs can be located away from the band minima and approach qy = 0,

becoming immiscible even when Ω < 0.2 Er for small enough qy.

We have performed several additional control GPE simulations, showing that the

presence or the enhancement of any of these three factors can increase the damping

of the relative motion between two colliding BECs: (1) interference (Fig. 3.13 and

Movie 1 in section 3.7), (2) immiscibility (Fig. 3.12 and Table 1 in section 3.7), and

(3) interactions (Figs. 3.12, 3.14, 3.15, 3.16 and Table 3.1 in section 3.7), presumably

by distorting the BEC wavefunctions (see Movies 1-6 in section 3.7) irreversibly in
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the presence of interactions to decrease the CoM kinetic energy while increasing the

quantum pressure and the local current kinetic energy. Therefore, enhanced immis-

cibility, interference, and interactions can all increase the damping of the SDM. For

simulations in the absence of interactions, we do not observe irreversible damping

within the simulation time of 100 ms (Figs. 3.14, 3.15, 3.16 in section 3.7), suggesting

that the interactions play an essential role for the damping mechanisms.

The physical mechanisms and processes revealed in our work may provide insights

to understand spin transport in interacting SO-coupled systems. Our experiment

also provides an exemplary study of the evolution of a quantum many-body system,

including the generation and decay of collective excitations, following a non-adiabatic

parameter change (quench). Such quench dynamics has been of great interest to study

many outstanding questions in many-body quantum systems. For example, how such

a system, initially prepared in the ground state but driven out of equilibrium due

to a parameter quench that drives the system across a quantum phase transition,

would evolve to the new ground state or thermalize has attracted great interests

(see, e.g., a recent study where coherent inflationary dynamics has been observed for

BECs crossing a ferromagnetic quantum critical point [109]). In our case, the sudden

reduction of Ω in the Hamiltonian Eq. (3.1) excites the coherent spin current, whose

relaxation is strongly affected by SOC and is related to the SDM damping as well

as thermalization. Besides, the relaxation may be accompanied by the generation of

other collective excitations such as BEC shape oscillations. Furthermore, compared to

the bare case, the SOC-enhanced damping of the SDM notably reduces the collision-

induced thermalization of the BEC, resulting in a higher condensate fraction left in

the BEC. This condensate part exhibits a more rapid localization of its CoM motion,

which may be more effectively converted to other types of excitations (associated with

the SOC-enhanced distortion of the BEC wavefunctions). These features suggest that

SOC opens pathways for our interacting quantum system to evolve that are absent

without interactions, in our case providing new mechanisms for the spin current

relaxation. Experiments on SO-coupled BECs, where many parameters can be well
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controlled in real time and with the potential of adding other types of synthetic gauge

fields, may offer rich opportunities to study nonequilibrium quantum dynamics [110],

such as Kibble-Zurek physics while quenching through quantum phase transitions

[111], and superfluidity [63,77] in SO-coupled systems.

3.9 Note

The SDM measurements in a SO-coupled BEC were first performed by Robert

Niffenegger [112], a former graduate student in our lab. However, these earlier mea-

surements have many issues such as atom number calibration, trap frequency cali-

bration, and severe Raman laser induced heating (leading to notable generation of

thermal components not related to the SDM), which complicate the interpretations

of the results. My labmate David Blasing and I have redesigned and reconstructed

the experimental setup of the Raman laser. In particular, we have significantly re-

duced the Raman laser induced heating by adding an optical grating in the Raman

laser system for spectral cleaning, such that the lifetime of a BEC in the presence

of the Raman laser is improved from ≤ 30 ms (in those earlier measurements) to

hundreds of ms (in the work presented in this chapter and ref. [50]). Details and

characterization of our Raman laser have been addressed in subsection 1.2.2 in Chap-

ter 1. In addition, I have improved the experimental procedures (e.g. a long initial

state preparation to let the system equilibrate), and performed new and systematic

measurements (e.g. nearly identical atom number and condensate fraction prepared

at the beginning of SDM measurements at various Raman couplings) numerous times

along with many control experiments. These new improvements and measurements

are presented in this thesis and ref. [50].
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4. A BOSE-EINSTEIN CONDENSATE WITH

EMERGENT TOPOLOGICAL LATTICES ON A

SYNTHETIC HALL CYLINDER

Results presented in this chapter have been submitted for publication with a preprint

[113].

4.1 Introduction and motivation

Interplay between matter and fields in physical spaces with nontrivial geometries

is central to various disciplines such as general relativity and cosmology [114], photon-

ics [115, 116], and condensed matter [117]. It can give rise to intriguing phenomena

unattainable in planar spaces, ranging from superfluids carrying unusual vortices on

curved manifolds [118, 119] to degenerate many-body ground states on a quantum

Hall torus [120]. However, realizing such spaces is often impeded by experimental

challenges. For example, generating a net magnetic flux through the cylindrical sur-

face of a nanotube is difficult, even impossible for closed surfaces because magnetic

monopoles may not exist in nature. Highly controllable atomic systems [42, 62, 121]

hold promises to explore phenomena inaccessible in conventional systems. Here, we

realize a Bose-Einstein condensate (BEC) on a synthetic cylindrical surface, composed

of a real spatial dimension and a curved synthetic dimension formed by cyclically-

coupled atomic spin states, subject to a net radial synthetic magnetic flux. The BEC

on such a Hall cylinder develops symmetry-protected topological states absent in the

planar-space counterpart. We observe Bloch oscillations of the BEC with doubled

periodicity of the band structure, analogous to traveling on a Möbius strip in mo-

mentum space, reflecting band crossings protected by a nonsymmorphic symmetry

that underlines the emergent crystalline order in the BEC wavefunction. We further
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demonstrate such topological operations as gapping the band crossings and unzip-

ping the cylinder. Our work manifests emergence of topological states stemming

from manipulating the geometry of space, opening the door to engineering synthetic

gauge fields in spaces with a wide range of geometries and observing unprecedented

phenomena, such as intriguing topological states of matter, inherent to such spaces.

4.2 Experimental set-up for realizing a synthetic Hall cylinder

Engineering synthetic gauge fields [15, 62, 63] in atomic systems has opened the

possibility to deliver diverse synthetic quantum matter, such as artificial magnetic

monopoles [14, 122], and synthetic spin-orbit-coupled bosonic and fermionic atoms

[15, 63]. Utilizing synthetic dimensions [28, 41–46] has further offered a promising

route to realizing high-dimensional systems [49] and manipulating boundary condi-

tions. However, most experimental studies have been focusing on spaces with simple

geometries, such as one dimensional (1D) atomic wires [46], and atoms subject to

synthetic magnetic fields in 2D planar ladders/strips [47,48,74,123,124].

In our experiments, a 87Rb BEC is produced in an optical dipole trap [50]. As

shown in Fig. 4.1ab, four internal spin states, |F,mF 〉 = |2, 2〉 , |2, 1〉 , |1, 0〉 , |1, 1〉

relabeled as |1〉 , |2〉 , |3〉 , |4〉, form discrete sites in the synthetic dimension (the w

direction), where F (mF ) is the hyperfine spin (the magnetic quantum number).

Raman lasers along ±ŷ couple |1〉 and |2〉 as well as |3〉 and |4〉 with a strength

Ω. Photon recoil momentum h̄kr = 2πh̄/λ and recoil energy Er = h̄2k2
r /(2m) are

used respectively for units of momentum and energy, where λ is the Raman lasers’

wavelength, h̄ is the reduced Planck constant, and m is the mass of 87Rb. Two

microwave fields, with coupling strengths Ω1 and Ω2, couple respectively |2〉 and |3〉,

and |1〉 and |4〉. This setup delivers a cyclic coupling (a periodic boundary condition)

in the w direction (Fig. 4.1c). Differently from other cyclic couplings for creating

2D spin-orbit couplings [73, 125] and Yang monopoles [14], our scheme (Fig. 4.1bc)

connects two edges of a 2D planar Hall strip and thus synthesizes the y and the curved
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w dimension into a Hall cylinder, a cylindrical surface with a net radial synthetic

magnetic flux.

Fig. 4.1. Set-up for realizing a synthetic Hall cylinder. (a) We apply Raman lasers (at wave-
length λ ∼ 790 nm) with orthogonal linear polarizations (double-headed arrows) counter-propagating
along ŷ and microwaves (frequency ≈ 6.8 GHz, from a microwave horn) propagating in the x−y plane
to a BEC (typical atom number ∼ (1 − 2) × 104). Gravity “g” is towards −ŷ. (b) Hyperfine spin
states (indicated by different colors) |1〉, |2〉, |3〉, and |4〉 as discrete sites in the synthetic dimension ŵ
are cyclically-coupled by Raman coupling Ω and microwave couplings Ω1,2 to form a closed circle, as
drawn in (c). Linear Zeeman splitting h̄ωZ ≈ h̄∆ωR ≈ h× (3.5 MHz) is generated by a bias magnetic
field, where ∆ωR is the Raman lasers’ angular frequency difference. The quadratic Zeeman shift is
ε0 ≈ 2.4 Er. (c) Connecting the two edges along ŵ of a 2D planar Hall strip (left) gives rise to a
cylindrical surface (right) subject to a net radial synthetic magnetic flux (thick yellow arrows) with
a non-uniform distribution of the magnetic field (indicated by shaded regions). The half magnetic
flux quantum per unit plaquette (highlighted area in shaded regions) formed by four maxima of the
density modulation corresponds to an Aharonov-Bohm phase of π. For a BEC at qy = 0 in the ground
band of Fig. 4.2b, the emergent BEC density modulation along ŷ has a periodicity of d/2, half the
period (d) of the Hamiltonian H. The phase (with + and − representing respectively a phase 0 and
π at positions of maximum density) of each spin component’s wavefunction has a periodicity of either
d or d/2.
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4.3 The single-particle Hamiltonian H for the synthetic Hall cylinder

An atom at location y hopping along ±ŵ obtains a net momentum of h̄K along

±ŷ, acquiring a Raman laser-imprinted y-dependent phase factor, e±iKy (see subsec-

tions below), where K = 2kr. For shaded regions in Fig. 4.1c, the phase acquired

by an atom after traveling around an area of ∆y times one unit length along ŵ is

±K∆y, analogous to the Aharonov-Bohm (AB) phase acquired by charged particles

in a magnetic field, and thus corresponds to an artificial magnetic flux (thick yellow

arrows) [41,47,48,126,127].

Since the transverse x and z directions are decoupled from the cylinder, the single-

particle Hamiltonian describing the couplings in Fig. 4.1b and the motion along ŷ is

written in the basis of {|1〉 , |2〉 , |3〉 , |4〉} as (see subsections below)

H =
p̂2
y

2m
I +


0 Ω

2
eiKy 0 Ω2

2

Ω∗

2
e−iKy ε0

Ω1

2
0

0
Ω∗1
2

ε0
Ω
2
eiKy

Ω∗2
2

0 Ω∗

2
e−iKy 0

 , (4.1)

where p̂y = −ih̄ ∂
∂y

, I is the identity matrix, and ε0 is the quadratic Zeeman shift. Here,

the Raman-induced y-dependent phase factor, e±iKy, cannot be gauged away due to

our implemented periodic boundary condition, unlike open boundary conditions such

as when Ω2 = 0 (see subsections below). This makes H periodic with a period of

d = 2π/K = π/kr. H also has a nonsymmorphic symmetry: a translation of d/2 along

ŷ followed by a unitary transformation along ŵ, |1〉 → |1〉, |2〉 → − |2〉, |3〉 → −|3〉,

|4〉 → |4〉. A BEC on this Hall cylinder develops a crystalline order in its wavefunction

with an underlying nonsymmorphic symmetry, as sketched in Fig. 4.1c. The density

modulation along ŷ has a period of d/2 (half the period of H) while the phase of

each spin component modulates with a period of either d or d/2. Thus, an effective

magnetic flux Φ/Φ0 = (Kd/2)/(2π) = 1/2 pierces a plaquette formed by four maxima

of the density modulation in shaded regions in Fig. 4.1c, where Φ0 = 2πh̄/e is the

magnetic flux quantum, q ≡ −e (e is the elementary charge) is defined as the effective
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charge of a particle. In addition, a periodic band structure emerges, possessing band

crossings that are manifestation of and protected by the underlying nonsymmorphic

symmetry. Such band crossings play important roles in topological quantum matter

such as topological semimetals [121,128,129], because their existence is topologically

robust against perturbations respecting the symmetry, such as deformations of the

cylindrical surface (i.e. variations of parameters in Equation (4.1)) here.

