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ABSTRACT

Edelman, Joshua B. Ph.D., Purdue University, August 2019. Nonlinear Growth and Breakdown of
the Hypersonic Crossflow Instability. Major Professor: Steven P. Schneider.

A sharp, circular 7° half-angle cone was tested in the Boeing/AFOSR Mach-6 Quiet Tunnel
at 6° angle of attack, extending several previous experiments on the growth and breakdown of
stationary crossflow instabilities in the boundary layer. Measurements were made using infrared
imaging and surface pressure sensors. Detailed measurements of the stationary and traveling
crossflow vortices, as well as various secondary instability modes, were collected over a large
region of the cone.

The Rod Insertion Method (RIM) roughness, first developed for use on a flared cone, was
adapted for application to crossflow work. It was demonstrated that the roughness elements were
the primary factor responsible for the appearance of the specific pattern of stationary streaks
downstream, which are the footprints of the stationary crossflow vortices. In addition, a roughness
insert was created with a high RMS level of normally-distributed roughness to excite the naturally
most-amplified stationary mode.

The nonlinear breakdown mechanism induced by each type of roughness appears to be
different. When using the discrete RIM roughness, the dominant mechanism seems to be the
modulated second mode, which is significantly destabilized by the large stationary vortices. This
is consistent with recent computations. There is no evidence of the presence of traveling crossflow
when using the RIM roughness, though surface measurements cannot provide a complete picture.
The modulated second mode shows strong nonlinearity and harmonic development just prior
to breakdown. In addition, pairs of hot streaks merge together within a constant azimuthal
band, leading to a peak in the heating simultaneously with the peak amplitude of the measured
secondary instability. The heating then decays before rising again to turbulent levels. This non-
monotonic heating pattern is reminiscent of experiments on a flared cone and earlier computations

of crossflow on an elliptic cone.
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When using the distributed roughness there are several differences in the nonlinear breakdown
behavior. The hot streaks appear to be much more uniform and form at a higher wavenumber,
which is expected given computational results. Furthermore, the traveling crossflow waves be-
come very prominent in the surface pressure fluctuations and weakly nonlinear. In addition there
appears in the spectra a higher-frequency peak which is hypothesized to be a type-I secondary in-
stability under the upwelling of the stationary vortices. The traveling crossflow and the secondary

instability interact nonlinearly prior to breakdown.



1. INTRODUCTION

HEN moving through a fluid, any vehicle develops a thin boundary layer over which
the vehicle’s momentum is diffused into the fluid. Whether this boundary layer
is laminar or turbulent can have a significant impact on the vehicle’s design and

performance. A laminar boundary layer has lower skin-friction drag and heating, but is less
resistant to separation than a turbulent boundary layer. On hypersonic vehicles, a turbulent
boundary layer can have an order-of-magnitude higher heating rates than a laminar one, which
drives the design of thermal protection systems. Failure to accurately predict the state of the
boundary layer during the design process could lead to an over-designed thermal protection
system, which reduces performance, or an under-designed one, which could result in the loss of
the vehicle. Accurate prediction or control of the boundary-layer state is also important for the
design of hypersonic engine inlets and control surfaces. However, current transition prediction
methodologies are mostly empirical, and often do not incorporate all of the relevant mechanisms
of transition, so they are difficult to apply outside of the conditions from which they were created.
To improve upon the existing empirical correlations, there is a need for a set of robust methods
for prediction of boundary-layer transition which are based on a physical understanding of the
mechanisms involved [1].

The transition process starts with receptivity, by which disturbances enter the boundary
layer. Disturbances take many forms, from those generated on the body (like added vorticity
from roughness) to freestream fluctuations (like acoustic noise). The receptivity of the boundary
layer to specific disturbances is dependent on nearly every aspect of the vehicle geometry and
the surrounding flow. Once a disturbance has entered the boundary layer, it will either amplify
or decay as a result of instabilities inherent to the specific boundary layer in question. These
instabilities are also determined by the overall environment, and depending on the instability the
initial disturbances will manifest in various different forms, from acoustic waves to stationary

vortices. The unstable disturbances will continue to amplify downstream, possibly interacting



with one another, until they grow large enough that the flow in the boundary layer begins to
break down into turbulence.

As with any problem in fluid mechanics, one can study boundary layer transition via experi-
mental methods. However, no single wind tunnel can simulate all aspects of hypersonic flight.
Ground-based experiments to study transition require unique facilities because any disturbances
in the freestream of the wind tunnel will not necessarily be representative of those found in
flight. If the boundary layer is turbulent on the wall of the diverging wind-tunnel nozzle, the
fluctuating displacement thickness results in large acoustic noise in the core of the flow. High
levels of noise can result in earlier transition or in some cases change the mechanism responsible
for transition [2]. In conventional “noisy” wind tunnels the acoustic fluctuations can be 2% of the
mean pitot pressure or greater, which is orders of magnitude larger than what is seen in flight.
To study transition, it is often necessary to use “quiet” tunnels which are specifically designed to
maintain a laminar boundary layer on the nozzle wall. Quiet wind tunnels have noise levels less
than 0.05% of the mean pitot pressure, which is more similar to a flight environment.

Despite their advantages, quiet tunnels are not a complete solution to understanding the
transition problem. Other phenomena of hypervelocity flight, like chemistry and non-equilibrium
effects, cannot at present be replicated in quiet tunnels, nor can the operational quiet facilities
reach flight-like Reynolds numbers. In addition, the only currently operational quiet hypersonic
tunnels are all Mach 6, so an understanding of Mach number effects on transition can only be
experimentally examined in noisy facilities. It is therefore important that experimental efforts in
quiet tunnels are partnered with computational studies and experiments in conventional tunnels

to provide a more complete picture of the transition process on a real vehicle.

1.1 Transition on a Cone at Angle of Attack

A cone at an angle of attack in a supersonic freestream is a canonical geometry to study
boundary-layer transition in a three-dimensional flowfield. Figure 1.1 provides a diagram of such
a geometry, showing the coordinate system used when discussing the flowfield. The axial distance

downstream from the nose is x and the azimuthal angle from the wind ray is 6.



The windward side of the cone creates a larger turning angle than the leeward side, so a
circumferential pressure gradient is developed, driving the flow from the wind ray to the lee ray.
This pressure gradient affects the low-momentum fluid near the wall more than the freestream,
creating a component of the boundary-layer velocity that is transverse to the outer flow, called
crossflow. The crossflow component of the velocity must be zero at the wall and smoothly become
zero in the freestream, and therefore it is inflectional and inviscidly unstable. Figure 1.2 shows a

notional crossflow mass-flux profile illustrating the inflectional nature of the crossflow component.

Stationary Vortices

Figure 1.1. Diagram of a cone at an angle of attack.

streamwise
profile

X Z

Figure 1.2. A notional crossflow boundary-layer mass flux profile. Based on a similarity solution,
from Craig and Saric [3].



The crossflow instability manifests in two forms: stationary and traveling vortices. The
stationary vortices are fixed with respect to the surface and nearly aligned with the outer flow.
Their axes are thought to pass through the generalized inflection points of the undisturbed
boundary layer. These vortices can be readily observed via their modulation of the surface shear
and heat transfer, or by measuring the velocity distortion through the boundary layer. Traveling
vortices are packets of vortex-like disturbances which move obliquely downstream along the
surface, from the lee side to the wind side. The traveling vortices can be easily measured as
pressure or velocity fluctuations at a fixed sensor position. Several sensors in an array can be used
to determine the vortices’ phase speed and propagation angle [4,5].

Bippes [6] and Saric et al. [7] provide thorough reviews of low-speed crossflow experiments
and computations up to the year 2003. At low speeds, traveling waves dominate transition for high
freestream turbulence levels, while stationary waves are dominant in the lower-noise environment
of low-disturbance tunnels and flight [8]. However, it is not necessarily true that traveling crossflow
waves will dominate transition in noisy hypersonic tunnels. Some recent evidence suggests that
the traveling waves either do not appear or are buried in high-amplitude, low-frequency noise
of unknown origin [9, 10]. However, low-speed computations show that nonlinear interaction
between the stationary and traveling crossflow modes can have a significant effect on transition,
so understanding the traveling mode is critical to the development of mechanism-based transition
prediction methods, even in quiet flow.

Stationary crossflow vortices are sensitive to roughness height and diameter [11], as well
as roughness spacing [12, 13]. However, stationary crossflow waves are strongly stabilized by
nonlinear growth effects, leading to amplitude saturation once they have grown large enough
[14]. Figure 1.3 shows nonlinear computations of the stationary vortex disturbance velocities
with initial stationary mode amplitudes A ,; = 0.1% and initial traveling mode amplitudes
A tray = 0.01% [14]. The saturation in the amplitudes is evident at Reynolds numbers above about
R = 500. The saturation occurs for cases both with and without traveling waves; for instance see
Figures 17(a) and 18 in Malik et al [14]. This saturation means that it is impractical to create an
amplitude criterion for transition based on the stationary waves alone, as growth of the waves

could stop long before transition.
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Figure 1.3. Amplitudes of the stationary crossflow wave disturbance velocities, u’, v/, and w’,
digitized and redrawn from Figure 17(b) in Malik et al. [14]. The abscissa, R, is a Reynolds
number based on a characteristic length scale defined in [14].

At low speeds in stationary-crossflow-dominated transition, the stationary crossflow wave
usually breaks down to turbulence by way of a number of secondary instabilities [15,16]. As
the stationary wave grows, it modulates the mean flow of the boundary layer, creating strong
shear layers in both the spanwise and wall-normal directions. These inflectional profiles generate
two distinct types of secondary instabilities. Type-I instabilities are associated with extrema of
transverse gradients of velocity within the stationary wave, and are sometimes referred to as z or
0 modes. Type-II instabilities are associated with extrema of wall-normal velocity gradients, and
can therefore be called y or » modes.

Both types occur at a frequency an order of magnitude higher than that of the traveling
crossflow vortices, but the type-II instabilities are typically higher frequency than the type I [17].
At low speeds, the relative importance of each type of secondary instability to transition is related
to the forced wavenumber of the stationary crossflow vortices [16]. The secondary instabilities
tend to appear when the stationary wave has quasi-saturated, quickly followed by turbulent
breakdown.

Measurements at high speeds have shown that the hypersonic crossflow instability behaves

similarly to its low-speed counterpart. Measurements and computations have shown that the



stationary vortices saturate in amplitude, and that secondary instabilities appear with the same
mode shapes as the low-speed case [18-20]. However, an additional instability is present in
high-speed boundary layers. At hypersonic speeds, the second-mode instability also appears
to play a role in boundary-layer transition under crossflow, at least on some geometries. The
second mode is like an acoustic wave propagating through the boundary layer between the wall
and the relative sonic line. It is usually the dominant transition mechanism in two-dimensional
flow-fields like cones at zero degrees angle of attack. Some recent computations [19, 20] and
experiments [10,21] suggest that the second mode is modulated and destabilized by the stationary
crossflow vortices, and that this modulated acoustic wave is the ultimate mechanism for nonlinear
breakdown to turbulence. Note that for the purposes of this work, the modulated second mode will
be referred to as a “secondary instability” akin to the type I and II “true” secondary instabilities.
This is because the second mode would not exist in its modulated form without the presence of
the primary instability, the stationary crossflow vortices. An important question which is not
addressed by the present experiments is whether a change in the nonlinear breakdown mechanism
actually affects the location of turbulent onset in a significant way.

The importance of secondary instabilities to transition prediction, whatever their form, is

N correlation with the

exemplified by Malik et al. [22], who showed that at low speeds an e
amplitudes of the secondary instabilities performed better at predicting transition than using the
amplitudes of the stationary vortices. It is therefore important to understand the growth and
breakdown of the secondary instabilities at high speeds in the hopes that a mechanism-based

prediction method can be created for crossflow in general.

1.2 Secondary Instability of Low-Speed Crossflow Waves

A majority of the experimental and computational work on the secondary instability of the
stationary crossflow waves has been at subsonic speeds. Bippes [6] provides an excellent review
of low-speed crossflow experiments, including secondary instability measurements. The first
experimental evidence of the secondary instability seems to be from Michel et al. [23] in 1984
on a swept wing and Poll [24] in 1985 on a swept cylinder. Note that this is thirty years after

Gregory et al. [25] first studied crossflow vortices on a swept wing and rotating disk. Hot-wire



measurements by Michel and Poll showed an instability at a frequency an order of magnitude
higher than the measured travelling wave frequency. Poll credited these results to intermittent
turbulence.

However, in 1991 Kohama et al. [15] argued that the higher frequency was actually a secondary
instability, which has become the consensus. In their article, Kohama et al. provide measurements
taken on a swept wing in the Arizona State University (ASU) Unsteady Wind Tunnel. They
describe the secondary instability as co-rotating vortices aligned nearly perpendicularly to the
stationary crossflow waves, and propagating in the streamwise direction. They write that the
breakdown to turbulence of the crossflow vortices is the result of the secondary instability growing,
interacting with the primary vortex, and forming multiple other inflectional instabilities. The
entire breakdown takes place over a very limited distance on the order of the boundary-layer
thickness, and between the middle and the edge of the boundary layer where the secondary
instability forms.

The crossflow vortices in the Kohama et al. experiments were naturally excited. To extend these
results, Lerche used several vibrating membranes on a swept wing as a disturbance generator [26].
Using this system, he excited a single travelling crossflow mode. He also examined the results
when both a travelling crossflow mode and a stationary crossflow mode were excited. In both cases
he observed a secondary instability at a frequency an order of magnitude higher than the excitation.
The instability occurred at a particular phase between the travelling wave and the excitation signal.
This seems to suggest that Lerche’s high-frequency measurements were secondary instabilities of
the travelling waves, as opposed to secondary instabilities of the stationary waves measured by
Kohama et al. [15].

In the mid-1990’s, there was a great deal of computational work studying the low-speed
crossflow instability and associated secondary instabilities. An analogous secondary instability
analysis had already been performed on the Gortler instability, a similar streamwise vortex-based
instability [27,28]. In 1996, Malik et al. [17] computed the secondary instabilities in the 1991 ASU
swept wing experiment described by Kohama et al. [15]. They found two modes, which they called
mode I and mode II. The mode II frequency was slightly less than double the mode I frequency.

The mode I instability grew on the leeward side of the primary stationary wave and is caused by



high spanwise shear. The mode II instability grew over the crest of the wave as a result of high
wall-normal shear.

In 1999, Malik et al. [22] published a more extensive secondary instability analysis for a different
swept-wing experiment at ASU in 1996 [12]. This computational crossflow study produced a
few key results. First, the computations show that in some places as many as seven secondary
instability modes exist. For some modes, the growth rate curves have multiple frequency peaks.
All these modes begin to grow once the stationary wave has saturated. In general, each of the
modes can be classified as a z or y mode (equivalent to the type-I and type-II nomenclature used
throughout the present work), based on the dominant energy production mechanism. The z and y
designation seems to have replaced the ‘mode I and ‘mode II’ names used in the previous paper.
A stylized depiction of the locations of the z and y modes on the stationary waves is shown in

Figure 1.4. This was drawn based on the results in Figures 7 and 8 of Malik et al. [22].

‘r’ or ‘y’-mode

™ 467 LZ’— de
(Type H) or mo
T_g (Type I)

stationary vortex

Figure 1.4. Drawing of the eigenfunction locations of the two types of secondary instabilities.
Based on data from Malik et al. [22].

In addition, Malik et al. provide an estimate for the secondary instability frequency. They use
Jest = U/ A, where U, is the edge velocity and 4,, is the stationary crossflow wavelength. This
assumes that the phase speed of the secondary instability is the same as the edge velocity.

However, the most important result from Malik et al. is that an N-factor transition correlation
based on the growth of the secondary instabilities is more successful than a correlation based

on the stationary wave amplitude. This is because of the nonlinear amplitude saturation of the



stationary vortices. As discussed previously, the amplitude saturation makes a criterion based on
the stationary wave amplitude impractical. The secondary instabilities, however, grow quickly
just prior to transition.

Around the same time as the Malik et al. work, White and Saric conducted an extensive
hot-wire study of crossflow on a swept wing in the low-disturbance ASU Unsteady Wind Tunnel,
which was published in 2005 [16]. Though they credit Malik et al. for the type-I and type-II
nomenclature used in the present work, it appears this wording was first used by Koch et al. [29].

White and Saric present measurements at several streamwise locations for a few different
roughness configurations. At the farthest upstream locations, no secondary instabilities are
detected. There are several peaks in the hot-wire power spectra, but these are explained as
traveling crossflow waves (at low frequencies) and a Tollmien-Schlichting-like wave (at a higher
frequency).

Farther downstream, several secondary instabilities appear. Type-I modes exist on the shoulder
of the stationary vortex. White and Saric also found that multiple frequencies of type-I modes
appeared in the same location, but were not harmonics. The lowest-frequency mode, a type I, was
found to have the largest amplitude of all the secondary instabilities that were measured.

In several cases White and Saric also measured a type-II mode on the crest of the stationary
vortex. The type-II frequency was approximately double the fundamental type-I frequency, as
predicted by Malik et al. [17]. They report that the low-amplitude type-II mode is often difficult
to measure and can be masked by the growth of a high-frequency harmonic of the type-I mode,
which sometimes appears in a spatially overlapping region.

Malik et al. [22] showed that the type-II mode initially has a much higher growth rate than
type-I modes. However, experimental evidence [15,16] shows the type-I modes appear before the
type-IIl modes and are much larger. Note that these results are at slightly different but comparable
conditions (Reynolds number, angle of attack, and stationary vortex wavelength). Both White
and Saric, and Malik et al. use a receptivity argument to explain this disparity. The experimental
results would make sense if the type-I modes had larger initial amplitudes. White and Saric posit
that this may be because the freestream turbulence level decreases with increasing frequency.

However, they found that by supercritically forcing the stationary waves (using roughness

elements to force a spanwise wavelength longer than the naturally dominant one) the type-I
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growth was suppressed because the region of high spanwise shear was reduced. In this case
type-IIl modes were easier to identify and more important in transition.

One of the most recent numerical explorations of the low-speed crossflow secondary instability
is by Bonfigli and Kloker in 2007 [30]. They compared the results of Secondary Linear Stability
Theory (SLST) with Direct Numerical Simulation (DNS) of a swept flat plate. Unlike many previous
computations, Bonfigli and Kloker examine secondary instabilities of both stationary and traveling
crossflow waves. The DNS forced a specific stationary crossflow wavelength, and once these
had saturated used wall blowing to force secondary instabilities. Their work produced several
important results.

First, Bonfigli and Kloker computed the phase speeds of each mode of the secondary instability.
They found that the phase and group velocities of the secondary instability were nearly equal,
and the type-I phase speeds were slightly lower than the type-II speeds — 0.9 U, and 1.1 U,,
respectively. For secondary instabilities of the travelling waves, the phase speeds are slightly
lower than for the stationary waves.

Second, the DNS results showed no sign of type-II instabilities, despite their appearance in
experiments. The SLST results indicate type-II instabilities should be the most amplified. Bonfigli
and Kloker attribute the discrepancy to inaccuracies in the SLST and in the base state from which
secondary instabilities are calculated. Indeed, they found that the growth rates calculated by SLST
were highly sensitive to the cross-plane velocity components in the base flow.

Finally, Bonfigli and Kloker determined that the base state (the stationary or travelling crossflow
waves) need not be periodic for the secondary instabilities to appear. Secondary instabilities on
neighboring crossflow vortices develop independently.

Li and Choudhari [31] examined spatially growing secondary instabilities from the swept-wing
experiments of Reibert et al. [12]. Previously, most secondary instability computations used the
temporal instability approach instead. Li and Choudhari’s work generally corroborated previous
computational efforts. In addition, it was found that increasing the roughness height causes the
secondary instabilities to appear earlier (as this increases the initial amplitude of the primary
stationary vortex), but with lower growth rates. This leads to roughly the same total amplification
of the secondary instabilities at breakdown regardless of initial stationary wave amplitudes. This

confirms that an e approach based on secondary instability amplification is useful. In fact, their
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findings showed that either the y modes (type II) or the z modes (type I) could be used for such a

correlation.

1.3 High-Speed Crossflow Boundary Layers

The body of work for the secondary instability of high-speed stationary crossflow waves is
much smaller than that for low speeds. In 1996, Malik et al. performed computations for the
crossflow instability over a swept cylinder at Mach 3.5 [17]. The computations revealed three
secondary instability modes, each with different phase velocities slightly lower than the edge
velocity. They found that the frequency range of the secondary instability spans from tens of
kilohertz to more than 1 MHz.

To the author’s knowledge, no work focused on secondary instabilities of high-speed crossflow
vortices was published during the next two decades, though many experiments studied the
primary crossflow instabilities at high speeds. One reason for the dearth of high-speed secondary
instability experiments is the requirement for high-frequency, low-amplitude pressure or velocity
measurements. In the last decade, however, pressure sensors manufactured by PCB Piezotronics
have enabled the measurement of high-frequency instabilities in the hundreds of kilohertz. These
sensors were first used by Fujii [32] to study second-mode waves at Mach 7. In addition, Mach-6
quiet tunnels at Purdue University [33] and Texas A&M [34] (formerly at NASA Langley) became
operational in 2006 and 2008, respectively. These new quiet tunnels allowed the experimental
study of stationary-crossflow-dominated transition at hypersonic speeds.

In 2008, Li and Choudhari [31] used a spatial instability framework to compute secondary
instabilities on a Mach 2.4 swept wing. They studied two cases, the most unstable stationary wave
spanwise wavelength (1 = 3 mm) and its first harmonic (1 = 1.5 mm). They found that for the
dominant case (4 = 3 mm), all of the computed secondary instabilities were y modes (type II). For
the harmonic case (1 = 1.5mm), a z mode (type I) appears. The z mode grows rapidly initially,
but is soon overtaken by the y modes.

In 2014, Ward and Henderson reported the first measurements of potential hypersonic sec-
ondary instabilities [35] (described in more detail in Reference [36]), made in the Mach-6 quiet

tunnel at Purdue University using surface pressure sensors. These measurements renewed interest
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in high-speed secondary instability research. High-frequency instabilities were measured by Ward
and Henderson only when stationary vortices were near the sensor.

Henderson [36,37] performed experiments on a sharp 7° half-angle cone at low angles of attack
(2°-4°). Figure 1.5 shows heat flux inferred from Temperature Sensitive Paint (TSP) images and
the Power Spectral Density (PSD) from a set of two runs conducted by Henderson. These are
reproduced with permission from Figures 5, 6, and 8 in Reference [36]. Figure 1.5(a) shows the
heat flux from a run at 4° angle of attack with a smooth cone. There are no visible stationary
vortices below the 90° ray (which is indicated in the figure). Figure 1.5(b) shows the heat flux from
a run with the same configuration, except a ring of nail polish has been added upstream of the
paint. The nail polish ring had an RMS roughness of about 50 pm. With the added roughness, a
number of large stationary vortices are evident below the 90° ray. One large wave passes over
the PCB sensor at x = 360 mm on the 60° ray, at a spanwise reference of about 0.015 m in the
figure. Figure 1.5(c) shows the PSDs from that PCB for both the smooth and roughness-added
runs. When the nail polish roughness is added, an instability appears at about 450 kHz, where
there was nothing in the smooth case. This is believed to be a secondary instability, associated
with the large streak passing over the sensor in the roughness-added case.

Ward [36,38] made similar measurements on the same cone as Henderson at 6° angle of attack.
In addition, Ward shows the result of rotating the cone by a few degrees. The vortices are likely
fixed to the exciting-roughness location (Ward used a Torlon dimpled roughness in the style of
Schuele et al. [39]), and the roughness was fixed relative to the cone. When the cone is rolled
the roughnesses are in a different part of the flow field, and so the vortices take a different path.
Therefore, rolling the cone by small angles displaces the stationary vortex relative to the sensor.
It is important to note that this is not a perfect measurement across the vortex. Once the cone
is rolled, the measurements are of a different vortex, though presumably for small rotations the
difference is small.

Ward shows power spectra from rolling a particular sensor under a stationary vortex. His
Figure 35 in [36] (or Figure 8.6 in [38]) has been redrawn from the original data in Figure 1.6. The
sensor is rotated from 115° to 122.5°. At 117-120°, a high-frequency instability appears at about
400 kHz. When the cone is rotated to move the sensor farther leeward, it no longer records a

high-frequency instability but instead captures one at around 150 kHz. At the windward edge, 115°,
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Figure 1.5. Comparison of a cone with and without added roughness. Adding roughness results
in large stationary waves near the sensor, and a measured secondary instability. Reproduced
from Henderson [37], with permission.

no instability is observed, showing the instability is spatially confined. However, this particular
test was conducted without TSP, so it is impossible to clarify the sensor location relative to the
vortex.

The secondary instabilities were only observed when a streak in the heat flux passed near

a sensor. However, Ward and Henderson [36] note that in many cases a streak was observed



14

10°
; —115.0°
10 117.5°
—120.0°
N 1078 —121.0°
N —122.5°
gm 102 —122.5°, noisy flow
S 10
- 10
o
4 11
O a0

O 100 200 300 400 500 600 700 800 900 1000
Frequency, kHz

Figure 1.6. Power spectra from a single PCB rotated under a crossflow vortex. Note that the
roughness elements moves as well, which changes the vortex. Reproduced from Ward [38],
with permission.

passing over a sensor, but without an instability being recorded. They write that in these cases
the roughness used was likely not sufficient and the vortices had not achieved the appropriate
amplitude before reaching the sensors.

In 2015, Craig and Saric [3,18] reported hot-wire measurements of secondary instabilities on the
same geometry as Ward and Henderson at Mach 6. The model was tested in the Texas A&M Mach-
6 Quiet Tunnel at 5.6° angle of attack. The hot-wire frequency response was approximately 180
kHz, which is too low to measure the high-frequency signals measured by Ward and Henderson.

Craig and Saric measure significant fluctuations in two frequency bands, 15-60 kHz and 80—
130 kHz. The lower frequency band is attributed to the traveling waves, or at upstream locations
the first mode. The 80-130 kHz band is located on the leeward shoulder of the stationary waves,
indicating it is a type-I secondary instability. The measurements show the amplitude of the
secondary instability saturating instead of growing to turbulence. Craig and Saric suggest this

is because their data were not taken far enough downstream. In addition, the axial distance
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over which the amplitude is near-constant before explosive growth is much larger than for the
low-speed type-I waves, which is attributed to the higher edge velocity.

Craig and Saric write that at low speeds the expected type-I secondary instability frequency is
f1 = U,/(25), which for their conditions is about 120 kHz, in the middle of the measured band.
They also write that a type-II instability would have a frequency approximately double the type I
frequency, which is beyond the hot-wire’s frequency response for the experiment.

Until recently, there were few high-speed secondary-instability computations. The work by
Moyes et al. in 2016 [19,40] is among the most thorough. Moyes et al. performed LST and spatial
biglobal analysis on a sharp 7° half-angle cone at 6° angle of attack. They adjusted the initial
amplitudes of the stationary crossflow base flow until the mass flux contour and RMS amplitudes
agreed with Craig and Saric’s [18] experimental results at x = 380 mm and 6 = 118°. Six separate
secondary instability modes were identified using the spatial biglobal analysis. Three of these
modes appear to be low-frequency traveling crossflow (<100 kHz) modulated by the stationary
waves. One of the modes has two growth rate peaks, with the higher frequency peak identified as
a type-I secondary instability. It is concentrated on the shoulder of the stationary vortex. Two
modes are type-II, concentrating on the crest. As expected from low-speed results, the type-II
frequencies are about double that of the type-I instability.

One calculated instability shows similarities with the second mode. The eigenfunction of this
mode has a maximum between the wall and the sonic line, and a second, smaller local maximum
above the critical layer. The growth rate of this instability also has two peaks. The lower frequency
is concentrated under the thick shoulder of the stationary wave, whereas the higher frequency
peak is found in the thinner trough. As with second-mode waves, the frequency seems to scale
inversely with boundary layer thickness.

The Moyes et al. computations show secondary instabilities in the same frequency bands
measured by Craig and Saric [18]. Craig and Saric measured a modulated travelling wave at
15-60 kHz (mode II from Moyes et al.) and a higher-frequency type I secondary instability at
80-130 kHz (computed as mode II, peak II by Moyes et al.).

According to Moyes et al. the discrete roughness element wavelength of 7.2° (wavenumber
of 50) used by Ward and Henderson [36] results in a different shape of the crossflow vortices

in the spanwise and wall-normal plane [40]. The computational data could not be compared to
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experimental profiles (as Ward and Henderson do not have measurements within the boundary
layer), so the initial amplitudes were taken from a correlation with roughness amplitude by
Balakumar and Owens [41]. The computed secondary-instability pressure modes for this case,
provided in Figure 1.7, shows that the secondary instabilities are azimuthally confined. This agrees
with the measurements by Ward and the present experiment. For the pressure modes illustrated
in Figure 1.7, mode I is a modulated traveling wave and mode II is a type-I instability. Mode III
is the type-II instability, and mode IV is the second mode. The computed frequencies of these
modes are close to the measured instability frequencies from Ward and the present experiment.
Interestingly, the computations show that only the mode IV instability has a significant portion of

its mode shape at the wall.
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Figure 1.7. Isocontours of the normalized pressure fluctuation amplitudes |p|, isolines of basic-
state mass flux pi” (black lines), critical layer (blue line), relative sonic line (green line), and
azimuthal angles of § = 115°, 117.5°, 120°, 122.5° (the vertical magenta lines) at x = 405 mm.
(a) Mode I at 15 kHz, (b) Mode II at 125 kHz, (c) Mode III at 375 kHz, and (d) Mode IV at 140
kHz. Reproduced from [40] with permission. Caption from [19]. Flow conditions can be found
in [40].

Li et al. have also performed several computations of high-speed secondary instabilities [42].
A quasi-parallel method was used with a wavenumber of 60 waves per circumference. The most

unstable instability was found to be a modified second-mode wave, similar to the results of Moyes
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et al. Li et al. also found a very broad-band, type-I secondary instability. Growth-rate curves show
that the modified second-mode consistently reaches higher N-factors regardless of the vortex on
which it occurs. The most unstable second-mode frequency decreases with increasing azimuthal
angle, an effect of the increasing boundary-layer thickness. However, the peak frequency of the
computed secondary instability increases with increasing azimuthal angle (on three different
vortices). At the highest computed azimuthal angle (which appears to be about 150° but is never
explicitly stated), the peak frequencies are about 200 kHz for the second mode and about 300 kHz

for the secondary instability.

1.3.1 Recent and Ongoing Crossflow Work

In recent years, research efforts on the high-speed crossflow instability have expanded as
quickly as interest in hypersonics in general. A number of recent experiments and computations
on the nonlinear breakdown of crossflow are now summarized.

The bulk of recent crossflow work has focused on the HIFiRE-5 elliptic cone. Borg conducted an
extensive experimental campaign on this geometry, including the first surface-pressure measure-
ments of the traveling crossflow waves [5,43], in which he found found that traveling crossflow did
not reach significant amplitudes and was not the dominant mechanism for transition regardless
of the freestream noise levels. Borg also made the first infrared measurements of the stationary
crossflow waves in a quiet tunnel [44-46], and measurements of the effect of freestream noise [9].

Computational researchers at Texas A&M are now mostly focused on stationary crossflow
growth and their secondary instabilities on the elliptic cone, but their recent work also includes
in-depth computations of secondary instability growth on a cone at angle of attack [19]. Of
particular relevance the the present work is the study by Moyes et al. [47] on the effect of different
initial amplitudes for stationary crossflow vortices on an elliptic cone. Using nonlinear PSE, they
show that as the initial amplitudes increase, the stationary vortices reach the nonlinear saturation
stage earlier on the model, but at a lower amplitude. They then performed linear spatial biglobal
analysis of the secondary instabilities for two initial amplitudes of the stationary vortex. This

analysis revealed that the secondary instability behaved essentially the same in both cases, with
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the exception being the higher initial amplitude support higher frequency secondary instabilities
(a result of their formation in a thinner boundary layer, farther upstream).

Experiments are also being conducted at Texas A&M in the Mach-6 Quiet Tunnel [48]; again
these are mostly focused on the elliptic cone geometry. The aim of these on-going experiments
is to determine the effect of environmental noise levels on the development of the crossflow
instability, extending earlier work by Borg [9].

Recent computations at Minnesota also supported the HIFiRE-5 elliptic cone geometry. Dinzl
and Candler [49] introduced a new technique for simulating roughness in their DNS study of
HIFiRE-5. Each grid point on the surface of the geometry is moved by a random amount, effectively
modeling the inherent surface roughness of the vehicle. In this way the naturally most amplified
stationary mode can be excited at larger initial amplitudes and in a more natural way than was
previously possible. The resulting stationary vortices interacted with the wall to yield merging
of the hot streaks downstream. This merging appears to be intimately related to the transition
process in the present experiments (see Chapter 5), so the work of Dinzl and Candler might also
be applied to a circular cone at angle of attack.

Research groups at Notre Dame are conducting experiments on the effect of different distur-
bance geometries on downstream crossflow development. These experiments are conducted on
7° half-angle cones at 6° angle of attack. Both of these groups are focusing on the flow-control
properties of perturbations on the cone. One group is studying the use of plasma actuators to
generate stationary waves at different wavenumbers [50,51]. In collaboration with the US Air
Force Academy, another group at Notre Dame is conducting experiments investigating the effect of
different roughness wavenumbers on stationary and traveling crossflow wave development [52,53].
The results of these studies are at present inconclusive, though early data appear to indicate that
the plasma-actuators could delay transition in some cases. Using patterned discrete roughness at
Mach 3.5, Schuele et al. [39] demonstrated that subcritical forcing can delay transition in a manner
analogous to low speeds.

Corke et al. [53] recently repeated this experiment in a conventional Mach 6 facility. Unfortu-
nately, it is not clear from the new data whether the subcritical forcing has the same effect. Due
to the low bandwidth of the pitot probe, it was impossible to measure the second mode. Oil flow

images are used to demonstrate the effectiveness of the roughness elements in generating the
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stationary crossflow vortices, but the images are very low resolution and include a number of
artifacts that look similar to the stationary vortices but throughout the image, making it difficult to
determine if the oil flow is in fact revealing stationary vortices at all. However, several prior exper-
iments by others have used infrared imaging or temperature-sensitive paint to show the existence
of stationary crossflow vortices in conventional wind tunnels dating to at least 1969 [10,54-58], so
they are known to exist in high-disturbance flows. This work on subcritical forcing is promising,
but more detailed studies must be conducted before the process is well understood at high speeds.

Researchers at NASA Langley are continuing to perform PSE and DNS computations to
understand the fundamental physics of the stationary crossflow breakdown on a 7° circular cone
at Mach 6 and 6° angle of attack [20,59]. Their most recent results are very similar to the present
experiments, even though the forcing of the stationary vortices in the computation used 5 pm
elements—25 times smaller than the present work. The perturbation heat flux of the stationary
vortices in the computation is about half as large as in the experiment, but the parameters of the
forcing could account for this. The NASA studies also reveal that the genuine secondary instability
(as opposed to the modulated second mode) occupies a very wide frequency bandwidth, from

200-600 kHz.

1.3.2 Previous Work by the Author and Current Objectives

The author began in 2015 [10,60] to measure secondary instabilities of stationary crossflow
waves on a 7° half-angle cone at 6° angle of attack. Crossflow-dominated transition can be studied
on a number of geometries, including elliptic cones [4, 5,9,44-46,48,49,61-64] and more complex
three-dimensional geometries. But the 7° half-angle cone is a simple, canonical geometry for
studying hypersonic crossflow, agreed upon by the hypersonic transition community. A circular
cone is also easy and inexpensive to manufacture.

At least two frequency bands of the secondary instabilities were measured in Reference [60].
The amplitudes of the instabilities increased with the addition of roughness elements near the nose.
Two of the measured instabilities were captured over a range of axial Reynolds numbers of about
1-2 million, with amplitudes ranging from low to turbulent breakdown. For these instabilities,

the wave speed and amplitude growth were calculated. The wave speeds were all near the edge
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velocity. Measured growth before breakdown for the two instabilities was between e’ and ¢*
from background sensor noise levels. Simultaneous measurement of two frequency bands of the
secondary instabilities was made during a single run. It was found that each mode was spatially
confined within a small azimuthal region, and that the regions of peak amplitude for one mode
correspond to regions of minimal amplitude for the other.

The present work extends these earlier experiments. Several experiments have been conducted
on a 7° half-angle cone at 6° angle of attack. These experiments aim to study the growth of the
stationary and traveling vortices, the growth of the secondary instabilities, and the ultimate

nonlinear breakdown of the boundary layer.

1.4 Approaches to Generating Stationary Vortices

To study the growth and breakdown of stationary crossflow vortices, it is important to have a
well-defined, small, controlled perturbation by which to seed the flow with streamwise vorticity.
The perturbation must be large enough to dominate the generation of the stationary crossflow
vortices—as opposed to other perturbations on the geometry—but not so large as to trip the
boundary layer. Typically, roughness is used for this purpose, though other approaches are
possible (for example by using plasma glow-perturbers, as explored by Yates et al. [50,51]).

In this context, “well-controlled” means that the roughness parameters can be precisely varied
and measured. For discrete roughness elements the important parameters are the physical size of
the element (e.g., diameter and height), the geometry of the element (e.g., cylinder or diamond), and
the spacing between adjacent elements. For distributed roughness, the distribution of the random
roughness should at least be measureable, if not pre-determined. For the present experiments,
it is also important that the added roughness can be shown to dominate the generation of the
stationary crossflow vortices, as opposed to roughness that is inherent to the model (e.g., the steps
at interfaces).

In previous studies of crossflow, the roughness has typically not been well-controlled. The
experiments of Swanson [56] used 2.5 um rub-on transfer dots. Though this technique is cost-
effective, there is no way to precisely or repeatably apply the dots. Schuele et al. [39], and later

Ward and Henderson [36], used a roughness made from Torlon plastic. The plastic was dimpled
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with a small pin to create indentations of a known diameter, which can be controlled to a much
higher degree of precision than the nail polish. Though the dimpling method is a a significant
advance in creating controlled roughness, it is not without problems. For instance, it is not
clear that the indentations were stable; the Torlon may have relaxed after dimpling, leading to
uncontrollable and non-uniform dimpling depths. Dimpled Torlon is still being used by Corke et
al. [53] to investigate possible mechanisms for control of crossflow transition.

Chynoweth [65, 66] developed the Rod Insertion Method (RIM) to create well-controlled
roughness arrays for the study of second-mode transition on a flared cone. The RIM inserts
are fabricated from an aluminum base in which several small brass rods are press-fit. The rods
are machined by hand to a specified height. The method is quite adaptable, enabling the use
of different base materials (for instance IR emissive materials like PEEK) and a wide range of
sizes of the roughness rods. Though they are time consuming to fabricate, the RIM roughnesses
are a well-defined input to the crossflow boundary layer. A more detailed discussion of the RIM

roughness used in the present work is provided in Section 2.2.2 and Chapter 4.

1.5 Heat Flux from Infrared Images

The heat flux to the model is of great practical interest, and is more useful for comparing
to computations than is the temperature change of the model. A method for inferring heat flux
from TSP images has been in use for several years at Purdue. It is desirable to have a similar
method for use with infrared (IR) images. Borg [44] led the effort to begin infrared measurements
in the BAM6QT, including providing the calcium fluoride window. Following his work, two
students from the University of Naples, Salvatore Cerasuolo and Mirko Zaccara, came to Purdue
University during the Fall of 2016 and 2017, respectively. First, they thermally calibrated the
infrared camera (loaned from the University of Notre Dame) and the calcium fluoride window as
one system, providing a mapping from the camera’s digital values to a temperature. They also
provided an optical calibration method to map the image coordinates to real-world points on a
model. Then, over a series of runs on a sharp cone at zero-degrees angle of attack, they validated
a one-dimensional finite-difference, inverse heat-transfer calculation method against theoretical

and computational models [67,68]. Zaccara also provided a two-dimensional inverse heat-transfer
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code. Inverse methods find the convective heat transfer coefficient which minimizes the square
error between the experimental surface temperature and a finite-difference computed surface
temperature. Here one-dimensional means only wall-normal heat flux is considered (i.e., every
pixel is treated as a separate system). A two-dimensional method includes transverse conduction
in the spanwise direction.

The problem of estimating heat flux from surface temperature measurements has a long
history. Walker and Scott [69] provide a nice review of the various methods used in the past. They
divide the methods into three classes: class 1 are essentially analytical in nature; class 2 are finite
difference methods; and class 3 are inverse methods, which attempt to minimize the difference
between a calculated temperature based on an assumed heat flux and the experimentally measured
temperature. All three classes have advantages and disadvantages, but the inverse methods are
more robust, so they are more often studied in the current literature.