Unlike previous works using external optical lattices [41, 47, 48, 130], here, the

emergent crystalline order results from “curving” a 2D planar Hall strip to a Hall

cylinder. As shown later, the emergent crystalline order and the corresponding topo-

logical band structure vanish on an “unzipped” cylinder (i.e. a planar Hall strip) when

imposing an open boundary condition along ŵ by turning off Ω2. The net magnetic

flux threading the cylindrical surface is also essential for the phenomena studied here,

which would otherwise disappear without a net threaded flux (see subsections below).

4.3.1 Derivation of the single-particle Hamiltonians H and Hqy

In the following, we derive the single-particle Hamiltonian for the cylindrical sur-

face with a nonsymmorphic symmetry: the Hamiltonian H (used for Fig. 4.1c and

relevant calculations shown below) and the corresponding momentum-space Hamil-

tonian Hqy (used for Fig. 4.2). Both H and Hqy take into account Ω and Ω1,2.

We relabel the spin states |2, 2〉 =
∣∣1̃〉, |2, 1〉 =

∣∣2̃〉, |1, 0〉 =
∣∣3̃〉, and |1, 1〉 =∣∣4̃〉 (where tilde refers to a non-rotating frame, as explained below), with respective

energies E1, E2, E3, and E4. Counter-propagating Raman lasers along ±ŷ with an

angular frequency difference ∆ωR couple
∣∣1̃〉 and

∣∣2̃〉, and
∣∣3̃〉 and

∣∣4̃〉, with a coupling

strength Ω. Two microwaves with angular frequencies ω1 and ω2 couple
∣∣2̃〉 and

∣∣3̃〉,
and

∣∣1̃〉 and
∣∣4̃〉, with respective coupling strengths Ω1 and Ω2. Utilizing F = 1 and

F = 2 (hyperfine) manifolds makes a cyclic coupling in the w direction possible, since

doing this within only the F = 1 manifold would be difficult due to the extremely

weak two-photon Raman transition of ∆mF = ±2 in alkali atoms. In Fig. 4.1b, we



104

define E3 − E4 = h̄ωZ + ε0 and E1 − E2 = h̄ωZ − ε0, where h̄ωZ is the linear Zeeman

splitting and ε0 is the quadratic Zeeman shift. In our experiments, ε0 ∼ 2.4 Er, given

by the applied bias magnetic field (∼ 5 gauss). We define the Raman laser detuning

δR = (2h̄∆ωR − (E3 − E4)− (E1 − E2))/2 = h̄(∆ωR − ωZ), the microwave detunings

δ1 = h̄ω1 − (E2 − E3) and δ2 = h̄ω2 − (E1 − E4).

In this work, we focus on the atomic motion along ŷ and write the free atomic

Hamiltonian as:

H̃free =
p̂2
y

2m
I + E1

∣∣1̃〉 〈1̃∣∣+ E2

∣∣2̃〉 〈2̃∣∣+ E3

∣∣3̃〉 〈3̃∣∣+ E4

∣∣4̃〉 〈4̃∣∣ , (4.2)

where I is the identity matrix and p̂y = −ih̄ ∂
∂y

is the momentum operator along ŷ.

In the rotating wave approximation, the Hamiltonians describing the Raman and

microwave couplings are respectively written as (assuming the initial phases of these

coupling fields are zero):

H̃Raman =
Ω

2
ei(Ky−∆)(

∣∣1̃〉 〈2̃∣∣+
∣∣3̃〉 〈4̃∣∣) + h.c. (4.3)

H̃1 =
Ω1

2
e−iω1t(

∣∣2̃〉 〈3̃∣∣) + h.c. (4.4)

H̃2 =
Ω2

2
e−iω2t(

∣∣1̃〉 〈4̃∣∣) + h.c. (4.5)

where K = 2kr and h.c. stands for Hermitian conjugate. We choose a rotating frame

defined by the following unitary transformations to eliminate the time-dependent

terms in Eqs. (4.3-4.5):∣∣1̃〉 = ei∆ |1〉 ei
ω1
2
t,
∣∣2̃〉 = ei

ω1
2
t |2〉 , (4.6)∣∣3̃〉 = e−i

ω1
2
t |3〉 ,

∣∣4̃〉 = e−i∆ |4〉 e−i
ω1
2
t.

In such a rotating frame (without tilde),

Hfree =
p̂2
y

2m
I + (E1 − h̄∆ωR −

h̄ω1

2
) |1〉 〈1|+ (E2 −

h̄ω1

2
) |2〉 〈2|

+(E3 +
h̄ω1

2
) |3〉 〈3|+ (E4 + h̄∆ωR +

h̄ω1

2
) |4〉 〈4|

(4.7)
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HRaman =
Ω

2
ei(Ky)(|1〉 〈2|+ |3〉 〈4|) + h.c. (4.8)

H1 =
Ω1

2
(|2〉 〈3|) + h.c. (4.9)

H2 =
Ω2

2
e−iω2tei2∆ωRteiω1t(|1〉 〈4|) + h.c. (4.10)

where HRaman and H1 become time-independent. By further requiring

ω2 = 2∆ωR + ω1, (4.11)

Eq. (4.10) becomes H2 = Ω2

2
(|1〉 〈4|)+h.c., which is also time-independent. Eq. (4.11)

is called the resonance condition for the cyclic coupling. This resonance condition, as

depicted in Fig. 4.1b, is realized during our whole experiment.

Therefore, in the rotating frame defined by Eq. (4.6) and when the resonance

condition in Eq. (4.11) is fulfilled, H = Hfree +HRaman +H1 +H2 is time-independent

and can be written in the basis of {|1〉 , |2〉 , |3〉 , |4〉} as:

H =
p̂2
y

2m
I +


E1 − h̄∆ωR − h̄ω1

2
Ω
2
ei(Ky) 0 Ω2

2

Ω∗

2
e−i(Ky) E2 − h̄ω1

2
Ω1

2
0

0
Ω∗1
2

E3 + h̄ω1

2
Ω
2
ei(Ky)

Ω∗2
2

0 Ω∗

2
e−i(Ky) E4 + h̄∆ωR + h̄ω1

2

.

(4.12)

From the above equation, we see that the Raman transition corresponds to the

y-dependent phase factor, e±iKy, while a microwave transition does not lead to a

position-dependent phase change. Redefining all energies such that E3 + h̄ω1/2 = ε0

and using the definitions of ε0, δR, δ1, δ2, and the resonance condition in Eq. (4.11),

we obtain

δ1 + 2δR = δ2 (4.13)
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and rewrite Eq. (4.12) as

H =
p̂2
y

2m
I +


−δR − δ1

2
Ω
2
ei(Ky) 0 Ω2

2

Ω∗

2
e−i(Ky) ε0 − δ1

2
Ω1

2
0

0
Ω∗1
2

ε0 + δ1
2

Ω
2
ei(Ky)

Ω∗2
2

0 Ω∗

2
e−i(Ky) δR + δ1

2

 . (4.14)

This equation includes Raman and microwave detunings, which can be nonzero during

the initial preparation process as discussed below. After the initial preparation, we

achieve δR = δ1 = δ2 = 0 and thus Eq. (1) and Fig. 4.1b do not carry such detunings.

To calculate the band structures, we derive the momentum-space Hamiltonian Hqy by

considering the coupling scheme in Fig. 4.2a. The spin and mechanical momentum

states comprise a plane wave basis, denoted by

{|h̄(qy + nK);m〉} = {ei(qy+nK)y |m〉}, (4.15)

where h̄(qy + nK) is the mechanical momentum, m = 1, 2, 3, 4 labels the spin, h̄qy is

the quasimomentum, and n is an integer. Then, Hqy reads

Hqy =



. . .
...

...
...

...
...

...

. . . A−2 B 0 0 0 . . .

. . . B† A−1 B 0 0 . . .

. . . 0 B† A0 B 0 . . .

. . . 0 0 B† A1 B . . .

. . . 0 0 0 B† A2 . . .
...

...
...

...
...

...
. . .


, (4.16)

where An matrices are on the diagonal of Hqy . Each An is a 4 by 4 matrix written in

the basis of {|h̄(qy + nK);m〉}, where the four spin states have the same mechanical
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momentum (i.e., same n). Thus, An only includes microwave couplings. When all

the detunings are zero, we obtain

An =


h̄2

2m
(qy + nK)2 0 0 Ω2

2

0 h̄2

2m
(qy + nK)2 + ε0

Ω1

2
0

0
Ω∗1
2

h̄2

2m
(qy + nK)2 + ε0 0

Ω∗2
2

0 0 h̄2

2m
(qy + nK)2

. (4.17)

B is a 4 by 4 matrix accounting for the Raman coupling between adjacent An matrices:

B =


0 0 0 0

Ω/2 0 0 0

0 0 0 0

0 0 Ω/2 0

 . (4.18)

4.3.2 Symmetries of the Hamiltonian H

In this subsection, the calculation is performed by Yangqian Yan. For δR =

δ1 = δ2 = 0, the Hamiltonian H in Eq. (4.14) is invariant under a generalized in-

version symmetry, i.e., a spatial inversion (y → −y) followed by the spin inversion

(|1〉 , |2〉 , |3〉 , |4〉 → |4〉 , |3〉 , |2〉 , |1〉). This generalized inversion symmetry guaranties

that the energy spectrum E(qy) is symmetric with respect to qy, i.e.,

E(qy) = E(−qy). (4.19)

The Hamiltonian H is also invariant under a nonsymmorphic symmetry, which

comprises a translational operation Ĝ = e−ip̂d/(2h̄) (d = 2π/λ) followed by a unitary

transformation Û given by

Û =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1

 . (4.20)

That is, ÛĜHĜ−1Û−1 = H. Defining the nonsymmorphic symmetry operator Ŝ =

ÛĜ, we readily obtain [Ŝ, H] = 0, which implies that Ŝ and H share the same set
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of eigenstates. The physical meanings of Û and Ĝ are explained below. First, the

translational operator Ĝ can be understood as shifting the entire y coordinate to

y + d/2 by half the period (d) of H. Applying Ĝ to H, i.e. ĜHĜ−1, the matrix

elements 〈1|H|2〉, 〈2|H|1〉, 〈3|H|4〉, and 〈4|H|3〉 flip their sign. Second, the unitary

transformation Û can be understood as flipping the sign of the second and third spin

states. Applying Û to ĜHĜ−1, i.e. ÛĜHĜ−1Û−1, the matrix elements 〈1|ĜHĜ−1|2〉,

〈2|ĜHĜ−1|1〉, 〈3|ĜHĜ−1|4〉, and 〈4|ĜHĜ−1|3〉 flip their sign. The Hamiltonian after

these two symmetry operations (Û and Ĝ) thus returns to the original Hamiltonian

H.