Fourier decomposition is often used in this context. Estorf [70] decomposed images using a
spatial Fourier transform and then calculated the heat flux via time discretization. The author’s
method described in Section 3.6 appears to be essentially the same as that of Fernandes, et al. [71],
who treated the 1D heat-transfer problem as a linear system (though the Fernandes, et al. method
is for a finite slab as opposed to the author’s semi-infinite model). By using Green’s functions to
calculate the analytical solution to the problem, they produced the system’s “impulse response,’
which can then be used to calculate the heat flux from a generic experimental temperature. It
is also worthwhile noting that a direct finite-difference routine heat-transfer calculation, called
QCALC, has been in use for the same purpose by Borg [44] and translated to Matlab by Juliano [62].
The theory of the three methods in use at Purdue—direct, indirect, and Fourier-based—is provided
in Appendix D.

Though the inverse method for heat flux calculation is validated and quite robust, it is com-
putationally expensive and more complex than necessary for the cases of interest in the present
experiment. Instead, a 1D and 2D code were created based on Fourier decomposition of the
surface thermal boundary condition using the Fast Fourier Transform (FFT). The Fourier-based
approach has several advantages over the inverse approach, or even a direct, finite-difference
method. First, the Matlab FFT operation is extremely fast. This is especially beneficial for the

2D method which in a mesh-based approach requires a large number mesh points. There is no
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computational mesh required in the FFT-based method. Furthermore, the surface heat flux can be
computed analytically from the temperature response, as opposed to a finite-difference approach
which is an approximation of the surface heat flux and depends heavily on the mesh step size. Of
course, in both cases the calculated temperature history inside the model is an approximation of
the true temperature history.

Despite its usefulness, there are many disadvantages to the Fourier approach as well. The semi-
infinite method only works well for large PEEK thicknesses (around 5 mm or greater). Depending
on the model under test, this assumption may not hold. In addition, the method requires a large
number of time points for high accuracy, and the 2D problem additionally requires high pixel
density in the transverse direction. Future researchers should consider their specific problem
parameters before selecting the appropriate method. The author has written a single wrapping
function, qcalc, that will perform the heat-transfer calculation using one of several different

algorithms. This code and accompanying documentation are provided in Appendix E.
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2. FACILITY AND MODELS
2.1 Boeing/AFOSR Mach-6 Quiet Tunnel

The present experiments were performed in the Boeing/ AFOSR Mach-6 Quiet Tunnel (BAM6QT).
The BAM6QT is a Ludwieg tube, with a long driver tube connected to a converging-diverging

nozzle to accelerate flow to Mach 6. A schematic of the BAM6QT is provided in Figure 2.1.
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Figure 2.1. Schematic of the BAM6QT.

The BAM6QT is operated by first inserting the double burst diaphragms and pressurizing
the driver tube to the desired pressure. Everything downstream of the diaphragms is at vacuum.
The burst diaphragm system consists of thin aluminum sheets separated by an air gap. During
pressurization the air gap is kept at the average pressure across the diaphragm system (roughly one
half of the driver-tube pressure). When the tunnel has reached the correct stagnation pressure, the
gap between the diaphragms is evacuated, bursting the upstream diaphragm and the downstream
diaphragm in quick succession. After bursting, a shock travels downstream into the vacuum tank,
and an expansion wave travels upstream through the converging-diverging nozzle and into the
driver tube. Mach 6 flow starts after the expansion wave passes through the throat of the nozzle.
The expansion wave reflects between the upstream and downstream ends of the driver tube. It
takes approximately 200 ms for the wave to make one cycle of this reflection. Every time the wave
hits the downstream end of the driver tube, the stagnation pressure drops slightly. The tunnel

remains started for approximately 3-4 seconds.
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Conventional wind tunnels have turbulent boundary layers on the tunnel walls. At supersonic
speeds, these boundary layers radiate noise onto the model, affecting the transition mechanisms
under investigation. A number of features of the BAM6QT keep the tunnel boundary layers
laminar to enable operation at low freestream noise levels (<0.02 %). For details on the design and
development of hypersonic quiet tunnels, including the BAM6QT, see Reference [72]. A bleed slot
at the throat removes the boundary layer from the contraction section through a fast-opening
butterfly valve into the vacuum tank, allowing a fresh laminar boundary layer to develop along
the nozzle wall. The nozzle is highly polished to prevent roughness-induced transition on the
walls. In addition, the nozzle is very long with a large radius of curvature to reduce the growth of
the Gortler instability along the nozzle walls. Even with these elements, a turbulent boundary
layer will develop in the nozzle at high enough Reynolds numbers. From 2010 to the end of
2016, the maximum stagnation pressure for quiet operation was 170 psia (Re, ~ 12 x 10°m™"). In
December 2016, the upstream part of the tunnel was opened to repair a leak, and the maximum
quiet stagnation pressure subsequently fell to 135 psia (Re., ~ 9.5 x 10°m™"). After the nozzle
was repolished in early 2018, the maximum quiet pressure rose to 155 psia (Re,, ~ 11 x 10°m™).

The BAM6QT can also be operated without opening the bleed-slot fast-valve. This causes
a turbulent boundary layer to grow on the nozzle walls, which allows the BAM6QT to operate
as a conventional tunnel with higher freestream noise (22 %). The turbulent boundary layer is
thicker than in the quiet laminar case, so the test Mach number for noisy flow is about 5.8. As of
this writing, the BAM6QT is the larger of two operational quiet hypersonic tunnels in the United

States.

2.1.1 Tunnel Pressure Measurement

To operate the tunnel and calculate the run conditions, one must know the stagnation pressure
initially and at each point during the run. To collect this data, two pressure measurement devices
are used. A Kulite XTEL-190-500A pressure transducer is flush-mounted to the wall at the
beginning of the contraction section. This sensor measures the stagnation pressure during the run.
The Kaulite is calibrated with a 300 psia Paroscientific Inc. Model 740 Digiquartz Portable Standard

pressure gauge attached just upstream of the diaphragm section. At some point during an entry,
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the filling process is stopped at around five different pressures up to and including the highest
stagnation pressure required for that entry. At each of these points, the Kulite voltage is recorded
as well as a simultaneous reading of the Paroscientific gauge. Thus a separate Kulite calibration
can be created for each entry. However, the calibrations do not drift very much, even over several
years. Table 2.1 provides the calibrations for several entries to illustrate this fact. The calibration
slope is very consistent, with variations on the order of +2 %. The variation in the calibration
offset is £50 %, but this only +1 psia, which is less than 1% of the typical stagnation pressures.
Note that the calibration process was slightly different for Entries 1 through 5, as described further

in Reference [73].

Table 2.1. Summary of Contraction Kulite calibrations over several years.

Entry (Date) Calibration Slope, psiaV™'  Calibration Offset, psia

1(06/2015) 29.31 -2.49
2 (08/2015) 30.75 -2.37
3 (09/2015) 29.59 -2.27
5(01/2016) 29.47 -0.16
8 (02/2017) 29.35 -1.83
9 (09/2017) 29.71 -3.10
10 (01/2018) 29.53 -3.67
14 (08/2018) 29.23 ~1.84
15 (10/2018) 29.41 -2.51
16 (12/2018) 29.20 -0.37
Mean 29.55 -2.06
Std. Dev. 0.45 1.1

2.1.2 Run Characteristics

The expansion-wave reflection cycle in the driver tube is illustrated in the wall pressure trace
in Figure 2.2, measured with the aforementioned Kulite in the contraction section. Every 200 ms,
the pressure drops by about 1%. Over the course of the typical region of analysis, from 0.5 to
2 seconds, the pressure drops by approximately 10%. The contraction pressure data is used to

calculate the Reynolds number of the flow at times of interest.
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There is a Dantec 55R45 hot film mounted 1.85 m (73 inches) downstream from the throat
(or roughly 0.25-0.75 m upstream of the model). The uncalibrated hot-film data is used to detect
the turbulence level of the nozzle wall. When the hot-film data shows a turbulent burst (a sharp
spike), the data from that time is not used. The hot-film data in Figure 2.2 illustrates the expected
trace from a quiet run. The startup transient lasts about 0.2-0.5 s, with fully quiet flow until about
two seconds. After two seconds there is usually a small increase in noise shown on the hot film,
whose origin is uncertain (for more discussion see Steen [74] and Gray [75]). Although the flow
remains “quiet” to 3.7 seconds, to avoid the effects of this noise, pressure data from the model was

generally not considered past two seconds.
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Figure 2.2. Examples of the measured stagnation pressure from the contraction Kulite and the
uncalibrated hot-film voltage, from Run 1680.

2.2 Modular Cone

Murioz et al. [76] developed a 7° half-angle circular sharp cone with independently rotatable
segments to study the orientation of second mode and traveling crossflow wave-packets on a

cone at angle of attack. This model inspired the author’s development of a similar cone with a
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single, independently rotatable sensor section, which could be used to measure surface pressure
fluctuations at any arbitrary azimuthal angle on the cone. The resulting system is called the
Modular Cone, and was first used in February 2016. The initial design was mostly aluminum 6061,
with a 17-4 PH stainless steel central shaft, angle of attack adapter, and nosetip. Since that first
iteration, several additional components have been fabricated in both aluminum and Poly-Ether
Ether Ketone (PEEK), a high-emissivity plastic used for infrared measurements. A family photo of
the Modular Cone System is shown in Figure 2.3. A schematic of the Modular Cone is provided
in Figure 2.4, and engineering drawings of the components of the Modular Cone are included in

Appendix H.

Figure 2.3. The Modular Cone System.

The Modular Cone provides the ability to measure surface pressure fluctuations over a large
portion of a cone—even the entire azimuthal extent if necessary—at any angle of attack over the
course of several runs. In the latest iterations, a single ray of sensors spans the entire length
of the Sensor Frustum. Before each run, the Sensor Frustum is rotated to a different azimuthal

angle and locked into place. Over the course of dozens of runs, a map of the surface pressure
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fluctuations over the measured region is slowly developed. Such a technique is not limited to
studies of crossflow; any geometry which is mostly axisymmetric but has spanwise variations in
the flow can be measured this way (for instance a flared cone or a cone with a fin).

Though this technique allows the measurement of the location and growth of secondary
instabilities over a large portion of the cone, it is not without its drawbacks. The size and
resolution of the measurement region is directly proportional to the number of runs. In addition,
this technique can only be performed in a tunnel which can repeat the same run over and over
with minimal variation in conditions. The BAM6QT satisfies this condition; some blowdown
tunnels may not be able to.

One of the largest points of uncertainty is the azimuthal location of the sensors. Previous
models had azimuthal scales etched on their bases, but these scales were difficult to use and had
low precision and accuracy. The initial azimuthal scale on the Modular Cone consisted of Sharpie
dot marks every 5° in addition to a long pointer mark on the cone along the sensor array. Both sets
of marks were added by the author using a vertical mill, but they still had fairly low accuracy due
to the author’s inexperience in setting up the equipment. A more permanent solution was then
added to the base of the Modular Cone by inscribing marks with a center drill, but this method

suffered the same issues as the Sharpie marks.
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-1 e — R LT T
- .
3 2 Center Shaft Base Frustum &
S £ —— AoA Adapter
=
[}
~
%

Figure 2.4. A schematic of the Modular Cone.
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The solution was to have a Purdue machinist, Jim Younts, inscribe a vernier azimuthal angle
scale on the cone. Two new parts were fabricated; a new sensor frustum with the main scale (2°
increments) and a base frustum with the vernier scale (1.5° increments). The scale has a design
precision of 0.5°, but smaller increments can be inferred fairly easily if necessary. The accuracy of
the scale depends on the roll angle of the cone with respect to the angle of attack adapter. This
can be estimated using IR imaging by examining where the lee ray appears in the IR images.

The Sensor Frustum used for PCB measurements has 23 sensor ports arranged along two
azimuthal rays, as shown in Figure 2.4. The offset ray has three sensor stations for making
repeatability measurements as the Sensor Frustum is rotated over the course of an entry. Table 2.2
provides the axial and azimuthal locations of the PCB sensor ports for this model. In addition, an
array of Kulite sensors was used in a different Sensor Frustum to measure the traveling crossflow
phase velocity. The positions of those four Kulites are listed in Table 2.3.

A 17-4 PH stainless steel nosetip threads into the forward end of the model. Between the
nosetip and model is space for the roughness insert. The nosetip is common to all the models. As
illustrated in the magnified view of Figure 2.5 the nosetip radius is approximately 30 pm. This

image was taken with a Zygo Zegage white-light interferometer.

30.4 um

250 um - %

Figure 2.5. Magnified view of the sharp nosetip, showing the radius r = 30.4 um. Taken with the
Zygo Zegage white-light interferometer.
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Table 2.2. PCB sensor positions for the Modular Cone Sensor Frustum.

Sensor Axial Position, mm Azim. Offset, deg

1 255.3 0

2 265.4 0

3 271.7 0

4 278.0 0

5 284.3 0

6 290.6 0

7 296.9 0

8 303.2 0

9 309.5 0

10 315.8 0

11 322.1 0

12 328.4 0

13, 21 334.7 0, -6

14 341.0 0

15 347.3 0

16, 22 353.6 0, -6

17 359.9 0

18 366.2 0

19, 23 372.5 0, -6

20 378.8 0
,%8 1 2 345 6 7 8 91011121314151617 18192
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2.2.1 Model Steps, Gaps, and Flaws

As with any engineering assembly, the interfaces between mating components of the Modular
Cone are not perfectly flush. This can be especially problematic for the interfaces near the nosetip,
where the boundary layer is thin. Unfortunately, it is often not practical to minimize the step

between two components. For instance, the roughness insert is designed to be placed in several
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Table 2.3. Positions of the Kulites in the Modular Cone.

Sensor Axial Position, mm Azim. Offset, deg

1 327.7 0
2 329.7 0
4 328.7 =2.75
5 331.5 =2.75

different azimuthal orientations, and to be interchangeable with other inserts. Ideally, the nosetip,
roughness insert, and Upper Frustum would be machined together, to minimize the step at the
interface, but that would—as one example—require as many nosetips as roughness inserts, which
is not cost-effective. Furthermore, the step size is also dependent on the location tolerance of the
alignment pin in the roughness insert and the corresponding hole in the Upper Frustum. Thus the
step size for the baseline configuration of the RIM insert in Chapters 4 and 5 is not the same as
the step size when the roughness is rotated to a different azimuthal orientation. In addition, the
use of PEEK complicates the process, because the plastic material is difficult to machine to precise
tolerances. Also, its thermal expansion coeflicient is double that of aluminum, which can result in
different step heights as the model heats up over the course of many runs.

Figure 2.6 provides a simplified schematic of the steps which are formed at the interfaces. Note
that ranges are given for the step heights; the actual step height depends on the configuration
of the components involved and the azimuthal location of the measurement. The steps were
measured by taking a negative mold of the interfaces with a Struers RepliSet replication system,
and measuring the mold in the Zygo Zegage white-light interferometer (see the following section
for details on the Zegage).

In sum, though the step sizes at the component interfaces were minimized to the extent that it
was practical, there are still modest steps at each interface. For the present work, an experiment
was undertaken to ensure that the roughness elements—and not the steps at the interfaces—were
responsible for inducing the stationary vortices. Those measurements are presented in the first
part of Chapter 4. In addition, Table 2.4 lists the roughness Reynolds number, Re;, of the steps
between the components at the wind ray, calculated using the Navier-Stokes solution described in

Section 3.5. The boundary layer is thinnest at the wind ray, so these values represent a “worst-case”
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level. Also listed is the Re;; at the wind ray for a height of k = 152 pm, which represents the
worst-case condition for the roughness insert used in Chapter 5. The Re;; increases extremely
quickly with increasing k, so even though the steps are on the same order as the roughness size,
the Re; for the steps are an order of magnitude smaller. However, Re;;, is just one of many
important parameters characterizing the effect of the roughness, so these values do not form the
complete picture. A further discussion of the Re;; of the roughness is provided in Chapter 4.
Unfortunately, it is not possible to be certain that the steps had no effect on the measurements
presented in this work. Future experiments, as well as computations, should explicitly study
the effect of various step sizes on this geometry to better understand their role in the transition
process. It should also be noted that there was a small scratch on the nosetip at around x = 32 mm.
The scratch was about 5 um deep, with no large protrusions. It extended roughly 20° on the sensor

side of the model.

R 38-50 um  25-75 um  25-38 um

Figure 2.6. [llustration of the steps between the Modular Cone components, as well as the nosetip
radius. Not to scale.
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Table 2.4. Wind ray Re;; of the steps at the component interfaces, compared with a 152 pym

reference (the maximum element height on the RIM insert shown in Figure 2.8). From the CFD

computation discussed in Section 3.5, Re,, = 11.6 X 10°m™".

Interface (step height) Re;r, step  Regy, 152 pm
Nosetip/Roughness Insert (50 pm) 14 280
Roughness Insert/Upper Frustum (75 pm)’ 25 156
Upper Frustum/Sensor Frustum (38 pm) 3 61

! Backward facing step. Re,,, is not well defined for this case.

2.2.2 Roughness Elements

The Rod Insertion Method (RIM) for creating controlled, discrete roughness was developed by
Chynoweth [65]. It comprises small, 560 um (0.022 inch) diameter brass rods press-fit into a small
aluminum or plastic frustum. Table 2.5 provides a list of the roughness inserts used in the present
work and their properties. Figure 2.7 is a photograph of the two roughness inserts examined in
depth: a RIM insert with a nominal element height of 127 um and the sandblasted insert.

Though difficult and time-consuming to fabricate, the parameters of the roughness elements
on the RIM inserts can be controlled with higher precision than is possible with earlier techniques.
In addition to the RIM roughness, an insert was fabricated without any rods and sandblasted to
a high amplitude of randomly distributed roughness. Such a roughness will tend to force the
wavenumber that is locally most amplified (which can vary azimuthally) instead of a specific,
constant input wavenumber.

Measurements of the roughness inserts were taken with a Zygo Zegage white-light optical
profilometer; the measurements are of the height of the roughness above the surface of the
roughness insert. The vertical resolution of the Zegage is quoted as 3 nm. For these measurements,
a 2.75% lens was used, which provides a 3 mm X 3 mm measurement area on the roughness insert,
with a 5 pm horizontal resolution.

Because the elements are on a 7° half-angle incline to match the body of the cone, the roughness
insert was placed on a rotating mount, inclined by 7°. Drawings of the mount are included in
Reference [73]. A Newmark RT-2 motorized rotary stage was used to rotate the roughness insert.

The RT-2 has a resolution of 0.32 arc-seconds, and an accuracy of 70 arc-sec. For the RIM insert, a
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series of images of the roughness elements was taken by the Zygo and stitched together in Matlab.
An image was taken with a roughness element centered in the field of view. Then, the RT-2 stage
rotated the roughness to center the next element. This was repeated until the desired number of
elements were measured. The stepper motor in the RT-2 stage conveniently has a resolution of 9°

per 100,000 steps.

Table 2.5. Properties of the roughness inserts used in the present experiments.

Roughness Num. Elements Height, yum Diameter, pm Center-to-Center Spacing, deg.

RIM12x-5-22-9° 12 127 560" 9!
Sandblasted® - 3.8 (RMS) - -

50.8"
1521
203!
254!
305"
356
406"
635"

Other RIM* 12 560° 9!

! denotes nominal quantity.

? used for measurements in Chapters 4 and 5.
3 used for measurements in Chapter 6.

* used for measurements in Chapter 4.
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Figure 2.7. A photograph of the two roughness inserts used in the present experiments: Sandblasted
(left) and RIM (right).

2.2.3 RIM Roughness Properties

As described above, a series of measurements were taken of the individual elements on the
RIM insert and stitched together. The RIM inserts used in this work have rods spaced 9° apart,
yielding an azimuthal wavenumber of 40. Note however that there are only 12 elements on each
insert, so the discrete roughness only covers between —20° and 90° on the sensor side of the model.
Figure 2.8 provides a two-dimensional height map of the elements and their heights. Note that the
height map is unwrapped from the cone using a constant radius for simplicity, and because the
axial range of the measurements is fairly small. A more accurate map would have a taper moving
downstream, with the front of an element occupying a larger azimuthal extent than the rear.

The height map shows that the element diameters and spacing are fairly uniform. There
is a slight wiggle in the axial location of the elements, on the order of 10% of the roughness
diameter. The center slice shows that the element heights are all close to nominal, but there is still
considerable variation of up to 20% of the nominal height. Note that the offset of the azimuthal

scale in both charts is only approximate. The relative azimuthal orientation of the RIM insert
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with respect to the rest of the cone could vary by about 0.5° between installations (though once

installed, its orientation was fixed).
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Figure 2.8. Stitched Zygo measurements of all 12 elements on the RIM roughness. A contour map
of the elements, with the cone axis pointed down (top), and a slice along the x = 50.8 mm plane
(bottom). The red dashed line is the nominal roughness height, 127 pum (0.005 inch).

There is some question as to the accuracy of the Zygo measurements, considering the mea-
surements are unrolled from a conical surface, among other factors. To verify the measurements,
an element was imaged in a confocal microscope at the University of Notre Dame. The mounting
under the microscope was less precise than under the Zygo, so the raw data had an inclination
with respect to the camera. The resulting height profile was rigidly rotated flat, and smoothed
with a 20 point moving median filter to reduce spurious peaks in the data. Figure 2.9 shows the
resulting comparison between the Zygo and confocal measurements. The profile is along an axial
ray moving downstream through the element at 22.5°.

It is important to note that though the optical measurement techniques show non-uniform
element heights, a third independent measurement disagreed. Jim Younts, a tool and die machinist
at Purdue with several decades of experience, precisely measured the element heights with a
0.0001-inch dial indicator. He found that all of the elements were within 2.5 um (2 %) of the nominal

value. The reason for this discrepancy is unknown. It should be noted that all three measurement
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techniques are highly sensitive to the skill of the operator, and the optical measurements were

performed by students with limited experience.
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Figure 2.9. Comparison of measured height across a single roughnsess element using the Zygo
optical profilometer and a confocal microscope.

A final property to examine is the forced wavenumber. Here the wavenumber is defined as

the number of waves over the entire circumference, or

360°
(2.1)

with Af being the azimuthal spacing of the roughness elements (nominally 9° center to center).
Thus the expected wavenumber for the RIM insert is m = 40, though because the elements have a
rectangular profile, there will be additional harmonics. One way to determine the magnitude of

the forcing at each wavenumber is to analyze the Fourier coefficients of the roughness profile z(6),

N
2(0) = Z Z(m)el ™0 /180, (2.2)

m=—N
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Figure 2.10 shows the one-sided discrete Fourier amplitudes for a wide range of wavenumbers. As
expected, the dominant forcing is m = 40 at a height of 126 pm, very close to the nominal value
of 127 um. There is also clearly forcing at the higher harmonics m = 80 and m = 160, but the

amplitudes are only about 30 % of the peak.
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Figure 2.10. The discrete Fourier amplitudes of the roughness at wavenumbers up to 200 per
circumference. The nominal roughness height is 127 pm

2.2.4 Sandblasted Roughness Properties

For the Sandblasted roughness insert and a smooth insert (used for comparison), a single
image was taken with the Zygo at 2.75X. Figure 2.11 shows these two images. There are distinct
spanwise machining grooves on the nominally smooth insert (Figure 2.11(a)). The roughness on
the Sandblasted insert is apparently more randomly distributed.

The relative distributions of the roughness is more evident in the histograms plotted Figure
2.12. The Sandblasted roughness obviously has a larger Root Mean Square (RMS) roughness

height, and the nominally smooth roughness has a fat left tail associated with the machining
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grooves. Figure 2.13 shows the roughness height histogram and estimated probability density
function (PDF) for the Sandblasted case. The roughness is clearly well described by a normal
distribution with RMS roughness height of o= = 3.87 pm. The correlation length of the Sandblasted
roughness is approximately 50-60 pm in both the axial and spanwise directions. The nominally
smooth roughness has an RMS level of about 1.3 um (though the roughness is clearly not normally
distributed, so the RMS value is misleading). The well-distributed spatial randomness of the
Sandblasted roughness makes it more useful for studying “natural” transition scenarios than the
relatively more ordered smooth roughness insert. Of course, for a real flight geometry the surface

may have some inherent periodicity even if it is not explicitly included.
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Figure 2.11. Roughness height maps for the nominally smooth and sandblasted inserts. Note the
color scales are different.
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Figure 2.12. Histograms for the nominally smooth and Sandblasted roughness heights. Note that
the smooth insert has a lower RMS height, as expected, but it has a fat left tail due to the
machining grooves.
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Figure 2.13. Probability density function of the Sandblasted roughness heights, shifted to have a
mean of zero. The PDF is well modeled by a normal distribution with o = 3.87 um.
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3. INSTRUMENTATION AND PROCESSING

3.1 PCB Piezotronics Pressure Sensors

The PCB Piezotronics 132B38—hereafter referred to as PCB132 or PCB sensor—is a piezoelectric
pressure transducer useful for measuring high-frequency pressure fluctuations. The sensors are
high-pass filtered above 11 kHz and have a resonant frequency greater than 1 MHz [77]. The
response seems to be flat between about 20 and 300 kHz though its behavior outside this range is
not well known [78]. The manufacturer states that the resolution is 0.001 psi, with single-point
factory calibrations of around 100-200 mV psia~'. Multi-point dynamic calibrations have been
pursued in the Purdue 3-Inch Shock Tube by Berridge [79] and Wason [80], among others. Berridge
shows that the single-point calibrations can be erroneous by nearly 20%. To solve this problem,
new model X132B38 sensors are in development. The manufacturer states that these new sensors
can measure at much lower frequencies than before and therefore can be calibrated in a more
accurate manner [81]. The X-series sensors were not yet available as of this writing.

PCB132 sensors have been successfully used to measure high-frequency instabilities in hy-
personic boundary layers in many previous experiments. The sensor is 0.125 inches in diameter
and 0.3 inches long. The sensor’s small size allows closely packed arrays to fit in small models
like those used in the present experiments. Note that the PCBs are about 4° wide at their axial
locations (and decreasing with increasing axial distance) on the models, and so a measurement at
a particular azimuthal angle is really an average over +2° around that angle. The sensing element
is a 0.889 mm diameter circle placed in the center of the sensor. The manufacturer has determined
that the “effective” sensing diameter is 0.97 mm [81]. This means the sensing surface is only about

1°-2° wide at the sensors’ axial locations.
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3.2 Kaulite Pressure Sensors

Kulite XCQ-062-15A pressure transducers use a piezoresistive silicon diaphragm to measure
the applied pressure [82]. The sensors are 1.7 mm (0.066 inch) in diameter and 9.5 mm (0.375 inch)
long. The Kulites have a mechanical stop at 15 psia to prevent damage to the diaphragm at higher
pressures. There is a temperature compensation module built into the sensor leads. The sensors are
powered using custom-built signal conditioners that have two outputs: one channel is AC coupled
and the other is DC coupled. The AC-coupled data has a gain of 10,000x and the DC-coupled
data is amplified by 100x. For the data in this work, the Kulites were only AC coupled. The XCQ
sensors have a very large internal resonance at around 200-300 kHz, so data are not examined

above this range.

3.3 Oscilloscopes

The sensor measurements were recorded with Tektronix DPO7054, DPO7104, MDO3014 and
DPO5034B digital oscilloscopes. The DPO7054 has a bandwidth of 500 MHz and the DPO5034B
has a bandwidth of 350 MHz. Both were set to take 5 seconds of data at 2-5 MHz for PCB data.
The DPO7104 has a 1 GHz bandwidth, but a lower internal memory than the others and so the
sampling rate was limited to 2 MHz. The MDO3014 has a bandwidth of 100 MHz, and no internal
hard drive. It was set to a sampling rate of 2.5 MHz. All the scopes are capable of AC and DC input
coupling; PCBs were AC coupled while the other measurements were DC coupled. The input
impedance was set to 1 MQ. The scopes have a native vertical resolution of 8 bits, but using Hi-Res
sampling mode the effective resolution is increased to 11-12 bits by sampling at the maximum
rate for the scope and digitally averaging the result on the fly.

Close to the yaw ray the boundary layer is quite thin, and so the second mode frequencies
are very large. Some measurements showed peak frequencies over 500 kHz. Harmonics of these
high-frequency modes alias when sampled at 2 MHz, which is unfortunately necessary given
the limited capabilities of some of the oscilloscopes. The Hi-Res sampling mode also acts as
an anti-aliasing filter, so harmonics above the Nyquist frequency should not corrupt the data.
However, as is clear by examining the spectra shown in Chapter 5, any such harmonics are at a

very low amplitude, even without filtering.
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3.4 Calculation of Flow Conditions

After filling the driver tube, the tunnel is allowed to equilibrate for 10 minutes. Just prior to
running, the driver-tube pressure is recorded as the initial stagnation pressure. In addition, the
temperature at the upstream end of the driver tube is measured and used as an estimate for the
initial stagnation temperature. Throughout the run the stagnation pressure drops, as noted in

Section 2.1.2. Using isentropic relations, the stagnation temperature at any point in the run is then

po(t))(y_l)/ i 5.1)

0 0,1 pO,i

The viscosity during the run is calculated using Sutherland’s Law without the low-temperature
correction. The freestream unit Reynolds number at a given time ¢ during the run can then be

calculated as

HM
Re_(1) = 21 y_ (3.2)
p@) N RT()
The Stanton number, St, is defined in this work using the freestream conditions,
st g (3:3)

B Req, fooC) (T, -T,)

Note that the Stanton number is usually defined with the adiabatic wall temperature instead of

the stagnation temperature, but 7,,, is more difficult to obtain.

3.5 Computational Fluid Dynamics Model

A Navier-Stokes Computational Fluid Dynamics (CFD) simulation, calculated using US3D,
was provided by Dr. Neal Bitter at Sandia National Laboratories. The calculation conditions for
the CFD model are provided in Table 3.1. Figure 3.1 shows a contour of the crossplane density
gradient, which highlights important features of the flow around the cone. Especially noticeable in
this view is the large upwelling at the lee ray. Transition of the boundary-layer near this upwelling

may be due to non-crossflow mechanisms.
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The CFD data were used to normalize the pressure data, and to provide estimates for the
second-mode frequency and laminar heating rate. To apply the pressure normalization, the
freestream pressure was calculated from the stagnation pressure by isentropic relations. The

experimental edge pressure was then determined as

Pe.cro(0)

pe, exp(-x’ 0) = poo, exp (34)

00, CFD

Note that only the #-dependence of the edge pressure is accounted for, because the pressure
decreases only a small amount moving downstream at the PCB locations. To adjust the laminar

computed heat transfer to experimental conditions, a simple Reynolds number scaling was used,

St ~ \/Re, (3.5)

which should be acceptable for small deviations in Reynolds number between the experiment
and the computation. The estimated second-mode frequency was calculated from the US3D

boundary-layer thickness ¢ and edge velocity U, as

U,

e,CFD

Jest ® 26

(3.6)

The boundary-layer thickness was defined as the location at which the total enthalpy reaches
99.5 % of the freestream value (the default method in US3D). To adjust the estimate to experimental

conditions requires the scalings

U, ~ Ty, (3.72)
§ ~ y/Re:l. (3.7b)

Table 3.1. US3D CFD computation conditions.

Mach «,deg T,,K p, MPa (psia) T,,K TestGas
6 6 428 1.069 (155) 300 air
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Figure 3.1. Contour of the crossplane density gradient at x = 300 mm from the Navier-Stokes
solution. This view highlights the rapid azimuthal change in boundary-layer thickness and the
mushroom-like upwelling at the lee ray.

3.6 Infrared Thermography

An Infratec ImagelR 8300 hp camera was used to record temperature images of the PEEK
model. During the development of the IR system, this camera was borrowed from the University of
Notre Dame. At the end of 2018, Purdue University acquired the same model of camera. According
to the manufacturer the camera has a temperature resolution of 0.02 K and an accuracy of +1 K.
The sensor has a 640 X 512 pixel resolution. The ImagelR 8300 hp can record full frames at up to
355 Hz, but a higher frame rate leads to a significant increasing in data size; a frame rate of 300 Hz

was chosen for the data presented in this work. The spectral range of the camera is 2.0-5.7 pm.
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Three £/3.0 lenses were used over the course of this research. A wide-angle 12 mm lens was
used for most general-purpose imaging. A 25 mm lens was used when more spatial resolution was
required (e.g., far forward on the cone). A 50 mm lens was used when the situation required very
high spatial resolution (e.g., direct imaging of the RIM elements). Infratec provides a different
calibration for each lens. The calibration range used for the present experiments was —10-60 °C,
though the manufacturer has communicated that the calibration is valid for a few degrees outside
of this range [83].

An infrared-transparent, 81 mm (3.2 inch) diameter calcium fluoride (CaF,) window was
developed by Borg [44]. The Notre Dame camera and the CaF, window were calibrated as one
system by Cerasuolo [67] and Zaccara [68], however measurements with the newer Purdue camera
use the factory calibration. The directional emissivity of the PEEK &, and the window transmission
loss were accounted for by assuming a transmissivity 7 of 95 % and using a Stefan-Boltzmann
scaling,

1/4

T , (3.3)

al

4 4
| Tr = (A= 189)T
ctual T8,

where the ambient temperature 7,,; was assumed to be 300 K. Because €, and 7 are very near to
1 in this case, the result should not be very sensitive to the ambient temperature selection. Note
that this analysis is approximate, as 7 depends on the wavelength of the transmitted light and the
temperature of the window. In the future, a more thorough analysis should be undertaken of the
IR reduction methods and the resulting uncertainties (as well as the sensitivity of the results to
the parameters of the calculation method).

Details about the PEEK material properties, including measurements of the emissivity, can
be found in References [67] and [68], and are additionally provided in the Purdue IR System
Handbook, attached in full as Appendix I. These references also provide extensive information
on the setup and use of the camera. In addition, Cerasuolo and Zaccara developed an optical
calibration technique to map pixels in the IR image to physical points on the cone. This technique
uses several images of a calibration plate which has markings at known locations. A nonlinear
pin-hole camera model is least-squares fit to the images to provide the final mapping. More

information on this process is left for References [67,68] and Appendix 1.
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3.6.1 Algorithms for Inferring Heat-Transfer from Temperature Images

As discussed in Section 1.5, Cerasuolo, Zaccara, and the author have developed three basic
algorithms for inferring the heat-transfer from a sequence of IR images: direct, indirect, and
Fourier. A derivation of the theory behind each of these methods is provided in Appendix D, and
the code is attached in Appendix E.

Unfortunately the inverse code provided by Cerasuolo and Zaccara is quite slow, making
it impractical for day-to-day use. The author developed a reduction method based on the Fast
Fourier Transform (FFT), which is computationally very efficient. However, the FFT-based code
has a longer list of restrictive assumptions, so it may not be appropriate for all models. The FFT

algorithm makes the following assumptions:

1. The heat transfer is either 1D (into the model) or 2D (into the model and transverse).

2. The heat transfer is semi-infinite. This is satisfied if the thermal penetration depth is much
less than the thickness of the PEEK; for the BAM6QT run conditions the assumption is valid

for PEEK thicknesses greater than about 5 mm.

3. For the 2D algorithm, the radius of the PEEK section of interest is much larger than the

thermal penetration depth.

4. The thermal boundary condition can be accurately decomposed into a finite number of

Fourier terms (i.e. no step discontinuities).

5. The camera frame rate is constant.

The penetration depth, given by
n(t) = 4Vat, (3.9)

is around 3 mm for PEEK in the BAM6QT (a run time of about 3 s). The thickness of the PEEK in
the imaged region, however, is generally more than an order of magnitude larger.

A convenient case with which to validate the heat transfer codes is a sharp cone at zero degrees
angle of attack. There exists a similarity solution for this geometry as reported by Sullivan [84] and

used previously to validate temperature-sensitive paint techniques by Ward [38]. Cerasuolo and
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Zaccara [67,68] validated their 1D inverse code using this approach. Figure 3.2 shows the inferred
heat transfer from the same set of temperature images, but using each of the three different
algorithms. Table 3.2 provides the experimental conditions for the data in Figure 3.2. Note that the
results using the direct and indirect methods are nearly identical. Also listed are the computation
times in seconds for each method. All three algorithms result in errors of less than 5 % from the
theoretical solution. The direct and indirect methods are clearly more accurate than the Fourier
method, but they take 3.5 and almost 20 times as long to compute, respectively. For a typical set
of images used in Chapters 4-5 the FFT method takes roughly 80 seconds. Note that Cerasuolo
and Zaccara’s data were collected without the precision angle-of-attack adapter developed by
Chynoweth [66], so the angle of attack is not exactly 0.00°. Note that this comparison uses the
original temperature data from Zaccara, so it has been calibrated for the presence of the window
(i.e., no transmissivity correction was applied to the images).

Some measurements were also taken very far forward on the cone, where the model may no
longer meet the semi-infinite assumption. In addition, these data were collected using the 50 mm
lens, which was not calibrated with the window by Zaccara, so the factory calibration was used.
Figure 3.3 shows IR heat-transfer data from the RIM insert and Upper Frustum at nominally 0°
angle of attack. The accuracy is notably worse than farther downstream, with error on the order
of 25 %. The experimental conditions for these data are provided in Table 3.3.

It is unclear whether the error is due to the presence of the window or the breakdown of the
assumptions in this region of the model. The IR camera will need to be calibrated by using a
blackbody behind the window, as performed by Cerasuolo and Zaccara. This calibration must be
repeated for every camera lens and window combination, so it will be a time consuming process. A
rigorous analysis of the sources of uncertainty in the whole of the IR method should be conducted

in the future.
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Figure 3.2. Comparison of the three methods against the theoretical solution for heat transfer on
a cone at 0° angle of attack. Note that the direct solution (orange) is obscured by the indirect
solution (green); they are nearly identical. The computation time for each method is listed in

seconds for the author’s PC. Re, = 8.9 x 10°m™.

Table 3.2. Conditions and mesh points for the 0° angle of attack validation case presented in
Figure 3.2.

Num. Points

Do kPa T, K Recx,,m_1
Axial Spanwise Time

770 413 8.9x10° 250 70 1350
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Figure 3.3. Accuracy of the heat-transfer reduction process near the nosetip. The dip in heat
transfer at Re ~ 0.7 x 10° is coincident with the interface between the roughness insert and
the Upper Frustum, and is likely the result of inaccuracies in image registration. Re,, =

11.3x10°m™!.

Table 3.3. Conditions and mesh points for the 0° angle of attack validation case presented in
Figure 3.3.

Num. Points

o kPa T,,K Re,, m’

Axial Spanwise Time

988 416 11.3x10° 350 150 1200

The Fourier-based approach created by the author was also validated against the 1D inverse
method provided by Mirko Zaccara on a cone at 6° angle of attack. As shown in Figure 3.4, there
is a maximum difference of about 9 % from the inverse method solution, and a median error of
about 4 %. The experimental conditions for this comparison are provided in Table 3.4. The Fourier
method is two orders of magnitude faster to run than the inverse method. Note from Figure 3.4
that the 2D results agree quite well with the 1D results except at the peaks and valleys, which
is to be expected given the larger spanwise gradients there. At locations farther forward on the

cone, the 1D and 2D results will diverge more. The Fourier method agrees well with the old
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QCALC results when run on elliptic cone data [85], and also with TSP results on a cone with a

highly-swept fin [86].
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Figure 3.4. Comparison between the different 1D heat-transfer reduction methods and the Zaccara
results [68] on a cone at angle of attack. Note that the direct and indirect results are nearly

identical. Re, = 7.96 x 10° m™".

Table 3.4. Conditions and mesh points for the 0° angle of attack validation case presented in
Figure 3.4.

0o kPa T, K Re . Num. Points
0> 0> 009

Axial Spanwise Time

708 419 7.96 x 10° - 125 700

3.6.2 Heat-Transfer Reduction Process

The following is a summary of the IR heat-transfer reduction process:
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1. Camera Optical Calibration Several images are taken of a plate with markers at known
locations. These images are then used to create a mapping from camera pixels to physical
points in the tunnel, using a nonlinear pinhole camera model. See Section 4.1 in Zaccara [68]

for details of the model and the calibration process.
2. Image Acquisition Images are taken during the run.

3. Mesh Creation A computational mesh is created of the surface geometry under test. For a
cone, this mesh can be simply parameterized by the axial distance x and the azimuthal angle
6. Using the pinhole camera model, the physical coordinates of the cone surface in 3D space
(x,y,7) are projected into their pixel locations (i, v) in the image. The mesh is offset to align
it with the image of the model. Figure 3.5 shows an example mesh aligned with an image of

the cone. Note that the mesh in the figure is intentionally sparse for clarity.

400

Vertical Reference, pixels

500
100 200 300 400 500 600

Horizontal Reference, pixels
Figure 3.5. Example computational mesh for IR processing.
4. Image Registration The images are shifted to account for the movement of the tunnel relative

to the camera during the run. The code uses a two-dimensional cross-correlation to find the

displacement between two images in the horizontal and vertical directions. The registration
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process proceeds backwards from the last frame and each frame is compared to the one
immediately following it, which was shifted in the previous step. Figure 3.6 shows an example
of the measured displacements for one run; the bottom x-axis shows the image frame, and
the top x-axis shows the corresponding time during the run. The image displacement in the
horizontal direction is significant, peaking at —34 pixels (roughly 10 mm). The inset plot
shows that the small-amplitude oscillations of the image displacement continue well into
the run. In addition, there is a constant offset of about 3 pixels between the pre-run frames
and the end of the run. Note that # = 0 is the time at which the trigger signal is received by

the camera; this time lags behind the diaphragm burst by almost 200 ms.
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Figure 3.6. Example of the results of the image registration process.