Ŝ2(= Ĝ2) is a translational operator corresponding to a shift of d in the y co-

ordinate, such that [Ŝ2, H] = 0. Therefore, the Hamiltonian H is invariant after a

shift of d in y, a discrete translational symmetry. The eigenvalues of H thus have

a periodicity of d in y. The eigenwavefunctions of H can be written in the form

of Bloch waves, eiqyyw(y), where w(y) has a period of d. Since the nonsymmorphic

symmetry operator Ŝ and the Hamiltonian H share the same set of eigenstates, we

can construct the eigenstates of H (and Ŝ) in the following two types (in the form of

Bloch waves) by considering the physical meanings of Ŝ mentioned above:

ψp(qy) = eiqyy(u1(y) |1〉+ u2(y) |2〉+ u3(y) |3〉+ u4(y) |4〉) (4.21)

ψm(qy) = eiqyy(v1(y) |1〉+ v2(y) |2〉+ v3(y) |3〉+ v4(y) |4〉), (4.22)

where

u1(y + d/2)− u1(y) = u2(y + d/2) + u2(y) (4.23)

= u3(y + d/2) + u3(y) = u4(y + d/2)− u4(y) = 0

v1(y + d/2) + v1(y) = v2(y + d/2)− v2(y) (4.24)

= v3(y + d/2)− v3(y) = v4(y + d/2) + v4(y) = 0.

Applying Ŝ to Eqs. (4.21, 4.22), one can verify that ψp and ψm are eigenfunctions

of Ŝ with the corresponding eigenvalues ±eiqyd/2. With Eqs. (4.23, 4.24), we also see

that ψp(qy) and ψm(qy) are still Bloch waves labeled by qy.
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Consider two sets of eigenfunctions {ψp(qy), ψm(qy)} and {ψp(qy + K), ψm(qy +

K)}. Their corresponding eigenvalues of the operator Ŝ are {eiqyd/2,−eiqyd/2} and

{−eiqyd/2, eiqyd/2}. Thus, one obtains ψp(qy) = ψm(qy +K) and ψm(qy) = ψp(qy +K).

This suggests two properties associated with the nonsymmorphic symmetry: (1) both

ψp(qy) and ψm(qy) have a periodicity of 2K in qy, and (2) ψp(qy) and ψm(qy) are offset

from each other by K in qy. Denote the corresponding eigenenergies (eigenvalues of

H) for ψp(qy) and ψm(qy) as Ep and Em, the energy spectrum also possesses properties

associated with the nonsymmorphic symmetry and corresponding to properties (1)

and (2) above. Corresponding to (1), we have

Ep(qy) = Em(qy +K). (4.25)

This suggests that the band structure has crossing points at some qy. Recall that the

Hamiltonian H with δR = δ1 = δ2 = 0 possesses a generalized inversion symmetry in

Eq. (4.19). Given the relations in Eq. (4.19) and Eq. (4.25), we obtain

Ep(qy) = Em(−qy +K). (4.26)

Consequently, for qy = (2n + 1)K/2 where n is an integer, Ep is equal to Em, cor-

responding to a degenerate point (band crossing) in the band structure. Such a

degeneracy at qy = (2n + 1)K/2 is protected by the nonsymmorphic symmetry and

the generalized inversion symmetry. If any of δR, δ1, δ2 is nonzero, the generalized

inversion symmetry is broken while the nonsymmorphic symmetry is retained, the

two branches still cross but at qy 6= (2n+ 1)K/2.

Furthermore, the two independent branches in the spin-mechanical momentum

coupling scheme in Fig. 4.2a implies that the plane wave basis {|h̄(qy + nK);m〉} in

Eq. (4.15) can also be decomposed into two subsets based on the nonsymmorphic

symmetry. These two branches can be written in the following form:

φp(qy) =
∑
n

(c1,n |qy + 2nK; 1〉+ c2,n |qy + 2nK +K; 2〉 (4.27)

+c3,n |qy + 2nK +K; 3〉+ c4,n |qy + 2nK; 4〉)
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and

φm(qy) =
∑
n

(d1,n |qy + 2nK +K; 1〉+ d2,n |qy + 2nK; 2〉 (4.28)

+d3,n |qy + 2nK; 3〉+ d4,n |qy + 2nK +K; 4〉).

Equating Eqs. (4.27, 4.28) with Eqs. (4.21, 4.22) respectively, the coefficients in the

above equations satisfy∑
n

c1,ne
i2nKy = u1(y),

∑
n

c2,ne
i(2nK+K)y = u2(y), (4.29)

∑
n

c3,ne
i(2nK+K)y = u3(y),

∑
n

c4,ne
i2nKy = u4(y),

and ∑
n

d1,ne
i(2nK+K)y = v1(y),

∑
n

d2,ne
i2nKy = v2(y), (4.30)

∑
n

d3,ne
i2nKy = v3(y),

∑
n

d4,ne
i(2nK+K)y = v4(y).

From Eqs. (4.27, 4.28), we readily see that φp(qy) and φm(qy + K) are identical if

one equates d1,n with c1,n+1, d4,n with c4,n+1, d2,n with c2,n, and d3,n with c3,n. Thus,

Eqs. (4.27, 4.28) respectively correspond to the band 1 and band 2, providing another

way to understand band crossings due to the nonsymmorphic symmetry.

4.4 Quantum transport on a symmetry-protected Möbius strip in mo-

mentum space

To gain further insights, Fig. 4.2a illustrates the Hamiltonian in the momentum

space (see Hqy in subsections below). Two independent branches, Hi=1,2(qy) (line-

connected solid/dashed circles), satisfy Hi(qy) = Hi(qy +n×2K), thus corresponding

to a d/2 periodicity of the real-space density modulation, where h̄qy is the quasi-

momentum, h̄ky = h̄(qy ± nK) is the mechanical momentum, and n is an integer.

Besides, these two branches are offset from each other by h̄K. Therefore, two sets of

Bloch bands E1(qy) and E2(qy) also satisfy E1(qy) = E2(qy +K) and intersect at the
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boundary of the first Brillouin zone (qy = ±π/d = ±K/2) when E(qy) = E(−qy) is

fulfilled (see subsections below).

To probe the band structure, we perform spin-resolved quantum transport mea-

surements, using Bloch oscillations of a BEC initially prepared (see subsections below)

at qy = 0 in either band 1 or band 2 (Fig. 4.2b). After the initial preparation, the

dipole trap is abruptly turned off at thold = 0, allowing atoms to fall under gravity

(towards −ŷ, Fig. 4.1a) for various time thold, during which the Raman and microwave

couplings remain at the final values. The gravity thus induces transport of the BEC

towards negative qy (Fig. 4.2b) for various thold. Such a procedure is used for all

transport measurement presented later. During Bloch oscillations, BEC’s total me-

chanical momentum along ŷ, h̄kBEC, and spin compositions respectively probe the

slope (group velocity) [131] and spin texture of the Bloch band, unveiling the band

structure. After various thold, we immediately turn off all coupling fields to release the

atoms for a 15-ms time-of-flight (TOF) including a 9-ms spin-resolved Stern-Gerlach

process, and then perform absorption imaging. These TOF images disclose the spin

and mechanical momentum compositions of the BEC at various thold and the cor-

responding qy. We obtain h̄kBEC by summing over population-weighted mechanical

momentum components along ŷ (see subsections below).
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Fig. 4.2. Band structure with a nonsymmorphic symmetry and observed Bloch os-
cillations. (a) Laser and microwave induced couplings between a series of spin and mechanical
momentum states form two independent branches (marked by solid/dashed circles) offset from each
other by h̄K = 2h̄kr, manifesting the underlying nonsymmorphic symmetry. (b) Calculated band
structure using Ω = 2.3, Ω1 = 2.5, Ω2 = 3.4, δR = 0, and ε0 = 2.4, all in units of Er. The spin
texture is revealed by colors determined by the population-weighted colors of the four spin states (see
subsections below). The first Brillouin zone is between the dashed lines. The BEC initially prepared
at h̄qy = 0 (dashed circles) in either band 1 or band 2 undergoes gravity-induced transport (indicated
by arrows) and Bloch oscillations for various thold. (c-d) TOF images showing spin and mechanical
momentum compositions of the BEC taken at various thold and the corresponding qy , respectively
for the initial preparation in band 1 and band 2. The quasimomentum of the BEC at thold can be
measured by the displacement of the mechanical momentum components of, say |1〉 and |4〉, at thold
relative to those at thold = 0 (qy = 0). Each TOF image (and the associated analyzed quantities
presented later) is typically an average of a few repetitive measurements. (e-f) Total mechanical mo-
mentum of the BEC versus thold and quasimomentum, respectively. The qy in (f) is plotted modulo
2K (i.e., qy is equivalent to qy±n×2K), only between −K and K for both band 1 and band 2 due to
their 2K periodicity in qy . This 2h̄K periodicity is also reflected by the observed 2h̄K separation be-
tween different mechanical momentum components for each spin state in (c, d). (g-h) Fractional spin
populations versus thold. In (e-h), solid lines are single-particle calculations using the same parameters
as used in (b) and the average of the measured d(h̄qy)/d(thold) (see subsections below).

TOF images shown in Fig. 4.2cd and their corresponding analyzed data (dots

in Fig. 4.2e-h) are labeled by either band 1 or band 2 (indicating different initial
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preparations). Fig. 4.2e and Fig. 4.2f respectively show h̄kBEC versus thold and versus

quasimomentum. Spin populations in |1〉 and |4〉, and in |2〉 and |3〉, versus thold

are shown in Fig. 4.2gh. TOF images in Fig. 4.2cd show reoccurrence of spin and

momentum compositions of the BEC with a period of 2h̄K in quasimomentum (or

a period of ∼ 2.6 ms in time), consistent with the 2h̄K periodicity demonstrated

in Fig. 4.2f. Thus, Bloch oscillations possess twice the h̄K periodicity of the band

structure (Fig. 4.2b). This is analogous to traveling on a Möbius strip in momentum

space: atoms have to travel twice the period of the band structure to reach the

same quantum state (up to a phase). Such a 2h̄K periodicity of Bloch oscillations

is consistent with the d/2 periodicity of the density modulation. TOF images in

Fig. 4.2c are also consistent with those in Fig. 4.2d with an offset by ∼ 1.3 ms or

∼ K. Such offsets are demonstrated as out-of-phase Bloch oscillations shown in

Fig. 4.2e-h. These transport phenomena unveil band crossings: atoms traveling to

band touching points undergo a diabatic transition from the ground band to the first

excited band.

We have solved the time-dependent 3D Gross-Pitaevskii (GP) equation to simulate

both the initial preparation and Bloch oscillations using similar experimental param-

eters including the present inter-particle interactions (see subsections below). The

simulated loading process achieves an initial state 96% overlapped with the ground

state. The GP numerical results for Fig. 4.2e-h agree well with the non-interacting

theoretical results.

4.4.1 Importance of the synthetic magnetic flux threading the cylinder

A net magnetic flux threading the cylinder is key to many phenomena emerging on

the Hall cylinder, such as the emergent BEC crystalline order and the corresponding

band structure with their underlying nonsymmorphic symmetry. These phenomena

would otherwise disappear in the absence of the net threaded flux. To understand this,

for example, one can realize a periodic boundary condition by replacing the Raman
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coupling in Fig. 4.1b with an RF coupling, which does not change the momentum

of an atom. Consequently, such a cyclic coupling gives rise to a cylinder with zero

magnetic flux everywhere on the cylindrical surface. The Hamiltonian for this case

is similar to H but without the y-dependent phase factors, i.e. e±iKy = 1. Thus,

one obtains the trivial dispersion relation of a free atom and the two independent

branches in Fig. 4.2a disappear. Consequently, those new phenomena mentioned

above disappear. Interestingly, one may realize another periodic boundary condition

by replacing the two identical Raman couplings (coming from the same pair of Raman

laser) in Fig. 4.1b with two independent Raman couplings (from two different pairs of

Raman lasers) such that the corresponding phase factor in H3,4 (H4,3) that describes

the coupling between |3〉 and |4〉 becomes e−iKy (eiKy) rather than eiKy (e−iKy) as in

current Eq. (1). In such a case, a cylinder is penetrated by magnetic fluxes, but the

net threaded magnetic flux is zero, and one can show that those new phenomena also

disappear because such y-dependent phase factors in the Hamiltonian can be gauged

away. This again emphasizes the importance of the net threaded magnetic flux for

those new phenomena.

4.4.2 Calculations of BEC wavefunctions in the real space

For the cylinder with a nonsymmorphic symmetry in Fig. 4.1c

We solve the Hamiltonians Hqy or H ′qy to obtain the probability amplitude (b
qy
n,m)

of the constituent plane waves of the form, b
qy
n,mei(qy+nK)y |m〉, whose superposition

gives the BEC wavefunction in the real space. From the BEC wavefunction, we

obtain the variations of the density and phase in the real space for each spin state.

For example, density and phase are illustrated in Fig. 4.1c and Fig. 4.5b for a BEC

at qy = 0 and δR = δ1 = δ2 = 0 (both are used for all the calculations in this section)

in the ground band in Fig. 4.2b and Fig. 4.5c, respectively. In addition to the results

for the ground band, here we also perform calculations for a BEC in the first excited

band in Fig. 4.2b and Fig. 4.5c.
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Regarding Fig. 4.1c, we perform calculations using Ω = 2.3 Er, Ω1 = 2.5 Er,

Ω2 = 3.4 Er, and ε0 = 2.4 Er, the same parameters as used in Fig. 4.2b. The

calculated density and phase in the real space for each spin state are shown in Fig. 4.3a

and Fig. 4.3b for a BEC in the ground and the first excited bands, respectively. The

red line, green dashed line, blue circles and black squares respectively correspond to

spin states |1〉, |2〉, |3〉, and |4〉.
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Fig. 4.3. Density and phase versus y for each spin state, corre-
sponding to the Hamiltonian H. Calculations are performed for a
BEC at qy = 0 in Fig. 4.2b, (a) for the ground band, and (b) for the
first excited band. The red line, green dashed line, blue circles, and black
squares correspond to the spin states |1〉, |2〉, |3〉, and |4〉, respectively.
The plotted density of the spin component i, ρi, is normalized by the
condition

∑
i

∫ 1

0
ρid(y/d) = 1 (also used for Fig. 4.4). The calculation is

performed by Yangqian Yan.
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For the cylinder with a broken nonsymmorphic symmetry in Fig. 4.5b

The following calculations are important to understand the results in Fig. 4.5 as

shown later. Here we show the calculated results in order to compare them with the

results shown in section 4.4.2 above.

The BEC wavefunction corresponding to Fig. 4.3a(b) can be described by φp(qy =

0) (φm(qy = 0)) in Eq. (4.27) (Eq. (4.28)), an eigenfunction of the Ŝ operator with an

eigenvalue of eiqyd/2 = 1 (−eiqyd/2 = −1). Due to the nonsymmorphic symmetry, we

find that (1) The calculated density of each spin state has a periodicity of d/2. (2)

For the ground band, the phase of spin states |1〉 and |4〉 (|2〉 and |3〉) have a period

of d/2 (d). For the first excited band, the phase of spin states |1〉 and |4〉 (|2〉 and |3〉)

have a period of d (d/2). In general, for qy 6= 0, the phase of two spin states would

have a periodicity of d while the phase of the other two would have a periodicity of

d/2, because a nonzero qy would only introduce an overall phase factor to the spin

states at qy = 0.

An additional RF coupling between spin states |1〉 and |2〉, and |3〉 and |4〉 breaks

the nonsymmorphic symmetry. In this case, the calculated spin density and phase in

the real space are shown in Fig. 4.4ab respectively for a BEC in the ground and the

first excited bands in Fig. 4.5c. The periodicity of the density and phase for each spin

state is identical to the periodicity of the Hamiltonian H ′. The maximum density

of the ground state sits at y = ±nd, where n is an integer, because of the s-wave

nature of the ground state. For the first excited state, the maximum density of the

spin states |1〉 and |4〉 sits at y = ±(2n + 1)d/2 rather than y = ±nd. In addition,

there is also local peak density appearing at y = ±nd.
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Fig. 4.4. Density and phase versus y for each spin state, corre-
sponding to the Hamiltonian H ′. Calculations are performed for a
BEC at qy = 0 in Fig. 4.5c, (a) for the ground band, and (b) for the
first excited band. The red line, green dashed line, blue circles, and black
squares correspond to the spin states |1〉, |2〉, |3〉, and |4〉, respectively.
The calculation is performed by Yangqian Yan.

4.5 Quantum transport on a regular strip in momentum space

The demonstrated “momentum-space Möbius strip” is topologically protected by

the nonsymmorphic symmetry, as band crossings remain under perturbations re-

specting this symmetry. We introduce a symmetry-breaking perturbation, a radio

frequency (RF) wave (with an angular frequency identical to ∆ωR), to couple |1〉 and

|2〉 as well as |3〉 and |4〉 (Fig. 4.5ab). The new Hamiltonian, H ′ (see subsections be-
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low), does not have the nonsymmorphic symmetry but still has identical d periodicity

as H. The two branches in Fig. 4.2a now merge into one that has a h̄K periodicity

(Fig. 4.5a) and band gaps open (Fig. 4.5c) at crossing points in Fig. 4.2b. We probe

this new band structure using the same transport measurement. Fig. 4.5d presents

TOF images at various thold and the corresponding qy, with the analyzed data (dots)

for h̄kBEC versus thold and versus quasimomentum respectively shown in Fig. 4.5e and

Fig. 4.5f. Fig. 4.5d-f shows that Bloch oscillations in this case have a period of ∼ 1.3

ms or h̄K (identical to the band structure’s period), half the period of those observed

in Fig. 4.2. Thus, the symmetry-breaking perturbation has effectively performed a

topology-change operation of “untwisting” the Möbius strip in momentum space.
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Fig. 4.5. Breaking the nonsymmorphic symmetry and effects on observed
Bloch oscillations. (a) RF coupling (wiggling lines) merges the two independent
branches in Fig. 4.2b, breaking the nonsymmorphic symmetry. (b) A cylinder with
a broken nonsymmorphic symmetry, described by the Hamiltonian H ′. For a BEC
prepared at qy = 0 in the ground band in (c), both the wavefunction’s phase (indicated
by + and −) and the density modulation have a periodicity of d, identical to the period
of the Hamiltonian H ′. (c) Calculated band structure using the same parameters as
used in Fig. 4.2b with the addition of an RF coupling ΩRF = 1.6 Er, leading to gaps
opened at the band crossings in Fig. 4.2b. (d) TOF images at various thold for Bloch
oscillations of a BEC starting from qy = 0 (dashed circle in (c)). (e-f) Total mechanical
momentum of the BEC versus thold and quasimomentum, respectively. The measured
Bloch oscillations exhibit a periodicity of h̄K rather than the 2h̄K observed in Fig. 4.2.
qy becomes equivalent to qy±nK. This h̄K periodicity is also reflected by the observed
h̄K separation between different mechanical momentum components for each spin state
in (d). Data in (f) correspond to the data in the first 1.5 ms in (e) before the Bloch
oscillations exhibit notable damping. Solid lines in (e, f) are single-particle calculations
using the same parameters as used in (c).
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4.5.1 Derivation of the Hamiltonians H ′ and H ′qy

In the following, we derive the single-particle Hamiltonian for the cylinder without

a nonsymmorphic symmetry: the Hamiltonian H ′ and the corresponding momentum-

space Hamiltonian H ′qy (used for Fig. 4.5). Both take into account Ω, Ω1,2, and ΩRF.

H ′ can be obtained by adding the RF coupling ΩRF to H. Since ΩRF couples |1〉

and |2〉, and |3〉 and |4〉, we obtain

H ′ =
p̂2
y

2m
I +


−δR

ΩRF

2
+ Ω

2
ei(Ky) 0 Ω2

2

Ω∗RF

2
+ Ω∗

2
e−i(Ky) ε0

Ω1

2
0

0
Ω∗1
2

ε0
ΩRF

2
+ Ω

2
ei(Ky)

Ω∗2
2

0
Ω∗RF

2
+ Ω∗

2
e−i(Ky) δR

.

(4.31)

Since RF waves only couple spin states that have the same mechanical momentum,

H ′qy would have the same form as Eq. (4.16) but with a modified An denoted by A′n:

A′n =


h̄2

2m
(q + nK)2 ΩRF

2
0 Ω2

2

Ω∗RF

2
h̄2

2m
(q + nK)2 + ε0

Ω1

2
0

0
Ω∗1
2

h̄2

2m
(q + nK)2 + ε0

ΩRF

2

Ω∗2
2

0
Ω∗RF

2
h̄2

2m
(q + nK)2

. (4.32)

4.6 Unzipping the Hall cylinder into a planar Hall strip

Lastly, we demonstrate another topological operation by unzipping the Hall cylin-

der into a 2D planar Hall strip. We keep Ω and Ω1 and remove Ω2 in Fig. 4.1b,

effectively imposing an open boundary condition along ŵ (Fig. 4.6a). This leads

to a strip pierced by the same magnetic flux as for the cylinder. Nonetheless, the

Raman-imprinted phase factor e±iKy can now be gauged away (see subsections be-

low), resulting in a non-periodic single-particle dispersion (Fig. 4.6b) which is then

probed by the transport measurement. Fig. 4.6c presents TOF images at various thold
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and the corresponding qy, with analyzed data (dots) for h̄kBEC versus thold shown in

Fig. 4.6d and spin populations versus thold shown in Fig. 4.6e. In this case, h̄kBEC

keeps increasing due to the gravity. The BEC is initially dominated by |4〉 but be-

comes dominated by |1〉 at later times (Fig. 4.6c).

Fig. 4.6. Unzipping the cylinder by breaking the cyclic coupling.
(a) In the synthetic space, the unzipped Hall cylinder becomes a 2D planar
Hall strip. (b) Dispersion relation calculated for Ω2 = 0, while keeping
the other parameters the same as used in Fig. 4.2b. The BEC is initially
prepared at qy ≈ K, marked by the dashed circle. (c) TOF images at
various thold and the corresponding quasimomentum for a BEC traveling
towards negative qy in the lowest band. (d) Total mechanical momentum
of the BEC versus thold. (e) Fractional spin populations versus thold. Solid
lines in (d, e) are single-particle calculations using the same parameters
as used in (b).
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4.6.1 Derivation of the Hamiltonian Hunzip

In the following, we derive the single-particle Hamiltonian for the unzipped cylin-

der: the momentum-space Hamiltonian Hunzip (used for Fig. 4.6), which takes into

account Ω and Ω1.

For Hunzip, only Ω and Ω1 are present. We apply a unitary transformation

Û0 =


e−iKy 0 0 0

0 1 0 0

0 0 1 0

0 0 0 eiKy

 (4.33)

to H in Eq. (4.14) (noting p̂2
y/(2m)I = h̄2q2

y/(2m)I for plane wave basis) with Ω2 = 0

and δR = δ1 = δ2 = 0, i.e., Û0HÛ0

−1
, to gauge away the y-dependent phase factor

and obtain Hunzip written in the basis of {|1〉 , |2〉 , |3〉 , |4〉} as:

Hunzip =


h̄2

2m
(qy +K)2 Ω

2
0 0

Ω∗

2
h̄2

2m
(qy)

2 + ε0
Ω1

2
0

0
Ω∗1
2

h̄2

2m
(qy)

2 + ε0
Ω
2

0 0 Ω∗

2
h̄2

2m
(qy −K)2

.

(4.34)

If Ω2 6= 0, the y-dependent phase factor cannot be gauged away because Û0HÛ0
−1

would still have the y-dependent terms Ω2e
2iKy and Ω∗2e

−2iKy.

4.7 Details in experiments and calculations

4.7.1 Initial state preparations for experiments in the previous sections

We note that the eigenstate of the BEC at qy = 0 in band 1 (band 2) shown in

Fig. 4.2b has dominant populations in |4〉 and |1〉 (|3〉 and |2〉). Thus, to load a BEC

into such an eigenstate, we first prepare a BEC at |4〉 (|3〉) with δR < −2.5 Er and

δ1 < −2.5 Er. Note that we do not specify the value of δ2, which is inferred from
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δ2 = δ1 + 2δR (Eq. 4.13) due to fulfillment of the resonance condition in Eq. (4.11).