5. Temperature Interpolation The temperature at each pixel measured by the camera is in-
terpolated onto the computational mesh points, and any emissivity and transmissivity

corrections are applied (see Equation 3.8).

6. Heat-Transfer Calculation The heat transfer is inferred for each mesh point from the tem-

perature history at that point, using one of the algorithms discussed in Appendix D.
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3.7 Pressure Data Reduction

Once the pressure fluctuations measured by the PCBs have been recorded on the oscilloscopes,
they are digitally processed in a number of ways. Before any spectral quantities are calculated, a
0.1s segment of the raw voltage data is taken at a desired time, which is usually determined to
satisfy a desired Reynolds number. The sensor calibration is applied to the data segment to yield a
pressure signal, which is then normalized by the local edge pressure as described in Section 3.5.

This data segment is then used for all of the calculations described in the following sections.

3.7.1 Spectral Quantities and Fluctuation Amplitude

Power spectral densities are computed from the pressure data using Welch’s method with 50%
overlap between segments. The segment length is chosen to yield the desired frequency resolution,
which is 5 kHz unless otherwise specified. The mean is removed from the signal, and it is then
windowed with a Hann window. To compute the RMS pressure fluctuation amplitude within a
given frequency band, a square root is taken of the PSD integral in the band.

The magnitude-squared coherence of signals from two sensors is a measure of the degree of
linearity of a system (considering the two sensors to be an input and an output of the system).
Here, the “system” is the boundary-layer instability in question. The coherence is a spectral
quantity, so it is defined over a range of frequencies; in fact it is the normalized Fourier transform
of the cross-correlation of the two signals. A coherence near 1.0 means that the sensors are
measuring a process that has a high degree of correspondence at a given frequency, which is
often an indication of linearity (i.e. the change in magnitude over the process is not amplitude
dependent). Signals that have a high coherence can be used to infer other quantities, like the
phase velocity of the instabilities, with confidence. Having a low coherence, however, does not
have a clear implication. A low coherence could be the result of nonlinearity in the system or
an indication that the signal-to-noise ratio is poor, among other factors. Thus a low coherence
must be used in combination with other quantities (like the PSD and bicoherence) to properly

understand the behavior of the measured instability.
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3.7.2 Calculation of the Phase Velocity

The phase velocity is the propagation speed and direction of the instability wave crests. These
quantities can be enlightening as to the underlying physical mechanisms, as demonstrated in
Chapter 6, but they are also often useful for comparison with computations. The phase velocity
was determined with a closely-packed array of four Kulite pressure sensors, using the method of
Poggie et al. [4], Borg [5], and Ward [38].

First, the cross-spectrum is calculated of two pairs of signals from three or four unique

measurement points. The phase delay of the signal between the two sensors is then given by

_ )

7(f) = 2 f’ (3.10)

where ¢(f) is the phase of the cross-spectrum as a function of frequency f. To find the wave
speed and angle on the cone, it is assumed that the sensors are close enough together that they lie
approximately on a plane. The (x, #) coordinates of the relevant sensors are then transformed to

(¢, 1) coordinates by

X
E=——, distance along cone surface (3.11a)
cos(&)
n=rx)@-6,, arclength azimuthally from reference (3.11b)

where 6, is the azimuthal angle of the reference sensor, ¢ is the cone half-angle, and r(x) is the
cone radius at axial location x.
To calculate the wave angle ¥ and wave phase speed ¢, two unique sensor pairs are required.

Using four sensors, the wave angle can be calculated as

T34(&y — &) — T12(&5 — xy)
T3 = My) = T34(m2 — 111) ’

Y = arctan (3.12)

where 7;; is the phase delay from sensor i to sensor j. Note that for the present work a positive
angle is oriented downstream and toward the lee ray as illustrated in Figure 3.7. The wave phase

speed is then calculated by
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Figure 3.7. The orientation of the wave angle coordinate system with respect to the Kulite array
used in this work. The outer circles at each sensor location indicate the approximate diameter
of the Kulite sensing element. The green lines indicate the propagation direction of the wave
crests. Note that typically for crossflow ¥ < 0, as the traveling waves move downstream from
lee to wind.

(my —mp)sin'¥ + (§; — &) cos ¥
T12

(3.13)

The finite sampling rate 7, = 1/ f; means that a time delay of less than 7 is not resolvable, or
equivalently the resolution of the calculated time delay 7 is 7. This uncertainty can be propagated

through the calculations to give uncertainties in ¥ and c.

3.7.3 Quantifying Nonlinear Interaction

The advective term of the Navier-Stokes equations, (u - V)u, is inherently nonlinear (in fact
this is a quadratic nonlinearity as it contains a product of u and its own derivatives). The growth

of disturbances in the boundary layer is thus also nonlinear, though for small disturbances one can
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approximate the behavior as linear (the basis of Linear Stability Theory (LST)). Near breakdown,
the amplitudes of the disturbances are large enough that the nonlinear effects cannot be ignored.

There are various methods by which to analyze the degree of nonlinearity of the measured
disturbances. Traditional spectral methods like the power spectral density and coherence are
founded on linear theory and so provide incomplete or misleading information. However, these
methods can be extended to higher orders, which can quantify the nonlinearities in the data. The
lowest order nonlinearities in the boundary layer are quadratic. Quadratic nonlinearities can be
examined using the bispectrum and bicoherence, which are second-order analogs of the power
spectrum and coherence.

The bispectrum of a time series x(¢) is defined as

B(fi, f) = X()X ()X (fy + fo)s (3.14)

where f; and f, are given frequencies, X(f) is the Fourier transform of x(¢) at frequency f, and
the asterisk denotes a complex conjugate. In practice, the bispectrum is calculated using Welch’s

method of averaging windowed data segments,

B(f1. f,) = E{X(f)X(HL)X (fi + )} - (3.15)

Traditionally it is demonstrated that if the three frequencies are phase-locked,

fi=h+1 (3.16a)
¢3 = ¢+ ¢, (3.16b)

the expectation of the triple product in Equation 3.15 will be non-zero. However, any constant
phase difference—not just ¢ — ¢, — ¢, = 0—between the three frequencies will result in a non-zero
bicoherence. If the phases are aligned randomly, however, the expectation will approach zero as

the number of averages increases. Phase-locking is indicative of a quadratic nonlinearity.
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As a way to quantify the relative magnitudes of nonlinear interactions between frequency

triads, Kim and Powers [87] define the bicoherence as

|B(fi, I

V(i f3) = ’
e S X GOX G P) EAIX G + 7]

(3.17)

which represents the proportion of power at f; = f; + f, that is due to the nonlinear interaction
between f; and f,. The bicoherence is usually bounded between 0 and 1, though Hinich and
Wolinsky [88] note that this may not always be the case. The code used to calculate the bicoherence,
as well as a validation case, are provided in Appendix F. Due to the inherent symmetries in the
bicoherence, it is sufficient to compute the values for only positive frequencies [87].

Haubrich [89] shows that the 95% significance level of the bicoherence estimate is b§5% =3/N,
where N is the number of averages used in the calculation (see also Elgar and Guza [90]). If the
value of b* is less than this threshold, it is statistically indistinguishable from zero. However,
the actual magnitude of the bicoherence above this level may be misleading as to the amount
or importance of nonlinearity in the underlying physical mechanism. As shown by Hinich and
Wolinsky [88], the magnitude of the bicoherence using the standard normalization is affected by
the length of the window used in its calculation. In addition, in certain cases the bicoherence can
accurately indicate a nonlinearity in the signal when the power spectrum does not (see Appendix
F). Thus the bicoherence is only one piece in the larger puzzle of quantifying the nonlinear
interaction.

Figure 3.8 shows an example PSD and bicoherence calculated from PCB pressure fluctuation
data. The PSD shows a large peak at around 170 kHz and another at around 330 kHz. The
bicoherence shows significant nonlinear coupling (b* = 0.41) within the 170 kHz instability
and between 170 kHz and 330 kHz. In addition, there are low levels of bicoherence at (330 kHz,
330 kHz), indicating harmonic generation at that frequency as well (which explains the small peak
in the PSD at around 700 kHz). The location of maximum bicoherence is indicated on the plot by
the blue dashed lines.

Before using the bicoherence to understand nonlinearities in the boundary layer, it is worth-
while to understand the nonlinear PCB response to an impulse input, so “true” measurements of

nonlinear growth can be distinguished from sensor response. Such an impulse was provided to
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the PCB in the form of a mechanical impulse to the sting and separately as an incident shock wave
in the Purdue 3-inch Shock Tube. The nonlinear response of the sensor seems to be confined to
frequencies much lower and higher than the range of interest in the present work. See Appendix

G for detalils.

3.7.4 Turbulence Metric

One important aspect of any boundary-layer transition experiment is the ability to determine
when the flow becomes turbulent. As the transition process develops, turbulent spots begin to
form intermittently and travel downstream. A measure of the degree to which the boundary
layer has become turbulent is this turbulent-spot intermittency, y, which represents the fraction
of time that the flow is turbulent. Thus if v = 1, the flow is entirely turbulent, and if y = 0 the
flow is entirely laminar. The transition process occupies the region between these two end points
(though the initial stages of instability growth will also have y = 0, as no turbulent spots will have
yet formed). Unfortunately v is quite difficult to estimate from experimental data, as it requires
the ability to differentiate turbulent spots from instability waves and noise. Past approaches to
the problem rely on detector functions [91], but these methods have parameters which must be
carefully tuned to the data and which have little theoretical basis. The work of Casper et al. [92]
to use wavelets for intermittency calculation is a step forward, and it has been used with some
success by others [66].

The present author has previously used Casper’s wavelet method for crossflow data [21].
However, the method is not practical for the new data in this work—the method requires the
measured instabilities to be sufficiently band-limited that turbulent bursts can be resolved in
regions of the spectrum where there is otherwise no measured activity. For the old crossflow data
in Reference [21], when using the dimpled Torlon insert the measured secondary instabilities
satisfy this condition (see also the data and accompanying discussion in Appendix C). As will be
demonstrated in Chapter 5, when using the RIM insert the secondary instabilities occupy such a
wide frequency band that the wavelet method cannot be applied.

Instead, the problem of intermittency calculation was recast. Rather than calculate the fraction

of time that the flow is turbulent, one can examine the frequency content of the signal to determine
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(b) Bicoherence of the data in the PSD, above.

Figure 3.8. An example of a bicoherence calculation to illustrate its features and to orient the
reader. The 95% significance level, b3, is provided as the orange line on the colorbar. The
maximum bicoherence is given to two decimal places at the right of the colorbar. In every
bicoherence plot, the maximum will be located with dashed lines to the top and right sides,
which will label the frequency location of the maximum (170 kHz and 160 kHz in this example).
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its similarity to a turbulent spectrum. This leads to the creation of a turbulence metric, rather than
an experimental estimate of the intermittency. It can be used in a similar way—to define a location
at which transition is nearly complete—but its basis is spectral rather than temporal.

The turbulence metric used in this work is the Shannon entropy, also known as the spectral or
information entropy. The entropy in this context is not related to thermodynamic entropy, though

they share a mathematical framework. The Shannon entropy H" is defined as

N
H' =~ p;log,p; (3.18)
i=1

where p; is a given probability distribution. Note that the maximum entropy can be shown to
be H,,,, = log, N when p; = 1/N. The entropy is often normalized by this maximum to yield a
metric bounded between zero and one,

H*
H=
log, N

€ [0,1]. (3.19)

The Shannon entropy can represent the information content in a probability distribution. Thus
the entropy is maximized when the distribution is uniform, as no point is any more likely than any
other point, and so there is minimal information contained within the distribution. The spectral
entropy is widely used in speech processing to determine when a signal contains speech (i.e.,
information). See for example References [93-95]. Other measures of spectral information content
have also been used in this field, for example the Spectral Flatness Measure in Johnston [96].

The application to speech processing hints at its use as a turbulence metric. Turbulence is
characterized by a broadband spectrum with pressure fluctuations over a wide range of frequencies.
At low frequencies, the turbulence spectrum will be fairly flat, though it will roll off at higher
frequency. The metric is formed by applying the Shannon entropy to a section of the normalized
power spectrum of the measured pressure signal. If the power spectrum is flat, or nearly so (as
it is in turbulent flow), the entropy will be close to one. If there are peaks in the spectrum, the
entropy will be lower according to their relative prominence. Note that aside from the trivial case
of a zero-valued signal, the minimum entropy will occur when only a single element p; = 1 and

the rest are zero.
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The entropy metric is derived as follows, using the notation of Reference [93]. First, a low-
frequency band is chosen in the power spectrum corresponding to a range where the sensor
response should be nearly flat. The spectrum is then normalized as a discrete probability distribu-
tion so that its sum is one,

Si
: (3.20)
N
2i=1 Si

where the S; are the individual points in the power spectrum over the frequency band of interest.

i =

The normalized Shannon entropy of this distribution is then calculated,

= logz 5 Z P;log, P, (3.21)

The value of H is the turbulence metric. When H reaches within some predefined threshold of
one (which should be independent of the particulars of the environment), the flow is considered
turbulent.

Though this method is simpler than a true intermittency estimate, it is not without flaws. If
the flow is at such a low Reynolds number that no instabilities appear in the spectra, it will still
appear flat and thus incorrectly identified as turbulent. This could be accounted for by combining
H with a measure of the power within the chosen frequency band. In addition, this metric has not
eliminated the need for an arbitrary threshold.

Figure 3.9 shows three spectra from different axial stations along the cone, as well as the
entropies corresponding to each spectrum. The frequency band used in the calculation is 25—
200 kHz, as indicated with the vertical dashed lines. In this case the entropy metric seems to
work as designed. However, note that the frequency band includes the large rise in power at low
frequencies (which is of unknown origin). This portion was included to “artificially” decrease the
entropy for signals with low power in the secondary instability band, which otherwise would

have an entropy of close to one.
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Figure 3.9. An example entropy calculation for three spectra at different axial stations. The
spectra clearly show the growth of an instability at 200 kHz and a nearly turbulent flow at
379mm. The entropy H correspondingly increases from 0.6 at 303 mm to 0.92 at 379 mm.

Re,, = 10.4 X 10°m™".
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4. DEVELOPING A CONTROLLED ROUGHNESS FOR THE STUDY OF
CROSSFLOW-DOMINATED TRANSITION

The pursuit of a mechanism-based prediction method for crossflow-dominated transition requires
close coordination between experimental and computational efforts. In particular, it is necessary
to have a controlled method by which to induce the generation of stationary vortices, so that the
input disturbance can be accurately modeled. In addition, as Schuele et al. [39] showed at Mach
3.5, it may be possible to use roughness to control crossflow-dominated transition, but doing so
requires a highly repeatable method to create the roughness.

Chynoweth’s RIM roughness technique [65,66] was a promising new approach to creating a
controlled roughness array, using small brass rods press-fit into an aluminum body. These rods
can be precisely machined to the desired specifications, which is an improvement over older
techniques like the dimpled Torlon roughness used by Ward, Henderson, and Edelman [21,37,38].

However, it was not immediately obvious that the technique could be adapted to the study
of crossflow on a cone at angle of attack. One problem is the sizing of the required components.
The roughness location was determined by the neutral point of the stationary vortices [38,50,97],
which is very near the nose tip (x = 50.8 mm). The radius of the roughness insert at this location
is only about 6 mm, which makes it extremely difficult to insert closely-spaced roughness rods of a
workable diameter. To further complicate matters, the interfaces between the roughness insert and
the rest of the model must have as small a step as possible. However, there were several different
roughness arrays of interest, so it was not practical to machine the roughness insert together with
the nosetip and Upper Frustum (this would require as many nose tips as roughness inserts). It
is important to determine if such a step overpowers the discrete roughness elements. Finally, it
is also important to verify that the final roughness configuration is tall enough to dominate the
production of the stationary vortices, but not so tall as to trip the flow. This chapter describes the

process of verifying that the the RIM roughness is suitable for use on a cone at angle of attack.
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4.1 Demonstrating Control

To verify that the RIM elements were indeed dominating the generation of the stationary
vortices, two cases were examined: a baseline case and a case with the roughness insert rotated by
about 5° leeward. Because the roughness elements are visible in the forward part of an IR image, a
more exact rotation angle can be determined. A profile from the roughness location was extracted
from each image and a cross-correlation determined the actual shift. If the streaks in the heat
transfer can be shown to follow the rotation of the roughness elements, with minor variation, it
can be concluded that the RIM elements are dominating the production of the hot streaks, and
therefore the stationary vortices. Keep in mind, however, that when the roughness elements are
rotated, they are in a different flow field and thus the streaks they generate will have different
growth rates along their paths. It is therefore reasonable to assume that this experiment will not
produce an exact match between the amplitudes of the two cases.

This experiment was conducted twice, once for elements 200 um (0.008 inch) tall and then
again for ones that are 127 um (0.005 inch) tall. The taller elements are useful for demonstrating
the effectiveness of the RIM elements because the stationary vortices have large initial amplitudes
and so the signal-to-noise ratio is higher. However, the sensor measurements were made with
127 pm elements, so the experiment was repeated to ensure that the smaller elements were not

too small.

4.1.1 200 pm Elements

Figure 4.1 shows the heat transfer images from the baseline and rotated cases. Note that
downstream the pattern of vortices looks completely different. Using only information from the
aft part of the cone (260 mm to 380 mm) it is in fact quite difficult, if not impossible, to determine
if the streaks rotated with the elements. However, because the streaks can be easily followed
upstream, it is sufficient to show that the streaks rotate with the roughness elements at an upstream

location, where the differences in amplitude are not as dramatic.
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(b) RIM elements rotated approximately 5° leeward. Images from 3 runs, left to right: 1404, 1405, 1406.

Figure 4.1. Full heat transfer maps for the baseline and rotated element cases. Re,, = 11 x 10°m™".
Run conditions are provided in Appendix A.

Before examining the shift in the streaks at an upstream location, it is important to discuss the
spreading of the streamlines in this fully three-dimensional flow. Figure 4.2 shows the compu-
tational vortex paths superimposed on the paths of the streaks from Figure 4.1(a), traced using
the algorithm detailed in Appendix E.2. The computations were provided by Alex Moyes from
the EPIC code at Texas A&M University (TAMU); more information about their computation

can be found in References [40,98]. At higher azimuthal angles and farther aft on the cone, the
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computations and the experiment match fairly well. At lower azimuthal angles, however, the
agreement is poor. It is unknown if this is a computational discrepancy or if there are issues with
the unwrapping of the cone at these angles. For the present experiments there were no fiducial

marks on the upstream portion of the cone.
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Figure 4.2. Computational vortex paths from Moyes et al. [40] superimposed on the experimental
streaks in Figure 4.1(a).

However, the comparison is still instructive. It is immediately evident that near the roughness
and at lower azimuthal angles the vortex paths spread rapidly, whereas at higher azimuthal angles
they stay fairly parallel. Because of this large spreading, a shift in the location of the roughness
elements would be expected to have a correspondingly larger shift downstream; i.e. unlike in
a two-dimensional flow, the downstream shift of the vortices will not be exactly the same as

the upstream shift of the elements. The amount of expected shift can be calculated from the
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computational paths. If we assume that the azimuthal location 6, of the vortices at some x; can

be determined as a smooth function of their upstream locations 6, at x,, then we can say

01 f(@o )’ (4 1)

f(6y). (4.2)

2

where the hat denotes the condition where the roughness elements have been shifted, i.e. 6, — 6, =
A, the leeward shift of the roughness element in degrees. For small rotations, the hat condition

can be Taylor expanded,
By ~ f(B0) + 1 (B)A. (43)
The expected shift at the downstream x, station is then
0, — 0, ~ f'(Bp)A. (4.49)

The function f(6,) was interpolated from the TAMU vortex paths and fit with a fifth-order
polynomial. The derivative can then be calculated analytically. Figure 4.3 shows f’. The dashed
line indicates that for a 2D flow, the downstream and upstream rotations would be identical. As
was estimated from the vortex paths, at high azimuthal angles, near 140°, f” is near 1, so the
upstream and downstream rotations will be about the same. For lower angles, however, the TAMU
data estimates that the downstream rotation of the streaks could be as much as 2-3 times the
upstream rotation. Such a large shift multiplier for the downstream location of the streaks will
almost surely affect their development, which explains the obvious differences in amplitude in
Figure 4.1.

Figure 4.4 shows a cross-section of the heat transfer at 150 mm from the nosetip for the
baseline and rotated cases. The actual rotation of the roughness, about 3.6°, was determined by
cross-correlating slices of the IR images at the roughness location for each case. Figure 4.4(a) also
provides the heat transfer from the same location for an unshifted roughness element from a run
which was conducted 2 months earlier (the dashed line). The two unshifted cases match quite

well, which speaks to the repeatability of the experiments and the heat-transfer reduction method.



70

3 T T T T T T

Cone at 6° AoA

=25+ .

e

)]

3

£ 27 I

% 2D flow

w15r /

5

je

o)

O B R e

o
o

20 40 60 80 100 120 140
Azimuthal Angle at 150 mm, deg
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In Figure 4.4(b), the rotated data has been artificially shifted windward by the rotation angle of
3.6°. Note that at higher azimuthal angles, where f'(6,) is closer to 1, the two cases lie on top of
one another. However, for lower azimuthal angles the actual shift in the streaks is evidently larger
than the input of 3.6°, as expected from Figure 4.2. Despite the lack of agreement in peak location,
however, the peak amplitudes of the two cases are fairly similar. The differences can likely be
accounted for by the different amplitude histories of the two cases because of the change in the
roughness locations.

Using the computational vortex paths, the azimuthal locations of the heat-transfer slices at 150
mm can be interpolated to their predicted positions at the axial location of the roughness using
computational vortex paths from the EPIC code provided by Moyes et al. [19,98]. This is shown
in Figure 4.5. When the rotated case is artificially shifted windward by 3.6°, the locations of all
the peaks almost exactly match the baseline case. This further reinforces the conclusion that the

differences in peak location shown in Figure 4.4 are due to the streamline spreading.

4.1.2 127 pm Elements

The previous experiment was conducted again using the 127 pm elements at the Reynolds
number used for the sensor measurements, Re,, ~ 10.5 X 10® m™". Figure 4.6(a) shows azimuthal
slices at 120 mm for two different rotations: two runs at the baseline rotation and one with the
roughness rotated by 2.2° leeward. The rotation magnitude was determined by cross-correlating
slices of the heat transfer image at the roughness location. Figure 4.6(b) shows the same slices of
the data, but with two modifications to the azimuthal coordinates. First, the azimuthal coordinates
at 120 mm were interpolated to their predicted positions at the roughness location (x = 50.8 mm).
Then the coordinates of the slices were shifted by the opposite of their known rotation (i.e., 2.2°
windward). All of the peaks line up fairly well, indicating that even for smaller elements at a lower
Reynolds number, the RIM elements are still dominating the generation of the stationary vortices.

It is also worthwhile to examine the locations of the downstream streaks with respect to the
upstream roughness elements. Figure 4.7 shows the heat transfer perturbation at x = 120 mm for
the baseline case, compared to the measured height profile of the elements at a x = 50.8 mm. The

perturbation is defined here as the heat transfer band-pass filtered between 9 and 90 waves per
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(a) A direct comparison of the heat transfer at 150 mm for the two rotation cases.
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(b) The same comparison, with the rotated case artificially shifted windward by
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Figure 4.4. Comparison of heat transfer slices at 150 mm for the baseline and rotated cases.
Re,, = 11 x 10°m™". The run conditions are provided in Appendix A. Baseline: Run 1403;
Baseline, Prev. Entry: Run 1321; Rotated: Run 1404.
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Figure 4.5. A comparison between the baseline and rotated cases at 150 mm. The x-axis has been

interpolated to be the estimated azimuthal angle at the roughness axial location, given the
mapping provided by TAMU. The rotated case has been artificially shifted windward by 3.6°.
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circumference. The heat transfer azimuthal positions have been interpolated to the roughness
location as before.

It is apparent from Figure 4.7 that each roughness element generates two streamwise vortices,
with the leeward vortex slightly stronger than the windward one. This agrees qualitatively with
low-speed DNS of roughness in a 3D flowfield [99], where the vortex is stronger on the lee side of
an element. It is also interesting to note that the relative amplitudes of the vortices appear to be
correlated with the roughness height; see for instance the low heat-transfer perturbation behind

the element at 30° and the larger perturbation behind the next most leeward element.
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Figure 4.6. Comparison of slices at x = 120 mm for the baseline case and a case with the roughness
rotated 2.2° leeward. Initial baseline case Run 1701 at Re, = 11 X 10° m™!, other two cases at

Re,, = 10.5 x 10° m™* (Baseline repeat: Run 1703; Rotated: Run 1704).
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Figure 4.7. The heat transfer perturbation at 120 mm interpolated to the roughness position
(50.8 mm) plotted over the measured roughness heights. Each element produces a pair of
streaks, with the leeward streak at a higher amplitude. The relative amplitudes of the streaks

seem to be correlated with the individual element heights. Re, ~ 10.5 X 10°m™".
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4.2 Roughness Reynolds Number

A common metric for the relative magnitude of surface roughness is the roughness Reynolds
number, Re;;, = U, k/v,, where the subscript k indicates the velocity and viscosity are evaluated
at the height of the roughness in an undisturbed flow. Schneider [100] provides a good overview
of historical correlations of transition location with various roughness parameters, including Re; .

The Rey; can be used to define a “critical” height, at which the roughness first accelerates
transition compared to the same geometry without roughness. However, for the present work
the roughness is intended to affect transition, that is to induce the growth of stationary crossflow
vortices so their breakdown can be studied. Depending on the wavenumber of the input roughness,
transition with roughness will almost always occur earlier than the smooth cone, by design. Instead,
one must look for a small roughness height at which the qualitative behavior of the flow changes.
This approach was used successfully by Chynoweth [66] to determine the appropriate roughness
height on a flared cone model.

To that end, several roughness inserts were fabricated from PEEK with nominal element
heights from 50.8 pm to 635 um, and otherwise identical specifications to the RIM insert listed in
Table 2.5. It was hoped that there would be a clear difference in breakdown behavior between two
of these heights. Unfortunately, that was not the case.

Figure 4.8 shows heat-transfer images of the aft portion of the cone using four different
nominal roughness heights: 50.8 pm, 127 pm, 203 pm, and 254 pm. A qualitative transition front is
indicated by the white line in each image. This front is the contour at which the low-pass-filtered
heat-transfer data reaches twice the laminar CFD prediction; this line is purely qualitative for
comparison between the different heights.

Two things are immediately evident from the series of images in Figure 4.8. First, increasing
the roughness height moves transition upstream, which is expected. In particular, individual
vortex structures can be identified as moving upstream; see for example the hot streak going
through (370 mm, 110°) for the 127 um data (Figure 4.8(b)). Second, the qualitative behavior of
the flow is the same for every height. In all cases there appears to be streak merging (which is

examined further in Chapter 5) and an uneven transition front. In addition, the paths of the streaks
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are the same for each case. This evidence suggests that the same mechanism is driving breakdown
for roughness up to at least k = 254 um.

For roughness heights above 254 um, transition occurs forward of the PEEK Sensor Frustum.
To determine if even taller roughness elements could change the character of transition, an
Upper Frustum and roughness inserts were fabricated from PEEK with roughness elements up to
k = 635 um. The forward portion of the cone, including the roughness elements themselves, was
imaged using a 50 mm lens. Figure 4.9 shows a series of these images for roughness heights from
152 um to 635 um. Note that the images in Figure 4.9 are very far forward on the model, so the
local radius of curvature is small and therefore spanwise conduction effects may be important—
especially for the strongly modulated heat-transfer caused by the roughness elements. Therefore
the heat flux in these images was calculated using the 2D Fourier method described in Section 3.6
and derived in Appendix D.

Again, there are no sudden changes in the stationary vortex behavior as the height of the
roughness elements is increased. The 635 pm roughness exhibit strong splitting and merging close
to the elements, but it is unclear whether this is indicative of a change in the transition mechanism.
For the 152 pm case, the streaks are difficult to see at all.

The only evidence of transition caused by non-crossflow mechanisms are a series of images
taken using the 406 um elements (the tallest elements seem to trip the flow almost immediately
after the roughness). Figure 4.10 shows three runs at increasing unit Reynolds numbers, and
therefore increasing Re;;. At the lowest unit Reynolds number, Figure 4.10(a), the hot streaks
in the imaged region look no different than usual, except for some broadening and streamwise
waviness in the lowest streak. However, upon increasing Re,,, a large turbulent wedge is visible.
At the highest Re,,, the wedge starts at around 120 mm, or only about 215 roughness diameters
downstream from the elements. Farther downstream, the wedge has broadened to roughly 40° of
azimuth, and appears to be affecting the neighboring streaks. This large turbulent wedge does
not appear in the breakdown of the streaks for smaller roughness elements (cf. Figure 4.8). In
addition, the wedge is reminiscent of features that appear in roughness-dominated breakdown in
other situations [101,102].

The Re;, of the roughness that caused the turbulent wedge is approximately Re;; =~ 6900.

Figure 4.11 shows the estimated Rey; of the 127 um elements used for the measurements in Chapter
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5, at Re,, = 11.6 m™!. The maximum Re,; occurs near the wind ray, as expected, and is about
Re max = 200 for Re, = 11.6 X 10°m™". This level is more than an order of magnitude lower than
the roughness that caused the turbulent wedge in Figure 4.10, so it is believed that the 127 ym
roughness induces stationary crossflow vortices but does not lead to transition via non-crossflow
mechanisms. Note that the pressure fluctuation measurements reported in Chapter 5 were taken
at Re., = 10.5 x 10°m ™", so the Re;;, was less than the maximum shown in Figure 4.11.

Though they are not directly comparable to crossflow-dominated boundary layers, other studies
have found that the critical roughness is often larger than Re;; = 200. See, for example, Braslow
[103] who showed Rey .,;; > 10,000 at Mach 6 on a flat plate, and Gronvall et al. [104], whose
computations indicated a marked change in the flowfield between Re;;, = 250 and Re;;, = 1450 on
a sharp cone at 0° angle of attack. Wheaton and Schneider [105] studied near-critical roughness
in the nozzle-wall boundary layer of the BAM6QT, and showed that Re;;, = 322 did not cause
transition within the measurement range, though they note that the smooth-wall case also did
not transition within this range, so it is impossible to identify the “true” critical Re;;. Casper et
al. [101] found the critical roughness on a sharp cone to be around Re; = 100, which is the lowest
critical roughness level for hypersonic flow known to the author. However, none of these studies
investigated the effect of a 3D boundary layer. In addition, the Re;; is just one of many roughness
parameters that can affect transition (including, for example, the roughness width and spacing).
However, while the picture is incomplete the available data indicate that the chosen roughness
height, 127 pm, is tall enough to induce large stationary crossflow vortices but is not so tall as to

directly trip the boundary layer.
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Figure 4.9. Images of the heat flux near the roughness elements (the dark circles at 50.8 mm) with

increasing heights k. Re,, = 11.1 x 10° m™".



82

Run 1309, Rew = 9.7 x 10® m™

Run 1311, Ree = 10.3 x 10° m™

Azimuthal Angle, deg
Heat Transfer, KW/m?

Run 1310, Resw = 11 x 10° m™

80 100 120 140 160 180
Axial Distance, mm

Figure 4.10. Images of the heat flux on the forward portion of the cone using roughness elements
with heights nominally £ = 406 pm. Images from three increasing unit Reynolds numbers are
shown, illustrating how the turbulent wedge near the wind ray moves forward as the roughness
Re;; increases. At the maximum unit Reynolds number, the Re;; of the roughness causing the
wedge is Rey; = 6900.
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4.3 Roughness Spacing

Whitehead [106] demonstrated that at low speeds, if discrete roughness elements are placed too
closely together they no longer act as individual vortex generators. Given that the explicit purpose
of the RIM roughness is to induce the stationary crossflow vortices, it is important to verify that
the roughness is not too closely spaced. This is not obviously true, as even with a 9° spacing, the
elements are only 1.8 diameters apart because they are so far forward on the model. Unfortunately
there is no good guideline for what the appropriate roughness spacing should be. Saric estimates
d/A > 0.5 based on his experience at low speeds (personal communication cited in Schuele et
al. [39]), where d is the element diameter and A is the wavelength of the forced stationary mode. It
is not clear whether this can be applied to hypersonic flows. Note that according to computations,
the naturally most-amplified wavenumber is around 220 at x = 50.8 mm [107] (a spacing of 1.6°),
but this is not currently feasible with the RIM technique.

Figure 4.12 shows heat-transfer images of the Sensor Frustum for four different roughness
cases: a nominally smooth insert (a) with &k, ~ 1.3 um, a two-dimensional roughness strip (b)
with k ~ 254 pm, RIM roughness with elements 9° apart (c), and RIM roughness with elements 18°
apart (d). Both RIM inserts had nominal element heights of 127 um. A two-dimensional roughness
strip is the limiting case of very closely spaced rods. Thus if the RIM elements are too closely
spaced it is expected that the downstream pattern will look similar to the 2D case. The results are
quite interesting. The 2D roughness shows downstream behavior very similar to the smooth case,
but at higher amplitudes: thin, uniform streaks at a high wavenumber. This indicates that the
2D roughness is exciting the naturally most-amplified wavenumber, which makes sense given
the lack of a geometrically “preferred” wavenumber. However, the RIM roughness produces a
much different pattern downstream. The streaks are not very uniform, showing splitting, merging,
and a very jagged transition front. In addition, the streaks are generally fatter and at a slightly
lower wavenumber. It is also clear that increasing the spacing between the elements to 18° (Figure
4.12(d)) does not change this general pattern. It therefore appears that the elements in the RIM

roughness with 9° spacing are adequately far apart.
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4.4 Direct Metal Laser Sintering Roughness Inserts

The RIM technique is extremely useful, but it is by no means perfect. This is especially true
for the very small rods and spacing required on the cone at angle of attack, unlike it’s original
usage on a flared cone [65]. It is desirable to have roughness elements at a very high wavenumber,
both to force the naturally most-amplified waves and to study the possibility of boundary-layer
control [39,53].

A potential approach to this problem is to use Direct Metal Laser Sintering (DMLS), a form of
3D printing, to additively manufacture the roughness inserts from aluminum or steel. It was hoped
that a computer-controlled process would be more uniform than a hand-machined insert, and
would be capable of producing smaller element diameters and spacings. Unfortunately, the DMLS
process still has a ways to go before it is useful in this capacity. The test pieces procured from
the vendor were out of round by several millimeters, and the RMS surface roughness was quite
high. Figure 4.13 shows a height map of the test piece taken with the Zygo Zegage white-light
interferometer. The 3D-printing process leads to pronounced ridges over the entire surface, and
the elements themselves are not as cylindrical as desired. The typical polishing process for DMLS
parts involves tumbling them with an abrasive, but this is not practical for these inserts because
that would also abrade away the roughness elements themselves. When the technology is more
mature it may be worthwhile investigating DMLS again, but as it stands the process cannot match

the capabilities of a skilled machinist for this application.

4.5 Summary of RIM Development

The experimental campaign described in this chapter was intended to demonstrate that the
RIM roughness is suitable for the controlled study of crossflow transition. Measurements of the
heat flux downstream of the roughness elements show that when the roughness is rotated by
a small amount the heat-transfer footprint of the stationary vortices follow the rotation of the
roughness elements. This indicates that the RIM elements are inducing the stationary vortices
that are measured downstream.

In addition, it is important to determine that the selected roughness height, 127 um, is not

so tall as to trip the boundary layer directly. The experimental evidence suggests that such a
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condition has been met. The only observable evidence of bypass transition was measured using
elements nearly 3.5 times larger than the selected roughness height (and more than 30 times the
Re; of the 127 um elements). Thus though it is difficult to say for certain that the selected element
size is not too tall, the balance of the evidence supports the conclusion that the RIM roughness

with 127 pm elements are adequate for the controlled study of crossflow-dominated transition.
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Figure 4.12. Comparison of different wavenumbers of the input roughness on the downstream
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5. MEASUREMENTS USING DISCRETE ROUGHNESS ELEMENTS

This chapter describes measurements made using a RIM roughness insert, with rods nominally
k =127 pm (0.005 inch) in height, D = 560 pm (0.022 inch) in diameter, and 9° apart. The previous
chapter demonstrated that rods of this configuration are sufficiently tall to dominate the production
of stationary crossflow vortices downstream; that they are not so tall as to lead to turbulence
via bypass mechanisms; and that they are spaced far enough apart to act as individual vortex
generators. In this chapter, before examining the nonlinear breakdown of the boundary layer,
the repeatability of the primary and secondary instabilities is verified. Then, measurements of
the nonlinear growth and breakdown of the instabilities are presented for a baseline case and a
case with the roughness elements rotated slightly leeward. The RIM roughness parameters are
well controlled and characterized, so it is hoped that the data in this chapter can be used as a
validation case for future computations. The run conditions for the runs presented in this chapter

are provided in Appendix A.

5.1 Repeatability

The measurements presented in this work are typically composites of data from several
runs, and so it is vital to ensure that the data are repeatable from run to run. The stationary
crossflow vortices and the secondary instability are measured via two independent methods,
so the repeatability of both techniques must be analyzed. First, the infrared measurements of
the stationary crossflow vortices are examined in Section 5.1.1. Section 5.1.2 demonstrates the

repeatability of the secondary instability measurements using PCB pressure sensors.

5.1.1 Primary Instability Repeatability

For measurements with the Modular Cone, several runs are performed in a series with the

Sensor Frustum rotated to different positions. However, during each of these measurements the
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roughness insert is in the same location. Thus, if the stationary vortex behavior is repeatable, the
infrared images of the Sensor Frustum should nominally be identical, save for the positions of the
sensors. In this way the Modular Cone provides a built-in check of repeatability. A total of 50 runs
were performed with the same RIM insert: 37 with the roughness in the baseline position and 13
with the roughness rotated leeward (see Section 5.4). Table 5.1 provides the mean and standard
deviation of the initial stagnation pressure and temperature over all 50 runs.

Figure 5.1 shows slices of the IR-derived heat transfer at x = 344 mm for all 37 runs in Entry
16. These runs were performed over several days between December 21, 2018 and January 3, 2019.
The azimuthal location of the sensors ranged from 112° to 144°, with seven positions repeated. The
cross-section from each of these runs is displayed as a gray line on the plot, and the mean of all
the runs is the thick blue line. The upper plot shows the standard deviation of the heat transfer at
each point as a percentage of the mean at that point. It is clear that the heat transfer downstream
is quite repeatable. The largest deviations, 10-20 %, occur on either side of the largest peaks in the
heat transfer. This is likely due to small deviations in the azimuthal location of the peaks for each
slice, which lead to larger amplitude deviations because the spanwise gradient in heat transfer is
large on either side of the peak. It is unclear if the spanwise deviations in peak location are the
result of true variation in the stationary vortices or just uncertainty in the mapping from pixels to
points on the cone. However, regardless of its source, it is evident from Figure 5.1 that any such
deviations are quite small.

Between Entry 16 and Entry 17, the model was uninstalled and disassembled, and the camera
was relocated and recalibrated. In addition, IR measurements in Entry 17 used a completely
different Sensor Frustum (the Mk. I PEEK frustum, see Reference [108]). Figure 5.2 compares the
mean heat transfer from Entry 16 to the heat transfer from a run in Entry 17. The error bars are
the standard deviation of the runs in Entry 16 at those points (see Figure 5.1). The agreement is

excellent, with the most variation happening at the peaks in heat transfer.

Table 5.1. Variation in flow conditions for the 37 runs used in Figure 5.1.

Stag. Pressure, psia Stag. Temperature, K

Mean 135.4 419.6
Std. Dev. 1.6 1.5
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Figure 5.1. Slices of the IR-derived heat transfer at x = 344 mm for 37 runs. The azimuthal location
of the sensors ranged from 112° to 144°. The gray lines are the individual slices and the blue

line is the mean. The upper plot shows the standard deviation as a percentage of the local

mean. Re, = 10.5 X 10°m™.
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Figure 5.2. Comparison of the heat transfer at x = 344 mm between Entry 16 and Entry 17. The
model was completely uninstalled and disassembled, and the camera was repositioned and
recalibrated between these measurements. Re, = 10.5 x 10° m™".

5.1.2 Secondary Instability Repeatability

Because the secondary instability measurements are local, unlike the global heat transfer
measurement from infrared imaging, there are actually two repeatability studies that must be
performed with the PCB sensors. The first is to examine measurement repeatability using the
same sensor in the same location, but after several re-orientations of the Sensor Frustum. This
information validates the run-to-run repeatability of the secondary instability measurements
and can aid in understanding the effect of uncertainty in the azimuthal orientation of the Sensor
Frustum. Figure 5.3 shows PSDs of three sensors from two different runs nominally at the same
azimuthal angle. The measurements were separated by 40 runs and almost two weeks of testing.
It is immediately evident that the secondary instability measurements are highly repeatable on

the same sensor. This is further illustrated by the bicoherence for PCB 8, provided in Figure 5.4;
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even the nonlinearities can be repeatably measured using the same sensor. Here, not only is the
location of maximum bicoherence the same for both runs, the actual magnitude of the bicoherence

is also nearly the same.

Run 1619 PCB 5 |1
Run 1619 PCB 8 |
Run 1619 PCB 12|3
- - -Run 1659 PCB 5
- - ~Run 1659 PCB 8 |3
- - ~Run 1659 PCB 12|
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Figure 5.3. PSDs of measurements at 122° for three PCBs, several runs apart. Re,, = 10.5 x 10°m™".
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Figure 5.4. The bicoherence for PCB 8 (x = 303 mm) at 122°, 40 runs apart. These correspond to

the two PSDs for PCB 8 in Figure 5.3. Re., = 10.5 x 10°m™ .
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The second repeatability study makes use of the “repeatability pairs” of PCBs on the Modular
Cone. As shown in Figure 2.4, there are three pairs of PCBs at the same axial stations but offset
by 6°. Table 5.2 provides a list of the PCB repeatability pairs and their axial locations. To further
demonstrate repeatability, measurements can be made with the three PCBs on the main sensor
ray (13, 16, and 19), then the Sensor Frustum can be rotated by 6° and the same measurements
can be repeated using the offset PCBs (21, 22, and 23). Figure 5.5 shows such a comparison at
6 = 112°. At first glance, the results do not appear to match. However, on closer inspection, the
peaks associated with the secondary instability do repeat quite well. For PCBs 13 and 21, the
peaks at 275 kHz are very similar, as are the peaks at 150 kHz for PCBs 16 and 22. The differences
within the repeatability pairs appear to be due to sensor resonances, as indicated in the figure,
and to higher-frequency activity of an unknown origin.

Figure 5.6 shows the spectra from PCBs 13 and 21 for six azimuthal locations. A dashed gray
line is drawn in each subfigure to show the second mode estimate f,,,, derived from the CFD
solution as described in Section 3.5. Over the 9° azimuthal range of the measurements in Figure 5.6,
the second mode estimate changes by about 20 kHz. Note that the measured peak frequency varies
around this estimate, as exemplified by the spectra from 132° to 138°. As will be examined later, the
peak frequency seems to be correlated with the local boundary-layer thickness modulation caused
by the stationary crossflow vortices, hinting that the measured instability is likely a modulated
second mode as opposed to a true secondary instability.

It can be seen from Figure 5.6 that in general the repeatability is quite good at lower frequencies,
even using different sensors. At higher frequencies the spectra have more deviation, but this could
be due to differences in the sensor resonance characteristics. However, note that the ordinate scale
is logarithmic, so the deviations at higher frequencies cause integrated amplitude differences on
the order of 10 to 100 times smaller than the amplitude of the largest peak at the lower frequencies.

Given the wide azimuthal range of the measurements, examining all the spectra in detail is
impractical. Instead, the pressure fluctuation amplitudes were calculated for each PCB in low and
high-frequency bands. The low-frequency band is between 50 kHz and f,.,, the estimated second
mode frequency. The high-frequency band is between f.., and 1 MHz.

Figure 5.7 shows the resulting amplitudes for each PCB repeatability pair over the measured

range of azimuthal angles. In general, the amplitude repeatability is excellent. For PCBs 13 and
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21 (Figure 5.7(a)), the only point of disagreement is around 116°, at the location of the maximum
amplitude in the high frequency band. The discrepancy at this location seems to be due to different
levels of response near the first harmonic of the measured instability. Note that in Figures 5.7(b)
and (c), the high-frequency amplitudes are much higher for the offset PCBs (22 and 23) at low
azimuthal angles below about 120°, the result of the sensor resonances of the offset PCBs. All of
the spectra from each repeatability pair have been provided in Appendix B, if the reader would

like to examine detailed comparisons.

Table 5.2. Axial stations of the PCB repeatability pairs.

PCB Pair Axial Loc. x, mm

13 & 21 335
16 & 22 354
19 & 23 373
108 Run 1632 PCB 136 = 112.0°

e

Run 1632 PCB 16 = 112.0°
= = =Run 1637 PCB 21 0 =112.0°

:) A Run 1637 PCB 22 0 = 112.0°
:\‘l “, N
N ] y; \
T 10_8 5! 2 . 1\
- E B / v/ ‘\\ sensor
o’ '\pﬁ VAo resonance
= 9L
S -
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- resonance
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Frequency, kHz

Figure 5.5. PSDs for measurements at the same azimuthal and axial locations, with different sensors.
Note that PCB 21 and 22 exhibit large sensor resonances which obscure the repeatability at
higher frequencies. Re., = 10.5 X 10°m™".
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Figure 5.6. Several PSDs for PCBs 13 and 21 at the same axial and azimuthal stations. The
dashed gray line is the estimated frequency of the second mode from the CFD solution.
Re,, = 10.5 x 10°m™". See Appendix A for run numbers and conditions.
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Figure 5.7. Pressure fluctuation amplitudes for the three repeatability pairs. The low and high
frequency bands are 50-f.., kHz and f_,,-1000 kHz, respectively, where f.., is the local
second mode frequency estimated using the laminar CFD solution as described in Section 3.5.
Re,, =10.5%x 10°m™".
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5.2 Primary Instability Measurements

The primary instability of the crossflow boundary layer manifests as either stationary or
traveling vortices. Different techniques must be used to measure each form. The stationary
crossflow vortices result in streaks of high heat flux on the cone’s surface, so they are easily
measured using a global imaging method like IR or TSP. The traveling vortices appear as low-
frequency instabilities at stationary sensing locations, so they can be measured with surface
pressure sensors. Unfortunately PCB sensors often do not have adequate response characteristics
in the frequency range of the traveling waves, so Kulite sensors are more appropriate.

Though the topic of interest for the present experiments is the nonlinear breakdown of the
secondary instabilities, it is important to have a detailed understanding of the primary instability
behavior for two reasons. First, the secondary instabilities owe their existence (or their destabilized
form) to the presence of the stationary vortices, so accurate computations of the secondary
instabilities need to first match the behavior of the primary instabilities. Second, as will be discussed
further in the next chapter, the role of the traveling vortices in transition and specifically the
nature of their interaction with the secondary instabilities is poorly understood, so measurements

of these waves will inform better physical models of the crossflow transition process.

5.2.1 Stationary Crossflow Vortices

Figure 5.8(a) shows three IR images, from three separate runs, stitched together to give a map
of the surface heating over nearly the entire length of the model. The images have been shifted
slightly to account for uncertainty in the optical calibration of the camera.

There are clear discontinuities in heat flux between the two upstream images. The heat
flux is affected not only by the unit Reynolds number, but also the surface temperature, which
increases through the run. In addition, the uncertainty in the heat flux calculation could vary with
time during the run. Thus while the images are nominally taken at the same Reynolds number,
Re, =11.2 X 10°m™?, they are from different times during the run, and so the actual levels of heat
flux do not match up exactly between each run. Figure 5.8(b) shows the Stanton number of the

three images, which is a non-dimensional heat flux that takes the surface temperature variation
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into account, among other factors. In this case the Stanton number normalization reduces the
heat-flux discontinuities between two runs.

Figure 5.8(c) shows the heat flux perturbation Q’, which is the dimensional heat flux band-pass
filtered between 18 and 180 waves per circumference. The perturbation map gives a better sense
of the growth of the stationary vortices because it removes the effect of changes in the mean
flow over the cone. In this view the streaks are quite prominent, as is their irregularity. Several
of the streaks show hot-cold-hot heating patterns reminiscent of results on a flared cone [66].
The general pattern of the perturbation is qualitatively similar to computations (see, for instance,
Figure 1(a) from Choudhari et al. [20]).

The full map of the heat flux reveals a number of interesting structures in the development of
the stationary vortices that were not evident in smaller fields-of-view. Figure 5.9 highlights these
wishbone-like structures, which appear to be vortices merging with each other. There are three
such pairs of vortices in this case, and all three appear between about 70° and 110°. Interestingly,
the heat flux peaks as the streaks merge, though it is unclear from the heat flux alone whether
this occurs simultaneously with turbulent breakdown.

The underlying physics behind the wishbone structures is not clear, but low speed computations
by Kurz and Kloker [99] might hold a clue. Figure 5.10 is a reproduction of Figure 12 from their
paper. It shows vortices in a low speed DNS of roughness elements in a 3D boundary layer. In
a 2D boundary layer, a roughness element creates two pairs of large counter-rotating vortices
behind the element. However, the crossflow instability only supports co-rotating vortices. As
shown by Kurz and Kloker, this leads to only one pair of co-rotating vortices behind the element,
one strong and one weak. In Figure 5.10, the two vortices merge some distance behind the element
in a wishbone pattern similar to the present data. Computations at high speeds are necessary to
better understand the phenomenon in Figure 5.9, but considering the relationship between peak

heating and streak merging, it seems worthwhile to investigate it further.
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Figure 5.8. Surface heating caused by the stationary vortices. Re,, = 11.2 x 10°m™". Images from
three runs, left to right: Run 1603, Run 1602, Run 1601.
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Figure 5.9. Wishbone-type streak merging when using the RIM roughness.
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Figure 5.10. DNS of flow over isolated roughness in a 3D boundary layer. The main vortex (blue)
and the secondary vortex (orange) merge in the similar way to the wishbone merging in Figure
5.9. Reproduced from Figure 12 in Kurz and Kloker [99], with permission. Color not in original.
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For a spatial biglobal analysis of the secondary instabilities (see Reference [19]), it is imperative
that computations are accurately modeling the spanwise wavenumber of the base flow (i.e. the
stationary crossflow vortices). In previous experiments, the input wavenumber was chosen by
measuring the naturally most-amplified wavenumber on a model without added roughness using
images from the aft portion of the model. It is therefore important to determine how much the
wavenumber changes upstream due to the effects of streamline spreading.

The computations of Moyes et al. [19] show that the most-amplified wavenumber actually
decreases quite rapidly moving downstream. Their results indicate that for the experimental,
natural-breakdown scenarios with a downstream wavenumber of around 60, the wavenumber at
the roughness location would have to be around 220, which is at present impractical to fabricate.
However, one could force a lower wavenumber upstream and compare the measured wavenum-
ber downstream with a computation using the low input wavenumber, thereby validating the
computational method’s estimate of the wavenumber changes.

Most other studies using a known input wavenumber at hypersonic speeds have used small
amplitude, dimpled Torlon [37,38,53], and it is not clear that these roughness elements were in fact
dominating the generation of the stationary vortices downstream. The previous experiments also
lack the spatial resolution to make a detailed comparison with computations. A notable exception
is the work of Yates et al. [50], who have excellent, high-resolution images of the stationary
vortices induced by a plasma perturber with a known wavenumber. However, if Yates et al. have
examined the change in wavenumber over the length of the cone it has not yet been published.

Figure 5.11 shows a wavenumber spectrum from the heat flux data in Figure 5.8. For every
axial station in the heat flux image, the power spectrum was computed using Welch’s method.
The circumferential wavenumber is the frequency in waves per degree multiplied by 360°. The
resulting figure has been normalized by the maximum power in the entire imaged region, as the
actual magnitudes are unimportant. Contours are also shown in Figure 5.11 to give a sense of
the development. The green line is the computed wavenumber along a particular vortex for an
upstream wavenumber of 50 (from Moyes et al. [19], Figure 23(b)). The wavenumber in the present
experiments is 40, so this comparison is only qualitative.

Despite the differences in input wavenumbers, the results show similar trends. Note that

the wavenumber varies in both the x and 6 directions, so the experimental estimate will yield
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an average wavenumber over the imaged azimuthal extent at any given x. The experimental
wavenumber decreases downstream from an input of 40 to around 17 at the aft end. Interestingly,
the power reaches a peak at around 330 mm, then decays, and then begins to increase again. This
could be the result of the hot-cold-hot heating patterns on the individual streaks in this region,

associated with the merging of the streak pairs (as shown in Figure 5.9).
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Figure 5.11. Wavenumber spectrum normalized by the maximum power. The wavenumber
is the number of waves over the entire circumference of the cone, extrapolated from the
imaged portion. The green line is the computed wavenumber from Moyes et al. [19] along a
particular vortex for an upstream wavenumber of 50 (the present experiments used an upstream
wavenumber of 40).

The peak heat flux along the streaks can be extracted semi-automatically using an algorithm
provided in Appendix E. Figure 5.12(a) shows eight such paths overlaid on the Stanton number
image. The vortices are numbered following the convention of Choudhari et al. [20], with
increasing number toward the lee ray. The heat flux can also be interpolated along the extracted
paths to show the growth of the peak heat flux. Figure 5.12(b) provides the ratio of the experimental
Stanton number to the laminar computation along each streak. Initially, the ratio is roughly 1
for all the streaks, which indicates the boundary layer is mostly laminar at this point. Moving
downstream, the heating on each streak begins to exceed the laminar level as the stationary
vortices grow in amplitude. The peak St reaches over 5 times the laminar level for some streaks.

However, given the uncertainties in the IR method (see Section 3.6), this level is only approximate.
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Interestingly, there appear to be two general classes of the vortex development: a monotonic
increase in amplitude to turbulent breakdown, or a hot-cold-hot heating pattern. Figure 5.13
compares an example from each class. The first peak in the hot-cold-hot pattern seems to originate
from the streak merging, as discussed previously. In general, the hot-cold-hot pattern appears
at lower azimuthal angles, so it may be the result of the increasing Re; at low azimuthal angles.
However, note that for Vortex 6 and 7 there are noticeable kinks in the growth at around Re =
3 x 10°, even though there is no true double peak. The origin of these different classes can be
further investigated by rotating the roughness insert by a small amount, which is discussed in
Section 5.4.

Because the unit Reynolds number drops in steps throughout the run, measurements during a
single run can provide information on the effect of small changes in the flow conditions. Figure
5.14(a) shows the heat flux along Vortex 4 at several different unit Reynolds numbers. The
amplitude is St.,, /Stepp, Where St has been adjusted to the experimental unit Reynolds number
using the simple scaling described in Section 3.5. The experimental heat flux is interpolated from
a composite of images from two different runs (see Figure 5.12(a)), so the time during each run
was calculated so that the two images had the same unit Reynolds number.

There are several things to note in Figure 5.14(a). The first peak in St moves steadily aft on
the cone as the unit Reynolds number drops (lighter colors in the figure). This is a reasonable
behavior, given that at lower Re,, the Re; of the roughness is lower, and therefore so are the
initial amplitudes of the stationary vortices. Interestingly, the inset plot shows that the first peak
reaches roughly the same amplitude over the entire range of Re,, which varies by about 5 %. The
second peak, however, increases by about 10 % at lower unit Reynolds numbers. The boundary
layer in this region is likely turbulent, so the Stanton number probably varies with a different
power of Re, than used in the Section 3.5 scaling, which may explain the apparent increase in
heat flux.

Figure 5.14(b) shows the same data, but plotted against Re, the Reynolds number based on
axial distance. Both peaks in this coordinate system actually move forward by about 2 % (to lower
Re) at lower unit Reynolds numbers, which means the peak locations scale with some power of
Re slightly less than one. Of course, the unit Reynolds number is one of several parameters that

are changing over the course of the run. The stagnation temperature drops in the same manner



107

as Re, and the wall temperature increases. Both of these quantities surely have an effect on the

crossflow instability, so the trends in Figure 5.14 are informative but far from comprehensive.
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(b) Stanton number ratio along the streaks in Figure 5.12(a).

Figure 5.12. Amplitude growth of the streaks.
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Figure 5.13. Comparison of two different classes of streak growth.
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Figure 5.14. heat flux along Vortex 4 at several different unit Reynolds numbers (during the same

run). The insets show more detail in the region of the first peak.
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5.2.2 Traveling Crossflow Vortices

Though the traveling vortices may not be the dominant mechanism for transition, it is still
important to understand their behavior, especially with regard to any interactions with the
stationary mode. To that end, two runs were performed with Kulite sensors in a small cluster,
as shown in Figure 5.15. Refer to Table 2.3 in Section 2.2 for the axial and azimuthal positions
of the sensors. The arrangement is designed to enable the calculation of the traveling waves’
phase velocity (see similar arrangements used by Borg [43] and Ward [38]). Unfortunately the
Sensor Frustum with this array is made of aluminum, and time constraints did not allow the
application of temperature-sensitive paint so there are no heat-transfer measurements with the
Kulites. However, in light of the repeatability of this flow field demonstrated in Section 5.1.1, it is
reasonable to assume the flow was roughly the same.

It is important to note, however, that the Kulite Sensor Frustum uses a different azimuthal angle
scale than the PEEK one. The Kulite Sensor Frustum and accompanying Base uses center-drilled
angle marks applied by the author (see Reference [73] for details including photographs of these
marks), whereas the newer PEEK Sensor Frustum and Base uses a Vernier scale, precisely machined
by an experienced machinist. Thus there is some uncertainty in the locations of measurements
taken with the Kulites with respect to the same locations in the IR images. The offset uncertainty
in azimuthal position of the PEEK Frustum can be estimated using the IR images, and is roughly
+1° with a resolution set by the Vernier scale at 0.5°. The uncertainty in the azimuthal angle
offset using the Kulite Frustum cannot be as well quantified but is also around +1° or larger, and
with a 1° resolution. Thus due to uncertainty accumulation, the sensor measurements and the IR
measurements could be nearly 3° apart. In the future, a second PEEK Frustum with both Kulite
clusters and the Vernier scale should be fabricated to mitigate this issue.

Figure 5.16 shows the spectral quantities for the Kulite measurements in the position shown in
Figure 5.15. The PSDs (Figure 5.16(a)) have a very large sensor resonance at 300 kHz for Kulites 1
and 2, and 225 kHz for Kulites 4 and 5. In addition, Kulite 1 shows a small peak at around 150 kHz,
which could be a secondary instability, discussed further in Section 5.3. A notable absence from
these spectra is any distinct instability in the traveling crossflow band around 45 kHz. At 129°

there is a small peak in the spectrum at 50 kHz that could be traveling crossflow, but there is a
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Figure 5.15. Locations of the four Kulite sensors. Their placement relative to the stationary vortices
is visible in the zoomed inset.

large amount of background noise in the same frequency band. However, the lack of a distinct
traveling crossflow peak is markedly different from measurements using random roughness, which
is discussed in detail in Chapter 6.

The coherence between sensor pairs is also interesting, though it leads to more questions
than answers. The only non-zero coherence is between Kulites 4 and 5 (only 4 of the 6 possible
sensor pairings are shown, for clarity). It is not obvious why this should be the case, but the effect
was observed in both runs with the Kulites (Figure 5.16(b) and (d)). It is possible that the lack of
coherence is indicative of equipment malfunction. But the same setup was used a few runs earlier
to take measurements using the Sandblasted roughness insert, with every sensor pair having high
coherence. In addition, the sensors were calibrated after these runs and seemed to be functioning
properly. Another hypothesis is that the strong stationary vortices are modulating the traveling
waves so significantly that there are distinct modes in this region, and only Kulites 4 and 5 are
measuring the same one. Further experiments with both IR and Kulites are needed to solve this

puzzle.
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Figure 5.16. Spectral properties of the Kulite measurements. Re,, = 10.5 X 10° m™".
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In Section 5.3.1 it will be demonstrated that two modes of secondary instability coexist in

this case: a low-frequency and a high-frequency mode. These new measurements refine earlier

data from experiments by the author using a dimpled Torlon roughness [21,73]. Then in Section

5.3.2, the streamwise growth of the secondary modes will be examined and compared to the

amplitude growth of the stationary crossflow vortices in the same region. Finally, in Section 5.3.3,

the nonlinear behavior of the secondary modes near breakdown will be discussed.
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The data in this section are synthesized from 20 individual PCB pressure sensors over the
course of 29 runs with the Sensor Frustum at different azimuthal positions. Figure 5.17 shows
the sensor locations for these data overlaid on an IR image; each white dot represents one sensor

during one run. Note that the dots are smaller than the actual sensors.

Azimuthal Angle, deg
e o e e e
= N w B a1 (o))
o o o o o o

[ERN
o
o

(]
o

280 300 320 340 360 380
Axial Distance, mm

Figure 5.17. The measurement points for the data in this section overlaid on an IR heat-transfer
image. The dots are not the same size as the PCB sensors.

5.3.1 Peak Frequencies

Prior measurements by the author showed that there exist two separate modes of the sec-
ondary instability, with frequencies apparently dependent on the local, modulated boundary layer
thickness [21]. However, these measurements were made using a dimpled Torlon roughness,
which as discussed previously is not well controlled. In addition, the measurements were low
density and fairly limited in scope, with an axial span of only about 40 mm, and an azimuthal
range of 18°. The measurements in the present experiment are at a much higher spatial resolution

and have an expanded scope, so the behavior of the two modes can be examined more clearly.
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Figure 5.18 shows PSDs of the secondary-instability pressure fluctuations at a constant axial
position, for a range of azimuthal angles. The experimental peak frequency is marked with
an open circle for each spectrum; the corresponding second-mode estimate from the laminar
computation is marked as a filled circle. As is evident in the figure, the peak frequency can be
tricky to determine; this is especially true for the measurements at 132° and 124°, where the
fluctuations are very broad-band. To approximate the measured peak frequency, the spectra were
smoothed with a 75 kHz moving average filter, and the location of the highest peak is extracted
from the smoothed PSD in the range from 80 kHz to 700 kHz. This is not a perfect method for
determining the “true” peak frequency—as is obvious from Figure 5.18—but it is an automatic and

consistent metric, so it should still provide insight into the nature of the instabilities.

R RS IR RN IR I RN RS SIS R
—0=124°

6=130°
—0=132°
—0=134°
—0=140°

% P22 I B N I S R R R R
0 100 200 300 400 500 600 700 800 900 1000
Frequency, kHz

Figure 5.18. PSDs of the secondary instability for several different azimuthal angles at x = 347 mm.

The open circles mark the approximate peak frequency, while the closed circles are the estimated

second-mode frequency. Re,, = 10.5 x 10°m™".

It is clear from Figure 5.18 that the peak frequency changes quite a bit more than the estimated
second-mode frequency (closed circles). In fact, the instability frequency seems to oscillate around
the estimate, which is consistent with the modulated boundary-layer thickness caused by the

stationary vortices. The peak frequency as a function of azimuthal angle is provided in Figure 5.19
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for two axial stations. In addition, the plot shows the estimated second-mode frequency from the
computation, f., = U,/(26) as the dashed line. The peak frequency oscillates around the estimate
as the boundary layer thickens and thins due to the presence of the stationary crossflow vortices.
The estimated second-mode frequency is very much an approximation; early measurements of
the second mode show variation in the peak frequency with wall temperature and Reynolds
number through their effects on the boundary-layer thickness [109,110]. The measurements of
Demetriades (See Fig. 22 in Ref. [109]) indicate that the frequency estimate is better described by
Jest ® U, /(2.206) at high Reynolds numbers. This approximation is plotted in Figure 5.19 as the
solid black line, and appears to be a better fit for the mean variations in instability frequency. The
approximation f.., = U,/(2.20) is used as the estimated second-mode frequency for the rest of
this work.

The peak frequencies for every measurement point can be extracted and interpolated to form a
peak-frequency map, shown in Figure 5.20. There are several lobes of high-frequency activity, with
low-frequency regions in between. Note that because the boundary layer thickens downstream
and toward the lee ray, the peak frequency drops in these directions.

To account for the axial and azimuthal changes in the mean flow, the experimental peak
frequency can be normalized by the local second-mode estimate to yield a map of the peak
frequency ratio, fux,//fcep- A map of this ratio is shown in Figure 5.21. Normalizing the peak
frequencies makes the pattern more distinct: four lobes of high-frequency modes interleaved
with low-frequency ones. In addition, the lobes appear to have roughly constant frequency ratios
for both the high and low-frequency cases. The frequency variation is evidently quite large,
ranging from 60-160 % of the local second-mode estimate, though of course given the method for
extracting the peak frequency this magnitude should only be taken qualitatively.

It is insightful to understand the location of these lobes of activity with respect to the stationary
vortices. Figure 5.22 shows the contours of the peak frequency superimposed on an IR image of
the flow at the same Reynolds number. The lobes of high-frequency modes correspond almost
exactly to hot streaks in the IR, and vice versa for the low-frequency modes and cold streaks. The
second-mode frequency is highly dependent on the local boundary-layer thickness, so one would
expect a higher frequency instability under the thin troughs between vortices, which would also

lead to higher heat transfer.
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Figure 5.19. Variation in peak frequency of the measured instabilities at two axial stations. Both

U, and ¢ were extracted from the Navier-Stokes solution as described in Section 3.5.
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Figure 5.20. Contour plot of the experimental peak frequency over the entire measurement range.
The peak frequency decreases for all instabilities in the streamwise direction, as the boundary
layer thickens both axially and azimuthally. The flow in the upper-right corner is beginning
to break down, so the peak identification is not as reliable. The data in this region have been
omitted. Re, = 10.5 x 10°m™".
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Figure 5.21. The ratio of the measured peak frequency to the estimated second-mode frequency,
from the data in Figure 5.20. This ratio accounts for the changing boundary layer thickness, so
the spanwise modulation in frequency is more distinct.
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Figure 5.22. Contour plot of the peak frequency from Figure 5.20 overlaid on an IR image. The
high-frequency modes are concentrated under the hot streaks, while the low-frequency modes
grow in the cold spaces in between.
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5.3.2 Amplitude Development

The previous section showed that the pressure fluctuation spectra generally fall into one of
two classes: a Low-Frequency (LF) mode in the range 50-f.., kHz or a High-Frequency (HF)
one from f.,—1000 kHz, where f., is the estimated second mode frequency from the laminar
computation. The wide HF band captures both the secondary instability and its first harmonic. To
examine the growth of the secondary instability amplitudes, the amplitude was calculated in each
band for every measurement point. Figure 5.23 shows contour plots of the amplitudes in each of
these bands, giving a global sense of the development of the secondary instability.

In each of the amplitude maps there are several lobes of growth aligned along the stationary
vortices. Figure 5.24 shows contours of the HF amplitude superimposed on an IR heat-transfer
image. The lobes of HF growth are almost exactly aligned with the hot streaks in the IR. The
amplitude of the HF instability appears to peak coincidentally with the peak heat transfer caused
by the wishbone-type merging of the stationary vortices (see the merging at 295 mm and 120° in
the IR, and in Figure 5.9). It is unknown if there is a physical connection between these processes.

The lobes of LF and HF growth are slightly offset, as illustrated in Figure 5.25. This makes
sense given the connection between instability frequency and the local boundary-layer thickness.
However, it appears in the Figure that the LF mode is far less localized than the HF one. It is
possible that this apparent delocalization is an artifact of the higher levels of background noise at
low frequencies (for instance, see the PSD at § = 134° in Figure 5.18), and so may not be indicative
of any characteristic difference between the modes.

A more detailed sense of the breakdown behavior of each mode of instability can be gleaned
from following the growth of the secondary instabilities along a stationary vortex. Figure 5.26
shows some of the discrete sensor locations used to measure the growth and breakdown of the LF
and HF instability along a single stationary vortex (Vortex 4 in Figure 5.12(a)). Due to the slight
offset in the lobes of instability growth, the LF measurement points are about a degree higher in
azimuth than those of the HF growth, which follow the path of the hot streak.

The pressure fluctuation spectra from the measurement points in Figure 5.26 are shown in
Figure 5.27. For the LF mode, in Figure 5.27(a), there is a monotonic increase in power in the

LF band, and though the spectra still show the presence of an instability at Re = 3.91 x 10°, it
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appears the flow is nearly turbulent by this point. The HF mode, on the other hand, is likely fully
turbulent by Re = 3.65 x 10°, judging from the shape of the spectrum. In addition, there are clear
harmonics of the HF mode at around 750 kHz. The increase in amplitude at low frequencies for
the HF instability could indicate the presence of a separate LF mode. However, given that there is
no distinct peak in this range, the increase in power is most likely due to spectral filling, a result
of turbulent breakdown.

The amplitudes of the LF and HF instability along this vortex are compared to the stationary
vortex amplitude in Figure 5.28. Three axial stations are indicated at the top of the figure, at which
the Shannon entropy H was calculated to provide an approximate turbulence metric. At station
(1), H g = 70 % and Hy = 80 %, indicating that both instabilities are fairly near breakdown at
the beginning of the measurement range (though it should be noted that this conclusion not
corroborated by the LF spectrum which shows very little activity at this point). At station (2),
Hyr = 99%, so it seems that the boundary layer along the path of HF growth has become
mostly turbulent at this location. This is in general agreement with the analysis of the spectra,
above. At station (3), H;r = 99 %, so the boundary layer along the path of the LF mode has
also become mostly turbulent at this point. Again, this corroborates the results from the spectra.
It is interesting to note that H appears to reach 99 % slightly downstream of the peak pressure
fluctuation amplitude, when the amplitude has leveled off. This behavior is similar to intermittency
measurements of the second mode on a flared cone [66].

The amplitudes of two vortices are shown in the figure: Vortex 4, which is under the HF path,
and Vortex 5, which is just slightly leeward of the LF path. The amplitudes of the vortices seem to
correspond to the behavior of the secondary instabilities. The first peak in the Vortex 4 amplitude
occurs simultaneously with the peak in the HF instability. Both Vortex 5 and the LF instability
begin to grow in amplitude around this point as well, and seem to reach breakdown at roughly
the same location. Interestingly, the “transition location,” as loosely defined as H; p = 99 %, occurs
after the first peak in the amplitude of Vortex 4, almost to the second minimum of the amplitude.
Traditional estimates of the transition location use the point at which the heat transfer begins to
grow from the laminar value. In this case, using such an estimate would be too small by nearly

Re = 500 x 10°, or roughly 50 % of the measured length.
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Figure 5.24. Contours of amplitude in the HF band overlaid on an IR image. The lobes of HF
growth are almost exactly aligned with the hot streaks in the IR.



124

150

=
N
o

-
w
o

120

Azimuthal Angle, deg

110

280 300 320 340 360 380
Axial Distance, mm

Figure 5.25. Contours of both secondary instability modes superimposed on an IR image of the
same flow. LF is the low-frequency mode (Fig. 5.23(a)) and HF is the high-frequency mode
(Fig. 5.23(b)).
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Figure 5.26. Individual measurement points following a stationary vortex, corresponding to the
spectra in Figure 5.27.



125

10-6 UL I L B L B L S UL B

——Re =2.99 |]

7 ——Re=3.12|]

10 ——Re=325|]

N ——Re=3.38|]

L 108 ——Re =3.51 |5

N ——Re = 3.65 | ]

2% ——Re=3.78]

= 10 E
=
N
[a¥

=
<
= [ 1
o
LRI R | LR T T 11T

1071
10-12IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
0O 100 200 300 400 500 600 700 800 900 1000
Frequency, kHz
(a) LF instability.
10-6IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII Re:2-99
Re =3.12
. ——Re =3.25
10 ——Re =3.38
N —Re =351
T 108k ——Re =365
(\I: E —Re =3.78
R C —Re =391
a 109
d C
%) -10 L
o 10
10t e
-12_IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

0O 100 200 300 400 500 600 700 800 900 1000
Frequency, kHz
(b) HF instability.

Figure 5.27. Spectra of the measurements along a single vortex, for both instability modes. The
increase in power at low frequencies for the HF mode may be spectral filling, a consequence
of turbulent breakdown, or it could represent growth of a separate low frequency mode. The
Reynolds numbers are in millions based on the axial distance of the measurement.
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Figure 5.28. Comparison of the amplitude growth in the primary and secondary instabilities.
Vortex 4 is physically closest to the high-frequency lobe while Vortex 5 is closest to the low-
frequency one. The Shannon entropy H was calculated at three axial stations of interest,
marked on the plot: (1) H; p = 70 %, Hyr = 80 %; (2) Hyr = 99 %; (3) H; = 99 %. Note that the
heat-flux measurements were taken at Re, = 11.2 X 10° m~" whereas the pressure fluctuation
measurements are from Re, = 10.5 x 10°m ™. See Figure 5.14 for the effect of small changes
in unit Reynolds number.
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5.3.3 Nonlinear Interactions

The nonlinear behavior of the secondary instabilities can be classified as one of two types:
harmonic generation and nonlinear interaction between modes. Harmonic generation will occur
when a mode of the instability becomes large enough in amplitude. Figures 5.29 and 5.30 provide
example bicoherence measurements displaying harmonic generation. Figure 5.29 illustrates
self-interaction in the low frequency mode. A peak in the bicoherence is observed at around
(180 kHz, 180 kHz), coincident with the LF peak in the spectrum. The harmonic in this case would
be at around 360 kHz, but it is not clear from the spectrum that such a peak exists. However, the
bandwidth of the LF peak is fairly broad, and the magnitude of the nonlinear interaction is small
(b* = 0.15), so it is possible that the harmonic is partially obscured by the long roll-off of the
fundamental peak (see Appendix F). Figure 5.30 provides a similar example for the HF mode. In
this case, there is a very strong (b* = 0.41) peak in the bicoherence corresponding to the large
HF peak at around 360 kHz. Due to the strength of this self-interaction, a harmonic is easily
identifiable in the spectrum at around 750 kHz.

In addition to harmonic generation, there is nonlinear interaction between the LF and HF
modes in the regions where they overlap. Figure 5.31 provides one example of this interaction.
There are two peaks clearly evident in the spectrum: one at 160 kHz and another at 320 kHz. It is
possible that the higher frequency is in fact a harmonic of the LF peak (the frequency is almost
exactly double), but the two instabilities appear to have roughly the same amplitude, which would
be unusual for a harmonic (though not impossible given the non-flat PCB frequency response).
The bicoherence shows high levels of harmonic generation within the HF peak causing the small
but noticeable activity at 700 kHz. In addition, there is a small region of significant bicoherence at
(320 kHz, 160 kHz), indicating the two modes are interacting with each other to transfer energy to
an instability at 480 kHz. There does appear to be a small peak in this region in the PSD, though
the bicoherence is fairly low so a distinct peak is not necessarily expected.

A more obvious case of LF-HF mutual interaction is shown in Figure 5.32. Again, there are
two large-amplitude peaks very clearly visible in the spectrum at 235 kHz and 325 kHz. In this
case the two frequencies are not integer multiples, so it is probably not a harmonic but rather a

separate instability mode. The bicoherence shows three distinct regions of interaction. There are
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Figure 5.29. Harmonic generation in the LF mode. The filled dot on the spectrum is the CFD-
estimated second-mode frequency. Run 1613.

high levels of harmonic generation within both the LF and the HF instability, but there is also
bicoherence between the two modes, at (325 kHz, 225 kHz). Thus frequency peaks are expected
at 450 kHz and 650 kHz (the harmonics), and also at 550 kHz (the mutual interaction). Indeed,
looking at the PSD there are small but distinct peaks near the three expected frequencies.
Unfortunately, the results of the bicoherence calculation are not always easily interpretable.
Figure 5.33 shows one example. The maximum bicoherence in this case is very large, b* = 0.54. In
the spectrum, there is a broad, high-frequency peak at 500 kHz, as well as several smaller peaks
at higher and lower frequencies. The measurement location is fairly far forward (x = 310 mm)
and away from the lee ray (6 = 112°), so the boundary layer is quite thin, leading to the very high

frequency of the instability. Unfortunately, these data were sampled at 2 MHz, so any harmonic of
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Figure 5.30. Harmonic generation in the HF mode. Run 1618.

the largest peak would be at least partially aliased. However, there is very little power at 1 MHz,
so either there is no harmonic or it has been sufficiently suppressed by the scope’s low-pass filter.

Strangely, the bicoherence does not show any nonlinear activity at the largest peak in the
spectrum. Rather, the significant bicoherence is concentrated along the line f; + f, = f; ~ 270 kHz.
The maximum bicoherence seems to show coupling between 45 kHz, 225 kHz, and 270 kHz (note
the small peak in the spectrum at 270 kHz). The traveling crossflow wave, if it is present, would
be in the region around 45 kHz, so it is possible that the bicoherence here is showing nonlinear
interaction between traveling crossflow and the second mode. However, neither 45kHz nor
225kHz are apparent in the spectrum, so the true origin of this large bicoherence remains a

mystery.
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54 Measurements After a Small Leeward Shift of the Roughness

As previously discussed, the RIM roughness was rotated leeward by about 2° and the measure-
ments were repeated. Chapter 4 studied the changes in the stationary vortices very far upstream
to verify that the RIM elements were responsible for the observed pattern of streaks. This section
explores the changes in the flow downstream, near breakdown.

Figure 5.34 shows Stanton number images along the cone for the baseline configuration ((a),
also Figure 5.8) and the shifted configuration (b). The range of Stanton numbers is the same
between the two cases, and the streak patterns look broadly similar. On closer inspection, several
common structures can be observed in the heat flux. The patterns of the vortices stay essentially the
same when the roughness is rotated, except that they shift leeward—following the roughness—and
forward on the cone.

The forward shift is more evident in Figure 5.35. Interestingly, when the roughness is rotated,
the streak-merging wishbone structures stay within the same azimuthal band (70°~110°). Because
the streak necessarily shifts leeward to follow the rotation of the roughness, the wishbone pattern
actually moves forward as well. It is not obvious why this might be the case, especially given that
the roughness elements have a lower Re;, when they are rotated leeward, so the initial amplitudes
of the streaks should be smaller. It is possible that the reduction in A, is balanced by increased
growth rates due to stronger crossflow in this region, as well as the change in the neutral point
with azimuthal angle.

The breakdown of the secondary instabilities was also measured for the shifted case. Figure 5.36
shows contours of the secondary instability amplitude for the baseline (orange) and shifted (blue)
cases; the contour levels are the same for each case. It seems that the lobes of secondary instability
growth follow the same trend as the stationary vortices: the pattern remains fundamentally similar,

but is shifted forward on the cone.

5.5 Summary of RIM Measurements

The measurements described in this chapter successfully serve two purposes. The first is to
provide a detailed set of measurements of the nonlinear breakdown of a hypersonic crossflow

boundary layer with well-defined and well-controlled inputs. These measurements can be used
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Figure 5.34. Unwrapped images of the Stanton number for both roughness configurations.
Re, =11.2x10°m™ ..

as comparison cases for validating computational simulations, and as a starting point for semi-
empirical transition-prediction methods based on the amplitudes of the secondary instabilities.
The second purpose is to begin to understand some of the fundamental physics behind crossflow
transition in the hypersonic regime. These measurements are the most detailed yet available of
the nonlinear stages of crossflow transition in quiet flow. They have demonstrated that when

using the discrete RIM elements the dominant nonlinear mechanism seems to be the modulated
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Figure 5.35. Detailed view of Figure 5.34, showing the forward movement of the wishbone
structures when the roughness is rotated. The numbers indicate the same structure as it moves.

second mode, which has low-frequency and high-frequency components. The two components
are spatially localized under different portions of the stationary vortices, but interact nonlinearly
in the overlapping regions.

These data have also corroborated computational studies showing a decreasing wavenumber
of the stationary vortices downstream. An input of m = 40 reduces to around m = 20 only 200 mm

from the nose.
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High-resolution measurements of the stationary vortex amplitudes also reveal interesting
behavior that has thus far not been reported. There are two classes of hot streaks (under the
troughs of the vortices): streaks that grow monotonically to breakdown, and streaks that peak
twice. Furthermore, the first peak is sometimes coincident with the merging of two different
vortices, and the location of this merging is azimuthally confined, even when the roughness is

rotated. The cause of this behavior is not yet known.
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6. MEASUREMENTS USING SMALL-AMPLITUDE
DISTRIBUTED ROUGHNESS

This chapter describes measurements made using the Sandblasted roughness insert, with an RMS
roughness level of k,,, ~ 4 pum. First, the repeatability of the primary and secondary instabilities
is examined. Then, following the template of the previous chapter, measurements are presented of
the stationary and traveling crossflow vortices, and finally the secondary instabilities. This chapter
discusses only the general characteristics of the breakdown for this type of roughness. In Chapter
7 comparisons are drawn between the these data and those of Chapter 5, which yield insight into

some of the physical mechanisms involved in hypersonic crossflow-dominated transition.

6.1 Repeatability

As in the previous case using the RIM roughness, it is important to establish that the instability
measurements are repeatable before data from multiple runs are synthesized. In addition to the
stationary crossflow and secondary instability measurements, the repeatability of measurements of
the traveling crossflow waves will also be examined, as they appear to be important to breakdown
in this scenario. Due to time constraints, far fewer runs were completed with the Sandblasted
insert than with the RIM insert. Consideration of the repeatability is therefore necessarily limited
in scope.