For band 1, we then ramp on the Raman and microwave couplings Ω and Ω1,2 from

zero to final values while ramping δR and δ1 to zero in 15 ms. For band 2, we ramp

on the microwave couplings Ω1,2 from zero to final values while ramping both δR and

δ1 to around −0.6 Er in 15 ms. Subsequently, while keeping Ω1,2 at the final values,

we ramp on the Raman coupling Ω from zero to final values in 5 ms during which we

ramp δR and δ1 to zero in 3 ms and then hold δR and δ1 at zero for the rest 2 ms.

For the initial state preparation in the lowest band in Fig. 4.5b, we first prepare

a BEC at |4〉 with δR < −5 Er and δ1 < −5 Er. Then, we ramp on the Raman and

microwave couplings Ω and Ω1,2 from zero to final values while ramping δR and δ1 to

zero in 15 ms. At the very beginning (at which δR < −5 Er and δ1 < −5 Er, so the

RF wave is off-resonant) of this 15-ms ramp, the RF coupling ΩRF is abruptly turned

on to the final value. Then, ΩRF is held at the same final value while δR and δ1 are

ramped to zero in 15 ms.

For the initial state preparation at the minimum of the right well in Fig. 4.6b, we

first prepare a BEC at |4〉 with δR < −2.5 Er and δ1 < −2.5 Er. Then, we ramp on

the Raman and microwave couplings Ω and Ω1 from zero to final values while ramping

δR and δ1 to zero in 15 ms. In this case, Ω2 is zero throughout the experiment.

4.7.2 Imaging analysis

The propagation direction (x̂′) of our imaging laser is ∼ 27◦ with respect to the x-

axis in the x−z plane (Fig. 4.1a). Thus, the TOF images are in the y−z′ plane (where

ẑ′ is perpendicular to x̂′ in the x− z plane). In each TOF image, we individually fit
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the atomic cloud of each spin and mechanical momentum component to a 2D bimodal

distribution of the form:

Amax

(
1−

(
y − yc
Ry

)2

−
(
z′ − zc
Rz′

)2

, 0

)3/2

(4.35)

+B exp

(
−1

2

((
y − ycT
σy

)2

+

(
z′ − zc
σz′

)2
))

,

where the first term corresponds to the condensate part according to the Thomas-

Fermi approximation and the second term corresponds to the thermal part. In our

experiments, a nearly pure BEC with a typical condensate fraction > 90% is pre-

pared at the end of the evaporation cooling (before turning on the coupling fields).

After the initial state preparation and right before the transport measurement, the

typical condensate fraction is > 50%. After ∼ 10 ms of transport in the band, the

typical condensate fraction is > 30%. The measured quantities such as mechani-

cal momentum and spin populations are referred to the condensate part. For each

atomic cloud component i, its condensate atom number Ni and mechanical momen-

tum pi are extracted from the fitting to obtain the total mechanical momentum of

the BEC, h̄kBEC = Nipi/(
∑

iNi). Each cloud component’s mechanical momentum

pi is determined by the difference between its center-of-mass position (yc) and the

center-of-mass position of a BEC that has zero mechanical momentum, based on the

calibrated conversion between h̄K and image pixels.

4.7.3 Calculated curves shown in figures in the previous sections

When using the Hamiltonians Hqy and H ′qy (see Eq. (4.16)) to calculate the band

structures, we use n ranging from −13 to 13, i.e., each Hamiltonian is a 108 by 108

matrix. On the other hand, Hunzip in Eq. (4.34) is a 4 by 4 matrix. We solve the

eigenstates of Hqy , H
′
qy , and Hunzip, as a function of quasimomentum to obtain the

corresponding mechanical momentum and spin compositions of the BEC traveling in

bands. In general, the eigenstate is a normalized vector of the form (..., b
qy
n,m, ...)T ,

where the coefficient b
qy
n,m is the probability amplitude (|bqyn,m|2 is the fractional popu-
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lation) corresponding to the state |h̄(qy + nK);m〉. The total mechanical momentum

of the BEC at qy is determined as h̄kBEC(qy) = h̄
∑

n,m |b
qy
n,m|2(qy + nK). The frac-

tional population of the spin state |m〉 at qy is
∑

n |b
qy
n,m|2. The spin texture of band

structures such as Fig. 4.2b is revealed by the qy-dependent color, determined by

the population-weighted colors of the constituent spin states. That is, the color of

an eigenstate at qy is determined by
∑

m(
∑

n |b
qy
n,m|2)(color)m, where (color)m is a 1

by 3 vector representing the color of the spin state |m〉, with (color)1 = (1, 0, 0) for

red, (color)2 = (0, 1, 0) for green, (color)3 = (0, 0, 1) for blue, and (color)4 = (0, 0, 0)

for black. Note that the theoretical h̄kBEC is calculated as h̄kBEC(qy) = mvp(qy) =

m
h̄

dE(qy)

dqy
[131], where vp is the group velocity, E is the band (eigen)energy, and dE(qy)

dqy

is the slope of the band. Both vp and E are functions of qy, where qy = q0 +Fgthold/h̄

is a function of thold, Fg = d(h̄qy)/dthold is the total force acting on the atoms during

the transport, and here the initial quasimomentum h̄q0 = 0.

The above calculated physical quantities are functions of qy. They can be con-

verted to functions of thold based on the measurement of quasimomentum versus thold

in each set of experiment. Fig. 4.7 is a representative measurement obtained from

the experiment corresponding to Fig. 4.2c, showing the measured quasimomentum

versus thold obtained from the atomic clouds of |1〉 and |4〉. The corresponding slope,

d(h̄qy)/d(thold) = Fg, is obtained by a linear fit to the data. The average of the slope,

0.751 h̄K/ms in this case, is then used to calculate various physical quantities versus

thold. Note this total force is primarily due to the gravity (which would give a slope

of 0.843 h̄K/ms with g = 9.81 m/s2) but also contains a small contribution (with

the opposite sign) from other background (e.g. magnetic) fields present during the

experiment.
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Fig. 4.7. Representative measurement of quasimomentum versus
thold. (a) and (b) are obtained respectively from the atomic clouds of |1〉
and |4〉 in the experiment corresponding to Fig. 4.2c. Dots are experi-
mental data and lines are linear fits.

4.8 Discussion and conclusion

Differently from the realization of a Hall tube with fermions [130], we do not

use an external optical lattice. Instead, topological lattices emerge due to curving a

Hall strip into a Hall cylinder. In addition, differently from the generalized inversion

symmetry-protected gapped topological band in ref. [130], we observe a nonsym-

morphic symmetry-protected gapless topological band which allows for observing the

quantum transport in the resulting momentum-space Möbius strip. Moreover, we

apply a controllable symmetry-breaking perturbation to open a band gap and ex-

plore the quantum transport in the resulting momentum-space regular strip, which

may allow for studying interaction effects on such a transport as will be discussed in

Chapter 6.

In summary, we have observed topological states absent in planar space but emerg-

ing due to manipulating the geometry of space. Direct extensions of this work include

studying superfluidity on curved surfaces [118,119], implementing a Laughlin’s charge

pump [132] (e.g. by making Equation (4.1) time-dependent), and exploring the frac-



127

tal energy spectrum of Hofstadter buttery as suggested in ref. [41]. Our work also

paves the way to creating synthetic gauge fields in diverse geometries of spaces [42].

For example, using Laguerre-Gaussian beams as the Raman lasers in Fig. 4.1a may

create a Hall torus [133]. Furthermore, increasing inter-particle interactions (e.g. by

imposing strong confining potentials in x and z directions in our case or enhancing

the scattering length by Feshbach resonance) in spaces with curved geometries, for

instance a Hall cylinder or torus, may allow exploring intriguing quantum many-body

phases such as fractional quantum Hall states as suggested in refs. [134–136].
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5. SCISSORS MODE AND ROTATIONAL PROPERTIES

OF A SPIN-ORBIT-COUPLED BOSE-EINSTEIN

CONDENSATE

5.1 Introduction and motivation

The rotational properties of a Bose-Einstein condensate (BEC) are important to

study its superfluidity. For example, the scissors mode of a trapped BEC (rotational

oscillations of a BEC with respect to trap axes) has proven to be important for

probing rotational properties and superfluidity. Recent studies have found that spin-

orbit coupling (SOC) can change a BEC’s superfluid properties, such as the superfluid

critical velocity, superfluid fraction, and the quenching of the moment of inertia. Here,

we study the scissors mode of a Raman-induced spin-orbit-coupled (SO-coupled) BEC

of 87Rb in an effective rotating frame induced by a synthetic magnetic field B∗. A SO-

coupled BEC is first prepared in the presence of B∗ generated by a spatially-varying

Raman coupling. We then quench the Raman coupling or detuning to generate a

synthetic shear force, which pushes and tilts the BEC. After such a quench, both the

dipole and scissors modes are excited, and their dynamics is studied in the presence (or

absence) of SOC and B∗. We experimentally find that the measured scissors frequency

does not agree with the prediction based on effective masses. Our simulations reveal

that the scissors mode can contain two frequency components, which are important

to understand the experimental results. Our work may allow us to study how SOC

modify a BEC’s rotational and superfluid properties.

Superfluids are interesting in their own right, and could be a platform to study

closely-related phenomena such as superconductivity. Atomic quantum gases can

possess rich superfluid properties and are highly controllable. Thus, novel superfluids

difficult to explore in conventional systems may be studied in such atomic systems.
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Recently, SO-coupled quantum gases have attracted a lot of attention because of their

potential for quantum simulation of diverse phenomena [15]. On the other hand, SO-

coupled BECs have been theoretically predicted to be an intriguing superfluid. For

instances, SOC can change several superfluid properties of an atomic BEC, such as

the superfluid critical velocity [20, 77] and superfluid fraction [137, 138]. In addition,

irrotationality, a fundamental feature of superfluids and characterized by ∇× v = 0

(v is the velocity), is broken for a SO-coupled BEC [79]. Consequently, a rotating

SO-coupled BEC could exhibit diffused vorticity [79] and unusual moment of inertia

(as exhibited by a rigid body rather than a quenched value that would be exhib-

ited by a superfluid) [79] and angular momentum [139]. In contrast, a regular BEC

possessing irrotationality manifests rotational superfluid phenomena such as quan-

tized vortices [140–142] and quenching of the moment of inertia [143, 144]. In other

words, a SO-coupled BEC can have rotational properties distinct from that of a reg-

ular BEC, because irrotationality is violated in the former due to SOC but conserved

in the latter. Besides, rotational and superfluid properties are closely related, and

thus studying rotational properties of a SO-coupled BEC may provide us insights to

understand how SOC change a BEC’s superfluid properties .

So far, rotational and superfluid properties of a SO-coupled BEC are barely ex-

plored experimentally. Only the sound velocity [145] (which along with the calculated

compressibility [137, 138] can reveal the superfluid fraction) and roton-maxon exci-

tation spectrum [145, 146] of a SO-coupled BEC have been measured. To explore

rotational properties of a SO-coupled BEC, instead of a physical rotation, we put

the BEC into an effective rotation by generating a synthetic magnetic field B∗ for

the BEC. In this work, we first prepare a SO-coupled BEC in the presence of such a

B∗ field with an initial value B∗i . Then, we suddenly change B∗i to a final value B∗f ,

inducing the scissors mode (an important rotational probe for superfluidity and will

be introduced below) of a SO-coupled BEC in the presence of various B∗f (including

B∗f = 0). The behavior of such a scissors mode is the focus of this work.
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5.1.1 BECs versus superfluids

BECs and superfluids are closely related but different. BEC density (nc) and

superfluid density (ns) of a quantum fluid can be different because their definitions

are physically different [147]. The BEC density is defined as the particle density in

the zero momentum state. The superfluid density is defined as the particle density

participating in the superflow based on the two-fluid model. For a regular BEC of

weakly-interacting Bose gases at absolute zero temperature, nc ≈ n and ns = n,

where n is the total particle density. However, for a superfluid of 4He at absolute zero

temperature, nc ≈ 0.1n and ns = n (i.e. all particles participate in the superflow even

though the BEC fraction is only around 10%), where the notable difference between

nc and ns is due to the strong inter-particle interactions that play important roles in

determining the many-body wave function of the system [147].