As with the data in Chapter 5, several runs were conducted with the Sensor Frustum in
different azimuthal orientations, but with the rest of the model fixed. Figure 6.1 shows azimuthal
cross-sections of the heat flux from all 15 runs with the Sandblasted roughness insert. Figure 6.1(a)
shows data from x = 299 mm. In general, this far upstream the vortex pattern is quite repeatable.
The standard deviation of the 15 runs is below 10% of the mean until close to the lee ray, where
there is significant deviation. However, there is a large mushroom-shaped upwelling at the lee
ray, the transition of which may not be due to crossflow mechanisms. Thus a lack of repeatability

in this area may not be important to the present study.
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Farther downstream, the heating pattern becomes less repeatable. There is significant variation
at around 100° and 140°, among other locations. The locations of the peaks and troughs in the
heat flux seem to be fairly consistent, but their amplitudes in any given run can vary by 20 % or
more of the mean. The region of highest variability, 120-140° is also the region measured with the
PCBs, so a lack of repeatability in this area may be connected to the presence of the sensors. Why
the sensors would cause such variability in this case but not when using the RIM insert is an open
question. It is very odd that the flow is so repeatable upstream, yet only 50 mm downstream there
is this much variation. The cause of this extreme sensitivity is unknown.

Figure 6.2 shows the mean heat flux at x = 343 mm from the 15 runs in Entry 16, compared to
an azimuthal cross-section at the same location and Reynolds number, but after a model change
and a repositioning of the camera. This comparison is analogous to that shown in Figure 5.2. Again,
the peaks and troughs generally seem to line up, but the amplitudes are quite different between
the two setups. The fact that the locations of the streaks are roughly the same is encouraging:
it indicates some consistency in the origin of the stationary vortices between runs. The lack of
amplitude repeatability, however, is problematic.

Though these results are mixed, the repeatability of the underlying flow can also be examined
using surface pressure sensors. As will be shown in the next few figures, the secondary instability
and traveling wave repeatability seems to be almost as strong as when using the RIM roughness. It
is ultimately unclear, then, to what extent these heat-transfer results actually indicate some issue
with the experiment. Nevertheless, until future experiments and computations can provide some
more insight, most of the conclusions that are drawn from the data in this chapter are necessarily
qualitative.

The traveling crossflow waves can be measured at around 45kHz using surface pressure
sensors. Kulites are much more suited to measurements at this low frequency than PCBs, so most
of the analysis of traveling crossflow will be from Kulite data. Figure 6.3 shows spectra from
Kulites 1 and 4 (both at around x = 330 mm) for two sets of repeat runs. Figure 6.3(a) shows data
from a low azimuthal angle, 8 = 90°, for two consecutive runs. In this case the spectra are almost
on top of one another, indicating a high degree of repeatability when the model is not reconfigured.
The short, narrow peaks at 225 kHz and 300 kHz are the resonances of each Kulite. Figure 6.3(b)

shows spectra from the same Kulites at a higher azimuthal angle (6 = 135°) for non-consecutive
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runs. The Sensor Frustum was rotated to several different azimuthal orientations between these
two runs. Here the repeatability is not as clear. For Kulite 4 (orange line), the traveling wave peaks
at 45 kHz and the shape of the spectra are similar, but the spectrum from Run 1718 is uniformly
lower amplitude than Run 1711. For Kulite 1 (blue line), there is an additional instability, visible as
a small bump in the spectra, at 100 kHz in Run 1718 which is not present in Run 1711. The reason
for these discrepancies is unclear, but could be tied to the whatever is driving variation in the
stationary vortex measurements. An alternative explanation is that the azimuthal angle was not
exactly the same during these two runs, and due to the presence of large stationary vortices the
traveling crossflow modes are highly localized in nature. This would also explain the excellent
repeatability at lower azimuthal angles: the crossflow vortices are much weaker around 90° than
135°. Unfortunately, these Kulite measurements were made without IR or TSP, as mentioned
in Chapter 5, so this explanation can not be confirmed. Note also that at this higher azimuthal
angle the sensor resonances appear much larger in the spectra due to the higher overall pressure

fluctuation levels.
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Figure 6.1. Azimuthal cross-sections of the heat flux from 15 runs at two different axial stations.
Each gray line is a slice from one run; the dark blue line is the mean for all the runs. The
upper sub-plot shows the standard deviation at each point as a percentage of the local mean.

Re, = 11.1x 10°m™.
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Figure 6.2. Comparison between the mean data from Entry 16 (Figure 6.1(b)) and data from after a
change in the model and camera position (refer to Figure 5.2 for the same comparison with the
RIM insert). The stationary vortices generated using the Sandblasted insert are evidently far
more sensitive to upstream conditions than those from the RIM insert.
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Figure 6.3. Repeatability of the traveling crossflow wave measurements from the Kulite sensors.
The origin of the discrepancies between runs 1711 and 1718 is unclear. The narrow peaks at
225 kHz and 300 kHz are the resonances of the sensors. Re,, = 11 x 10°m™".
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PCBs were also used to measure the traveling crossflow waves and a higher-frequency sec-
ondary instability. Figure 6.4 shows spectra from three PCBs for two non-consecutive runs at
nominally the same angle. The repeatability for the PCB measurements is excellent. The PCBs are
twice the diameter of the Kulites, so they are less sensitive to small uncertainties in azimuthal
location. This is further evidence that the Kulite repeatability issues in Figure 6.3 are rooted in the
uncertainty in azimuthal position, rather than some issue with the repeatability of the flow itself.

As before, it is important to understand the repeatability of the nonlinear mechanisms as well.
Figure 6.5 shows two plots of the bicoherence which correspond to the two PCB 18 spectra in Figure
6.4. The repeatability of the bicoherence is undeniably weaker than when using the RIM insert, but
it is still quite good. Though the maximum bicoherence differs by about 30 %, the regions of high
bicoherence are very similar. Interestingly, the bicoherence seems to show harmonic generation
from both the traveling crossflow wave (45 kHz) and the secondary instability (150 kHz), but also
interaction between these two frequencies as well as broad-spectrum interaction up to 400 kHz.
Interactions of such a wide variety were not observed when using the RIM insert, and will be
discussed in detail in Section 6.3.1.

The repeatability of the PCB measurements of the secondary instability was also examined
using the three repeatability pairs of PCBs, as discussed at length in Section 5.1.2. Figure 6.6 shows
four spectra from PCBs 13 and 21 (x = 335 mm). Recall that PCB 21 is offset from PCB 13 by 6°, so
for each azimuthal angle in the figure, the spectra are from two different runs. The spectra seems
to repeat quite well, except for resonance of PCB 21 at around 450 kHz, which is present at all
azimuthal angles. However, there were only 8 overlapping runs with the Sandblasted insert as
opposed to the 24 such runs with the RIM insert, so this analysis is not as definitive.

Figure 6.7 provides the pressure fluctuation amplitudes for the three repeatability pairs of PCBs
as a function of azimuthal angle. In this case the low-frequency (LF) band is the traveling wave
band, 25-75kHz. The high-frequency (HF) band contains the secondary instability, 80-250 kHz.
Here a constant band of frequencies was used to calculate the amplitude, unlike the axially and
azimuthally dependent band used for the RIM case. This is because the frequency of the secondary
instability in this case varies much less than when using the RIM insert, which will be illustrated in
Section 6.3. For the admittedly small region of overlap between the main and offset rays, 129°-136°,

the amplitudes in both bands show very good repeatability.
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6.2 Primary Instability Measurements
6.2.1 Stationary Vortices

Before using the Sandblasted insert, it was verified that the results looked similar to the
“natural” transition using the nominally smooth insert. Figure 6.8 shows a comparison between
heat flux images of the cone when using each insert. Recall that the nominally smooth insert
actually has some inherent waviness from the machining process (see Figure 2.11). The two flows
look qualitatively similar, except the Sandblasted case leads to higher heat flux—which is expected
given the higher level of roughness. This is in contrast to the surface heat flux when using the

RIM insert (Figure 5.8), which is much less uniform and has streaks at a lower wavenumber.
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Figure 6.8. Comparison between heat flux images using the nominally smooth insert and the
Sandblasted insert. Re., = 11 x 10° m~'. Smooth: Run 1416, Sandblast: Run 1709.
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Given the results of the previous section, it is not entirely clear how repeatable the streak
pattern is between runs—at least at higher azimuthal angles—so measurements of the streaks from
different runs must be analyzed with care. Figure 6.9(a) shows three heat-transfer images from
three separate runs stitched together. Very far upstream there is no apparent modulation of the
heat flux, indicating that the stationary vortices are too weak in this region to measure via IR
thermography. This is not entirely surprising given the very low RMS roughness, and is in contrast
to the RIM results. Farther downstream, streaks start to appear between 200 mm and 250 mm.
These streaks grow quite rapidly, and breakdown is visible for the most leeward streaks by the
end of the model. The wavenumber of the streaks is quite high: at 90° there are 10 visible streaks,
which gives an extrapolated wavenumber of 40 per circumference. Recall that the downstream
wavenumber using the RIM insert is roughly 20. At the edge between the middle and aft images,
there is a noticeable discontinuity in the streaks at high azimuthal angles. This discontinuity may
be the result of the aforementioned repeatability issues. Figure 6.9(b) shows the Stanton number
images. The maximum St is roughly the same as in the RIM case, about 1.25 x 10>, Unlike in
that case, however, the Stanton normalization does not seem to reduce the discontinuity between
images.

The heat flux perturbation is provided in Figure 6.9(c). The perturbation is the heat flux image
from Figure 6.9(a) band-pass filtered between 18 and 180 waves per circumference, to eliminate
the slow variations in the heat flux of the mean flow. The perturbation appears much more regular
than the RIM case, with most of the splitting, merging, and other irregularity confined downstream
near the lee ray. There do not appear to be any of the double peaks observed with the RIM insert.

The wavenumber spectrum of the heat flux images is provided in Figure 6.10. Recall that this
spectrum is created by taking the power spectral density of each azimuthal cross-section, and
converting the frequency from waves per degree to waves per circumference. The spectrum has
been normalized by its maximum. In agreement with the simple analysis above, the wavenumber
at the aft end of the cone is around 40, though there is also a peak at around 20. The lower
wavenumber indicates that there is some modulation of the amplitudes of the vortices, affecting
every other vortex; it could also indicate the presence of a subharmonic wavenumber. A down-
stream wavenumber of around 40 is close to earlier measurements by Ward [38] and Craig [3] on

a nominally smooth cone.
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The computed wavenumber along a particular streak for an upstream wavenumber of 220
is provided in Figure 6.10 as the green line (from Moyes et al. [19], Figure 4(b)). Having an
understanding of the change in the wavenumber is especially critical for controlling crossflow,
which may require subcritical wavenumbers (i.e. higher than the naturally most-amplified) at the
upstream location.

The peak heat flux was extracted along several of the streaks, which are shown in Figure
6.11(a), numbered from wind to lee. The Stanton number for a few of the streaks compared to the
computation is plotted in Figure 6.11(b). In this case, the growth of the vortices appears to be very

steady until breakdown.
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Figure 6.9. Surface heating caused by the stationary vortices. Re,, = 11 x 10° m™'. Images from
three runs, left to right: Run 1705, Run 1710, Run 1709.
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6.2.2 Traveling Vortices

The traveling crossflow vortices are readily apparent in the surface pressure fluctuations when
using the Sandblasted roughness. Therefore it is important to understand the behavior of the
traveling vortices on their own, to provide context for the following discussion of their nonlinear
interactions. To that end, the Kulites were placed at 90° from the wind ray to measure the wave
properties of traveling crossflow in a region minimally affected by the presence of the large
stationary vortices. Figure 6.12 shows the power spectra of the four Kulite sensors at this location,
as well as the coherence between all possible sensor pairings. The PSDs show very clear peaks
at around 45 kHz, consistent with past measurements of traveling crossflow on this geometry.
In addition, there is high coherence in this band between all the sensors. This is in contrast to
the results when using the RIM insert (Figure 5.16(b)), where there was only non-zero coherence
between Kulites 1 and 2.

The propagation angle and phase speed of the traveling vortices can be calculated using the
method described in Section 3.7.2. In this case, the angle is measured with respect to the coordinate
system shown in Figure 3.7, with a positive, acute angle indicating propagation downstream and
toward the lee ray. Figure 6.13 shows the calculated wave propagation angle and phase speed as
a function of frequency within the traveling crossflow band. Similar data from Ward [38] was
extracted from his Figure 6.5 and is plotted as the open circles. The Ward data and the properties
from the present experiment agree quite well. The phase speed of the traveling vortices are
between roughly 100ms ™' and 300 ms ™", or about 10-30 % of the edge velocity. The propagation
angles are negative and acute, indicating the constant-phase fronts of the traveling vortices

propagate downstream from lee to wind, consistent with previous experiments and computations.
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Figure 6.12. Spectral quantities of the Kulite measurements at a low azimuthal angle (6 = 90°,
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Figure 6.13. Wave properties for traveling crossflow at 90° and Re,, = 11 x 10°m™". Runs 1714
and 1715 were performed consecutively, with no rotation of the Sensor Frustum. The Ward
data is from Reference [38], and is at § = 90° and Re_, = 11.5 x 10°m™".
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The same test was repeated at 6 = 142°. At this higher azimuthal angle there are strong
stationary crossflow vortices, so the Kulite measurements might lend some insight into any
interactions between the stationary and traveling crossflow modes. Figure 6.14 shows the resulting
power spectra and coherences. The traveling crossflow wave is still obvious in the spectrum at
around 50 kHz, though the frequency at K1 and K2 is slightly higher than the frequency measured
by K4 and K5 (which are 2.75° offset windward). This divergence in frequency is likely due to the
presence of the stationary waves.

In addition, a second high-frequency instability has appeared at 125kHz. Note that the
estimated frequency of the second mode in this case is f;; ~ 200 kHz, so the peak at 125 kHz could
be the second mode, but such a frequency ratio is on the low end of the range measured with
the RIM insert (see Figure 5.21). It is also possible that this is a type-I secondary instability. The
coherence between each sensor pairing shows the modulation of the traveling crossflow by the
stationary vortices. Axial pairs K1/K2 and K3/K4 have broadband coherence, whereas other pairs
only have limited coherence at the peak frequencies of the two modes.

The wave properties of the two instabilities were calculated as before. Figure 6.15 shows the
propagation angle and phase speed of the two modes in regions where the coherence is greater
than 0.4. The dashed lines are the angle and speed from the data at & = 90°, in Figure 6.13, above.
The traveling wave propagation angle at the higher azimuthal angle is oriented slightly more
windward (more negative) than at lower azimuthal angles, but they are very close. The phase
speed of traveling crossflow at the two azimuthal locations is almost identical. The high-frequency
instability has a much shallower propagation angle, around -30°, and is much faster, traveling
at around 80-90 % of the edge velocity. Figure 6.16 illustrates the propagation paths of the two
high-frequency instabilities relative to the path of the stationary vortices. The St image of the
cone has been unrolled so that the image is in the same arclength reference frame used for the
calculation of the traveling wave properties. Traveling crossflow moves almost orthogonally to
the stationary vortex, whereas the higher frequency mode is slightly less inclined.

It is interesting to note that at low speeds the type-I secondary instability manifests as small
vortices inclined with respect to the stationary vortex. See for example the PIV data from Serpieri
and Kotsonis [111] and the DNS from Wassermann and Kloker [112]. It is possible, however, that

there is an oblique second mode in this region, and so this is not alone definitive evidence that the
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peak at 125kHz is in fact a shear-layer secondary instability as opposed to a modulated second

mode.
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Figure 6.14. Spectral quantities of the Kulite measurements at a high azimuthal angle (6 = 142,
x = 330 mm, Re,, = 11 x 10°m™). There are two apparent modes of instability. The activity at
around 50 kHz is traveling crossflow. The peak at 125 kHz may be a type-I secondary instability.
Run 1713.
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6.3 Secondary Instability Measurements

The secondary instabilities can be analyzed in the same manner as before, with one important
difference. When using the Sandblasted insert the traveling crossflow waves are a distinct compo-
nent of the surface pressure fluctuations, and there appears to be only one mode of secondary
instability (as opposed to the low and high-frequency modes discussed in the previous chapter).
Thus while there are still two frequency bands of interest, they represent a fundamentally different
behavior, which will be further discussed in Chapter 7.

When using the Sandblasted insert the two modes of instability appear at roughly the same
frequency regardless of the position of the sensor. This simplifies the analysis, allowing the
use of a single, fixed frequency band in which to calculate the amplitude if the various modes.
Traveling crossflow, as illustrated in the previous section, occupies the band between 25 kHz and
75 kHz. The secondary instability was usually within the range 80-250 kHz. Note that Craig and
Saric [18] measured a type-I secondary instability on the same geometry in the 80-130 kHz band
(their hotwire had a bandwidth of approximately 180 kHz). Figure 6.17 shows contour plots of the
pressure fluctuation amplitudes within each of these bands.

The traveling crossflow amplitudes, in Figure 6.17(a), appear to be weakly modulated by the
stationary vortices. Note that the PCBs often perform poorly at such a low frequency (see for
instance the discussion in Ward [38]). To further complicate matters, as the flow transitions the
amplitude at low frequencies rises due to factors other than the traveling crossflow instability.
Thus while the apparent organization of the traveling crossflow is interesting, it is not providing a
clear picture.

Measurements of the secondary instability, however, are much more reliable. Figure 6.17(b)
shows two lobes of growth in this band, reminiscent of the low and high-frequency instabilities
measured in Chapter 5. As with those measurements, the branches of traveling crossflow and
secondary instability grow along trajectories roughly aligned with the stationary vortices. Figure
6.18 shows contours of the pressure fluctuation amplitudes for each instability superimposed on
an IR image. Given the issues with repeatability after a model change as evidenced in Figure
6.2, the IR data in Figure 6.18 was taken concurrently with the PCB data (the heat-flux data in

Section 6.2.1 is from after the model change). The IR images from all 15 runs with the PCBs were
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averaged to produce the heat-transfer image in the figure. Both the traveling crossflow and the
secondary instability grow generally along the same paths as the streaks, though the lobes of
traveling wave growth seem to be inclined slightly with respect to the stationary waves. The
secondary instability seems to be confined within the cold streaks (i.e. the upwelling and shoulder
of the stationary vortex), and there is no high-frequency mode under the hot streak.

To understand the growth of the two instabilities in more detail, the power spectra can be
examined along the lobes of growth of each mode. Figure 6.19 shows the individual sensor
locations from which the power spectra were extracted. Every azimuthal angle is a different run,
so these measurements are the composite of six separate runs.

The spectra from the plotted measurement points are provided in Figure 6.20. The traveling
crossflow increases in power slightly along the streamline, as shown in Figure 6.20(a). However,
the growth at higher frequencies is much more rapid. The barest hint of a peak can be observed
at around 275 kHz for the lowest Reynolds numbers, but at larger Re the growth becomes quite
broadband. The origin of this high-frequency activity is uncertain, though the 275 kHz peak at
Re = 3.58 x 10° coincides with the estimated second-mode frequency.

The growth along the secondary instability path is more pronounced. Figure 6.20(b) shows
a distinct peak forming at around 150 kHz and growing downstream. In addition, the traveling
crossflow also grows, and there is broadband growth similar to Figure 6.20(a). It is particularly
interesting that the secondary instability peak seems to increase in frequency by at least 20 kHz
as the mode grows downstream. This is further illustrated in Fig. 6.21 by plotting the spectra
against the Strouhal number f/ f..,, where f_._ is the CFD estimate of the second-mode frequency
(Eq. 3.6); the estimate takes into account the growth of the boundary layer around the cone. With
the RIM insert, the peak frequency of the secondary instabilities is inversely proportional to the
boundary-layer thickness as the instabilities grow downstream (Fig. 6.21(a)), consistent with the
behavior of the second mode. When using the Sandblasted insert, however, the peak frequency
increases from about 0.5 f,, to almost 0.8 /... This is atypical for a second-mode type instability,
but may be consistent with computations of the type-I secondary instability [42], which exhibit a
higher type-I frequency at higher azimuthal angles (where the boundary layer is thicker).

The pressure fluctuation amplitudes were also calculated at discrete measurement locations

following the streaks. Figure 6.22 shows these amplitudes compared to the peak streak heating.
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As numbered in Figure 6.11(a), Vortex 10 follows the hot streak directly leeward of the traveling
wave measurement path. Vortex 9 follows the streak immediately windward of the secondary
instability path. Note that the PCB data is from Entry 16 while vortex amplitude was taken in
Entry 17, after the model change, so the comparison should be considered qualitative.

In general, the growth of both the primary and secondary instabilities appears to be monotonic,
in contrast to the peaky behavior in Chapter 5. The spectra appear to be nearly turbulent at
the highest Re and the Shannon entropy H at the last measurement station is around 95 %. It is
interesting to note that the secondary instability grows quite rapidly, increasing in amplitude by a
factor of 10 over the measurement region. In contrast, the traveling crossflow vortices grow only
by a factor of 2 in the same region. In both cases, the stationary crossflow grows by about the
same amount, a factor of 4. This “explosive” growth of the secondary instability suggests that
an e”-type correlation based on the secondary-instability amplitude is feasible, following the

low-speed approach of Malik et al. [22].
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6.3.1 Nonlinear Interactions with Traveling Crossflow

The bicoherence reveals several nonlinear interactions between the measured instabilities as
the flow breaks down. Figure 6.23 illustrates nonlinear harmonic generation within the traveling
crossflow vortices. The magnitude of the bicoherence is only 0.26, which is not large, but it is
statistically significant and so implies that the traveling crossflow has grown to large enough
amplitudes to become nonlinear. The first harmonic of the traveling vortices would be at 100 kHz,
but any activity at this frequency is obscured by the broadband roll-off of the traveling vortices at
50 kHz.

The traveling vortices also interact with the high-frequency instabilities. Figure 6.24 shows
broadband harmonic generation within the traveling crossflow band, as well as low levels of
interaction between the traveling crossflow vortices and a high frequency instability at 300 kHz.
It is unclear whether this peak is the second mode or a type-I secondary instability. The filled
circle at 200 kHz in the PSD is the CFD-estimate of the second-mode frequency.

The secondary instabilities also reach nonlinear stages of growth. Figure 6.25 shows low
levels of harmonic generation at the secondary instability around 150 kHz. As with the traveling
crossflow, no harmonic at 300 kHz is obvious. But computations have shown that the type-I
secondary instability has a very broad spectrum (nearly 600 kHz) [42], so it is not obvious that a
distinct harmonic would ever be visible. The peak at 300 kHz in Figure 6.26 may be a harmonic
of the secondary instability at 150 kHz, but it is difficult to say for certain as there is a known
PCB sub-resonance near this frequency. The bicoherence for that case shows mostly harmonic
generation at the secondary instability frequency, but also low levels of interaction between the
traveling crossflow at 50 kHz and the two other instabilities.

As previously discussed, the PCBs do not always perform well at the low frequencies where
the traveling crossflow grows. The Kulite measurements can help to corroborate the previous
analysis. Figure 6.27 shows power spectra from Kulites 1 and 2 compared to similarly situated
PCBs. Recall that the Kulite and PCB data were taken with different models, so the repeatability
of the stationary vortices is tenuous. However, the spectra show very similar patterns. There are

two distinct peaks: traveling crossflow at 50 kHz and the secondary instability at 125 kHz.
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The bicoherence of the Kulite data corroborates that of the PCB data. There are four distinct
regions of interaction, signified by moderate levels of bicoherence. There is harmonic generation
within both instabilities, interaction between the two, and what appears to be interaction between

the secondary instability and a higher-frequency mode at 200 kHz.
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Figure 6.23. Bicoherence showing traveling crossflow wave harmonic generation. Run 1675.

6.4 Summary of Measurements with Distributed Roughness

The success and repeatability of the Sandblasted insert demonstrates the effectiveness of
sandblasting in creating normally-distributed roughness at an RMS level sufficient to cause
transition at the downstream end of the cone and to not be overpowered by other excressences on

the model. The normally-distributed roughness enables the growth of the stationary vortices at
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Figure 6.24. Bicoherence showing traveling crossflow harmonic generation and interaction with a
high-frequency instability. Run 1680.

the naturally most-amplified wavenumber. This is in contrast to the RIM insert which forces a
specific, “non-optimal” wavenumber.

The data in this chapter show that the difference in forcing leads to different nonlinear
breakdown mechanisms. When using the Sandblasted insert, the stationary vortices grow in
a more uniform way and traveling crossflow is distinct in the pressure fluctuation spectra. In
further contrast to the RIM data—and to conventional wisdom—even in quiet flow the traveling
crossflow vortices reach large enough amplitudes (about 10 % of the edge pressure) to begin

growing nonlinearly and to interact with the secondary instabilities of the stationary vortices.
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7. SUMMARY AND CONCLUSIONS

This thesis describes an experimental campaign on a 7° half-angle cone at 6° angle of attack in
pursuit of a mechanism-based prediction method for crossflow-dominated transition. At low
speeds, a semi-empirical ¢ method based on the amplitude of crossflow secondary instabilities
was more successful in predicting transition than a typical method based on the primary instability
amplitudes, at least for one well-studied case. The goal of this work is to determine if such a
method is feasible at hypersonic speeds as well.

The semi-empirical nature of the " method requires experiments with well-controlled and
well-understood forcing of the stationary crossflow vortices. The Rod Insertion Method (RIM)
roughness was adapted for this purpose from its original use on the Purdue flared cone. The
discrete RIM roughness elements must be tall enough to dominate the generation of the stationary
crossflow waves, but not so tall as to directly trip the flow. By making small rotations of the
roughness elements, it was demonstrated that the elements are primarily responsible for the
downstream pattern of heating associated with the stationary vortices. Thus the RIM roughness
meets the first criterion, i.e. that the elements must be tall enough. A second experiment was
performed using a range of different roughness heights to determine at which height the roughness
directly trips the boundary layer. This critical height was not conclusively determined, but the
selected roughness height was almost 3.5 times smaller than the first height at which tripping
was observed.

Highly-detailed surface measurements were collected of the nonlinear breakdown when
using this controlled roughness. These data provide information for validation of computations.
Furthermore, use of the RIM insert revealed new insights into the nature of crossflow transition
when using discrete roughness. Two modes of large surface pressure fluctuations were observed
to grow nonlinearly before transition. The frequency of these modes appeared highly correlated
with the modulation in the surface heat flux due to the large stationary crossflow vortices. In

addition, there was no evidence of the presence of traveling crossflow waves in the surface pressure
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fluctuations when using the RIM insert. Another interesting feature of the flow is the appearance
of streak merging, qualitatively similar to low-speed computations of roughness-induced vortices
in a 3D boundary layer. This streak merging seems to be coupled with the growth of the secondary
instability, and so opens the door for further investigation.

The data collected when using the Sandblasted insert illustrates a fundamentally different
nonlinear breakdown mechanism. The pressure fluctuation spectra show very clear traveling
crossflow activity at low frequencies, and they reach large amplitudes on the order of 10 % of
the edge pressure. The traveling crossflow appears to be weakly nonlinear near breakdown. In
addition, the spectra look quite different from those in Chapter 5: there is usually no distinct
high-frequency peak, and the peak frequency of the instabilities does not seem to be coupled
with the local boundary-layer thickness. It is believed that the two instabilities present in the
spectra of Chapter 6 are traveling crossflow and the type-I secondary instability of the stationary
crossflow vortices. The low-frequency peak at around 45 kHz matches previous measurements
and computations of traveling crossflow’s frequency and phase velocity.

The fundamental goal of this research effort was to develop a mechanism-based transition
prediction method using the secondary instability amplitudes, as was shown to work well by Malik,
et al. [22] for one case at subsonic speeds. The first step towards this goal is to develop a controlled
roughness which can repeatably induce strong stationary crossflow vortices without tripping
the flow. The RIM roughness was shown to serve this purpose well. Unfortunately, the path to
a prediction method is not as straight-forward as was outlined by Malik, et al. The nonlinear
breakdown mechanisms at hypersonic speeds are highly sensitive to the forcing roughness. Thus
even if a useful prediction method were created from the data with the controlled RIM insert, a
different method may be required for cases more like the Sandblasted insert with low levels of
distributed roughness. Furthermore, the nonlinear breakdown mechanisms may also be sensitive
to the geometry; the second mode, for example, does not grow significantly in the crossflow-
dominated region of an elliptic cone.

Thus the main conclusion from the present work is that the goal needs to change. Before
attempting to create a transition prediction method, the underlying physics of the nonlinear
breakdown must be better understood. What causes the change in breakdown mechanisms?

How important are these differences? How do flight-like environments affect which nonlinear
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breakdown mechanism is most important? Ultimately the purpose of this research is to provide a
useful engineering tool to vehicle designers. But for such a tool to be useful, it is important to

establish when and how it can be applied.

7.1 Open Questions and Future Work

The experiments described in this work are far from complete. There are several avenues of
exploration that are left for future researchers. The following is a list of important open questions

that merit further study.

1. Why does the transition mechanism change between the two roughness cases? Is it the effect of
roughness type (discrete or distributed) or roughness amplitude?
Ideally one would also test a RIM insert that forces the naturally most-amplified wavenumber
(about 220) and vary the height to determine if this is height or wavenumber dependent (or
potentially both). At present this seems infeasible, though it would be good to develop new
types of roughness for which such a high wavenumber might be possible. A computational

study would help to shed light on the matter.

2. What is happening away from the surface during breakdown?
Measurements with the FLDI or a micro-pitot rig could help to understand the nature of
the different nonlinear mechanisms presented in this work, though their spatial resolution

would be limited.

3. How do the steps at the model component interfaces affect the growth and breakdown of the
measured instabilities?
The effect of a small step is poorly understood. It would be worthwhile to produce several
roughness inserts with slightly different aft diameters, so as to parametrically study the

effect of changing the step on the nonlinear breakdown.

4. What is really driving the process of streak merging when using the RIM insert, and can it be
used to define a transition-prediction criterion?

The preliminary results in this work suggest that there is a connection between the streak
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merging and the nonlinear breakdown via second-mode waves. Different shapes of rough-
ness (cylinder, half-cylinder, diamond, square, etc.) should be investigated to better under-

stand the nature of the roughness-induced stationary vortices.

. Why do the traveling crossflow waves appear only rarely in the spectra when using the RIM
insert? Are they present but obscured, or are they suppressed completely by the large stationary
vortices?

The role of traveling crossflow in the nonlinear breakdown when using the RIM insert is not
clear. Off-surface measurements could help to better understand their behavior, especially
with respect to interactions with secondary instabilities which are localized away from the

wall.

. How does the freestream noise level affect transition when using RIM roughness?

Some results from the Sandia Hypersonic Wind Tunnel [10] suggest that it is possible
to induce large stationary crossflow vortices in a noisy environment by using the RIM
roughness. If the resulting nonlinear breakdown mechanisms are similar, it could open up

the study of crossflow-dominated transition in conventional wind tunnels.

. Is the traveling crossflow instability significant under noisy flow when using a distributed
roughness?

It is unclear whether traveling crossflow is present in noisy flow (see References [5, 10, 53]).
To use data from conventional wind tunnels in the search for a mechanism-based prediction
method for crossflow, it is imperative that the behavior of traveling crossflow in these

tunnels is better understood.
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APPENDICES



A. SELECTED RUN CONDITIONS

Table A.1. Entry 9.

1

Run pg, psia T, °C Rey,x10°m™ Roughness Rough. Offset, deg
936 126.2 419.4 9.8 RIM7x-5-22-18 0
Table A.2. Entry 13.
Run p,, psia Tj, °C Re,, x10°m™" Roughness Rough. Offset, deg
1309 122.5 414.5 9.7 RIM12x-16-22-9P 15
1310 1403 417.1 11 RIM12x-16-22-9P 15
1311 132 418.1 10.3 RIM12x-16-22-9P 15
1321 139.8 416.1 11 RIM12x-8-22-9P 0
1326 1404 415 11.1 RIM12x-2-22-9 15
1329 1413 416.4 11.1 RIM12x-8-22-9P 15
1331 139 412.6 11.1 RIM12x-6-22-9P 15
1332 140.2 414.7 11.1 RIM12x-16-22-9P 15
1333 138.5 411.6 11.1 RIM12x-12-22-9P 15
1337 1394  413.2 11.1 RIM12x-10-22-9P 15
1338 139.8 413.9 11.1 RIM12x-14-22-9P 15
1339 1403 414.7 11.1 RIM12x-25-22-9P 15
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Table A.3. Entry 14.

Run p,, psia Ty, °C Re,, %x10® m™! Roughness Rough. Offset, deg
1401 144.1 422.6 11 RIM12x-8-22-9P 0
1402 141.6 419.2 11 RIM12x-8-22-9P 0
1403 140.5 417.4 11 RIM12x-8-22-9P 0
1404 142.2 420.3 11 RIM12x-8-22-9P 3
1405 142.2 420.4 11 RIM12x-8-22-9P 3
1406 141.2 418.6 11 RIM12x-8-22-9P 3
1407 142.6 418.7 11.1 RIM12x-8-22-9P 0
1408 141.8 417.4 11.1 RIM12x-5-22-9 0
1408 134.6 411.2 10.8 RIM12x-5-22-9 0
1410 140.9 415.8 11.1 RIM12x-10-22-9P 0
1415 135.1 412.2 10.8 smooth 0
1416 1409  418.1 11 smooth 0
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Table A.4.: Entry 16.

191

Run p,, psia Ty, °C Re,, x10°m™ Azim. Angle, deg Roughness Rough. Offset, deg
1601 129.2 397.1 11 180 RIM12x-5-22-9 0
1602  134.7 407 11 180 RIM12x-5-22-9 0
1603 137.5 412 11 180 RIM12x-5-22-9 0
1604 1384 413.6 11 180 RIM12x-5-22-9 3
1605  138.2 413.3 11 180 RIM12x-5-22-9 3
1606 139 414.6 11 180 RIM12x-5-22-9

1612 136.7 422.2 10.5 124 RIM12x-5-22-9 0
1613  135.3 419.6 10.5 134 RIM12x-5-22-9 0
1614  135.7 420.3 10.5 130 RIM12x-5-22-9 0
1615 1349 418.7 10.5 140 RIM12x-5-22-9 0
1616  135.2 419.3 10.5 132 RIM12x-5-22-9 0
1617  135.3 419.6 10.5 128 RIM12x-5-22-9 0
1618  135.6 420.1 10.5 120 RIM12x-5-22-9 0
1619 135.6 420 10.5 122 RIM12x-5-22-9 0
1620 1343 417.6 10.5 126 RIM12x-5-22-9 0
1621 134.7 418.4 10.5 144 RIM12x-5-22-9 0
1622 134.8 418.6 10.5 136 RIM12x-5-22-9 0
1623  134.5 418.1 10.5 138 RIM12x-5-22-9 0
1624  135.2 419.3 10.5 116 RIM12x-5-22-9 0
1625  134.7 418.5 10.5 118 RIM12x-5-22-9 0
1626 135.2 419.4 10.5 114 RIM12x-5-22-9 0
1627  135.2 419.3 10.5 125 RIM12x-5-22-9 0
1628  136.5 420.8 10.5 129 RIM12x-5-22-9 0
1629  135.6 420 10.5 129 RIM12x-5-22-9 0
1630  134.8 418.5 10.5 131 RIM12x-5-22-9 0
1631 135.4 419.6 10.5 121 RIM12x-5-22-9 0



Table A.4 continued from previous page

T,, °C Re, x10°m™’

192

Run p,, psia Azim. Angle, deg Roughness Rough. Offset, deg
1632  135.2 419.3 10.5 112 RIM12x-5-22-9 0
1633 135.4 419.7 10.5 112 RIM12x-5-22-9 0
1634  135.2 4194 10.5 127 RIM12x-5-22-9 0
1635 135.3 419.5 10.5 137 RIM12x-5-22-9 0
1636 135 419.1 10.5 117 RIM12x-5-22-9 0
1637  136.2 421.1 10.5 118 RIM12x-5-22-9 0
1638  136.2 421.2 10.5 118 RIM12x-5-22-9 0
1639  135.8 420.5 10.5 119 RIM12x-5-22-9 0
1640 135.4 419.8 10.5 135 RIM12x-5-22-9 0
1641 134.7 418.5 10.5 123 RIM12x-5-22-9 0
1642  134.6 418.2 10.5 115 RIM12x-5-22-9 0
1643  135.2 419.3 10.5 113 RIM12x-5-22-9 0
1644  135.8 420.4 10.5 133 RIM12x-5-22-9 0
1645  135.6 420 10.5 123 RIM12x-5-22-9 0
1646 1314 412.3 10.5 140 RIM12x-5-22-9 3
1647 134 417.1 10.5 120 RIM12x-5-22-9 3
1648  136.5 421.8 10.5 112 RIM12x-5-22-9 3
1649  136.6 421.9 10.5 114 RIM12x-5-22-9 3
1650  135.7 420.3 10.5 116 RIM12x-5-22-9 3
1651 135.4 419.7 10.5 130 RIM12x-5-22-9 3
1652 1354 419.7 10.5 134 RIM12x-5-22-9 3
1653  135.2 419.3 10.5 118 RIM12x-5-22-9 3
1654 134 4171 10.5 128 RIM12x-5-22-9 3
1655 1343 417.7 10.5 126 RIM12x-5-22-9 3
1656  134.8 418.5 10.5 132 RIM12x-5-22-9 3
1657  133.9 416.9 10.5 124 RIM12x-5-22-9 3
1658 135 419 10.5 122 RIM12x-5-22-9 3



Table A.4 continued from previous page

T,, °C Re, x10°m™’

193

Run p,, psia Azim. Angle, deg Roughness Rough. Offset, deg
1659  136.7 421.1 10.5 122 RIM12x-5-22-9 0
1660 135.5 419.9 10.5 114 RIM12x-5-22-9 0
1661 135.1 419.1 10.5 132 RIM12x-5-22-9 0
1666  143.8 420.8 11.1 134 RIM-Sandblast-MKII 15
1667  143.5 420.3 11.1 138 RIM-Sandblast-MKII 15
1668 1434 420.1 11.1 136 RIM-Sandblast-MKkII 15
1669 1424 418.4 11.1 130 RIM-Sandblast-MKII 15
1670 1429 419.3 11.1 140 RIM-Sandblast-MKII 15
1671 143.1 419.6 11.1 132 RIM-Sandblast-MKkII 15
1672 143.4 420.2 11.1 132 RIM-Sandblast-MKII 15
1673  143.5 420.4 11.1 135 RIM-Sandblast-MKII 15
1674  143.8 420.8 11.1 139 RIM-Sandblast-MKII 15
1675  143.8 420.9 11.1 131 RIM-Sandblast-MKkII 15
1676  143.2 419.9 11.1 133 RIM-Sandblast-MKII 15
1677  143.5 420.3 11.1 137 RIM-Sandblast-MKII 15
1678 143.3 420 11.1 129 RIM-Sandblast-MKII 15
1679  143.5 420.3 11.1 141 RIM-Sandblast-MKII 15
1680 144 421.1 11.1 142 RIM-Sandblast-MKII 15
1681 143.6 420.6 11.1 137 RIM-Sandblast-MKII 15
Table A.5.: Entry 17.

Run p,, psia Ty, °C Re,, x10°m™ Azim. Angle, deg Roughness Rough. Offset, deg
1701 125.8 401 10.5 - RIM12x-5-22-9 0
1703 136 420.8 10.5 = RIM12x-5-22-9 0
1704 136 420.9 10.5 - RIM12x-5-22-9 3.6
1705 141.4 419 11 = RIM-Sandblast-MKII 0
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Run p,psia Ty, °C Rey, x10°m™  Azim. Angle, deg Roughness Rough. Offset, deg
1709 141.6  419.2 11 - RIM-Sandblast-MKII 0
1710 142.2 420.3 11 = RIM-Sandblast-MKII 0
1713 141.5 419 11 142 RIM-Sandblast-MKII 0
1714  141.7 419.5 11 90 RIM-Sandblast-MKII 0
1715 1427 4211 11 90 RIM-Sandblast-MKII 0
1719 1354 418.6 10.5 133 RIM12x-5-22-9 0
1720 135 419 10.5 129 RIM12x-5-22-9 0
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B. PCB REPEATABILITY SPECTRA

The following figures show the pressure fluctuation PSDs from the PCB repeatability pairs for every angle

in the Chapter 5 data set, at Re., = 10.5 X 10° m™. See Section 5.1.2 for more details.
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Figure B.1. PCBs 13 & 21, set 1.
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C. SUPPLEMENTARY MEASUREMENTS USING SMALL DISCRETE
ROUGHNESS

Earlier measurements by the author suggest that there may be a continuum of dominant transition
mechanisms, from stationary and traveling crossflow to the modulated second mode. As described
more fully in References [21,73], when using a dimpled Torlon roughness with a height of 38 um
both the traveling crossflow waves and the modulated second mode are prominent in the pressure
fluctuation spectra. Figure C.1 shows this data (reproduced from Figures 5(a) and 7(a) in Edelman
and Schneider [21]). There is an obvious secondary instability centered around 290 kHz, as well as
traveling crossflow at 45 kHz. Interestingly, the bicoherence shows harmonic generation within
both of these instabilities, as well as some limited interaction between them.

Figure C.2 shows similar data from a run using a RIM insert with elements nominally 51 pm
tall. In this case there is a noticeable traveling crossflow instability at 45kHz, but there is no
significant bicoherence at this peak. Instead, the second mode peak at 295 kHz appears to be

dominating the nonlinear breakdown.
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D. THEORY OF THE IR PROCESSING TECHNIQUES

D.1 Direct Method

The direct method is—as its name implies—straight-forward and easy to implement. Both the
direct and inverse methods are based heavily on Zaccara [68] and Cerasuolo [67], with minor
differences in implementation to optimize the code for a faster run time. We start by defining the

heat transfer problem as

T, = aT,,, (D.1a)
T(x,0) = T,, (D.1b)
T(0,1) = T(2), (D.1c)
T(o0,1) = T,. (D.1d)

Note that this problem implicitly uses the semi-infinite assumption in the last boundary condition.
However, numerically this is implemented as T(L, ) = T;,, where L is the last mesh point, so really
the boundary condition is isothermal. However, for large L, the isothermal and semi-infinite
solutions should converge to the same result.

The Purdue 1D direct method uses a finite difference scheme, discretizing the problem as

T T.(n+1) _ T(n)

T Y (D.22)
2(n+1) 2(n)

WTz95E +(1-60)5°T; (D.25)

9x? Ax? ’ )

6T, = T,y = 2T; + Ty, (D.2c)

where 7 is the time index, i is the mesh index, and 6 € [0, 1] is a parameter which controls the
degree to which the method is explicit or implicit. For most purposes, a purely implicit method

0 = 1is a good choice. However, changing 6 changes the numerical order and dissipation of the
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method, so its ‘optimal’ value may be something other than 1. Determining the best choice of 6 is

left to the end user.

To implement the method, the finite differences are turned into a matrix equation, using

_cht
Ax?
-2 1 0
1 -2 1 0
D =
0 1 -2 1
0 1

The heat transfer problem is thus reduced to,

Fn+1) _ ﬁng(nH) _ 7 B(1 - H)Df(n) +b

(D.3a)

(D.3b)

(D.4)

Here the vector b contains the boundary conditions. The method marches from the initial condition

forward in time by steps of At, solving for T*D a5

T+ — AT1gT™ 4 A1
A=1-p6D,

B=1+p(1-6)D,

where I is the identity matrix.

The boundary conditions in the finite difference form are

Tl = Ts(t)’

TL = To.

(D.5a)
(D.5b)

(D.5¢)

(D.6a)

(D.6b)



The boundary conditions can be enforced by letting

Dy; =0,
D;; =0,
By, =0,
By, =0,

By doing so, Equation D.5a becomes

1
T = T(1 + Ar),

1
" =T,

212

(D.7a)
(D.7b)
(D.7¢)
(D.7d)
(D.7¢)

(D.7f)

(D.8a)

(D.8b)

The direct method can be implemented easily in Matlab directly from Equation D.5a. However,

the method can be optimized by a few tricks. First, the temperature vector T can be recast as the

temperature difference vector ¢ = T - T;,. This simplifies the boundary and initial conditions,

(Z(t =0) = 0 and q?(x = L) = 0. Second, the transition matrix T = A™'B can be pre-calculated

before marching through time, as none of the parameters in T are dependent on time. One can

also reduce computational effort by pre-calculating A7'D, even though the boundary condition

vector does change with each iteration. The way to do this is to note that

Al = kA™!

(= - =
(= - =

for some scalar x. Thus the vector

, (D.9)
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/:A—l

N

(D.10)

(= - =)

can be pre-computed, and multiplied by the scalar ¢, = T, (¢t + At) — T, for each step. This leads to

the numerical implementation,
$D = Tg™ + A'p (1 + Ar). (D.11)

Isothermal Inner Boundary, 7(L) # T,(0):

Suppose that the initial condition 7;(x) # const. The code will force 7,(0) = 0, but this leaves
$o(L) = Ty(L) — T;(0). It is fairly simple to add this condition to the finite difference equation, by

letting

0
0
c=1 0o |, (D.12)
|6o(L)
and adding A™'€ to the right hand side of Equation D.11,
" = TE™ + At + A1) + Al (D.13)

’

—A-lz
inner = A" € can be computed before

Because this case is isothermal, ¢,(L) is constant, and thus A

the time-marching.
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Adiabatic Inner Boundary:

If an adiabatic back-face condition is more realistic than an isothermal one, this can also be

implemented. The discretization for the heat flux at the last mesh point, i = L, becomes

B 2Ax = YGinner = 0, O(sz) (D'14)
which leads to a modification of the A matrix,
AL,L = _3, (D15a)
Arr1=4 (D.15b)
AL,L—Z = —1. (D.15C)

The calculation can then proceed as before using Equation D.11. Note that with the new form of

’

A, the inner boundary condition term gmn or

sets the level of the heat flux as this boundary. For
e

an adiabatic boundary, A = 0, but it is possible to set a constant non-zero heat flux at this

inner

boundary as well.

D.2 Indirect Method

The direct method described above solves the so-called ‘direct’ heat transfer problem, i.e. going
from a measured surface temperature to a calculated surface heat flux. One of the problems with
the direct method is that a noisy temperature input becomes a noisy heat flux output. The indirect
method can help to alleviate this issue without directly filtering the data. An indirect method uses
the results from the ‘inverse’ problem: given a surface heat flux, what is the surface temperature?

The basic concept of the indirect method is to find the heat flux which minimizes the squared
error between the measured surface temperature and the calculated surface temperature from the
guessed heat flux. Because this nonlinear optimization is computationally expensive, the Purdue
approach (from Zaccara and Cerasuolo, [67,68]) uses the direct method to calculate heat flux up
to a time of interest, then uses the indirect method to proceed. The direct method is the same as

that described in the previous section, so it will not be discussed further here.
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The method of Zaccara and Cerasuolo optimizes for the the convective heat transfer coefficient
h, from the relation

qS = h(TW - TLIW) + O-E(T:il/ - T;lurr)' (D16)

However, the convective coeflicient is not of immediate importance to most researchers in the
BAM6QT and the equations become much trickier, so optimizing for the heat flux ¢, itself is
what will be examined first. Note that the optimized g, will include a radiation component which
has been separately considered in the Italian students’ formulation. However, convective heat
transfer dominates in the conditions of the BAM6QT, so the radiative component can be considered
negligible. The original method using 4 will be discussed after.

The indirect method starts by guessing a surface heat flux, ;. The optimization method is
nonlinear, so it is critical that the initial guess is close to the correct solution, or the optimization
could find a local minimum instead of a global one. A two-step method, which calculates a guess
for ¢, is discussed in Section D.4. For many purposes, however, the guess can be the average
heat flux that one expects in these conditions, provided by a Schmidt-Boelter gauge or experience.
However, it is vital that the results be checked appropriately when using this method, to ensure
that it has indeed found the global minimum.

Using the initial guess (which is really a time series, §,[n]), the method calculates the surface
temperature via the same matrix equation provided in Equation D.11. However, the form of A is

slightly different to accommodate the new boundary condition:

3k
Aj{=—, D.17
1,1 2Ax ( a)
2k
A, = —, D.17b
2= (D17b)
k
A =— D.1
1,3 zAx’ ( 7C)
b, = —4,. (D.17d)

This new discretization is derived in the same manner as for the adiabatic inner boundary, shown
in Equation D.14. Note that the vector A’ can be pre-calculated and used as in the direct method,
except this time multiplying by ¢,(¢ + At) for each iteration instead of the experimental surface

temperature.
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Once the surface temperatures from the inverse solution have been calculated for the time
region of interest, they are compared to the experimental temperatures. The error metric is the

2 . .. . . .
sum of the squared error, }(7; — T, xperiment)” - The nonlinear optimization routine fmincon

nverse
in Matlab is used to minimize this squared error, subject to a minimum and maximum g,. The
output from the optimization routine is the ‘best’ guess for the surface heat flux which yields the

measured surface temperatures.

Optimization for Convective Coefficient /:

If you would like to maintain the separation between convection and radiation, or if you are
more interested in the convective coefficient than the heat flux itself, this can be implemented in
as follows (generally from Refs. [67,68], with optimization improvements).

The full boundary condition at the surface is

T
I WT,-T,,)+oeT; -T;

. D.18
ax ¥=0 surr) ( )

Unfortunately this equation is highly-nonlinear (the radiative component has 7;), so it must
be linearized to proceed via an efficient matrix solver. This can be accomplished by using the
experimental surface temperature in the radiative term,

2Ax

~ h(Ty = T,,) + 0€(T}, — Ty (D.19)

u

This leads to the modifications to the A and b terms,

3k
A =——h D.20
L1 2Ax ’ ( a)
2k

A, = —, D.20b
127 A ( )
A=k (D.20¢)
- — , .zUC

L3 2Ax
by = ~hT,, + Te(Th, — Toyy)- (D.20d)

The calculation then proceeds as before.
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Note that the matrix A(/) is now dependent on the optimization variable 4 in the (1,1) index,
so it must be recalculated at each time step and for each successive run of the optimization routine,
which is quite computationally expensive. However, much of the inverse of A can be pre-computed,
which should reduce the calculation time by a non-negligible fraction.

We optimize the calculation by noting that

1
(A+hG) ' =AT - ——— A (hG)A™, (D.21)
1+ tr(hGA™)

assuming that rank(G) = 1 and both A and A + hG are invertible. Thus if we let

-1 0
G=|0 o , (D.22)

and A does not contain the —h term, then the transition matrix T(4) can have several of its

components pre-computed as

h o

T(hy=A"'- ——B D.23
(h) T (D.23a)
g = tr(GA™), (D.23b)
B =A"'GA™L. (D.23c)

In this way the transition matrix computation only has to subtract two matrices for every different
h(t) instead of the relatively costly solution of the n X n linear system. However, this requires
the explicit computation of A™' which may be less accurate and more time-consuming than the

Matlab linear-solution algorithm.

D.2.1 A More Efficient Algorithm

The indirect algorithm just described is simple to understand and execute, but it is quite
inefficient. For every point, the solver must compute the surface temperature for the entire

measurement range, and because the initial guess is never perfect, this operation will take place



218

hundreds of times per point. The result is a very large number of operations even with small mesh
sizes. A more efficient algorithm can be derived by recognizing that the optimization function
only needs to calculate the surface temperature; the value of any of the interior temperatures is
irrelevant, except at r = 0. Starting from Equation D.13 and using ¢, instead of ¢, it can easily
be shown that the surface temperature at any time ¢ depends only on the initial temperature

configuration and the surface heat flux,

B(A1) = TH(0) — A'¢,(0), (D.24)
B(2A1) = TH(Ar) — A'q,(At)

= T*$(0) — TA'q,0) - A'q(Ar), (D.25)

FNAL) =TV G(0) - TV Ag,(0) - - - = TA'q (N — 2) - A'q (N - 1). (D.26)

Fortunately, the optimizer only cares about the surface temperature, 51, so these operations
can be vectorized even further by selecting only the first element of ¢ and forming them into a

vector, as follows,



219

D
- .1 |10 0 0
$1(0) .
- - 1,] —_
> o, (At) .
o = 1. = _ le’j _ #(0)
G1(NAY) N
_ ) I —
0 0 0 0f| g,0)
A 0 0 0] g5(Ar)
-1 A A 0 o] g, (D.27)
TNA YA A o g (V)

where Tllf ; is the first row of Tk, such that Tllf jf_\)' is a scalar. We immediately note that the matrix
F is the lower triangular portion of a Toeplitz matrix, which can be formed from a vector very
efficiently in Matlab using the toeplitz and tril functions. In addition, 7} ; and all of its powers

are known before the calculation begins. Thus the function to optimize becomes

minE(,) = Y (&)exp - &))2 =3 (E)exp _ D@0) + Fc?s)z, (D.28)

where the only large computation that must be made in the optimization routine is the product
Fg,, as D and F can be formed before any computation begins, and D¢(0) can be computed before
the optimization begins for each mesh point.

For moderate numbers of interior points, this alternative algorithm leads to a substantial
increase in performance (around a 30 % decrease in computation time). However, for very large
numbers of interior points the performance will certainly degrade, as it becomes more computa-
tionally intensive to generate D and F, though it may still be faster than the naive implementation
for the same number of points. However, interior mesh sizes of around 25 points are more than

adequate to get good heat transfer data, and D and F can be formed at this size in negligible time.
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The same algorithm can be applied to the direct method, but the performance increase is not
nearly as significant. Note also that this algorithm is numerically unstable for large numbers of
time points. As k increases, the estimate T* will become corrupted by accumulating numerical

€rrors.

D.3 Fourier-Based Method

The analytical solution to the semi-infinite problem with a sinusoidally varying surface

temperature can be derived as follows. Suppose the heat transfer problem is given as,

T, = aT,,, (D.29a)
T(x,0) =0, (D.29b)
7(0,t) = T,e’', t>0. (D.29¢)

The solution T'(x,?) can then be assumed to vary sinusoidally as well,

T(x,1) = g(x)e/™. (D.30)

Substituting this into the problem yields

jog(x)e™ = ag”(x)e',

§'(x) = Z2g(x) = 0, (D31)

which can be readily solved to give

g(x) = Cexp (—(1 + j)\/%x) , (D.32a)

T(x,t) = Ts exp (—(1 +J) %x) et (D.32b)
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Note that the negative root of the characteristic equation is chosen to satisfy the infinity boundary
condition for g(c0) — 0. If w < 0, the positive root must be chosen for the same reason. In this
case, however, g(x),_, = g(x) 2.}

For an arbitrary surface temperature function 7,(¢) = f(t), the function can be decomposed

into its Fourier modes,

£t = Z ¢, el (D.33)

The problem is linear, and thus the solution for the arbitrary function becomes

T(x,1) = Z C, €Xp (—(1 + ) ;U—;x) e/ont, (D.34)

For the case when n = 0, i.e. if there is a non-zero average of f(¢), we must use the semi-infinite

solution to the unit step input:

Ty(x,1) = cyerfc ( ), (D.35)

x
Vdat
where erfc is the complementary error function, 1 — erf.

The surface heat flux is defined as g, = —kT,| , which can be evaluated analytically for the

x=0
series as

lw,| .
a =4l —(1+4+7), D.36a
nn>0 20 ( J) ( )
Appn<o = a;'k[,n>07 (D.36b)
q,(t) =k c,a e’ + ——|. (D.36¢)

Y ; m Vrat

Numerical Implementation

As mentioned, a numerical solution of the PDE on a 1D mesh is time consuming due to the

matrix operations involved and the necessity of keeping around the entire temperature solution

'Note that y/—jw, = j(j + Dw,/V2 = (j = Dw,/V2 = (1 = w,/V2 = =(1 + j)w,/V2.
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along the mesh. A fast fourier transform, or fft, operation is much faster. The numerical
implementation of the above theory takes advantage of this speed.

The same operation loops over every pixel in the analysis region of the IR thermograph. The
surface temperature trace is turned into a ¢(t) = T(¢) — T,(0) for each pixel. First, an fft is taken
of the surface temperature time trace giving [c,]. A frequency vector [w] is also created. Then
the [a, ]| vector is formed from [w]. The [c,] and [a,,] vectors are combined and the ifft is taken.
Finally, the ¢, case is added. This algorithm runs 2 orders of magnitude faster than the inverse
solution method.

A complication arises for this method due to the finite length of the data. The discrete Fourier
transform implicitly assumes that the data are periodic in time, regardless of the actual nature
of the measured signal. Thus if the experimental temperature is transformed as-is, there will be
significant ringing in the solution due to the step discontinuity between the last measurement
point and the first one. In addition, a finite data record leads to a small but non-zero frequency
resolution, so in general the discrete Fourier transform should be extended (often via zero padding).

For the purposes of calculating the heat transfer, however, zero-padding the temperature data
is impractical. Adding a large amount of zeros to the end of the record will reduce the average
temperature over the entire record, which in turn will affect the calculated response through the
¢, term. A better method is to extend the signal with a continuous curve from the last point to the
first point, thereby creating a periodic signal that is continuous by design. This is accomplished in
the code using a cubic Bézier curve, which matches the value and slope at the last point and the
same properties at the first point. The result is a continuous, periodic signal with continuous first

derivatives.

2D Method

A 2D theory can also be developed following similar logic. In this case, we examine a slice

of the cone at a constant axial position and consider both lateral and radial conduction. Again,
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because the penetration depth is so small compared to the thickness of the PEEK, a semi-infinite

model can be considered. The heat conduction problem in this case is then,

T, = a(T., + 1 'T, + r 2T,y), (D.37a)
T(r,6,0) = 0, (D.37b)
T(R,0,t) = T,(6,1). (D.37¢)

The semi-infinite model on a polar domain implies that 7 > 1 = r~! < 1. In addition, define

the arclength coordinate z as

z=r = rdf =0z. (D.38)

Furthermore, to make the boundary condition easier, let x = R — r, such that

1, =T, (D.39a)
7(0,z,t) = Ty(z,1). (D.39b)

Thus the problem can be redefined as
T,=a(Ty+T,,). (D.40)

Suppose the boundary condition and solution can be written as the double sum of Fourier

modes in both z and 1,

Ty) = )" " o eXp(j,t) exp(jw,2), (D.41a)

T(62,t) = ) > Cun8(x) expljw,t) exp(jw,,2), (D.41b)

where g(x) is a shape function which must satisfy

g(0) =1, (D.42a)

g(0) — 0, (D.42b)
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to satisfy the boundary conditions of the problem. Using the orthogonality properties of the
Fourier decomposition, we can say each mode 7,,,, must solve the PDE. Substituting 7, into the

equation yields the ODE,

jous(x) = @ (8(x) - whe(v)) (D.43)

This can be readily rearranged to give the solution,

g%m—ﬁ%+fjjaw=a

g(x) = e, (D.443)

A= | + jw,/a. (D.44b)

Here only the negative root has been chosen to satisfy g(c0) — 0. Equations (28) and (29) represent
the solution g(x) for m # 0 and n # 0. The zero-frequency cases must be treated separately.
Case where m = 0:

In the case where m = 0, there is no frequency content in the z direction, i.e. T,(z,1) = T,(?).
Since there is no variation in the z direction there can be no lateral conduction. This case can then

be treated as the 1D case, yielding the solution

Ty, = ¢on €XP (—(1 + J)A /(;—a"x) elent, (D.45)

Case wherem =n = 0:

For the case where there is no frequency content in ¢ or z, i.e. T; = const., again there can be

no lateral conduction. The solution is then the 1D solution to a step input,

Ty =c¢ erfc( al ) (D.46)
00 00 @ * ‘
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Case where n = 0:
The final case is when there is some arbitrary z dependence but only a step in time, i.e T, = T(z).
In this case, we substitute 7,,,, into the PDE to yield another PDE,
8r = ¥8xx — a’wig- (D-47)

Note that this is the heat equation again, but with an extra zeroth-order term. The solution is to

multiply through by e™nt = oP' This yields,

g+ Beflg —adfy,. =0,
9 (D.48)
Bt ) B, —
— |e —ae”g=0.
ot ( & &
Make the change of variables v(x, ) = P g to arrive at
vV, —av,, =0, (D.49)
subject to the boundary conditions
v(0,1) = €, (D.50a)
v(oo,t) — 0. (D.50Db)

This problem has a known solution, tabulated in [113],

) )
v(x,1) 5¢ (e erfc N \/E +e erfc @-‘-\/E , (D.51a)

g(x,1) = e Pv(x,1). (D.51b)
Again, the surface heat transfer can be calculated as

q5(z,t) = —kT, o (D.52)
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The derivative can be applied individually to each term in the Fourier decomposition, leading to

the following modes:

Gon = K Copy| W + 1D giont giwom?, (D.53a)
@

-t .
Gmo = Kk €0 (\/gerf(\//}) + \jﬁ - 1) e/@m?, (D.53b)

w .
don = k con (14 jy eI (D.530)
a

(D.53d)

with the appropriate conjugate symmetry enforced to arrive at a real result.

D.4 Two-Step Method

An extremely robust method can be created by combining the Fourier and inverse methods.
First, the fft method is performed using a large smoothing factor. The results of this computation
are very smooth but likely inaccurate. However, if the fft results are given as the initial guess
to the inverse method, the end result is both smooth and quite accurate. This method is mostly
useful for when the signal-to-noise ratio is low and neither the fft method nor the direct method
produce acceptable results on their own. Because the fft method is extremely fast, the two-step

method does not take much more time to compute than the inverse method on its own.
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E. HEAT TRANSFER CODES

E.1 Heat Transfer Calculation



gcalc

Calculate heat transfer from an sequence of temperature images

Syntax
Q = gcalc(Temp,fs)
Q = gcalc(Temp,fs,params)

Q = qcalc(__, "algorithm',algorithmname)
Q = qcalc(__, 'material’,materialstruct)
Q = qcalc(__, 'material’,materialname)

Q = gcalc(__,Name,Value)

[Q,compTime] = gcalc(_ )

Description

Q = qcalc(Temp,fs) calculates the heat transfer inferred from the sequence of temperature images Temp
and the known frame rate fs.

Q = qcalc(Temp,fs,params) defines the computation parameters in the params structure, which is an
optional argument. If it is used, it must be placed in the third argument position.

Q = qcalc(__, "algorithm',algorithmname) uses the specified algorithm to compute the heat transfer.
The available algorithms are listed below.

Q = gcalc(__, 'material’,materialstruct) uses the structure materialstruct to to specify the
material properties for the calculation. The structure must have k, rho, and cp fields defined.

Q = qcalc(__, 'material’,materialname) uses a named material for the computation. The default is
'peek’.

Q = gqcalc(__,Name,Value) uses the name, value pairs to set the computation parameters, and can be set
in any order.

[Q,compTime] = qcalc(__) also returns the computation time, in seconds.

Input Arguments collapse all

Temp — Temperature array

v 3-D Array

The temperature array must be N x M x P, where P (the number of frames) is strictly greater than 1. The units of Temp
can be degrees Celsius or Kelvin. Temp may have any number of pixels from 1 to Inf (N*M 2 1).
collapse all

fs — Camera frame rate
scalar value

The frame rate is a positive scalar specifying the number of frames per second taken by the camera. Typical values
are 200-300 fps (or Hz).

collapse all



Vv  params — (Optional) structure of parameters for the computation
struct

Instead of (or in addition to) using the Name,Value parameter syntax, you can define a parameters structure with field
names of the parameters you wish to set and values equal to the desired values. For example, if you want to set
Nsmooth to 11, you can either write:

[__] = gcalc(Temp,fs, 'Nsmooth',11)
or

params.Nsmooth = 11;
[__1 = qcalc(Temp,fs,params)

If you use the parameters structure it must be the third argument.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the
corresponding value. Name must appear inside single quotes (* '). You can specify several name and value pair

arguments in any order as Namel,Valuel,...,NameN,ValueN.
collapse all

algorithm — Computational algorithm
'fft1d' (default) | 'direct1d’ | ihtp1d'| ...

The available algorithms are 'fft1d','fft2d','direct1d’, and 'ihtp1d', which are described in the More About section, below.
The direct and ihtp algorithms can be modified to run more efficiently in certain circumstances using the 'fast-' flag,
e.g. 'fast-ihtp1d'. In addition, the ihtp algorithm can run the fft algorithm first to provide a suitable initial guess for the
optimization routine using the '-2step'’ flag, e.g. 'ihtp1d-2step’. To run a computation using parallel computing, use the
"-par' flag (note that often this will not increase the speed of the computation). The flags can be specified in any order,
i.e. both 'fast-direct1d-par' and 'direct1d-fast-par' use the same algorithm (the fast direct 1-D algorithm in parallel
mode).

collapse all

material — Material name or structure
'peek’ (default) | struct

The default material is PEEK, which should be fine for most users of qcalc. If you would like to use different material
properties you can either (a) use a material structure with k, rho, and cp fields, or you can edit the parseInputs
subfunction to allow for different named materials.

collapse all
units — Output units
'Wm2' (default) | 'kWm2'
The default output units are W/m?. You can select kW/m? if you prefer.
collapse all

time — Time from run start to plot image

v
1 (default) | positive scalar



If 'plot' is 'on', qcalc will plot the frame at time 'time’, in seconds.
collapse all

plot — Whether to plot the result or not
'off' (default) | 'on'

Plotting is off by default. If qcalc is called with no output arguments or if 'plot’ is turned 'on’, then gcalc will plot the
frame at the desired time.
collapse all

tstart — Length of pre-run data
-1 (default) | negative scalar

tstart indicates how much pre-run data was taken. It must be a negative scalar, i.e. there must be some non-zero
amount of pre-run data. The default is -1, i.e. 1 second of pre-run data.
collapse all

Nsmooth — Number of frames for moving average filter
3 (default) | odd positive integer

A moving average filter is applied to the time history of each pixel for the 1-D methods. The number of samples used
in the filter is set by Nsmooth. As per MATLAB's smooth function, if Nsmooth is not odd, it will be reduced by one.
Nsmooth must be at least 3 (the default).

collapse all

fsz — Spanwise sampling rate
empty (default) | positive scalar | 1-D vector

This is only required for the 2-D algorithms, indicating the spanwise sampling rate in points per meter (of the
computational mesh, which is not necessarily the same as the the number of pixels per meter in the original image). If
this is not set and the 'fft2d" algorithm is requested, qcalc will throw an error.

collapse all

spanindex — Index of the spanwise direction

v
2 (default) | 1

For the 2-D methods qcalc needs to know which direction is spanwise. By default this is dimension 2 (columns), but if
it is rows you can set it to 1. qcalc transposes the images in this case.
collapse all

L — Length of internal mesh
0.005 (default) | positive scalar

The direct and ihtp algorithms use a finite difference scheme on a 1-D internal mesh of length L, in meters. This does
not have to be the true thickness of the model, but it should be at least as thick as the thermal penetration depth
(around 3 - 5 mm).
collapse all

n — Number of internal mesh points
25 (default) | positive integer



The number of internal mesh points for the finite difference calculator is set by n. For most purposes the value of n
does not need to be very large (25 is the default), but it may be worthwhile to do a grid convergence study for your
specific application. If L is small and n is large, you may run into numerical precision issues.

collapse all

bc — Back-face boundary condition
'isothermal’ (default) | 'adiabatic’

The back face is the internal face of the model (so not the model surface). The boundary condition can either be
isothermal, meaning it is the same temperature as the initial temperature for all time, or adiabatic, meaning the
temperature slope at the back face is zero. Isothermal is usually an appropriate choice. If the model is very thin and if
the internal surface of the model is bounded by stagnant air, setting bc to 'adiabatic' may be a better choice. Use of
symmetries in the model can help, i.e. a thin flat surface with the same flow on both sides can be modelled as
adiabatic with the back face at the centerplane of the two surfaces.

collapse all

theta — Crank-Nicolson parameter
1 (default) | scalarin [0, 1]

The parameter theta controls the degree to which the finite difference method is implicit or explicit. 1 (the default)
means the method is fully implicit in time (BTCS), whereas 0 is fully explicit (FTCS). A theta of 1/2 is also known as
the Crank-Nicolson scheme.
collapse all

phie — Initial temperature profile
0 (default) | scalar | 1-D vector

The 'direct1d"' algorithm can have a non-zero initial condition (where zero here is the temperature difference from the
initial surface temperature). It is not recommended to use this parameter unless you have a good model for the
internal temperature profile from some other source.

collapse all
Rsmooth — Spatial smoothing parameter
0.5 (default) | positive scalar
The finite difference and 2-D algorithms are spatially smoothed at each frame using a Gaussian kernal with a
standard deviation of Rsmooth pixels.
collapse all

startframe — Starting frame for optimization
length(Temp)-30 (default) | positive integer

The inverse methods are too computationally expensive to run over the entire data record, so the direct method is run
first up to startframe, at which point the optimization begins. To use the inverse method for the entire measurement
range (not recommended), set startframe to 1.

collapse all

Qinit — Initial guess for Q
2000 (default) | scalar | 2-D matrix



The inverse method is an optimization process, and so needs an initial guess for the solution. You can use the default
(a constant 2000 W/mz), specify your own Qinit(t), or use the 'fft1d' method to calculate an initial guess by specifying
the '-2step’ flag in the algorithm statement.

filter — Turns spatial filtering on or off

‘on' (default) | 'off'

collapse all

It is usually a good idea to have a small amount of spatial filtering, especially for the finite difference methods.

Output Arguments

v Q — Heat transfer

3-D Array, same size as Temp

collapse all

The heat transfer output Q is the same size as the input, with units specified by the 'units' parameter (default W/m2)

compTime — Computation time

scalar value

The heat-transfer computation time in seconds.

More About qcalc

Algorithm

fftid

fft2d

Method of Operation Speed

The 1-D fft algorithm Fast
decomposes the temperature

history for each mesh point

into its Fourier modes using

the Fast Fourier Transform,

then computes the sum of the
responses to each individual
frequency component (using
semi-infinite theory).

The 2-D fft algorithm
operates on the same
priniciple as the 1-D algorithm,
but it allows for conduction in
the spanwise direction (as
opposed to purely normal to
the surface). It makes all of the
same assumptions as fftid,
but in addition it assumes that
the thermal penetration depth
is much smaller than the local
radius of curvature.

collapse all

When to Use

Because the fft1d algorithm
is so fast, it is a good first
choice. It may not be
appropriate for situations
where the material thickness is
small compared to the thermal
penetration depth or when the
camera frame rate is low.

If you are concerned about
tangential conduction (e.g., in
streaky flows), then it may be
worth trying the fft2d
algorithm. This method is still
quite fast, though it has more
restrictive assumptions. It may
yield inaccurate results in
areas of high surface
curvature.



Algorithm

directid

fast-directld

ihtp1d

Method of Operation Speed

The direct method solves the Medium-Slow
heat equation on a 1-D mesh

using a finite difference Crank-

Nicolson method with variable

parameter 8 which controls the

degree of implicitness of the

solver. When 6 = 1, the method

is fully implicit in time.

The fast version of the 1-D Medium-Fast to Slow
algorithm leverages the fact
that only the three points
closest to the surface are
necessary to compute the heat
transfer to significantly reduce
the required memory for
computation. It works by
expanding the surface
temperature (and the next two
mesh points) in powers of the
transition matrix 7 to compute
every point in time in one
matrix operation for each mesh
point (pixel).

The inverse heat transfer Slow
problem or ihtp tries to find the
heat transfer Q which
minimizes the error between
the measured temperature and
the temperature calculated
using Q as a boundary
condition. It makes the same
assumptions as the directid
methods, but it is less sensitive
to noise. Use of any of the
ihtp algorithms requires a
suitable initial guess for the
heat transfer at each point in
space and time (see the
2step-ihtp1ld algorithm,
below).

When to Use

The direct method can be used
whenever the 1-D assumption
is approximately valid (i.e.,
whenever there is minimal
tangential conduction). It has
the least restrictive set of
assumptions, and many of the
solution parameters can be
finely controlled. However, it is
not as fast as the fft-based
solvers, nor is it as robust in
the presence of noise as the
ihtp solvers.

When the number of 1-D
internal mesh points is
comparable to or larger than
the number of time points, the
fast-directld method can
improve performance over the
standard directld method.
However, for long times the
algorithm can be numerically
unstable and could in fact be
slower. Unlike the directild
method, the fast version
cannot start from a non-zero
initial temperature profile on
the internal mesh points.

The ihtpld method is quite
robust, but it is very slow. It is
not a good first choice unless
there is some reason to
believe the SNR is very low or
the other methods are
providing weird results.



Algorithm

fast-ihtpld

(fast)-ihtpld-2step

Method of Operation

The fast version of the
ihtpld algorithm makes the
same changes as the fast-

directld makes to directid.

However, because the
optimization routine must
calculate the temperature
hundreds of times to find the
correct Q, the performance
increase is substantial.

The 2step version of the
inverse codes uses the fftid
algorithm to compute an initial
guess for Q, for use in the
optimization algorithm.
Because the run time of the
fftld code is very small
compared to the run time of
the ihtpld methods, this is
usually a good option.

Speed

Medium-Slow

Medium-Slow to Slow

When to Use

If you want to use an inverse
method, the fast version is a
good starting point. Keep in
mind that it has the same
stability issues as the fast-
directld algorithm, meaning
it could become numerically
unstable if performed on very
long datasets. However,
usually the optimization is only
performed over a small portion
of the run so these issues
should never be apparent.

Using the 2step flag is a good
place to start with the inverse
methods, unless you already
have a good estimate of the
heat transfer from some other
source.

See Also:
gfftld, gfft2d, qdirectld, qihtpld

Documentation theme © 1994-2019 The MathWorks, Inc.
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function var

argout

qcalc(Temp,fs,varargin)

% Calculate heat transfer from an sequence of temperature images

narginchk (2,
nargoutchk (@

40) ;
»2) 5

if isstruct(varargin{1})

paramStr

fields =

inargs =
for ff =
inar
end
else
inargs =

end

uct =

varargin{1};

fieldnames (paramStruct);

varargin(2:end);

1:length(fields)

gs = [inargs, {fields{ff}}, {paramStruct.(fields{ff})}1;

varargin;

opts = parselnputs(Temp,fs,inargs{:});

if ~strcmp(opts.algorithm,’bench’)

algopts

235

= parseAlg(opts.algorithm,{’ fftid’,’ fft2d’,’ directlid’,’ihtpld’,”’

bench’});

else
algopts.a

end

switch algopts.alg

lg = "bench’;

case {’fftid’,’ fft2d’, directld’,’ihtpld’}

algs
algs

tr = [’q’,algopts.alg,’ _fast’xalgopts.fast,’ _par’xalgopts.par];

tr = replace(algstr,char(0),’’);

if ~algopts.precalc

else

[Q,ctl

feval (algstr,Temp,fs,opts.parameters);



[Q0,ct1] = gfftld(Temp,fs,opts.parameters);
lenihtp = length(opts.parameters.startframe:size(Q0,3));

opts.parameters.Qinit = reshape(Qo(:,:

end), ...

size(Q0,1)*size(Q0,2),lenihtp);
[Q,ct2] = feval(algstr,Temp,fs,opts.parameters);

ct = ctl + ct2;
end
case ’bench’
results = benchmark();
disp(results)
varargout{1} = results;
return

otherwise

error (’Unknown algorithm selected.’);

end

if strcmp(opts.parameters.units,’kWm2’)

Q = Q/1000;

end

if nargout>0

varargout = cell(1,nargout);
if nargout == 1

varargout{1} = Q;
else

varargout{1} = Q;

varargout{2} = ct;
end

end

if nargout==0 || strcmp(opts.parameters.plot,’on’)

,opts.parameters.startframe:
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frame = fs*(abs(opts.parameters.tstart)+opts.parameters.time);

figure

if opts.parameters.spanindex==
imagesc(Q(:,:,frame));
ylabel (’Spanwise Reference, px’);
xlabel (’Streamwise Reference, px’);
else
imagesc(flipud(Q(:,:,frame)’));
xlabel (’Spanwise Reference, px’);

ylabel (’Streamwise Reference, px’);

end
ax = gca;
cb = colorbar;

switch opts.parameters.units
case ’'Wm2’
unitstr = W/m”*2’;

case “kWm2’

unitstr = "kW/m*2’;
end
ylabel (cb,[’Heat Transfer, ’, unitstr],’ fontsize’ ,14);
ax.FontSize = 14;

ax.LineWidth = 1;

ax.YDir = ’'normal’;
end
end
function opts = parselnputs(Temp,fs,varargin)

% Parses the input arguments to the qgcalc function

237
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% expectedAlgs = {’fftld’,’fft2d’,’directld’,’ihtpld’, ...

238

% "fast-ihtpld’,’ fast-ihtpld-2step’,’ihtpld-2step’,’ fast-directld’,’bench

"}
defaultPlot = ’off’;
expectedPlot = {’on’,’ off’};
defaultBC = ’isothermal’;
expectedBC = {’isothermal’,’adiabatic’};
defaultMatl = ’peek’;

expectedMatl = {’peek’};

validScalarPosNum = @(x) isnumeric(x) && isscalar(x) && (x>0);

isint = @(x)(round(x)==x && isscalar(x));

lent = size(Temp,3);

% input parser for argument handling

% first do the required an optional arguments

p = inputParser;
p.FunctionName = ’qcalc’;
p.StructExpand = false;
p.KeepUnmatched = true;

addRequired(p, ' Temp’,...

@(x)(isnumeric(x) && size(x,3)>1 && isreal(x) && ~any(isnan(x(:)))));
addRequired(p,’fs’,@(x)( isnumeric(x) && isscalar(x) && x>0 ));

addParameter (p, 'material’,defaultMatl ,@(x)( isstruct(x)
(any(validatestring(x,expectedMatl))) ));
addParameter (p, ’algorithm’,’fftid’);

% now the common parameters
addParameter (p, ’units’, "Wm2’,...
@(x) any(validatestring(x,{’Wm2’, kWm2’3})));

addParameter (p,’time’ ,1,...

@(x)( isnumeric(x) && isscalar(x) && (x>0) && (fs*x <= size(Temp,3))));

addParameter (p, 'plot’,defaultPlot, ...

@(x) any(validatestring(x,expectedPlot)));



239

addParameter (p, 'pbar’ ,[1);

addParameter (p,’ tstart’,-1,@(x)(isnumeric(x) && isscalar(x) && (x<0)));

% now the algorithm specific parameters
addParameter (p, "Nsmooth’,3,@(x)( isnumeric(x) && isscalar(x) && (round(x)==x)

&& (x>=3)));
addParameter(p, 'fsz’,[]1, @(x) (isnumeric(x) && (isscalar(x) || isvector(x))));
addParameter (p, ’spanindex’,2,@(x) ((x==1)]](x==2)));
addParameter(p,’L’ ,0.005,validScalarPosNum);
addParameter(p,’n’,25,@(x)(validScalarPosNum(x) && (round(x)==x)));
addParameter (p, 'bc’,defaultBC, ...

@(x) any(validatestring(x,expectedBC)));
addParameter (p, 'theta’ ,1,@(x)(isscalar(x) && (x>=0) && (x<=1)));
addParameter (p, ’phi@’ ,0,@isnumeric);
addParameter (p, ’Rsmooth’,0.5,validScalarPosNum);
addParameter (p, 'startframe’,(lent>30)*(lent-30) + (lent<=30)*(lent),@(x)(isint

(x) && (x>0) && (x<=lent)));
addParameter (p,’Qinit’ ,2000,@(x) (isscalar(x) || ismatrix(x)));
addParameter (p,’filter’,’on’, ...

@(x) any(validatestring(x,{’on’,’off’3})));

% parse it and do some additional checks

parse(p,Temp,fs,varargin{:});

matl = p.Results.material;

alg = p.Results.algorithm;

if ischar(matl)
switch matl
case ’'peek’
material.rho = 1300;
material.cp = 1026;
material.k = 0.29;
otherwise

error ("It should not be possible for this error to be thrown...’);



189

190

191

197

198

199

else

end

opts.

opts.

opts.
opts.
opts.
opts.
opts.
opts.
opts.
opts.
opts.
opts.
opts.
opts.
opts.
opts.
opts.

opts.

end

if ~all(isfield(p.Results.material ,{’rho’

error(’Input material must have rho,

end
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,ep’, k73D

cp, and k fields defined’);

validMtlProp = @(x)(isnumeric(x) && isscalar(x) && (x>0));

if ~all(arrayfun(validMtlProp,[p.Results.material.rho,p.Results.material.

cp,p.Results.material.kl))
error(’Input material properties are

numeric scalars.’);

end

material = p.Results.material;
parameters.material = material;
algorithm = alg;

invalid. They must be positive,

parameters.units = p.Results.units;
parameters.time = p.Results.time;
parameters.plot = p.Results.plot;
parameters.pbar = p.Results.pbar;
parameters.tstart = p.Results.tstart;
parameters.Nsmooth = p.Results.Nsmooth;
parameters.fsz = p.Results.fsz;
parameters.L = p.Results.L;

parameters.n = p.Results.n;

parameters.bc = p.Results.bc;
parameters.theta = p.Results.theta;
parameters.phi®@ = p.Results.phi®;
parameters.Rsmooth = p.Results.Rsmooth;
parameters.startframe = p.Results.startframe;
parameters.Qinit = p.Results.Qinit;
parameters.spanindex = p.Results.spanindex;
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pts.parameters.filter = p.Results.filter;

nd

%% sequential codes

£
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

unction [Q,ct] = qfftid(Temp,fs,opts)

Calculates the heat transfer using the fft-based approach.

SYNTAX:
1 [Q,ct] = gqfftld(Temp,fs,opts)

DESCRIPTION:

[Q,ct] = gfftld(Temp,fs,opts) calculates the heat transfer Q from the
images in 3-D array Temp, sampled at frame rate fs, using the parameters
specified in the structure opts. It is only intended to be used through the

<a href="qgcalc.html"><code>qcalc</code></a> function.