5.1.2 Introduction to the scissors mode

The scissors mode is a type of collective excitations. Studying collective excita-

tions has been an important tool to unveil properties of a quantum gas. For instances,

breathing and scissors modes are used to probe the BEC-BCS crossover of a degen-

erate fermionic gas [148]. Spin-momentum locking and quantum phase transitions of

a SO-coupled BEC are disclosed by dipole oscillations [149]. Dipole oscillations of a

SO-coupled BEC may be used to probe its anomalous Hall conductivity [150]. Spin

transport is studied in strongly-interacting fermionic gases [151] and in SO-coupled

BECs [50] using the spin-dipole mode. Superfluid Hall effect is demonstrated by the

coupling between quadrupole and scissors modes of a BEC in synthetic magnetic

fields [152].
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Fig. 5.1. The frequency shift of the scissors mode of an atomic gas at
finite temperatures. The open circles refer to the thermal component
whose frequency does not depend on the temperature and is in agreement
with the collisionless prediction. The solid circles refer to the condensate
component, and are in agreement with the hydrodynamic prediction at
the low temperature limit. Reproduced from ref. [153].

Among various collective excitations, only the scissors mode has proven to be

able to probe superfluidity. Such a mode is first studied in atomic nuclei. The out-of-

phase rotation of neutron and proton clouds unveils the emergence of superfluidity of

deformed atomic nuclei [154]. For trapped atomic gases, the scissors mode has been

shown theoretically [155] and experimentally [156] as an important rotational probe

for superfluidity. Its frequency shift and damping at different temperatures can probe

the BEC phase transition [153], as shown in Fig. 5.1.
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Fig. 5.2. The moment of inertia normalized to the rigid-body value at
various temperatures. The open circles refer to the thermal component.
The solid circles refer to the condensate component. The solid squares and
line refer to the whole atomic gas. The dashed line refers to the hydro-
dynamic prediction in the low-temperature limit. The dotted line refers
to the finite atom number correction. The moment of inertia is obtained
by the measured frequency of the scissors mode (see details in ref. [144]:
here, the scissors mode is in the x− y plane, i.e. the atomic cloud rotates
around the z axis and thus the associated moment of inertia presented
here is with respect to the z axis). The reduced moment of inertia indi-
cates the transition from a normal fluid to a superfluid. Reproduced from
ref. [144].

Besides, its frequency can be used to measure a quantum gas’s moment of inertia,

whose quenching behavior with decreasing temperature discloses the normal fluid to

superfluid transition [144,153], as shown in Fig. 5.2. For a regular BEC, the scissors

mode of an expanding BEC [157] or of a rotating BEC [158] further manifests a

regular BEC’s intriguing superfluid behaviors and demonstrates the important role

of the associated irrotational flow. Recently, the scissors mode is used to probe the

anisotropic dipole-dipole interaction in dipolar quantum droplets of 164Dy [159].
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Fig. 5.3. Calculated moment of inertia versus atom number. In the
small atom number limit it approaches the prediction based on the non-
interacting gas at zero temperature (dotted line). In the large atom num-
ber limit it approaches the Thomas-Fermi prediction (dashed line). Re-
produced from ref. [144].

Notice that the moment of inertia or the frequency of the scissors mode do not

strongly depend on the atom number (or interaction) as long as the atom number is

large enough. Fig. 5.3 shows the calculated moment of inertia versus atom number. In

the small atom number limit it approaches the prediction based on the non-interacting

gas at zero temperature (dotted line). In the large atom number limit it approaches

the Thomas-Fermi prediction (dashed line).

At absolute zero temperature, a regular BEC exhibits superfluidity. Its scissors

mode in the y − z plane in either the hydrodynamic or collisionless regime is a sinu-

soidal oscillation at a single frequency fs =
√
f 2
y + f 2

z [144, 153, 155, 156], where fy

and fz are trap frequencies, as shown in Fig. 5.4b. For a thermal gas, its scissors

mode is a beat wave (as shown in Fig. 5.4a) comprising two equal-amplitude fre-

quency components (manifesting both the rotational and irrotational characteristics

of a normal fluid) at |fy − fz| and |fy + fz| in the collisionless regime, or becomes a

damped sinusoidal oscillation in the hydrodynamic regime [144,153,155].
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Fig. 5.4. Scissors mode of an atomic gas. (a) For a thermal gas, its
scissors mode oscillates as a beat wave with two frequencies determined
by the trap frequencies (see texts). (b) For a BEC exhibiting superfluidity,
its scissors mode oscillates at a single frequency (see texts). Reproduced
from [156].

5.2 Experimental set-up and timing diagram

In our experiment, a 87Rb BEC in the F = 1 hyperfine state with condensate atom

number Nc ∼ 1− 2× 104 is produced in an optical dipole trap [50]. Trap frequencies

are fz ∼ (75± 5) Hz and fx ∼ fy ∼ (175± 5) Hz.
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Fig. 5.5. Experimental set-up and timing diagram. (a) Counter-
propagating Raman lasers with an angular frequency difference of ∆ωR =
2π(3.5MHz) couple the Zeeman sublevels |↓〉 and |↑〉 separated by h̄ωZ ∼
h̄∆ωR in the F = 1 hyperfine state of 87Rb to create synthetic SOC along
ŷ. The Raman detuning δ is controlled by the bias magnetic field B. (b)
A BEC is prepared in the gray region of the Gaussian distribution of the
Raman coupling, experiencing a spatially-varying Raman coupling and a
synthetic magnetic field B∗ (see texts). The Raman coupling at the BEC’s
center (located around 65-75% of the peak) is Ω. (c) Experimental timing
diagram. After preparing the BEC at Ω = Ωi and δ = δi, Ωi and δi are
quickly changed to Ωf and δf in tE = 1 ms. Ωf and δf are then held for thold

before a 15-ms TOF and the following absorption imaging. (d) A shear
force (Fshear(z) along ŷ, indicated by gray arrows) induced by the quench
process is applied to the BEC, pushing (along ŷ) and tilting the BEC to
induce dipole and scissors (oscillations of the tilt angle θ) modes. Here,
the tilt angle is defined as the angle between the y axis and the major
axis of the BEC.

As shown in Fig. 5.5a, hyperfine spin states |mF= −1〉 = |↓〉 and |mF= 0〉 = |↑〉

(Zeeman split by h̄ωZ ≈ h̄∆ωR using a bias magnetic field B = Bẑ) are coupled

by counter-propagating Raman laser beams (whose angular frequency difference is
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∆ωR) along ±ŷ. The Raman laser’s wavelength (λ ∼ 790 nm) sets the photon recoil

momentum h̄kr = 2πh̄/λ and energy Er = h̄2k2
r /2m, where m is the mass of a 87Rb

atom and h̄ is the reduced Planck constant. Such a Raman coupling scheme creates

synthetic one-dimensional (1D) SOC (so-called equal Rashba-Dresselhaus SOC) [37,

50, 65–68, 71–74, 160] along ŷ. The single-particle SO-coupled Hamiltonian, HSOC,

written in the basis of bare spin and momentum states {|↓, h̄(qy + kr)〉 , |↑, h̄(qy − kr)〉}

is [37]:

HSOC =

 h̄2

2m
(qy + kr)

2 − δ Ω
2

Ω
2

h̄2

2m
(qy − kr)

2

 , (5.1)

where Ω is the Raman coupling (tunable by the intensity of the Raman laser), δ =

h̄(∆ωR − ωZ) is the Raman detuning (tunable by B). Here, h̄k↓ = h̄(qy + kr) (h̄k↑ =

h̄(qy−kr)) is the mechanical momentum in the y direction of the bare spin component

|↓〉 (|↑〉), where h̄qy is the quasimomentum. The eigenvalues of (5.1) versus h̄qy define

the ground and excited energy bands. In this work, δ > 0 and the ground dressed

band is tilted such that there exists only one energy minimum (e.g. see Fig. 5.7ad),

which can be identified with a synthetic vector potential A [29]. Note that A is

tunable by Ω and δ [29, 37].

By making Ω spatially-dependent, A becomes spatially-dependent and thus cor-

responds to a synthetic magnetic field B∗, which creates an effective rotation for a

SO-coupled BEC. We prepare the BEC at the side of the Gaussian intensity distribu-

tion of the Raman laser (gray region in Fig. 5.5b, similar to ref. [40]), such that the

BEC experiences a z-dependent Ω(z) (while δ is spatially uniform). This leads to a z-

dependent A(Ω(z), δ) = A(z, δ)ŷ and a corresponding B∗ = ∇×A(z, δ) = −∂A(z,δ)
∂z

x̂

for the BEC. In our setup, the fractional Raman coupling Ω(z)/Ω0 = exp(−z2/(2σ2))

shown in Fig. 5.5b is empirically determined by the average of several measurements,

where Ω0 is the Raman coupling at z = 0, z is in µm, and σ = 21.785 ± 2.059 µm.

The BEC’s center z0 is chosen such that Ω(z0)/Ω0 ∼ 0.7 ± 0.05 and is used for all

the experiments in this work. For simplicity, Ω, Ωi, and Ωf below refer to the Raman

coupling at the BEC’s center, i.e. Ω(z0), Ωi(z0), and Ωf(z0).
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We first prepare a SO-coupled BEC in the presence of an initial synthetic magnetic

field B∗i . Starting with a bare BEC (centered at z0) at |mF= −1〉 state, Ω is slowly

ramped from 0 to an initial value Ωi in 15 ms at some initial detuning δi (see the timing

diagram in Fig. 5.5c), such that the center of the BEC would be prepared around the

energy minimum of a tilted ground dressed band at Ωi and δi. After preparing such an

initial state, we quickly change Ωi and δi to respective final values Ωf and δf in tE = 1

ms. Such a quench process is slow enough to keep the BEC staying in the ground

dressed band but fast enough to apply a spatially-varying synthetic electric field [35]

E(z) = −∂A(z)
∂t
≈ −∆A(z)

tE
ŷ to the static BEC, where ∆A(z) = (A(Ωf, δf)−A(Ωi, δi))|z.

This leads to a shear force (along ŷ, Fig. 5.5d) that kicks and tilts the BEC such

that the center of mass and tilt angle (defined in Fig. 5.5d) of the BEC are no longer

in equilibrium with the trap center and axes, respectively. Therefore, a dipole mode

(along ŷ) and a scissors mode (angle oscillations in the y − z plane) are induced.