INPUTS:

Temp: Temperature array {3-D array}
The temperature array Temp has size N x M x P where each image
is M x N, and there are P images. P must be greater than 1. The
temperature can be in degrees Celsius or Kelvin.

fs: Camera frame rate {scalar value}
The camera frame rate is specified in frames per second (Hz).

opts.Nsmooth: Smoothing factor {scalar integer}
The Nsmooth field of the <code>opts</code> structure controls
the moving average filtering of the data pre- and post-
computation. Nsmooth represents the number of samples using the
moving average, and so should be odd (the code will reduce its
value by 1 if Nsmooth is even).

opts.material: Material properties {structure}
This structure sets the material properties. It must have
<code>k, rho,</code> and <code>cp</code> fields.

opts.pbar: uiprogressdlg handle {graphics handle}

Handle to uiprogressdlg component for user feedback.



246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

242

% OUTPUTS:

% Q: Heat transfer array {3-D array}

% The heat transfer is a 3-D array the same size as the input

% <code>Temp</code> array. The output units are W/m<sup>2</sup>.
% ct: Computation time {scalar value}

% The computation time only includes the looping over every

% pixel, not any of the setup.

%

% MORE ABOUT:

% <p>

% The fft algorithm works by decomposing the temperature signal from each
% pixel into sinusoidal components, and summing the response to each

% individual component.

% </p>

% <p>

% The fft algorithm extends the input signal using a Bezier curve so that
% it is approximately C1, which should reduce Gibb’s phenomena (ringing).
% The length of the extension is determined to make the signal length a

% power of 2. The padding is removed from the returned heat transfer.

% </p>

%

% SEE ALSO:

% qcalc, qfft2d, qgdirectld, qihtpld, makePeriodic

% #

fftw(’ dwisdom’ ,[]);

fftw(’planner’,’estimate’);

pbar = opts.pbar;

Nsmooth = opts.Nsmooth;

% has to be an odd smoothing span (Matlab’s smooth does this automatically)
if ~mod(Nsmooth,2)
Nsmooth = Nsmooth - 1;

end
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smoothFilter = ones(Nsmooth,1)/Nsmooth;

if ~isempty(pbar)

pbar.Message = ’Collecting variables...’;

end

% set up constants

dt = 1/fs; % camera frame rate

alpha = opts.material.k/(opts.material.rho*opts.material.cp); % thermal
diffusivity

k_cond = opts.material.k;

% form Delta T matrix

[xlen,thlen,tlen] = size(Temp);

Temp = reshape(Temp,xlenxthlen,tlen); % for parallelization we need a column
vector

T0 = Temp(:,1);

Temp = Temp-T0; % use Delta T (from run start)

% Run computation
if ~isempty(pbar)
pbar.Message = ’Calculating...’;

end

% fft is most efficient for powers of 2 (sometimes)

M

length(Temp(1,:));
N = 2*(nextpow2(M));
Next

N-M;

SIZE = xlenx*thlen;
Q

zeros (SIZE ,M);

+
1

0:dt:(N-1)*dt;

%t = t + opts.tstart;
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% form the offset
stepIn = real(1./sqrt(pi*alpha*t’));

stepIn(l:round(-opts.tstart*xfs)) = stepIn(round(-opts.tstartxfs)+1);

% form the frequency vector (we know the size and we know N is even)
kk -N/2:N/2-1;

kk ifftshift(kk);

w=2*xpi*fsxkk/N;

% define the system frequency response coefficients

an = (sqrt(abs(w)/(2*alpha)))*(1j+1);

an = transpose(an);

an(w<@) = conj(an(w<0)); % enforce symmetry for real signal
tic

for jj = 1:SIZE

% Smooth the temperature

% Note this is inlined from Matlab’s smooth/moving function,
% which has a TON of overhead. Inlining gives a 3x speedup!
DeltaT = Temp(jj,:);

c = filter(smoothFilter ,1,DeltaT’);

cbegin = cumsum(DeltaT (1:Nsmooth-2)");

cbegin = chegin(1:2:end)./(1:2:(Nsmooth-2))’;

cend cumsum(DeltaT(M:-1:M-Nsmooth+3)’);

cend cend(end:-2:1)./(Nsmooth-2:-2:1)";

DeltaT = [cbegin;c(Nsmooth:end);cend];

% find the Fourier coefficients

244

%cn=fft([DeltaT;repmat(DeltaT(end),Next,1)I,N)/N; % make up for the lack

of 1/N in Matlab FFT
cn = fft(makePeriodic(DeltaT,Next,30),N)/N;

% calculate coefficients for g_s Fourier series
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%
%
%
%
%
%

end

ct =

en

en

%

gqs_Fo
qs_Fo =

%

Q(

= Ccn.

1 =

undo F

Smooth
d = fi
dbegin
dbegin
dend =
dend =
Q(33,:
33,9

*an;

0;

FT and add constant offset term
Nxreal (ifft(en));

k_cond*qs_Fo + k_cond*cn(1).*stepln;

the result

lter (smoothFilter ,1,qs_Fo(1:M));

= cumsum(gs_Fo(1:Nsmooth-2));

= dbegin(1:2:end)./(1:2:(Nsmooth-2))";
cumsum(qgs_Fo(M:-1:M-Nsmooth+3));
dend(end:-2:1)./(Nsmooth-2:-2:1)";
) = [dbegin;d(Nsmooth:end);dend]’;
= gqs_Fo(1:M)’;

if ~isempty(pbar)

pbar

end

toc;

.Value = jj/SIZE;

if ~isempty(pbar)

end

pbar.Message = ’Finishing up...’;

% reshape Qs_Fo vector to a 3D array

Q:

end

reshape (Q, xlen,thlen ,M);

function [Q,ct] = qgfft2d(Temp,fs,opts)
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% Calculates the heat transfer using the fft-based approach.

%
%
%1
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

SYNTAX:
[Q,ct] = gfft2d(Temp,fs,opts)
DESCRIPTION:

[Q,ct] = gfft2d(Temp,fs,opts) calculates the heat transfer Q from the

images in

specified

3-D array Temp, sampled at frame rate fs, using the parameters

in the structure opts. The <code>qfft2d</code> algorithm allows

spanwise heat transfer as well as wall-normal heat transfer. It is only

intended to be used through the

<a href="qgcalc.html"”><code>qcalc</code></a> function.

INPUTS:
Temp: Temperature array {3-D array}
The temperature array Temp has size N x M x P where each image
is M x N, and there are P images. P must be greater than 1. The
temperature can be in degrees Celsius or Kelvin.
fs: Camera frame rate {scalar value}
The camera frame rate is specified in frames per second (Hz).
opts.fsz: Spanwise sampling rate {scalar value}
The spanwise sampling rate for the data in samples per meter.
If this is not provided, an error will be thrown. You should
only call <code>qfft2d</code> from the <code>qcalc</code>
wrapper function to properly validate your inputs.
opts.spanindex: Index of spanwise direction {1 | 2}
The index of the spanwise direction in the images. If
<code>spanindex == 1</code> the image arrays are transposed.
opts.material: Material properties {structure}
This structure sets the material properties. It must have
<code>k, rho,</code> and <code>cp</code> fields.
opts.pbar: uiprogressdlg handle {graphics handle}
Handle to uiprogressdlg component for user feedback
OUTPUTS:
Q: Heat transfer array {3-D array}

The heat transfer is a 3-D array the same size as the input
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% <code>Temp</code> array. The output units are W/m<sup>2</sup>.
% ct: Computation time {scalar value}

% The computation time only includes the looping over every

% pixel, not any of the setup.

%
% MORE ABOUT:

% The 2D fft algorithm decomposes the temperature signal

% slices with different frequencies in time and space and sums the

% responses to these components.
%

% SEE ALSO:

% qfftld, qdirectld, qihtpld

%#

pbar = opts.pbar;

if opts.spanindex == 1
Temp = permute(Temp,[2,1,3]1);

end

if isscalar(opts.fsz)
fsz = opts.fszxones(size(Temp,1));

else

fsz opts.fsz;

end
if ~isempty(pbar)
pbar.Message = ’Collecting variables...’;

end

% set up constants

dt = 1/fs; % camera frame rate
alpha = opts.material.k/(opts.material.rho*xopts.material.cp);
diffusivity

k_cond = opts.material.k;

%

into spanwise

thermal
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sss % form Delta T matrix

459

w0 % permute temp so x index is last (more efficient looping)
w1 Temp = permute(Temp,[2,3,11);

w62 [thlen,tlen,xlen] = size(Temp);

w: filtSize = opts.Rsmooth;

ws  for kk = 1:xlen

466 Temp(:,:,kk) = imageFilt(Temp(:,:,kk),filtSize);
47 end

468

w65 tlen® = tlen;

270 thlen® = thlen;

47

a2 Q

473

zeros(thlen,tlen, xlen);

IS
3
IN
+
1

0:dt:(tlen-1)=*dt;

475

26 Temp = Temp - Temp(:,1,:);
477

478

79 N = tlen;

250

g1 if mod(N,2)==0

482 kk=-N/2:N/2-1; % N even

s else

484 kk=-(N-1)/2:(N-1)/2; % N odd
w5 end

486
87 wn = 2xpixfsxkk/N;

488

9 M=thlen;

490

201 if mod(M,2)==0

492 pp=-M/2:M/2-1; % N even

193 else
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516
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522

pp=-(M-1)/2:(M-1)/2; % N odd
end
[WN,PP] = meshgrid(wn,2*xpi*pp/M);
WN = ifftshift(WN);
PP = ifftshift(PP);

%% start computation

if ~isempty(pbar)
pbar.Message = ’Calculating...’;
end
tic
stepIn = k_cond./sqrt(pi*alpha*t);

stepIn(1:fs*abs(opts.tstart)) = stepIn(abs(opts.

for jj = 1:xlen
fszx = fsz(jj);
T_slice = Temp(:,:,33); % T_slice is
% of all the pixels in a
% spanwise row @ const. x, it
% is size M x N

% T_slice = imageFilt(T_slice,opts.Rsmooth);
map

%% do Fourier decomposition

z = (0:1/fszx:(thlen-1)/fszx)’;

WM = fszx*PP;

tstart)*fs+1);

the time history

% filter temperature
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539

540

Cmn = fft2(T_slice)/(MxN); % remember to

coefficients

% Case 1: m ~= @ & n ~= 0

Amn = k_cond*sqrt(WM.”2 + 1jxWN/alpha);
Emn = Cmn.*xAmn;

Emn(WN == @ | WM == @) = 0;

Qs_2d = real(ifft2(Emn))*MxN;

% Case 2: n == 0, m ~= 0 (i.e.

% z allowed)

Wmo = WM(:,1);

B = alpha*Wmo.*2;
Cm@ = Cmn(:,1);
Cmo (1) = 0;

T = repmat(t,length(B),1);
BB = repmat(B,1,length(t));

Cm@_mat = repmat(Cm@,1,length(t));

exp_kernel = exp(1j*z*xWmd’);

no oscillations

include M%*N to get Fourier

in time, but changes in

250

Am@_matrix = k_cond*Cm@_mat.x(sqrt(BB/alpha).xerf(sqrt(B*xt)) + exp(-Bxt)./

sqrt(pi*alphaxT) - 1);

Qs_2d = Qs_2d + 2xreal(exp_kernel*xAm@_matrix);

% Case 3: m == @, n ~= @ (i.e. const.
% in time)

Won = WN(1,:);

Con = Cmn(1,:);
con(1) = 0;

Adn = (1j+1)*sqrt(abs(Wen)/(2xalpha));
AOn (WONn<@) = conj(AOn(WOn<@));

value spanwise,

but oscillating
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EOn = COn.*xA0n;

Qon_vec = k_condxN*real (ifft(E@On));

Qs_2d = Qs_2d + repmat(Qon_vec,thlen,1);

% Case 4: m == n

Co0 = Cmn(1,1);

== 0, 1.

e.

step function

in space and

Qs_2d = Qs_2d + repmat(stepIn*C00@,thlen,1);

Q(:,:,3j) = Qs_2d(1:thlen0,1:tlen0d);

if ~isempty(pbar)

pbar.Value = jj/xlen;
end
end
if ~isempty(pbar)
pbar.Message = ’Finishing up...’;

end

Q = permute(Q,[3,1,2]

if opts.spanindex ==

Q = permute(Q,[2,

end

ct = toc;

end

); % permute back to the start order

:
1,31);

function [Q,ct] = qdirectld(Temp,fs,opts)

pbar = opts.pbar;

tic;

time
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s if ~isempty(pbar)

599 pbar.Message = ’Collecting variables....’;
ce end

60

2 phi@ = opts.phi@.*ones(opts.n,1);
3 L = opts.L;

604 N opts.n;
s bc = opts.bc;

ws theta = opts.theta;

s % define space and time constants
oo dt = 1/fs;
0 X = linspace(@,L,n);

e dx = x(2)-x(1);

613 % define ode constants

¢« alpha = opts.material.k/(opts.material.rho*opts.material.cp); % thermal
diffusivity
15 k_cond = opts.material.k;

¢ic beta = alphaxdt/(dx*dx);

618 % reshape temperature for parfor compatibility

sio [xlen,thlen,tlen] = size(Temp);

621 % filter if desired

622 if strcmp(opts.filter,’on’)

623 if ~isempty(pbar)

624 pbar.Message = ’Filtering temperature images....’;
625 end

626 filtSize = opts.Rsmooth;

627 for kk = 1:size(Temp,3)

628 Temp(:,:,kk) = imageFilt(Temp(:,:,kk),filtSize);
629 end

ee  end

632 Temp = reshape(Temp,xlenxthlen,tlen);
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TO0 = Temp(:,1);

Temp = Temp-T0;
% preallocate array
Q = zeros(size(Temp));

[Npts,~] = size(Temp);

% generate derivative matrix

D2 = gallery(’tridiag’,n,1,-2,1); % 2nd derivative matrix
D2(1,:) = 0;
D2(n,:) = 0; % enforcing boundary conditions

% generate ode matrices

—
1

eye(n);
A =1 - beta*xthetaxD2;

B =1 + betax(1-theta)*D2;

B(1,:) = 0; % more boundary condition
B(n,:) = 0;

pvec = zeros(n,1);

switch bc

case ’'isothermal’

bc2 = pvec;
bc2(n) = phi@(end);
Ap2 = A\bc2;

case ’adiabatic’
A(n,:) = 0;
A(n,n) = -3;
A(n,n-1) = 4,
A(n,n-2) = -1;

Ap2 = zeros(n,1);

end

handling
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pvec (1)

:'],

Ap = A\pvec;

% "transition” matrix

Tmat = A\B;

Q=207

if ~isempty(pbar)

pbar

end

for pt =

.Message = ’Calculating....’;

1:Npts

% loop through every point

Tpt

= Temp(pt,:);

% calculate entire time history for each point

phi

for

end

= phio;

tt = 1:tlen
phi = Tmat*phi + ApxTpt(tt) + Ap2;
% calculate q at wall (2nd order finite difference)

Q(tt,pt) = -k_condx*(-3xphi(1) + 4xphi(2) - phi(3))/(2%dx);

if ~isempty(pbar)

end

end
Q = resh
ct = toc

end

function

pbar.Value = pt/Npts;

ape(Q’,xlen,thlen,tlen);

’

[Q,ct] = qihtpld(Temp,fs,opts)

254



pbar = opts.pbar;

startFrame = opts.startframe;

QQ0 = opts.Qinit.*ones(size(Temp,1)*size(Temp,2),length(startFrame:size(Temp

»3)));
n = opts.n;
L = opts.L;

bc = opts.bc;
theta = opts.theta;

tsmooth = opts.Nsmooth;
if ~mod(tsmooth,2)

tsmooth = round(tsmooth-1);
end

smoothFilter = ones(tsmooth,1)/tsmooth;

if ~isempty(pbar)

pbar .Message = ’Collecting variables....’;
end
tic;
dt = 1/fs;

x = linspace(@,L,n);

dx = x(2)-x(1);

alpha = opts.material.k/(opts.material.rhoxopts.material.cp);

k_cond = opts.material.k;

beta = alpha*dt/(dxxdx);

[xlen,thlen,tlen] = size(Temp);

% filter if desired
if strcmp(opts.filter,’on’)
if ~isempty(pbar)
pbar.Message = ’Filtering temperature

end

images....
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filtSize = opts.Rsmooth;
for kk = 1:size(Temp, 3)

Temp(:,:,kk) = imageFilt(Temp(:,:,kk),filtSize);
end

end

Temp = reshape(Temp,xlenxthlen,tlen);
T0 = Temp(:,1);

Temp = Temp-T0;

Q = zeros(size(Temp));
Q_nonlin = zeros(size(Temp,1),length(startFrame:size(Temp,2)));

[Npts,~] = size(Temp);

D2 = gallery(’tridiag’,n,1,-2,1); % 2nd derivative matrix
D2(1,:) = 0;

D2(n,:) = 0; % enforcing boundary conditions

—
1]

eye(n);
A =1 - betaxthetaxD2;

B =1 + betax(1-theta)*D2;
B(1,:) = 0
B(n,:) = 0;

switch bc

case ’'isothermal’

case ’adiabatic’
A(n,:) = 0;
A(n,n) = -3;
A(n,n-1) = 4,
A(n,n-2) = -1;

end

Tmat = A\B;
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pvec = zeros(n,1);

pvec(1) = 1;

Ap = A\pvec;

options = optimoptions(@fmincon,’Display’,’off’,’Algorithm’,”active-set’,’ TolX
",1e-12,’TolFun’ ,1e-12);

1b=-100000*xones(length(startFrame:tlen),1); % lower boundary for the

minimization process

ub=100000*ones(length(startFrame:tlen),1); % upper boundary for the

minimization process

Aiht

A;

Aiht (1,1)
Aiht (1,2)

Aiht (1,3)

Apih
Tiht

Tsur

M =

t =

f =

-3xk_cond/(2*xdx);
2xk_cond/dx;

-k_cond/(2*dx);

Aiht\pvec;
Aiht\B;

Temp(:,startFrame:end);

size(Tsurf ,b2);

Q’;

if ~isempty(pbar)

end

for

pbar.Message = ’Beginning iterations...’;

pt

’

1:Npts

% Note: Mirko’s code divides the temperature into two pieces

% the first piece uses a direct solver, the second piece

% is shorter and uses the inverse method.

Tpt

phi

Temp(pt,:);

zeros(n,1);
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end

for tt = 1:startFrame-1
phi = Tmatxphi + ApxTpt(tt);
Q(tt,pt) = -k_condx(-3*xphi (1) + 4*xphi(2) - phi(3))/(2*dx);

end

qged = QQe(pt,:)’;

% inlining Matlab’s smooth for speed

DeltaT = Tsurf(pt,:);

c = filter(smoothFilter ,1,DeltaT’);

cbegin = cumsum(DeltaT(1:tsmooth-2)");

cbegin = chegin(l1:2:end)./(1:2:(tsmooth-2))’;
cend = cumsum(DeltaT(M:-1:M-tsmooth+3)’);
cend = cend(end:-2:1)./(tsmooth-2:-2:1)";

DeltaT = [cbegin;c(tsmooth:end);cend];

qq = fmincon(@(qq) (ihtp_func(qq,DeltaT,phi,Tiht,Apiht)),...

qge,[1,L1,[1,[]1,1b,ub,[],0ptions);

Q_nonlin(pt,:) = qq’;

if ~isempty(pbar)
pbar.Value = pt/Npts;

end

if ~isempty(pbar)

pbar.Message = ’Finishing up...’;
end
Q =Q’;
Q(:,startFrame:end) = Q_nonlin;
Q = reshape(Q,xlen,thlen,tlen);
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ct = toc;

end

%% helper functions

function err = ihtp_func(qq, Tsurf,phi,Tiht,Apiht)

err = 0;

for ii = 1:1length(Tsurf)-1
phi = Tihtxphi - Apiht*qq(ii);
Twa_an = phi(1);
err = err + (Tsurf(ii+1)-Twa_an)."2;

end

end

function err = ihtp_func_fastMat(qq, Tsurf,d,B)

% minimization function for the ihtp solver

% note that this is LINEAR so we can use efficient matrix algebra

% the inputs are as follows:

%

% qq: the estimate for the surface heat transfer (what we’re looking for
% in the optimization)

% Tsurf: the experimental temperature history

% d: Tihtp*k(1,:) dot phi@, see write up

% b: a constant vector that is composed of the various powers of the

% transition matrix (first row) dotted with the bc vector, see write up

Twa_an = d + B*(-qq); % note b and qgq have to both be column vecs

err = sum((Twa_an(1:end-1)-Tsurf(2:end)))."*2;

end

function y = makePeriodic(x,Next,Nmean)

% calculates an extension to make x into a smooth periodic function
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SYNTAX:

1 y = makePeriodic(x,Next,Nmean)

DESCRIPTION:

y = makePeriodic(x,Next,Nmean) calculates the cubic Bezier curve of length
Next

that will

smoothly connect the last points of x to the first points,

thereby creating one period of a smooth periodic function. This is useful

for preparing a non-periodic signal for frequency decomposition with the fft

The Bezier curve matches both the value of the first and last point and

the approximate slopes there.

INPUTS:

X: Input signal {1-D column vector}

The input signal must be a column vector. If it isn’t,
makePeriodic will throw an error when it tries to concatenate x
and the extension. There is no input validation in makePeriodic
because it is only intended to be used within the qcalc
function, where the input signal will always be a column
vector.

Next: Extension length {positive integer}

Next is the number of samples to extend the signal. It should
be an integer larger than 1.

Nmean: Number of points used in derivative estimate {positive integer}
For a noisy signal, the difference between the first two points
will be a poor approximation for the actual derivative there,
and similarly for the last two points. A better method is to
take the average slope over some Nmean number of points to

provide an estimate for the true derivative.

OUTPUTS:
y: Output signal {1-D vector}

The output signal is [x; Extensionl].
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MORE ABOUT:

A cubic Bezier curve is a curve described by only four points: two

end points and two control points. This compact definition makes it a
memory efficient way to generate a smooth curve. In addition, it has the
nice property that the slope at the first point is equal to the slope of
the line from the first point to the second point, and similarly for the
end point. This makes it easy to match both slopes and values with a

smooth curve, which is the desired behavior in makePeriodic.

iffl = sum(diff(x(1:Nmean)))/Nmean;
iffend = sum(diff(x(end-Nmean:end)))/Nmean;

x(end);
x(1);

1fDist = round(Next/2);

PO + halfDist*xdiffend;

P3 - halfDist#xdiff1;

linspace(0,1,Next)’;

t = ((1-ss).%3)*%P0 + (3*ss.*(1-ss).%2)*P1 + (3*%(1-ss).*ss.”2)*P2 + (ss.”3)x*

P3;

= [x; Ext];

d

nction [algopts,flags] = parseAlg(algstr,algs)

ismember (’-’,algstr)
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out = split(algstr,’ -");

numopts = length(out);

flags = {3};
for nn = 1:numopts
flags = [flags; out{nn}];
end
else
flags = {algstr};

end

algopts.fast = any(strcmp(flags,’fast’));
algopts.par = any(strcmp(flags,’par’));
algopts.precalc = any(strcmp(flags,’2step’));
algind = ismember(flags,algs);

algopts.alg = flags{algind};

end

E.2 Image Processing

To study the growth of the stationary crossflow waves, it is useful to automatically extract the
peak heating along streaks in the IR image. The algorithm used in this work is semi-automated,

and proceeds as outlined in Table E.1.
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Table E.1. Method to trace peaks in heat transfer images.

1: procedure StreakTracker(Q,X, theta)

2 Img < zeros(size(Q)) > Img is set to 1 wherever there is a peak

3 for all x in X do

4 s «— Q(x,theta) > Get the spanwise slice at x

5: s « filter(s)

6 Peaks « findpeaks(s)

7 Img(x,Peaks) « 1

8 end for

9 Img < morphops(Img) > Use morphological operations to connect

> unconnected parts of streaks and remove noise.

10: CC « bwconncomp(Img) > Get the connected components of the binary image

11: for all streak in CC do

12: U « unique(streak.x(:)) > Get the unique x values for the component

13: streak.x «— U

14: for all x in U do

15: V « streak.y(x) > Get all the y values at this x in this component
> There may be more than one y value for a given x due to the morph. ops.

16: streak.y(x) « mean(V) > Reduce to a single y value

17: end for

18: sort(streak.y,streak.x) by streak.y

19: end for

20: end procedure




F. BICOHERENCE CODE AND VALIDATION

F.1 Code Listing

function [ bic,

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

PO, plot_bool )

F1,

F2, BS, sigmaBS, LS, bicH, lambda ] = bicohere( y, fs,

BICOHERE calculates the bicoherence and bispectrum of signal y(t)

INPUTS :

y: signal of interest

fs: sampling frequency (Hz)

N: number of time segments for bispectrum analysis
PO : percent overlap of segments in range [0,1]
plot_bool: plot or no?

OUTPUTS :

bic: magnitude squared bicoherence matrix

F1: bicoherence x variable (Hz) 0:fs/2 (meshgridded)
F2: bicoherence y variable (Hz) 0:fs/4

BS: unnormalized bispectrum (complex)

sigmaBS: unused, kept around for backwards compatibility
LS: length of one window

bicH: unused, kept around for backwards compatibility
lambda: unused, kept around for backwards compatibility

for more information see:

Digital Bispectral Analysis and Its Applications to Nonlinear Wave

Interactions,

No. 2, 1979

Kim & Powers,

Normalizing Bispectra, Hinich & Wolinsky,

and Inference,

Vol. 130, 2005

IEEE Transactions on Plasma Science, Vol. 7,

Journal of Statistical Planning

Diagnosis of Process Nonlinearities and Valve Stiction

Choudhury,

Shah,

and Thornhill

264

N,



40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

%
%
%
%

AIC, Springer, 2008

Josh Edelman, Jan. 2015

%% Changelog

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

v3.1 - 2/24/2019

-Removed difference interactions because apparently it is
redundant information (see Kim and Powers original paper)
(even though apparently a lot of people don’t realize this?)

-Squeezed every ounce of speed I could by including Matlab
functions, reducing the domain to a minimum, etc.

--NOTE: bicohere returns ONE SIDED spectrum and freq vectors now

v3 - 2/20/2019

-Brand new algorithm for computing Y3k, using Hankel matrices! Blazing

fast now

-added computation of difference interactions

--NOTE: frequency vectors now include negative frequencies!!

--NOTE: removed one-sided spectrum compensation b/c including both sides

to account for difference interactions

-added power compensation for window (was incorrect before, but only
affects the non-normalized bispectrum)

-changed from Hann window to Blackman window

-averaging of bispectrum is now correct

v2.5 - 10/24/2018
-corrected normalization for Kim and Powers

-added normalization for Hinich

v2.0 - 9/25/2016

-changed to more efficient, matrix-based algorithm

vli.1 - 7/7/2015

-corrected definition of LS

265



% -corrected treatment of one-sided spectrum
%

%

% v1.0 - Jan 2015

%% define variables
tic

LS = floor(length(y)/(N+PO*x(1-N))); % length of segment

% if LS isn’t even, make it so
% this greatly simplifies things later on
% (could have made it odd, but it’s too late now)
if mod(LS,2)
LS = LS-1;

end

SZ

LS/2; % this is why it’s nice to have LS even

RTP1

zeros(SZ,round(SzZ/2));
RTP2 = RTP1;
B = RTP2;

lambda = B;
bicH = 0;

% custom Blackman window

% to avoid all the overhead from

% the blackman function call

wSamps = (@:LS-1)/LS;

WIN = 0.42 - 0.5xcos(2*pi*wSamps) + 0.08*cos (4*pixwSamps);
Wcomp = sqrt ((WIN*xWIN’)/LS); % window compensation

sigmaBS = 0;

if ~isrow(y)

y =y’
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end

%% calculate bispectrum for each segment

% put the fdomain functionality right here to avoid function overhead
fks=0:LS/2-1; % LS is ALWAYS even (see above)

T=LS/fs;

w=2*pi*xfks/T;

f = w/(2xpi);

SZ2 = round(SZ/2);

% same thing with Matlab’s hankel function
NC = SZ;

NR = SZ2;

Rmat = zeros(NC-2,1);

% the tril only keeps the principle domain of the bicoherence,

% but it is NOT present in Matlab’s hankel

IJhankel = tril((1:NC)’ + (@:(NR-1)));

IJhankel (IJhankel==0) = LS-1; % everything else is set to @ (Rmat(end))

for k = @:N-1
startIndex = floor ((1-PO)*k*LS)+1;

endIndex = startIndex + LS - 1;

y(startIndex:endIndex).*WIN; % define segment for analysis

yk-sum(yk)/LS;

yk

vk

% Normally need a 1/LS on fft output,
% but it cancels for bicoherence

Yk=fft(yk);

% Strictly speaking we don’t need to account
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%
%
%
Y
Y

Y
Y

%
%
%
%

X
Y

%
%
%
R
R
B

end

% Not

% bec

bic =

F1 =

F2
BS

for the one-sidedness or window because those
factors all cancel in bicoherence,

but it really seems wrong to not include them...

k = 2xYk(1:SZ)/LS;

k = Yk./Wcomp;

kt = transpose(Yk);

Yk = Ykt*Yk(1:SZ2); % build up the matrix of YkxY1l for all (k,1)

Hankel matrix is constant on anti-diagonals
recall that f1+f2=f3 is constant on
anti-diagonals, so Hankel is perfect! And

super efficient!

= [Ykt; Ykt(SZ); Rmat]; % do the hankel matrix creation
3k = X(IJhankel);

NOTE: at least on my computer, real(x).”2 + imag(x)."*2
is actually noticeably faster than abs(x).*2
(maybe 20 ms out of 200 ms run time)

TP1 = RTP1 + (real(YYk).”2 + imag(YYk).*2);

TP2 RTP2 + (real(Y3k).”2 + imag(Y3k).*2);

= B + YYk.*conj(Y3k);

e again we don’t account for norm in average (1/N)
ause its 1/N*2 for top and 1/N * 1/N for bottom (they cancel)
(abs(B).*2)./(RTP1.%RTP2);

5
f(1:522);
B/(N*x(LS*3)); % need to account for the lack of 1/LS in matlab

% because we aren’t normalizing by RTPs here
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%%

return variables and plotting

if plot_bool

end

bicMax = max(max(bic));

figure

ahl = subplot(4,1,2:4);
imagesc(f/1000,f(1:S22)/1000, transpose (bic));
set(gca,’ydir’,’normal’);
xlabel (’f_1, kHz’);

ylabel (’f_2, kHz’);
%zlim([0,1]);
colormap(flipud(gray))
colorbar(’Location’,’east’);
%caxis([0,0.5]);

hold on

plot3 ([0, fs/2000],[0,fs/2000],[bicMax,bicMax],’k:’,’LineWidth’ ,0.5);

axis equal
xlim([0, fs/2000]);
ylim([0@,fs/40001]);

ah2 = subplot(4,1,1, align’);

[pxx,f2] = pwelch(y,WIN, round(PO*LS),LS,fs);
semilogy (f2/1000, pxx);

axis tight

xlim([0, fs/2000]);

title(’Welch Periodogram and Squared Bicoherence’);

%profile viewer

toc

end

269



270

F.2 Code Validation

The above code was validated using a nonlinear input signal y:

f, = 100kHz,
f, = 245kHz,
f; = 2MHz,

x = sin(2x fit) + sin(27 f,1),

y = x +0.05x% + n(r).

The quadratic operation on x results in six phase-locked frequency components in y:

—_

. (fis f,) = (100,100) kHz

[\

. (fyr fo) = (245,245) kHz

w

. (fi, f) = (100, 245) kHz

=

. (fio fo — f1) = (100,145) kHz
(o= fio o + f1) = (145,345) kHz

. (fy - fi.2f,) = (145,200) kHz

Ul

@)}

Note that because the bicoherence is symmetric about the line f; = f,, the order of the frequencies
doesn’t matter. Figure F.1 shows the power spectrum and bicoherence of y. The frequency
resolution was set to 2 kHz. There are 6 points of bicoherence nearly equal to 1, corresponding to

the expected points, above.

F.3 Performance of Bicoherence on Hidden Signals

In the validation case presented in the previous section, all of the harmonics were obvious in
the power spectrum and could easily be tied to the relevant peaks in the bispectrum. This is not

always the case, but as the following examples demonstrate relying solely on the power spectrum
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Figure F.1. Power spectrum and bicoherence for the validation case.

to determine the presence of nonlinear signals can sometimes overlook important features of the

signal.

F.3.1 Single Harmonic in the Presence of Noise

The signal x(7) is constructed as the sum of a sine wave and its phase-locked first harmonic,

x(t) = 10 sin (wt + ¢) + 0.075 sin 2wt + 2¢) + n(t), (F.1)
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where n(t) is the sum of zero-mean, Gaussian noise and a second component that is the integral
of Gaussian noise to provide an increase in low-frequency noise power that can be observed in
the experimental power spectra.

The power spectra for w; = 27100 kHz are shown in Figure F.2 both with and without the
added noise term n(t). Without noise, the 100 kHz peak and its harmonic are obvious. When noise
of a sufficient level is added, the harmonic at 200 kHz is completely obscured. Using only the
power spectrum, it would seem in the noisy case that the signal has no phase-locked components;
indeed in that spectrum there is only a single frequency component (other than the wide-band
noise).

The bicoherence, however, is able to accurately ascertain that there is phase locking between
100 kHz and 200 kHz, even when the latter is not apparent in the power spectrum. The magnitude
of the bicoherence is substantially reduced—in theory it should be 1.0 at (100 kHz, 100 kHz)—but

the presence of a nonlinearity is clearly indicated.

100 L e
Clean Signal
Noisy Signal
()
n 10 L -
o 10
10-20 T RS ST R S RS ST BT
0 100 200 300 400 500

Frequency, kHz

Figure F.2. Power spectra from the first test case: a single sinusoid and its phase-locked first
harmonic, with and without additive noise.
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Figure F.3. The bicoherence of the first test case with additive noise. Note that the maximum
theoretical bicoherence is 1.0 at (100 kHz, 100 kHz).

F.3.2 Wide-Band Quadratic Interaction With Noise

Perhaps a more relevant test case to the present work is a quadratically nonlinear, wide-band
signal. Figure F.4 shows the power spectra of x, 0.25x%, and the combined signal x + 0.25x% + n(¢).
Here x(t) is the sum of sinusoids from 35 kHz to 150 kHz every 0.5 kHz with amplitudes peaking
at 45kHz. Note that in the spectrum of the combined signal, it is not apparent that there is a
harmonic at all. The wide-band of the primary signal overlaps with much of the harmonic leading
to what appears to be a single, wide-band signal with a long roll-off. The bicoherence for this case
is shown in Figure F.5. The bicoherence accurately captures the quadratic nonlinearity, with a

maximum of 0.99.
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Figure F.4. Power spectra for individual components of a quadratically-nonlinear signal and their
sum.
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Figure F.5. The bicoherence of the wide-band test case accurately captures the nonlinearity in the
signal.
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G. NONLINEAR RESPONSE OF A PCB PRESSURE TRANSDUCER TO
MECHANICAL AND ACOUSTIC IMPULSE

Because the bicoherence was used to understand the behavior of nonlinear breakdown, it is
important to examine the nonlinear mechanical response of the PCB sensors to ensure that it is not
confused for flow mechanisms. To do this, the sting was hit with a mallet and the sensor response
was recorded. Figure G.1 shows the time-domain response of the PCB to the mallet impulse.
Unfortunately the signal has clipped at +0.025 V, but it is still useful. The orange section shows the
region used for spectral analysis. Figure G.2 shows the PSD of the response. Note the small peaks
at 5kHz and 8 kHz, followed by a rapid roll off. Figure G.3 shows the bicoherence of the same
time data. There are only two regions of non-negligible bicoherence: a strong interaction region
at about (30 kHz, 10 kHz) and a weaker interaction region around (600 kHz, 20 kHz). Neither of
these regions are in the frequency band of the measured secondary instability.

Because the sensors are used to measure acoustic fluctuations and not mechanical loads, it is
also important to understand any nonlinear behavior in the sensor due to these fluctuations. Data
from the Purdue 3-inch Shock Tube was provided by Wason [80]. A PCB sensor was placed in
pitot configuration, and an incident shock was measured as shown in Figure G.4. The bicoherence
of the sensor response following this shock is provided in Figure G.5. As with the mechanical
impulse, the sensor nonlinearities do not appear to be significant in the regions of interest. A
closer view of the region below 1 MHz is shown in Figure G.6. There does seem to be weak
nonlinearity associated with the sensor sub-resonance at 300 kHz and dispersed through the
region of interest, though due to the very short time scale of the shock tube there is considerable
noise in the bicoherence (not enough window averages can be taken). It is not clear how inherent

sensor nonlinearities would interact with true nonlinearities in the measurement.
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Figure G.3. Bicoherence of the PCB’s mechanical response.
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Figure G.4. Sensor response to an acoustic impulse (sensor in pitot mode in a shock tube, see
Ref. [80]). The orange section was used for the following analysis. Amplitude units are arbitrary.
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Figure G.5. Bicoherence of the PCB’s response to the shock.
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Welch Periodogram and Squared Bicoherence
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Figure G.6. Bicoherence of the PCB’s response to the shock, refined view.
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H. ENGINEERING DRAWINGS
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Handbook on IR Heat Transfer
Measurements in the BAM6QT

“Any product that needs a manual to work is
broken.”

Elon Musk
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Josh Edelman
Rev. 1B, 2019
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Forward

This handbook will attempt to provide all the necessary information for an experienced tunnel operator
to successfully acquire IR images and reduce them to heat transfer. The first chapter is a quick refer-
ence, which provides useful data on the properties of PEEK, the IR camera and windows, and an FAQ,
among other things. This should be the first reference for any quick question on the particulars of the
system. Chapter 2 provides an overview of the theory and history of IR thermography, and a description
of the theory and numerical implementation of the various heat-transfer reduction algorithms included
in the Appendix. Chapter 3 describes best practices for IR model design and how to prepare models for
IR measurements. Chapter 4 explains how to set up the IR camera and prepare it for use. The .m files
for the codes will be placed somewhere on the group website.

| have spent considerable time learning to use the apparatus and preparing this overview. However, my
efforts would be in vain without help from a number of other researchers. Salvatore Cerasuolo, Mirko Za-
ccara, and their advisor, Dr. Gennaro Cardone, led the development of an IR technique for the BAMG6QT. |
borrow heavily on their expertise in this handbook. Dr. Matt Borg of AFRL provided the calcium fluoride
window, and his significant experience in IR imaging was extremely helpful. Dr. Tom Juliano, Harrison
Yates, and Carson Running at the University of Notre Dame graciously loaned their IR camera to us for
several years before we acquired our own. The IR camera itself was purchased using funds from the
UDRI contract. Finally, | am grateful for the support of the AFOSR via the NDSEG fellowship while
preparing this document.

| expect that there will be several revisions as aspects of the system change, as people learn more
tips and tricks, and as errors are discovered within. The version history should be kept up to date by
whomever is responsible for its upkeep.

Josh Edelman, 2019
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/\ Safety Warning

THIS IS A SAFETY WARNING. IT PROVIDES SAFETY CRITICAL INFORMATION. FAILURE TO
HEED SAFETY WARNINGS COULD RESULT IN SERIOUS INJURY OR DEATH.

This is a warning. It will alert you to particularly important information, common mistakes, and
ways you can seriously damage equipment. Please heed all warnings.

Before Continuing

This is a stop sign. It will tell you what you need to have completed to proceed to the next step.

@ For Your Information

This is a tip. It provides and emphasizes useful information for your IR journey!

A Note on Citation

Whenever discussing the Purdue IR method, please cite the Masters theses of Cerasuolo and Zaccara
(see citations in Edelman’s dissertation), and cite Borg & Kimmel (AIAA 2016-0354) when discussing
the calcium fluoride window. If you reference the original QCALC routine, also cite Borg & Kimmel. If
you use PIRANHA or the gcalc codes, cite Edelman’s PhD dissertation.
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Chapter1

Quick Reference

1.1 PEEK Properties

Specific heat c¢,, Jkg 1K™

Thermal Conductivity kK, Wm~—1K!

Density p, kgm—3

Thermal Diffusivity o, m2 s~

Emissivity, ¢, function of viewing angle 0

Physical Specs

1.2

Model Number
Spectral Range

Pixel Pitch

Detector

Detector Resolution
Temperature Measurement Range
Measurement Accuracy
Temperature Resolution
Frame Rate, full frame
Dynamic Range
Integration Time
Lenses

Dimensions

Weight

“To my sister’s eyes, there is nothing which
cannot be explained if one has access to a
proper reference library.”

Elizabeth Gilbert

1026

0.29

1300

0.217 x 106

[0_91005(9)10.03/005(9)"35

Victrex 450 G unfilled, natural (tan) color

IR Camera Properties

Infra-tec ImagelR 8300 HP
2.0umto 5.5um

15um

InSb

512 x 640
—40°Cto1500°C

+1°C

20mK

max 350 Hz

16 bit

0.6 us to 20000 s

12 mm, 25 mm, 50 mm, close-up lens for 50 mm
244 x 120 x 160 mm
3.3kg
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1.3 IR Window Properties

A Warning

The IR window is extremely fragile and difficult to clean. Do not touch the surface of the window
or any of the camera optics. Wear gloves when handling the window. Do not let the camera lens

touch the window at any time.