Both Ωf and δf are maintained for various time thold, during which the dynamics of

the dipole and scissors modes is studied. Subsequently, the Raman laser and dipole

trap are turned off in 1 ms and the atoms are released for a 15 ms time of flight

(TOF), at the beginning of which a Stern-Gerlach process is performed for 9 ms to

separate atoms of different bare spin states. We then perform absorption imaging

to obtain TOF images, which reveal spin and momentum compositions of atoms at

various thold. During thold, the spin composition of a dressed BEC is dominated by the

|mF= −1〉 state. Thus, we focus on the dynamics of this dominant spin component,

which is fitted to a rotated 2D Gaussian distribution to extract its center-of-mass and

angle oscillations. Note that the tilt angle of the BEC after TOF could be different

from the in-situ tilt angle [144,156]. Nevertheless, when the duration of TOF is fixed,

the scissors mode’s frequency in these two cases would be identical.
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5.3 Experimental and simulation results

5.3.1 Experimental results
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Fig. 5.6. Exemplary scissors and dipole modes of a regular BEC
and of a SO-coupled BEC in B∗. (a) and (b) respectively show scissors
and dipole oscillations of a regular BEC (Ωf = 0) with the corresponding select
TOF images (dashed lines indicating the tilt angle) shown in (c). We fit the first
2-3 periods of experimental data (scatters) in (a) and (b) to a single sinusoidal
function (solid lines) to obtain the frequency of scissors (fs, exp = 194 ± 3 Hz)
and dipole (fd, exp = 175± 2 Hz) modes. (d) and (e) respectively show scissors
and dipole oscillations of a SO-coupled BEC in the presence of B∗ (at Ωf = 3.5
Er and δf = 1.6 Er) with the corresponding select TOF images shown in (f).
The measured scissors and dipole modes’ frequencies are fs, exp = 138 ± 2 Hz
and fd, exp = 138±5 Hz, respectively. The error bar in the measured frequency
is the standard error of the fit.
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As shown in Fig. 5.6ab, when Ωf = 0, the measured frequencies of dipole (along

ŷ) and scissors (in y − z plane) modes are respectively fd, exp = 175 ± 2 Hz and

fs, exp = 194±3 Hz, in agreement with the corresponding predicted frequencies fd, eff =

fy = 175 Hz and fs, eff =
√
f 2
y + f 2

z ∼ 192 Hz for a bare BEC (in this measurement,

fy = 175 Hz and fz = 80 Hz). Select TOF images for this case are shown in Fig. 5.6c.

When Ωf 6= 0, taking into account the effective mass m∗ resulting from the ground

dressed band, the predicted dipole mode’s frequency along ŷ is

fd, eff = fy
√
m/m∗, (5.2)

and the scissors mode’s frequency is

fs, eff =
√
f 2
d + f 2

z . (5.3)

As shown in Fig. 5.6de for Ωf = 3.5 Er and δf = 1.6 Er, the measured dipole mode’s

frequency fd, exp = 138± 3 Hz is approximately in agreement with the effective mass

prediction of 149 Hz (given the uncertainties in Raman coupling and trap frequencies),

however, the measured scissors mode’s frequency fs, exp = 138 ± 7 Hz is notably

different from the effective mass prediction of 167 Hz. Select TOF images for this

case are shown in Fig. 5.6f.
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Fig. 5.7. Experiment and GPE simulation for scissors and dipole
modes at various Ωf and δf. (a-c) show results at various δf with a fixed
Ωf = 3.0 Er. (d-f) show results at various Ωf with a fixed δf = 1.6 Er. (a)
and (d) show the relevant dispersion relations calculated at the BEC’s center.
(b) and (e) show the calculated cyclotron frequency Ωcyc = B∗/(2πm∗) which
reflects the strength of B∗ at various Ωf and δf. The dots refer to the value at
the BEC’s center. The vertical bars indicate the range of Ωcyc experienced by
the rest part of the BEC. (c) and (f) show frequency of the scissors and dipole
modes at various Ωf and δf. Scatters are experimental data, where vertical
and horizontal error bars are respectively the standard error of measurements
and the statistical uncertainties of δf or Ωf. fs and fd respectively refer to
the frequency of the scissors and dipole modes, where the subscript “exp”
means experiment, “eff” means the effective mass prediction, “GP” means GPE
simulation, and “weighted” means the weighted average (see texts). The GPE
simulations are performed by Chunlei Qu. The calculation of the cyclotron
frequency at various Raman couplings is performed by Su-Ju Wang.
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We systematically study these mode frequencies at various B∗f (determined by δf

and Ωf). Results at Ωf = 3.0 Er with various δf are shown in Fig. 5.7a-c. Fig. 5.7a

shows the various ground dressed bands at the BEC’s center. Fig. 5.7b presents the

corresponding calculated B∗ in terms of the cyclotron frequency Ωcyc ≡ B∗/(2πm∗),

where black dots indicate the value at the BEC’s center and the vertical lines imply

the range of B∗ that would be experienced by the rest part of the BEC (assuming

the in-situ BEC size along ẑ is 10 µm). In other words, the vertical lines show the

inhomogeneity of B∗ experienced by a finite-size BEC. Fig. 5.7c shows the mode

frequencies at Ωf = 3.0 Er with various δf. The scatters with error bars (circles for

scissors and squares for dipole) are experimental data. The solid lines are the effective

mass predictions.

We notice that the measured dipole mode’s frequency (fd, exp) approximately

agrees with the corresponding effective mass prediction (fd, eff), however, the mea-

sured scissors mode’s frequency (fs, exp) is notably smaller than the corresponding

effective mass prediction (fs, eff) at small δf. Additionally, results at δf = 1.6 Er with

various Ωf are shown in Fig. 5.7d-f. Fig. 5.7d shows the various ground dressed bands

at the BEC’s center. Fig. 5.7e presents the corresponding calculated B∗. Fig. 5.7f

reveals that the measured dipole mode’s frequency (fd, exp) approximately agrees with

the effective mass prediction (fs, exp), however, the measured scissors mode’s frequency

(fs, exp) is also notably smaller than the corresponding effective mass prediction (fs, eff)

at large Ωf.

5.3.2 Simulations

To gain some physical insight, we simulate the dynamics of the BEC after the

quench process using the 3D time-dependent Gross-Pitaevskii equation (GPE) with

similar experimental parameters. The simulation uses a Gaussian momentum dis-

tribution for the BEC with Nc = 2.0 × 104 and trap frequencies fz = 75 Hz and
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fx = fy = 175 Hz. Long-time simulations disclose that BEC’s angle oscillations can

exhibit beat waves, composed of two main frequency components with their relative

amplitudes depending on B∗. Fig. 5.8a,c,e presents examples of the tilt angle of the

in-situ BEC versus thold, where the angle is obtained by fitting the simulated in-situ

BECs to a rotated 2D Gaussian distribution. Similar to the analysis for the experi-

mental data, we fit the first 2-3 cycles of the simulated angle or dipole (not shown)

oscillations to a single sinusoidal function, which determines the GPE-simulated fre-

quency of the scissors (fs, GP, diamonds connected with dashed lines in Fig. 5.7cf)

or dipole (fd, GP, hexagons in Fig. 5.7cf) modes respectively. On the other hand, we

either take the fast Fourier transform (FFT) (e.g. Fig. 5.8b,d,f respectively corre-

sponding to Fig. 5.8a,c,e) of the angle oscillations or fit the angle oscillations to a

double sinusoidal function to extract the two main frequency components (f1 > f2)

and their relative amplitudes (A1 and A2). Since these two methods give very simi-

lar results, we simply use the results from FFT to determine the “weighted average

frequency” for the scissors mode as

fs, weighted = (A1f1 + A2f2)/(A1 + A2), (5.4)

which reflects the relative weighting of f1 and f2 and is shown as triangles connected

by dotted lines in Fig. 5.7cf. We notice that f1 and f2 at given Ωf and δf are re-

spectively similar to the effective mass predicted frequencies of scissors and dipole

modes, i.e. f1 ∼ fs, eff and f2 ∼ fd, eff. For example, the beat wave at Ωf = 3.0 Er and

δf = 4.0 Er in Fig. 5.8a has f1 = 187.4 Hz (∼ fs, eff = 184.8 Hz) and f2 = 170.1 Hz

(∼ fs, eff = 168.9 Hz) with A2/A1 = 0.84 Besides, fs, weighted and fs, GP are similar and

are in agreement with the experimental data fs, exp. These results seem to suggest

that the regular scissors and dipole modes become coupled for a SO-coupled BEC in

B∗, and these two modes would otherwise become uncoupled when Ω = 0 (no SOC

and B∗). In other words, oscillations of angular and linear mechanical momenta are

coupled.
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Fig. 5.8. Beat waves of the scissors mode, revealed in GPE sim-
ulation. (a), (c), and (e) show the tilt angle versus thold respectively at
δf = 7.0, 4.0, and 2.3 Er (all at a fixed Ωf = 3.0 Er). (b), (d), and (f)
are the corresponding FFT analysis, disclosing the constituent frequency
components. In each case, the two main frequency components f1 and f2

(f1 > f2) are respectively close to the effective mass predicted frequency
of the scissors and dipole modes, i.e. f1 ∼ fs, eff and f2 ∼ fd, eff. The rel-
ative amplitude of f2 increases with decreasing δf. The GPE simulations
are performed by Chunlei Qu

As B∗ becomes larger (by decreasing δf or increasing Ωf, see Fig. 5.7be), the f2

(∼ fd, eff) component can become more prominent than the f1 (∼ fs, eff) component,

such that both fs, GP and fs, weighted become notably different from fs, eff. When Ωf

approaches zero or δf becomes large enough, fs, exp, fs, GP, fs, weighted, and fs, eff all

become similar. In this limit, the angle oscillations almost has a single frequency

component near fs, eff, i.e. the scissors mode’s frequency can essentially be predicted

by Eq. (5.3).
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We find that within the regime of parameters used in our experiment, fd, exp,

fd, GP, and fd, eff are in agreement with one another. In other words, the dipole

mode’s frequency can essentially be predicted by Eq. (5.2) for our parameter regime.

Note that due to the anti-trapping effect resulting from rotation [15, 34, 161], here

B∗ would modify only the trap frequency along ẑ from 75 Hz to ∼ 73.6 Hz. Such

a small modification is consistent with the observation that both the experimentally

measured and GPE simulated dipole mode’s frequencies along ẑ are similar to the

trap frequency along ẑ. Thus, on the other hand, the anti-trapping effect cannot

account for the difference between fs, exp and fs, eff.

5.4 Discussion and conclusion

It is worth noting that the physical angular momentum of a SO-coupled BEC has

a SOC-induced spin-dependent term [139], which would disappear in the absence of

SOC. In our case (the SOC direction is along ŷ, see Eq. (5.1)), the physical (indicated

by a superscript “phy”) angular momentum associated with rotation in the y−z plane

is

〈L̂phy
x 〉 = 〈yp̂phy

z − zp̂phy
y 〉 = 〈yp̂z − z(p̂y − krσz)〉 = 〈L̂cx〉+ 〈L̂sx〉. (5.5)

Here,

〈L̂cx〉 = 〈yp̂z − zp̂y〉 (5.6)

is the canonical (indicated by a superscript “c”) angular momentum and

〈L̂sx〉 = 〈zkrσz〉 = 〈zkrsz/n〉 (5.7)

is the spin-dependent (indicated by a superscript “s”) contribution due to SOC, where

sz = n↓ − n↑ is the spin magnetization (difference between the density of |↓〉 and |↑〉

states) and n is the total density.

With SOC along the y direction, Table 5.1 shown below summarizes the expres-

sions for the physical velocity, physical linear momentum, physical angular momen-

tum, and their canonical and spin-dependent contributions and their relations.
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Table 5.1
Physical velocity, physical linear momentum, physical angular momen-
tum, and their canonical and spin-dependent contributions and their re-
lations. SOC is along the y direction (see Eq. (5.1)). Physical quantities
are indicated by a superscript “phy”. Canonical terms are indicated by
a superscript “c”. Spin-dependent terms are indicated by a superscript
“s”. 〈p̂x〉 = 〈h̄q̂x〉, 〈p̂y〉 = 〈h̄q̂y〉, 〈p̂z〉 = 〈h̄q̂z〉 are canonical momenta (or
quasi-momenta) respectively along the x, y, and z.