/\ Safety Warning

THE NEW CAF2 AND MGF2 IR WINDOWS HAVE NOT YET BEEN PRESSURE RATED, AS OF
REV 1. DO NOT USE THESE WINDOWS UNTIL THEY HAVE BEEN RATED.

1.3.1 Original CaF, Window

The Calcium Fluoride (CaF») window is designed to fit inside the downstream porthole window (designed
and paid for by Matt Borg, AFRL). The following properties are those of the glass window itself, not the
steel frame.

/\ Safety Warning

THE CAF2 IRWINDOW IS ONLY RATED TO A MAWP 285 PSIG, AS OF REV 1. DO NOT USE THE
IR WINDOW ABOVE THIS PRESSURE UNLESS IT HAS BEEN RE-RATED.

Diameter, mm | 101.4
Thickness, mm | 44.45
AR Coating | BBAR-CAF2-3-5
Manufacturer | ISP Optics

The two flat surfaces and the curved outer surface are polished. There is a small bevel on the edges.

1.3.2 Small Sapphire Window

The small sapphire window was fabricated to the same physical specifications as the CaF, window. It
fits in a similar frame, designed and manufactured by TriModels.

/\ Safety Warning

THE SMALL SAPPHIRE IR WINDOW IS RATED TO A MAWP 285 PSIG, AS OF REV 1B. DO NOT
USE THE IR WINDOW ABOVE THIS PRESSURE UNLESS IT HAS BEEN RE-RATED.

Rev. 1B - 6/19/2019



Diameter, mm | 101.4
Thickness, mm | 44.45
AR Coating | SAR-3,000-2S
Manufacturer | Guild Optical
Optical Coating | IMPhotonix
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1.3.3 New CaF; Window
The new CaF, was purchased with AFOSR funds in the Spring of 2019.

Diameter, mm | 101.4
Thickness, mm | 44.45
AR Coating | AR/AR 2-6 um
Manufacturer | Knight Optical

The two flat surfaces and the curved outer surface are polished. There is a small bevel on the edges.

1.3.4 MgF> Window

Magnesium Fluoride (MgF>) is stronger than CaF,. A test window was purchased with AFOSR funds in
the Spring of 2019.

Diameter, mm | 101.4
Thickness, mm | 44.45
AR Coating | AR/AR 2-6 uym
Manufacturer | Knight Optical

The two flat surfaces and the curved outer surface are polished. There is a small bevel on the edges.

1.3.5 Big Sapphire Window

Money for a large sapphire window was awarded as part of the FY19 DURIP grant. When the window is
fabricated, the specifications will go here.

1.4 Typical Camera Settings

Integration Time 1290 us
Lens Focal Length | 12 mm
Frame Rate 300 Hz

1.5 Typical Process
1. Install IR window in BAM6QT (Section 3.1)
Set up IR camera and associated hardware (Section 3.2)
Perform optical calibration, if needed (Section 3.3)
Install model
Take data (Chapter 4)
Export data as ASCII .asc file (Section 4.3)
Apply corrections to optical calibration to match image

Register images and convert to temperature

© ® 5N o O » 0D

Perform heat transfer reduction
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10. Save results
11. Perform post-entry optical calibration, if needed

12. Put camera and IR window away
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1.6 FAQ
Safety of People and Equipment

Q: It looks like there’s a chip in the window. Is it OK to use?

A: NO. You should never use a damaged window.

Q: Oh no! I accidentally smudged one of the IR optical surfaces! What do | do?

A: Don’t panic, but under no circumstances should you clean the IR optics by yourself unless you are
specifically trained to do so. Never use acetone or ethanol near the optics. Find the IR Lead and
they will help you to clean the optics or find someone who can.

Lenses
Q: How do | know what lens to use?

A: Usually you only need the 12 mm lens. If you want to zoom in on some feature of the model, use the
25 or 50 mm lens.

Q: What’s that funny circle in the middle of my image?

A: This is the reflection of the camera sensor off the window. You can reduce it by angling the camera
with respect to the plane of the window.

Q: How do | focus the lenses?

A: With the lens already mounted on the camera, hold the forward-most ring of the lens and gently
twist it. Use the right-hand rule to determine the direction: to focus closer, twist out, etc. Note:
do not force the focus ring to rotate. It has a mechanical stop at its limits.

Data
Q: Where should | save the data?

A: You may save data during your entry to the DATA drive on the laptop (the 1TB drive), or to an external
drive. However, if you save to the internal drive, you must remove your data from the laptop after
your entry is over. IR images take a lot of space, so we need to keep the disk as empty as possible.
The IR Lead has the authority to delete any data on the disk if it begins to get too full.

Q: The output from the camera shows that it is taking frames before it is triggered. What is going on?

A: The camera should be set up to record 1 second of pre-run data (see Section 4.1), so it must always
be collecting and deleting data before it receives the trigger signal.

IRBIS Software
Q: What is the bright red box in the bottom left corner of the screen?

A: That is the current camera temperature. If it is red, the camera is far too hot. Make sure the room is
cool, and open the optical table (only if the tunnel is unpressurized). Wait until the camera cools
down to use it further.

Rev. 1B - 6/19/2019
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Q: Why aren’t my settings saving?

A: Remember to click the green check mark to close options windows and save the settings. Clicking
the x mark reverts the settings.
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Q: The software says | exceeded my calibration range. Is this bad?

A: Youshould always try to select a calibration range that completely encompasses your data. However,
if you exceed it by a few degrees, the calibration should still be valid (according to InfraTec).

1.7 Useful Contact Information

Gary Schivley, InfraTec sales rep: G.Schivley@infratec.de

BAMG6QT IR Lead: jedelma@purdue.edu

Jon Lavoie, Guild Optics (sapphire optics): jlavoie@guildoptics.com

Michael Maldari, IMPhotonix (optical coatings): mike.maldari@imphotonix.com

Boedeker Plastics (PEEK supplier): www.boedeker.com

Rev. 1B - 6/19/2019




Chapter 2

IR-capable Model Design

“You cannot defend your design without
knowing what you’re designing for.”

I. M. Pei

Infrared-capable models have a number of advantages over those used with TSP. They are electrically
insulating, so PCB ground-looping is less of an issue. The surface roughness and any steps in the model
stay constant from entry to entry. And the model can be cleaned during an entry if it becomes dirty.
However, for all its advantages, designing models for use with the IR system is substantially more in-
volved than for other measurements. This chapter describes the necessary steps one must take for a
successful model.

2.1 Meeting the Theories’ Assumptions

As described in Edelman’s dissertation, all of the heat transfer reduction codes available for use make
some assumptions. To get accurate heat transfer data, it is essential that the model is designed to
maintain the validity of the assumptions of any particular reduction routine. This section describes how
to design a model to accommodate each assumption.

2.1.1 1D or 2D Heat Transfer

Whether the assumption of 1D or 2D heat transfer is valid depends almost entirely on the geometry in
question. If there are no large gradients in heat transfer in any direction (such as a straight cone at zero
degrees AoA), then 1D is valid. However, sometimes even streaky flows (like crossflow or Gortler) can
make the 1D assumption and still yield largely accurate results.

The relevance of 2D conduction effects in streaky flows can be quantified via the Modulation Transfer
Function (MTF) and the modified Fourier number [?]. This function is given as

Fo g erf (v/Fo,,) | 21)

Fo.,
where Fo,, is the modified Fourier number,
Fo, = wlat, w=27/\, (2.2)

where ) is the wavelength of the relevant streaks. On a cone, the wavenumber of the stationary cross-
flow waves is given by m = 360°f, where f is the frequency of the waves in cycles/degree. If we let
B8 = vat m/r(x), then the MTF is given by

Rt
F— 5 3 (2.3)
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The MTF reaches 95% (i.e., 2D conduction will have about a 5% effect on the heat transfer) at 395 = 0.39.
Thus for a cone, if

Bos = Vatm/r(x)<0.39, (2.4)
= x>26vatm/tans or, (2.5)
= m<0.39tand/Vat. (2.6)

then 2D conduction can be neglected. For PEEK in BAMGQT conditions on a 7° half angle cone, these
conditions mean that 2D conduction can be neglected if

x > 0.0137m (for t = 2s), (2.7)
m < T73x. (2.8)

In general, it is unlikely that 2D conduction effects will matter for most of the models used in the
BAMGAQT. If 3D effects are relevent (wall normal, transverse, and downstream conduction), then none
of the currently available algorithms will be effective. However, 3D effects will only matter if there are
significant temperature gradients in every direction, or if the material is non-isotropic. It is up to the
experimenter to determine if such conditions are relevant to a specific geometry.

2.1.2 Semi-infinite Boundary Condition

Both the £ft and direct/indirect codes can make the assumption that the farfield boundary condition
(i.e., not the surface) is semi-infinite (technically the Italian code assumes an isothermal farfield condi-
tion, but for a large mesh size this is equivalent to a semi-infinite assumption). To meet this condition,
the thermal penetration depth for a given material and run time must be smaller than the thickness of
the PEEK at every imaged location. The thermal penetration depth is §(t) = 4\/at where « is the ma-
terial thermal diffusivity and t is the time into the run. For PEEK at 3 seconds, § is about 3 mm. PEEK
thicknesses larger than 5 mm should generally be acceptable.

@ For Your Information

Note that the 2D algorithm also requires that the radius of the PEEK section is much larger than
0, the thermal penetration depth.

2.1.3 Adiabatic or Isothermal Boundary Condition

The direct and indirect codes allow either an adiabatic or isothermal backside boundary condition. The
fft code would require significant changes, but it is possible to implement this condition if needed. To
meet the specified back-face condition, either the internal surface of the PEEK must be surrounded
by stagnant air (roughly adiabatic) or directly touching a large heat-sink of metal (roughly isothermal).
Note that the semi-infinite boundary condition in the direct and indirect codes is implemented as an
isothermal condition at T = T;,jtia-

It is possible to have other boundary conditions on the actual model than the three discussed here.
The relevant boundary conditions should always be considered so they can either be accounted for
or properly explained.

2.1.4 Constant-Frequency Time Data

The fft method assumes that the frame rate of the camera is constant (i.e., no dropped frames). If the
camera has dropped frames, these time points will need to be interpolated before using the method.

Rev. 1B - 6/19/2019



However, preliminary testing seems to indicate that a few dropped frames, or a small variation in the
frame rate, does not have a significant effect on the resulting heat transfer calculation. You may use
the ££t method in this case, but accurate results are not guaranteed.

2.1.5 Physical Model Design

It is necessary to work with the machinists to ensure that the PEEK components are the correct size.
PEEK is technically dimensionally stable, but it expands quite a bit when hot. It may be useful to add a
few thousandths to the longitudinal direction of a part to ensure that there are no gaps when it cools.
In addition, steps can form at interfaces if the PEEK is too large in diameter and then expands in the
tunnel. There is no good way to ensure the model interfaces will mesh perfectly a priori, so it is very
important to communicate with the shop what the requirements are.

@ For Your Information

A note on part interfaces: where ever PEEK parts mate with aluminum or steel, there will be heat
conduction out of the PEEK, and therefore the 1D assumption may not be strictly valid.

2.2 Preparing a Model For Imaging

Once the model has been fabricated there is not much left to do to prepare it for an entry. First, the model
must be cleaned of any smudges (anti-seize is a common culprit). The PEEK can be readily cleaned with
acetone. If the acetone is not strong enough, the shop also has a mineral-spirits wash station that
should be more effective. To make registration or other marks on the model, you must use the Sakura
silver-ink calligraphy pen, or some similar metallic pen. Regular Sharpie will not show up in IR (though
the silver Sharpie does show up, but not well). However, note that any registration marks will not be
visible during tunnel start-up because of the massive heating of the model. A possible way to have
registration marks visible during the start-up is to use press-fit metal rods instead of a pen. Such a
method should be more accurate in terms of mark placement, but could affect the nature of the flow if
the press-fits aren’t smooth. This technique has not been attempted so try it at your own risk.

[1] For Your Information

It is recommended to use gloves when handling the PEEK. It is very easy to accidentally get anti-
seize everywhere, and it doesn’t always clean off well.

2.3 Use of Sensors

It is useful to have an array of sensors in the field of view of the camera, to facilitate image registration
during processing. However, both PCBs and Kulites heat up the PEEK when they are turned on. It is
usually necessary to make a run with the sensors turned off or rotated out of view to get useful IR data.

Rev. 1B - 6/19/2019
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Chapter 3

Setting Up The Camera

“By failing to prepare, you are preparing to
fail.”

Benjamin Franklin

/\ Safety Warning

ALWAYS SECURE THE LEXAN SAFETY SHIELD OVER THE OPTICAL TABLE BEFORE PRES-
SURIZING. THE CAF2 WINDOW IS QUITE BRITTLE AND IF IT FAILS, IT WILL FAIL EXPLO-
SIVELY.

3.1 Installing the Window

The following is a set of instructions for installing the IR window and its frame into the porthole window
frame. They were provided by Matt Borg, who designed the IR window, and have been lightly edited for
clarity. Note that it is best to install and uninstall the IR assembly while the porthole window frame is
installed in the tunnel.

/\ Safety Warning

ALWAYS VISUALLY CHECK THE IR WINDOW FOR DEFECTS (CHIPS, SCRATCHES, SCUFFS,
ETC.) BEFORE INSTALLING IT IN THE TUNNEL. IF THERE ARE ANY DEFECTS IN THE GLASS,
DO NOT USE THE WINDOW AND REPORT IT IMMEDIATELY.

3.1.1 IR Assembly Installation

1. The IR window is designed to fit only in the downstream porthole location.
2. Remove the 8x bolts from the downstream porthole (see Figure 3.1).

3. Remove the retaining ring and the soft-metal gasket.
4

. Remove the Plexiglas window (use nitrile gloves to avoid smudging the Plexiglas). Make note of
the correct orientation so it can be reinstalled later (the top surface is marked).

16



10.

1.

Remove the 2x dowel pins from the top and bottom of the porthole window frame.
Ensure the o-ring is properly seated in the frame.

Carefully install the IR window assembly in the porthole frame. Do not touch the window itself.
Use gloves when handling the assembly. The dowel pin on the IR assembly should be oriented at
the top.

Install the soft metal gasket and retaining ring.
Install the 8x bolts.

Torque the bolts to 100 in-lbs in the following steps: 30 in-lbs, 60 in-lbs, 100 in-lbs. Tighten them
in a star pattern as indicated by the numbers in Figure 3.1. Ensure that all the bolts are tightened
by re-tightening them in a circle after finishing the 100 in-lbs star pattern.

Check the inside of the tunnel to ensure the window is seated properly. There should be no large
steps between the tunnel wall and the IR window frame.

3.1.2 IR Assembly Uninstallation

1.
2.
3.

N~ O 0o A

Remove the 8x bolts.
Remove the retaining ring and soft metal gasket.

Remove the IR assembly. This is generally not particularly easy. Press only on the IR assembly
frame and never press or tap on the IR window itself. Do not tap or hit the IR assembly. Gently
lift the IR assembly from inside the tunnel by pulling on the lip of the frame with a cleanly gloved
hand. At the same time, push and pull outwards on the assembly. Once the dowel pin is free, the
assembly should be easy to remove.

Reinstall the two dowel pins in the porthole window frame.
Reinstall the Plexiglas window, noting which face is marked as the top.
Reinstall the soft metal gasket and retaining ring.

Install the 8x bolts and torque as described in Step 10 of the installation instructions, above, and
shown in Figure 3.1.

Check the inside of the tunnel to ensure the window is seated in the proper orientation. If there is
a noticeable step between the tunnel wall and the Plexiglas, it may be upside down.
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~ Tighten outer 8 bolts to 100 in-lbs in 3 steps: 30 in-lbs, 60 in-lbs, 100 in-lbs

Figure 3.1: The bolt tightening pattern for the IR window.

3.2 IR Camera Physical Setup

Before Continuing

Remember to install the IR window before proceeding to camera setup!

Be extremely careful to ensure that the camera lens does not touch the IR window surface at any
point! This cannot be overstated.

Once the IR window has been installed, you can start to set up the camera. You will need

1. The black Pelican case containing the camera and lenses
2. The IR laptop in the laptop bag

3. The green fiber-optic cable

4. The black Gige/USB-C converted box

5. The USB-C cable
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3.2.1 Unpacking the Camera

Figure 3.2 shows the layout of the camera and lenses in the Pelican case. Remember this configuration
so you can put it back correctly when you are uninstalling. Note that it does not matter what lens is
attached to the camera when it is placed in the case, but one lens has to be. Keep track of the rear lens
cap for whichever lens is on the camera.

Carefully remove the camera from the Pelican case, as well as the camera powerpack, the trigger hard-
ware, and the fiber optic cable (the cable may be stored separately). Place these on the optical table as
demonstrated in Figure 3.3 (the actual location of the items of course does not matter).

Tigger hardware

IR Camera

Figure 3.2: The camera Pelican case correctly packed. Note that you can put any lens on the camera
when you store it, but one lens does need to be mounted. The close-up lens is only for use with the 50

mm lens.
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Figure 3.3: The camera and the necessary interface components removed from the Pelican case.

3.2.2 Changing the Lens

Always move carefully, being aware of where the lenses are at all times so that they are not scratched
It is better to be a little slow than a little careless.

If you need to change the lens, first find the lens you want in the case and take it out. Leave the lens caps
on for now. When swapping the lenses, the highest priority is keeping the IR camera sensor free of dust
and any other contaminants, so it should be exposed for as little time as possible (though as noted in the
warning above, do not move so quickly as to damage the lenses). The priority when changing the lenses
is to prevent damage to the camera; lenses are relatively inexpensive. Use the following procedure to
swap the lenses:

1. Orient the camera so that you can easily unscrew the lens. It is acceptable to have it facing you
and facing perpendicular to you. Do not place it on its rear (the face with the power button).

2. Remove therearlens cap from the lens you wish to install and place it face downin a clean location,
while holding the lens so the rear is pointed down. The rear of the lens is the part with the end with
the bare metal threading. The idea is to minimize the possibility of dust falling on the rear element.

3. Carefully grip the rear-most (closest to the camera) barrel of the lens and unscrew it, but pause
before fully removing it.

4. In a quick but careful movement, remove the lens, holding it downward so the rear element is cov-
ered, and place the new lens on the camera. Screw the new lens in hand tight. Do not over-tighten
the lens. It should not be so tight that you need any equipment to loosen it.
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5. Place the rear lens cap on the lens you have just removed, and put it away in the Pelican case.

3.2.2.1 Choosing the Lens You Need

In general, the longer the focal length, the more zoomed in the resulting image will be. The 12 mm
lens is appropriate for most cases in the BAM6QT. If you want to focus on a smaller area to resolve finer
features, the 25 mm is a fine choice. The 50 mm should be used for very small features (areas of around
2 inches square), and can be zoomed further using the screw-on close-up lens (areas of around 1 inch
square).

3.2.3 Mounting the Camera on the Optical Table

The mounting plate needs to be tightly screwed into the camera, but be careful not to over-tighten
it. You should be able to easily unscrew the mount by inserting a hex screwdriver into the hole in
the pylon and twisting.

The camera is mounted by a dove-tail plate to the ThorLabs big mount (in the Lista cabinets where
the Conaxes are kept). The mounting plate should generally be set up correctly. In this case, you can
(carefully) screw the pylon to the threaded plate embedded in the bottom of the camera until it is tight.
The plate should be oriented forward along the axis of the camera, as shown in Figure 3.4.

If the mount does not go to this orientation when it is tight, it needs to be adjusted. You will need to
remove the two Phillips-head screws holding the pylon mount to the dove-tail plate. Loosen the hex
cap-screw holding the pylon to the plate so the plate can rotate freely but is still attached. Screw the
pylon onto the camera and tighten it. When the pylon is fixed, rotate the mounting plate so the slots
orient along the axis of the camera and tighten it in place. Now, unscrew the mounting plate and pylon
unit from the camera, and reattach to the dove-tail plate as shown in Figure 3.4.

Once the camera and mounting plate have been attached, place it aside. Get the big ThorLabs mount,
shown in Figure 3.5, and place it at the marked location on the IR table (or a different location if your
situation requires). Ensure that the two metric screws on the dovetail mount are loose so the mount can
freely slide in. Also ensure that the lock-release handle is firmly locked before attaching the camera.
If you need to adjust the height or rotation of the mount, try to get it as close as possible before the
camera is attached. Secure the ThorLabs mount to the optic table before attaching the camera. If you
need to move the mount with the camera attached, always keep one hand securely on the camera, and
move the mount extremely slowly and carefully.

Before sliding the camera into place, put the black paper shield around the lens as shown in Figure 3.6.
This shield prevents external light from reflecting off the window and into the lens.

Be very careful when the camera is mounted in the dove-tail bracket but not yet tightened. When-
ever possible, keep one hand on the camera in this configuration. Be especially careful not to
move the camera further forward than you intend, as this could cause the lens to hit the window.
Be aware of the distance between the lens and the window at all times.

To fix the camera to the ThorLabs mount, carefully slide the camera dovetail plate into the ThorLabs
mounting slot as shown in Figure 3.7. Keeping one hand on the camera at all times, tighten the two
metric screws on the mounting bracket so that the camera can no longer slide. These screws should be
tight, but again not so tight that you cannot loosen them.
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ALWAYS USE TWO HANDS TO HOLD
THE CAMERA IF POSSIBLE

Dovetail
——— mounting

bracket

Figure 3.4: The correct mounting of the dove-tail plate.

A Warning

To repeat, the screws on the mount are metric. Do not use an imperial Allen key on these screws,
you will strip them. The proper Allen key is shown in Figure 3.8, though of course any 3 mm Allen
key is acceptable.

Another view of the camera properly mounted is shown in Figure 3.9.
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Figure 3.5: The ThorLabs mount. The dovetail mounting plate slidesinto the top piece, so the two screws
should be fairly loose. Make sure the lock-release handle is firmly locked before attaching the camera.
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Figure 3.6: The paper shield installed on the IR camera lens.
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Figure 3.8: This is the metric Allen Key, for tightening the two screws on the Thor Labs dove-tail mount-
ing plate. It is your friend. Do not lose it.
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Figure 3.9: A view of the properly mounted camera from the back.
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3.2.4 Connecting Cables to the Camera

There are three connections that need to be made to the back of the camera. Be sure to have those
cables ready before proceeding:

1. The camera power pack and associated cables
2. The green fiber optic cable with the silver GigE interface attached (it should not be stored unattached)

3. The trigger box

Never force the cables into the camera. They only fit one way, so if it isn’t going in you probably
have it oriented incorrectly.

An image showing the relevant ports on the back of the camera is provided in Figure 3.10. It does not
matter which order you plug the cables in. The power plug and the trigger cable each have red marks on
the cable and the top of the port. For each cable, align the two red marks and push in until the connector
clicks into place.

To install the fiber optic cable, first ensure that the cable is mated to the GigE adapter. If it is not, care-
fully insert the double fiber optic cable into the adapter. Be careful not to scratch or dirty the exposed
fiber. The fiber should click into the adapter. Once the GigE adapter is attached, orient it so the white
label is facing you, as shown in Figure 3.11. Then gently press the cable into the camera until it locks
into place. It may take a small amount of force, so push until it clicks.

Figure 3.12 shows the trigger input box. The inputs are labeled. In general, the input from the oscil-
loscope (or other trigger) goes into IN1. If you would like to record a pulse when a frame is captured,
take that from 0UT1. You are certainly free to use additional in and out ports, but they will likely not of
any benefit to you. You can configure what the input and output signals do using the IRBIS software
(Section 4.1).
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Figure 3.10: The locations of the important ports on the back of the IR camera.
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Figure 3.11: The proper orientation forinserting the fiber optic cable into the camera. Note that the white
label on the GigE adapter is oriented toward the power button (toward the user as well).
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Figure 3.12: The trigger input box and cable.
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3.2.5 Setting Up the Interface Hardware

For this procedure you will need the following:

1. The laptop and power pack

2. The converter box (shown in Figure 3.13) and power pack

3. The USB-C cable

Begin by placing the converter box as shown in Figure 3.13. It does not matterin which order you connect
the cables toiit. Figure 3.14 labels the ports on the back of the box. The two GigE ports on the tap map to
the two USB-C ports on the bottom, i.e. if you plug the fiber optic into the left port on the top, as shown
in the figure, you must plug the USB-C cable into the left port on the bottom. The fiber optic cable and
GigE adapter are inserted the same way as was done for the camera side of the connection. The white
label on the GigE adapter faces down in this case. Be careful not to step on or yank the extra fiber optic
as you make this connection.

@ For Your Information

It is helpful to run the fiber optic cable down the optical table and across the floor, bringing it up
only at the desk. Use some duct tape to ensure the fiber optic cable stays attached to the floor
and does not become a trip hazard.

Plug the power cable into the back of the box and then plug it in to the wall socket in the way that makes
sense. Finally, plug the USB-C cable into the lower port directly under the fiber optic cable, as described
above.

You may place the laptop wherever you like, as long as it can easily be reached from the converter box
by the USB-C cord, and as long as it does not impede movement around the tunnel. It is helpful to use
the yellow or green stools as a table for the laptop, as shown in Figure 3.15. As demonstrated in that
figure, plug the USB-C cable from the converter box into the appropriate port on the left side of the
laptop.

3.2.6 Turning on the Camera

Once everything is connected, turn on the camera by pressing the power button on the back. It will take
a few minutes for the Stirling cooler to warm up. During this time, you will see a blinking blue status
light as shown in Figure 3.16. You will also hear a terrifying grinding sound, this is entirely normal. Once
the camera is done warming up, the status light will turn green and the grinding sound will become a
quieter whir. At this point you can connect to the camera in IRBIS (Section 4.1). If the grinding sound
does not go away, turn the camera off and find the IR Lead Student.

@ For Your Information

The camera will make a terrifying grinding sound when warming up. This is normal. If the camera
continues to make the same sound after the status light has turned green, turn it off and find the
IR Lead Student.
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Figure 3.13: The GigE to USB-C converter box.

Before Continuing

Before fully installing your model, especially if you are not performing an optical calibration, put
your model in the tunnel to verify that it is within the camera’s viewing angle and that the camera
is focused correctly. You may have to focus the lens. Hold the forward-most ring of the lens and
gently twist it. Use the right-hand rule to determine the direction: to focus closer, twist out, etc.
Note: do not force the focus ring to rotate. It has a mechanical stop at its limits. If you need to
adjust the viewing angle of the camera, you can unlock the ThorLabs mount to raise or lower it
(or adjust the lateral angle), or you can unscrew the ThorLabs mount from the table to adjust its
lateral position. When you are adjusting the position of the camera, on any axis, you must always
securely hold on to the camera with one hand. If you need help, ask another student. And as
always, be aware of the position of the lens with respect to the IR window.
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Figure 3.15: The laptop connected to the converter box.
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Figure 3.16: The camera shows a blue status light when warming up.
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Figure 3.17: The camera shows a green status light when it is ready to use.
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3.3 Optical Calibration

This section is optional. It is helpful if you can easily represent your model geometry using simple func-
tions or a point cloud. If this is not the case, you can just process the IR images without associating
the individual pixels with physical coordinates. If you do not need to perform the calibration, skip to the
next chapter. Either way, be sure to tape the black paper shield around the IR window before starting to
take images.

The optical calibration process creates a digital camera “model,” which can be used to convert image
coordinates (in pixels) to real-world coordinates (in meters, or whatever unit you like). The process works
by taking several images of a calibration plate at different planes in the tunnel (parallel to the window,
at different distances from the window). A least-squares fitting algorithm finds the calibration marks
on the plate and calculates the best-fitting camera model. For details, see References [?] and [?].

To begin this process you will need:

1. The forked sting and 2x shoulder bolts (in a pink bag next to the sting)
2. The calibration plate, spacers, shoulder bolts, nuts, and mount
3. Digital protractor

4. Black electrical tape

Before Continuing

You will need to know what calibration planes are necessary for your specific model. These are
the distances from the window at which you place the calibration target; they should extend from
slightly in front of the model to slightly beyond the visible portion of the model. In particular,
you must know what your desired focus plane is so you can image that one first (once you have
correctly focused on it, of course).

Before Continuing

Before taking images during the optical calibration, lock the optical table in place and ensure that
the weight distribution on the table is roughly what it will be during a run. Remove the large test-
section bolts from the table (put them on the floor), install the Lexan shields, and place any other
equipment as you expect it to be distributed during a typical run.

3.3.1 Performing the Calibration

Before installing the calibration plate, you should apply the black electrical tape to the downstream
side of the IR window frame to reduce reflections. The tape should extend fairly far around the tunnel,
and it must be as flat as possible (no bubbles). However, never let the tape touch the surface of the IR
window. If during the calibration you see hot reflections from spots that you did not cover, you can cover
them at any time. To remove the tape, carefully peel it of f the surface of the tunnel. Use a small amount
of ethanol on a Kim-Tec wipe and gently wipe down the area where the tape was, being very careful not
to let ethanol get on the IR window.

Use the following procedure to install the calibration plate:
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1. Insert the forked sting into the sting mount all the way to the back (i.e. until you cannot push it
back further).

2. Insert the calibration plate mount into the forked sting and tighten it in place using the two sting
shoulder bolts.

3. Use the digital protractor on the flat mount surface to level the sting/mount.

4. Asyou tighten the sting, the mount will rotate slightly. Try to account for this when you rotate the
sting before tightening. You are aiming to achieve level within a few tenths of a degree.

Once the sting is locked in place, you are ready to mount the calibration plate itself. Before doing this,
you must figure out what your focus plane is going to be. For a cone at angle of attack, rolled 45° toward
the camera, the focus plane is about 1.8 inches, to give you some idea. Choose the correct spacers and
shoulder bolts for your focus plane, and install the calibration plate with the marking holes facing the
camera. Subsection 3.3.2 describes the available spacers and their color codes. With the calibration
plate installed and tightened, close the tunnel, but leave the bleed air on.

@ For Your Information

It is helpful to leave the calibration plate in the tunnel with the bleed air on for 20 minutes or so.
As the plate heats up, the contrast between the markers and the surface of the plate increases,
which makes the calibration algorithm more accurate.

After the plate is hot, you should see in the IRBIS software a grid of bright dots on a darker background.
When most of the dots are easily distinguishable from the background, you are ready to take the cali-
bration data. To take the data, use the following settings in IRBIS (described further in 4.1):

@ For Your Information

To use the PIRANHA calibration utility, your files need to be named in the following format:
plate_<plane>, Where <plate> should be the calibration plane distance times 10 (i.e. 1 inch is
plate_10). For negative distances, add an m before the distance, and for distances less than 1,
you need a leading zero (as in plate_05 for 0.5 inches).

@ For Your Information

The plate calibration images must be output as a .asc file. IRBIS should append a _1 before the
file extension, but if it does not, you must add this yourself to work with PIRANHA.

After you have taken and saved all your images (3 - 4 planes should be sufficient, but more is better),
you can open the calibration utility in PIRANHA and perform the calibration.

Before Continuing

When you are finished with your optical calibrations, put away all the equipment into their labeled
Lista drawers downstairs in 29B. If you have used electrical tape, remove it and clean the tunnel
surface as previously described.
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Congratulations! You have successfully set up the IR camera and performed an optical calibration. Af-
ter you have installed your model, proceed to the next chapter (make sure you place the model in the
camera’s field of view before you lock it in place).

3.3.2 Calibration Plate Spacer Color Codes

There are three spacers available: 0.2 inch, 0.4 inch, and 0.8 inch. Table 3.1 provides the color codes for
a few calibration planes. The plates and shoulder bolts are marked with nail polish of the appropriate
color. Figure 3.18 shows the possible orientations of the calibration mount, denoted sides 1and 2. A few
distances from the centerline are labeled. Note that the calibration plate thickness is 0.4 inch, and is
implicitly included in every combination of plates in Table 3.1.

Table 3.1: Selected calibration plane configurations.
Distance from § (inch) Color Code Orientation Plates Needed (inch)

1.2 Red @ Side 0.2,0.8
1.4 Pink Side 2 none
1.6 Blue @ Side?2 0.2
1.8 Orange Side 2 0.4

2 Green @ Side?2 0.2,0.4

-0.2” from @ +0.2” from ¢ ”
+

¢ ¢

\ LY

<

<=
Camera
Viewing
Direction

O O
O O

Side 1 Side 2

Figure 3.18: The two possible orientations for the calibration mount. The centerline refers to the tunnel
centerline. The view is looking down towards the floor if the camera is on the north side of the tunnel.

3.4 Uninstalling the Camera

The disassembly of the camerais fairly straightforward and follows similar procedures and rules as the
installation. Here are a few differences of which you should be aware:
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1. Before turning off the camera, disconnect from it in the IRBIS software (see Section 4.1).

2. Remember to put the lens cap back on the lens as soon as possible after you remove the camera
from the mount.

3. Toremove the GigE adapter from the camera and converter box, follow the instructions in the next
subsection.

4. Repack the Pelican case and put all the IR equipment back on its shelf in 29B.

5. When uninstalling the IR window, always check the window for damage before putting it away.

3.4.1 Removing the GigE Adapter

Please be careful with the fiber optic cable when removing the GigE adapter from the camera and
converter box. Never yank on either the cable or the adapter; both should be able to be removed
with little force.

Removing the GigE adapter is not as simple as pulling it out. First you have to press the khaki tab on the
green fiber optic cable and pull the cable out of the adapter. Next, pull out the silver handle on the GigE
adapter and gently pull the adapter out of its socket. When it is completely free, insert the fiber optic
cable back into the adapter until the khaki tab clicks into place.
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Chapter 4

Using the Camera

“For me, the camera is a sketch book, an
instrument of intuition and spontaneity.”

Henri Cartier-Bresson

Before Continuing

Have you installed the Lexan shield over the optical table? If not, do that before proceeding!

Do not use the camera for a long time when it is very hot in the room (25 °C to 26 °C or hotter). The
camera needs to cool its sensor to function properly and it cannot do that in a hot environment.
The camera temperature can checked in the IRBIS software, and should be about 40 °C or cooler.
The box in IRBIS showing the camera temperature will turn red if the camera is getting too hot.

4.1 IRBIS Software

To run the camera and export the images you will need to use Infratec’s IRBIS 3.1 plus software. This
software should be installed on the dedicated laptop. Login to the laptop using the “IR user” credentials.

When you open IRBIS, the screen shown in Figure 4.1 should appear. If it does not, the installation has
become corrupted (this has happened once before), and you will need to contact Infratec. The main
window of IRBIS has several components, annotated in the figure. Most users will only need to worry
about the Toolstrip, the Live Image, and the Favorites List. The IRBIS manual, which should be stored
with the IR camera (and is also placed in the IR code repository), is a useful guide for the other features.

Before Continuing

Before trying to connect to the camera in IRBIS, the camera must be on, warmed up (see Sec-
tion 3.2.6), and physically connected to the laptop via the fiber-optic and USB-C cables.
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Figure 4.1: The opening screen of IRBIS.

To connect to the camera, go to the Camera tab the Toolstrip and click the Connect button as shown in
Figure 4.2. A small window will pop up prompting you to select the camera. Use the drop-down menu
to select Image IR 4. Click Apply and IRBIS should connect to the camera.

@ For Your Information

If IRBIS throws an error when you try to connect, it is often because the user has forgotten to plug
the camera into the laptop (via the fiber-optic cable into the converter box, and the USB-C from
the converter box into the laptop). Also make sure that the power block for the converter box is
plugged into a working outlet. There should be a green light on in the inside of the box when it is
powered.

When the camera is connected, a live image from the camera should appear in the Live Image window.
If you don’t see an image, click the Live button in the Camera tab. If you see an image but it’s only white
noise, ensure that you have removed the lens cap. Once the camera is successfully connect, you can
configure it for acquiring your data. To change the colormap used in displaying the image, right click on
the colorbar to the right of the Live Image and change the map. There are four buttons just below the
colorbar that control the range of the colormap. From left to right they are:

orange S constant range

orange O range floats as the data changes (usually the best choice)

blue C range is the entire calibration range

blue S range is the min and max within the selection (You can select a region by using the Selection

tool in the Measure tab.)
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Figure 4.2: Connecting to the camera.

The camera acquisition settings can be manipulated using two windows, as shown in Figure 4.3. To open
the Remote Control (right window in the figure) click the Remote button in the Camera tab, next to the
Connect button. The Acquisition window (left window in the figure) can be opened by clicking the small
arrow in the bottom right corner of the “Acquisition Properties” sub-menu within the Camera tab. This
sub-menu is highlighted in Figure 4.4.

Within the Acquisition Properties window, there are several important settings. The Folder field points
to the location you wish to save the files. This can be changed as often or as little as you like. The Name
field should be changed for every run, though IRBIS should append numbers to the end of the filename
in sequence if the name already exists. Above the Folder field is a checkbox titled “Frames per File.” If
this value is less than the number of frames you plan to take, IRBIS will save the output file (extension
.irb) in multiple pieces. You may change this to fit your personal preferences.

The Speed panel allows you to set the camera frame rate, and the Frames panel lets you set either the
total number of frames to acquire or a length of time. The Start Trigger panel configures the camera
triggering. The Trigger dropdown must be set to Camera and the “Behavior” must be Burst for the cam-
era to trigger properly. It is usually advisable to acquire pre-run data. You can do so by checking the
“Pretrigger” checkbox and entering the number of desired pre-trigger frames. The default behavior of
the gcalc codes assumes one second of pre-run data. To save your settings, click the green checkmark
at the top of the window, as indicated. Clicking the red x will cancel the settings.

To open the ImagelR Remote, click the Remote button in the Camera tab, highlighted in Figure 4.5. There
are four tabs within the Remote window. The first is the Calib (Calibration) tab, shown in Figure 4.6. In
this tab, select the integration time you wish to use from the list. The calibration must correspond to the
lens that is installed on the camera (e.g. 12 mm in the figure). The 1274 us calibration is usually a good
choice. The chosen calibration range should bound your data, so if you expect to have very high heating
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Figure 4.3: The Camera tab.

(temperatures above 60 °C), you may need to select a different calibration. Note that if you are using
the 300 mm close-up lens with the 50 mm lens, that takes a separate calibration from the unmodified
50 mm calibration. The Frame Rate dropdown at the top of the Remote should be set to whatever you
entered in the Acquisition window. If it is not, you will have to change it in the Remote as well.

The Window tab in the Remote lets you choose the field of view of the image. The default is Full Frame,
which is best for most cases. If you need a faster frame rate than 355 Hz, you can select a smaller field
of view. The Half Frame and Quad Frame options are centered on the center of the image; if you want
a smaller frame centered on some other location, use the “Windowing - Random Frame” tab (note that
this does not mean you select a random frame, just that it is not one of the pre-defined frames).

The final window is the “Trigger” tab in the Remote. This tab is opened in Figure 4.5. The Detector
Sync should be Internal Trigger. The Frame Mark is whatever input channel you have used, in this case
Camera In 1. If you want to record the when the camera has taken an image, set Camera Out 1to Frame
Signal and connect the Camera Out 1 channel on the trigger box to an oscilloscope.

[1] For Your Information

It is good practice to check that the trigger is set up correctly throughout the day. Sometimes it
can reset, leading to no trigger and no data.
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Figure 4.5: The Remote Control.
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Figure 4.6: The Calibration tab.
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Figure 4.7: The Windowing tab.
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4.2 Acquiring Data

When you are ready to acquire data, click the Record button in the Camera tab. A window will pop up
showing that it is waiting for a trigger. The buffer will fill to your desired amount of pre-run data; don’t
trigger before the buffer is full. To take a single image without waiting for a trigger signal, go to the File
tab and click the ASCII button in the Save/Export Images panel in the Toolstrip.
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4.3 Exporting Data

To export the data, click on the Sequence tab. Ensure that the export more is set to IRB ASCII by clicking
the dropdown arrow at the right of the Export button (highlighted in Figure 4.8). When you are ready to
save the data, select the first frame of the .irb file in the Favorites List and then click the Export button.

@ IRBIS 3.1 plus - Purdue University Schools of Engineering, IN - [1: E\Josh\Entry 16\Rund\Rund.irb|12 - 640 x 512]
@ File Edit View Measure Camera Sequence Report Extras
] - - 5 : -
0 00000 B @ M (@, kalml] @ .
Cleanup Save Thin out @1 @ =eHD |T.diag. Proft | Accu save |BXBE Eyport (HD): IRB ASCII
Buffer Play Charts Sequencs mm!ﬂ!un_-y—'
Ne@Es PP /-
Favourite files i G X 3910 [
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Figure 4.8: Exporting data.
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4.4 Disconnecting the Camera

Before you start unplugging cables, click Connect in the Camera tab to disconnect the camera. Once the
camera is disconnected, you can turn it off and begin putting things away. You should disconnect and
turn off the camera at the end of every day.
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