Physical quantity Canonical term Spin-dependent term

〈v̂phy
y 〉 = 〈v̂c

y〉+ 〈v̂s
y〉 〈v̂c

y〉 = 〈p̂y/m〉 〈v̂s
y〉 = 〈−krσz/m〉

〈v̂phy
x 〉 = 〈v̂c

x〉+ 〈v̂s
x〉 〈v̂c

x〉 = 〈p̂x/m〉 〈v̂s
x〉 = 0

〈v̂phy
z 〉 = 〈v̂c

z〉+ 〈v̂s
z〉 〈v̂c

z〉 = 〈p̂z/m〉 〈v̂s
z〉 = 0

〈p̂phy
y 〉 = 〈p̂c

y〉+ 〈p̂s
y〉 〈p̂c

y〉 = m 〈v̂c
y〉 = 〈p̂y〉 〈p̂s

y〉 = m 〈v̂s
y〉 = 〈−krσz〉

〈p̂phy
x 〉 = 〈p̂c

x〉+ 〈p̂s
x〉 〈p̂c

x〉 = m 〈v̂c
x〉 = 〈p̂x〉 〈p̂s

x〉 = 0

〈p̂phy
z 〉 = 〈p̂c

z〉+ 〈p̂s
z〉 〈p̂c

z〉 = m 〈v̂c
z〉 = 〈p̂z〉 〈p̂s

z〉 = 0

〈L̂phy
x 〉 = 〈yp̂phy

z − zp̂phy
y 〉 = 〈L̂c

x〉+ 〈L̂s
x〉 〈L̂c

x〉 = 〈yp̂z − zp̂y〉 〈L̂s
x〉 = 〈zkrσz〉

〈L̂phy
y 〉 = 〈zp̂phy

x − xp̂phy
z 〉 = 〈L̂c

y〉+ 〈L̂s
y〉 〈L̂c

y〉 = 〈zp̂x − xp̂z〉 〈L̂s
y〉 = 0

〈L̂phy
z 〉 = 〈xp̂phy

y − yp̂phy
x 〉 = 〈L̂c

z〉+ 〈L̂s
z〉 〈L̂c

z〉 = 〈xp̂y − yp̂x〉 〈L̂s
z〉 = 〈−xkrσz〉
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For rotation in the y − z plane, it is the 〈L̂sx〉 term that can cause a SO-coupled

BEC’s rigid-like rotation [79], which reflects the reduction of the superfluid fraction

due to SOC. Similarly, the current density in the SOC direction is jy = jcy + jsy (the

corresponding velocity flow is vy = jy/n), where jcy = h̄n∇yφ/m corresponds to the

irrotational flow, the spin-dependent term jsy = −h̄krsz/m corresponds to the rota-

tional flow, and φ is the phase of the BEC wavefunction. It is the jsy term that can

lead to the violation of ∇× v = 0 (a defining feature for superfluids) and change the

superfluid fraction [137, 138]. In our case, the scissors mode is associated with oscil-

lations of the physical angular momentum (Eq. (5.5)), which may involve oscillations

of both the canonical (Eq. (5.6)) and spin-dependent (Eq. (5.7)) contributions.

Currently, we are investigating whether the SOC-induced spin-dependent contri-

bution (Eq. (5.7)) is related to the formation of beat waves of the scissors mode (or

the seeming coupling between scissors and dipole modes). On one hand, it seems that

the spin magnetization sz in Eq. (5.7) would oscillate due to dipole oscillations along

the SOC direction of a SO-coupled BEC [65]. On the other hand, because of the

z-dependent Ω (i.e. in the presence of B∗), sz is z-dependent, such that Eq. (5.7) may

be nonzero after integrating an even function of z over space (Eq. (5.7) may otherwise

be zero if the integrand is an odd function of z). Consequently, 〈L̂sx〉 may oscillate in

time at the frequency of sz oscillations (i.e. the frequency of dipole oscillations along

the SOC direction). In other words, dipole oscillations along the SOC direction of a

SO-coupled BEC in B∗ may induce a type of angle oscillations (associated with oscil-

lations of 〈L̂cx〉) at the frequency of fd, eff. This may be the reason for the appearance

of the second frequency component in the scissors mode and the formation of beat

waves. We are working on the hydrodynamic theory to understand the details of the

dynamics.
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6. FUTURE DIRECTIONS

Some future directions that may be extended from the projects presented in this

thesis are summarized below.

Chapter 3 has studied the non-equilibrium spin dynamics in a quenched SO-

coupled BEC. Our study provides an exemplary study of the evolution of a quantum

many-body system, including the generation and decay of collective excitations, fol-

lowing a non-adiabatic parameter change (quench). Such quench dynamics has been

of great interest to study many outstanding questions in many-body quantum sys-

tems. For example, how such a system, initially prepared in the ground state but

driven out of equilibrium due to a parameter quench that drives the system across a

quantum phase transition, would evolve to the new ground state or thermalize has at-

tracted great interests (see, e.g., a recent study where coherent inflationary dynamics

has been observed for BECs crossing a ferromagnetic quantum critical point [109]).

Experiments on SO-coupled BECs, where many parameters can be well controlled in

real time and with the potential of adding other types of synthetic gauge fields, may

offer rich opportunities to study nonequilibrium materials and nonequilibrium quan-

tum dynamics [110], such as Kibble-Zurek physics while quenching through quantum

phase transitions [111], and superfluidity [63,77] in SO-coupled systems.

Chapter 4 presents our observation of new topological phenomena absent in planar

space but emerging due to manipulating the geometry of space. Direct extensions of

this work include studying superfluidity on curved surfaces [118, 119], implementing

a Laughlin’s charge pump [132] (e.g. by making Equation (4.1) time-dependent), and

exploring the fractal energy spectrum of Hofstadter buttery as suggested in ref. [41].

Our work also paves the way to creating synthetic gauge fields in diverse geome-

tries of spaces [42] such as a Hall torus [133]. Furthermore, increasing inter-particle

interactions (e.g. by imposing strong confining potentials in x and z directions in
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our case or enhancing the scattering length by Feshbach resonances) in spaces with

curved geometries, for instance a Hall cylinder or torus, may allow exploring intrigu-

ing quantum many-body phases such as fractional quantum Hall states as suggested

in refs. [134–136].

Chapter 5 has studied rotational properties (specifically, the scissors mode) of a

SO-coupled BEC. We are trying to understand whether the observed unusual behav-

ior of the scissors mode is related to how SO coupling modifies a BEC’s rotational

and superfluid properties. In addition to GP simulations, we will work on the hydro-

dynamic theory to obtain a microscopic understanding of the observed phenomena.

6.1 Preliminary results of the ongoing projects

6.1.1 Charge pumping of a BEC on a synthetic Hall cylinder

One of the extensions of the cylinder project (Chapter 4) is to realize a charge

pump (transport of a BEC in the real space by making the emergent lattices move).

This part is still ongoing so only the ideas and preliminary results are presented below.

The idea is that we can make, e.g. the Hamiltonian H in Eq. (4.1), time-dependent.

This can be achieved by violating the resonance condition (Eq. (4.11)) for the cylinder

such that a time-dependent term would show up in the Hamiltonian and cannot be

gauged away, corresponding to a moving emergent lattice. One approach to violate

Eq. (4.11) is to change the angular frequency difference between the Raman lasers

from ∆ωR to ∆ω′R = ∆ωR + δωR, such that the lattice would move at a constant

speed of dy/dt = 2δωR/K = 2(δf)d, where δωR/(2π) = δf , d = λ/2, and λ is the

wavelength of the Raman laser. Fig. 6.1 shows preliminary results of the charge

pumping with a fixed δf at various thold or with various δf at a fixed thold.
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Fig. 6.1. Preliminary results for the charge pumping of a BEC on a
synthetic Hall cylinder. Transport of a BEC in the real space by creating
a moving emergent lattice at a constant speed.

6.1.2 Exploring interaction effects on the transport of a BEC in the

momentum-space regular strip

Currently, we are also exploring the interaction effects on the transport of a BEC

in the momentum-space regular strip (see Chapter 4). This part is still ongoing so

only the ideas are introduced below. Our theory suggests that in the limit of strong

particle-particle interactions (such that interaction energy becomes much larger than

the gap size of the regular strip), the momentum-space regular strip can be converted

to the Möbius strip because the Landau-Zener tunneling from the ground to excited

bands can be greatly enhanced due to interactions. This suggests a topology change
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of the band structure due to interactions. Such a phenomenon may be understood by

that in the strong interaction limit, the inter-band particle interactions become much

larger than the intra-band particle interactions, such that atoms tend to undergo dia-

batic transition to save the inter-band particle interaction energy. This phenomenon

that strong inter-band particle interactions tend to prevent atoms from staying in the

ground band seems analogous to a Mott insulator, in which strong on-site particle-

particle interactions tend to prevent atoms from hopping. Even in the case of weak

interaction (the present parameter regime), the current experimental data seem to

be consistent with the weakly-interacting GP simulation as shown in Fig. 6.2 below.

Fig. 6.2 shows the total mechanical momentum of all the atoms (rather than only

the “condensate” part in the bimodal fit in Eq. (4.35)). Our GP simulation suggests

that the difference between results of non-interacting GP and of weakly-interacting

GP may be due to the interaction-modified Landau-Zener tunneling.

Fig. 6.2. Preliminary results for exploring interaction effects on the trans-
port of a BEC in the momentum-space regular strip. The GPE simulations
are performed by Yangqian Yan.

Note that the transport results presented in Chapter 4 are obtained by turning

off the trap so atoms are allowed to fall under the gravity. In such cases, interaction
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energy would decrease with time because the trap is off and the density of the BEC

decreases. This may prevent us from exploring effects of the strong interaction, since

there is only a small window of time (shorter when the interaction energy is higher) we

can study the interaction effects before we lose the strong interaction. To overcome

such a difficulty, we may create an accelerating lattice (with a constant acceleration)

by making δωR time-dependent (as shown in Fig. 6.3), such that in the lattice frame

the atoms are subjected to a constant force and undergoing Bloch oscillations in the

band structure. Here, the acceleration is d2y/dt2 = d × d(δf(t))/dt = d/(2π) ×

d(δωR(t))/dt, where dt is the transport time. This may allow us to keep the trap

on as well as the strong interaction during the transport of the BEC in the band

structure. The first goal may be to achieve an interaction energy comparable to the

gap size of the band structure.

Fig. 6.3. Ideas to generate an accelerating lattice for exploring interaction
effects on the transport of a BEC in the momentum-space regular strip.
Such an accelerating lattice may allow us to induce transport of the BEC
in the band structure while keeping the trap on as well as the strong
interaction.
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[53] I. Žutić, J. Fabian, and S. Das Sarma, “Spintronics: Fundamentals and appli-
cations,” Rev. Mod. Phys., vol. 76, pp. 323–410, Apr 2004.

[54] D. D. Awschalom, L. C. Bassett, A. S. Dzurak, E. L. Hu, and J. R. Petta,
“Quantum spintronics: Engineering and manipulating atom-like spins in semi-
conductors,” Science, vol. 339, no. 6124, pp. 1174–1179, 2013.

[55] H. Deng, H. Haug, and Y. Yamamoto, “Exciton-polariton Bose-Einstein con-
densation,” Rev. Mod. Phys., vol. 82, pp. 1489–1537, May 2010.

[56] S. O. Demokritov, V. E. Demidov, O. Dzyapko, G. A. Melkov, A. A. Serga,
B. Hillebrands, and A. N. Slavin, “Bose-Einstein condensation of quasi-
equilibrium magnons at room temperature under pumping,” Nature, vol. 443,
pp. 430–433, Sep 2006.

[57] A. Bramati and M. Modugno, Physics of Quantum Fluids: New Trends and
Hot Topics in Atomic and Polariton Condensates. Springer Berlin Heidelberg,
2013.



156

[58] C. Leyder, M. Romanelli, J. P. Karr, E. Giacobino, T. C. H. Liew, M. M.
Glazov, A. V. Kavokin, G. Malpuech, and A. Bramati, “Observation of the
optical spin Hall effect,” Nature Physics, vol. 3, pp. 628–631, Jul 2007.

[59] A. A. High, A. T. Hammack, J. R. Leonard, S. Yang, L. V. Butov, T. Ostat-
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